
w w w. ra d i sy s . co m
Revision C • July 2006

OS-9® for 68K Processors
Technical I/O Manual

Version 3.3

July 2006
Copyright ©2006 by RadiSys Corporation

All rights reserved.
EPC and RadiSys are registered trademarks of RadiSys Corporation. ASM, Brahma, DAI, DAQ, MultiPro, SAIB, Spirit, and ValuePro are
trademarks of RadiSys Corporation.
DAVID, MAUI, OS-9, OS-9000, and SoftStax are registered trademarks of RadiSys Corporation. FasTrak, Hawk, and UpLink are
trademarks of RadiSys Corporation.
† All other trademarks, registered trademarks, service marks, and trade names are the property of their respective owners.

Copyright and publication information

This manual reflects version 3.3 of OS-9 for 68K.
Reproduction of this document, in part or whole, by any means,
electrical, mechanical, magnetic, optical, chemical, manual, or
otherwise is prohibited, without written permission from RadiSys
Microware Communications Software Division, Inc.

Disclaimer

The information contained herein is believed to be accurate as of
the date of publication. However, RadiSys Corporation will not be
liable for any damages including indirect or consequential, from
use of the OS-9 operating system, Microware-provided software,
or reliance on the accuracy of this documentation. The
information contained herein is subject to change without notice.

Reproduction notice

The software described in this document is intended to
be used on a single computer system. RadiSys
Corporation expressly prohibits any reproduction of the
software on tape, disk, or any other medium except for
backup purposes. Distribution of this software, in part
or whole, to any other party or on any other system
may constitute copyright infringements and
misappropriation of trade secrets and confidential
processes which are the property of RadiSys
Corporation and/or other parties. Unauthorized
distribution of software may cause damages far in
excess of the value of the copies involved.

OS-9 for 68K Processors Technical I/O Manual 3

Table of Contents

Chapter 1: The OS-9 Input/Output System 9

10 The OS-9 Unified Input/Output System
11 The Kernel/IOMan
12 File Managers
12 Device Drivers
12 Device Descriptor
14 IOMan and I/O
14 Device Table and Path Table
15 Path Descriptors
16 IOMan I/O Service Requests
16 I$Attach
17 I$Detach
17 I$Dup
18 Device Descriptor Modules
19 Module Offsets
21 Device Descriptors
25 Device Types
27 Path Descriptors
32 System State Time-slicing
32 File Manager Guidelines
33 Device Driver Guidelines
34 System-State Threads
35 Status Register Considerations
35 Interrupt Masking
35 System State Threads
36 File Managers
38 File Manager Organization
39 File Manager I/O Service Requests

4 OS-9 for 68K Processors Technical I/O Manual

43 Device Driver Modules
43 Driver Module Format
46 TRAP
47 IRQ
52 Device Drivers That Control Multiple Devices
52 Simple Devices
54 Multi-Port Devices
54 OEM Global Storage
55 Data Modules
56 Devices
57 Examples of Multi-Class Devices Using SCSI System Concept
59 Examples
59 Hardware Configuration
59 OMTI5400 Controller:
59 Fujitsu 2333 Hard Disk with Embedded SCSI Controller:
59 MVME147 Host CPU:
60 Software Configuration
61 Example One
62 Example Two
63 Example Three
64 Interrupt Driven I/O
68 DMA I/O and System Caches
68 Syscache Module
69 Init Module
70 Avoiding Stale Data Problems
72 Address Translation and DMA Transfers

Chapter 2: Random Block File Manager (RBF) 75

76 RBF General Description
77 RBF I/O Service Requests
77 I$ChgDir
77 I$Close
77 I$Create

OS-9 for 68K Processors Technical I/O Manual 5

78 I$Delete
79 I$GetStt
79 I$MakDir
79 I$Open
80 I$Read
81 I$ReadLn
81 I$Seek
81 I$SetStt
82 I$Write
83 I$Writln
84 RBF Device Descriptor Modules
99 RBF Path Descriptor Definitions
104 Floppy Disk Formats
104 Physical Format
106 Logical Format
106 Supported Media Formats
121 Universal Format
123 Summary of Common Physical Formats
124 Physical Disk Format
124 Logical Disk Format
125 Example Hardware Support
126 Example Device Descriptor Fields
128 RBF Device Drivers
130 Main Driver Types
130 Simple Floppy Interfaces
131 Combined Hard/Floppy Interfaces
131 Intelligent Controllers
131 RBF Device Driver Storage Definitions
133 Device Driver Tables
140 Linking RBF Drivers
142 RBF Device Driver Subroutines

Chapter 3: Sequential Character File Manager (SCF) 167

6 OS-9 for 68K Processors Technical I/O Manual

168 SCF General Description
169 Polled Mode
169 Interrupt Mode
170 SCF Line Editing
170 SCF I/O Service Requests
171 I$Close
171 I$Create
171 I$GetStt
171 I$Open
172 I$Read
172 I$ReadLn
173 I$SetStt
174 I$Write
174 I$Writln
175 SCF Device Descriptor Modules
185 SCF Path Descriptor Definitions
189 SCF Device Drivers
190 Special Characters and NULLs
190 Parity Stripping
191 Data Flow Control
191 Hardware Flow Control
192 Software Flow Control
193 SCF Device Driver Storage Definitions
199 Linking SCF Drivers
201 SCF Device Driver Subroutines

Chapter 4: Sequential Block File Manager (SBF) 225

226 SBF General Description
227 Unbuffered I/O
227 Buffered I/O
228 Considerations When Writing to Tapes
228 End-Of-Tape Processing
228 SBF I/O Service Requests

OS-9 for 68K Processors Technical I/O Manual 7

229 I$Close
229 I$Create
229 I$GetStt
230 I$Open
230 I$Read
230 I$ReadLn
230 I$SetStt
231 I$Write
231 I$Writln
232 SBF Device Descriptor Modules
238 SBF Path Descriptor Definitions
240 SBF Device Drivers
240 Sensing the End-of-Tape
241 Early EOT Warning
241 Physical EOT Warning
242 Tape Positioning Operations
243 Tape Streaming
243 SBF Device Driver Storage Definitions
248 Device Driver Tables
250 Linking SBF Drivers
252 SBF Device Driver Subroutines

 Index 271

8 OS-9 for 68K Processors Technical I/O Manual

Chapter 1: The OS-9 Input/Output

System

This chapter explains the relationships between IOMAN, device
descriptors, path descriptors, and file managers, and how each of these
components operates within OS-9. It includes the following topics:

• The OS-9 Unified Input/Output System

• IOMan and I/O

• Device Descriptor Modules

• Path Descriptors

• System State Time-slicing

• Status Register Considerations

• File Managers

• Device Driver Modules

• Device Drivers That Control Multiple Devices

• Examples

• Interrupt Driven I/O

• DMA I/O and System Caches

• Address Translation and DMA Transfers

10 OS-9 for 68K Processors Technical I/O Manual

The OS-9 Unified Input/Output System

OS-9 features a versatile, unified, hardware-independent I/O system. The
I/O system is modular; you can easily expand or customize it.

The OS-9 I/O system components (the kernel, IOMan, file managers, and
device drivers) process I/O service requests at different levels. The device
descriptor contains information used to assemble the elements of a
particular I/O subsystem. The file manager, device driver, and device
descriptor modules are standard memory modules. You can install or
remove any of these modules while the system is running.

NoteNote
The OS-9 I/O system consists of the following software components:

• The kernel and IOMan

• File managers

• Device drivers

• The device descriptor

OS-9 provides many options for the target system with respect to I/O
capabilities and methodology. This manual discusses the I/O system and
its usage when you use one of the standard I/O managers to control it. The
OS-9 standard I/O managers are:

• IOMan_DEV

• IOMan_ATOMOS-9 for 68K Processors Technical I/O
Manual

The choice of which IOMan (if any) you use in your system is controlled by
the Init module’s M$IO Man string and your target system bootfile.

1The OS-9 Input/Output System

OS-9 for 68K Processors Technical I/O Manual 11

Using IOMan provides the standard unified I/O system for OS-9. The main
difference between the _DEV and _ATOM versions of IOMan is the lack of
user parameter verification (for example, verification the user’s buffer is
indeed allocated to the user for I$Read calls). IOMan_DEV provides the
full set of parameter verification functions; it is typically used in
development-style environments. IOMan_ATOM discards this functionality
to improve code-size and speed; it is typically used in embedded
applications.

NoteNote
If your system does not use IOMan or uses its own custom I/O system,
the conventions discussed in this manual may not be correct. Refer to
the I/O system’s documentation to see which parts, if any, of this
manual apply to your system.

The Kernel/IOMan

The I/O system is maintained by IOMan. The kernel performs preliminary
processing of the I/O service request by:

• Determining the correct IOMan routine to call. For example, the read
routine for I$Read service requests.

• Disabling system-state preemption for the process by incrementing the
P$Preempt field of the process descriptor associated with the call.
(System-state preemption is restored by the kernel when the IOMan call
returns.)

IOMan does the following:

• Manages various data structures to maintain the I/O modules. It
ensures the appropriate file manager and device driver modules
process each I/O request.

• Establishes paths. These are the connections between the kernel, the
application, the file manager, and the device driver.

12 OS-9 for 68K Processors Technical I/O Manual

File Managers

File managers perform the processing for a particular class of devices,
such as disks or terminals. They deal with logical operations on the class of
devices. For example, the Random Block File manager (RBF) maintains
directory structures on disks; the Sequential Character File manager (SCF)
edits the data stream it receives from terminals. File managers deal with
the I/O requests on a generic class basis.

Device Drivers

Device drivers operate on a class of hardware. Operating on the actual
hardware device, they send data to and from the device on behalf of the file
manager. They isolate the file manager from hardware dependencies such
as control register organization and data transfer modes, translating the file
manager’s logical requests into specific hardware operations.

Device Descriptor

The device descriptor contains the information required to assemble the
various components of an I/O subsystem (a device). It contains the names
of the file manager and device driver associated with the device, as well as
the device’s operating parameters.

Parameters in device descriptors can be fixed, such as interrupt level and
port address, or variable, such as terminal editing settings and disk
physical parameters. The variable parameters in device descriptors provide
the initial default values when a path is opened, but applications can
change these values.

1The OS-9 Input/Output System

OS-9 for 68K Processors Technical I/O Manual 13

The device descriptor name is the name of a device as known by the user.
For example, the device /d0 is described by the device descriptor d0.

Figure 1-1 OS-9 I/O System Module Organization

User
Applications
and Utilities

Floppy
Disk

Driver

Hard
Disk

Driver

Serial/
Parallel
Driver

ACRTC
Graphics

Driver

Tape
Driver

Pipe Driver
(Null)

RBF
Disk
File

Manager

SCF
Char
File

Manager

SBF
Tape
File

Manager

PIPEMAN
Pipe
File

Manager

H1H0 P1T1 P2T2 MT1MT0 PipePipe

User Level

Kernel
Level

File
Manager

Level

Device
Driver Level

Device
Descriptor

Level
D1D0

OS-9 Kernel

IOMan

14 OS-9 for 68K Processors Technical I/O Manual

IOMan and I/O

IOMan maintains the I/O system for OS-9. It provides the first level of I/O
service by routing system call requests between processes and the
appropriate file managers and device drivers. IOMan also allocates and
initializes static storage for device drivers.

IOMan maintains two important internal data structures:

• The device table

• The path table

Device Table and Path Table

The device table is a list of all devices currently attached (loaded and
initialized). The path table is a list of all I/O paths currently open. These
tables reflect two other structures respectively:

• The device descriptor

• The path descriptor

When a path is opened (I$Open), IOMan’s attach routine (I$Attach) is
called, and it links to the device descriptor of the specified (or implied)
device name in the pathlist. The device descriptor contains:

• The port address of the device

• The file manager’s name

• The device driver’s name

The attach routine then links to the specified file manager and device
driver. After these components are located, the I$Attach routine inspects
the current device table entries, and compares the new device specification
with the current entries in the device table.

The I$Attach routine proceeds as follows:

1The OS-9 Input/Output System

OS-9 for 68K Processors Technical I/O Manual 15

1. If the device port address, file manager, device driver, and device
descriptor match an existing entry in the device table, the device is
known to the system. The use count for that device table entry is
incremented and IOMan returns to the caller.

2. If the device port address, file manager, and device driver match an
existing device table entry, but the device descriptor does not, this is a
new, or synonymous device on the port. A new device table entry is
created, its use count is set to one, and IOMan returns to the caller.

3. If neither of the above situations occur (no match on port address, file
manager, and device driver) or this is the first time the path is opened,
the device is unknown to the system. In this case, IOMan allocates
static storage for the driver and calls the driver’s INIT routine. If INIT
does not return an error, a new device table entry is created, its use
count is set to one, and IOMan returns to the caller. If INIT returns an
error, IOMan calls the device driver’s TERM routine before performing
any necessary clean-up and returning the original error.

When a path is closed, its use count is decremented. If the use count
becomes zero, IOMan attempts to detach the device (I$Detach)
associated with the path from the I/O system. The use count in the device’s
device table entry is decremented. If the use count becomes zero, the
following actions take place:

1. The device table is searched to determine if another device table entry
is using the same static storage as the device being deleted.

2. If no other device is using the static storage, the driver’s TERM routine is
called to de-initialize the device. The driver’s static storage is then
returned to the system.

3. The device’s entry is removed from the device table.

The file manager, device driver, and device descriptor are then unlinked.

Path Descriptors

Path descriptors maintain the status of I/O operations to devices and files.
IOMan maintains pointers to these path descriptors in the path table. Each
time a path is created (I$Open, I$Create), a new path descriptor is

16 OS-9 for 68K Processors Technical I/O Manual

created and an entry is added to the path table. If I$Dup is used to open a
path, only the use count of an existing path descriptor is incremented.
When a path is closed and its use count becomes zero, the path descriptor
is de-allocated and the appropriate entry is deleted from the path table.

In user-state, each process can have up to 32 paths open at any time. In
system-state, the maximum number of open paths depends on available
system resources.

IOMan I/O Service Requests

File managers are not called for I$Attach, I$Detach, and I$Dup.
IOMan performs the necessary system functions for these requests.

I$Attach

IOMan performs the following functions:

• Links to component modules (file manager, device driver, device
descriptor)

• Determines if a device table entry matches an existing entry for the
device

If the device port address, file manager, device driver, and device
descriptor match, IOMan:

• Increments the use count for the device

• Returns to the caller

If the device port address, file manager, and device driver match an
existing device table entry, but the device descriptor does not, this is a
new (or synonymous) device on the port. I$Attach:

• Creates a new device table entry

• Sets the use count to one

•I OMan returns to the caller

If there is no match on port address, file manager, and device driver,
IOMan:

1The OS-9 Input/Output System

OS-9 for 68K Processors Technical I/O Manual 17

• Allocates and clears the driver’s static storage

• Sets V_PORT to the hardware address given in the descriptor

• Calls the driver’s INIT routine to initialize the hardware

If INIT returns an error, IOMan calls the driver’s TERM routine,
de-allocates any resources, and returns the error.

• Sets the use count to 1

• Adds the device to the device table

I$Detach

IOMan decrements the use count for the device. If the use count becomes
zero, IOMan searches the device table for other devices using the same
static storage. If any are found, the original device table entry is removed
from the table. Otherwise, IOMan performs the following actions:

• Calls the driver’s TERM routine

• Returns the driver’s static storage to the system’s free memory pool

• Removes the device entry from the device table

IOMan then unlinks the file manager, device driver, and device descriptor.

I$Dup

IOMan increments the use count (PD_COUNT) of the path.

18 OS-9 for 68K Processors Technical I/O Manual

Device Descriptor Modules

Device descriptor modules are small, non-executable modules containing
information to associate a specific I/O device with its logical name,
hardware controller address(es), device driver name, file manager name,
and initialization parameters.

File managers operate on a class of logical devices. Device drivers operate
on a class of physical devices. A device descriptor module tailors a device
driver or file manager to a specific I/O port. At least one device descriptor
module must exist for each I/O device in the system. An I/O device may
have several device descriptors with different initialization parameters and
names. For example, a serial/parallel driver could have two device
descriptors, one for terminal operation (/t1) and one for printer operation
(/p1).

If a suitable device driver exists, adding devices to the system consists of
adding the new hardware and another device descriptor. Device
descriptors can be in ROM, in the boot file, or loaded into RAM while the
system is running.

The module name is used as the logical device name by the system and
user (it is the device name given in pathlists). A device descriptor module
header consists of the standard module header fields with a type code of
device descriptor (DEVIC). The standard device descriptor header is
followed by a device-type specific initialization table (see Figure 1-2).

1The OS-9 Input/Output System

OS-9 for 68K Processors Technical I/O Manual 19

Figure 1-2 Device Descriptor Layout

Module Offsets

The standard device descriptor fields are listed below and described in the
following pages. Refer to the appropriate chapter of this manual for the
specific device-type for the device descriptor initialization table fields.

NoteNote
In the following table, offset refers to the location of a module field,
relative to the starting address of the module. Module offsets are
resolved in assembly code by using the names shown here and linking
with the relocatable library: sys.l or usr.l.

Standard Module Header

Standard Device Descriptor
Header

Device-specific Initialization Table

Name Strings, DevCon, etc.

Module CRC

Module
Beginning

U
ni

ve
rs

al
 M

od
ul

e
H

ea
de

r

Module End

D
ev

ic
e

D
es

cr
ip

to
r

H
ea

de
r

20 OS-9 for 68K Processors Technical I/O Manual

Table 1-1 Module Offsets

Offset Name Description

$30 M$Port Port Address

$34 M$Vector Interrupt Vector Number

$35 M$IRQLvl Interrupt Level

$36 M$Prior Interrupt Polling Priority

$37 M$Mode Device Mode Capabilities

$38 M$FMgr File Manager Name Offset

$3A M$PDev Device Driver Name Offset

$3C M$DevCon Device Configuration Offset

$3E Reserved

$46 M$Opt Initialization Table Size

$48 M$DTyp Device Type (first field of
initialization table)

1The OS-9 Input/Output System

OS-9 for 68K Processors Technical I/O Manual 21

Device Descriptors

Table 1-2 Device Descriptors

Name Description

M$Port Port Address

M$Port usually contains the absolute physical
address of the hardware controller. However, it can
be another address (for example, R0/R1). Before
IOMan attaches a device (calls its INIT routine), this
value is copied into the V_PORT field of the driver’s
static storage.

M$Vector Interrupt Vector Number

The interrupt vector associated with the port, used to
initialize hardware and for installation on the IRQ poll
table:

25-31 for an auto-vectored interrupt. Levels 1 -
7.

57-63 for 68070 on-chip auto-vectored
interrupts. Levels 1 - 7.

64-255 for a vectored interrupt.

22 OS-9 for 68K Processors Technical I/O Manual

M$IRQLvl Interrupt Level

The device’s physical interrupt level. It is not used by
the kernel, IOMan, or file manager. The device driver
may use it to mask off interrupts for the device when
critical hardware manipulation occurs.

NOTE: Level 7 is a non-maskable interrupt. It should
not be used by OS-9 I/O devices. A device set at this
level can interrupt the kernel during critical system
operations. Level 7 may be used, however, for
hardware operations unknown to the system (for
example, dynamic RAM refreshing).

M$Prior Interrupt Polling Priority

Indicates the priority of the device on its vector in the
IRQ (F$IRQ) polling system. Smaller numbers are
polled first if more than one device is on the same
vector. A priority of zero indicates the device requires
exclusive use of the vector.

NOTE: Devices using the fast IRQ system (F$FIRQ)
do not use this field, as only one FIRQ device is
permitted per vector.

Table 1-2 Device Descriptors (continued)

Name Description

1The OS-9 Input/Output System

OS-9 for 68K Processors Technical I/O Manual 23

M$Mode Device Mode Capabilities

This byte is used to validate a caller’s access mode
byte in I$Create or I$Open calls. It may be any
combination of the following:

bit 0: Set if read access

bit 1: Set if write access

bit 2: Set if executable access

bit 4: Set if file append mode is supported

bit 6: Set if single-user access (non-sharable)

bit 7: Set if directory file access

All other bits are reserved.

M$FMgr File Manager Name offset

The offset to the name string of the file manager
module for this device.

M$PDev Device Driver Name offset

The offset to the name string of the device driver
module for this device.

Table 1-2 Device Descriptors (continued)

Name Description

24 OS-9 for 68K Processors Technical I/O Manual

M$DevCon Device Configuration

The offset to an optional device configuration table.
You can use it to specify parameters or flags the
device driver needs and are not part of the normal
initialization table values. This table is located after
the standard initialization table. The kernel, IOMan,
or file manager never references it. As the pointer to
the device descriptor is passed in INIT and TERM,
M$DevCon is generally available to the driver only
during the driver’s INIT and TERM routines. Other
routines in the driver (for example, Read) must first
search the device table to locate the device
descriptor before they can access this field.

Typically, this table is used for name string pointers,
OEM global allocation pointers, or device-specific
constants/flags.

NOTE: These values, unlike the standard options,
are not copied into the path descriptors options
section.

M$Opt Table Size

This contains the size of the device’s standard
initialization table. Each file manager defines a
ceiling on M$Opt.

M$DTyp Device Type (First Field of Initialization Table)

The device’s standard initialization table is defined by
the file manager associated with the device, with the
exception of the first byte (M$DTyp). The first byte
indicates the class of the device (RBF, SCF, etc.).
See Table 1-3 for details.

Table 1-2 Device Descriptors (continued)

Name Description

1The OS-9 Input/Output System

OS-9 for 68K Processors Technical I/O Manual 25

Device Types

Table 1-3 Device Types

Device Type
Name Value Description

DT_SCF 0 Sequential Character File Manager (SCF)

DT_RBF 1 Random Block File Manager (RBF)

DT_Pipe 2 PIPE File Manager (PIPEMAN)

DT_SBF 3 Sequential Block File Manager (SBF)

DT_NFM 4 Network File Manager (NFM)

DT_CDFM 5 Compact Disc File Manager (CDFM)

DT_UCM 6 User Communications Manager (UCM)

DT_SOCK 7 Socket Communications Manager
(SOCKMAN)

DT_PTTY 8 Pseudo-keyboard Manager (PKMAN)

DT_INET 9 Internet Interface Manager (IFMAN)

DT_NRF 10 Non-volatile RAM File Manager (NVRAM)

DT_GFM 11 Graphics File Manager (GFM)

DT_ISDN 12 ISDN File Manager (ISM)

DT_MPFM 13 MPEG File Manager (MPFM)

26 OS-9 for 68K Processors Technical I/O Manual

The initialization table (M$DTyp through M$DTyp + M$Opt) is copied into
the option section of the path descriptor when a path to the device is
opened. Typically, this table is used for the default initialization parameters
such as the delete and backspace characters for a terminal. Applications
may examine all of the values in this table using I$GetStt (SS_Opt).
Some of the values may be changed using I$SetStt; some are protected
by the file manager to prevent inappropriate changes.

The theoretical maximum initialization table size is 128 bytes. However, a
file manager may restrict this to a smaller value.

1The OS-9 Input/Output System

OS-9 for 68K Processors Technical I/O Manual 27

Path Descriptors

Every open path is represented by a data structure called a path descriptor.
It contains path-related information required by file managers and device
drivers. Path descriptors are dynamically allocated and de-allocated as
paths are opened and closed.

A path descriptor is 256 bytes long. It has three sections:

• The first 42 bytes are defined universally for all file managers and
device drivers.

• The next 86 bytes are reserved for and defined by each type of file
manager for file pointers, permanent variables, etc.

• The last 128 bytes constitute the option area used for the path’s
operating parameters. You can inspect or change this area. The
variables are initialized at the time the path is opened by copying the
initialization table contained in the device descriptor module. The file
manager may also initialize certain variables at the end of the
initialization table section so they may be inspected. The values in this
table may be examined using I$GetStt or changed using I$SetStt
by applications using the SS_Opt code. The file manager protects
some values to prevent inappropriate changes.

The universal path descriptor fields are described below. Each file manager
chapter contains definitions of the option area specific to that manager.

Table 1-4 Path Descriptor Offsets

Offset Name
Maintained
By Description

$00 PD_PD IOMan Path Number

$02 PD_MOD IOMan Access Mode (RWESD)

28 OS-9 for 68K Processors Technical I/O Manual

$04 PD_DEV IOMan Address of Related Device
Table Entry

$08 PD_CPR IOMan Requester’s Process ID

$0A PD_RGS IOMan Address of Caller’s MPU
Register Stack

$0E PD_BUF File
Manager

Address of Data Buffer

$12 PD_USER IOMan Group/User ID of Original
Path Owner

$16 PD_PATHS IOMan List of Open Paths on
Device

$1A PD_COUNT IOMan Number of Paths using this
PD

$1C PD_LProc IOMan Last Active Process ID

$20 PD_ErrNo File
Manager

Global errno for C
language file managers

$24 PD_SysGlob File
Manager

System global pointer for C
language file managers

$2A PD_FST File
Manager

File Manager Working
Storage

$80 PD_OPT Driver/File
Man.

Option Table

Table 1-4 Path Descriptor Offsets (continued)

Offset Name
Maintained
By Description

1The OS-9 Input/Output System

OS-9 for 68K Processors Technical I/O Manual 29

Table 1-5 Path Descriptors

Name Description

PD_PD Path Number

The system path number assigned by IOMan to the
open path associated with this descriptor.

PD_MOD Access Mode (RWESD)

The file access mode specified by the I/O request. It
may be any combination of the following:

bit 0: Set if read access.

bit 1: Set if write access.

bit 2: Set if executable access.

bit 4: Set if file append access mode.

bit 6: Set if single-user access (non-sharable).

bit 7: Set if directory file access.

All other bits are reserved.

PD_DEV Address of Related Device Table Entry

The address of the device table entry associated with
this path.

PD_CPR Requester’s Process ID

The process ID of the process originating the I/O
request.

30 OS-9 for 68K Processors Technical I/O Manual

PD_RGS Address of Caller’s MPU Register Stack

The address of the originating process’s MPU
register stack. This pointer can be used to read or
write the registers of the calling process.

PD_BUF Address of Data Buffer

This is the address of the data buffer associated with
the current I/O operation. It may be a buffer created
by the file manager or a pointer directly to an
application’s buffer.

PD_USER Group/User ID of Original Path Owner

The group/user ID of the process that created this
path.

PD_PATHS List of Open Paths on Device

This field is used to link this descriptor into a circular,
singly-linked list of paths open to this device.

PD_COUNT Number of Paths using this PD

The number of open paths using this path descriptor.
This is set to one when the first path is opened. Using
I$Dup to open paths increments this counter.

PD_LProc Last Active Process ID

The process ID of the most recent process to perform
I/O on this path.

PD_ErrNo Global errno for C language file managers

This field is available for C language file managers to
implement as they see fit.

Table 1-5 Path Descriptors (continued)

Name Description

1The OS-9 Input/Output System

OS-9 for 68K Processors Technical I/O Manual 31

PD_SysGlob System global pointer for C language file
managers

This field is set by IOMan to contain the pointer to the
kernel/IOMan system global data.

PD_FST File Manager Working Storage

Reserved for and defined by the file manager.

PD_OPT Option Table

A 128-byte option area used for the path’s operating
parameters that you can inspect or change. These
variables are initialized at the time the path is opened
by copying the initialization table contained in the
device descriptor module. The file manager may also
initialize certain variables at the end of the
initialization table so they may be inspected. The
values in this table may be examined using
I$GetStt or changed using I$SetStt by
applications using the SS_Opt code.

The file manager protects some values to prevent
inappropriate changes.

Table 1-5 Path Descriptors (continued)

Name Description

32 OS-9 for 68K Processors Technical I/O Manual

System State Time-slicing

OS-9 allows time-slicing while in system state. This requires careful design
since I/O components (file managers and device drivers) often cannot
tolerate this type of behavior.

To alleviate this problem and provide backwards compatibility with earlier
versions of I/O system modules, the kernel disables system-state
time-slicing for a process when that process makes an I/O (I$) service
request. The kernel restores the process’s time-slice capability when the
I/O call completes.

File Manager Guidelines

If you want to allow time-slicing to occur within a file manager, adhere to the
following guidelines.

• On entry to the file manager, enable time-slicing for the process by
decrementing its P$Preempt field.

• On exit from the file manager, disable time-slicing for the process by
incrementing its P$Preempt field.

• If the file manager allows preemption to occur, it may still need to
disable/enable preemption when calling into the device driver. Most
device drivers (refer to Device Driver Guidelines) cannot be
preempted, so it is important to disable preemption when calling the
device driver if the file manager has enabled it.

• When you re-enable the preemption, it is also important to note simply
decrementing the P$Preempt field does not guarantee preemption
occurs in a deterministic manner. If the process time-slice expires while
the file manager is executing a section that cannot be preempted, the
kernel ignores the process time-out and continues execution of the file
manager. To ensure time-outs in these sections are not missed, the file
manager should check for process time-out when it re-enables system
state time-slicing. The following code example shows how to achieve
this.

1The OS-9 Input/Output System

OS-9 for 68K Processors Technical I/O Manual 33

 * Preempt - allow process preemption, and check for
 * preemption pending
 *
 * Passed: (a4) = current process descriptor ptr
 * (a5) = caller's register stack ptr
 * (a6) = system global data ptr
 *
 * Returns: nothing
 *
 * Destroys: nothing
 *
 Preempt: subq.l #8,a7 status save & R$d0 result (if sleeping)
 move.w sr,0(a7) save ccr status
 subq.l #1,P$Preempt(a4) allow preemption
 bne.s Pre99 ..not currently allowed, exit quickly
 btst.b #TimOut,P$State(a4) process time-out set?
 beq.s Pre99 ..no; keep running
 movem.l d0-d1/a5,-(a7) save regs
 lea.l (3*4)+4(a7),a5 set fake frame ptr (R$d0 created above)
 moveq.l #1,d0 give up time-slice
 OS9svc F$Sleep
 movem.l (a7)+,d0-d1/a5 restore regs
 Pre99 move.w 0(a7),ccr restore Carry status
 addq.l #8,a7 toss scratch
 rts return

Device Driver Guidelines

To allow time-slicing to occur within a device driver, adhere to the following
guidelines.

• In general, you cannot preempt device drivers if they perform interrupt
masking during critical code sections. The interrupt-masked sections
usually perform interrupt masking to the level of the device (and not
level 7). Thus, the clock interrupt (ticker) is usually at a higher interrupt
level than the device. If the file manager allows pre-emption when it
calls the driver or the device driver enables pre-emption, it is possible
for a clock interrupt to trigger a task switch during a driver’s critical
section.

• The ability of a device driver to be preemptable should be examined on
a case-by-case basis. If it is feasible to preempt the driver, follow the
guidelines for file managers as shown above.

34 OS-9 for 68K Processors Technical I/O Manual

System-State Threads

Some I/O systems create processes that manage parts of their I/O
operations (for example, the SBF file manager creates an SBF process to
manage its buffered I/O mode). When these processes are created, there
are two ways to handle system-state time-slicing:

1. Write the process code so the P$Preempt field of the process is
managed (according to the guidelines above) during the critical sections
of the process code.

2. When the process is created, permanently disable system-state
time-slicing for the process by setting a non-zero value into the
process’s P$Preempt field before inserting the process into the active
process queue.

Method 1 above is preferred because it minimizes the code window where
time-slicing is disabled, thus allowing maximum determinism for the
system.

1The OS-9 Input/Output System

OS-9 for 68K Processors Technical I/O Manual 35

Status Register Considerations

OS-9 uses the Master Stack Pointer (MSP) on those processors supporting
MSP/ISP usage (68020, 68030, and 68040). Previous versions of OS-9
always used the Interrupt Stack Pointer (ISP) when executing in system
state.

This change means you must use care when dealing with code forming
Status Register (SR) images. These images are usually created in the
following situations:

• Interrupt masking

• System-state threads

Interrupt Masking

Many device drivers form SR masks so they can mask device interrupts
during critical code sections. When dealing with drivers that perform this
operation it is important to ensure no accidental stack switch (between
MSP and ISP stacks) occurs. On those systems supporting MSP/ISP, the
ISP stack is used for interrupt contexts only. The MSP stack is used for all
other system-state contexts (thus, for example, a device driver is called
using the MSP stack for Read).

System State Threads

I/O systems that create processes to manage I/O need to ensure the
correct stack is used when they create the process descriptor. When
creating the process, a register image is built in the process descriptor. The
image is built in the stack area of the process descriptor and consists of
registers d0-d7, a0-a7, SR, PC, and Stack Format. This image is pointed
to by the P$sp field of the process descriptor.

When the SR image is built in the stack frame, you must indicate the
correct stack to use in the SR image. Typically, you should use the current
SR as the basis of the SR image you build in the process descriptor.

36 OS-9 for 68K Processors Technical I/O Manual

File Managers

The function of a file manager is to process the raw data stream to or from
device drivers for a class of similar devices. File managers make device
drivers conform to the OS-9 standard I/O and file structure by removing as
many unique device operational characteristics as possible from I/O
operations. File managers are also responsible for mass storage allocation
and directory processing, if applicable to the class of devices they service.

NoteNote
I/O system modules must have the following module attributes:

• They must be owned by a super-user (0.n).

• They must have the system-state bit set in the attribute byte of the
module header. OS-9 does not currently make use of this, but future
revisions may require I/O system modules be system-state modules.

File managers usually buffer the data stream and issue requests to the
kernel for dynamic allocation of buffer memory. They may also monitor and
process the data stream. For example, they may add line-feed characters
after carriage returns.

File managers are re-entrant. One file manager may be used for an entire
class of devices with similar operational characteristics. OS-9 systems can
have any number of file manager modules.

1The OS-9 Input/Output System

OS-9 for 68K Processors Technical I/O Manual 37

The following file managers are usually included in an OS-9 system:

For More Information
More In
fo More
Informatio
n More Inf
ormation M
ore Inform
ation More

-6-

See the OS-9 for 68K PC File Manager manual for information on the
PC File Managers.

Table 1-6 OS-9 File Managers

File Manager Description

Random Block File
Manager (RBF)

Operates random-access,
block-structured devices such as disk
systems.

Sequential Character
File Manager (SCF)

Used with single-character-oriented
devices such as CRT or hard-copy
terminals, printers, and modems.

Sequential Block File
Manager (SBF)

Used with sequential block-structured
devices such as tape systems.

