
w w w. ra d i sy s . co m
Revision A • July 2006

Using Hawk™ Macros

Version 2.5

July 2006
Copyright ©2006 by RadiSys Corporation

All rights reserved.
EPC and RadiSys are registered trademarks of RadiSys Corporation. ASM, Brahma, DAI, DAQ, MultiPro, SAIB, Spirit, and ValuePro are
trademarks of RadiSys Corporation.
DAVID, MAUI, OS-9, OS-9000, and SoftStax are registered trademarks of RadiSys Corporation. FasTrak, Hawk, and UpLink are
trademarks of RadiSys Corporation.
† All other trademarks, registered trademarks, service marks, and trade names are the property of their respective owners.

Copyright and publication information

This manual reflects version 2.5 of Hawk.
Reproduction of this document, in part or whole, by any means,
electrical, mechanical, magnetic, optical, chemical, manual, or
otherwise is prohibited, without written permission from RadiSys
Microware Communications Software Division, Inc.

Disclaimer

The information contained herein is believed to be accurate as of
the date of publication. However, RadiSys Corporation will not be
liable for any damages including indirect or consequential, from
use of the OS-9 operating system, Microware-provided software,
or reliance on the accuracy of this documentation. The
information contained herein is subject to change without notice.

Reproduction notice

The software described in this document is intended to
be used on a single computer system. RadiSys
Corporation expressly prohibits any reproduction of the
software on tape, disk, or any other medium except for
backup purposes. Distribution of this software, in part
or whole, to any other party or on any other system
may constitute copyright infringements and
misappropriation of trade secrets and confidential
processes which are the property of RadiSys
Corporation and/or other parties. Unauthorized
distribution of software may cause damages far in
excess of the value of the copies involved.

3

Contents

Introduction 7
Choosing a Macro Language.. 8

DLL Extensions... 8
AppBasic .. 8
API (C-like) Macros ... 8
Perl.. 8

AppBasic 11
Overview... 12
Getting Started... 12

AppBasic Environment ... 12
Two Editors ... 13
Special Keybindings .. 13
Two Toolbars.. 14
Pop-up Menu ... 15
Online Help .. 15
UserDialog Editor .. 15
Object Browser .. 15

Creating a Macro... 15
Creating a Handler .. 16
Object and Proc Drop Down Lists... 17
Private Sub Main.. 18
Tips on Creating Macros .. 18
Creating a Modal User Dialog .. 18
Running The Macro .. 21

Creating an EventHandler in AppBasic .. 21
Sample EHTEST.CWB ... 22

Debugging Your AppBasic Macro ... 22
Break Points .. 23
Evaluate Expression and Add Watch... 23
Object Browser .. 24

Load Macros Dialog ... 24
AppBasic Samples... 25

Baskeywd.cwb.. 25
Colsum.cwb .. 25
Diffdir.cwb... 26
Dispname.cwb ... 26
EditNext.cwb ... 26
EditPrev.cwb ... 26
EhTest.cwb .. 26
GotoLine.cwb ... 26
HashTest.cwb ... 26
SaveHdl.cwb ... 27

Using Hawk™ Macros

4

SnapVirt.cwb... 27
SrchRepl.cwb .. 27
Stripwt.cwb.. 27
Test.cwb... 27
Wordcnt.cwb .. 28
ZoomWin.cwb.. 28

AppBasic-related API Commands.. 28
cwbLoadFile(<moduleName>) ... 28
cwbLoadFile "FileName"... 28
cwbUnloadFile (<moduleName>).. 28

AppBasic Window Configuration... 28
cwbShowToolbar(int nShow)... 29
cwbShowProcDisplay(int nShow) ... 29
cwbCreateCWWindow(int bCWWindow) ... 29
Example Configuration File Settings.. 29

Exported Functions in CWBASIC.DLL ... 30
cwbAddHandler(LPSTR lpszHandlerDef, LPSTR lpszModule)... 30
cwbToggleBreakPoint(void).. 30
cwbEditFile(LPSTR lpszFile)... 30
cwbLoadFile(LPSTR lpszFile) .. 30
cwbUnloadFile (LPSTR lpszFile)... 30
cwbExecuteCommand(long cmd)... 30
cwbShowToolbar(int nShow)... 31
cwbShowProcDisplay(int nShow) ... 31

API (C-like) Macros 33
Overview... 34
API Macros Defined.. 34
Getting Started with API Macros.. 34

Creating a Macro ... 34
Editing a Macro .. 34

Language Definition ... 35
Comments .. 35
Variables .. 35
Data Types .. 35
Expressions ... 35
Statements and Statement Blocks ... 37
Control Structures ... 37

String Functions... 38
Perl 41

Overview of Perl.. 42
Getting Started with Perl ... 42

Creating and Editing Perl Scripts.. 42
Perl Window ... 42
Pop-up Menu and Options ... 43

Loading and Running Scripts ... 43
Running a Script Directly ... 43
Loading a Perl macro ... 43
Accessing Hawk™ Functions from Perl Scripts ... 45
Importing Names into Perl’s Namespace .. 45

5

Unloading a Perl Macro ... 46
Using Perl's Debug Mode ... 46
Accessing Perl functions .. 46

Avoiding Ambiguity... 46
Special API Functions for Perl... 47

DWORD CWConst(LPSTR cw_expr);.. 47
DWORD CWExec(LPSTR cw_funcname, ...); .. 47
int CWPerlIO(int mode);.. 47

Files used by Perl for Hawk™... 48
Other Perl Resources ... 49

Function Definitions 51
Location of Functions... 51

Index

Using Hawk™ Macros

6

1

7

Introduction

A macro may be defined as something simple that represents something bigger or
more complex. Under this definition, macros include everything from keystroke
recordings that are assigned to keys, the % macros Hawk™ uses in command lines, up
to more sophisticated things written in a programming language.

A Macro Language provides a method of creating macro source code, which may
contain control structures and variables, and is normally interpreted at runtime. Hawk™
has several macro languages from which to choose.

1

1

Using Hawk™ Macros

8

1

Choosing a Macro Language
Each of the different methods of extending Hawk™ has its strengths. The following
descriptions will help you determine which is best for you.

DLL Extensions

You can write extensions for Hawk™ using any compiler that can produce DLLs. This
capability is referred to as DLL Extensibility.

This method of extending Hawk™ has the following benefits:

• Familiar compiling, and debugging tools

• Increased speed

• Access to functions in other DLLs and libraries.

Most sophisticated extensions are written using DLL Extensibility.

DLL extensibility, however, is not as convenient as other methods of extending Hawk™
in some situations. For example, it is not as convenient for simple jobs, or single use
programs. DLL extensibility can also provide little protection against user error, which
could cause a system crash. Under these circumstances, one of the supplied macro
languages may be a better choice for extending Hawk™. Each language has strengths
and weaknesses, which are discussed in the following sections.

AppBasic

AppBasic is the Hawk™ macro language that is similar to Microsoft's Visual Basic for
Applications. It has its own editor, debugger, and basic functions. You'll find it on a tab
of the output window.

Using this macro language, you can access functions in the Microsoft Windows API, all
of the Hawk™ API functions, except those designated as non-interactive, and functions
in most any external DLL.

For those who are familiar with basic in any of its various forms, this is an attractive
option for both simple and complex macros.

API (C-like) Macros

Hawk™ API Macros is the simplest of the available macro languages. Using C-like
structure and syntax, you can quickly create functions suitable for assigning to keys and
other simple uses. When writing an API Macro, you can use any function that is
available from the API command line.

You can write API Macros in the dialog found on the Tools menu, or you can write them
in a standard edit Window, then copy them into the API Macros dialog.

Perl

Perl is, along with JavaScript, perhaps the most popular language for writing extensions
to web pages. The syntax is similar to C or AWK, but it has many features for the
Internet built-in.

1

Chapter 1: Introduction

9

1

This language is least suitable for writing simple functions for assignment to keys,
because of the time it takes for the interpreter to be loaded initially. It does, however,
allow Perl programmers to program in a familiar language, using familiar extensions and
libraries. The Hawk™ version of Perl is based on the Gnu released Perl interpreter.

1

Using Hawk™ Macros

10

1

1

11

AppBasic

This section explains how to use the AppBasic Macro Language in Hawk™ to create
your own macro functions. It includes the following sections:

Overview

Getting Started

Creating a Macro

Creating an EventHandler in AppBasic

Debugging Your AppBasic Macro

Load Macros Dialog

AppBasic Samples

AppBasic-related API Commands

AppBasic Window Configuration

Exported Functions in CWBASIC.DLL

2

1

Using Hawk™ Macros

12

2

Overview
The AppBasic Macro Language is an interpreted language that is similar in definition
and structure to Microsoft's Visual Basic. Through it, you have access to the Windows
API, Hawk™ API, and functions in independent DLLs.

