
w w w. ra d i sy s . co m
Revision A • July 2006

Using LAN Communications

Version 4.7

July 2006
Copyright ©2006 by RadiSys Corporation

All rights reserved.
EPC and RadiSys are registered trademarks of RadiSys Corporation. ASM, Brahma, DAI, DAQ, MultiPro, SAIB, Spirit, and ValuePro are
trademarks of RadiSys Corporation.
DAVID, MAUI, OS-9, OS-9000, and SoftStax are registered trademarks of RadiSys Corporation. FasTrak, Hawk, and UpLink are
trademarks of RadiSys Corporation.
† All other trademarks, registered trademarks, service marks, and trade names are the property of their respective owners.

Copyright and publication information

This manual reflects version 4.7 of LAN Communications.
Reproduction of this document, in part or whole, by any means,
electrical, mechanical, magnetic, optical, chemical, manual, or
otherwise is prohibited, without written permission from RadiSys
Microware Communications Software Division, Inc.

Disclaimer

The information contained herein is believed to be accurate as of
the date of publication. However, RadiSys Corporation will not be
liable for any damages including indirect or consequential, from
use of the OS-9 operating system, Microware-provided software,
or reliance on the accuracy of this documentation. The
information contained herein is subject to change without notice.

Reproduction notice

The software described in this document is intended to
be used on a single computer system. RadiSys
Corporation expressly prohibits any reproduction of the
software on tape, disk, or any other medium except for
backup purposes. Distribution of this software, in part
or whole, to any other party or on any other system
may constitute copyright infringements and
misappropriation of trade secrets and confidential
processes which are the property of RadiSys
Corporation and/or other parties. Unauthorized
distribution of software may cause damages far in
excess of the value of the copies involved.

Contents

Chapter 1: Networking Basics
Basic Networking Terminology .. 10.

Datagrams.. 10.

Fragmentation ... 11.

Encapsulation .. 11.

Client and Server .. 12.

Available Network Protocols .. 12.

Internet Protocol (IP).. 13.

Transmission Control Protocol (TCP) .. 13.

User Datagram Protocol (UDP) .. 14.

Network Addressing ... 14.

Current vs. Legacy LAN Com Stack... 14.

IPv4 Addresses ... 14.

Network Classes .. 15.

Class A .. 15.

Class B... 15.

Class C .. 16.

Class D .. 16.

Class E... 16.

Subnet Masks... 16.

IPv6 Addresses ... 18.

Representation... 18.

Prefixes .. 18.

Chapter 2: Serial Line Internet Protocol (SLIP) Driver
SPSLIP Introduction.. 20.

Installation ... 20.

SPSLIP Transmission Process .. 21.

Initialization... 21.

Sending Data.. 22.

Reading Data ... 22.

Header Compression.. 22.

SPSLIP Device Descriptor ... 22.

Chapter 3: LAN Communications Overview
Introduction.. 26.

LAN Communications Requirements ... 26.

LAN Communications Components ... 26.

Application Programming Interfaces (APIs).. 27.

File Manager .. 27.

Protocol Drivers ... 27.

Data Module.. 27.

Software Description .. 28.
3

Contents
LAN Communications Architecture.. 30.

Chapter 4: Point-to-Point Protocol (PPP)
Introduction to PPP .. 34.

PPP Drivers and Descriptors... 34.

Protocol Drivers ... 34.

Utility Programs... 35.

Installation ... 36.

PPP Initialization.. 36.

Sending Data ... 37.

Reading Data... 37.

PPP Protocol Functions... 38.

Stack Configuration ... 39.

Chat Scripting .. 39.

Authentication Database .. 40.

Connect/Disconnect ... 41.

PPP Device Descriptors ... 41.

Overriding Default Settings .. 42.

 PPP Descriptor Makefiles .. 42.

Rebuilding the Descriptor .. 42.

Example: Changing the Baud Rate ... 43.

Utilities ... 44.

PPP Daemon Utility.. 44.

PPP Daemon Command Line Arguments... 44.

pppd Script Commands ... 44.

Mode Settings .. 47.

Chat Scripting Commands ... 48.

Troubleshooting Modem Settings for PPP.. 50.

pppauth... 51
Setting Up the Client Machine .. 53.

Prepare Chat Script .. 53.

Setup Authentication.. 53.

Start PPP Daemon Process.. 53.

Running PPP Over a Modem Link ... 54.

Chapter 5: Protocol Drivers
SPF IP (spip) Protocol Driver .. 56.

Data Reception and Transmission Characteristics .. 56.

Default Descriptor Values for spip ... 56.

Configuring the ip0 Descriptor .. 57.

Considerations for Other Drivers ... 57.

Drivers Above SPIP.. 57.

Drivers Below SPIP .. 57.

Getstats and Setstats above SPIP .. 58.

SPF_SS_ATTIF... 58.

SPF_SS_DETIF... 59.

ioctl ... 59.

Other Supported ioctl Commands ... 60.

Getstats and Setstats Below SPIP .. 62.

SPF_SS_SETADDR .. 62.
Using LAN Communications 4

Contents
SPF_SS_DELADDR ... 63.

IP_SS_IOCTL .. 63.

SPF_GS_SYMBOLS ... 63.

SPF RAW (spraw) Protocol Driver.. 65.

Data Reception and Transmission Characteristics .. 65.

Default Descriptor Values for spraw .. 65.

Configuring the raw0 Descriptor ... 65.

Consideration for Other Drivers .. 65.

SPF Routing Domain (sproute) Protocol Driver .. 66.

Data Reception and Transmission Characteristics .. 66.

Default Descriptor Values for sproute .. 66.

Configuring the route0 Descriptor ... 66.

Consideration for Other Drivers .. 66.

SPF TCP (sptcp) Protocol Driver... 67.

Data Reception and Transmission Characteristics .. 67.

Default Descriptor Values for sptcp ... 67.

Configuring the tcp0 Descriptor .. 67.

Considerations for Other Drivers ... 67.

SPF UDP (spudp) Protocol Driver ... 67.

Data Reception And Transmission Characteristics ... 68.

Default Descriptor Values for spudp .. 68.

Configuring the udp0 Descriptor ... 68.

Considerations for Other Drivers ... 68.

SPF Ethernet (spenet) Protocol Driver... 69.

Data Reception and Transmission Characteristics .. 69.

Default Descriptor Values for spenet .. 69.

Configuring the enet Descriptor... 70.

Other Default Settings ... 70.

Drivers Below spenet.. 70.

Getstats for SPENET.. 70.

SPF_GS_ARPENT ... 71.

SPF_GS_ARPTBL .. 71.

ENET_GS_STATS.. 71.

Setstats for SPENET... 71.

SPF_SS_ADDARP.. 71.

SPF_SS_DELARP... 72.

Chapter 6: BOOTP Server
Bootstrap Protocol.. 74.

Server Utilities .. 74.

bootptab Configuration File Setup.. 76.

Hardware Type .. 77.

Address .. 77.

Host Name, Home Directory, and Bootfile .. 77.

Bootfile Size ... 78.

Sending a Host Name .. 78.

Sharing Common Values Between Tags ... 78.

bootptab File Example... 79.
Using LAN Communications 5

Contents
Chapter 7: Utilities
Overview .. 82.

Utilities ... 83.

Syntax Usage.. 84.

arp... 85
bootpd... 87
bootptest ... 88
dhcp .. 90
ftp ... 92
ftpd ... 111
ftpdc.. 122
hostname... 123
idbdump.. 124
idbgen ... 125
ifconfig .. 127
inetd .. 133
ipstart .. 135
mbdump.. 136
ndbmod... 137
netstat ... 141
ping ... 145
ping6 ... 146
route.. 150
route6d.. 154
routed.. 156
rtsol ... 159
telnet ... 160
telnetd ... 164
telnetdc.. 166
tftp .. 167
tftpd .. 170
tftpdc... 171

Chapter 8: Programming
Programming Overview.. 174.

Socket Types .. 174.

Stream Sockets ... 175.

Datagram Sockets .. 175.

Raw Sockets ... 175.

Establishing a Socket .. 175.

Stream Sockets ... 175.

Server Steps.. 176.

Client Steps.. 179.

Using Connect.. 179.

Datagram Sockets .. 180.

Connect a Socket.. 181.

Header Files.. 181.

Reading Data Using Sockets ... 183.

Writing Data Using Sockets .. 183.
Using LAN Communications 6

Contents
Setting up Non-Blocking Sockets .. 184.

Broadcasting ... 185.

Broadcasting Process .. 185.

Receiving Process ... 185.

Multicasting.. 185.

Sending Multicasts ... 186.

Receiving Multicasts .. 186.

Controlling Socket Operations.. 187.

Appendix A: Configuring LAN Communications
Configuring Network Modules... 190.

Step 1: Updating Files... 190.

Step 2: Creating Modules ... 190.

Contents of inetdb.. 190.

Contents of inetdb2.. 193.

Step 3: Configure the Interface Descriptor.. 194.

Step 4: Load LAN Modules.. 195.

Starting the Protocol Stack.. 199.

Example Configuration... 200.

Configuration Files ... 202.

Hosts.. 202.

Networks ... 203.

Protocols .. 203.

Services .. 203.

inetd.conf Configuration File ... 204.

resolv.conf Configuration File .. 205.

interfaces.conf Configuration File .. 205.

routes.conf Configuration File.. 206.

rpc Configuration File .. 206.

Appendix B: Error Messages
OS-9 Messages.. 208.

Appendix C: Legacy LAN Modules
Drivers.. 212.

Utilities ... 212.

Configuration Wizard Legacy Features ... 213.

Appendix D: LAN Communications Stack Migration Reference
Definitions .. 216.

References... 216.

Migration from Legacy to Current Stack .. 216.

Utility Updates ... 216.

The Code Base ... 216.

Updates to Network Configuration Files .. 217.

Ethernet Drivers ... 217.

Miscellaneous Updates ... 217.

Appendix E: Example Programs
Example One: Datagram Socket Operation for IPv4... 220.

beam.c.. 220.

target.c ... 223.
Using LAN Communications 7

Contents
Example Two: Datagram Socket Operation for IPv6 .. 226.

beam6.c.. 227.

target6.c ... 231.

Example Three: Stream Socket.. 235.

tcpsend.c .. 235.

tcprecv.c... 243.

Example Four: Sending Multicast Messages.. 249.

msend.. 251
mrecv .. 252

Appendix F: Dynamic Configuration of the inetdb Module
Sample inetdb Module .. 254.

Manipulating a Host Entry .. 256.

Changing the DNS Client Entry ... 257.

Adding an Interface Entry .. 258.

Adding, Obtaining, and Deleting a Route Entry... 260.

Initializing the IP Stack... 262.
Using LAN Communications 8

1 Networking Basics

The Local Area Network (LAN) Communications enables your OS-9® system to
communicate with other computer systems connected to a TCP/IP network. This
enables you to send data, receive data, and log on to other computer systems.

This chapter introduces you to the basics of networking and provides you with a
working knowledge of internetworking. The following sections are included:

• Basic Networking Terminology

• Available Network Protocols

• Network Addressing
9

Chapter 1: Networking Basics
Basic Networking Terminology
A computer network is the hardware and software enabling computers to
communicate with each other. Each computer system connected to the network is a
“host”. There can be different types of host computers, and they can be (and
usually are) located at different sites. For example, you may have your OS-9 system
connected to a network consisting of other OS-9 systems, as well as UNIX and DOS
systems.

An “internet” is the connection of two or more networks; it uses the Internet
Protocol, which enables computers on one network to communicate with
computers on another network. An internet is sometimes referred to as an
“internetwork”.

Networks are connected to each other by “gateways”. Gateways are computers
dedicated to connecting two or more networks. Figure 1-1 illustrates two networks
connected by a gateway.

Figure 1-1. Gateway Connected Networks

Datagrams

When information (data) is passed from one host to another, either on the same
network or across gateways, the data are carried in packets. Packets are the actual
physical data transfered across the network layer. A datagram is a specific type of
packet and is the basic unit of information passed on a network. In
internetworking, this unit is called an Internet Protocol or IP datagram.

A datagram is divided into a header area and a data area. The datagram header
contains the source and the destination Internet Protocol address and a type field
identifying the datagram’s content.

Figure 1-2 illustrates the basic concept of a datagram.

Figure 1-2. Basic Datagram
Using LAN Communications 10

Chapter 1: Networking Basics
Fragmentation

The datagram size depends on the network’s Maximum Transfer Unit (MTU).
Because each network may have a different MTU, hosts and routers divide large
datagrams into smaller fragments when the datagram needs to pass through a
network having a smaller MTU. The process of dividing datagrams into fragments
is known as “fragmentation”.

Fragmentation usually occurs at a gateway somewhere along the path between the
datagram source and its final destination. The gateway receives a datagram from a
network with a large MTU and must route it over a network where the MTU is
smaller than the datagram size. The size of the fragment must always be a multiple
of eight and is chosen so each fragment can be shipped across the underlying
network in a single frame. A frame is passed across the data link layer and contains
an encapsulated datagram. Hosts may also fragment large datagrams into multiple
packets according to the size of the local MTU. Fragments are reassembled at the
final destination to produce a complete copy of the original datagram before it can
be processed by the upper protocol layers.

Encapsulation

The addition of information to the datagram is called “encapsulation”. Datagrams
are encapsulated with information as they pass through layers of the network.
Figure 1-3 illustrates this concept.
Using LAN Communications 11

Chapter 1: Networking Basics
Figure 1-3. Encapsulated Datagram Example

Client and Server

The terms client and server appear frequently in networking documentation. A
server process provides a specific service accessible over the network. A client
process is any process requesting to use a service provided by a server.

Available Network Protocols
When client and server processes communicate, both processes must follow a set of
rules and conventions. These rules are known as “protocols”. Protocols allow hosts
to communicate with each other.

Below are the protocols you need to be familiar with when using networks:

• Internet Protocol (IP)

• Transmission Control Protocol (TCP)

• User Datagram Protocol (UDP)
Using LAN Communications 12

Chapter 1: Networking Basics
Internet Protocol (IP)

IP is the datagram delivery protocol. It is a lower-level protocol located above the
network interface drivers and below the higher-level protocols such as the UDP and
the TCP. IP provides packet delivery service for higher level protocols such as TCP
and UDP.

Due to the IP layer’s location, datagrams flow through the IP layer in two
directions:

• network up to user processes

• user processes down to the network

The IP layer supports fragmentation and reassembly. If the datagram is larger than
the MTU of the network interface, datagrams are fragmented on output. Fragments
of received datagrams are dropped from the reassembly queues if the complete
datagram is not reconstructed within a short time period.

The IP layer provides for a checksum of the header portion, but not the data portion
of the datagram. IP computes the checksum value and sets it when datagrams are
sent. The checksum is checked when datagrams are received. If the computed
checksum does not match the checksum in the header, the packet is discarded.

The IP layer also provides an addressing scheme. Every computer on an Internet
receives one (or more) 32- or 128-bit address. This allows IP datagrams to be
carried over any medium.

Transmission Control Protocol (TCP)

TCP is layered on top of the IP layer. It is a standard transport level protocol
allowing a process on one machine to send a stream of data to a process on another
machine. TCP provides reliable, flow controlled, orderly, two-way transmission of
data between connected processes. You can also shut down one direction of flow
across a TCP connection, leaving a one-way (simplex) connection.

Software-implementing TCP usually resides in the operating system and uses IP to
transmit information across the underlying Internet. TCP assumes the underlying
datagram service is unreliable. Therefore, it performs a checksum of all data to help
implement reliability. TCP uses IP host level addressing and adds a per-host port
address. The endpoints of a TCP connection are identified by the combination of an
IP address and a TCP port number. The TCP packets are encapsulated as shown in
Figure 1-4.

A checksum is a small, integer value used for detecting errors when data is
transmitted from one machine to another.
Using LAN Communications 13

Chapter 1: Networking Basics
Figure 1-4. IP Datagrams

User Datagram Protocol (UDP)

The User Datagram Protocol (UDP) is also layered on top of the IP layer. UDP is a
simple datagram protocol that allows an application on one machine to send a
datagram to an application on another using IP to deliver the datagrams. The
important difference between UDP and IP datagrams is that UDP includes a
protocol port number; this enables the sender to distinguish among multiple
application programs on the remote machine. Like TCP, UDP uses a port number
along with an IP address to identify the endpoint of communication.

UDP datagrams are not reliable. They can be lost or discarded in a variety of ways,
including failure of the underlying communication mechanism. UDP implements a
checksum over the data portion of the packet. If the checksum of a received packet
is incorrect, the packet is dropped without sending an error message to the
application. Each UDP socket is provided with a queue for receiving packets. This
queue has a limited capacity. Datagrams that arrive after the capacity of the queue
has been reached are silently discarded.

Network Addressing
The LAN Communications includes support for both Internet Protocol version 4
(IPv4) and Internet Protocol version 6 (IPv6). Where IPv4 addresses have a range of
32 bits, IPv6 addresses are 128 bits. This ability to hold large addresses is becoming
increasingly necessary as more devices become connected to the Internet (both fixed
and mobile). In addition, IPv6 contains the following features:

• stateless, address auto-configuration

• quality of service (QoS)

• end-to-end IP security (IPSec)

• simultaneous support of IPv4 and IPv6 traffic

Current vs. Legacy LAN Com Stack

Refer to Appendix D, LAN Communications Stack Migration Reference.

IPv4 Addresses

IP addresses are usually represented visually as four decimal numbers, where each
decimal digit encodes one byte of the 32-bit IP address. This is referred to as dot
notation. IP addresses specified using the dot notation use one of the following
forms:
Using LAN Communications 14

Chapter 1: Networking Basics
a.b.c.d
a.b.c
a.b
a

Usually, all four parts of an address are specified. In this form, the most significant
byte is written first and the least significant byte is written last.

At times, a written address may omit one or more of the four bytes. When this
happens, the address is expanded to a normal four-part address by replacing the
missing bytes with zeros. The following list demonstrates this process:

Short Address Expanded Address

127 0.0.0.127

127.1 127.0.0.1

127.1.2 127.1.0.2

Network Classes

The 32-bit address space is divided into five groups, or network classes. The first
three classes consist of the unicast addresses assigned to hosts, the fourth class
contains multicast addresses, and the fifth class is reserved for future use. In the first
three classes, each 32-bit address is divided into two parts—the network and host
portion. These identify the network the host is on and which host it is within that
network.

Class A

All addresses with a 0 as the first bit in their binary representation are considered
Class A addresses.

The first byte represents the netid portion of the address, and the remaining 3 bytes
represent the hostid. Class A addresses range from 0.0.0.0 to 127.255.255.255.

Class B

Addresses that start with a binary 10 are in Class B.

These addresses contain 2 bytes for each of the netid and hostid portions. Class B
addresses range from 128.0.0.0 to 191.255.255.255.
Using LAN Communications 15

Chapter 1: Networking Basics
Class C

Class C addresses are distinguished by 110 as the first three bits in their binary
representation.

The first three bytes of the address form the netid, and the remaining byte is used
for the hostid. Class C addresses range from 192.0.0.0 to 223.255.255.255.

Class D

Class D addresses are multicast addresses with the first 4 bits set to 1110.

Class D addresses range from 224.0.0.0 to 239.255.255.255.

Class E

Class E addresses are reserved for future use and have 11110 as the first five bits in
their binary representation.

Class E addresses range from 240.0.0.0 to 247.255.255.255

Subnet Masks

The A, B, and C class distinctions are now mostly historical. Instead of using the
first few bits of the address to determine the boundary between the netid and the
hostid, a subnet mask is used. Wherever the bits in the subnet mask are set to 1, the
corresponding bits in the address are part of the netid. Wherever the bits are zero,
the corresponding address bits are part of the hostid. For example:

Address: 172.16.193.27

Subnet mask: 255.255.255.0

netid: 172.16.193.0 (or just 172.16.193)

hostid: 0.0.0.27 (or just 27)

While it is common to use byte boundaries for subnet masks, it is not required.
Another example is:

Address: 172.16.193.27

Subnet mask: 255.255.192.0 (18 bits)
Using LAN Communications 16

Chapter 1: Networking Basics
netid: 172.16.192.0

hostid: 0.0.1.27
Using LAN Communications 17

Chapter 1: Networking Basics
IPv6 Addresses

There are three types of IPv6 addresses:

1. Unicast: an identifier for a single interface

A packet sent to a unicast address is delivered to the interface identified by that
address.

2. Anycast: an identifier for a set of interfaces

A packet sent to an anycast address is delivered to one of the interfaces
identified by that address.

3. Multicast: an identifier for a set of interfaces.

A packet sent to a multicast address is delivered to all interfaces identified by
that address.

There are no broadcast addresses in IPv6. All interfaces are required to have at least
one link-local unicast address.

Representation

There are three conventional forms for representing IPv6 addresses as test strings.
The preferred form is x:x:x:x:x:x:x:x, where x is the hexadecimal value of the
eight 16-bit pieces of the address.

Example: FE80:0:0:0:0:FFFF:7F01:2

In order to make writing addresses containing zero bits easier, use the “::” symbol
to indicate multiple groups of 16 bits of zeros. The :: symbol can only appear once
in each address. The above example address may be represented as
FE80::FFFF:7F01:2. The :: symbol can also be used to compress the leading and
trailing zeros in an address. The loopback address is represented as ::1.

A mixed environment of IPv4 and IPv6 nodes can be represented as
x:x:x:x:x:x:d.d.d.d, where x is the hexadecimal value of each six high-oder 16-bit
pieces of the address, and d is the decimal value of each of the four low-order 8-bit
pieces of the address. The above example address may be represented as
FE80::FFFF:127.1.0.2.

Prefixes

An IPv6 address prefix is represented by the notation ipv6-address/prefix-length,
where “ipv6-address” is an IPv6 address in any of the notations listed above, and
“prefix-length” is a decimal value specifying how many of the leftmost contiguous
bits of the address comprise the prefix. For example, the 60-bit prefix for the
example address is represented as FE89::FFFF:7F01:2/60.
Using LAN Communications 18

2 Serial Line Internet Protocol (SLIP)
Driver

The SPF Serial Line Internet Protocol device driver (spslip) provides a point-to-
point interface between serial connections for transferring IP packets. The following
sections are included:

• SPSLIP Introduction

• SPSLIP Transmission Process

• SPSLIP Device Descriptor
19

Chapter 2: Serial Line Internet Protocol (SLIP) Driver
SPSLIP Introduction
spslip is based on the RFC 1055 specification for SLIP. In addition, it supports
multicasting and the Van Jacobson CSLIP protocol enhancements.

spslip is typically used as an Internet interface to SCF devices (generally an RS-232
serial port) to perform telnet and FTP sessions and other communication functions.

The following table lists the driver and descriptor provided for SLIP:

Installation

To install the spslip device driver on your system, perform the following steps:

Step 1. Setup the inetdb and inetdb2 data files.

Step 2. Modify the spf_desc.h file to set baud rate, stop bits, and parity. This file is located
in the following directory:

MWOS/<OS>/<PROCESSOR>/PORTS/PROTOCOLS/SPF/SLIP/DEFS

For OS-9 systems with only one serial port, be sure to also set the serial device name
to be that of your console. For example:

#define I_DEV_NAME"/term"
#define O_DEV_NAME"/term"

Step 3. Modify the spf_desc.h file to set baud rate, stop bits, and parity. This file is located
in:

MWOS/<OS>/<PROCESSOR>/PORTS/PROTOCOLS/SPF/SLIP/DEFS

Step 4. Remake the descriptor spsl0.

MWOS/<OS>/<PROCESSOR>/PORTS/PROTOCOLS/SPF/SLIP

os9make

After running the make, the descriptor binary can be found in the directory:

MWOS/<OS>/<PROCESSOR>/PORTS/PROTOCOLS/CMDS/BOOTOBJS/SPF

The driver spslip can be found in the directory:

MWOS/<OS>/<PROCESSOR>/CMDS/BOOTOBJS/SPF

Table 2-1. spslip Driver and Descriptor

Driver Descriptor
spslip spsl0

You may also use the ifconfig utility to add the slip interface after starting IP.

Refer to Chapter 7, Utilities and Appendix A, Configuring LAN
Communications for more information about setting up the inetdb files.
Using LAN Communications 20

Chapter 2: Serial Line Internet Protocol (SLIP) Driver
Step 5. On disk-based systems, initialize the protocol stack manually or with the startspf
script (see startspf example). startspf is located in MWOS/SRC/SYS. Otherwise,
enter the following commands:

mbinstall

ipstart

For OS-9 systems with only one serial port, be sure to run inetd (or ftpd/telnetd)
after initializing the protocol stack if you want to be able to handle incoming service
requests (e.g. using telnet to regain access to a shell).

For example:

mbinstall
ipstart; inetd<>>>/nil&

Step 6. On disk-based systems, initialize the protocol stack by hand or with the startspf
script (see startspf example). startspf is located in MWOS/SRC/SYS. Otherwise,
enter the following commands:

mbinstall

ipstart

Step 7. Verify that everything is working correctly by attempting to ping to the remote host.

If you have more than one SLIP connection, make sure each connection has a
different port address (PORTADDR in the driver descriptor configuration section).

• Compression is not negotiated and is ON by default.

• The default serial device used is /t1.

• Baud rate is 19200 by default.

• Baud rates, parity, compression, and MTU must match on both ends.

SPSLIP Transmission Process
The spslip driver processes the data packets it sends and receives in four ways,
including:

• Initialization

• Sending Data

• Reading Data

• Header Compression

Initialization

During initialization, the driver acquires the input and output device names to be
opened from the device descriptor. After opening the input and output devices, it
sets the options for the input and output paths such as baud rate, echo, and X-
ON/X-OFF. spslip then creates two processes called spslip. These processes
control the data flow from the input and output paths. To see the two processes,
enter a procs -e command after starting up the system. If both processes are not
Using LAN Communications 21

Chapter 2: Serial Line Internet Protocol (SLIP) Driver
running for every SLIP port in the system, the SLIP driver did not initialize
successfully.

Sending Data

When data is sent over the serial line, spslip checks to see if the amount of data
being sent is less than the protocol’s Maximum Transmission Unit (MTU). The
default MTU is 1006, as defined in RFC 1055. To change the MTU, update the
spf_desc.h file and remake spsl0.

The sending output process actually performs the SLIP data packaging. Basically,
SLIP defines two special characters:

• END (octal 300)

• ESC (octal 333)

The output process starts sending the data over the serial line. When a data byte is
detected to be the END character, the process replaces it with the ESC and octal 334
for transmission. If the data byte is the same as the ESC character, ESC and octal 335
are sent instead. When the last character of the packet has been sent, an END is sent.

Reading Data

When data is received, spslip calls an entry point to push data up to SPF to
perform the read. The input process reverses the procedures of the far end SLIP
transmitter. When the END character is detected, the input process places the packet
in the receive queue.

Header Compression

The macro COMPRESS_FLAG turns header compression on and off.

To turn compression on (the default), in spf_desc.h, use:

#define COMPRESS_FLAG(1)

To turn compression off, in spf_desc.h, use:

#define COMPRESS_FLAG(0).

SPSLIP Device Descriptor
The spsl0 device descriptor is created by updating the spf_desc.h file in the
directory:

MWOS/<OS>/<PROCESSOR>/PORTS/PROTOCOLS/SPF/SLIP/DEFS

The following is an example of configurable sections of spf_desc.h:

**Device Descriptor for SPF Slip driver

/***/

/**** Device Descriptor for the SPF slip driver (spslip) ****/

/**** ****/

/**** This section contains the configurable parameters ****/
Using LAN Communications 22

Chapter 2: Serial Line Internet Protocol (SLIP) Driver
/***/

#define MAXSLIPMTU SLIPMTU

#define PORTADDR 0

/*

** Name of serial device

*/

#define I_DEV_NAME "/t1"

#define O_DEV_NAME "/t1"

/*

** serial data format

*/

#define SL_RCV_BUF_SIZ 4096 /* input raw receive buffer */

#define SL_PAR_BITS 0x00 /* parity/stopbits */

#define SL_BAUD_RATE 0x10 /* baud rate */

/*

** These values come from the ISP slip driver and are used to

** set the buffer sizes used by spslip

*/

#define OUTBUFSIZE SLIPMTU * 2 + 36

#define INBUFSIZE SLIPMTU + 32

/*

** thread priority

*/

#define SL_IN_PRIOR 128

#define SL_OUT_PRIOR 128

/***/

The previous example makes the spslip driver’s descriptor /spsl0 which uses /t1
as its port.

Table 2-2. Baud Rates

Baud Rate OS-9 for 68K Value OS9 Value
9600 0x0e 0x0f
19200 (default) 0x0f 0x10

Refer to the OS9 for 68K Technical I/O Manual for 68K processors or the OS-9
Device Descriptor and Configuration Module Reference for all other
processors.
Using LAN Communications 23

Chapter 2: Serial Line Internet Protocol (SLIP) Driver
Using LAN Communications 24

3 LAN Communications
Overview

This chapter is an overview of the Local Area Network (LAN) Communications.
The following sections are included:

• Introduction

• LAN Communications Components

• Software Description

• LAN Communications Architecture
25

Chapter 3: LAN Communications Overview
Introduction
The LAN Communications provides a small footprint Internet package that enables
small embedded devices to communicate in a network environment. The User
Datagram Protocol (UDP), Transmission Control Protocol (TCP), Internet Protocol
(IP), as well as a raw socket interface are supported in this package.

LAN Communications Requirements

LAN Communications uses SoftStax®, the Stacked Protocol File Manager (SPF),
for its I/O system. SoftStax is required and provides a complete SPF environment for
creating applications and drivers.

LAN Communications Components
LAN Communications provides local area connectivity support for SoftStax™, the
Microware integrated communications and control environment for OS-9®. It also
adds device-level Ethernet and serial interface capability using Point-to-Point
Protocol (PPP) and Compressed Serial Line Internet Protocol (CSLIP).

Figure 3-1. LAN Communications Components

inetdb D
ata M

odule

Applications
Telnet/FTP

Client/Server
DHCP
Client

Test
Utilities

Bootp
TFTP

SNMP JAVA

Other Microware or
Partner Components

LAN Communications
Pak Components

SoftStax
Components

Hardware

Device
Drivers

ATM
Devices

Ethernet
Devices

Serial
Devices

Wireless
Devices

MPEG
Devices

ISDN
Devices

Socket LibraryAPIs Netdb Library

OS-9
Operating
System

Stacked Protocol File Manager (SPF)File Manager

Protcol
Drivers

IP

TCP UDP

ATM Ethernet PPP/SLIP GSM MPEG ISDN

 Components
Using LAN Communications 26

Chapter 3: LAN Communications Overview
• Telnet provides the user interface for communication between systems
connected to the Internet and enables log-on to remote systems.

• File Transfer Protocol (FTP)transfers files to and from remote systems.

• Dynamic Host Configuration Protocol (DHCP) enables a host to retrieve
network configuration from a server.

Application Programming Interfaces (APIs)

LAN Communications supports the standard Berkeley Socket Library (socket.l)
and network/host library netdb.l. Socket applications access the netdb.l library or
netdb trap handler for network/host functions and for local or DNS client
resolution. netdb locates configuration information in the inetdb data module or
through a DNS client lookup.

File Manager

LAN Communications plugs into the SoftStax™ environment underneath SPF. The
tight network/OS integration of SPF enables the speed and efficiency crucial for
maximizing throughput while minimizing footprint and CPU use over local and
wide area networks.

Protocol Drivers

LAN Communications provides drop-in protocol drivers that can be stacked and
unstacked as required by applications to communicate over LANs. These include:

Transmission Control ProtocolProvide reliable data transfer service over IP.

User Datagram ProtocolProvide datagram services over IP.

Internet Protocol Provide Internet packet forwarding.

Ethernet Protocol Provide Ethernet connectivity, ARP requests, and reply layers
for Ethernet hardware.

Point-to-Point ProtocolSupport IP over serial links.

Serial Line Internet Protocol (SLIP)Support IP over serial links.

Data Module

LAN Communications stores Internet configuration information in resident data
modules with a prefix of inetdb. inetdb is a database containing Internet
configurations for the local machine as well as the hosts, networks, protocols, and
services that are available.

inetdb functions on a standard file system or can be configured to work in small
embedded environments that require Internet connectivity. inetdb contains
information on machine names, IP addresses and interfaces, and network protocol
names and their identification values.

Refer to Appendix A, Configuring LAN Communications for information about
the files that compose the inetdb data modules.
Using LAN Communications 27

Chapter 3: LAN Communications Overview
Software Description
Table 3-1 gives a short description of each of the LAN Communications utilities.
For more information on a specific utility, click on its hyperlink.

Table 3-1. LAN Communications Examples and Utilities

Examples/Utilities Purpose
arp Print and update the ARP table.
beam.c, target.c,
beam6.c, target6.c

Example UDP/IP socket program. Source and objects are
provided.

bootpd BOOTP server daemon.
bootpdc BOOTP connection handler (bootpdc is forked by bootpd).
bootptest Test the BOOTP server connection.
dhcp Dynamic Host Configuration Protocol (DHCP) client for

setting host networking paramater.
ftp File Transfer Protocol (FTP) that handles sending and

receiving files.
ftpd FTP server daemon.
ftpdc FTP server connection handler. (ftpdc is forked by ftpd or

inetd.)
hostname Prints or sets the string returned by the socket library.
idbdump Dumps the contents of the inetdb data module.
idbgen inetdb data module generator for host, networks, protocols,

services, DNS resolving gethostname() function, interfaces,
and routes.

ifconfig Interface configuration utility.
inetd Internet Services Master Daemon; inetd can be configured to

fork a particular program to handle data for a particular
protocol/port number combination. For example, inetd can
replace the ftpd and telnetd server daemons.

ipstart Initializes the IP stack.
ndbmod Adds, removes, or modifies information stored in the inetdb

data module.
netstat Reports network information and statistics.
ping, ping6 Sends ICMP ECHO_REQUEST packets to host.
pppauth Utility for configuring PPP authentication.
pppd Utility to initiate a PPP connection.
route Add or delete entries from the routing table.
routed,route6d Dynamic routing daemon.
rtsol Router solicitation.
tcpsend.c,
tcprecv.c,

Example TCP/IP socket program. Source and objects are
provided.

telnet Telnet User Interface; telnet provides the ability to log on to
remote systems.

telnetd Telnet Server Daemon.
Using LAN Communications 28

Chapter 3: LAN Communications Overview
telnetdc Telnet Server Connection Handler. (telnetdc forked by
telnetd or inetd.)

tftpd TFTP Server Daemon.
tftpdc TFTP Server Connection Handler. (tftpdc forked by tftpd)

Table 3-1. LAN Communications Examples and Utilities (Continued)

Examples/Utilities Purpose

Chapter 7, Utilities contains more detailed information about utilities and
example applications.

Table 3-2. LAN Communications Libraries

Libraries Purpose
socket.l Berkeley socket library.
netdb.l Library for local or remote host name resolution and

network/host functions. Uses the netdb trap handler.
netdb_dns.l DNS client host name resolution and network functions. Does

not use the netdb trap handler. The code is inlined in the
application.

ndblib.l Library for inetdb data module manipulation.

Refer to the OS-9 Networking Programming Reference for detailed
information concerning libraries.

Table 3-3. LAN Communications Descriptors and Drivers

Drivers & Descriptors Purpose
netdb_dns Local and remote host name resolution module. Client DNS

(Domain Name Service) support.
spenet, enet Driver and descriptor for Ethernet layer. Source files are

provided for the descriptor.
spip, ip0,
ip0_router

Driver and descriptor for IP protocol. Source files are provided
for the descriptor.

spipcp, ipcp0
splcp, lcp0
sphdlc, hdlc0

Drivers and descriptors for the Point-to-Point Protocol (PPP).
Source files are provided for the descriptors.

spslip, spsl0 Driver and descriptor for the Serial Line Internet Protocol
device driver (SLIP). The driver and descriptor provide a point-
to-point serial interface between serial connections for
transmitting TCP/IP packets. Source files are provided for the
descriptor.

spudp, udp0 Driver and descriptor for the UDP protocol. Source files are
provided for the descriptor.

sptcp, tcp0 Driver and descriptor for the TCP protocol. Source files are
provided for the descriptor.
Using LAN Communications 29

Chapter 3: LAN Communications Overview
LAN Communications Architecture
The following figure shows the architecture and organization of the modules in the
LAN Communications. The example applications provided use the socket libraries
(socket.l and netdb.l for network/host functions) to make standard BSD socket
calls.

Figure 3-2. LAN Communications Architecture

The idbgen or ndbmod utilities create the inetdb data module containing
host/network and other configuration information. The ndbmod utility allows

spraw, raw0 Driver and descriptor for raw IP support. Source files provided
for the descriptor.

sproute, route0 Driver and descriptor for IP routing domain support. Source
files provided for the descriptor.

Table 3-3. LAN Communications Descriptors and Drivers (Continued)

Drivers & Descriptors Purpose
Using LAN Communications 30

Chapter 3: LAN Communications Overview
dynamic inetdb generation for entries in the inetdb data module on the resident
system.

See Appendix A, Configuring LAN Communications for more information
about files that compose the inetdb data module.
Using LAN Communications 31

Chapter 3: LAN Communications Overview
Using LAN Communications 32

4 Point-to-Point Protocol
(PPP)

This chapter discusses the OS-9 PPP protocol implementation. It includes the
following sections:

• Introduction to PPP

• PPP Protocol Functions

• PPP Device Descriptors

• Utilities

• Setting Up the Client Machine
33

Chapter 4: Point-to-Point Protocol (PPP)
Introduction to PPP
The PPP device driver provides a point-to-point serial interface between serial
connections for transferring TCP/IP packets (as described in Request for Comment
(RFC) 1661 and 1662). The PPP device drivers provide PPP functionality in the
SoftStax® environment.

The following PPP topics are discussed in conjunction with PPP:

• installation

• transmission process

• device descriptors

• utilities

PPP is typically used as an Internet interface to Serial Character File Manager (SCF)
devices--generally on an RS-232 serial port--to perform telnet sessions, File Transfer
Protocol (FTP) sessions, and debugging capabilities.

PPP Drivers and Descriptors

The following is a list of drivers and descriptors provided for PPP:

Protocol Drivers

The SPF PPP protocol driver is implemented as a stack of four protocol drivers:

• Internet Protocol Control Protocol (IPCP) driver

• Link Control Protocol (LCP) driver

• link-level High-Level Data Link Control (HDLC) framer

• Softstax serial protocol driver

Figure 4-1 shows how the drivers communicate with each other and the serial
device.

