
w w w. ra d i sy s . co m
Revision A • July 2006

OS-9® for ThinClient Board
Guide

Version 4.7

July 2006
Copyright ©2006 by RadiSys Corporation

All rights reserved.
EPC and RadiSys are registered trademarks of RadiSys Corporation. ASM, Brahma, DAI, DAQ, MultiPro, SAIB, Spirit, and ValuePro are
trademarks of RadiSys Corporation.
DAVID, MAUI, OS-9, OS-9000, and SoftStax are registered trademarks of RadiSys Corporation. FasTrak, Hawk, and UpLink are
trademarks of RadiSys Corporation.
† All other trademarks, registered trademarks, service marks, and trade names are the property of their respective owners.

Copyright and publication information

This manual reflects version 4.7 of Microware OS-9.
Reproduction of this document, in part or whole, by any means,
electrical, mechanical, magnetic, optical, chemical, manual, or
otherwise is prohibited, without written permission from RadiSys
Microware Communications Software Division, Inc.

Disclaimer

The information contained herein is believed to be accurate as of
the date of publication. However, RadiSys Corporation will not be
liable for any damages including indirect or consequential, from
use of the OS-9 operating system, Microware-provided software,
or reliance on the accuracy of this documentation. The
information contained herein is subject to change without notice.

Reproduction notice

The software described in this document is intended to
be used on a single computer system. RadiSys
Corporation expressly prohibits any reproduction of the
software on tape, disk, or any other medium except for
backup purposes. Distribution of this software, in part
or whole, to any other party or on any other system
may constitute copyright infringements and
misappropriation of trade secrets and confidential
processes which are the property of RadiSys
Corporation and/or other parties. Unauthorized
distribution of software may cause damages far in
excess of the value of the copies involved.

OS-9 for ThinClient Board Guide 3

Table of Contents

Chapter 1: Installing and Configuring OS-9® 7

8 Requirements and Compatibility
8 Host Hardware Requirements (PC Compatible)
9 Host Software Requirements (PC Compatible)
9 Target Hardware Requirements
9 Java Hardware Requirements
10 Target Hardware Setup
10 Configure Board Switch Settings
10 Installing the Flash Devices
11 Configuring the ATA Card
12 Connecting the Target to the Host
14 Building the OS-9 ROM Image
14 Overview
14 Coreboot
14 Bootfile
15 Starting the Configuration Wizard
21 Creating a Startup File
22 Example Startup File
24 Optional Procedures
24 Connecting the Target to an Ethernet Network
26 Pinging the Reference Board
26 Creating a new OS-9 Coreboot Image in Flash Memory
27 Making a Coreboot Image with an EPROM programmer
28 Compressing the Bootfile Image

Chapter 2: Board Specific Considerations 31

32 Boot Options

4 OS-9 for ThinClient Board Guide

32 Booting from FLASH
33 Booting from PCMCIA ATA Card
33 Booting from PCMCIA Ethernet Card
34 Booting over Serial Communications Port via kermit
34 Restart Booter
35 Break Booter
36 The Fastboot Enhancement
36 Overview
37 Implementation Overview
37 B_QUICKVAL
37 B_OKRAM
38 B_OKROM
38 B_1STINIT
38 B_NOIRQMASK
39 B_NOPARITY
39 Implementation Details
39 Compile-time Configuration
40 Runtime Configuration
41 OS-9 Vector Mappings
48 ThinClient GPIO Usage
50 GPIO Interrupt Polarity
51 Port Specific Utilities

Appendix A: Board-Specific Modules 59

60 Low-Level System Modules
64 High-Level System Modules
64 CPU Support Modules
65 System Configuration Module
65 Interrupt Controller Support
65 Real Time Clock
66 Ticker
66 Abort Handler
66 Generic IO Support modules (File Managers)

OS-9 for ThinClient Board Guide 5

67 Pipe Descriptor
67 RAM Disk Support
67 Descriptors for Use with RAM
67 Serial and Console Devices
67 Descriptors for Use with sc1100
68 Descriptors for use with sc16550
70 Descriptors for Use with scllio
70 PCMCIA Support for IDE Type Devices
70 Descriptors for Use with rb1003
71 PCMCIA Support for 3COM Ethernet card
71 Descriptors for Use with spe509_pcm
71 Network Configuration Modules
72 SMC91C94 Ethernet Support
72 Descriptor for Use with sp91c94
72 Network Configuration Modules
72 UCB1200 Support modules.
72 Descriptors for Use with spucb1200
73 Maui Graphical Support modules
73 Descriptors for Use with gx_sa1100
73 Descriptors for Use with sd_ucb1200
73 MAUI configuration modules
73 MAUI protocol modules

Appendix B: MAUI Driver Descriptions 75

76 ThinClient Objects
76 MAUI objects
77 GX_SA1100 LCD Graphic Driver Specification
77 Board Ports
78 Device Capabilities
79 Display Resolution
80 Coding Methods
81 Viewport Complexity
81 Memory

6 OS-9 for ThinClient Board Guide

82 Location
82 Build the Driver
82 Build the Descriptor
83 SD_UCB1200 Sound Driver Specification
83 Device Capabilities
85 Gain Capabilities Array
87 Sample Rates
87 Number of Channels
88 Encoding and Decoding Formats
89 SPUCB1200 driver for the UCB1200 Codec
89 Capabilities
89 Descriptors
90 UCB
90 Audio
90 Touch Screen
91 GPIO
92 Telecom
92 Supporting Modules
93 MP_UCB1200 MAUI Touch screen Protocol Module
93 Overview
93 Data Format
93 Data Filter
94 Raw Mode
94 cdb.touch
95 Compile Time Options
96 Calibration Application
96 Assumptions/Dependencies
96 Command Line Options
97 Coordination with Protocol Module
97 Compiling

7

Chapter 1: Instal l ing and Configuring

OS-9®

This chapter describes installing and configuring OS-9® on the ADS
SA-1100 Microprocessor Reference Platform (ThinClient). It includes
the following sections:

• Requirements and Compatibility

• Target Hardware Setup

• Connecting the Target to the Host

• Building the OS-9 ROM Image

• Creating a Startup File

• Optional Procedures

8 OS-9 for ThinClient Board Guide

1 Installing and Configuring OS-9®

Requirements and Compatibility

NoteNote
Before you begin, install the Microware OS-9 for StrongARM
CD-ROM on your host PC.

Host Hardware Requirements (PC Compatible)

Your host PC should have the following:

• Windows 95, 98, ME, 2000, or NT

• A minimum of 32MB of free disk space (an additional 235MB of free
disk space is required to run PersonalJava Solution for OS-9)

• An Ethernet network card

• A PCMCIA card reader/writer

• At least 16MB of RAM

NoteNote
If you are a PersonalJava Solution for OS-9 licensee and you plan to
use the Java JCC to pre-load your Java classes, you may need as
much as 64MB of RAM. Refer to the document Using
JavaCodeCompact for OS-9 for a complete discussion of using the
JCC.

1Installing and Configuring OS-9®

OS-9 for ThinClient Board Guide 9

Host Software Requirements (PC Compatible)

Your host PC should have a terminal emulation program (such as
Hyperterminal, which comes with Microsoft Windows.

Target Hardware Requirements

NoteNote
Please refer to the SA-1100 Microprocessor Evaluation Platform
User’s Guide for information on hardware preparation and installation,
operating instructions, and functional descriptions prior to installing and
configuring OS-9.

Your reference board requires the following hardware:

• Enclosure or chassis with power supply

• A RS-232 null modem serial cable

• LCD screen, keyboard, and mouse (for use with MAUI®)

Java Hardware Requirements

Your reference board must have the following to run PersonalJava
Solution for OS-9:

• 16MB of RAM

• 4MB of FLASH (Boot)

• LCD Display

10 OS-9 for ThinClient Board Guide

1 Installing and Configuring OS-9®

Target Hardware Setup

Configure Board Switch Settings

The switch SW1, position 1, must be in the ON position for proper LCD
operation. This defines the use of 8-bit color. The opposite setting
defines the use of 16-bit color.

Installing the Flash Devices

The first stage in configuring your reference board is to install the two
pre-loaded FLASH devices included in your Microware OS-9 for
StrongARM package. These devices include a coreboot system that
has been pre-configured to get your board up and running quickly.
Install the FLASH devices in sockets U3 (HIGH) and U2 (LOW).

Figure 1-1 Installing the Flash Devices

U2 U3

PCMCIA Sockets

SW1

1Installing and Configuring OS-9®

OS-9 for ThinClient Board Guide 11

NoteNote
If you need to reprogram the flash devices or create new flash devices,
see the Creating a new OS-9 Coreboot Image in Flash Memory
section.

Configuring the ATA Card

You can use your ATA card to validate that your reference board is
operational without requiring the connection to the host machine:

To configure the ATA card, complete the following steps:

Step 1. From a DOS prompt on the host machine, navigate to the following
directory:

MWOS\OS9000\ARMV4\PORTS\THINCLIENT\BOOTS\SYSTEMS\PORTBOOT

and run os9make.

Step 2. On the host machine, copy the files located in the following directory:
MWOS\OS9000\ARMV4\PORTS\THINCLIENT\BOOTS\SYSTEMS\PORTBOOT\os9kboot

into the root directory to the ATA card

Step 3. Install the card in socket 0 (bottom) on the reference board.

Step 4. Turn on the reference board.

NoteNote
Some ADS preproduction do not reset on power up. You must manually
reset the board by pressing the reset button.

12 OS-9 for ThinClient Board Guide

1 Installing and Configuring OS-9®

Connecting the Target to the Host

Connect an RS-232 null modem cable from the reference board to the
serial port of a Windows 95, Windows 98, or Windows NT system.

Step 1. Connect the serial cable to the P1 connector on the reference board.
The P1 connector is the SA1100 serial port 3 (SP3).

Step 2. Connect the other end of the serial cable to the Host PC.

Step 3. On the Windows desktop, click on the Start button and select
Programs -> Accessories -> Hyperterminal.

Step 4. Click the Hypertrm icon and enter a name for your Hyperterminal
session.

Step 5. Select an icon for the new Hyperterminal session. A new icon is created
with the name of your session associated with it. The next time you
want to establish the same session, follow the directions in Step 3 and
look for the icon you created in Step 4.

Step 6. Click OK

Step 7. In the Phone Number dialog, go to the Connect Using box, and select
the communications port to be used to connect to the reference board.

The port selected is the same port that you connected to the serial
cable from the reference board.

Step 8. Click OK

Step 9. In the Port Settings tab, enter the following settings:

Bits per second = 19200

Data Bits = 8

Parity = None

Stop bits = 1

Flow control = XOn/XOff

1Installing and Configuring OS-9®

OS-9 for ThinClient Board Guide 13

Figure 1-2 Port Settings

Step 10. Click OK.

Step 11. Go to the Hyperterminal menu and select Call -> Connect from the
pull-down menu to establish your terminal session with the reference
board. If you are connected, the bottom left of your Hyperterminal
screen will display the word connected.

Step 12. Turn on the reference board. The OS-9 bootstrap message is displayed.

14 OS-9 for ThinClient Board Guide

1 Installing and Configuring OS-9®

Building the OS-9 ROM Image

Overview

The OS-9 ROM Image is a set of files and modules that collectively
make up the OS-9 operating system. The specific ROM Image contents
can vary from system to system depending on hardware capabilities
and user requirements.