Example files are supplied along with Hawk™ to aid you in getting started. You will find
them in the Hawk™ MACROS subdirectory. When you press on the File Open button on
the AppBasic toolbar for the first time, you will see a list of these sample AppBasic
Macros. Several of these macros are covered in this chapter, as well.

The advantage of an interpreted language is that no compiling is required. You can
write your macros and use them immediately. By using the AppBasic window, a tab on
the Hawk™ Output window, you can add break points and debug your macro, as well.

Figure 2-1. Output Window with AppBasic Tab Selected

Getting Started
To enable the AppBasic Macro Language, select the Libraries option from the Tools
menu. The Libraries dialog displays a list of optional packages or modules you can use
with Hawk™. Select the check box for “AppBasic Macro Language”. There is also a
“Basic” module listed that provides template expansion and language coloring support
for the Basic programming language in general. We suggest you enable this option as
well.

AppBasic Environment

After loading the AppBasic package, you should be able to see an AppBasic tab on the
Output window when it is visible. You can make the Output window visible by selecting
it from the Window menu.

1

Chapter 2: AppBasic

13

2

Figure 2-2. AppBasic Environment

Two Editors

You can select one of two editors to use to edit your AppBasic source code. You can
either use Hawk™ or the Rich Text Editor as your editor.

If you use Hawk™, you get the benefits of standard keystrokes and advanced features.
If you use the Rich Text Editor, you get a very close emulation of the Visual Basic editor,
including automatic case correction.

You can select which editor appears in the AppBasic window by enabling or disabling
the Rich Text Editor. You will find this setting on the View submenu, when you select
AppBasic from the Tools menu.

Special Keybindings

The following keybindings are in effect in the Rich Text Editor and cannot be changed.
When using the Hawk™ Editor in AppBasic, these keybindings are only valid when you
have a .cwb file current. Otherwise, they revert to your original keybinding for your
default keymap.

Table 2-1. AppBasic Keybinding

Keystroke Operation

Ctrl-A View Macro

Ctrl-E View Immediate Tab Window

Ctrl-W View Watch Tab Window

Ctrl-T View Stack Tab Window

1

Using Hawk™ Macros

14

2

Two Toolbars

AppBasic has two nearly identical toolbars that you can use. One toolbar, depicted in
Figure 2-3., has a fixed location at the top of the AppBasic Window. The other toolbar is
a Dockable toolbar. You can position it anywhere on your screen, or dock it against any
edge of the Hawk™ Client Area. We refer to this as the AppBasic Dockable toolbar, to
avoid confusion. You can enable this toolbar via the Toolbars dialog on the Tools menu.

Ctrl-L View Loaded Tab Window

F5 Debug Run

Shift-F5 Debug Stop

Esc Debug Pause

F8 Debug Step Into

Shift-F8 Debug Step Over

Ctrl-F8 Debug Step Out

F7 Debug Step To

Ctrl-Shift-F9 Debug Clear All Breakpoints

Ctrl-F9 Debug Add Watch

Shift-F9 Debug Quick Watch

F9 Debug Toggle Breakpoint

Ctrl-N File New

Ctrl-O File Open

Ctrl-- File Close

Ctrl-S File Save

Ctrl-P File Print

Table 2-1. AppBasic Keybinding (Continued)

Keystroke Operation

1

Chapter 2: AppBasic

15

2

Figure 2-3. AppBasic Window Toolbar

Pop-up Menu

When you right-click in the AppBasic window, a menu pops up that has a number of
additional options. If you don't find what you are looking for on the Toolbar or the Tools
menu, check this menu.

Online Help

Online help is available for the AppBasic window, the AppBasic Language, and its built-
in functions. For help on using the AppBasic window, or language syntax, press the
Help button on the AppBasic window toolbar. For help on functions or subroutines,
press the [F1] key anytime the cursor is in the AppBasic window. Hawk™ will attempt
to bring up help for the word at the cursor. If there is no word at the cursor, you can
browse a list of available functions and subroutines.

UserDialog Editor

AppBasic comes with its own dialog editor. A UserDialog is a dialog defined in a macro
program. It is described within a Begin Dialog...End Dialog block. To create or
edit a UserDialog graphically, place the cursor in a UserDialog block and press the
Edit UserDialog button.

Object Browser

The Object Browser shows information about all the available special data types,
particularly for OLE Automation. Select the label that you wish to look up, and click the
Browse Object button.

If no label is selected, or the label is not found in the known libraries, the edit box at the
top of the dialog will be empty. You may still browse the existing data types and
methods.

Creating a Macro
Begin by selecting the AppBasic tab on the Output window. The next step is to right-
click in the window and select Properties. In this dialog, you can provide the names
of the AppBasic functions you want to call from LibFunctionExec, the Hawk™ API
Command, or bind to a Hawk™ button.

1

Using Hawk™ Macros

16

2

Figure 2-4. Add Handler Window

The functions are referred to as Handlers by AppBasic. A Handler exports the function
for use by defining its return value, along with parameters and types. For those who are
familiar with writing DLL extensions for Hawk™, Handlers serve the same purpose as
calling LibExport. Once made available in this way, Handlers can be assigned to
keys, run from menus and the like.

You can define and create Functions or Subs in the Module Properties dialog before or
after creating a Handler. The handler must be added at some point, however, for the
function to be called from Hawk™.

When you have finished adding your functions, select [OK]. Then, on the Modules
Properties dialog, select [Add].

Creating a Handler

1. In the Add Handlers dialog, name your function and declare its type..

2. Type in any parameters you wish. .

3. For example enter “DoThis” as the name of the subroutine, use a void return type
and empty parameter list. Press [OK] to return to the Module Properties dialog,
then press [OK] again.

Functions and Subroutines must start with a letter and can then be followed by an underscore
or letter.

Parameters cannot be added later; to do this you must delete the function and add it again.

1

Chapter 2: AppBasic

17

2

When you are back in the AppBasic tab, use the Proc list to select DoThis. The
DoThis subroutine will be inserted as follows:

Private Sub DoThis()

End Sub

4. Now add the following line inside the “DoThis” Sub.

MsgNotify "This is a test"

MsgNotify is a Hawk™ API function that notifies the user with a message.

The DoThis subroutine will now look as follows:

Private Sub DoThis()

MsgNotify "This is a test"

End Sub

5. You should now save the macro to a file. By convention, the .cwb extension is
used for AppBasic macros.

6. Now Run the Macro. You may do this in any one of the following ways:

• Press the Start/Resume button on the AppBasic Window toolbar .

• Press the Run Current Macro button on the AppBasic Dockable

toolbar.

• Click the right-mouse button when over the AppBasic Output window and
select Run.

7. After loading using the AppBasic Load Macros dialog, you can go to the Hawk™
menu Tools -> API Command and type

DoThis

8. Click OK.

When you run the DoThis subroutine in any of the ways above, a message box
appears with the words This is a test.

Object and Proc Drop Down Lists

The object list shows all the objects for the current module. The object named
"(general)" groups together all of the procedures that are not part of any specific
object.

The proc list shows all the procedures for the current object. Selecting a procedure that
is not bold inserts the proper procedure definition for that procedure.

Figure 2-5. The Object and Proc Drop-downs Located Below the Toolbar.

Handlers you added in the Properties dialog will appear in the Object and Proc list. As
an example: You create a function named Srch_Backwards(), then the Object list

1

Using Hawk™ Macros

18

2

contains “Srch” and the Proc list contains “Backwards”. The underscore divides the
function name between the Object and Proc lists.

Private Sub Main

Any initialization can be done in a special subroutine named Private Sub Main().

For example:

Private Sub Main()

Dim firstTime As Boolean

Dim i As Integer

 firstTime = True

If (firstTime = True) Then

 ' no LibExports() needed here, use Modules Property Dialog
And add

 ' handler as a replacement.

firstTime = False

Set SaveEvent = EventRegister(EVENT_SAVE_BUFFER, EVENT_NORMAL,
"Buffer_Saved")

End If

End Sub

Tips on Creating Macros

• You may only edit macros that are not currently loaded for execution

• To unload a macro, right-click on the AppBasic tab of the Output window to bring
up the Show Loaded Modules dialog

• Removing the check from the check box in front of the filename will unload the
macro. It can also be unloaded by calling cwbUnloadFile(filename) through
the API Command prompt.

• When your cursor leaves a line of source code, it is automatically processed. You
may note that capitalization has consequently changed, if you are using the Rich
Text Editor.

• A dot in the left margin of the line indicates a break point. Break points may be
toggled on/off, using the button on the AppBasic toolbar.