Table 4-1. PPP Drivers and Descriptors

Drivers Descriptors
sphdlc hdlc0

spipcp ipcp0

splcp lcp0

sppscf pscf<n> (corresponds to SCF device /t<n>)
Using LAN Communications 34

Chapter 4: Point-to-Point Protocol (PPP)
Figure 4-1. PPP Data Flow

Utility Programs

Two utility program examples are provided for the PPP driver:

Serial

Serial

HDLC

LCP

IPCP

IP

TCP

Table 4-2. Utility Programs

Program Name Source Code Location
PPP Daemon Utility pppd MWOS/SRC/SPF/PPP/UTILS/PPPD

Authentication setup utility pppauth MWOS/SRC/SPF/PPP/UTILS/PPP_AUTH
Using LAN Communications 35

Chapter 4: Point-to-Point Protocol (PPP)
Installation

To install PPP on your system, complete the following steps:

Step 1. Set up inetdb and inetdb2.

Step 2. If necessary, modify the spf_desc.h file for the sppscf descriptor. SPF descriptor
information, such as baud rate, can be set up in this file. spf_desc.h is located in the
following directory:

OS-9: MWOS/SRC/DPIO/SPF/DRVR/SPPSCF/DEFS
OS-9 for 68k: MWOS/SRC/DPIO/SPF/DRVR/SPPSCF68K/DEFS

Step 3. If necessary, modify the spf_desc.h file for the IPCP descriptor. spf_desc.h is
located in the following directory:

MWOS/<OS>/<PROCESSOR>/PORTS/PROTOCOLS/SPF/PPP/IPCP/DEFS

Step 4. If necessary, modify the spf_desc.h file for the LCP descriptor. spf_desc.h is
located in the following directory:

MWOS/<OS>/<PROCESSOR>/PORTS/PROTOCOLS/SPF/PPP/LCP/DEFS

Step 5. Remake the pscf<n>, hdlc0, lcp0, ipcp0, and descriptors. For each descriptor, run
os9make.

Below are the directories in which the makefiles can be found. (These pathnames
correspond with the descriptors listed above.)

OS-9: MWOS/SRC/DPIO/SPF/DRVR/SPPSCF
OS-9 for 68k: MWOS/SRC/DPIO/SPF/DRVR/SPPSCF68K

MWOS/<OS>/<PROCESSOR>/PORTS/PROTOCOLS/SPF/PPP/HDLC

MWOS/<OS>/<PROCESSOR>/PORTS/PROTOCOLS/SPF/PPP/LCP

MWOS/<OS>/<PROCESSOR>/PORTS/PROTOCOLS/SPF/PPP/IPCP

Step 6. Load the system modules inetdb and inetdb2.

Step 7. Start SPF. (For an example, refer to the startspf script.) Load the PPP system
modules either manually or with the loadspf file. loadspf is located in
MWOS/SRC/SYS.

Step 8. Start the system. If you are using a disk-based system, use startspf in
MWOS/SRC/SYS. Otherwise, enter the following commands:

mbinstall

ipstart

pppd pcsf<n>&

PPP Initialization

During initialization, the following items are set up:

• the pscf<n>/hdlc0/lcp0/ipcp0 stack

You may also use the ifconfig utility to add the PPP interface after starting IP.

Refer to Chapter 7, Utilities and Appendix A, Configuring LAN
Communications for more information about the inetdb and inetdb2 data
modules.
Using LAN Communications 36

Chapter 4: Point-to-Point Protocol (PPP)
• the IPCP and LCP state tables

sppscf calls the appropriate SCF driver in order to gather information about
incoming data and transmit outgoing data to the serial device.

Sending Data

During the sending data process, the following events occur:

1. IP sends data to the IPCP driver, which checks to verify whether or not the
packet is IP, and compresses the TCP header, if necessary.

2. The IPCP driver adds a protocol field to the front of the packet and passes it to
the LCP driver.

3. The LCP driver passes the unprocessed packet to the HDLC driver.

4. The HDLC driver adds an HDLC frame to the packet and passes it to sppscf.

5. The sppscf puts it on the transmit queue for the serial device to transmit.

Reading Data

During the reading data process, the following events occur:

1. The sppscf ISR gathers data and wakes the SPF receive thread (spf_rx) in order
to take the data up the stack.

2. The HDLC driver processes the data for proper HDLC framing. The valid
frames have the HDLC frame removed and the remaining packet is sent up the
stack. Invalid frames and non-HDLC data are discarded.

3. The LCP driver examines the packet to check for an LCP message, and handles
it accordingly.

4. Other packets are sent to higher level drivers according to the protocol field in
the packet. Packets that cannot be delivered for any reason are discarded.

Figure 4-2 details the data flow through the HDLC framer.
Using LAN Communications 37

Chapter 4: Point-to-Point Protocol (PPP)
Figure 4-2. Data Flow through HDLC Framer

PPP Protocol Functions
The Point-to-Point Protocol (PPP) Application Programming Interface (API)
provides four types of function calls: stack configuration, CHAT scripting,
authentication database, and connection/disconnect. In addition, this API defines
structures that provide error reporting and other functionalities between the PPP
stack and the software using the API.
Using LAN Communications 38

Chapter 4: Point-to-Point Protocol (PPP)
Stack Configuration

Stack configuration consists of deciding which, if any, default options within the
stack need to be modified, and then modifying those values. The calls that provide
this functionality include those listed below:

ppp_get_options()

Get negotiable stack options.

ppp_set_options()

Set negotiable stack options.

ppp_option_block()

Communicate the current, desired values between the stack and the API.

The API also provides functions to get and set the asynchronous parameters of the
PPP link. These parameters include, among others, baud rate, parity, and word size.
The calls that provide this functionality are listed below:

ppp_get_asynch_params()

Get asynchronous parameters of the PPP link.

ppp_set_asynch_params()

Set aynchronous parameters of the PPP link.

ppp_modem_p()

Communicate the current, desired values between the stack and the API.

Chat Scripting

CHAT scripting is the process of setting up the data link between the PPP client and
server. This may involve sending or receiving commands, logging onto a UNIX shell
account and running a PPP startup command, or performing messaging before the
client and server exchange PPP configuration packets. The calls that provide this
functionality are listed below:

ppp_chat_open()

Open a raw CHAT path.

ppp_chat_close()

Close CHAT path.

ppp_chat_write()

Write data to CHAT path.

ppp_chat_read()

Read data from CHAT path.

ppp_chat_script()

Run a CHAT script.

ppp_connect()

Run optional CHAT script; establish a PPP link.
Using LAN Communications 39

Chapter 4: Point-to-Point Protocol (PPP)
The ppp_chat_open(), ppp_chat_close(), ppp_chat_write(), and ppp_chat_read()
functions are low-level functions provided so that you can implement your own
version of a CHAT scripting engine. In most cases, the API's built-in engine is
adequate; thus, the ppp_chat_script() or ppp_connect() function is used.

Authentication Database

The authentication database is a memory module referenced by the PPP stack
during the authentication phase of a PPP connection. If no authentication is needed,
this database may be nonexistent. The currently supported authentication protocols
are PAP (Password Authentication Protocol) and CHAP (Challenge-Handshake
Authentication Protocol). Using the authentication calls listed below, the
administrative program may store the PAP/CHAP information needed to log onto
any number of servers.

ppp_auth_create_mod()

Create a new authentication module (database).

ppp_auth_link_mod()

Link to an existing authentication module.

ppp_auth_unlink_mod()

Unlink from an authentication module.

ppp_auth_get_cur_chap()

Get CHAP name/secret for currently set peer.

ppp_auth_get_cur_pap()

Get PAP name/secret for currently set peer.

ppp_auth_get_peer_name()

Get name of currently set peer.

ppp_auth_set_peer_name()

Set current peer.

ppp_auth_add_chap()

Add a new CHAP entry.

ppp_auth_add_pap()

Add a new PAP entry.

ppp_auth_del_chap()

Delete an existing CHAP entry.

ppp_auth_del_pap()

Delete an existing PAP entry.
Using LAN Communications 40

Chapter 4: Point-to-Point Protocol (PPP)
Connect/Disconnect

Connect/disconnect calls cause the PPP stack to begin the negotiation and
establishment of a PPP link, or the termination of an existing PPP link. The calls
that provide this functionality are listed below:

ppp_connect()

Run optional CHAT script & establish PPP link.

ppp_start()

Establish a PPP link.

ppp_disconnect()

Terminate current PPP link.

Other miscellaneous functions are provided by this API. (Some of these functions
are required and some are optional, as indicated.) The calls are listed below:

ppp_init()

Initialize the PPP API. (required)

ppp_term()

Terminate the PPP API. (required)

ppp_open()

Open the PPP stack. (required)

ppp_close()

Close the PPP stack. (required)

ppp_get_params()

Obtain negotiated stack parameters. (optional)

ppp_get_statistics()

Obtain current stack statistics. (optional)

ppp_reset_statistics()

Reset stack statistics. (optional)

PPP Device Descriptors
The PPP device descriptors are modified by updating the spf_desc.h file in the
following directories:

OS-9: MWOS/SRC/DPIO/SPF/DRVR/SPPSCF/DEFS
OS-9 for 68k: MWOS/SRC/DPIO/SPF/DRVR/SPPSCF68K/DEFS

MWOS/<OS>/<PROCESSOR>/PORTS/PROTOCOLS/SPF/PPP/HDLC.API/DEFS

MWOS/<OS>/<PROCESSOR>/PORTS/PROTOCOLS/SPF/PPP/LCP/DEFS

MWOS/<OS>/<PROCESSOR>/PORTS/PROTOCOLS/SPF/PPP/IPCP/DEFS

For information on how to use PPP function calls, refer to the OS-9 Network
Programming Reference.
Using LAN Communications 41

Chapter 4: Point-to-Point Protocol (PPP)
The PPP device descriptors pscf<n>,hdlc0, lcp0, and ipcp0 contain the device
settings for making a PPP connection. Below are the locations in which default
settings for each PPP device descriptor can be found. (These pathnames correspond
with the descriptors listed above.)

OS-9: MWOS/SRC/DPIO/SPF/DRVR/SPPSCF/defs.h
OS-9 for 68k: MWOS/SRC/DPIO/SPF/DRVR/SPPSCF68K/defs.h

MWOS/SRC/DPIO/SPF/DRVR/SP_PPP/HDLC/defs.h

MWOS/SRC/DPIO/SPF/DRVR/SP_PPP/LCP/defs.h

MWOS/SRC/DPIO/SPF/DRVR/SP_PPP/IPCP/defs.h

The values that may be selected for device descriptor options are defined in the
following location:

MWOS/SRC/DEFS/SPF/ppp.h

Overriding Default Settings

To override the default settings, add a new option definition to spf_desc.h in the
following directories: (Do not modify defs.h to change settings.)

OS-9: MWOS/SRC/DPIO/SPF/DRVR/SPPSCF/DEFS
OS-9 for 68k: MWOS/SRC/DPIO/SPF/DRVR/SPPSCF68K/DEFS

MWOS/<OS>/<PROCESSOR>/PORTS/PROTOCOLS/SPF/PPP/HDLC/DEFS

MWOS/<OS>/<PROCESSOR>/PORTS/PROTOCOLS/SPF/PPP/LCP/DEFS

MWOS/<OS>/<PROCESSOR>/PORTS/PROTOCOLS/SPF/PPP/IPCP/DEFS

 PPP Descriptor Makefiles

The makefile for each PPP descriptor can be found in the following directories:

OS-9: MWOS/SRC/DPIO/SPF/DRVR/SPPSCF
OS-9 for 68k: MWOS/SRC/DPIO/SPF/DRVR/SPPSCF68K

MWOS/<OS>/<PROCESSOR>/PORTS/PROTOCOLS/SPF/PPP/HDLC

MWOS/<OS>/<PROCESSOR>/PORTS/PROTOCOLS/SPF/PPP/LCP

MWOS/<OS>/<PROCESSOR>/PORTS/PROTOCOLS/SPF/PPP/IPCP

Rebuilding the Descriptor

Run the following command in each makefile directory to rebuild the descriptor:

os9make

The rebuilt descriptor modules (hdlc0, lcp0, and ipcp0) can be found in the
following directory:

MWOS/<OS>/<PROCESSOR>/PORTS/PROTOCOLS/SPF/CMDS/BOOTOBJS/SPF

The serial driver descriptor, pscf<n>, can be found in the following directory:

The file defs.h (in MWOS/SRC/DPIO/SPF/DRVR/SP_PPP/HDLC) contains default
settings for the hdlc0 device descriptor that shipped prior to release of
Microware OS-9 v3.0; that version of OS-9 has been retired.
Using LAN Communications 42

Chapter 4: Point-to-Point Protocol (PPP)
MWOS/<OS>/<PROCESSOR>/CMDS/BOOTOBJS/SPF

Example: Changing the Baud Rate

To change the baud rate for your processor to, for example, 38400, complete the
following steps:

Step 1. Because the baud rate is set in the SPPSCF descriptor (refer to
MWOS/SRC/DPIO/SPF/DRVR/SPPSCF/defs.h), you will have to open spf_desc.h from
the following directory:

OS-9: MWOS/SRC/DPIO/SPF/DRVR/SPPSCF/DEFS
OS-9 for 68k: MWOS/SRC/DPIO/SPF/DRVR/SPPSCF68K/DEFS

Step 2. Once you have opened the spf_desc.h file, scroll to the section that contains the
macro definitions for your specific pscf descriptor. For example, if you are using
the /t1 interface on your system, find the section containing the macros definitions
and code for the pscf1 descriptor.

If you are using an unlisted device descriptor, you will need to create a section of
code with the appropriate information for your descriptor. For example, suppose
you are using the unlisted interface, /t5. You will need to add the following lines:

#ifdef pscf5 /* Macro definitions for the "pscf5" descriptor */

#define SCF_DEVNAME "/t5" /* SCF driver path to use */

#define LUN 0x05 /* log.unit num: dd_lu_num */

#endif /* pscf5 ***/

Step 3. Once at the section discussed in step two, locate the line of code that contains the
SCF driver path:

#define SCF_DEVNAME "/t<n>" /* SCF driver path to use */

Underneath the code containing the driver path, enter the following command (This
will override the default baud rate set in defs.h.):

#define BAUD_RATE BAUDRATE_38400

This section of code should now look similar to the following example:

#ifdef pscf<n> /* Macro definitions for the "pscf<n>" descriptor */

#define SCF_DEVNAME "/t<n>" /* SCF driver path to use */

#define BAUD_RATE BAUDRATE_38400 /* Override default baude rate */

#define LUN 0x0<n> /* log.unit num: dd_lu_num */

#endif /* pscf<n>***/

The values that may be selected for baud rates are defined in
MWOS/SRC/DEFS/SPF/ppp.h.

Step 4. Save the file.

Step 5. Enter cd.. to move up one directory.

Step 6. Run os9make.

Step 7. The rebuilt pscf<n> descriptor resides in the following location:
/MWOS/<OS>/<PROCESSOR>/CMDS/BOOTOBJS/SPF
Using LAN Communications 43

Chapter 4: Point-to-Point Protocol (PPP)
Utilities
The following sections detail the pppd and pppauth utilities provided with PPP.

PPP Daemon Utility

The PPP daemon utility (pppd) opens a connection to the PPP stack, then sleeps
indefinitely. This pppd utility can also change some of the device settings in the
driver stack.

The source code for pppd is located in the following directory:

MWOS/SRC/SPF/PPP/UTILS/PPPD

PPP Daemon Command Line Arguments

$ pppd -?

The command line for the daemon program is shown below:

pppd [<options>] <stack_name> [<parameters>]

Function: Set up point-to-point connection.

Options:

 -c=<name> Run the chat script located in <name>. <name> may either be a
disk file.

 -d=<dev> Use <dev> as the chat device. (The default is /hdlc0.) This
requires the -c option.

 -i=<index number> Specify the PPP stack index number.

 -k Terminate the pppd session specified by the -i option.

 -p <name> Select <name> in ppp_auth (used for authentication). This is the
equivalent to pppauth -h <name>.

 -v Turn on verbose mode.

 -x Terminate all pppd sessions.

 -z Read commands from stdin.

 -z=<name> Read commands from file or data module.

 stack_name This is the name of stack to open. (If no forward slash (/) is
specified, then /hdlc0/lcp0/ipcp0 is automatically appended.)

 parameters These are the PPP stack configuration parameters.

pppd Script Commands

The following commands may be used in a pppd script. The commands may be used
in any order. Each command must be on a separate line. Comments may be
included in the file using a pound (#) sign and can be placed on a separate line or at
Using LAN Communications 44

Chapter 4: Point-to-Point Protocol (PPP)
the end of a command line. The commands are not case-sensitive, but device names
are used exactly as entered in the script.

set auth_challenge

Request LCP to challenge the server for authentication.

This feature is not currently supported.

set baud[rate] <rate>

Set baud rate. <rate> must be one of the following values: 50, 75, 110, 134.5,
150, 300, 600, 1200, 1800, 2000, 2400, 3600, 4800, 7200, 9600, 19200,
31250, 38400, MIDI.

This feature is not available for OS9 for 68K systems.

set flow <RTS | XON>

Set hardware (RTS/CTS) or software (X-On/X-Off) type flow control.

set ipcp accept-local

During IPCP negotiation, allow the peer to set the local address.

set ipcp accept-remote

During IPCP negotiation, allow the peer to set the remote address.

set ipcp cslot <value>

Set flag for compressing slot identification in TCP header compression. (0=do
not compress; 1=compress.)

set ipcp defaultroute

Set the system IP default route to the address of the system at the other end of
the link.

set ipcp scn <value>

Perform the maximum number of attempts allowed to send configure-nak
messages without sending a configure-ack, prior to assuming negotiation is
impossible.

This feature is not currently supported.

set ipcp stv <value>

Perform the maximum number of attempts allowed to send terminate-
request messages without receiving a terminate-ack response. The default
value is typically two.

set ipcp mslot <value>

Perform maximum slot identification for TCP header compression. The
typical values that allow slot identification are between 0 to 15.

set ipcp timeout <value>

This is the wait time (in milliseconds) for the IPCP retry timer. The default
value is typically 3000 ms (three seconds).

set mode <option,option...>
Using LAN Communications 45

Chapter 4: Point-to-Point Protocol (PPP)
Set mode flags. Choose options from the following: nowait, passive, updata,
modem, loopback, norxcomp, notxcomp, nopap, nochap, nopfc, noacfc. Options
are described in Table 4-3.

set parity <mode>

Set parity mode. Choose <mode> from the following: None, Odd, Even, Mark,
Space.

set rx accm <value>

Set RX->receive Async Control Character Map.

set rx acfc <value>

Set RX->receive Address/Control Field Compression flag. Set to 1 if
Address/Control Field Compression flag peer is desired.

This feature is currently not implemented.

set rx buffer <value>

Set RX->receive buffer size.

set rx device <name>

Set receive port device. The maximum length of the device name is 16.

set ipcp proto <value>

Specify the IP compression protocol to be used. This may be zero for no
compression, or COMPRESSED_TCP for the
Van Jacobsen compression algorithm.

set rx mru <value>

Set RX->Receive Max Receive Unit.

set rx pfc <value>

Set RX->Receive Protocol Field compression flag. Set to one if Protocol Field
compression flag peer is desired.

This feature is currently not supported.

set scr <value>

Set and perform maximum number of attempts to send configuration requests
(sent by LCP layers) without receiving a valid configure-ack, configure-nak,
or configure-reject message. The default value is typically ten.

set stop <bits>

Set the number of stop bits. Choose <bits> from 1, 1.5, or 2.

set str <value>

Set and perform maximum number of attempts to send terminate-request
messages without receiving a
terminate-ack response. The default value is typically 2.

set timeout <value>

Set the number of seconds for time-out value.
Using LAN Communications 46

Chapter 4: Point-to-Point Protocol (PPP)
This is the wait time (in milliseconds) for the LCP retry timer. The default
value is typically 3000 ms (seconds).

set tx accm <value>

Set TX->Transmit Async Control Character Map.

set tx acfc <value>

Set TX->Transmit Address/Control Field Compression flag.

This feature is currently not supported.

set tx block[size] <value>

Set the maximum block size for transmit.

set tx device <name>

Set the transmit port device. The maximum length of device name is 16.

set tx mru <value>

Set the TX->Transmit Max Receive Unit.

set tx pfc <value>

Set the TX->transmit Protocol Field Compression flag.

This feature is currently not implemented.

set word[size] <size>

Set word size. Select <size> from the following options: 5, 6, 7, 8.

Mode Settings

The mode setting controls the behavior of the HDLC, LCP, and IPCP drivers. It is a
bitmask and can have multiple values. The different values and their meanings are
described in Table 4-3. (The symbols in parentheses indicate descriptor settings
defined in ppp.h.)

Table 4-3. Mode Settings for HDLC, LCP, and IPCP Drivers

Mode Description
modem (WAIT_FOR_MODEM) HDLC will delay coming up until the chat script

executes port_ready on and finishes.
passive (PASSIVE_OPEN) LCP and IPCP will not initiate the connection, but wait

for a configuration request from the peer.
nowait (NO_WAIT_ON_OPEN) LCP and IPCP will not wait for a lower layer to

enable the I/O path.
nopap (NO_PAP) LCP will not use PAP authentication.
nochap (NO_CHAP) LCP will not use CHAP authentication.
nopfc (NO_PFC) LCP will not use protocol field compression.
noacfc (NO_ACFC) LCP will not use address/control field compression.
norxcomp (NO_RX_COMPRESS) IPCP will reject compression configuration requests

from the peer.
notxcomp (NO_TX_COMPRESS) IPCP will not request compression during link

negotiation.
Using LAN Communications 47

Chapter 4: Point-to-Point Protocol (PPP)
Chat Scripting Commands

A CHAT script is a series of commands that controls the setup of a connection
pathway. (It is necessary to set up a connection pathway before PPP can begin
negotiating its own parameters.) The CHAT script may control a modem, log a user
onto a host computer, and run a PPP-startup shell command on a host computer.
However, a CHAT script is not always required, as some links require no pre-PPP
setup.

CHAT scripts are very simplistic and are often referred to as "send/expect"
exchanges. A CHAT script consists of a series of commands that are executed
sequentially (much like a shell script). Commands may exist in any combination of
upper/lower case characters; however, some commands require a string parameter.
For example, the send command requires a string in order to send out the CHAT
path. Strings may or may not be enclosed within quotation marks. In addition, it is
possible to embed nonprintable characters within a string. Below is a list of
embeddable escape sequences:

\??? ??? is the octal value of the byte to be inserted in the string.

\x?? ?? is the hexadecimal value of the byte to be inserted into the
string.

\c Do not send carriage return at end of string (for send
command, only).

\n Insert a newline ($0D) into the string.

An example send command is shown below:

send "Hello\nGoodbye"

The above is the same as the following command:

send Hello\x0dGoodbye

In addition, comment lines may be inserted into a script by starting the line with
either a pound (#) or asterisk (*) symbol. Empty lines are treated as comment lines.
If a CHAT script is contained within a data memory module, the end of the script
must be terminated by a NULL ('\0') character to denote “end-of-file”. Below is a
list of commands supported by the PPP API's CHAT scripting engine.

abort <string> Initiate abort sequence if the indicated string is received from
the CHAT path.

expect <string> Wait until the indicated string is received from the CHAT
path before proceeding.

flush Clear all input data from CHAT path.

updata (XPARENT_UPDATA_OK) Allows a driver to be stacked below HDLC and
causes it to send data up unaltered.

loopback (LOOPBACK_MODE) Notifies HDLC to loopback characters. This is only
useful for testing.

Table 4-3. Mode Settings for HDLC, LCP, and IPCP Drivers (Continued)

Mode Description
Using LAN Communications 48

Chapter 4: Point-to-Point Protocol (PPP)
if_abort <delay>, <string>

Add the indicated string to the list of modem commands to
be sent during the abort sequence. if_abort strings are sent
in the order by which they were placed in the list. The script
engine will wait for delay seconds before sending the
assigned if_abort string.

end Successfully terminates the CHAT script.
Using LAN Communications 49

Chapter 4: Point-to-Point Protocol (PPP)
quiet <ON | OFF> Set quiet flag accordingly. When quiet flag is on, characters
sent to the log_path are translated as asterisks (*). This is
useful when sending a password that is embedded in the chat
script. Default for quiet is OFF.

send <string> Send the indicated string to the CHAT path.

show_data <ON | OFF>Set the state of the show_data flag accordingly. When this
flag is on, characters received from the CHAT path are
echoed to the log_path. Default for show_data is OFF.

timeout <seconds> Set the value of the expect timeout timer. This may be
specified as often as needed, resulting in different timeout
periods for various sections on the chat script.

wait <seconds> Pause for the specified time interval before proceeding with
the chat script.

Example CHAT script to send to the username "foo" and password "bar":

* Define some if_abort strings…

if_abort 2, "+++\c"

if_abort 2, "ATH"

* Set up some options…

show_data ON

timeout 10

* Try to log in…

send "\n\c"

expect "user:"

send "foo"

expect "password:"

send "bar"

expect "successful"

end

Applications that use a ppp_conninfo structure may force the CHAT script to abort
at any time by setting the PPP_CIFLAG_CHATABORT bit within the flags field of the
ppp_conninfo structure. This is typically set within an application's signal handler
since the ppp_chat_script() and ppp_connect() calls are synchronous (blocking)
calls.

Troubleshooting Modem Settings for PPP

If your board uses a serial device that does not support hardware flow control
(RTS/CTS), it may be necessary to turn off hardware flow control on your modem.
One symptom that this may be necessary is the occurrence of data not returning to
your target board after a modem-to-modem connection is made.
Using LAN Communications 50

Chapter 4: Point-to-Point Protocol (PPP)
pppauth
Configure PPP Authentication

Syntax

pppauth <option>

Options

-a

Add mode: Add specified entry. -c or -p must be specified, along with
<ISP name>, <Auth ID> and <Secret>.

-c

CHAP specifier: Operate on CHAP entry(ies).

-d

Delete mode: Delete specified entry. -c or -p must be specified along with
<ISP name>.

-f <num entries>

Free entries so <num entries> are available.

-h <ISP name>

Set current ISP name.

-i <Auth ID>

Used in Modify mode to specify new Auth ID.

-l

List mode: List specified entries. -c or -p may be specified.

-m

Modify mode: Modify specified entry. -c or -p must be specified along with
<ISP name> and parameters to change.

-n

New mode: Copy existing entry with new type. -c or -p[ap] must be specified
along with -t[ype].

-p

PAP specifier: Operate on PAP entry(ies).

-s <Secret>

Used in Modify mode to specify new Secret.

-t [CHAP | PAP]

Type specifier: Change type to CHAP or PAP. CHAP or PAP may be
abbreviated C or P.

-v

Verbose mode. Show progress information.
Using LAN Communications 51

Chapter 4: Point-to-Point Protocol (PPP)
Description

The pppauth utility creates a data module used by splcp during the link
authentication process.

Prior to creating the authentication module, complete the following actions:

• Obtain information about the peer or Internet Service Provider (ISP) on the
other end of the link.

• Know the authentication method being used (for example CHAP).

• Know the shared secret (or password).

• Know your authentication ID (user id).

Choose a name for this connection, or use the name provided by the ISP. This name
(ISP name) is used with pppauth to store the authentication method, authentication
ID, and the secret. The -a option is used to add a new entry to the data module. It
must be accompanied by -c or -p to indicate CHAP or PAP authentication. You can
add multiple ISP entries. Prior to making a PPP connection, use the -h option to
select the ISP name to which you want to connect.

Example pppauth Setting

The ISP cserve uses CHAP authentication, and provides you with the user id
"acct1304", and a password of "b5kosh". The ISP "webnet" uses PAP
authentication, and provides you with the userid "webhead", and a password of
"doc-oc". Use the following commands to add this information:

pppauth -a -c 'cserve' 'acct1304' 'b5kosh'

pppauth -a -p 'webnet' 'webhead' 'doc-oc'

Step 1. Prior to connecting to cserve, set it as the current ISP by entering the following
command:

pppauth -h 'cserve'

Step 2. Examine the current settings by using the -l option:

pppauth -l

Current ISP name is 'cserve'.

Type ISP NameAuthentication ID / Secret

CHAP 'cserve''acct1304' 'b5kosh'

PAP 'webnet''webhead' 'doc-oc'

Step 3. Once the authentication module (ppp_auth) has been created, it can be saved using
the save command and loaded as part of the network startup procedure.
Using LAN Communications 52

Chapter 4: Point-to-Point Protocol (PPP)
Setting Up the Client Machine
After the device descriptors are built, load the drivers and descriptors onto the client
(target) machine, if it is different from the machine on which the drivers and
descriptors were built. Using FTP or another file transfer mechanism, load the
following files onto the machine that is to be used for the PPP client:

Step 1. Load pppd and pppauth from the directory:

MWOS/<OS>/<PROCESSOR>/CMDS
Step 2. Load sppscf, pscf<n>, sphdlc, splcp, and spipcp from the following directory:

MWOS/<OS>/<PROCESSOR>/CMDS/BOOTOBJS/SPF

Step 3. Load hdlc0, lcp0, and ipcp0 from the directory:

MWOS/<OS>/<PROCESSOR>/PORTS/PROTOCOLS/CMDS/BOOTOBJS/SPF

Step 4. Set up the inetdb and inetdb2 files, making sure to include a PPP interface.

Step 5. If necessary, add default route using the route command if the descriptors have not
already been configured to do so.

Prepare Chat Script

On the client machine, prepare a CHAT script based on the CHAT Scripting section in
chapter three of the OS-9 Network Programming Reference manual included with
this CD.

Setup Authentication

If you are using Authentication, create the ppp_auth module using the pppauth
utility, or load the module previously created and saved.

Start PPP Daemon Process

To begin the daemon process, complete the following steps:

Step 1. On the client machine, run the following command in the background:

pppd -v pscf<n> &

Step 2. The daemon program prints status information.

For example: Device/stack pscf<n>/hdlc0/lcp0/ipcp0 open, path = n

pppd also can read information from a file:

pppd -v -z=setup.pppd pscf<n> &

Refer to Chapter 7, Utilities for more information about the inetdb file.

Refer to Chapter 7, Utilities for more information about the route utility.

Refer to the pppauth section for more information on ppp_auth.
Using LAN Communications 53

Chapter 4: Point-to-Point Protocol (PPP)
Running PPP Over a Modem Link

To dial the modem and connect to the server, run the following command on the
client machine:

pppd -v -c=<chat file name> -d=<device name> pscf<n> &

(If the device name is not specified, the default device name is /hdlc0.)
Using LAN Communications 54

5 Protocol Drivers

This chapter provides information about the IP, RAW, ROUTE, TCP, UDP, and
ethernet protocol drivers. The following sections are included:

• SPF IP (spip) Protocol Driver

• SPF RAW (spraw) Protocol Driver

• SPF Routing Domain (sproute) Protocol Driver

• SPF TCP (sptcp) Protocol Driver

• SPF UDP (spudp) Protocol Driver

• SPF Ethernet (spenet) Protocol Driver
55

Chapter 5: Protocol Drivers
SPF IP (spip) Protocol Driver
The SPF IP (spip) protocol driver is an IP protocol implementation used in
embedded systems requiring internet routing, gateway, fragmentation, and
reassembly capabilities. The IP protocol functionality is based on IPv6-enabled
NetBSD code. The spip driver also contains support for ICMP and ICMPv6 control
messages, such as redirects, port and destination unreachable, time exceeded, and
source quenches. It also responds to the ICMP_ECHO messages used by ping and
ping6. The following table lists the driver and descriptor provided for IP:

Data Reception and Transmission Characteristics

The spip driver receives incoming IP packets from the driver below it, and maps the
protocol field in the IP header to the appropriate protocol driver above it. For
transmission, spip sends the packet to the appropriate interface below it based on
the routing tables it maintains. If non-IP packets, or IP packets without a
corresponding protocol driver above spip are received, they are discarded.

The spip driver can send and receive packets from multiple SPF drivers below it.
These drivers must support certain IP specific setstats that are described later in this
chapter.

Upon reception, the packet is passed to the appropriate driver above spip based on
the protocol field in the IP header. Protocol drivers above spip are tightly coupled to
the internals of spip. Therefore, generic SPF drivers are not supported directly
above spip. Additional protocol support can be done through the raw socket
interface provided by spraw. If IP fragments are received they are reassembled back
into the original packet before being delivered to higher layer protocols.

For transmission, spip passes the packet to the appropriate driver below it based on
the destination IP address and the routing tables it maintains. If the packet is too
large for the selected interface it is fragmented.

Default Descriptor Values for spip

ip0 and ip0_router are the only IP descriptor files provided with LAN
Communications. The files’ module name is ip0; there should only be one ip0
descriptor for the machine. By default, ip0 is used as a host machine and
ip0_router is used for a router machine.

The following discussion explains how to configure this descriptor and change it by
editing the spf_desc.h file in the SPIP directory:

MWOS/SRC/DPIO/SPF/DRVR/SPIP/DEFS/spf_desc.h

Table 5-1. IP Driver and Descriptor

Driver Descriptor
spip ip0

ip0_router
Using LAN Communications 56

Chapter 5: Protocol Drivers
Configuring the ip0 Descriptor

To configure or change the ip0 descriptor, complete the following steps:

Step 1. Edit/update spf_desc.h in the /DEFS directory.

Step 2. Change to the root /SPIP directory and run os9make.

This process creates an updated descriptor in the following directory:

MWOS/<OS>/<PROCESSOR>/CMDS/BOOTOBJS/SPF.

Considerations for Other Drivers

There are extra operations that spip performs at certain times with protocol drivers
above and below it.

Drivers Above SPIP

Only those protocol drivers (above spip) shipped with LAN Communications are
supported. However, you can implement new protocols using the raw socket
interface provided by spraw.

Drivers Below SPIP

Drivers below spip are notified of their current IP addresses through the
SPF_SS_SETADDR and SPF_SS_DELADDR setstats. spip can associate multiple addresses
with the same interface.

When applications join and leave multicast groups, the appropriate interface is
notified with an IP_SS_IOCTL setstat. This setstat contains a pointer to an ifreq
structure which contains the address of the multicast group being joined or left.

When drivers below spip are opened (during ipstart or a SPF_SS_ATTIF setstat) an
SPF_GS_SYMBOLS getstat is sent down the newly opened stack looking for a
bsd_if_data symbol. If the driver does not implement this getstat, netstat will not
print interface statistics for this interface.

When spip is transmitting data, it passes some additional information within the
mbuf. If the packet should be sent as a link layer broadcast, the M_BCAST flag will be
set in the mbuf's m_flags field. If the packet is not a broadcast packet, the four
bytes immediately preceding the mbuf data are zero. In addition, if the hardware
information of the host is known, it is stored in front of the four bytes. Otherwise,
the IP address of the host to deliver it to is contained in the four bytes immediately
preceding the mbuf data. This is a different address than the destination address in
the IP header when the next hop is an intermediate gateway.

When spip receives data from drivers below through its dr_updata entry point the
data must be 4-byte aligned. This ensures that the source and destination IP
addresses may be accessed as 4-byte integers. In addition, mbufs passed up to spip
must have at least 16 unused bytes between the mbuf header and the start of data.

Refer to the Using SoftStax manual for more information about the contents
and usage of the spf_desc.h file.
Using LAN Communications 57

Chapter 5: Protocol Drivers
If a driver below spip supports multiple interfaces (such as spenet), it must set
lu_pathdesc in the logical unit statics to the path descriptor associated with the
interface that received the packet before passing it up to spip. Drivers that do not
support multiple interfaces do not have to set lu_pathdesc. However, these will
suffer a slight performance loss.

Getstats and Setstats above SPIP

This section provides details about getstats and setstats sent by applications and
protcol drivers above spip.

SPF_SS_ATTIF

This setstat is used to dynamically add an interface to spip. It causes SPF to open a
path to the specified protocol stack but it does not become usable until an address is
added via IP_SS_IOCTL.

Example Usage:

#include <netdb.h>

#include <SPF/spf.h>

#include <net/if.h>

int s;

error_code error;

struct n_ifnet ifp;

struct spf_ss_pb pb;

s = socket(AF_INET, SOCK_RAW, 0); /* May also use SOCK_DGRAM or */

 /* SOCK_STREAM */

strcpy(ifp.if_name, "enet0");

strcpy(ifp.if_stack_name, "/spde0/enet");

ifp.if_flags = IFF_BROADCAST; /* Initial interface status flags */

ifp.if_data.ifi_mtu = 0; /* Use the stacks TXSIZE for an MTU */

ifp.if_data.ifi_metric = 0; /* Not currently used */

pb.code = SPF_SS_ATTIF;

pb.param = &ifp;

pb.size = sizeof(struct n_ifnet);

pb.updir = SPB_GOINGDWN;

error = _os_setstat(s, SS_SPF, &pb);
Using LAN Communications 58

Chapter 5: Protocol Drivers
SPF_SS_DETIF

This setstat is used to dynamically delete an interface to spip.

Example Usage:

#include <SPF/spf.h>

int s;

error_code error;

struct spf_ss_pb pb;

s = socket(AF_INET, SOCK_RAW, 0); /* May also use SOCK_DGRAM or */

 /* SOCK_STREAM */

pb.code = SPF_SS_DETIF;

pb.size = sizeof(name);

pb.param = name;

pb.updir = SPB_GOINGDWN;

error = _os_setstat(s, SS_SPF, &pb);

ioctl

This library function call implements the UNIX style interface I/O controls such as
add and delete addresses, get and set netmasks, broadcast addresses, destination
addresses, flags, and retrieve the interface table.

This function call can be used to add an IP address to an interface. Multiple
addresses are supported by calling the IP_SS_IOCTL command SIOCAIFADDR more
than once on the same interface. If the interface does not support more than one
address or limits the number of addresses, the driver should return an error on the
setstat.
Using LAN Communications 59

Chapter 5: Protocol Drivers
Example Usage: Add an IPv4 address to an interface.

