
w w w. ra d i sy s . co m
Revision A • July 2006

OS-9® for Assabet/Neponset
Board Guide

Version 4.7

July 2006
Copyright ©2006 by RadiSys Corporation

All rights reserved.
EPC and RadiSys are registered trademarks of RadiSys Corporation. ASM, Brahma, DAI, DAQ, MultiPro, SAIB, Spirit, and ValuePro are
trademarks of RadiSys Corporation.
DAVID, MAUI, OS-9, OS-9000, and SoftStax are registered trademarks of RadiSys Corporation. FasTrak, Hawk, and UpLink are
trademarks of RadiSys Corporation.
† All other trademarks, registered trademarks, service marks, and trade names are the property of their respective owners.

Copyright and publication information

This manual reflects version 4.7 of Microware OS-9.
Reproduction of this document, in part or whole, by any means,
electrical, mechanical, magnetic, optical, chemical, manual, or
otherwise is prohibited, without written permission from RadiSys
Microware Communications Software Division, Inc.

Disclaimer

The information contained herein is believed to be accurate as of
the date of publication. However, RadiSys Corporation will not be
liable for any damages including indirect or consequential, from
use of the OS-9 operating system, Microware-provided software,
or reliance on the accuracy of this documentation. The
information contained herein is subject to change without notice.

Reproduction notice

The software described in this document is intended to
be used on a single computer system. RadiSys
Corporation expressly prohibits any reproduction of the
software on tape, disk, or any other medium except for
backup purposes. Distribution of this software, in part
or whole, to any other party or on any other system
may constitute copyright infringements and
misappropriation of trade secrets and confidential
processes which are the property of RadiSys
Corporation and/or other parties. Unauthorized
distribution of software may cause damages far in
excess of the value of the copies involved.

OS-9 for the Assabet/Neponset Board Guide 3

Table of Contents

Chapter 1: Installing and Configuring OS-9® 9

10 Requirements and Compatibility
10 Host Hardware Requirements (PC Compatible)
11 Host Software Requirements (PC Compatible)
11 Target Hardware Requirements
11 Java Hardware Requirements
12 Target Hardware Setup
13 Connecting the Target to the Host
15 Building the OS-9 ROM Image
15 Overview
15 Coreboot
15 Bootfile
16 Starting the Configuration Wizard
18 Booting from the On-Board Flash
18 Booting from an ATA Flash Card or Using bootp
26 Pinging the Target Board
27 Creating a Startup File
28 Example Startup File
30 Optional Procedures
30 Creating a new OS-9 Coreboot Image or ROM Image in Flash

Memory
31 Making a Coreboot Image with an EPROM programmer or

Intel’s JFlash Utility
33 Compressing the Bootfile Image

Chapter 2: Board-Specific Reference 35

36 Boot Options

4 OS-9 for the Assabet/Neponset Board Guide

36 Booting from Flash
37 Booting from PCMCIA ATA Card
37 Booting from PCMCIA Ethernet Card
37 Booting over Serial Communications Port via Kermit
38 Restart Booter
38 Break Booter
40 The Fastboot Enhancement
40 Overview
41 Implementation Overview
41 B_QUICKVAL
41 B_OKRAM
42 B_OKROM
42 B_1STINIT
42 B_NOIRQMASK
43 B_NOPARITY
43 Implementation Details
43 Compile-time Configuration
44 Runtime Configuration
45 OS-9 Vector Mappings
54 Assabet GPIO Usage
56 GPIO Interrupt Polarity
57 Board-Specific Register Access Functions
59 Example
60 Port Specific Utilities

Appendix A: Board-Specific Modules 67

68 Low-Level System Modules
72 High-Level System Modules
72 CPU Support Modules
73 System Configuration Module
73 Power Management Support Modules
73 Interrupt Controller Support
74 Real Time Clock

OS-9 for the Assabet/Neponset Board Guide 5

74 Ticker
74 Abort Handler
74 Generic IO Support modules (File Managers)
75 Pipe Descriptor
75 RAM Disk Support
75 Descriptors for Use with RAM
76 Serial and Console Devices
76 Descriptors for Use with sc1100
76 Descriptors for use with sc1101
77 Descriptors for use with sc16550
77 Descriptors for Use with scllio
78 PCMCIA Support for IDE Type Devices
78 Descriptors for Use with rb1003
79 PCMCIA Support for Socket-LPE Ethernet Card (NE2000

Compatible)
79 Descriptors for Use with spne2000
79 PCMCIA Support for 3COM Ethernet Card
80 spe509_pcm Descriptors
80 SMC91C94 Ethernet Support
80 Descriptor for Use with sp91c94
80 Network Configuration Modules
81 UCB1300 Support Modules
81 Descriptors for Use with spucb1200
81 Maui Graphical Support Modules
81 Descriptors for Use with gx_sa1100
82 Descriptors for Use with sd_ucb1200
82 MAUI configuration modules
82 MAUI protocol modules

Appendix B: MAUI Driver Descriptions 83

84 Assabet Objects
84 MAUI objects
85 GX_SA1100 LCD Graphic Driver Specification

6 OS-9 for the Assabet/Neponset Board Guide

85 Board Ports
86 Device Capabilities
87 Display Resolution
88 Coding Methods
89 Viewport Complexity
89 Memory
90 Location
90 Build the Driver
90 Build the Descriptor
91 SD_UCB1200 Sound Driver Specification
91 Device Capabilities
93 Gain Capabilities Array
95 Sample Rates
95 Number of Channels
96 Encoding and Decoding Formats
97 SPUCB1200 driver for the UCB1200 Codec
97 Capabilities
97 Descriptors
98 UCB
98 Audio
98 Touch Screen
99 GPIO
100 Telecom
100 Supporting Modules
101 MP_UCB1200 MAUI Touch screen Protocol Module
101 Overview
101 Data Format
101 Data Filter
102 Raw Mode
102 cdb.touch
103 Compile Time Options
104 Calibration Application
104 Assumptions/Dependencies
104 Command Line Options

OS-9 for the Assabet/Neponset Board Guide 7

105 Coordination with Protocol Module
105 Compiling

8 OS-9 for the Assabet/Neponset Board Guide

9

Chapter 1: Instal l ing and Configuring

OS-9®

This chapter describes installing and configuring OS-9® on the Intel
SA-1110 Microprocessor Reference Platform (Assabet) and the Intel
SA-1111 daughter card (Neponset). It includes the following sections:

• Requirements and Compatibility

• Target Hardware Setup

• Connecting the Target to the Host

• Building the OS-9 ROM Image

• Creating a Startup File

• Optional Procedures

NoteNote
This description does not require that the Neponset daughter card be
part of your development system. Neponset-specific modules and
descriptors are noted.

10 OS-9 for the Assabet/Neponset Board Guide

1 Installing and Configuring OS-9®

Requirements and Compatibility

NoteNote
Before you begin, install the Microware OS-9 for StrongARM
CD-ROM on your host PC.

Host Hardware Requirements (PC Compatible)

Your host PC should have the following:

• a minimum of 200 MB of free disk space (an additional 235MB of
free disk space is required to run PersonalJava™ Solution for OS-9)

• an Ethernet network card

• a PCMCIA card reader/writer

• at least 16MB of RAM

NoteNote
If you are a PersonalJava™ Solution for OS-9 licensee and you plan to
use the Java JCC to pre-load your Java classes, you may need as
much as 64MB of RAM. Refer to the document Using
JavaCodeCompact for a complete discussion of using the JCC.

1Installing and Configuring OS-9®

OS-9 for the Assabet/Neponset Board Guide 11

Host Software Requirements (PC Compatible)

Your host PC should have the following:

• Windows 95, 98, ME, 2000, or NT 4.0

• A terminal emulation program (such as Hyperterminal)

Target Hardware Requirements

For More Information
More In
fo More
Informatio
n More Inf
ormation M
ore Inform
ation More

-6-

Refer to the Intel StrongARM SA-1110 Microprocessor
Development Board User’s Guide and the Intel StrongARM SA-1111
Microprocessor Development Module User’s Guide for Assabet and
Neponset hardware requirements, respectively.

Also refer to these manuals for information on hardware preparation
and installation, operating instructions, and functional descriptions prior
to installing and configuring OS-9.

Intel documenatation is provided online in PDF format at
www.intel.com.

Java Hardware Requirements

PersonalJava™ Solution for OS-9 requires the following features:

• 16MB of RAM

• 4MB of Flash (Boot)

• LCD Display

12 OS-9 for the Assabet/Neponset Board Guide

1 Installing and Configuring OS-9®

Target Hardware Setup

Microware OS-9 for StrongARM provides the necessary software to run
the Assabet development board, with or without the Neponset daughter
card. There are no OS-9 -specific hardware considerations.

WARNING!
If the Neponset daughter card is attached to the Assabet development
board, do not insert a PCMCIA card into the Assabet’s PCMCIA port.
Use the Neponset’s PCMCIA port instead.

NoteNote
When the Neponset daughter card is used, the outer PCMCIA slot is
slot #0 and the inner PCMCIA slot is slot #1.

For More Information
More In
fo More
Informatio
n More Inf
ormation M
ore Inform
ation More

-6-

Refer to the Intel StrongARM SA-1110 Microprocessor
Development Board User’s Guide and the Intel StrongARM SA-1111
Microprocessor Development Module User’s Guide for Assabet and
Neponset hardware setup procedures, respectively.

Intel documenatation is provided online in PDF format at
www.intel.com.

1Installing and Configuring OS-9®

OS-9 for the Assabet/Neponset Board Guide 13

Connecting the Target to the Host

Connect an RS-232 null modem cable from the Target board to the
serial port of a Windows host system.

Step 1. Connect the serial cable to the J10 connector (or the DB9 connector
that connects to J10) on the Target board. The J10 connector is the
SA1110 serial port 1 (SP1).

Step 2. Connect the other end of the serial cable to the Host PC.

Step 3. On the Windows desktop, click on the Start button and select
Programs -> Accessories -> Hyperterminal.

Step 4. Once Hyperterminal is open, enter a name for your Hyperterminal
session.

Step 5. Select an icon for the new Hyperterminal session. A new icon is created
with the name of your session. Click OK.

Step 6. In the Phone Number dialog, go to the Connect Using box and select
the communications port to be used to connect to the reference board.

The port selected is the same port that you connected to the serial
cable from the reference board. Click OK.

Step 7. In the Port Settings tab, enter the following settings:

Bits per second = 19200

Data Bits = 8

Parity = None

Stop bits = 1

Flow control = XOn/XOff

14 OS-9 for the Assabet/Neponset Board Guide

1 Installing and Configuring OS-9®

Figure 1-1 Port Settings

Step 8. Click OK. A connection should be established.

NoteNote
If the word connected does not appear in the lower left corner of the
window, click Call -> Connect to establish the connection.

1Installing and Configuring OS-9®

OS-9 for the Assabet/Neponset Board Guide 15

Building the OS-9 ROM Image

Overview

The OS-9 ROM Image is a set of files and modules that collectively
make up the OS-9 operating system. The specific ROM Image contents
can vary from system to system depending on hardware capabilities
and user requirements.

To simplify the process of loading and testing OS-9, the ROM Image is
generally divided into two parts—the low-level image, called coreboot;
and the high-level image, called bootfile.

Coreboot

The coreboot image is generally responsible for initializing hardware
devices and locating the high-level (or bootfile) image as specified by its
configuration. For example from a Flash part, a harddisk, or Ethernet. It
is also responsible for building basic structures based on the image it
finds and passing control to the kernel to bring up the OS-9 system.

Bootfile

The bootfile image contains the kernel and other high-level modules
(initialization module, file managers, drivers, descriptors, applications).
The image is loaded into memory based on the device you select from
the boot menu. The bootfile image normally brings up an OS-9 shell
prompt, but can be configured to automatically start an application.

Microware provides a Configuration Wizard to create a coreboot image,
a bootfile image, or an entire OS-9 ROM Image. The wizard can also be
used to modify an existing image. The Configuration Wizard is
automatically installed on your host PC during the OS-9 installation
process.

16 OS-9 for the Assabet/Neponset Board Guide

1 Installing and Configuring OS-9®

Starting the Configuration Wizard

The Configuration Wizard is the application used to build the coreboot,
bootfile, or ROM image. To start the Configuration Wizard, perform the
following steps:

Step 1. From the Windows desktop, select Start -> Programs -> RadiSys
-> Microware OS-9 for <product> -> Configuration
Wizard. You should see the following opening screen:

Figure 1-2 Configuration Wizard Opening Screen

Step 2. Select your target board from the Select a board pull-down menu.