Creating a Modal User Dialog

To create a modal user dialog follow these steps:

1. Place the cursor in the subroutine or function that you want to place the dialog
code in.

2. Then either:

• Select the AppBasic toolbar button Edit UserDialog.

Or

• Select the Hawk™ AppBasic toolbar button Insert/Edit User Dialog.

1

Chapter 2: AppBasic

19

2

3. Create the dialog in the UserDialog Editor. Add an OK and/or a Cancel button to
the dialog.

Figure 2-6. Edit UserDialog Window

.

4. Name your dialog in the Dialog Function box. To get to this dialog you can:

• Click the right-mouse button on the dialog that you are creating

Or

• Select the Edit Item Properties button

Or

• Double-click on the titlebar on the dialog that you are creating.

This is a very important step in the process. The question about creating the
skeleton will not show up if you have not filled in the Dialog Function window.

5. Save and Exit the UserDialog Editor, by clicking on the Save and Exit button.

6. Answer YES to Create the skeleton dialog function?.

Your code should now look similar to the following:

Private Sub DoThis()

MsgNotify "This is a test"

Begin Dialog UserDialog 400,91,"DoThis Test
dialog",.DoThisTest

Text 30,28,330,28,"This is a test dialog.",.Text1

OKButton 40,63,90,21

CancelButton 160,63,90,21

End Dialog

Dim dlg As UserDialog

Dialog dlg

 A Cancel button is needed to activate the “X” system menu in the top right hand corner of the
dialog.

1

Using Hawk™ Macros

20

2

End Sub

Rem See DialogFunc help topic for more information.

Private Function DoThisTest(DlgItem$, Action%, SuppValue%) As
Boolean

Select Case Action%

Case 1 ' Dialog box initialization

Case 2 ' Value changing or button pressed

Rem DoThisTest = True ' Prevent button press from closing
dialog

Case 3 ' TextBox or ComboBox text changed

Case 4 ' Focus changed

Case 5 ' Idle

Rem DoThisTest = True ' Continue getting idle actions

End Select

End Function

7. Change the following line of code from:

Dialog dlg

To:

bButtonPushed = Dialog(dlg)

See the topic Dialog Instruction/Function in the AppBasic online help for more
information on this topic and the return values. You can access AppBasic Help by
pressing the ? button on the AppBasic window toolbar, or by pressing [F1] anytime the
cursor is in the AppBasic window...

The final sample is listed below:

Private Sub DoThis()

MsgNotify "This is a test"

Begin Dialog UserDialog 400,91,"DoThis Test dialog",.DoThisTest

Text 30,28,330,28,"This is a test dialog.",.Text1

OKButton 40,63,90,21

CancelButton 160,63,90,21

End Dialog

Dim dlg As UserDialog

bButtonPushed = Dialog(dlg)

End Sub

Rem See DialogFunc help topic for more information.

Private Function DoThisTest(DlgItem$, Action%, SuppValue%) As
Boolean

Modeless Dialogs are not available in AppBasic.

1

Chapter 2: AppBasic

21

2

Select Case Action%

Case 1 ' Dialog box initialization

Case 2 ' Value changing or button pressed

Rem DoThisTest = True ' Prevent button press from closing dialog

Case 3 ' TextBox or ComboBox text changed

Case 4 ' Focus changed

Case 5 ' Idle

Rem DoThisTest = True ' Continue getting idle actions

End Select

End Function

Running The Macro

Run the macro to see if you have any syntax errors. When you have no syntax errors,
go to the Tools -> API Command and execute DoThis. You will see a message box
and then a dialog box.

The code within this subroutine will be run when the module is put into Run mode.
Once a module is debugged, it can be loaded without being in AppBasic. The Hawk™
API command cwbLoadFile (FileName) will load the module and put it in run
mode without being shown in AppBasic. You can bind the command cwbLoadFile
(FileName) to a key, or add it to the [Editor] section of your MWHAWK.INI
configuration file, to load it during start up.

Creating an EventHandler in AppBasic
Events provide a method of interrupting program flow to allow a function or functions
to have a timely effect. A number of events have been built into AppBasic using event
handlers in order to add flexibility. One reason for this flexibility is that the number and
names of the functions the event executes need not be known to the function that
triggers the event.

The functions that are executed when a specified event occurs are called Event
Handlers. Since most events originate with the Hawk™ API functions, writing your own
event handlers gives you access to the Hawk™ core. You can change the way critical
functions work without rewriting Hawk™.

Additional information on events can be found in the Hawk™ API (Functions) Help file
under the section “Programming” and the topics “Events” and “Using Events”

You can use events by following the three steps listed below:

1. Select the event that represents the action in which you wish to intervene.

An event handler list can be found in the Hawk™ API Help file under the topic
“Using Events”. The sample event handler program ties itself to the event that
occurs when a character is entered into a Hawk™ buffer.

2. Write an appropriate event handler function for that event.

EventHandler definition must be Global or the event handler will become
unregistered.

1

Using Hawk™ Macros

22

2

3. Register the function for execution at the event with EventRegister.

Set X=EventRegister(EVENT_CHAR_INSERTED, EVENT_NORMAL,
 "EventTestHandler").

Sample EHTEST.CWB
' ***

' * EhTest.cwb

' *

' * Sample Event handler EVENT_CHAR_INSERTED, Message box pops up

' * and displays the character that was pressed.

' *

' * Usage:

' * Test()

' ***

' Note!!!! EventHandler must be Global or event handler will become

' unregistered.

Dim X As EventHandler

' This function needs to be executed for the handler to take affect.

' You can put the EventRegister in a main() subroutine if you want it

' to be available everytime the macro is executed.

Private Sub Main()

 Set
X=EventRegister(EVENT_CHAR_INSERTED,EVENT_NORMAL,"EventTestHandler")

End Sub

Private Function EventTestHandler(ID As Long, Datap As Long) As
Integer

MsgBox StringFromPointer(Datap)

EventTestHandler = 0

End Function

Debugging Your AppBasic Macro
When you are ready to begin debugging an AppBasic macro, the following steps will
help you get started:

1. Open the macro file for modification, if you have not already done so (Load it into
the AppBasic Window).

Deregistration of the event is handled automatically when the macro file is unloaded in
Hawk™. To stop an event handler before terminating the program (module). Set returned
EventHandler Object to Nothing to remove it manually.

1

Chapter 2: AppBasic

23

2

2. Set a Break point, perhaps at the first line of the Sub or Function you are
debugging, by pressing [F9] or clicking the Toggle Breakpoint button. (A dot should
appear in the margin to the left of the line.)

3. Enter Run mode by clicking on the Run, Step Over or Step Into button. The
Immediate, Watch, Stack and Loaded tabs will then appear above the Edit window.
You can also press [F8] to enter this mode if you are using the RTF editor instead
of the default Hawk™ edit window. (Tools Menu -> AppBasic Macros -> View ->
Rich Text Editor)

4. Call the Sub or Function so that you reach the Breakpoint you have set. You can do
this by selecting API Command from the Tools menu and entering the name of the
Sub or Function.

Break Points

Toggle a break point on the current line.

Evaluate Expression and Add Watch

You may evaluate an expression, assign a value to a variable, or call a subroutine by
typing commands in the Immediate window when AppBasic is running a macro.

The Watch window displays the variables, functions and expressions that are calculated.
Each time execution pauses the value of each line in the Watch window is updated.

In addition, the following actions are available to you:

• The expression to the left of the "->" may be edited.

When you are debugging the macro and have hit a break point then notifications will be
disabled in the other tabs in the Output window. For example if you have hit a break point in
the macro and then you do a multiple search, the double clicking in the Search Output
window will be disabled until you have finished running the macro or stopped it.

Table 2-2. Evaluate Expression Commands

Command Results (when you press [Enter])

?<expr> Shows the value of "expr"

<var> = <expr> Changes the value of "var"

Set <var> =
<expr>

Changes the reference of "var"

<subname> <args> Calls a subroutine or built-in instruction

Trace Toggles trace mode. Trace mode prints each statement in the
immediate window when a macro/module is running.

1

Using Hawk™ Macros

24

2

• Pressing ENTER updates all of the values displayed, to reflect any changes you
have made.

• Pressing CTRL+Y deletes the line.

Object Browser

The Object Browser shows information about all the special data types that are
available.

Figure 2-7. Object Browser

You can get to the Object Browser by pressing any of the following:

• The Browse Object button on the AppBasic window toolbar.

• The Display Object Browser button on the AppBasic Dockable toolbar.

• The right-mouse button, when over the AppBasic Output window. Select Object
Browser from the popup menu.

Load Macros Dialog
To display the Load Macros window, select Tools -> AppBasic Macros ->
Load Macros from the main Hawk™ menu.