#include <sys/types.h>

#include <sys/socket.h>

#include <sys/ioctl.h>

#include <net/if.h>

#include <netinet/in.h>

#include <netinet/in_var.h>

int s;

error_code error;

struct in_aliasreq ifr;

s = socket(AF_INET, SOCK_RAW, 0); /* May also use SOCK_DGRAM or */

 /* SOCK_STREAM */

memset(&ifr, 0, sizeof(struct in_aliasreq));

strcpy(ifr.ifra_name, "enet0");

ifr.ifra_addr.sin_len = sizeof(struct sockaddr_in);

ifr.ifra_addr.sin_family = AF_INET;

ifr.ifra_addr.sin_addr.s_addr = htonl(0xac1002e2);

ifr.ifra_broadaddr.sin_len = sizeof(struct sockaddr_in);

ifr.ifra_broadaddr.sin_family = AF_INET;

ifr.ifra_broadaddr.sin_addr.s_addr = htonl(0xac10ffff);

ifr.ifra_mask.sin_len = sizeof(struct sockaddr_in);

ifr.ifra_mask.sin_family = AF_INET;

ifr.ifra_mask.sin_addr.s_addr = htonl(0xffff0000);

error = ioctl(s, SIOCAIFADDR, (caddr_t)&ifr);

Other Supported ioctl Commands

Most of the other supported ioctl commands are used similarly although the
argument passed is a pointer to an ifreq or in6_ifreq structure rather than an
in_aliasreq in6_aliasreq structure.

The following commands require the parameter described above.

SIOCGIFCONF Get list of all interfaces.

SIOCGIFADDR Get address of interface.

SIOCGIFNETMASK Get netmask of interface.

SIOCGIFNETMASK_IN6 Get netmask of interface.

SIOCGIFDSTADDR Get point-to-point address.
Using LAN Communications 60

Chapter 5: Protocol Drivers
SIOCGIFBRDADDR Get broadcast address of interface.

SIOCGIFFLAGS Get interface flags.

SIOCSIFADDR Set address of interface.

SIOCSIFADDR_IN6 Set address of interface.

SIOCSIFNETMASK Set netmask of interface.

SIOCSIFDSTADDR Set point-to-pint address.

SIOCSIFBRDADDR Set broadcast address of interface.

SIOCSIFFLAGS Get interface flags.

The following example deletes an IPv4 address from an interface:

#include <sys/types.h>

#include <sys/socket.h>

#include <sys/ioctl.h>

#include <net/if.h>

#include <netinet/in.h>

int s;

error_code error;

struct ifreq ifr;

s = socket(AF_INET, SOCK_RAW, 0); /* May also use SOCK_DGRAM or */

 /* SOCK_STREAM */

memset(&ifr, 0, sizeof(struct ifreq));

strcpy(ifr.ifr_name, "enet0");

ifr.ifr_addr.sa_len = sizeof(struct sockaddr_in);

ifr.ifr_addr.sa_family = AF_INET;

((struct sockaddr_in *)&ifr.ifr_addr)->sin_addr.
s_addr = htonl(0xac1002e2);

error = ioctl(s, SIOCDIFADDR, (caddr_t)&ifr);

The interface table may also be retrieved using the ioctl call.
Using LAN Communications 61

Chapter 5: Protocol Drivers
Example Usage:

#include <sys/types.h>

#include <sys/socket.h>

#include <sys/ioctl.h>

#include <net/if.h>

#include <netinet/in.h>

int s;

error_code error;

struct ifconf ifc;

char buffer[256];

s = socket(AF_INET, SOCK_RAW, 0); /* May also use SOCK_DGRAM or */

 /* SOCK_STREAM */

ifc.ifc_len = 256;

ifc.ifc_buf = buffer;

error = ioctl(s, SIOCGIFCONF, (caddr_t)&ifc);

Getstats and Setstats Below SPIP

This section provides details about the getstats and setstats sent by spip to drivers
below it.

SPF_SS_SETADDR

Drivers that need to know their IP address (such as spenet for ARP processing)
should implement the SPF_SS_SETADDR setstat. If the number of addresses is limited,
an EOS_FULL error should be returned when the limit is reached. A driver that does
not need to know the protocol addresses may return EOS_UNKSVC.

Example Usage:

case SPF_SS_SETADDR: {

 struct sockaddr_in *sin = (struct sockaddr_in *)pb->param;

 error = add_ip_address(sin->sin_addr);

 return (error);

}

Using LAN Communications 62

Chapter 5: Protocol Drivers
SPF_SS_DELADDR

If the SPF_SS_SETADDR setstat is supported to add addresses, the SPF_SS_DELADDR
setstat must be supported to remove them. If an attempt is made to remove an
unknown address, EADDRNOTAVAIL should be returned.

Example Usage:

case SPF_SS_DELADDR: {

 struct sockaddr_in *sin = (struct sockaddr_in *)pb >param;

 error = del_ip_address(sin->sin_addr);

 return (error);

}

IP_SS_IOCTL

The IP_SS_IOCTL setstat is used to notify interfaces to join or leave a particular
multicast group. If the interface wishes to limit the number of multicast groups
joined, a EOS_FULL error should be returned when the threshold has been exeeded.

Example Usage:

#include <sys/ioctl>

#include <net/if.h>

case IP_SS_IOCTL: {

struct bsd_ioctl *arg_ptr;

struct ifreq *ifr;

arg_ptr = pb->param;

ifr = arg_ptr->arg;

switch(arg_ptr->cmd) {

case SIOCADDMULTI:

return (AddMulticast(ifr->ifr_addr));

case SIOCDELMULTI:

return (DeleteMulticast(ifr->ifr_addr));

}

return(EOPNOTSUPP);

}

SPF_GS_SYMBOLS

The SPF_GS_SYMBOLS getstat is used to retrieve the address of one or more symbols
(variables) maintained by a driver. After obtaining this information, a program can
examine the variable dynamically. This getstat assists porting programs that use the
kvm_nlist or nlist functions on other systems, and relieves drivers of copying
statistic information from driver space to user space.
Using LAN Communications 63

Chapter 5: Protocol Drivers
When processing the SPF_GS_SYMBOLS getstat, a driver receives a pointer to an array
of nlist structures. The nlist structure is defined in
MWOS/SRC/DEFS/SPF/BSD/nlist.h as:

struct nlist {

char *n_name; /* symbol name */

unsigned long n_value; /* address/value of the symbol */

unsigned char n_type; /* type defines */

unsigned char res[3]; /* reserved space */

};

You must initialize each n_name member to point to the name of the symbol to be
retrieved, and zero the rest of the structure. On a successful return, the n_type
member of each element found is non-zero (typically N_ABS). n_value contains the
address of the symbol corresponding to the name you specified in n_name. The
driver processes every member of the nlist array until it reaches an element where
the n_name member is zero. After processing the getstat, the driver passes this
getstat to the next driver in the path. This enables one system call to retrieve
multiple symbols from multiple drivers.

The following code fragment shows how to use the SPF_GS_SYMBOLS getstat. It
retrieves information for the two symbols _ipstat and _rtstat from spip.

#include <nlist.h>

#include <spf.h>

struct nlist nl[5]; /* name list to be passed to IP */

struct nlist *nl_ptr; /* pointer to walk through list after*/

 /* getstat */

spf_ss_pb pb; /* SPF parameter block */

path_id path;

memset(nl, sizeof(nl), 0); /* zero list */

nl[0].n_name = "_ipstat"; /* first element to get IP statistics */

nl[1].n_name = "_rtstat"; /* second element to get routing stats */

pb.code = SPF_GS_SYMBOLS;

pb.size = sizeof(nl); /* or # elements * sizeof(element) */

pb.param = nl;

pb.updir = SPB_GOINGDWN;

if (_os_open("/ip0", FAM_READ, &path) == 0) {

_os_getstat(path, SS_SPF, &pb);

_os_close(path);

}

for (nl_ptr = nl; nl_ptr->n_name; nl_ptr++)

if (nl_ptr->n_type) /* non-zero means symbol was found */

printf("Address of %s is %X\n", nl_ptr->n_name, nl_ptr->n_value);

Possible return codes:

EOS_BPADDR The nlist pointed to by pb.param failed _os_chkmem.

To access the memory pointed to by n_value, a process must be system-state.
User state processes must use _os_permit.
Using LAN Communications 64

Chapter 5: Protocol Drivers
SPF RAW (spraw) Protocol Driver
The SPF RAW protocol driver (spraw) provides a standard raw socket interface to
the IP layer.

The following table lists the driver and descriptor provided for RAW.

Data Reception and Transmission Characteristics

The spraw driver handles input of all IP datagrams where the protocol field of the IP
header is 1 (ICMP), 255 (RAW), or any other value that does not have a
corresponding driver above spip. On reception of such a datagram, it is delivered to
any application that has requested to receive that protocol number. If multiple
processes have requested a particular protocol, the incoming mbuf is duplicated and
a copy delivered to each path.

On transmission, spraw fills in the required IP header fields and passes the datagram
to spip for delivery to the destination. If the IP_HDRINCL option is set for a path, the
application has filled in the IP header and the datagram is passed to spip for
delivery.

Default Descriptor Values for spraw

raw0 is the only spraw descriptor provided with LAN Communications. There
should only be one raw0 descriptor for the machine. The following discussion
explains how this descriptor is configured, and how you can change this descriptor
by editing the spf_desc.h file in the SPRAW directory:

MWOS/SRC/DPIO/SPF/DRVR/SPRAW/DEFS

Configuring the raw0 Descriptor

To configure or change the raw0 descriptor, complete the following steps:

Step 1. Edit/update spf_desc.h in the /DEFS directory.

Step 2. Change to the root /SPRAW directory and run os9make.

This process creates an updated descriptor in the following directory:

MWOS/<OS>/<PROCESSOR>/CMDS/BOOTOBJS/SPF.

Consideration for Other Drivers

The spraw driver depends on functions located in spip and will only work on top of
spip.

Table 5-2. SPRAW Driver and Descriptor

Driver Descriptor
spraw raw0

Refer to the Using SoftStax manual for more information about the contents
and usage of the spf_desc.h file.
Using LAN Communications 65

Chapter 5: Protocol Drivers
SPF Routing Domain (sproute) Protocol Driver
The sproute driver provides a BSD 4.4 style routing domain. This domain allows a
process to send and receive routing messages with spip using the normal sockets
API. A routing domain socket can be created by issuing the socket system call and
specifying a family of AF_ROUTE and a socket type of SOCK_RAW.

The following table lists the driver and descriptor provided for sproute.

Data Reception and Transmission Characteristics

The routing domain enables an application to send a datagram containing an
rt_msghdr structure to add, delete, or change routes within the system routing table.

An application reading from a routing domain socket receives datagrams containing
rt_msghdr structures, indicating changes in the system routing table. It receives
datagrams containing if_msghdr structures when interfaces go up and down, as
well as ifa_msghdr structures when addresses are added to and deleted from the
system.

Routing sockets do not require a connect or a bind. After creation they may be
immediately written to and read from using basic socket API calls.

Default Descriptor Values for sproute

route0 is the only routing domain descriptor provided with LAN Communications.
There should only be one route0 descriptor for the machine. The following
discussion explains how this descriptor is configured, and how you can change this
descriptor by editing the spf_desc.h file in the SPROUTE directory:

MWOS/SRC/DPIO/SPF/DRVR/SPROUTE/DEFS

Configuring the route0 Descriptor

To configure or change the route0 descriptor, complete the following steps:

Step 1. Edit/update spf_desc.h in the /DEFS directory.

Step 2. Change to the root /SPROUTE directory and run os9make.

This process creates an updated descriptor in the following directory:

MWOS/<OS>/<PROCESSOR>/CMDS/BOOTOBJS/SPF.

Consideration for Other Drivers

The sproute driver depends on and only works from functions in spip.

Table 5-3. SPROUTE Driver and Descriptor

Driver Descriptor
sproute route0

The size of the routing table supported by sproute is limited by the amount of
memory available. Each routing table entry is approximately 128 bytes.
Using LAN Communications 66

Chapter 5: Protocol Drivers
SPF TCP (sptcp) Protocol Driver
The SPF TCP (sptcp) protocol driver provides reliable data transfer service over IP.

The following table lists the driver and descriptor provided for TCP:

Data Reception and Transmission Characteristics

The sptcp driver receives incoming TCP packets from the spip driver and maps the
TCP port and IP destination address to a particular path with matching socket
address. If no matching path is found, a TCP reset is returned to the sender.

Upon transmission, sptcp repackages the data to the correct size for the
transmitting interface, fills in the necessary header information, and passes the
packet to spip for delivery to the destination.

Default Descriptor Values for sptcp

tcp0 is the TCP descriptor provided with LAN Communications. There should only
be one descriptor for the machine. The following discussion explains how this
descriptor is configured and how you can change the descriptor by editing the
spf_desc.h file located in:

MWOS/SRC/DPIO/SPF/DRVR/SPTCP/DEFS

Configuring the tcp0 Descriptor

To configure or change the tcp0 descriptor, complete the following steps:

Step 1. Edit/update spf_desc.h in the /DEFS directory.

Step 2. Change to the root /SPTCP directory and run os9make.

This process creates an updated descriptor in the following directory:
MWOS/<OS>/<PROCESSOR>/CMDS/BOOTOBJS/SPF.

Considerations for Other Drivers

The sptcp driver depends on and works on top of functions in spip.

SPF UDP (spudp) Protocol Driver
The SPF UDP protocol driver (spudp) provides datagram service over IP. The
following table lists the driver and descriptor provided for UDP:

Table 5-4. TCP Driver and Descriptor

Driver Descriptor
sptcp tcp0

Table 5-5. UDP Driver and Descriptor

Driver Descriptor
spudp udp0
Using LAN Communications 67

Chapter 5: Protocol Drivers
Data Reception And Transmission Characteristics

The spudp driver receives incoming UDP packets from the spip driver below and
maps the UDP port and IP address to a particular path with matching socket
address. The spudp driver creates an address mbuf with each incoming packet and
chains the data to it using the m_pnext field of the mbuf header. If multiple paths
match, as can happen with wildcard addresses or multicasts, the incoming mbuf is
duplicated and a copy sent to each path. If no match is found, an ICMP port
unreachable error is returned. On transmission, spudp fills in the necessary header
information and passes the datagram to spip for delivery to the destination.

The amount of memory used by a single UDP connection is limited to avoid using
all the available mbuf pool. When an application's read queue grows beyond the
READSZ specified in the udp0 descriptor, an SPF_SS_FLOWON setstat is generated. When
spudp receives this, it buffers up to the number of bytes specified in the RECVBUFFER
descriptor variable. If more data is received, the packets are silently dropped. On
transmit, spudp does not buffer the data and the mbuf pool may be exhausted if the
bottom layer hardware drivers queue an unlimited number of packets.

Default Descriptor Values for spudp

udp0 is the only UDP descriptor provided with LAN Communications. There should
only be one udp0 descriptor for the machine. The following discussion explains how
this descriptor is configured, and how you can change this descriptor by editing the
spf_desc.h file in the SPUDP directory:

MWOS/SRC/DPIO/SPF/DRVR/SPUDP/DEFS

Configuring the udp0 Descriptor

To configure or change the udp0 descriptor, complete the following steps:

Step 1. Edit/update spf_desc.h in the /DEFS directory.

Step 2. Change to the root /SPUDP directory and run os9make.

This process creates an updated descriptor in the following directory:

MWOS/<OS>/<PROCESSOR>/CMDS/BOOTOBJS/SPF.

Considerations for Other Drivers

The spudp driver depends on functions located in spip and, therefore, only works
on top of spip.

Refer to the Using SoftStax manual for more information about the contents
and usage of the spf_desc.h file.
Using LAN Communications 68

Chapter 5: Protocol Drivers
SPF Ethernet (spenet) Protocol Driver
The spenet protocol driver sits between the hardware Ethernet drivers and spip. Its
main function is to map between Ethernet addresses and IP addresses using the
Address Resolution Protocol (ARP). Refer to
RFC 826 for additional details. The spenet driver also adds and removes Ethernet
headers for outgoing and incoming packets.

Spenet maintains an ARP table for mapping between Ethernet and IP addresses.
When spenet receives a unicast packet from spip, and the destination address has
no entry in the ARP table, spenet broadcasts an ARP request to discover the
Ethernet address. The results are then added to the ARP table, and are removed
after 20 minutes. The arp utility can be used to view or modify the ARP table.

Data Reception and Transmission Characteristics

The spenet driver receives incoming Ethernet packets from one or more drivers
below it and maps the destination Ethernet address to the destination IP address.
Before passing the packet to spip, the lu_pathdesc component of the logical unit
statics is set to point to the appropriate path descriptor to enable spip to determine
which interface received the packet.

For transmission, spenet adds the appropriate Ethernet hardware destination and
source addresses to the packet. If the M_BCAST flag is set in the mbuf header, the
packet is assumed to be a broadcast and the all 1’s hardware broadcast address is
used. If the M_MCAST flag is not set, the existance of the Ethernet hardware
destination address is checked. If it does exist, that address should be used to create
the Ethernet header. In any other case, the destination address in the IP header is
converted to the appropriate link layer multicast address. In all other cases the ARP
cache is searched using the IP address of the next hop destination. If no ARP entry
exists, the ARP protocol is initiated. When the Ethernet header has been completed,
the packet is sent to an interface driver below.

Default Descriptor Values for spenet

enet is the only descriptor for spenet provided with LAN Communications. This
descriptor is generic for all Ethernet drivers and should not need to be updated.

This descriptor is configured to change fields by editing the spf_desc.h file in the
SPENET directory:

MWOS/SRC/DPIO/SPF/DRVR/SPENET/DEFS

Table 5-6. SPF Ethernet Driver and Descriptor

Driver Descriptor
spenet enet
Using LAN Communications 69

Chapter 5: Protocol Drivers
Configuring the enet Descriptor

To configure or change the enet descriptor, complete the following steps:

Step 1. Edit/update spf_desc.h in the /DEFS directory.

Step 2. Change to the root /SPENET directory and run os9make.

This process creates an updated descriptor in the following directory:

MWOS/<OS>/<PROCESSOR>/CMDS/BOOTOBJS/SPF.

Other Default Settings

The following variables can be configured in the enet descriptor. All others should
not be changed.

MAXADDR_PER_IFACE indicates the maximum number of protocol addresses that
can be associated per hardware interface. LAN
Communications supports more than one protocol address
(IP) per hardware interface. The default value is four.

TIMER_INT spenet runs a cyclic timer that is used to remove old arp
entries. This value defines the timer interval in seconds. The
default value is 60.

KILL_C If a completed (received arp reply) entry is not used in this
many timer intervals it is deleted. The default value is 20.

KILL_I If an entry remains incomplete (no arp reply received) for this
many timer intervals it is deleted. The default value is three.

Drivers Below spenet

When spip receives data from drivers below through its dr_updata entry point the
data must be 4-byte aligned. This requirement ensures that the source and
destination IP addresses may be accessed as 4-byte integers. When receiving data,
the four bytes immediately preceding the mbuf data must contain a pointer to the
device entry of the driver sending data up the stack. In addition, spip requires a 32-
byte offset. If there is not enough space, packets will be pitched.

Getstats for SPENET

The structures used for getstats and setstats for spenet are found in the following
locations:

MWOS/SRC/DEFS/SPF/BSD/net/if_arp.h

MWOS/SRC/DEFS/SPF/BSD/netinet/if_ether.h

The spenet driver provides the following getstats to programmers.

Refer to the Using SoftStax manual for more information about the contents
and usage of the spf_desc.h file.

Refer to the OS-9 Network Programming Reference Manual for additional
details on _os_getstat and the spf_ss_pb structure.
Using LAN Communications 70

Chapter 5: Protocol Drivers
SPF_GS_ARPENT

This setstat retrieves a particular entry from the ARP table. The param member of
the spf_ss_pb structure must point to a user allocated arptab structure. The
at_iaddr member of the arptab structure must be set to the IP address (in network
order) of the entry to retrieve. On success, 0 is returned. EOS_PNNF is returned if the
entry cannot be found.

SPF_GS_ARPTBL

This setstat retrieves the entire ARP table. The param member of the spf_ss_pb
structure points to a user allocated array of arptab structures. The size member
must be set to the size of this array in bytes. On success, 0 is returned, indicating
spenet copied as much of the table as possible to the users array, and set the size
member of the spf_ss_pb to the actual size of the ARP table (in bytes).

It is recommended that you retrieve the ARP table using two getstats. The first
getstat sets the size to zero. On return, size will indicate the size of the current ARP
table. Dynamically allocate this much space (plus some additional space in case the
table grows), and issue another getstat.

ENET_GS_STATS

This setstat retrieves the statistics maintained by spenet. The param member of the
spf_ss_pb structure points to a user-allocated enet_stat_pb structure. On success, 0
is returned.

Setstats for SPENET

The spenet driver provides the following setstats to programmers.

To alter the ARP table, a process must have super user access.

SPF_SS_ADDARP

This setstat adds an entry to the ARP table. The param member of the spf_ss_pb
structure points to a user allocated arpreq structure. You must initialize the arp_pa
(in network order), arp_ha, and arp_flags members of this structure. See the file
if_arp.h for settings of arp_flags. The arp_pa member should be treated as a
sockaddr_in stucture, setting the sin_family to AF_INET. On success, 0 is returned.

Refer to the OS-9 Network Programming Reference Manual for additional
details on _os_getstat and the spf_ss_pb structure.
Using LAN Communications 71

Chapter 5: Protocol Drivers
SPF_SS_DELARP

This setstat removes an entry from the ARP table. The param member of the
spf_ss_pb structure points to a user allocated arpreq structure. You must set the
arp_pa member to the IP address (in network order) of the entry to be deleted. This
member should also be treated as a sockaddr_in stucture, setting the sin_family to
AF_INET. On success, 0 is returned. EOS_PNNF indicates the address was not found in
the ARP table.

Refer to the arp command in Chapter 7, Utilities for additional details.
Using LAN Communications 72

6 BOOTP Server

The Bootstrap Protocol (BOOTP) enables booting from the network. BOOTP
clients require a BOOTP server on the connected network to support the BOOTP
protocol as specified in Request for Comment (RFC) 951 (Croft/Gilmore) and
Trivial File Transfer Protocol (TFTP) as specified in RFC 906 (Finlayson). It also
requires the server to support the BOOTP Vendor Information Extensions are
described in RFC 1048 and Request for Comment 1084 (Reynolds).

This chapter covers the following topics:

• Bootstrap Protocol

• bootptab Configuration File Setup

The BOOTP server is based on the Carnegie Mellon University implementation.
Microware does not provide or support the BOOTP server for UNIX or other
operating systems. Contact the University Computer Center at Carnegie Mellon
for the availability of the BOOTP server on other operating systems.
73

Chapter 6: BOOTP Server
Bootstrap Protocol
Bootstrap Protocol (BOOTP) is a client-server protocol. The system being booted is
the client. The process includes the following steps.

1. The client system makes requests to a server system on the network or the same
VME chassis over the backplane. The server or the client may or may not be an
OS-9 system. OS-9 clients request the server to identify the following:

• client IP address

• server IP address

• path to the bootfile

• size of the bootfile

You can adjust the number of contact attempts the client makes to a server by
editing the config.des file in the following directory:

mwos\OS9000\<PROCESSOR>\PORTS\<TARGET>\ROM\CNFGDATA

2. The server subsequently transfers the bootfile across the network back to the
client using the TFTP protocol.

3. The ROM boot code starts the network boot option (BOOTP) either through
the menu selection or automatically without operator intervention. The client
broadcasts the BOOTP request containing the client’s hardware address (for
example, Ethernet address) retrieved from SRAM. A server responds with the
information listed above.

4. The client then sends a TFTP request for its bootfile to the server. The
responding server calls the TFTP service to transfer the bootfile to the client.
The client reads the bootfile as it is transferred across the network and copies it
into local RAM in the same manner as other boot device drivers.

5. After the file is successfully read in by the client, control returns to the booting
subsystem to complete the bootstrap and pass control to the OS-9 kernel.

Server Utilities

A BOOTP server includes the bootptab configuration file and the utility programs
identified in Figure 6-1.

You must add the line maxbootptry=<number> to the eb section of the file.
<number> can be from 1 to infinity. The default is eight.

Table 6-1. BOOTP Server Utilities

Name Description
bootpd Responds to BOOTP client requests with BOOTP server responses.
bootptest A simple utility to test bootpd server response.
tftpd Responds to tftp read requests and forks tftpdc to handle the

transfer.
tftpdc Reads a bootfile for a client using the TFTP protocol.
Using LAN Communications 74

Chapter 6: BOOTP Server
Utility programs are located in the /MWOS/CMDS directory. The bootptab
configuration file is usually located in the TFTPBOOT directory copied from
MWOS/SRC/TFTBOOT. Below is the procedure for starting a BOOTP server and the
associated utilities:

tftpd <>>>/nil &
bootpd /h0/TFTPBOOT/bootptab<>>>/nil &

The boot file name is dependent on the client BOOTP system. On OS-9, the boot
file is called OS9boot.<hostname>. The OS9boot.<hostname> file should have public
read permissions set to allow tftpd to access it. While in the /h0/TFTPBOOT
directory, use the following command to turn on the public read permissions for all
OS9boot files:

$ attr -pr os9boot.*

The bootpd server is derived from the Version 2.1 bootpd source code. This source
code contains the following notice:

/*
 * Copyright (c) 1988 by Carnegie Mellon.
 *
 * Permission to use, copy, modify, and distribute this
 * program for any purpose and without fee is hereby
 * granted, provided that this copyright and permission
 * notice appear on all copies and supporting
 * documentation, the name of Carnegie Mellon not be used
 * in advertising or publicity pertaining to distribution
 * of the program without specific prior permission, and
 * notice be given in supporting documentation that
 * copying and distribution is by permission of Carnegie
 * Mellon and Stanford University. Carnegie Mellon makes
 * no representations about the suitability of this
 * software for any purpose. It is provided "as is"without
 * express or implied warranty.

 * Copyright (c) 1986, 1987 Regents of the University of
 * California.
 * All rights reserved.
 *
 * Redistribution and use in source and binary forms are
 * permitted provided that this notice is preserved and
 * that due credit is given to the University of California
 * at Berkeley. The name of the University may not be used
 * to endorse or promote products derived from this
 * software without specific prior written permission.
 * This software is provided as is'' without express or
 * implied warranty.
*/
Using LAN Communications 75

Chapter 6: BOOTP Server
bootptab Configuration File Setup
When bootpd is first started, it performs the following functions:

1. Read a configuration file to build an internal database of clients and desired
boot responses for each.

2. Listen for BOOTP boot requests on UDP socket port 67 (bootps).

3. Check the file time stamp on the configuration file before processing a boot
request. If the file time stamp changed since the last check, the client database is
rebuilt.

The configuration file has a format similar to termcap in which two-character, case-
sensitive tag symbols represent host parameters. These parameter declarations are
separated by colons (:). The general format for the bootptab file is as follows:

hostname:tg=value...:tg=value...:tg=value:

hostname is the actual name of a BOOTP client and tg is a two-character tag
symbol. Most tags must be followed by an equal sign and a value. Some tags may
also appear in Boolean form with no value (:tg:).

bootpd recognizes the following tags:

There is also a generic tag, Tn, where n is an RFC-1048 vendor field tag number.
This enables immediate use of future extensions to RFC-1048 without first
modifying bootpd. Generic data may be represented as either a stream of
hexadecimal numbers or as a quoted string of ASCII characters. The length of the
generic data is automatically determined and inserted into the proper field(s) of the
RFC-1048-style BOOTP reply.

The ip and sm tags each expect a single IP address. All IP addresses are specified in
standard Internet dot notation and may use decimal, octal, or hexadecimal numbers
(octal numbers begin with 0, hexadecimal numbers begin with 0x or 0X).

Table 6-2. Bootp Tags

Tag Description
bf Bootfile
bs Bootfile size in 512-octet (byte) blocks
ha Host hardware address
hd Bootfile home directory
hn Send hostname
ht Host hardware type
ip Host IP address
sm Host subnet mask
tc Table continuation (points to similar “template” entry)
vm Vendor magic cookie selector
Using LAN Communications 76

Chapter 6: BOOTP Server
Hardware Type

The ht tag specifies the hardware type code as listed below:

• unsigned decimal, octal, or hexadecimal integer

• ethernet or ether for 10Mb Ethernet

Address

The ha tag takes a hardware address. The hardware address must be specified in
hexadecimal. You can include optional periods and/or a leading 0x for readability.
The ha tag must be preceded by the ht tag (either explicitly or implicitly; see tc).

Host Name, Home Directory, and Bootfile

The host name, home directory, and bootfile are ASCII strings which can optionally
be surrounded by double quotes (“ ”). The client’s request and the values of the hd
and bf symbols determine how the server fills in the bootfile field of the BOOTP
reply packet.

• If the client specifies an absolute path name and that file exists on the server
machine, that path name is returned in the reply packet.

• If the file cannot be found, the request is discarded and a reply is not sent.

• If the client specifies a relative path name, a full path name is formed by
appending the value of the hd tag and testing for the file’s existence.

• If the hd tag is not supplied in the configuration file or if the resulting bootfile
cannot be found, the request is discarded. Because BOOTP clients normally
supply os9boot as the bootfile name, the relative path name case is used. OS-9
BOOTP clients normally supply sysboot as the bootfile name.

Clients specifying null boot files elicit a reply from the server. The exact reply
depends on the hd and bf tags.

• If the bf tag specifies an absolute path name and the file exists, that path name
is returned in the reply packet.

• If the hd and bf tags together specify an accessible file, that file name is returned
in the reply.

• If a complete file name cannot be determined or the file does not exist, the reply
contains a zeroed-out bootfile field.

In each case, existence of the file means, in addition to actually being present, the
public read access bit of the file must be set. tftpd requires this to permit the file
transfer. Set the hd tag to /h0/TFTPBOOT or to the same directory as given on the
tftpd command line.

All file names are first tried as filename.hostname and then as filename. This
provides for individual per-host bootfiles.
Using LAN Communications 77

Chapter 6: BOOTP Server
The following table further illustrates the interaction between hd, bf, and the
bootfile name received in the BOOTP request.

Bootfile Size

The bootfile size, bs, may be a decimal, octal, or hexadecimal integer specifying the
size of the bootfile in 512-octet blocks, or the keyword auto. Specifying auto causes
the server to automatically set the bootfile size to the actual size of the named
bootfile at each request. Specifying the bs symbol as Boolean has the same effect as
specifying auto as its value. OS-9 BOOTP clients require bs or bs=auto.

Sending a Host Name

The hn tag is strictly a Boolean tag. It does not take the usual equal sign and value.
Its presence indicates the host name should be sent to RFC-1048 clients. bootpd
attempts to send the entire host name as it is specified in the configuration file. If
this does not fit into the reply packet, the name is truncated to just the host field (up
to the first period, if present) and then tried. In no case is an arbitrarily truncated
host name sent. If nothing reasonable fits, nothing is sent.

Sharing Common Values Between Tags

Often, many host entries share common values for certain tags (such as name
servers). Rather than repeatedly specifying these tags, you can list a full
specification for one host entry and shared by others using the tc (table
continuation) tag. The template entry is often a dummy host which does not
actually exist and never sends BOOTP requests. This feature is similar to the tc
feature of termcap for similar terminals.

Information explicitly specified for a host always overrides information implied by
a tc tag symbol, regardless of its location within the entry. The tc tag may be the
host name or IP address of any host entry previously listed in the configuration file.

Table 6-3. BOOTP Request Matrix

Homedir
Specified

Bootfile
Specified

Client’s file
Specification Action

No No Null Send null file name
No No Relative Discard request
No Yes Null Send if absolute else discard request
No Yes Relative Discard request
Yes No Null Send null file name
Yes No Relative Lookup with .host
Yes Yes Null Send home/boot or bootfile
Yes Yes Relative Lookup with .host

bootpd allows the tc tag symbol to appear anywhere in the host entry, unlike
termcap which requires it to be the last tag.
Using LAN Communications 78

Chapter 6: BOOTP Server
Sometimes you need to delete a specific tag after it has been inferred with tc. To
delete the tag, use the construction tag@. This removes the effect of the tag.

For example, to completely undo the host directory specification, use :hd@: at an
appropriate place in the configuration entry. After removal with @, you can reset a
tag using tc.

Blank lines and lines beginning with a pound sign (#) are ignored in the
configuration file. Host entries are separated from one another by new lines. You
can extend a single host entry over multiple lines if the lines end with a backslash
(\). You can also have lines longer than 80 characters.

Tags may appear in any order, with the following exceptions:

• The host name must be the very first field in an entry.

• The hardware type must precede the hardware address.

• Individual host entries must not exceed 1024 characters.

bootptab File Example

An example /h0/TFTPBOOT/bootptab file follows:

First, we define a global entry which specifies the stuff every host
uses.

the bs tag is required for OS-9 BOOTP clients
bf is set (to anything) to cause the bootfile.hostname lookup action

global.dummy:sm=255.255.255.0:hd=/h0/tftpboot:bs:

individual hosts

boop:tc=global.dummy:ht=ethernet:ha=08003E205284:ip=192.52.109.96:

vite:tc=global.dummy:ht=ethernet:ha=08003e20c300:ip=192.52.109.57:

boesky:tc=global.dummy:ht=ethernet:ha=08003E202eae:ip=192.52.109.61:
Using LAN Communications 79

Chapter 6: BOOTP Server
Using LAN Communications 80

7 Utilities

This chapter examines LAN Communications utilities provided with this package.
81

Chapter 7: Utilities
Overview
The following utilities are provided with LAN Communications.

Table 7-1. LAN Communications Utilities

Utility Description
arp Print and update the ARP table.
bootptest Test the bootpd and tftpd daemons.
dhcp DHCP client negotiation utility.
ftp File Transfer Protocol. Transfer files to and from remote systems.
hostname Prints or sets the string returned by the socket library gethostname()

function.
idbgen Internet Database Generation. idbgen builds the internet data module

from the data files: host.conf, hosts, hosts.equiv, inetd.conf,
networks, protocols, resolv.conf, interfaces.conf, routes.conf
services, drpw, idbgen must be run each time any of these files are
updated.

idbdump Internet Database Display. idbdump dumps the current entries in the
internet data module (inetdb).

ifconfig Displays and modifies the interface table. ifconfig allows the addition
of new interfaces, modification of IP addresses and broadcast
addresses, and deletion of IP addresses.

ipstart Initializes IP stack.
mbdump Display current state of system mbuf pool.
ndbmod Allows you to add, remove, or modify information stored in the inetdb

and inetdb2 data modules.
netstat Report network information and statistics.
ping,
ping6

Send ICMP ECHO_REQUEST packets to host.

route Add or delete routes.
routed,
route6d

Dynamic routing daemon.

rtsol Router solicitation.
telnet Telnet user interface; telnet provides the ability to log on to remote

systems.
tftp Trivial File Transfer Protocol. tftp transfers files to and from remote

systems.

All LAN Communications utilities and servers use the netdb shared module
and the inetdb and inetdb2 data modules for name resolution.

Windows 95/NT verisions of the idbgen, idbdump, rpcdbgen, and rpcdump
utilities are provided in addition to the OS-9 versions.
Using LAN Communications 82

Chapter 7: Utilities
Daemon server programs and connection handlers are identified in the following
table.

Utilities
This section includes utility definitions in alphabetical order according to the
following alpha sort rules:

1. Special characters (not letters, numbers, or underscores) are listed first.

2. Utilities are listed in alphabetic order next without regard for numbers and
underscores.

3. If two utility names are identical using these rules, then they are alphabetized
according to the following order:

4. Symbols

5. Underscores

6. Alphabetic characters

7. Numbers

Table 7-2. Daemon Server Programs and Connection Handlers

Daemon Description
bootpd Bootp Server Daemon.
ftpd FTP Server Daemon.
ftpdc FTP Server Connection Handler (forked by ftpd or inetd).
inetd Internet Services Master Daemon. inetd can be configured to fork a

particular program to handle data on a particular protocol/port number
combination. inetd can replace the ftpd and telnetd server daemons.
telnetdc and ftpdc must still be available.

routed,
route6d

Dynamic Routing Daemon.

telnetd Telnet Server Daemon.
telnetdc Telnet Server Connection Handler (forked by telnetd or inetd).
tftpd TFTP Server Daemon.
tftpdc TFTP Server Connection Handler (forked by tftpd).
Using LAN Communications 83

Chapter 7: Utilities
Syntax Usage

Each utility description includes a syntactical description of the command line.
These symbolic descriptions use the following notations:

[] Enclosed items are optional

{ } Enclosed items may be used 0, 1, or multiple times

< > Enclosed item is a description of the parameter to use. For example:

<path> is a legal pathlist.

<devname> is a legal device name.

<modname> is a legal memory module name.

<procID> is a process number.

<opts> is one or more options specified in the command
description.

<arglist> is a list of parameters.

<text> is a character string ended by end-of-line.

<num> is a decimal number, unless otherwise specified.

<file> is an existing file.

<string> is an alphanumeric string of ASCII characters.
Using LAN Communications 84

arp Chapter 7: Utilities
arp
Ethernet/IP Address Resolution Display and Control for IPv4

Syntax

arp [<opts>]

IP Functionality

IPv4 addresses only

Options

<hostname>

Display ARP entry for <hostname>.

-a

Display all of the ARP table entries.

-d <hostname>

Delete an entry for the host called hostname. This option can only be used by
the super-user.

-n

This option can be used when specifying a single hostname, or with the -a
option. It indicates that IP addresses should not be resolved to hostnames. A
"?" will be printed instead of the hostname.

-s <hostname> <eth_addr> [temp][pub]

Create an ARP entry for the host called <hostname> with the Ethernet address
<ether_addr>.

The Ethernet address is given as six hex bytes separated by colons. The entry
is permanent unless the word temp is given in the command. If the word pub is
given, the entry will be published. For instance, this system responds to ARP
requests for hostname even though the hostname is not its own. This option
can only be used by the super-user.

Description

The arp program displays and modifies the Internet-to-Ethernet address translation
tables used by the address resolution protocol (ARP). This table is maintained by
the spenet driver. The age field indicates the number of minutes the entry has been
in the table. Non-permanent entries are removed after 20 minutes.

With no flags, the program displays the current ARP entry for <hostname>. The host
may be specified by name or by number, using Internet dot notation.
Using LAN Communications 85

arp Chapter 7: Utilities
Examples

Publish a temporary arp entry for a machine called odin.

arp -s odin 04:00:00:12:34:56 pub temp

This entry will expire after 20 minutes. To make it permanent, leave the temp
qualifier off.

See Also

ifconfig

netstat
Using LAN Communications 86

bootpd Chapter 7: Utilities
bootpd
BOOTP Request Server Daemon

Syntax

bootpd [<opts>] {<configfile>}

IP Functionality

IPv4 addresses only

Options

-?