Pipe File Manager
(PIPEMAN)

Supports interprocess communication
through memory buffers called pipes.

PC File Manager (PCF) Allows you to transfer files between
PC-DOS and OS-9 systems.

38 OS-9 for 68K Processors Technical I/O Manual

File Manager Organization

A file manager is a collection of major subroutines accessed through an
offset table. The table contains the starting address of each subroutine
relative to the beginning of the table. The location of the table is specified
by the execution entry point offset in the module header. A sample listing of
the beginning of a file manager module is shown below.
* Sample File Manager
* Module Header declaration
 Type_Lang equ (FlMgr<<8)+Objct
 Attr_Revs equ ((ReEnt+Supstat)<<8)+0
 psect FileMgr,Type_Lang,Attr_Revs,Edition,0,Entry_pt
* Entry Offset Table
Entry_pt dc.w Create-Entry_pt
 dc.w Open-Entry_pt
 dc.w MakDir-Entry_pt
 dc.w ChgDir-Entry_pt
 dc.w Delete-Entry_pt
 dc.w Seek-Entry_pt
 dc.w Read-Entry_pt
 dc.w Write-Entry_pt
 dc.w ReadLn-Entry_pt
 dc.w WriteLn-Entry_pt
 dc.w GetStat-Entry_pt
 dc.w SetStat-Entry_pt
 dc.w Close-Entry_pt
* Individual Routines Start Here

When IOMan calls the individual file manager routines, standard
parameters are passed in the following registers:

Table 1-7 File Manager Standard Parameters

Register Description

(a1) Pointer to Path Descriptor.

(a4) Pointer to current Process Descriptor.

(a5) Pointer to User’s Register Stack; user registers
pass/receive parameters as shown in the system call
description section.

(a6) Pointer to system Global Data area.

1The OS-9 Input/Output System

OS-9 for 68K Processors Technical I/O Manual 39

These routines are called in system state.

File Manager I/O Service Requests

The general I/O responsibilities for file managers are described in the
following pages. Each file manager chapter contains a description of the
specific I/O functions for that manager.

Table 1-8 I/O Service Requests

Request Description

I$ChgDir On multi-file devices, I$ChgDir searches for a
directory file. (IOMan allocates a path descriptor so
I$ChgDir may use I$Open when searching for the
directory.) If the directory is located, the file manager
saves its address in the caller’s process descriptor at
P$DIO. I$Open and I$Create begin searching in
this directory when the caller’s pathlist does not begin
with a slash (/) character. File managers that do not
support directories return with the carry bit set and an
error code in (d1.w).

I$Close Ensures any output to a device is completed (writing
out the last buffer if necessary), and releases any
buffer space allocated when the path was opened. If
required, it may do specific end-of-file processing,
such as writing end-of-file records on tapes.

I$Create Performs the same function as I$Open. If the file
manager controls multi-file devices, a new file is
created. File managers that do not support multi-file
devices usually consider I$Create synonymous
with I$Open.

40 OS-9 for 68K Processors Technical I/O Manual

I$Delete Multi-file device managers usually perform a directory
search similar to I$Open. Once found, the file name
is removed from the directory. Any media space in
use by the file is returned to the free media pool.

I$GetStt A wild-card call designed to determine the status of
various features of a device (or file manager) that are
not generally device independent. The file manager
may perform some specific function such as obtaining
the size of a file. Status calls that are unknown to the
file manager are passed to the driver to provide a
further means of device independence.

I$MakDir Creates a directory file on multi-file devices. File
managers that are incapable of supporting directories
return with the carry bit set and an unknown service
error code in (d1.w).

I$Open Opens a file on a particular device. This typically
involves allocating required buffers, initializing path
descriptor variables, and parsing the path name. If
the file manager controls multi-file devices, directory
searching is performed to locate the specified file.

I$Read Returns the number of bytes requested to the user’s
data buffer. If no further data is available, an EOF
error is returned. I$Read generally performs no
editing on data. Usually, a file manager calls the
device driver to read the data into a buffer. The buffer
may be an internal buffer maintained by the file
manager or it may be the application’s buffer. The file
manager chooses the appropriate buffer for the driver
to use. If an internal buffer is used, the data is then
copied into the user’s data area.

Table 1-8 I/O Service Requests (continued)

Request Description

1The OS-9 Input/Output System

OS-9 for 68K Processors Technical I/O Manual 41

I$ReadLn I$ReadLn differs from I$Read in two respects:

• I$ReadLn is expected to terminate when the first
end-of-record character (carriage return) is
encountered.

• I$ReadLn performs any input editing appropriate
for the device.

Typically, I$ReadLn uses an internal buffer when
calling the driver and copies the data from the buffer
into the user’s data area.

I$Seek File managers supporting random access devices
use I$Seek to position file pointers of the already
open path to the specified byte. This is a logical
movement and does not necessarily affect the
physical device. If the position is beyond the current
end-of-file, no error is produced at the time of the
I$Seek.

File managers that do not support random access
usually do nothing during the I$Seek operation, and
do not return an error.

I$SetStt I$SetStt is the same as the I$GetStt function
except it is generally used to set the status of various
features of a device (or file manager). The file
manager may perform some specific function such as
setting the size of a file to a given value. Status calls
that are unknown to the file manager are passed to
the driver to provide a further means of device
independence. For example, an I$SetStt call to
format a disk track may behave differently on different
types of disk controllers.

Table 1-8 I/O Service Requests (continued)

Request Description

42 OS-9 for 68K Processors Technical I/O Manual

I$Write The I$Write request, like I$Read, generally
performs no editing on data. Usually, the I$Read and
I$Write routines are nearly identical. The most
notable difference is I$Write uses the device
driver’s output routine instead of the input routine.
Writing past the end-of-file on a device expands the
file with new data.

RBF and similar random access devices using
fixed-length records (sectors) must often pre-read a
sector before writing it unless the entire sector is
being written.

I$Writln I$Writln is the counterpart of I$ReadLn. It calls
the device driver to transfer data up to and including
the first (if any) end-of-record (carriage return)
encountered. Appropriate output editing is also
performed. For example, after a carriage return, SCF
usually outputs a line-feed character and nulls (if
appropriate).

Table 1-8 I/O Service Requests (continued)

Request Description

1The OS-9 Input/Output System

OS-9 for 68K Processors Technical I/O Manual 43

Device Driver Modules

Device driver modules perform basic low-level physical input/output
functions. For example, a disk driver’s basic function is to read or write a
physical sector. The driver is not concerned about files or directories, which
are handled at a higher level by the OS-9 file manager.

When written properly, a single physical driver module can support multiple
identical hardware interfaces simultaneously. The specific information for
each physical interface (port address, initialization constants) is provided in
the device descriptor module.

 Driver Module Format

All drivers must conform to the standard OS-9 memory module format. The
module type code is Drivr. Drivers should have the system-state bit set in
the attribute byte of the module header.

A sample assembly language header is shown below:

* Module Header
Type_Lang equ (Drivr<<8)+Objct
Attr_Revs equ ((ReEnt+Supstat)<<8)+0
psect Acia,Typ_Lang,Attr_Rev,Edition,0,AciaEnt
* Entry Point Offset Table
AciaEnt dc.w Init Initialization routine offset
 dc.w Read Read routine offset
 dc.w Write Write routine offset
 dc.w GetStat Get dev status routine offset
 dc.w SetStat Set dev status routine offset
 dc.w TrmNat Terminate dev routine offset
 dc.w Trap Error handler routine offset
 (0=none)

44 OS-9 for 68K Processors Technical I/O Manual

NoteNote
I/O system modules must have the following module attributes:

• must be owned by a super-user (0.n).

• must have the system-state bit set in the attribute byte of the module
header. OS-9 does not currently make use of this, but future
revisions may require I/O system modules be system-state modules.

The M$Exec module header field is the offset to the address of an offset
table. This table specifies the starting address of each of the seven driver
subroutines relative to the base address of the module.

The M$Mem module header field specifies the amount of local static storage
required by the driver. This is the sum of the global I/O storage, the storage
required by the file manager, and any variables and tables declared in the
driver.

The driver subroutines are called by the associated file manager and
IOMan through the offset table, with the exception of the device driver’s
IRQ routine (if any) which is called directly by the kernel’s IRQ polling
routines. The driver routines are always executed in system state.
Regardless of the device type, the standard parameters listed below are
passed to the driver in the corresponding registers. Other parameters may
also be passed, depending on the device type and subroutine called.
These are described in individual file manager chapters.

Each subroutine is terminated by an RTS instruction. Error status is
returned using the CCR carry bit with an error code returned in register
d1.w. For the IRQ service routine, only the CCR carry status is meaningful.

1The OS-9 Input/Output System

OS-9 for 68K Processors Technical I/O Manual 45

INIT initializes the device controller hardware and related driver variables
as required. INIT also enables device interrupts and adds the device to
the system’s IRQ polling table, if necessary.

TERM de-initializes the device. It is assumed the device will not be used
again unless re-initialized. TERM also deletes the device from the IRQ
polling table and disables interrupts, if necessary.

Refer to Figure 1-3 for a diagram of the I/O system layout during the INIT
and TERM routines.

Table 1-9 INIT and TERM (called by IOMan)

Register Description

(a1) The address of the device descriptor module.

(a2) The address of the driver’s static variable storage.

(a4) The address of the process descriptor requesting the
I/O function.

(a6) The address of the system global variable storage area.

Table 1-10 READ, WRITE, GETSTAT and SETSTAT (called by the file
manager)

Register Description

(a1) The address of the path descriptor storage.

(a2) The address of the driver’s static variable storage.

(a4) The address of the process descriptor requesting the
I/O function.

46 OS-9 for 68K Processors Technical I/O Manual

NoteNote
The register conventions shown here apply to RBF and SCF.

• For SBF’s READ and WRITE routines, the contents of registers a1
and a5 are undefined.

• For SBF’s GETSTAT and SETSTAT routines, the contents of register
a5 are undefined. Other file managers may adopt whatever register
conventions are desired.

READ reads one or more standard physical units (a character or sector,
depending on the device type). WRITE writes one or more standard
physical units (a character or sector, depending on the device type).

GETSTAT returns a specified device status. SETSTAT sets a specified
device status.

Refer to Figure 1-4 for a diagram of the I/O system layout during the READ,
WRITE, GETSTAT, and SETSTAT routines.

TRAP

Trap is also known as ERROR. This entry point is currently not used by the
kernel, but in the future may be defined as the offset to error exception
handling code. Because no handler mechanism is currently defined, this
entry point should be set to 0 to ensure future compatibility.

(a5) The address of the caller’s register stack image.

(a6) The address of the system global variable storage area.

Table 1-10 READ, WRITE, GETSTAT and SETSTAT (called by the file
manager) (continued)

Register Description

1The OS-9 Input/Output System

OS-9 for 68K Processors Technical I/O Manual 47

IRQ

IRQ is called by the kernel’s IRQ polling table handler.

There are two interrupt polling mechanisms within OS-9:

• The standard IRQ system (IRQ)

• The fast IRQ system (FIRQ).

Generally, the IRQ system is used for the majority of device drivers. The
FIRQ system was designed primarily for simple I/O devices requiring a
faster response than the IRQ system provides.

Table 1-11 IRQ

Register Description

d0.w Vector offset.

(a2) The address of the driver’s static variable storage.

(a3) The address of the device port.

(a6) The address of the system global variable storage area.

Table 1-12 FIRQ

Register Description

d0.w Vector offset.

(a2) The address of the driver’s static variable storage area.

(a6) The address of the system global variable storage area.

48 OS-9 for 68K Processors Technical I/O Manual

The IRQ subroutine is not called by the file manager, but by the kernel’s
interrupt polling routine. It communicates with the driver’s main section
through the static storage and certain system calls.

NoteNote
The values passed in a2 and a3 are, by convention, as described
above. The values are those existing in the respective registers when
the device was installed on the IRQ polling table (F$IRQ). Register a2
is usually passed to enable the IRQ service routine to access the
driver’s static storage. Register a3 can have any value desired,
because the hardware is never accessed by the kernel’s IRQ polling
routine.

IRQ may only destroy values in the following registers: d0, d1, a0, a2, a3,
and a6. If the interrupt was serviced, IRQ returns the carry bit clear. If not
serviced, IRQ returns the carry bit set. This provides the kernel’s IRQ
polling routine with an indication it should call the IRQ service routine
associated with the next lowest priority device on the vector.

Refer to Figure 1-5 for a diagram of the I/O system layout during the IRQ
service routine.

FIRQ routines may only destroy values in the d0 and a2 registers. If the
interrupt was serviced, FIRQ returns carry clear. If it was not serviced or
polling of the IRQ devices on the same vector is desired after servicing the
FIRQ interrupt, set the carry bit when returning.

Note also if an FIRQ routine makes a system call (for example, F$Send),
any registers changed by the system call must be preserved. This is
especially true for the d1 register, as this register is used to indicate error
status on all system calls.

1The OS-9 Input/Output System

OS-9 for 68K Processors Technical I/O Manual 49

NoteNote
The value passed in a2 is, by convention, as described above. It is the
same as that existing when the device was installed in the Fast IRQ
polling system (F$FIRQ). a2 can have any value desired because the
hardware is never accessed by the kernel directly.

Figure 1-3 I/O System Layout for INIT/TERM Routines

I/O Request:
I$Attach/I$Detach

OS-9 Kernel

IOMan

Device
Driver (INIT/

TERM)

Current
Process

Descriptor

Device
Descriptor

Device
Static

Storage

Device
Hardware

Kernel
Globals

Device
Table

IRQ Polling
Table

pointer

execution path

hardware operation

system calls

Typical system calls made by the driver include (if any):
FIRQ, FSRqMem, F$SRtMem

50 OS-9 for 68K Processors Technical I/O Manual

Figure 1-4 I/O System Layout for READ/WRITE/GETSTAT/SETSTAT
Routines

I/O Request*

OS-9 Kernel

IOMan

File
Manager

Path
Descriptor

Device
Driver

Device
Static

Storage Device
Hardware

Kernel
Globals

Device
Table

Path Table

Typical system calls made by the driver include (if any): F$Sleep,
F$Event, F$CCtl, F$SRqMem, F$SRtMem

* I$Read, I$ReadLn, I$Writln, I$GetStt, I$SetStt

Event
Queue

Sleep
Queue

Active
Queue

Current
Process

Descriptor

pointer

execution path

hardware operation

system calls

pointer (not for SBF READ/WRITE)

1The OS-9 Input/Output System

OS-9 for 68K Processors Technical I/O Manual 51

Figure 1-5 I/O System Layout for IRQ Service Routine

OS-9 Kernel

IOMan

Device
Driver

Device
Static

Storage

Device
Hardware

Kernel
Globals

IRQ Polling
Table

Typical system calls made by the driver include (if any): F$Send,
F$Event, F$CCtl

Event
Queue

Sleep
Queue

Active
Queue

pointer

execution path

hardware operation

system calls

E
xc

ep
tio

n
H

an
dl

er

Hardware IRQ
Exception

IR
Q

 S
er

vi
ce

H
an

dl
er

52 OS-9 for 68K Processors Technical I/O Manual

Device Drivers That Control Multiple Devices

Properly written re-entrant device drivers can handle more than one
physical hardware device. The driver is responsible for isolating the file
manager from the specifics of the device interface. The device descriptor
tailors the device driver to the actual physical parameters of the hardware
in use (for example, port address, interrupt level). Consequently, adding
hardware ports to a system is generally a matter of creating new device
descriptors for the new ports.

This section highlights some of the issues arising when dealing with
multi-port/multi-device hardware. It discusses three general types of
hardware devices:

• Simple Devices

• Multi-Port Devices

• Multi-Class Devices

Simple Devices

Simple devices provide a single discrete I/O interface, such as a UART
(Universal Asynchronous Receiver Transmitter) or a disk controller. If a
system has a driver for a specific simple device, instances of that device
can be created by building new device descriptors. This can usually be
accomplished by editing an existing descriptor and installing the new
hardware and descriptor on the system.

The I/O system creates a new incarnation of the device driver when each
device is installed in the system. Each incarnation of the driver has its own
static storage area; therefore, the operating parameters for each device are
separated from those of similar devices.

The I/O system considers a device a new device when its device table entry
(port address, device descriptor, driver, and file manager) differs from all
existing device table entries. When this condition is detected, the new
device is added to the I/O system and the device’s INIT routine is called.

1The OS-9 Input/Output System

OS-9 for 68K Processors Technical I/O Manual 53

NoteNote
If the new device differs only in that its device descriptor is different
(same port address, device driver, and file manager), a new entry is
made into the device table, but the INIT routine is not called. This is
how multi-device, single-controller devices are handled.

An example of this is a disk controller supporting more than one drive.
The INIT routine is called only once for these devices—at the first
I$Attach to any device on this port. In this case, no new incarnation
of the driver occurs. The device driver usually discriminates between
the devices on the port by means of logical devices. For example, a
RBF disk controller controlling four drives uses the PD_DRV field of the
device descriptor to discriminate between each drive.

Most OS-9 device drivers are expected to handle only one request from a
file manager at a time. The mechanism ensuring proper handling of access
requests is called I/O Blocking. It is usually performed by the file manager
associated with the device, using the V_BUSY variable of the driver’s static
storage. RBF, SCF, SBF, PCF, and PIPEMAN implement I/O blocking in this
manner. Consequently, a driver written to work with one of these file
managers need handle only one request at a time. For example, the disk
access request to drive 0 of a controller must be completed before RBF
makes an access request to drive 1.

I/O blocking does not affect different devices using the same driver. This is
because the I/O blocking function is performed on a port address basis;
V_BUSY is unique to each static storage area. Drivers written for other file
managers (for example, NFM) may have to deal with more than request at
a time, depending upon how the file manager operates.

54 OS-9 for 68K Processors Technical I/O Manual

Multi-Port Devices

Multi-port devices provide more than one physical I/O channel. If the
hardware implementation totally separates the physical I/O channels, the
device can be treated as multiple simple hardware devices. An example of
this would be a DUART (Dual Universal Asynchronous Receiver
Transmitter), a device providing two separate channels, each with an
independent register set. Typically, the only difference between the two
device descriptors is the port address. This allows separate incarnations of
the driver to control each relevant part of the device.

If, however, the device contains registers that are common between the
physical I/O channels, problems can arise with interaction between the
incarnations of the driver running on the different ports.

A common example of this situation is the MC68681 DUART. This device
contains register sets associated with each individual channel and register
sets common to both channels. The common registers present a problem,
in this case, because they are write-only registers. Each incarnation of the
driver needs to manipulate these registers, but has no knowledge of the
current state of the other-side values.

Without a mechanism for sharing these values, manipulation of the
common registers can cause a driver to produce inadvertent side effects on
the other channel. However, you can easily overcome this situation by
using one of the following techniques:

• OEM global storage

• Data modules

OEM Global Storage

The OEM global storage area is a 256-byte area in the system globals of
the kernel. This area is provided for system-specific, custom storage
allocation. In the case of the common write-only registers, the system can
be configured so memory images of these registers are stored in the OEM
global area.

1The OS-9 Input/Output System

OS-9 for 68K Processors Technical I/O Manual 55

When an incarnation of the driver wishes to modify a common register, it
must locate the appropriate image stored in RAM, modify it, store the new
image back in RAM, and update the hardware. Using this scheme, multiple
incarnations of the driver can operate without affecting other incarnations.

The allocation of storage within the OEM global area is system-specific and
is usually defined by the individual system designer (OEM). For these types
of devices, the device descriptor’s DevCon section is often used to store a
pointer to the area allocated for the particular device in the OEM globals.

Using the OEM global area to overcome the problems with multi-port
device drivers has the following advantages:

• For the system boot-ROM’s console and communications ports, it
allows high-level interrupt-driven drivers to communicate current
register values to low-level polled I/O routines in the boot-ROM code.
Consequently, correct system operation results when switching the
console port between the operating system and the boot ROMs.

• It allows multiple-function devices sharing different types of device
drivers to communicate current register values between the drivers. The
MC68681 DUART is a prime example of this type of device: it has two
serial channels and a tick-timer device.

Data Modules

For drivers that only need to communicate between themselves (they do
not need to communicate to low-level boot-ROM routines), the use of data
modules to store common register values may also be an option. The
driver’s INIT routine would dynamically determine the storage area to be
used by attempting to create/link the data module. Once the storage has
been created/found, then the driver can manipulate the required images in
the same way the OEM global storage variables are accessed.

56 OS-9 for 68K Processors Technical I/O Manual

NoteNote
This technique often does not require DevCon values to indicate the
storage to be used. Incarnations of the driver only have to agree on the
naming convention to adopt when forming the data module’s name. For
example, you could use a common part of the port address as part of
the name.

Depending upon the system’s requirements, other techniques may also be
appropriate for managing these situations, such as using the OS-9 event
system.

Devices

Creating drivers for I/O systems supporting more than one class of I/O
device (for example, disk and tape devices on a SCSI bus) presents a
different set of problems. However, these problems are generally easy to
solve. The most common problems for these devices involve I/O blocking
and sensitivity to device class.

Because I/O blocking is usually performed at the file manager level, a
common driver supporting two classes of devices (for example, RBF and
SBF) may be called by one file manager while running on behalf of another
file manager. Therefore, the driver must be written to handle this case or at
least provide I/O blocking.

In addition, the layout of the path descriptor options and device static
storage is different for each device class. Because the device driver has to
be continually sensitive to the device class, the driver is somewhat
cumbersome to write. The net effect is attempting to merge two separate
drivers into a single piece of code.

To simplify these problems, the technique usually adopted is to split the
driver into high-level and low-level functions. The high-level portion of the
driver is the actual device driver, as it is the module called directly by the file
manager. This module deals with all issues related to the device class (for
example, static storage allocations, operational characteristics) and the

1The OS-9 Input/Output System

OS-9 for 68K Processors Technical I/O Manual 57

target hardware (for example, command protocols). Once the request has
been prepared by the driver, it calls the low-level subroutine module, which
is designed to manage the physical interface. The low-level module has no
knowledge of the device class or type of operation required. Its function is
to manage the I/O requests (with I/O blocking, if necessary) from multiple
drivers through the physical interface.

When this technique is adopted, the DevCon section of the device
descriptor is usually used as a name string for the low-level module to be
used. The individual high-level device drivers can link/unlink to the module
and call it, if necessary, during its INIT/TERM routines.

Examples of Multi-Class Devices Using SCSI System
Concept

The basic premise of this system is to break the OS-9 driver into separate
high-level and low-level areas of functionality. This allows different file
managers and drivers to talk to their respective devices on the SCSI bus.

The device driver handles the high-level functionality. The device driver is
the module called directly by the appropriate file manager. Drivers deal with
all controller-specific/device-class issues (for example, disk drives on an
OMTI5400). They should be written so they are portable code (no
MPU/CPU specific code). The high-level drivers prepare the command
packets for the SCSI target device and then pass this packet to the
low-level subroutine module.

This low-level module passes the command packet (and data if necessary)
to the target device on the SCSI bus. The low-level code does not concern
itself with the contents of the commands/data, it simply performs requests
on behalf of the high-level driver. The low-level module is also responsible
for coordinating all communication requests between the various high-level
drivers and itself. The low-level module is often an MPU/CPU specific
module, and thus can often be written as an optimized module for the
target system.

58 OS-9 for 68K Processors Technical I/O Manual

The device descriptor module contains the name strings for linking the
modules together. The file manager and device driver names are specified
in the normal way. The low-level module name associated with the device is
indicated via the DevCon offset in the device descriptor. This offset pointer
points to a string containing the name of the low-level module.

1The OS-9 Input/Output System

OS-9 for 68K Processors Technical I/O Manual 59

Examples

An example system setup shows how drivers for disk and tape devices can
be mixed on the SCSI bus without interference.

Hardware Configuration

OMTI5400 Controller:

• Addressed as SCSI ID 6

• Hard disk addressed as controller’s LUN 0

• Floppy disk addressed as controller’s LUN 2

• Tape drive addressed as controller’s LUN 3

Fujitsu 2333 Hard Disk with Embedded SCSI Controller:

• Addressed as SCSI ID 0

MVME147 Host CPU:

• Uses WD33C93 SBIC Interface chip

• Own ID of chip is SCSI ID 7

60 OS-9 for 68K Processors Technical I/O Manual

The hardware setup would look like this:

Software Configuration

The following high-level drivers are associated with this configuration:

The following low-level module is associated with this configuration:

SCSI Bus

SCSI

Physical
Devices

Controllers

147
ID: 7

H/D
LUN 0

Tape
LUN 3

F/D
LUN 2

H/D
LUN 0

F2333
ID: 0

OMTI5400
ID: 6

Table 1-13 High-level Drivers

Name Description

RB5400 Handles hard and floppy disk devices on the
OMTI5400.

SB5400 Handles tape device on the OMTI5400.

RB2333 Handles hard disk device.

Table 1-14 Low-level Module

Name Description

SCSI147 Handles WD33C93 Interface on the MVME147 CPU.

1The OS-9 Input/Output System

OS-9 for 68K Processors Technical I/O Manual 61

A conceptual map of the OS-9 modules for this system would look like this:

If the guidelines previously given are adhered to, expansion and
reconfiguration of the SCSI devices (both in hardware and software) can be
easily accomplished. The following three examples show how to achieve
this.

Example One

This example describes the addition of a second SCSI bus using the
VME620 SCSI controller. This second bus has an OMTI5400 controller and
associated hard disk.

The VME620 module uses the WD33C93 chip as the SCSI interface
controller, but it uses a NEC DMA controller chip. Thus, a new low-level
module needs to be created for the VME620 (call the module SCSI620).
You can create this module by editing the existing files in the SCSI33C93
directory to add the VME620 specific code. This new code would typically
be conditionalized. A new makefile (such as make.vme620) could then be
created to allow production of the final SCSI620 low-level module.

The high-level driver for the new OMTI5400 is already written (RB5400), so
you only have to create a new device descriptor for the new hard disk.
Apart from any disk parameter changes pertaining to the actual hard disk

OS-9 Kernel

RBF (disks)

RB2333 SB5400RB5400

SBF (tapes)

Kernel

File Manager

Device Driver
Level

Level

SCSI147

Level

Physical Bus
Level

and IOMan

62 OS-9 for 68K Processors Technical I/O Manual

itself (such as the number of cylinders), you could take one of the existing
RB5400 descriptors and modify it so the DevCon offset pointer points to a
string containing SCSI620 (the new low-level module).

The conceptual map of the OS-9 modules for the system would now look
like this:

Example Two

This example describes the addition of an Adaptec ACB4000 Disk
Controller to the SCSI bus on the MVME147 CPU.

To add a new, different controller to an existing bus, you need to write a
new high-level device driver. Create a new directory (such as RB4000) and
write the high-level driver based upon an existing example (such as
RB5400). You do not need to write a low-level module, as this already
exists. Then, create your device descriptors for the new devices, with the
module name being rb4000 and the low-level module name being
scsi147.

OS-9 Kernel

RBF (disks)

RB2333 SB5400RB5400

SBF (tapes)

Kernel

File Manager

Device Driver
Level

Level

SCSI147

Level

Physical Bus
Level

SCSI Bus #1
SCSI620

SCSI Bus #2

and IOMan

1The OS-9 Input/Output System

OS-9 for 68K Processors Technical I/O Manual 63

The conceptual map of the OS-9 modules for the system would now look
like this:

Example Three

Perhaps the most common reconfiguration occurs when adding devices of
the same type as the existing device. For example, an additional Fujitsu
2333 disk to the SCSI bus on the MVME147. To add a similar controller to
the bus, just create a new device descriptor. There are no drivers to write or
modify, as these already exist (RB2333 and SCSI147). The only
modifications required would be to take the existing descriptor for the
RB2333 device and modify it to reflect the second devices physical
parameters (for example, SCSI ID) and change the actual name of the
descriptor itself.

OS-9 Kernel

RBF (disks)

RB2333 SB5400RB5400

SBF (tapes)

Kernel

File Manager

Device Driver
Level

Level

SCSI147

Level

Physical Bus
Level

SCSI Bus #1

RB4000

and IOMan

64 OS-9 for 68K Processors Technical I/O Manual

Interrupt Driven I/O

OS-9 is a multi-tasking, real-time operating system. To support these
capabilities, I/O devices should be, whenever possible, set up to provide
fully interrupt-driven operation. Non-interrupt-driven operation (polled I/O)
should only be used for I/O devices that are always ready to read/write data
(for example, output to a memory-mapped video RAM). If a driver has to
wait for the device to read/write data, then real-time system operation may
be affected.

For character-oriented devices (for example, SCF), the controller should be
set up to generate an interrupt upon the receipt of an incoming character
and at the completion of transmission of an outgoing character. Both the
input data and the output data should be buffered in the driver. In the case
of block-type devices (for example, RBF and SBF), the controller should be
set up to generate an interrupt upon the completion of a block read or write
operation. It is usually not necessary for the driver to buffer data because
the driver is passed the address of a complete buffer.

NoteNote
The maximum number of devices (device table entries) and interrupting
devices (polling table entries) are defined in the initialization module
(init). These fields (M$DevCnt and M$PollSz) are user adjustable.

Devices are usually added to the system’s IRQ polling tables when the
device is attached (INIT routine) and removed from the IRQ polling tables
when the device is detached (TERM routine). The device is added and
deleted by the driver using the FIRQ/FFIRQ service requests. Device
drivers for devices generating multiple vectors (for example, separate
receive and transmit interrupts) or hardware ports having multiple devices
(for example, disk controllers with associated DMA device) may have to
make multiple FIRQ/FFIRQ calls to add and delete each device in the
polling table.

1The OS-9 Input/Output System

OS-9 for 68K Processors Technical I/O Manual 65

NoteNote
 OS-9 provides two interrupt polling systems:

• Fast (F$FIRQ)

• Normal (F$IRQ)

Generally, F$IRQ is used for most device drivers. The F$FIRQ system
was designed primarily for simple hardware devices requiring faster
response time than provided by the F$IRQ system.

The kernel does not place any restrictions on which vectors (M$Vector of
the device descriptor) may be used by devices or how many devices may
share a vector. If devices share a vector, the priority of the device on the
vector is determined by the IRQ polling priority (M$Prior) specified for the
device. As a general rule, the system integrator should attempt to allocate
one device per vector so the kernel’s IRQ polling table vectors to the
correct device immediately.

Interrupt-driven drivers generally consist of two separate execution threads:

• driver mainline

• interrupt service routine

A typical I/O operation by the driver consists of the following:

1. Driver mainline (called by file manager) initiates I/O operation and
suspends itself.

2. Device interrupt occurs and IRQ service routine initiates wake-up of
driver mainline.

3. Driver mainline is reactivated and returns to caller.

The synchronization of the driver mainline and IRQ service routine is
usually accomplished by one of the following mechanisms:

SIGNALS The driver suspends itself by sleeping
(F$Sleep) and is reactivated when the IRQ
service routine sends the driver a signal

66 OS-9 for 68K Processors Technical I/O Manual

(F$Send, signal S$Wake). This is the most
common method used by interrupt-driven
drivers. The interlock between the execution
threads is usually done using the static
storage variable V_WAKE.

EVENTS The driver suspends itself by waiting on an
event (F$Event), and is reactivated when
the IRQ service routine signals the event.
The interlock between the execution threads
is done via the event values.

The decision whether to use signals or events for interrupt operation should
be based on the complexity of the driver. If the driver is simple (only needs
to communicate interrupt occurrences), either method is suitable. If the
driver is complicated (needs to communicate more than one state), the
event system is usually preferred. For example, the event system would be
more suitable for a SCSI driver supporting multiple devices that can
disconnect.

The assignment of a device’s physical interrupt level(s) can have a
significant impact on system operation. Generally, the smarter the device,
the lower its interrupt level can be set. For example, a disk controller that
buffers sectors can wait longer for service than a single-character buffered
serial port. Usually, the interrupt levels can be assigned according to the
system’s requirements, but it is recommended you assign the clock tick
device the highest possible level to keep interference with system
time-keeping at a minimum.

1The OS-9 Input/Output System

OS-9 for 68K Processors Technical I/O Manual 67

The following table shows how interrupt levels can be assigned in a typical
system:

level 6: clock ticker
 5: “dumb” (non-buffering) disk controller
 4: terminal ports
 3: printer port
 2: “smart” (sector-buffering) disk controller

NoteNote
Level 7 is a non-maskable interrupt. It should not be used by OS-9 I/O
devices. A device set at this level can interrupt the kernel during critical
system operations. However, level 7 can be used for hardware
operations unknown to the system (for example, dynamic RAM
refreshing).

Exception conditions (such as a Bus Error) should be avoided when
IRQ service routines are executing. Under the current version of the
kernel, an exception in an IRQ service routine crashes the system.

68 OS-9 for 68K Processors Technical I/O Manual

DMA I/O and System Caches

Direct Memory Access (DMA) support, if available, significantly improves
data transfer speed and general system performance, because the MPU
does not have to explicitly transfer the data between the I/O device and
memory. Enabling these hardware capabilities is generally a desirable goal,
although systems that include cache (particularly data cache) mechanisms
need to be aware of DMA activity occurring in the system, so as to ensure
stale data problems do not arise.

Stale data occurs when another bus master writes to (alters) the memory of
the local processor. The bus cycles executed by the other master may not
be seen by the local cache/processor. Therefore, the local cache copy of the
memory is inconsistent with the contents of main memory and may lead to
data corruption or locked drivers.

The system’s caching characteristics are controlled by two OS-9
components:

• Syscache Module

• Init Module

Syscache Module

The Syscache module is the global mechanism to invoke caching. If this
module is present in the bootstrap file, caching occurs in the system. If the
module is not found during system startup, all cache functions are disabled.

Default Syscache modules are provided for each class of MPU (for
example, the 68020 provides instruction caching, while the 68030 provides
instruction and data caching) so as to support the on-chip cache
capabilities of the system.

You can integrate off-chip (system specific) caches into the system by
having the OEM customize the Syscache module for the CPU module in
use.

1The OS-9 Input/Output System

OS-9 for 68K Processors Technical I/O Manual 69

Init Module

The Init module’s Compat variables also play a role in the cache control
for the system. You can set flags in these variables to fine-tune the kernel’s
cache control.

The following flags are available in the Init module.