When you choose the Load Macros menu item, you are presented with the
following dialog.

1

Chapter 2: AppBasic

25

2

Figure 2-8. Load Macros Dialog

This dialog loads the sample macros or user defined macros into memory.

AppBasic Samples
This section contains list of the AppBasic modules supplied with Hawk™ follows,
along with use notes. Most of these samples are not intended to perform a useful task,
but rather to show how features of Hawk™ are accessed through AppBasic.

Baskeywd.cwb

The function AddBasKeywords adds the keyword "Integer" to BASIC language
ChromaCoding (syntax coloring).

Usage:

 AddBasKeywords()

Colsum.cwb

SumSelectedText adds the selected column of numbers and outputs the total on
the status line.

Usage:

 SumSelectedText(1)

1

Using Hawk™ Macros

26

2

Diffdir.cwb

DiffDirectory differences the file in the reference directory against the files in the
target directory. This uses a Modal dialog to display the files being differenced.

Usage:

 DiffDirectory("c:\testdir1","c:\testdir2")

Dispname.cwb

cwbDisplayFileName displays the name of the current file on the status line. A "*"
follows the filename when the file contains unsaved edits.

Usage:

 cwbDisplayFileName()

EditNext.cwb

cwbEditNextBuffer makes the next buffer in the list of buffers current.

Usage:

 cwbEditNextBuffer()

EditPrev.cwb

Edit the previous buffer in the list of buffers.

Usage:

 cwbEditPrevBuffer()

EhTest.cwb

The function Test is a sample Event handler for the EVENT_CHAR_INSERTED event.
It causes a message box to pop up and display the character that was pressed.

Usage:

 Main ()

GotoLine.cwb

cwbGotoLine prompts on the status bar for the number of a line to go to.

Usage:

 cwbGotoLine ()

HashTest.cwb

The function Test creates a hash table.

Usage:

 Main()

1

Chapter 2: AppBasic

27

2

SaveHdl.cwb

When loaded, this module adds an EVENT_SAVE_BUFFER event handler, which pops
up a dialog whenever a buffer is saved. This program used the main() subroutine to
make the handler available when this program is running. No need to call a function to
start it up. The Main() subroutine is the first function to be executed when any macro
language file is loaded.

SnapVirt.cwb

Snap up to first character on end of line skipping virtual space.

Usage:

 cwbSnapVirtual()

SrchRepl.cwb

This module uses SearchTranslate() to execute multiple search and replaces on a
buffer, to test this macro use the "From:" text below and put it in a buffer for the
replacement.

Translate the following text,

From:

West Siberian plains.<252>The European part Is covered
<SUBHEAD>Soviet Period</SUBHEAD>

/par /Tab Union of Soviet Socialist Republics<252><252><252>

To:

West Siberian plains.

/par /Tab The European part Is covered <SUBHEAD>Soviet
Period</SUBHEAD>

/par /Tab Union of Soviet Socialist Republics

Usage:

 Search_Replace_Buffer()

Stripwt.cwb

Strips trailing white space (" " or \t) from the end of a range of lines in a buffer.

Usage:

 cwbStripTrailingWhite(1, 20, 5)

Test.cwb

This module contains several functions to test the type of a return value. Use this on
commands entered at the Tools -> API Command prompt, proceeded by a ?.

For Example: the command ?TestBool will give you:

Return:-1 (hex ffffffff), type:int

1

Using Hawk™ Macros

28

2

Usage: in Tools -> API Command box

 ?TestBool ()

 ?TestInt ()

 ?TestLong ()

 ?TestString()

Wordcnt.cwb

CountPhrase counts the number of occurrences of a specified string that are found
in the current document. A dialog prints out the results (Uses Debug.Print).

Usage:

 CountPhrase ("the")

ZoomWin.cwb

cwbZoomWindow toggles the window between Maximized and Restored. This module
uses SendMessage() windows call.

Usage:

 cwbZoomWindow()

AppBasic-related API Commands
The following useful API commands are available from the Hawk™ API Command
prompt (Tools -> API Command):

cwbLoadFile(<moduleName>)

Once an AppBasic module contains no syntax errors, it can be loaded for execution. It
can then be run without the use of the AppBasic window.

cwbLoadFile "FileName"

Loads the module and makes its exported functions (handlers) available for running.
You can also bind keys and buttons to the handlers in the loaded Macro file.

cwbUnloadFile (<moduleName>)

An AppBasic module cannot be modified while it is loaded for execution. If you have
loaded the file using cwbLoadFile() from your MWHAWK.INI file or from a button
and you want to now edit the file in AppBasic, you will need to unload the file using
cwbUnloadFile().

AppBasic Window Configuration
Most users will find the standard configuration of the AppBasic window satisfactory. If
desired, however, you can turn off the AppBasic window toolbar and the AppBasic
Object and Proc drop-down lists that appear at the top of the AppBasic window.

1

Chapter 2: AppBasic

29

2

To change the appearance of the AppBasic window, go to the
Tools -> AppBasic Macros -> View Menu. Here you can enable or disable
the AppBasic window toolbar, the AppBasic Object and Proc drop-down list, or change
from a Hawk™ Edit window to the WinWrap Rich Text Editor.

This configuration can also be set by right-clicking over the AppBasic window, and then
selecting View from the pop-up menu.

If you wish to change the configuration of the window programmatically, the following
Hawk™ API commands will assist you. These commands may be issued via the API
Command dialog on the Tools menu. If you find them useful, you may make your
settings more permanent by modifying similar commands in the MWHAWK.INI
configuration file.

cwbShowToolbar(int nShow)

This function will Hide/Show the standard AppBasic toolbar.

For example:

cwbShowToolbar(0)

cwbShowToolbar(1)

The first example will cause the toolbar to be hidden. The second example will show
the toolbar. Any positive integer value for the parameter will display the toolbar.

cwbShowProcDisplay(int nShow)

This function will Hide/Show the Object and Proc drop-down lists.

For example:

cwbShowProcDisplay(0)

cwbShowProcDisplay(1)

The first example will cause the Object and Proc drop-down lists to be hidden. The
second example displays them. Any positive integer value for the parameter will display
the Object and Proc drop-down lists.

cwbCreateCWWindow(int bCWWindow)

This function is used to change the Editor in AppBasic. There are two choices: one is to
make it a Hawk™ Editor and the other is a Rich Text Editor.

For example to change to a Hawk™ Editor call:

cwbCreateCWWindow(1) or cwbCreateCWWindow(TRUE)

To change to Rich Text Editor call:

cwbCreateCWWindow(0) or cwbCreateCWWindow(FALSE)

Example Configuration File Settings

The AppBasic window's configuration is stored in the MWHAWK.INI file, in the
[AppBasic Setup] section as shown below:

1

Using Hawk™ Macros

30

2

[AppBasic Setup]

cwbShowProcDisplay=2

cwbShowToolbar=1

Exported Functions in CWBASIC.DLL

cwbAddHandler(LPSTR lpszHandlerDef, LPSTR lpszModule)

Add a callable Sub/Function to AppBasic module—equivalent to LibExport

lpdzHandlerDef—Sub/Function Prototype. For example
Private Sub CallMe(FName As String)

lpszmodule - cwb file containing this Sub/Function (Full Path) for example:
c:\cw32\colsum.cwb.

cwbToggleBreakPoint(void)

Toggle a break point in currently edited module at the current line.

cwbEditFile(LPSTR lpszFile)

Load a cwb file into the AppBasic editor.

cwbLoadFile(LPSTR lpszFile)

Load And Run AppBasic file.

cwbUnloadFile (LPSTR lpszFile)

Unload File from Engine (Stop Run).

cwbExecuteCommand(long cmd)

Execute an AppBasic Operational Command. Commands are shown in Table 2-3.:

Table 2-3. AppBasic Operational Commands

Command Command Command

cmdFileNew = 0 CmdFileOpen = 1 cmdFileSave = 2

cmdFileSaveAs = 3 CmdFilePrint = 4 cmdFilePrintSetup =
5

cmdMacroRun = 6 CmdMacroPause = 7 cmdMacroEnd = 8

cmdDebugStepInto = 9 CmdDebugStepOver = 10 cmdDebugStepTo = 11

cmdDebugBreak = 12 CmdDebugQuickWatch =
13

cmdDebugAddWatch =
14

1

Chapter 2: AppBasic

31

2

cwbShowToolbar(int nShow)

Hide/Show Standard AppBasic Toolbar.

cwbShowProcDisplay(int nShow)

Hide/Show Object and Proc Dropdown Lists.

