
w w w. ra d i sy s . co m
Revision A • July 2006

OS-9® for ARM CL89712
Board Guide

Version 4.7

July 2006
Copyright ©2006 by RadiSys Corporation

All rights reserved.
EPC and RadiSys are registered trademarks of RadiSys Corporation. ASM, Brahma, DAI, DAQ, MultiPro, SAIB, Spirit, and ValuePro are
trademarks of RadiSys Corporation.
DAVID, MAUI, OS-9, OS-9000, and SoftStax are registered trademarks of RadiSys Corporation. FasTrak, Hawk, and UpLink are
trademarks of RadiSys Corporation.
† All other trademarks, registered trademarks, service marks, and trade names are the property of their respective owners.

Copyright and publication information

This manual reflects version 4.7 of Microware OS-9.
Reproduction of this document, in part or whole, by any means,
electrical, mechanical, magnetic, optical, chemical, manual, or
otherwise is prohibited, without written permission from RadiSys
Microware Communications Software Division, Inc.

Disclaimer

The information contained herein is believed to be accurate as of
the date of publication. However, RadiSys Corporation will not be
liable for any damages including indirect or consequential, from
use of the OS-9 operating system, Microware-provided software,
or reliance on the accuracy of this documentation. The
information contained herein is subject to change without notice.

Reproduction notice

The software described in this document is intended to
be used on a single computer system. RadiSys
Corporation expressly prohibits any reproduction of the
software on tape, disk, or any other medium except for
backup purposes. Distribution of this software, in part
or whole, to any other party or on any other system
may constitute copyright infringements and
misappropriation of trade secrets and confidential
processes which are the property of RadiSys
Corporation and/or other parties. Unauthorized
distribution of software may cause damages far in
excess of the value of the copies involved.

OS-9 for ARM CL89712 Board Guide 3

Table of Contents

Chapter 1: Installing and Configuring OS-9 5

6 Development Environment Overview
7 Requirements and Compatibility
7 Host Hardware Requirements (PC Compatible)
7 Host Software Requirements (PC Compatible)
7 Target Hardware Requirements
7 Software Compatibility
8 OS-9 Architecture
10 Connecting the Target to the Host
10 Attaching the Cables
11 Building the OS-9 ROM Image
11 Coreboot
11 Bootfile
12 Using the Configuration Wizard
14 Configuring Coreboot Options
15 Configuring Bootfile Options
17 Transferring the ROM Image to the Target
17 Download Steps

Chapter 2: Board Specific Reference 19

20 The Fastboot Enhancement
20 Overview
20 Implementation Overview
21 B_QUICKVAL
21 B_OKROM
22 B_1STINIT
22 B_NOIRQMASK
22 B_NOPARITY
23 Implementation Details

4 OS-9 for ARM CL89712 Board Guide

23 Compile-time Configuration
23 Runtime Configuration

Appendix A: Board Specific Modules 25

26 Low-Level System Modules
27 High-Level System Modules
28 Common System Modules List

 Product Discrepancy Report 31

5

Chapter 1: Instal l ing and Configuring

OS-9®

This chapter describes installing and configuring OS-9® on the ARM
CDB89712 board. It includes the following sections:

• Development Environment Overview

• Requirements and Compatibility

• Building the OS-9 ROM Image

• Transferring the ROM Image to the Target

• Optional Procedures

6 OS-9 for ARM CL89712 Board Guide

1 Installing and Configuring OS-9®

Development Environment Overview

Figure 1-1 shows a typical development environment for the ARM
CDB89712 board. The components shown include the minimum
required to enable OS-9 to run on the ARM CDB89712 board.

Figure 1-1 ARM CL89712 Development Environment

1Installing and Configuring OS-9®

OS-9 for ARM CL89712 Board Guide 7

Requirements and Compatibility

Host Hardware Requirements (PC Compatible)

Your host PC must have the following minimum hardware
characteristics:

• the recommended amount of RAM for the host operating system

• an Ethernet network card

Host Software Requirements (PC Compatible)

Your host PC must have the following software installed:

• Windows 95, 98, ME, 2000, or NT 4.0

• Microware OS-9 for ARM

Target Hardware Requirements

Your ARM CDB89712 evaluation board requires the following hardware:

• a power supply

• an RS-232 null modem serial cable (for serial console)

• an Ethernet cable or a second RS-232 null modem serial cable (for
down-loading programs to the board)

Software Compatibility

Microware OS-9 for ARM/StrongARM is compatible with the following
software:

• RadiSys Hawk™ Version

• RadiSys SoftStax®

8 OS-9 for ARM CL89712 Board Guide

1 Installing and Configuring OS-9®

Connecting the Target to the Host

Connecting the ARM CDB89712 to your host PC involves attaching the
power, serial, and Ethernet cables to the reference board. Once you
have the board connected, you can use the serial console in Hawk to
verify the serial connection.

