

Home

OS-9[®] for GraphicsMaster Board Guide

Version 4.7

Copyright and publication information

This manual reflects version 4.7 of Microware OS-9. Reproduction of this document, in part or whole, by any means, electrical, mechanical, magnetic, optical, chemical, manual, or otherwise is prohibited, without written permission from RadiSys Microware Communications Software Division, Inc.

Disclaimer

The information contained herein is believed to be accurate as of the date of publication. However, RadiSys Corporation will not be liable for any damages including indirect or consequential, from use of the OS-9 operating system, Microware-provided software, or reliance on the accuracy of this documentation. The information contained herein is subject to change without notice.

Reproduction notice

The software described in this document is intended to be used on a single computer system. RadiSys Corporation expressly prohibits any reproduction of the software on tape, disk, or any other medium except for backup purposes. Distribution of this software, in part or whole, to any other party or on any other system may constitute copyright infringements and misappropriation of trade secrets and confidential processes which are the property of RadiSys Corporation and/or other parties. Unauthorized distribution of software may cause damages far in excess of the value of the copies involved.

July 2006 Copyright ©2006 by RadiSys Corporation All rights reserved. EPC and RadiSys are registered trademarks of RadiSys Corporation. ASM, Brahma, DAI, DAQ, MultiPro, SAIB, Spirit, and ValuePro are trademarks of RadiSys Corporation. DAVID, MAUI, OS-9, OS-9000, and SoftStax are registered trademarks of RadiSys Corporation. FasTrak, Hawk, and UpLink are trademarks of RadiSys Corporation. † All other trademarks, registered trademarks, service marks, and trade names are the property of their respective owners.

Table of Contents

Chapte	r 1: In	nstalling and Configuring OS-9®	9
	10	Requirements and Compatibility	_
	10	Host Hardware Requirements (PC Compatible)	
	10	Host Software Requirements (PC Compatible)	
	11	Target Hardware Requirements	
	11	Java Hardware Requirements	
	12	Target Hardware Setup	
	12	Configure Board Switch Settings	
	12	Installing the Flash Device	
	13	Configuring the ATA Card	
	14	Connecting the Target to the Host	
	16	Building the OS-9 ROM Image	
	16	Overview	
	16	Coreboot	
	16	Bootfile	
	17	Starting the Configuration Wizard	
	23	Creating a Startup File	
	24	Example Startup File	
	26	Optional Procedures	
	26	Connecting the Reference Board to an Ethernet Network	
	28	Pinging the Reference Board	
	28	Creating a New OS-9 Coreboot Image in Flash Memory	
	29	Making a Coreboot Image with an EPROM Programmer	
	30	Configuring GraphicsMaster with TrueFFS	
	30	Rebuilding the Descriptor (30MB TrueFFS Only)	
	30	Building the Image	
	33	Setting up the Flash Disk	
	34	Programming the Bootfile into Elash (30MB Elash Disk)	

37

67

- 34 Programming the Bootfile into Flash (14MB Flash Disk)
- 34 Compressing the Bootfile Image

Chapter 2: Board-Specific Reference

38	Boot Options
38	Booting from FLASH
39	Booting from PCMCIA ATA Card
39	Booting from PCMCIA Ethernet Card
39	Restart Booter
40	Break Booter
41	The Fastboot Enhancement
41	Overview
42	Implementation Overview
42	B_QUICKVAL
42	B_OKRAM
43	B_OKROM
43	B_1STINIT
43	B_NOIRQMASK
44	B_NOPARITY
44	Implementation Details
44	Compile-time Configuration
45	Runtime Configuration
46	OS-9 Vector Mappings
57	GPIO Usage
59	GPIO Interrupt Polarity
60	Port Specific Utilities

Appendix A: Board-Specific Modules

68	Low-L	.evel	System	Modules
----	-------	-------	--------	---------

- 72 High-Level System Modules
- 72 CPU Support Modules
- 73 System Configuration Module

73	Interrupt Controller Support
73	Real Time Clock
73	Ticker
74	Abort Handler
74	Generic IO Support modules (File Managers)
74	Pipe Descriptor
75	RAM Disk Support
75	Descriptors for Use with RAM
75	Serial and Console Devices
76	Descriptors for Use with sc1100
77	Descriptors for use with sc16550
77	Descriptors for Use with scllio
77	PCMCIA Support for IDE Type Devices
78	Descriptors for Use with rb1003
78	PCMCIA Support for 3COM Ethernet card
78	Descriptors for Use with spe509_pcm
78	Network Configuration Modules
79	SMC91C94 Ethernet Support
79	Descriptor for Use with sp91c94
79	Network Configuration Modules
79	UCB1200 Support modules.
79	Descriptors for Use with spucb1200
80	Maui Graphical Support Modules
80	Descriptors for Use with gx_sa1100
80	Descriptors for Use with sd_ucb1200
80	MAUI configuration modules
80	MAUI protocol modules
81	Using Alternate Display Devices

Appendix B: MAUI Driver Descriptions

84	GraphicsMaster	Objects
----	----------------	----------------

- 84 MAUI objects
- 85 GX_SA1100 LCD Graphic Driver Specification

83

85	Board Ports
86	Device Capabilities
88	Display Resolution
89	Coding Methods
89	Viewport Complexity
90	Memory
90	Location
90	Build the Driver
91	Build the Descriptor
92	SD_UCB1200 Sound Driver Specification
92	Device Capabilities
94	Gain Capabilities Array
96	Sample Rates
96	Number of Channels
97	Encoding and Decoding Formats
98	SPUCB1200 driver for the UCB1200 Codec
98	Capabilities
98	Descriptors
99	UCB
99	Audio
100	Touch Screen
101	GPIO
101	Telecom
101	Supporting Modules
102	MP_UCB1200 MAUI Touch screen Protocol Module
102	Overview
102	Data Format
102	Data Filter
103	Raw Mode
103	cdb.touch
104	Compile Time Options
105	Calibration Application
105	Assumptions/Dependencies
105	Command Line Options

106	Coordination with Protocol Module
106	Compiling

Chapter 1: Installing and Configuring OS-9[®]

This chapter describes installing and configuring OS-9® on the GraphicsMaster board. It includes the following sections:

- Requirements and Compatibility
- Target Hardware Setup
- Connecting the Target to the Host
- Building the OS-9 ROM Image
- Creating a Startup File
- Optional Procedures

Requirements and Compatibility

Host Hardware Requirements (PC Compatible)

Your host PC should have the following hardware installed:

- a minimum of 32MB of free disk space (An additional 235MB of free disk space is required to run PersonalJava Solution for OS-9.)
- an Ethernet network card
- a PCMCIA card reader/writer
- the recommended amount of RAM for your particular operating system.

Note

If you are a PersonalJava Solution for OS-9 licensee and you plan to use the Java JCC to pre-load your Java classes, you may need as much as 64MB of RAM. Refer to the document **Using JavaCodeCompact** for a complete discussion of using the JCC.

Host Software Requirements (PC Compatible)

Your host PC should have the following software installed:

- Windows 95/98 or Windows NT/2000
- a terminal emulation program (such as Hyperterminal, which comes with Microsoft Windows)

Target Hardware Requirements

Your reference board requires the following hardware:

- an enclosure or chassis with power supply
- an RS-232 null modem serial cable
- an LCD screen, keyboard, and mouse (for use with MAUI®)

The J4 connector controls the touch panel on the GraphicsClient. OS-9 does not allow the swapping of positive (P) and negative (M) connectors, or the swapping of X and Y pairs. To ensure a proper connection, use the following connector pinouts:

Figure 1-1 J4 Connector Pinout Diagram

J4	TSMX 🗲	→ TSMX
	TSPX ┥	→ TSPX
	TSPY	► TSMX
	TSMX 🖣	► TSPY

Java Hardware Requirements

The following is required of your reference board to run PersonalJava Solution for OS-9:

- 16MB of RAM
- 4MB of FLASH (Boot)
- LCD Display

For More Information

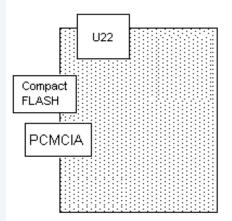
The *GraphicsMaster User's Manual* is provided by Applied Data Systems, Inc. You can download a copy of this document from www.flatpanels.com.

Target Hardware Setup

Configure Board Switch Settings

Set the jumpers according to the *GraphicsMaster User's Manual* or *GraphicsMaster Plus User's Manual* supplied by Applied Data Systems.

Note


In most cases, you can use the default factory jumper settings.

Installing the Flash Device

The first stage in configuring your reference board is to burn the pre-configured coreboot image located in the following directory to the 128k boot Flash device:

MWOS\<OS>\ARMV4\PORTS\GRAPHICSMASTER\BOOTS\SYSTEMS\PORTBOOT

Figure 1-2 Installing the Flash Devices

Note

If you need to create new flash devices, see the **Creating a New OS-9 Coreboot Image in Flash Memory** section.

Configuring the ATA Card

You can use your ATA card to validate that your reference board is operational without requiring the connection to the host machine:

To configure the ATA card, complete the following steps:

Step 1. From a DOS prompt on the host machine, navigate to the following directory:

 $\texttt{MWOS} \verb| OS9000 \verb| ARMV4 \verb| PORTS \verb| GRAPHICSMASTER \verb| BOOTS \verb| SYSTEMS \verb| PORTBOOTS $ | SYSTEMS \verb| PORTBOOTS $ | SYSTEMS \verb| PORTBOOTS $ | SYSTEMS $ | PORTS $$

and run os9make.

Step 2. On the host machine, copy the file into the root directory of the ATA card:

MWOS\OS9000\ARMV4\PORTS\GRAPHICSMASTER\BOOTS\SYSTEMS\PORTBOOT\os9kboot

Step 3. With the board powered off, install the ATA card in the single PCMCIA socket on the reference board.

Connecting the Target to the Host

Connect an RS-232 null modem cable from the reference board to the serial port of a Windows 95, Windows 98, or Windows NT, or 2000 system.

- Step 1. Connect the serial cable to the J10 connector (or the DB9 connector that connects to J10) on the reference board. The J10 connector is the SA11X0 serial port 3 (SP3).
- Step 2. Connect the other end of the serial cable to the Host PC.
- Step 3. On the Windows desktop, click on the Start button and select Programs -> Accessories -> Hyperterminal.
- Step 4. Once Hyperterminal is open, enter a name for your Hyperterminal session.
- Step 5. Select an icon for the new Hyperterminal session. A new icon is created with the name of your session. Click OK.
- Step 6. In the **Phone Number** dialog, go to the **Connect Using** box and select the communications port to be used to connect to the reference board.

The port selected is the same port that you connected to the serial cable from the reference board. Click OK.

Step 7. In the **Port Settings** tab, enter the following settings:

Bits per second = 19200 Data Bits = 8 Parity = None Stop bits = 1 Flow control = XOn/XOff

Figure 1-3 Port Settings

COM	1 Properties			? ×
Por	rt Settings			
	<u>B</u> its per second:	19200		•
	<u>D</u> ata bits:	8		
	<u>P</u> arity:	None		
	<u>S</u> top bits:	1		
	<u>F</u> low control:	Xon / Xoff		
			<u>R</u> estore	Defaults
	01	к	Cancel	Apply

Step 8. Click OK. A connection should be established.

Note

If the word connected does not appear in the lower left corner of the window, click Call -> Connect to establish the connection.

Step 9. Apply power to the board. The OS-9 bootstrap message is displayed.

Building the OS-9 ROM Image

Overview

The OS-9 ROM image is a set of files and modules that collectively make up the OS-9 operating system. The specific ROM Image contents can vary from system to system depending on hardware capabilities and user requirements.

To simplify the process of loading and testing OS-9, the ROM Image is generally divided into two parts—the low-level image, called coreboot; and the high-level image, called bootfile.

Coreboot

The coreboot image is generally responsible for initializing hardware devices and locating the high-level (or bootfile) image as specified by its configuration. For example from a FLASH part, a harddisk, or Ethernet. It is also responsible for building basic structures based on the image it finds and passing control to the kernel to bring up the OS-9 system.

Bootfile

The bootfile image contains the kernel and other high-level modules (initialization module, file managers, drivers, descriptors, applications). The image is loaded into memory based on the device you select from the boot menu. The bootfile image normally brings up an OS-9 shell prompt, but can be configured to automatically start an application.