cmdDebugBrowse = 15 CmdDebugSetNext = 16 cmdDebugShowNext =
17

cmdHelpApp = 18 CmdHelpLanguage = 19 cmdHelpTopic = 20

cmdHelpAbout = 21 CmdEditUndo = 22 cmdEditCut = 23

cmdEditCopy = 24 CmdEditPaste = 25 cmdEditFind = 26

cmdEditReplace = 27 CmdEditAgain = 28 cmdEditFont = 29

cmdEditDelete = 30 CmdEditSelectAll = 31 cmdEditUserDialog =
32

cmdFileClose = 33 CmdFileSaveAll = 34 cmdDebugStepOut = 35

cmdSheetOpenUses =
36

CmdSheetCloseAll = 37 cmdSheet1 = 38

cmdSheet2 = 39 CmdSheet3 = 40 cmdSheet4 = 41

cmdSheet5 = 42 CmdSheet6 = 43 cmdSheet7 = 44

cmdSheet8 = 45 CmdSheet9 = 46 cmdFileNewCodeModule
= 47

CmdFileNewObjectModu
le = 48

CmdFileNewClassModule
= 49

cmdEditProperties =
50

Table 2-3. AppBasic Operational Commands (Continued)

Command Command Command

1

Using Hawk™ Macros

32

2

1

33

API (C-like) Macros

This chapter describes the Hawk™ API macros and how they are used interactively to
write extensions to Hawk™. It includes the following sections:

Overview

API Macros Defined

Getting Started with API Macros

Language Definition

String Functions

3

1

Using Hawk™ Macros

34

3

Overview
Hawk™ API Commands are function calls that can be made interactively. This means
that they may be assigned to keys, menu items, buttons, and issued from the API
command line. Hawk™ API Macros build upon this capability to provide a quick and
simple way to write extensions for Hawk™. The capabilities of this language are
simplistic, and compare most closely to "Small C".

Further capabilities may be added in a future release. If you require more capabilities,
please consider one of the other macro languages, or writing a DLL extension.

If you have previously used, or read about using API Commands interactively, a few
differences should be noted:

• You can nest API Commands as parameters to other API Commands in macros,

• All functions must be followed by opening and closing parentheses around the
parameter list, if any.

• Parameters must be separated by commas.

API Macros Defined
API Macros are one or more sequential Hawk™ API function calls that are given a
name. They are stored in a file, MWHAWK.MAC, and may be recalled by name for
execution within Hawk™.

Getting Started with API Macros
The API Command Macro dialog on the Tools menu lets you create, edit and test API
Macros.

Creating a Macro

The first step in creating a macro is to give it a name in the Name edit box. Next, type
in the API commands you wish to execute into the Edit box. Next, press the Save
button. Pressing the Run button will send away the dialog. Any unsaved edits are
automatically saved.

Editing a Macro

To edit a macro previously created, select its name from the Name list box. The text of
the macro will appear in the Edit box and you can proceed to make your changes.
Pressing either Run or Save will save your changes to disk.

You can also create API Macros in a standard Hawk™ edit window and paste them into
this dialog. This gives you access to the Hawk™ advanced editing capabilities and
ChromaCoding.

1

Chapter 3: API (C-like) Macros

35

3

Language Definition

Comments

C++ style comments may be used in API Macros. When two forward slashes, '//',
appear on a line, the remainder of the line is ignored.

Variables

Variables are not supported in Hawk™ API Macros.

Data Types

Two types are supported: strings (text) and long integers (numbers). Strings must start
and end with the quote character (").

Using a function with the proper data return type is essential, when nesting function
calls and for macro return values.

Expressions

Expressions are made up of numbers, operators, function or macro calls and
parentheses. Numeric and logical expressions are allowed. Expressions can be used as
function call parameters.

Empty (zero length) strings evaluate to 0 whereas non-empty strings evaluate to one.
Logical expressions evaluate to a one or zero, TRUE or FALSE, respectively.

Number formats

Decimal, hexadecimal and octal number formats are supported. Hexadecimal numbers
must start with '0x'. Octal numbers must start with '0'. All other numbers are
considered decimal.

Operators

The numerical operators available are shown in the following table:

Table 3-1. Numerical Operators

Operator Description

+ Addition

- Subtraction

* Multiplication

/ Division

% Modulo (remainder)

1

Using Hawk™ Macros

36

3

Logical operators are shown in Table 3-2.:

Parentheses in Expressions

Left and right parentheses,'(' and ')', may be used to group expression parts to set
evaluation preference.

<< Shift bits left

>> Shift bits right

& Bitwise AND

| Bitwise OR

^ Bitwise Exclusive OR

~ Bitwise Complement

Table 3-2. Logical Operators

Operator Description

== Equivalence

!= Non-equivalence

< Less than

> Greater than

<= Less than or equal

>= Greater than or equal

&& AND

|| OR

! Negation

Table 3-1. Numerical Operators

Operator Description

1

Chapter 3: API (C-like) Macros

37

3

Function calls

Function calls, including those to Hawk™ API functions and macros take the form:

<macro_name> (<parameter1>,<parameter2>,...<parameterN>)

Spaces and tabs are allowed after the macro name and between parameters.
Parameters must be separated by commas.

You may supply fewer parameters than a function is defined to use. The remaining
parameters will be supplied for you as zeros or NULLs. Extra parameters are ignored.

Exiting and Macro return values

Use the return statement to exit a macro before the last line and optionally return a
number (expression) or string (function call).

End the return statement with a semicolon.

Statements and Statement Blocks

Statements

Statements are simply a function or macro call on a single line, ended by a semicolon.

Statement blocks

Statement blocks are a series of statements. They are normally used in conjunction
with control structures. Use curly braces '{' and '}', to begin and end statement blocks,
respectively.

Braces do not need to be on a separate line.

Control Structures

The available control structures are conditional (IF) and iterative (WHILE). Both
conditional and iterative statements can be used anywhere statements might be used.

Conditional statements

if statement

if (<expression>)

<statement>;

if-else statement

if (<expression>)

<statement>;

else

<statement>;

The if (<expression>) section must be all on one line.

Testing for several cases can be done by using the if-else statement in place of the
statement following the else. The following does this and also uses a statement
block:

1

Using Hawk™ Macros

38

3

if (<expression one>)

{

<statement>;

<statement>;

}

else if (<expression two>)

<statement>;

else if (<expression three>)

<statement>;

else

<statement>;

Iterative statements

while statement

while (<expression>)

<statement>;

String Functions
Since library functions are not available in API Macros, a number of string functions are
made available through the Hawk™ API for building and comparing strings.

LPMSTR StringApnd(LPSTR str1, LPSTR str2);

Append str2 onto str1. Neither string is freed.

LPMSTR StringNApnd(LPSTR str1, LPSTR str2, int len2);

Append len2 bytes of str2 onto str1. Neither string is freed.

int StringLength(LPSTR str);

Return the length of str.

int StringCompare(LPSTR str1, LPSTR str2);

Returns < 0 if str1 is alphabetically before str2. Returns > 0 if str1 is
alphabetically after str2. Returns 0 if str1 matches str2.

int StringICompare(LPSTR str1, LPSTR str2);

Like StringCompare but ignores case.

int StringNCompare(LPSTR str1, LPSTR str2, int len2);

Like StringCompare but only compares len2 bytes.

int StringNICompare(LPSTR str1, LPSTR str2, int len2);

Like StringCompare but ignores case and only compares len2 bytes.

LPMSTR StrAscii(int ch);

Converts a character into a single character length string.

LPMSTR StrItoA(long value, int radix);

1

Chapter 3: API (C-like) Macros

39

3

Converts a number into a string. Use a radix of 10 for decimal string.

LPMSTR StrLtrim(LPSTR string, LPSTR cset);

Trims characters in cset off the left of string.

LPMSTR StrTrim(LPSTR string, LPSTR cset);

Trims characters in cset off the right of string.

LPMSTR StrSubStr(LPSTR string, int start, int end);

Return a substring out of string.

LPMSTR StrFormatDate(long t, LPSTR fmtStr);

Formats a time/date value into a string.

LPMSTR TransformFilename(LPSTR filename, LPSTR spec);

Documented in the online help.

BOOL StrFileMatch(LPSTR fpattern, LPSTR fname, BOOL igcase);

Determine if a filename is matched by a pattern.

1

Using Hawk™ Macros

40

3

1

41

Perl

This chapter provides information about using Perl scrips in Hawk™. It includes the
following sections:

Overview of Perl

Getting Started with Perl

Loading and Running Scripts

Using Perl's Debug Mode

Accessing Perl functions

Special API Functions for Perl

Files used by Perl for Hawk™

Other Perl Resources

4

1

Using Hawk™ Macros

42

4

Overview of Perl
There are two useful ways of looking at a Perl script. One is to look at Perl as an entity
that may be executed in its entirety to perform the task specified by the operations of
the script. Another way of looking at the script is as a collection of macros, each
subroutine being a macro in its own right. Using Perl with Hawk™, you can make use of
Hawk™ custom facilities that reinforce these views as you have need. These will be
described below in "Loading and running scripts."