To simplify the process of loading and testing OS-9, the ROM Image is
generally divided into two parts—the low-level image, called coreboot;
and the high-level image, called bootfile.

Coreboot

The coreboot image is generally responsible for initializing hardware
devices and locating the high-level (or bootfile) image as specified by its
configuration. For example from a FLASH part, a harddisk, or Ethernet.
It is also responsible for building basic structures based on the image it
finds and passing control to the kernel to bring up the OS-9 system.

Bootfile

The bootfile image contains the kernel and other high-level modules
(initialization module, file managers, drivers, descriptors, applications).
The image is loaded into memory based on the device you select from
the boot menu. The bootfile image normally brings up an OS-9 shell
prompt, but can be configured to automatically start an application.

Microware provides a Configuration Wizard to create a coreboot image,
a bootfile image, or an entire OS-9 ROM Image. The wizard can also be
used to modify an existing image. The Configuration Wizard is
automatically installed on your host PC during the OS-9 installation
process.

1Installing and Configuring OS-9®

OS-9 for ThinClient Board Guide 15

Starting the Configuration Wizard

The OS-9 ROM Image enables booting from PCMCIA IDE type cards.

NoteNote
Microware OS-9 for StrongARM supports ATA Flash cards.

The Configuration Wizard is the application used to build the coreboot,
bootfile, or ROM image. To start the Configuration Wizard, perform the
following steps:

16 OS-9 for ThinClient Board Guide

1 Installing and Configuring OS-9®

Step 1. From the Windows desktop, select Start -> RadiSys ->
Microware OS-9 for <product> -> Configuration Wizard.
You should see the following opening screen:

Figure 1-3 Configuration Wizard Opening Screen

Step 2. Select your target board from the Select a board pull-down menu.

Step 3. Select the Create new configuration radio button from the
Select a configuration menu and type in the name you want to give
your ROM image in the supplied text box. This names your new
configuration, which can later be accessed by selecting the Use
existing configuration pull down menu.

1Installing and Configuring OS-9®

OS-9 for ThinClient Board Guide 17

Step 4. Select the Advanced Mode radio button from the Choose Wizard
Mode field and click OK. The Wizard’s main window is displayed. This is
the dialog from which you will proceed to build your image. An example
is shown in Figure 1-4.

Figure 1-4 Configuration Wizard Main Window

Step 5. If you want to use the target board across a network, you will need to
configure the Ethernet settings within the Configuration Wizard. To do
this, select Configure -> Bootfile -> Network
Configuration from the Wizard’s main menu.

18 OS-9 for ThinClient Board Guide

1 Installing and Configuring OS-9®

Step 6. From the Network Configuration dialog, select the Interface
Configuration tab. From here you can select and enable the
interface. For example, you can select the appropriate Ethernet card
from the list of options on the left and specify whether you would like to
enable IPv4 or IPv6 addressing. Figure 1-5 shows an example of the
Interface Configuration tab.

Figure 1-5 Bootfile -> Network Configuration -> Interface Configuration

For More Information
More In
fo More
Informatio
n More Inf
ormation M
ore Inform
ation More

-6-

To learn more about IPv4 and IPv6 functionalities, refer to the
Using LAN manual, included with this product CD.

1Installing and Configuring OS-9®

OS-9 for ThinClient Board Guide 19

For More Information
More In
fo More
Informatio
n More Inf
ormation M
ore Inform
ation More

-6-

Contact your system administrator if you do not know the network
values for your board.

Step 7. Once you have made your settings in the Network Configuration
dialog, click OK.

WARNING!
On preproduction ThinClient boards, the MAC address may not be
available. Run the netstat -in command to see if the MAC address
is all 0x00s or 0xffs. If this is the case, change the thinclient.ini
file, which is located in the following directory:

\Mwos\OS9000\ARMV4\PORTS\THINCLIENT\BOOTS\INSTALL\INI\

In thinclient.ini, set SPF_MAC=TRUE and change [XMAKE_SPF_DESC]
to [MAKE_SPF_DESC]. You will now see a MAC address option below
the IP address fields when running the Configuration Wizard. The
Configuration Wizard will now also rebuild the descriptor since the
MAKE_SPF_DESC section is defined."

Step 8. Select Configure -> Build Image to display the Master Builder
window. If networking is desired, make sure the SoftStax® (SPF)
Support box is checked.

Step 9. Click Build. This will build a boot image that can be placed on the
PCMCIA card.

Step 10. Insert the PCMCIA IDE card into the PCMCIA slot of your computer.

Step 11. Click Save As to save the file os9kboot to the root directory of the
PCMCIA IDE card.

20 OS-9 for ThinClient Board Guide

1 Installing and Configuring OS-9®

Step 12. Turn off the power to the reference board.

WARNING!
Inserting and removing a PCMCIA card with the power on is not
supported in this release. Damage may occur to the PCMCIA card if it is
inserted or removed while power is applied to the board.

Step 13. Remove the PCMCIA IDE card from the computer.

Step 14. Position the PCMCIA card so that the end with the connector holes is
facing the PCMCIA socket and the label is facing up.

Step 15. Slide the card into the lower socket (socket 0) of the reference board
until the card snaps onto the connector pins and the eject button pops
out.

NoteNote
The ThinClient design does not provide enough current for the TypeIII
PCMCIA (double height).

Step 16. Apply power to the board. The reference board will boot from the IDE
PCMCIA card and you should see the “$” prompt.

1Installing and Configuring OS-9®

OS-9 for ThinClient Board Guide 21

Creating a Startup File

When the Configuration Wizard is set to use a hard drive, or another
fixed drive such as a PC Flash Card, as the default device, it
automatically sets up the init module to call the startup file in the SYS
directory in the target (For example: /h0/SYS/startup,
/mhc1/SYS/startup). However, this directory and file will not exist
until you create it. To create the startup file, complete the following
steps:

Step 1. Create a SYS directory on the target machine where the startup file
will reside (for example: makdir /h0/SYS, makdir /dd/SYS).

Step 2. On the host machine, navigate to the following directory:

MWOS/OS9000/SRC/SYS

In this directory, you will see several files. The files related to this
section are listed below:

• motd: Message of the day file

• password: User/password file

• termcap: Terminal description file

• startup: Startup file

Step 3. Transfer all files to the newly created SYS directory on the target
machine. (You can use Kermit, or FTP in ASCII mode to transfer these
files.)

Step 4. Since the files are still in DOS format, you will be required to convert
them into the OS-9 format with the cudo utility. The following command
is an example:
cudo -cdo password

This will convert the password file from DOS to OS-9 format.

22 OS-9 for ThinClient Board Guide

1 Installing and Configuring OS-9®

For More Information
More In
fo More
Informatio
n More Inf
ormation M
ore Inform
ation More

-6-

For a complete description of all the cudo command options, refer to
the Utilities Reference Manual located on the Microware OS-9 CD.

Step 5. Since the command lines in the startup file are system-dependent, it
may be necessary to modify this file to fit your system configuration. It is
recommended that you modify the file before transferring it to the target
machine.

Example Startup File

Below is the example startup file as it appears in the
MWOS/OS9000/SRC/SYS directory:

-tnxnp

tmode -w=1 nopause

*

*OS-9 - Version 3.0

*Copyright 2001 by Microware Systems Corporation

*The commands in this file are highly system dependent and

*should be modified by the user.

*

setime </term ; start system clock

setime -s ;* start system clock

link mshell csl ;* make "mshell" and "csl" stay in memory

* iniz r0 h0 d0 t1 p1 term ;* initialize devices

* load utils ;* make some utilities stay in memory

* tsmon /term /t1 & ;* start other terminals

list sys/motd

setenv TERM vt100

tmode -w=1 pause

mshell<>>>/term -l&

1Installing and Configuring OS-9®

OS-9 for ThinClient Board Guide 23

For More Information
More In
fo More
Informatio
n More Inf
ormation M
ore Inform
ation More

-6-

Refer to the Making a Startup File section in Chapter 9 of the Using
OS-9 manual for more information on startup files.

24 OS-9 for ThinClient Board Guide

1 Installing and Configuring OS-9®

Optional Procedures

Connecting the Target to an Ethernet Network

Microware OS-9 for StrongARM supports using the onboard
SMC91C94 or a 3COM Etherlink III - LAN PC Card for SoftStax®
TCP/IP connections. Also, Microware OS-9 for StrongARM provides
system level support for telnet, FTP, and NFS.

To use Ethernet networking, you must create a bootfile that has the
Ethernet options enabled and insert an Ethernet PCMCIA card into the
reference board if you choose to use a PCMCIA Ethernet card.

Step 1. Click the Start button on the Windows desktop.

Step 2. Select Programs -> RadiSys -> Microware OS-9 for
<product> -> Configuration Wizard. You should see the
opening screen.

Step 3. Click OK. The configuration screen is displayed.

Step 4. Select Configure -> Bootfile -> Network Configuration.
The Network Configuration dialog box appears.

Step 5. Change the network settings as needed. Refer to the Configuration
Wizard help for more information on the network settings.

Step 6. Create a new Bootfile by following the directions in the Building the
OS-9 ROM Image section.

Step 7. Turn off the power to the reference board.

WARNING!
Inserting and removing a PCMCIA card with the power on is not
supported in this release. Damage may occur to the PCMCIA card if it is
inserted or removed while power is applied to the board.

1Installing and Configuring OS-9®

OS-9 for ThinClient Board Guide 25

NoteNote
The default configuration assumes that PCMCIA IDE card is in the
lower PCMCIA slot. If 3COM PCMCIA Ethernet is used, the IDE card
should be in the upper slot. This can be changed by the user.

Step 8. Position the PCMCIA IDE card so that the end with the PCMCIA female
connector is facing PCMCIA socket 0 (the lower socket) and the label is
facing up.

Slide the PCMCIA IDE card into socket 0 (the lower socket) until the
card snaps onto the pins and the eject button pops out.

Step 9. Connect the 10 Base T connector into J7 if using the onboard Ethernet.

or

Position the Ethernet PCMCIA card so that the end with the PCMCIA
female connector is facing PCMCIA socket 0 (the lower socket) and the
label is facing up.

Slide the PCMCIA Ethernet card into socket 0 (the lower socket) until
the card snaps onto the pins and the eject button pops out.

Step 10. Restart your reference board.

Step 11. Test the Ethernet connection by pinging the reference board.

If the ping operation fails, you will have to check the following items:

• is the board connected to a live Ethernet port?

• is the Ethernet cable defective?

• are the network settings for the reference board correct?

26 OS-9 for ThinClient Board Guide

1 Installing and Configuring OS-9®

Pinging the Reference Board

Windows 95, Windows 98, and Windows NT include a Ping command
that can be used to test the Ethernet connection for the reference
board.

Step 1. Go to the DOS prompt.

Step 2. Type ping <IP Address>.

The IP Address is the address you assigned to the evaluation board
in either the Coreboot module or the Bootfile module. The address is
typed without the <> brackets.

If the ping was successful, you will see the following response:
Reply from <IP Address>: bytes=xx time =xms TTL= xx

If the ping was unsuccessful, you will see the following response:
Request timed out.

NoteNote
Windows 95, 98, and NT do not support IPv6.