Table 1-15 Flags

Variable Bit Function

M$Compat 3 0=enable burst mode (68030 systems only)

1=disable burst mode

M$Compat2 0 0=external instruction cache is NOT snoopy*

1=external instruction cache is snoopy or
absent

1 0=external data cache is NOT snoopy

1=external data cache is snoopy or absent

2 0=on-chip instruction cache is NOT snoopy

1=on-chip instruction cache is snoopy or
absent

3 0=on-chip data cache is NOT snoopy

1=on-chip data cache is snoopy or absent

4 0=68349: cache/SRAM bank 0 is SRAM

1=68349: cache/SRAM bank 0 is Cache

70 OS-9 for 68K Processors Technical I/O Manual

Avoiding Stale Data Problems

To ensure stale data problems do not arise, use the following set of
guidelines when writing system code (file managers and device drivers)
and setting up the Init module cache flags.

The M$Compat2 variable has flags indicating whether or not a particular
cache is coherent. Flagging a cache as coherent (when it is) allows the
kernel to ignore specific cache flush requests, using F$CCtl. This provides
a speed improvement to the system, as unnecessary system calls are
avoided and the caches are only explicitly flushed when absolutely
necessary.

NoteNote
An absent cache is inherently coherent, so it is important to indicate
absent (as well as coherent) caches.

5 0=68349: cache/SRAM bank 1 is SRAM

1=68349: cache/SRAM bank 1 is Cache

6 0=68349: cache/SRAM bank 2 is SRAM

1=68349: cache/SRAM bank 2 is Cache

7 0=68349: cache/SRAM bank 3 is SRAM

1=68349: cache/SRAM bank 3 is Cache

Table 1-15 Flags (continued)

Variable Bit Function

1The OS-9 Input/Output System

OS-9 for 68K Processors Technical I/O Manual 71

Device Drivers using DMA can determine the need to flush the data caches
using the kernel’s system global variable, D_SnoopD. This variable is set to
a non-zero value if both the on-chip and external data caches are flagged
as snoopy (or absent). Thus a driver can inspect this variable, and
determine whether a call to F$CCtl is required or not.

72 OS-9 for 68K Processors Technical I/O Manual

Address Translation and DMA Transfers

In some systems, the local address of memory is not the same as the
address of the block as seen by other bus masters. This causes a problem
for DMA I/O drivers, as the driver is passed the local address of a buffer,
but the DMA device itself requires a different address.

The Init module’s colored memory lists provide a means to setup the
local/external addressing map for the system. This mapping can be
determined by device drivers in a generic manner using the F$Trans
system call. Thus, you should write drivers that have to deal with DMA
devices in a manner ensuring the code runs on any address mapping
situation. You can do this using the following algorithm:

If a pointer must be passed to an external bus master, make a call to the
kernel’s F$Trans system call.

• If F$Trans returns an unknown service request error, no address
translation is in effect for the system and the driver can pass the
unmodified address to the other master.

• If F$Trans returns any other error, something is seriously wrong. The
driver should return the error to the file manager.

• If F$Trans returns no error, the driver should verify the size returned
for the translated block is the same as the size requested. If so, the
address can be passed to the other master. If not, the driver can adopt
one of two strategies:

•Refuse to deal with split blocks, and return an error to the file manager.

•Break up the transfer request into multiple calls to the other master,
using multiple calls to F$Trans until the original block has been fully
translated.

The first method (refuse split blocks) is the usual method adopted by
drivers, as the current version of the kernel does allocate memory blocks
spanning address translation factors.

If drivers adopt these methods, the driver functions irrespective of the
address translation issues. Boot drivers can also deal with this issue in a
similar manner by using the TransFact global label in the bootstrap ROM.

1The OS-9 Input/Output System

OS-9 for 68K Processors Technical I/O Manual 73

74 OS-9 for 68K Processors Technical I/O Manual

Chapter 2: Random Block File

Manager (RBF)

This chapter explains how to use the RBF manager to process I/O
service requests to random access devices and the parameters driving
it. It includes the following topics:

• RBF General Description

• RBF Device Descriptor Modules

• RBF Path Descriptor Definitions

• Floppy Disk Formats

• RBF Device Drivers

76 OS-9 for 68K Processors Technical I/O Manual

RBF General Description

The Random Block File Manager (RBF) is a re-entrant subroutine package
for I/O service requests to random-access devices. RBF can handle any
number or type of such devices simultaneously (for example, large hard
disk systems, small floppy systems, and RAM disk systems) and is
responsible for maintaining the logical file structure.

Because RBF is designed to support a wide range of devices with different
performance and storage capacities, it is highly parameter-driven.

Some of the physical parameters RBF uses are stored on the media itself.
On disk systems, this information is written on the first few sectors of track
number zero. The device drivers also use this information, particularly the
media format parameters stored on sector 0. These parameters are written
by the format program when it initializes and tests the media. Storage
systems that initialize themselves without using format are responsible for
establishing the initial file structure of the media themselves (for example,
RAM disk systems).

RBF handles the following I/O service requests:

The following I/O service requests do not call RBF:

Table 2-1 RBF I/O Service Requests

I$ChgDir I$Close I$Create I$Delete I$GetStt

I$MakDir I$Open I$Read I$ReadLn I$Seek

I$SetStt I$Write I$Writln

Table 2-2 Non-RBF I/O Service Requests

I$Attach I$Detach I$Dup

2Random Block File Manager (RBF)

OS-9 for 68K Processors Technical I/O Manual 77

RBF I/O Service Requests

When a process makes one of the following system calls to an RBF device,
RBF executes the file manager functions described for that call.

I$ChgDir

RBF performs the following functions:

• Sets the directory bit in the access mode.

• Calls RBF’s Open routine to search the specified pathlist.

• If accessible, updates the appropriate default P$DIO pointer in the
process descriptor.

• Closes the path opened by the Open routine.

I$Close

RBF performs the following functions:

• Flushes any data not yet written to the disk (any partial block of data left
from a previous write call).

• Checks the use count in the path descriptor. If the use count is
non-zero, no further action is taken. Otherwise, RBF:

• Updates the file descriptor, if necessary.

• Trims the file size, if necessary.

• Calls the device driver with the SS_Close SetStat (ignores any
returned errors).

I$Create

RBF performs the following functions:

• Initializes the path descriptor to the default option values.

• Searches directories specified or implied by the pathlist.

78 OS-9 for 68K Processors Technical I/O Manual

• If the user does not have permission to access a directory element,
an error is returned.

• If the file is found, RBF returns an error.

• Creates a directory entry for the new file. If there is no free space in the
directory, it is expanded to make room for the new entry.

• Creates and initializes a file descriptor for the file. If an initial size
allocation has been specified, RBF attempts to allocate the specified
amount of disk space for the file. If not specified, the first I$Write
expands the file.

• Calls the device driver with an SS_Open SetStat. RBF ignores
E$UnkSvc errors, but aborts I$Create on any other error.

I$Delete

RBF performs the following functions:

• Initializes the path descriptor to the default option values.

• Searches any directories specified or implied by the pathlist. If the user
does not have permission to access a directory element, an error is
returned.

• Checks the permission attributes of the file. The file’s directory bit
(dirbit) must be turned off using the SS_Attr SetStat call before
I$Delete is called. To delete the file, you must have permission to
write to the file and there cannot be other open paths to the file. An error
is returned if these conditions are not met.

• Decrements link count in file descriptor. If the link count becomes zero,
all disk space associated with the file is returned. This includes the file’s
file descriptor block. If the link count is non-zero, no disk space is
returned.

• Removes directory entry for the file.

2Random Block File Manager (RBF)

OS-9 for 68K Processors Technical I/O Manual 79

I$GetStt

Refer to the I$GetStt description in the OS-9 for 68K Technical Manual
for a detailed explanation of the RBF supported I$GetStt functions:

All other GetStat calls are passed to the driver.

I$MakDir

RBF performs a Create operation with the directory bit set for the file
access mode. If the Create succeeds, RBF creates directory entries for
“.” and “..” in the new directory file and then closes the path opened by
Create.

I$Open

RBF performs the following functions:

Table 2-3 I$GetStt Functions

Function Description

SS_EOF Check for end-of-file condition.

SS_FD Get a copy of the file descriptor.

SS_FDInf Get a copy of a specified file descriptor.

SS_Opt Read path descriptor options.

SS_Pos Determine file position.

SS_Ready Test for data ready.

SS_Size Determine file’s size.

80 OS-9 for 68K Processors Technical I/O Manual

• Initializes the path descriptor with the default option values.

• Searches any directories specified or implied by the pathlist. If the user
does not have permission to access a directory element, an error is
returned.

• Checks the permission attributes of the file. If the user does not have
permission to open the file in the access mode requested, an error is
returned.

• Updates the last modified date in the file descriptor, if open for writing.

• Calls the device driver with the SS_Open SetStat. RBF ignores
E$UnkSvc errors, but aborts the I$Open on any other error.

I$Read

RBF performs the following functions:

• Attempts to acquire a record lock of the section of the file. If the record
is in use, RBF waits for the time specified by the SS_Ticks SetStat
call. This value defaults to zero, resulting in an indefinite sleep until the
record becomes available.

• Determines if there is data left to read in the file. If there is none, an
end-of-file error (E$EOF) is returned.

• Calls the driver to read the data, as needed by RBF. Complete blocks of
data are transferred directly into the process’s buffer. Partial blocks are
read into a buffer maintained by RBF after which the portion of data
requested from those blocks are copied into the calling process’s buffer.

• If the requested data was found in a buffer from a previous read,
RBF copies the data to the calling process’s buffer without calling
the driver.

• If the file is open only for reading, the record lock on the requested
section is released immediately.

• If the file is open for update, the record remains locked.

• A read of 0 bytes, a read of a different section, or an I$Write
releases the current section’s record lock.

2Random Block File Manager (RBF)

OS-9 for 68K Processors Technical I/O Manual 81

I$ReadLn

I$ReadLn is similar to I$Read, except RBF maintains a buffer to read
data into using single sector reads. It searches the data until it locates the
first end-of-record character (carriage return), or reads the number of bytes
requested, whichever comes first. It copies the read buffer into the
process’s buffer as necessary.

NoteNote
The portion of the file that is record locked begins at the file position
from where the I$ReadLn call was made and continues through the
number of bytes requested, regardless of whether the EOR is found
earlier.

If the file is open only for reading, the record lock on the requested section
is released immediately. If the file is open for update, the record remains
locked. A read of 0 bytes, a read of a different section, or an I$Write
releases the current section’s record lock.

I$Seek

RBF sets the current position in the path descriptor to the specified
position. If RBF’s internal buffer has a sector containing modified data, and
the new position is not in that sector, the driver is called to write that sector
before the current position in the path descriptor is updated.

I$SetStt

Refer to the I$SetStt description in the OS-9 for 68K Technical Manual
for a detailed explanation of the RBF supported I$SetStt functions:

82 OS-9 for 68K Processors Technical I/O Manual

All other SetStat calls are passed to the driver.

NoteNote
SS_Opt is passed to the driver after processing by RBF. If an unknown
service request error (E$UnkSvc) is returned by the driver, it is ignored.

I$Write

RBF performs the following functions:

• Attempts to acquire a record lock of the section of the file. If the record
is in use, RBF waits for the time specified by the SS_Ticks SetStat
call. This value defaults to 0 which results in an indefinite sleep until the
record becomes available.

Table 2-4 I$SetStt Functions

Function Description

SS_Attr Set file’s permission attributes.

SS_FD Write some file descriptor information.

SS_Lock Record lock a portion of the file.

SS_Opt Write the path descriptor options.

SS_RsBit Reserve bitmap sector.

SS_Size Set the file’s size.

SS_Ticks Set the record locking time-out value.

2Random Block File Manager (RBF)

OS-9 for 68K Processors Technical I/O Manual 83

• Expands the file, if necessary.

• Calls the driver to write the data, as needed. Complete blocks of data
are transferred directly from the process’s buffer. Partial blocks are
copied into a buffer maintained by RBF. This data is written after a
subsequent write fills the buffer, or a seek, read, or write is done to
another portion of the file, or when the file is closed.

Although the data is written in the cases described above, the file
descriptor is only guaranteed to be written when the file is closed, or
when the file descriptor is written using the GetStat SS_FD/SetStat
SS_FD sequence. Writing the file descriptor will also result in the writing
of the current data sector.

Any active record lock is released once the section has been written. A
write of zero bytes also releases the record lock.

I$Writln

I$Writln is similar to I$Write, except RBF searches the calling
process’s data buffer for an end-of-record character (carriage return). If one
is found, only the data up to that end-of-record character is written. If no
end-of-record character is found, RBF writes the number of bytes specified
by the caller.

Any active record lock is released once the section has been written. A
write of 0 bytes also releases the record lock.

84 OS-9 for 68K Processors Technical I/O Manual

RBF Device Descriptor Modules

This section describes the definitions of the initialization table contained in
device descriptor modules for RBF devices. The table immediately follows
the standard device descriptor module header fields. The size of the table
is defined in the M$Opt field.

NoteNote
In this table the offset values are the device descriptor offsets, while the
labels are the path descriptor offsets. To correctly access these offsets
in a device descriptor using the path descriptor labels, you must make
the following adjustment: (M$DTyp - PD_OPT)

For example, to access the drive number in a device descriptor, use
PD_DRV + (M$DTyp - PD_OPT). To access the drive number in the
path descriptor, use PD_DRV. Module offsets are resolved in assembly
code by using the names shown here and linking with the relocatable
library: sys.l or usr.l.

Table 2-5 Device Descriptor Offset and Path Descriptor Label

Device
Descriptor
Offset

Path
Descriptor
Label Description

$48 PD_DTP Device Class

$49 PD_DRV Drive Number

$4A PD_STP Step Rate

2Random Block File Manager (RBF)

OS-9 for 68K Processors Technical I/O Manual 85

$4B PD_TYP Device Type

$4C PD_DNS Density

$4D Reserved

$4E PD_CYL Number of Cylinders

$50 PD_SID Number of Heads/Sides

$51 PD_VFY Disk Write Verification

$52 PD_SCT Default Sectors/Track

$54 PD_T0S Default Sectors/Track 0

$56 PD_SAS Segment Allocation Size

$58 PD_ILV Sector Interleave Factor

$59 PD_TFM DMA Transfer Mode

$5A PD_TOffs Track Base Offset

$5B PD_SOffs Sector Base Offset

$5C PD_SSize Sector Size (in bytes)

$5E PD_Cntl Control Word

$60 PD_Trys Number of Tries

Table 2-5 Device Descriptor Offset and Path Descriptor Label
 (continued)

Device
Descriptor
Offset

Path
Descriptor
Label Description

86 OS-9 for 68K Processors Technical I/O Manual

$61 PD_LUN SCSI Unit Number of Drive

$62 PD_WPC Cylinder to Begin Write
Precompensation

$64 PD_RWR Cylinder to Begin Reduced Write
Current

$66 PD_Park Cylinder to Park Disk Head

$68 PD_LSNOffs Logical Sector Offset

$6C PD_TotCyls Number of Cylinders On Device

$6E PD_CtrlrID SCSI Controller ID

$6F PD_Rate Data transfer/Disk Rotation Rates

$70 PD_ScsiOpt SCSI Driver Options Flags

$74 PD_MaxCnt Maximum Transfer Count

Table 2-5 Device Descriptor Offset and Path Descriptor Label
 (continued)

Device
Descriptor
Offset

Path
Descriptor
Label Description

2Random Block File Manager (RBF)

OS-9 for 68K Processors Technical I/O Manual 87

NoteNote
In the following table, parameters marked with an asterisk (*) are format
specific.

Table 2-6 Path Descriptor Labels and Descriptions

Name Description

PD_DTP Device Type

This field is set to one for RBF devices.

PD_DRV Drive number

This field is used to associate a one-byte logical
integer with each drive a driver/controller handles.
Each controller’s drives should be numbered 0 to
n-1 (n is the maximum number of drives the
controller can handle and is set into V_NDRV by the
driver’s INIT routine). This number defines which
drive table the driver and RBF access for this
device. RBF uses this number to set up the drive
table pointer (PD_DTB). Prior to initializing PD_DTB,
RBF verifies PD_DRV is valid for the driver by
checking for a value less than V_NDRV in the
driver’s static storage. If not, RBF aborts the path
open and returns an error. On simple hardware, this
logical drive number is often the same as the
physical drive number.

88 OS-9 for 68K Processors Technical I/O Manual

PD_STP Step rate

This field contains a code that sets the drive’s
head-stepping rate. To reduce access time, the step
rate should be set to the fastest value of which the
drive is capable. For floppy disks, the following
codes are commonly used:

Step Code 5" Disks 8" Disks

0 30ms 15ms

1 20ms 10ms

2 12ms 6ms

3 6ms 3ms

For hard disks, the value in this field is usually driver
dependent.

Table 2-6 Path Descriptor Labels and Descriptions (continued)

Name Description

2Random Block File Manager (RBF)

OS-9 for 68K Processors Technical I/O Manual 89

PD_TYP Disk Type

Defines the physical type of the disk, and indicates
the revision level of the descriptor.

If bit 7 = 0, floppy disk parameters are described in
bits 0-6:

bit 0: 0 = 5 1/4" floppy disk (pre-Version 2.4 of
OS-9 for 68K)

1 = 8" floppy disk (pre-Version 2.4 of
OS-9 for 68K)

bits 1-3: 0 = (pre-Version 2.4 of OS-9 for 68K
descriptor) Bit 0 describes type/rates.

1 = 8" physical size

2 = 5 1/4" physical size

3 = 3 1/2" physical size

4-7: Reserved

bit 4: Reserved

bit 5: 0 = Track 0, side 0, single density

1 = Track 0, side 0, double density

bit 6: Reserved

If bit 7 = 1, hard disk parameters are described in
bits 0-6:

bits 0-5: Reserved

bit 6: 0 = Fixed hard disk

1 = Removable hard disk

Table 2-6 Path Descriptor Labels and Descriptions (continued)

Name Description

90 OS-9 for 68K Processors Technical I/O Manual

PD_DNS Disk Density *

Indicates the hardware density capabilities of a
floppy disk drive:

bit 0: 0 = Single bit density (FM)

1 = Double bit density (MFM)

bit 1: 1 = Double track density 96 TPI/135 TPI)

bit 2: 1 = Quad track density (192 TPI)

bit 3: 1 = Octal track density (384 TPI)

PD_CYL Number of cylinders (tracks) *

Indicates the logical number of cylinders per disk.
format uses this value, PD_SID, and PD_SCT to
determine the size of the drive. PD_CYL is often the
same as the physical cylinder count (PD_TotCyls),
but can be smaller if using partitioned drives
(PD_LSNOffs) or track offsetting (PD_TOffs).

If the drive is an autosize drive (PD_Cntl), format
ignores this field.

PD_SID Heads or Sides *

This field indicates the number of heads for a hard
disk (Heads) or the number of surfaces for a floppy
disk (Sides). If the drive is an autosize drive
(PD_Cntl), format ignores this field.

Table 2-6 Path Descriptor Labels and Descriptions (continued)

Name Description

2Random Block File Manager (RBF)

OS-9 for 68K Processors Technical I/O Manual 91

PD_VFY Verify Flag

This field indicates whether or not to verify write
operations.

0 = verify disk write
1 = no verification

NOTE: Write verify operations are generally
performed on floppy disks. They are not usually
performed on hard disks because of the lower soft
error rate of hard disks.

PD_SCT Default sectors/track*

This field indicates the number of sectors per track.
If the drive is an autosize drive (PD_Cntl), format
ignores this field.

PD_T0S Default Sectors/Track (Track 0) *

This field indicates the number of sectors per track
for track 0. This may be different than PD_SCT
(depending on specific disk format). If the drive is an
autosize drive (PD_Cntl), format ignores this
field.

PD_SAS Segment allocation size

Indicates the default minimum number of sectors
allocated when a file is expanded. Typically, this is
set to the number of sectors on the media track (for
example, 8 for floppy disks, 32 for hard disks), but
can be adjusted to suit the requirements of the
system.

Table 2-6 Path Descriptor Labels and Descriptions (continued)

Name Description

92 OS-9 for 68K Processors Technical I/O Manual

PD_ILV Sector interleave factor *

Indicates the sequential arrangement of sectors on
a disk (for example, 1, 2, 3... or 1, 3, 5...). For
example, if the interleave factor is 2, the sectors are
arranged by 2’s (1, 3, 5...) starting at the base sector
(see PD_SOffs).

NOTE: Optimized interleaving can drastically
improve I/O throughput.

NOTE: PD_ILV is typically only used when the
media is formatted, as format uses this field to
determine the default interleave. However, when the
media format occurs (I$SetStat, SS_WTrk call),
the desired interleave is passed in the parameters of
the call.

PD_TFM DMA (Direct Memory Access) transfer mode

Indicates the mode of transfer for DMA access, if
the driver is capable of handling different DMA
modes. Use of this field is driver dependent.

PD_TOffs Track base offset *

This field is the offset to the first accessible physical
track number. Track 0 is not always used as the
base track because it is often a different density.

PD_SOffs Sector base offset *

This field is the offset to the first accessible physical
sector number on a track. Sector 0 is not always the
base sector.

Table 2-6 Path Descriptor Labels and Descriptions (continued)

Name Description

2Random Block File Manager (RBF)

OS-9 for 68K Processors Technical I/O Manual 93

PD_SSize Sector Size

Indicates the physical sector size in bytes. The default sector size is
256. Depending upon whether the driver supports non-256 byte
logical sector sizes (a variable sector size driver), the field is used as
follows:

Variable Sector Size Driver

If the driver supports variable logical sector sizes, RBF inspects this
value during a path open (specifically, after the driver returns “no
error” on the SS_VarSect GetStat call) and uses this value as the
logical sector size of the media. This value is then copied into
PD_SctSiz of the path descriptor options section, so applications
programs can know the logical sector size of the media, if required.
RBF supports logical sector sizes from 256 bytes to 32,768 bytes, in
integral binary multiples (256, 512, 1024, etc.).

During the SS_VarSect call, the driver can validate or update this
field (or the media itself) according to the driver’s conventions. These
typically are:

1. If the driver can dynamically determine the media’s sector size,
and PD_SSize is passed in as 0, the driver updates this field
according to the current media setting.

2. If the driver can dynamically set the media’s sector size, and
PD_SSize is passed in as a non-zero value, the driver sets the
media to the value in PD_SSize (this is typical when
re-formatting the media).

3. If the driver cannot dynamically determine or set the media sector
size, it usually validates PD_SSize against the supported sector
sizes, and returns an error (E$SectSiz) if PD_SSize contains
an invalid value.

Non-Variable Sector Size Driver

If the driver does not support variable logical sector sizes (logical
sector size is fixed at 256 bytes), RBF ignores PD_SSize. In this
case, PD_SSize can be used to support deblocking drivers that
support various physical sector sizes.

NOTE: A non-variable sector sized driver is defined as a driver which
returns the E$UnkSvc error for GetStat (SS_VarSect).

Table 2-6 Path Descriptor Labels and Descriptions (continued)

Name Description

94 OS-9 for 68K Processors Technical I/O Manual

PD_Cntl Device Control Word

Indicates options reflecting the capabilities of the
device. These options may be set by the user, as
follows:

bit 0: 0 = Format enable

 1 = Format inhibit

bit 1: 0 = Single-Sector I/O

 1 = Multi-Sector I/O capable

bit 2: 0 = Device has non-stable ID

 1 = Device has stable ID

bit 3: 0 = Device size determined from
descriptor values

 1 = Device size obtained by SS_DSize
GetStat call

bit 4: 0 = Device cannot format a single track

 1 = Device can format a single track

bit 5: 0 = Media is writable by RBF

 1 = Media is write protected by RBF

bit 6-15: Reserved

Table 2-6 Path Descriptor Labels and Descriptions (continued)

Name Description

2Random Block File Manager (RBF)

OS-9 for 68K Processors Technical I/O Manual 95

PD_Trys Number of Tries

Indicates whether a driver should try to access the
disk again before returning an error. Depending
upon the driver in use, this field may be
implemented as a flag or a retry counter:

Value Flag Counter

0 retry ON default number of retries

1 retry OFF no retries

other retry ON specified number of retries

Drivers working with controllers having error
correcting functions (for example, E.C.C. on hard
disks) should treat this field as a flag so they can set
the controller’s error correction/retry functions
accordingly.

When formatting media, especially hard disks, the
format-enabled descriptor should set this field to
one (retry OFF) to ensure marginal media sections
are marked out of the media free space.

PD_LUN Logical Unit Number of SCSI Drive

Used in the SCSI command block to identify the
logical unit on the SCSI controller. To eliminate
allocation of unused drive tables in the driver static
storage, this number may be different from PD_DRV.
PD_DRV indicates the logical number of the drive to
the driver, that is, the drive table to use. PD_LUN is
the physical drive number on the controller.

Table 2-6 Path Descriptor Labels and Descriptions (continued)

Name Description

96 OS-9 for 68K Processors Technical I/O Manual

PD_WPC First Cylinder to Use Write Precompensation

Indicates the cylinder to begin write
precompensation.

PD_RWR First Cylinder to Use Reduced Write Current

Indicates the cylinder to begin reduced write current.

PD_Park Cylinder Used to Park Head

Indicates the cylinder at which to park the hard
disk’s head when the drive is shut down. Parking is
usually done on hard disks when they are shipped
or moved and is implemented by the SS_SQD
SetStat to the driver.

PD_LSNOffs Logical Sector Offset

The offset to use when accessing a partitioned
drive. The driver adds this value to the logical block
address passed by RBF prior to determining the
physical block address on the media. Typically,
using PD_LSNOffs is mutually exclusive to using
PD_TOffs.

PD_TotCyls Total Cylinders on Device

Indicates the actual number of physical cylinders on
a drive. It is used by the driver to correctly initialize
the controller/drive. PD_TotCyls is typically used
for physical initialization of a drive that is partitioned
or has PD_TOffs set to a non-zero value. In this
case, PD_CYL denotes the logical number of
cylinders of the drive. If PD_TotCyls is zero, the
driver should determine the physical cylinder count
by using the sum of PD_CYL and PD_TOffs.

Table 2-6 Path Descriptor Labels and Descriptions (continued)

Name Description

2Random Block File Manager (RBF)

OS-9 for 68K Processors Technical I/O Manual 97

PD_CtrlrID SCSI Controller ID

The ID number of the SCSI controller attached to
the drive. The driver uses this number to
communicate with the controller.

PD_ScsiOpt SCSI Driver Options Flags

Indicate the SCSI device options and operation
modes. It is the driver’s responsibility to use or reject
these values, as applicable.

bit 0: 0 = ATN not asserted (no disconnect
allowed)

 1 = ATN asserted (disconnect allowed)

bit 1: 0 = Device cannot operate as a target

 1 = Device can operate as a target

bit 2: 0 = Asynchronous data transfer

 1 = Synchronous data transfer

bit 3: 0 = Parity off

 1 = Parity on

All other bits are reserved.

Table 2-6 Path Descriptor Labels and Descriptions (continued)

Name Description

98 OS-9 for 68K Processors Technical I/O Manual

PD_Rate Data Transfer/Rotational Rate

Contains the data transfer rate and rotational speed
of the floppy media. Note this field is normally used
only when the physical size field (PD_TYP, bits 1-3)
is non-zero.

bits 0-3: Rotational speed

0 = 300 RPM

1 = 360 RPM

2 = 600 RPM

All other values are reserved.

bits 4-7: Data transfer rate

0 = 125K bits/sec

1 = 250K bits/sec

2 = 300K bits/sec

3 = 500K bits/sec

4 = 1M bits/sec

5 = 2M bits/sec

6 = 5M bits/sec

All other values are reserved.

PD_MaxCnt Maximum Transfer Count

Contains the maximum byte count the driver can
transfer in one call. If this field is 0, RBF defaults to
the value of $ffff (65,535).

Table 2-6 Path Descriptor Labels and Descriptions (continued)

Name Description

2Random Block File Manager (RBF)

OS-9 for 68K Processors Technical I/O Manual 99

RBF Path Descriptor Definitions

The first 26 fields of the path options section (PD_OPT) of the RBF path
descriptor are copied directly from the device descriptor standard
initialization table. All of the values in this table may be examined using
I$GetStt by applications using the SS_Opt code. Some of the values
may be changed using I$SetStt; some are protected by the file manager
to prevent inappropriate changes.

Refer to the previous section on RBF device descriptors for descriptions of
the first 26 fields. The last five fields contain information provided by RBF

Table 2-7 RBF Path Descriptors and Descriptions

 Name Description

PD_ATT File Attributes

The file’s attributes are defined as follows:

bit 0: Set if owner read.

bit 1: Set if owner write.

bit 2: Set if owner execute.

bit 3: Set if public read.

bit 4: Set if public write.

bit 5: Set if public execute.

bit 6: Set if only one user at a time can open the file.

bit 7: Set if directory file.

PD_FD File Descriptor

The LSN (Logical Sector Number) of the file’s file
descriptor is written here.

100 OS-9 for 68K Processors Technical I/O Manual

NoteNote
In the following chart, the offset refers to the location of a path
descriptor field relative to the starting address of the path descriptor.
Path descriptor offsets are resolved in assembly code by using the
names shown here and linking with the relocatable library: sys.l or
usr.l.

PD_DFD Directory File Descriptor

The LSN of the file’s directory’s file descriptor is
written here.

PD_DCP File’s Directory Entry Pointer

The current position of the file’s entry in its directory.

PD_DVT Device Table Pointer (copy)

The address of the device table entry associated with
the path.

PD_SctSiz Logical Sector Size

The logical sector size of the device associated with
the path. If this is 0, assume a size of 256 bytes.

PD_NAME File Name

Table 2-7 RBF Path Descriptors and Descriptions (continued)

 Name Description

2Random Block File Manager (RBF)

OS-9 for 68K Processors Technical I/O Manual 101

Table 2-8 Path Descriptor Offsets, Names, and Descriptions

Offset Name Description

$80 PD_DTP Device Class

$81 PD_DRV Drive Number

$82 PD_STP Step Rate

$83 PD_TYP Device Type

$84 PD_DNS Density

$85 Reserved

$86 PD_CYL Number of Cylinders

$88 PD_SID Number of Heads/Sides

$89 PD_VFY Disk Write Verification

$8A PD_SCT Default Sectors/Track

$8C PD_TOS Default Sectors/Track 0

$8E PD_SAS Segment Allocation Size

$90 PD_ILV Sector Interleave Factor

$91 PD_TFM DMA Transfer Mode

$92 PD_TOffs Track Base Offset

$93 PD_SOffs Sector Base Offset

102 OS-9 for 68K Processors Technical I/O Manual

$94 PD_SSize Sector Size (in bytes)

$96 PD_Cntl Control Word

$98 PD_Trys Number of Tries

$99 PD_LUN SCSI Unit Number of Drive

$9A PD_WPC Cylinder to Begin Write
Precompensation

$9C PD_RWR Cylinder to Begin Reduced Write
Current

$9E PD_Park Cylinder to Park Disk Head

$A0 PD_LSNOffs Logical Sector Offset

$A4 PD_TotCyls Number of Cylinders On Device

$A6 PD_CtrlrID SCSI Controller ID

$A7 PD_Rate Data Transfer/Rotational Rates

$A8 PD_ScsiOpt SCSI Driver Option Flag

$AC PD_MaxCnt Maximum Transfer Count

$B0 Reserved

$B5 PD_ATT File Attributes

$B6 PD_FD File Descriptor

Table 2-8 Path Descriptor Offsets, Names, and Descriptions (continued)

Offset Name Description

2Random Block File Manager (RBF)

OS-9 for 68K Processors Technical I/O Manual 103

$BA PD_DFD Directory File Descriptor

$BE PD_DCP File’s Directory Entry Pointer

$C2 PD_DVT Device Table Pointer (copy)

$C6 Reserved

$C8 PD_SctSiz Logical Sector Size

$CC Reserved

$E0 PD_NAME File Name

Table 2-8 Path Descriptor Offsets, Names, and Descriptions (continued)

Offset Name Description

104 OS-9 for 68K Processors Technical I/O Manual

Floppy Disk Formats

Floppy disk controllers and drives can support a multitude of disk formats.
When writing disk drivers, it is important to ensure all of the disk formats
you may want to support are easily implemented via changes to the device
descriptor parameters. This allows one driver to control multiple devices
with one device descriptor per format.

There are two aspects of disk formats that must be considered:

• Physical Format

• Logical Format

Physical Format

The physical format refers to the actual encoding of track and sector
information on the media. It describes certain physical characteristics of the
media. It is independent of the operating system, and is typically defined by
the hardware (the disk controller and disk drive(s)).

In general, the following device descriptor fields describe the media
physical format:

Table 2-9 Fields Describing Media Physical Formats

Field Description

PD_DNS Disk density

PD_SID Number of sides

PD_SCT Sectors per track

PD_T0S Sectors per track, track 0, side 0.

2Random Block File Manager (RBF)

OS-9 for 68K Processors Technical I/O Manual 105

In addition, the following fields describe the physical format and, depending
upon the driver, may also affect the media format (for example, whether or
not the media is OS-9 Universal Format):

For More Information
More In
fo More
Informatio
n More Inf
ormation M
ore Inform
ation More

-6-

See Universal Format in this chapter for more information about the
universal format.

PD_ILV Sector interleave

PD_Rate Data transfer rate and disk rotational speed

Table 2-10 Fields Describing Media Formats and Physical Formats

Field Description

PD_SSize Sector size

PD_SOffs Sector base offset

PD_TOffs Track Base Offset

PD_CYL Number of cylinders

PD_TotCyl Total number of cylinders on drive

Table 2-9 Fields Describing Media Physical Formats (continued)

Field Description

106 OS-9 for 68K Processors Technical I/O Manual

Logical Format

The logical format refers to the file system the operating system expects to
find on the media. For RBF, this structure consists of sector 0, the media
bitmap, and directory/file information.

For More Information
More In
fo More
Informatio
n More Inf
ormation M
ore Inform
ation More

-6-

Refer to the OS-9 for 68K Technical Manual, Appendix B: Path
Descriptors and Device Descriptors, for further information on the
RBF disk structure.

NoteNote
A disk logical format can exist on a number of physical formats. The
device driver (using the device descriptor parameters) isolates the
physical layout of the media from the logical structure expected by the
File Manager (RBF). Generally, the impact of the physical format only
affects the media’s total capacity. For example, single-sided media
versus double-sided media.