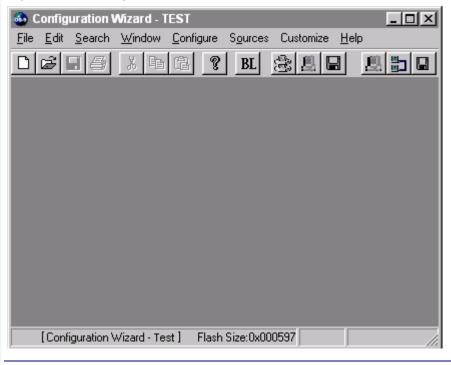
RadiSys provides a Configuration Wizard to create a coreboot image, a bootfile image, or an entire OS-9 ROM image. The Qizard can also be used to modify an existing image. The Configuration Wizard is automatically installed on your host PC during the OS-9 installation process.

Starting the Configuration Wizard

Note

Microware OS-9 for StrongARM supports ATA Flash cards.

The Configuration Wizard is the application used to build the coreboot bootfile image. To start the Configuration Wizard, perform the following steps:


Step 1. From the Windows desktop, select Start -> RadiSys -> Microware OS-9 for <your product> -> Configuration Wizard. You should see the following opening screen:

Configuration Wizard	<u>? X</u>
RadiSys. MICROWARI SOFTWARE CONFIGURATION WIZARD	Select a board
	C Use existing configuration
RadiSys.	Choose Wizard Mode Beginner Mode: Create a basic bootfile step-by-step. Advanced Mode: Create a bootfile
MICROWARE SOFTWARE	-Select MWOS Location C:VMWOS
	OK Exit

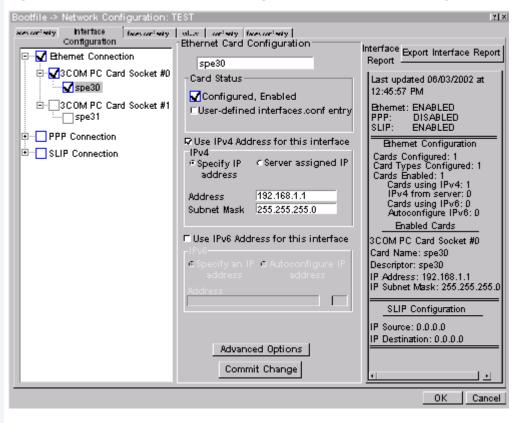
Figure 1-4 Configuration Wizard Opening Screen

- Step 2. Select your target board from the **Select a board** pull-down menu.
- Step 3. Select the Create new configuration radio button from the **Select a configuration** menu and type in the name you want to give your ROM image in the supplied text box. This names your new configuration, which can later be accessed by selecting the **Use** existing configuration pull down menu.

Step 4. Select the Advanced Mode radio button from the **Choose Wizard Mode** field and click OK. The Wizard's main window is displayed. This is the dialog from which you will proceed to build your image. An example is shown in **Figure 1-5**.

Figure 1-5 Configuration Wizard Main Window

If you intend on using the target board across a network, proceed to the next step. If not, go directly to step eight.


Note

If you intend to use the target board across a network, you need to configure the network settings.

- Step 5. If you want to use the target board across a network, you will need to configure the Ethernet settings within the Configuration Wizard. To do this, select Configure -> Bootfile -> Network Configuration from the Wizard's main menu.
- Step 6. From the **Network Configuration** dialog, select the Interface Configuration tab. From here you can select and enable the interface. For example, you can select the appropriate Ethernet card from the list of options on the left and specify whether you would like to enable IPv4 or IPv6 addressing. **Figure 1-6** shows an example of the **Interface Configuration** tab.

Figure 1-6 Bootfile -> Network Configuration -> Interface Configuration

For More Information

To learn more about IPv4 and IPv6 functionalities, refer to the *Using LAN* manual, included with this product CD.

For More Information

Contact your system administrator if you do not know the network values for your board.

- Step 7. Once you have made your settings in the **Network Configuration** dialog, click OK.
- Step 8. Select Configure -> Build Image to display the Master Builder window. If networking is desired, make sure the SoftStax® (SPF) Support box is checked.
- Step 9. Click Build. This will build a boot image that can be placed on the PCMCIA card.
- Step 10. Make sure the board is powered off and insert the PCMCIA IDE card into the PCMCIA slot of your computer.

WARNING

Damage may occur to the PCMCIA card if it is inserted or removed while power is applied to the board.

- Step 11. Click Save As to save the file os9kboot to the root directory of the PCMCIA IDE card.
- Step 12. Remove the PCMCIA IDE card from the computer.

- Step 13. Position the PCMCIA card so that the end with the connector holes is facing the PCMCIA socket and the label is facing up.
- Step 14. Slide the card into the socket of the reference board until the card snaps onto the connector pins.

Note

The GraphicsMaster design does not provide enough current for the TypeIII PCMCIA (double height).

Step 15. Apply power to the board. The reference board will boot from the IDE PCMCIA card and you should see the "\$" prompt.

Note

After the reference board is booted using the PCMCIA card, you can move the boot image to Flash and boot from there. To move the boot image to Flash, enter the following command at the OS-9 prompt:

```
$ pflash -i -f=/mhc1/os9kboot
```

Once the boot image has been moved to Flash, you no longer need the PCMCIA card to boot the reference board to an OS-9 prompt.

Creating a Startup File

When the Configuration Wizard is set to use a hard drive or another fixed drive, such as a PC Flash Card as the default device, it can set up the init module to call the startup file in the SYS directory in the target (For example: /h0/SYS/startup, /mhc1/SYS/startup). However, this directory and file will not exist until you create it. To create the startup file, complete the following steps:

- Step 1. Create a SYS directory on the target machine where the startup file will reside (for example: makdir /h0/SYS, makdir /dd/SYS).
- Step 2. On the host machine, navigate to the following directory:

MWOS/OS9000/SRC/SYS

In this directory, you will see several files. The files related to this section are listed below:

- motd: Message of the day file
- password: User/password file
- termcap: Terminal description file
- startup: Startup file
- Step 3. Transfer all files to the newly created SYS directory on the target machine. (You can use Kermit, or FTP in ASCII mode to transfer these files.)
- Step 4. Since the files are still in DOS format, you will be required to convert them into the OS-9 format with the cudo utility. The following command is an example:

cudo -cdo password

This will convert the password file from DOS to OS-9 format.

For More Information

For a complete description of all the cudo command options, refer to the *Utilities Reference Manual* located on the Microware OS-9 CD.

Step 5. Since the command lines in the startup file are system-dependent, it may be necessary to modify this file to fit your system configuration. It is recommended that you modify the file before transferring it to the target machine.

Example Startup File

Below is the example startup file as it appears in the MWOS/OS9000/SRC/SYS directory:

```
-tnxnp
tmode -w=1 nopause
*0S-9 - Version 3.0
*Copyright 2001 by Microware Systems Corporation
*The commands in this file are highly system dependent and
*should be modified by the user.
*
*setime </term
                            ;* start system clock
setime -s
                            ;* start system clock
link mshell csl
                            ;* make "mshell" and "csl" stay in memory
* iniz r0 h0 d0 t1 p1 term ;* initialize devices
* load utils
                            ;* make some utilities stay in memory
* tsmon /term /t1 &
                            ;* start other terminals
list sys/motd
setenv TERM vt100
tmode -w=1 pause
mshell<>>>/term -l&
```


For More Information

Refer to the **Making a Startup File** section in Chapter 9 of the **Using OS-9** manual for more information on startup files.

Optional Procedures

The following sections detail optional procedures you may perform once you have installed and configured OS-9.

Connecting the Reference Board to an Ethernet Network

Microware OS-9 for StrongARM supports using the onboard SMC91C94 or a 3COM Etherlink III - LAN PC Card for SoftStax® TCP/IP connections. Also, Microware OS-9 for StrongARM provides system level support for telnet, FTP, and NFS.

To use Ethernet networking, you must create a bootfile that has the Ethernet options enabled and insert an Ethernet PCMCIA card into the reference board if you choose to use a PCMCIA Ethernet card.

- Step 1. Click the Start button on the Windows desktop.
- Step 2. From the Windows desktop, select Start -> RadiSys ->
 Microware OS-9 for product> -> Configuration Wizard.
- Step 3. Once the Wizard is open, open the configuration you created in the previous section by clicking OK. The configuration screen is displayed.
- Step 4. Select Configure -> Bootfile -> Network Configuration. The Network Configuration dialog box appears.
- Step 5. Change the network settings as needed.
- Step 6. Create a new bootfile by following the directions in the **Building the OS-9 ROM Image** section.
- Step 7. Turn off the power to the reference board.

WARNING

Damage may occur to the PCMCIA card if it is inserted or removed while power is applied to the board.

Step 8. Position the PCMCIA IDE card so that the end with the PCMCIA female connector is facing PCMCIA socket and the label is facing up.

Slide the PCMCIA IDE card into the socket until the card snaps onto the pins.

Step 9. Connect the 10 Base T connector into J9 if using the onboard Ethernet. -OR-

Position the Ethernet PCMCIA card so that the end with the PCMCIA female connector is facing the PCMCIA socket and the label is facing up. Then, slide the PCMCIA Ethernet card into the socket until the card snaps onto the pins.

- Step 10. Apply power to your reference board.
- Step 11. Test the Ethernet connection by pinging the reference board. If the ping operation fails, the following scenarios should be evaluated:
 - Is the board connected to a live Ethernet port?
 - Is the Ethernet cable defective?
 - Are the network settings for the reference board correct?

Pinging the Reference Board

Windows 95, Windows 98, and Windows NT include a ping command that can be used to test the Ethernet connection for the reference board.

- Step 1. Go to the DOS prompt.
- Step 2. Type ping <IP Address>.

The IP Address is the address you assigned to the evaluation board in either the coreboot or the bootfile module. The address is typed without the <> brackets.

If the ping was successful, you will see the following response: Reply from <IP Address>: bytes=xx time =xms TTL= xx

If the ping was unsuccessful, you will see the following response: Request timed out.

Note

Windows 95, 98, and NT do not support IPv6.

Creating a New OS-9 Coreboot Image in Flash Memory

If you want to use ROM Ethernet services such as System State Debugging, you must create a new coreboot image. The coreboot image that was shipped with the reference board does not allow you to perform System State Debugging because the IP address in Flash ROM is set to "0.0.0.0". You can create the coreboot image with an EPROM programmer.

Note

Re-creating the coreboot image is required only when system state debugging is desired.

Making a Coreboot Image with an EPROM Programmer

This section describes creating the coreboot image. When you are done creating the coreboot image, please refer to your EPROM programmer's instructions to learn how to load the coreboot image into the EPROM.

- Step 1. Click the Start button on the Windows desktop.
- Step 2. From the Windows desktop, select Start -> RadiSys -> Microware OS-9 for <product> -> Configuration Wizard. The opening screen is displayed.
- Step 3. Give the boot image a name, then select Advanced Mode and click OK. The main window is displayed.
- Step 4. Select Configure -> Build Image to display the Master Builder screen.
- Step 5. Select the Coreboot Only Image setting and click Build.
- Step 6. Click <u>Save</u> As to save the coreboot image to a directory of your choosing. If you do not have that directory on the drive, you can create it.
- Step 7. Transfer the coreboot image to the EPROM with the EPROM programmer. You will need to follow the documentation for the EPROM programmer to complete this step.

Configuring GraphicsMaster with TrueFFS

You must purchase the TrueFFS add-on package to access this feature.

Below is a list of instructions used to configure a GraphicsMaster with a TrueFFS flash disk and how to reserve space for a bootfile.

Rebuilding the Descriptor (30MB TrueFFS Only)

If you are using a 30MB TrueFFS flash disk, you will need to rebuild the rrf0 descriptor for the board. To do this, complete the following steps:

- Step 1. Locate the GRAPHICSMASTER/RBF/RBFTL/config.des file.
- Step 2. Change the FLASH_SIZE_OVERRIDE definition on line 140 to 0x01e00000.
- Step 3. Type os9make in the GRAPHICSMASTER/RBF/RBFTL/DESC directory. This should rebuild the rrf0 descriptor.

Building the Image

To build the coreboot and bootfile images for TrueFFS, complete the following steps in Microware's Configuration Wizard:

- Step 1. From the Configuration Wizard opening window, select Expert Mode and click OK. The main Configuration Wizard screen is displayed.
- Step 2. Select Configure -> Sys -> Select System Type from the Wizard menu.

- Step 3. Select the **ROM Memory List** tab.
- Step 4. From the **Settings Based On** pull down area, select TrueFFS (30M) + bootfile(2). This will properly configure the memory lists to search for a 2MB bootfile at the end of the flash part.