Display the syntax, options, and command description of bootpd.

-d

Log debug information to <stderr>.

-t <num>

Exit after <num> minutes of no activity.

Description

bootpd is the server daemon handling client BOOTP requests. bootpd must be run as
super user.

The -d option causes bootpd to display request activity that is useful to diagnose
BOOTP client request problems. Each additional -d (up to three) appearing on the
command line gives more debugging messages.

Each time a client request is received, bootpd checks to see if the <configfile> has
been updated since the last request. This enables changes to <configfile> without
restarting bootpd. By default, configfile is /h0/TFTPBOOT/bootptab.

bootpd is normally run in a LAN Communications startup file as follows:

bootpd /h0/TFTPBOOT/bootptab <>>>/nil&

bootpd looks in inetdb (using getservbyname()) to find the port numbers it should
use. Two entries are extracted:

bootps the bootp server listening port

bootpc the destination port used to reply to clients

If the port numbers cannot be determined this way, the port numbers are assumed
to be 67 for the server and 68 for the client.

• End the command line with an ampersand (&) to place bootpd in the
background (example, bootpd<>>>/nil&).

• bootpd is used in conjunction with tftpd.

Refer to Chapter 6, BOOTP Server for how to set up the BOOTP server.
Using LAN Communications 87

bootptest Chapter 7: Utilities
bootptest
Test Utility for BOOTP Server Response

Syntax

bootptest -h=<hostname> -e=<etheraddr>
-n=<filename> [<opts>]

IP Functionality

IPv4 addresses only

Options

-h=<hostname>

Target server IP address (name or dotted decimal).

-e=<etheradr>

Ethernet address in colon notation.

-n=<filename>

Bootfile name for bootp server.

-f=<filename>

Copy bootfile into <filename>.

Description

bootptest sends a BOOTP request to the network and waits for a response from a
BOOTP server. If a response is received, bootptest attempts to read the bootfile
from the server. bootptest provides a way to test a BOOTP server setup without
using an actual diskless client.

The -h, -e, and -n options are required and must appear on the command line. -h
accepts a name which is converted to an IP address using gethostbyname(). If a host
name is unavailable, the IP address can be given in dotted decimal notation.

To broadcast, specify 0 or 255 as the host portion of the IP network address. This
solicits a response from any BOOTP server on the named network.

The BOOTP client test utility may use all ones (255.255.255.255) for the server IP
address when it boots if it does not yet know its IP address. An IP address of all
ones is received as a broadcast by any IP host with a socket bound to the bootps
port (UDP 67). bootpd uses the contents of the BOOTP message to indicate where
the broadcast came. Otherwise, bootptest can use the IP address of the system.

The bootptab configuration file on the bootpd server must specify an entry for the
system on which bootptest is running. bootptest cannot perform a proxy test for
another host because the bootpd server directs the BOOTP response to the intended
client’s IP address, not the IP address from which bootptest is running.
Using LAN Communications 88

bootptest Chapter 7: Utilities
The most useful test is a simple assurance test that bootpd is properly running on the
server system. Run bootptest naming loopback or the host’s own hostname and see
if a response is received from bootpd. Use the -d option in bootpd to display log
messages.

Example

The following is an example of bootptest:

bootptest -h=192.52.109.255 -e=8:0:3E:20:52:84 -n=os9boot
Using LAN Communications 89

dhcp Chapter 7: Utilities
dhcp
DHCP Client Negotiation Utility

Syntax

dhcp [<eth_dev>] [<opts>]

IP Functionality

IPv4 addresses only

Options

-v

Verbose mode. Print additional information about what the program is doing.

eth_dev

Name of Ethernet device in inetdb module.

-broadcast <address>

Set the expected DHCP broadcast address.

-nofork

Do not fork child DHCP process.

-override

This option allows existing network configurations, such as DNS name
servers, to be overridden by DHCP server-supplied information.

-timeout <seconds>

Number of seconds to wait for DHCP reply.

-port <port>

UDP port of DHCP server.

Description

dhcp is the DHCP client negotiation utility. The eth_dev parameter is the name of
the Ethernet interface used with ndbmod or idbgen. This name should not be
confused with the ethernet device descriptor or driver. If no device is specified on
the command line, and only one interface was added with ndbmod or idbgen, dhcp
uses it.

broadcast Specify that the DHCP server is not correctly broadcasting IP
packets to the correct address.

timeout Enable the user to specify how long dhcp waits before retrying
a failed request. The default is 10 seconds.

-nofork Stop the dhcp client creating a child process and exiting. This
is not normally used.
Using LAN Communications 90

dhcp Chapter 7: Utilities
If the lease time on the IP address supplied by the DHCP server expires, DHCP
removes the address, and reverts back to requesting an IP address.

If the DHCP Server supplies DNS information, dhcp attempts to add it to an inetdb
module. Space for this is provided by creating a new inetdb3 with the ndbmod
command.

Examples

Sample output from dhcp using the verbose mode.

dhcp -v

DHCP: Ethernet device name 'enet0'

DHCP: Ethernet SPF descriptor name '/spe30'

DHCP: Eth Address is 00:60:97:8C:28:7B

DHCP: Adding IP address: 0.0.0.0

DHCP: Adding broadcast address: 255.255.255.255

DHCP: Adding subnet mask: 0.0.0.0

Sending DHCPDISCOVER to 255.255.255.255

Sending DHCPREQUEST to 255.255.255.255

DHCP: Adding IP address: 192.168.3.200

DHCP: Adding broadcast address: 192.168.3.255

DHCP: Adding subnet mask: 255.255.255.0

DHCP: Received a lease for 3600 seconds

DHCP: adding default route to 192.168.3.225

DHCP: Offered domain name: dm1.radisys.com

DHCP: Offered DNS Server 172.16.1.32

DHCP: Adding DNS Server 172.16.1.32

See Also

ifconfig

ndbmod
Using LAN Communications 91

ftp Chapter 7: Utilities
ftp
File Transfer Manipulation/Remote Internet Site Communication

Syntax

ftp [-AadfginpRtvV] [-o <output>] [-P <port>] [-r <retry>]
{[<user@>]<host> [<port>]} {user@]<host>:[<path>][/} {<file>:///<path>}
{ftp://[<user>[:<password>]@]<host>[:<port>]/<path>[/]]

{http://[<user>[:<password>]@]<host>[:<port>]/<path>}

ftp [-u <url> file]

IP Functionality

IPv4 and IPv6 addresses

Options

Options may be specified at the command line or to the command interpreter.The
following options exist for ftp.

-A
Force active mode ftp.

By default, ftp will try to use passive mode ftp and fall back to active mode if
passive is not supported by the server. This option causes ftp to always use an
active connection. It is only useful for connecting to very old servers that do
not implement passive mode properly.

-a
Cause ftp to bypass normal login procedure, and use an anonymous login
instead.

-d
Enable debug messages.

-f
Force a cache reload for transfers that go through the FTP or HTTP proxies.

-g

Disable file name globbing.

-i
Turn off interactive prompting during multiple file transfers.
Using LAN Communications 92

ftp Chapter 7: Utilities
-n
Restrain ftp from attempting “auto-login” upon initial connection.

If auto-login is enabled, ftp will check the .netrc file in the user's home
directory (as defined by the environment variable HOME) for an entry describing
an account on the remote machine. If no entry exists, ftp will prompt for the
remote machine login name. (The default is the user identity on the local
machine.) If necessary, it will also prompt for a password and an account with
which to login.

-o <output>

Save the contents in <output> when auto-fetching files.

<output> is parsed according to the file naming conventions below. If output
is not “-”' or doesnot start with “I”, only the first file specified will be
retrieved into <output>; all other files will be retrieved into the basename of
their remote name.

-p

Force passive mode operation and disables fall back to active mode. Use
behind connection filtering firewalls.

Without this option, ftp attempts to use passive mode by default, falling back
to active mode if the server does not support passive connections.

-P <port>

Set the port number to <port>.

-r <wait>

Retry the connection attempt if it failed, pausing for <wait> seconds.

-R
Restart all non-proxied auto-fetches.

Enable packet tracing (unimplimented).

-u <url> <file> [...]

Upload files on the command line to <url>, where <url> is one of the ftp URL
types as supported by auto-fetch (with an optional target filename for single
file uploads), and <file> is one or more local files to be uploaded.

-v

Enable verbose and progress.

This is the default if output is to a terminal (and in the case of progress, ftp is
the foreground process). ftp is forced to show all responses from the remote
server, as well as report on data transfer statistics.

-V

Disable verbose and progress, overriding the default of enabled when output
is to a terminal.

-?

Display command line usage.
Using LAN Communications 93

ftp Chapter 7: Utilities
Description

ftp is the user interface to the Internet standard File Transfer Protocol. The
program allows a user to transfer files to and from a remote network site. The last
five arguments fetch a file using the FTP or HTTP protocols, or by direct copying,
into the current directory. This is ideal for scripts.

Commands

Command arguments which have embedded spaces may be quoted with double
quotation marks (“ ”). Commands that toggle settings can take an explicit on or off
argument to force the setting appropriately.

Commands that take a byte count as an argument support an optional suffix on the
argument which changes the interpretation of the argument. Supported suffixes are
listed below:

b Causes no modification. (optional)

k Kilo; multiply the argument by 1024

m Mega; multiply the argument by 1048576

g Giga; multiply the argument by 1073741824

The client host with which ftp communicates may be specified on the command
line. If this is done, ftp will immediately attempt to establish a connection to an FTP
server on that host; otherwise, ftp will enter its command interpreter and await
instructions from the user. When ftp is awaiting commands from the user, the
prompt ftp> is provided to you. The following commands are recognized by ftp:

! [<command> [<args>]]

Invoke an interactive shell on the local machine.

If there are arguments, the first is taken to be a command to execute directly
and the rest of the arguments act as its arguments.

$ <macro-name> [<args>]

Execute the macro macro-name that was defined with the macdef command.

Arguments are passed to the macro unglobbed.

account [<passwd>]

Supply a supplemental password required by a remote system for access to
resources once a login has been successfully completed.

If no argument is included, you are prompted for an account password in a
non-echoing input mode.

append <local-file> [<remote-file>]

Append a local file to a file on the remote machine.

If <remote-file> is left unspecified, the local file name is used in naming the
remote file after being altered by any ntrans or nmap setting. File transfer uses
the current settings for type, format, mode, and structure.
Using LAN Communications 94

ftp Chapter 7: Utilities
ascii

Set the file transfer type to ASCII network.

This is the default type.

bell

Arrange for a bell to sound after each file transfer command is completed.

binary
Set the file transfer type to support binary image transfer.

bye
Terminate the FTP session with the remote server and exit ftp.

An end of file will also terminate the session and exit.

case

Toggle remote computer file name case mapping during mget commands.

When case is on (default is off), remote computer file names with all letters in
upper case are written in the local directory with the letters mapped to lower
case.

cd <remote-directory>

Change the working directory on the remote machine to
<remote-directory>.

cdup

Change the remote machine working directory to the parent of the current
remote machine working directory.

chd <remote-directory>

This is a synonym for cd.

chmod <mode> <remote-file>

Change the permission modes of the file <remote-file> on the remote system
to <mode>.

close
Terminate the FTP session with the remote server and return to the command
interpreter.

Any defined macros are erased.

cr

Toggle carriage return stripping during ASCII-type file retrieval.

Records are denoted by a carriage return/linefeed sequence during ASCII-type
file transfer. When cr is on (the default), carriage returns are stripped from
this sequence to conform with the UNIX single linefeed record delimiter.
Records on non-UNIX remote systems may contain single linefeeds; when an
ASCII-type transfer is made, these linefeeds may be distinguished from a
record delimiter
(only when cr is off).
Using LAN Communications 95

ftp Chapter 7: Utilities
debug [<debug-value>]

Toggle debugging mode.

If an optional <debug-value> is specified, it is used to set the debugging level.
When debugging is on, ftp prints each command sent to the remote machine,
preceded by the string “-->”.

delete <remote-file>

Delete the file <remote-file> on the remote machine.

dir [<remote-directory> [<local-file>]]

Print a listing of the contents of a directory on the remote machine.

The listing includes any system-dependent information that the server chooses
to include; for example, most UNIX systems will produce output from the
command ls -l. If the <remote-directory> is left unspecified, the current
working directory is used.

If interactive prompting is on, ftp will prompt you to verify that the last
argument is indeed the target local file for receiving dir output. If no local file
is specified, or if <local-file> is “-”, the output is sent to the terminal.

disconnect

This is a synonym for close.

epsv4

Toggle the use of the extended EPSV and EPRT commands on IPv4 connections.

First, try EPSV/EPRT, then PASV/PORT, which is enabled by default. If an
extended command fails, this option is temporarily disabled for the duration
of the current connection, or until epsv4 is executed again.

exit

This is a synonym for bye.

fget <localfile>

Retrieve the files listed in <localfile>, which have one line per filename.

form <format>

Set the file transfer form to <format>.

The default format is “non-print”.

ftp <host> [<port>]

This is a synonym for open.

gate [<host> [<port>]

Toggle gate-ftp mode, which used to connect through the TIS FWTK and
Gauntlet ftp proxies.

This will not be permitted if the gate-ftp server has not been set (either by you
or the FTPSERVER environment variable). If host is given,
gate-ftp mode is enabled and the gate-ftp server is set to <host>. If <port> is
also given, it used as the port to connect to on the gate-ftp server.
Using LAN Communications 96

ftp Chapter 7: Utilities
get <remote-file> [<local-file>]

Retrieve the <remote-file> and store it on the local machine.

If the local file name is not specified, it is given the same name it has on the
remote machine, subject to alteration by the current case, ntrans, and nmap
settings. The current settings for type, form, mode, and structure are used
while transferring the file.

glob

Toggle filename expansion for mdelete, mget and mput.

If globbing is turned off with glob, the file name arguments are taken literally
and not expanded. For mdelete and mget, each remote file name is expanded
separately on the remote machine and the lists are not merged.

Expansion of a directory name is likely to be different from expansion of the
name of an ordinary file: The exact result depends on the foreign operating
system and ftp server, and can be previewed with mls remote-files -.

hash [<size>]

Toggle hash-sign (“#”) printing for each data block transferred.

The size of a data block defaults to 1024 bytes. This can be changed by
specifying <size> in bytes. Enabling hash disables progress.

help [<command>]

Print an informative message about the meaning of <command>.

If no argument is given, ftp prints a list of the known commands.

idle [<seconds>]

Set the inactivity timer on the remote server to seconds seconds.

If <seconds> is omitted, the current inactivity timer is printed.

image

This is a synonym for binary.

lcd [<directory>]

Change the working directory on the local machine. If no directory is
specified, your home directory is used.

lpwd

Print the working directory on the local machine.

ls [<remote-directory> [<local-file>]]

This is a synonym for dir.

mget and mput are not meant to transfer entire directory subrees of
files. This can be done by transferring a tar() archive of the subtree (in
binary mode).
Using LAN Communications 97

ftp Chapter 7: Utilities
macdef <macro-name>

Define a macro.

Subsequent lines are stored as the macro macro-name; a null line (consecutive
newline characters in a file or carriage returns from the terminal) terminates
macro input mode. There is a limit of 16 macros and 4096 total characters in
all defined macros.

Macros remain defined until a close command is executed. The macro
processor interprets “$” and “\” as special characters. A “$” followed by a
number (or numbers) is replaced by the corresponding argument on the macro
invocation command line.

A “$” followed by an “i” signals that macro processor that the executing
macro is to be looped. On the first pass, “$i” is replaced by the first argument
on the macro invocation command line; on the second pass it is replaced by
the second argument. A “\” followed by any character is replaced by that
character. Use the “\” to prevent special treatment of the “$”.

mdelete [<remote-files>]

Delete the remote-files on the remote machine.

mdir <remote-files> <local-file>

This is similar to dir; however, with this option, multiple remote files may be
specified and the <local-file> must be specified.

If interactive prompting is on, ftp will prompt you to verify that the last
argument is indeed the target local file for receiving mdir output. A <local-
file> of “-” sends the output to stdout.

mget <remote-files>

Expand the remote-files on the remote machine and do a get for each file
name thus produced.

Refer to glob for details on the filename expansion. Resulting file names are
processed according to case, ntrans, and nmap settings. Files are transferred
into the local working directory, which can be changed with lcd directory;
new local directories can be created with ! makdir directory.

mkdir <directory-name>

Make a directory on the remote machine.

mls <remote-files> <local-file>

This is similar to ls; however, with this option multiple remote files may be
specified and the <local-file> must be specified.

If interactive prompting is on, ftp prompts you to verify that the last
argument is the target local file for receiving mls output. A local-file of “-”
sends the output to stdout.

mode <mode-name>

Set the file transfer mode to mode-name.

The default mode is stream mode.
Using LAN Communications 98

ftp Chapter 7: Utilities
modtime <remote-file>

Show the last modification time of the file on the remote machine.

mput <local-files>

Expand wild cards in the list of local files given as arguments and do a put for
each file in the resulting list.

Refer to glob for details of filename expansion. Resulting file names will then
be processed according to ntrans and nmap settings.

msend <local-files>

This is a synonym for mput.

newer <remote-file> [<local-file>]

Get the file only if the modification time of the remote file is more recent that
the file on the current system.

If the file does not exist on the current system, the remote file is considered
newer. Otherwise, this command is identical to get.

nlist [<remote-directory> [<local-file>]]

This is a synonym for ls; however, this option sends the NLST command,
rather than the LIST command, to the remote server.

nmap [<inpattern outpattern>]

Set or unset the filename mapping mechanism.

If no arguments are specified, the filename mapping mechanism is unset. If
arguments are specified, remote filenames are mapped during mput
commands and put commands issued without a specified remote target
filename. If arguments are specified, local filenames are mapped during mget
commands and get commands issued without a specified local target filename.

This command is useful when connecting to a remote computer with different
file naming conventions or practices. The mapping follows the pattern set by
inpattern and outpattern.

[<Inpattern>]

This is a template for incoming filenames (which may have already been
processed according to the ntrans and case settings). Variable templating is
accomplished by including the sequences “$1”, “$2”, and all others through
“$9” in inpattern. Use “\” to prevent this special treatment of the “$”
character. All other characters are treated literally and are used to determine
the nmap [inpattern] variable values. For example, given inpattern “$1.$2”
and the remote file name mydata.data, “$1” would have the value mydata,
and “$2” would have the value data.

[<outpattern>]

This determines the resulting mapped filename. The sequences “$1”, “$2”,
and all others through “$9” are replaced by any value resulting from the
inpattern template. The sequence “$0” is replace by the original filename.
Additionally, the sequence [seq1, seq2] is replaced by [seq1] if seq1 is not
a null string; otherwise, it is replaced by seq2.
Using LAN Communications 99

ftp Chapter 7: Utilities
For example, the command below yields the output filename myfile.data for
input filenames myfile.data and myfile.data.old; myfile.file for the input
filename myfile; and myfile.myfile for the input filename.myfile:

nmap $1.$2.$3 [$1,$2].[$2,file]

Spaces may be included in outpattern, as in the following example:

nmap $1 sed "s/ *$//" > $1

Use the “\” character to prevent special treatment of the “$”,”[',']”,
and “,” characters.

ntrans [<inchars>[<outchars>]]

Set or unset the filename character translation mechanism.

If no arguments are specified, the filename character translation mechanism is
unset. If arguments are specified, characters in remote filenames are
translated during mput commands and put commands issued without a
specified remote target filename. If arguments are specified, characters in
local filenames are translated during mget commands and get commands
issued without a specified local target filename.

This command is useful when connecting to a remote computer with different
file naming conventions or practices. Characters in a filename matching a
character in inchars are replaced with the corresponding character in
outchars. If the character's position in inchars is longer than the length of
outchars, the character is deleted from the file name.

open <host> [<port>]

Establish a connection to the specified host FTP server.

An optional port number may be supplied, in which case, ftp will attempt to
contact an ftp server at that port. If the autologin option is on (default), ftp
will also attempt to automatically log the user in to the FTP server.

passive [auto]

Toggle passive mode (if no arguments are given).

If auto is given, act as if FTPMODE is set to “auto”. If passive mode is turned on
(default), ftp will send a PASV command for all data connections instead of a
PORT command. The PASV command requests that the remote server open a
port for the data connection and return the address of that port. The remote
server listens on that port and the client connects to it.

When using the more traditional PORT command, the client listens on a port
and sends that address to the remote server, who connects back to it. Passive
mode is useful when using ftp through a gateway router or host that controls
the directionality of traffic. (Note that though FTP servers are required to
support the PASV command by RRC 1123, some do not.)

preserve

Toggle preservation of modification times on retrieved files.
Using LAN Communications 100

ftp Chapter 7: Utilities
progress

Toggle display of transfer progress bar.

The progress bar will be disabled for a transfer that has local-file as “-” or a
command that starts with “|”. Enabling progress disables hash. Refer to
FILENAMING CONVENTIONS for more information.

prompt

Toggle interactive prompting.

Interactive prompting occurs during multiple file transfers to allow the user to
selectively retrieve or store files. If prompting is turned off (default is on), any
mget or mput will transfer all files, and any mdelete will delete all files.

When prompting is on, the following commands are available at a prompt:

a Answer “yes” to the current file and automatically answer “yes”
to any remaining files for the current command.

n Answer “no” and do not transfer the file.

p Answer “yes” to the current file and turn off prompt mode (as is
“prompt off” had been given).

q Terminate the current operation.

y Answer “yes” and transfer the file.

? Display a help message.

Any other reponse will answer “yes” to the current file.

proxy <ftp-command>

Execute an ftp command on a secondary control connection.

This command allows simultaneous connection to two remote FTP servers for
transferring files between the two servers. The first proxy command should be
an “open” command so that it can establish the secondary control
connection. Enter the command proxy ? to see other FTP commands
executable on the secondary connection.

The following commands behave differently when prefaced by proxy:

open Will not define new macros during the auto-login
process

close Will not erase existing macro definitions

get and mget Transfer files from the host on the primary control
connection to the host on the secondary control
connection

put, mput, and append Transfer files from the host on the secondary control
connection to the host on the primary control
connection.

Third party file transfers depend upon support of the FTP protocol PASV
command by the server on the secondary control connection.
Using LAN Communications 101

ftp Chapter 7: Utilities
put <local-file> [<remote-file>]

Store a local file on the remote machine.

If remote-file is left unspecified, the local-file name is used after processing
according to any ntrans or nmap settings in naming the remote file. File
transfer uses the current settings for type, format, mode, and structure.

pwd

Print the name of the current working directory on the remote machine.

quit

This is a synonym for bye.

quote <arg1> <marg2> ...

The arguments specified are sent, verbatim, to the remote FTP server.

recv <remote-file> [<local-file>]

This is a synonym for get.

reget <remote-file> [<local-file>]

reget acts like get; however, if local-file exists and is smaller than remote-
file, local-file is presumed to be a partially transferred copy of remote-
file and the transfer is continued from the apparent point of failure.

This command is useful when transferring very large files over networks that
are prone to dropping connections.

rename [<from> [<to>]]

Rename the file from on the remote machine to the file to.

reset

Clear reply queue.

This command re-synchronizes command/reply sequencing with the remote
FTP server. Resynchronization may be necessary following a violation of the
FTP protocol by the remote server.

restart <marker>

Restart the immediately following get or put at the indicated marker.

On UNIX systems, marker is usually a byte offset into the file.

rhelp [<command-name>]

Request help from the remote FTP server.

If a command-name is specified it is supplied to the server as well.

rmdir <directory-name>

Delete a directory on the remote machine.

rstatus [<remote-file>]

With no arguments, show status of remote machine.

If remote-file is specified, show status of remote-file on remote machine.
Using LAN Communications 102

ftp Chapter 7: Utilities
runique

Toggle storing of files on the local system with unique filenames.

If a file already exists with a name equal to the target local filename for a get
or mget command, a “.1” is appended to the name. If the resulting name
matches another existing file, a “.2” is appended to the original name. If this
process continues up to “.99”, an error message is printed and the transfer
does not take place. The generated unique filename will be reported. Note
that runique will not affect local files generated from a shell command (see
below). The default value is off.

send <local-file> [<remote-file>]

This is a synonym for put.

sendport

Toggle the use of PORT commands.

By default, ftp will attempt to use a PORT command when establishing a
connection for each data transfer. The use of PORT commands can prevent
delays when performing multiple file transfers. If the PORT command fails, ftp
will use the default data port. When the use of PORT commands is disabled, no
attempt will be made to use PORT commands for each data transfer. This is
useful for certain FTP implementations that ignore PORT commands but,
incorrectly, indicate that they have been accepted.

set [<option> <value>]

Set option to value.

If <option> and <value> are not given, display all of the options and their
values. The currently supported options are listed below:

anonpass Defaults to $FTPANONPASS.

ftp_proxy Defaults to $ftp_proxy.

http_proxyDefaults to $http_proxy.

no_proxy Defaults to $no_proxy.

prompt Defaults to $FTPPROMPT.

rprompt Defaults to $FTPRPROMPT.

size <remote-file>

Return size of remote-file on remote machine.

site <arg1> <arg2>...

The arguments specified are sent, verbatim, to the remote FTP server as a SITE
command.

status

Show the current status of ftp.

struct <struct-name>

Set the file transfer structure to struct-name.

By default file structure is used.
Using LAN Communications 103

ftp Chapter 7: Utilities
sunique

Toggle storing of files on remote machine under unique file names.

The remote FTP server must support FTP protocol STOU command for
successful completion. The remote server will report unique name. Default
value is off.

system

Show the type of operating system running on the remote machine.

tenex

Set the file transfer type to that needed to talk to TENEX machines.

trace

Toggle packet tracing. (unimplemented)

type [<type-name>]

Set the file transfer type to type-name.

If no type is specified, the current type is printed. The default type is network
ASCII.

umask [<newmask>]

Set the default umask on the remote server to newmask. If newmask is omitted,
the current umask is printed.

unset <option>

Unset option. Refer to set for more information.

usage <command>

Print the usage message for command.

user <user-name> [<password> [<account>]]

Identify yourself to the remote FTP server.

If the password is not specified and the server requires it, ftp will prompt the
user for it (after disabling local echo). If an account field is not specified, and
the FTP server requires it, you will be prompted for it.

If an account field is specified, an account command will be relayed to the
remote server after the login sequence is completed if the remote server did not
require it for logging in. Unless ftp is invoked with auto-login disabled, this
process is done automatically on initial connection to the FTP server.

verbose

Toggle verbose mode.

In verbose mode, all responses from the FTP server are displayed to the user.
In addition, if verbose is on, when a file transfer completes, statistics
regarding the efficiency of the transfer are reported. By default, verbose is on.

? [<command>]

This is a synonym for help.
Using LAN Communications 104

ftp Chapter 7: Utilities
Command arguments which have embedded spaces may be quoted with quote
“”marks. Commands which toggle settings can take an explicit on or off argument
to force the setting appropriately.

Commands which take a byte count as an argument support an optional suffix on
the argument which changes the interpretation of the argument. Supported suffixes
are:

b Cause no modification. (optional)

k Kilo; multiply the argument by 1024

m Mega; multiply the argument by 1048576

g Giga; multiply the argument by 1073741824

Auto-Fetching Files

In addition to standard commands, this version of ftp supports an
auto-fetch feature. To enable auto-fetch, simply pass the list of hostnames/files on
the command line.

The following formats are valid syntax for an auto-fetch element:

[user@]host:[path][/]

Classic FTP format.

If path contains a glob character and globbing is enabled, (refer to glob),
then the equivalent of mget path is performed. If the directory component of
path contains no globbing characters, it is stored locally with the basename
of path, in the current directory. Otherwise, the full remote name is used as
the local name, relative to the local root directory.

ftp://[user[:password]@]host[:port]/path[/][;type=X]

An FTP URL, retrieved using the FTP protocol if set ftp_proxy is not
defined. Otherwise, transfer using HTTP via the proxy defined in set
ftp_proxy. If set ftp_proxy is not defined and user is given, login as user. In
this case, use password if supplied, otherwise prompt the user for one.

In order to be compliant with RFC 1738, ftp strips the leading “/” from
path, resulting in a transfer relative from the default login directory of the
user. If the “/” directory is required, use a leading path of “%2F”. If a user's
home directory is required (and the remote server supports the syntax), use
a leading path of “%7Euser/”. For example, to retrieve /etc/motd from
localhost as the user myname with the password mypass, use
tp://myname:mypass@localhost/%2fetc/motd.

If a suffix of “;type=A” or “;type=I” is supplied, then the transfer type will
take place as ascii or binary (respectively). The default transfer type is
binary.

Correct execution of many commands depends on proper behavior by the
remote server.
Using LAN Communications 105

ftp Chapter 7: Utilities
http://[user[:password]@]host[:port]/path

An HTTP URL, retrieved using the HTTP protocol. If set http_proxy is
defined, it is used as a URL to an HTTP proxy server. If HTTP
authorization is required to retrieve path, and user (and optionally
password) is in the URL, use them for the first attempt to authenticate.

file:///path

A local URL, copied from /path.

Unless noted otherwise above, and -o output is not given, the file is stored in
the current directory as the basename of path. If a classic format or a FTP
URL format has a trailing “/”, then ftp will connect to the site and cd to the
directory given as the path, and leave the user in interactive mode ready for
further input.

Direct HTTP transfers use HTTP 1.1. Proxied FTP and HTTP transfers use
HTTP 1.0. If -R is given, all auto-fetches that do not go via the FTP or
HTTP proxies will be restarted. For FTP, this is implemented by using reget
instead of get. For HTTP, this is implemented by using the Range: bytes=
HTTP/1.1 directive.

If WWW or proxy WWW authentication is required, you will be prompted
to enter a username and password to authenticate with. When specifying
IPv6 numeric addresses in a URL, you need to surround the address in
square brackets. (For example: ftp://super@[::1]:21/.) This occurs
because colons are used in IPv6 numeric address, as well as being the
separator for the port number.

Aborting a File Transfer

To abort a file transfer, use the terminal interrupt key (usually Ctrl-C). Sending
transfers will be immediately halted. Receiving transfers will be halted by sending
an FTP protocol ABOR command to the remote server, and discarding any further
data received. The speed at which this is accomplished depends upon the remote
server's support for ABOR processing. If the remote server does not support the
ABOR command, the prompt will not appear until the remote server has completed
sending the requested file.

If the terminal interrupt key sequence is used while ftp is awaiting a reply from the
remote server for the ABOR processing, then the connection will be closed. This is
different from the traditional behavior (which ignores the terminal interrupt during
this phase), but is considered more useful.
Using LAN Communications 106

ftp Chapter 7: Utilities
File Naming Conventions

Files specified as arguments to ftp commands are processed according to the
following rules.

1. If the file name `-' is specified, the stdin (for reading) or stdout (for writing) is
used.

2. If the first character of the file name is `|', the remainder of the argument is
interpreted as a shell command. ftp then forks a shell, using popen() with the
argument supplied, and reads (writes) from the stdout (stdin). If the shell
command includes spaces, the argument must be quoted (i.e. “| ls -lt”). A
particularly useful example of this mechanism is “dir . |more”.

3. Failing the above checks, if “globbing” is enabled, local file names are expanded
according to the rules. If the ftp command expects a single local file (i.e. put),
only the first filename generated by the "globbing" operation is used.

4. For mget commands and get commands with unspecified local file names, the
local filename is the remote filename, which may be altered by a case, ntrans,
or nmap setting. The resulting filename may then be altered if runique is on.

5. For mput commands and put commands with unspecified remote filenames, the
remote filename is the local filename, which may be altered by a ntrans or nmap
setting. The resulting filename may then be altered by the remote server if
sunique is on.

File Transfer Parameters

The FTP specification specifies many parameters which may affect a file transfer.
The type may be one of ascii, image (binary), ebcdic, and local byte size (for
PDP-10's and PDP-20's mostly). ftp supports the ascii and image types of file
transfer, plus local byte size eight for tenex mode transfers. ftp supports only the
default values for the remaining file transfer parameters: mode, form, and struct.

The .netrc File

The .netrc file contains login and initialization information used by the auto-login
process. It resides in your home directory. The following tokens are recognized; they
may be separated by spaces, tabs, or new-lines:

machine <name>

Identify a remote machine name.

The auto-login process searches the .netrc file for a machine token that
matches the remote machine specified on the ftp command line or as an open
command argument. Once a match is made, the subsequent .netrc tokens are
processed, stopping when the end of file is reached or another machine or a
default token is encountered.
Using LAN Communications 107

ftp Chapter 7: Utilities
default

This is the same as machine name except that default matches any name.

There can be only one default token, and it must be after all machine tokens.
This is normally used as: default login anonymous password user@site,
thereby giving you an automatic anonymous FTP login to machines not
specified in .netrc. This can be overridden by using the -n flag to disable
auto-login.

login name

Identify a user on the remote machine.

If this token is present, the auto-login process will initiate a login using the
specified name.

password string

Supply a password.

If this token is present, the auto-login process will supply the specified string if
the remote server requires a password as part of the login process. Note that if
this token is present in the .netrc file for any user other than anonymous, ftp
will abort the auto-login process if the .netrc is readable by anyone besides
the user.

account string

Supply an additional account password.

If this token is present, the auto-login process will supply the specified string if
the remote server requires an additional account password, or the auto-login
process will initiate an ACCT command if it does not.

macdef name

Define a macro.

This token functions like the ftp macdef command functions. A macro is
defined with the specified name; its contents begin with the next .netrc line
and continue until a blank line (consecutive new-line characters) is
encountered. If a macro named init is defined, it is automatically executed as
the last step in the auto-login process.
Using LAN Communications 108

ftp Chapter 7: Utilities
Command Line Prompt

By default, ftp displays a command line prompt of ftp>. This can be changed with
the set prompt command. A prompt can be displayed on the right side of the screen
(after the command input) with the set rprompt command.

The following formatting sequences are replaced by the given information:

%/

The current remote working directory.

%c[[0]n], %.[[0]n]

The trailing component of the current remote working directory, or n trailing
components if a digit n is given.

If n begins with “0”, the number of skipped components precede the trailing
component(s) in the format /<skipped>trailing (for “%c”) or ...trailing
(for “%.”).

%M

The remote host name.

%m

The remote host name, up to the first “.”.

%n

The remote user name.

%%

A single “%””.

Environment

ftp uses the following environment variables.

FTPANONPASS

Password to send in an anonymous FTP transfer. Defaults to
whoami @.

FTPMODE

Overrides the default operation mode. Support values are:

active active mode FTP only

auto automatic determination of passive or active (this is the default)

gate gate-ftp mode

passive passive mode FTP only

FTPPROMPT

Command-line prompt to use. Defaults to ftp>.

FTPRPROMPT

Command-line right side prompt to use.
Using LAN Communications 109

ftp Chapter 7: Utilities
FTPSERVER

Host to use as gate-ftp server when gate is enabled.

FTPSERVERPORT

Port to use when connecting to gate-ftp server when gate is enabled. Default is
port returned by a getservbyname() lookup of ftpgate/tcp.

HOME

For default location of a .netrc file, if one exists.

SHELL

For default shell.

ftp_proxy

URL of FTP proxy to use when making FTP URL requests. If not defined, use
the standard FTP protocol.

http_proxy

URL of HTTP proxy to use when making HTTP URL requests.

If proxy authentication is required and there is a username and password in
this URL, they will automatically be used in the first attempt to authenticate
to the proxy.

Note that the use of a username and password in ftp_proxy and http_proxy
may be incompatible with other programs that use it.

no_proxy

A space or comma separated list of hosts (or domains) for which proxying is
not to be used. Each entry may have an optional trailing :port, which restricts
the matching to connections to that port.

See Also

ftpd

tftp
Using LAN Communications 110

ftpd Chapter 7: Utilities
ftpd
Incoming FTP Server Daemon

Syntax

ftpd [-dHlqQrsuUwWX] [-a <anondir>] [-c <confdir>]
[-C <user>] [-e <emailaddr>][-h <hostname>]
[-P <dataport>] [-V <version>]]

IP Functionality

IPv4 and IPv6 addresses

Options

-6

Listen on an IPv6 socket. Default is IPv4.

-a <anondir>

Define <anondir> as the directory to chroot() into for anonymous logins.

Default is the home directory for the ftp user. This can also be specified with
the ftpd.conf chroot directive. <anondir> must be a fully qualified path; the
same as returned by the pd shell command.

-c <confdir>

Change the root directory of the configuration files from /dd/sys to confdir.

This changes the directory for the following files: ftpchroot, ftpusers,
ftpwelcome, motd, and the file specified by the ftpd.conf limit directive.

-C <user>

Check whether or not a <user> can be granted access under the restrictions
given in ftpusers and exit without attempting a connection. ftpd exits with
an exit code of 0 if access would be granted, or 1 otherwise. This can be useful
for testing configurations.

Example: ftpdc -DDD anonymous

-d

Debugging information is written to stderr.

-e <emailaddr>

Use <emailaddr> for the %E escape sequence. (Refer to the Display File Escape
Sequences.)

-h <hostname>

Explicitly set the host name to advertise to <hostname>.

The default is the hostname associated with the IP address on which that ftpd
is listening. This ability (with or without -h), in conjunction with -c
<confdir>, is useful when configuring “virtual” FTP servers, each listening on
separate addresses as separate names. Refer to inetd for more information on
starting services to listen on specific IP addresses.
Using LAN Communications 111

ftpd Chapter 7: Utilities
-H

Explicitly set the hostname to advertise to the “standard hostname” for the
current processor. The default is the hostname associated with the IP address
on which ftpd is listening.

-l

Log each successful and failed FTP session to stderr. If this option is specified
more than once, the retrieve (get), store (put), append, delete, make directory,
remove directory and rename operations and their file name arguments are
also logged.

-P <dataport>

Use <dataport> as the data port, overriding the default of using the port one
less than the port on which ftpd is listening.

-r

Permanently drop root privileges once you are logged in. The use of this
option may result in the server using a port other than the
<listening-port -1> for PORT style commands, which is contrary to the
RFC 959 specification, but in practice very few clients rely upon this
behaviour.

-u

Enable unauthenticated access as super user without password file.

-V <version>

Use <version> as the version to advertise in the login banner and in the output
of STAT and SYST instead of the default version information. If <version> is
empty or “-”, do not display any version information.

-X

Log wu-ftpd style xferlog entries to stderr, prefixed with xferlog:.

-?

Display command line usage.