Supported Media Formats

The supported media formats are described by the device descriptor
parameters. An RBF device descriptor is usually created with the following:

• A macro (for example, DiskD0) in the systype.d file

• An assembler source file (for example, d0.a)

• The generic descriptor making file for RBF devices (rbfdesc.a)

2Random Block File Manager (RBF)

OS-9 for 68K Processors Technical I/O Manual 107

While you can use the disk macro to describe all characteristics of the
media format, there are a number of standard media format codes you can
use to set the basic parameters for these formats. The RBFDesc macro
(refer to the rbfdesc.a source file) parameter number 6 is used to set
these standard parameters.

The following tables describe the standard formats supported by
rbfdesc.a.

Table 2-11 Macro ramdisk--Volatile RAM disk

Label Value Comment

DiskKind 0

Cylnders 0

BitDns Single

TrkDns Single

SectTrk0 0

Heads 0

StepRate 0

Intrleav 0

NoVerify ON

SegAlloc 4

Trys 0

DevCon 0 Not used by ram-disk driver

108 OS-9 for 68K Processors Technical I/O Manual

Control MultEnabl Format enabled, m/s capable

MaxCount $ffffffff

Table 2-12 Macro nvramdisk -- Non-volatile RAM disk

Label Value Comment

DiskKind 0

Cylnders 0

BitDns Single

TrkDns Single

SectTrk0 0

Heads 0

StepRate 0

Intrleav 0

NoVerify ON

SegAlloc 4

Trys 0

Table 2-11 Macro ramdisk--Volatile RAM disk

Label Value Comment

2Random Block File Manager (RBF)

OS-9 for 68K Processors Technical I/O Manual 109

DevCon 0 Not used by RAM disk
driver

Control FmtDsabl+MultEnabl nvramdisks are format
disabled, m/s capable

MaxCount $ffffffff

Table 2-13 Macro dd380 -- 3 1/2", 80 track drive

Label Value Comment

DiskKind Size3

Cylnders 80

BitDns Double

Rates xfr250K+rpm300

TrkDns Double 135 tpi

SectTrk 16

SectTrk0 10

TotalCyls Cylnders Number of actual cylinders
on disk

Table 2-12 Macro nvramdisk -- Non-volatile RAM disk

Label Value Comment

110 OS-9 for 68K Processors Technical I/O Manual

Table 2-14 Macro uv380 -- universal 3 1/2" 80 track

Label Value Comment

DiskKind Size3

Cylnders 80 Number of (physical) tracks

BitDns Double MFM recording

Rates xfr250K+rpm300

DnsTrk0 Double MFM track 0

TrkDns Double 135 tpi

SectTrk 16 Sectors/track (except track 0,
side 0)

SectTrk0 16 Sectors/track, track 0, side 0

SectOffs 1 Physical sector start = 1

TrkOffs 1 Track 0 not used

TotalCyls Cylnders Number of actual cylinders on
disk

2Random Block File Manager (RBF)

OS-9 for 68K Processors Technical I/O Manual 111

Table 2-15 Macro ed380 -- 3 1/2" 80 track EXTRA density (4M unformatted)

Label Value Comment

DiskKind Size3

Cylnders 80 Number of (physical) cylinders

BitDns Double MFM recording

Rates xfr1M+rpm300

DnsTrk0 Double MFM track 0

TrkDns Double 135 tpi

SectTrk 61 Sectors/track (except track 0,
side 0)

SectTrk0 61 Sectors/track, track 0, side 0

SectOffs 1 Physical sector start = 1

TotalCyls Cylnders Number of actual cylinders on
disk

112 OS-9 for 68K Processors Technical I/O Manual

Table 2-16 Macro hd380 -- 3 1/2" 80 track (2M unformatted, 1.4M formatted)

Label Value Comment

DiskKind Eight+Size3 (Eight for compatibility)

Cylnders 80 Number of (physical) tracks

BitDns Double MFM recording

Rates xfr500K+rpm300

TrkDns Double 96 tpi

SectSize 512 Physical sector size

SectTrk 18 Sectors/track (except track0,
side 0)

SectTrk0 18 Sectors/track, track 0, side 0

TotalCyls Cylnders Number of actual cylinders on
disk

Table 2-17 Macro d540 -- 5 1/4", 40 track drive, single density

Label Value Comment

DiskKind Size5

Cylnders 40

2Random Block File Manager (RBF)

OS-9 for 68K Processors Technical I/O Manual 113

BitDns Single FM encoding

Rates xfr125K+rpm300

TrkDns Single 48 tpi

SectTrk 10

SectTrk0 10

TotalCyls Cylnders Number of actual cylinders
on disk

Table 2-18 Macro dd540 -- 5 1/4", 40 track, double density drive

Label Value Comment

DiskKind Size5

Cylnders 40

BitDns Double MFM encoding

Rates xfr250K+rpm300

TrkDns Single 48 tpi

SectTrk 16

Table 2-17 Macro d540 -- 5 1/4", 40 track drive, single density (continued)

Label Value Comment

114 OS-9 for 68K Processors Technical I/O Manual

SectTrk0 10

TotalCyls Cylnders Number of actual
cylinders on disk

Table 2-19 Macro d580 -- 5 1/4", 80 track, single density drive

Label Value Comment

DiskKind Size5

Cylnders 80

BitDns Single FM encoding

Rates xfr125K+rpm300

TrkDns Double 96 tpi

SectTrk 10

SectTrk0 10

TotalCyls Cylnders Number of actual
cylinders on disk

Table 2-18 Macro dd540 -- 5 1/4", 40 track, double density drive (continued)

Label Value Comment

2Random Block File Manager (RBF)

OS-9 for 68K Processors Technical I/O Manual 115

Table 2-20 Macro dd580 -- 5 1/4", 80 track drive, double density

Label Value Comment

DiskKind Size5

Cylnders 80

BitDns Double MFM encoding

Rates xfr250K+rpm300

TrkDns Double 96 tpi

SectTrk 16

SectTrk0 10

TotalCyls Cylnders Number of actual
cylinders on disk

Table 2-21 Macro uv580 -- universal 5 1/4" 80 track

Label Value Comment

DiskKind Size5 Five inch disk

Cylnders 80 Number of (physical) tracks

BitDns Double MFM recording

Rates xfr250K+rpm300

116 OS-9 for 68K Processors Technical I/O Manual

DnsTrk0 Double MFM track 0

TrkDns Double 96 tpi

SectTrk 16 Sectors/track (except track 0,
side 0)

SectTrk0 16 Sectors/track, track 0, side 0

SectOffs 1 Physical sector start = 1

TrkOffs 1 Track 0 not used

TotalCyls Cylnders Number of actual cylinders
on disk

Table 2-22 Macro hd580 -- 5 1/4" 80 track '8" image

Label Value Comment

DiskKind Eight+Size5 (Eight for compatibility)

Cylnders 80 Number of (physical) tracks

BitDns Double MFM recording

Rates xfr500K+rpm360

TrkDns Double 96 tpi

Table 2-21 Macro uv580 -- universal 5 1/4" 80 track (continued)

Label Value Comment

2Random Block File Manager (RBF)

OS-9 for 68K Processors Technical I/O Manual 117

SectTrk 28 Sectors/track (except track0,
side 0)

SectTrk0 16 Sectors/track, track 0, side 0

TotalCyls Cylnders Number of actual cylinders on
disk

Table 2-23 Macro hd577 -- 5 1/4" 77 track '8" image'

Label Value Comments

DiskKind Eight+Size5 (Eight for compatibility)

Cylnders 77 Number of (physical) tracks

BitDns Double MFM recording

Rates xfr500K+rpm360

TrkDns Double 96 tpi

SectTrk 28 Sectors/track (except track0,
side 0)

SectTrk0 16 Sectors/track, track 0, side 0

TotalCyls Cylnders Number of actual cylinders
on disk

Table 2-22 Macro hd580 -- 5 1/4" 80 track '8" image (continued)

Label Value Comment

118 OS-9 for 68K Processors Technical I/O Manual

Table 2-24 Macro uv577 -- universal 5 1/4" 77 track '8" image'

Label Value Comment

DiskKind Eight+Size5 (Eight for compatibility)

Cylnders 77 Number of (physical) tracks

BitDns Double MFM recording

Rates xfr500K+rpm360

DnsTrk0 Double MFM track 0

TrkDns Double 96 tpi

SectTrk 28 Sectors/track (except track0,
side 0)

SectTrk0 28 Sectors/track, track 0, side 0

SectOffs 1 Physical sector start = 1

TrkOffs 1 Track 0 not used

TotalCyls Cylnders Number of actual cylinders
on disk

2Random Block File Manager (RBF)

OS-9 for 68K Processors Technical I/O Manual 119

Table 2-25 Macro d877 -- 8", 77 track drive, single density

Label Value Comment

DiskKind Eight+Size8 (Eight for compatibility)

Cylnders 77

BitDns Single FM encoding

Rates xfr250K+rpm360

TrkDns Single 48 tpi

SectTrk 16

SectTrk0 16

TotalCyls Cylnders Number of actual cylinders
on disk

Table 2-26 Macro dd877 -- 8", 77 track, double density

Label Value Comment

DiskKind Eight+Size8 (Eight for compatibility)

Cylnders 77

BitDns Double MFM encoding

Rates xfr500K+rpm360

120 OS-9 for 68K Processors Technical I/O Manual

TrkDns Single 48 tpi

SectTrk 28

SectTrk0 16

TotalCyls Cylnders Number of actual cylinders
on disk

Table 2-27 Macro uv877 -- universal 8" 77 track

Label Value Comment

DiskKind Eight+Size8 (Eight for compatibility)

Cylnders 77 Number of (physical) tracks

BitDns Double MFM recording

Rates xfr500K+rpm360

DnsTrk0 Double MFM track 0

TrkDns Single 48 tpi

SectTrk 28 Sectors/track (except track0,
side 0)

SectTrk0 28 Sectors/track, track 0, side 0

SectOffs 1 Physical sector start = 1

Table 2-26 Macro dd877 -- 8", 77 track, double density (continued)

Label Value Comment

2Random Block File Manager (RBF)

OS-9 for 68K Processors Technical I/O Manual 121

Universal Format

The definitions above provide for a variety of floppy disk formats (for
example, extra-high density for backups, other operating system support).
However, you should not ignore the issue of system media interchange. It is
possible, for example, that high-density on one system may not be
physically compatible with another system’s high-density format.

The universal format definitions given above for 5 1/4" (uv580) and 3 1/2"
(uv380) describe Microware’s standard shipping format for floppy-based
media. Thus, to ensure the greatest possibility for media interchange

TrkOffs 1 Track 0 not used

TotalCyls Cylnders Number of actual cylinders
on disk

Table 2-28 Autosizes and Autosize Devices

autosize autosize device (SS_DSize tells capacity)

SectTrk 0 sectors/track (except track 0, side 0)

SectTrk0 0 sectors/track, track 0, side 0

Cylnders 0 total cylinders

Heads 0 total heads

Table 2-27 Macro uv877 -- universal 8" 77 track (continued)

Label Value Comment

122 OS-9 for 68K Processors Technical I/O Manual

between software suppliers and/or different OEM systems, ensure your
device driver supports the universal format if at all possible. A universal
format disk has the following characteristics:

Table 2-29 Universal Format Characteristics

Characteristic Value Field

Disk Physical Size 5 1/4" or 3 1/2" (PD_TYP)

Number of Physical Cylinders 80 (PD_TotCyl)

Number of Logical Cylinders 79 (PD_CYL)

Number of Sides 2 (PD_SID)

Track Density (TPI) 96/135 (PD_DNS)

Recording Format MFM (PD_DNS)

Sectors Per Track 16 (PD_SCT)

Sector Size (Logical & Physical) 256 (PD_SSize)

Sector Base Offset 1 (PD_SOffs)

First Accessible Track 1 (PD_TOffs)

Disk Rotational Rate (rpm) 300 (PD_Rate)

Data Transfer Rate (Kbits/sec) 250 (PD_Rate)

2Random Block File Manager (RBF)

OS-9 for 68K Processors Technical I/O Manual 123

Summary of Common Physical Formats

The following tables detail some of the physical formats commonly
supported by floppy disk controllers and drives. This information should
provide you with an overall view of the possible formats you may want to
support in your drivers.

NoteNote
Do not confuse the format codes listed in this section with the disk
format codes given earlier in the discussion on rbfdesc.a formats.

Table 2-30 Format Codes Supported by Floppy Disk Controllers and
Drivers

Format
Codes Description

D 35/40 track, normal density

DD 80 track, normal density

AT PC/AT-style, 80 track, high density

ED 80 track, extra high density

HD 80 track, high density, 8" image style

XX 80 track, normal density, high rotational speed

124 OS-9 for 68K Processors Technical I/O Manual

Physical Disk Format

Logical Disk Format

Table 2-31 Physical Disk Formats Supported by Floppy Disk Controllers and
Drivers

Format Sides Cylinders RPM

Data
Transfer
Rate TPI

Physical
Size

Unformatted
Capability

D 2 35/40 300 250K 48/62.5 5/3 500K

DD 2 80 300 250K 96/135 5/3 1M

AT 2 80 300 500K 96/135 5/3 2M

ED 2 80 300 1M 135 3 4M

HD 2 77/80 360 500K 96 5 1.6M

XX 2 80 360 300K 96 5 1M

Table 2-32 Logical Disk Formats Supported by Floppy Disk Controllers and
Drivers

256-byte/sector 512-byte/sector 1024-byte/sector

Format
Sect/
Trk Fmt Cap.

Sect/
Trk Fmt Cap.

Sect/
Trk Fmt Cap.

D 16 327K 9 368K 5 409K

DD 16 655K 9 737K 5 819K

2Random Block File Manager (RBF)

OS-9 for 68K Processors Technical I/O Manual 125

Example Hardware Support

AT 32 1.31M 18 1.47M 10 1.64M

ED 61 2.49M 36 2.95M 20 3.27M

HD 26 1.02M/1.06M 15 1.18M/1.23M 8 1.26M/1.31M

XX 16 655K 9 737K 5 819K

Table 2-32 Logical Disk Formats Supported by Floppy Disk Controllers and
Drivers (continued)

256-byte/sector 512-byte/sector 1024-byte/sector

Format
Sect/
Trk Fmt Cap.

Sect/
Trk Fmt Cap.

Sect/
Trk Fmt Cap.

Table 2-33 Example Hardware Support

Format Drive Model/Mode

D Any 35/40 track version of DD; DD drive in double-step
mode.

DD Teac 235-JS (1M mode); Teac 235-HF (1M mode); Teac
55GFR (300 rpm normal density).

AT Teac 235-JS (2M mode); Teac 235-HF (2M mode).

ED Teac 235-JS (4M mode).

126 OS-9 for 68K Processors Technical I/O Manual

Example Device Descriptor Fields

HD Teac 55GFR (360 rpm high density).

XX Teac 55GFR (300 rpm normal density, single-speed
model).

Table 2-33 Example Hardware Support (continued)

Format Drive Model/Mode

Table 2-34 Example Device Descriptor Fields

Size/Format PD_TYP

7 6 5 4 3 2 1 0

PD_DNS

7 6 5 4 3 2 1 0

PD_Rate

7 - 4 3 - 0

5D 0 0 x 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0

3D 0 0 x 0 0 1 1 0 0 0 0 0 0 0 0 1 0 0

5DD 0 0 x 0 0 1 0 0 0 0 0 0 0 0 1 1 0 0

3DD 0 0 x 0 0 1 1 0 0 0 0 0 0 0 1 1 0 0

5AT 0 0 1 0 0 1 0 0 0 0 0 0 0 0 1 1 2 0

3AT 0 0 1 0 0 1 1 0 0 0 0 0 0 0 1 1 2 0

3ED 0 0 1 0 0 1 1 0 0 0 0 0 0 0 1 1 3 0

5HD 0 0 x 0 0 0 1 1 0 0 0 0 0 0 1 1 2 1

2Random Block File Manager (RBF)

OS-9 for 68K Processors Technical I/O Manual 127

3XX 0 0 1 0 0 1 1 0 0 0 0 0 0 0 1 1 3 0

8DD 0 0 x 0 0 0 1 1 0 0 0 0 0 0 0 1 2 1

Table 2-34 Example Device Descriptor Fields

Size/Format PD_TYP

7 6 5 4 3 2 1 0

PD_DNS

7 6 5 4 3 2 1 0

PD_Rate

7 - 4 3 - 0

128 OS-9 for 68K Processors Technical I/O Manual

RBF Device Drivers

RBF reads and writes in logical blocks, called sectors. A logical sector can
be any integral binary power from 256 to 32768. The file manager takes
care of all file system processing and passes the driver a starting logical
sector number (LSN), a sector count, and the address of the data buffer for
each read or write operation.

The logical sector size of the media is determined by RBF when a path is
opened to the device. RBF queries the driver to determine whether the
driver can support variable sector sizes or not, using the SS_VarSect
GetStat call.

If the driver supports variable sector size, RBF assumes the logical and
physical sector sizes are the same, with the size specified in PD_SSize.

If the driver does not support variable sector sizes, RBF assumes a logical
sector size of 256 bytes, and ignores the value in PD_SSize. If the media
physical sector size is not 256 bytes, it is the driver’s responsibility to
translate and deblock RBF LSNs into the media’s LSNs. For example, if
PD_SSize is set to 512, and a read request of eight sectors at LSN four is
made, the driver should translate the operation into a read of four sectors at
LSN two.

Read and write calls to the driver initiate the sector read/write operations
and, if required, a prior seek operation.

If the controller cannot be interrupt-driven, it must wait until the media is
ready, and then transfer the data by polling. If possible, avoid disk
controllers that cannot be interrupt-driven. They cause the driver to
dominate the system CPU while disk I/O is in progress.

For interrupt-driven systems, the driver initiates the I/O operation and
suspends itself (F$Sleep or F$Event) until the interrupt arrives. The
interrupt service routine then services the interrupt and wakes up the
driver.

2Random Block File Manager (RBF)

OS-9 for 68K Processors Technical I/O Manual 129

NoteNote
If the driver is awakened by a signal (for example, a keyboard abort)
while waiting for the I/O interrupt to occur, it should suspend itself again
until the I/O interrupt has occurred. This is because many read/write
calls to a driver are made by RBF on behalf of itself, such as in directory
searching or bitmap updating. If a signal causes a process to terminate,
RBF determines the appropriate time to return to the kernel. Failure to
enforce the I/O interrupt completion may result in “locked” disks or
corrupted media.

If Direct Memory Access (DMA) hardware support is available, I/O
performance increases dramatically because the driver does not have to
move the data between memory and the controller.

When the driver reads sector zero, it should copy the first 21 bytes of the
sector into the drive table (PD_DTB) associated with the logical unit. Sector
zero of the disk media has format information recorded by the format
utility. This information allows the driver to determine the actual format of
the media and to compare the device physical capabilities specified in the
path descriptor options with the media format. This allows the driver to
adapt its operation for reading and writing multiple formats in one physical
drive. For example, a floppy drive that can read/write double-sided,
double-density disks can be made to operate with single-sided or
single-density media.

RBF always reads sector zero of the media when a file is opened. Many
RBF drivers provide caching of sector zero to improve the performance of
I$Open calls by RBF. This function is generally associated with
non-removable media (for example, fixed hard disks). When a hard disk
driver reads sector zero, it updates the drive table and copies the full sector
zero into a local buffer. The state of the buffered sector for the unit is
recorded in the logical unit drive table variables V_ZeroRd and V_ScZero.
This enables the driver to return sector zero data on subsequent calls by
RBF without accessing the disk. Removable media should not have sector
zero buffered unless the driver is capable of automatically detecting the
media removal (by an interrupt) and marking sector 0 unbuffered.

130 OS-9 for 68K Processors Technical I/O Manual

RBF generally processes GetStat calls to RBF devices; they are not
normally seen by the driver. The main exception is the SS_VarSect call,
which RBF uses to inquire about the driver’s ability to support non-256-byte
logical sectors.

NoteNote
The INIT routine generally does not perform initialization of the logical
units attached to the controller, for example, disk parameter definitions
for SCSI drives. This type of initialization should normally be done when
the first Read/Write/GetStat/SetStat call is made to the unit.

The INIT and TERM routines of RBF drivers are called directly by IOMan
when the device is attached and detached. Typically, the INIT routine only
performs controller-specific initialization such as adding the controller to the
IRQ polling table, setting default values in the drive tables, and initializing
the controller hardware interface.

The TERM routine typically disables the device’s interrupts, if required, and
removes the controller from the IRQ polling table.

Main Driver Types

The complexity of RBF drivers depends on the capabilities of the hardware
involved. Simple hardware controllers require more effort by the driver than
do intelligent controllers. Generally, RBF drivers fall into three levels of
complexity:

Simple Floppy Interfaces

These drivers perform all physical drive movement operations explicitly:
seek head, wait for head settle delay, etc. They translate the RBF LSN into
a track/head/sector, select the drive, move the disk head to the required

2Random Block File Manager (RBF)

OS-9 for 68K Processors Technical I/O Manual 131

position, and then issue the I/O command. If multiple drives are connected
to the controller, the driver often has to maintain a record of the current
head position of each drive.

Combined Hard/Floppy Interfaces

These drivers deal with medium intelligence controllers. Typically, the
physical drive selection and automatic seeking are handled by the
controller. The driver becomes somewhat simpler because it must only
translate the RBF LSN into a track/head/sector value. Adding hard disk
operation to the driver adds some minor complexity to the driver due to the
differences in floppy vs. hard disk operation.

Intelligent Controllers

These drivers are typically used with SCSI or similar style controllers.
These controllers usually accept only a command packet indicating the
operation required and the address of the operation. They are similar to
medium intelligence controllers, except the RBF LSN is usually accepted
directly by the controller as the physical sector number.

RBF Device Driver Storage Definitions

RBF device driver modules contain a package of subroutines that perform
sector-oriented I/O to or from a specific hardware controller. Because these
modules are re-entrant, one copy of the module can simultaneously run
several identical I/O controllers.

IOMan allocates a static storage area for each device (which may control
several drives). The size of the storage area is specified in the device driver
module header (M$Mem). Some of this storage area is required by IOMan
and RBF; the device driver may use the remainder in any manner.
Information on device driver static storage required by the operating system
can be found in the rbfstat.a and drvstat.a DEFS files. The following
table shows how static storage is used:

132 OS-9 for 68K Processors Technical I/O Manual

Table 2-35 Device Driver Storage Definitions

Name Description

V_PORT Device base port address

The device’s physical port address. It is copied from
M$Port in the device descriptor when the device is
attached by IOMan.

V_LPRC Last active process ID

The process ID of the most recent process to use the
device. This field is required by IOMan for all device
driver static storage, but is not used by RBF.

V_BUSY Current active process

The process ID of the process currently using the
device. It is used to implement I/O blocking by RBF.
This field is also used by the interrupt drivers when they
wish to suspend themselves, by copying V_BUSY to
V_WAKE (prior to suspending themselves). A value of
zero indicates the device is not busy.

V_WAKE Process ID to awaken

The process ID of any process waiting for the device to
complete I/O. A value of 0 indicates no process is
waiting. V_WAKE is set by the driver from V_BUSY and
provides the interlock between the driver and the
driver’s interrupt service routine.

V_PATHS Linked List of Open Paths

This is a singly-linked list of all paths currently open on
this device.

2Random Block File Manager (RBF)

OS-9 for 68K Processors Technical I/O Manual 133

Device Driver Tables

After the driver’s INIT routine has been called, RBF requests the driver to
read the identification sector (LSN 0) from the drive. After reading sector 0,
the driver must initialize the corresponding drive table. It does this by
copying the number of bytes specified by DD_SIZ (21) from the
beginning of sector 0 into the appropriate table (PD_DTB). The following is
the format of each drive table:

NoteNote
There must be as many tables as are specified in V_NDRV. All
references to Sector 0 in the Maintained By column mean this field is
initialized by the driver with information obtained from Sector 0 when it
is first read.

V_NDRV Number of drives

This field is set by the driver’s INIT routine to indicate
the maximum number of logical drives the driver can
use. RBF validates the logical drive number of the drive
(PD_DRV) against this number prior to setting the drive
table pointer (PD_DTB). PD_DRV must be less than
V_NDRV.

V_DRVBEG Drive Tables

This section contains one table for each drive the
controller handles. The drive table associated with the
drive is indicated by the drive table pointer (PD_DTB) in
the path descriptor.

Table 2-35 Device Driver Storage Definitions (continued)

Name Description

134 OS-9 for 68K Processors Technical I/O Manual

Table 2-36 Formats of Drive Tables

Offset Name Maintained By Description

$00 DD_TOT Sector 0 Total Number of Sectors

$03 DD_TKS Sector 0 Track Size (in sectors)

$04 DD_MAP Sector 0 Number of Bytes in
Allocation Map

$06 DD_BIT Sector 0 Number of Sectors/Bit
(cluster size)

$08 DD_DIR Sector 0 LSN of Root Directory FD

$0B DD_OWN Sector 0 Owner ID

$0D DD_ATT Sector 0 Attributes

$0E DD_DSK Sector 0 Disk ID

$10 DD_FMT Sector 0 Disk Format:
Density/Sides

$11 DD_SPT Sector 0 Sectors/Track

$13 DD_RES Reserved

$16 V_TRAK Driver Current Track Number

$18 V_FileHd File Manager Open File List for Disk

$1C V_DiskID File Manager Disk ID

$1E V_BMapSz File Manager Bitmap Size

2Random Block File Manager (RBF)

OS-9 for 68K Processors Technical I/O Manual 135

$20 V_MapSct File Manager Lowest Bitmap Sector to
Search

$22 V_BMB File Manager Bitmap In Use Flag

$24 V_ScZero Driver Pointer to Sector 0

$28 V_ZeroRd Driver Sector 0 Read Flag

$29 V_Init Driver Drive Initialized Flag

$2A V_Resbit File Manager Reserved Bitmap Sector
Number

$2C V_SoftEr Driver Number of Recoverable
Errors

$30 V_HardEr Driver Number of
Non-Recoverable Errors

$34 V_Cache Cache Utility Drive Cache Queue
Head

$38 V_DText Driver Drive Table Extension
pointer

$3C V_MapMax File Manager Maximum Bitmap Sector
Number

$3e V_MapOffs File Manager Bitmap Sector Offset

$40 Reserved (20 bytes)

Table 2-36 Formats of Drive Tables (continued)

Offset Name Maintained By Description

136 OS-9 for 68K Processors Technical I/O Manual

Table 2-37 Drive Tables and Descriptions

Name Description

DD_TOT Total Number of Sectors

Contains the size of the media in sectors. RBF uses
this field to set the size of the raw device file (@ file
opens). The driver can also use this value to verify the
LSN passed by RBF is in range for the media. Driver
INIT routines typically initialize this field in the drive
table to a non-zero value, so sector 0 may be read
initially.

DD_TKS Track Size (in sectors)

Contains the number of sectors per track, as a byte
value.

DD_MAP Number of Bytes in Allocation Map

Contains the size of the media bitmap.

DD_BIT Number of Sectors/Bit (cluster size)

Contains the size of a cluster of sectors on the disk.
This value is always an integral power of two.

DD_DIR LSN of Root Directory FD

Contains a pointer to the file descriptor of the media’s
root directory.

DD_OWN Owner ID

The user ID of the disk owner.

DD_ATT Attributes

Defines the access attributes of the media.

2Random Block File Manager (RBF)

OS-9 for 68K Processors Technical I/O Manual 137

DD_DSK Disk ID

Contains a pseudo-random number identifying the
media volume. This number is put here by the format
utility.

DD_FMT Disk Format: Density/Sides

Defines the format of the media volume, to enable
drivers to adapt to different formats:

bit 0: 0 = Single-sided

 1 = Double-sided

bit 1: 0 = Single-density (FM)

 1 = Double-density (MFM)

bit 2: 1 = Double-track density (96 TPI/135 TPI)

bit 3: 1 = Quad track density (192 TPI)

bit 4: 1 = Octal track density (384 TPI)

DD_SPT Sectors/Track

A two byte value of DD_TKS.

V_TRAK Current Track Number

This value is used to record the current track number
of a logical unit for those drivers needing to perform
seek functions explicitly. Typically, driver INIT routines
initialize this field to an unknown track number (for
example, $FF), so the first access to the drive results
in a restore operation.

V_FileHd Open File List for Disk

A pointer to the list of all files open on the logical unit.

Table 2-37 Drive Tables and Descriptions (continued)

Name Description

138 OS-9 for 68K Processors Technical I/O Manual

V_DiskID Disk ID

A copy of DD_DSK.

V_BMapSz Bitmap Size

The size of the media’s bitmap.

V_MapSct Lowest Bitmap Sector to Search

The starting sector number to begin bitmap allocation
functions.

V_BMB Bitmap In Use Flag

Indicates whether or not the bitmap is in use.

V_ScZero Pointer to Sector 0

A pointer to a buffered sector 0 for the unit. This is only
used by drivers performing this function.

V_ZeroRd Sector 0 Read Flag

Used by the driver to indicate whether or not the
buffered sector 0 is valid. If the data is valid, this flag
should be non-zero.

V_Init Drive Initialized Flag

Used by the driver to indicate whether or not the
logical unit has been initialized. If the unit has been
initialized, this field should be non-zero.

Table 2-37 Drive Tables and Descriptions (continued)

Name Description

2Random Block File Manager (RBF)

OS-9 for 68K Processors Technical I/O Manual 139

V_Resbit Reserved Bitmap Sector Number

Indicates the bitmap sector number to ignore during
RBF bitmap allocation functions. It is set by the
SS_RsBit SetStat call.

V_SoftEr Number of Recoverable Errors

Allows the driver to keep a count of soft errors during
I/O operations. The value is typically returned by a
SS_ELog GetStat call. After reading this value, it is
typically reset to zero.

V_HardEr Number of Non-Recoverable Errors

Allows the driver to keep a count of hard errors during
I/O operations. The value would typically be returned
by a SS_ELog GetStat call. After reading this value,
it is typically reset to zero.

V_Cache Drive Cache Queue Head

A pointer to the cache queue for the drive.

V_DTExt Drive Table Extension Pointer

A pointer to an extension of the drive table. Drivers
requiring storage of additional drive table variables can
use this field as a pointer to the extra information.

V_MapMax Maximum Bitmap Sector Number

The sector number of the last sector of the bitmap.

V_MapOffs Offset into current bitmap sector

The bit offset into the current bitmap sector to begin
the search for a free sector.

Table 2-37 Drive Tables and Descriptions (continued)

Name Description

140 OS-9 for 68K Processors Technical I/O Manual

Linking RBF Drivers

After an RBF driver has been assembled into its relocatable object file
(ROF), the driver needs to be linked to produce the final driver module.
Linking resolves all code references in drivers comprised of several ROF
files. It also resolves the external data and static storage references by the
driver.

The most important part of linking is to correctly resolve the static storage
references. Generally, the static storage area is composed of three
sections in this order (see Figure 2-1):

1. I/O globals

2. Drive tables (one per logical drive)

3. Driver-declared variables

NoteNote
Specifying the drvsX.l file first causes the vsect variables declared by
the file to be allocated before the vsect variables in the ROF file.

Failure to correctly allocate the I/O system and drive table variables
first, or failure to link the correct number of drive tables at all, results in
erratic driver operation.

The driver-declared variables are declared in vsect areas of the driver, but
they must be allocated after the drive table storage areas. The method you
must use to allocate all of the storage, in the correct order, is to link one of
the drvsX.l library files before the user written ROF files. The drvsX.l
files are usually found in the system’s LIB directory. Each drvsX.l file
contains vsect declarations allocating the I/O system variables and the
appropriate number of drive tables. For example, drvs1.l allocates the
I/O system-defined section and one drive table, while drvs4.l allocates
the I/O system-defined section and four drive tables. The following is a
typical linker command line for an RBF driver:

l68 /dd/LIB/drvs4.l REL/rb320.r -O=OBJS/rb320

2Random Block File Manager (RBF)

OS-9 for 68K Processors Technical I/O Manual 141

Figure 2-1 RBF Static Storage Layout

iodev.a
(rbfstat.a)

rbfdev.a
(rbfstat.a)

drvstat.a

N/A
Driver-declared
Storage (vsect)

RBF Drive Tables
('n' copies, where n is
the maximum number of
drives)

RBF I/O Globals

IOMan I/O Globals

High Memory

Low Memory

N/A

drvsX.l (where
X=n)

DEFS File LIB File

142 OS-9 for 68K Processors Technical I/O Manual

RBF Device Driver Subroutines

As with all device drivers, RBF device drivers use a standard executable
memory module format with a module type of Drivr (code $E0). RBF
drivers are called in system state.

NoteNote
I/O system modules must have the following module attributes:

• They must be owned by a super-user (0.n).

• They must have the system-state bit set in the attribute byte of the
module header. OS-9 does not currently make use of this, but future
revisions may require I/O system modules be system-state modules.

The execution offset address in the module header points to a branch table
with seven entries. Each entry is the offset of a corresponding subroutine.
The branch table appears as follows:

ENTRY dc.w INIT initialize device
 dc.w READ read character
 dc.w WRITE write character
 dc.w GETSTAT get device status
 dc.w SETSTAT set device status
 dc.w TERM terminate device
 dc.w TRAP handle illegal exception
 (0 = none)

Each subroutine should exit with the carry bit of the condition code register
cleared, if no error occurred. Otherwise, the carry bit should be set and an
appropriate error code returned in the least significant word of register
d1.w.

The TRAP entry point is currently not used by the kernel, but in the future
will be defined as the offset to error exception handling code. Because no
handler mechanism is currently defined, this entry point should be set to
zero to ensure future compatibility.

The following pages describe each subroutine.

2Random Block File Manager (RBF)

OS-9 for 68K Processors Technical I/O Manual 143

Table 2-38 RBF Device Driver Subroutines

Subroutine Description

GETSTAT/SETSTAT Get/Set Device Status

INIT Initialize Device and its Static Storage
Area

IRQ Service Routine Service Device Interrupts

READ Read Sector(s)

TERM Terminate Device

WRITE Write Sectors

144 OS-9 for 68K Processors Technical I/O Manual

GETSTAT/SETSTAT Get/Set Device Status

Input

d0.w = status code
(a1) = address of the path descriptor
(a2) = address of the device static storage area
(a4) = process descriptor pointer
(a5) = caller’s register stack pointer
(a6) = system global data storage pointer

Output

Depends on the function code

Error Output

cc = carry bit set
d1.w = error code

Description

These routines are wild-card calls used to get/set the device’s operating
parameters as specified for the I$GetStt and I$SetStt service
requests.