	Note For a 14M flash disk, select TrueFFS (14M) + bootfile(2).
Step 5.	Select Configure -> Coreboot -> Main Configuration from the Wizard menu.
Step 6.	In the Define Other Boot Options tab, click on the Ir auto boot check box.
Step 7.	Select the Ethernet tab. Make sure the following areas contain the correct values:
	IP Address
	IP Broadcast
	Subnet Mask

- IP Gateway
- MAC Address

Note

Contact your system administrator if you do not know the appropriate Ethernet values for your setup.

- Step 8. Select Configure -> Bootfile -> Disk Configuration from the Wizard menu.
- Step 9. From the **RAM Disk** tab, select the **map RAM disk as /dd** radio button.
- Step 10. Click on the **Init Options** tab and select the **/dd** radio button.

Step 11. Minimize the Configuration Window and navigate to the following directory:

OS9000/ARMV4/PORTS/GRAPHICSMASTER/BOOTS/INSTALL/PORT BOOT/user.ml

Once in the user.ml file, add the rbftl driver and descriptor by pasting in the following lines:

../../CMDS/BOOTOBJS/rbftl

../../CMDS/BOOTOBJS/DESC/RBFTL/rrf0

- Step 12. Restore the Configuration Window and select Configure -> Build Image from the menu.
- Step 13. Select the **Coreboot Only Image** radio button. Click Build. Allow time for the coreboot image to be created.
- Step 14. Click the **Bootfile Only Image** radio button. Make sure the following check boxes are selected:
 - Rom Utility Set
 - User State Debugging Modules
 - Disk Support
 - Disk Utilities
 - SoftStax (SPF) Support
 - MAUI Support
 - User Modules

Click Build to build the image.

Note

The resulting bootfile should be less than 2097152 bytes (2MB). If your resulting bootfile is more than 2MB, you may wish to remove the MAUI demos.

The final steps for configuring your build includes burning the image onto the EPROM device and placing os9kboot on a PCMCIA disk. Once you have done this, place the following files on the PCMCIA disk: (These are used one time for TrueFFS disk setup.)

/MWOS/OS9000/ARMV4/CMDS/ftformat /MWOS/OS9000/ARMV4/CMDS/ftdefrag /MWOS/OS9000/ARMV4/CMDS/ftcheck

Setting up the Flash Disk

To set up the TrueFFS flash disk, complete the following steps:

Step 1. At the OS-9 shell prompt (\$) on the target window, type the following command:

ftformat /rrf0

The following information is displayed:

```
This utility will perform a low-level format of a
flash volume /rrf0@ for use with the rbftl TrueFFS
flash file system driver. This operation can run for
up to 35 seconds for each megabyte of flash being
formatted. This formatting will destroy all file and
low-level state information, including wear-leveling
information, if there is any, stored in the flash.
```

Step 2. A prompt will then appear, asking if you would like to continue. Click y to continue. The following information is displayed:

The low-level format of /rrf0@ has completed successfully. Be sure to perform a format or pcformat of /rrf0 before attempting file operations (answer n to requests for physical format and physical verify in format).

Step 3. At the next prompt, type the following disk format utility:

\$ format -npnv -v=OS9_TrueFFS -r /rrf0

Information about your format parameters is displayed and the flash memory is now available for use.

Programming the Bootfile into Flash (30MB Flash Disk)

To program a bootfile into flash for a 30MB flash disk, make sure the bootfile (os9kboot) is less than 2097152 bytes and then type the following command:

```
$ pflash -i -u -f=/mhc1/os9kboot -s=0x0ae00000
```

Programming the Bootfile into Flash (14MB Flash Disk)

To program a bootfile into flash for a 14MB flash disk, make sure the bootfile (os9kboot) is less than 2097152 bytes and type the following command:

\$ pflash -i -u -f=/mhc1/os9kboot -s=0x09e00000

Compressing the Bootfile Image

OS-9 bootfiles can be compressed to allow more modules to be loaded into a bootfile; this can be useful if you plan on storing your image on a small FLASH part or a floppy disk.

Note

The bootfile compression utility performs the compression at approximately a 2.5:1 ratio.

Complete the following steps to compress your image:

Step 1. Verify that your coreboot contains the uncompress module. This module can be found in the pre-built ROM and coreboot images that were shipped with your Microware OS-9 product.

Note

The uncompress module must be included in order for the compression to execute properly.

- Step 2. Open the Configuration Wizard and select Configure -> Coreboot -> Main Configuration from the main menu.
- Step 3. Select the Bootfile Compression tab. Verify that the **Include bootfile uncompress module** box is checked and select OK.
- Step 4. When you are ready to build the image, open the **Master Builder** dialog. Verify that the **Compress Bootfile** box is checked and then press Build to begin the installing the image.

Chapter 2: Board-Specific Reference

This chapter contains information that is specific to the GraphicsMaster reference board. It includes the following sections:

- Boot Options
- The Fastboot Enhancement
- OS-9 Vector Mappings
- GPIO Usage
- Port Specific Utilities

For More Information

For general information on porting OS-9, see the OS-9 Porting Guide.

Boot Options

Following are the default boot options for the reference board. You can select these by hitting the space bar when the "Now Trying to Override Autobooters" message appears on the console port when booting.

You can configure these booters by altering the default.des file at the following location:

MWOS/OS9000/ARMV4/PORTS/GRAPHICSMASTER/ROM

Booters can be configured to be either menu or auto booters. The auto booters automatically try and boot in order from each entry in the auto booter array. Menu booters from the defined menu booter array are chosen interactively from the console command line after getting the boot menu.

Booting from FLASH

When the romcnfg.h has a ROM search list defined the options ro and lr appear in the boot menu. If no search list is defined N/A appears in the boot menu. If an OS-9 bootfile is programmed into flash in the address range defined in ports default.des file the system can boot and run from flash.

ro	rom boot—the system runs from the FLASH
	bank.

lr load to ram—the system copies the flash image into ram and runs from there.

Booting from PCMCIA ATA Card

The system can boot from a PC formatted PCMCIA hard card which resides in the PCMCIA slot.

ide0 The file os9kboot is searched for in slot 0. If found it is copied to system RAM and runs from there.

ide1 compact flash

Booting from PCMCIA Ethernet Card

The system can boot using the BootP protocol using an Ethernet card and eb option.

eb

Ethernet boot—a PCMCIA card which supports ethernet will use the bootp protocol to transfer in a bootfile into RAM and the systems runs from there.

Restart Booter

The restart booter allows a way to restart the bootstrap sequence.

q

quit—quit and attempt to restart the booting process.

Break Booter

The break booter allows entry to the system level debugger (if one exists). If the debugger is not in the system the system will reset.

break break—break and enter the system level debugger rombug.

Example boot session and message.

OS-9 Bootstrap for the ARM ATA IDE disk found in socket 00 Now trying to Override autobooters. BOOTING PROCEDURES AVAILABLE ----- <INPUT> Boot embedded OS-9 in-place ----- <N/A> Copy embedded OS-9 to RAM and boot ----- <N/A> Boot from PCMCIA-1 IDE ----- <idel> Boot from PCMCIA-0 IDE ----- <ide0> Load bootfile via kermit Download ----- <ker> Restart the System ----- <q> Enter system debugger ----- <break> Select a boot method from the above menu: ide0 Wait for IDE drive ready. IDE Model:ATA_FLASHNumber Heads:0x0002Total Cylinders:0x03d8Sectors Per Track:0x0020 Checking Partitions : 0 Fat Type : 0x16 File Name : OS9KBOOT File Size : 0x000fdeb0 Start Cluster : 0x00003a57 Reading Bootfile.... Boot Address : 0xc002c850 Boot Size : 0x000fdeb0 OS-9 kernel was found. A valid OS-9 bootfile was found. \$

The Fastboot Enhancement

The Fastboot enhancements to OS-9 provide faster system bootstrap performance to embedded systems. The normal bootstrap performance of OS-9 is attributable to its flexibility. OS-9 handles many different runtime configurations to which it dynamically adjusts during the bootstrap process.

The Fastboot concept consists of informing OS-9 that the defined configuration is static and valid. These assumptions eliminate the dynamic searching OS-9 normally performs during the bootstrap process and enables the system to perform a minimal amount of runtime configuration. As a result, a significant increase in bootstrap speed is achieved.

Overview

The Fastboot enhancement consists of a set of flags that control the bootstrap process. Each flag informs some portion of the bootstrap code that a particular assumption can be made and that the associated bootstrap functionality should be omitted.

The Fastboot enhancement enables control flags to be statically defined when the embedded system is initially configured as well as dynamically altered during the bootstrap process itself. For example, the bootstrap code could be configured to query dip switch settings, respond to device interrupts, or respond to the presence of specific resources which would indicate different bootstrap requirements.

In addition, the Fastboot enhancement's versatility allows for special considerations under certain circumstances. This versatility is useful in a system where all resources are known, static, and functional, but additional validation is required during bootstrap for a particular instance, such as a resource failure. The low-level bootstrap code may respond to some form of user input that would inform it that additional checking and system verification is desired.

Implementation Overview

The Fastboot configuration flags have been implemented as a set of bit fields. An entire 32-bit field has been dedicated for bootstrap configuration. This four-byte field is contained within the set of data structures shared by the ModRom sub-components and the kernel. Hence, the field is available for modification and inspection by the entire set of system modules (high-level and low-level). Currently, there are six bit flags defined with eight bits reserved for user-definable bootstrap functionality. The reserved user-definable bits are the high-order eight bits (31-24). This leaves bits available for future enhancements. The currently defined bits and their associated bootstrap functionality are listed below:

B_QUICKVAL

The B_QUICKVAL bit indicates that only the module headers of modules in ROM are to be validated during the memory module search phase. This causes the CRC check on modules to be omitted. This option is a potential time saver, due to the complexity and expense of CRC generation. If a system has many modules in ROM, where access time is typically longer than RAM, omitting the CRC check on the modules will drastically decrease the bootstrap time. It is rare that corruption of data will ever occur in ROM. Therefore, omitting CRC checking is usually a safe option.

B_OKRAM

The B_OKRAM bit informs both the low-level and high-level systems that they should accept their respective RAM definitions without verification. Normally, the system probes memory during bootstrap based on the defined RAM parameters. This allows system designers to specify a possible RAM range, which the system validates upon startup. Thus, the system can accommodate varying amounts of RAM. In an embedded system where the RAM limits are usually statically defined and presumed to be functional, however, there is no need to validate the defined RAM list. Bootstrap time is saved by assuming that the RAM definition is accurate.

B_OKROM

The B_OKROM bit causes acceptance of the ROM definition without probing for ROM. This configuration option behaves like the B_OKRAM option, except that it applies to the acceptance of the ROM definition.

B_1STINIT

The B_1STINIT bit causes acceptance of the first init module found during cold-start. By default, the kernel searches the entire ROM list passed up by the ModRom for init modules before it accepts and uses the init module with the highest revision number. In a statically defined system, time is saved by using this option to omit the extended init module search.

B_NOIRQMASK

The B_NOIRQMASK bit informs the entire bootstrap system that it should not mask interrupts for the duration of the bootstrap process. Normally, the ModRom code and the kernel cold-start mask interrupts for the duration of the system startup. However, some systems that have a well defined interrupt system (i.e. completely calmed by the sysinit hardware initialization code) and also have a requirement to respond to an installed interrupt handler during system startup can enable this option to prevent the ModRom and the kernel cold-start from disabling interrupts. This is particularly useful in power-sensitive systems that need to respond to "power-failure" oriented interrupts.

Note

Some portions of the system may still mask interrupts for short periods during the execution of critical sections.

B_NOPARITY

If the RAM probing operation has not been omitted, the B_NOPARITY bit causes the system to not perform parity initialization of the RAM. Parity initialization occurs during the RAM probe phase. The B_NOPARITY option is useful for systems that either require no parity initialization at all or systems that only require it for "power-on" reset conditions. Systems that only require parity initialization for initial "power-on" reset conditions can dynamically use this option to prevent parity initialization for subsequent "non-power-on" reset conditions.

Implementation Details

This section describes the compile-time and runtime methods by which the bootstrap speed of the system can be controlled.

Compile-time Configuration

The compile-time configuration of the bootstrap is provided by a pre-defined macro (BOOT_CONFIG), which is used to set the initial bit-field values of the bootstrap flags. You can redefine the macro for recompilation to create a new bootstrap configuration. The new over-riding value of the macro should be established by redefining the macro in the rom_config.h header file or as a macro definition parameter in the compilation command.