NoteNote
Before installing and configuring OS-9 on your evaluation board, refer
to the hardware documentation for information on hardware setup.

Attaching the Cables

Complete the following steps to attach the cables:

Step 1. Attach an Ethernet cable to the RJ45 connector labeled “10BASE-T”.

Step 2. Connect a serial cable to the connector labeled “Serial Port 0”.

Step 3. Connect the other end of the serial cable to a COM port on the host PC.

Step 4. Attach the power cable and plug the AC Adapter into a power outlet.

1Installing and Configuring OS-9®

OS-9 for ARM CL89712 Board Guide 9

Building the OS-9 ROM Image

The OS-9 ROM Image is a set of files and modules that collectively
make up the OS-9 operating system. The specific ROM Image contents
can vary from system to system depending on hardware capabilities
and user requirements.

To simplify the process of loading and testing OS-9, the ROM Image is
generally divided into two parts—the low-level image, called coreboot;
and the high-level image, called bootfile.

Coreboot

The coreboot image is generally responsible for initializing hardware
devices and locating the high-level (or bootfile) image as specified by its
configuration. Depending on the reference board’s capabilities, the
coreboot could be located on a FLASH part, a hard disk, or a floppy
disk. It is also responsible for building basic structures based on the
image it finds and passing control to the kernel to bring up the OS-9
system.

Bootfile

The bootfile image contains the kernel and other high-level modules
(initialization module, file managers, drivers, descriptors, applications).
The image is loaded into memory based on the device selected from
the boot menu. The bootfile image normally brings up an OS-9 shell
prompt, but can be configured to automatically start an application.

Microware provides a Configuration Wizard to create a coreboot image,
a bootfile image, or an entire OS-9 ROM Image. The wizard can also be
used to modify an existing image. The Configuration Wizard is
automatically installed on the host PC during the OS-9 installation
process.

10 OS-9 for ARM CL89712 Board Guide

1 Installing and Configuring OS-9®

Starting the Configuration Wizard

The Configuration Wizard is the application used to build the coreboot,
bootfile, or ROM image. To start the Configuration Wizard, perform the
following steps:

Step 1. From the Windows desktop, select Start -> RadiSys ->
Microware OS-9 for <product> -> Configuration Wizard.
You should see the following opening screen:

Figure 1-2 Configuration Wizard Opening Screen

Step 2. Select your target board from the Select a board pull-down menu.

1Installing and Configuring OS-9®

OS-9 for ARM CL89712 Board Guide 11

Step 3. Select the Create new configuration radio button from the
Select a configuration menu and type in the name you want to give
your ROM image in the supplied text box. This names your new
configuration, which can later be accessed by selecting the Use
existing configuration pull down menu.

Step 4. Select the Advanced Mode radio button from the Choose Wizard
Mode field and click OK. The Wizard’s main window is displayed. This is
the dialog from which you will proceed to build your image. An example
is shown in Figure 1-3.

Figure 1-3 Configuration Wizard Main Window

12 OS-9 for ARM CL89712 Board Guide

1 Installing and Configuring OS-9®

Configuring Coreboot Options

From the Configuration Wizard’s main window, complete the following
steps to configure your coreboot options:

Step 1. Click the Coreboot Main Configuration button.

Step 2. Click on the Debugger tab. Make sure Ethernet is selected in the
Remote Debug Connection area and Remote is selected in the
Select Debugger area. Remote debugging is enabled so that
system-state debugging can be performed in Hawk.

Step 3. Click on the Ethernet tab and enter the Ethernet address information
in the address text boxes. For most situations you will need to fill out the
following text boxes:

• IP Address

• IP Broadcast

• Subnet Mask

• IP Gateway

• MAC Address

If you are uncertain of the values for these text boxes, contact your
system administrator.

Step 4. Click OK to close the window. The default settings for the other tabs do
not require modification.