1Installing and Configuring OS-9®

OS-9 for the Assabet/Neponset Board Guide 17

Step 3. Select the Create new configuration radio button from the
Select a configuration menu and type in the name you want to give
your ROM image in the supplied text box. This names your new
configuration, which can later be accessed by selecting the Use
existing configuration pull down menu.

Step 4. Select the Advanced Mode radio button from the Choose Wizard
Mode field and click OK. The Wizard’s main window is displayed. This is
the dialog from which you will proceed to build your image. An example
is shown in Figure 1-3.

Figure 1-3 Configuration Wizard Main Window

18 OS-9 for the Assabet/Neponset Board Guide

1 Installing and Configuring OS-9®

Booting from the On-Board Flash

The on-board Flash part provided with the board must be
reprogrammed with an OS-9 bootfile containing the necessary low-level
modules to boot from Flash, ATA, or using bootp.

For More Information
More In
fo More
Informatio
n More Inf
ormation M
ore Inform
ation More

-6-

Refer to the Creating a new OS-9 Coreboot Image or ROM Image in
Flash Memory section for this procedure.

NoteNote
When configuring your system to boot from the on-board Flash, it is
recommended that you obtain and use a separate Flash part for this
procedure. The original Flash part should be removed and saved.

Booting from an ATA Flash Card or Using bootp

This section describes how to use the Configuration Wizard to create a
bootfile suitable for loading into memory from a PCMCIA ATA card
or over the network using a bootp server (not provided).

Step 1. Start the Configuration Wizard, bringing it to the main configuration
window as outlined previously.

Step 2. If you want to use the target board across a network, you will need to
configure the Ethernet settings within the Configuration Wizard. To do
this, select Configure -> Bootfile -> Network
Configuration from the Wizard’s main menu.

1Installing and Configuring OS-9®

OS-9 for the Assabet/Neponset Board Guide 19

Step 3. From the Network Configuration dialog, select the Interface
Configuration tab. From here you can select and enable the
interface. For example, you can select the appropriate Ethernet card
from the list of options on the left and specify whether you would like to
enable IPv4 or IPv6 addressing. Figure 1-4 shows an example of the
Interface Configuration tab.

Figure 1-4 Bootfile -> Network Configuration -> Interface Configuration

20 OS-9 for the Assabet/Neponset Board Guide

1 Installing and Configuring OS-9®

For More Information
More In
fo More
Informatio
n More Inf
ormation M
ore Inform
ation More

-6-

To learn more about IPv4 and IPv6 functionalities, refer to the
Using LAN manual, included with this product CD.

For More Information
More In
fo More
Informatio
n More Inf
ormation M
ore Inform
ation More

-6-

Contact your system administrator if you do not know the network
values for your board.

Step 4. Once you have made your settings in the Network Configuration
dialog, click OK.

Step 5. Select Configure -> Bootfile -> Disk Configuration.

Step 6. On the RAM Disk tab, make sure that both check boxes are checked.

Select an appropriate size from the pulldown for a RAM disk. (512K
should be sufficient.)

Step 7. On the IDE Configuration tab, select the Enable IDE disk check box.

Make sure that the Socket #0 radio button is selected.

Step 8. From the Init Options tab complete the following tasks:

1. Select MShell under Initial Module Name.

2. Select /dd under Initial Device Name. Then select User.

3. Edit the Parameter List field and delete the following portions of text:

ipstart;

inetd <>>>/nil &;

> rtsol enet0

This text should only be present if networking was enabled.

Step 9. Click OK.

1Installing and Configuring OS-9®

OS-9 for the Assabet/Neponset Board Guide 21

Step 10. Select Configure -> Build Image.

Step 11. Under Build Type/Options select the Bootfile Only Image radio
button.

22 OS-9 for the Assabet/Neponset Board Guide

1 Installing and Configuring OS-9®

Step 12. Make sure that the following radio buttons are checked:

• ROM Utility Set

• Disk Support

• Disk Utilities

Step 13. If networking is desired, make sure that the following radio buttons are
checked:

• SoftStax® (SPF) Support

• User State Debugging Modules

Step 14. Click on the Build button.

When the build is complete the bootfile can be found in the following
location:

%MWOS%\OS9000\ARMV4\PORTS\ASSABET\BOOTS\INSTALL\PORTBOOT\os9kboot

If you are booting using a bootp server skip to Step 18.

Step 15. If the image is to be placed on a PCMCIA ATA card complete the
following tasks:

1. Insert the PCMCIA ATA card into the PCMCIA slot of your host
computer.

2. Click Save As to save the file os9kboot to the root directory of the
PCMCIA ATA card.

3. Turn off the power to the target board.

4. Remove the PCMCIA ATA card from the computer and insert it into
the socket on the target board.

5. Apply power to the board.

6. When prompted to “Press the spacebar for a booter menu", press
the spacebar. If you miss it, simply power-cycle the target board.

7. Enter ide0 and return. You should see the following screen:

Press the spacebar for a booter menu

BOOTING PROCEDURES AVAILABLE ---------- <INPUT>
Boot embedded OS-9 in-place ----------- <bo>
Copy embedded OS-9 to RAM and boot ---- <lr>
Boot from PCMCIA-1 IDE ---------------- <ide1>
Boot from PCMCIA-0 IDE ---------------- <ide0>

1Installing and Configuring OS-9®

OS-9 for the Assabet/Neponset Board Guide 23

Boot over Ethernet (NE2000) ----------- <eb>
Load bootfile via kermit Download ----- <ker>
Enter system debugger ----------------- <break>
Restart the System -------------------- <q>

Select a boot method from the above menu: ide0
Wait for IDE drive ready......ready.
IDE Model : Hitachi CV 6.1.2
Number Heads : 0x0004
Total Cylinders : 0x00f6
Sectors Per Track : 0x0020

Checking Partitions : 0
Fat Type : 0x12
File Name : OS9KBOOT
File Size : 0x002b5844
Start Cluster : 0x0000053d
Reading Bootfile....
Boot Address : 0xc002c860
Boot Size : 0x002b5844

OS-9 kernel was found.
A valid OS-9000 bootfile was found.
$

Step 16. If the image is to be loaded from a bootp server (not provided),
complete the following tasks:

1. Set up the bootp server such that it will serve the created image in
response to a request from the given Ethernet card (which is
identified by the Ethernet or MAC address -- this can be found by
going through the following steps once before setting up the server).

2. Copy the os9kboot image from the following location to the location
required by your server.

%MWOS%\OS9000\ARMV4\PORTS\ASSABET\BOOTS\INSTALL\PORTBOOT\os9kboot

3. Turn off the power to the target board.

4. Insert the PCMCIA networking card into the slot on the board;
connect it to the Ethernet.

5. Apply power to the board.

6. When prompted to "Press the spacebar for a booter menu", press
the spacebar. If you miss it, simply power-cycle the target board.

7. Enter eb and return.

You can also specify the bootfile name using eb bootfile=os9kboot:

24 OS-9 for the Assabet/Neponset Board Guide

1 Installing and Configuring OS-9®

NoteNote
The first line of output from the booter shows the Ethernet address of
the given card.

Press the spacebar for a booter menu

BOOTING PROCEDURES AVAILABLE ---------- <INPUT>

Boot embedded OS-9 in-place ----------- <bo>
Copy embedded OS-9 to RAM and boot ---- <lr>
Boot from PCMCIA-1 IDE ---------------- <ide1>
Boot from PCMCIA-0 IDE ---------------- <ide0>
Boot over Ethernet (NE2000) ----------- <eb>
Load bootfile via kermit Download ----- <ker>
Enter system debugger ----------------- <break>
Restart the System -------------------- <q>

Select a boot method from the above menu: eb bootfile=os9kboot

bootp: 00:c0:1b:00:b5:d0 broadcasting for server...try 1/8
bootp: Got Response from server: 172.16.1.6
bootp: My IP Address will be: 172.16.3.197
bootp: My Bootfile is: /h0/TFTPBOOT/os9kboot
bootp: My bootfile size is: 00001629 (512-byte) blocks
bootp: My subnet mask is: 255.255.0.0
bootp: <<no timeoffset tag>>
tftp: Starting tftp transfer...
tftp: received file with 002c516c bytes

Bootfile received from server 172.16.1.6
Now searching for an OS-9000 Kernel...
A valid OS-9 bootfile was found.
$

If the bootfile was loaded using the bootp server, proceed directly to
step 18. Otherwise, proceed to step 17.

Step 17. In order to use networking after booting off of the PCMCIA ATA Flash
card, do the following:

• Deinitialize the PCMCIA slot:

$ pcmcia -d

• Remove the PCMCIA Flash card from the slot. Slide the PCMCIA
networking card into the slot.

1Installing and Configuring OS-9®

OS-9 for the Assabet/Neponset Board Guide 25

• Initialize the PCMCIA slot:

$ pcmcia -i

PCMCIA Ethernet card found in socket #0

NoteNote
It is not possible to swap the networking card out for the Flash card.

WARNING!
Damage may occur to the PCMCIA card if it is inserted or removed
improperly.

Step 18. Networking can be started by executing the following steps. These
steps could have been executed automatically at startup for the bootp
case.

$ ipstart
$ inetd <>>>/nil &

Step 19. Test the Ethernet connections by pinging the target board.

If the ping operation fails, evaluate the following scenarios:

• Is the board connected to a live Ethernet port?

• Is the Ethernet cable defective?

• Are the network settings for the target board correct?

26 OS-9 for the Assabet/Neponset Board Guide

1 Installing and Configuring OS-9®

Pinging the Target Board

Windows 95, Windows 98, and Windows NT include a Ping command
that can be used to test the Ethernet connection for the Target board.

Step 1. Go to the DOS prompt.

Step 2. Type ping <IP Address>.

The IP Address is the address you assigned to the evaluation board
in either the Coreboot module or the Bootfile module. The address is
typed without the <> brackets.

If the ping was successful, you will see the following response:
Reply from <IP Address>: bytes=xx time =xms TTL= xx

If the ping was unsuccessful, you will see the following response:
Request timed out.

NoteNote
Windows 95, 98, and NT do not support IPv6.

1Installing and Configuring OS-9®

OS-9 for the Assabet/Neponset Board Guide 27

Creating a Startup File

When the Configuration Wizard is set to use a hard drive or another
fixed drive such as a PC Flash Card, as the default device, it
automatically sets up the init module to call the startup file in the SYS
directory in the target (For example: /h0/SYS/startup,
/mhc1/SYS/startup). However, this directory and file will not exist
until you create it. To create the startup file, complete the following
steps:

Step 1. Create a SYS directory on the target machine where the startup file
will reside (for example: makdir /h0/SYS, makdir /dd/SYS).

Step 2. On the host machine, navigate to the following directory:

MWOS/OS9000/SRC/SYS

In this directory, you will see several files. The files related to this
section are listed below:

• motd: Message of the day file

• password: User/password file

• termcap: Terminal description file

• startup: Startup file

Step 3. Transfer all files to the newly created SYS directory on the target
machine. (You can use Kermit, or FTP in ASCII mode to transfer these
files.)

Step 4. Since the files are still in DOS format, you will be required to convert
them into the OS-9 format with the cudo utility. The following command
is an example:
cudo -cdo password

This will convert the password file from DOS to OS-9 format.

28 OS-9 for the Assabet/Neponset Board Guide

1 Installing and Configuring OS-9®

For More Information
More In
fo More
Informatio
n More Inf
ormation M
ore Inform
ation More

-6-

For a complete description of all the cudo command options, refer to
the Utilities Reference Manual located on the Microware OS-9 CD.

Step 5. Since the command lines in the startup file are system-dependent, it
may be necessary to modify this file to fit your system configuration. It is
recommended that you modify the file before transferring it to the target
machine.

Example Startup File

Below is the example startup file as it appears in the
MWOS/OS9000/SRC/SYS directory:

-tnxnp

tmode -w=1 nopause

*

*OS-9 - Version 4.1

*Copyright 2002 by Microware Systems Corporation

*The commands in this file are highly system dependent and

*should be modified by the user.

*

setime </term ; start system clock

setime -s ;* start system clock

link mshell csl ;* make "mshell" and "csl" stay in memory

* iniz r0 h0 d0 t1 p1 term ;* initialize devices

* load utils ;* make some utilities stay in memory

* tsmon /term /t1 & ;* start other terminals

list sys/motd

setenv TERM vt100

tmode -w=1 pause

mshell<>>>/term -l&

1Installing and Configuring OS-9®

OS-9 for the Assabet/Neponset Board Guide 29

For More Information
More In
fo More
Informatio
n More Inf
ormation M
ore Inform
ation More

-6-

Refer to the Making a Startup File section in Chapter 9 of the Using
OS-9 manual for more information on startup files.