The rom_config.h header file is one of the main files used to configure the ModRom system. It contains many of the specific configuration details of the low-level system. Below is an example of how you can redefine the bootstrap configuration of the system using the BOOT_CONFIG macro in the rom_config.h header file:

#define BOOT_CONFIG (B_OKRAM + B_OKROM + B_QUICKVAL)

Below is an alternate example showing the default definition as a compile switch in the compilation command in the makefile:

SPEC_COPTS = -dNEWINFO -dNOPARITYINIT -dBOOT_CONFIG=0x7

This redefinition of the BOOT_CONFIG macro results in a bootstrap method that accepts the RAM and ROM definitions without verification, and also validates modules solely on the correctness of their module headers.

Runtime Configuration

The default bootstrap configuration can be overridden at runtime by changing the rinf->os->boot_config variable from either a low-level P2 module or from the sysinit2() function of the sysinit.c file. The runtime code can query jumper or other hardware settings to determine what user-defined bootstrap procedure should be used. An example P2 module is shown below.

Note

If the override is performed in the sysinit2() function, the effect is not realized until after the low-level system memory searches have been performed. This means that any runtime override of the default settings pertaining to the memory search must be done from the code in the P2 module code.

```
#define NEWINFO
#include <rom.h>
#include <types.h>
#include <const.h>
#include <errno.h>
#include <romerrno.h>
#include <p2lib.h>
error code p2start(Rominfo rinf, u char *glbls)
{
   /* if switch or jumper setting is set... */
   if (switch or jumper == SET) {
       /* force checking of ROM and RAM lists */
       rinf->os->boot config &= ~(B OKROM+B OKRAM);
   }
   return SUCCESS;
}
```


This section contains the vector mappings for the OS-9 GraphicsMaster implementation of the SA1110.

MICROWARE SOFTWARE

The ARM standard defines exceptions 0x0-0x8. The OS-9 system maps these one to one. External interrupts from vector 0x6 are expanded to the virtual vector rage shown below by the irq1100 module.

Note

Vectors can be virtually remapped from a ROM at physical address 0, into DRAM at virtual address 0. This speeds up interrupt response time and is enabled by defining the first cache list entry as a sub 1MB size.

For More Information

See the 1100/1110 hardware documentation for more information on individual sources.

Table 2-1 and Table 2-2 show the OS9 IRQ assignment for the target board.

Table 2-1 IRQ Assignments and ARM Functions	
OS9 IRQ #	ARM Function
0x0	Processor Reset
0x1	Undefined Instruction
0x2	Software Interrupt
0x3	Abort on Instruction Prefetch
0x4	Abort on Data Access
0x5	Unassigned/Reserved
0x6	External Interrupt
0x7	Fast Interrupt
0x8	Alignment error

Table 2-2 IRQ Assignments and processor Specific Functions

OS9 IRQ #	SA11X0 Specific Function (pic)
0x40	GPIO[0] Edge Detect (IRQ Input from the board's PIC.)
0x41	GPIO[1] Edge Detect
0x42	GPIO[2] Edge Detect

OS9 IRQ #	SA11X0 Specific Function (pic)
0x43	GPIO[3] Edge Detect
0x44	GPIO[4] Edge Detect
0x45	GPIO[5] Edge Detect
0x46	GPIO[6] Edge Detect
0x47	GPIO[7] Edge Detect
0x48	GPIO[8] Edge Detect
0x49	GPIO[9] Edge Detect
0x4a	GPIO[10] Edge Detect
0x4b	OR of GPIO edge detects 27 - 11
0x4c	LCD controller service request
0x4d	UDC service request (0)
0x4e	SDLC service request (1a)
0x4f	UART service request (1b) (SP1)
0x50	UART/IrDA service request (SP2)
0x51	UART service request (3) (SP3)
0x52	MCP service request (4a)
0x53	SSP service request (4b)

Table 2-2 IRQ Assignments and processor Specific Functions	
OS9 IRQ #	SA11X0 Specific Function (pic)
0x54	DMA controller channel 0
0x55	DMA controller channel 1
0x56	DMA controller channel 2
0x57	DMA controller channel 3
0x58	DMA controller channel 4
0x59	DMA controller channel 5
0x5a	OS timer 0
0x5b	OS timer 1
0x5c	OS timer 2
0x5d	OS timer 3
0x5e	One Hz clock tick
0x5f	RTC als alarm register
0x60	GPIO[11] Edge Detect (the vector 0x4b OR is broken out here to make each one distinct)
0x61	GPIO[12] Edge Detect
0x62	GPIO[13] Edge Detect
0x63	GPIO[14] Edge Detect
0x64	GPIO[15] Edge Detect

OS9 IRQ #	SA11X0 Specific Function (pic)
0x65	GPIO[16] Edge Detect
0x66	GPIO[17] Edge Detect
0x67	GPIO[18] Edge Detect
0x68	GPIO[19] Edge Detect
0x69	GPIO[20] Edge Detect
0x6a	GPIO[21] Edge Detect
0x6b	GPIO[22] Edge Detect
0x6c	GPIO[23] Edge Detect
0x6d	GPIO[24] Edge Detect
0x6e	GPIO[25] Edge Detect
0x6f	GPIO[26] Edge Detect
0x70	GPIO[27] Edge Detect

Table 2-2 IRQ Assignments and processor Specific Functions

 Table 2-3 shows the board's Pic functions.

Table 2-3 Pic Functions	
OS9 IRQ #	Function (Board Pic)
0xb1	RESERVED SA 1111 IRQ
0xb2	RESERVED UART A IRQ

Table 2-3 Pic Functions (continued)		
OS9 IRQ #	Function (Board Pic)	
0xb3	RESERVED UART B IRQ	
0xb4	RESERVED UART C IRQ	
0xb5	IRQ CAN1, (GraphicsMaster Plus version)	
0xb6	RESERVED UART 4 IRQ	
0xb7	RESERVED	
0xb8	RESERVED	
0xb9	UCB 1200	
0xba	SMC 91C94 Ethernet	
0xbb	RESERVED	
0xbc	RESERVED	
0xbd	RESERVED	
0xbe	Board Switch	
0xbf	IRQ SSP	
0xc0	IRQ BAT FAULT	

Note Fast Interrupt Vector (0x7)

The ARM4 defined fast interrupt (FIQ) mapped to vector 0x7 is handled differently by the OS-9 interrupt code and can not be used as freely as the external interrupt mapped to vector 0x6. To make fast interrupts as quick as possible for extremely time critical code, no context information is saved on exception and FIQs are never masked. This requires any exception handler to save and restore its necessary context if the FIQ mechanism is to be used. This requirement means that a FIQ handler's entry and exit points must be in assembly, as the C compiler will make assumptions about context. In addition, no system calls are possible unless a full C ABI context save has been done first. The OS-9 IRQ code for the SA11X0 has assigned all interrupts as normal external interrupts and the user must re-define a source as an FIQ to make use of this feature.

 Table 2-4 shows the OS-9 SA1111 specific functions.

Table 2-4 SA1111 Specific Functions	
OS-9 IRQ #	SA1111 Specific Function
0x71	GPIOA[0] (GPIOA)
0x72	GPI0A[1] (GPIOA)
0x73	GPIOA[2] (GPIOA)
0x74	GPIOA[3] (GPIOA)
0x75	GPIOB[0] (GPIOB)
0x76	GPIOB[1] (GPIOB)
0x77	GPIOB[2] (GPIOB)
0x78	GPIOB[3] (GPIOB)
0x79	GPIOB[4] (GPIOB)
0x7a	GPIOB[5] (GPIOB)
0x7b	GPIOC[0] (GPIOC)
0x7c	GPIOC[1] (GPIOC)
0x7d	GPIOC[2] (GPIOC)
0x7e	GPIOC[3] (GPIOC)
0x7f	GPIOC[4] (GPIOC)
0x80	GPIOC[5] (GPIOC)

OS-9 IRQ #	SA1111 Specific Function
0x81	GPIOC[6] (GPIOC)
0x82	GPIOC[7] (GPIOC)
0x83	MsTxint (PS2 Mouse)
0x84	MsRxint (PS2 Mouse)
0x85	MsStopErrint (PS2 Mouse)
0x86	TpxInt (PS2 Trackpad)
0x87	TpRxInt (PS2 Trackpad)
0x88	TpStopErrint (PS2 Trackpad)
0x89	SspXmitint (SSP)
0x8a	SspRcvint (SSP)
0x8b	SspROR (SSP)
0x8c	reserved
0x8d	reserved
0x8e	reserved
0x8f	reserved
0x90	reserved
0x91	AudXmtDmaDoneA (AUDIO)

Table 2-4 SA1111 Specific Functions (continued)	
OS-9 IRQ #	SA1111 Specific Function
0x92	AudRcvDmaDoneA (AUDIO)
0x93	AudXmtDmaDoneB (AUDIO)
0x94	AudRcvDmaDoneB (AUDIO)
0x95	AudTFSR (AUDIO)
0x96	AudRFSR (AUDIO)
0x97	AudTUR (AUDIO)
0x98	AudROR (AUDIO)
0x99	AudDTS (AUDIO)
0x9a	AudRDD (AUDIO)
0x9b	AudSTO (AUDIO)
0x9c	USBPwr (AUDIO)
0x9d	nIrqHciM (USB)
0x9e	IrqHciBuffAcc (USB)
0x9f	IrqHciRmtWkp (USB)
0xa0	nHciMFCIr (USB)
0xa1	USB port resume (USB)
0xa2	S0Readynint (PCMCIA)

Table 2-4 SA1111 Specific Functions (continued)		
OS-9 IRQ #	SA1111 Specific Function	
0xa3	S1Readynint (PCMCIA)	
0xa4	S0CDValid (PCMCIA)	
0xa5	S1CDValid (PCMCIA)	
0xa6	S0_Bvd1Stschg (PCMCIA)	
0xa7	S1_Bvd1Stschg (PCMCIA)	
0xa8	reserved	
0xa9	reserved	
0xaa	reserved	
0xab	reserved	
0xac	reserved	
0xad	reserved	
0xae	reserved	
0xaf	reserved	
0xb0	reserved	

GPIO Usage

Table 2-5 shows GPIO usage of the target board in an OS-9 system.

More In fo More
Informatio
n More Inf
ormation M
ore Inform
ation More

For More Information

See the ADS *GraphicsMaster User's Manual* for available alternate pin functions.

Table 2-5 GPIO Usage of the Board

GPIO	Signal Name	Direct	Description
GPIO0	/IRQ	Input	Falling edge interrupt from external peripheral
GPIO1	SWITCH	Input	External signal to wake processor up during sleep mode.
GPIO2	GREEN3	Output	LCD Green bit 3 in 16 bit color mode=20
GPIO3	GREEN4	Output	LCD Green bit 4 in 16 bit color mode
GPIO4	GREEN5	Output	LCD Green bit 5 in 16 bit color mode
GPIO5	RED0	Output	LCD Red bit 0 in 16 bit color mode

Table 2-5 GPIO Usage of the Board (continued)

GPIO	Signal Name	Direct	Description
GPIO6	RED1	Output	LCD Red bit 1 in 16 bit color mode
GPIO7	RED2	Output	LCD Red bit 2 in 16 bit color mode
GPIO8	RED3	Output	LCD Red bit 3 in 16 bit color mode
GPIO9	RED4	Output	LCD Red bit 4 in 16 bit color mode
GPIO10	SSP_TXD	Output	SSP Port transmit
GPIO11	SSP_RXD	Input	SSP Port Receive
GPIO12	SSP_SCLK	Output	SSP Port Clock
GPIO13	SSP_SFRM	Output	SSP Port Frame
GPIO14	CTS1	Input	CTS SA1100 uart 1 (not needed)
GPIO15	RTS1	Output	RTS SA1100 uart 1 (not needed)
GPIO16	CTS2	Input	CTS SA1100 uart 2 (not needed)
GPIO17	RTS2	Output	RTS SA1100 uart 2 (not needed)
GPIO18	CTS3	Input	CTS SA1100 uart 3 (not needed)

Table 2-5 GPIO Usage of the Board (continued)

GPIO	Signal Name	Direct	Description
GPIO19	RTS3	Output	RTS SA11X0 uart 3 (not needed)
GPIO20	LED0	Output	SMD LED D3 on board
GPIO21	MBGNT	Output	SAIIII Memory Request Bus Grant
GPIO22	MBREQ	Input	SAIIII Memory Bus Request
GPIO23	IRDA ON	Output	0 IRDA On, 1 IRDA Off
GPIO24	LED4/PNL_ENA	In/Out	External GPIO on J7, P38, Panel Enable
GPIO25	LED1(Amber)	Out	External GPIO on J7, P32
GPIO26	LED2 (Red)	Out	External GPIO on J7, P34
GPIO27	LED7	Output	Clock Source for SAIIII

GPIO Interrupt Polarity

When GPIO's are used as interrupt sources, the _PIC_ENABLE() function will set default polarity to rising edge (GRER) along with enabling the interrupt at the SA11X0 PIC. If falling edge is required, software must assert the appropriate bit in the GFER and negate the corresponding bit in the GRER.