1Installing and Configuring OS-9®

OS-9 for ARM CL89712 Board Guide 13

Configuring Bootfile Options

Most of the default options in the dialogs that control the configuration of
the bootfile are correct. There are a few functions, however, such as
Ethernet, that require additional information in order to be configured
correctly. To configure your bootfile options, complete the following
steps:

Step 1. If you want to use the target board across a network, you will need to
configure the Ethernet settings within the Configuration Wizard. To do
this, select Configure -> Bootfile -> Network
Configuration from the Wizard’s main menu.

14 OS-9 for ARM CL89712 Board Guide

1 Installing and Configuring OS-9®

Step 2. From the Network Configuration dialog, select the Interface
Configuration tab. From here you can select and enable the
interface. For example, you can select the appropriate Ethernet card
from the list of options on the left and specify whether you would like to
enable IPv4 or IPv6 addressing. Figure 1-4 shows an example of the
Interface Configuration tab.

Figure 1-4 Bootfile -> Network Configuration -> Interface Configuration

For More Information
More In
fo More
Informatio
n More Inf
ormation M
ore Inform
ation More

-6-

To learn more about IPv4 and IPv6 functionalities, refer to the
Using LAN manual, included with this product CD.

1Installing and Configuring OS-9®

OS-9 for ARM CL89712 Board Guide 15

For More Information
More In
fo More
Informatio
n More Inf
ormation M
ore Inform
ation More

-6-

Contact your system administrator if you do not know the network
values for your board.

Step 3. Once you have made your settings in the Network Configuration
dialog, click OK.

Step 4. Click on the SoftStax Setup tab and select Enable SoftStax.

Step 5. Click OK to close the dialog box.

Step 6. Click on the System Disk Configuration button and verify that the
default settings are acceptable to you.

Step 7. Leave the other default settings alone and click the Build Images
button to display the Master Builder window.

Step 8. Select the following check boxes as they are appropriate to your setup:

• SoftStax (SPF) Support
• User State Debugging Modules
• If you are using a RAM disk, select Disk Support.
• If you are using a RAM disk, select Disk Utilities.

Step 9. Click Coreboot + Bootfile and click Build. This will build the
ROM image that can be burned into flash memory. The name of the
ROM image is rom.

Step 10. Click Finish and then select File -> Save Settings to save the
configuration.

Step 11. Select File -> Exit to quit from the Configuration Wizard.

16 OS-9 for ARM CL89712 Board Guide

1 Installing and Configuring OS-9®

Transferring the ROM Image to the Target

Once you have built a ROM image, you can transfer it to the on-board
flash memory on target board. Microware supplies a utility called
cl_download that performs this transfer. cl_download takes a
binary file and transfers it across any COM port at any desired baud
rate. By default, cl_download uses COM1 and a baud rate of 115200.
The defaults can be changed via command line options. Below are
some usage examples:

The following command uses COM1 AND 115200 baud:

$ cl_download rom

The following command uses COM3 AND 115200 baud:

$ cl_download rom 3

The following command uses COM3 AND 19200 baud:

$ cl_download rom 3 19200

On the ARM CDB89712 reference board, Serial Port 0 will receive the
download. The target board must be put into flash burn/download
mode. The ROM image must be programmed into flash and the board
must be rebooted in its normal running mode. The following section
describes how to do this.

Download Steps

Complete the following steps to put the board in download mode:

Step 1. Open a DOS shell and navigate to the following directory:
<drive>:\mwos\OS9000\ARMV4\PORTS\CDB89712\BOOTS\INSTALL\PORTBOOT

Step 2. Remove power from the board.

Step 3. Close the JP31 jumper. The jumper is located near the center of the
board by the processor.

Step 4. Apply power to the board.

1Installing and Configuring OS-9®

OS-9 for ARM CL89712 Board Guide 17

Step 5. Run cl_download by typing the following command:

cl_download rom 1 19200

A message, “Waiting for the board to wakeup,” should appear.

Step 6. Press the POR button, then the RESET button, then the WAKEUP button.
The board should begin receiving data.

If the board does not start to receive data, press each button again for
at least one half of a second. Once the file has been downloaded and
burned into flash memory, the message “Successfully programmed
rom’” appears. Repeat steps two through six if this message does not
appear.

Step 7. Remove power from the board and open jumper JP31.

Step 8. Start HyperTerminal or the serial console in Hawk. Apply the following
settings: 19200 baud rate, 8 bits, 1 stop bit, and no flow control.

Step 9. Apply power to the board and press POR followed by RESET and
WAKEUP. The OS-9 bootstrap message appears in the terminal
program’s window.