Description

ftpd is the Internet File Transfer Protocol server process. The server uses the TCP
protocol and listens at the port specified in the FTP service specification.

The file /dd/sys/nologin can be used to disable FTP access. If the file exists, ftpd
displays it and exits. If the file /dd/sys/ftpwelcome exists, ftpd prints it before
issuing the “ready” message. If the file /dd/sys/motd exists (under the chroot
directory if applicable), ftpd prints it after a successful login. This may be changed
with the ftpd.conf directive motd.
Using LAN Communications 112

ftpd Chapter 7: Utilities
The ftpd server currently supports the following FTP requests. The case of the
requests is ignored.

Table 7-3. FTP Requests

Request Description
ABOR Abort previous command.
ACCT Specify account (ignored).
ALLO Allocate storage (vacuously).
APPE Append to a file.
CDUP Change to parent of current working directory.
CWD Change working directory.
DELE Delete a file.
EPSV Prepare for server-to-server transfer.
EPRT Specify data connection port.
FEAT List extra features that are not defined in

RFC 959.
HELP Give help information.
LIST Give list files in a directory (“dir#-ea”).
LPSV Prepare for server-to-server transfer.
LPRT Specify data connection port.
MLSD List contents of directory in a machine-processable form.
MLST Show a pathname in a machine-processable form.
MKD Make a directory.
MDTM Show last modification time of file.
MODE Specify data transfer mode.
NLST Give name list of files in directory.
NOOP Do nothing.
OPTS Define persistent options for a given command.
PASS Specify password.
PASV Prepare for server-to-server transfer.
PORT Specify data connection port.
PWD Print the current working directory.
QUIT Terminate session.
REST Restart incomplete transfer.
RETR Retrieve a file.
RMD Remove a directory.
RNFR Specify rename-from file name.
RNTO Specify rename-to file name.
SITE Non-standard commands (see next section).
SIZE Return size of file.
STAT Return status of server.
STOR Store a file.
STOU Store a file with a unique name.
Using LAN Communications 113

ftpd Chapter 7: Utilities
The following non-standard or UNIX specific commands are supported by the SITE
request.

The following FTP requests (as specified in RFC 959) are recognized, but are not
implemented: ACCT, SMNT, and REIN. MDTM and SIZE are not specified in RFC
959, but will appear in the next updated FTP RFC.

The ftpd server will abort an active file transfer only when the ABOR command is
preceded by a Telnet Interrupt Process (IP) signal and a Telnet Synch signal in the
command Telnet stream, as described in Internet
RFC 959. If a STAT command is received during a data transfer, preceded by a
Telnet IP and Synch, transfer status will be returned.

User Authentication

ftpd authenticates users according to five rules.

1. The login name must be in the password data base, /dd/sys/password, and not
have a null password. In this case, a password must be provided by the client
before any file operations may be performed.

2. If a /dd/sys/ftpusers file exists, the login name must be allowed based on the
information in the ftpusers file.

3. The user must have a standard (shell or mshell). If the user's shell field in the
password database is empty, the shell is assumed to be mshell.

STRU Specify data transfer structure.
SYST Show operating system type of server system.
TYPE Specify data transfer type.
USER Specify user name.
XCUP Change to parent of current working directory (deprecated).
XCWD Change working directory (deprecated).
XMKD Make a directory (deprecated).
XPWD Print the current working directory (deprecated).
XRMD Remove a directory (deprecated).

Table 7-3. FTP Requests

Request Description

Table 7-4. UNIX Requests

Request Description
CHMOD Change mode of a file.

Example: SITE CHMOD 755 filename
HELP Give help information.
IDLE Set idle-timer.

Example: SITE IDLE 60
UMASK Change umask.

Example: SITE UMASK 002
Using LAN Communications 114

ftpd Chapter 7: Utilities
4. If directed by the file /dd/sys/ftpchroot the session's root directory will be
changed by chroot() to the directory specified in the ftpd.conf chroot directive
(if set), or to the home directory of the user. However, the user must still supply
a password. This feature is intended as a compromise between a fully
anonymous account and a fully privileged account. The account should also be
set up as for an anonymous account.

5. If the user name is “anonymous”' or “ftp”, an anonymous FTP account must be
present in the password file (user “ftp”). In this case the user is allowed to log in
by specifying any password. (By convention, an email address for the user
should be used as the password.)

The server performs a chroot() to the directory specified in the ftpd.conf
chroot directive (if set), the -a <anondir> directory (if set), or to the home
directory of the “ftp” user. The server then performs a chdir() to the directory
specified in the ftpd.conf homedir directive (if set), otherwise to “/”.

If other restrictions are required (such as disabling of certain commands and the
setting of a specific umask), then appropriate entries in ftpd.conf are required.

If the first character of the password supplied by an anonymous user is “-”, then
the verbose messages displayed at login and upon a CWD command are
suppressed.

Display File Escape Sequences

When ftpd displays various files back to the client (such as /dd/sys/ftpwelcome and
/dd/sys/motd), various escape strings are replaced with information pertinent to the
current connection.

The supported escape strings are shown below:

%c Class name.

%C Current working directory.

%E Email address given with -e.

%L Local hostname.

%M Maximum number of users for this class. Displays “unlimited” if
there's no limit.

%N Current number of users for this class.

%R Remote hostname.

%s If the result of the most recent %M or %N was not “1”, print an “s”.

%S If the result of the most recent %M or %N was not “1”, print an “S”.

%T Current time.

%U User name.

%% A % character.

OS-9 does not support chroot(). The FTP server uses a virtual chroot that
is not as secure. Anonymous logins should not be used in an insecure
environment.
Using LAN Communications 115

ftpd Chapter 7: Utilities
FILES

/dd/sys/ftpchroot List of normal users who should use chroot().

/dd/sys/ftpd.conf Configure file conversions and other settings.

/dd/sys/ftpusers List of unwelcome or restricted users.

/dd/sys/ftpwelcome Welcome notice before login.

/dd/sys/motd Welcome notice after login.

/dd/sys/nologin If it exists, displayed and access is refused.

/dd/temp/ftpd.pids CLASS State file of logged-in processes for the ftpd class
CLASS.

ftpusers

The ftpusers file provides user access control for ftpd by defining which users may
login. If the file does not exist, the ftpuser validation is not performed.

The “\” symbol is the escape character; it can be used to escape the meaning of the
comment character, or if it is the last character on a line, extends a configuration
directive across multiple lines. The “#” symbol is the comment character and all
characters from it to the end of line are ignored (unless it is escaped with the escape
character).

The syntax of each line is shown below:

<userglob>[:<groupid>][@<host>] [<directive> [<class>]]

<userglob>

Matched against the user name, using fnmatch() glob matching (such as
“f*”).

<groupid>

Matched against the group id, of which the user is a member.

<host>

Either a CIDR address (refer to inet_net_pton) to match against the remote
address (such as “1.2.3.4/24”), or a glob to match against the remote
hostname (such as “*.netbsd.org”).

<directive>

If the directive is “allow” or “yes”, the user is allowed access. If it is “deny”
or “no”, or the directive is not given, the user is denied access.
Using LAN Communications 116

ftpd Chapter 7: Utilities
<class>

Defines the class to use in ftpd.conf.

If class is not given, it defaults to one of the following options:

chroot if there is a match in /dd/sys/ftpchroot for the user

guest if the user name is “anonymous” or “ftp”
real if neither of the above is true

No further comparisons are attempted after the first successful match. If no match
is found, the user is granted access.

If a user requests a guest login, the ftpd server checks to see that both
“anonymous” and “ftp” have access, so if you deny all users by default, you will
need to add both “anonymous allow” and “ftp allow” to /dd/sys/ftpusers in
order to allow guest logins. An example file is installed on the host system in the
following location:

/mwos/os9000/src/sys/ftpusers.example

ftpchroot

The file /dd/sys/ftpchroot is used to determine which users will have their
session's root directory changed (using chroot()), either to the directory specified in
the ftpd.conf chroot directive (if set), or to the home directory of the user. If the
file does not exist, the root directory change is not performed.

The syntax is similar to ftpusers, except that the class argument is ignored. If there
is a positive match, the session's root directory is changed. No further comparisons
are attempted after the first successful match. An example file is installed on the
host system in the following location:

mwos/os9000/src/sys/ftpchroot

ftpd.conf

The ftpd.conf file specifies various configuration options for ftpd that apply once
a user has authenticated their connection. ftpd.conf consists of a series of lines,
each of which may contain a configuration directive, a comment, or a blank line.
Directives that appear later in the file override settings by previous directives. This
allows wildcard entries to define defaults and have class-specific overrides.

A directive line has the following format: command class [arguments]

A “\” symbol is the escape character; it can be used to escape the meaning of the
comment character, or if it is the last character on a line, extends a configuration
directive across multiple lines. A “#” symbol is the comment character, and all
characters from it to the end of line are ignored (unless it is escaped with the escape
character).

Each authenticated user is a member of a <class>, which is determined by
ftpusers. A <class> is used to determine which ftpd.conf entries apply to the user.
The following special classes exist when parsing entries in ftpd.conf:

all Matches any <class>.

none Matches no <class>.
Using LAN Communications 117

ftpd Chapter 7: Utilities
Each class has a type, which may be one of the following options:

GUEST Guests (as per the “anonymous” and “ftp” logins). A
chroot() is performed after login.

CHROOT Users who use chroot() (as per ftpchroot). A chroot() is
performed after login.

REAL Normal users.

The ftpd STAT command will return the class settings for the current user as
defined by ftpd.conf. Each configuration line may be one of the following options:

advertise <class> <host>

Set the address to advertise in the response to the PASV and LPSV commands
to the address for host (which may be either a host name or IP address).

This may be useful in some firewall configurations, although many ftp clients
may not work if the address being advertised is different to the address to
which they have connected. If <class> is none or no argument is given, disable
this option.

checkportcmd <class> [<off>]

Check the PORT command for validity.

The PORT command will fail if the IP address specified does not match the
FTP command connection, or if the remote TCP port number is less than
IPPORT_RESERVED. It is strongly encouraged that this option be used,
espcially for sites concerned with potential security problems with FTP
bounce attacks. If class is none or off is given, disable this feature, otherwise
enable it.

chroot <class> [<pathformat>]

If <pathformat> is not given or class is none, use the default behavior.
Otherwise, <pathformat> is parsed to create a directory to create as the root
directory with chroot() into upon login. pathformat can contain the
following escape strings:

%c class name

%d home directory of user

%u user name

%% a % character

The default root directory is:

CHROOT: This is the user's home directory.

GUEST: If -a <anondir> is given, use it; otherwise, use the home
directory of the ftp user.

REAL: By default, no chroot() is performed.

classtype class type

Set the class type of class to type.
Using LAN Communications 118

ftpd Chapter 7: Utilities
conversion class suffix [type disable command]

Define an automatic in-line file conversion. If a file to retrieve ends in suffix,
and a real file (without suffix) exists, then the output of command is returned
instead of the contents of the file.

suffix

The suffix to initiate the conversion.

type

A list of valid filetypes for the conversion. Valid types are: “f” (file) and “d”
(directory).

disable

The name of file that will prevent conversion if it exists. A file name of “.”
will prevent this disabling action. (The conversion is always permitted.)

command

The command to run for the conversion. The first word should be the full
path name of the command, as execv() is used to execute the command. All
instances of the word %s in command are replaced with the requested file
(without suffix).

Conversion directives specified later in the file override earlier conversions
with the same suffix.

Example: conversion all .tar df .notar /dd/CMDS/tar -cf - %s

This allows an ftp command to remotely execute a tar command. For
instance, to retreive directory “FOO” and all of its contents, type the
following at the command line:

ftp> bin

ftp> get FOO.tar

display class [file]

If file is not given or class is none, disable this. Otherwise, each time the user
enters a new directory, check if file exists. If it does, display its contents to the
user. Escape sequences are supported; refer to Display file escape sequences in
ftpd for more information.

homedir class [<pathformat>]

If pathformat is not given or class is none, use the default behavior.
Otherwise, pathformat is parsed to create a directory to change into upon
login, and to use as the home directory of the user for tilde expansion in
pathnames. pathformat is parsed per the chroot directive. The default home
directory is the home directory of the user fo REAL users, and “/” for GUEST and
CHROOT users.

limit class count [<file>]

Limit the maximum number of concurrent connections for class to count,
with “0” meaning unlimited connections.

User limits are currently not implemented.
Using LAN Communications 119

ftpd Chapter 7: Utilities
maxfilesize class size

Set the maximum size of an uploaded file to size. If class is none or no
argument is given, disable this.

maxtimeout class time

Set the maximum timeout period that a client may request, defaulting to two
hours. This cannot be less than 30 seconds, or the value for timeout. If class
is none or time is not specified, set to default of 2 hours.

modify class [<off>]

If class is none or off is given, disable the following commands: CHMOD, DELE,
MKD, RMD, RNFR, and UMASK. Otherwise, enable them.

motd class [<file>]

If file is not given or class is none, disable this. Otherwise, use file as the
message of the day file to display after login. Escape sequences are supported.
If file is a relative path, it will be searched for in /dd/sys (which can be
overridden with
-c confdir).

notify class [<fileglob>]

If fileglob is not given or class is none, disable this. Otherwise, each time the
user enters a new directory, notify the user of any files matching fileglob.

passive class [<off>]

If class is none or off is given, disallow passive (PASV, LPSV, and EPSV)
connections. Otherwise, enable them.

portrange class min max

Set the range of port number which will be used for the passive data port. max
must be greater than min, and both numbers must be be between
IPPORT_RESERVED (1024) and 65535. If class is none or no arguments are
given, disable this.

rateput class rate

Set the maximum put (STOR) transfer rate throttle for class to rate bytes per
second, which is parsed as per rateget rate. If class is none or no arguments are
given, disable this.

sanenames class [<off>]

If class is none or off is given, allow uploaded file names to contain any
characters valid for a file name. Otherwise, only permit file names which do
not start with a “.” and only comprise of characters from the set .
_A-Za-z0-9].

template class [<refclass>]

Define refclass as the “template” for class; any reference to refclass in
following directives will also apply to members of class. This is useful to
define a template class so that other classes which are to share common
attributes can be easily defined without unnecessary duplication. There can be
only one template defined at a time. If refclass is not given, disable the
template for class.
Using LAN Communications 120

ftpd Chapter 7: Utilities
timeout class time

Set the inactivity timeout period. (The default is fifteen minutes). This cannot
be less than 30 seconds, or greater than the value for maxtimeout. If class is
none or time is not specified, set to the default of 15 minutes.

umask class umaskval

Set the umask to umaskval. If class is none or umaskval is not specified, set to
the default of 027.

upload class [<off>]

If class is none or off is given, disable the following commands: APPE, STOR,
and STOU, as well as the modify commands: CHMOD, DELE, MKD, RMD, RNFR, and
UMASK. Otherwise, enable them.

Defaults

The following defaults are used:

checkportcmd all

classtype chroot CHROOT

classtype guest GUEST

classtype real REAL

display none

limit all -1 # unlimited connections

maxtimeout all 7200 # 2 hours

modify all

motd all motd

notify none

passive all

timeout all 900 # 15 minutes

umask all 027

upload all

modify guest off

umask guest 0707

An example file is installed on the host system in the following location:

mwos/os9000/src/sys/frpd.conf.example

nologin

nologin displays a message that an account is not available and exits
non-zero. It is intended as a replacement shell field for accounts that have been
disabled.

See Also

ftp

ftpdc
Using LAN Communications 121

ftpdc Chapter 7: Utilities
ftpdc
FTP Server Connection Handler

Syntax

ftpdc [<opts>]

IP Functionality

IPv4 and IPv6 addresses

Description

ftpdc is the incoming communications handler for ftp. ftpd and inetd can fork
ftpdc.

See Also

ftp

ftpd

Do not run this from the command line. Only ftpd and inetd can invoke this
utility.
Using LAN Communications 122

hostname Chapter 7: Utilities
hostname
Display or Set Internet Name of Host

Syntax

hostname [<name>]

Options

-?

Displays the description, options, and command syntax for hostname.

Description

hostname prints or sets the string returned by the socket library gethostname()
function. By default, gethostname() returns the net_name string appearing in the
inetdb data module. Use hostname to override the default. The length of the string is
limited to the length of the current string in the inetdb data module.
Using LAN Communications 123

idbdump Chapter 7: Utilities
idbdump
Display Internet Database Entries

Syntax

idbdump [<opts>] [<inetdb_file>] [<opts>]

IP Functionality

IPv4 and IPv6 addresses

Options

-?

Display the description, options, and command syntax for idbdump.

-d[=]<file>

Only display <file> entries. Allowable files are host.conf, hosts,
hosts.equiv, inetd.conf, networks, protocols, resolv.conf, services,
interfaces.conf, hostname, routes.conf, or rpc.

-m

Use the inetdb data module in memory. (OS-9 resident systems only)

Description

idbdump displays a formatted listing of the entries in the internet database. If options
are not specified, idbdump displays all entries in the database. Specific options
display the appropriate type of database entries.

By default, idbdump looks for the internet database as the file inetdb in the current
data directory. This default can be overridden by a command line path list to the
file, or by the -m option. This command is also available under the Windows 95/NT
operating systems.

Entries from the routes.conf file and the interfaces.conf file are stored in the
inetdb2 module. To see these entries, specify the module name at the command line:
$ idbdump inetbd2

See Also

idbgen
Using LAN Communications 124

idbgen Chapter 7: Utilities
idbgen
Generate Network Database Module(s)

Syntax

idbgen [<opts>] [<filename>] [<opts>]

IP Functionality

IPv4 and IPv6 addresses

Options

-?

Display the description, options, and command syntax for idbgen.

-d=<path>

Specify the directory to find the network database files (default is current
directory). This option can be repeated to search multiple directories.

-r=<num>

Set the module revision to <num>.

-to[=]<target>

Specify the target operating system. (The default is OS9000.)

-tp=<target>

Specify the target processor and options. (Default is PPC on cross-hosted
machines.)

When using -to=<target> or -tp=<target>, idbgen does not recognize the
target options in lowercase. For example, osk, is not recognized; OSK is.

The following table lists target processors and their options.

Table 7-5. Target Operating System <target>

<target> Operating System
osk OS-9 for Motorola 68000 family processors
os9000 or osk (default) OS-9

Table 7-6. Target Processor and Options

<target> Processor

68k or 68000 Motorola 68000/68010/68070

CPU32 Motorola 68300 family

020 or 68020 Motorola 68020/68030/68040

040 or 68040 Motorola 68040

386 or 80386 Intel 80386/80486/Pentium

PPC (default) Generic PowerPC
Using LAN Communications 125

idbgen Chapter 7: Utilities
-x

Place the modules in the execution directory
 (only for OS-9 for 68K/OS-9 resident systems).

-z[=]<file>

Read additional command line arguments from <file>. (The default is
standard input.)

Description

idbgen generates the OS-9 data modules inetdb and inetdb2 from the network
database files: host.conf, hosts, hosts.equiv, inetd.conf, networks, protocols,
resolv.conf, interfaces.conf, routes.conf, services and rpc. Any time a
change is made to any of these files, idbgen must be used to generate new data
modules.

By default, the output internet database modules are named inetdb and inetdb2
and are placed in the current directory. An optional command line file name can
override this default by specifying the pathlist to the output files.

By default, idbgen looks for the network database files in the current directory.
However, the -d option can be used to specify the directories containing the files.

See Also

idbdump

403 PPC 403
601 MPC 601
603 MPC 603
ARM Generic ARM processor
ARMV3 ARM V3 processor
ARMV4 ARM V4 processor

Table 7-6. Target Processor and Options (Continued)

<target> Processor

Refer to Appendix A, Configuring LAN Communications for definitions and
descriptions of the configuration files.

This command is also available under the Windows 95/NT operating systems.
Using LAN Communications 126

ifconfig Chapter 7: Utilities
ifconfig
Configure Network Interface

Syntax

ifconfig [-L] <interface> [af] [<opts>]

ifconfig -a [-d] [-u] [af]

ifconfig -l [-d] [-u]

IP Functionality

IPv4 and IPv6 addresses

Options

<IP Address <dest_addr | broadcast> [alias]

Change IP address and broardcast address. (Add an alias.)

netmask <subnet mask>

Change subnet mask.

up

Mark interface as “up”.

down

Mark interface as “down”.

stop

Mark an interface to stop.

start

Mark an interface to start.

delete

Delete IP address or alias.

binding <device>

Bind device to interface name.

iff_nopointopoint

Override driver iff_pointopoint flag.

iff_nobroadcast

Override driver iff_broadcast flag.

iff_nomulticast

Override driver iff_multicast flag.

af address_family

Current supported families are IPv4 address family inet and IPv6 address
family inet6.
Using LAN Communications 127

ifconfig Chapter 7: Utilities
-alias

Remove the specified network address alias from the interface.

anycast

Set the IPv6 anycast address bit.

-anycast

Clear the IPv6 anycast address bit.

tentative

Set the IPv6 tentative address bit.

-tentative

Clear the IPv6 tentative address bit.

pltime n

Set preferred lifetime for the address.

vltime n

Set valid lifetime for the IPv6 address.

prefixlen n

Set the prefix length at the IPv6 address. The effect is similar to netmask.

broadcast <addr>

Change broadcast address. (inet only)

metric n

Set the routing metric of the interface to n.This is used by the routing
protocol. Higher metrics makes a route less favorable. The default metric is 0.

mtu n

Set the maximum transmission unit of the interface.

-a flag

Show all interfaces in the system.

-d flag

Only list interfaces that are down.

-u flag

Only list interfaces that are up.

-l flag

List all available interfaces in the system with no other additional
information.

-L flag

Enable displaying lifetime information of the address.

unbind

Remove interface binding.

rebind
Using LAN Communications 128

ifconfig Chapter 7: Utilities
Bind stopped interface.

Description

ifconfig assigns an address to a network interface and/or configures network
interface settings. It can also dynamically add an interface to the system.

address

The address is either a host name present in the host name data base, or an
Internet address expressed in the standard Internet dot notation.

alias

Establish an additional network address for this interface. Useful when
changing network numbers and accepting packets addressed to the old
interface.

binding <device>

Dynamically add a new interface to the system. The device parameter specifies
the device/protocol descriptors(s) which will be opened and associated with
the specified interface name (for example,
/spe30/enet).

stop

Mark an interface to stop. This causes the hardware device associated with
the specified interface to be closed. The interface remains in SPIP's internal
interface table and may be restarted using the start command.

start

Mark an intreface to start. This is used to enable an interface after using stop.

unbind

This is similar to stop, except that it also causes all information about the
interface to be removed from SPIP's interface table.

rebind

This is used with a stopped interface to associate it with a different hardware
driver stack.

broadcast <addr>
Specify the address to use to represent broadcasts to the network. The default
broadcast address has a host part of all 1s.

delete

Remove the network address specified. Used when an alias is incorrectly
specified, or no longer needed.

dest_address

Specify the address of the peer on the other end of a point-to-point link.

down

Mark an interface down. When an interface is marked down, the system does
not attempt to transmit messages through that interface. Incoming packets on
Using LAN Communications 129

ifconfig Chapter 7: Utilities
the interface are discarded. This action does not automatically disable routes
using the interface.

up

Mark an interface up. Used to enable an interface after an ifconfig down. It
happens automatically when setting the first address on an interface.

iff_nobroadcast

Drivers that are capable of sending broadcasts will automatically set the
iff_broadcast flag. If you do not want to send broadcasts from a particular
ethernet card this option could be used to prevent the flag from being set. This
option requires the binding option.

iff_nopointopoint

Override the iff_pointopoint flag that is set automatically by the slip and
ppp drivers. This option requires the binding option.

iff_nomulticast

Override the iff_multicast flag set by multicast capable interfaces. This
option is useful if you do not wish to send or receive any multicast packets
and are on a network with a high volume of multicast traffic.

interface

The interface parameter is a string of the form nameX where X is the integer
unit number (for example, enet0). The name is used internally by IP and is not
the name of a file or module.

netmask <mask>

Specify how much of the address to reserve for subdividing networks into sub-
networks. The mask includes the network part of the local address and the
subnet part, which is taken from the host field of the address.

The mask can be specified as a single hexadecimal number with a leading 0x,
with a dot-notation Internet address, or with a pseudo-network name listed in
the inetdb network table "networks". The mask contains 1s for the bit
positions in the 32-bit address which are to be used for the network and
subnet parts, and 0s for the host part. The mask contains at least the standard
network portion, and the subnet field is contiguous with the network portion.

metric n

Set the routing metric of the interface to n, default 0. The routing metric is
used by the routing protocol . It is counted as addition hops to the destination
network or host. Higher metric makes a route less favorable.

prefixlen len

Specify that len bits are reserved for subdividing networks into sub-networks,
defulat 64. The len must be integer between 0 to 128. It is almost always 64
under the current IPv6 assignment rule. (Inet6 only)

tentative

You must specify an IP address to configure netmask.
Using LAN Communications 130

ifconfig Chapter 7: Utilities
An tentative address means it has not passed Duplicate Address Detection
(DAD) yet. Such an address has not yet been assigned to the interface in a true
sense. The address is associated with the interface only for the purposes of
performing DAD. (Inet6 only)

anycast

An identifier for a set of interfaces. A packet sent to an anycast address is
routed to the "nearest" interface having that address, depending on the
distance of a routing path.

A routing path between certain nodes may vary with changes in the network
configuration. Therefore, a packet using anycast address may not be sent to
the same node when any changes on the routing path occur. As a result, a
point-to-point communication in which its end point is specified by an
anycast address does not work well, especially with connection-oriented
protocols. (Inet6 only)

ifconfig displays the current configuration for a network interface when no
options are supplied. Only the super-user can modify the configuration of a
network interface.

Examples

Create a new interface enet0:

ifconfig enet0 172.16.1.1 binding /spe30/enet

Since no netmask or broadcast address was specified, the appropriate class A, B, or
C addresses will be used. In this case, the netmask 255.255.0.0 and a broadcast
address of 172.16.255.255 will be used. To override the default netmask:

ifconfig enet0 172.16.1.1 netmask 255.255.255.0 binding /spe30/enet

This will also change the broadcast address to 172.16.1.255.

Create a new interface, but disable its multicast capability:

ifconfig enet0 odin iff_nomulticast binding /spe30/enet

This example also uses a machine name instead of an IP address. For this to work,
the name must either be resolvable in your local inetdb or by a DNS name server
reachable by an interface other than the one being added.

Change the address of an existing interface:

ifconfig enet0 loki

If the hardware driver supports it, you can add an alias to an already existing
interface:

ifconfig enet0 thor alias

Remove the alias:

ifconfig enet0 thor -alias

Create the point-to-point interface ppp0 without any address information:

ifconfig ppp0 binding /ipcp0

Set the local and destination address of a point-to-point link:
Using LAN Communications 131

ifconfig Chapter 7: Utilities
ifconfig slip0 192.168.8.175 192.168.8.174

Show the address information for interface enet0:

ifconfig enet0

The output is similar to the following:

enet0: flags=8003<UP,BROADCAST,MULTICAST> mtu 1500

inet 172.16.1.1 netmask 0xffff0000 broadcast 172.16.255.255

Show all interfaces:

ifconfig -a

List IPv6 on the interface:

ifconfig enet0 inet6

Add IPv6 address to interface:

ifconfig enet0 inet6 fec0::2436:1

Delete IPv6 address from the interface:

ifconfig enet0 inet6 fec0::24361:1 delete

Set anycast bit:

ifconfig enet0 inet6 fec0::2436:1 anycast

Clear anycast bit

ifconfig enet0 inet6 fec0::2436:1 -anycast

Set valid lifetime for the address:

ifconfig enet0 inet6 inet6 fec0::2436:1 vltime 1100000000

Show the valid lifetime for the address:

ifconfig -L enet0 inet6

Set routing metric of the interface:

ifconfig enet0 metric 50

Mark an interface down:

Ifconfig enet0 down

Mark an interface stop:

Ifconfig enet0 stop

See Also

netstat
Using LAN Communications 132

inetd Chapter 7: Utilities
inetd
Internet Master Daemon

Syntax

inetd [<opts>]

IP Functionality

IPv4 and IPv6 addresses

Options

-?

Display the description, options, and command syntax for inetd.

-i[...]

Internal inetd options.

Description

inetd is a master internet daemon process, that can be configured to listen for
incoming TCP or UDP connections on up to 25 separate ports. When inetd detects
an incoming connection, it forks a child process
(for example telnetdc or ftpdc) to handle the connection.

The inetd.conf file specifies the configuration for the inetd process. Each non-
comment or non-white space line in this file specifies a service which inetd
provides. Each line has the following syntax:

<ServiceName> <SocketType> <Protocol> <Flags> <User> <ServerPathname>
[<Args>]

ServiceName

Specify the internet service to be provided. This service name must also be
specified in the <services> section of the inetdb data module. The port
number for the specified service is referenced through the <services> section
of inetdb.

SocketType

Specify whether the socket type is a stream
(for TCP services) or dgram (for UDP services).

Protocol

Specify the protocol type to use for this service. This protocol name must also
be specified in the <protocols> section of the inetdb data module.

Flags

Specify special actions inetd to take when processing incoming connections
for this service. Wait is the only valid Flags action.

User
Using LAN Communications 133

inetd Chapter 7: Utilities
Specify the group/user under which the forked child process should run—
either in the format <group>.<user> (such as “12.136”), the keyword root
(resolving to user “0.0”), or the keyword nobody (resolving to user “1.0”).

ServerPathname

Specify the child process to fork when an incoming connection for the
specified service is detected. This may be just the program name if it is in
memory or in the current path, or it may be a full path name to the program
file. Eight special services, echo (dgram & stream), discard (dgram & stream),
daytime (dgram & stream), and chargen (dgram & stream) are handled
internally by inetd by specifying the server path name internal.

Args

Specify additional arguments to use when forking the child process.

When inetd forks a child process to handle an incoming service request, the
child is forked with three paths: stdin and stdout are the connected socket
paths and stderr is the stderr path with which inetd was forked. If the
service was on a udp/dgram socket, a connect() is performed before forking
the child. If the service was on a tcp/stream socket, an accept() is performed
before forking the child.

Super user account is required to run inetd.
Using LAN Communications 134

ipstart Chapter 7: Utilities
ipstart
Initialize IP Stack

Syntax

ipstart

Options

None.

Description

ipstart initializes the IP stack at startup. Run this utility in the foreground.
Using LAN Communications 135

mbdump Chapter 7: Utilities
mbdump
Display System mbuf statistics

Syntax

mbdump [<opts>]

Options

-a

Display mbuf pool allocation table.

-m

Display current mbuf pool bit map.

-?

Display description, options, and command syntax for mbdump.

Description

mbdump displays the current state of the system mbuf pool. This information can be
used to determine whether or not the size of the mbuf pool should be altered.

By default, mbdump displays the size of the pool, where it is located, how much is in
use, and the minimum allocation size.
Using LAN Communications 136

ndbmod Chapter 7: Utilities
ndbmod
Dynamically Update the Internet Data Module

Syntax

ndbmod <[opts]>

Subcommand-Specific Options

-?

Display the description, options, and command syntax for ndbmod.

hostname <hostname>

Set hostname of the system.

interface <options>

Add or delete an interface.

Options are defined as follows:

add <intname> [address inet <addr>[netmask <addr>] \

[broadcast|destaddr <addr>]]

[inet6 <ipv6addr/prefixlength>] binding <device>

[mtu <mtu>] \ [metric <metric>] [up|down]

[iff_broadcast][iff_pointopoint][iff_nomulticast]

[iff_nobroadcast] [iff_nopointopoint]del <intname>

The [iff_broadcast]and [iff_broadcast] flags are for compatibility with
older version of LAN Communications. The preferred method is to let the
driver set these flags and to use the [iff_noXXX] flags to override the driver
defaults.

resolve <arglist>

Add DNS search and resolver information.

Options are defined as follows:

<domainname [server <addr>]* [search <srch-1> <srch-2> ...]

host <options>

Add or delete a host entry.

Options are defined as follows:

add <addr> <name> [<alias-1> <alias-2> ...]

del <name|alias>

route <options>

Add IPv4 or IPv6 static route.

Options are defined as follows:

add <dst-route> <gateway> [<netmask>]

add [default]<gateway>[<netmask>]
Using LAN Communications 137

ndbmod Chapter 7: Utilities
create <modname> <num-files> <size-1> <size-2>... <size-n>

Create a dynamic Internet data module having <num-files> files.

<size-1> indicates bytes to reserve for file 1.

<size-2> indicates bytes to reserve for file 2.

All file sizes must be specified; 0 indicates no space is reserved for that file.

<modname> is one of inetdb2, inetdb3, or inetdb4.

File Numbers

1 /dd/etc/hosts (aprox. 25 bytes per host)

2 /dd/etc/hosts.equiv (not used)

3 /dd/etc/networks (aprox. 40 bytes per network)

4 /dd/etc/protocols (aprox. 25 bytes per protocol)

5 /dd/etc/services (aprox. 25 bytes per service)

6 /dd/etc/inetd.conf (aprox. 50 bytes per entry)

7 /dd/etc/resolv.conf (aprox. 100 bytes)

8 host config (not used)

9 host interfaces (aprox 300 bytes per interface)

10 hostname (>= length of hostname + 1, recommended 65)

11 static routes (aprox. 105 bytes per entry)

12-32 reserved

Description

The ndbmod utility allows the user to add, remove, or modify information stored in
the inetdb data module such as host names, IP addresses, and DNS Server fields
dynamically. It also enables the creation of expansion inetdb modules in the event
that the inetdb data module is full or in ROM.

These expansion modules can also hold additional host-specific information such as
the machines hostname, and interface settings such as IP address and network
masks.

Example 1

To create an alternate inetdb module called inetdb2 with 100 bytes for new host
information, 0 for hosts.equiv, 30 for new network entries:

ndbmod create inetdb2 12 100 0 30 30 0 50 200 100 0 150 64

Example 2

To set the hostname for a system name alpha:

ndbmod must be run before the IP stack is initialized.
Using LAN Communications 138

ndbmod Chapter 7: Utilities
ndbmod hostname alpha

Example 3

To add a host entry for system beta with alias of beta1 and beta2:

ndbmod host add 192.1.1.3 beta beta1 beta2

ndbmod host add feco::1111:1 alpha alpha1 alpha2

Example 4

To remove the host entry for beta:

ndbmod host del beta

Example 5

To add a SLIP interface to an inetdb2 data module:

ndbmod interface add slip0 address 192.1.1.1 \ destaddr 192.1.1.2 binding
/spsl0

Example 6

To delete a SLIP interface from the inetdb2 data module:

ndbmod interface del slip0

Example 7

To add an ethernet interface and disable the multicast capabilities:

ndbmod interface add enet0 address 172.16.1.1 \ iff_nomulticast binding
/spe30/enet

Example 8

To add an Ethernet interface wiht an IPv4 address and netmask and IPv6 addresses
with prefix length:

ndbmod interface add enet0 address inet 172.16.1.1 netmask 255.255.255.255
inet6 fec0::1111:1/64 binding /spe30/enet

Example 9

To add an Ethernet interface with IPv6 addresses:

ndbmod interface add enet0 address inet6 fec0::1111:1 binding /spe30/enet

Example 10

To add a new DNS resolve entry to the inetdb2 data module:

ndbmod resolve testdns.com server 192.1.1.3 search

testdns.com misc.org

Example 11

To add a new DNS resolve entry with an IPv6 server:
Using LAN Communications 139

ndbmod Chapter 7: Utilities
ndbmod resolve testdns.com server fec0::1111:1 search ipv6.dm1.radisys.com

Example 12

To add a static network route to the inetdb2 data module:

ndbmod route add network 192.2.2.0 192.1.1.2

See Also

idbgen
Using LAN Communications 140

netstat Chapter 7: Utilities
netstat
Show Network Status

Syntax

netstat [<opts>]

IP Functionality

IPv4 and IPv6 addresses

Options

-A

With the default display, show the address of any protocol control blocks
associated with sockets; used for debugging.

-a

With the default display, show the state of all sockets; normally sockets used
by server processes are not shown.

-b

Show interface packet statistics.

-d

With either interface display (option -i or an interval), show the number of
dropped packets.

-f <address_family>

Limit statistics or address control block reports to those of the specified
<address_family>. The following address families are recognized: inet, for
AF_INET; inet6, for AF_INET6.

-g

Show information related to multicast (group address) routing. By default,
show the IP Multicast virtual-interface and routing tables. If the -s option is
also present, show multicast routing statistics.

-I <interface>

Show information for all interfaces. This is used with a <wait> interval. If the
-f <address_family> option (with the -s option) or the -p <protocol> option
is present, show per-interface statistics on the interface for the specfied
<address_family> or <protocol>, respectively.

-i

Show the state of interfaces which have been auto-configured (interfaces
statically configured into a system, but not located at boot time are not
shown). If the -a option is also present, multicast addresses currently in use
are shown for each Ethernet interface and for each IP interface address.

Multicast addresses are shown on separate lines following the interface
address with which they are associated. If the
Using LAN Communications 141

netstat Chapter 7: Utilities
-f <address_family> option (with the -s option) or the
-p <protocol> option is present, show per-interface statistics on all interfaces
for the specfied <address_family> or <protocol>, respectively.

-L

Do not show link-level routes.

-M

Extract values associated with the name list from the specified core instead of
the default </dev/kmem>.

-m

Show statistics recorded by the memory management routines.
(The network manages a private pool of memory buffers.)

-N

Extract the name list from the specified system instead of the default /netbsd.

-n

Show network addresses as numbers (normally netstat interprets addresses
and attempts to display them symbolically). This option may be used with any
of the display formats.

-P <pcbaddr>

Dump the contents of the protocol control block (PCB) located at the kernel
virtual address <pcbaddr>. This address may be obtained using the -A flag.
The default protocol is TCP, but may be overridden using the -p flag.

-p <protocol>

Show statistics about protocol, which is either a well-known name for a
protocol or an alias for it. A null response typically means that there are no
interesting numbers to report. The program complains if the protocol is
unknown or if there is no statistics routine for it.

-s

Show per-protocol statistics. If this option is repeated, counters with a value
of zero are suppressed.

-r

Show the routing tables. When -s is also present, show routing statistics
instead.

-v

Show extra (verbose) detail for the routing tables (-r), or avoid truncation of
long addresses.

-w <wait>

Show network interface statistics at intervals of <wait> seconds.