Port Specific Utilities

The following port specific utilities are included:

- pcmcia
- pflash
- touch_cal
- ucbtouch

pcmcia

Syntax

pcmcia [<opts>]

options

-s=	socket: socket [default all sockets]
-d	de-iniz socket(s)
-i	iniz socket(s)
-v	verbose mode
-x	dump CIS/Config information
-?	Print this help message

Description

 $\tt pcmcia$ provides the ability to initilize or deinitilize a PCMCIA card after the system has booted. It also displays a PCMCIA cards CIS structure.

Example

\$ pcmcia																	
ATA IDE d																	
Dump CIS								_			_	_	-	_	_	_	
Addr	0	1	2	3	4	5	6	7	8	9	A	В	С	D	Ε	F	0 2 4 6 8 A C E
					 £ £						 			 26			
28000000					ff												
28000020					01												N+VIKING
28000040					4f												COMPONENTS
28000060					46												.CF ATA .V.102
28000080					04												···!···"···"···_·
280000a0					02												@.!UU
280000c0					01												"!5A.!U
280000e0	55	64	f0	ff	ff	22	1b	06	01	01	21	b5	1e	35	1b	0d	Ud"!5
28000100	82	41	98	ea	61	f0	01	07	f6	03	01	ee	22	1b	06	02	.Aa"
28000120	01	21	b5	1e	35	1b	0d	83	41	98	ea	61	70	01	07	76	.!5Aapv
28000140	03	01	ee	22	1b	06	03	01	21	b5	1e	35	14	00	ff	ff	"!5
28000160	ff	ff	ff	ff	ff	ff	ff	ff	ff	ff	ff	ff	ff	ff	ff	ff	
28000180	ff	ff	ff	ff	ff	ff	ff	ff	ff	ff	ff	ff	ff	ff	ff	ff	
280001a0	ff	ff	ff	ff	ff	ff	ff	ff	ff	ff	ff	ff	ff	ff	ff	ff	
280001c0	ff	ff	ff	ff	ff	ff	ff	ff	ff	ff	ff	ff	ff	ff	ff	ff	
280001e0	ff	ff	ff	ff	ff	ff	ff	ff	ff	ff	ff	ff	ff	ff	ff	ff	
280001e0 Dump Conf									ff	ff	ff	ff	ff	ff	ff	ff	
						ocke		‡0		ff 9	ff A	ff B	ff C	ff D	ff E	ff F	02468ACE
Dump Conf	ig W	√ind	low	fo	r So	ocke	et ‡	‡0									
Dump Conf Addr	ig V 0 	∛ino 1 	dow 2 	fo: 3 	r So 4	ocke 5 	et ‡ 6 	‡0 7 	8 	9 	A 	B 	C 	D 		F 	02468ACE
Dump Conf Addr	ig V 0 43	∛ino 1 	dow 2 	fo: 3 00	r So 4 	5 00	et # 6 00	#0 7 00	8 00	9 00	A 	B 	C 	D 00	E 	F 00	0 2 4 6 8 A C E
Dump Conf Addr 28000200	ig V 0 43 00	∛in⊄ 1 00	dow 2 02	fo: 3 00 00	r So 4 00	5 00 00	et # 6 00 00	#0 7 00 00	8 00 00	9 00 00	A 00	B 00 00	C 00	D 00 00	E 00	F 00 00	0 2 4 6 8 A C E C
Dump Conf Addr 28000200 28000220	ig V 43 00 00	Vind 1 00 00	low 2 02 00 00	for 3 00 00 00	r So 4 00 00	5 00 00 00	et 4 00 00 00	‡0 7 00 00 00	8 00 00 00	9 00 00 00	A 00 00 00	B 00 00 00	C 00 00 00	D 00 00 00	E 00 00	F 00 00 00	0 2 4 6 8 A C E C
Dump Conf Addr 28000200 28000220 28000240	ig V 0 43 00 00 00	Vind 1 00 00 00	low 2 02 00 00	for 3 00 00 00 00	r So 4 00 00 00	5 00 00 00 00	et 4 00 00 00 00	‡0 7 00 00 00 00	8 00 00 00 00	9 00 00 00 00	A 00 00 00	B 00 00 00 00	C 00 00 00	D 00 00 00 00	E 00 00 00	F 00 00 00 00	0 2 4 6 8 A C E C
Dump Conf Addr 28000200 28000220 28000240 28000260	ig V 0 43 00 00 00	Jind 00 00 00 00	low 2 02 00 00 00	for 3 00 00 00 00	r So 4 00 00 00 00	5 00 00 00 00	et 00 00 00 00 00	‡0 7 00 00 00 00	8 00 00 00 00 00	9 00 00 00 00 00	A 00 00 00	B 00 00 00 00	C 00 00 00 00	D 00 00 00 00	E 00 00 00 00 00	F 00 00 00 00	0 2 4 6 8 A C E C
Dump Conf Addr 28000200 28000220 28000240 28000260 28000280	ig V 43 00 00 00 00 00	Vind 00 00 00 00 00	low 2 02 00 00 00 00 00	for 3 00 00 00 00 00 00	c So 4 00 00 00 00 00	5 00 00 00 00 00 00	et 00 00 00 00 00 00 00	‡0 7 00 00 00 00 00 00	8 00 00 00 00 00 00	9 00 00 00 00 00 00	A 00 00 00 00 00	B 00 00 00 00 00 00	C 00 00 00 00 00 00	D 00 00 00 00 00 00	E 00 00 00 00 00	F 00 00 00 00 00 00	0 2 4 6 8 A C E C
Dump Conf Addr 28000200 28000220 28000240 28000260 28000280 28000280	ig V 43 00 00 00 00 00 00	Vind 00 00 00 00 00 00	low 2 02 00 00 00 00 00	for 3 00 00 00 00 00 00 00	r So 4 00 00 00 00 00 00	5 00 00 00 00 00 00 00	et 6 00 00 00 00 00 00 00 00	‡0 7 00 00 00 00 00 00 00	8 00 00 00 00 00 00 00	9 00 00 00 00 00 00	A 00 00 00 00 00 00	B 00 00 00 00 00 00	C 00 00 00 00 00 00	D 00 00 00 00 00 00	E 00 00 00 00 00 00	F 00 00 00 00 00 00 00	0 2 4 6 8 A C E C
Dump Conf Addr 28000200 28000220 28000240 28000260 28000280 28000280 28000200	ig V 43 00 00 00 00 00 00	Vind 00 00 00 00 00 00 00 00 00	low 2 02 00 00 00 00 00 00	for 3 00 00 00 00 00 00 00	r So 4 00 00 00 00 00 00 00	5 00 00 00 00 00 00 00	et 6 00 00 00 00 00 00 00 00	‡0 7 00 00 00 00 00 00 00 00	8 00 00 00 00 00 00 00	9 00 00 00 00 00 00	A 00 00 00 00 00 00	B 00 00 00 00 00 00	C 00 00 00 00 00 00 00	D 00 00 00 00 00 00 00	E 00 00 00 00 00 00 00 00	F 00 00 00 00 00 00 00	0 2 4 6 8 A C E C
Dump Conf Addr 28000200 28000220 28000240 28000260 28000280 28000280 28000200 28000200	ig V 43 00 00 00 00 00 00 00	Vind 00 00 00 00 00 00 00 00 00	low 2 02 00 00 00 00 00 00 00	fo: 3 00 00 00 00 00 00 00 00	r So 4 00 00 00 00 00 00 00	5 00 00 00 00 00 00 00 00	et 6 00 00 00 00 00 00 00 00 00	# 0 7 00 00 00 00 00 00 00 00 00	8 00 00 00 00 00 00 00 00	9 00 00 00 00 00 00 00 00	A 00 00 00 00 00 00 00 00	B 00 00 00 00 00 00 00 00	C 00 00 00 00 00 00 00	D 00 00 00 00 00 00 00 00	E 00 00 00 00 00 00 00 00	F 00 00 00 00 00 00 00 00 00	0 2 4 6 8 A C E C
Dump Conf Addr 28000200 28000220 28000240 28000260 28000280 28000280 2800020 2800020 2800020	ig V 43 00 00 00 00 00 00 00 00 00	Vind 1 00 00 00 00 00 00 00 00 00	low 2 02 00 00 00 00 00 00 00	fo: 3 00 00 00 00 00 00 00 00	r So 4 00 00 00 00 00 00 00 00	5 00 00 00 00 00 00 00 00 00 00 00	et 6 00 00 00 00 00 00 00 00 00	‡0 7 00 00 00 00 00 00 00 00 00 00	8 00 00 00 00 00 00 00 00 00 00	9 00 00 00 00 00 00 00 00 00 00	A 00 00 00 00 00 00 00 00	B 00 00 00 00 00 00 00 00	C 00 00 00 00 00 00 00 00	D 00 00 00 00 00 00 00 00 00 00	E 00 00 00 00 00 00 00 00	F 00 00 00 00 00 00 00 00 00 00	0 2 4 6 8 A C E C
Dump Conf Addr 28000200 28000220 28000240 28000260 28000280 28000200 28000200 28000200 28000200 28000320	ig V 43 00 00 00 00 00 00 00 00 00	Vind 1 00 00 00 00 00 00 00 00 00 00	low 2 02 00 00 00 00 00 00 00 00 00	for 3 00 00 00 00 00 00 00 00 00 00 00	r So 4 00 00 00 00 00 00 00 00 00 00 00	5 00 00 00 00 00 00 00 00 00 00 00	<pre>>t # 6 00 00 00 00 00 00 00 00 00 00 00 00</pre>	‡0 7 00 00 00 00 00 00 00 00 00 00	8 00 00 00 00 00 00 00 00 00 00	9 00 00 00 00 00 00 00 00 00	A 00 00 00 00 00 00 00 00 00 00	B 00 00 00 00 00 00 00 00 00 00	C 00 00 00 00 00 00 00 00 00 00	D 00 00 00 00 00 00 00 00 00 00	E 00 00 00 00 00 00 00 00 00 00	F 00 00 00 00 00 00 00 00 00 00 00	0 2 4 6 8 A C E C
Dump Conf Addr 28000200 28000240 28000260 28000260 28000260 28000260 280002c0 280002c0 2800020 28000320 28000340	ig V 0 43 00 00 00 00 00 00 00 00 00 00 00	Vind 1 00 00 00 00 00 00 00 00 00 00 00	low 2 02 00 00 00 00 00 00 00 00 00 00 00	fo: 3 00 00 00 00 00 00 00 00 00 00 00 00	r So 4 00 00 00 00 00 00 00 00 00 00 00	5 00 00 00 00 00 00 00 00 00 00 00 00	<pre>>t # 6 00 00 00 00 00 00 00 00 00 00 00 00</pre>	+0 7 00 00 00 00 00 00 00 00 00 00 00 00	8 00 00 00 00 00 00 00 00 00 00 00	9 00 00 00 00 00 00 00 00 00 00	A 00 00 00 00 00 00 00 00 00 00	B 00 00 00 00 00 00 00 00 00 00 00	C 00 00 00 00 00 00 00 00 00 00	D 00 00 00 00 00 00 00 00 00 00 00	E 00 00 00 00 00 00 00 00 00 00	F 00 00 00 00 00 00 00 00 00 00 00 00	0 2 4 6 8 A C E C
Dump Conf Addr 28000200 28000220 28000240 28000260 28000260 28000260 28000260 28000260 28000300 28000320 28000360	ig V 0 43 00 00 00 00 00 00 00 00 00 00 00 00 00	Vind 1 00 00 00 00 00 00 00 00 00 00 00 00	low 2 02 00 00 00 00 00 00 00 00 00 00 00	fo: 3 00 00 00 00 00 00 00 00 00 00 00 00	r Sc 4 00 00 00 00 00 00 00 00 00 00 00 00	5 00 00 00 00 00 00 00 00 00 00 00 00	<pre>>t # 6 00 00 00 00 00 00 00 00 00 00 00 00</pre>	+0 7 00 00 00 00 00 00 00 00 00 00 00 00	8 00 00 00 00 00 00 00 00 00 00 00	9 00 00 00 00 00 00 00 00 00 00 00	A 00 00 00 00 00 00 00 00 00 00 00	B 00 00 00 00 00 00 00 00 00 00 00	C 00 00 00 00 00 00 00 00 00 00 00 00	D 00 00 00 00 00 00 00 00 00 00 00 00	E 00 00 00 00 00 00 00 00 00 00 00	F 00 00 00 00 00 00 00 00 00 00 00 00 00	0 2 4 6 8 A C E C
Dump Conf Addr 28000200 28000220 28000240 28000260 28000260 28000260 28000260 2800020 28000300 28000320 28000340 28000360 28000380	ig V 0 43 00 00 00 00 00 00 00 00 00 00 00 00 00	Vind 1 00 00 00 00 00 00 00 00 00	low 2 02 00 00 00 00 00 00 00 00 00 00 00 00	fo: 3 00 00 00 00 00 00 00 00 00 00 00 00	r Sc 4 00 00 00 00 00 00 00 00 00 00 00 00	5 00 00 00 00 00 00 00 00 00 00 00 00	<pre>>t # 6 00 00 00 00 00 00 00 00 00 00 00 00</pre>	+0 7 00 00 00 00 00 00 00 00 00 00 00 00	8 00 00 00 00 00 00 00 00 00 00 00 00 00	9 00 00 00 00 00 00 00 00 00 00 00 00	A 00 00 00 00 00 00 00 00 00 00 00	B 00 00 00 00 00 00 00 00 00 00 00 00 00	C 00 00 00 00 00 00 00 00 00 00 00 00	D 00 00 00 00 00 00 00 00 00 00 00 00 00	E 00 00 00 00 00 00 00 00 00 00 00 00	F 00 00 00 00 00 00 00 00 00 00 00 00	0 2 4 6 8 A C E C
Dump Conf Addr 28000200 28000220 28000240 28000260 28000260 28000260 28000260 28000320 28000320 28000320 28000340 28000360 28000380	ig V 0 43 00 00 00 00 00 00 00 00 00 00 00 00 00	Vind 1 00 00 00 00 00 00 00 00 00	dow 2 2 02 00 00 00 00 00 00 00 00 00 00 00 00	for 3 00 00 00 00 00 00 00 00 00 00 00 00	r So 4 00 00 00 00 00 00 00 00 00 00 00 00	5 5 00 00 00 00 00 00 00 00 00 00 00 00	et # 6 00 00 00 00 00 00 00 00 00 00 00 00 0	\$ 7 00 00 00 00 00 00 00 00 00	8 00 00 00 00 00 00 00 00 00 00 00 00	9 00 00 00 00 00 00 00 00 00 00 00 00 00	A 00 00 00 00 00 00 00 00 00 00 00 00 00	B 00 00 00 00 00 00 00 00 00 00 00 00	C 00 00 00 00 00 00 00 00 00 00 00 00 00	D 00 00 00 00 00 00 00 00 00 00 00 00	E 00 00 00 00 00 00 00 00 00 00 00 00	F 000 000 000 000 000 000 000 000 000	0 2 4 6 8 A C E C