Calls involving parameter passing require the driver to examine or change
the register stack variables. These variables contain the contents of the
MPU registers at the time of the I$Getstt/I$SetStt request was made.
Parameters passed to the driver are set up by the caller prior to using the
service call. Parameters passed back to the caller are available when the
service call completes.

Typical RBF drivers handle the following I$GetStt/I$SetStt calls:

Table 2-39

I$GetStt: SS_DSize, SS_VarSect

I$Setstt: SS_Reset, SS_SQD, SS_WTrk

2Random Block File Manager (RBF)

OS-9 for 68K Processors Technical I/O Manual 145

Any unsupported I$GetStt/I$SetStt calls to the driver should return
an unknown service error (E$UnkSvc).

NoteNote
A minimal RBF driver should support SS_Reset and SS_WTrk, so that
media may be formatted.

The following pages describe the driver implementation of the above
I$GetStt/I$SetStt calls.

GetStat Calls

The following GetStat calls are available to RBF:

SS_DSize This routine is used to return the media size
for autosize devices (PD_Cntl, bit three
set). The routine must perform the following
steps:

Step 1. Locate the associated drive table (PD_DTB) and check whether the unit
is initialized (V_Init). If not, perform any drive initialization required
and mark the drive initialized in the drive table.

Step 2. Prepare the hardware for the request and start the I/O operation.

Step 3. Wait for the I/O operation to complete (with interrupts, if possible).

Step 4. Return the media size (in terms of its logical sector size) to the caller’s
d2 register (R$d2 offset from passed a5). Note if the driver supports
deblocking (logical and physical sizes are not the same), the returned
sector count should be a logical sector count.

Step 5. Return status to RBF.

146 OS-9 for 68K Processors Technical I/O Manual

SS_VarSect This routine is called by RBF whenever a
path is opened to the device, so RBF can
determine the logical sector size of the
media. The driver should indicate its support
for variable logical sector sizes as follows:

•If variable logical sector sizes are supported, the
driver should return a no error status. Upon
return to RBF, RBF uses the value in
PD_SSize as the media’s logical sector size. It
is permissible for the driver to query the drive
for its current sector size setting and update
PD_SSize during this call.

WARNING!
Querying the drive does not mean issuing a physical read of the disk’s
sector 0 (to read DD_LSNSize) as RBF has not yet set up the buffer
pointers for the path (PD_BUF = 0). Unless you take special care,
attempting to perform physical data I/O at this point will probably crash
the system. The only type of I/O operations valid at this point are
generally internal driver operations (for example, Mode Sense
command to a SCSI drive). Drivers dealing with media that cannot
return current sector size generally require PD_SSize be set correctly
in the device descriptor. The driver returns no error to indicate RBF can
use PD_SSize as the logical media size.

• If the driver does not support variable logical
sector sizes, it should return an unknown
service request (E$UnkSvc) error, to indicate to
RBF the logical sector size of the media is 256
bytes and PD_SSize should be ignored.

• If the driver returns any error other than
unknown service request, RBF aborts the path
open operation and returns the error to the
caller.

2Random Block File Manager (RBF)

OS-9 for 68K Processors Technical I/O Manual 147

SetStat Calls

SS_Reset Recalibrate (restore) the media head to the
outer track. This is mainly used by format to
ensure the media is at a known position.

The restore routine must perform the
following functions:

Step 1. Locate the associated drive table (PD_DTB) and check whether the unit
is initialized (V_Init). If not, perform any drive initialization required
and mark the drive initialized in the drive table.

Step 2. Prepare the hardware for the request and start the I/O operation.

Step 3. Wait for the I/O operation to complete (with interrupts, if possible).

Step 4. Return the status of the restore to RBF.

SS_SQD This is mainly used to move (park) the
heads of hard disk drives to a safe area.
The park routine must perform the following:

Step 1. Check if the device is a floppy disk. If so, return an E$UnkSvc error.

Step 2. Check the PD_Park value. If it is zero or within the range of the RBF
media area, return an E$UnkSvc error.

Step 3. Locate the associated drive table (PD_DTB) and initialize the drive
according to the parking function. This typically involves setting the
drive’s cylinder count to the PD_Park value. After initialization, do not
mark the drive initialized (V_Init should be clear). This ensures any
subsequent accesses to the drive causes the drive to be re-initialized
correctly (PD_CYL or PD_TotCyls count instead of PD_Park).

Step 4. Prepare the hardware for the park request and start the I/O operation.

Step 5. Wait for the I/O operation to complete (with interrupts, if possible).

Step 6. Return the status of the park to RBF.

148 OS-9 for 68K Processors Technical I/O Manual

Step 7. Issue a seek or read command and specifying a sector address on the
desired cylinder. On some drives/controllers, this may fail because the
parking cylinder is not formatted and the controller attempts to verify the
seek/read. In these situations, it is typical for the driver to perform a
write track operation on the desired track.

SS_WTrk This is used by format to perform physical
initialization of the media. The write track
routine must perform the following steps:

Step 1. Check whether the media may be formatted (PD_Cntl, bit 0 clear). If
not, the media is format protected and the driver should return an
E$Format error.

Step 2. Locate the associated drive table (PD_DTB) and check whether the unit
is initialized (V_Init). If not, perform the required drive initialization
and mark the drive initialized in the drive table. If the driver supports
buffering sector 0 for the unit, and the track being formatted is the first
track of the media (PD_TOffs), the driver should clear V_ZeroRd to
mark sector 0 is unbuffered.

Step 3. If the driver supports any buffering of physical sectors (non VarSect
driver with physical sectors not equal to 256 bytes), it should mark any
active buffers as invalid.

Step 4. For drivers performing explicit seeking, seek to the desired track. If the
seek involves the selection of a drive different from the last one
selected, this may also require the current track position to be saved in
the last selected drive’s drive table (V_TRAK).

Step 5. Prepare the hardware for the write track request and start the I/O
operation.

Step 6. Wait for the I/O operation to complete (with interrupts, if possible).

Step 7. Return the status of the write track to RBF.

2Random Block File Manager (RBF)

OS-9 for 68K Processors Technical I/O Manual 149

The method of formatting disk drives varies
with the hardware in use. However, note the
following points:

• The parameters passed are physical
parameters, with one exception: the sector
interleave table. If the driver must pass the
interleave table to the hardware (or prepare its
own table), it must add the PD_SOffs value to
each interleave table entry so a physical
interleave table is passed to the hardware.

• The driver typically only initializes the drive
when the track number passed is equal to the
PD_TOffs value (at the beginning of the format
operation).

SS_WTrk calls to the driver issued by format are
dependent on the autosize flag in PD_Cntl
(bit three) in the following manner:

• If the media is autosize capable (bit three set),
format makes only one SS_WTrk call to the
driver with the passed track number being equal
to PD_TOffs. The driver is expected to format
the entire media from this call.

• If the media is non-autosize capable (bit three
clear), format issues a SS_WTrk call for each
track on the media (PD_CYLS x PD_SID). The
driver is expected to format the media one track
at a time. If the hardware cannot handle
individual tracks, the driver must perform a
format all media operation on the first SS_WTrk
call (PD_TOffs equal to the passed track
number and side number zero) and simply
ignore all other SS_WTrk calls without returning
an error.

150 OS-9 for 68K Processors Technical I/O Manual

INIT Initialize Device and its Static Storage Area

Input

(a1) = address of the device descriptor module
(a2) = address of device static storage
(a4) = process descriptor pointer
(a5) = caller’s register stack pointer
(a6) = system global data pointer

Output

None

Error Output

cc = carry bit
setd1.w = error code

Description

The INIT routine must:

Step 1. Initialize the device’s permanent storage. Minimally, this consists of:

• Initializing V_NDRV to the number of drives with which the controller
works.

• Initializing DD_TOT in each drive table to a non-zero value so sector 0
may be read or written to.

• If the driver must perform explicit seeks, initializing V_TRAK to $FF so
the first seek finds track 0.

Step 2. Place the IRQ service routine on the IRQ polling list by using the
FIRQ/FFIRQ system call.

Step 3. Initialize device control registers (enable interrupts if necessary).

2Random Block File Manager (RBF)

OS-9 for 68K Processors Technical I/O Manual 151

Prior to being called, the device static storage is cleared (set to 0), except
for V_PORT which contains the device address. The driver should initialize
each drive table entry appropriately for the type of disk the driver expects to
be used on the corresponding drive.

If INIT returns an error, it does not have to clean up its operation, for
example, remove device from polling table or disable hardware. IOMan
calls TERM to allow the driver to clean up INIT’s operation before returning
to the calling process.

Usually, the INIT routine should only perform controller-specific
initialization, as opposed to drive-specific initialization. This is because the
controller may have more than one type of drive connected to it.

NoteNote
If the INIT routine causes an interrupt to occur, you can handle the
interrupt in one of the following ways:

• Process the interrupt directly by masking interrupts to the level of the
device, polling/servicing the device hardware, and then restoring the
previous interrupt level. This is the preferred technique unless the
interrupt is time-consuming.

• Allow the interrupt service routine to service the hardware. In this
case, the process descriptor contains the process ID (P$ID) to
which V_WAKE should be set. V_BUSY cannot be used because it is
zero when INIT is called.

152 OS-9 for 68K Processors Technical I/O Manual

IRQ Service Routine Service Device Interrupts

Input

d0.w = vector offset
(a2) = static storage address
(a3) = port address
(a6) = system global static storage

Output

None

Error Output

cc = carry set
(interrupt not serviced)

Description

This routine is called directly by the kernel’s IRQ polling table routines. Its
function is to:

Step 1. Check the device for a valid interrupt. If the device does not have an
interrupt pending, the carry bit must be set and the routine exited with
an RTS instruction as quickly as possible. Setting the carry bit signals
the kernel the next device on the vector should have its IRQ service
routine called.

Step 2. Service device interrupts.

Step 3. Wake up the driver mainline, using the synchronization method of the
driver:

Signals Send a wake-up signal to the process
whose process ID is in V_WAKE, when the
I/O is complete. Also, clear V_WAKE as a
flag to the mainline program that the IRQ
has occurred.

2Random Block File Manager (RBF)

OS-9 for 68K Processors Technical I/O Manual 153

Events Signal the event that the IRQ has occurred,
using the event system’s signal function.

Step 4. Clear the carry bit and exit with an RTS instruction after servicing an
interrupt.

Avoid exception conditions (for example, a Bus Error) when IRQ service
routines are executing. Under the current version of the kernel, an
exception in an IRQ service routine crashes the system.

NoteNote
F$IRQ service routines may destroy the contents of the following
registers only: d0, d1, a0, a2, a3, and a6. You must preserve the
contents of all other registers or unpredictable system errors (system
crashes) occur.

NoteNote
The description above assumes you are using the F$IRQ system for
interrupt servicing. If you are using the Fast Interrupt System (F$FIRQ),
note the following:

• INPUT:

d0.w = vector offset

(a2) = static storage

(a6) = system global pointer

• Only d0 and (a2) can be destroyed.

154 OS-9 for 68K Processors Technical I/O Manual

• Returning carry set causes polling of F$IRQ installed devices for the
same vector.

2Random Block File Manager (RBF)

OS-9 for 68K Processors Technical I/O Manual 155

READ Read Sector(s)

Input

d0.l = number of contiguous sectors to read
d2.l = disk logical sector number to read
(a1) = address of path descriptor
(a2) = address of device static storage
(a4) = process descriptor pointer
(a5) = caller’s register stack pointer
(a6) = system global data storage pointer

Output

Sector(s) returned in the sector buffer

Error Output

cc = carry bit set
d1.w = error code

Description

The READ routine must perform the following operations:

Step 1. Locate the associated drive table (PD_DTB) and determine if it is
initialized. If not, perform any drive initialization required and mark the
drive initialized in the drive table. If the driver performs sector zero
buffering for the unit, allocate a sector zero buffer.

Step 2. Verify the starting LSN and ending LSN (if a multi-sector read) against
the size of the media (DD_TOT).

Step 3. Compute the physical disk address (track/head/sector) from the LSN, if
required.

156 OS-9 for 68K Processors Technical I/O Manual

Step 4. If the driver supports sector 0 buffering, and the read request is for
sector 0, return the sector 0 data to the buffer specified. If no further
sectors are requested, return to RBF. Otherwise, proceed to read the
remaining sectors into the remainder of the buffer.

Step 5. For drivers performing explicit seeking, seek to the desired track. If the
seek involves the selection of a drive different from the last one
selected, this may also require you save the current track position in the
last selected drive’s drive table (V_TRAK).

Step 6. Prepare the hardware for the read request and start the I/O operation.
The data should be read into the buffer specified by PD_BUF.

Step 7. Wait for the I/O operation to complete (with interrupts, if possible).

Step 8. If the starting LSN of the read was not LSN 0, return to RBF. Otherwise:

a. Update the unit’s drive table by copying the number of bytes specified
by DD_SIZ (21) from the beginning of sector 0 into the appropriate
table.

b. If the driver supports buffering sector zero for the unit, copy sector zero
into the driver’s local buffer (V_ScZero) and mark the buffer valid
(V_ZeroRd).

Step 9. If the logical unit and driver support multiple disk formats, the driver
should validate the media is readable by the drive. If not, the driver
should return a Bad Type error (E$BTyp). If it can, the driver should
ready itself for the new format by either:

• Marking the logical unit as uninitialized (V_Init cleared), so the next
access causes the unit to be re-initialized by the driver.

• Re-initializing the unit hardware for the new format.

Step 10. Return the status of the read to RBF.

2Random Block File Manager (RBF)

OS-9 for 68K Processors Technical I/O Manual 157

Sector/Transfer Count

The number of sectors to transfer is passed by RBF. If bit number one in
PD_Cntl is clear, RBF always requests only one sector. If the bit is set,
RBF requests a maximum count, based on the value in PD_MaxCnt. The
value in PD_MaxCnt is truncated to an exact sector count, so the device
always sees requests in terms of an integral number of sectors.

Sector Zero Reads

Whenever logical sector zero is read from the media, the first part of it must
be copied into the drive table for the logical unit. PD_DTB contains the
pointer to the drive table. The number of bytes to copy is DD_SIZ.

Drivers that buffer sector zero also update their local copy when sector zero
is read from the media. The drive table variables V_ScZero (pointer to
sector zero) and V_ZeroRd (sector zero valid flag) allow the driver to
maintain this buffer. When the driver receives a read request for LSN zero,
it can check these flags. If the buffer is valid, it can simply return the
buffered data to RBF without performing any disk I/O.

Sector zero buffering should normally be performed only on fixed media
(fixed hard disks). This ensures media volume changes are noticed by RBF.
Failure to detect media changes correctly can result in corruption of the
new volume.

If the driver can detect media removal (for example, via an interrupt when
the door is opened), it is permissible for the driver to buffer sector 0 while
the media is installed.

Sector Size Support

If the driver supports variable sector sizes, RBF assumes the size of a
sector is specified by PD_SSize, and the logical and physical sector sizes
are the same. Drivers operating under this mode simply process the RBF
transfer count and LSN address according to the disk’s requirements.

If the driver does not support variable sector sizes (logical sector size is
256 bytes) and the physical sector size of the media (PD_SSize) is not 256
bytes, the driver must deblock the media sectors. Typically, this involves the
following steps:

158 OS-9 for 68K Processors Technical I/O Manual

Step 1. Determine if RBF’s starting LSN falls at the start of a media physical
sector. If not, check if the physical sector is currently buffered by the
driver. If the physical sector is currently buffered by the driver, copy the
appropriate part of the buffer to RBF’s buffer. If not, read the physical
sector into the driver’s buffer and return the appropriate part to RBF’s
buffer.

Step 2. If any sectors remain to be read, convert the remaining start address
and count into the physical start address and count. Then, read (and
count) those sectors into the RBF buffer.

Step 3. If any partial sector remains to be read, read that physical sector into
the driver’s physical buffer. Then, return the appropriate part of the
buffer to the end of the RBF buffer.

Interrupt-driven Operation

If the hardware uses interrupts to perform I/O, the driver should perform the
following:

Synchronization using Signals

Step 1. Issue the I/O command to the hardware.

Step 2. Copy V_BUSY to V_WAKE in the static storage.

Step 3. The driver should then suspend itself (F$Sleep).

Step 4. The IRQ service routine is called when the interrupt occurs. The IRQ
service routine verifies the interrupt occurred for its hardware, services
the interrupt, and sends a wake-up signal (S$Wake) to the driver. The
driver’s process ID is in V_WAKE. After sending the signal, the IRQ
service routine should clear V_WAKE to signify the interrupt occurred.

2Random Block File Manager (RBF)

OS-9 for 68K Processors Technical I/O Manual 159

Step 5. When the driver awakens, it should check V_WAKE. If zero, the interrupt
has occurred and the driver can continue to check status. If non-zero,
the driver should suspend itself again.

Synchronization using Events

Step 1. Issue the I/O command to the hardware.

Step 2. The driver should suspend itself using the event system’s wait function.

Step 3. The IRQ service routine is called when the interrupt occurs. The IRQ
service routine verifies the interrupt occurred for its hardware, services
the interrupt, and then uses the event system’s signal function to
awaken the driver.

Step 4. When the driver awakens, it should determine if the event value is
within range. If so, the interrupt was serviced and the driver can check
the status. If not, the driver should suspend itself again.

160 OS-9 for 68K Processors Technical I/O Manual

TERM Terminate Device

Input

(a1) = address of the device descriptor module
(a2) = address of device static storage area
(a4) = process descriptor
(a6) = system global static storage pointer

Output

None

Error Output

cc = carry bit set
d1.w = error code

Description

This routine is called when a device is no longer in use in the system (see
I$Detach).

The TERM routine must:

Step 1. Wait until any pending I/O has completed.

Step 2. Disable the device interrupts.

Step 3. Remove the device from the IRQ polling list.

Step 4. Return any buffers the driver has requested on behalf of itself, for
example, sector zero buffers or physical sector deblocking buffers.

2Random Block File Manager (RBF)

OS-9 for 68K Processors Technical I/O Manual 161

NoteNote
The driver should not attempt to return buffers within its defined static
storage area. IOMan releases this memory when the TERM routine
completes.

NoteNote
If an error occurs during the device’s INIT routine, IOMan calls the
TERM routine to allow the driver to clean up. If the TERM routine uses
static storage variables (for example, interrupt mask values, dynamic
buffer pointers), it should validate these variables prior to using them.
The INIT routine may not have set up all the variables prior to exiting
with the error.

162 OS-9 for 68K Processors Technical I/O Manual

WRITE Write Sector(s)

Input

d0.l = number of contiguous sectors to write
d2.l = disk logical sector number
(a1) = address of the path descriptor
(a2) = address of the device static storage area
(a4) = process descriptor pointer
(a5) = caller’s register stack pointer
(a6) = system global data storage pointer

Output

The sector buffer is written to disk.

Error Output

cc = carry bit set
d1.w = error code

Description

The WRITE routine must perform the following operations:

Step 1. Determine the starting LSN. If zero, the driver should check the format
control flag for format protection (PD_Cntl, bit 0). If bit 0 is clear, the
media can be formatted and sector 0 may be written. If bit 0 is set, the
media is format protected and the driver should return an E$Format
error.

Step 2. Locate the associated drive table (PD_DTB) and check if the unit is
initialized (V_Init). If not, perform any drive initialization required and
mark the drive initialized in the drive table.

Step 3. If the driver supports buffering of sector 0 for the unit, and sector 0 is
being written, the driver should clear V_ZeroRd to mark sector 0 is
unbuffered.

2Random Block File Manager (RBF)

OS-9 for 68K Processors Technical I/O Manual 163

Step 4. Verify the starting LSN (and ending LSN, if a multi-sector write) against
the size of the media (DD_TOT).

Step 5. Compute the physical disk address (track/head/sector) from the LSN, if
required.

Step 6. For drivers performing explicit seeking, seek to the desired track. If the
seek involves the selection of a drive different from the last one
selected, this may also require you to save the current track position in
the last selected drive’s drive table (V_TRAK).

Step 7. Prepare the hardware for the write request and start the I/O operation.
The data should be written from the buffer specified by PD_BUF.

Step 8. Wait for the I/O operation to complete (with interrupts, if possible).

Step 9. Return the status of the write to RBF.

Sector/Transfer Count

The number of sectors to transfer is passed by RBF. If bit number one in
PD_Cntl is clear, RBF always requests only one sector. If the bit is set,
RBF requests a maximum count, based on the value in PD_MaxCnt. The
value in PD_MaxCnt is truncated to an exact sector count, so the device
always sees requests in terms of an integral number of sectors.

Sector Zero Writes

Whenever the starting LSN is zero, the driver should check whether the
media may be formatted (PD_Cntl, bit 0). If bit 0 is set, the media is format
protected and sector zero may not be written. The driver should return a
E$Format (format protected) error in this case.

If the driver buffers sector zero of the media, it should clear V_ZeroRd to
mark the buffer invalid. This ensures the next read of sector zero accesses
the media.

164 OS-9 for 68K Processors Technical I/O Manual

Sector Size Support

If the driver supports variable sector sizes, RBF assumes the size of a
sector is specified by PD_SSize, and the logical and physical sector sizes
are the same. Drivers operating under this mode simply process the RBF
transfer count and LSN address according to the disk’s requirements.

If the driver does not support variable sector sizes (logical sector size is
256 bytes) and the physical sector size of the media (PD_SSize) is not 256
bytes, the driver must deblock the media sectors. Typically, this involves the
following steps:

Step 1. Determine if RBF’s starting LSN falls at the start of a media physical
sector. If not, and the physical sector is not currently cached, read the
physical sector into the driver’s local buffer. Update the appropriate part
of the buffer with RBF’s data and write the local buffer to the media.

Step 2. If any sectors remain to be written, convert the remaining start address
and count into the physical start address and count. Then, write (and
count) those sectors from the RBF buffer.

Step 3. If any partial sector remains to be written, read that physical sector into
the driver’s local buffer. Next, update the appropriate part of the buffer
with RBF’s data and write the local buffer to the media.

Interrupt Operation

If the hardware uses interrupts to perform I/O, the driver should perform the
following:

Synchronization using Signals

Step 1. Issue the I/O command to the hardware.

Step 2. Copy V_BUSY to V_WAKE in the static storage.

Step 3. The driver should suspend itself (F$Sleep).

2Random Block File Manager (RBF)

OS-9 for 68K Processors Technical I/O Manual 165

Step 4. The IRQ service routine is called when the interrupt occurs. The IRQ
service routine verifies the interrupt occurred for its hardware, services
the interrupt, and sends a wake-up signal (S$Wake) to the driver. The
driver’s process ID is in V_WAKE. After sending the signal, the IRQ
service routine should clear V_WAKE to signify the interrupt occurred.

Step 5. When the driver awakens, it should check V_WAKE. If zero, the interrupt
has occurred and the driver can continue to check status. If non-zero,
the driver should suspend itself again.

Synchronization using Events

Step 1. Issue the I/O command to the hardware.

Step 2. The driver should suspend itself using the event system’s wait function.

Step 3. The IRQ service routine is called when the interrupt occurs. The IRQ
service routine verifies the interrupt occurred for its hardware, services
the interrupt, and then uses the event system’s signal function to
awaken the driver.

Step 4. When the driver awakens, it should verify the event value is within
range. If so, the interrupt was serviced and the driver can check the
status. If not, the driver should suspend itself again.

166 OS-9 for 68K Processors Technical I/O Manual

Chapter 3: Sequential Character Fi le

Manager (SCF)

This chapter explains how to use the SCF manager to process I/O
service requests to devices operating on a character by character
basis, and the I/O editing functions available for line-oriented
operations. It includes the following topics:

• SCF General Description

• SCF Device Descriptor Modules

• SCF Path Descriptor Definitions

• SCF Device Drivers

168 OS-9 for 68K Processors Technical I/O Manual

SCF General Description

The Sequential Character File Manager (SCF) is a re-entrant subroutine
package for I/O service requests to devices operating on a
character-by-character basis, such as terminals, printers, and modems.
SCF can handle any number or type of character-oriented devices. It
includes some input and output editing functions for line-oriented
operations such as backspace, line delete, repeat line, auto line feed,
screen pause, and return delay padding.

The following I/O service requests are handled by SCF:

The following I/O service requests are not valid for SCF:

When an I$ChgDir, I$Delete, or I$MakDir is made to SCF, an
appropriate error code is returned. I$Seek does not return an error.

The following I/O service requests do not call SCF:

Table 3-1 SCF I/O Service Requests

I$Close I$Create I$GetStt I$Open

I$Read I$ReadLn I$SetStt I$Write

I$Writln

Table 3-2 Invalid-SCF I/O Service Requests

I$ChgDir I$Delete I$MakDir I$Seek

Table 3-3 Non-SCF I/O Service Requests

I$Attach I$Detach I$Dup

3Sequential Character File Manager (SCF)

OS-9 for 68K Processors Technical I/O Manual 169

SCF device drivers are responsible for the actual transfer of data between
their own internal buffers and the device hardware.

SCF transfers data to/from the driver in register d0. The driver typically
operates as follows, depending upon whether or not the driver uses
interrupts.

Polled Mode

The WRITE routine writes the data to the hardware and the driver returns
immediately. The READ routine checks for available data, waits if there is no
data, and returns the data when ready. Polled-mode drivers usually do not
buffer the data internally.

NoteNote
Polled I/O operation can have a harmful effect on real-time system
operation. Polled I/O is acceptable if the device is always ready to send
or receive data (for example, output to a memory-mapped video
display). Polled I/O is not acceptable if the driver has to wait for the
device to send or receive data.

Interrupt Mode

Interrupt-driven drivers typically use input FIFO and output FIFO buffers for
the data being read and written. The WRITE routine deposits the data in the
output FIFO buffer, arms the output interrupts (if necessary), and allows the
device’s output interrupt service routine to empty the output FIFO. When
the output FIFO is empty, output interrupts are usually disabled. The READ
routine checks the input FIFO buffer. If data is available, READ takes the
next character from the buffer and returns. If no data is available, READ
suspends itself until data is available. The device’s input interrupt service
routine is responsible for filling the input FIFO and waking any waiting
process. Input interrupts are usually enabled for the time the device is
attached to the system.

170 OS-9 for 68K Processors Technical I/O Manual

SCF Line Editing

The I$Read and I$Write service requests to SCF devices pass data
to/from the device without modification; SCF does not add line feeds or
NULLs after writing a carriage return.

The I$ReadLn and I$Writln service requests to SCF devices perform
all line editing functions enabled for the particular device.

Line editing functions are initialized when a path is first opened by copying
the option table from the device descriptor associated with that device into
the path descriptor. They may be altered later by programs using the
I$GetStt and I$SetStt (SS_Opt) service requests. You can use the
xmode utility to modify the option table of SCF device descriptors in
writable memory, so changes can be applied prior to opening a path to the
device. You can also use the tmode utility to modify the options from the
keyboard. Line editing functions are disabled when the option table field is
set to zero.

NoteNote
If software handshaking (X-ON/X-OFF) is enabled, these characters
are intercepted by the device driver and not processed by SCF.

SCF I/O Service Requests

When a process makes one of the following system calls to a SCF device,
SCF executes the file manager functions described for that call.

3Sequential Character File Manager (SCF)

OS-9 for 68K Processors Technical I/O Manual 171

I$Close

SCF performs the following functions:

• Checks for additional paths open to the device by the calling process. If
no additional paths are open, a SS_Relea SetStat is performed to
release the device signal conditions and disassociate the device signals
from the process.

• Checks for any other users of the path. If there are none, SBF:

Step 1. Performs an SS_Close SetStat to the driver.

Step 2. Performs an I$Detach if the device has an output (echo) device.

Step 3. Returns buffers allocated by the original I$Open call.

I$Create

SCF considers this system call synonymous with I$Open.

I$GetStt

The SS_Opt GetStat function is supported by SCF. It is passed to the
driver to enable the driver to update hardware specific parameters such as
the baud rate. If the driver returns an E$UnkSvc error, it is ignored. All
other GetStat calls are passed directly to the driver.

Refer to the I$GetStt system call description in the OS-9 for 68K
Technical Manual for specific information on the various SCF-oriented
I$GetStt functions.

I$Open

SCF performs the following functions:

• Validates the pathname.

• Allocates memory for the path buffer.

172 OS-9 for 68K Processors Technical I/O Manual

• Initializes the path descriptor with the default options section.

• Performs an I$Attach if the device has an output (echo) device.

• Calls the driver with an SS_Open SetStat. If the driver returns an
E$UnkSvc error, SCF ignores it.

I$Read

I$Read requests read input from the device without modifying the data.
The read terminates under any of these circumstances:

• The requested number of bytes has been read.

• An end-of-record character is detected (PD_EOR).

• An end-of-file (PD_EOF) is detected as the first character of the read.

• An error occurs.

You can control the method of transfer in the following ways:

• De-select (set to zero) the end-of-record (PD_EOR) character using
I$GetStt and I$SetStt. This prevents the read from terminating
early due to PD_EOR detection. The read continues until the requested
number of characters has been read.

• De-select (set to zero) the end-of-file (PD_EOF) character using
I$GetStt and I$SetStt. This prevents the read from terminating
when receiving an end-of-file character as the first character of the
read.

If the requested data is not immediately available, the driver waits
(F$Sleep) for the data. This busies the driver (other processes I/O block)
until the data READ request has completed. If you do not wish a process to
wait for data, use the SS_Ready GetStat or SS_SSig SetStat calls to
detect when an I$Read can be issued.

I$ReadLn

I$ReadLn requests read input from the device and may edit the data. The
read terminates under any of these circumstances:

• An end-of-record character is detected (PD_EOR).

3Sequential Character File Manager (SCF)

OS-9 for 68K Processors Technical I/O Manual 173

• An end-of-file (PD_EOF) is detected as the first character of the read.

• An error occurs.

If the end-of record character is not encountered before the requested
number of bytes has been read, SCF echoes the line overflow character
(PD_OVF) for each subsequent character read. This indicates the
characters are being ignored. This condition is maintained until the
end-of-record character is read. You have control over how the data stream
is edited by setting the path descriptor options using I$GetStt and
I$SetStt.

NoteNote
Never use I$ReadLn on a path that has its end-of-record (PD_EOR)
function disabled, as I$ReadLn can then only terminate on an error or
end-of-file condition.

I$SetStt

The SS_Opt SetStat function is supported by SCF. After SCF updates the
path descriptor option section, it is passed to the driver to enable the driver
to update hardware specific parameters such as the baud rate. If the driver
returns an E$UnkSvc error, SCF ignores it. All other SetStat calls are
passed directly to the driver.

For More Information
More In
fo More
Informatio
n More Inf
ormation M
ore Inform
ation More

-6-

Refer to the I$SetStt system call description in the OS-9 for 68K
Technical Manual for specific information on the various SCF-oriented
I$SetStt functions.

174 OS-9 for 68K Processors Technical I/O Manual

I$Write

I$Write requests output data to the device without modifying the data
being passed. The write terminates only when all characters have been
sent or an error occurs.

I$Writln

I$Writln is similar to I$Write except I$Writln writes data until an
end-of-record character (PD_EOR) is written or until the specified number of
bytes has been sent. The line editing I$Writln performs for SCF devices
consists of auto line feed, null byte padding at end-of-record, tabulation,
and auto page pause.

3Sequential Character File Manager (SCF)

OS-9 for 68K Processors Technical I/O Manual 175

SCF Device Descriptor Modules

This section describes the definitions of the initialization table contained in
device descriptor modules for SCF devices. The initialization table
immediately follows the standard device descriptor module header fields
and defines initial values for the I/O editing features. The size of the table is
defined in the M$Opt field.

Table 3-4 Initialization Table Definitions

Device
Descriptor
Offset

Path
Descriptor
Label Description

$48 PD_DTP Device Type

$49 PD_UPC Upper Case Lock

$4A PD_BSO Backspace Option

$4B PD_DLO Delete Line Character

$4C PD_EKO Echo

$4D PD_ALF Automatic Line Feed

$4E PD_NUL End Of Line Null Count

$4F PD_PAU End Of Page Pause

$50 PD_PAG Page Length

$51 PD_BSP Backspace Input Character

$52 PD_DEL Delete Line Character

$53 PD_EOR End Of Record Character

176 OS-9 for 68K Processors Technical I/O Manual

$54 PD_EOF End Of File Character

$55 PD_RPR Reprint Line Character

$56 PD_DUP Duplicate Line Character

$57 PD_PSC Pause Character

$58 PD_INT Keyboard Interrupt Character

$59 PD_QUT Keyboard Abort Character

$5A PD_BSE Backspace Output

$5B PD_OVF Line Overflow Character (bell)

$5C PD_PAR Parity Code, # of Stop Bits, and # of
Bits/Character

$5D PD_BAU Adjustable Baud Rate

$5E PD_D2P Offset To Output Device Name

$60 PD_XON X-ON Character

$61 PD_XOFF X-OFF Character

$62 PD_TAB Tab Character

$63 PD_TABS Tab Column Width

Table 3-4 Initialization Table Definitions (continued)

Device
Descriptor
Offset

Path
Descriptor
Label Description

3Sequential Character File Manager (SCF)

OS-9 for 68K Processors Technical I/O Manual 177

NoteNote
In this table the offset values are the device descriptor offsets, while the
labels are the path descriptor offsets. To correctly access these offsets
in a device descriptor using the path descriptor labels, you must make
the following adjustment: (M$DTyp - PD_OPT).

For example, to access the letter case in a device descriptor, use
PD_UPC + (M$DTyp - PD_OPT). To access the letter case in the
path descriptor, use PD_UPC. Module offsets are resolved in assembly
code by using the names shown here and linking with the relocatable
library: sys.l or usr.l.

NoteNote
You can change or disable most of these special editing functions by
changing the corresponding control character in the path descriptor. Do
this with the I$SetStt service request, the tmode utility, or the xmode
utility.

178 OS-9 for 68K Processors Technical I/O Manual

Table 3-5 Path Descriptor Labels and Descriptions

Name Description

PD_DTP Device Type

Set to 0 for SCF devices.

PD_UPC Letter Case

If PD_UPC is not equal to 0, input or output characters
in the range a-z are made A-Z.