When you see the shell prompt “$”, the board is booted and running
OS-9.

18 OS-9 for ARM CL89712 Board Guide

1 Installing and Configuring OS-9®

Optional Procedures

Compressing the Bootfile Image

OS-9 bootfiles can be compressed to allow more modules to be loaded
into a bootfile; this can be useful if you plan on storing your image on a
small FLASH part or a floppy disk.

NoteNote
The bootfile compression utility performs the compression at
approximately a 2.5:1 ratio.

Complete the following steps to compress your image:

Step 1. Verify that your coreboot contains the uncompress module. This
module can be found in the pre-built ROM and coreboot images that
were shipped with your Microware OS-9 product.

NoteNote
The uncompress module must be included in order for the compression
to execute properly.

Step 2. Open the Configuration Wizard and select Configure -> Coreboot
-> Main Configuration from the main menu.

Step 3. Select the Bootfile Compression tab. Verify that the Include
bootfile uncompress module box is checked and select OK.

1Installing and Configuring OS-9®

OS-9 for ARM CL89712 Board Guide 19

Step 4. When you are ready to build the image, open the Master Builder
dialog. Verify that the Compress Bootfile box is checked and then
press Build to begin the installing the image.

20 OS-9 for ARM CL89712 Board Guide

1 Installing and Configuring OS-9®

21

Chapter 2: Board Specif ic Reference

This chapter contains porting information specific to the ARM
CDB89712 board. It includes the following sections:

• The Fastboot Enhancement

22 OS-9 for ARM CL89712 Board Guide

2 Board Specific Reference

The Fastboot Enhancement

The Fastboot enhancements to OS-9 were added to address the needs
of embedded systems that require faster system bootstrap
performance. The Fastboot concept exists to inform OS-9 that the
defined configuration is static and valid. This eliminate the dynamic
search OS-9 usually performs during the bootstrap process. It also
allows the system to perform for a minimal amount of runtime
configuration. As a result, a significant increase in bootstrap speed is
achieved.

Overview

The Fastboot enhancement consists of a set of flags that control the
bootstrap process. Each flag informs some portion of the bootstrap
code of a particular assumption, and that the associated bootstrap
functionality should be omitted.

One important feature of the Fastboot enhancement is the ability of the
flags to become dynamically altered during the bootstrap process. For
example, the bootstrap code might be configured to query dip switch
settings, respond to device interrupts, or respond to the presence of
specific resources that indicate different bootstrap requirements.

Another important feature of the Fastboot enhancement is its versatility.
The enhancement’s versatility allows for special considerations under a
variety of circumstances. This can be useful in a system in which most
resources are known, static, and functional, but whose additional
validation is required during bootstrap for a particular instance (such as
a resource failure).

Implementation Overview

The Fastboot configuration flags have been implemented as a set of bit
fields. One 32-bit field has been dedicated for bootstrap configuration.
This four-byte field is contained within a set of data structures shared by

2Board Specific Reference

OS-9 for ARM CL89712 Board Guide 23

the kernel and the ModRom sub-components. Hence, the field is
available for modification and inspection by the entire set of system
modules (both high-level and low-level).

Currently, there are six-bit flags defined, with eight bits reserved for
user-definable bootstrap functionality. The reserved user-definable bits
are the high-order eight bits (31-24). This leaves bits available for future
enhancements. The currently defined bits and their associated
bootstrap functionality are listed in the following sections.

B_QUICKVAL

The B_QUICKVAL bit indicates that only the module headers of
modules in ROM are to be validated during the memory module search
phase. Limiting validation in this manner will omit the CRC check on
modules, which may save you a considerable amount of time. For
example, if a system has many modules in ROM, in which access time
is typically longer than it is in RAM, omitting the CRC check will
drastically decrease the bootstrap time. Furthermore, since it is rare
that data corruption will occur in ROM, omitting the CRC check is a safe
option.

In addition, the B_OKRAM bit instructs the low-level and high-level
systems to accept their respective RAM definitions without verification.
Normally, the system probes memory during bootstrap based on the
defined RAM parameters. This method allows system designers to
specify a possible range of RAM the system will validate upon startup;
thus, the system can accommodate varying amounts of RAM. However,
in an embedded system (where the RAM limits are usually statically
defined and presumed to be functional) there is no need to validate the
defined RAM list. Bootstrap time is saved by assuming that the RAM
definition is accurate.