30 OS-9 for the Assabet/Neponset Board Guide

1 Installing and Configuring OS-9®

Optional Procedures

Creating a new OS-9 Coreboot Image or ROM Image in
Flash Memory

If you want to boot and run OS-9 from the on-board Flash part, or if you
want to use ROM Ethernet services such as system state debugging,
you must create a new coreboot file and possibly a new bootfile.

The coreboot image that was shipped with the target board does not
allow you to perform system state debugging because the IP address in
the Flash ROM is set to 0.0.0.0. You can create a new image for your
Flash part by using an EPROM programmer or by using Intel’s Jflash
utility.

NoteNote
Recreating the Coreboot Image is required only when system state
debugging is desired.

1Installing and Configuring OS-9®

OS-9 for the Assabet/Neponset Board Guide 31

Making a Coreboot Image with an EPROM programmer
or Intel’s JFlash Utility

This section describes creating a new Flash image. When you are done
creating your image you can either use your EPROM programmer to
load the image or use Intel's JFlash utility.

For More Information
More In
fo More
Informatio
n More Inf
ormation M
ore Inform
ation More

-6-

Please see your EPROM programmer's instructions for a description of
how to load the image via your programmer. See Intel's website for
information about the JFlash utility.

http://developer.intel.com

NoteNote
The shipping OS-9 systems have been tested with the following two
Flash parts: FlashFile28F160S3's and StrataFlash E28F128J3.

Larger sizes can be chosen from the Configuration Wizard by selecting
Select System Type and selecting the Setting based on pull
down menu.

NoteNote
When using Intel’s JFlash utility, make sure you program the entire
Flash part (select no when asked by the utility if you wish to save time
by programming only part of the Flash).

32 OS-9 for the Assabet/Neponset Board Guide

1 Installing and Configuring OS-9®

NoteNote
You can also create and load a new ROM image into EPROM.

To make a coreboot image with an EPROM programmer, complete the
following step:

Step 1. From the Windows desktop, select Start -> Programs -> RadiSys
-> Microware OS-9 for StrongARM <ver> ->
Configuration Wizard.

Step 2. Name the boot image in the Configuration Name field.

Step 3. Select Expert Mode and click OK. The Main Configuration window is
displayed.

Step 4. Make any necessary changes to the coreboot settings and possibly to
the bootfile settings. These procedures are described in the Building
the OS-9 ROM Image section.

Step 5. Select Configure -> Build Image to display the Master Builder
screen.

Step 6. Select the Coreboot Only Image setting and click Build.

Step 7. Click Save As to save the Coreboot image to a directory of your
choice. If you do not have that directory on the drive, you can create it.

NoteNote
If you are creating a new ROM Image instead of a Coreboot Image only,
follow the steps described above and return to the Master Builder
window. Select the ROM Image radio button and click Build.

This step creates a ROM image suitable for use with your binary ROM
burner.

1Installing and Configuring OS-9®

OS-9 for the Assabet/Neponset Board Guide 33

Step 8. Transfer the Coreboot Image (or ROM Image) to the EPROM with the
EPROM programmer. You will need to follow the documentation for the
EPROM programmer to complete this step.

Compressing the Bootfile Image

OS-9 bootfiles can be compressed to allow more modules to be loaded
into a bootfile; this can be useful if you plan on storing your image on a
small FLASH part or a floppy disk.

NoteNote
The bootfile compression utility performs the compression at
approximately a 2.5:1 ratio.

Complete the following steps to compress your image:

Step 1. Verify that your coreboot contains the uncompress module. This
module can be found in the pre-built ROM and coreboot images that
were shipped with your Microware OS-9 product.

NoteNote
The uncompress module must be included in order for the compression
to execute properly.

Step 2. Open the Configuration Wizard and select Configure -> Coreboot
-> Main Configuration from the main menu.

Step 3. Select the Bootfile Compression tab. Verify that the Include
bootfile uncompress module box is checked and select OK.

34 OS-9 for the Assabet/Neponset Board Guide

1 Installing and Configuring OS-9®

Step 4. When you are ready to build the image, open the Master Builder
dialog. Verify that the Compress Bootfile box is checked and then
press Build to begin the installing the image.

35

Chapter 2: Board-Specif ic Reference

This chapter contains information that is specific to the Intel StrongARM
SA-1110 Microprocessor development board (Assabet) and the Intel
StrongARM SA-1111 Microprocessor development module (Neponset).
It includes the following sections:

• Boot Options

• The Fastboot Enhancement

• OS-9 Vector Mappings

• Assabet GPIO Usage

• Board-Specific Register Access Functions

• Port Specific Utilities

For More Information
More In
fo More
Informatio
n More Inf
ormation M
ore Inform
ation More

-6-

For general information on porting OS-9, see the OS-9 Porting Guide.

36 OS-9 for the Assabet/Neponset Board Guide

2 Board-Specific Reference

Boot Options

Following are the default boot options for the reference board. You can
select these by hitting the space bar when the Now Trying to
Override Autobooters message appears on the console port when
booting.

You can configure these booters by altering the default.des file at
the following location:

MWOS/OS9000/ARMV4/PORTS/ASSABET/ROM

Booters can be configured to be either menu or auto booters. The auto
booters automatically attempt to boot in order from each entry in the
auto booter array. Menu booters from the defined menu booter array are
chosen interactively from the console command line after the boot
menu is displayed.

Booting from Flash

When the romcnfg.h has a ROM search list defined the options bo
and lr appear in the boot menu. If no search list is defined N/A appears
in the boot menu. If an OS-9 bootfile is programmed into Flash in the
address range defined in the default.des file, the system can boot
and run from Flash.

bo ROM boot—the system runs from the Flash
bank.

lr load to RAM—the system copies the Flash
image into ram and runs from there.

2Board-Specific Reference

OS-9 for the Assabet/Neponset Board Guide 37

Booting from PCMCIA ATA Card

The system can boot from a PC formatted PCMCIA hard card, which
resides in the PCMCIA slot.

ide0 The file os9kboot is searched for in slot 0. If
found it is copied to system RAM and runs from
there.

Booting from PCMCIA Ethernet Card

The system can boot using the bootp protocol using an Ethernet card
and eb option.

eb Ethernet boot—a PCMCIA card that supports
Ethernet will use the bootp protocol to transfer a
bootfile into RAM and the system runs from
there.

Booting over Serial Communications Port via Kermit

The system can download a bootfile in binary form over its serial
communication port at 115200 using the kermit protocol. The speed of
this transfer depends of the size of the bootfile, but expect at least a 3
minute wait, dots will show the progress of the download. The
communications port is located at header J14 and uses the SA1110's
SP3 UART.

ker kermit boot—The os9kboot file is sent via the
kermit protocol into system RAM and runs from
there.

38 OS-9 for the Assabet/Neponset Board Guide

2 Board-Specific Reference

Restart Booter

The restart booter enables a way to restart the bootstrap sequence.

q quit—quit and attempt to restart the booting
process.

Break Booter

The break booter allows entry to the system level debugger (if one
exists). If the debugger is not in the system the system will reset.

break break—break and enter the system level
debugger rombug.

Example boot session and message.

OS-9 Bootstrap for the ARM

ATA IDE disk found in socket 00
Now trying to Override autobooters.

BOOTING PROCEDURES AVAILABLE ------------- <INPUT>

Boot embedded OS-9 in-place -------------- <N/A>
Copy embedded OS-9 to RAM and boot ------- <N/A>
Boot from PCMCIA-1 IDE ------------------- <ide1>
Boot from PCMCIA-0 IDE ------------------- <ide0>
Load bootfile via kermit Download -------- <ker>
Restart the System ----------------------- <q>
Enter system debugger -------------------- <break>

Select a boot method from the above menu: ide0

Wait for IDE drive ready.
IDE Model : ATA_FLASH
Number Heads : 0x0002
Total Cylinders : 0x03d8
Sectors Per Track : 0x0020

Checking Partitions : 0
Fat Type : 0x16
File Name : OS9KBOOT
File Size : 0x000fdeb0

2Board-Specific Reference

OS-9 for the Assabet/Neponset Board Guide 39

Start Cluster : 0x00003a57
Reading Bootfile....

Boot Address : 0xc002c850
Boot Size : 0x000fdeb0

OS-9 kernel was found.
A valid OS-9 bootfile was found.
$

40 OS-9 for the Assabet/Neponset Board Guide

2 Board-Specific Reference

The Fastboot Enhancement

The Fastboot enhancements to OS-9 provide faster system bootstrap
performance to embedded systems. The normal bootstrap performance
of OS-9 is attributable to its flexibility. OS-9 handles many different
runtime configurations to which it dynamically adjusts during the
bootstrap process.

The Fastboot concept consists of informing OS-9 that the defined
configuration is static and valid. These assumptions eliminate the
dynamic searching OS-9 normally performs during the bootstrap
process and enables the system to perform a minimal amount of
runtime configuration. As a result, a significant increase in bootstrap
speed is achieved.

Overview

The Fastboot enhancement consists of a set of flags that control the
bootstrap process. Each flag informs some portion of the bootstrap
code that a particular assumption can be made and that the associated
bootstrap functionality should be omitted.

The Fastboot enhancement enables control flags to be statically defined
when the embedded system is initially configured as well as
dynamically altered during the bootstrap process itself. For example, the
bootstrap code could be configured to query dip switch settings,
respond to device interrupts, or respond to the presence of specific
resources which would indicate different bootstrap requirements.

In addition, the Fastboot enhancement’s versatility allows for special
considerations under certain circumstances. This versatility is useful in
a system where all resources are known, static, and functional, but
additional validation is required during bootstrap for a particular
instance, such as a resource failure. The low-level bootstrap code may
respond to some form of user input that would inform it that additional
checking and system verification is desired.

2Board-Specific Reference

OS-9 for the Assabet/Neponset Board Guide 41

Implementation Overview

The Fastboot configuration flags have been implemented as a set of bit
fields. An entire 32-bit field has been dedicated for bootstrap
configuration. This four-byte field is contained within the set of data
structures shared by the ModRom sub-components and the kernel.
Hence, the field is available for modification and inspection by the entire
set of system modules (high-level and low-level). Currently, there are six
bit flags defined with eight bits reserved for user-definable bootstrap
functionality. The reserved user-definable bits are the high-order eight
bits (31-24). This leaves bits available for future enhancements. The
currently defined bits and their associated bootstrap functionality are
listed below:

B_QUICKVAL

The B_QUICKVAL bit indicates that only the module headers of
modules in ROM are to be validated during the memory module search
phase. This causes the CRC check on modules to be omitted. This
option is a potential time saver, due to the complexity and expense of
CRC generation. If a system has many modules in ROM, where access
time is typically longer than RAM, omitting the CRC check on the
modules will drastically decrease the bootstrap time. It is rare that
corruption of data will ever occur in ROM. Therefore, omitting CRC
checking is usually a safe option.

B_OKRAM

The B_OKRAM bit informs both the low-level and high-level systems that
they should accept their respective RAM definitions without verification.
Normally, the system probes memory during bootstrap based on the
defined RAM parameters. This allows system designers to specify a
possible RAM range, which the system validates upon startup. Thus,
the system can accommodate varying amounts of RAM. In an
embedded system where the RAM limits are usually statically defined
and presumed to be functional, however, there is no need to validate the
defined RAM list. Bootstrap time is saved by assuming that the RAM
definition is accurate.

42 OS-9 for the Assabet/Neponset Board Guide

2 Board-Specific Reference

B_OKROM

The B_OKROM bit causes acceptance of the ROM definition without
probing for ROM. This configuration option behaves like the B_OKRAM
option, except that it applies to the acceptance of the ROM definition.

B_1STINIT

The B_1STINIT bit causes acceptance of the first init module found
during cold-start. By default, the kernel searches the entire ROM list
passed up by the ModRom for init modules before it accepts and uses
the init module with the highest revision number. In a statically
defined system, time is saved by using this option to omit the extended
init module search.

B_NOIRQMASK

The B_NOIRQMASK bit informs the entire bootstrap system that it should
not mask interrupts for the duration of the bootstrap process. Normally,
the ModRom code and the kernel cold-start mask interrupts for the
duration of the system startup. However, some systems that have a well
defined interrupt system (i.e. completely calmed by the sysinit
hardware initialization code) and also have a requirement to respond to
an installed interrupt handler during system startup can enable this
option to prevent the ModRom and the kernel cold-start from disabling
interrupts. This is particularly useful in power-sensitive systems that
need to respond to “power-failure” oriented interrupts.

NoteNote
Some portions of the system may still mask interrupts for short periods
during the execution of critical sections.