pflash

Syntax

pflash [options]

Options

-f[=]filename	input filename
-eu	erase used space only (default)
-ew	erase whole flash
-ne	don't erase flash
-r	program resident flash (default)
-p0	program PCMCIA slot 0
-pl	program PCMCIA slot 1
-ncis	don't emit cis for PCMCIA flash cards
-b[=]addr	specify base address of flash (hex) for part identification (replaces -r,-p0,-p1)
-s[=]addr	specify write/erase address of flash(hex) defaults to base address)
-u	leave flash unlocked
-i	print out information on flash
-nv	don't verify erase or write
-d	no progress indicator

Description

The pflash utility allows the programming of Intel Strata Flash parts. The primary use will be in the burning of the OS-9 ROM image into the on-board flash parts at U25/U26. This allows for booting using the Ir/bo booters and allows for booting with out a PCMCIA card. The pflash utility also can be used to burn OS-9 ROM images into Intel Value Series PCMCIA cards, which internally use StrataFlash parts. This allows for booting using a PCMCIA slot and the f0 booter.

Example

In this example an OS-9 ROM image was built and placed on an ATA PCMCIA card. After booting using the PCMCIA card, the image can be burned into the on-board Flash.

```
$ pflash -f=/mhc1/os9kboot
Unlocking Device
Erasing
Programming
Locking Device
$
<<< Reset the Board via SW1 >>>
OS-9 Bootstrap for the ARM (Edition 65)
ATA IDE disk found in socket 00
Now trying to Override autobooters.
Press the spacebar for a booter menu
BOOTING PROCEDURES AVAILABLE ----- <INPUT>
Boot embedded OS-9 in-place ----- <bo>
Copy embedded OS-9 to RAM and boot ---- <lr>
Boot from PCMCIA-0 IDE ----- <ide0>
Restart the System ----- <q>
Select a boot method from the above menu: lr
Now searching memory ($08000000 - $08ffffff) for an OS-9
Kernel...
An OS-9 kernel was found at $08000000
A valid OS-9 bootfile was found.
$
```

touch_cal

Syntax

touch_cal <options>

Options

-f[=] <name></name>	Output filename
- C	Only run calibration if output filename does not exist
-m[=] <font_module< td=""><td>Use given UCM font module to display text</td></font_module<>	Use given UCM font module to display text

Description

The touch_cal utility will present a text message on the LCD screen as well as points for the user to press. After the points are pressed, the protocol module $mp_ucb1200$ will be updated with the new calibration information.

Example

\$ touch_cal

Found touch screen device '/ucb_touch/mp_ucb1200'

ucbtouch

Syntax

ucbtouch <>

Description

The ucbtouch utility prints the raw x,y and pressure values at a set sample rate.

Press the touch screen and observe the output on your console. The utility is helpful in determining whether your touch screen is connected properly.

Example

\$ ucbtouch						
Touch[00000]:	Touch=0x30c3	X1=00328	Y1=00321	P =	28	X=329 Y=322
Touch[00001]:	Touch=0x30c3	X1=00329	Y1=00325	P =	28	X=330 Y=326
Touch[00002]:	Touch=0x30c3	X1=00329	Y1=00321	P =	28	X=330 Y=322
Touch[00003]:	Touch=0x30c3	X1=00329	Y1=00321	P =	29	X=330 Y=322
Touch[00004]:	Touch=0x30c3	X1=00329	Y1=00319	P =	29	X=330 Y=320
Touch[00005]:	Touch=0x30c3	X1=00329	Y1=00321	P =	28	X=330 Y=322
Touch[00006]:	Touch=0x30c3	X1=00329	Y1=00327	P =	28	X=330 Y=328
Touch[00007]:	Touch=0x30c3	X1=00329	Y1=00321	P =	28	X=330 Y=322
Touch[00008]:	Touch=0x30c3	X1=00329	Y1=00321	P =	29	X=330 Y=322
Touch[00009]:	Touch=0x30c3	X1=00329	Y1=00322	P =	28	X=330 Y=323
Touch[00010]:	Touch=0x30c3	X1=00329	Y1=00319	P =	28	X=0 Y=0
Touch[00011]:	Touch=0x30c3	X1=00328	Y1=00321	P =	28	X=-1 Y=2
Touch[00012]:	Touch=0x30c3	X1=00329	Y1=00315	P =	28	X=0 Y=-4
Touch[00013]:	Touch=0x30c3	X1=00329	Y1=00322	P =	29	X=0 Y=3

Radi

MICROWARE SOFTWARE

Appendix A: Board-Specific Modules

This chapter describes the modules specifically written for the target board. It includes the following sections:

- Low-Level System Modules
- High-Level System Modules

Low-Level System Modules

More In	
fo More	_
Informatio	
n More Inf	
ormation N	4
ore Inform	
ation More	

For More Information

For a complete list of OS-9 modules common to all boards, see the **OS-9 Device Descriptor and Configuration Module Reference** manual.

The following low-level system modules are tailored specifically for the GraphicsMaster platform. The functionality of these modules can be altered through changes to the configuration data module (cnfgdata).

Table A-1 provides a list and brief description of the modules.

These modules can be found in the following directory:

MWOS/OS9000/ARMV4/PORTS/GRAPHICSMASTER/CMDS/BOOTOBJS /ROM

Table A-1 Board-Specific Low-Level System Modules

Module Name	Description
cnfgdata	Contains the low-level configuration data.
cnfgfunc	Provides access services to cnfgdata data.
commcnfg	Inits communication port defined in cnfgdata.
conscnfg	Inits console port defined in cnfgdata.
ide	IDE boot support module. PCMCIA compatible.
io1100	Provides polled serial driver support for the low-level system.

Table A T Board	opeenie Low Level bystein modules (continued)
Module Name	Description
llcis	Inits the PCMCIA interface including cards.
lle509	Provides low-level ethernet services via 3COM PCMCIA card.
ll91c94	board specific ethernet module
portmenu	Inits booters defined in the cnfgdata.
romcore	Board specific initialization code.
splash	Provides way to init LCD screen with a compressed image.
tmr1_1100	Provides low-level timer services via time base register.
usedebug	Inits low-level debug interface to RomBug, SNDP, or none.
dbinit	initializes SAIIII

Table A-1 Board-Specific Low-Level System Modules (continued)

The following low-level system modules provide generic services for OS-9 Modular ROM. Table A-2 provides a list and brief description of the modules.

These modules can be found in the following directory:

MWOS/OS9000/ARMV4/CMDS/BOOTOBJS/ROM

Table A-2 Generic Services Low-Level System Modules

Module Name	Description	
bootsys	Booter registration service module.	
console	Provides console services.	
dbgentry	Inits debugger entry point for system use.	
dbgserv	Provides debugger services.	
excption	Provides low-level exception services.	
flshcach	Provides low-level cache management services.	
hlproto	Provides user level code access to protoman.	
llbootp	Booter which provides bootp services.	
llip	Provides low-level IP services.	
llslip	Provides low-level SLIP services.	
lltcp	Provides low-level TCP services.	
lludp	Provides low-level UDP services.	
notify	Provides state change information for use with LL and HL drivers.	

A

Table A-2 Generic Services Low-Level System Modules (continued)

Module Name	Description
override	Booter which allows choice between menu and auto booters.
parser	Provides argument parsing services.
pcman	Booter which reads MS-DOS file system.
protoman	Protocol management module.
restart	Booter which cause a soft reboot of system.
romboot	Booter which allows booting from ROM.
rombreak	Booter which calls the installed debugger.
rombug	Low-level system debugger.
sndp	Provides low-level system debug protocol.
srecord	Booter which accepts S-Records.
swtimer	Provides timer services via software loops.

High-Level System Modules

The following OS-9 system modules are tailored specifically for the GraphicsMaster boards and peripherals. Unless otherwise specified, each module is located in a file of the same name in the following directory:

MWOS/OS9000/ARMV4/PORTS/GRAPHICSMASTER/CMDS/BOOTOBJS

CPU Support Modules

These files are located in the following directory:

MWOS/OS9000/ARMV4/CMDS/BOOTOBJS

kernel	The kernel provides all basic services for the OS-9 system.
cache	Provides cache control for the CPU cache hardware. The cache module is in the file cach1100.
fpu	Provides software emulation for floating point instructions.
ssm	The System Security Module provides support for the Memory Management Unit (MMU) on the CPU.
vectors	Provides interrupt service entry and exit code. The vectors module is found in the file vect110.

System Configuration Module

These files are located in the following directory:

MWOS/OS9000/ARMV4/PORTS/GRAPHICSMASTER/CMDS/BOOTOBJS/INITS

init	Descriptor module with high level system initialization information.
nodisk	Same as init, but used in a disk-less system.

Interrupt Controller Support

This module provides extensions to the vectors module by mapping the single interrupt generated by an interrupt controller into a range of pseudo vectors which are recognized by OS-9 as extensions to the base CPU exception vectors.

irq1100	P2module that provides interrupt acknowledge and dispatching support for the SA1100 pic.
irqtc	P2module that provides interrupt acknowledge and dispatching support for the board pic (vector range 0xB1-0xC0).
irq1111	p2 module that provides interrupt acknowledge and dispatching support for the SAIIII pic (vector range 0x71-0xb0).

Real Time Clock

rtc1100	Driver that provides OS-9 access to the
	SA1100 on-board real time clock.

Ticker

tk1100Driver that provides the system ticker based on
the SA11X0 Operating System Timer.

Abort Handler

abort

P2module which provides a way to enter the system-state debugger via the GPIO[0] interrupt triggered by the board's switch S1, 1.