Description

The netstat command symbolically displays the contents of various network-
related data structures. There are a number of output formats, depending on the
Using LAN Communications 142

netstat Chapter 7: Utilities
options for the information presented. The first form of the command displays a
list of active sockets for each protocol. The second form presents the contents of
one of the other network data structures according to the option selected. Using the
third form, with a wait interval specified, netstat will continuously display the
information regarding packet traffic on the configured network interfaces. The
fourth form displays statistics about the named protocol. The fifth and sixth forms
display per interface statistics for the specified protocol or address family.

The default display, for active sockets, shows the local and remote addresses, send
and receive queue sizes (in bytes), protocol, and the internal state of the protocol.
Address formats are of the form “host.port” or “network.port” if a socket's address
specifies a network but no specific host address. When known the host and
network addresses are displayed symbolically according to the data bases
/etc/hosts and /etc/networks, respectively. If a symbolic name for an address is
unknown, or if the -n option is specified, the address is printed numerically,
according to the address family.

The interface display provides a table of cumulative statistics regarding packets
transferred, errors, and collisions. The network addresses of the interface and the
maximum transmission unit (``mtu'') are also displayed.

The routing table display indicates the available routes and their status. Each route
consists of a destination host or network and a gateway to use in forwarding
packets. The flags field shows a collection of information about the route stored as
binary choices.

The mapping between letters and flags is shown in Table 7-7.

Direct routes are created for each interface attached to the local host; the gateway
field for such entries shows the address of the outgoing interface. The refcnt field

The individual flags are discussed in more detail in the route section.

Table 7-7. Mapping Between Letters and Flags

1 RTF_PROTO2 Protocol specific routing flag
2 RTF_PROTO1 Protocol specific routing flag
B RTF_BLACKHOLE Just discard pkts (during updates)
C RTF_CLONING Generate new routes on use
D RTF_DYNAMIC Created dynamically (by redirect)
G RTF_GATEWAY Requires forwarding by intermediary
H RTF_HOST Host entry (net otherwise)
L RTF_LLINFO Valid protocol to link address translation.
M RTF_MODIFIED Modified dynamically (by redirect)
R RTF_REJECT Host or net unreachable
S RTF_STATIC Manually added
U RTF_UP Route usable
X RTF_XRESOLVE External daemon translates proto-to-link address
c RTF_CLONED This is a cloned route.
Using LAN Communications 143

netstat Chapter 7: Utilities
gives the current number of active uses of the route. Connection oriented protocols
normally hold on to a single route for the duration of a connection while
connectionless protocols obtain a route while sending to the same destination. The
use field provides a count of the number of packets sent using that route. The mtu
entry shows the mtu associated with that route. This mtu value is used as the basis
for the TCP maximum segment size. The 'L' flag appended to the mtu value
indicates that the value is locked, and that path mtu discovery is turned off for that
route. A “-” indicates that the mtu for this route has not been set, and a default
TCP maximum segment size will be used. The interface entry indicates the network
interface utilized for the route.

When netstat is invoked with the -w option and a <wait> interval argument, it
displays a running count of statistics related to network interfaces. An obsolescent
version of this option used a numeric parameter with no option, and is currently
supported for backward compatibility. This display consists of a column for the
primary interface (the first interface found during autoconfiguration) and a column
summarizing information for all interfaces. The primary interface may be replaced
with another interface with the -I option. The first line of each screen of
information contains a summary since the system was last rebooted. Subsequent
lines of output show values accumulated over the preceding interval.
Using LAN Communications 144

ping Chapter 7: Utilities
ping
Send ICMP ECHO_REQUEST Packets to Host

Syntax

ping [<opts>] host

IP Functionality

IPv4 addresses only

Options

-s <packetsize>

Number of data bytes to send.

-?

Print help.

Description

ping sends an ICMP echo request to a specified host and waits for a reply. With the
-s option, you can specify the size of data to send to the host. Upon success, ping
displays the number of bytes received from the host and transmission time.

You can ping broadcast and multicast addresses; however, only the first machine to
respond will be printed.
Using LAN Communications 145

ping6 Chapter 7: Utilities
ping6
Send ICMPv6 Packets to Network Hosts

Syntax

ping6 [-dfHnNqRtvw] [-a addrtype] [-b bufsiz] [-c count] [-h hoplimit] [-
I interface] [-i wait] [-l preload] [-p pattern] [-P policy] [-S
sourceaddr]
[-s packetsize] [hops...] host

IP Functionality

IPv6 addresses only

Options

-a addrtype

Generate ICMPv6 Node Information Node Addresses query, rather than
echo-request. addrtype must be a string constructed of the following
characters.

a requests all the responder's unicast addresses. If the charater is
ommited, only those addresses which belong to the interface
which has the responder's address are requests.

c requests responder's IPv4-compatible and
IPv4-mapped addresses.

g requests responder's global-scope addresses.

s requests responder's site-local addresses.

l requests responder's link-local addresses.

A requests responder's anycast addresses. Without this character,
the responder will only return unicast addresses. The
specification does not state how to get the responder's anycast
addresses.
(experimental option)

-b bufsiz

Set socket buffer size.

-c count

Stop after sending (and receiving) count ECHO_RESPONSE packets.

-d

Set the SO_DEBUG option on the socket being used.

-f

Flood ping. Output packets as fast as they come back or one hundred times
per second, whichever is more.
Using LAN Communications 146

ping6 Chapter 7: Utilities
For every ECHO_REQUEST sent a period “.'' is printed, while for every
ECHO_REPLY received a backspace is printed. This provides a rapid display of
how many packets are being dropped. Only the super-user may use this
option. This can be very hard on a network and should be used with caution.

-H

Specifies to try reverse-lookup of IPv6 addresses. The ping6 command does
not try reverse-lookup unless the option is specified.

-h hoplimit

Set the IPv6 hoplimit.

-I interface

Source packets with the given interface address. This flag applies if the ping
destination is a multicast address, or link-local/site-local unicast address.

-i wait

Wait seconds between sending each packet. The default is towait for one
second between each packet. This option is incompatible with the -f option.

-l preload

If preload is specified, ping6 sends that many packets as fast as possible before
falling into its normal mode of behavior. Only the super-user may use this
option.

-n

Numeric output only. No attempt will be made to lookup symbolic names for
host addresses.

-N

Probe node information multicast group (ff02::2:xxxx:xxxx). host must be
string hostname of the target (must not be a numeric IPv6 address). Node
information multicast group will be computed based on given host, and will
be used as the final destination. Since node information multicast group is a
link-local multicast group, destination link needs to be specified by -I option.

-p pattern

You may specify up to 16 pad bytes to fill out the packet you send. This is
useful for diagnosing data-dependent problems in a network. For example, -p
ff will cause the sent packet to be filled with all ones. -Q flag, ping6 prints out
any ICMP error messages caused by its own ECHO_REQUEST messages.

-q

Quiet output. Nothing is displayed except the summary lines at startup time
and when finished.

-S sourceaddr

Specify the source address of request packets. The source address must be one
of the unicast addresses of the sending node. If the outgoing interface is
specified by the -I option as well, sourceaddr needs to be an address assigned
to the specified interface.
Using LAN Communications 147

ping6 Chapter 7: Utilities
-s packetsize

Specify the number of data bytes to be sent. The default is 56, which translates
into 64 ICMP data bytes when combined with the 8 bytes of ICMP header
data. You may need to specify -b as well to extend socket buffer size.

-t

Generate ICMPv6 Node Information supported query types query, rather
than echo-request. -s has no effect if -t is specified.

-v

Verbose output. ICMP packets other than ECHO_RESPONSE that are received are
listed.

-w

Generate ICMPv6 Node Information DNS Name query, rather than echo-
request. -s has no effect if -w is specified.

-W

Same as -w, but with old packet format based on 03 draft. This option is
present for backward compatibility. -s has no effect if -w is specified.

hops

IPv6 addresses for intermediate nodes, which will be put into type 0 routing
header.

host

IPv6 adddress of the final destination node. When using ping6 for fault
isolation, it should first be run on the local host, to verify that the local
network interface is up and running. Then, hosts and gateways further and
further away should be pinged. Round-trip times and packet loss statistics are
computed.

If duplicate packets are received, they are not included in the packet loss
calculation, although the round trip time of these packets is used in
calculating the round-trip time statistics. When the specified number of
packets have been sent (and received) or if the program is terminated with a
SIGINT, a brief summary is displayed, showing the number of packets sent
and received, and the minimum, maximum, mean, and standard deviation of
the round-trip times.

Description

ping6 uses the ICMPv6 protocol's mandatory ICMP6_ECHO_REQUEST datagram to
elicit an ICMP6_ECHO_REPLY from a host or gateway. ICMP6_ECHO_REQUEST datagrams
have an IPv6 header and ICMPv6 header.

This program is intended for use in network testing, measurement and
management. Because of the load it can impose on the network, it is unwise to use
ping6 during normal operations or from automated scripts.

See Also

netstat
Using LAN Communications 148

ping6 Chapter 7: Utilities
ifconfig

ping

routed
Using LAN Communications 149

route Chapter 7: Utilities
route
Add/Delete Routes

Syntax

route <opts>

IP Functionality

IPv4 and IPv6 addresses

Options

-f

Remove all routes (per flush). If used in conjunction with the add, change,
delete or get commands, route removes the routes before performing the
command.

-n

Bypasses attempts to print host and network names symbolically when
reporting actions. (The process of translating between symbolic names and
numerical equivalents can be quite time consuming, and may require correct
operation of the network; thus it may be expedient to forgo this, especially
when attempting to repair networking operations).

-q

Suppress all output.

-v

(verbose) Print additional details.

The route utility also provides several commands:

add

Add a route.

Syntax: route [-n] <command> [-net | -host] <destination gateway>
where <destination> is the destination host or network, and <gateway> is the
next-hop intermediary by which packets should be routed.

flush

Remove all routes.

If flush is specified, route will “flush” the routing tables of all gateway
entries. When the address family is specified by any of the
-osi, -xns, -atalk, -inet, or -inet6 modifiers, only routes having
destinations with addresses in the delineated family will be deleted.

Syntax: route [-n] flush [<family>]

delete

Delete a specific route.
Using LAN Communications 150

route Chapter 7: Utilities
Syntax: route [-n] <command> [-net | -host] <destination gateway>
where <destination> is the destination host or network, and <gateway> is the
next-hop intermediary by which packets should be routed.

change

Chnage aspects of a route (such as its gateway).

Syntax: route [-n] <command> [-net | -host] <destination gateway>
where <destination> is the destination host or network, and <gateway> is the
next-hop intermediary by which packets should be routed.

get

Look up and display the route for a destination.

Syntax: route [-n] <command> [-net | -host] <destination gateway>
where <destination> is the destination host or network, and <gateway> is the
next-hop intermediary by which packets should be routed.

show

Print out the routing table.

Syntax: route [-n] <command> [-net | -host] <destination gateway>
where <destination> is the destination host or network, and <gateway> is the
next-hop intermediary by which packets should be routed.

monitor

Continuously report any changes to the routing information base, routing
lookup misses, or suspected network partitionings.

Syntax: route [-n] monitor

Description

route is a utility used to manually manipulate the network routing tables. It
normally is not needed, as a system routing table management daemon such as
routed(), should tend to this task.

The route utility supports a limited number of general options, but a rich command
language, enabling the user to specify any arbitrary request that could be delivered
via the programmatic interface discussed in route().

Routes to a particular host may be distinguished from those to a network by
interpreting the Internet address specified as the destination argument. The
optional modifiers -net and -host force the destination to be interpreted as a
network or a host, respectively. Otherwise, if the destination has a “local address
part” of INADDR_ANY, or if the destination is the symbolic name of a network,
then the route is assumed to be to a network; otherwise, it is presumed to be a route
to a host. For example, “128.32” is interpreted as -host 128.0.0.32; “128.32.130”
is interpreted as -host 128.32.0.130; “-net 128.32” is interpreted as 128.32.0.0;
and “-net 128.32.130” is interpreted as 128.32.130.0.

If the destination is directly reachable via an interface requiring no intermediary
system to act as a gateway, the -interface modifier should be specified; the
Using LAN Communications 151

route Chapter 7: Utilities
gateway given is the address of this host on the common network, indicating the
interface to be used for transmission.

The optional -netmask qualifier is intended to achieve the effect of an OSI ESIS
redirect with the netmask option, or to manually add subnet routes with netmasks
different from that of the implied network interface
(as would otherwise be communicated using the OSPF or ISIS routing protocols).
An additional ensuing address parameter is specified (interpreted as a network
mask). The implicit network mask generated in the AF_INET case can be
overridden by making sure this option follows the destination parameter. -
prefixlen is also available for similar purpose, in the case of IPv6.

Routes have associated flags which influence operation of the protocols when
sending to destinations matched by the routes. These flags may be set (or sometimes
cleared) by indicating the following corresponding modifiers:

The optional modifiers -rtt, -rttvar, -sendpipe, -recvpipe, -mtu,
-hopcount, -expire, and -ssthresh provide initial values to quantities maintained
in the routing entry by transport level protocols, such as TCP or TP4. These may be
individually locked by preceding each such modifier to be locked by the -lock
meta-modifier, or one can specify that all ensuing metrics may be locked by the -
lockrest meta-modifier.

In a change or add command where the destination and gateway are not sufficient
to specify the route (as in the ISO case where several interfaces may have the same
address), the -ifp or -ifa modifiers may be used to determine the interface or
interface address.

All symbolic names specified for a destination or gateway are looked up first as a
host name using gethostbyname(). If this lookup fails, gethostbyname() is then used
to interpret the name as that of a network.

route uses a routing socket and the new message types RTM_ADD,
RTM_DELETE, RTM_GET, and RTM_CHANGE. As such, only the super-user
may modify the routing tables.

Table 7-8.

-cloning RTF_CLONING generate a new route on use
-xresolve RTF_XRESOLVE emit mesg on use (for external lookup)
-iface ~RTF_GATEWAY destination is directly reachable
-static RTF_STATIC manually added route
-nostatic ~RTF_STATIC pretend route added by kernel or daemon
-reject RTF_REJECT emit an ICMP unreachable when matched
-blackhole RTF_BLACKHOLE silently discard pkts (during updates)
-proto1 RTF_PROTO1 set protocol specific routing flag
-proto2 RTF_PROTO2 set protocol specific routing flag
-llinfo RTF_LLINFO validly translate proto addr to link addr
Using LAN Communications 152

route Chapter 7: Utilities
See Also

netstat

routed

route6d
Using LAN Communications 153

route6d Chapter 7: Utilities
route6d
RIP Routing Daemon Over IPv6

Syntax

route6d [<opts>]

IP Functionality

IPv6 addresses

Description

The route6d is a routing daemon, which supports RIP over IPv6.

Options

-a

Enables aging of the statically defined routes. With this option, any statically
defined routes will be removed unless corresponding updates arrive as if the
routes are received at thestartup of route6d.

-R <routelog>

This option makes the route6d to log the route change (add/delete) to the file
<routelog>.

-A <prefix/preflen,if1[,if2...]>

This option is used for aggregating routes. <prefix/preflen> specifies the
prefix and the prefix length of the aggregated route. When advertising routes,
route6d filters specific routes covered by the aggregate, and advertises the
aggregated route <prefix/preflen>, to the interfaces specified in the comma-
separated interface list, <if1[,if2...]>. route6d creates a static route to
<prefix/preflen> with RTF_REJECT flag, into the kernel routing table.

-d

Enables output of debugging message. This option also instructs route6d to
run in foreground mode (does not become daemon).

-D

Enables extensive output of debugging message. This option also instructs
route6d to run in foreground mode (does not become daemon).

-h

Disables the split horizon processing.

-l

route6d requires that routing domain support (sproute and route0) be loaded
onto the system.
Using LAN Communications 154

route6d Chapter 7: Utilities
By default, route6d will not exchange site local routes for safety reasons. This
is because semantics of site local address space is rather vague (specification is
still in being worked), and there is no good way to define site local boundary.
With -l option, route6d will exchange site local routes as well. It must not be
used on site boundary routers, since -l option assumes that all interfaces are
in the same site.

-L <prefix/preflen,if1[,if2...]>

Filter incoming routes from interfaces <if1,[if2...]>. route6d will accept
incoming routes that are in <prefix/preflen>. If multiple -L options are
specified, any routes that match one of the options is accepted. ::/0 is
treated specially as default route, not “any route that has longer prefix length
than, or equal to 0”. If you would like to accept any route, specify no -L
option. For example, with “-L 3ffe::/16,if1 -L ::/0,if1”, route6d will
accept default route and routes in 6bone test address, but no others.

-N <if1[,if2...]>

Do not listen to, or advertise, route from/to interfaces specified by
<if1,[if2...]>.

-O <prefix/preflen,if1[,if2...]>

Restrict route advertisement toward interfaces specified by<if1,[if2...]>.
With this option route6d will only advertise routes that matches
<prefix/preflen>.

-q

Make route6d in listen-only mode. No advertisement is sent.

-s

Make route6d to advertise the statically defined routes which exist in the
kernel routing table when route6d invoked. Announcements obey the regular
split horizon rule.

-S

This option is the same as -s option except that no split horizon rule applies.

-T <if1[,if2...]>

Advertise only default route, toward <if1[,if2...]>.

-t <tag>

Attach route tag <tag> to originated route entries. <tag> can be decimal,
octal prefixed by 0, or hexadecimal prefixed by 0x.

Upon receipt of signal SIGINT or SIGUSR1, route6d will dump the current internal
state into /var/run/route6d_dump.

See Also

route

routed
Using LAN Communications 155

routed Chapter 7: Utilities
routed
Dynamic Routing Daemon

Syntax

routed [<opts>]

IP Functionality

IPv4 addresses only

Options

-?

Print help.

-s

Force routed to send routing updates. This is the default if more than one
network interface is configured and IP forwarding has been enabled in spip.

-q

Do not send any routing updates.

-h

Do not advertise host routes if a network route to the host also exists.

-m

Advertise a host route for the machine’s primary address. The primary address
is found by resolving the machine name returned by gethostname().

-t

Increase the debugging level causing more trace information to be written to
stdout. This option can be specified up to four times to select the highest
debug level. The debug level can also be increased or decreased by sending a
SIGUSR1 or SIGUSR2 signal to the routed process.

-A

Ignore authenticated RIPv2 packets if authentication is disabled. This option
is required for RFC 1723 conformance although it can cause valid routes to
be ignored.

-T <file>

Output trace information to <file> instead of stderr.

-P <parm>{[,<parm>]}

Equivalent to adding <parm>{[,<parm>]} to a single line in the
/h0/SYS/gateways file.

-F net[/mask][,metric]

Only send a "fake" default route to this network. This option is used to
minimize RIP traffic but can cause routing loops if the route is propagated.
Using LAN Communications 156

routed Chapter 7: Utilities
Description

routed requires that routing domain support (sproute and route0) be loaded in the
system. Routed is a network routing daemon used to maintain routing tables. It
supports the Routing Information Protocol (RIP) versions 1 and 2, and the Internet
Router Discovery Protocol as defined in RFC's 1058, 1723, and 1256.
The daemon opens a UDP socket and listens for any routing packets sent to the
route port (normally 520) and updates the routing table maintained by spip. If the
system is configured as a router, copies of the routing table are periodically sent to
all directly connected hosts and networks.

When routed is started, all non-static routes are removed from the routing table.
Any static routes present (such as those added by the route utility) are preserved
and included in RIP responses if they have a valid RIP metric. Also, if the file
/h0/SYS/gateways exists, it is read for additional configuration options.

The following options are supported with the -P command line option or from
/h0/SYS/gateways.

if=<ifname>

All other options on this line apply to the interface <ifname>.

passive

Do not advertise this interface, and do not use this interface for RIP and
router discovery.

no_rip

Disable RIP processing on the specified interface. If Router Discovery
Advertisements are not enabled with the -s option, routed acts as a client
router discovery daemon.

no_ripv1_in

Ignore all RIP version 1 responses.

no_ripv2_in

Ignore all RIP version 2 responses.

no_rdisc

Disables the Internet Router Discovery Protocol

no_solicit

Disable the transmission of router discovery solicitations.

no_rdisc_adv

Disable transmission of router discovery advertisements.

rdisc_pref=<num>

Set the preference in router discovery advertisements to <num>.

rdisc_interval=<num>

Set the interval that router discovery advertisements are sent to <num> seconds
and their lifetime to 3 * <num>.
Using LAN Communications 157

routed Chapter 7: Utilities
See Also

route
Using LAN Communications 158

rtsol Chapter 7: Utilities
rtsol
Router Solicitation Over IPv6

Syntax

rtsol [-dD]<interface>

IP Functionality

IPv6 addresses

Options

-d

Enable debugging.

-D

Enable more debugging including to print internal timer information.

Description

Send ICMPv6 Router Solicitation message to the specified interfaces.
Using LAN Communications 159

telnet Chapter 7: Utilities
telnet
Provide Internet Communication Interface

Syntax

telnet [<opts>]
[<hostname> [<portnum>|<servicename>]][<opts>]

IP Functionality

IPv4 and IPv6 addresses

Options

-?

Display the description, option, and command syntax for telnet.

-e=<ctrl-character> or “-e=^<character>”

Set escape to user defined character.

-n

No escape available.

-o

Show options processing.

Description

telnet communicates with another host using the TELNET protocol. Executing
telnet without parameters defaults to command mode. This is indicated by the
prompt telnet. In this mode, telnet accepts and executes the commands listed
below. If executed with parameters, telnet performs an open command with those
parameters.

Once a connection is opened, telnet enters input mode. In this mode, typed text is
sent to the remote host. To issue telnet commands from input mode, precede them
with the telnet escape character. The escape character is initially set to control-
right-bracket (^]) but can be redefined either from the environmental variable
TELNETESC or the command line option -e. In command mode, normal terminal
editing conventions are available.

Commands

The following commands are available. Type enough of each command to uniquely
identify it.

capture [<param>]
Using LAN Communications 160

telnet Chapter 7: Utilities
Capture I/O of a telnet session to a specified file. capture supports four
parameters as identified in the following table.

close

Close the current connection and returns to telnet command mode.

display

Display the current telnet operating parameters. Refer to toggle.

help [<command>]

Print help information for specified ?[<command>] command. If no command
is specified, help lists them all.

mode <param>

Enter line-by-line or character-at-a-time mode.

open [<host>][<port>]

Open a connection to the specified <host>. If <host> is not specified, telnet
prompts for the host name. <host> may be a host name or an internet address
specified in dot notation. If the port number is unspecified, telnet attempts to
contact a TELNET server at the default port.

quit

Close any open telnet connection and exits telnet.

send [<chars>]

Table 7-9. Capture Parameters

Parameter Description
<file> Specify a new file in which to write the I/O of a telnet session.

If <file> already exists, capture returns an error. When <file> is
specified, capture creates and opens the file and turns on capture
mode.

on Turn on capture mode; begins to write I/O to the current specified
capture file.

off Turn off capture mode; stops writing I/O to the specified capture file.
NOTE: This does not close the file.

close Close the capture file.

Table 7-10. Mode Parameters

Parameter Description
character character at a time
line line-by-line
Using LAN Communications 161

telnet Chapter 7: Utilities
Transmit special characters to telnet as identified in the following table.

set <param><value>

Set <telnet> operating parameters by setting local characters to specific telnet
character functions.

Once set, the local character sends the respective character function to the
telnet utility. Specify control characters as a caret (^) followed by a single
letter. For example, control-X is ^X. set supports the parameters identified in
the following table:

status

Show the current telnet status. This includes the connected peer and the state
of debugging.

toggle <param>

Table 7-11. Send Parameters

Parameter Description
ao Abort Output
ayt “Are You There”
brk Break
ec Erase Character
el Erase Line
escape Current Escape Character
ga “Go Ahead” Sequence
ip Interrupt Process
nop “No Operation”
synch “Synch Operation” Command
? Display send parameters.

Table 7-12. Set Parameters

Parameter Description
echo <local char> Set character to toggle local echoing on and

off.
erase <local char> Set the telnet erase character.
flushoutput <local char> Abort output.
interrupt <local char> Set the telnet interrupt character. This

character sends an Interrupt Process.
kill <local char> Set the telnet kill character. This character

sends an Erase Line.
quit <local char> Set the telnet quit character. This

character sends a Break.
? Display help information.
Using LAN Communications 162

telnet Chapter 7: Utilities
Toggle telnet operating parameters, listed in the following table.

z

Suspend the current telnet session and forks a shell.

$

Suspend the current telnet session and forks a shell.

See Also

telnetd

Table 7-13. Toggle Parameters

Parameter Description
crmod Toggles the mapping of received carriage returns. When crmod is

enabled, any carriage return characters received from the remote
host are mapped into a carriage return and a line feed. This mode
does not affect characters typed, only those received. This mode is
sometimes required for some hosts asking the user to perform
local echoing.

localchars Toggles the effects of the set using the set command.
debug Toggles debugging mode. When debug is on, it opens connections

with socket level debugging on. Turning debug on does not affect
existing connections.

netdata Toggles the printing of hexadecimal network data in debugging
mode.

options Toggles the viewing of options processing in debugging mode.
Displays options sent by telnet as SENT; displays options received
from the telnet server as RCVD.

? Display help information.
Using LAN Communications 163

telnetd Chapter 7: Utilities
telnetd
Incoming Telnet Server Daemon

Syntax

telnetd [<opts>]

IP Functionality

IPv4 and IPv6 addresses

Options

-?

Display the description, options, and command syntax for telnetd.

-6

Support IPv6 address. Default is IPv4.

-d

Print the debug information to standard error.

-f=<program>

Program to fork (default = “login”).

-l

Print login information to standard error.

-t

Idle connection timeout value (in minutes). Default = 0 (no connection
timeout).

Description

telnetd is the incoming telnet daemon process. It must be running to handle
incoming telnet connection requests. telnetd forks the telnetdc communications
handler each time a connection to the telnet service is made.

To save this information for later use, redirect the standard error path and standard
output path to an appropriate file on the command line:

telnetd -d </nil >>>-/h0/SYS/telnetd.debug&

or

telnetd -l </nil >>>-/h0/SYS/telnetd.log&

If neither option is used, redirect the standard error path to the null driver
(along with the standard in/out paths):

telnetd <>>>/nil&

• Super user account is required to run telnetd.
• End the command line with an ampersand (&) to place telnetd in the

background (example, telnetd<>>>/nil&).
Using LAN Communications 164

telnetd Chapter 7: Utilities
See Also

telnet

tftpdc

The -f option is useful for remote access to a diskless embedded system. The
need for a RAM disk with a password file is eliminated with the following
command line:
telnetd -f=shell <>>>/nil/&

(mshell can be used in place of shell)

A telnet to this machine goes straight to a shell prompt wtihout a login prompt.
Using LAN Communications 165

telnetdc Chapter 7: Utilities
telnetdc
Telnet Server Connection Handler

Syntax

telnetdc [<opts>]

IP Functionality

IPv4 and IPv6 addresses

Description

telnetdc is the incoming connection handler for telnet. telnetdc can only be
forked from telnetd or inetd.

The psuedo keyboard modules pkman, pkdrv, and pk are required. OS-9 for 68K also
requires pks.

See Also

telnet

telnetd

Do not run this from the command line. Only telnetd and inetd can fork this
utility.
Using LAN Communications 166

tftp Chapter 7: Utilities
tftp
Trivial File Transfer Program

Syntax

tftp [<host>[<port>]]

IP Functionality

IPv4 and IPv6 addresses

Options

<host>

Optional default host for future transfers.

<port>

Optional default port for future transfers.

Description

tftp is the user interface to the Internet TFTP (Trivial File Transfer Protocol), which
allows users to transfer files to and from a remote machine. The remote host may be
specified on the command line, in which case tftp uses host as the default host for
future transfers (see the connect command below).

Commands

Once tftp is running, it issues the prompt “tftp>” and recognizes the following
commands:

? <command-name> ...

Print help information.

ascii

Shorthand for "mode ascii"

binary

Shorthand for "mode binary"

blksize <blksize>

Set the block size for the transfer.

connect <host> [<port>]

Set the <host> (and optionally <port>) for transfers. Note that the TFTP
protocol, unlike the FTP protocol, does not maintain connections between
transfers; thus, the connect command does not actually create a connection,
but remembers what host is to be used for transfers. You do not have to use
the connect command; the remote host can be specified as part of the get or
put commands.
Using LAN Communications 167

tftp Chapter 7: Utilities
get <filename>
get <remotename> <localname>
get <file1> <file2> ... <fileN>

Get a file, or set of files, from the specified sources. Source can be in one of
two forms: a filename on the remote host, if the host has already been
specified, or a string of the form <hosts>:<filename> to specify both a host
and filename at the same time. If the latter form is used, the last hostname
specified becomes the default for future transfers.

mode <transfer-mode>

Set the mode for transfers; <transfer-mode> may be one of ascii or binary.
The default is ascii.

put <file>
put <localfile> <remotefile>
put <file1> <file2> ... <fileN> <remote-directory>

Put a file, or set of files, to the specified remote file or directory. The
destination can be in one of two forms: a filename on the remote host, if the
host has already been specified, or a string of the form <hosts>:<filename> to
specify both a host and filename at the same time. If the latter form is used,
the hostname specified becomes the default for future transfers. If the
<remote-directory> form is used, the remote host is assumed to be an OS-9
machine. If you need to specify IPv6 numeric address to <hosts>, wrap them
using square bracket like [hosts]:filename to disambiguate the colon.

quit

Exit tftp. An end of file also exits.

rexmt <retransmission-timeout>

Set the per-packet retransmission timeout, in seconds.

rtimeout <timeout-interval>

Set the server-side time-out.

status

Show current status.

timeout <total-transmission-timeout>

Set the total transmission timeout, in seconds.

trace

Toggle packet tracing.

tsize

Toggle the tsize option.

This will display the transfer size prior to receiving a file, or send the transfer
size prior to sending a file.

verbose

Toggle verbose mode.
Using LAN Communications 168

tftp Chapter 7: Utilities
SECURITY CONSIDERATIONS

Because there is no user-login or validation within the TFTP protocol, the remote
site will probably have some sort of file-access restrictions in place. The exact
methods are specific to each site and therefore difficult to document here.

See Also

ftp

tftpd
Using LAN Communications 169

tftpd Chapter 7: Utilities
tftpd
Respond to tftpd Boot Requests

Syntax

tftpd [<opts>] [<dirname>] [<opts>]

IP Functionality

IPv4 and IPv6 addresses

Options

-?

Display the syntax, options, and command description of tftpd.

-6

Support IPv6 address. Default is IPv4.

-d

Log debug information to <stderr>.

-t[=]<num>

Set timeout to <num> seconds.

Description

tftpd is the server daemon handling the client Trivial File Transfer Protocol (TFTP)
requests. Once a BOOTP client has received the BOOTP response, it knows the
name of its bootfile. The client then issues a TFTP “read file request” back to the
same server machine from which it received the BOOTP response. tftpd forks
tftpdc to perform the actual file transfer.

tftpd in any system is a security problem because the TFTP protocol does not
provide a way to validate or restrict a transfer request since login procedures do not
exist. To provide some level of security, tftpd only transfers files from a single
directory. You can specify this directory on the tftpd command line. The default is
/h0/TFTPBOOT.

See Also

tftp

tftpdc

Refer to Chapter 6, BOOTP Server for more information about the BOOTP
Server.
Using LAN Communications 170

tftpdc Chapter 7: Utilities
tftpdc
TFTP Server Connection Handler

Syntax

tftpdc [<opts>]

IP Functionality

IPv4 and IPv6 addresses

Description

tftpdc is the incoming communications handler for TFTP. Each time a
TFTP service connection is made, tftpd forks this process. See Also

tftpd

tftpdc is intended to be run only by tftpd.
Using LAN Communications 171

tftpdc Chapter 7: Utilities
Using LAN Communications 172

8 Programming

This chapter covers discusses how to use sockets, broadcasting, and multicasting.
The following sections are included:

• Programming Overview

• Establishing a Socket

• Header Files

• Reading Data Using Sockets

• Writing Data Using Sockets

• Setting up Non-Blocking Sockets

• Broadcasting

• Multicasting

• Controlling Socket Operations
173

Chapter 8: Programming
Programming Overview
LAN Communications is based on sockets. Sockets have the following
characteristics:

• Sockets are abstractions providing application programs with access to the
communication protocols.

• Sockets serve as endpoints of a communication path between processes running
on the same or different hosts.

• Sockets enable one system to send and receive information from other systems
on the network.

• Sockets also enable programmers to use complicated protocols, such as TCP/IP,
with little effort.

The following illustrates how a socket might look in a network:

Figure 8-1. Network

Socket Types

Each socket has a specific address family, a specific protocol, and an associated
type. Before establishing a socket, familiarize yourself with the types of sockets
available and decide which is best for your needs.

The following address families are supported:

Two high-level protocols, the Transmission Control Protocol (TCP) and the User
Datagram Protocol (UDP), are supported.

System 1
(Client)

System 2
(Server)

Network

Socket Socket

Refer to Appendix A: Example Programs and Test Utilities of the OS-9 Network
Programming Reference. It contains example programs for various types of
sockets. You can use these programs as templates for writing your own
programs.

Table 8-1. Address Families

Address Family Description
AF_INET ARPA internet address family.
AF_INET6 Internet address version 6 family.
AF_ROUTE BSD 4.4 style routing domain.
Using LAN Communications 174

Chapter 8: Programming
The following types of sockets are supported. Both SOCK_STREAM and SOCK_DGRAM
imply a specific protocol to use. When using raw sockets the protocol is indicated
when opening the socket.

Stream Sockets

Stream sockets are full-duplex byte streams, similar to pipes. Stream sockets must
be in a connected state, and only two sockets can be connected at a time. A socket
in the connected state has been bound to a permanent destination. Each socket in
the connected pair is a peer of the other.

Stream sockets use the TCP protocol. TCP ensures data is not lost or duplicated. If
data for which the peer protocol has buffer space cannot be successfully transmitted
within a reasonable length of time, the connection is considered broken.

Datagram Sockets

Datagram sockets provide bi-directional flow of data packets called messages. A
datagram socket state can be either connected or unconnected.

Datagram sockets use the UDP protocol. UDP does not guarantee sequenced,
reliable, or unduplicated message delivery. However, UDP has a reduced protocol
overhead and is adequate in many cases.

Raw Sockets

Raw sockets provide an unreliable datagram service. They enable an application to
create its own protocol headers and are used to send and receive ICMP messages as
well as implementing protocol types not supported directly by IP. The use of raw
sockets is restricted to super user processes.

Establishing a Socket
You can establish sockets in several ways. The sequence required to establish
connected sockets and unconnected sockets is different. Further, connected sockets
are established differently on the client and server sides.

The following describes how to establish sockets and the necessary LAN
Communications system calls.

Stream Sockets

Stream sockets use TCP for a transport protocol and must be connected before
sending or receiving data. The sequence for connecting a socket is slightly different
between the server and client sides.

Table 8-2. Socket Type/Protocol

Socket Type Description Implied Protocol
SOCK_STREAM Stream sockets TCP

SOCK_DGRAM Datagram sockets UDP

SOCK_RAW RAW Sockets none
Using LAN Communications 175

Chapter 8: Programming
Server Steps

Complete the following sequence on the server side:

Step 1. Create the socket.

Sockets are created with the socket() function. socket() requires three
parameters:

• address format (AF_INET or AF_INET6)

• type (SOCK_STREAM)

• protocol (0)

socket() returns a path number to the created socket. This path number is a handle
to the socket, similar to what the open() or create() functions return.

The following syntax is used to create a stream socket:

int s;
s=socket(AF_INET,SOCK_STREAM,0);

-OR-

s=socket(AF_INET6,SOCK_STREAM,0);

s is the returned path number of the socket.

Step 2. Bind to the socket.

When a socket is created with socket(), it has no association to local or destination
addresses. This means a local port number is not assigned to the socket. Server
processes operating on a well-known port must specify this port to the system by
using the bind() LAN Communications function. The bind() call binds the port to
the address.

The structure used for the address is sockaddr_in or sockaddr_in6, which is defined
in the in.h or in6.h header file, respecitively.

Normally a server process accepts connections that arrive on any of the machine’s
interfaces. In this case the IP address passed to bind() in the sockaddr_in or
sockaddr_in6 structure is the wildcard address 0.0.0.0 or “::”, which are
represented by INADDR_ANY or IN6ADDR_ANY_INIT, respectively. If the server process
wishes to restrict incoming connections to a single interface, the IP address
associated with that interface may be used in place of INADDR_ANY or
IN6ADDR_ANY_INIT.
Using LAN Communications 176

Chapter 8: Programming
The following syntax is valid for bind()on IPv4:

#define PORT 27000 /* port number to bind socket to define*/

struct sockaddr_in name; /* ‘name‘ as a sockaddr_in structure */

memset(&name,0,size of(name)); /*initialize structure to zero*/

name.sin_family = AF_INET; /* address family is AF_INET */

name.sin_port = htons(PORT);/* assign port number in network byte order */

name.sin_addr.s_addr = INADDR_ANY;

/* allow any client to access socket */
bind(s, (struct sockaddr*) &name, sizeof(name));

/* bind the port to the socket. The ‘s‘ parameter is the
path number for the socket and was returned by socket() */

The following syntax is valid for bind() on IPv6:

const struct in6_addr in6addr_any=IN6ADDR_ANY_INIT;

#define PORT 2700 /*port number to bind socket*/

struct sockaddr_in6 name /*define variable “name” as a socket structure */

memset (&name,0,sizeof(name));/*initialize structure to zero */

name.sin6_family=AF_INET6;/*address family is AF_INET6 *?

name.sin6_port=htons (PORT);/*assign port number in network byte order */

name.sin6_addr=inet6addr_any;/*allow any client to access socket*/

bind (s, (struct sockaddr *)&name,sizeof(name));

/*bind the port to the socket, “s” parameter is path number
for the socket and was returned by socket*/

Step 3. Listen for a Connecting Socket

If you have a stream socket (type SOCK_STREAM), the listen() function sets the
socket in a passive state and allows servers to prepare a socket for incoming
connections. It also informs the system to queue multiple client requests which
arrive at a socket very close in time. This queue length must be specified in the
listen() call. After client requests fill this queue, any further requests are rejected,
and the client socket is notified with an ECONNREFUSED error.

listen() requires two parameters:

• the socket’s path number

• the client’s requested queue size

For example, the following syntax is valid for listen():

listen(s,4);

In this example, four client requests are allowed to queue. When the queue is full,
additional requests are refused.