2Board-Specific Reference

OS-9 for the Assabet/Neponset Board Guide 43

B_NOPARITY

If the RAM probing operation has not been omitted, the B_NOPARITY
bit causes the system to not perform parity initialization of the RAM.
Parity initialization occurs during the RAM probe phase. The
B_NOPARITY option is useful for systems that either require no parity
initialization at all or systems that only require it for “power-on” reset
conditions. Systems that only require parity initialization for initial
“power-on” reset conditions can dynamically use this option to prevent
parity initialization for subsequent “non-power-on” reset conditions.

Implementation Details

This section describes the compile-time and runtime methods by which
the bootstrap speed of the system can be controlled.

Compile-time Configuration

The compile-time configuration of the bootstrap is provided by a
pre-defined macro (BOOT_CONFIG), which is used to set the initial
bit-field values of the bootstrap flags. You can redefine the macro for
recompilation to create a new bootstrap configuration. The new
over-riding value of the macro should be established by redefining the
macro in the rom_config.h header file or as a macro definition
parameter in the compilation command.

The rom_config.h header file is one of the main files used to
configure the ModRom system. It contains many of the specific
configuration details of the low-level system. Below is an example of
how you can redefine the bootstrap configuration of the system using
the BOOT_CONFIG macro in the rom_config.h header file:

#define BOOT_CONFIG (B_OKRAM + B_OKROM + B_QUICKVAL)

Below is an alternate example showing the default definition as a
compile switch in the compilation command in the makefile:

SPEC_COPTS = -dNEWINFO –dNOPARITYINIT –dBOOT_CONFIG=0x7

44 OS-9 for the Assabet/Neponset Board Guide

2 Board-Specific Reference

This redefinition of the BOOT_CONFIG macro results in a bootstrap
method that accepts the RAM and ROM definitions without verification,
and also validates modules solely on the correctness of their module
headers.

Runtime Configuration

The default bootstrap configuration can be overridden at runtime by
changing the rinf->os->boot_config variable from either a
low-level P2 module or from the sysinit2() function of the
sysinit.c file. The runtime code can query jumper or other hardware
settings to determine what user-defined bootstrap procedure should be
used. An example P2 module is shown below.

NoteNote
If the override is performed in the sysinit2() function, the effect is
not realized until after the low-level system memory searches have
been performed. This means that any runtime override of the default
settings pertaining to the memory search must be done from the code
in the P2 module code.

#define NEWINFO
#include <rom.h>
#include <types.h>
#include <const.h>
#include <errno.h>
#include <romerrno.h>
#include <p2lib.h>

error_code p2start(Rominfo rinf, u_char *glbls)
{

/* if switch or jumper setting is set… */
if (switch_or_jumper == SET) {

/* force checking of ROM and RAM lists */
rinf->os->boot_config &= ~(B_OKROM+B_OKRAM);

}
return SUCCESS;

}

2Board-Specific Reference

OS-9 for the Assabet/Neponset Board Guide 45

OS-9 Vector Mappings

This section contains the OS-9 vector mappings for the Intel SA1110
Assabet and the Intel SA1111 Neponset platforms.

The ARM standard defines exceptions 0x0-0x8. The OS-9 system
maps these 1-1. External interrupts from vector 0x6 are expanded to
the virtual vector rage shown below by the irq1110 and irq11x1
modules.

NoteNote
Vectors can be virtually remapped from a ROM at physical address 0,
into DRAM at virtual address 0. This speeds up interrupt response time
and is enabled by defining the first cache list entry as a sub 1 Meg size.

For More Information
More In
fo More
Informatio
n More Inf
ormation M
ore Inform
ation More

-6-

Refer to the Intel StrongARM SA-1110 Microprocessor
Development Board User’s Guide and the Intel StrongARM
SA-1111 Microprocessor Development Module User’s Guide for
Assabet and Neponset hardware specifications, respectively.

Intel documenatation is provided online in PDF format at
www.intel.com.

46 OS-9 for the Assabet/Neponset Board Guide

2 Board-Specific Reference

Table 2-1 shows the OS-9 IRQ assignment for the Assabet
SA1110/SA1111 board.

Table 2-2 shows the OS-9 SA1110 Specific Functions.

Table 2-1 OS-9 IRQ Assignment for the SA1110/SA1111
Assabet/Neponset Boards

OS-9 IRQ # ARM Function

0x0 Processor Reset

0x1 Undefined Instruction

0x2 Software Interrupt

0x3 Abort on Instruction Prefetch

0x4 Abort on Data Access

0x5 Unassigned/Reserved

0x6 External Interrupt

0x7 Fast Interrupt

0x8 Alignment error

Table 2-2 SA1110 Specific Functions

OS-9 IRQ # SA1110 Specific Functions

0x40 GPIO[0] Edge Detect

0x41 GPIO[1] Edge Detect

0x42 GPIO[2] Edge Detect

2Board-Specific Reference

OS-9 for the Assabet/Neponset Board Guide 47

0x43 GPIO[3] Edge Detect

0x44 GPIO[4] Edge Detect

0x45 GPIO[5] Edge Detect

0x46 GPIO[6] Edge Detect

0x47 GPIO[7] Edge Detect

0x48 GPIO[8] Edge Detect

0x49 GPIO[9] Edge Detect

0x4a GPIO[10] Edge Detect

0x4b OR of GPIO edge detects 27 - 11

0x4c LCD controller service request

0x4d UDC service request (0)

0x4e SDLC service request (1a)

0x4f UART service request (1b)

0x50 UART/HSSP service request (2)

0x51 UART service request (3)

0x52 MCP service request (4a)

0x53 SSP service request (4b)

Table 2-2 SA1110 Specific Functions (continued)

OS-9 IRQ # SA1110 Specific Functions

48 OS-9 for the Assabet/Neponset Board Guide

2 Board-Specific Reference

0x54 DMA controller channel 0

0x55 DMA controller channel 1

0x56 DMA controller channel 2

0x57 DMA controller channel 3

0x58 DMA controller channel 4

0x59 DMA controller channel 5

0x5a OS timer 0

0x5b OS timer 1

0x5c OS timer 2

0x5d OS timer 3

0x5e One Hz clock tick

0x5f RTC als alarm register

0x60 GPIO[11] Edge Detect (The 0x4b OR is broken out
here)

0x61 GPIO[12] Edge Detect (to make each one distinct)

0x62 GPIO[13] Edge Detect

0x63 GPIO[14] Edge Detect

0x64 GPIO[15] Edge Detect

Table 2-2 SA1110 Specific Functions (continued)

OS-9 IRQ # SA1110 Specific Functions

2Board-Specific Reference

OS-9 for the Assabet/Neponset Board Guide 49

Table 2-3 shows the OS-9 SA1111 Specific functions.

0x65 GPIO[16] Edge Detect

0x66 GPIO[17] Edge Detect

0x67 GPIO[18] Edge Detect

0x68 GPIO[19] Edge Detect

0x69 GPIO[20] Edge Detect

0x6a GPIO[21] Edge Detect (Assabet CF irq)

0x6b GPIO[22] Edge Detect

0x6c GPIO[23] Edge Detect (Assabet UCB1300 irq)

0x6d GPIO[24] Edge Detect (Assabet GFX irqs)

0x6e GPIO[25] Edge Detect (Assabet 11x1 irqs)

0x6f GPIO[26] Edge Detect

0x70 GPIO[27] Edge Detect

Table 2-3 SA1111 Specific Functions

OS-9 IRQ # SA1111 Specific Function

0x71 GPIOA[0] (GPIOA)

0x72 GPI0A[1] (GPIOA)

Table 2-2 SA1110 Specific Functions (continued)

OS-9 IRQ # SA1110 Specific Functions

50 OS-9 for the Assabet/Neponset Board Guide

2 Board-Specific Reference

0x73 GPIOA[2] (GPIOA)

0x74 GPIOA[3] (GPIOA)

0x75 GPIOB[0] (GPIOB)

0x76 GPIOB[1] (GPIOB)

0x77 GPIOB[2] (GPIOB)

0x78 GPIOB[3] (GPIOB)

0x79 GPIOB[4] (GPIOB)

0x7a GPIOB[5] (GPIOB)

0x7b GPIOC[0] (GPIOC)

0x7c GPIOC[1] (GPIOC)

0x7d GPIOC[2] (GPIOC)

0x7e GPIOC[3] (GPIOC)

0x7f GPIOC[4] (GPIOC)

0x80 GPIOC[5] (GPIOC)

0x81 GPIOC[6] (GPIOC)

0x82 GPIOC[7] (GPIOC)

0x83 MsTxint (PS2 Mouse)

Table 2-3 SA1111 Specific Functions (continued)

OS-9 IRQ # SA1111 Specific Function

2Board-Specific Reference

OS-9 for the Assabet/Neponset Board Guide 51

0x84 MsRxint (PS2 Mouse)

0x85 MsStopErrint (PS2 Mouse)

0x86 TpxInt (PS2 Trackpad)

0x87 TpRxInt (PS2 Trackpad)

0x88 TpStopErrint (PS2 Trackpad)

0x89 SspXmitint (SSP)

0x8a SspRcvint (SSP)

0x8b SspROR (SSP)

0x8c reserved

0x8d reserved

0x8e reserved

0x8f reserved

0x90 reserved

0x91 AudXmtDmaDoneA (AUDIO)

0x92 AudRcvDmaDoneA (AUDIO)

0x93 AudXmtDmaDoneB (AUDIO)

0x94 AudRcvDmaDoneB (AUDIO)

Table 2-3 SA1111 Specific Functions (continued)

OS-9 IRQ # SA1111 Specific Function

52 OS-9 for the Assabet/Neponset Board Guide

2 Board-Specific Reference

0x95 AudTFSR (AUDIO)

0x96 AudRFSR (AUDIO)

0x97 AudTUR (AUDIO)

0x98 AudROR (AUDIO)

0x99 AudDTS (AUDIO)

0x9a AudRDD (AUDIO)

0x9b AudSTO (AUDIO)

0x9c USBPwr (AUDIO)

0x9d nIrqHciM (USB)

0x9e IrqHciBuffAcc (USB)

0x9f IrqHciRmtWkp (USB)

0xa0 nHciMFCIr (USB)

0xa1 USB port resume (USB)

0xa2 S0Readynint (PCMCIA)

0xa3 S1Readynint (PCMCIA)

0xa4 S0CDValid (PCMCIA)

0xa5 S1CDValid (PCMCIA)

Table 2-3 SA1111 Specific Functions (continued)

OS-9 IRQ # SA1111 Specific Function

2Board-Specific Reference

OS-9 for the Assabet/Neponset Board Guide 53

Table 2-4 shows the Neponset Specific Functions.

0xa6 S0_Bvd1Stschg (PCMCIA)

0xa7 S1_Bvd1Stschg (PCMCIA)

0xa8 reserved

0xa9 reserved

0xaa reserved

0xab reserved

0xac reserved

0xad reserved

0xae reserved

0xaf reserved

0xb0 reserved

Table 2-4 Neponset Specific Functions

OS-9 IRQ # Neponset Specific Function

0xb1 Ethernet Irq

0xb2 USAR Irq

Table 2-3 SA1111 Specific Functions (continued)

OS-9 IRQ # SA1111 Specific Function

54 OS-9 for the Assabet/Neponset Board Guide

2 Board-Specific Reference

Assabet GPIO Usage

For More Information
More In
fo More
Informatio
n More Inf
ormation M
ore Inform
ation More

-6-

See the Intel Assabet User’s Manual for alternate pin functions.

Table 2-5 shows GPIO usage of the Assabet board as used by OS-9.