Generic IO Support modules (File Managers)

These files are located in the following directory:		
MWOS/OS9000/ARMV4/CMDS/BOOTOBJS		
ioman	Provides generic I/O support for all IO device types.	
scf	Provides generic character device management functions.	
rbf	Provides generic block device management functions for OS-9 specific format.	
pcf	Provides generic block device management functions for MS-DOS FAT format.	
spf	Provides generic protocol device management function support.	
m£m	Provides generic graphics device support for MAUI.	
pipeman	Provides a memory FIFO buffer for communication.	

Pipe Descriptor

This file is located in the following directory:

MWOS/OS9000/ARMV4/PORTS/GRAPHICSMASTER/CMDS/BOOTOBJS/DESC

pipe Pipeman descriptor that provides a RAM based FIFO which can be used for process communication.

RAM Disk Support

a RAM based virtual
DOTOBJS/DESC/RAM
des access to a ram
dule name dd (for

Serial and Console Devices

sc1100	SCF driver which provides serial support the
	SA11X0's SP1 and SP3 ports when configured
	as UARTS.

Descriptors for Use with sc1100

term1/t1	Descriptor modules for use with sc11X0 and SP1.	
	Board header:	J7
	Default Baud Rate:	19200
	Default Parity:	None
	Default Data Bits:	8
	Default Handshake:	Software
term3/t3	Descriptor modules for use with sc11X0 and SP3.	
	Board header:	J10
	Default Baud Rate:	115200
	Default Parity:	None
	Default Data Bits:	8
	Default Handshake:	Software
term2/t2	Descriptor modules for use with sc11X0 and SP2	
	Board header:	J7
	Default Baud Rate:	115200
	Default Parity:	None
	Default Data Bits:	8
	Default Handshake:	Software
sc16550	SCF driver which provides se 16550 compatible modem ca	

а

Descriptors for use with sc16550

tOm	Descriptor modules for use wind PCMCIA card	ith the external
sc16550		
	Board header: slot	J11 PCMCIA
	Default Baud Rate:	9600
	Default Parity:	None
	Default Data Bits:	8
	Default Handshake:	Software

Descriptors for Use with scllio

vcons/term Descriptor modules for use with scilio in conjunction with a low-level serial driver. Port configuration and set up follows what is configured in cnfgdata for the console port.

It is possible for scllio to communicate with a true low-level serial device driver like io1100, or with an emulated serial interface provided by iovcons.

PCMCIA Support for IDE Type Devices

rb1003

RBF/PCF driver that provides driver support for IDE/EIDE devices. This driver is used to provide disk support for PCMCIA ATA FLASH.

Descriptors for Use with rb1003

hc1/hc1fmt ar	clfmt and hcl.dd RBF Descriptor modules for use\ with PCMCIA slot #0	
	Board header:	J11
	hc1fmt:	format enabled
	hc1.dd:	module name of dd
mhc1/mhc1.dd	PCF Descriptor modules for slot #0	or use with PCMCIA
	Board header: mhc1.dd:	J11 module name of dd

PCMCIA Support for 3COM Ethernet card

These files are located in the following directory:

MWOS/OS9000/ARMV4/PORTS/GRAPHICSMASTER/CMDS/BOOTOBJS/SPF

spe509_pcmSPF driver to support ethernet for a 3COMEtherLink III PCMCIA card.

Descriptors for Use with spe509_pcm

spe30 SPF descriptor module for use with PCMCIA slot #0 (J11)

Network Configuration Modules

inetdb/inetdb2/rpcdb

SMC91C94 Ethernet Support

A

These files are located in the following directory:

MWOS/OS9000/ARMV4/PORTS/GRAPHICSMASTER/CMDS/BOOTOBJS/SPF

SP91c94 SPF driver to support ethernet for the SMC91C94 chip.

Descriptor for Use with sp91c94

spsm0 SPF descriptor module for use with SMC91C94 at J8.

Network Configuration Modules

inetdb/inetdb2/rpcdb

UCB1200 Support modules.

These files are located in the following directory:

MWOS/OS9000/ARMV4/PORTS/GRAPHICSMASTER/CMDS/BOOTOBJS/SPF

SPE driver that supports the on-board Phillips UCB1200 chip. This device communicates to the SA11X0 over SP4 using MCP. The spucb1200 will work with UCB1100, UCB1200, and UCB1300 devices.

Descriptors for Use with spucb1200

ucb	SPF descriptor module that provides access to UCB1200.
ucb_touch	SPF descriptor module used with the touch screen.

Maui Graphical Support Modules

These files are located in the following directory:

MWOS/OS9000/ARMV4/PORTS/GRAPHICSMASTER/CMDS/BOOTOBJS/MAUI

gx_sallo0 MFM MAUI driver module with support for the board's LCD panel.

Descriptors for Use with gx_sa1100

gfx	MFM MAUI descriptor module for the board's LCD.
sd_ucb 1200	MFM MAUI driver module that provides PCM/mu-law sound support via the ucb1200.

Descriptors for Use with sd_ucb1200

snd MFM MAUI descriptor module for UCB1200 sound functions.

MAUI configuration modules

cdb	MAUI configuration data base module.
cdb_ptr	Serial mouse configuration data base module.
cdb_touch	Touch screen configuration data base module.

MAUI protocol modules

mp_kybrd	Keyboard protocol module
mp msptr	Serial mouse protocol module.

- mp_ucb1200 ucb1200 protocol module.

Using Alternate Display Devices

Drivers and descriptors can be created and used for the following alternate displays:

- GraphicsMaster 16-Bit Color LM12S49 Dual-scan LCD panel
- Sharp LM8V30/31 Dual Passive VGA(640x480) LCD panel
- Kyrocera kcb104VG2BA-A03 640x480 LCD panel
- 16-Bit Color LG Phillips LP104V2 LCD panel

Note

The modules and sources for these alternate displays are unsupported; they are merely provided as examples.

When using a display device other than the standard GraphicsMaster board, you must modify the splash module so that it corresponds with the high-level descriptor set in maui.ml. (The splash module is a low-level module that initializes screen display size.) To perform this task, complete the following steps:

Step 1. Open the makefile file in the following location:

<MWOS>/OS9000/ARMV4/PORTS/GRAPHICSMASTER/ROM/SPLASH

Step 2. Edit makefile so that the MODULE line of code corresponds to your LCD panel. Below is an example:

MODULE = splash_lp104v2

- Step 3. From the SPLASH directory, run os9make.
- Step 4. Open the coreboot.ml file in the following location:

<MWOS>/OS9000/ARMV4/GRAPHICSMASTER/BOOTS/INSTALL/PORTBOOT/

Step 5. Edit coreboot.ml by removing the asterisk from the name of your splash module and placing one in front of the following line:

../../CMDS/BOOTOBJS/ROM/splash

Step 6. Open the maui.ml file in the following location:

<MWOS>/OS9000/ARMV4/GRAPHICSMASTER/BOOTS/INSTALL/PORTBOOT

Step 7. Edit maui.ml by removing the asterisk from the gfx module for your LCD and placing one in front of the following line:

../../CMDS/BOOTOBJS/MAUI/gfx

Step 8. Use the Configuration Wizard to build a new ROM image.

Appendix B: MAUI Driver Descriptions

This chapter provides MAUI driver descriptions. It includes the following sections:

- GraphicsMaster Objects
- GX_SA1100 LCD Graphic Driver Specification
- SD_UCB1200 Sound Driver Specification
- SPUCB1200 driver for the UCB1200 Codec
- MP_UCB1200 MAUI Touch screen Protocol Module

This package provides object-level support for the Intel GraphicsMaster reference board. The port directory is at the following location:

Radi

MICROWARE SOFTWARE

MWOS/OS9000/ARMV4/PORTS/GRAPHICSMASTER

MAUI objects

cdb	Lists the devices on the system.
mp_msptr	Serial mouse protocol module.
mp_ucb1200	Touch screen protocol module for the UCB1200.
gfx and gx_sall00	LCD graphics descriptor and driver.

GX_SA1100 LCD Graphic Driver Specification

This section describes the hardware specification of the StrongARM SA11X0 LCD driver (named gx_sa1100) and descriptor (named gfx). The hardware sub-type defines the board configuration. This specification should be used with the MAUI Graphics Device API.

Board Ports

This driver is used in the following example board StrongArm ports.

The GraphicsMaster board uses a Sharp LQ64D341 18 bpp color (16 used), TFT, with a resolution of 640x480 single panel. This panel is connected to the GraphicsMaster with one of several possible cables:

- 8 bpp most common to date
- RGB 565 next most common
- RGB 655
- RGB 556

The SideArm board can support an LCD panel, but does not typically ship with one. For this reason the SideArm port does not build this driver. If the user did connect a LCD panel to this board, simply copy the makefiles from one of the other ports into the SideArm port.

Device Capabilities

Information about the hardware capabilities is determined by calling $gfx_get_dev_cap()$. The hardware sub-type defines the board configuration. This function returns a data structure formatted as shown in Table B-1. See GFX_DEV_CAP for more information about this data structure.

Member Neme	Description	Value
Member Name	Description	Value
hw_type	Hardware type (embedded in driver)	SA1100 LCD Controller
hw_subtype	Hardware subtype (embedded in descriptor)	GraphicsMaster 8 bit color LCD, or GraphicsMaster 16 bit color LCD
sup_vpmix	Supports viewport mixing	FALSE
sup_extvid	Supports external video as a backup	FALSE
sup_bkcol	Supports background color	FALSE
sup_vptrans	Supports viewport transparency	FALSE
sup_vpinten	Supports viewport intensity	FALSE
sup_sync	Supports retrace synchronization	FALSE

Table B-1 gfx_get_dev_cap() Data Structure

\prec

Table B-1 gfx_get_dev_cap() Data Structure (continued)

Member Name	Description	Value
num_res	Number of display resolutions	1
res_info	Array of display resolution information	See Display Resolution table
dac_depth	Depth of the DAC in bits	12
num_Cm	Number of coding methods	1
cm_info	Array of coding method information	See Coding Methods table
sup_viddecode	Supports video decoding into a drawmap	FALSE

Display Resolution

The display resolution is configured by the descriptor and can be changed to support LCD panels of different sizes. The driver is only designed to support one resolution at a time. That resolution is specified by the descriptor. Modify the DEFAULT_RES macro in mfm_desc.h to change the resolution. If you change the resolution, you must also change all of the LCD timing fields as well.

Board	Width	Height	Refresh Rate	Interlace Mode	Aspect Ratio X:Y
Graphics- Client	640	480	0*	GFX_INTL_OFF	1:1

*Refresh rate is determined by timing specified in descriptor. The devcap is not automatically update to reflect this.

Coding Methods

The coding method is also configured by the descriptor and can be changed to support b/w and color LCD panels. The coding method can be selected in the descriptor by simply specifying the coding method in the DEFAULT_CM macro in $mfm_desc.h$.

This driver was verified on the GraphicsMaster with both a 8-bit and 565 cables. The maximal coding method supported by SA11X0 LCD Controller is 16 bpp.

Board	Coding Method	CLUT Based	X,Y Multipliers	Palette Color Types
Graphics- Master w/8 bit cable	GFX_CM_8BIT	TRUE	1,1	GFX_COLOR_RGB
Graphics- Master w/16 bit cable	GFX_CM_565, GFX_CM_655, or GFX_CM_556	FALSE	1,1	NA
No current hardware implementati on available	GFX_CM_4BIT	TRUE	1,1	GFX_COLOR_RGB

Table B-3 Coding Method Description

Viewport Complexity

The driver supports one active viewport at a time. The application can create multiple viewports and stack them. The viewport must be aligned with, and the same size as the display. Display drawmaps must be the same size as the viewport.

Memory

Applications are expected to request graphics memory from the driver. The driver allocates memory from the system as needed. It requests this memory from color 0x80. This memory (specified in the init module) is located at the bottom of 16 MB DRAM address space and is marked as non cached.

Location

This driver's source is located in:

SRC/DPIO/MFM/DRVR/GX_SA1100

This driver's makefiles are located in:

OS9000/ARMV4/PORTS/GRAPHICSMASTER/MAUI/GX_SA1100

This directory contains the makefiles and descriptor header file to build the descriptor(s) and driver(s) (not all packages include driver source) for the StrongARM reference platform. This directory contains:

makefile	Calls each of the other makefiles in this directory
drvr.mak	Builds the driver
desc.mak	Builds the descriptor(s)
mfm_desc.h	Defines values for all modifiable fields of the descriptor(s)

Build the Driver

The driver source is located in SRC/DPIO/MFM/DRVR/GX_SA1100. To build the driver, use the following commands:

```
cd OS9000/ARMV4/PORTS/GRAPHICSMASTER/MAUI/GX_SA1100
os9make -f drvr.mak
```

Build the Descriptor

To build a new descriptor, modify $mfm_desc.h$, and use the following commands to compile:

cd OS9000/ARMV4/PORTS/GRAPHICSMASTER/MAUI/GX_SA1100

os9make -f desc.mak

To build both the driver and the descriptor you can specify os9make with no parameters.