PD_BSO Destructive Backspace

If PD_BSO is 0 when a backspace character is input,
SCF echoes PD_BSE (backspace echo character). If
PD_BSO is non-zero, SCF echoes PD_BSE, space,
PD_BSE.

PD_DLO Delete

If PD_DLO is 0, SCF deletes by backspace-erasing
over the line. If PD_DLO is not 0, SCF deletes by
echoing a carriage return/line-feed.

PD_EKO Echo

If PD_EKO is not 0, then all input bytes are echoed,
except undefined control characters printed as
periods. If PD_EKO is 0, input characters are not
echoed.

PD_ALF Automatic Line Feed

If PD_ALF is not 0, carriage returns are automatically
followed by line-feeds.

3Sequential Character File Manager (SCF)

OS-9 for 68K Processors Technical I/O Manual 179

PD_NUL End of Line Null Count

Indicates the number of NULL padding bytes to be
sent after a carriage return/line-feed character.

PD_PAU End of Page Pause

If PD_PAU is not 0, an auto page pause occurs upon
reaching a full screen of output. See PD_PAG for
setting page length.

PD_PAG Page Length

Contains the number of lines per screen (or page).

PD_BSP Backspace “Input” Character

Indicates the input character recognized as
backspace. See PD_BSE and PD_BSO.

PD_DEL Delete Line Character

This field indicates the input character recognized as
the delete line function. See PD_DLO.

PD_EOR End of Record Character

This field defines the last character on each line
entered (I$Read, I$ReadLn). An output line is
terminated (I$Writln) when this character is sent.
Normally PD_EOR should be set to $0D.

WARNING: If PD_EOR is set to 0, SCF’s I$ReadLn
never terminates, unless an EOF or error occurs.

Table 3-5 Path Descriptor Labels and Descriptions (continued)

Name Description

180 OS-9 for 68K Processors Technical I/O Manual

PD_EOF End of File Character

This field defines the end-of-file character. SCF
returns an end-of-file error on I$Read or I$ReadLn
if this is the first (and only) character input.

PD_RPR Reprint Line Character

If this character is input, SCF (I$ReadLn) reprints
the current input line. A carriage return is also
inserted in the input buffer for PD_DUP (see below) to
make correcting typing errors more convenient.

PD_DUP Duplicate Last Line Character

If this character is input, SCF (I$ReadLn) duplicates
whatever is in the input buffer through the first
PD_EOR character. Normally, this is the previous line
typed.

PD_PSC Pause Character

If this character is typed during output, output is
suspended before the next end-of-line. This also
deletes any type ahead input for I$ReadLn.

PD_INT Keyboard Interrupt Character

If this character is input, SCF sends a keyboard
interrupt signal to the last user of this path. It
terminates the current I/O request (if any) with an
error identical to the keyboard interrupt signal code.
PD_INT is normally set to a control-C character.

Table 3-5 Path Descriptor Labels and Descriptions (continued)

Name Description

3Sequential Character File Manager (SCF)

OS-9 for 68K Processors Technical I/O Manual 181

PD_QUT Keyboard Abort Character

If this character is input, SCF sends a keyboard abort
signal to the last user of this path. It terminates the
current I/O request (if any) with an error code
identical to the keyboard abort signal code. PD_QUT
is normally set to a control-E character.

PD_BSE Backspace “Output” Character (Echo Character)

This field indicates the backspace character to echo
when PD_BSP is input. See PD_BSP and PD_BSO.

PD_OVF Line Overflow Character

If I$ReadLn has satisfied its input byte count, SCF
ignores any further input characters until an
end-of-record character (PD_EOR) is received. It
echoes the PD_OVF character for each byte ignored.
PD_OVF is usually set to the terminal’s bell character.

Table 3-5 Path Descriptor Labels and Descriptions (continued)

Name Description

182 OS-9 for 68K Processors Technical I/O Manual

PD_PAR Parity Code, Number of Stop Bits, and
Bits/Character

Bits zero and one indicate the parity as follows:

0 = no parity
1 = odd parity
3 = even parity

Bits two and three indicate the number of bits per
character as follows:

0 = 8 bits/character
1 = 7 bits/character
2 = 6 bits/character
3 = 5 bits/character

Bits four and five indicate the number of stop bits as
follows:

0 = 1 stop bit
1 = 1 1/2 stop bits
2 = 2 stop bits

Bits six and seven are reserved.

Table 3-5 Path Descriptor Labels and Descriptions (continued)

Name Description

3Sequential Character File Manager (SCF)

OS-9 for 68K Processors Technical I/O Manual 183

PD_BAU Software Adjustable Baud Rate

This one-byte field indicates the baud rate as follows:

Baud Value

50 0
75 1
110 2
134.5 3
150 4
300 5
600 6
1200 7
1800 8
2000 9
2400 A
3600 B
4800 C
7200 D
9600 E
19200 F
38400 10
External FF

PD_D2P Offset to Output Device Descriptor Name String

SCF sends output to the device named in this string.
Input comes from the device named by the M$PDev
field. This permits two separate devices (a keyboard
and video display) to be one logical device. Usually
PD_D2P refers to the name of the same device
descriptor in which it appears.

PD_XON X-ON Character

See PD_XOFF below.

Table 3-5 Path Descriptor Labels and Descriptions (continued)

Name Description

184 OS-9 for 68K Processors Technical I/O Manual

PD_XOFF X-OFF Character

The X-ON and X-OFF characters are used to support
software handshaking. Output from an SCF device is
halted immediately when PD_XOFF is received and is
not resumed until PD_XON is received. This allows the
distant end to control its incoming data stream. Input
to an SCF device is controlled by the driver. If the
input FIFO is nearly full, the driver sends PD_XOFF to
the distant end to halt input. When the FIFO has been
emptied sufficiently, the driver resumes input by
sending the PD_XON character. This allows the driver
to control its incoming data stream.

NOTE: When software handshaking is enabled, the
driver consumes the PD_XON and PD_XOFF
characters itself.

PD_Tab Tab Character

In I$WritLn calls, SCF expands this character into
spaces to make tab stops at the column intervals
specified by PD_Tabs.

NOTE: SCF does not know the effect of tab
characters on particular terminals. Tab characters
may expand incorrectly if they are sent directly to the
terminal.

PD_Tabs Tab Field Size

See PD_Tab.

Table 3-5 Path Descriptor Labels and Descriptions (continued)

Name Description

3Sequential Character File Manager (SCF)

OS-9 for 68K Processors Technical I/O Manual 185

SCF Path Descriptor Definitions

The first 27 fields of the path options section (PD_OPT) of the SCF path
descriptor are copied directly from the SCF device descriptor initialization
table. See Table 3-6.

The fields can be examined or changed using the I$GetStt and
I$SetStt service requests or the tmode and xmode utilities.

You may disable the SCF editing functions by setting the corresponding
control character value to zero. For example, if you set PD_INT to 0, there
is no keyboard interrupt character.

NoteNote
Full definitions for the fields copied from the device descriptor are
available in the previous section. The additional path descriptor fields
are defined below:

Table 3-6 SCF Path Descriptors

Name Description

PD_TBL Device Table Entry

A user-visible copy of the device table entry for the
device.

PD_COL Current Column

The current column position of the cursor.

PD_ERR Most Recent Error Status

The most recent I/O error status.

186 OS-9 for 68K Processors Technical I/O Manual

NoteNote
Offset refers to the location of a path descriptor field relative to the
starting address of the path descriptor. Path descriptor offsets are
resolved in assembly code by using the names shown here and linking
the module with the relocatable library: sys.l or usr.l.

Table 3-7 Path Descriptors Offsets

Offset Name Description

$80 PD_DTP Device Type

$81 PD_UPC Upper Case Lock

$82 PD_BSO Backspace Option

$83 PD_DLO Delete Line Character

$84 PD_EKO Echo

$85 PD_ALF Automatic Line Feed

$86 PD_NUL End Of Line Null Count

$87 PD_PAU End Of Page Pause

$88 PD_PAG Page Length

$89 PD_BSP Backspace Input Character

$8A PD_DEL Delete Line Character

3Sequential Character File Manager (SCF)

OS-9 for 68K Processors Technical I/O Manual 187

$8B PD_EOR End Of Record Character

$8C PD_EOF End Of File Character

$8D PD_RPR Reprint Line Character

$8E PD_DUP Duplicate Line Character

$8F PD_PSC Pause Character

$90 PD_INT Keyboard Interrupt Character

$91 PD_QUT Keyboard Abort Character

$92 PD_BSE Backspace Output

$93 PD_OVF Line Overflow Character (bell)

$94 PD_PAR Parity Code, # of Stop Bits, and # of
Bits/Character

$95 PD_BAU Adjustable Baud Rate

$96 PD_D2P Offset To Output Device Name

$98 PD_XON X-ON Character

$99 PD_XOFF X-OFF Character

$9A PD_TAB Tab Character

$9B PD_TABS Tab Column Width

$9C PD_TBL Device Table Entry

Table 3-7 Path Descriptors Offsets (continued)

Offset Name Description

188 OS-9 for 68K Processors Technical I/O Manual

$A0 PD_Col Current Column

$A2 PD_Err Most Recent Error Status

$A3 Reserved

Table 3-7 Path Descriptors Offsets (continued)

Offset Name Description

3Sequential Character File Manager (SCF)

OS-9 for 68K Processors Technical I/O Manual 189

SCF Device Drivers

SCF device drivers support I/O devices reading and writing data one
character at a time, such as serial devices.

The input data (usually from a keyboard) is buffered by the driver’s interrupt
service routine. Each read request returns one character at a time from the
driver’s circular input FIFO buffer. If the buffer is empty when the request
occurs, the driver must suspend the calling process until an input character
is received. Input interrupts are usually enabled throughout the time the
device is attached to the system. If the device is incapable of
interrupt-driven operation, the driver must poll the device until the data
becomes available. This situation has a harmful effect on real-time system
performance.

The output data may or may not be buffered, depending on the physical
characteristics of the output device. If the device is a memory-mapped
video display driven by the main CPU, buffering and interrupts are not
usually needed. If the device is a serial interface, use buffering and
interrupts. Each write request passes a single output character to the driver
which is placed in a circular FIFO output buffer. The output interrupt routine
takes output characters from this buffer. If the buffer is full when a write
request is made, the driver should suspend the calling process until the
buffer empties sufficiently.

The I$GetStt system call (SS_Ready) and I$SetStt system call
(SS_SSig) permit an application program to determine if the input buffer
contains any data. By checking first, the program is not suspended if data is
not available.

The driver may optionally handle full input buffer conditions using
X-ON/X-OFF or similar protocols. The input routine must also handle the
special pause, abort, and quit control characters. All other control
characters (such as backspace and line delete) are handled at the file
manager level.

190 OS-9 for 68K Processors Technical I/O Manual

Special Characters and NULLs

Line-editing functions (if any) are generally dealt with at the file manager
level by SCF. Device drivers are, however, required to deal with the
following special characters in their input character routine:

NULL character The driver’s input routine should first
determine if the received character is a
NULL. If so, it should skip all special
character tests, because the disabled state
of these special characters is indicated by a
NULL in the appropriate path option field.
Failure to check for a received NULL results
in erratic terminal and/or line-editing
operation.

Abort and interrupt characters
The abort and interrupt characters should
cause the appropriate signal to be sent to
the last process using the device. The
received character should then be buffered.

Page pause The page pause character should cause a
page pause request to be set in the echo
device’s static storage. The received
character should then be buffered.

Software flow control The start and stop transmission characters
should cause the resumption/suspension of
output data transmission. When this
protocol is used, these characters are
consumed by the driver’s input character
routine.

Parity Stripping

SCF device drivers do not usually modify the raw data stream when
receiving and transmitting data. The drivers are expected to pass eight-bit
data characters as is. When parity is enabled, however, the driver may have
to be sensitive to the issue of parity stripping.

3Sequential Character File Manager (SCF)

OS-9 for 68K Processors Technical I/O Manual 191

For eight-bit data characters, parity is not normally an issue (except for
error checking), because the character parity status is signalled
out-of-band from the character itself (there is a parity-error status flag). For
smaller sized data characters (for example, seven-bit characters), the
hardware sometimes passes the value of the parity bit in the high-bit of the
received character. If a driver supports parity checking and non-eight-bit
character formats, then the driver’s input character routine must be
sensitive to the current communications mode and strip the parity flag from
the data prior to processing and buffering the character. Failure to strip this
parity value from the received character may cause erratic terminal
operation (for example, the software flow control characters may not be
recognized correctly).

Data Flow Control

Data flow control is the process used to control the transfer of data over the
physical interface. It ensures each end of the connection only transmits
data when the other end is capable of receiving data. The data flow may be
controlled by either hardware and/or software.

Hardware Flow Control

Hardware flow control uses physical signal lines to indicate the state of the
interface. The Ready To Send (RTS) and Clear To Send (CTS) signals on
the RS-232 Standard Interface are examples of these physical lines.

The level of implementation of hardware handshaking in a SCF driver is
determined by the capabilities of the serial interface itself, which include the
capabilities of the interface-chip and the board-level implementation of the
interface.

A driver implementing fully functional hardware flow control performs the
following functions:

• Configures the transmitter to only send data when the distant end’s
ready-to-receive is active.

• Controls the distant end’s ready-to-transmit line so input buffer
over-runs do not occur.

192 OS-9 for 68K Processors Technical I/O Manual

• Supports the SS_EnRTS, SS_DsRTS, SS_DCDOn, and SS_DCDOff
SetStat calls, to allow a user application to directly control/monitor the
serial connection.

A driver providing minimal (or no) support for hardware flow control usually
configures the hardware control lines so the interface is ready whenever
the device is attached. Drivers providing this level of operation usually
implement software flow control.

Software Flow Control

Software flow control uses a software protocol to indicate the ready state of
the two ends of the interface.

Support for software flow control is provided via the PD_XON (start
transmission) and PD_XOFF (stop transmission) fields of the device
descriptor. When these fields are enabled (both non-zero), then the driver
implements the protocol as follows:

• If the driver receives the stop transmission character, it should
immediately suspend data transmission. The driver can resume
transmission when a start transmission character is received. Thus, the
distant end is allowed to control its incoming data stream.

• If the driver’s input routine detects its input buffer is about to fill, then it
causes a stop transmission character to be sent to the distant end.
When the buffer has been sufficiently emptied, the driver can cause
transmission of a start transmission character. Thus, the driver is
capable of controlling its incoming data stream.

When implementing software flow control, note the following points:

• The start transmission and stop transmission characters are consumed
by the driver’s input routine. If pure binary transfers are desired (the
character values for flow control are actually part of the data stream),
then software flow control must be disabled and hardware flow control
enabled.

• Software flow control only works reliably with interrupt-driven drivers,
because the detection of the incoming stop transmission character must
take place immediately.

3Sequential Character File Manager (SCF)

OS-9 for 68K Processors Technical I/O Manual 193

• The characters involved with the protocol must be agreed upon by both
ends of the connection. Most systems default to the ASCII control
characters X-ON and X-OFF. However, any other pair of characters may
be used if both ends concur.

• When controlling the input data, the driver’s input routine and read
routine cooperate in the protocol as follows:

• The input routine detects a high-water mark; a point at which the
input buffer is almost full. When this mark is reached (ten characters
remaining in buffer), the input routine causes the stop transmission
character to be sent. The head room provided by the high-water
mark should be set so the distant end has time to suspend
transmission before the buffer actually fills.

• The read routine simply takes characters from the input buffer until
the buffer count reaches the low-water mark. Then, the read routine
causes the start transmission character to be sent to resume input.
The low-water mark is usually set to a low value to keep the total
overhead in the software flow control to a minimum.

SCF Device Driver Storage Definitions

SCF device driver modules contain a package of subroutines performing
raw I/O transfers to or from a specific hardware controller. Because these
modules are re-entrant, one copy of the module can simultaneously run
several identical I/O controllers.

IOMAN allocates a static storage area for each device (which may control
several drives). The size of the storage area is given in the device driver
module header (M$Mem). Some of this storage area is required by IOMAN
and SCF; the device driver may use the remainder in any manner.
Information on device driver static storage required by the operating system
can be found in the scfstat.a DEFS file. Table 3-8 shows how static
storage is used.

194 OS-9 for 68K Processors Technical I/O Manual

NoteNote
Offset refers to the location of a static storage field, relative to the
starting address of the static storage area. Offsets are resolved in
assembly code by using the names shown here and linking the module
with the relocatable library: sys.l.

Table 3-8 SCF Device Driver Storage Offsets

Offset Name Maintained By Description

$00 V_PORT IOMAN Device base address

$04 V_LPRC File Manager Last active process ID

$06 V_BUSY File Manager Active process ID

$08 V_WAKE Driver Process ID to awaken

$0A V_Paths IOMAN Linked list of open paths

$0E Reserved

$2E V_DEV2 IOMAN Address of attached
device static storage

$32 V_TYPE File Manager Device type or parity

$33 V_LINE File Manager Lines left until end of
page

$34 V_PAUS Driver/File
Manager

Pause request

3Sequential Character File Manager (SCF)

OS-9 for 68K Processors Technical I/O Manual 195

$35 V_INTR File Manager Keyboard interrupt
character

$36 V_QUIT File Manager Keyboard abort character

$37 V_PCHR File Manager Pause character

$38 V_ERR Driver Error accumulator

$39 V_XON File Manager X-ON character

$3A V_XOFF File Manager X-OFF character

$3B Reserved

$46 V_Hangup Driver/File
Manager

Path lost flag

$54 Device Driver Variables
begin here

Table 3-8 SCF Device Driver Storage Offsets (continued)

Offset Name Maintained By Description

196 OS-9 for 68K Processors Technical I/O Manual

Table 3-9 SCF Device Drivers

Name Description

V_PORT Device Base Address

The device’s physical port address. It is copied from
M$Port in the device descriptor when the device is
attached by IOMAN.

V_LPRC Last Active Process ID

The process ID of the last process to use the device.
The IRQ service routine sends this process the proper
signal when an interrupt or quit character is received.

V_BUSY Current Active Process

The process ID of the process currently using the
device. It is used to implement I/O blocking by SCF.
This field is also used by the interrupt drivers when they
wish to suspend themselves, by copying V_BUSY to
V_WAKE (prior to suspending themselves). A value of 0
indicates the device is not busy.

V_WAKE Process ID to Awaken

The process ID of any process waiting for the device to
complete I/O. A value of zero indicates no process is
waiting. V_WAKE is set by the driver from V_BUSY and
provides the interlock between the driver and the
driver’s interrupt service routine.

V_PATHS Linked List of Open Paths

A singly-linked list of all paths currently open on this
device.

3Sequential Character File Manager (SCF)

OS-9 for 68K Processors Technical I/O Manual 197

V_DEV2 Attached Device Static Storage

The address of the echo (output) device’s static storage
area. A device is typically its own echo device, but may
not be, as in the case of a keyboard and a memory
mapped video display. The interrupt service routine
uses this pointer to set an output pause request (see
V_PAUS and V_PCHR). If the value in V_DEV2 is 0,
there is no echo device.

V_TYPE Device Type or Parity

This value is copied from PD_PAR in the path descriptor
by SCF, so it may be used by interrupt service routines,
if required.

V_LINE Lines Left Until End of Page

The number of lines left until the end of the page.
Paging is handled by SCF.

V_PAUS Pause Request

A flag used to signal SCF that a pause character has
been received. Setting its value to anything other than 0
causes SCF to stop transmitting characters at the end
of the next line. Device driver input routines must set
V_PAUS in the echo device’s static storage area. SCF
checks this value in the echo device’s static storage
when output is sent. Once paused, SCF clears any
type-ahead (I$ReadLn), waits for and consumes the
next input character, clears V_PAUS, and resumes
output (see V_DEV2 and V_PCHR).

Table 3-9 SCF Device Drivers (continued)

Name Description

198 OS-9 for 68K Processors Technical I/O Manual

V_INTR Keyboard Interrupt Characters

This value is copied from PD_INT in the path descriptor
by SCF so it may be used by the driver’s input routine.
Receipt of this character should cause a signal
(S$Intrp) to be sent to the last user of the device
(V_LPRC).

V_QUIT Quit Character

This value is copied from PD_QUT in the path descriptor
by SCF so it may be used by the driver’s input routine.
Receipt of this character should cause a signal
(S$Quit) to be sent to the last user of the device
(V_LPRC).

V_PCHR Pause Character

This value is copied from PD_PSC in the path descriptor
by SCF, so it may be used by the driver’s input routine.
When the input routine receives this character, it should
set the output pause request flag (V_PAUS) in the echo
device’s static storage (V_DEV2). (See V_DEV2 and
V_PAUS.)

V_ERR Error Accumulator

This location is used to accumulate I/O errors. Typically,
the IRQ service routine uses it to record input errors so
they may be reported later when SCF calls the device
driver read routine.

V_XON X-ON Character

This character is copied from PD_XON of the path
descriptor by SCF, so it may be used for software
handshaking by interrupt service routines, if required.

Table 3-9 SCF Device Drivers (continued)

Name Description

3Sequential Character File Manager (SCF)

OS-9 for 68K Processors Technical I/O Manual 199

Linking SCF Drivers

After an SCF driver has been assembled into its relocatable object file
(ROF), the driver needs to be linked to produce the final driver module.
Linking resolves all code references in drivers that are comprised of several
ROF files. It also resolves the external data and static storage references
by the driver.

The most important part of linking is to correctly resolve the static storage
references. Generally, the static storage area is composed of two sections,
in this order (see Figure 3-1):

1. I/O globals

2. Driver-declared variables

The driver-declared variables are declared in vsect areas of the driver, but
they must be allocated after the I/O globals. To allocate all of the storage, in
the correct order, the scfstat.l must be the first module specified. The
scfstat.l file is usually found in the system’s LIB directory. The
following is a typical linker command line for an SCF driver:

l68 /dd/LIB/scfstat.l REL/sc335.r -O=OBJS/sc335

V_XOFF X-OFF Character

This character is copied from PD_XOFF of the path
descriptor by SCF, so it may be used for software
handshaking by interrupt service routines, if required.

V_Hangup Path Lost Flag

This flag should be set to a non-zero value when the
driver detects the path has been lost (for example,
carrier lost on a modem).

Table 3-9 SCF Device Drivers (continued)

Name Description

200 OS-9 for 68K Processors Technical I/O Manual

NoteNote
Failure to link the I/O global storage first, or not at all, results in erratic
driver operation.

3Sequential Character File Manager (SCF)

OS-9 for 68K Processors Technical I/O Manual 201

Figure 3-1 SCF Static Storage Layout

SCF Device Driver Subroutines

As with all device drivers, SCF device drivers use a standard executable
memory module format with a module type of Drivr (code $E0). SCF
drivers are called in system state.

NoteNote
I/O system modules must have the following module attributes:

• They must be owned by a super-user (0.n).

iodev.a
(scfstat.a)

scfdev.a
(scfstat.a)

N/A
Driver-declared
Storage (vsect)

SCF I/O Globals

IOMan I/O Globals

High Memory

Low Memory

N/A

scfstat.l

DEFS File LIB File

202 OS-9 for 68K Processors Technical I/O Manual

• They must have the system-state bit set in the attribute byte of the
module header. (OS-9 does not currently make use of this, but future
revisions may require I/O system modules be system-state
modules.)

The execution offset address in the module header points to a branch table
with seven entries. Each entry is the offset of the corresponding subroutine.
The branch table appears as follows:

ENTRY dc.w INIT initialize device
 dc.w READ read character
 dc.w WRITE write character
 dc.w GETSTAT get device status
 dc.w SETSTAT set device status
 dc.w TERM terminate device
 dc.w TRAP handle illegal exception
 (0 = none)

Each subroutine should exit with the carry bit of the condition code register
cleared, if no error occurred. Otherwise, set the carry bit and return an
appropriate error code in the least significant word of register d1.w.

The TRAP entry point is currently not used by the kernel, but in the future
will be defined as the offset to error exception handling code. Because no
handler mechanism is currently defined, this entry point should be set to
zero to ensure future compatibility.

The following pages describe each subroutine.

Table 3-10 SCF Device Driver Subroutines

Subroutine Description

GETSTAT/SETSTAT Get/Set Device Status

INIT Initialize Device and its Static Storage
Area

3Sequential Character File Manager (SCF)

OS-9 for 68K Processors Technical I/O Manual 203

IRQ Service Routine Service Device Interrupts

READ Get Next Character

TERM Terminate Device

WRITE Output a Character

Table 3-10 SCF Device Driver Subroutines

Subroutine Description

204 OS-9 for 68K Processors Technical I/O Manual

GETSTAT/SETSTAT

Get/Set Device Status

Input
d0.w = function code
(a1) = address of path descriptor
(a2) = address of device static storage
(a4) = process descriptor pointer
(a5) = caller’s register stack pointer
(a6) = system global data pointer

Output

Depends upon function code

Error Output
cc = carry bit set
d1.w = error code

Description

These routines are wild-card calls used to get/set the device’s operating
parameters as specified for the I$GetStt and I$SetStt service
requests.

Calls involving parameter passing require the driver to examine or change
the register stack variables. These variables contain the contents of the
MPU registers at the time the I$GetStt/I$SetStt request was made.
Parameters passed to the driver are set up by the caller prior to using the
service call. Parameters passed back to the caller are available when the
service call completes.

Typical SCF drivers handle the following I$GetStt/I$SetStt calls:

• I$Getstt: SS_EOF, SS_Opt, SS_Ready

• I$SetStt: SS_Break, SS_DCOff*, SS_DCOn*, SS_DsRTS,
SS_EnRTS, SS_Open, SS_Opt, SS_Relea*, SS_SSig*

* only for interrupt-driven drivers

3Sequential Character File Manager (SCF)

OS-9 for 68K Processors Technical I/O Manual 205

Any unsupported I$GetStt/I$SetStt calls to the driver should return
an unknown service error (E$UnkSvc).

NoteNote
A minimal SCF driver should support SS_Ready and SS_EOF, and if
interrupt-driven, SS_SSig.

The following pages describe the driver’s role in the implementation of the
above I$GetStt/I$SetStt calls.

GetStat Calls

GetStat calls include:

SS_EOF This routine should exit without an error.

SS_Opt This routine is called when SCF is asked to
return the current path options. SCF calls
the driver so the driver can update the path
descriptor’s baud rate (PD_BAU) and
communications mode (PD_PAR) to the
current hardware values. This function is
usually done by drivers supporting dynamic
changes to baud rate. Drivers not
supporting these changes typically return
an unknown service request error
(E$UnkSvc).

SS_Ready This routine returns the current count of
data available in the input FIFO buffer. If
data is available, the count should be
returned in the caller’s d1 register (R$d1
offset from passed a5) and the driver should
return to SCF without an error. If no data is
available, then a “not ready” error
(E$NotRdy) should be returned to SCF.

206 OS-9 for 68K Processors Technical I/O Manual

SetStat Calls

SetStat calls include:

SS_Break This routine is called when an application
wishes to assert a break condition on the
outgoing serial line.

SS_DCOff/SS_DCOn These routines are called when you wish to
notify an application the Data Carrier has
been asserted (SS_DCOn) or negated
(SS_DCOff). Typically, this routine saves
the process ID (PD_CPR), path number
(PD_PD), and signal code (user’s d2
register) in static storage and then returns
without error. The IRQ service routine
detects the presence or loss of the Data
Carrier, sends the signal, and clears down
the signal condition.

Drivers having hardware detection of a
change-of-state only on the Data Carrier
line typically have to track the current state
(asserted or negated) of the line and signal
a change of state accordingly.

NoteNote
Only interrupt-driven drivers should implement these calls.

SS_DsRTS, SS_EnRTS
These routines are called by applications
wishing to explicitly assert (SS_EnRTS) or
negate (SS_DsRTS) the RTS handshake
line. Typically, the driver performs the
hardware action and returns without an
error.

3Sequential Character File Manager (SCF)

OS-9 for 68K Processors Technical I/O Manual 207

SS_Open This routine is called by SCF whenever a
new path to the device is opened. Typically,
drivers handle this call in the same way as a
SetStat (SS_Opt) call, (check for baud-rate,
configuration mode changes).

SS_Opt This routine is called when SCF is asked to
change the current path options. SCF
passes the call to the driver so it may
implement baud-rate and configuration
mode changes to the hardware. Typically,
the driver checks PD_BAU and PD_PAR to
determine if they have changed. If not, the
driver simply returns without an error. If one
or both of these have changed, the driver
validates the requested change and if
correct, implements the change in hardware
(for example, new baud rate). If the request
is for an unsupported or illegal I/O mode (for
example, invalid stop-bit count), then the
driver typically returns a bad I/O mode error
(E$BMode) and refuses the change.

SS_Relea This routine is called when either SCF or an
application wishes to clear down device
signalling. This routine should erase any
pending signal conditions (due to
SS_SSig, SS_DCOn, SS_DCOff) and
return without an error.

NoteNote
When clearing down the signal condition(s), the driver should only clear
the signal if the process ID (PD_CPR) and path number (PD_PD) of the
caller match the process ID and path number of the original set-up call.

208 OS-9 for 68K Processors Technical I/O Manual

SS_SSig This routine is called when applications wish
to have a signal sent to them when input
data is available. Typically, the routine
operates as follows:

1. It determines if another process has set up a
SS_SSig condition. If so, a not ready error
(E$NotRdy) is returned.

2. It determines if data is available in the input
FIFO buffer. If so, the specified signal (user’s d2
register value) is sent to the process (PD_CPR)
and the routine returns.

3. If no data is available, the process ID, path
number (PD_PD), and signal are saved in static
storage and the routine simply returns. When
the data arrives, the input IRQ service routine
sends the signal and releases the send-signal
condition.

NoteNote
Setting up a send signal on data ready condition busies the driver for
read requests (see READ description), but allow writes to proceed as
normal.

NoteNote
Only interrupt-driven drivers should implement this call.

3Sequential Character File Manager (SCF)

OS-9 for 68K Processors Technical I/O Manual 209

INIT

Initialize Device and its Static Storage

Input
(a1) = address of device descriptor module
(a2) = address of device static storage
(a4) = process descriptor pointer
(a5) = caller’s register stack pointer
(a6) = system global data pointer

Output

None

Error Output
cc = carry bit set
d1.w = error code

Description

The INIT routine must:

Step 1. Initialize the device static storage.

Step 2. Initialize the device control registers.

Step 3. Place the driver IRQ service routine on the IRQ polling list by using the
FIRQ/FFIRQ service requests, if required.

Step 4. Enable interrupts if necessary.

Prior to being called, the device static storage is cleared (set to 0) except
for V_PORT which contains the device port address. Do not initialize the
portion of static storage used by SCF.

210 OS-9 for 68K Processors Technical I/O Manual

If INIT returns an error, it does not have to clean up its operation, for
example, remove device from polling table or disable hardware. IOMAN
calls TERM to allow the driver to clean up INIT’s operation before returning
to the calling process.

NoteNote
If the INIT routine causes an interrupt to occur, the interrupt can be
handled in one of the following ways:

• Process the interrupt directly by masking interrupts to the level of the
device, polling/servicing the device hardware, and then restoring the
previous interrupt level. This is the preferred technique unless the
interrupt is time-consuming.

• Allow the interrupt service routine to service the hardware. In this
case, the process descriptor contains the process ID (P$ID) to
which V_WAKE should be set. V_BUSY cannot be used because it is
zero when INIT is called.

3Sequential Character File Manager (SCF)

OS-9 for 68K Processors Technical I/O Manual 211

IRQ Service Routine

Service Device Interrupts

Input
do.w = vector offset
(a2) = static storage
(a3) = port address
(a6) = system global static storage

Output

None

Error Output
cc = carry bit set (interrupt not serviced)

Description

This routine is called directly by the kernel’s IRQ polling table routines. Its
function is to:

1. Check the device for a valid interrupt. If the device does not have an
interrupt pending, the carry bit must be set and the routine exited with
an RTS instruction as quickly as possible. Setting the carry bit signals
the kernel that the next device on the vector should have its IRQ service
routine called.

2. Service device interrupts. There are three categories of interrupts:
control interrupts, input interrupts, and output interrupts. Usually, input
interrupts are checked first, because most serial hardware devices have
minimal (or no) hardware data buffering. After the interrupt is serviced,
many drivers check for another pending interrupt prior to exiting to the
kernel. This technique (for example, service input interrupt, service
pending output interrupt, service next input interrupt) provides efficient
interrupt servicing because it allows the driver to service multiple
interrupts with one call to the IRQ service routine.

3. Clear the carry bit and exit with a RTS instruction after servicing an
interrupt.

212 OS-9 for 68K Processors Technical I/O Manual

Avoid exception conditions (for example, a Bus Error) when IRQ service
routines are executing. Under the current version of the kernel, an
exception in an IRQ service routine crashes the system.

IRQ service routines may destroy the contents of the following registers
only: d0, d1, a0, a2, a3, and a6. You must preserve the contents of all
other registers or unpredictable system errors (system crashes) occur.

NoteNote
The description above assumes you are using the F$IRQ system for
interrupt servicing. If you are using the Fast Interrupt System (F$FIRQ),
note the following:

• Input:

d0.w = vector offset
(a2) = static storage
(a6) = system global pointer

• Only d0 and (a2) can be destroyed.

• Returning carry set causes polling of F$IRQ installed devices for the
same vector.

The interrupt categories (control, input, and output) are described in the
following pages.

Control Interrupts

These interrupts are usually associated with non-data type information on
the serial port, such as the receipt of a break character or a change in the
Data Carrier line. Control interrupts may also signal error conditions on the
data stream (for example, parity error).

3Sequential Character File Manager (SCF)

OS-9 for 68K Processors Technical I/O Manual 213

When signaling is set up for Data Carrier transactions (see SetStat,
SS_DCOn, SS_DCOff), the routine should send the specified signal to the
specified process, clear down the signal condition, mark the path as lost
(V_HangUp set to non-zero), and then exit (carry bit clear) or service more
interrupts.

Input Interrupts

The input interrupt routine typically performs the following:

Step 1. Read the character from the hardware, clear down the interrupt, and
strip parity (if required).

Step 2. Check character error status. If in error, update V_ERR to indicate the
error.