Table 2-5 GPIO Usage of the Assabet Board

GPIO Signal Name Direct Description

GPIO0 ON_OFF_SW1 Input Switch 1 (Abort Switch for OS-9)

GPIO1 ON_OFF_SW2_FIQ Input Switch 2

GPIO2 LCD_D8_CNFG0 Output LCD Green bit 3 in 16 bit color
mode

GPIO3 LCD_D9_CNFG1 Output LCD Green bit 4 in 16 bit color
mode

GPIO4 LCD_D10_CNFG2 Output LCD Green bit 5 in 16 bit color
mode

GPIO5 LCD_D11_CNFG3 Output LCD Red bit 0 in 16 bit color mode

GPIO6 LCD_D12_CNFG4 Output LCD Red bit 1 in 16 bit color mode

GPIO7 LCD_D13_CNFG5 Output LCD Red bit 2 in 16 bit color mode

GPIO8 LCD_D14_CNFG6 Output LCD Red bit 3 in 16 bit color mode

GPIO9 LCD_D15_CNFG7 Output LCD Red bit 4 in 16 bit color mode

GPIO10 SSP_UDA134_TXD Output SSP Port transmit

2Board-Specific Reference

OS-9 for the Assabet/Neponset Board Guide 55

GPIO11 SSP_UDA134_RXD Input SSP Port Receive

GPIO12 SSP_UDA134_SCLK Output SSP Port Clock

GPIO13 SSP_UDA134_SFRM Output SSP Port Frame

GPIO14 RADIO_IRQ Input Radio IRQ input

GPIO15 L3_I2C_SDA Output Data line for shared I2C/L3 serial
bus

GPIO16 PS_MODE_SYNC Input Power Mode switch input

GPIO17 L3_MODE Output L3 control bus signal

GPIO18 L3_I2C_SCL Output Clock line for shared I2C/L3 serial
bus

GPIO19 STERO_64FS_CLK Input External Input clock for SSP

GPIO20 UART3_CLK Input External Input clock for SP3

GPIO21 nMBGNT_CF_IRQ Input ARM Bus grant/Assabet Compact
Flash IRQ

GPIO22 nMBREQ_CF_CARDDET In/Out ARM Bus request/Assabet CF
Card Detect

GPIO23 UCB1300_IRQ Input UCB 1300 Irq

GPIO24 GFX_IRQ_CFBVD2 Irq Input Graphics development board IRQ
(MQ200)

GPIO25 SA111_IRQ_CF_BVD1 Input 1111 Development board Irq
(Neponset)

Table 2-5 GPIO Usage of the Assabet Board (continued)

GPIO Signal Name Direct Description

56 OS-9 for the Assabet/Neponset Board Guide

2 Board-Specific Reference

GPIO Interrupt Polarity

When GPIOs are used as interrupt sources, the _PIC_ENABLE()
function will set default polarity based on settings in systype.h along
with enabling the interrupt at the SA1110 PIC. If the opposite edge is
required, software must assert/negate the appropriate bits in the
GFER/GRER (if no edge defines were in systype.h, the pic code will
default to rising edge).

GPIO26 VBAD_LOW/RCLK Input Battery Low/Ref clk out.

GPIO27 3.68M_32K Output 3.68Mhz output clock.

Table 2-5 GPIO Usage of the Assabet Board (continued)

GPIO Signal Name Direct Description

2Board-Specific Reference

OS-9 for the Assabet/Neponset Board Guide 57

Board-Specific Register Access Functions

A board-specific global storage area has been defined for the Assabet
due to the board's use of the write-only register (BCR) in a variety of
Assabet board functions.

For More Information
More In
fo More
Informatio
n More Inf
ormation M
ore Inform
ation More

-6-

Refer to the Intel StrongARM SA-1110 Microprocessor
Development Board User’s Guide and the Intel StrongARM
SA-1111 Microprocessor Development Module User’s Guide for
further information on the BCR.

In order to guarantee the coherency of the BCR value, several functions
have been defined to give access to the global storage area. These
functions provide atomic updates for bit or register operations and can
be used by system state code by linking to the library hwlib.l, which
is found at in the following location:

/MWOS/os9000/armv4/ports/assabet/lib.

The provided OS-9 drivers all link against this library to access BCR
values. Bit defines for the BCR can be found in the ports systype.h
file. A brief description of the access functions is provided below.

The global area is allocated at boot time by the oemglobal module
and its access pointer is contained within the OS-9 rominfo structure
(RINF).

The global area consists of an array of 8 four byte values.

• hardware_shadow_globals[0] - BCR value (read/write address).

• hardware_shadow_globals[1] - SCR value (probed value)

• hardware_shadow_globals[2] - Boot Code revision

• hardware_shadow_globals[3-7] - Reserved.

58 OS-9 for the Assabet/Neponset Board Guide

2 Board-Specific Reference

The following functions are used to access or update any of the globals
and their associated hardware shadows. The use of the bit operations is
preferred.

• clear_oem_reg_bit() - Clears a bit to 0.

• set_oem_reg_bit() - Sets a bit to a 1.

• get_oem_reg_bit() - Returns the value of 1 or 0 for a bit.

• set_oem_reg() - Sets the 32bit value of an array entry.

• get_oem_reg() - Returns the 32bit value of an array entry.

All the global access functions take the rinf as a parameter. In boot
modules prior to the kernel (system call ability) the rinf is passed as a
parameter to each ROM p2module. After the kernel is up the rinf can
be obtained with the os_getrinf() function (see example below).

void clear_oem_reg_bit(u_int32 regoffset, u_int32 bitnum, Rominfo
rinf)
void set_oem_reg_bit(u_int32 regoffset, u_int32 bitnum, Rominfo rinf)
u_int32 get_oem_reg_bit(u_int32 regoffset, u_int32 bitnum, Rominfo
rinf)

regoffset is the offset to the array entry to access.

bitnum is the bit number to access.

rinf is a pointer to the rom information structure.

get_oem_reg_bit() returns the value of the referenced bit (0 or 1)
u_int32 get_oem_reg(u_int32 regoffset, Rominfo rinf)

regoffset is the offset to the array entry to access.

rinf is a pointer to the rom information structure.

get_oem_reg returns the 32 bit value of the selected array entry on
success, or -1 on error if a bad rinf is passed.

error_code set_oem_reg(u_int32 regoffset, u_int32 new_value, u_int32
*old_value, Rominfo rinf);

regoffset is the offset to the array entry to access.

new_value is the value to be set the array entry.

old_value is a pointer to the preious value of the seleted OEM reg
(obtained by get_oem_reg()).

2Board-Specific Reference

OS-9 for the Assabet/Neponset Board Guide 59

set_oem_reg returns SUCCESS if the operation succeeded. If the
operation failed because the old_value is different than current value,
a -1 is returned. If the operation failed due to a bad rinf,
EOS_ILLPRM is returned.

NoteNote
get_oem_reg() must be called before a call to set_oem_reg(), this
insures that the associated array entry has not asynchronously
changed from another context. The set_oem_reg() call should be in
a loop with get_oem_reg() until SUCCESS is reached (this will almost
always be on the first attempt).

Example
#include <systype.h> /* get BCR/SCR def's /mwos/.../assabet */
#include <rom.h> /* get rinf defs, /mwos/src/defs/rom */
#include <p2lib.h> /* get os_getrinf protos /mwos/src/defs/rom */

/* Power up the local Assabet LCD */
static void _lcdOn()
{
 Rominfo rinf;/* allocate local pointer for rinf */

 os_getrinf(&rinf); /* get global rom structure pointer */

 /* Power up local LCD if NO external GFX board preset*/
 if(get_oem_reg_bit(A_SCR_OFFSET, GFXDB, rinf))
 {
 set_oem_reg_bit(A_BCR_OFFSET,LCDON, rinf); /* Enable power to LCD
panel */
 clear_oem_reg_bit(A_BCR_OFFSET,LCD12_16, rinf); /* Set to RGB444 */
 set_oem_reg_bit(A_BCR_OFFSET,LIGHT, rinf); /* BackLight on if
there */
 }
 return;
}

60 OS-9 for the Assabet/Neponset Board Guide

2 Board-Specific Reference

Port Specific Utilities

The following port specific utilities are included:

• pcmcia

• touch_cal

• ucbtouch

2Board-Specific Reference

OS-9 for the Assabet/Neponset Board Guide 61

pcmcia

Syntax

pcmcia [<opts>]

options

-s= socket: socket [default all sockets]

-d de-iniz socket(s)

-i iniz socket(s)

-v verbose mode

-x dump CIS/Config information

-? Print this help message

Description

pcmcia provides the ability to initilize or deinitilize a PCMCIA card after
the system has booted. It also displays a PCMCIA cards CIS structure.

62 OS-9 for the Assabet/Neponset Board Guide

2 Board-Specific Reference

Example
$ pcmcia -x -s=0
ATA IDE disk found in socket0
Dump CIS Window for Socket #0
 Addr 0 1 2 3 4 5 6 7 8 9 A B C D E F 0 2 4 6 8 A C E
-------- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --

28000000 01 03 d9 01 ff 1c 04 03 d9 01 ff 18 02 df 01 20
...............
28000020 04 01 4e 00 01 15 2b 04 01 56 49 4b 49 4e 47 20
..N...+..VIKING
28000040 43 4f 4d 50 4f 4e 45 4e 54 53 20 20 20 20 20 20 COMPONENTS
28000060 20 20 00 43 46 20 41 54 41 20 00 56 2e 31 30 32 .CF ATA
.V.102
28000080 00 ff 21 02 04 01 22 02 01 01 22 03 02 04 5f 1a
..!..."..."..._.
280000a0 05 01 03 00 02 0f 1b 09 c0 40 a1 21 55 55 08 00
.........@.!UU..
280000c0 22 1b 06 00 01 21 b5 1e 35 1b 0b c1 41 99 21 55
"....!..5...A.!U
280000e0 55 64 f0 ff ff 22 1b 06 01 01 21 b5 1e 35 1b 0d
Ud..."....!..5..
28000100 82 41 98 ea 61 f0 01 07 f6 03 01 ee 22 1b 06 02
.A..a......."...
28000120 01 21 b5 1e 35 1b 0d 83 41 98 ea 61 70 01 07 76
.!..5...A..ap..v
28000140 03 01 ee 22 1b 06 03 01 21 b5 1e 35 14 00 ff ff
..."....!..5....
28000160 ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff
................
28000180 ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff
................
280001a0 ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff
................
280001c0 ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff
................
280001e0 ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff
................
Dump Config Window for Socket #0
 Addr 0 1 2 3 4 5 6 7 8 9 A B C D E F 0 2 4 6 8 A C E
-------- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --

28000200 43 00 02 00 00 00 00 00 00 00 00 00 00 00 00 00
C...............
28000220 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
...............

2Board-Specific Reference

OS-9 for the Assabet/Neponset Board Guide 63

28000240 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
................
28000260 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
................
28000280 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
................
280002a0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
................
280002c0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
................
280002e0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
................
28000300 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
................
28000320 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
................
28000340 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
................
28000360 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
................
28000380 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
................
280003a0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
................
280003c0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
................
280003e0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
................

64 OS-9 for the Assabet/Neponset Board Guide

2 Board-Specific Reference

touch_cal Touchscreen Calibration Program

Syntax

touch_cal <options>

Options

-f[=]<name> Output filename

-c Only run calibration if output filename does not
exist

-m[=]<font_module>
Use given UCM font module to display text

Description

The touch_cal utility will present a text message on the LCD screen
as well as points for the user to press. After the points are pressed, the
protocol module mp_ucb1200 will be updated with the new calibration
information.

Example

$ touch_cal

Found touch screen device '/ucb_touch/mp_ucb1200'

2Board-Specific Reference

OS-9 for the Assabet/Neponset Board Guide 65

ucbtouch

Syntax

ucbtouch <>

Description

The ucbtouch utility prints the raw x,y and pressure values at a set
sample rate.

Press the touch screen and observe the output on your console. The
utility is helpful in determining whether your touch screen is connected
properly.

Example
$ ucbtouch
Touch[00000]: Touch=0x30c3 X1=00328 Y1=00321 P= 28 X=329 Y=322
Touch[00001]: Touch=0x30c3 X1=00329 Y1=00325 P= 28 X=330 Y=326
Touch[00002]: Touch=0x30c3 X1=00329 Y1=00321 P= 28 X=330 Y=322
Touch[00003]: Touch=0x30c3 X1=00329 Y1=00321 P= 29 X=330 Y=322
Touch[00004]: Touch=0x30c3 X1=00329 Y1=00319 P= 29 X=330 Y=320
Touch[00005]: Touch=0x30c3 X1=00329 Y1=00321 P= 28 X=330 Y=322
Touch[00006]: Touch=0x30c3 X1=00329 Y1=00327 P= 28 X=330 Y=328
Touch[00007]: Touch=0x30c3 X1=00329 Y1=00321 P= 28 X=330 Y=322
Touch[00008]: Touch=0x30c3 X1=00329 Y1=00321 P= 29 X=330 Y=322
Touch[00009]: Touch=0x30c3 X1=00329 Y1=00322 P= 28 X=330 Y=323
Touch[00010]: Touch=0x30c3 X1=00329 Y1=00319 P= 28 X=0 Y=0
Touch[00011]: Touch=0x30c3 X1=00328 Y1=00321 P= 28 X=-1 Y=2
Touch[00012]: Touch=0x30c3 X1=00329 Y1=00315 P= 28 X=0 Y=-4
Touch[00013]: Touch=0x30c3 X1=00329 Y1=00322 P= 29 X=0 Y=3

66 OS-9 for the Assabet/Neponset Board Guide

2 Board-Specific Reference

67

Appendix A: Board-Specif ic Modules

This chapter describes the modules specifically written for the target
board. It includes the following sections:

• Low-Level System Modules

• High-Level System Modules

68 OS-9 for the Assabet/Neponset Board Guide

ABoard-Specific Modules

Low-Level System Modules

For More Information
More In
fo More
Informatio
n More Inf
ormation M
ore Inform
ation More

-6-

For a complete list of OS-9 modules common to all boards, see the
OS-9 Device Descriptor and Configuration Module Reference
manual.