Creating a new OS-9 Coreboot Image in Flash Memory

If you want to use ROM Ethernet services such as System State
Debugging, you must create a new coreboot image. The coreboot
image that was shipped with the reference board does not allow you to
perform System State Debugging because the IP address in Flash
ROM is set to “0.0.0.0”. You can create the coreboot image with either
an EPROM programmer or by programming the flash onboard.

1Installing and Configuring OS-9®

OS-9 for ThinClient Board Guide 27

NoteNote
Re-creating the Coreboot image is required only when system state
debugging is desired.

Making a Coreboot Image with an EPROM programmer

This section describes creating the Coreboot Image. When you are
done creating the coreboot image, please refer to your EPROM
programmer’s instructions to learn how to load the Coreboot image into
the EPROMS.

Step 1. Click the Start button on the Windows desktop.

Step 2. Select Programs -> RadiSys -> Microware OS-9 for
<product> -> Configuration Wizard. The opening screen is
displayed (see Figure 1-3).

Step 3. Select the path where the MWOS directory structure is located from the
MWOS location button.

Step 4. Select the target board from the Port Selection pull-down menu.

Step 5. Name the ROM Image, select Advanced Mode, and click OK. The
main window is displayed.

Step 6. To change the low level IP address, select Configure -> Coreboot
-> Master Configuration then select either the Ethernet or
Slip tabs and set the IP address as appropriate. Click the OK button to
dismiss the dialog.

Step 7. To enable remote system state debugging, select Configure ->
Coreboot -> Master Configuration then select the Debugger
tab and click the Remote button under Select Debugger. Make sure
that the Enter Debugger On Power Up button is not selected. Click
the OK button to dismiss the dialog.

28 OS-9 for ThinClient Board Guide

1 Installing and Configuring OS-9®

Step 8. Select Configure -> Build Image to display the Master Builder
screen.

Step 9. Select the Coreboot Only Image setting and click Build.

Step 10. Click Save As to save the coreboot image to a directory of your
choosing. If you do not have a directory on the drive, you can create
one.

Step 11. Transfer the coreboot image to the EPROMS with the EPROM
programmer. You will need to follow the documentation for the EPROM
programmer to complete this step.

Compressing the Bootfile Image

OS-9 bootfiles can be compressed to allow more modules to be loaded
into a bootfile; this can be useful if you plan on storing your image on a
small FLASH part or a floppy disk.

NoteNote
The bootfile compression utility performs the compression at
approximately a 2.5:1 ratio.

Complete the following steps to compress your image:

Step 1. Verify that your coreboot contains the uncompress module. This
module can be found in the pre-built ROM and coreboot images that
were shipped with your Microware OS-9 product.

1Installing and Configuring OS-9®

OS-9 for ThinClient Board Guide 29

NoteNote
The uncompress module must be included in order for the
compression to execute properly.

Step 2. Open the Configuration Wizard and select Configure -> Coreboot
-> Main Configuration from the main menu.

Step 3. Select the Bootfile Compression tab. Verify that the Include
bootfile uncompress module box is checked and select OK.

Step 4. When you are ready to build the image, open the Master Builder
dialog. Verify that the Compress Bootfile box is checked and then
press Build to begin the installing the image.

30 OS-9 for ThinClient Board Guide

1 Installing and Configuring OS-9®

31

Chapter 2: Board Specif ic

Considerations

This chapter contains information that is specific to the INTEL SA-1100
Microprocessor Reference Platform (ThinClient) reference board. It
includes the following sections:

• Boot Options

• The Fastboot Enhancement

• OS-9 Vector Mappings

• ThinClient GPIO Usage

• Port Specific Utilities

For More Information
More In
fo More
Informatio
n More Inf
ormation M
ore Inform
ation More

-6-

For general information on porting OS-9, see the OS-9 Porting Guide.

32 OS-9 for ThinClient Board Guide

2 Board Specific Considerations

Boot Options

Following are the default boot options for the reference board. You can
select these by hitting the space bar when the Now Trying to Override
Autobooters message appears on the console port when booting.

You can configure these booters by altering the default.des file at
the following location:

MWOS/OS9000/ARMV4/PORTS/THINCLIENT/ROM

Booters can be configured to be either menu or auto booters. The auto
booters automatically try and boot in order from each entry in the auto
booter array. Menu booters from the defined menu booter array are
chosen interactively from the console command line after getting the
boot menu.

Booting from FLASH

When the romcnfg.h has a ROM search list defined the options ro
and lr appear in the boot menu. If no search list is defined N/A appears
in the boot menu. If an OS9 bootfile is programmed into flash in the
address range defined in ports default.des file the system can boot and
run from flash.

ro rom boot—the system runs from the FLASH
bank.

lr load to ram—the system copies the flash image
into ram and runs from there.

2Board Specific Considerations

OS-9 for ThinClient Board Guide 33

Booting from PCMCIA ATA Card

The system can boot from a PC formatted PCMCIA hard card which
resides in slot 0 or slot 1.

NoteNote
The system will hang during boot if there is not PCMCIA card, and it is
configured to boot from one.

ide1 The file os9kboot is searched for in slot 1. If
found it is copied to system RAM and runs from
there.

ide0 The file os9kboot is searched for in slot 0. If
found it is copied to system RAM and runs from
there.

Booting from PCMCIA Ethernet Card

The system can boot using the BootP protocol using an Ethernet card
and eb option.

eb Ethernet boot—a PCMCIA card which supports
ethernet will use the bootp protocol to transfer
in a bootfile into RAM and the systems runs
from there.

34 OS-9 for ThinClient Board Guide

2 Board Specific Considerations

Booting over Serial Communications Port via kermit

The system can down-load a bootfile in binary form over its serial
communication port at 115200 using the kermit protocol. The speed of
this transfer depends of the size of the bootfile, but expect at least a 3
minute wait, dots will show the progress of the boot. The
communications port is located at header P3 and uses the SA1100's
SP1 UART.

ker kermit boot—The os9kboot file is sent via the
kermit protocol into system RAM and runs from
there.

Restart Booter

The restart booter allows a way to restart the bootstrap sequence.

q quit—quit and attempt to restart the booting
process.

2Board Specific Considerations

OS-9 for ThinClient Board Guide 35

Break Booter

The break booter allows entry to the system level debugger (if one
exists). If the debugger is not in the system the system will reset.

break break—break and enter the system level
debugger rombug.

Example boot session and message.
OS-9000 Bootstrap for the ARM

ATA IDE disk found in socket 00
Now trying to Override autobooters.

BOOTING PROCEDURES AVAILABLE ------------- <INPUT>

Boot from PCMCIA-1 IDE ------------------- <ide1>
Boot from PCMCIA-0 IDE ------------------- <ide0>
Load bootfile via kermit Download -------- <ker>
Restart the System ----------------------- <q>
Enter system debugger -------------------- <break>

Select a boot method from the above menu: ide0

Wait for IDE drive ready.
IDE Model : ATA_FLASH
Number Heads : 0x0002
Total Cylinders : 0x03d8
Sectors Per Track : 0x0020

Checking Partitions : 0
Fat Type : 0x16
File Name : OS9KBOOT
File Size : 0x000fdeb0
Start Cluster : 0x00003a57
Reading Bootfile....

Boot Address : 0xc002c850
Boot Size : 0x000fdeb0

OS-9000 kernel was found.
A valid OS-9000 bootfile was found.
$

36 OS-9 for ThinClient Board Guide

2 Board Specific Considerations

The Fastboot Enhancement

The Fastboot enhancements to OS-9 provide faster system bootstrap
performance to embedded systems. The normal bootstrap performance
of OS-9 is attributable to its flexibility. OS-9 handles many different
runtime configurations to which it dynamically adjusts during the
bootstrap process.

The Fastboot concept consists of informing OS-9 that the defined
configuration is static and valid. These assumptions eliminate the
dynamic searching OS-9 normally performs during the bootstrap
process and enables the system to perform a minimal amount of
runtime configuration. As a result, a significant increase in bootstrap
speed is achieved.

Overview

The Fastboot enhancement consists of a set of flags that control the
bootstrap process. Each flag informs some portion of the bootstrap
code that a particular assumption can be made and that the associated
bootstrap functionality should be omitted.

The Fastboot enhancement enables control flags to be statically defined
when the embedded system is initially configured as well as
dynamically altered during the bootstrap process itself. For example, the
bootstrap code could be configured to query dip switch settings,
respond to device interrupts, or respond to the presence of specific
resources which would indicate different bootstrap requirements.

In addition, the Fastboot enhancement’s versatility allows for special
considerations under certain circumstances. This versatility is useful in
a system where all resources are known, static, and functional, but
additional validation is required during bootstrap for a particular
instance, such as a resource failure. The low-level bootstrap code may
respond to some form of user input that would inform it that additional
checking and system verification is desired.

2Board Specific Considerations

OS-9 for ThinClient Board Guide 37

Implementation Overview

The Fastboot configuration flags have been implemented as a set of bit
fields. An entire 32-bit field has been dedicated for bootstrap
configuration. This four-byte field is contained within the set of data
structures shared by the ModRom sub-components and the kernel.
Hence, the field is available for modification and inspection by the entire
set of system modules (high-level and low-level). Currently, there are six
bit flags defined with eight bits reserved for user-definable bootstrap
functionality. The reserved user-definable bits are the high-order eight
bits (31-24). This leaves bits available for future enhancements. The
currently defined bits and their associated bootstrap functionality are
listed below:

B_QUICKVAL

The B_QUICKVAL bit indicates that only the module headers of
modules in ROM are to be validated during the memory module search
phase. This causes the CRC check on modules to be omitted. This
option is a potential time saver, due to the complexity and expense of
CRC generation. If a system has many modules in ROM, where access
time is typically longer than RAM, omitting the CRC check on the
modules will drastically decrease the bootstrap time. It is rare that
corruption of data will ever occur in ROM. Therefore, omitting CRC
checking is usually a safe option.

B_OKRAM

The B_OKRAM bit informs both the low-level and high-level systems that
they should accept their respective RAM definitions without verification.
Normally, the system probes memory during bootstrap based on the
defined RAM parameters. This allows system designers to specify a
possible RAM range, which the system validates upon startup. Thus,
the system can accommodate varying amounts of RAM. In an
embedded system where the RAM limits are usually statically defined
and presumed to be functional, however, there is no need to validate the
defined RAM list. Bootstrap time is saved by assuming that the RAM
definition is accurate.

38 OS-9 for ThinClient Board Guide

2 Board Specific Considerations

B_OKROM

The B_OKROM bit causes acceptance of the ROM definition without
probing for ROM. This configuration option behaves like the B_OKRAM
option, except that it applies to the acceptance of the ROM definition.

B_1STINIT

The B_1STINIT bit causes acceptance of the first init module found
during cold-start. By default, the kernel searches the entire ROM list
passed up by the ModRom for init modules before it accepts and uses
the init module with the highest revision number. In a statically
defined system, time is saved by using this option to omit the extended
init module search.

B_NOIRQMASK

The B_NOIRQMASK bit informs the entire bootstrap system that it should
not mask interrupts for the duration of the bootstrap process. Normally,
the ModRom code and the kernel cold-start mask interrupts for the
duration of the system startup. However, some systems that have a well
defined interrupt system (i.e. completely calmed by the sysinit
hardware initialization code) and also have a requirement to respond to
an installed interrupt handler during system startup can enable this
option to prevent the ModRom and the kernel cold-start from disabling
interrupts. This is particularly useful in power-sensitive systems that
need to respond to “power-failure” oriented interrupts.