Step 3. If the character is not a NULL character, determine whether or not the
character requires special handling.

a. If the character is the output pause character (V_PCHR), set a pause
request (V_PAUS) in the echo device’s static storage (V_DEV2).

b. If the character is a keyboard interrupt (V_INTR) or quit character
(V_QUIT), send the appropriate signal to the last process to use the
device (V_LPRC).

c. If the character is a software handshake character (V_XON or V_XOFF),
service the handshake request. For an output resume case (V_XON),
this typically involves clearing the output halted due to X-OFF flag,
checking for data in the output FIFO, and enabling output interrupts, if
so. For an output halt case (V_XOFF), this typically involves setting the
output halted due to X-OFF flag and disabling output interrupts on the
hardware.

214 OS-9 for 68K Processors Technical I/O Manual

NoteNote
The software handshake characters are consumed by this routine. After
processing these characters, the IRQ service routine exits to the kernel
(carry bit clear) or services the next pending device interrupt.

Put the character into the input FIFO buffer. If there is no room in the
buffer, the character is lost and the driver should indicate input buffer
overrun in the accumulated error status (V_ERR). In this case, the driver
often returns to the kernel at this point, after waking the driver process
(V_WAKE).

Step 4. Determine if any process has set up a send signal on data ready
condition (SS_SSig). If so, signal the process, clear down the signaling
condition, and exit (carry bit clear) or service the next pending interrupt.

Step 5. Examine the number of characters in the input FIFO, if the driver
supports handshaking.

• For software handshaking, if the buffer is nearly full (reached the
high-water mark), the driver should send a suspend transmission
character (V_XOFF) to the distant end and flag that input has been
halted. This function allows the driver to prevent input FIFO overrun
errors when the data is being received at a faster rate than it is being
read from the FIFO. Typically, the READ routine re-enables input data
flow when it has emptied the input FIFO to a suitable low value
(low-water mark) by causing the V_XON character to be sent.

• For hardware handshaking, the input interrupt routine should signal its
desire to suspend input by negating its ready to receive line.

Step 6. If desired, the input IRQ service routine can now service more
interrupts. Once fully completed, it should exit to the kernel with the
carry bit clear. Prior to exiting, it should send a wake-up signal
(S$Wake) to any waiting driver process. You can find the process ID in
V_WAKE, which you should clear.

3Sequential Character File Manager (SCF)

OS-9 for 68K Processors Technical I/O Manual 215

Output Interrupts

The output interrupt routine typically performs the following:

Step 1. Determine if V_XON or V_XOFF is pending, due to input buffer software
handshaking. If so, send the required character, flag it sent, and mark
the current state of input (halted or resumed). The driver should then
determine if output is currently halted (buffer empty or software
handshake). If so, it should disable output interrupts and return to the
kernel (carry bit clear). If not, further interrupts may be processed or an
exit may be made to the kernel (carry bit clear).

Step 2. Determine if output is halted due to software handshaking. If so, disable
output device interrupts and return to the kernel (carry bit clear).

Step 3. Determine if any data is waiting in the output FIFO for transmission. If
so, write the data to the hardware.

Step 4. Determine the remaining data count in the output FIFO.

a. If zero, flag the buffer empty, disable output device interrupts, wake any
waiting process (V_WAKE) and exit to the kernel (carry bit clear).

b. If not zero, check if current count is below the output buffer’s low-water
mark. If not, exit to the kernel (carry bit clear) without waking the driver
process. If so, wake the driver process before exiting.

This technique minimizes contention between the driver’s WRITE routine
(filling the output buffer) and the output IRQ service routine (emptying the
output buffer), as the buffer is allowed to empty significantly before the
WRITE process is re-activated.

216 OS-9 for 68K Processors Technical I/O Manual

READ

Get Next Character

Input
(a1) = address of path descriptor
(a2) = address of device static storage
(a4) = process descriptor pointer
(a5) = caller’s register stack pointer
(a6) = system global data pointer

Output
d0.b = input character

Error Output
cc = carry bit set
d1.w = error code

Description

This routine returns the next character available. Depending upon whether
or not the routine is interrupt-driven, READ typically operates as follows:

Polled I/O Mode

A polled I/O read routine checks the hardware for available data. If there is
none, the routine must wait until data is available. When data is available,
READ should strip parity (if required) and then determine whether or not the
character requires special handling:

1. If the character is the output pause character (V_PCHR), READ sets a
pause request (V_PAUS) in the echo device’s static storage (V_DEV2).

2. If the character is a keyboard interrupt (V_INTR) or quit (V_QUIT)
character, READ sends the appropriate signal to the last process to use
the device (V_LPRC).

If the received character is a NULL character, then special character tests
should be ignored.

3Sequential Character File Manager (SCF)

OS-9 for 68K Processors Technical I/O Manual 217

NoteNote
Software handshaking, as specified by V_XON/V_XOFF is not usually
implemented for polled-mode I/O, as the lack of interrupt-driven
operation makes this handshake feature unreliable. Polled I/O drivers
can usually only perform hardware handshaking.

The character read is returned to SCF in register d0.

Interrupt I/O Mode

For interrupt-driven drivers, READ gets data from the driver’s input FIFO
buffer. This buffer is filled by the input interrupt service routine. The
following describes how READ operates.

Step 1. Determine if another process has set up a send signal on data ready
condition. If so, READ returns a not ready (E$NotRdy) error (the device
is busy for reading, but not for writing).

Step 2. Determine if data is available in the input FIFO buffer. If not, the driver
should suspend itself by copying its process ID from V_BUSY to
V_WAKE and then performing an F$Sleep service request to put itself
to sleep indefinitely.

When the driver awakens, either data is available in the FIFO or a signal
occurred. If a signal occurred, either the signal value is in P$Signal
(process descriptor) or the process is condemned (condemn bit set in
P$State). If the process is condemned or the signal value is deadly to I/O
(less than S$Deadly), then the driver should return immediately to SCF
with the carry bit set and the signal code (if any) as the error code.

Step 3. Get the next character from the input FIFO.

218 OS-9 for 68K Processors Technical I/O Manual

Step 4. If software handshaking is implemented, determine if input has been
halted (V_XOFF sent to distant end). If so, and reading this character
causes the FIFO count to go below the low-water mark of the FIFO,
then resume input by sending a V_XON character to the distant end and
flagging input resumed.

Step 5. Determine if any errors have been logged by the input interrupt service
routine (V_ERR). If so, return an error (E$Read) to SCF and clear
V_ERR. Otherwise, return the character read to SCF in register d0.

NoteNote
Data buffers for queueing data between the main driver and the IRQ
service routine are not automatically allocated by SCF. They should be
defined in the device driver’s static storage area (vsect) or allocated
dynamically by the driver (for example, at INIT call).

NoteNote
Normally, READ should not have to enable the device’s data-buffer-full
interrupt. The device should normally be configured so any input while
the device is attached causes an interrupt. This is usually done during
INIT. Input interrupts are typically disabled only when the device is
detached (TERM routine).

3Sequential Character File Manager (SCF)

OS-9 for 68K Processors Technical I/O Manual 219

TERM

Terminate Device

Input
(a1) = device descriptor pointer
(a2) = pointer to device static storage
(a4) = process descriptor pointer
(a6) = system global data pointer

Output

None

Error Output
cc = carry bit set
d1.w = error code

Description

This routine is called when a device is no longer in use in the system (see
I$Detach).

The TERM routine must:

Step 1. Copy the process ID from the process descriptor (P$ID) into V_BUSY
and V_LPRC.

Step 2. Determine if the output FIFO buffer contains any data waiting to be
written. If so, the driver should suspend itself by copying its process ID
from V_BUSY to V_WAKE and performing an F$Sleep service request
to put itself to sleep indefinitely.

If the driver awakens before the output FIFO has emptied (due to a signal),
the driver should suspend itself again until the buffer is empty.

220 OS-9 for 68K Processors Technical I/O Manual

Step 3. After the pending output data has been written, the driver should
disable hardware handshake protocols and then disable all device
interrupts, if the driver is interrupt-driven. The device should then be
removed from the system’s IRQ polling table (F$IRQ or F$FIRQ), if
applicable.

Step 4. Return any buffers the driver has requested on behalf of itself.

NoteNote
The driver should not attempt to return buffers within its defined static
storage area. IOMAN releases this memory when the TERM routine
completes.

NoteNote
If an error occurs during the device’s INIT routine, IOMAN calls the
TERM routine to allow the driver to clean up. If the TERM routine uses
static storage variables (for example, interrupt mask values, dynamic
buffer pointers), it should validate these variables prior to using them.
The INIT routine may not have set up all the variables prior to exiting
with the error.

3Sequential Character File Manager (SCF)

OS-9 for 68K Processors Technical I/O Manual 221

WRITE

Output a Character

Input
d0.b = character to write
(a1) = address of the path descriptor
(a2) = address of device static storage
(a4) = process descriptor pointer
(a5) = caller’s register stack pointer
(a6) = system global data pointer

Output

None

Error Output
cc = carry bit set
d1.w = error code

Description

The WRITE routine writes a character. Depending upon whether or not the
routine is interrupt-driven, WRITE typically operates as follows:

Polled I/O Mode

A polled I/O driver checks the hardware for ready-to-transmit. When ready,
the character is written to the hardware and the driver returns to SCF
without an error.

Interrupt I/O Mode

For interrupt-driven drivers, WRITE attempts to put the character into the
driver’s output FIFO buffer and then ensures output interrupts are enabled.
The driver’s output interrupt service routine empties the output FIFO.
WRITE operates as follows:

222 OS-9 for 68K Processors Technical I/O Manual

Step 1. Determine if space is available in the output FIFO buffer. If not, the
device driver should suspend itself by copying its process ID from
V_BUSY to V_WAKE and then performing a F$Sleep service request to
put itself to sleep indefinitely.

When the driver awakens, either space is available in the output FIFO or a
signal occurred. If a signal occurred, either the signal value is in P$Signal
(process descriptor) or the process is condemned (condemn bit set in
P$State). If the process is condemned or the signal value is deadly to I/O
(less than S$Deadly), the driver should return immediately to SCF with the
carry bit set and the signal code (if any) as the error code.

Step 2. Put the character into the output FIFO buffer.

Step 3. Determine if output interrupts are currently enabled. If so, this implies
output is currently active (using the output IRQ service routine) and the
driver can simply return to SCF without an error.

Step 4. If output interrupts are disabled, then output is halted due to software
handshaking (V_XOFF received from distant end) or a previously empty
output FIFO. If output is halted due to software handshaking, the driver
should return to SCF without an error. Otherwise, the driver should
enable output interrupts on the device (allowing the output interrupt
service routine to empty the output FIFO) and return to SCF without an
error.

NoteNote
Data buffers for queueing data between the main driver and the IRQ
service routine are not automatically allocated by SCF. They should be
defined in the device driver’s static storage area (vsect) or allocated
dynamically by the driver (for example, at INIT call).

3Sequential Character File Manager (SCF)

OS-9 for 68K Processors Technical I/O Manual 223

NoteNote
Typically, this routine should ensure output interrupts are enabled only
when necessary. After an output interrupt is generated, the IRQ service
routine continues to transmit data until the output FIFO is empty and
then it typically disables the device’s ready-to-transmit interrupts.

This dynamic enabling/disabling of the device’s transmit interrupts is
essential to some serial devices, as the transmit ready interrupt is
generated every character period (at the device’s baud rate), regardless of
whether a character is actually transmitted. Avoid this type of situation,
because it leads to excessive and unnecessary overhead to the system.

224 OS-9 for 68K Processors Technical I/O Manual

Chapter 4: Sequential Block Fi le

Manager (SBF)

This chapter explains how to use the SBF manager to process I/O
service requests to sequential block-oriented mass storage devices. It
includes the following topics:

• SBF General Description

• SBF Device Descriptor Modules

• SBF Path Descriptor Definitions

• SBF Device Drivers

226 OS-9 for 68K Processors Technical I/O Manual

SBF General Description

The Sequential Block File Manager (SBF) is a re-entrant subroutine
package for I/O service requests to sequential block-oriented mass storage
devices, such as tape systems. SBF can handle any number or type of
such systems simultaneously.

The following I/O service requests are handled by SBF:

The following I/O service requests are not valid for SBF:

When one of these service requests is made to SBF, an appropriate error
code is returned.

The following I/O service requests do not call SBF:

SBF is designed to support both buffered and unbuffered I/O. It is capable
of handling variable logical block sizes. SBF has no knowledge of the
media’s physical block size, and the driver is responsible for translating the

Table 4-1 SBF I/O Service Requests

I$Close I$Create I$GetStt I$Open

I$Read I$ReadLn I$SetStt I$Write

I$Writln

Table 4-2 Invalid-SBF I/O Service Requests

I$ChgDir I$Delete I$MakDir I$Seek

Table 4-3 Non-SBF I/O Service Requests

I$Attach I$Detach I$Dup

4Sequential Block File Manager (SBF)

OS-9 for 68K Processors Technical I/O Manual 227

logical block requests by SBF into the media’s physical block requests. The
logical block size for an SBF device is defined in the PD_BlkSiz field of
the path descriptor.

Unbuffered I/O

Unbuffered I/O is used when the PD_NumBlk field of the path descriptor is
set to 0.

When operating in unbuffered mode, SBF uses a single buffer for
I$ReadLn and I$Writln calls. I$Read and I$Write calls do not use an
intermediate buffer, and the data is transferred directly between the caller’s
data buffer and the driver.

Unbuffered I/O operates synchronously with the requesting process. The
process makes a read or write request and SBF returns to the caller when
the I/O operation has completed.

Buffered I/O

Buffered I/O is used when the PD_NumBlk field of the path descriptor is set
to a positive number. All buffered I/O is initiated asynchronously by an
auxiliary process created by SBF. SBF uses a pool of buffers to accomplish
this. The maximum number of buffers to use is specified by the PD_NumBlk
field of the path descriptor. The size of each buffer is specified by the
PD_BlkSiz field of the path descriptor.

I$Read requests cause SBF to copy data from the buffer pool. If a full
buffer is not yet available, SBF allocates a new buffer and passes it to the
auxiliary process. SBF then waits for the auxiliary process to return the
buffer containing the next block. Multiple buffers (up to the number
specified by PD_NumBlk) may be allocated, thus allowing SBF to copy data
from one buffer while the auxiliary process reads data into others.

I$Write requests cause SBF to copy data into a buffer and return to the
user immediately. When a buffer fills, SBF passes it to the auxiliary process
for writing. If another buffer is required before the auxiliary process has had

228 OS-9 for 68K Processors Technical I/O Manual

time to write the previous buffer, SBF allocates a new buffer and copies
data to it. This allows SBF to copy data into one buffer while the auxiliary
process writes from others.

Considerations When Writing to Tapes

When an SBF path is opened, any I/O operations may be done on the path.
However, after an I$Write call is made, SBF flags the path as in write
mode and does not allow any I$Read calls until an I$SetStt call is
made. Typically, when writing a tape, an I$Close call follows an I$Write
call and SBF performs its normal close processing. When an I$SetStt
call follows an I$Write call, SBF waits for any pending writes to complete,
clears the write mode flag, and performs the I$SetStt. It is
recommended I$SetStt writes one or more filemarks, to ensure a
filemark follows the data written.

End-Of-Tape Processing

There is no end-of-tape error on Read requests. Consequently, SBF
requires an end-of-file mark to be present or the user process to handle the
situation (to know the size of the file or use an end-of-data record).

I$Write requests return a media full error (E$Full) when end-of-tape is
reached. All prior writes have completed; no other data may be written
other than filemarks after the end-of-tape has been reached.

SBF I/O Service Requests

When a process makes one of the following system calls to an SBF device,
SBF executes the file manager functions described for that call.

4Sequential Block File Manager (SBF)

OS-9 for 68K Processors Technical I/O Manual 229

I$Close

SBF performs the following functions:

• If the use count for the path is:

• non-zero (other processes are still using this path), SBF does not
return an error.

• zero, SBF determines if the path is in write mode. If so, SBF calls
the device driver to write two filemarks to the tape.

• If the path is in write mode and the f_eras_b flag is set in the
PD_Flags field of the path descriptor, SBF calls the device driver to
erase to the end of the tape.

• If the f_rest_b flag is set in PD_Flags, SBF calls the device driver to
rewind the tape. If the path is in write mode and f_rest_b is not set,
SBF calls the device driver to skip back one filemark. This positions the
tape between the two filemarks just written.

• If the f_offl_b flag is set in PD_Flags, SBF calls the device driver to
take the tape drive off-line.

• Any buffers associated with the path are returned to the system.

I$Create

SBF considers I$Create to be synonymous with I$Open.

I$GetStt

Refer to the I$GetStt description in the OS-9 for 68K Technical Manual
for a detailed explanation of the SBF-supported I$GetStt functions:

SS_Ready Test for data ready.

SS_EOF Check for end of file condition.

All other GetStat calls are passed to the driver.

230 OS-9 for 68K Processors Technical I/O Manual

I$Open

SBF performs the following functions:

• Validates the pathname.

• Verifies the drive number (PD_TDrv) is legal for the device driver
(SBF_NDRV).

• Initializes path descriptor variables.

• Creates the auxiliary process for the driver (SBF_DPrc), if required.

I$Read

SBF calls the driver as needed to read the data. Complete blocks of data
are transferred directly to the user’s buffer while incomplete blocks are
transferred into SBF’s buffer. The portion of the data requested by the
calling process is copied into the calling process’ buffer. If buffers are
required for the read (for example, buffered I/O mode), these are allocated
as required.

I$ReadLn

I$ReadLn is similar to I$Read, except SBF stops the read if an
end-of-record character (carriage return) is found. I$ReadLn requests
always transfer the data through an intermediate SBF buffer.

I$SetStt

Refer to the I$SetStt description in the OS-9 for 68K Technical Manual
for a detailed explanation of the SBF-supported I$SetStt functions.

SS_Opt Write the path descriptor options.

All other SetStat calls are passed to the driver. If the block size
(PD_BlkSiz) has changed, SBF ensures all current buffers are flushed
prior to calling the device driver.

4Sequential Block File Manager (SBF)

OS-9 for 68K Processors Technical I/O Manual 231

NoteNote
Only SS_Opt is passed to the driver after processing by SBF. If an
unknown service request error (E$UnkSvc) is returned by the driver, it
is ignored.

I$Write

SBF calls the driver as needed to transfer the data as follows:

Buffered I/O SBF copies the user’s data into the next free
buffer in the SBF buffer pool. The user
process is reactivated immediately. As each
buffer fills (PD_BlkSiz), SBF calls the
driver to write the data when the driver is
available.

Unbuffered I/O SBF calls the driver with the data pointer
pointing to the user’s data buffer. The driver
writes the data to tape; the user process is
reactivated when the driver completes the
write operation.

I$Writln

I$Writln is similar to I$Write, except SBF only writes data up to and
including the first end-of-record character (carriage return), if there is one in
the calling process’s buffer. If no end-of-record character is found, SBF
writes the amount of data specified by the calling process. I$Writln
requests always transfer the data through an intermediate SBF buffer.

232 OS-9 for 68K Processors Technical I/O Manual

SBF Device Descriptor Modules

This section describes the definitions of the initialization table contained in
device descriptor modules for SBF devices. The initialization table
immediately follows the standard device descriptor module header fields.
The size of the table is defined in the M$Opt field.

NoteNote
In this table the offset values are the device descriptor offsets, while the
labels are the path descriptor offsets. To correctly access these offsets
in a device descriptor using the path descriptor labels, make the
following adjustment:

(M$DTyp - PD_OPT)

For example, to access the tape drive number in a device descriptor,
use the following value:

PD_TDrv + (M$DTyp - PD_OPT)

To access the tape drive number in the path descriptor, use PD_TDrv.
Module offsets are resolved in assembly code by using the names
shown here and linking with the relocatable library: sys.l or usr.l.

4Sequential Block File Manager (SBF)

OS-9 for 68K Processors Technical I/O Manual 233

Table 4-4 Device Descriptor Offset and Path Descriptor Label

Device
Descriptor
Offset

Path Descriptor
Label Description

$48 PD_DTP Device Type

$49 PD_TDrv Tape Drive Number

$4A PD_SBF Reserved

$4B PD_NumBlk Maximum Number of Blocks to
Allocate

$4C PD_BlkSiz Logical Block Size

$50 PD_Prior Driver Process Priority

$52 PD_SBFFlags SBF Path Flags

$53 PD_DrivFlag Driver Flags

$54 PD_DMAMode Direct Memory Access Mode

$56 PD_ScsiID SCSI Controller ID

$57 PD_ScsiLUN LUN on SCSI Controller

$58 PD_ScsiOpts SCSI Options Flags

234 OS-9 for 68K Processors Technical I/O Manual

Table 4-5 Path Descriptors and Descriptions

Name Description

PD_DTP Device class

This field is set to three for SBF devices.

PD_TDrv Tape Drive number

Used to associate a one-byte integer with each
drive a controller handles. If using dedicated (for
example, non-SCSI bus) controllers, this field
usually defines both the logical and physical drive
number of the tape drive. If using tape drives
connected to SCSI controllers, this number
defines the logical number of the tape drive to the
device driver. The physical controller ID and LUN
are specified by the PD_ScsiID and
PD_ScsiLUN fields. Each controller’s drives
should be numbered 0 to n-1 (n is the maximum
number of drives the controller can handle). This
number also defines how many drive tables are
required by the driver and SBF. SBF verifies this
number against SBF_NDRV prior to calling the
driver.

PD_NumBlk Number of Buffers/Blocks Used For Buffering

Specifies the maximum number of buffers
allocated by SBF for use by the auxiliary process
in buffered I/O. If this field is set to 0, unbuffered
I/O is specified.

4Sequential Block File Manager (SBF)

OS-9 for 68K Processors Technical I/O Manual 235

PD_BlkSiz Logical Block Size Used For I/O

Specifies the size of the buffer allocated by SBF.
This buffer size is used when allocating multiple
buffers used in buffered I/O. Unless the driver
manages partial physical blocks, this size should
be an integer multiple of the physical tape block
size.

PD_Prior Driver Process Priority

The priority at which SBF’s auxiliary process run.
This value is used during initialization. Changing
this value after initialization has no effect.

PD_SBFFlags SBF Path Flags

Specifies the actions SBF takes when the path is
closed. A user can update this field using
GetStat/SetStat (SS_Opt). SBF supports the
following flag definitions:

bit 0: (f_rest_b) 0 = No rewind on close.

1 = Rewind on close.

bit 1: (f_offl_b) 0 = Do not put drive
off-line on close.

1 = Put drive off-line on
close.

bit 2: (f_eras_b) 0 = Do not erase to
end-of-tape on close.

1 = Erase to end-of-tape
on close.

Table 4-5 Path Descriptors and Descriptions (continued)

Name Description

236 OS-9 for 68K Processors Technical I/O Manual

PD_DrivFlag SBF Driver Flag

This field is available for use by the driver.

NOTE: References to these flags are often made
using the PD_Flags offset (defined in sys.l and
usr.l). This reference is equivalent to
PD_SBFFlags. References to PD_DrivFlag
should use a value of PD_Flags + 1.

PD_DMAMode Direct Memory Access Mode

This field is hardware specific. If available, you can
use this word to specify the DMA Mode of the
driver.

PD_ScsiID SCSI Controller ID

This is the ID number of the SCSI controller
attached to the device. The driver uses this
number when communicating with the controller.

Table 4-5 Path Descriptors and Descriptions (continued)

Name Description

4Sequential Block File Manager (SBF)

OS-9 for 68K Processors Technical I/O Manual 237

PD_ScsiLUN Logical Unit Number of SCSI Device

This number is the value to use in the SCSI
command block to identify the logical unit on the
SCSI controller. This number may be different
from PD_TDrv to eliminate allocation of unused
drive table storage. PD_TDrv indicates the logical
number of the drive to the driver and SBF (drive
table to use). PD_ScsiLUN is the physical drive
number on the controller.

PD_ScsiOpts SCSI Driver Options Flags

This field allows SCSI device options and
operation modes to be specified. It is the driver’s
responsibility to use or reject these if applicable:

bit 0: 0 = ATN not asserted (no disconnects
allowed).

 1 = ATN asserted (disconnects allowed).

bit 1: 0 = Device cannot operate as a target.

 1 = Device can operate as a target.

bit 2: 0 = asynchronous data transfers.

 1 = synchronous data transfers.

bit 3: 0 = parity off.

 1 = parity on.

All other bits are reserved.

Table 4-5 Path Descriptors and Descriptions (continued)

Name Description

238 OS-9 for 68K Processors Technical I/O Manual

SBF Path Descriptor Definitions

The reserved section (PD_OPT) of the path descriptor used by SBF is
copied directly from the initialization table of the device descriptor. The
following table is provided to show the offsets used in the path descriptor.
For a full explanation of the path descriptor fields, refer to the previous
pages.

Table 4-6 SBF Path Descriptors and Descriptions

Offset Name Description

$80 PD_DTP Device Type

$81 PD_TDrv Tape Drive Number

$82 PD_SBF Reserved

$83 PD_NumBlk Maximum Number of Blocks to
Allocate

$84 PD_BlkSiz Logical Block Size

$88 PD_Prior Driver Process Priority

$8A PD_SBFFlags* SBF Path Flags

$8B PD_DrivFlag* Driver Flags

$8C PD_DMAMode Direct Memory Access Mode

$8E PD_ScsiID SCSI Controller ID

$8F PD_ScsiLUN LUN on SCSI controller

$90 PD_ScsiOpts SCSI Options Flags

4Sequential Block File Manager (SBF)

OS-9 for 68K Processors Technical I/O Manual 239

* References to these flags are often made using the PD_Flags offset
(defined in sys.l and usr.l). This reference is equivalent to
PD_SBFFlags. References to PD_DrivFlag should use a value of
PD_Flags + 1.

Offset refers to the location of a path descriptor field relative to the starting
address of the path descriptor. Path descriptor offsets are resolved in
assembly code by using the names shown here and linking the module with
the relocatable library: sys.l or usr.l.

240 OS-9 for 68K Processors Technical I/O Manual

SBF Device Drivers

SBF device drivers are designed to support any sequential storage device
that reads and writes data in fixed or variable size blocks (tapes).

Because SBF is intended for sequentially accessed files, it does not
support a directory structure or provide a byte-oriented file positioning
mechanism. Consequently, I$Makdir, I$ChgDir, I$Delete, and
I$Seek return the error E$UnkSvc.

Read and write calls to the driver are made by SBF in terms of logical
blocks. The logical block size is specified in the PD_BlkSiz field of the
path descriptor. The driver is responsible for translating the block request
into the appropriate number of physical media blocks. If a partial physical
block results from this translation, drivers must either buffer the partial block
or return an error.

GetStat calls are passed straight to the driver, with the exception of
SS_EOF and SS_Ready, which are handled by SBF. Typical drivers ignore
all GetStat calls and return an unknown service request error (E$UnkSvc).

SetStat calls are passed straight to the driver, with the exception of
SS_Opt. SBF determines if the buffer size has changed, and if so, flushes
any pending buffers to tape prior to calling the driver. SetStat calls to the
driver are used for control and positioning operations (for example, write
filemark, rewind tape) on the media. These calls can originate from the
user or from SBF internal operations (for example, write filemark when file
closed).

Sensing the End-of-Tape

All tape drives can sense the physical end-of-tape (EOT). Many drives also
provide an early EOT warning. The type of warning(s) provided by the drive
determines whether or not buffered I/O (PD_NumBlk) is usable, as follows:

• Early EOT Warning

• Physical EOT Warning

4Sequential Block File Manager (SBF)

OS-9 for 68K Processors Technical I/O Manual 241

Early EOT Warning

Drives providing an early EOT capability notify the driver of the EOT
condition prior to reaching the end of the physical tape. The amount of tape
between the early EOT mark and physical tape end varies among drive
models; however, typical drives allow about 1000 physical blocks to be
written after the early EOT warning.

When a driver that is writing blocks encounters the early EOT warning, it
should write the blocks to the tape and return a media full error (E$Full). If
the device is using buffered I/O, subsequent write calls may still be made by
SBF to the driver to flush all currently buffered blocks to the tape. The driver
should not refuse these write requests: it should continue to write the data
to tape and continue returning E$Full.

The driver should maintain this mode of operation until a control operation
occurs (for example, write filemark or rewind), at which time the driver can
clear its EOT status. This technique of writing all currently buffered blocks
to tape ensures the application knows which blocks are on which tape.

When setting up the device descriptors block size (PD_BlkSiz) and buffer
count (PD_NumBlk), you should ensure there is enough room on the tape
after the early EOT mark to accommodate the total amount of data that
could be buffered (PD_NumBlk * PD_BlkSiz).

Drives providing early EOT warning can operate in buffered or unbuffered
I/O mode.

Physical EOT Warning

Drives that only provide a physical EOT warning notify the driver when the
actual end-of-tape is about to be reached. There is sufficient tape
remaining to allow the last write to complete and a filemark to be written.
No additional blocks can be written to the tape.

You can only operate physical EOT devices in unbuffered I/O mode,
because there is no guarantee you can write SBF-buffered blocks to tape
after the physical EOT is detected. When the driver detects EOT, it should
ensure the last write has completed and return a media full error (E$Full).
The next access to the driver is typically a write filemark operation and
rewind.

242 OS-9 for 68K Processors Technical I/O Manual

Tape Positioning Operations

SetStat functions are available to allow tape positioning operations.
These calls allow the driver to skip forward or backward on the tape, using
a specified block or filemark count.

Depending upon the capabilities of the tape drive in use, reverse tape
movement may require driver assistance. If the tape drive supports reverse
movement, the driver simply hands the count to the drive. If the tape drive
only supports forward movement, the driver has to maintain counters for
the current filemark and block position on the tape. The driver must use
movement commands supported by the tape drive to simulate reverse
movement. For example, if the tape’s current position is filemark #2, block
#20, then a request to move back five blocks would (typically) be simulated
by:

1. Rewind tape

2. Skip forward two filemarks

3. Skip forward 15 blocks

When this situation is in effect, drivers maintain these tape position
counters in an external module (for example, data module), so the counters
are not erased when the device is attached and detached. The INIT
routine attempts to create and link to the module, while the TERM routine
unlinks the module.

Some tape motion commands (for example, rewind, skip blocks, retension)
may take a long time. When using SCSI tape drives, these types of
functions can busy the SCSI bus to other users for excessive lengths of
time. To improve this situation, drivers should follow these guidelines:

• If possible, set the immediate return flag in the SCSI command packet,
to enable the tape drive to return status without waiting for motion to
complete.

• If possible, implement disconnect/reconnect, to enable the tape drive to
release the bus during long motion functions, allowing other SCSI
activity (such as disk accesses) to occur.

4Sequential Block File Manager (SBF)

OS-9 for 68K Processors Technical I/O Manual 243

Tape Streaming

Tape streaming is achieved when the process and driver are able to
send/receive data to/from the tape device at a rate equal to or faster than
the tape drive’s data I/O rate. The tape drive can keep the tape in motion
continuously, thus achieving the minimum data transfer time. If the data rate
falls below this threshold, the tape drive has to perform
stop-motion/reverse/start-motion functions whenever it has to wait for the
process/driver to issue the next I/O request. This stop/start motion can
significantly increase the time it takes for the overall tape operations.

To achieve maximum streaming on tapes, drivers should follow these
guidelines:

• Use buffered I/O (PD_NumBlk) on tape drives supporting early EOT
detection.

• Set the logical block size (PD_BlkSiz) to the size of the tape drive’s
internal buffer (typical tape drives have an internal buffer to assist
streaming).

• If the tape drive supports immediate returns on writes, turn this function
on. Immediate returns allow the tape drive’s controller to indicate
command complete to the driver when the data is in the controller’s
internal buffer, but prior to writing the data to physical tape. The
controller then begins writing to tape while SBF is preparing for the next
write.

• On SCSI-based systems, implement disconnect/reconnect if possible,
so tape operations minimize SCSI bus occupancy. This allows
situations such as SCSI-disk to SCSI-tape backups to achieve
maximum overlaps of disk/tape activity.

SBF Device Driver Storage Definitions

SBF device driver modules contain a package of subroutines performing
block-oriented I/O to or from a specific hardware controller. Because these
modules are re-entrant, one copy of the module can simultaneously run
several identical I/O controllers.

244 OS-9 for 68K Processors Technical I/O Manual

IOMan allocates a static storage area for each device (which may control
several drives). The size of the storage area is given in the device driver
module header (M$Mem). Some of this storage area is required by IOMan
and SBF; the device driver may use the remainder in any manner.
Information on device driver static storage required by the operating system
can be found in the sbfdev.d DEFS files. Static storage is used as follows.

NoteNote
Offset refers to the location of a static storage field relative to the
starting address of the static storage. Offsets are resolved in assembly
code by using the names shown here and linking the module with the
relocatable library: sys.l.

Table 4-7 SBF Device Drivers and Static Storage

Offset Name Maintained By Description

$00 V_PORT IOMan Device base address

$04 V_LPRC IOMan Last active process ID

$06 V_BUSY File Manager Active process ID

$08 V_WAKE Driver Process ID to awaken

$0A V_Paths IOMan Linked list of open paths

$0E Reserved

$30 SBF_NDRV Driver Number of drives

$32 SBF_Flag File Manager Driver flags

4Sequential Block File Manager (SBF)

OS-9 for 68K Processors Technical I/O Manual 245

$34 SBF_Drvr File Manager Driver module pointer

$38 SBF_DPrc File Manager Driver process pointer

$3C SBF_IPrc Driver Interrupt process pointer

$40 Reserved

$80 Drive tables begin

Table 4-8 SBF Device Drivers and Descriptions

Name Description

V_PORT Device Port Address

Contains the device’s physical port address. It is copied
from M$Port in the device descriptor when the device
is attached by IOMan.

V_LPRC Last Active Process ID

Contains the process ID of the last process to use the
device. While this field is required for all static storage
by IOMan, it is not used by SBF.

Table 4-7 SBF Device Drivers and Static Storage (continued)

Offset Name Maintained By Description

246 OS-9 for 68K Processors Technical I/O Manual

V_BUSY Current Active Process

The process ID of the process currently using the
device. It is used to implement I/O blocking by SBF.
This field is also used by interrupt drivers when they
wish to suspend themselves, by copying V_BUSY to
V_WAKE (prior to suspending themselves). A value of 0
indicates the device is not busy.