SD_UCB1200 Sound Driver Specification

This section describes the hardware specifications for the Philips UCB1200 driver sd_ucb1200. The hardware sub-type defines the board configuration. This specification should be used in conjunction with the MAUI Sound Driver Interface.

This driver works in conjunction with the spucb1200 driver.

Device Capabilities

Information about the hardware capabilities is determined by calling _os_gs_snd_devcap(). This function returns a data structure formatted as in the following table. See SND_DEV_CAP for more information about this data structure.

Table B-4 Data Returned in SND_DEV_CAP

Member Name	Value	Description
hw_type	CS4231	Hardware type
hw_subtype	CS4231A	Hardware sub-type
sup_triggers	SND_TRIG_ANY	Supported triggers
play_lines	SND_LINE_SPEAKER	Play gain/mix lines
record_lines	SND_LINE_MIC	Record gain/mix lines
sup_gain_cmds	SND_GAIN_CMD_MONO	Mask of supported gain commands
num_gain_caps	2	Number of SND_GAIN_CAP S

Table B-4 Data Returned in SND_DEV_CAP (continued)

Member Name	Value	Description
gain_caps	See Gain Capabilities Array	Pointer to SND_GAIN_CAP array
num_rates	30	Number of sample rates
sample_rates	See Sample Rates	Pointer to sample rate array
num_chan_info	1	Number of channel info entries
channel_info	See Number of Channels	Pointer to channel info array
num_cm	3	Number of coding methods
cm_info	See Encoding and Decoding Formats	Pointer to coding method array

Gain Capabilities Array

The following tables show the various gain capabilities for the Philips UCB1200. This information is pointed to by the gain_cap member of the SND_DEV_CAP data structure. See SND_GAIN_CAP for more information about this data structure. This driver allows control of following individual physical gain controls:

Table B-5 Individual Gain Controls

SND	LINE SPEAKER	Output Attenuation
SND	LINE MIC	Microphone Gain

The following tables detail the various individual gain capabilities:

Table B-6 Speaker Gain Enable

Member Name	Value	Step	HW	Level	Comments
lines	SND_LINE_SPEAKER	0-3	31	-69 dB	default_level
sup_mute	TRUE	4-7	30	-66.8 dB	
default_type	SND_GAIN_CMD_MONO	8-11	29	-64.7 dB	
default_level	SND_LEVEL_MAX	12-15	28	-62.5 dB	
zero_level	SND_LEVEL_MIN				
num_steps	32	112-115	3	-6.5 dB	
step_size	216	116-119	2	-4.3 dB	
mindb	-6900	120-123	1	-2.2 dB	
maxdb	0	124-127	0	0.0 dB	zero_level

Table B-7 Mic Gain Enable

Member Name	Value	Step	HW	Level	Comments
lines	SND_LINE_MIC	0-3	0	0 dB	zero_level
sup_mute	FALSE	4-7	1	0.7 dB	
default_type	SND_GAIN_CMD_MONO				
default_level	SND_LEVEL_MAX	64-67	16	11.3 dB	default_leve I
zero_level	SND_LEVEL_MIN				
num_steps	32	112-115		20.4 dB	
step_size	70	116-119	29	21.1 dB	
mindb	0	120-123	30	21.8 dB	
maxdb	2250	124-127	31	22.5 dB	

Sample Rates

Following is an abbreviated list of the supported sample rates for the UCB1200. Below is a formula to derive valid sample rates:

sample_rate = 11981000/(32 * i), where 8 < i < 128

This information is pointed to by the sample_rates member of the SND DEV CAP data structure.

Table B-8 Sample Rate (Hz)

2948	3941	4926	5942	6933
7966	8914	9852	10697	11700
12910	13866	14976	15600	17828
18720	19705	20800	22023	23400
24960	26743	28800	31200	34036
37440	41600	46801	53486	62401

Number of Channels

The following table shows the different supported number of channels for the Philips UCB1200. The first entry in the table is the default number of channels. This information is pointed to by the channel_info member of the SND_DEV_CAP data structure.

Table B-9 Number of Channels

Channels	Description
1	Mono

Encoding and Decoding Formats

The following table shows the supported encoding and decoding formats for the Philips UCB1200. The first entry in the table is the default format. This information is pointed to by the cm_info member of the SND_DEV_CAP data structure.

Coding Method	Sample Size	Boundary Size	Description
SND_CM_PCM_ULAW	8	2	8 bit u-Law commanded
SND_CM_PCM_SLINEAR SND_CM_LSBYTE1ST	16	4	16 bit Linear (two's complement) little- endian
SND_CM_PCM_SLINEAR	16	4	16 bit Linear signed (two's complement) big-endian

Table B-10 Encoding and Decoding Formats

SPUCB1200 driver for the UCB1200 Codec

This document describes the hardware specifications for the Philips UCB1200 driver. This is an SPF driver and works with the UCB1100, UCB1200, and UCB1300.

Capabilities

The UCB1200 is capable of controlling a microphone/speaker, input/output telecommunications lines, resistive style touch screen, and 16 General Purpose Input/Output lines. This driver currently can only control the touch screen, and general purpose input/output lines. The microphone/speaker can be controlled with a MAUI Sound driver called sd_ucb1200. No driver has been written for the telecommunications part of the UCB1200.

Descriptors

Table B-11 lists the UCB1200 descriptors.

Table B-11	
Name	Function
ucb	UCB1200 Chip Initialization
ucb_audio	Not Implemented
ucb_touch	Touch Screen
ucb_gpio	Control GPIO Lines
ucb_telecom	Not Implemented

Opening the /ucb device will perform basic chip initialization. Normally this is not necessary, unless another driver is written to control part of the UCB1200 functions. This is the case for audio. The MAUI Sound driver sd_ucb1200 will open /ucb to perform chip initialization. In this way, the MAUI Sound driver play audio and this driver can control the touch screen at the same time.

Audio

This portion of the driver is not implemented since the MAUI Sound driver sd_ucb1200 already exists. sd_ucb1200 and this driver can co-exist.

Touch Screen

This portion of the driver controls the touch screen operation. When pressure is applied to the touch screen, a hardware interrupt is raised, and this driver's interrupt service routine will execute. A system state alarm, then, will fire at regular intervals to sample data from the touch screen. When pressure is removed, the alarm stops. This mechanism leaves the UCB1200 in a low power state until the user presses the touch screen. The alarm rate can be controlled in the ucb_touch descriptor.

Each sample contains an x, y coordinate as well as pressure information. The data is formatted into a six byte packet as defined in the table below. Each packet contains 10 bits of x, 10 bits of y, and 8 bits of pressure information.

Byte number	Description
0	sync code - 0x80
1	header: bit 1: pendown bit 2: penup bit 3: penmove (may occur with pendown or penup)
2	bits 02: high 3 bits of x bits 36: high 4 bits of pressure bit 7: 0
3	bits 06: low 7 bits of x bit 7: 0

Table B-12 Touch Screen Descriptor Data

Table B-12 Touch Screen Descriptor Data

Byte number	Description
4	bits 02: high 3 bits of y bits 36: low 4 bits of pressure
5	bits 06: low bits of y bit 7: 0

GPIO

This section of the driver has basic GPIO line control, where lines 0..9 are connected to a 7 segment display or LED. Each line can be controlled with an _os_write() call. (Refer to the UCBHEX program in the TEST directory.)

Telecom

This portion of the driver is not implemented.

Supporting Modules

Before this driver can be used, the following modules must be in memory: spf, sysmbuf, mbinstall.mbinstall must also be run before use.

MP_UCB1200 MAUI Touch screen Protocol Module

This document describes the function of the mp_ucb1200 protocol module, as well as a high level discussion of the touch screen driver and calibration application.

Overview

The protocol module converts the driver raw data into a MAUI_MSG structure. In this way, applications can remain somewhat ignorant of the details of the hardware since it deals with the MAUI Input layer. In this protocol module, the raw hardware data is converted into screen coordinates. In addition, some data filtering occurs to reduce the amount of erroneous data that the touch screen hardware can produce.

Data Format

The touch screen driver sends a 6 byte packet that contains x, y, and pressure information. The exact format of this packet is described in the spucb1200 driver.

Data Filter

This protocol module filters the data coming from the hardware in an attempt to reduce erroneous data. Two methods are implemented: data point averaging and low pressure point removal. The first method will average the last two points received from the driver. The data point will lag slightly behind the current position, then, but the average will reduce erroneous data points produced by the hardware. The second method throw out data points where the pressure below a certain threshold. It seems that extremely light touches will cause the data to become erratic, although the exact pressure threshold is hardware dependent.

Raw Mode

An application can put this protocol module in a "raw" mode where data points are not filtered, averaged, or converted to screen coordinates. That is, the data from the hardware is passed directly up to the application.

The application can put this protocol module in a "raw" mode by calling: inp_set_sim_meth(inpdev, RAW_MODE). After calibration, the program will need to put the protocol module back in NATIVE mode by calling: inp_set_sim_meth(inpdev, DEFAULT_SIM_METH). There is a sample touch screen Calibration Application in the TOUCH_CAL directory.

When the protocol module is taken out of "raw" mode, it will try to read new calibration data points from the ucb1200.dat data module. After the data is read from the module, it is no longer needed.

cdb.touch

The touch screen can be registered with MAUI by loading the <code>cdb.touch</code> module in memory before any programs using input are started. This will specify the spucb1200 as the driver, <code>cdb.touch</code> as the descriptor, and <code>mp_ucb1200</code> as the protocol module.

Compile Time Options

Table B-13 shows compile time options used to control the default calibration settings and also the screen size. These options can be specified with a value in the $mp_ucb1200$ makefile to modify the defaults.

Table B-13 Compile Time Optio	ns
-------------------------------	----

Name	Purpose
SCREEN_WIDTH	Screen Width in Pixels
SCREEN_HEIGHT	Screen Weight in Pixels
DEFAULT_CALIBRATION_X	Left Calibration Hardware Point
DEFAULT_CALIBRATION_Y	Top Calibration Hardware Point
DEFAULT_CALIBRATION_WIDTH	Width of Screen In Hardware Points
DEFAULT_CALIBRATION_HEIGHT	Height of Screen In Hardware Points
JITTER_THRESHOLD	Minimum Pixel Change Required Before Points are Reported to the Application.
NUM_PTS	This allows you to choose how many successive data points to average in order to produce less erroneous screen coordinate data to the application. The default is 2, and valid choices are 1, 2, 4, 8, 16.
MIN_PRESSURE	Any pressure point less than this value will be ignored. This is another way to reduce erroneous data. This represents the 8 bit pressure value we get from the driver. The default is 40.

Calibration Application

There is a sample calibration application located in the $\$ (MWOS)/SRC/MAUI/MP/MP_UCB1200/TOUCH_CAL directory. This application, called touch_cal, will present a text message on the screen as well as points for the user to press. After the points are pressed, the protocol module mp_ucb1200 will be updated with the new calibration information.

Assumptions/Dependencies

- 1. A Window Manager must be running before this application will operate.
- 2. A font module must be present to run the demo. default.fnt is the default module, or you can specify one on the command line.
- 3. touch_cal will open the first CDB_TYPE_REMOTE device in the cdb.

Command Line Options

-f[=] <outfile></outfile>	Specifies the filename of the calibration information module. This program will write the calibration information to this filename if it is specified. The file contains the calibration information as a data module, thus allowing the information to be stored on disk, nv RAM, flash, etc. for use the next time the hardware is rebooted.
- C	This option only works if $-f$ is specified. This will cause the calibration program to run only if the filename specified with $-f$ is not present.
-m= 	Specifies the font module to use for displaying the text message on the screen.

Coordination with Protocol Module

The protocol module mp_ucb1200 and the touch screen application touch_cal work together to provide the calibration functionality. touch_cal must first open the touch screen device, and then must set it into Raw Mode. After the user selects each calibration point, touch_cal computes the average of them. These averaged hardware points (as well as the screen resolution) are then stored in a data module called ucb1200.dat. When the input device is taken out of Raw Mode, the protocol module will link to ucb1200.dat and update itself with the new calibration information.

Compiling

The makefile for touch_cal exists in the following directory:

\$(PORTS)/GRAPHICSMASTER/MAUI/MP_UCB1200/TOUCH_CAL