NoteNote
Some portions of the system may still mask interrupts for short periods
during the execution of critical sections.

2Board Specific Considerations

OS-9 for ThinClient Board Guide 39

B_NOPARITY

If the RAM probing operation has not been omitted, the B_NOPARITY
bit causes the system to not perform parity initialization of the RAM.
Parity initialization occurs during the RAM probe phase. The
B_NOPARITY option is useful for systems that either require no parity
initialization at all or systems that only require it for “power-on” reset
conditions. Systems that only require parity initialization for initial
“power-on” reset conditions can dynamically use this option to prevent
parity initialization for subsequent “non-power-on” reset conditions.

Implementation Details

This section describes the compile-time and runtime methods by which
the bootstrap speed of the system can be controlled.

Compile-time Configuration

The compile-time configuration of the bootstrap is provided by a
pre-defined macro (BOOT_CONFIG), which is used to set the initial
bit-field values of the bootstrap flags. You can redefine the macro for
recompilation to create a new bootstrap configuration. The new
over-riding value of the macro should be established by redefining the
macro in the rom_config.h header file or as a macro definition
parameter in the compilation command.

The rom_config.h header file is one of the main files used to
configure the ModRom system. It contains many of the specific
configuration details of the low-level system. Below is an example of
how you can redefine the bootstrap configuration of the system using
the BOOT_CONFIG macro in the rom_config.h header file:

#define BOOT_CONFIG (B_OKRAM + B_OKROM + B_QUICKVAL)

Below is an alternate example showing the default definition as a
compile switch in the compilation command in the makefile:

SPEC_COPTS = -dNEWINFO –dNOPARITYINIT –dBOOT_CONFIG=0x7

40 OS-9 for ThinClient Board Guide

2 Board Specific Considerations

This redefinition of the BOOT_CONFIG macro results in a bootstrap
method that accepts the RAM and ROM definitions without verification,
and also validates modules solely on the correctness of their module
headers.

Runtime Configuration

The default bootstrap configuration can be overridden at runtime by
changing the rinf->os->boot_config variable from either a
low-level P2 module or from the sysinit2() function of the
sysinit.c file. The runtime code can query jumper or other hardware
settings to determine what user-defined bootstrap procedure should be
used. An example P2 module is shown below.

NoteNote
If the override is performed in the sysinit2() function, the effect is
not realized until after the low-level system memory searches have
been performed. This means that any runtime override of the default
settings pertaining to the memory search must be done from the code
in the P2 module code.

#define NEWINFO
#include <rom.h>
#include <types.h>
#include <const.h>
#include <errno.h>
#include <romerrno.h>
#include <p2lib.h>

error_code p2start(Rominfo rinf, u_char *glbls)
{

/* if switch or jumper setting is set… */
if (switch_or_jumper == SET) {

/* force checking of ROM and RAM lists */
rinf->os->boot_config &= ~(B_OKROM+B_OKRAM);

}
return SUCCESS;

}

2Board Specific Considerations

OS-9 for ThinClient Board Guide 41

OS-9 Vector Mappings

This section contains the vector mappings for the OS9 ThinClient
implementation of the SA1100.

The ARM standard defines exceptions 0x0-0x8. The OS-9 system
maps these 1-1. External interrupts from vector 0x6 are expanded to
the virtual vector rage shown below by the irq1100 module.

NoteNote
Vectors can be virtually remapped from a ROM at physical address 0,
into DRAM at virtual address 0. This speeds up interrupt response time
and is enabled by defining the first cache list entry as a sub 1 Meg size.

For More Information
More In
fo More
Informatio
n More Inf
ormation M
ore Inform
ation More

-6-

See the 1100 hardware documentation for more information on
individual sources.

Table 2-1 and Table 2-2 show the OS9 IRQ assignment for the
ThinClient SA1100 board.

Table 2-1 IRQ Assignments and ARM Functions

OS9 IRQ # ARM Function

0x0 Processor Reset

0x1 Undefined Instruction

0x2 Software Interrupt

42 OS-9 for ThinClient Board Guide

2 Board Specific Considerations

0x3 Abort on Instruction Prefetch

0x4 Abort on Data Access

0x5 Unassigned/Reserved

0x6 External Interrupt

0x7 Fast Interrupt

0x8 Alignment error

Table 2-2 IRQ Assignments and SA1100 Specific Functions

OS9 IRQ # SA1100 Specific Function (pic)

0x40 GPIO[0] Edge Detect (IRQ Input from ThinClient PIC.)

0x41 GPIO[1] Edge Detect

0x42 GPIO[2] Edge Detect

0x43 GPIO[3] Edge Detect

0x44 GPIO[4] Edge Detect

0x45 GPIO[5] Edge Detect

0x46 GPIO[6] Edge Detect

0x47 GPIO[7] Edge Detect

Table 2-1 IRQ Assignments and ARM Functions (continued)

OS9 IRQ # ARM Function

2Board Specific Considerations

OS-9 for ThinClient Board Guide 43

0x48 GPIO[8] Edge Detect

0x49 GPIO[9] Edge Detect

0x4a GPIO[10] Edge Detect

0x4b OR of GPIO edge detects 27 - 11

0x4c LCD controller service request

0x4d UDC service request (0)

0x4e SDLC service request (1a)

0x4f UART service request (1b)

0x50 UART/HSSP service request (2)

0x51 UART service request (3)

0x52 MCP service request (4a)

0x53 SSP service request (4b)

0x54 DMA controller channel 0

0x55 DMA controller channel 1

0x56 DMA controller channel 2

0x57 DMA controller channel 3

0x58 DMA controller channel 4

Table 2-2 IRQ Assignments and SA1100 Specific Functions (continued)

OS9 IRQ # SA1100 Specific Function (pic)

44 OS-9 for ThinClient Board Guide

2 Board Specific Considerations

0x59 DMA controller channel 5

0x5a OS timer 0

0x5b OS timer 1

0x5c OS timer 2

0x5d OS timer 3

0x5e One Hz clock tick

0x5f RTC als alarm register

0x60 GPIO[11] Edge Detect (the vector 0x4b OR is broken
out here to make each one distinct)

0x61 GPIO[12] Edge Detect

0x62 GPIO[13] Edge Detect

0x63 GPIO[14] Edge Detect

0x64 GPIO[15] Edge Detect

0x65 GPIO[16] Edge Detect

0x66 GPIO[17] Edge Detect

0x67 GPIO[18] Edge Detect

0x68 GPIO[19] Edge Detect

0x69 GPIO[20] Edge Detect

Table 2-2 IRQ Assignments and SA1100 Specific Functions (continued)

OS9 IRQ # SA1100 Specific Function (pic)

2Board Specific Considerations

OS-9 for ThinClient Board Guide 45

Table 2-3 shows the ThinClient Pic functions.

0x6a GPIO[21] Edge Detect

0x6b GPIO[22] Edge Detect

0x6c GPIO[23] Edge Detect

0x6d GPIO[24] Edge Detect

0x6e GPIO[25] Edge Detect

0x6f GPIO[26] Edge Detect

0x70 GPIO[27] Edge Detect

Table 2-3 ThinClient Pic Functions

OS9 IRQ # ThinClient Function (ThinClient Pic)

0xb1 16554 UART1

0xb2 16554 UART2

0xb3 16554 UART3

0xb4 16554 UART4

0xb5 CAN1

0xb6 CAN2

0xb7 PCMCIA slot 0 Ready/IRQ

Table 2-2 IRQ Assignments and SA1100 Specific Functions (continued)

OS9 IRQ # SA1100 Specific Function (pic)

46 OS-9 for ThinClient Board Guide

2 Board Specific Considerations

0xb8 PCMCIA slot 1 Ready/IRQ

0xb9 UCB 1200

0xba SMC 91C94 Ethernet

0xbb Parallel Port

0xbc PCMCIA Card A detect

0xbd PCMCIA Card B detect

0xbe Board Switch

0xbf reserved

0xc0 reserved

Table 2-3 ThinClient Pic Functions (continued)

OS9 IRQ # ThinClient Function (ThinClient Pic)

2Board Specific Considerations

OS-9 for ThinClient Board Guide 47

NoteNote
Fast Interrupt Vector (0x7)

The ARM4 defined fast interrupt (FIQ) mapped to vector 0x7 is handled
differently by the OS-9 interrupt code and can not be used as freely as
the external interrupt mapped to vector 0x6. To make fast interrupts as
quick as possible for extremely time critical code, no context information
is saved on exception and FIQs are never masked. This requires any
exception handler to save and restore its necessary context if the FIQ
mechanism is to be used. This requirement means that a FIQ handler’s
entry and exit points must be in assembly, as the C compiler will make
assumptions about context. In addition, no system calls are possible
unless a full C ABI context save has been done first. The OS-9 IRQ
code for the SA1100 has assigned all interrupts as normal external
interrupts and the user must re-define a source as an FIQ to make use
of this feature.

48 OS-9 for ThinClient Board Guide

2 Board Specific Considerations

ThinClient GPIO Usage

Table 2-4 shows GPIO usage of the ThinClient board in an OS9
system.

For More Information
More In
fo More
Informatio
n More Inf
ormation M
ore Inform
ation More

-6-

See the Intel ThinClient board guide for available alternate pin
functions.

Table 2-4 GPIO Usage of ThinClient Board

GPIO Signal Name Direct Description

GPIO0 SW2 Input ThinClient switch SW22

GPIO1 SW1 Input ThinClient switch SW21

GPIO2 P0_STSCHG Input PCMCIA Slot 0 status change

GPIO3 P0_IRQ Input PCMCIA Slot 0 IRQ

GPIO4 P0_F1 Input PCMCIA Slot 0 valid

GPIO5 P1_STSCHG Input PCMCIA Slot 1 status change

GPIO6 P1_IRQ Input PCMCIA Slot 1 IRQ

GPIO7 P1_F Input PCMCIA Slot 1 valid

GPIO8 LED_GRN2 Output

2Board Specific Considerations

OS-9 for ThinClient Board Guide 49

GPIO9 LED_GRN1 Output

GPIO10 SSP_TXD Output SSP Port transmit

GPIO11 SSP_RXD Input SSP Port Receive

GPIO12 SSP_SCLK Output SSP Port Clock

GPIO13 SSP_SFRM Output SSP Port Frame

GPIO14 UART_TXD Output SP1 uart transmit

GPIO15 UART_RXD Input SP1 uart receive

GPIO16 SDLC_HSKO Output

GPIO17 SDLC_AAF Output

GPIO18 SDLC_HSKI Input

GPIO19 SDLC_GPI Input

GPIO20 LED_RED Output led output

GPIO21 IRDA_SD Output IRDA data line

GPIO22 IRQ_C Input

GPIO23 KBC_WKUP Output Keyboard wake up

GPIO24 KBC_WUKO In/Out Keyboard wake up

GPIO25 KBC_ATN Input Keyboard atn

Table 2-4 GPIO Usage of ThinClient Board (continued)

GPIO Signal Name Direct Description

50 OS-9 for ThinClient Board Guide

2 Board Specific Considerations

GPIO Interrupt Polarity

When GPIOs are used as interrupt sources, the _PIC_ENABLE()
function will set default polarity to rising edge (GRER) along with
enabling the interrupt at the SA-1100 PIC. If falling edge is required,
software must assert the appropriate bit in the GFER and negate the
corresponding bit in the GRER.