B_OKROM

The B_OKROM bit causes acceptance of the ROM definition without
probing for ROM. This configuration option behaves similarly to the
B_OKRAM option with the exception that it applies to the acceptance of
the ROM definition.

24 OS-9 for ARM CL89712 Board Guide

2 Board Specific Reference

B_1STINIT

The B_1STINIT bit causes acceptance of the first init module found
during cold-start. By default, the kernel searches the entire ROM list
passed up by the ModRom for init modules before it takes the init
module with the highest revision number. Using the B_1STINIT in a
statically defined system omits the extended init module search,
which can save a considerable amount of time.

B_NOIRQMASK

The B_NOIRQMASK bit instructs the entire bootstrap system to not mask
interrupts for the duration of the bootstrap process. Normally, the
ModRom code and the kernel cold-start mask interrupts for the duration
of the system startup. However, in systems with a well-defined interrupt
system (systems that are calmed by the sysinit hardware
initialization code) and a requirement to respond to an installed interrupt
handler during startup, this option can be used. Its implementation will
prevent the ModRom and kernel cold-start from disabling interrupts.
(This is useful in power-sensitive systems that need to respond to
“power-failure” oriented interrupts.)

NoteNote
Some portions of the system may still mask interrupts for short periods
during the execution of critical sections.

B_NOPARITY

If the RAM probing operation has not been omitted, the B_NOPARITY
bit causes the system to not perform parity initialization of the RAM.
Parity initialization occurs during the RAM probe phase. The
B_NOPARITY option is useful for systems that either require no parity
initialization or only require it for “power-on” reset conditions. Systems
that only require parity initialization for initial power-on reset conditions
can dynamically use this option to prevent parity initialization for
subsequent “non-power-on” reset conditions.

2Board Specific Reference

OS-9 for ARM CL89712 Board Guide 25

Implementation Details

This section describes the compile-time and runtime methods by which
you can control the bootstrap speed of your system.

Compile-time Configuration

The compile-time configuration of the bootstrap is provided by a
pre-defined macro, BOOT_CONFIG, which is used to set the initial
bit-field values of the bootstrap flags. You can redefine the macro for
recompilation to create a new bootstrap configuration. The new,
over-riding value of the macro should be established as a redefinition of
the macro in the rom_config.h header file or a macro definition
parameter in the compilation command.

The rom_config.h header file is one of the main files used to
configure the ModRom system. It contains many of the specific
configuration details of the low-level system. Below is an example of
how you can redefine the bootstrap configuration of your system using
the BOOT_CONFIG macro in the rom_config.h header file:

#define BOOT_CONFIG (B_OKRAM + B_OKROM + B_QUICKVAL)

Below is an alternate example showing the default definition as a
compile switch in the compilation command in the makefile:

SPEC_COPTS = -dNEWINFO –dNOPARITYINIT
–dBOOT_CONFIG=0x7

This redefinition of the BOOT_CONFIG macro results in a bootstrap
method, which accepts the RAM and ROM definitions without
verification. It also validates modules solely on the correctness of their
module headers.

Runtime Configuration

The default bootstrap configuration can be overridden at runtime by
changing the rinf->os->boot_config variable from either a
low-level P2 module or from the sysinit2()function of the

26 OS-9 for ARM CL89712 Board Guide

2 Board Specific Reference

sysinit.c file. The runtime code can query jumper or other
hardware settings to determine which user-defined bootstrap procedure
should be used. An example P2 module is shown below.

NoteNote
If the override is performed in the sysinit2() function, the effect is
not realized until after the low-level system memory searches have
been performed. This means that any runtime override of the default
settings pertaining to the memory search must be done from the code
in the P2 module code.

#define NEWINFO
#include <rom.h>
#include <types.h>
#include <const.h>
#include <errno.h>
#include <romerrno.h>
#include <p2lib.h>

error_code p2start(Rominfo rinf, u_char *glbls)
{

/* if switch or jumper setting is set… */
if (switch_or_jumper == SET) {

/* force checking of ROM and RAM lists */
rinf->os->boot_config &= ~(B_OKROM+B_OKRAM);

}
return SUCCESS;

}

27

Appendix A: Board Specif ic Modules

This chapter describes the modules specifically written for the ARM
CDB89712 board. It includes the following sections:

• Low-Level System Modules

• High-Level System Modules

• Common System Modules List

28 OS-9 for ARM CL89712 Board Guide

A Board Specific Modules

Low-Level System Modules

The following low-level system modules are tailored specifically for the
ARM CDB89712 board. They are located in the following directory:

MWOS/OS9000/ARMV4/PORTS/CDB89712/CMDS/BOOTOBJS/ROM

cnfgdata contains low-level configuration data

cnfgfunc provides access services to the
cnfgdata

commcnfg inits communication port defined in
cnfgdata

conscnfg inits console port defined in cnfgdata

io89712 low-level based serial IO driver

ll8900 Low-level Ethernet ROM driver

portmenu inits booters defined in the cnfgdata

romcore bootstrap code

tmr89712 ROM timer services

usedebug debugger configuration module

ABoard Specific Modules

OS-9 for ARM CL89712 Board Guide 29

High-Level System Modules

The following OS-9 system modules are tailored specifically for the
ARM CDB89712 board.

Modules located in the following directory:
MWOS/OS9000/ARMV4/PORTS/CDB89712/CMDS/BOOTOBJS

sc89712 Serial driver that supports baud rates up
to 115200. Default Baud Rate is 19,200.
Descriptors /term and /t1 are
assigned to Port 0. Descriptors /term2
and /t2 are assigned to Port 1.

tkarm System clock module

Modules located in the following directory:
MWOS/OS9000/ARMV4/PORTS/CDB89712/CMDS/BOOTOBJS/SPF

sp8900 Driver module for the Ethernet controller

spcs0 Descriptor for the Ethernet driver sp8900

Modules located in the following directory:
MWOS/OS9000/ARMV4/CMDS/BOOTOBJS

vect110 Vector module for ARM

fpu ARM FPU emulator

30 OS-9 for ARM CL89712 Board Guide

A Board Specific Modules

Common System Modules List

The following low-level system modules provide generic services for
OS9000 Modular ROM. They are located in the following directory:

MWOS/OS9000/ARMV4/CMDS/BOOTOBJS/ROM

bootsys provides booter registration services

console provides console services

dbgentry inits debugger entry point for system use

dbgserv provides debugger services

excption provides low-level exception services

fdc765 provides PC style floppy support

flboot is a SCSI floptical drive disk booter

flshcach provides low-level cache management
services

hlproto provides user level code access to
protoman

ide provides target-specific standard IDE
support, including PCMCIA ATA PC
cards

llbootp provides bootp services

llip provides low-level IP services

llkermit provides a booter that uses kermit
protocol

llslip provides low-level SLIP services

lltcp provides low-level TCP services

lludp provides low-level UDP services

notify provides state change information for
use with LL and HL drivers

ABoard Specific Modules

OS-9 for ARM CL89712 Board Guide 31

override provides a booter that allows a choice
between menu and auto booters

parser provides argument parsing services

pcman provides a booter that reads MS-DOS
file system

protoman provides a protocol management
module

restart provides a booter that causes a soft
reboot of the system

romboot provides a booter that allows booting
from ROM

rombreak provides a booter that calls the installed
debugger

rombug provides a low-level system debugger

scsiman is a target-independent booter support
module that provides general SCSI
command protocol services

sndp provides low-level system debug
protocol

srecord provides a booter that accepts
S-Records

swtimer provides timer services via software
loops

tsboot is a SCSI TEAC tape drive booter

type41 is a primary partition type

32 OS-9 for ARM CL89712 Board Guide

A Board Specific Modules

	OS-9® for ARM CL89712 Board Guide
	Table of Contents
	Chapter 1: Installing and Configuring OS-9®
	Development Environment Overview
	Requirements and Compatibility
	Host Hardware Requirements (PC Compatible)
	Host Software Requirements (PC Compatible)
	Target Hardware Requirements
	Software Compatibility

	Connecting the Target to the Host
	Attaching the Cables

	Building the OS-9 ROM Image
	Coreboot
	Bootfile
	Starting the Configuration Wizard
	Configuring Coreboot Options
	Configuring Bootfile Options

	Transferring the ROM Image to the Target
	Download Steps

	Optional Procedures
	Compressing the Bootfile Image

	Chapter 2: Board Specific Reference
	The Fastboot Enhancement
	Overview
	Implementation Overview
	B_QUICKVAL
	B_OKROM
	B_1STINIT
	B_NOIRQMASK
	B_NOPARITY

	Implementation Details
	Compile-time Configuration
	Runtime Configuration

	Appendix A: Board Specific Modules
	Low-Level System Modules
	High-Level System Modules
	Common System Modules List