V_WAKE Process ID to Awaken

The process ID of any process waiting for the device to
complete I/O. A value of 0 indicates no process is
waiting. The driver sets V_WAKE from V_BUSY. V_WAKE
provides the interlock between the driver and the
driver’s interrupt service routine.

V_PATHS Linked List of Open Paths

A singly-linked list of all paths currently open on this
device.

SBF_NDRV Number of Drives

Contains the number of drives the controller can use. It
is defined by the device driver as the maximum number
of logical drives with which the controller can work. SBF
assumes there is a drive table for each drive. SBF
validates the tape drive number (PD_TDrv) against this
value to ensure the logical drive number is valid for the
driver.

SBF_Flag Driver Flags

Contains flags used by SBF to indicate the current
state of the path.

Table 4-8 SBF Device Drivers and Descriptions (continued)

Name Description

4Sequential Block File Manager (SBF)

OS-9 for 68K Processors Technical I/O Manual 247

SBF_Drvr Driver Module Pointer

Contains the pointer to the device driver.

SBF_DPrc Driver Process Pointer

Contains the pointer to the process associated with the
driver. SBF initializes this when a path is opened to the
device. The driver’s TERM routine should check this
field, and if non-zero, delete the process (F$DelPrc).

SBF_IPrc Interrupt Process Pointer (obsolete)

This field is available for the driver to use when the
driver wishes to create its own process (for example,
interrupt handler process).

NOTE: Do not confuse this process with the SBF
process created for buffered I/O. (See SBF_DPrc.)

Drive Tables

Contains one table per drive the controller handles.
SBF assumes there are as many tables as specified in
SBF_NDRV.

Table 4-8 SBF Device Drivers and Descriptions (continued)

Name Description

248 OS-9 for 68K Processors Technical I/O Manual

Device Driver Tables

There must be as many drive tables as specified in SBF_NDRV. The format
of each drive table is given below:

Table 4-9 Drive Table Formats

Offset Name Maintained By Description

$00 SBF_DFlg File Manager Drive Flag

$02 SBF_NBuf File Manager Buffer Count

$04 SBF_IBH File Manager Pointer to Head of Input
Buffer List

$08 SBF_IBT File Manager Pointer to Tail of Input
Buffer List

$0C SBF_OBH File Manager Pointer to Head of
Output Buffer List

$10 SBF_OBT File Manager Pointer to Tail of Output
Buffer List

$14 SBF_Wait File Manager Pointer to Waiting
Process

$18 SBF_SErr Driver Number of Recoverable
Errors

$1C SBF_HErr Driver Number of
Non-Recoverable Errors

$20 Reserved

4Sequential Block File Manager (SBF)

OS-9 for 68K Processors Technical I/O Manual 249

Table 4-10 Device Driver Tables and Descriptions

Name Description

SBF_DFlg Drive Flag

The high byte of this field contains the current status of
the logical drive. The flags are maintained by SBF, and
are defined as follows:

bit 1: Set if write mode.

bit 2: Set if driver servicing this drive.

bit 3: Set if EOF (end of file).

All other bits and the low byte bits are reserved.

SBF_NBuf Buffer Count

Contains the number of buffers currently allocated to
the drive.

SBF_IBH Pointer to Head of Input Buffer List

SBF_IBT Pointer to Tail of Input Buffer List

These fields contain the head and tail pointers,
respectively, of the buffers being returned to SBF by the
driver.

SBF_OBH Pointer to Head of Output Buffer List

SBF_OBT Pointer to Tail of Output Buffer List

These fields contain the head and tail pointers,
respectively, of the buffers being sent to the driver by
SBF.

250 OS-9 for 68K Processors Technical I/O Manual

Linking SBF Drivers

After a SBF driver has been assembled into its relocatable object file
(ROF), the driver needs to be linked to produce the final driver module.
Linking resolves all code references in drivers comprised of several ROF
files. It also resolves the external data and static storage references by the
driver.

The most important part of linking is to correctly resolve the static storage
references. Generally, the static storage area is composed of three
sections in this order (see Figure 4-1):

1. I/O globals

2. Drive tables (one per logical drive)

3. Driver-declared variables

SBF_Wait User Process’ Process Descriptor Pointer

This pointer is set when the user process is suspended,
waiting for driver I/O to complete.

SBF_SErr Number of Recoverable Errors

This field allows the driver to keep a count of soft errors
during I/O operations. The value would typically be
returned by a SS_ELog GetStat call. After reading this
value, it is typically reset to 0.

SBF_HErr Number of Non-Recoverable Errors

This field allows the driver to keep a count of hard errors
during I/O operations. The value would typically be
returned by a SS_ELog GetStat call. After reading this
value, it is typically reset to 0.

Table 4-10 Device Driver Tables and Descriptions (continued)

Name Description

4Sequential Block File Manager (SBF)

OS-9 for 68K Processors Technical I/O Manual 251

The driver-declared variables are declared in vsect areas of the driver, but
they must be allocated after the drive table storage areas. The method
used to allocate all of the storage, in the correct order, is to link the
sbfstat.r library file, ‘n’ instances of sbfdrvtb.r, and then the driver
vsect. The sbfstat.r and sbfdrvtb.r files are located in the system’s
LIB directory.

The following examples show how a driver should be linked. The first link
line creates a driver supporting one logical drive, as only one drive table
vsect is allocated.

l68 /dd/LIB/sbfstat.r /dd/LIB/sbfdrvtb.r
RELS/sbviper.r -O=OBJS/sbviper

The second link line creates a driver supporting two logical drives, as two
drive table vsects are allocated:

l68 /dd/LIB/sbfstat.r /dd/LIB/sbfdrvtb.r
/dd/LIB/sbfdrvtb.r RELS/sbtape.r
 -O=OBJS/sbtape

NoteNote
Failure to link the I/O system globals and the correct number of drive
tables, and in the correct order, results in erratic driver operation.

252 OS-9 for 68K Processors Technical I/O Manual

Figure 4-1 SBF Static Storage Layout

SBF Device Driver Subroutines

As with all device drivers, SBF device drivers use a standard executable
memory module format with a module type of Drivr (code $E0). SBF
drivers are called in system state.

NoteNote
I/O system modules must have the following module attributes:

• They must be owned by a super-user (0.n).

iodev.a
(sbfstat.a)

sbfdev.d
(sbfstat.a)

sbfdrvtb.a

N/A
Driver-declared
Storage (vsect)

SBF Drive Tables
('n' copies, where n is
the maximum number of
drives)

SBF I/O Globals

IOMan I/O Globals

High Memory

Low Memory

N/A

sbfdev.r

DEFS File LIB File

sbfdrvtb.r

4Sequential Block File Manager (SBF)

OS-9 for 68K Processors Technical I/O Manual 253

• They must have the system-state bit set in the attribute byte of the
module header. OS-9 does not currently make use of this, but future
revisions may require I/O system modules be system-state modules.

The execution offset address in the module header points to a branch table
with seven entries. Each entry is the offset of the corresponding subroutine.
The branch table appears as follows:

Each subroutine should exit with the carry bit of the condition code register
cleared, if no error occurred. Otherwise, the carry bit should be set and an
appropriate error code returned in the least significant word of register
d1.w.

The TRAP entry point is currently not used by the kernel, but in the future
will be defined as the offset to error exception handling code. Because no
handler mechanism is currently defined, this entry point should be set to 0
to ensure future compatibility.

Table 4-11 Branch Table

Offset Address Entry Description

dc.w INIT initialize device

dc.w READ read character

dc.w WRITE write character

dc.w GETSTAT get device status

dc.w SETSTAT set device status

dc.w TERM terminate device

dc.w TRAP handle illegal exception (0 =
none)

254 OS-9 for 68K Processors Technical I/O Manual

The following pages describe each subroutine.

Table 4-12 SBF Device Driver Subroutines

Subroutine Description

GETSTAT/SETSTAT Get/Set Device Status

INIT Initialize Device and its Static Storage

IRQ Service Routine Service Device Interrupts

READ Read Block(s)

TERM Terminate Device

WRITE Write Block(s)

4Sequential Block File Manager (SBF)

OS-9 for 68K Processors Technical I/O Manual 255

GETSTAT/SETSTAT

Get/Set Device Status

Input
d0.w = status code
d2.l = argument count
(a1) = address of the path descriptor
(a2) = address of the device static storage area
(a3) = drive table
(a4) = process descriptor pointer
(a6) = system global data storage pointer

Output

Depends on the function code

Error Output
cc = carry bit set
d1.w = error code

Description

Calls involving parameter passing require the driver to examine or change
the register stack variables. These variables contain the contents of the
MPU registers at the time the I$GetStt/I$SetStt request was made.
Parameters passed to the driver are set up by the caller prior to using the
service call. Parameters passed back to the caller are available when the
service call completes. The register stack image pointer is stored in the
path descriptor (PD_RGS).

256 OS-9 for 68K Processors Technical I/O Manual

Typical SBF drivers have routines to handle the following I$SetStt codes:

Usually all I$GetStt codes and other I$SetStt codes return with an
unknown service request error (E$UnkSvc).

The following pages describe the driver’s role in the implementation of the
above I$SetStt calls.

SS_Feed erases all or part of the tape. The number of
blocks to be erased is passed in register d2.
If the count is -1, the entire tape is to be
erased from the current position to
end-of-tape (EOT), otherwise, the specified
count of blocks should be written, starting at
the current tape position.

The erase routine should:

Table 4-13 I$SetStt Codes

Code Description

SS_Feed Erase tape

SS_Opt Write path options section

SS_Reset Rewind tape

SS_Reten Retension tape

SS_RFM Skip past tape mark(s)

SS_Skip Skip block(s)

SS_SQD Place drive off-line

SS_WFM Write tape mark(s)

4Sequential Block File Manager (SBF)

OS-9 for 68K Processors Technical I/O Manual 257

Step 1. Initialize the drive, if required.

Step 2. Issue the appropriate command to achieve the desired erase function.
Many tape devices support a direct erase command. If the tape device
does not support this feature, the driver should perform writes to
simulate the desired effect. Once the command is issued, the driver
should wait for I/O to complete (with interrupts if possible).

Step 3. Check the status of the I/O command and return any error to SBF.

Step 4. If the driver maintains flags pertaining to current tape position, these
should be updated.

Step 5. Return status to SBF.

SS_Opt is called when the path descriptor options
are changed by the user. Typically, the driver
ignores this call.

SS_Reset rewinds the tape to beginning-of-tape
(BOT). The rewind routine should:

Step 1. Initialize the drive, if required.

Step 2. Issue the appropriate command to the device and wait for I/O to
complete (with interrupts, if possible).

Step 3. Check the status of the I/O command and return any error to SBF.

Step 4. If the driver maintains internal flags pertaining to current tape position,
they should be reset. Typical flags would be end-of-file and end-of-tape.
For drivers counting current filemark/block positions, these counters
should also be cleared.

Step 5. Return status to SBF.

258 OS-9 for 68K Processors Technical I/O Manual

SS_Reten performs a retension pass on the tape.
Typically, the tape moves to BOT, moves to
EOT, then rewinds to BOT. The sequence of
actions for SS_Reten is the same as that
for SS_Reset.

Retensioning tape media is highly
recommended for new media, shipped
media, or any media stored for a long
period.

SS_RFM is called when the tape position is to be
moved forward or backwards by the
specified number of filemarks. (This number
is passed in register d2.) If the tape device
is incapable of directly skipping backward,
the driver has to simulate the reverse
movement using rewind and skip forward
commands. The sequence of actions for
SS_RFM is the same as that for SS_SQD.

SS_Skip is called when the tape position is to be
moved forward or backward the specified
number of tape blocks. The number of
blocks to skip is passed as a logical block
count (PD_BlkSz) in register d2. The driver
must translate this count into the media’s
physical block count. If the tape is incapable
of directly skipping backward, it has to
simulate the reverse movement using
rewind and skip forward commands. The
sequence of actions for SS_Skip is the
same as that for SS_SQD.

SS_SQD is called to unload the tape (put the tape
device off-line). Depending upon the
capabilities of the tape device, this action
may turn off the drive-select LED, or unload
and eject the media.

The unload routine should:

4Sequential Block File Manager (SBF)

OS-9 for 68K Processors Technical I/O Manual 259

Step 1. Initialize the drive, if required.

Step 2. Issue the appropriate command to the device and wait for I/O to
complete (with interrupts, if possible).

Step 3. Check the status of the I/O command and return any error to SBF.

Step 4. If the driver maintains flags pertaining to current tape position, these
should be updated.

Step 5. Return status to SBF.

SS_WFM is called to write the specified number of
filemarks to the tape. (This number is
passed in register d2.) Applications may
place filemarks on the tape as they see fit.
The sequence of actions for SS_WFM is the
same as that for SS_SQD.

260 OS-9 for 68K Processors Technical I/O Manual

INIT

Initialize Device and its Static Storage

Input
(a1) = address of the device descriptor module
(a2) = address of device static storage
(a4) = process descriptor pointer
(a5) = register’s stack pointer
(a6) = system global data pointer

Output

None

Error Output
cc = carry bit set
d1.w = error code

Description

INIT does the following:

• Initializes the device’s permanent storage. Minimally, this consists of
initializing SBF_NDRV to the number of drives with which the controller
works.

• If the driver maintains flags/variables that must span detach/attach
sequences (for example, for reverse movement simulation), then the
INIT routine should create/link to an external module (for example, a
data module). The module pointer should then be saved. If the module
was created, its storage area should then be initialized.

• Places the IRQ service routine on the IRQ polling list by using the
FIRQ/FFIRQ service requests, if required.

• Initializes device control registers (enable interrupts if necessary).

Prior to being called, the device permanent storage is cleared (set to 0)
except for V_PORT, which contains the device address.

4Sequential Block File Manager (SBF)

OS-9 for 68K Processors Technical I/O Manual 261

If INIT returns an error, it does not have to clean up its operation (for
example, remove device from polling table or disable hardware). IOMan
calls TERM to allow the driver to clean up INIT’s operation before returning
to the calling process.

NoteNote
If the INIT routine causes an interrupt to occur, handle the interrupt in
one of two ways:

• Process the interrupt directly by masking interrupts to the level of the
device, polling/servicing the device hardware, then restoring the
previous interrupt level. This is the preferred technique unless the
interrupt is time-consuming.

• Allow the interrupt service routine to service the hardware. In this
case, the process descriptor contains the process ID (P$ID) to
which V_WAKE should be set. You cannot use V_BUSY because it is
zero when INIT is called.

262 OS-9 for 68K Processors Technical I/O Manual

IRQ Service Routine

Service Device Interrupts

Input
d0.w = vector offset
(a2) = static storage address
(a3) = port address
(a6) = system global static storage

Output

None

Error Output
cc = carry set (interrupt not serviced)

Description

The IRQ Service Routine does the following:

Step 1. Check the device for a valid interrupt. If the device does not have an
interrupt pending, the carry bit must be set and the routine exited with
an RTS instruction as quickly as possible. Setting the carry bit signals
the kernel that the next device on the vector should have its IRQ service
routine called.

Step 2. Service device interrupts.

Step 3. Wake up the driver mainline, using the synchronization method of the
driver:

Signals Send a wake-up signal to the process
whose process ID is in V_WAKE, when the
I/O is complete. Also, clear V_WAKE as a
flag to the mainline program that the IRQ
has occurred.

Events Signal the event that the IRQ has occurred,
using the event system’s signal function.

4Sequential Block File Manager (SBF)

OS-9 for 68K Processors Technical I/O Manual 263

Step 4. Clear the carry bit and exit with an RTS instruction after servicing an
interrupt.

Avoid exception conditions (for example, a Bus Error) when IRQ service
routines are executing. Under the current version of the kernel, an
exception in an IRQ service routine crashes the system.

IRQ service routines may destroy the contents of following registers only:
d0, d1, a0, a2, a3, and a6. The contents of all other registers must be
preserved or unpredictable system errors (system crashes) occur.

NoteNote
The description above assumes you are using the F$IRQ system for
interrupt servicing. If you are using the Fast Interrupt System (F$FIRQ),
note the following:

• Input:

d0.w = vector offset
(a2) = static storage
(a6) = system global pointer

• Only d0 and (a2) can be destroyed.

• Returning carry set causes polling of F$IRQ installed devices for the
same vector.

264 OS-9 for 68K Processors Technical I/O Manual

READ

Read Block(s)

Input
d0.l = buffer size
(a0) = address of buffer
(a2) = address of device static storage
(a3) = drive table
(a4) = process descriptor pointer
(a6) = system global data storage pointer

Output
d1.l = block size read

Error Output
cc = carry bit set
d1.w = error code

Description

READ does the following:

• Initialize the drive, if required.

• Convert the requested byte-count into the block-count for the media. If
the requested count does not specify an integral number of media
blocks, the driver returns an error (typical case) or takes steps to buffer
the partial block.

• Issue the READ command to the device and wait for I/O to complete
(using interrupts if possible).

• When the I/O operation is complete, check the status of the READ. If a
fatal error occurred, return it to SBF.

• If no error, or a non-fatal error occurred, check the amount of data
actually read and return that count to SBF.

4Sequential Block File Manager (SBF)

OS-9 for 68K Processors Technical I/O Manual 265

• Most tape devices terminate a READ request when a filemark is
encountered. The tape device returns the data from the current position
up to the filemark. Thus, the byte-count returned may be less than the
requested amount. This is a typical non-fatal error on tape devices.

266 OS-9 for 68K Processors Technical I/O Manual

TERM

Terminate Device

Input
(a1) = address of the device descriptor module
(a2) = address of device static storage area
(a4) = process descriptor pointer
(a6) = system global static storage

Output

None

Error Output
cc = carry set
dl.w = error code

Description

The TERM routine must:

• Wait until any pending I/O has completed.

• Disable the device interrupts.

• Remove the device from the IRQ polling list.

• Kill the driver process created by SBF. If SBF_DPrc is non-zero, this is a
pointer to the driver’s process descriptor. This process is returned by
making a F$DelPrc system call with the process ID from P$ID.

• If the driver maintains flags/variables that must span detach/attach
sequence, then the TERM routine should unlink any external modules
linked to during INIT.

4Sequential Block File Manager (SBF)

OS-9 for 68K Processors Technical I/O Manual 267

NoteNote
If an error occurs during the device’s INIT routine, IOMan calls the
TERM routine to allow the driver to clean up. If the TERM routine uses
static storage variables (for example, interrupt mask values, dynamic
buffer pointers), it should validate these variables prior to using them.
The INIT routine may not have set up all the variables prior to exiting
with the error.

268 OS-9 for 68K Processors Technical I/O Manual

WRITE

Write Block(s)

Input
d0.l = buffer size
(a0) = address of buffer
(a2) = address of the device static storage area
(a3) = drive table
(a4) = process descriptor pointer
(a6) = system global data storage pointer

Output

The buffer is written to tape.

Error Output
cc = carry bit set
d1.w = error code

Description

WRITE does the following:

• Initialize the drive, if required.

• Convert the requested byte-count into the block-count for the media. If
the requested count does not specify an integral number of media
blocks, then the driver should return an error (typical case) or take steps
to buffer the partial block.

• Issue the WRITE command to the device and wait for I/O to complete
(using interrupts if possible).

• When the I/O operation has completed, check the status of the WRITE.
If a fatal error occurred, return it to SBF.

• If no error, or a non-fatal error occurred, check the amount of data
actually written.

4Sequential Block File Manager (SBF)

OS-9 for 68K Processors Technical I/O Manual 269

Many tape devices terminate a write request when an early end-of-tape
(EOT) is detected. For these types of devices, the data can still be written
to tape because the EOT state is a warning there is a small amount of tape
remaining. The driver should ensure this write is fully completed, and return
a media full error (E$Full).

Subsequent write calls should not be refused at this point, as SBF may
need to flush its current buffers (if in buffered I/O mode) to the tape. The
application is notified of the media full condition on its next write, so it may
close the file. When the file closes, SBF issues appropriate SetStats (for
example, write filemark) to finalize tape operation.

If the tape device is one that only detects a physical EOT condition, then
the driver should only be operated in unbuffered I/O mode. In this case, the
driver should ensure the write invoking the physical EOT condition is
written to tape and a media full error (E$Full) returned to SBF. No further
writes should be presented to the driver, as the application is notified
immediately of the media full condition. The application can then close the
path, allowing SBF to write the final filemark and finalize tape operation.

270 OS-9 for 68K Processors Technical I/O Manual

OS-9 for 68K Processors Technical I/O Manual 271

 A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

Index

Symbols
"autosize" device (SS_DSize tells capacity) 121

Numerics
3 1/2" 80 track (2M unformatted, 1.4M formatted) 112
3 1/2" 80 track EXTRA density (4M unformatted) 111
5 1/4" 77 track '8" image' 117
5 1/4" 80 track '8" image' 116
5 1/4", 40 track drive, single density 112
5 1/4", 40 track, double density drive 113
5 1/4", 80 track drive, double density 115
5 1/4", 80 track, single density drive 114
8", 77 track drive, single density 119
8", 77 track, double density 119

A
abort character 190
access mode (R W E S D) 29
add

Adaptec ACB4000 disk controller 62
devices of the same type as the existing device 63
devices to the system 18
second SCSI bus 61

address
caller’s MPU register stack 30
data Buffer 30
device table entry address 29
translation and DMA transfers 72

algorithm 72
allocation map 136
attach routine 14

272 OS-9 for 68K Processors Technical I/O Manual

 A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

autosize 121

B
backspace character 179
baud rate 183
bitmap

in use flag 138
maximum sector number 139
offset into current sector number 139
size 138

bootstrap ROM 72
buffer count 249
buffered I/O 227
buffering 234

C
cache

control 69
queue 139

caching 68
CDFM 25
character-oriented device 64
cluster size 136
colored memory 72
combined hard/floppy interface 131
common physical formats 123
Compat variables 69
create

RBF device descriptor 106
current

active process 132, 196, 246
track number 137

cylinders on device 96

D
D_SnoopD 71
d1.w 44

OS-9 for 68K Processors Technical I/O Manual 273

 A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

d540 112
d580 114
d877 119
data

flow control 191
modules 55
transfer 98

DD_SIZ 133
dd540 113
dd580 115
dd877 119
default sectors/track 91
delete 178

line character 179
destructive backspace 178
DevCon 56
device

base address 196
base port address 132
class 234
configuration 24
control word 94
descriptor 12
descriptor layout 19
descriptor module 18
descriptor name string 183
driver 12
driver modules 43
driver name 14
driver name offset 23
driver static storage 131
driver tables 133, 248
drivers that control multiple devices 52
mode capabilities 23
port address 245
table 14
table pointer 100
type 24, 87, 178

directory file descriptor 100
disk

density 90

274 OS-9 for 68K Processors Technical I/O Manual

 A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

format 137
ID 137, 138
type 89

disk formats 104
DMA 92, 129

I/O and system caches 68
transfers 72

drive
flag 249
initialized flag 138
number 87
table 247
table extension pointer 139
tables 133

driver 12
flags 246
mainline 65
module format 43
module pointer 247
process pointer 247
process priority 235

DUART (Dual Universal Asynchronous Receiver Transmitter) 54
duplicate last line character 180

E
E$Full 228
E$SectSiz 93
E$UnkSvc 145, 173, 240
E$UnkSvc error 93
echo 178

character 181
ed380 111
end of

file character 180
page 197
record character 179
tape 240
tape processing 228

entry pointer 100
ERROR 46

OS-9 for 68K Processors Technical I/O Manual 275

 A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

error accumulator 198
errors 139, 250
EVENTS 66
example

device descriptor fields 126
hardware support 125
system setup 59

F
F$CCtl 71
F$IRQ 64
F$Trans 72
file

attributes 99
descriptor 99
name 100

file manager 12, 36
I/O service requests 39
name 14
name offset 23
organization 38
sample 38
working storage 31

floppy
universal format 121

floppy disk formats 104
formats 104

G
get/set device status 144
GETSTAT 46
GETSTAT/SETSTAT 204, 255
GFM 25
global “errno” for C language file managers 30
group/user ID 30

276 OS-9 for 68K Processors Technical I/O Manual

 A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

H
hardware

flow control 191
hd380 112
hd577 117
hd580 116
heads 90
high-level functions 56

I
I$Attach 14, 16, 76
I$ChgDir 39, 77
I$Close 39, 77, 171, 229
I$Create 15, 39, 77, 171, 229
I$Delete 40, 78
I$Detach 15, 17, 76
I$Dup 16, 17, 76
I$GetStt 40, 79, 171
I$MakDir 40, 79
I$Open 14, 15, 40, 79, 171, 230
I$Read 40, 80, 170, 172, 227, 230
I$ReadLn 41, 81, 172, 230
I$Seek 41, 81
I$SetStt 41, 81, 173, 230
I$Write 42, 82, 170, 174, 227, 231
I$Writln 42, 174, 231
I/O

blocking 53, 56
service requests 226
service requests handled by SCF 168
system components 10
system layout 45
system layout during the IRQ service routine 48
system module organization 13

IFMAN 25
INIT 15, 45, 52, 55, 64, 130, 209

details 150
initialization table 26
input buffer list 249

OS-9 for 68K Processors Technical I/O Manual 277

 A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

intelligent controller 131
internal data structures 14
interrupt

characters 190
driven I/O 64
level 22, 67
mode 169
polling priority 22
process pointer 247
service routine 65
vector number 21

interrupt-driven system 128
IOMan 10

I/O service requests 16
IRQ 47

polling priority 65
service routine 211, 267

K
keyboard

abort character 181
interrupt character 180
interrupt characters 198

L
last active process ID 30, 132, 196, 245
letter case 178
line

editing functions 170
feed 178
overflow character 181

linked list of open paths 132
linking

RBF drivers 140
SBF drivers 250
SCF Drivers 199

local static storage 44
logical

278 OS-9 for 68K Processors Technical I/O Manual

 A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

devices 18
disk format 104, 124
format 106
sector offset 96
sector size 100, 128

low-level functions 56
LSN of root directory FD 136

M
M$Compat 69
M$Compat2 69
M$Exec 44
M$Mem 44, 131, 193, 244
M$Opt 232
M$Vector 65
maximum

number of devices 64
transfer count 98

media access attributes 136
module name 18
multi-device single-controller device 53
multi-port devices 54

N
new device 52
NFM 25
non-variable sector size driver 93
non-volatile RAM disk 108
null count 179
NULLs 190
number of

cylinders (tracks) 90
drives 133
tries 95

number of drives 246
NVRAM 25
nvramdisk 108

OS-9 for 68K Processors Technical I/O Manual 279

 A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

O
OEM global storage 54
offset table 44
open

file list 137
paths 196, 246
paths on device 30

option table 31
output buffer list 249
owner ID 136

P
page

length 179
pause 179, 190

parity 197
code 182
stripping 190

park head 96
path

descriptor 15, 27
lost flag 199
number 29
table 14

paths using this PD 30
pause

character 180, 198
request 197

PCF 37
PD_BlkSiz 227
PD_CYL 105
PD_DNS 104, 126
PD_DTB 129, 133
PD_ILV 105
PD_NumBlk 227
PD_Rate 105, 126
PD_SCT 104
PD_SID 104
PD_SOffs 105

280 OS-9 for 68K Processors Technical I/O Manual

 A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

PD_SSize 93, 105, 128
PD_T0S 104
PD_TOffs 105
PD_TotCyl 105
PD_TYP 126
physical

devices 18
interrupt level 66

physical disk format 104, 124
physical format 104
PIPEMAN 25, 37
PKMAN 25
pointer to sector 0 138
polled

I/O 64
mode 169

port
address 14, 21

process ID to awaken 132, 196, 246

Q
quit character 198

R
ramdisk 107
RBF 25, 37

device descriptor modules 84
device driver storage definitions 131
device driver subroutines 142
device drivers 128
driver types 130
general description 76
I/O service requests 77
path descriptor definitions 99
Random Block File manager 12

RBFDesc macro 107
READ 46, 155, 216
recoverable errors 250

OS-9 for 68K Processors Technical I/O Manual 281

 A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

reduced write current 96
re-entrant device drivers 52
reprint line character 180
requester’s process ID 29
reserved bitmap sector number 139
rotational rate 98

S
sample

assembly language header 43
beginning of file manager module 38

SBF 25, 37
device descriptor modules 232
device driver storage definitions 243
device driver subroutines 252
device drivers 240
general description 226
I/O service requests 228
path descriptor definitions 238
path flags 235

SCF 25, 37
device descriptor modules 175
device driver storage definitions 193
device driver subroutines 201
device drivers 189
general description 168
I/O service requests 170
line editing 170
path descriptor definitions 185
Sequential Character File manager 12

SCSI
controller ID 97
drive logical unit number 95
driver options flags 97

sector
0 read flag 138
base offset 92
interleave factor 92
size 93

segment

282 OS-9 for 68K Processors Technical I/O Manual

 A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

allocation size 91
service device interrupts 152
SETSTAT 46
sides 90
SIGNALS 65
simple

floppy interface 130
SOCKMAN 25
software flow control 190
special characters 190
SS_DCDOff 192
SS_DCDOn 192
SS_DsRTS 192
SS_EnRTS 192
SS_Opt 173
SS_VarSect 130
stale data 70
static storage 131, 197
step rate 88
supported media formats 106
sys.l 19
Syscache module 68
system

cache 68
global pointer for C language file managers 31

T
tab 184
table size 24
tape

drive number 234
positioning operations 242
streaming 243
writing to 228

TERM 15, 45, 130, 219, 266
details 160

total number of sectors 136
track

base offset 92
size (in sectors) 136

OS-9 for 68K Processors Technical I/O Manual 283

 A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

TransFact 72
TRAP 46, 142

U
UART (Universal Asynchronous Receiver Transmitter) 52
UCM 25
unbuffered I/O 227
universal 5 1/4" 77 track '8" image' 118
universal 5 1/4" 80 track 115
universal format 121
universal path descriptor fields 27
unlink 15
user process’ process descriptor pointer 250
usr.l 19
uv577 118
uv580 115
uv877 120

V
V_BUSY 53
V_NDRV 133
V_ScZero 129
V_ZeroRd 129
variable sector size driver 93
verify flag 91
volatile RAM disk 107

W
WRITE 46, 162, 221
write precompensation 96
write-only registers 54
writing to tapes 228

X
xmode 170

284 OS-9 for 68K Processors Technical I/O Manual

 A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

X-OFF 184, 199
X-ON 183, 198

	OS-9® for 68K Processors Technical I/O Manual
	Table of Contents
	Chapter 1: The OS-9 Input/Output System
	The OS-9 Unified Input/Output System
	The Kernel/IOMan
	File Managers
	Device Drivers
	Device Descriptor

	IOMan and I/O
	Device Table and Path Table
	Path Descriptors
	IOMan I/O Service Requests
	I$Attach
	I$Detach
	I$Dup

	Device Descriptor Modules
	Module Offsets
	Device Descriptors
	Device Types

	Path Descriptors
	System State Time-slicing
	File Manager Guidelines
	Device Driver Guidelines
	System-State Threads

	Status Register Considerations
	Interrupt Masking
	System State Threads

	File Managers
	File Manager Organization
	File Manager I/O Service Requests

	Device Driver Modules
	Driver Module Format
	TRAP
	IRQ

	Device Drivers That Control Multiple Devices
	Simple Devices
	Multi-Port Devices
	OEM Global Storage
	Data Modules
	Devices

	Examples of Multi-Class Devices Using SCSI System Concept

	Examples
	Hardware Configuration
	OMTI5400 Controller:
	Fujitsu 2333 Hard Disk with Embedded SCSI Controller:
	MVME147 Host CPU:

	Software Configuration
	Example One
	Example Two
	Example Three

	Interrupt Driven I/O
	DMA I/O and System Caches
	Syscache Module
	Init Module
	Avoiding Stale Data Problems

	Address Translation and DMA Transfers

	Chapter 2: Random Block File Manager (RBF)
	RBF General Description
	RBF I/O Service Requests
	I$ChgDir
	I$Close
	I$Create
	I$Delete
	I$GetStt
	I$MakDir
	I$Open
	I$Read
	I$ReadLn
	I$Seek
	I$SetStt
	I$Write
	I$Writln

	RBF Device Descriptor Modules
	RBF Path Descriptor Definitions
	Floppy Disk Formats
	Physical Format
	Logical Format
	Supported Media Formats
	Universal Format
	Summary of Common Physical Formats
	Physical Disk Format
	Logical Disk Format
	Example Hardware Support
	Example Device Descriptor Fields

	RBF Device Drivers
	Main Driver Types
	Simple Floppy Interfaces
	Combined Hard/Floppy Interfaces
	Intelligent Controllers

	RBF Device Driver Storage Definitions
	Device Driver Tables
	Linking RBF Drivers
	RBF Device Driver Subroutines
	GETSTAT/SETSTAT
	INIT
	IRQ Service Routine
	READ
	TERM
	WRITE

	Chapter 3: Sequential Character File Manager (SCF)
	SCF General Description
	Polled Mode
	Interrupt Mode
	SCF Line Editing
	SCF I/O Service Requests
	I$Close
	I$Create
	I$GetStt
	I$Open
	I$Read
	I$ReadLn
	I$SetStt
	I$Write
	I$Writln

	SCF Device Descriptor Modules
	SCF Path Descriptor Definitions
	SCF Device Drivers
	Special Characters and NULLs
	Parity Stripping
	Data Flow Control
	Hardware Flow Control
	Software Flow Control

	SCF Device Driver Storage Definitions
	Linking SCF Drivers
	SCF Device Driver Subroutines
	GETSTAT/SETSTAT
	INIT
	IRQ Service Routine
	READ
	TERM
	WRITE

	Chapter 4: Sequential Block File Manager (SBF)
	SBF General Description
	Unbuffered I/O
	Buffered I/O
	Considerations When Writing to Tapes
	End-Of-Tape Processing
	SBF I/O Service Requests
	I$Close
	I$Create
	I$GetStt
	I$Open
	I$Read
	I$ReadLn
	I$SetStt
	I$Write
	I$Writln

	SBF Device Descriptor Modules
	SBF Path Descriptor Definitions
	SBF Device Drivers
	Sensing the End-of-Tape
	Early EOT Warning
	Physical EOT Warning

	Tape Positioning Operations
	Tape Streaming
	SBF Device Driver Storage Definitions
	Device Driver Tables
	Linking SBF Drivers

	SBF Device Driver Subroutines
	GETSTAT/SETSTAT
	INIT
	IRQ Service Routine
	READ
	TERM
	WRITE

	Index