GPIO26 RCLK_OUT Output Ref clock output

GPIO27 32Khz Out Output 32Khz Out clock

Table 2-4 GPIO Usage of ThinClient Board (continued)

GPIO Signal Name Direct Description

2Board Specific Considerations

OS-9 for ThinClient Board Guide 51

Port Specific Utilities

The following port specific utilities are included:

• pcmcia

• pflash

• touch_cal

• ucbtouch

52 OS-9 for ThinClient Board Guide

2 Board Specific Considerations

pcmcia

Syntax

pcmcia [<opts>]

options

-s= socket: socket [default all sockets]

-d de-iniz socket(s)

-i iniz socket(s)

-v verbose mode

-x dump CIS/Config information

-? Print this help message

Description

pcmcia provides the ability to initilize or deinitilize a PCMCIA card after
the system has booted. It also displays a PCMCIA cards CIS structure.

2Board Specific Considerations

OS-9 for ThinClient Board Guide 53

Example
$ pcmcia -x -s=0
ATA IDE disk found in socket0
Dump CIS Window for Socket #0
 Addr 0 1 2 3 4 5 6 7 8 9 A B C D E F 0 2 4 6 8 A C E
-------- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -----------------
28000000 01 03 d9 01 ff 1c 04 03 d9 01 ff 18 02 df 01 20
28000020 04 01 4e 00 01 15 2b 04 01 56 49 4b 49 4e 47 20 ..N...+..VIKING
28000040 43 4f 4d 50 4f 4e 45 4e 54 53 20 20 20 20 20 20 COMPONENTS
28000060 20 20 00 43 46 20 41 54 41 20 00 56 2e 31 30 32 .CF ATA .V.102
28000080 00 ff 21 02 04 01 22 02 01 01 22 03 02 04 5f 1a ..!..."..."..._.
280000a0 05 01 03 00 02 0f 1b 09 c0 40 a1 21 55 55 08 00 @.!UU..
280000c0 22 1b 06 00 01 21 b5 1e 35 1b 0b c1 41 99 21 55 "....!..5...A.!U
280000e0 55 64 f0 ff ff 22 1b 06 01 01 21 b5 1e 35 1b 0d Ud..."....!..5..
28000100 82 41 98 ea 61 f0 01 07 f6 03 01 ee 22 1b 06 02 .A..a......."...
28000120 01 21 b5 1e 35 1b 0d 83 41 98 ea 61 70 01 07 76 .!..5...A..ap..v
28000140 03 01 ee 22 1b 06 03 01 21 b5 1e 35 14 00 ff ff ..."....!..5....
28000160 ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff
28000180 ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff
280001a0 ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff
280001c0 ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff
280001e0 ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff
Dump Config Window for Socket #0
 Addr 0 1 2 3 4 5 6 7 8 9 A B C D E F 0 2 4 6 8 A C E
-------- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -----------------
28000200 43 00 02 00 00 00 00 00 00 00 00 00 00 00 00 00 C...............
28000220 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
28000240 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
28000260 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
28000280 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
280002a0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
280002c0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
280002e0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
28000300 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
28000320 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
28000340 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
28000360 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
28000380 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
280003a0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
280003c0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
280003e0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

54 OS-9 for ThinClient Board Guide

2 Board Specific Considerations

pflash

Syntax

pflash [options]

Options

-f[=]filename input filename

-eu erase used space only (default)

-ew erase whole flash

-ne don't erase flash

-r program resident flash (default)

-p0 program PCMCIA slot 0

-p1 program PCMCIA slot 1

-ncis don't emit cis for PCMCIA flash cards

-b[=]addr specify base address of flash (hex) for part
identification (replaces -r,-p0,-p1)

-s[=]addr specify write/erase address of flash(hex)
defaults to base address)

-u leave flash unlocked

-i print out information on flash

-nv don't verify erase or write

-q no progress indicator

Description

The pflash utility allows the programming of Intel Strata Flash parts. The
primary use will be in the burning of the OS-9 ROM image into the
on-board flash parts at U25/U26. This allows for booting using the lr/bo
booters and allows for booting with out a PCMCIA card. The pflash
utility also can be used to burn OS-9 ROM images into Intel Value
Series PCMCIA cards, which internally use StrataFlash parts. This
allows for booting using a PCMCIA slot and the f0 booter.

2Board Specific Considerations

OS-9 for ThinClient Board Guide 55

Example

In this example an OS-9 ROM image was built and placed on an ATA
PCMCIA card. After booting using the PCMCIA card, the image can be
burned into the on-board Flash.
- Erase FLASH ////

$ pflash -ew
Unlocking Device
Erasing
Locking Device

- FLASH bootfile image ////

$ pflash -f=/mhc1/os9kboot
Unlocking Device
Erasing
Programming
Locking Device

- Test FLASHED bootfile image ////

OS-9000 Bootstrap for the ARM (Edition 62)

ATA IDE disk found in socket 00
Now trying to Override autobooters.

Press the spacebar for a booter menu

BOOTING PROCEDURES AVAILABLE ---------- <INPUT>

Boot embedded OS-9000 in-place -------- <bo>
Copy embedded OS-9000 to RAM and boot - <lr>
Boot from PCMCIA-1 IDE ---------------- <ide1>
Boot from PCMCIA-0 IDE ---------------- <ide0>
Boot over Ethernet (lle509) ----------- <eb>
Enter system debugger ----------------- <break>
Restart the System -------------------- <q>

Select a boot method from the above menu: bo

Now searching memory ($08000000 - $081fffff) for an OS-9000 Kernel...

An OS-9000 kernel was found at $08000000
A valid OS-9000 bootfile was found.
+3
$

56 OS-9 for ThinClient Board Guide

2 Board Specific Considerations

NoteNote
The ROMLIST search is from 0x08000000 - 0x08200000. This yeilds
0x200000 maximun size for the bootfile image—about 2MBs.

2Board Specific Considerations

OS-9 for ThinClient Board Guide 57

touch_cal Touchscreen Calibration Program

Syntax

touch_cal <options>

Options

-f[=]<name> Output filename

-c Only run calibration if output filename does not
exist

-m[=]<font_module>
Use given UCM font module to display text

Description

The touch_cal utility will present a text message on the LCD screen
as well as points for the user to press. After the points are pressed, the
protocol module mp_ucb1200 will be updated with the new calibration
information.

Example

$ touch_cal

Found touch screen device '/ucb_touch/mp_ucb1200'

58 OS-9 for ThinClient Board Guide

2 Board Specific Considerations

ucbtouch

Syntax

ucbtouch <>

Description

The ucbtouch utility prints the raw x,y and pressure values at a set
sample rate.

Press the touch screen and observe the output on your console. The
utility is helpful in determining whether your touch screen is connected
properly.

Example
$ ucbtouch
Touch[00000]: Touch=0x30c3 X1=00328 Y1=00321 P= 28 X=329 Y=322
Touch[00001]: Touch=0x30c3 X1=00329 Y1=00325 P= 28 X=330 Y=326
Touch[00002]: Touch=0x30c3 X1=00329 Y1=00321 P= 28 X=330 Y=322
Touch[00003]: Touch=0x30c3 X1=00329 Y1=00321 P= 29 X=330 Y=322
Touch[00004]: Touch=0x30c3 X1=00329 Y1=00319 P= 29 X=330 Y=320
Touch[00005]: Touch=0x30c3 X1=00329 Y1=00321 P= 28 X=330 Y=322
Touch[00006]: Touch=0x30c3 X1=00329 Y1=00327 P= 28 X=330 Y=328
Touch[00007]: Touch=0x30c3 X1=00329 Y1=00321 P= 28 X=330 Y=322
Touch[00008]: Touch=0x30c3 X1=00329 Y1=00321 P= 29 X=330 Y=322
Touch[00009]: Touch=0x30c3 X1=00329 Y1=00322 P= 28 X=330 Y=323
Touch[00010]: Touch=0x30c3 X1=00329 Y1=00319 P= 28 X=0 Y=0
Touch[00011]: Touch=0x30c3 X1=00328 Y1=00321 P= 28 X=-1 Y=2
Touch[00012]: Touch=0x30c3 X1=00329 Y1=00315 P= 28 X=0 Y=-4
Touch[00013]: Touch=0x30c3 X1=00329 Y1=00322 P= 29 X=0 Y=3

59

Appendix A: Board-Specif ic Modules

This chapter describes the modules specifically written for the target
board. It includes the following sections:

• Low-Level System Modules

• High-Level System Modules

60 OS-9 for ThinClient Board Guide

ABoard-Specific Modules

Low-Level System Modules

For More Information
More In
fo More
Informatio
n More Inf
ormation M
ore Inform
ation More

-6-

For a complete list of OS-9 modules common to all boards, see the
OS-9 Device Descriptor and Configuration Module Reference
manual.

The following low-level system modules are tailored specifically for the
ADS SA1100 ThinClient platform. The functionality of these modules
can be altered through changes to the configuration data module
(cnfgdata). Table A-1 provides a list and brief description of the
modules.

These modules can be found in the following directory:

MWOS/OS9000/ARMV4/PORTS/THINCLIENT/CMDS/BOOTOBJS/ROM

Table A-1 ThinClient-Specific Low-Level System Modules

Module Name Description

cnfgdata Contains the low-level configuration data.

cnfgfunc Provides access services to cnfgdata data.

commcnfg Inits communication port defined in cnfgdata.

conscnfg Inits console port defined in cnfgdata.

ide IDE boot support module. PCMCIA compatible.

io1100 Provides polled serial driver support for the low-level
system.

ABoard-Specific Modules

OS-9 for ThinClient Board Guide 61

The following low-level system modules provide generic services for
OS9000 Modular ROM. Table A-2 provides a list and brief description
of the modules.

These modules can be found in the following directory:

MWOS/OS9000/ARMV3/CMDS/BOOTOBJS/ROM

io16550 Provides polled serial support for the low-level
system via external UART.

llcis Inits the PCMCIA interface including cards.

lle509 Provides low-level ethernet services via 3COM
PCMCIA card.

portmenu Inits booters defined in the cnfgdata.

romcore Board specific initialization code.

splash Provides way to init LCD screen with a compressed
image.

tmr1_1100 Provides low-level timer services via time base
register.

usedebug Inits low-level debug interface to RomBug, SNDP, or
none.

Table A-1 ThinClient-Specific Low-Level System Modules (continued)

Module Name Description

62 OS-9 for ThinClient Board Guide

ABoard-Specific Modules

Table A-2 Generic Services Low-Level System Modules

Module Name Description

bootsys Booter registration service module.

console Provides console services.

dbgentry Inits debugger entry point for system use.

dbgserve Provides debugger services.

excption Provides low-level exception services.

flshcach Provides low-level cache management services.

hlproto Provides user level code access to protoman.

llbootp Booter which provides bootp services.

llip Provides low-level IP services.

llslip Provides low-level SLIP services.

lltcp Provides low-level TCP services.

lludp Provides low-level UDP services.

llkermit Booter which uses kermit protocol.

notify Provides state change information for use with LL
and HL drivers.

override Booter which allows choice between menu and auto
booters.