The following low-level system modules are tailored specifically for the
Intel SA1110 Assabet platform. The functionality of these modules can
be altered through changes to the configuration data module
(cnfgdata). Table A-1 provides a list and brief description of the
modules.

These modules can be found in the following directory:

MWOS/OS9000/ARMV4/PORTS/ASSABET/CMDS/BOOTOBJS/ROM

Table A-1 Assabet-Specific Low-Level System Modules

Module Name Description

cnfgdata Contains the low-level configuration data.

cnfgfunc Provides access services to cnfgdata data.

commcnfg Inits communication port defined in cnfgdata.

conscnfg Inits console port defined in cnfgdata.

ide IDE boot support module. PCMCIA compatible.

io1100 Provides polled serial driver support for the low-level
system.

ABoard-Specific Modules

OS-9 for the Assabet/Neponset Board Guide 69

ll91c94 Provides low-level Ethernet services.

llcis Inits the PCMCIA interface including cards.

llne2000 Provides low-level Ethernet services via
SOCKET-LPE PCMCIA card.

lle509 Provides low-level Ethernet services via 3COM
PCMCIA card.

lle509_pcm Provides low-level Ethernet services.

portmenu Inits booters defined in the cnfgdata.

romcore Board specific initialization code.

splash Provides way to init LCD screen with a compressed
image.

oemglob Creates a shared variable area for high/low level
system interactions.

dbinit Initilizes any daughter boards present.

tmr1_1100 Provides low-level timer services via time base
register.

usedebug Inits low-level debug interface to RomBug, SNDP,
or none.

Table A-1 Assabet-Specific Low-Level System Modules (continued)

Module Name Description

70 OS-9 for the Assabet/Neponset Board Guide

ABoard-Specific Modules

The following low-level system modules provide generic services for
OS9000 Modular ROM. Table A-2 provides a list and brief description
of the modules.

These modules can be found in the following directory:

MWOS/OS9000/ARMV4/CMDS/BOOTOBJS/ROM

Table A-2 Generic Services Low-Level System Modules

Module Name Description

bootsys Booter registration service module.

console Provides console services.

dbgentry Inits debugger entry point for system use.

dbgserv Provides debugger services.

excption Provides low-level exception services.

flshcach Provides low-level cache management services.

hlproto Provides user level code access to protoman.

llbootp Booter which provides bootp services.

llip Provides low-level IP services.

llslip Provides low-level SLIP services.

lltcp Provides low-level TCP services.

lludp Provides low-level UDP services.

llkermit Booter which uses kermit protocol.

ABoard-Specific Modules

OS-9 for the Assabet/Neponset Board Guide 71

notify Provides state change information for use with LL
and HL drivers.

override Booter which allows choice between menu and auto
booters.

parser Provides argument parsing services.

pcman Booter which reads MS-DOS file system.

protoman Protocol management module.

restart Booter which cause a soft reboot of system.

romboot Booter which allows booting from ROM.

rombreak Booter which calls the installed debugger.

rombug Low-level system debugger.

sndp Provides low-level system debug protocol.

srecord Booter which accepts S-Records.

swtimer Provides timer services via software loops.

Table A-2 Generic Services Low-Level System Modules (continued)

Module Name Description

72 OS-9 for the Assabet/Neponset Board Guide

ABoard-Specific Modules

High-Level System Modules

The following OS-9 system modules are tailored specifically for your
Intel SA1110 Assabet board and peripherals. Unless otherwise
specified, each module is located in a file of the same name in the
following directory:

MWOS/OS9000/ARMV4/PORTS/ASSABET/CMDS/BOOTOBJS

CPU Support Modules

These files are located in the following directory:

MWOS/OS9000/ARMV4/CMDS/BOOTOBJS

kernel The kernel provides all basic services for the
OS-9 system.

cache Provides cache control for the CPU cache
hardware. The cache module is in the file
cach1100.

fpu Provides software emulation for floating point
instructions.

ssm The System Security Module provides support
for the Memory Management Unit (MMU) on
the CPU.

vectors Provides interrupt service entry and exit code.
The vectors module is found in the file
vect110.

ABoard-Specific Modules

OS-9 for the Assabet/Neponset Board Guide 73

System Configuration Module

These files are located in the following directory:

MWOS/OS9000/ARMV4/PORTS/ASSABET/CMDS/BOOTOBJS/INITS

init Descriptor module with high level system
initialization information.

nodisk Same as init, but used in a disk-less system.

Power Management Support Modules

These modules provide an interface to control the power states of the
Assabet device

The supported SA1110 CPU power states are RUN, IDLE and SLEEP.

pwrman P2module which provides generic power
management functions.

pwrplcy P2module which provides power state control
functions.

sysif P2module which provides SA1100 CPU power
state control.

Interrupt Controller Support

This module provides extensions to the vectors module by mapping the
single interrupt generated by an interrupt controller into a range of
pseudo vectors which are recognized by OS-9 as extensions to the
base CPU exception vectors.

For More Information
More In
fo More
Informatio
n More Inf
ormation M
ore Inform
ation More

-6-

The mappings are described in Chapter 2.

74 OS-9 for the Assabet/Neponset Board Guide

ABoard-Specific Modules

irq1100 P2module that provides interrupt acknowledge
and dispatching support for the SA1100 pic.

irq1111 P2module which provides interrupt
acknowledge and dispatching support for the
SA1111 pic (vector range 0x71-0xB2).

Real Time Clock

rtc1100 Driver that provides OS-9 access to the
SA1110 on-board real time clock.

Ticker

tk1100 Driver that provides the system ticker based on
the SA1110 Operating System Timer.

Abort Handler

abort P2module which provides a way to enter the
system-state debugger via vector 0xb40
interrupt triggered by Assabet button at S1.

Generic IO Support modules (File Managers)

These files are located in the following directory:

MWOS/OS9000/ARMV3/CMDS/BOOTOBJS

ioman Provides generic IO support for all IO device
types.

scf Provides generic character device management
functions.

ABoard-Specific Modules

OS-9 for the Assabet/Neponset Board Guide 75

rbf Provides generic block device management
functions for OS-9 specific format.

pcf Provides generic block device management
functions for MS-DOS FAT format.

spf Provides generic protocol device management
function support.

mfm Provides generic graphics device support for
MAUI®.

pipeman Provides a memory FIFO buffer for
communication.

Pipe Descriptor

This file is located in the following directory:

MWOS/OS9000/ARMV4/PORTS/ASSABET/CMDS/BOOTOBJS/DESC

pipe Pipeman descriptor that provides a RAM based
FIFO that can be used for process
communication.

RAM Disk Support

ram RBF driver that provides a RAM based virtual
block device.

Descriptors for Use with RAM

These files are located in the following directory:

MWOS/OS9000/ARMV4/PORTS/ASSABET/CMDS/BOOTOBJS/DESC/RAM

r0 RBF descriptor that provides access to a ram
disk.

r0.dd Same as r0 except with module name dd (for
use as the default device).

76 OS-9 for the Assabet/Neponset Board Guide

ABoard-Specific Modules

Serial and Console Devices

sc1100 SCF driver that provides serial support the
SA1110's SP1 and SP3 ports when configured
as UARTS.

Descriptors for Use with sc1100

term1/t1 Descriptor modules for use with sc1100 and
SP1 (default term).

Assabet Board header: J10

Default Baud Rate: 19200

Default Parity: None

Default Data Bits: 8

Default Handshake: Software

term3/t3 Descriptor modules for use with sc1100
and SP3.

Assabet Board header: J14

Default Baud Rate: 115200

Default Parity: None

Default Data Bits: 8

Default Handshake: Software

sc1101 SCF driver that provides serial support for the
SA1111.

Descriptors for use with sc1101

m1 Descriptor module used with the sc1101 and
SP1.

m2 Descriptor module used with the sc1101 and
SP2.

ABoard-Specific Modules

OS-9 for the Assabet/Neponset Board Guide 77

sc16550 SCF driver that provides serial support for
PCMCIA modem cards.

Descriptors for use with sc16550

t0m Descriptor modules for use with PCMCIA
modem cards.

Assabet Board header: J6

Default Baud Rate: 9600

Default Parity: None

Default Data Bits: 8

Default Handshake: Software

scllio SCF driver that provides serial support via the
polled low-level serial driver.

Descriptors for Use with scllio

vcons/term Descriptor modules for use with scllio in
conjunction with a low-level serial driver. Port
configuration and set up follows what is
configured in cnfgdata for the console port. It
is possible for scllio to communicate with a
true low-level serial device driver like io1100,
or with an emulated serial interface provided by
iovcons.

For More Information
More In
fo More
Informatio
n More Inf
ormation M
ore Inform
ation More

-6-

See the OEM manual for more information.

78 OS-9 for the Assabet/Neponset Board Guide

ABoard-Specific Modules

PCMCIA Support for IDE Type Devices

rb1003 RBF/PCF driver that provides driver support for
IDE/EIDE devices. This driver is used to provide
disk support for PCMCIA ATA FLASH.

Descriptors for Use with rb1003

hc1, hc1fmt, hc1.dd
RBF Descriptor modules for use with
PCMCIA slot #0

Assabet Board header: J6

hc1fmt: format enabled

hc1.dd: module name of dd

mhc1, mhc1fmt, mhc1fmt.dd mhc1.dd
PCF Descriptor modules for use with PCMCIA
slot #0 on the Assabet

Assabet Board header: J6

mhc1fmt: format enabled

mhc1fmt.dd format enabled

mhc1.dd: module name of dd

mhc1_d, mhc1_dfmt, mhc1_dfmt.dd mhc1_d.dd
PCF Descriptor modules for use with PCMCIA
slot #0 on the Neponset

Neponset Board header: J23

mhc1_dfmt: format enabled

mhc1_dfmt.dd format enabled

mhc1_d.dd: module name of dd

ABoard-Specific Modules

OS-9 for the Assabet/Neponset Board Guide 79

PCF Descriptor modules for use with PCMCIA
slot #1 on the Neponset
Descriptor modules

Board header: J23

mhe1fmt: format enabled

mhe1fmt.dd format enabled

mhe1.dd: module name of dd

PCMCIA Support for Socket-LPE Ethernet Card (NE2000
Compatible)

These files are located in the following directory:

MWOS/OS9000/ARMV4/PORTS/ASSABET/CMDS/BOOTOBJS/SPF

spne2000 SPF driver to support ethernet for a Socket-LPE
CF card.

Descriptors for Use with spne2000

spne0 SPF descriptor module for use with PCMCIA
 slot #0 (bottom J6)

spne1 SPF descriptor module for use with PCMCIA
 slot #1 (J23, Neponset)

PCMCIA Support for 3COM Ethernet Card

These files are found in the following directory:

MWOS/OS9000/ARMV4/PORTS/ASSABET/CMDS/BOOTOBJS/SPF

spe509_pcm SPF driver to support ethernet for a 3COM
EtherLink III PCMCIA card.

80 OS-9 for the Assabet/Neponset Board Guide

ABoard-Specific Modules

spe509_pcm Descriptors

spe30 SPF descriptor module for use with PCMCIA
slot #0 (J6).

spe31 SPF descriptor module for use with PCMCIA
slot #1 (J23, Neponset).

SMC91C94 Ethernet Support

These files are located in the following directory:

MWOS/OS9000/ARMV4/PORTS/ASSABET/CMDS/BOOTOBJS/SPF

sp91c94 SPF driver to support ethernet for the
SMC91C94 chip (on Neponset).

Descriptor for Use with sp91c94

spsm0 SPF descriptor module for use with
SMC91C94 at U2 (on Neponset).

Network Configuration Modules

inetdb/inetdb2/rpcdb

ABoard-Specific Modules

OS-9 for the Assabet/Neponset Board Guide 81

UCB1300 Support Modules

NoteNote
These drivers and descriptors work with UCB1100/1200/1300).

These files are located in the following directory:

MWOS/OS9000/ARMV4/PORTS/ASSABET/CMDS/BOOTOBJS/SPF

spucb1200 SPF driver that supports the on-board Phillips
UCB1200 chip. This device communicates to
the SA1100 over SP4 using MCP.

Descriptors for Use with spucb1200

ucb SPF descriptor module that provides access to
UCB1200.

ucb_touch SPF descriptor module used with the touch
screen.