Getting Started with Perl
There are two loadable .DLLs necessary to use Perl with Hawk™: the Perl interpreter
and the Perl language support DLL. To enable these modules, go to Tools -> Libraries
and select the check box for “Perl Extension Language Interpreter”, and also "Perl
Language".

If the Output window is not already showing, select it from the Window menu. You
should then see a Perl tab on the Output window.

Even if you have Perl already installed on your system, you must check the “Perl
Extension Language” check box to enable the Perl tab for the Output window.

The cwp.dll is a Perl extension module that provides access to Hawk™ API functions
from within Perl scripts. In general, you can use any of the Hawk™ API functions listed
in the online help, except for those whose data types are incompatible with Perl. For a
list of available Hawk™ API functions, see the contents of the cwp.pm file..

Creating and Editing Perl Scripts

Unlike the AppBasic Macro Language, Perl scripts do not require a special edit window.
You create and edit source files in standard Hawk™ edit windows. There are some
sample Perl script source files in the Hawk™ MACROS subdirectory. Load a few of these
and have a look.

Perl scripts are usually packaged in text files bearing a .PL extension. A Perl script
consists of a 'main' section, and zero or more subroutine definitions. The main section
is defined as any code not contained within subroutine definitions.

Perl Window

The Perl tab on the Output window acts as a virtual console for the Perl interpreter. That
is, it replaces the stdin, stdout, and stderr devices. You can scroll through the output of
Perl Scripts in this window. There is a limit on how many lines of output will be retained
in this window. The default is 100 lines. You will find this setting in the Perl Properties
dialog, on the Tools menu.

If you have not already installed a command line version of Perl, we have included a copy of
the ActiveWare 3.10 build of Perl 5.0 for Win32, PW32I310.EXE in the PERLW32
directory on the Hawk™ CD.

1

Chapter 4: Perl

43

4

To help distinguish stdin, stdout, and stderr elements of the Output window,
CWPerl uses three different colors. stdout is displayed using the output color. stdin
is displayed using the color defined for line numbers. stderr is displayed using the
color designated for comments. You can find the settings for these colors on the Colors
tab of the Document Preferences dialog.

Pop-up Menu and Options

When you right-click on the Perl tab, or any portion of the Perl window part of the
Output window, a menu pops up that has a number of additional options. If you don't
find what you are looking for on the toolbar, or the Tools menu, check out this menu.

The Properties item on the pop-up menu brings up a dialog that lets you control how
Perl interacts with Hawk™. This is where you specify options you would otherwise
provide to Perl on its command line, when invoking it from the shell prompt.

There is a variety of choices from which to select Perl's input source and output
destination including the Perl window, the current buffer, the clipboard, the current
scrap buffer, and the current selection.

Different combinations of source and destination can produce interesting effects. For
example, if Current Document is selected for both source and destination, a Perl
script will see the entire content of the current document as its stdin and the buffer
will be replaced with Perl's stdout. Similarly, you can accomplish a similar operation
on the contents of a selection choosing Selection for both source and destination.

Input source and output destination can also be set from within a Perl Script. See the
file upcase.pl for an example of how this is done.

Loading and Running Scripts
There are two different ways to run a Perl script in the Perl tab of the Output window.
You can load the script directly on an as-needed basis, or you can load a Perl macro
and run it any time you wish.

Running a Script Directly

From the Hawk™ API Command Line type the command

PerlExec <script file> <any parameters>

Where <script file> is the fully qualified path and filename of the script file, and
<any parameters> is any parameters required by the script file. This will load the
script, execute it, and unload the script automatically.

Loading a Perl macro

Loading a Perl macro is much the same as running a Perl script directly, with the added
advantage of being able to invoke the subroutines of the script individually by simply
typing them at the command line.

There are three ways to load a macro:

1

Using Hawk™ Macros

44

4

1. Go to the Tools menu and select Perl Macros, and then select Load Macros.
Perl macros may be selected by checking the appropriate box in the top of the
dialog in the area called Hawk™ Macros. User defined macros may be added from
here by pressing the Add button.

2. Another way to load Perl macros is by right-clicking the Perl tab in the Output
window and selecting Interpreters. This brings up the Hawk™ Perl interpreters
dialog. Load the macro by pressing the Load key. All subroutines for the loaded
macro (including <main>) are automatically displayed when you select a macro
from the list. You may select an individual subroutine from the list to run.

3. Use the Hawk™ API command

PerlLoad <filename>

Once the macro is loaded, you can invoke it by going to the Hawk™ API Command
Line and entering the name of the subroutine. As previously mentioned, you may also
run the subroutine by right clicking the Perl tab and selecting Interpreters. Select the
macro from the list, and when the subroutine list is displayed, select the desired
subroutine. Then press the Run button. You will be prompted for parameters; you may
enter them if necessary, or simply hit the RETURN key to run without parameters.

You can load and execute a Perl script from the Hawk™ API Command Line by using
the command:

PerlExec filename.pl

If you only want to execute a specific subroutine in a script use:

PerlExecSub filename.pl subname

In both of these cases, you may include additional command line parameters. All text
following the syntactical elements shown in the two commands is broken down into
parameters using normal command line parsing rules, with respect to spaces, quotes,
escapes, and so forth.

If you just want to execute a simple Perl script that can be typed in one line use:

PerlExecStr 'perl-string'

Perl for Hawk™ is capable of hosting multiple simultaneous interpreters. The three
commands create an interpreter, parse the input, execute the script and then dispose
of the interpreter. You may alternately load one or more interpreters by using the
command:

PerlLoad filename.pl

This command also may be supplied command line arguments although they will only
be utilized to the extent that they affect loading the interpreter. This command may be
run several times to load different scripts. From time to time, a loaded interpreter may
be utilized by the command:

PerlRun filename.pl

If this command is issued as shown, the main of the script will be executed. Alternately,
you can name a subroutine:

PerlRun filename.pl subname

1

Chapter 4: Perl

45

4

As with previous commands, parameters may be supplied following either form,
however, the first form will need an extra empty string (" ") to represent the main
function.

Accessing Hawk™ Functions from Perl Scripts

Over eight hundred Hawk™ functions can be directly accessed from within Perl scripts
from Hawk™. To do so, you'll need to place the following line near the top of your
script:

use CWP;

This tells Perl to load CWP.PM which contains descriptions of functions contained in the
compiled Perl extension module CWP.DLL. The CWP.DLL consists of small C functions
that call the Hawk™ functions after first preparing the parameters and then make the
return value, if any, available to Perl.

You'll need to use the CWP:: prefix on Hawk™ functions to reference them, unless you
take further steps (described later). This prefix tells Perl that the following function
name is present in the CWP module. As an example, to find out where the cursor is on
in the current document, you would use something like:

$line = CWP::BufQCurrentLine();

Constants that are held in the Hawk™ lookup table can be accessed using a special
function. For example, to see if there is a column selection present you could use:

if (CWP::MarkQSelType() == CWP::CWConst("SELECTION_COLUMN")) {
}

A special function is also provided to execute any built-in or any function made
available through LibExport. This function is similar to the Hawk™ API function
LibFunctionExec). An example follows:

CWP::CWExec("ConfigFileRead", "[Editor]", 0);

This is equivalent to:

CWP::LibFunctionExec("ConfigFileRead [Editor] 0");

The primary difference is that in the latter example, the string will be parsed to separate
it into parameters to be passed to the function. In the former, the parameters are
explicitly segregated.

Importing Names into Perl’s Namespace

If you have Hawk™ functions that you access frequently and their names don't conflict
with standard names, you can save some typing by telling Perl that you want certain
names imported into Perl's namespace. This is done with a modification of the use
command, like this:

use CWP ("LibFunctionExec", "CWConst", "BufQCurrentLine");

or, equivalently:

use CWP qw(LibFunctionExec CWConst BufQCurrentLine);

1

Using Hawk™ Macros

46

4

The latter quoted word shorthand obviates the need to type so many quotes. After
doing this, the named function may be invoked without the CWP:: qualifier.

$line = BufQCurrentLine();

Unloading a Perl Macro

When you no longer need an interpreter it can be deleted with

PerlUnload filename.pl

Using Perl's Debug Mode
There is a debugger supplied for Perl scripts. The debugger is itself a Perl script
(perl5db.pl). When invoking Perl from a prompt, this script is automatically loaded if
you use the -d flag. In Hawk™, you accomplish the same thing by checking the Debug
Mode check box in the Perl Properties dialog (right-click the Perl tab).