ABoard-Specific Modules

OS-9 for ThinClient Board Guide 63

parser Provides argument parsing services.

pcman Booter which reads MS-DOS file system.

protoman Protocol management module.

restart Booter which cause a soft reboot of system.

romboot Booter which allows booting from ROM.

rombreak Booter which calls the installed debugger.

rombug Low-level system debugger.

sndp Provides low-level system debug protocol.

srecord Booter which accepts S-Records.

swtimer Provides timer services via software loops.

Table A-2 Generic Services Low-Level System Modules (continued)

Module Name Description

64 OS-9 for ThinClient Board Guide

ABoard-Specific Modules

High-Level System Modules

The following OS-9 system modules are tailored specifically for your
Intel SA1100 ThinClient board and peripherals. Unless otherwise
specified, each module is located in a file of the same name in the
following directory:

MWOS/OS9000/ARMV4/PORTS/THINCLIENT/CMDS/BOOTOBJS

CPU Support Modules

These files are located in the following directory:

MWOS/OS9000/ARMV4/CMDS/BOOTOBJS

kernel The kernel provides all basic services for the
OS-9 system.

cache Provides cache control for the CPU cache
hardware. The cache module is in the file
cach1100.

fpu Provides software emulation for floating point
instructions.

ssm The System Security Module provides support
for the Memory Management Unit (MMU) on
the CPU.

vectors Provides interrupt service entry and exit code.
The vectors module is found in the file
vect110.

ABoard-Specific Modules

OS-9 for ThinClient Board Guide 65

System Configuration Module

These files are located in the following directory:

MWOS/OS9000/ARMV4/PORTS/THINCLIENT/CMDS/BOOTOBJS/INITS

init Descriptor module with high level system
initialization information.

nodisk Same as init, but used in a disk-less system.

Interrupt Controller Support

This module provides extensions to the vectors module by mapping the
single interrupt generated by an interrupt controller into a range of
pseudo vectors which are recognized by OS-9 as extensions to the
base CPU exception vectors.

For More Information
More In
fo More
Informatio
n More Inf
ormation M
ore Inform
ation More

-6-

The mappings are described in Chapter 2.

irq1100 P2module that provides interrupt acknowledge
and dispatching support for the SA1100 pic.

irqtc P2module that provides interrupt acknowledge
and dispatching support for the ThinClient pic
(vector range 0xB1-0xC0).

Real Time Clock

rtc1100 Driver that provides OS-9 access to the
SA1100 on-board real time clock.

66 OS-9 for ThinClient Board Guide

ABoard-Specific Modules

Ticker

tk1100 Driver that provides the system ticker based on
the SA1100 Operating System Timer.

Abort Handler

abort P2module which provides a way to enter the
system-state debugger via the GPIO[0]
interrupt triggered by ThinClient switch SW2.

Generic IO Support modules (File Managers)

These files are located in the following directory:

MWOS/OS9000/ARMV3/CMDS/BOOTOBJS

ioman Provides generic io support for all IO device
types.

scf Provides generic character device management
functions.

rbf Provides generic block device management
functions for OS-9 specific format.

pcf Provides generic block device management
functions for MS-DOS FAT format.

spf Provides generic protocol device management
function support.

mfm Provides generic graphics device support for
MAUI.

pipeman Provides a memory FIFO buffer for
communication.

ABoard-Specific Modules

OS-9 for ThinClient Board Guide 67

Pipe Descriptor

This file is located in the following directory:

MWOS/OS9000/ARMV4/PORTS/THINCLIENT/CMDS/BOOTOBJS/DESC

pipe Pipeman descriptor that provides a RAM based
FIFO which can be used for process
communication.

RAM Disk Support

ram RBF driver which provides a RAM based virtual
block device.

Descriptors for Use with RAM

These files are located in the following directory:

MWOS/OS9000/ARMV4/PORTS/THINCLIENT/CMDS/BOOTOBJS/DESC/RAM

r0 RBF descriptor which provides access to a ram
disk.

r0.dd Same as r0 except with module name dd (for
use as the default device).

Serial and Console Devices

sc1100 SCF driver which provides serial support the
SA1100's SP1 and SP3 ports when configured
as UARTS.

Descriptors for Use with sc1100

term1/t1 Descriptor modules for
use with sc1100 and SP1.

ThinClient Board header: J22

68 OS-9 for ThinClient Board Guide

ABoard-Specific Modules

Default Baud Rate: 19200

Default Parity: None

Default Data Bits: 8

Default Handshake: Software

term3/t3 Descriptor modules for use
with sc1100 and SP3.

ThinClient Board header: J23

Default Baud Rate: 115200

Default Parity: None

Default Data Bits: 8

Default Handshake: Software

sc16550 SCF driver which provides serial support the
ThinClient 16C554.

Descriptors for use with sc16550

term1e/t1e Descriptor modules for use with the external
sc16550.

ThinClient Board header: P2

Default Baud Rate: 19200

Default Parity: None

Default Data Bits: 8

Default Handshake: Software

ABoard-Specific Modules

OS-9 for ThinClient Board Guide 69

term2e/t2e Descriptor modules for use with the sc16550,

ThinClient Board header: P4

Default Baud Rate: 19200

Default Parity: None

Default Data Bits: 8

Default Handshake: Software

term3e/t3e Descriptor modules for use with the external
sc16550.

ThinClient Board header: JP5

Default Baud Rate: 19200

Default Parity: None

Default Data Bits: 8

Default Handshake: Software

** TTL device logic levels

term4e/t4e Descriptor modules for use with the sc16550,

ThinClient Board header: JP8

Default Baud Rate: 19200

Default Parity: None

Default Data Bits: 8

Default Handshake: Software

m0_t1/m0_t2 Serial mouse descriptor modules for use
m0_t2/m0_t3 with the external sc16550.

ThinClient Board headers: P2/P4/JP5/JP8

Default Baud Rate: 1200

Default Parity: None

Default Data Bits: 8

Default Handshake: None

70 OS-9 for ThinClient Board Guide

ABoard-Specific Modules

Descriptors for Use with scllio

vcons/term Descriptor modules for use with scllio in
conjunction with a low-level serial driver. Port
configuration and set up follows what is
configured in cnfgdata for the console port. It is
possible for scllio to communicate with a true
low-level serial device driver like io1100, or with
an emulated serial interface provided by
iovcons. See the OEM manual for more
information.

PCMCIA Support for IDE Type Devices

rb1003 RBF/PCF driver that provides driver support for
IDE/EIDE devices. This driver is used to provide
disk support for PCMCIA ATA FLASH.

Descriptors for Use with rb1003

hc1/hc1fmt and hc1.dd
RBF Descriptor modules for use\
 with PCMCIA slot #0 (bottom)

ThinClient Board header: J15

hc1fmt: format enabled

hc1.dd: module name of dd

mhc1/mhc1.dd
PCF Descriptor modules for use with PCMCIA
slot #0 (bottom)

ThinClient Board header: J15

mhc1.dd: module name of dd

he1/he1fmt and he1.dd
RBF Descriptor modules for use with PCMCIA
slot #1 (top)

ABoard-Specific Modules

OS-9 for ThinClient Board Guide 71

ThinClient Board header: J15

he1fmt: format enabled

he1.dd: module name of dd

mhe1/mhe1.dd
PCF Descriptor modules for use with PCMCIA
slot #1 (top)

ThinClient Board header: J15

mhc1.dd: module name of dd

PCMCIA Support for 3COM Ethernet card

These files are located in the following directory:

MWOS/OS9000/ARMV4/PORTS/THINCLIENT/CMDS/BOOTOBJS/SPF

spe509_pcm SPF driver to support ethernet for a 3COM
EtherLink III PCMCIA card.

Descriptors for Use with spe509_pcm

spe30 SPF descriptor module for use with PCMCIA
 slot #0 (bottom, J15)

spe31 SPF descriptor module for use with PCMCIA
 slot #1 (top, J15)

Network Configuration Modules

inetdb/inetdb2/rpcdb

72 OS-9 for ThinClient Board Guide

ABoard-Specific Modules

SMC91C94 Ethernet Support

These files are located in the following directory:

MWOS/OS9000/ARMV4/PORTS/THINCLIENT/CMDS/BOOTOBJS/SPF

sp91c94 SPF driver to support ethernet for the
SMC91C94 chip.

Descriptor for Use with sp91c94

spsm0 SPF descriptor module for use with
SMC91C94 at J7.

Network Configuration Modules

inetdb/inetdb2/rpcdb

UCB1200 Support modules.

These files are located in the following directory:

MWOS/OS9000/ARMV4/PORTS/THINCLIENT/CMDS/BOOTOBJS/SPF

spucb1200 SPF driver that supports the on-board Phillips
UCB1200 chip. This device communicates to
the SA1100 over SP4 using MCP.

Descriptors for Use with spucb1200

ucb SPF descriptor module that provides access to
UCB1200.

ucb_touch SPF descriptor module used with the touch
screen.

ABoard-Specific Modules

OS-9 for ThinClient Board Guide 73

Maui Graphical Support modules

These files are located in the following directory:

MWOS/OS9000/ARMV4/PORTS/THINCLIENT/CMDS/BOOTOBJS/MAUI

gx_sa1100 MFM MAUI driver module with support for the
ThinClient LCD panel.

Descriptors for Use with gx_sa1100

gfx MFM MAUI descriptor module for ThinClient
LCD.

sd_ucb 1200 MFM MAUI driver module that provides
PCM/mu-law sound support via the ucb1200.

Descriptors for Use with sd_ucb1200

snd MFM MAUI descriptor module for UCB1200
 sound functions.

MAUI configuration modules

cdb MAUI configuration data base module.

cdb_ptr Serial mouse configuration data base module.

cdb_touch Touch screen configuration data base module.

MAUI protocol modules

mp_kybrd Keyboard protocol module

mp_msptr Serial mouse protocol module.

mp_ucb1200 ucb1200 protocol module.

74 OS-9 for ThinClient Board Guide

ABoard-Specific Modules

For More Information
More In
fo More
Informatio
n More Inf
ormation M
ore Inform
ation More

-6-

The MAUI drivers are described in more detail in Appendix B: MAUI
Driver Descriptions.

75

Appendix B: MAUI Driver

Descriptions

This chapter provides MAUI driver descriptions. It includes the following
sections:

• ThinClient Objects

• GX_SA1100 LCD Graphic Driver Specification

• SD_UCB1200 Sound Driver Specification

• SPUCB1200 driver for the UCB1200 Codec

• MP_UCB1200 MAUI Touch screen Protocol Module

76 OS-9 for ThinClient Board Guide

BMAUI Driver Descriptions

ThinClient Objects

This package provides object-level support for the Intel ThinClient
reference board. The port directory is at the following location:

MWOS/OS9000/ARMV4/PORTS/THINCLIENT

MAUI objects

cdb Lists the devices on the system.

mp_msptr Serial mouse protocol module.

mp_ucb1200 Touch screen protocol module for the
UCB1200.

gfx and gx_sa1100 LCD graphics descriptor and driver.

BMAUI Driver Descriptions

OS-9 for ThinClient Board Guide 77

GX_SA1100 LCD Graphic Driver Specification

This section describes the hardware specification of the StrongARM
SA1100 LCD driver (named gx_sa1100) and descriptor (named gfx).
The hardware sub-type defines the board configuration. This
specification should be used with the MAUI Graphics Device API.