Maui Graphical Support Modules

These files are located in the following directory:

MWOS/OS9000/ARMV4/PORTS/ASSABET/CMDS/BOOTOBJS/MAUI

gx_sa1100 MFM MAUI driver module with support for the
Assabet LCD panel.

Descriptors for Use with gx_sa1100

gfx MFM MAUI descriptor module for Assabet LCD.

82 OS-9 for the Assabet/Neponset Board Guide

ABoard-Specific Modules

sd_ucb1200 MFM MAUI driver module that provides
PCM/mu-law sound support via the ucb1300.
The UDA1341 must be configured to pass
through UCB1300 signals.

Descriptors for Use with sd_ucb1200

snd MFM MAUI descriptor module for UCB1200
sound functions.

MAUI configuration modules

cdb MAUI configuration data base module.

cdb_ptr Serial mouse configuration data base module.

cdb_touch Touch screen configuration data base module.

MAUI protocol modules

mp_kybrd Keyboard protocol module.

mp_msptr Serial mouse protocol module.

mp_ucb1200 ucb1200 protocol module.

For More Information
More In
fo More
Informatio
n More Inf
ormation M
ore Inform
ation More

-6-

The MAUI drivers are described in more detail in Appendix B: MAUI
Driver Descriptions.

83

Appendix B: MAUI Driver Descriptions

This chapter provides MAUI driver descriptions. It includes the following
sections:

• Assabet Objects

• GX_SA1100 LCD Graphic Driver Specification

• SD_UCB1200 Sound Driver Specification

• SPUCB1200 driver for the UCB1200 Codec

• MP_UCB1200 MAUI Touch screen Protocol Module

84 OS-9 for the Assabet/Neponset Board Guide

BMAUI Driver Descriptions

Assabet Objects

This package provides object-level support for the Intel Assabet
reference board. The port directory is at the following location:

MWOS/OS9000/ARMV4/PORTS/ASSABET

MAUI objects

cdb Lists the devices on the system.

mp_msptr Serial mouse protocol module.

mp_ucb1200 Touch screen protocol module for the
UCB1200.

gfx and gx_sa1100 LCD graphics descriptor and driver.

BMAUI Driver Descriptions

OS-9 for the Assabet/Neponset Board Guide 85

GX_SA1100 LCD Graphic Driver Specification

This section describes the hardware specification of the StrongARM
SA1110 LCD driver (named gx_sa1100) and descriptor (named gfx).
The hardware sub-type defines the board configuration. This
specification should be used with the MAUI Graphics Device API.

Board Ports

This driver is used in the following example board StrongArm ports.

The GraphicsClient board uses a Sharp LQ64D341 18 bpp color (16
used), TFT, with a resolution of 640x480 single panel. This panel is
connected to the GraphicsClient with one of several possible cables:

• 8 bpp - most common to date

• RGB 565 - next most common

• RGB 655

• RGB 556

The SideArm board can support an LCD panel, but does not typically
ship with one. For this reason the SideArm port does not build this
driver. If the user did connect a LCD panel to this board, simply copy the
makefiles from one of the other ports into the SideArm port.

The Assabet board uses a Sharp LQ039Q2DS01, TFT, with a resolution
of 320x240 single panel. This panel is connected to the Assabet with
one of several possible cables:

• 8 bpp - most common to date

• RGB 565 - next most common

86 OS-9 for the Assabet/Neponset Board Guide

BMAUI Driver Descriptions

Device Capabilities

Information about the hardware capabilities is determined by calling
gfx_get_dev_cap(). The hardware sub-type defines the board
configuration. This function returns a data structure formatted as shown
in Table B-1. See GFX_DEV_CAP for more information about this data
structure.

Table B-1 gfx_get_dev_cap() Data Structure

Member Name Description Value

hw_type Hardware type
(embedded in driver)

SA1100 LCD Controller

hw_subtype Hardware subtype
(embedded in
descriptor)

 Assabet 8 bit color LCD,
or Assabet 16 bit color
LCD

sup_vpmix Supports viewport
mixing

FALSE

sup_extvid Supports external
video as a backup

FALSE

sup_bkcol Supports background
color

FALSE

sup_vptrans Supports viewport
transparency

FALSE

sup_vpinten Supports viewport
intensity

FALSE

sup_sync Supports retrace
synchronization

FALSE

BMAUI Driver Descriptions

OS-9 for the Assabet/Neponset Board Guide 87

Display Resolution

The display resolution is configured by the descriptor and can be
changed to support LCD panels of different sizes. The driver is only
designed to support one resolution at a time. That resolution is

num_res Number of display
resolutions

1

res_info Array of display
resolution
information

See Display Resolution
table

dac_depth Depth of the DAC in
bits

12

num_cm Number of coding
methods

1

cm_info Array of coding
method information

See Coding Methods
table

sup_viddecode Supports video
decoding into a
drawmap

FALSE

Table B-1 gfx_get_dev_cap() Data Structure (continued)

Member Name Description Value

88 OS-9 for the Assabet/Neponset Board Guide

BMAUI Driver Descriptions

specified by the descriptor. Modify the DEFAULT_RES macro in
mfm_desc.h to change the resolution. If you change the resolution,
you must also change all of the LCD timing fields as well.

*Refresh rate is determined by timing specified in descriptor. The
devcap is not automatically update to reflect this.

Coding Methods

The coding method is also configured by the descriptor and can be
changed to support b/w and color LCD panels. The coding method can
be selected in the descriptor by simply specifying the coding method in
the DEFAULT_CM macro in mfm_desc.h.

Table B-2 Display Specifications

Board Width Height
Refresh
Rate Interlace Mode

Aspect
Ratio
X:Y

Graphics-
Client

640 480 0* GFX_INTL_OFF 1:1

BMAUI Driver Descriptions

OS-9 for the Assabet/Neponset Board Guide 89

This driver was verified on the Assabet board with both a 8-bit and 565
cables. The maximal coding method supported by SA1100 LCD
Controller is 16 bpp.

Viewport Complexity

The driver supports one active viewport at a time. The application can
create multiple viewports and stack them. The viewport must be aligned
with, and the same size as the display. Display drawmaps must be the
same size as the viewport.

Memory

Applications are expected to request graphics memory from the driver.
The driver allocates memory from the system as needed. It requests
this memory from color 0x80. This memory (specified in the init module)
is located at the bottom of 16/32 MB DRAM address space and is
marked as non cached.

Table B-3 Coding Method Description

Board
Coding
Method

CLUT
Based

X,Y
Multipliers Palette Color Types

Graphics-
Client w/8 bit
cable

GFX_CM_8BIT TRUE 1,1 GFX_COLOR_RGB

Graphics-
Client w/16
bit cable

GFX_CM_565,
GFX_CM_655,
or
GFX_CM_556

FALSE 1,1 NA

No current
hardware
implementati
on available

GFX_CM_4BIT TRUE 1,1 GFX_COLOR_RGB

90 OS-9 for the Assabet/Neponset Board Guide

BMAUI Driver Descriptions

Location

This driver's source is located in:

SRC/DPIO/MFM/DRVR/GX_SA1100

This driver's makefiles are located in:

OS9000/ARMV4/PORTS/ASSABET/MAUI/GX_SA1100

This directory contains the makefiles and descriptor header file to build
the descriptor(s) and driver(s) (not all packages include driver source)
for the StrongARM reference platform. This directory contains:

makefile Calls each of the other makefiles in this directory

drvr.mak Builds the driver

desc.mak Builds the descriptor(s)

mfm_desc.h Defines values for all modifiable fields of the
descriptor(s)

Build the Driver

The driver source is located in SRC/DPIO/MFM/DRVR/GX_SA1100. To
build the driver, use the following commands:

cd OS9000/ARMV4/PORTS/ASSABET/MAUI/GX_SA1100

os9make -f drvr.mak

Build the Descriptor

To build a new descriptor, modify mfm_desc.h, and use the following
commands to compile:

cd OS9000/ARMV4/PORTS/ASSABET/MAUI/GX_SA1100

os9make -f desc.mak

To build both the driver and the descriptor you can specify os9make
with no parameters.

BMAUI Driver Descriptions

OS-9 for the Assabet/Neponset Board Guide 91

SD_UCB1200 Sound Driver Specification

This section describes the hardware specifications for the Philips
UCB1200 driver sd_ucb1200. The hardware sub-type defines the
board configuration. This specification should be used in conjunction
with the MAUI Sound Driver Interface.

This driver works in conjunction with the spucb1200 driver.

Device Capabilities

Information about the hardware capabilities is determined by calling
_os_gs_snd_devcap(). This function returns a data structure
formatted as in the following table. See SND_DEV_CAP for more
information about this data structure.

Table B-4 Data Returned in SND_DEV_CAP

Member Name Value Description

hw_type "CS4231 "Hardware type

hw_subtype "CS4231A "Hardware sub-type

sup_triggers SND_TRIG_ANY Supported triggers

play_lines SND_LINE_SPEAKER Play gain/mix lines

record_lines SND_LINE_MIC Record gain/mix
lines

sup_gain_cmds SND_GAIN_CMD_MONO Mask of supported
gain commands

num_gain_caps 2 Number of
SND_GAIN_CAPs

92 OS-9 for the Assabet/Neponset Board Guide

BMAUI Driver Descriptions

gain_caps See Gain Capabilities
Array

Pointer to
SND_GAIN_CAP
array

num_rates 30 Number of sample
rates

sample_rates See Sample Rates Pointer to sample
rate array

num_chan_info 1 Number of channel
info entries

channel_info See Number of Channels Pointer to channel
info array

num_cm 3 Number of coding
methods

cm_info See Encoding and
Decoding Formats

Pointer to coding
method array

Table B-4 Data Returned in SND_DEV_CAP (continued)

Member Name Value Description

BMAUI Driver Descriptions

OS-9 for the Assabet/Neponset Board Guide 93

Gain Capabilities Array

The following tables show the various gain capabilities for the Philips
UCB1200. This information is pointed to by the gain_cap member of the
SND_DEV_CAP data structure. See SND_GAIN_CAP for more
information about this data structure. This driver allows control of
following individual physical gain controls:

The following tables detail the various individual gain capabilities:

Table B-5 Individual Gain Controls

SND LINE SPEAKER Output Attenuation

SND LINE MIC Microphone Gain

Table B-6 Speaker Gain Enable

Member Name Value Step HW Level Comments

lines SND_LINE_SPEAKER 0-3 31 -69 dB default_level

sup_mute TRUE 4-7 30 -66.8 dB

default_type SND_GAIN_CMD_MONO 8-11 29 -64.7 dB

default_level SND_LEVEL_MAX 12-15 28 -62.5 dB

zero_level SND_LEVEL_MIN

num_steps 32 112-115 3 -6.5 dB

step_size 216 116-119 2 -4.3 dB

mindb -6900 120-123 1 -2.2 dB

maxdb 0 124-127 0 0.0 dB zero_level

94 OS-9 for the Assabet/Neponset Board Guide

BMAUI Driver Descriptions

Table B-7 Mic Gain Enable

Member Name Value Step HW Level Comments

lines SND_LINE_MIC 0-3 0 0 dB zero_level

sup_mute FALSE 4-7 1 0.7 dB

default_type SND_GAIN_CMD_MONO

default_level SND_LEVEL_MAX 64-67 16 11.3 dB default_leve
l

zero_level SND_LEVEL_MIN

num_steps 32 112-115 20.4 dB

step_size 70 116-119 29 21.1 dB

mindb 0 120-123 30 21.8 dB

maxdb 2250 124-127 31 22.5 dB

BMAUI Driver Descriptions

OS-9 for the Assabet/Neponset Board Guide 95

Sample Rates

Following is an abbreviated list of the supported sample rates for the
UCB1200. Below is a formula to derive valid sample rates:

sample_rate = 11981000/(32 * i), where 8 < i < 128

This information is pointed to by the sample_rates member of the
SND_DEV_CAP data structure.

Number of Channels

The following table shows the different supported number of channels
for the Philips UCB1200. The first entry in the table is the default
number of channels. This information is pointed to by the
channel_info member of the SND_DEV_CAP data structure.

Table B-8 Sample Rate (Hz)

2948 3941 4926 5942 6933

7966 8914 9852 10697 11700

12910 13866 14976 15600 17828

18720 19705 20800 22023 23400

24960 26743 28800 31200 34036

37440 41600 46801 53486 62401

Table B-9 Number of Channels

Channels Description

1 Mono

96 OS-9 for the Assabet/Neponset Board Guide

BMAUI Driver Descriptions

Encoding and Decoding Formats

The following table shows the supported encoding and decoding
formats for the Philips UCB1200. The first entry in the table is the
default format. This information is pointed to by the cm_info member
of the SND_DEV_CAP data structure.