When running a script in debug mode, there are three important requirements:

1. You should only use debug mode when invoking scripts with PerlExec on the
API command line.

2. The script must not already have been loaded by Hawk™ prior to using the PerlExec
command (meaning the script cannot be loaded from the Interpreters box or by
the Tools -> Perl macros -> Load macros -> pop-up dialog. If it is loaded, unload it
before attempting debug mode).

3. Ensure that you have completed executing the script in debug mode before
attempting to run the script again.

Accessing Perl functions
You can also execute the subs of loaded Perl interpreters merely by typing their names
on the Hawk™ API Command Line. Hawk™ has a mechanism to allow add-ons to
respond to indicate their recognition of otherwise unknown (to Hawk™) function
names. The AppBasic interpreter and the Perl interpreter alike respond to these
queries.

This means that if you have a Perl script loaded that contains a sub called
MyPerlFunc, you can execute that function simply by typing MyPerlFunc at the
Hawk™ API Command Line. Perl will check all the loaded Perl scripts to see if at least
one of them has the named subroutine.

Avoiding Ambiguity

The same subroutine name may appear in several Perl scripts. Hawk™, therefore,
provides a mechanism to specify which Perl script you're referencing. Suppose that
both SCRIPT1.PL and SCRIPT2.PL have a sub MyPerlFunc. You don’t know which
subroutine will be executed if you simply invoke MyPerlFunc.

One way to avoid this problem is to right-click the Perl tab and bring up the Interpreters
dialog. Select the script you intend to call, and click its subroutine in the subroutine list.

1

Chapter 4: Perl

47

4

Another way to specify that you wish MyPerlFunc in SCRIPT2.PL to be executed, is to
invoke it as follows:

script2.pl!MyPerlFunc

Note that the extension .pl used in this example is optional. Without this specific
invocation, the loading order usually determines which function will be executed if both
an AppBasic script and a Perl script contain a given function name. Generally, the first
loaded will be the one to execute.

Special API Functions for Perl
In addition to the 800 or more functions available from the Hawk™ API, there are three
additional functions available when the Perl Extension Language (CWP) is loaded.

DWORD CWConst(LPSTR cw_expr);

This function provides access to Hawk™ constants (predefined values), and any
"constants" you have defined with EvalAddStr, in Perl scripts. For example, you may
want to begin a line selection. To do this you would use the constant
SELECTION_LINE in a call to MarkBeginSel. A more specific example follows:

CWP::MarkBeginSel(CWP::CWConst("SELECTION_LINE"));

The argument string to CWConst can take any form that is acceptable to the Hawk™
function EvalExpression.

DWORD CWExec(LPSTR cw_funcname, ...);

This function provides an alternate form of executing a Hawk™ function that has been
made available via LibExport(), such as all functions provided by DLLs, both
standard and add-on. The advantage to using this form, rather than
LibFunctionExec(), is that you needn't compile the arguments that you wish to
pass into a string as is required by LibFunctionExec(). You could, for example,
issue either of the following commands with the same effect:

CWP::LibFunctionExec("BufQOffsetEx", $line . " " . $column);

or

CWP::CWExec("BufQOffsetEx", $line, $column);

int CWPerlIO(int mode);

This function queries or sets the current Perl I/O mode. You may recall from the Perl
Properties entry of the Perl pop-up menu that you can set the Perl input source and
output destination using the radio buttons. This function serves the same purpose.

The mode argument has two components: output destination and input source. The
latter occupies the least significant 8 bits of the mode value, while the former occupies
the next most significant 8 bits. The semantics of the components are as follows:

// Perl I/O source/destinations

#define PERL_IN_CON0x0000 // input from 'console'

#define PERL_IN_BUF0x0001 // input from current buffer

1

Using Hawk™ Macros

48

4

#define PERL_IN_SEL0x0002 // input from selection

#define PERL_IN_CLIP0x0003 // input from clipboard

#define PERL_IN_SCRAP0x0004 // input from scrap buffer

#define PERL_OUT_CON0x0000 // output to 'console'

#define PERL_OUT_BUF0x0001 // output to current buffer

#define PERL_OUT_SEL0x0002 // output to selection

#define PERL_OUT_CLIP0x0003 // output to clipboard

#define PERL_OUT_SCRAP0x0004 // output to scrap buffer

To determine the current i/o mode, simply call CWPerlIO with a mode
value of -1. In all cases, the return value is the prevailing 'mode' immediately prior to
the call. This function is useful to make a Perl script that responds differently depending
on certain prevailing conditions.

The call to CWPerlIO should be made before any output operations are performed,
since changing the output destination causes all previous output to be discarded.

Files used by Perl for Hawk™
The files listed in Table 4-1. are found in the Hawk™ home directory after installation:

The files shown in Table 4-2. are found in the Hawk™ PerlLib subdirectory after
installation:

Table 4-1. Perl Files in Hawk™ Directory

Filename Purpose

CWPERL.DLL Provides Perl language support for Perl source scripts (*.PL).

CWPERLI.DLL Adds the Perl tab in the Output window.

CWPERLI.MNU Menu file that holds the menus for the right mouse click in Perl tab of
Output window.

Table 4-2. Perl Files in PerlLib Directory

Filename Purpose

CWP.DLL Allows access to Hawk™ API’s in the Perl script.

CWP.PM Exporter for Hawk™ APIs.

CARP.PM Error routines.

CONFIG.PM Win32 Perl configuration.

1

Chapter 4: Perl

49

4

Other Perl Resources
Much useful information can be derived from your nearest CPAN (Comprehensive Perl
Archive Network) web site, or some of the Perl books by O'Reilly Press, namely:

Programming Perl

Learning Perl for Win32 Systems.

There are many mirror sites for CPAN, one of which is:
ftp://ftp.cdrom.com/pub/perl/CPAN/

Other useful URLs include:

http://www.perl.org for general Perl information

http://www.activestate.com for Perl for Win32 systems

CWP.XS Source Perl script used to rebuild cwp.dll.

DYNALOADER.PM Dynamically loads C libraries into Perl code.

EXPORTER.PM Default import method for modules.

PERL5DB.PL Perl 5.0 Debugger.

TYPEMAP Hawk™ variable types (for use with cwp.xs).

XSUBPP.PL Converts Perl XS code into C code (for use with cwp.xs).

TERM\CAP.PM Perl termcap interface.

TERM\COMPLETE.PM Perl word completion module.

TERM\READLINE.PM Perl interface to various C<readline> packages.

Table 4-2. Perl Files in PerlLib Directory (Continued)

Filename Purpose

1

Using Hawk™ Macros

50

4

1

51

Function Definitions

This chapter defines where function definitions are stored in the Hawk™ directory
structure.

Location of Functions
There is an opportunity for confusion as to exactly which function is being executed
when a given name is typed. It could be a Hawk™ built-in function, a Hawk™ DLL
function, an AppBasic macro, a Perl sub, a keystroke macro or an API macro. The
following command will help you resolve the ambiguity.

LibFunctionExistsWhere() will return a string identifying the location of the
function name that is supplied as its argument. Table 5-1. shows a few sample
responses.

The last example shows the response where a replacement function exists. The Perl
example shows that both the Perl script filename and the sub name are given.

For non-LibExported functions, such as those connected by responding to
EVENT_LIB_EXISTS_FAILED and EVENT_LIB_EXEC_FAILED, the where string
is supplied by the responder to a new event EVENT_LIB_EXISTS_WHERE. The
event handler supplies a where string (allocated) as the return value or zero if it
doesn't claim the function.