Step 4. Accept a connecting socket.

Once listen() sets up a passive socket, the accept() function is used to accept
connections from clients. accept() blocks the process if pending connections are
not presently queued.
Using LAN Communications 177

Chapter 8: Programming
If the socket is set up as non-blocking and an accept() call is made with no pending
connections, accept() returns with an EWOULDBLOCK error.

accept() requires three parameters:

• the socket’s path number

• a pointer to a variable with type sockaddr_in or sockaddr_in6

• the size of the sockaddr_in or sockaddr_in6 structure

The following syntax is valid for accept() on IPv4:

struct sockaddr_in from;
int ns, size;

size=sizeof(struct sockaddr_in);
ns=accept(s, (struct sockaddr*) &from, &size);

The following syntax is valid for accept() on IPv6:

struct sockaddr_in6 from;
int ns, size;

size=sizeof(struct sockaddr_in6);
ns=accept(s, (struct sockaddr*) &from,

(socklen.t*) &size);

Once accept() returns without error, a connection has been made to a client
process and the following events occur:

1. The client request is removed from the listen queue.

2. The client foreign address was put into the from variable. This allows the server
to see who connected to it.

3. accept() returns a new socket path number (ns).

This new socket transfers data to and from the client process. It represents a
connected path to the client process. The original socket path number returned by
socket() can then be used to accept further connections or it can be closed,
determined by the application.

At this point in the server process, the socket has been established and
communication between the two processes can begin.
Using LAN Communications 178

Chapter 8: Programming
Client Steps

Complete the following steps on the client side:

Step 1. Create the socket.

Sockets are created with the socket() function. socket() requires three parameters:

• an address format (AF_INET or AF_INET6)

• a type (SOCK_STREAM or SOCK_DGRAM)

• a protocol (usually 0)

socket() returns a path number to the created socket. This path number is a handle
to the socket, similar to what the open() or create() functions return.

The following syntax is used to create a stream socket:

int s;
s=socket(AF_INET,SOCK_STREAM,0);

-OR-

s=socket(AF_INET6,SOCK_STREAM,0);

s is the returned path number to the socket.

Step 2. Connect to a listening socket.

To connect to a listening socket, use the connect() function call.

connect() requires three parameters:

• the path descriptor returned by socket()

• a pointer to a structure containing the name

• the length of the name

Using Connect

The following example demonstrates the use of connect() on IPv4:

#define PORT 27000/* Port number of server process */

struct sockaddr_in ls_addr;

memset(&ls_addr, 0, sizeof(ls_addr));/* Initialize structure to zero */

ls_addr.sin_family = AF_INET;

ls_addr.sin_port = htons(PORT);/* Assign port in network byte order */

ls_addr.sin_addr.s_addr = inet_addr("thor");

 /* IP address we wish to connect to */

connect (s, (struct sockaddr *)&ls_addr, sizeof(ls_addr));
Using LAN Communications 179

Chapter 8: Programming
The following example demonstrates the use of connect() on IPv6:

#define PORT 27000/* Port number of server process */

struct sockaddr_in6 ls_addr;

memset(&ls_addr, 0, sizeof(ls_addr));/* Initialize structure to zero */

ls_addr.sin6_family = AF_INET6;

ls_addr.sin6_port = htons(PORT);/* Assign port in network byte order */

inet_pton(AF_INET6, “thor”, & ls_addr.sin6_addr);

/*IP address to connect to */

connect (s, (struct sockaddr *)&ls_addr, sizeof(ls_addr));

The connect() call automatically binds the socket to a local port number if bind()
was not explicitly called. bind() is not usually called by clients unless the server
restricts the ports from which it will accept connections.

Datagram Sockets

Datagram sockets use UDP as a transport protocol and can be connected or
connectionless.

The steps for creating connected and connectionless sockets are the same for both
the server and client sides:

1. Create the socket

The following syntax is used to create a datagram socket:

int s;
s=socket(AF_INET,SOCK_DGRAM,0);

-OR-

s=socket(AF_INET6,SOCK_DGRAM,0);

2. Bind a port and/or address to the socket

As with TCP, the client does not need to bind a socket.

The following syntax is valid for bind() on IPv4:

struct sockaddr_in ls_addr;

bind(s,(struct sockaddr*) &ls_addr, sizeof (ls_addr);

The following syntax is valid for bind() on IPv6:

struct sockaddr_in6 ls_addr;

bind(s,(struct sockaddr*) &ls_addr, sizeof (ls_addr);
Using LAN Communications 180

Chapter 8: Programming
Connect a Socket

Either the client or server can optionally call connect() on a UDP socket. Unlike
TCP sockets, calling connect() on a UDP socket does not cause any information to
be sent to the peer. It simply stores the peer address in the local socket and allows
the application to use send() and recv() instead of sendto() and recvfrom().

A process may "disconnect" a UDP socket by calling connect() with INADDR_ANY or
INADDR6_ANY_INIT as the IP address. The application can then no longer use send()
and receive(), but can still use sendto() and recvfrom().

The connect() function call requires three parameters:

• the path descriptor returned by socket().

• a pointer to a sockaddr_in or sockaddr_in6 structure containing the peer port
and IP address.

• the size of the sockaddr_in or sockaddr_in6 structure.

The following syntax is used to connect a datagram socket on IPv4:

struct sockaddr_in ls_addr;

connect(s, (struct sockaddr *)&ls_addr, sizeof(ls_addr));

The following syntax is used to connect a datagram socket on IPv6:

struct sockaddr_in6 ls_addr;

connect(s, (struct sockaddr *)&ls_addr, sizeof(ls_addr));

Header Files
The following table describes header files associated with sockets.

Table 8-3. Header Files Associated with Berkeley Sockets

Header File Description
netinet/in.h Provide structures and functions for the socket family AF_INET.
netinet6/in6.h Provide structures and functions for the socket family AF_INET6.
netdb.h Provide structures for hosts, networks, services, protocols, and

functions calling socket address structures and socket family
AF_INET structures.

sys/socket.h Provide a definition to the socket address structure.
Using LAN Communications 181

Chapter 8: Programming
Header files are found in MWOS/SRC/DEFS/SPF/BSD.

The main internet application structure is sockaddr_in and sockaddr_in6, defined
in the in.h and in6.h header files.

struct sockaddr_in {
u_char sin_len;
u_char sin_family;
u_short sin_port;
struct in_addr sin_addr;
char sin_zero[8];

};

struct in_addr {
u_long s_addr;

};

struct sockaddr_in6 {
u_int8_t sin6_len;
u_int8_t sin6_family;
u_int16_t sin6_port;
u_int32_t sin6_port;

struct in6_addr sin6_addr;
u_int32_t sin6_scope_id;

};

struct in6_addr {
union {

u_int8_t __u6_addr8[16];

u_int16_t __u6_addr16[8];

u_int32_t __u6_addr32[4];

} __u6_addr;
};

The hostent structure is in the netdb.h header file. It is used to get address
information about any host in the inetdb database:

struct hostent {
 char *h_name;/* pointer to host name */
 char **h_aliases;/* pointer to the pointer */

/* to the alias for the host */
 int h_addrtype;/* host address type */
 int h_length;/* length of host */
 char **h_addr_list;/* list of addresses from */

/* name server */
 #define h_addr h_addr_list[0]

/* backwards compatibility:
 pointer to the address of

 the host */

}

Using LAN Communications 182

Chapter 8: Programming
Reading Data Using Sockets
Four functions are available for reading data:

Writing Data Using Sockets
Four similar functions are available for writing data.

If a socket path has been set to nonblocking and there is not enough buffer space
available, the call can succeed, but only part of the data may be sent. Check the
return value to see how many bytes were sent.

Table 8-4. Reading Functions

Function Description
_os_read()
read()
recv()

Returns the data available on the specified socket path, up to the
amount requested. For packet oriented protocols, such as UDP, only a
single datagram is returned, even if more are available. These calls
are only valid on connected sockets.

recvfrom() Functions similar to recv() except that it also returns a sockaddr_in
or sockaddr_in6 structure containing the address information of the
sender. recvfrom() works with unconnected sockets.

recvmsg() Similar to recvfrom(); however, this uses an msghdr structure to
minimize the number of directly supplied parameters.

For more specific information on recv() recvfrom(), and recvmsg() refer to
the OS-9 Network Programming Reference.
For more specific information on _os_read() and read(), refer to the Ultra C
Library Reference.

Table 8-5. Writing Functions

Function Description
_os_write()
write()
send()

Writes data from a buffer to the socket path. These functions are only
valid with connected sockets.

sendto() Functions the same as send() except it also takes a sockaddr_in or
sockaddr_in6 parameter specifying where the data is to be sent.
sendto() works with unconnected sockets.

sendmsg() Similar to sento(); however, this uses an msghdr structure to minimize
the number of directly supplied parameters.

For more specific information on send() and sendto(), refer to the OS-9
Network Programming Reference.
For more specific information on _os_write() and write(), refer to the
Hawk™ On-line Help System from the Hawk interface.
Using LAN Communications 183

Chapter 8: Programming
Setting up Non-Blocking Sockets
When a program tries to perform some socket functions, the program can block.
The following are situations in which this would happen:

• Read from a socket that has no data (read/recv/recvfrom).

• Write to a socket that does not have enough space to satisfy size of write
(write/send/sendto).

• Accept a connection with no waiting connection available (listen/accept).

• Calling connect on a TCP socket.

LAN Communications enables you to create a non-blocking socket to prevent the
above problems. When your program tries to access a non-blocking socket in one of
the above listed blocking conditions, the socket returns the error EWOULDBLOCK. The
connect call is the exception and returns EINPROGRESS.

The following function can be used to set a socket to non-blocking or blocking:

spath is the socket path.

blockflag is either set to IO_SYNC for blocking or IO_ASYNC for nonblocking.

#include <SPF/spf.h>

error_code setblock(path_id spath, u_int8 blockflag)

{

struct spf_popts sopts;

u_int32 soptsz=sizeof(sopts)

if ((errno=_os_gs_popt(spath,&soptsz,&sopts)) !=SUCCESS) {

return(errno);

}

sopts.pd_ioasync=blockflag;

return (_os_ss_popt(spath,soptsz,&sopts));

} /*end of setblock*/

The common UNIX function ioctl() can also be used.

#include <UNIX/ioctl.h>

error_code setblock(path_id spath, u_int8 blockflag){

if (ioctl(spath, FIONBIO, dblockflag)<SUCCESS) {

return (errno);

}

return(SUCCESS);

}

Using LAN Communications 184

Chapter 8: Programming
Broadcasting
Broadcasting support allows the network to deliver one copy of a packet to all
attached hosts. Due to the extra overhead involved, multicasting is much preferred
over broadcasting as a way to deliver data to multiple recipients. Also, broadcast
packets are only sent to the local network and can not be forwarded by routers.

Stream sockets cannot be used for broadcasting messages. The SO_BROADCAST option
must be enabled before broadcasting on a datagram socket.

Broadcasting Process

The broadcasting process sends its message to the pre-selected port number.

The broadcasting process uses the internet address for the address of the network.
Usually this address is the same as the sender’s broadcast address. For example, on a
class C network, a system with address 192.7.44.105 has a broadcast address of
192.7.44.255.

The broadcasting process must open the socket as a datagram socket. A bind() call
is required before broadcasting. The broadcasting process must use the sendto()
function.

Receiving Process

The receiving processes must receive from the pre-selected port number the
broadcaster is using.

The receiving socket must be opened as a datagram socket. A bind() call is required
before attempting to receive. The receiving processes use the recvfrom() function.

Multicasting
Multicasting support allows the delivery of a single packet to multiple hosts. The
main difference between multicasting and broadcasting is that with multicasts, only
the machines interested in receiving the packets see them. Also, multicast packets
can be routed across networks, while broadcasts are only seen on the local network.

Currently, LAN Communications does not support routing multicast packets. It can
only be used as an end node to send or receive them. Also, only datagram sockets
can be used for multicasting.

Do not use send() or _os_write().
Using LAN Communications 185

Chapter 8: Programming
Sending Multicasts

The same mechanism used to send unicast datagrams can be use to send multicasts
by simply using a multicast destination IP address. However, to provide more
control, 3 additional socket options may be used.

• IP_MULTICAST_TTL—This option limits the number of routers a multicast packet
can pass through before being dropped. The default value is 1, which means
multicasts will not travel beyond the locally attached network. Link local
multicasts (addresses 224.0.0.0 - 224.0.0.255) are never routed, regardless of
the TTL value.

• IP_MULTICAST_LOOP—The default is for multicasts not to be sent to the loopback
interface. If you want to see the multicast packets you send, or another
application on your hosts needs to see them, this option needs to be enabled.

• IP_MULTICAST_IF—When sending multicast packets, the output interface is
selected via the normal routing procedure. This option allows an application to
override this selection and pick the appropriate interface.

Receiving Multicasts

In order for an application to receive multicast packets, it must join the appropriate
multicast group. After the group has been joined, receiving multicast packets is no
different than normal unicast packets. Two socket options are provided for joining
and leaving multicast groups.

• IP_ADD_MEMBERSHIP—This option informs IP that an application wants to
receive packets for the given multicast group. If this is the first application on
the host to join the group on the requested interface, IP will notify the interface
to begin receiving multicast packets for group. Additionally, any multicast
routers present on the subnet will be notified that a host has joined the group.

• IP_DROP_MEMBERSHIP—This option informs IP that packets for the indicated
group should no longer be sent to the application. If this is the last application
receiving this group on the indicated interface, IP will notify the interface to no
longer receive the group.

The normal routing lookup is performed first and fails, the
IP_MULTICAST_IF option is not checked. This means a route to the selected
multicast address must exist in the routing table. Normally this consists of either
a network route such as 224.0.0.0 or, more commonly, the presence of a
default route.

Refer to the OS-9 Network Programming Reference for more information on
using setsockopt.
Using LAN Communications 186

Chapter 8: Programming
Controlling Socket Operations
Socket level options control the socket’s operation. These options are defined in
socket.h. setsockopt() and getsockopt() are used to set and get options.

* Unsupported option

Table 8-6. Socket Level Options

Option Description
SO_DEBUG * Turn on recording of debugging information. This allows debugging

in the underlying protocol modules.
SO_REUSEADDR Indicate the rules used in validating addresses supplied in a bind()

call should allow reuse of local addresses.
SO_KEEPALIVE Allow the periodic transmission of messages on a connected socket.

If a connected party fails to respond to these messages, the
connection is considered broken and the socket is closed.

SO_DONTROUTE Indicate outgoing messages should bypass the standard routing
facilities. Instead, messages are directed to the appropriate network
interface according to the network portion of the destination address.

SO_LINGER Control the actions taken when unsent messages are queued on a
socket and a close() is performed. If the socket promises reliable
delivery of data and SO_LINGER is set, the system blocks the process
on the close attempt until it is able to transmit the data or until it
decides it is unable to deliver the information. A time-out period,
referred to as the linger interval, is specified by setsockopt() when
SO_LINGER is requested.

SO_BROADCAST Enable an application to send broadcast messages. Valid for
datagram sockets only.

SO_OOBINLINE Place any incoming out-of-band data in the normal input queue.
SO_SNDBUF Set or retrieve the size of the socket send buffer.
SO_RCVBUF Set or retrieve the size of the socket receive buffer.
SO_SNDLOWAT Indicate the minimum amount of space that must be available in the

send buffer before data is accepted for sending. If this much space is
not available the process blocks, or if the socket is non-blocking an
EWOULDBLOCK error is returned.

SO_RCVLOWAT* Indicate the minimum amount of data that must be available to be
read before select considers a path "readable".

SO_SNDTIMEO* Control the maximum amount of time a process will block waiting for
buffer space when sending data.

SO_RCVTIMEO* Control the maximum amount of time a process will block waiting for
incoming data.

SO_TYPE Return the type of a socket such as SOCK_STREAM or SOCK_DGRAM. This
option is only valid for getsockopt().

SO_ERROR Retrieve the current socket error if one exists. This option is only valid
for getsockopt().

SO_USELOOPBACKThis option is only valid for sockets in the routing domain (AF_ROUTE).
It controls whether a process receives a copy of everything it sends.
Using LAN Communications 187

Chapter 8: Programming
Using LAN Communications 188

A Configuring LAN
Communications

This appendix explains how to configure and start LAN Communications for
Internet access. It includes the following sections:

• Configuring Network Modules

• Starting the Protocol Stack

• Example Configuration

• Configuration Files
189

Appendix A: Configuring LAN Communications
Configuring Network Modules
You can configure the host, network, DNS client, routing, and interface
information by updating text files found in MWOS/SRC/ETC.

Step 1: Updating Files

You may need to update the following files for your system.

• hosts

• networks

• resolv.conf (if using DNS Client)

• routes.conf (if using static routing)

• interfaces.conf (located in MWOS/<OS>/<CPU>/PORTS/<BOARD>/SPF/ETC or
MWOS/SRC/ETC)

Step 2: Creating Modules

Create the inetdb/inetdb2/rpcdb modules by running os9make on cross-
development systems. This executes the idbgen and rpcdbgen utilities.

The makefile is found in MWOS/SRC/ETC. If you are working from a ports directory,
the makefile is found in the MWOS/<OS>/<CPU>/PORTS/<TARGET>/SPF/ETC directory
in the port.

The inetdb/inetdb2/rpcdb data modules will be placed in
MWOS/<OS>/<CPU>/CMDS/BOOTOBJS/SPF, or the local ports CMDS/BOOTOBJS/SPF.

The idbgen reads files in the local SPF/ETC directory and/or files in MWOS/SRC/ETC.
The rpcdbgen utility reads files from MWOS/SRC/ETC.

The idbdump utility can be used to print out the contents of the inetdb/inetdb2 data
modules. The rpcdump utility can be used to print out the contents of the rpcdb data
module.

Contents of inetdb

Below is an example of the contents of an inetdb data module.

> idbdump inetdb

Dump of OS-9/PowerPC INETDB network database module [inetdb]

 Compatability : 1

 Version Number: 9

Host Entries:

Host Name Host Address Host Aliases

---------- --------------- -------------

localhost 127.0.0.1 me

The rpcdbgen utility and rpcdb data module are described in the Using
Network File System/Remote Procedure Call manual.
Using LAN Communications 190

Appendix A: Configuring LAN Communications
Hosts Equivalent Entries:

Network Entries:

Network Name Network Address Network Aliases

------------- --------------- ---------------

loopback 127

private-A 10

private-B 172.1

private-C 192.1.2

localnet 10.0.0

Protocol Entries:

Protocol Number Protocol Aliases

-------- ------ ----------------

ip 0 IP

icmp 1 ICMP

igmp 2 IGMP

tcp 6 TCP

udp 17 UDP

Service Entries:

Service Name Port/Protocol Service Aliases

------------ ------------- ---------------

ndp 13312/tcp ndpd

npp 13568/tcp nppd

echo 7/tcp

echo 7/udp

discard 9/tcp

discard 9/udp

daytime 13/tcp

daytime 13/udp

chargen 19/tcp

chargen 19/udp

ftp-data 20/tcp

ftp-data 20/udp

ftp 21/tcp

ftp 21/udp

telnet 23/tcp

telnet 23/udp

nameserver 42/tcp

nameserver 42/udp

bootps 67/tcp

bootps 67/udp

bootpc 68/tcp

bootpc 68/udp

tftp 69/tcp

tftp 69/udp

touyr 520/udp
Using LAN Communications 191

Appendix A: Configuring LAN Communications
InetD Configuration Entries:

Service Name Socket Type Protocol Flags Owner Server Arguments

------------ ----------- -------- ------ ----- ----------------

ftp SOCK_STREAM tcp WAIT 0.0 ftpdc

telnet SOCK_STREAMtcp WAIT 0.0 telnetdc

echo SOCK_STREAMtcp WAIT 0.0 internal

echo SOCK_DGRAMudp WAIT 0.0 internal

Resolve Configuration Entries:

 Domain Name: alpha.com

 Nameserver List:

 1: 10.0.0.1

 2: 10.0.0.2

 3: 10.0.0.3

 Search List:

 1: alpha.com

Host Configuration Entries:

Interface Configuration Entries:

Hostname Configuration Entries:

Route Configuration Entries:

Destination Gateway NetmaskType

----------- -------- -------- ----

RPC Entries:

Program NumberAliases

---------------- ------- -------

portmapper 100000 rpcinfo

rstatd 100001 rup

rusersd 100002 rusers

nfs 100003 nfsrbf

ypserv 100004 yp

mountd 100005 mount showmount

ypbind 100007

walld 100008 rwall shutdown

yppasswdd 100009 yppasswd

etherstatd 100010 etherstat

rquotad 100011 rquotaprog quota rquota

sprayd 100012 spray

rje_mapper 100014

selection_svc 100015 selnsvc

database_svc 100016
Using LAN Communications 192

Appendix A: Configuring LAN Communications
rexd 100017 on

llockmgr 100020

nlockmgr 100021

statmon 100023

status 100024

bootparam 100026

ypupdated 100028ypupdate

keyserv 100029keyserver

dird 76 rdir

msgd 99 msg

sortd 22855 rsort

Contents of inetdb2

Below is an example of the inetdb2 data module.

>idbdump inetdb2

Dump of OS-9000/PowerPC INETDB network database module [inetdb2]

 Compatability : 1

 Version Number: 9

Host Entries:

Host Name Host Address Host Aliases

--------- ------------ -------------

Hosts Equivalent Entries:

Network Entries:

Network Name Network Address Network Aliases

------------ --------------- ----------------

Protocol Entries:

Protocol Number Protocol Aliases

--------- ------ -----------------

Service Entries:

Service Name Port/Protocol Service Aliases

------------- ------------- ---------------

InetD Configuration Entries:

Service Name Socket Type Protocol Flags Owner Server Arguments

------------ ----------- --------- ------ ------ ----------------

Resolve Configuration Entries:

Host Configuration Entries:
Using LAN Communications 193

Appendix A: Configuring LAN Communications
Interface Configuration Entries:

Interface: enet0

 Binding: /spe30/enet

 Flags: 0x1 <UP>

 MW_Flags: 0x8000 <NO_MULTICAST>

 MTU: 0

 Metric: 0

 Address Netmask Broadcast

 172.16.4.32 0.0.0.0 0.0.0.0

Interface: ppp0

 Binding: /ipcp0

 Flags: 0x1 <UP>

 MTU: 0

 Metric: 0

 Address Netmask Broadcast

 None

Hostname Configuration Entries:

Hostname: Beta

Route Configuration Entries:

Destination Gateway Netmask Type

------------ ------- ------- ----

RPC Entries:

Program Number Aliases

Step 3: Configure the Interface Descriptor

To set port-specific parameters such as baud rate or interrupt number, you must
configure the interface descriptor for PPP, SLIP, or Ethernet. To do this, perform the
following steps:

Step 1. Update the spf_desc.h descriptor file in the local ports directory. For Ethernet, this
file is found in the port directory for your target under
MWOS/<OS>/<CPU>/PORTS/<TARGET>/SPF/<driver>/DEFS.

Step 2. To make, run os9make in the SPF/<driver> directory.
Using LAN Communications 194

Appendix A: Configuring LAN Communications
Step 4: Load LAN Modules

The minimum modules required to test connectivity with ping are included in the
following list. Uncomment or add these files to your bootlist.

inetdb inetdb2

sysmbuf mbinstall

spip ip0

spudp udp0

sptcp tcp0

netdb_dns spf

spraw raw0

ipstart ping

• For SLIP, PPP, or Ethernet support, uncomment the appropriate driver(s) and
descriptor(s).

• To include other utilities in your boot, such as telnet, uncomment the
appropriate entry.

An example bootlist follows. Depending on the OS software version you are using,
you may need a relative path of ../../../../../../<CPU> or ../../../<CPU>.

*

* SysMbuf P2 Module:

*

../../../../../../<CPU>/CMDS/BOOTOBJS/SPF/SysMbuf

*

* SysMbuf utilities:

*

../../../../../../<CPU>/CMDS/mbinstall

*../../../../../../<CPU>/CMDS/mbdump

*

* SPF file manager:

*

../../../../../../<CPU>/CMDS/BOOTOBJS/SPF/spf

*

* LAN protocol drivers and descriptors:

*

../../../../../../<CPU>/CMDS/BOOTOBJS/SPF/sptcp

../../../../../../<CPU>/CMDS/BOOTOBJS/SPF/tcp0

../../../../../../<CPU>/CMDS/BOOTOBJS/SPF/spudp

../../../../../../<CPU>/CMDS/BOOTOBJS/SPF/udp0

../../../../../../<CPU>/CMDS/BOOTOBJS/SPF/spip

../../../../../../<CPU>/CMDS/BOOTOBJS/SPF/ip0
Using LAN Communications 195

Appendix A: Configuring LAN Communications
../../../../../../<CPU>/CMDS/BOOTOBJS/SPF/spraw

../../../../../../<CPU>/CMDS/BOOTOBJS/SPF/raw0

*../../../../../../<CPU>/CMDS/BOOTOBJS/SPF/sproute

*../../../../../../<CPU>/CMDS/BOOTOBJS/SPF/route0

*

* Pseudo Key Board File Manager and Driver required for telnetdc)

*

*../../../../../../<CPU>/CMDS/BOOTOBJS/SPF/pkman

*../../../../../../<CPU>/CMDS/BOOTOBJS/SPF/pkdvr

*../../../../../../<CPU>/CMDS/BOOTOBJS/SPF/pk

*../../../../../../<CPU>/CMDS/BOOTOBJS/SPF/pks <OS-9 only>

*

* LAN trap handler and configuration data module:

*

../../../../../../<CPU>/CMDS/BOOTOBJS/SPF/netdb_dns

../../../../../../<CPU>/CMDS/BOOTOBJS/SPF/inetdb

../../../../../../<CPU>/CMDS/BOOTOBJS/SPF/inetdb2

*

* LAN SLIP drivers and descriptors:

*

*../../../../../../<CPU>/CMDS/BOOTOBJS/SPF/spslip

*../../../CMDS/BOOTOBJS/SPF/spsl0

*

* LAN PPP client drivers and descriptors:

*

*../../../../../../<CPU>/CMDS/BOOTOBJS/SPF/spipcp

*../../../../../../<CPU>/CMDS/BOOTOBJS/SPF/splcp

*../../../../../../<CPU>/CMDS/BOOTOBJS/SPF/sphdlc

*../../../CMDS/BOOTOBJS/SPF/spipcp0

*../../../CMDS/BOOTOBJS/SPF/splcp0

*../../../CMDS/BOOTOBJS/SPF/sphdlc0

*

* LAN PPP client utilities:

*

*../../../../../../<CPU>/CMDS/pppd

*../../../../../../<CPU>/CMDS/pppauth

*

* Ethernet Protocol Driver (required for hardware ethernet drivers)

*

../../../../../../<CPU>/CMDS/BOOTOBJS/SPF/spenet
Using LAN Communications 196

Appendix A: Configuring LAN Communications
../../../../../../<CPU>/CMDS/BOOTOBJS/SPF/enet

*

* LAN ethernet driver and descriptor:

*

../../../CMDS/BOOTOBJS/SPF/<ethernet driver>

../../../CMDS/BOOTOBJS/SPF/<ethernet descriptor>

*

* LAN utilities:

*

*../../../../../../<CPU>/CMDS/arp

*../../../../../../<CPU>/CMDS/bootpd

*../../../../../../<CPU>/CMDS/bootptest

*../../../../../../<CPU>/CMDS/dhcp

*../../../../../../<CPU>/CMDS/ftp

*../../../../../../<CPU>/CMDS/ftpd

*../../../../../../<CPU>/CMDS/ftpdc

*../../../../../../<CPU>/CMDS/hostname

*../../../../../../<CPU>/CMDS/idbdump

*../../../../../../<CPU>/CMDS/idbgen

*../../../../../../<CPU>/CMDS/ifconfig

*../../../../../../<CPU>/CMDS/inetd

../../../../../../<CPU>/CMDS/ipstart

*../../../../../../<CPU>/CMDS/ndbmod

*../../../../../../<CPU>/CMDS/netstat

../../../../../../<CPU>/CMDS/ping

*../../../../../../<CPU>/CMD/ping6

*../../../../../../<CPU>/CMDS/route

*../../../../../../<CPU>/CMDS/routed

*../../../../../../<CPU>/CMD/routed6

*../../../../../../<CPU>/CMD/rtsol

*../../../../../../<CPU>/CMDS/telnet

*../../../../../../<CPU>/CMDS/telnetd

*../../../../../../<CPU>/CMDS/telnetdc

*../../../../../../<CPU>/CMDS/tftpd

*../../../../../../<CPU>/CMDS/tftpdc

*

Also available is the example loadspf script in MWOS/SRC/SYS. This file provides an
example of the modules to load in order to start the protocol stack.

If you are using a disk-based system, the following file can be used as an example or
modified to match your system. This file can be copied from MWOS/SRC/SYS.
Using LAN Communications 197

Appendix A: Configuring LAN Communications
*

* loadspf for SPF LAN Communication Package Release

*

*

* Load SPF System Modules

*

chd CMDS/BOOTOBJS/SPF

*

load -d inetdb inetdb2 ;* Load system specific inetdb

 modules

load -d SysMbuf ;* System Mbuf module

 ;*(sets size of mbuf pool on

 OS-9)

load -d pkman pkdvr pk ;* Pseudo keyboard modules
 (required for telnetdc)

load -d pks; ; Pseudo keyboard addtional

 for 68K

*

*

load -d spf ;* SPF file manager

load -d spip ip0 ;* IP driver and descriptor

load -d sptcp tcp0 ;* TCP driver and descriptor

load -d spudp udp0 ;* UDP driver and descriptor

load -d spraw raw0 ;* RAW IP driver and descriptor

load -d sproute route0 ; Dynamic Routing driver and

 descriptor

*

* Load SPF Trap library and Commands

* Load one of the following Netdb name resolution trap
* handlers

*

load -d netdb_dns ;* Load trap handler for DNS

 * name resolution

*

* Load SPF Ethernet Drivers and Descriptors

*

load -d spenet enet ; Ethernet Protocol driver and descriptor
(required by hardware Ethernet drivers)

*

Using LAN Communications 198

Appendix A: Configuring LAN Communications
* Load SPF Drivers and Descriptors ... Uncomment those
* needed

*

* <Ethernet drivers and descriptors>

*

* Serial Drivers and Descriptors

*

load -d spslip spsl0 ; Slip /t1

load -d spipcp ipcp0 ; PPP IPCP

load -d splcp lcp0 ; PPP LCP

load -d sphdlc hdlc0 ; PPP HDLC

*(chd ../..; load -d chat pppd ppplog pppauth; chd BOOTOBJS/SPF) ;

*PPP Utilities

*

*

* Chd up to CMDS directory

*

chd ../..

load -d mbinstall ;* Load mbinstall memory

 * handler (or can be done

 * within init

load -d ipstart ;* Load ipstart stack

 * initializer

*

*

load -d routed routed6d ; Dynamic routing daemon

load -d telnet telnetd telnetdc ; Telnet support

 * modules

load -d ftp ftpd ftpdc ; FTP support modules

load -d tftpd tftpdc bootpd ; Bootp/TFTP support

 * modules

load -d inetd ; Super-Server Daemon

load -d idbgen idbdump ndbmod ; Development tools

load -d route hostname ifconfig arp ; Runtime tools

load -d netstat ping ping6 rtsol ;* Statistics, verification tools */

Starting the Protocol Stack
To begin using the protocol stack, complete the following steps:
Using LAN Communications 199

Appendix A: Configuring LAN Communications
Step 1. Install the network or SPF memory handler.

After loading the modules, the first step is to install the network or SPF memory
buffer handler (SysMbuf). This can be done with the mbinstall utility.

shell> mbinstall

Step 2. Start the TCP/IP protocol stack by executing the ipstart utility.

shell> ipstart

If you did not define your interfaces in inetdb2, you can add them now using
ifconfig.

Running devs and procs shows the protocol drivers initialized and SPF receive
thread process in the process table.

Step 3. Use the ping utility to verify that the network components are working correctly.

shell> ping localhost

The following appears on your screen:

PING localhost (127.0.0.1): 56 data bytes

64 bytes from 127.0.0.1: ttl=255 time=0 ms

Next test to another system.

shell> ping <hostname>

Where <hostname> is the name of a computer in the inetdb module (hosts section),
or a name that can be resolved by the DNS server specified in the resolve.conf
section of inetdb. <hostname> can also be an IP address.

Something similar to the following appears on your screen:

PING delta.microware.com (172.16.1.40): 56 data bytes

64 bytes from 172.16.1.40: ttl=255 time=10 ms

Example Configuration
If you are using a disk-based system, the following startspf file can be used as an
example or modified to match your system. This file can be copied from
MWOS/SRC/SYS.

* startspf

* Shell Script to Start SPF System

*

* Set default directories before starting daemon programs

*

chd /h0

chx /h0/cmds

*

* Load SPF modules

*

SYS/loadspf

*

Using LAN Communications 200

Appendix A: Configuring LAN Communications
* Load and start mbuf handler (May be done via p2 list in init module)

* Allow for error returned in case sysmbuf is already initialized.

*

-nx

mbinstall

-x

*

* Start SPF system using ipstart

*

ipstart

*

* Add interfaces not specified in inetdb2

*

*ifconfig enet0 <my_address> binding /<dev>/enet

*ifconfig ppp0 binding /ipcp0

*

* Add any static routes. Even if running routed it may be useful

* to add multicast routes.

*

*route add -net 224.0.0.0 <my_address>

*

* Start service daemons

* routed: Dynamic routing server

* inetd: FTP/Telnet and other protocols server

* telnetd: Remote terminal server

* ftpd: Remote file-transfer server (FTP)

* bootpd: Network boot protocol server

* tftpd: Trivial file transfer protocol server

*

routed <>>>/nil&

inetd <>>>/nil&

*telnetd <>>>/nil &

*ftpd <>>>/nil &

*bootpd /h0/TFTPBOOT/bootptab <>>>/nil&

*tftpd /h0/TFTPBOOT <>>>/nil &

*

* spfndpd: Hawk User state debugging daemon

* spfnppd: Hawk Profiling daemon

*

spfndpd <>>>/nil &

*spfnppd <>>>/nil &
Using LAN Communications 201

Appendix A: Configuring LAN Communications
Configuration Files
Files identified in Table A-1 reside in MWOS/SRC/ETC and provide the protocol stack
with pertinent information. Utilities available to create, modify, or dump the inetdb
modules are: idbgen, ndbmod, and idbdump, respectively.

Each file contains single-line entries consisting of one or more fields and
(optionally) comments. Fields are separated by any number of spaces and/or tab
characters. A pound sign (#) indicates the beginning of a comment. The comment
includes all characters up to the end of the line. All files are described in the
following sections.

Hosts

The hosts file contains information regarding the known hosts on the network. For
each host, a single-line entry must be present. Each entry contains the following:

• internet address

• official host name

• aliases (optional)

Internet addresses are specified in the conventional dot notation for IPv4 or the “::”
notation for IPv6. Host names can contain any printable character other than a field
delimiter, new line, or comment character.

The following example hosts entries consist of an address, name, and comment.
Addresses may be in either IPv4 or IPv6 style.

IPv4: 192.1.1.1 balin #documentation

IPv6: fec0::2396 thorin #moria

Table A-1. Configuration Files

File Description
hosts This contains a list of hosts known to your system. If using DNS,

this file may not need to be updated. Otherwise, add an entry for
each of your hosts (including the host you are using) to the file.

networks This contains a list of networks analogous to hosts.
protocols This contains a list of protocols available.
services This contains a list of services available.
inetd.conf This contains a list of server daemon routines inetd supports (for

example, telnet and FTP).
resolv.conf This contains configuration information for a Domain Name

System (DNS).
interfaces.conf This contains configuration information for hostname and

network interfaces to initialize when the stack is brought up.
routes.conf This contains a list of static routes to add when the stack is

brought up.
rpc This contains a list of RPC support services, program number,

and the client program.
Using LAN Communications 202

Appendix A: Configuring LAN Communications
Networks

The networks file contains information regarding the known networks composing
the internet. A single line entry must be present for each network. Each entry
consists of the following information:

• official network name

• network number

• aliases (optional)

Network numbers are specified in the conventional dot notation. Network names
can contain any printable character other than a field delimiter, new line, or
comment character.

The following example networks entry consists of a name, number, alias, and
comment:

arpanet 10 arpa #just a comment

Protocols

The protocols file contains information regarding the known protocols used in the
internet. A single-line entry must be present for each protocol. Each entry contains
the following information:

• official protocol name

• protocol number

• aliases (optional)

Protocol names can contain any printable character other than a field delimiter, new
line, or comment character.

The following example protocols entry consists of a name, number, alias, and
comment:

udp 17 UDP # user datagram protocol

Services

The services file contains information regarding known services available to your
system. A service is a reserved port number for a specific application. For example,
FTP is a service reserved at port 21. Each service also specifies the protocol it uses.
Because each network can have a unique services file, networks can offer different
services.

Consult your local network administrator for conventions to determine the
proper host and network information.
Using LAN Communications 203

Appendix A: Configuring LAN Communications
A single-line entry must be present in the services file for each service. Each entry
contains the following information:

• official service name

• port number at which the service resides

• official protocol name

• aliases (optional)

Service names can contain any printable character other than a field delimiter, new
line, or comment character.

The port number and protocol name are considered a single item; a slash character
(/) separates them.

The following example services entry consists of a service name, port number,
protocol name, alias, and comment:

shell 515/tcp cmd #no passwords used

To create a service, select a port number greater than 1024 (port numbers less than
1024 are reserved), a protocol, and a name; then add this information to the
services file.

inetd.conf Configuration File

The inetd.conf file contains information regarding program services the inetd
service daemon handles. inetd can currently take the place of ftpd and telnetd.

A single-line entry must be present in the inetd.conf file for each service available.
Entries contains the following information:

• service name (program)

• socket type

• protocol

• flags

• user

• server path name (child process to fork)

• [additional arguments]

The following example inetd.conf entry consists of a service name, socket type,
protocol, flags, user, and server path name.

ftp stream tcp wait root ftpdc
Using LAN Communications 204

Appendix A: Configuring LAN Communications
resolv.conf Configuration File

A resolver finds the IP address of a host—given the host name—by using the
Domain Name System (DNS). The resolv.conf file contains the necessary
information to use DNS. Consult your local network administrator for local
conventions.

The resolv.conf file contains three main sections:

• local domain name

• name server list

• optional domain search list

The following example resolv.conf listing contains these three sections.