Table B-10 Encoding and Decoding Formats

Coding Method
Sample
Size

Boundary
Size Description

SND_CM_PCM_ULAW 8 2 8 bit u-Law
commanded

SND_CM_PCM_SLINEAR
SND_CM_LSBYTE1ST

16 4 16 bit Linear (two's
complement)
little-endian

SND_CM_PCM_SLINEAR 16 4 16 bit Linear signed
(two's complement)
big-endian

BMAUI Driver Descriptions

OS-9 for the Assabet/Neponset Board Guide 97

SPUCB1200 driver for the UCB1200 Codec

This document describes the hardware specifications for the Philips
UCB1200 driver. This is an SPF driver.

Capabilities

The UCB1200 is capable of controlling a microphone/speaker,
input/output telecommunications lines, resistive style touch screen, and
16 General Purpose Input/Output lines. This driver currently can only
control the touch screen, and general purpose input/output lines. The
microphone/speaker can be controlled with a MAUI Sound driver called
sd_ucb1200. No driver has been written for the telecommunications
part of the UCB1200.

Descriptors

Table B-11 lists the UCB1200 descriptors.

Table B-11

Name Function

ucb UCB1200 Chip Initialization

ucb_audio Not Implemented

ucb_touch Touch Screen

ucb_gpio Control GPIO Lines

ucb_telecom Not Implemented

98 OS-9 for the Assabet/Neponset Board Guide

BMAUI Driver Descriptions

UCB

Opening the /ucb device will perform basic chip initialization. Normally
this is not necessary, unless another driver is written to control part of
the UCB1200 functions. This is the case for audio. The MAUI Sound
driver sd_ucb1200 will open /ucb to perform chip initialization. In this
way, the MAUI Sound driver play audio and this driver can control the
touch screen at the same time.

Audio

This portion of the driver is not implemented since the MAUI Sound
driver sd_ucb1200 already exists. sd_ucb1200 and this driver can
co-exist.

Touch Screen

This portion of the driver controls the touch screen operation. When
pressure is applied to the touch screen, a hardware interrupt is raised,
and this driver's interrupt service routine will execute. A system state
alarm, then, will fire at regular intervals to sample data from the touch
screen. When pressure is removed, the alarm stops. This mechanism
leaves the UCB1200 in a low power state until the user presses the
touch screen. The alarm rate can be controlled in the ucb_touch
descriptor.

BMAUI Driver Descriptions

OS-9 for the Assabet/Neponset Board Guide 99

Each sample contains an x, y coordinate as well as pressure
information. The data is formatted into a six byte packet as defined in
the table below. Each packet contains 10 bits of x, 10 bits of y, and 8 bits
of pressure information.

GPIO

This section of the driver has basic GPIO line control, where lines 0..9
are connected to a 7 segment display or LED. Each line can be
controlled with an _os_write() call. (Refer to the UCBHEX program
in the TEST directory.)

Table B-12 Touch Screen Descriptor Data

Byte number Description

0 sync code - 0x80

1 header:
bit 1: pendown
bit 2: penup
bit 3: penmove (may occur with pendown or penup)

2 bits 0..2: high 3 bits of x
bits 3..6: high 4 bits of pressure
bit 7: 0

3 bits 0..6: low 7 bits of x
bit 7: 0

4 bits 0..2: high 3 bits of y
bits 3..6: low 4 bits of pressure

5 bits 0..6: low bits of y
bit 7: 0

100 OS-9 for the Assabet/Neponset Board Guide

BMAUI Driver Descriptions

Telecom

This portion of the driver is not implemented.

Supporting Modules

Before this driver can be used, the following modules must be in
memory: spf, sysmbuf, mbinstall. mbinstall must also be run
before use.

BMAUI Driver Descriptions

OS-9 for the Assabet/Neponset Board Guide 101

MP_UCB1200 MAUI Touch screen Protocol
Module

This document describes the function of the mp_ucb1200 protocol
module, as well as a high level discussion of the touch screen driver
and calibration application.

Overview

The protocol module converts the driver raw data into a MAUI_MSG
structure. In this way, applications can remain somewhat ignorant of the
details of the hardware since it deals with the MAUI Input layer. In this
protocol module, the raw hardware data is converted into screen
coordinates. In addition, some data filtering occurs to reduce the
amount of erroneous data that the touch screen hardware can produce.

Data Format

The touch screen driver sends a 6 byte packet that contains x, y, and
pressure information. The exact format of this packet is described in the
spucb1200 driver.

Data Filter

This protocol module filters the data coming from the hardware in an
attempt to reduce erroneous data. Two methods are implemented: data
point averaging and low pressure point removal. The first method will
average the last two points received from the driver. The data point will
lag slightly behind the current position, then, but the average will reduce
erroneous data points produced by the hardware. The second method
throw out data points where the pressure below a certain threshold. It
seems that extremely light touches will cause the data to become
erratic, although the exact pressure threshold is hardware dependent.

102 OS-9 for the Assabet/Neponset Board Guide

BMAUI Driver Descriptions

Raw Mode

An application can put this protocol module in a "raw" mode where data
points are not filtered, averaged, or converted to screen coordinates.
That is, the data from the hardware is passed directly up to the
application.

The application can put this protocol module in a "raw" mode by calling:
inp_set_sim_meth(inpdev,RAW_MODE). After calibration, the
program will need to put the protocol module back in NATIVE mode by
calling: inp_set_sim_meth(inpdev,DEFAULT_SIM_METH). There
is a sample touch screen Calibration Application in the TOUCH_CAL
directory.

When the protocol module is taken out of "raw" mode, it will try to read
new calibration data points from the ucb1200.dat data module. After the
data is read from the module, it is no longer needed.

cdb.touch

The touch screen can be registered with MAUI by loading the
cdb.touch module in memory before any programs using input are
started. This will specify the spucb1200 as the driver, cdb.touch as
the descriptor, and mp_ucb1200 as the protocol module.

BMAUI Driver Descriptions

OS-9 for the Assabet/Neponset Board Guide 103

Compile Time Options

Table B-13 shows compile time options used to control the default
calibration settings and also the screen size. These options can be
specified with a value in the mp_ucb1200 makefile to modify the
defaults.

Table B-13 Compile Time Options

Name Purpose

SCREEN_WIDTH Screen Width in Pixels

SCREEN_HEIGHT Screen Weight in Pixels

DEFAULT_CALIBRATION_X Left Calibration Hardware Point

DEFAULT_CALIBRATION_Y Top Calibration Hardware Point

DEFAULT_CALIBRATION_WIDTH Width of Screen In Hardware Points

DEFAULT_CALIBRATION_HEIGHT Height of Screen In Hardware Points

JITTER_THRESHOLD Minimum Pixel Change Required Before Points are
Reported to the Application.

NUM_PTS This allows you to choose how many successive data
points to average in order to produce less erroneous
screen coordinate data to the application. The default is
2, and valid choices are 1, 2, 4, 8, 16.

MIN_PRESSURE Any pressure point less than this value will be ignored.
This is another way to reduce erroneous data. This
represents the 8 bit pressure value we get from the
driver. The default is 40.

104 OS-9 for the Assabet/Neponset Board Guide

BMAUI Driver Descriptions

Calibration Application

There is a sample calibration application located in the
$(MWOS)/SRC/MAUI/MP/MP_UCB1200/TOUCH_CAL directory. This
application, called touch_cal, will present a text message on the
screen as well as points for the user to press. After the points are
pressed, the protocol module mp_ucb1200 will be updated with the
new calibration information.

Assumptions/Dependencies

1. A Window Manager must be running before this application will
operate.

2. A font module must be present to run the demo. default.fnt is
the default module, or you can specify one on the command line.

3. touch_cal will open the first CDB_TYPE_REMOTE device in the
cdb.

Command Line Options

-f[=]<outfile> Specifies the file name of the calibration
information module. This program will write the
calibration information to this file name if it is
specified. The file contains the calibration
information as a data module, thus allowing the
information to be stored on disk, nv RAM, flash,
etc. for use the next time the hardware is
rebooted.

-c This option only works if -f is specified. This
will cause the calibration program to run only if
the filename specified with -f is not present.

-m= Specifies the font module to use for displaying
the text message on the screen.

BMAUI Driver Descriptions

OS-9 for the Assabet/Neponset Board Guide 105

Coordination with Protocol Module

The protocol module mp_ucb1200 and the touch screen application
touch_cal work together to provide the calibration functionality.
touch_cal must first open the touch screen device, and then must set
it into Raw Mode. After the user selects each calibration point,
touch_cal computes the average of them. These averaged hardware
points (as well as the screen resolution) are then stored in a data
module called ucb1200.dat. When the input device is taken out of
Raw Mode, the protocol module will link to ucb1200.dat and update
itself with the new calibration information.

Compiling

The makefile for touch_cal exists in the
$(PORT)/MAUI/MP_UCB1200/TOUCH_CAL directory.

106 OS-9 for the Assabet/Neponset Board Guide

BMAUI Driver Descriptions

	OS-9® for Assabet/Neponset Board Guide
	Table of Contents
	Chapter 1: Installing and Configuring OS-9®
	Requirements and Compatibility
	Host Hardware Requirements (PC Compatible)
	Host Software Requirements (PC Compatible)
	Target Hardware Requirements
	Java Hardware Requirements

	Target Hardware Setup
	Connecting the Target to the Host
	Building the OS-9 ROM Image
	Overview
	Coreboot
	Bootfile

	Starting the Configuration Wizard
	Booting from the On-Board Flash
	Booting from an ATA Flash Card or Using bootp
	Pinging the Target Board

	Creating a Startup File
	Example Startup File

	Optional Procedures
	Creating a new OS-9 Coreboot Image or ROM Image in Flash Memory
	Making a Coreboot Image with an EPROM programmer or Intel’s JFlash Utility

	Compressing the Bootfile Image

	Chapter 2: Board-Specific Reference
	Boot Options
	Booting from Flash
	Booting from PCMCIA ATA Card
	Booting from PCMCIA Ethernet Card
	Booting over Serial Communications Port via Kermit
	Restart Booter
	Break Booter

	The Fastboot Enhancement
	Overview
	Implementation Overview
	B_QUICKVAL
	B_OKRAM
	B_OKROM
	B_1STINIT
	B_NOIRQMASK
	B_NOPARITY

	Implementation Details
	Compile-time Configuration
	Runtime Configuration

	OS-9 Vector Mappings
	Assabet GPIO Usage
	GPIO Interrupt Polarity

	Board-Specific Register Access Functions
	Example

	Port Specific Utilities
	pcmcia
	touch_cal
	ucbtouch

	Appendix A: Board-Specific Modules
	Low-Level System Modules
	High-Level System Modules
	CPU Support Modules
	System Configuration Module

	Power Management Support Modules
	Interrupt Controller Support
	Real Time Clock
	Ticker
	Abort Handler
	Generic IO Support modules (File Managers)
	Pipe Descriptor
	RAM Disk Support
	Descriptors for Use with RAM

	Serial and Console Devices
	Descriptors for Use with sc1100
	Descriptors for use with sc1101
	Descriptors for use with sc16550
	Descriptors for Use with scllio

	PCMCIA Support for IDE Type Devices
	Descriptors for Use with rb1003

	PCMCIA Support for Socket-LPE Ethernet Card (NE2000 Compatible)
	Descriptors for Use with spne2000

	PCMCIA Support for 3COM Ethernet Card
	spe509_pcm Descriptors

	SMC91C94 Ethernet Support
	Descriptor for Use with sp91c94
	Network Configuration Modules

	UCB1300 Support Modules
	Descriptors for Use with spucb1200

	Maui Graphical Support Modules
	Descriptors for Use with gx_sa1100
	Descriptors for Use with sd_ucb1200
	MAUI configuration modules
	MAUI protocol modules

	Appendix B: MAUI Driver Descriptions
	Assabet Objects
	MAUI objects

	GX_SA1100 LCD Graphic Driver Specification
	Board Ports
	Device Capabilities
	Display Resolution
	Coding Methods
	Viewport Complexity
	Memory
	Location
	Build the Driver
	Build the Descriptor

	SD_UCB1200 Sound Driver Specification
	Device Capabilities
	Gain Capabilities Array
	Sample Rates
	Number of Channels
	Encoding and Decoding Formats

	SPUCB1200 driver for the UCB1200 Codec
	Capabilities
	Descriptors
	UCB
	Audio
	Touch Screen
	GPIO
	Telecom
	Supporting Modules

	MP_UCB1200 MAUI Touch screen Protocol Module
	Overview
	Data Format
	Data Filter
	Raw Mode
	cdb.touch
	Compile Time Options
	Calibration Application
	Assumptions/Dependencies
	Command Line Options
	Coordination with Protocol Module
	Compiling