Table 5-1. LibFunctionExistsWhere Responses

Function Response

BufQCurrentLine Built-Ins:BufQCurrentLine

DlgPrint cwdialog:DlgPrint

MyPerlFunc cwperli:myperl!MyPerlFunc

_jav_init _jav_init->cwstart:_java_init

5

1

Using Hawk™ Macros

52

5

53

N A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

Index

A
Accessing Hawk Functions from Perl Scripts 45
Accessing Perl functions 46
activestate 49
AddBasKeywords 25
API (C-like) Macros 33

When to use 8
API Command 46
API Commands 34
API commands 29
API functions 42
API Macros Defined 34
AppBasic 11

When to use 8
AppBasic Environment 12
AppBasic macros 17
AppBasic Samples Supplied 25
AppBasic Window 28
AppBasic Window Configuration 28
AppBasic Window Toolbar 28
AppBasic-related API Commands 28
Avoiding Ambiguity

Perl 46

B
Baskeywd.cwb 25
Break point 23
Break Points

AppBasic 23
Browse Object 15 , 24

C
CARP.PM 48
ChromaCoding 34
Colors tab 43
Colsum.cwb 25
Comments

API Macros 35
Conditional statements

API Macros 37
CONFIG.PM 48
Control Structures

API Macros 37
CountPhrase 28
CPAN 49
Creating a Handler in AppBasic 16

Creating a Macro 15
API Macros 34

Creating and Editing Perl Scripts 42
cwbDisplayFileName 26
cwbEditNextBuffer 26
cwbEditPrevBuffer 26
cwbGotoLine 26
cwbLoadFile 21 , 28
cwbShowProcDisplay 29 , 31
cwbShowToolbar 29 , 31
cwbSnapVirtual 27
cwbStripTrailingWhite 27
cwbUnloadFile 28
cwbZoomWindow 28
CWConst 47
CWExec 47
CWP.DLL 45 , 48
cwp.dll 42
CWP.PM 45 , 48
cwp.pm 42
CWP.XS 49
CWPERL.DLL 48
CWPERLI.DLL 48
CWPERLI.MNU 48
CWPerlIO 47 , 48
CWRIGHT.INI 21
CWRIGHT.MAC 34

D
-d flag 46
data type 15
Data Types

API Macros 35
data types 24
Debugging Your AppBasic Macro 22
Diffdir.cwb 26
DiffDirectory 26
Dispname.cwb 26
Dockable Toolbars 14
Document Preferences dialog 43
DYNALOADER.PM 49

E
Edit UserDialog 18
Editing a Macro

API Macros 34

Using Hawk™ Macros

54

N A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

EditNext.cwb 26
EditPrev.cwb 26
EhTest.cwb 26
EvalExpression 47
evaluate an expression 23
Evaluate Expression and Add Watch

AppBasic 23
event handler 21
EventHandler in AppBasic 21
Example Configuration File Settings

AppBasic 29
Exiting and Macro return values

API Macros 37
Exported Functions in CWBASIC.DLL 30
EXPORTER.PM 49
Expressions

API Macros 35

F
Files used by Perl for Hawk 48
Function calls

API Macros 37

G
Getting Started with API Macros 34
Getting Started with AppBasic 12
Getting Started with Perl 42
GotoLine.cwb 26

H
Handlers 16 , 17
HashTest.cwb 26

I
if statement 37
if-else statement 37
Importing Names into Perl’s Namespace 45
Insert/Edit User Dialog 18
Interpreters dialog 46
Iterative statements

API Macros 38

L
Language Definition

API Macros 35
LibExport 16 , 45
LibFunctionExec 15 , 45
LibFunctionExistsWhere 51
load and execute a Perl script 44
Load Macros Dialog

AppBasic 24
load Perl macros 44

loaded for execution 18
Loading a Perl macro 43
Loading and running scripts 43

M
MACROS subdirectory 42
Macros versus DLL Extensions 8
MarkBeginSel 47
Modal User Dialo in AppBasic 18
Modules Properties dialog 16
MsgNotify 17

N
name confusion 51
Number formats

API Macros 35

O
O'Reilly Press 49
Object and Proc Drop Down Lists 17
Object Browser 15 , 24
Object browser 24
OLE Automation 15
Online Help

AppBasic 15
Operators

API Macros 35
options item 43
Other Perl Resources 49
Output Window 15 , 42 , 43

P
Parentheses in Expressions

API Macros 36
Perl 41

When to use 8
Perl already installed 42
Perl books 49
Perl macros 44
Perl options dialog 46
Perl popup menu 47
Perl Window 42
perl.org 49
PERL_IN_… 47
PERL5DB.PL 49
PerlExec 44 , 46
PerlExecStr 44
PerlExecSub 44
PerlLoad 44
PerlRun 44
PerlUnload 46
PL extension 42

Index

55

N A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

Pop-up Menu
AppBasic 15

popup menu 24
Pop-up Menu and Options

Perl 43
Private Sub Main 18

R
resolve name ambiguity 51
Rich Text Editor 13 , 29
Run mode 23
Running a script directly

Perl 43
Running The Macro

AppBasic 21

S
Sample EHTEST.CWB 22
SaveHdl.cwb 27
Search_Replace_Buffer 27
SELECTION_LINE 47
Show Loaded Modules dialog 18
SnapVirt.cwb 27
Special API Functions for Perl 47
Special Keybindings

Appbasic 13
SrchRepl.cwb 27
Statement blocks

API Macros 37
Statements

API Macros 37
Statements and Statement Blocks

API Macros 37
stderr 42
stdin 42
stdout 42
StrAscii 38
StrFileMatch 39
StrFormatDate 39
String functions

API Macros 38
StringApnd 38
StringCompare 38
StringICompare 38
StringLength 38
StringNApnd 38
StringNCompare 38
StringNICompare 38
Stripwt.cwb 27
StrItoA 38
StrLtrim 39
StrSubStr 39

StrTrim 39
SumSelectedText 25

T
TERM.PM 49
Test 26
Test.cwb 27
TestBool 28
TestInt 28
TestLong 28
TestString 28
Tips on Creating Macro in AppBasic 18
Toolbars

Appbasic 14
Toolbars dialog 14
TransformFilename 39
Two Editors

Appbasic 13
TYPEMAP 49

U
Unloading a Perl macro 46
UserDialog 15
UserDialog Editor 15
Using Perl's Debug Mode 46

V
Variables

API Macros 35
View submenu 13

W
Where is it Defined? 51
Win32 systems 49
Wordcnt.cwb 28

X
XSUBPP.PL 49

Z
ZoomWin.cwb 28

Using Hawk™ Macros

56

N A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

	Using Hawk™ Macros
	Contents
	Choosing a Macro Language
	DLL Extensions
	AppBasic
	API (C-like) Macros
	Perl

	Overview
	Getting Started
	AppBasic Environment
	Two Editors
	Special Keybindings
	Two Toolbars
	Pop-up Menu
	Online Help
	UserDialog Editor
	Object Browser

	Creating a Macro
	Creating a Handler
	Object and Proc Drop Down Lists
	Private Sub Main
	Tips on Creating Macros
	Creating a Modal User Dialog
	Running The Macro

	Creating an EventHandler in AppBasic
	Sample EHTEST.CWB

	Debugging Your AppBasic Macro
	Break Points
	Evaluate Expression and Add Watch
	Object Browser

	Load Macros Dialog
	AppBasic Samples
	Baskeywd.cwb
	Colsum.cwb
	Diffdir.cwb
	Dispname.cwb
	EditNext.cwb
	EditPrev.cwb
	EhTest.cwb
	GotoLine.cwb
	HashTest.cwb
	SaveHdl.cwb
	SnapVirt.cwb
	SrchRepl.cwb
	Stripwt.cwb
	Test.cwb
	Wordcnt.cwb
	ZoomWin.cwb

	AppBasic-related API Commands
	cwbLoadFile(<moduleName>)
	cwbLoadFile "FileName"
	cwbUnloadFile (<moduleName>)

	AppBasic Window Configuration
	cwbShowToolbar(int nShow)
	cwbShowProcDisplay(int nShow)
	cwbCreateCWWindow(int bCWWindow)
	Example Configuration File Settings

	Exported Functions in CWBASIC.DLL
	cwbAddHandler(LPSTR lpszHandlerDef, LPSTR lpszModule)
	cwbToggleBreakPoint(void)
	cwbEditFile(LPSTR lpszFile)
	cwbLoadFile(LPSTR lpszFile)
	cwbUnloadFile (LPSTR lpszFile)
	cwbExecuteCommand(long cmd)
	cwbShowToolbar(int nShow)
	cwbShowProcDisplay(int nShow)

	Overview
	API Macros Defined
	Getting Started with API Macros
	Creating a Macro
	Editing a Macro

	Language Definition
	Comments
	Variables
	Data Types
	Expressions
	Number formats
	Operators
	Parentheses in Expressions
	Function calls
	Exiting and Macro return values

	Statements and Statement Blocks
	Statements
	Statement blocks

	Control Structures
	Conditional statements
	Iterative statements

	String Functions
	Overview of Perl
	Getting Started with Perl
	Creating and Editing Perl Scripts
	Perl Window
	Pop-up Menu and Options

	Loading and Running Scripts
	Running a Script Directly
	Loading a Perl macro
	Accessing Hawk™ Functions from Perl Scripts
	Importing Names into Perl’s Namespace
	Unloading a Perl Macro

	Using Perl's Debug Mode
	Accessing Perl functions
	Avoiding Ambiguity

	Special API Functions for Perl
	DWORD CWConst(LPSTR cw_expr);
	DWORD CWExec(LPSTR cw_funcname, ...);
	int CWPerlIO(int mode);

	Files used by Perl for Hawk™
	Other Perl Resources
	Location of Functions