Board Ports

This driver is used in the following example board StrongArm ports.

The ThinClient board uses a Sharp LQ64D341 18 bpp color (16 used),
TFT, with a resolution of 640x480 single panel. This panel is connected
to the ThinClient with one of several possible cables:

• 8 bpp - most common to date

• RGB 565 - next most common

• RGB 655

• RGB 556

The SideArm board can support an LCD panel, but does not typically
ship with one. For this reason the SideArm port does not build this
driver. If the user did connect a LCD panel to this board, simply copy the
makefiles from one of the other ports into the SideArm port.

78 OS-9 for ThinClient Board Guide

BMAUI Driver Descriptions

Device Capabilities

Information about the hardware capabilities is determined by calling
gfx_get_dev_cap(). The hardware sub-type defines the board
configuration. This function returns a data structure formatted as shown
in Table B-1. See GFX_DEV_CAP for more information about this data
structure.

Table B-1 gfx_get_dev_cap() Data Structure

Member Name Description Value

hw_type Hardware type
(embedded in driver)

SA1100 LCD Controller

hw_subtype Hardware subtype
(embedded in
descriptor)

Thinclient 8 bit color
LCD, or Thinclient 16 bit
color LCD

sup_vpmix Supports viewport
mixing

FALSE

sup_extvid Supports external
video as a backup

FALSE

sup_bkcol Supports background
color

FALSE

sup_vptrans Supports viewport
transparency

FALSE

sup_vpinten Supports viewport
intensity

FALSE

sup_sync Supports retrace
synchronization

FALSE

BMAUI Driver Descriptions

OS-9 for ThinClient Board Guide 79

Display Resolution

The display resolution is configured by the descriptor and can be
changed to support LCD panels of different sizes. The driver is only
designed to support one resolution at a time. That resolution is

num_res Number of display
resolutions

1

res_info Array of display
resolution
information

See Display Resolution
table

dac_depth Depth of the DAC in
bits

12

num_cm Number of coding
methods

1

cm_info Array of coding
method information

See Coding Methods
table

sup_viddecode Supports video
decoding into a
drawmap

FALSE

Table B-1 gfx_get_dev_cap() Data Structure (continued)

Member Name Description Value

80 OS-9 for ThinClient Board Guide

BMAUI Driver Descriptions

specified by the descriptor. Modify the DEFAULT_RES macro in
mfm_desc.h to change the resolution. If you change the resolution,
you must also change all of the LCD timing fields as well.

*Refresh rate is determined by timing specified in descriptor. The
devcap is not automatically update to reflect this.

Coding Methods

The coding method is also configured by the descriptor and can be
changed to support b/w and color LCD panels. The coding method can
be selected in the descriptor by simply specifying the coding method in
the DEFAULT_CM macro in mfm_desc.h.

Table B-2 Display Specifications

Board Width Height
Refresh
Rate Interlace Mode

Aspect
Ratio
X:Y

No current
hardware
implemenatio
n available

320 240 0* GFX_INTL_OFF 1:1

ThinClient 640 480 0* GFX_INTL_OFF 1:1

BMAUI Driver Descriptions

OS-9 for ThinClient Board Guide 81

This driver was verified on the ThinClient with both a 8-bit and 565
cables. The maximal coding method supported by SA1100 LCD
Controller is 16 bpp.

Viewport Complexity

The driver supports one active viewport at a time. The application can
create multiple viewports and stack them. The viewport must be aligned
with, and the same size as the display. Display drawmaps must be the
same size as the viewport.

Memory

Applications are expected to request graphics memory from the driver.
The driver allocates memory from the system as needed. It requests
this memory from color 0x80. This memory (specified in the init module)
is located at the bottom of 16 MB DRAM address space and is marked
as non cached.

Table B-3 Coding Method Description

Board
Coding
Method

CLUT
Based

X,Y
Multipliers Palette Color Types

ThinClient
w/8 bit cable

GFX_CM_8BIT TRUE 1,1 GFX_COLOR_RGB

ThinClient
w/16 bit
cable

GFX_CM_565,
GFX_CM_655,
or
GFX_CM_556

FALSE 1,1 NA

No current
hardware
implementati
on available

GFX_CM_4BIT TRUE 1,1 GFX_COLOR_RGB

82 OS-9 for ThinClient Board Guide

BMAUI Driver Descriptions

Location

This driver's source is located in:

SRC/DPIO/MFM/DRVR/GX_SA1100

This driver's makefiles are located in:

OS9000/ARMV4/PORTS/THINCLIENT/MAUI/GX_SA1100

This directory contains the makefiles and descriptor header file to build
the descriptor(s) and driver(s) (not all packages include driver source)
for the StrongARM reference platform. This directory contains:

makefile Calls each of the other makefiles in this directory

drvr.mak Builds the driver

desc.mak Builds the descriptor(s)

mfm_desc.h Defines values for all modifiable fields of the
descriptor(s)

Build the Driver

The driver source is located in SRC/DPIO/MFM/DRVR/GX_SA1100. To
build the driver, use the following commands:

cd OS9000/ARMV4/PORTS/THINCLIENT/MAUI/GX_SA1100

os9make -f drvr.mak

Build the Descriptor

To build a new descriptor, modify mfm_desc.h, and use the following
commands to compile:

cd OS9000/ARMV4/PORTS/THINCLIENT/MAUI/GX_SA1100

os9make -f desc.mak

To build both the driver and the descriptor you can specify os9make
with no parameters.

BMAUI Driver Descriptions

OS-9 for ThinClient Board Guide 83

SD_UCB1200 Sound Driver Specification

This section describes the hardware specifications for the Philips
UCB1200 driver sd_ucb1200. The hardware sub-type defines the
board configuration. This specification should be used in conjunction
with the MAUI Sound Driver Interface.

This driver works in conjunction with the spucb1200 driver.

Device Capabilities

Information about the hardware capabilities is determined by calling
_os_gs_snd_devcap(). This function returns a data structure
formatted as in the following table. See SND_DEV_CAP for more
information about this data structure.

Table B-4 Data Returned in SND_DEV_CAP

Member Name Value Description

hw_type "CS4231 "Hardware type

hw_subtype "CS4231A "Hardware sub-type

sup_triggers SND_TRIG_ANY Supported triggers

play_lines SND_LINE_SPEAKER Play gain/mix lines

record_lines SND_LINE_MIC Record gain/mix
lines

sup_gain_cmds SND_GAIN_CMD_MONO Mask of supported
gain commands

num_gain_caps 2 Number of
SND_GAIN_CAPs

84 OS-9 for ThinClient Board Guide

BMAUI Driver Descriptions

gain_caps See Gain Capabilities
Array

Pointer to
SND_GAIN_CAP
array

num_rates 30 Number of sample
rates

sample_rates See Sample Rates Pointer to sample
rate array

num_chan_info 1 Number of channel
info entries

channel_info See Number of Channels Pointer to channel
info array

num_cm 3 Number of coding
methods

cm_info See Encoding and
Decoding Formats

Pointer to coding
method array

Table B-4 Data Returned in SND_DEV_CAP (continued)

Member Name Value Description

BMAUI Driver Descriptions

OS-9 for ThinClient Board Guide 85

Gain Capabilities Array

The following tables show the various gain capabilities for the Philips
UCB1200. This information is pointed to by the gain_cap member of the
SND_DEV_CAP data structure. See SND_GAIN_CAP for more
information about this data structure. This driver allows control of
following individual physical gain controls:

The following tables detail the various individual gain capabilities:

Table B-5 Individual Gain Controls

SND LINE SPEAKER Output Attenuation

SND LINE MIC Microphone Gain

Table B-6 Speaker Gain Enable

Member Name Value Step HW Level Comments

lines SND_LINE_SPEAKER 0-3 31 -69 dB default_level

sup_mute TRUE 4-7 30 -66.8 dB

default_type SND_GAIN_CMD_MONO 8-11 29 -64.7 dB

default_level SND_LEVEL_MAX 12-15 28 -62.5 dB

zero_level SND_LEVEL_MIN

num_steps 32 112-115 3 -6.5 dB

step_size 216 116-119 2 -4.3 dB

mindb -6900 120-123 1 -2.2 dB

maxdb 0 124-127 0 0.0 dB zero_level

86 OS-9 for ThinClient Board Guide

BMAUI Driver Descriptions

Table B-7 Mic Gain Enable

Member Name Value Step HW Level Comments

lines SND_LINE_MIC 0-3 0 0 dB zero_level

sup_mute FALSE 4-7 1 0.7 dB

default_type SND_GAIN_CMD_MONO

default_level SND_LEVEL_MAX 64-67 16 11.3 dB default_leve
l

zero_level SND_LEVEL_MIN

num_steps 32 112-115 20.4 dB

step_size 70 116-119 29 21.1 dB

mindb 0 120-123 30 21.8 dB

maxdb 2250 124-127 31 22.5 dB

BMAUI Driver Descriptions

OS-9 for ThinClient Board Guide 87

Sample Rates

Following is an abbreviated list of the supported sample rates for the
UCB1200. Below is a formula to derive valid sample rates:

sample_rate = 11981000/(32 * i), where 8 < i < 128

This information is pointed to by the sample_rates member of the
SND_DEV_CAP data structure.

Number of Channels

The following table shows the different supported number of channels
for the Philips UCB1200. The first entry in the table is the default
number of channels. This information is pointed to by the
channel_info member of the SND_DEV_CAP data structure.

Table B-8 Sample Rate (Hz)

2948 3941 4926 5942 6933

7966 8914 9852 10697 11700

12910 13866 14976 15600 17828

18720 19705 20800 22023 23400

24960 26743 28800 31200 34036

37440 41600 46801 53486 62401

Table B-9 Number of Channels

Channels Description

1 Mono

88 OS-9 for ThinClient Board Guide

BMAUI Driver Descriptions

Encoding and Decoding Formats

The following table shows the supported encoding and decoding
formats for the Philips UCB1200. The first entry in the table is the
default format. This information is pointed to by the cm_info member
of the SND_DEV_CAP data structure.

Table B-10 Encoding and Decoding Formats

Coding Method
Sample
Size

Boundary
Size Description

SND_CM_PCM_ULAW 8 2 8 bit u-Law
commanded

SND_CM_PCM_SLINEAR
SND_CM_LSBYTE1ST

16 4 16 bit Linear (two's
complement) little-
endian

SND_CM_PCM_SLINEAR 16 4 16 bit Linear signed
(two's complement)
big-endian

BMAUI Driver Descriptions

OS-9 for ThinClient Board Guide 89

SPUCB1200 driver for the UCB1200 Codec

This document describes the hardware specifications for the Philips
UCB1200 driver. This is an SPF driver.

Capabilities

The UCB1200 is capable of controlling a microphone/speaker,
input/output telecommunications lines, resistive style touch screen, and
16 General Purpose Input/Output lines. This driver currently can only
control the touch screen, and general purpose input/output lines. The
microphone/speaker can be controlled with a MAUI Sound driver called
sd_ucb1200. No driver has been written for the telecommunications
part of the UCB1200.

Descriptors

Table B-11 lists the UCB1200 descriptors.

Table B-11

Name Function

ucb UCB1200 Chip Initialization

ucb_audio Not Implemented

ucb_touch Touch Screen

ucb_gpio Control GPIO Lines

ucb_telecom Not Implemented

90 OS-9 for ThinClient Board Guide

BMAUI Driver Descriptions

UCB

Opening the /ucb device will perform basic chip initialization. Normally
this is not necessary, unless another driver is written to control part of
the UCB1200 functions. This is the case for audio. The MAUI Sound
driver sd_ucb1200 will open /ucb to perform chip initialization. In this
way, the MAUI Sound driver play audio and this driver can control the
touch screen at the same time.

Audio

This portion of the driver is not implemented since the MAUI Sound
driver sd_ucb1200 already exists. sd_ucb1200 and this driver can
co-exist.

Touch Screen

This portion of the driver controls the touch screen operation. When
pressure is applied to the touch screen, a hardware interrupt is raised,
and this driver's interrupt service routine will execute. A system state
alarm, then, will fire at regular intervals to sample data from the touch
screen. When pressure is removed, the alarm stops. This mechanism
leaves the UCB1200 in a low power state until the user presses the
touch screen. The alarm rate can be controlled in the ucb_touch
descriptor.

BMAUI Driver Descriptions

OS-9 for ThinClient Board Guide 91

Each sample contains an x, y coordinate as well as pressure
information. The data is formatted into a six byte packet as defined in
the table below. Each packet contains 10 bits of x, 10 bits of y, and 8 bits
of pressure information.

GPIO

This section of the driver has basic GPIO line control, where lines 0..9
are connected to a 7 segment display or LED. Each line can be
controlled with an _os_write() call. (Refer to the UCBHEX program
in the TEST directory.)

Table B-12 Touch Screen Descriptor Data

Byte number Description

0 sync code - 0x80

1 header:
bit 1: pendown
bit 2: penup
bit 3: penmove (may occur with pendown or penup)

2 bits 0..2: high 3 bits of x
bits 3..6: high 4 bits of pressure
bit 7: 0

3 bits 0..6: low 7 bits of x
bit 7: 0

4 bits 0..2: high 3 bits of y
bits 3..6: low 4 bits of pressure

5 bits 0..6: low bits of y
bit 7: 0

92 OS-9 for ThinClient Board Guide

BMAUI Driver Descriptions

Telecom

This portion of the driver is not implemented.

Supporting Modules

Before this driver can be used, the following modules must be in
memory: spf, sysmbuf, mbinstall. mbinstall must also be run
before use.

BMAUI Driver Descriptions

OS-9 for ThinClient Board Guide 93

MP_UCB1200 MAUI Touch screen Protocol
Module

This document describes the function of the mp_ucb1200 protocol
module, as well as a high level discussion of the touch screen driver
and calibration application.

Overview

The protocol module converts the driver raw data into a MAUI_MSG
structure. In this way, applications can remain somewhat ignorant of the
details of the hardware since it deals with the MAUI Input layer. In this
protocol module, the raw hardware data is converted into screen
coordinates. In addition, some data filtering occurs to reduce the
amount of erroneous data that the touch screen hardware can produce.

Data Format

The touch screen driver sends a 6 byte packet that contains x, y, and
pressure information. The exact format of this packet is described in the
spucb1200 driver.

Data Filter

This protocol module filters the data coming from the hardware in an
attempt to reduce erroneous data. Two methods are implemented: data
point averaging and low pressure point removal. The first method will
average the last two points received from the driver. The data point will
lag slightly behind the current position, then, but the average will reduce
erroneous data points produced by the hardware. The second method
throw out data points where the pressure below a certain threshold. It
seems that extremely light touches will cause the data to become
erratic, although the exact pressure threshold is hardware dependent.

94 OS-9 for ThinClient Board Guide

BMAUI Driver Descriptions

Raw Mode

An application can put this protocol module in a "raw" mode where data
points are not filtered, averaged, or converted to screen coordinates.
That is, the data from the hardware is passed directly up to the
application.

The application can put this protocol module in a "raw" mode by calling:
inp_set_sim_meth(inpdev,RAW_MODE). After calibration, the
program will need to put the protocol module back in NATIVE mode by
calling: inp_set_sim_meth(inpdev,DEFAULT_SIM_METH). There
is a sample touch screen Calibration Application in the TOUCH_CAL
directory.

When the protocol module is taken out of "raw" mode, it will try to read
new calibration data points from the ucb1200.dat data module. After the
data is read from the module, it is no longer needed.

cdb.touch

The touch screen can be registered with MAUI by loading the
cdb.touch module in memory before any programs using input are
started. This will specify the spucb1200 as the driver, cdb.touch as
the descriptor, and mp_ucb1200 as the protocol module.

BMAUI Driver Descriptions

OS-9 for ThinClient Board Guide 95

Compile Time Options

Table B-13 shows compile time options used to control the default
calibration settings and also the screen size. These options can be
specified with a value in the mp_ucb1200 makefile to modify the
defaults.

Table B-13 Compile Time Options

Name Purpose

SCREEN_WIDTH Screen Width in Pixels

SCREEN_HEIGHT Screen Weight in Pixels

DEFAULT_CALIBRATION_X Left Calibration Hardware Point

DEFAULT_CALIBRATION_Y Top Calibration Hardware Point

DEFAULT_CALIBRATION_WIDTH Width of Screen In Hardware Points

DEFAULT_CALIBRATION_HEIGHT Height of Screen In Hardware Points

JITTER_THRESHOLD Minimum Pixel Change Required Before Points are
Reported to the Application.

NUM_PTS This allows you to choose how many successive data
points to average in order to produce less erroneous
screen coordinate data to the application. The default is
2, and valid choices are 1, 2, 4, 8, 16.

MIN_PRESSURE Any pressure point less than this value will be ignored.
This is another way to reduce erroneous data. This
represents the 8 bit pressure value we get from the
driver. The default is 40.

96 OS-9 for ThinClient Board Guide

BMAUI Driver Descriptions

Calibration Application

There is a sample calibration application located in the
$(MWOS)/SRC/MAUI/MP/MP_UCB1200/TOUCH_CAL directory. This
application, called touch_cal, will present a text message on the
screen as well as points for the user to press. After the points are
pressed, the protocol module mp_ucb1200 will be updated with the
new calibration information.

Assumptions/Dependencies

1. A Window Manager must be running before this application will
operate.

2. A font module must be present to run the demo. default.fnt is
the default module, or you can specify one on the command line.

3. touch_cal will open the first CDB_TYPE_REMOTE device in the
cdb.

Command Line Options

-f[=]<outfile> Specifies the filename of the calibration
information module. This program will write the
calibration information to this filename if it is
specified. The file contains the calibration
information as a data module, thus allowing the
information to be stored on disk, nv RAM, flash,
etc. for use the next time the hardware is
rebooted.

-c This option only works if -f is specified. This
will cause the calibration program to run only if
the filename specified with -f is not present.

-m= Specifies the font module to use for displaying
the text message on the screen.

BMAUI Driver Descriptions

OS-9 for ThinClient Board Guide 97

Coordination with Protocol Module

The protocol module mp_ucb1200 and the touch screen application
touch_cal work together to provide the calibration functionality.
touch_cal must first open the touch screen device, and then must set
it into Raw Mode. After the user selects each calibration point,
touch_cal computes the average of them. These averaged hardware
points (as well as the screen resolution) are then stored in a data
module called ucb1200.dat. When the input device is taken out of
Raw Mode, the protocol module will link to ucb1200.dat and update
itself with the new calibration information.

Compiling

The makefile for touch_cal exists in the
$(PORTS)//MAUI/MP_UCB1200/TOUCH_CAL directory.

98 OS-9 for ThinClient Board Guide

BMAUI Driver Descriptions

	OS-9® for ThinClient Board Guide
	Table of Contents
	Chapter 1: Installing and Configuring OS-9®
	Requirements and Compatibility
	Host Hardware Requirements (PC Compatible)
	Host Software Requirements (PC Compatible)
	Target Hardware Requirements
	Java Hardware Requirements

	Target Hardware Setup
	Configure Board Switch Settings
	Installing the Flash Devices
	Configuring the ATA Card

	Connecting the Target to the Host
	Building the OS-9 ROM Image
	Overview
	Coreboot
	Bootfile

	Starting the Configuration Wizard

	Creating a Startup File
	Example Startup File

	Optional Procedures
	Connecting the Target to an Ethernet Network
	Pinging the Reference Board

	Creating a new OS-9 Coreboot Image in Flash Memory
	Making a Coreboot Image with an EPROM programmer

	Compressing the Bootfile Image

	Chapter 2: Board Specific Considerations
	Boot Options
	Booting from FLASH
	Booting from PCMCIA ATA Card
	Booting from PCMCIA Ethernet Card
	Booting over Serial Communications Port via kermit
	Restart Booter
	Break Booter

	The Fastboot Enhancement
	Overview
	Implementation Overview
	B_QUICKVAL
	B_OKRAM
	B_OKROM
	B_1STINIT
	B_NOIRQMASK
	B_NOPARITY

	Implementation Details
	Compile-time Configuration
	Runtime Configuration

	OS-9 Vector Mappings
	ThinClient GPIO Usage
	GPIO Interrupt Polarity

	Port Specific Utilities
	pcmcia
	pflash
	touch_cal
	ucbtouch

	Appendix A: Board-Specific Modules
	Low-Level System Modules
	High-Level System Modules
	CPU Support Modules
	System Configuration Module

	Interrupt Controller Support
	Real Time Clock
	Ticker
	Abort Handler
	Generic IO Support modules (File Managers)
	Pipe Descriptor
	RAM Disk Support
	Descriptors for Use with RAM

	Serial and Console Devices
	Descriptors for Use with sc1100
	Descriptors for use with sc16550
	Descriptors for Use with scllio

	PCMCIA Support for IDE Type Devices
	Descriptors for Use with rb1003

	PCMCIA Support for 3COM Ethernet card
	Descriptors for Use with spe509_pcm
	Network Configuration Modules

	SMC91C94 Ethernet Support
	Descriptor for Use with sp91c94
	Network Configuration Modules

	UCB1200 Support modules.
	Descriptors for Use with spucb1200

	Maui Graphical Support modules
	Descriptors for Use with gx_sa1100
	Descriptors for Use with sd_ucb1200
	MAUI configuration modules
	MAUI protocol modules

	Appendix B: MAUI Driver Descriptions
	ThinClient Objects
	MAUI objects

	GX_SA1100 LCD Graphic Driver Specification
	Board Ports
	Device Capabilities
	Display Resolution
	Coding Methods
	Viewport Complexity
	Memory
	Location
	Build the Driver
	Build the Descriptor

	SD_UCB1200 Sound Driver Specification
	Device Capabilities
	Gain Capabilities Array
	Sample Rates
	Number of Channels
	Encoding and Decoding Formats

	SPUCB1200 driver for the UCB1200 Codec
	Capabilities
	Descriptors
	UCB
	Audio
	Touch Screen
	GPIO
	Telecom
	Supporting Modules

	MP_UCB1200 MAUI Touch screen Protocol Module
	Overview
	Data Format
	Data Filter
	Raw Mode
	cdb.touch
	Compile Time Options
	Calibration Application
	Assumptions/Dependencies
	Command Line Options
	Coordination with Protocol Module
	Compiling