NAME RESOLUTION CONFIGURATION

#

format: <keyword> <value>

see keywork explanations for specific formatting

requirements

#

local domain name (1): domain <DomainName>

#

domain test.com

#

ordered local nameserver list (1-3): nameserver

<IPAddress>

#

nameserver1 192.1.1.1

nameserver2 192.1.1.2

nameserver3 192.1.1.3

nameserver4 fec0::3

#

optional domain search list

<Domain1> [<Domain2> ...]

#

search test.com

interfaces.conf Configuration File

The interfaces.conf file contains the hostname and interfaces to initialize when
ipstart is run. The entry for the host name is a string and may be up to 64
characters long.

The entry for the interface list may contain the following information:

• interface name

• keyword and IP address of interface
Using LAN Communications 205

Appendix A: Configuring LAN Communications
• broadcast or destaddr keyword and broadcast or destination IP address

• binding keyword and device list

• optional values

[mtu <mtu>] [up|down] [netmask <mask>] [iff_broadcast]
[iff_pointopoint] [iff_nomulticast] [iff_nobroadcast]
[iff_nopointopoint][prefixlen <len>]

The following example interfaces.conf entries contain the initialization
information for an IPv4 SLIP device and an IPv6 Ethernet device:

• IPv4: slip0 inet 10.0.0.1 destaddr 10.0.0.2 binding /spsl0

• IPv6: enet0 inet6 fec0::2374 destaddr fec0::01 prefixlen 12
binding /spde0/enet

routes.conf Configuration File

The routes.conf file contains a static list of default, host, and network routes to be
initialized when the stack is started. The entry for the route list contains a keyword
and appropriate addresses as follows:

• default keyword and IP address of gateway network IP

• host keyword, host IP address, and gateway IP address

• network keyword, network IP address, gateway IP address, and optional
network mask

There may be multiple host and network routes, but only one default route.

The following routes.conf entry contains the static host route entry to get to IP
address 192.2.2.1 by going through router 192.1.1.2. Both IPv4 and IPv6 address
styles can be used; however, you are limited in entering only one style of address per
line.

host 192.2.2.1 192.1.1.2

net 10.0.0.0 192.2.3.3

net 172.16.40.0 192.2.3.3 255.255.255.0

host fec0::12:4 fec0::12:1 ffff::

rpc Configuration File

The rpc file contains a list of supported RPC services, associated program numbers,
and the client program. Update this table to register services and program numbers
with portmap.

The following rpc entry contains the service mapping for rstatd:

rstatd 100001 rup
Using LAN Communications 206

B Error Messages

The following messages are extensions to the existing system messages and can be
returned by socket access to the internet software. These messages are defined in the
errno.h header file.
207

Appendix B: Error Messages
OS-9 Messages
For OS-9 for 68K, the indicated message number is constructed by separating the
decimal representation of the upper and lower bytes of the error codes with a colon.
For example, message number 007:001 corresponds to a hexadecimal value of
0x0701.

For OS-9, the indicated error number is constructed by separating the decimal
representation of the upper and lower words of the error codes with a colon. For
example, message number 007:001 corresponds to a hexadecimal value of
0x00070001.

Table B-1. Messages

Message
Number Description

007:001 EWOULDBLOCK (I/O operation would block)
An operation that would cause a process to block attempted on a socket
in non-blocking mode.

007:002 EINPROGRESS (I/O operation now in progress)
An operation taking a long time to complete (such as connect())
attempted on a socket in non-blocking mode.

007:003 EALREADY (Operation already in progress)
An operation was attempted on a non-blocking object with an operation
in progress.

007:004 EDESTADDRREQ (Destination address required)
The attempted socket operation requires a destination address.

007:005 EMSGSIZE (Message too long)
A message sent on a socket is larger than the internal message buffer or
some other network limit. Messages must be smaller than 32768 bytes.

007:006 EPROTOTYPE (Protocol wrong type for socket)
A protocol is specified that does not support the semantics of the socket
type requested. For example, an AF_INET UDP protocol as SOCK_STREAM is
the wrong protocol type for the socket.

007:007 ENOPROTOOPT (Bad protocol option)
A bad option or level is specified in getsockopt() or setsockopt().

007:008 EPROTONOSUPPORT (Protocol not supported)
The requested protocol is not available or not configured for use.

007:009 ESOCKNOSUPPORT (Socket type not supported)
The requested socket type is not supported or not configured for use.

007:010 EOPNOTSUPP (Operation not supported on socket)
For example, accept() on a datagram socket.

007:011 EPFNOSUPPORT (Protocol family not supported)
007:012 EAFNOSUPPORT (Address family not supported by protocol)
007:013 EADDRINUSE (Address already in use)

Only one use of each address is normally permitted. Wildcard use and
connectionless communication are the exceptions.
Using LAN Communications 208

Appendix B: Error Messages
007:014 EADDRNOTAVAIL (Can’t assign requested address)
Results from an attempt to create a socket with an address not on this
machine.

007:015 ENETDOWN (Network is down)
The network hardware is not accessible.

007:016 ENETUNREACH (Network is unreachable)
The network is unreachable. Usually caused by network interface
hardware that is operational, but not physically connected to the network.
This error can also be caused when the network has no way to reach the
destination address.

007:017 ENETRESET (Network dropped connection on reset)
The host you were connected to crashed and rebooted.

007:018 ECONNABORTED (Software caused connection abort)
A connection abort was caused by the local (host) machine.

007:019 ECONNRESET (Connection reset by peer)
A peer forcibly closed a connection. This normally results from a loss of
the connection on the remote socket due to a time out or reboot.

007:020 ENOBUFS (No buffer space available)
A socket operation could not be performed because the system lacked
sufficient buffer space or a queue is full.

007:021 EISCONN (Socket is already connected)
A connect() request was made on an already connected socket. Also
caused by a sendto() request on a connected socket to a destination
which is already connected.

007:022 ENOTCONN (Socket is not connected)
A request to send or receive data is rejected because the socket is not
connected or no destination is given with a datagram socket.

007:023 ESHUTDOWN (Can’t send after socket shutdown)
007:024 ETOOMANYREFS (Too many references)
007:025 ETIMEOUT (Connection timed out)

A connect() or send() request failed because the connected peer did not
properly respond after a period of time. The time out period depends on
the protocol used.

007:026 ECONNREFUSED (Connection refused by target)
No connection could be established because the target machine actively
refused it. This usually results from trying to connect to a service that is
inactive on the target host.

007:027 EBUFTOOSMALL (mbuf too small for mbuf operation)
007:028 ESMODEXISTS (Socket module already attached)
007:029 ENOTSOCK (Path is not a socket)
007:030 EHOSTUNREACH (Host is unreachable; route not found)
007:031 EHOSTDOWN (Host is down)

Table B-1. Messages (Continued)

Message
Number Description
Using LAN Communications 209

Appendix B: Error Messages
Using LAN Communications 210

C Legacy LAN Modules

This appendix lists the contents of the legacy LAN directory, BSD4, including the IP
drivers and utilities.

The following sections are included:

• Drivers

• Utilities

• Configuration Wizard Legacy Features

This appendix is only helpful for users who are implementing the legacy stack.
The remaining contents of this manual apply to the current stack.
211

Appendix C: Legacy LAN Modules
Drivers
The legacy protocol drivers are located in the following directory:

MWOS\OS9000\<processor>\CMDS\BOOTOBJS\SPF\BSD4

The following drivers are included:

• ip0

• raw0

• route0

• spip

• spraw

• sproute

• sptcp

• spudp

• tcp0

• udp0

Utilities
The legacy utilities are located in the following directory:

MWOS\OS9000\<processor\CMDS\BSD4

The following utilities are included:

• ftp

• ftpd

• ftpdc

• ifconfig

• netstat

• route

• telnet

• telnetd

• telnetdc
Using LAN Communications 212

Appendix C: Legacy LAN Modules
Configuration Wizard Legacy Features
The following Wizard features are currently available for programmers using legacy
LAN to build ROM images on their boards. Once the current LAN is used
exclusively, these options will become unavailable.

• Revert to legacy stack option

This check box can be made accessible by selecting Configure -> Bootfile ->
Network Configuration -> SoftStax Setup from the Configuration Wizard
screen.

• spf.ml

This file is similar to the lan.ml file used for the current LAN. An spf.ml file
exists for each board port relying on the legacy stack; it is located in the
BOOTS/INSTALL/PORTBOOT directory. The contents of this file include a list of
modules the Wizard can include in a bootfile.
Using LAN Communications 213

Appendix C: Legacy LAN Modules
Using LAN Communications 214

D LAN Communications Stack
Migration Reference

This appendix exists as an informational tool for customers migrating from the
previously supported networking stack (that which supports the AF_INET address
family) to the newly supported networking stack (that which supports both AF_INET
and AF_INET6 address families).

It is recommended that you begin implementing the new stack with version 4.0
of OS-9; information regarding the previously supported stack will not be
documented in subsequent releases.
215

Appendix D: LAN Communications Stack Migration Reference
Definitions
In this appendix, the following terms are used:

• “Legacy” refers to the LAN Communications stack that supports the AF_INET
address family; this is the only network stack supported prior to OS-9 version
4.0.

• “Current” refers to the newly implemented LAN Communications stack, which
supports both AF_INET and AF_INET6 address families. This stack is supported
for OS-9 version 4.0 or later.

References
For more information regarding the legacy LAN Communications stack or an
overview of network addressing, refer to the following chapters of this manual:

• Chapter 1, Networking Basics (the Network Addressing section)

• Appendix C, Legacy LAN Modules

Migration from Legacy to Current Stack
This section discusses how the current stack has been implemented for
OS-9. By default, utilities, tools, and libraries include AF_INET6 support, where
possible.

Utility Updates

Utilities for the current stack are ported with the NetBSD and OS-9 functionality in
mind. The following list details how certain utilities have changed with
implementation of the current stack.

• telnet, telnetd, and telnetdc are still based on the legacy OS-9 code, but have
been enhanced to support IPv6 addresses. In addition, they each use the same
command line parameters as the AF_INET family versions.

• ftp, ftpd, and ftpdc have been ported from NetBSD to OS-9 and, as such, have
different command line parameters and require different system configuration.
The NetBSD port includes additional functionality, including PASV support.

• ping is supported by the AF_INET family only. A new utility, ping6, has been
created for AF_INET6 support. ping6 is currently ported from NetBSD sources.

The Code Base

The current stack is based on NetBSD 1.5.1 code. NetBSD IPv6 was first officially
supported in version 1.5, based on the KAME Project NetBSD enhancements. The
KAME Project is a joint effort to create single, solid software set, especially targeted
at IPv6/Ipsec. The IPv6 code from this KAME Project was merged into NetBSD in
June 1999. It is included in the NetBSD 1.5 official release.
Using LAN Communications 216

Appendix D: LAN Communications Stack Migration Reference
Updates to Network Configuration Files

The current and legacy stacks contain the same IP address configuration. In
addition, the configuration files live in the same directory and work for both the
legacy and current LAN Communications stacks. However, when you add new IP
addresses for the AF_INET6 family, it is required that you use IPv6 keywords and
addresses for the configuration files.

The network configuration is defined in a set of text configuration files that are
compiled into a set of data modules, which are consumed when the network stack is
started. The AF_INET family functionality works between legacy and current stacks.

In practice, host configuration activities are performed from within the OS-9
Configuration Wizard, which has been enhanced to support multiple Ethernet
interfaces and IPv6 addressing requirements.

Ethernet Drivers

Existing Ethernet drivers work under the current stack without any modifications.
However, IPv6 Neighbor Discovery requires multicast support; if you intend on
using the current stack, be sure that the drivers you are using support this feature.

The current stack uses mbuf packet chains; the legacy stack did not. The packet
chain needs to be transmitted in a single Ethernet packet.

Miscellaneous Updates

• netdb_local has been eliminated. It is possible, however, to disable DNS lookup
via other configuration methods.

• The legacy stack’s headers and utilities have moved to subdirectories called
BSD4. The lancom.tpl makefile template includes a switch to select the old or
new headers. By default, compilations will use the current stack's headers and
utilities at the directory locations. To use the legacy stack's headers and utilities,
insert LANCOM = 1 into the makefile definition.

• In general, legacy stack application binaries that are linked with the netdb trap
library (netdb.l) should work with the current network stack; recompilation is
not necessary. However, the current network stack may require additional stack
space, which can be specified on the command line (e.g. myftp foo #10) or set
permanently in the module (e.g. fixmod -us=10 myftp).

Router configuration is currently unsupported; thus, manual configuration is
required.

Do not loop on the packet chain to transmit separately. This will yield raw data
without an IP header going out on the wire.

If the hardware does not support transmitting from multiple buffers, an
enhancement to the driver to combine the mbuf packet chain to a single mbuf
is recommended. If you do not have hardware driver source code to correct the
mbuf packet chain issue, simply place the spproto driver above the hardware
driver to gather an mbuf chain to a single Ethernet packet.
Using LAN Communications 217

Appendix D: LAN Communications Stack Migration Reference
Using LAN Communications 218

E Example Programs

This appendix contains a TCP and UDP socket example. Each example includes a
client program and a server program. You may use these programs as templates for
writing your own programs.

Source code for these examples resides in the following directory:

MWOS/SRC/SPF/INET/EXAMPLES

The following sections are included in this appendix:

• Example One: Datagram Socket Operation for IPv4

• Example Two: Datagram Socket Operation for IPv6

• Example Three: Stream Socket

• Example Four: Sending Multicast Messages
219

Appendix E: Example Programs
Example One: Datagram Socket Operation for IPv4
The next two programs, beam.c and target.c, transfer data using UDP. The beam
program sends a user-specified number of 1000-byte datagrams to a particular
machine. By default, these are sent to UDP port 20000 but a new port may be
specified using the optional third parameter to beam.

The target program binds to UDP port 20000 (or another port if specified on the
command line) and receives datagrams. At the end of the transfer the number of
packets and bytes received is printed. Because UDP does not guarantee end-to-end
reliability of data delivery the number of packets target receives may be less than
the number sent by beam.

Source code resides in the following directory:

MWOS/SRC/SPF/INET/EXAMPLES/AF_INET.UDP

beam.c
/* <<<<<<<<<<<<<<<<<<<<<<< beam.c >>>>>>>>>>>>>>>>>>>> */

/*

** Syntax: beam <target> <count> [<port>]

** Function: sends packets over a datagram socket

*/

/* Header Files */

#include <stdio.h>

#include <stdlib.h>

#include <errno.h>

#include <string.h>

#include <modes.h>

#include <sys/types.h>

#include <sys/socket.h>

#include <netinet/in.h>

#include <netdb.h>

/* Macro Definitions */

#define PKT_SIZE 1000/* packet size */

#define PORT20000/* udp port number */

#define START1/* packet types */

#define NORMAL2

#define END 3
Using LAN Communications 220

Appendix E: Example Programs
/* Type Definitions */

struct packet {

u_int32 type;

u_int32 size;

u_int32 count;

char buf[PKT_SIZE - 12];

} packet, *Packet;

void main(int argc, char* argv[], char* envp[])

{

int s;

int i;

int count;

struct hostent *host;

struct sockaddr_in sockname;

static struct packet pkt;

/* check for proper number of arguments */

if ((argc < 3) || (argv[1][0] == '-')) {

printf("usage: beam <hostname|ip-address> <count> [<port>]\n");

exit(0);

}

/* get number of packets to beam */

count = atoi(argv[2]);

/* open up datagram (UDP) socket */

memset(&sockname, 0, sizeof(sockname));

sockname.sin_family = AF_INET;

sockname.sin_port = 0;

sockname.sin_addr.s_addr = INADDR_ANY;

if ((s = socket(AF_INET, SOCK_DGRAM, 0)) == -1) {

fprintf(stderr, "beam: socket call failed\n");

exit(errno);

}

/* bind socket (let system pick our port number) */

if (bind(s, (struct sockaddr*)&sockname, sizeof(sockname)) < 0) {

fprintf(stderr, "bind failed to host\n");

_os_close(s);

exit(errno);

}

Using LAN Communications 221

Appendix E: Example Programs
/* get information concerning the host we'd like to beam to */

sockname.sin_port = 0;

sockname.sin_addr.s_addr = INADDR_ANY;

if ((host = gethostbyname(argv[1])) != (struct hostent *)0) {

sockname.sin_family = host->h_addrtype;

memcpy(&sockname.sin_addr.s_addr, host->h_addr, 4);

} else {

u_int32 addr = inet_addr(argv[1]);

sockname.sin_family = AF_INET;

memcpy(&sockname.sin_addr.s_addr, &addr, 4);

}

endhostent();

if (argc > 3) {

sockname.sin_port = htons(atoi(argv[3]));

} else {

sockname.sin_port = htons(PORT);

}

/* set up socket for send */

#ifdef USE_CONNECT

/* connected UDP socket -- we're only talking to this host */

if (connect(s, (struct sockaddr *)&sockname, sizeof(sockname))

 < 0) {

fprintf(stderr, "beam: cannot connect\n");

_os_close(s);

exit(errno);

}

#endif

printf("beaming...\n");

/* set up packets for transfer and transfer them all */

pkt.size = htonl(PKT_SIZE);

for (i = 0; i <= count; i++) {

if (i == 0) {

pkt.type = htonl(START);

} else if (i >= count) {

pkt.type = htonl(END);

} else {

pkt.type = htonl(NORMAL);

}

Using LAN Communications 222

Appendix E: Example Programs
pkt.count = htonl(i);

/* send data to target */

#ifdef USE_CONNECT

if (send(s, &pkt, ntohl(pkt.size), 0) < 0) {

fprintf(stderr, "beam: send failed\n");

_os_close(s);

exit(errno);

}

#else

if (sendto(s, (char*)&pkt, ntohl(pkt.size), 0,

(struct sockaddr*)&sockname, sizeof(sockname)) < 0) {

fprintf(stderr, "beam: sendto failed\n");

_os_close(s);

exit(errno);

}

#endif

}

_os_close(s);

exit(0);

} /* end of main */

target.c
/* <<<<<<<<<<<<<<<<<<<<<<< target.c >>>>>>>>>>>>>>>>>>>> */

/*

** Syntax:target

** Function:receives packets from beam over a datagram

** socket and displays number of packets

*/

/* Header Files */

#include <stdio.h>

#include <stdlib.h>

#include <types.h>

#include <errno.h>

#include <string.h>

#include <modes.h>

#include <ctype.h>

#include <sys/types.h>
Using LAN Communications 223

Appendix E: Example Programs
#include <sys/socket.h>

#include <netinet/in.h>

#include <netdb.h>

/* Macro Definitions */

#define PKT_SIZE 1000/* packet size */

#define PORT 20000/* udp port number */

#define START 1/* packet types */

#define NORMAL 2

#define END 3

/* Type Definitions */

struct packet {

u_int32type;

u_int32size;

u_int32count;

char buf[PKT_SIZE - 12];

} packet, *Packet;

/* main() : initial program entry point */

void main(int argc, char* argv[], char* envp[])

{

int s;

int count;

socklen_t namelen;

int packetsrecv;

u_int32 bytesrecv;

static struct packet pkt;

struct sockaddr_in name;

if ((argc < 1) || (argc > 2) || ((argc == 2) &&
 (!isdigit(argv[1][0])))) {

printf("usage: target [<port>]\n");

exit(0);

}

/* open up datagram (UDP) socket */

if ((s = socket(AF_INET, SOCK_DGRAM, 0)) == -1) {

fprintf(stderr, "target: socket failed\n");

exit(errno);
Using LAN Communications 224

Appendix E: Example Programs
}

/* bind socket (pick proper "well-known" port number) */

memset(&name, 0, sizeof(name));

name.sin_family = AF_INET;

name.sin_addr.s_addr = INADDR_ANY;

if (argc >= 2) {

name.sin_port = htons(atoi(argv[1]));

} else {

name.sin_port = htons(PORT);

}

if (bind(s, (struct sockaddr*)&name, sizeof(name)) == -1) {

fprintf(stderr, "target: bind failed to port
'%d'\n",ntohs(name.sin_port));

_os_close(s);

exit(errno);

}

printf("Waiting for packets...\n");

/* wait for start packet */

while (1) {

/* get a packet (and find out who sent it to us) */

namelen = sizeof(name);

if ((count = recvfrom(s, (char*)&pkt, sizeof(pkt), 0,

(struct sockaddr*)&name,&namelen)) == -1) {

fprintf(stderr, "target: recv failed\n");

_os_close(s);

exit(errno);

}

if (pkt.type != htonl(START)){

printf("out of sequence packet received\n");

continue;

} else {

break;

}

}

bytesrecv = packetsrecv = 0;

/* loop until all packet are receved */

printf("Begin transfer\n");

do {
Using LAN Communications 225

Appendix E: Example Programs
namelen = sizeof(name);

if ((count = recvfrom(s, (char*)&pkt, sizeof(pkt), 0,

(struct sockaddr*)&name,&namelen)) == -1) {

fprintf(stderr, "target: recv failed\n");

_os_close(s);

exit(errno);

}

bytesrecv += count;

packetsrecv++;

} while (pkt.type == ntohl(NORMAL));

/* if we didn't get and END packet, print error */

if (pkt.type != ntohl(END)) {

printf("expected an END packet\n");

}

/* print out summary */

printf("Transfer complete\n");

printf(" Packets received: %d\n",packetsrecv);

printf(" Bytes received: %d\n",bytesrecv);

/* cleanup and exit */

_os_close(s);

exit(0);

} /* end of main */

Example Two: Datagram Socket Operation for IPv6
The following programs, beam6.c and target6.c, transfer data using UDP on IPv6
addresses. The operation is similar to that of IPv4, with the exception of the IP
version.

Source code for these files resides in the following directory:

MWOS/SRC/SPF/INET/EXAMPLES/AF_INET.UDP6
Using LAN Communications 226

Appendix E: Example Programs
beam6.c
#if defined(_OSK) || defined(_OS9000)

_asm("_sysedit: equ 1");

#endif

/* <<<<<<<<<<<<<<<<<<<<<<< beam.c >>>>>>>>>>>>>>>>>>>> */

/*

** Syntax: beam <target> <count> [<port>]

** Function: sends packets over a datagram socket

*/

/* Header Files */

#include <stdio.h>

#include <stdlib.h>

#include <errno.h>

#include <string.h>

#if defined(_OSK) || defined(_OS9000)

#include <modes.h>

#endif

#include <sys/types.h>

#include <sys/socket.h>

#include <netinet/in.h>

#include <netdb.h>

/* Macro Definitions */

#define PKT_SIZE1000/* packet size */

#define PORT20000/* udp port number */

#define START1 /* packet types */

#define NORMAL2

#define END3

#if !(defined(_OSK) || defined(_OS9000))

typedef unsigned int u_int32;
Using LAN Communications 227

Appendix E: Example Programs
#define _os_close close

#endif

const struct in6_addr in6addr_any = IN6ADDR_ANY_INIT;

/* Type Definitions */

struct packet {

u_int32type;

u_int32size;

u_int32count;

char buf[PKT_SIZE - 12];

} packet, *Packet;

/* main() : initial program entry point */

void main(int argc, char* argv[], char* envp[])

{

int s;

int i;

int count;

struct hostent *host;

struct sockaddr_in6 sockname;

static struct packet pkt;

/* check for proper number of arguments */

if ((argc < 3) || (argv[1][0] == '-')) {

printf("usage: beam <hostname|ip-address> <count> [<port>]\n");

exit(0);

}

/* get number of packets to beam */

count = atoi(argv[2]);

/* open up datagram (UDP) socket */

memset(&sockname, 0, sizeof(sockname));

sockname.sin6_family = AF_INET6;

sockname.sin6_port = 0;
Using LAN Communications 228

Appendix E: Example Programs
sockname.sin6_addr = in6addr_any;

if ((s = socket(AF_INET6, SOCK_DGRAM, 0)) == -1) {

fprintf(stderr, "beam: socket call failed\n");

exit(errno);

}

/* bind socket (let system pick our port number) */

if (bind(s, (struct sockaddr*)&sockname, sizeof(sockname)) < 0) {

fprintf(stderr, "bind failed to host\n");

_os_close(s);

exit(errno);

}

/* get information concerning the host we'd like to beam to */

sockname.sin6_port = 0;

sockname.sin6_addr = in6addr_any;

if ((host = (struct hostent *)gethostbyname2(argv[1], AF_INET6)) != 0
) {

if(host->h_addrtype != AF_INET6){

fprintf(stderr, "not support IPv4\n");

_os_close(s);

exit(errno);

}

sockname.sin6_family = host->h_addrtype;

memcpy(&sockname.sin6_addr.s6_addr, host->h_addr, sizeof(struct
in6_addr));

} else {

if(!inet_pton(AF_INET6, argv[1], &sockname.sin6_addr)) {

fprintf(stderr, "not a valid presentation format\n");

_os_close(s);

exit(errno);

}

sockname.sin6_family = AF_INET6;

}

endhostent();

if (argc > 3) {

sockname.sin6_port = htons(atoi(argv[3]));
Using LAN Communications 229

Appendix E: Example Programs
} else {

sockname.sin6_port = htons(PORT);

}

/* set up socket for send */

#ifdef USE_CONNECT

/* "connect" UDP socket -- we're only going to talk to this host */

if (connect(s, (struct sockaddr *)&sockname, sizeof(sockname)) < 0)
{

fprintf(stderr, "beam: cannot connect\n");

_os_close(s);

exit(errno);

}

#endif

printf("beaming...\n");

/* set up packets for transfer and transfer them all */

pkt.size = htonl(PKT_SIZE);

for (i = 0; i <= count; i++) {

if (i == 0) {

pkt.type = htonl(START);

} else if (i >= count) {

pkt.type = htonl(END);

} else {

pkt.type = htonl(NORMAL);

}

pkt.count = htonl(i);

/* send data to target */

#ifdef USE_CONNECT

if (send(s, &pkt, ntohl(pkt.size), 0) < 0) {

fprintf(stderr, "beam: send failed\n");

_os_close(s);

exit(errno);

}

Using LAN Communications 230

Appendix E: Example Programs
#else

if (sendto(s, (char*)&pkt, ntohl(pkt.size), 0,

(struct sockaddr*)&sockname, sizeof(sockname)) < 0) {

fprintf(stderr, "beam: sendto failed\n");

_os_close(s);

exit(errno);

}

#endif

}

/* cleanup and exit */

_os_close(s);

exit(0);

} /* end of main */

target6.c
#if defined(_OSK) || defined(_OS9000)

_asm("_sysedit: equ 1");

#endif

/* <<<<<<<<<<<<<<<<<<<<<<< target.c >>>>>>>>>>>>>>>>>>>> */

/*

** Syntax:target

** Function:receives packets from beam over a datagram

** socket and displays number of packets

*/

/* Header Files */

#include <stdio.h>

#include <stdlib.h>

#if defined(_OSK) || defined(_OS9000)

#include <types.h>

#endif

#include <errno.h>

#include <string.h>

#if defined(_OSK) || defined(_OS9000)
Using LAN Communications 231

Appendix E: Example Programs
#include <modes.h>

#include <ctype.h>

#endif

#include <sys/types.h>

#include <sys/socket.h>

#include <netinet/in.h>

#include <netdb.h>

#if !(defined(_OSK) || defined(_OS9000))

typedef unsigned int u_int32;

#define _os_close close

#endif

/* Macro Definitions */

#define PKT_SIZE1000/* packet size */

#define PORT20000/* udp port number */

#define START1 /* packet types */

#define NORMAL2

#define END3

/* Type Definitions */

struct packet {

u_int32type;

u_int32size;

u_int32count;

char buf[PKT_SIZE - 12];

} packet, *Packet;

const struct in6_addr in6addr_any = IN6ADDR_ANY_INIT;

/* main() : initial program entry point */

void main(int argc, char* argv[], char* envp[])
Using LAN Communications 232

Appendix E: Example Programs
{

int s;

int count;

socklen_t namelen;

int packetsrecv;

u_int32 bytesrecv;

static struct packet pkt;

struct sockaddr_in6 name;

if ((argc < 1) || (argc > 2) || ((argc == 2) && (!isdigit(argv[1][0])))) {

printf("usage: target [<port>]\n");

exit(0);

}

/* open up datagram (UDP) socket */

if ((s = socket(AF_INET6, SOCK_DGRAM, 0)) == -1) {

fprintf(stderr, "target: socket failed\n");

exit(errno);

}

/* bind socket (pick proper "well-known" port number) */

memset(&name, 0, sizeof(name));

name.sin6_family = AF_INET6;

name.sin6_addr = in6addr_any;

if (argc >= 2) {

name.sin6_port = htons(atoi(argv[1]));

} else {

name.sin6_port = htons(PORT);

}

if (bind(s, (struct sockaddr*)&name, sizeof(name)) == -1) {

fprintf(stderr, "target: bind failed to port
'%d'\n",ntohs(name.sin6_port));

_os_close(s);

exit(errno);

}

printf("Waiting for packets...\n");
Using LAN Communications 233

Appendix E: Example Programs
/* wait for start packet */

while (1) {

/* get a packet (and find out who sent it to us) */

namelen = sizeof(name);

if ((count = recvfrom(s, (char*)&pkt, sizeof(pkt), 0,

(struct sockaddr*)&name,&namelen)) == -1) {

fprintf(stderr, "target: recv failed\n");

_os_close(s);

exit(errno);

}

if (pkt.type != htonl(START)){

printf("out of sequence packet received\n");

continue;

} else {

break;

}

}

bytesrecv = packetsrecv = 0;

/* loop until all packet are receved */

printf("Begin transfer\n");

do {

namelen = sizeof(name);

if ((count = recvfrom(s, (char*)&pkt, sizeof(pkt), 0,

(struct sockaddr*)&name,&namelen)) == -1) {

fprintf(stderr, "target: recv failed\n");

_os_close(s);

exit(errno);

}

bytesrecv += count;

packetsrecv++;

} while (pkt.type == ntohl(NORMAL));

/* if we didn't get and END packet, print error */

if (pkt.type != ntohl(END)) {

printf("expected an END packet\n");
Using LAN Communications 234

Appendix E: Example Programs
}

/* print out summary */

printf("Transfer complete\n");

printf(" Packets received: %d\n",packetsrecv);

printf(" Bytes received: %d\n",bytesrecv);

/* cleanup and exit */

_os_close(s);

exit(0);

} /* end of main */

Example Three: Stream Socket
The following programs, tcpsend.c and tcprecv.c use TCP to reliably transfer a
file using either IPv4 or IPv6 as a transport. The tcpsend program connects to TCP
port 27000 on the target machine and sends the specified file. The version of IP to
use is determined by the type of address provided in the hostname parameter. If a
machine name is specified rather than a numeric address, the first address returned
from the resolver will be used. Blocking I/O will be used unless the -n parameter is
specified.

The tcprecv program binds a socket to port 27000 and listens for incoming data
connections. By default, IPv4 is used as a transport. The
-4 or -6 options may be used to force a version of IP to be used. When a connection
occurs, the data is read from the network and written to the output file specified on
the command line. Blocking I/O will be used unless the -n parameter is specified.

Source code resides in the following directory:

MWOS/SRC/SPF/INET/EXAMPLES/AF_INET.TCP

tcpsend.c
/* <<<<<<<<<<<<<<<<<<<<<<<<<<<< tcpsend.c >>>>>>>>>>>>>>>>>>>>>>>>>>> */

/*

** Syntax: tcpsend [<opts>] <hostname> <filename>

** Function: sends a file across a stream (TCP) socket

*/

/* Header Files */

#define _OPT_PROTOS

#include <stdio.h>
Using LAN Communications 235

Appendix E: Example Programs
#include <stdlib.h>

#include <const.h>

#include <signal.h>

#include <types.h>

#include <errno.h>

#include <string.h>

#include <modes.h>

#include <sg_codes.h>

#include <sys/types.h>

#include <sys/socket.h>

#include <sys/errno.h>

#include <sys/ioctl.h>

#include <netinet/in.h>

#include <netinet/tcp.h>

#include <netdb.h>

#include <SPF/spf.h>

#include <UNIX/ioctl.h>

/* Macro Definitions */

#define PORT_NUM"27000"

#define MAX_LOOPS200

#define FMODES_IREAD

#if defined(_OSK)

#define _os_sleep(t,s) _os9_sleep(t)

#else

signal_code sig = 0;

#endif

/* Type Definitions */

struct data {

int code, count;

char data[512];

};
Using LAN Communications 236

Appendix E: Example Programs
/* Global Variables */

struct sockaddr_in ls_addr;

char msgbuf[64000];

char *ptr;

/* Function Prototypes */

void main(int, char **, char **);

void usage(void);

void main(int argc, char* argv[], char* envp[])

{

int s;

int flags = 0;

int totbytes = 0;

int noblock = 0;

path_id ifile;

u_int32 vflag = 0;

u_int32 count;

u_int32 wcount;

u_int32 wsize;

u_int32 tries;

u_int32 tics;

struct addrinfo hints;

struct addrinfo *ai;

error_code error;

char *hostname = NULL;

char *filename = NULL;

while (--argc > 0) {

if (*(ptr = *++argv) == '-') {

while (*++ptr) {

switch (*ptr|0x20) {

case 'n':

noblock = IO_ASYNC;

break;

case 'v':

vflag = 1;

break;
Using LAN Communications 237

Appendix E: Example Programs
case '?':

default:

usage();

}

}

} else {

if (hostname == NULL) {

hostname = *argv;

} else {

if (filename == NULL) {

filename = *argv;

} else {

usage();

}

}

}

}

if (filename == NULL) {

usage();

}

if ((errno = _os_open(filename,FMODE,&ifile)) != SUCCESS) {

fprintf(stderr, "can't open file '%s'\n", filename);

exit(errno);

}

memset (&hints, 0, sizeof(hints));

hints.ai_socktype = SOCK_STREAM;

if (error = getaddrinfo(hostname, PORT_NUM, &hints, &ai)) {

fprintf(stderr, "getaddrinfo failed\n");

_os_close(ifile);

exit(error);

}

Using LAN Communications 238

Appendix E: Example Programs
if ((s = socket(ai->ai_family, ai->ai_socktype, ai->ai_protocol)) < 0)
{

perror("socket");

_os_close(ifile);

exit(errno);

}

if (noblock) {

printf("using non-blocking sockets\n");

if (ioctl(s, FIONBIO, (caddr_t)&noblock)) {

fprintf(stderr, "can't set socket nonblocking\n");

_os_close(ifile);

_os_close(s);

exit(errno);

}

} else {

printf("using blocking sockets\n");

}

if (noblock) {

/*

** Non-blocking connect

*/

tries = MAX_LOOPS;

while (tries) {

if (connect(s, ai->ai_addr, ai->ai_addrlen) < 0) {

if (errno == EISCONN) {

break;

}

if (errno == EINVAL) {

int error;

u_int32 len;

len = sizeof(error);

if (getsockopt(s, SOL_SOCKET, SO_ERROR, &error,

&len) < 0) {

error = EINVAL;

}

errno = error;
Using LAN Communications 239

Appendix E: Example Programs
perror("connect");

_os_close(s);

_os_close(ifile);

exit(1);

}

tics = 0x80000080; /* 1/2 second */

_os_sleep(&tics, &sig);

} else {

break;

}

tries--;

}

if (tries == 0){

errno = ETIMEDOUT;

perror("connect");

_os_close(s);

_os_close(ifile);

exit(1);

}

} else {

/*

** Blocking connect

*/

if (connect(s, ai->ai_addr, ai->ai_addrlen) < 0) {

perror("connect");

_os_close(s);

_os_close(ifile);

exit(1);

}

}

freeaddrinfo(ai);

printf("Connection established\n");

printf("Sending file '%s'...\n", filename);
Using LAN Communications 240

Appendix E: Example Programs
if (noblock) {

/*

** Non-blocking send

*/

count = sizeof(msgbuf);

while ((errno = _os_read(ifile,msgbuf,&count)) == SUCCESS) {

wcount = 0;

ptr = msgbuf;

while (wcount < count){

wsize = count - wcount;

if ((wsize = send(s,ptr,wsize,flags)) == (u_int32)-1) {

if (errno != EWOULDBLOCK) {

fprintf(stderr, "socket write error\n");

_os_close(s);

_os_close(ifile);

exit(errno);

} else {

if (vflag) printf("Write would block, sleeping...");

tics = 0x80000040; /* 1/4 second */

_os_sleep(&tics,&sig);

if (vflag) printf("trying write again.\n");

}

} else {

wcount += wsize;

ptr += wsize;

if (vflag) printf("wrote %d Bytes\n", wsize);

}

}

totbytes += count;

count = sizeof(msgbuf);

}

if (errno != EOS_EOF){

fprintf(stderr, "read error on file\n");

exit(errno);

}

Using LAN Communications 241

Appendix E: Example Programs
} else {

/*

** Blocking send

*/

count = sizeof(msgbuf);

while ((errno = _os_read(ifile, msgbuf, &count)) == SUCCESS) {

wcount = count;

ptr = msgbuf;

while ((count = send(s, ptr, count, flags)) != (u_int32)-1) {

totbytes += count;

if (count == wcount) {

break;

}

/*

** For some reason all the data was not written,

** loop around and try to write the rest.

*/

ptr += count;

count = wcount - count;

wcount = count;

}

if (errno){

fprintf(stderr, "socket write error\n");

_os_close(s);

_os_close(ifile);

exit(errno);

}

count = sizeof(msgbuf);

}

if (errno != EOS_EOF){

fprintf(stderr, "read error on file\n");

exit(errno);

}

}

_os_close(s);

_os_close(ifile);

printf("sent %u bytes\n", totbytes);
Using LAN Communications 242

Appendix E: Example Programs
exit(0);

}

void usage()

{

fprintf(stderr, "Syntax: tcpsend [<opts>] <hostname> <filename>\n"

"Options:\n"

" -n use non blocking sockets\n"

" -v enable verbose output\n");

exit(0);

}

tcprecv.c
/* <<<<<<<<<<<<<<<<<<<<<<<<<<< tcprecv.c >>>>>>>>>>>>>>>>>>>>>>>>>> */

/*

** Syntax: tcprecv [<opts>] <filename>

** Function: receives a file across a stream (TCP) socket

*/

/* Header Files */

#define _OPT_PROTOS

#include <stdio.h>

#include <stdlib.h>

#include <const.h>

#include <signal.h>

#include <types.h>

#include <errno.h>

#include <string.h>

#include <modes.h>

#include <sg_codes.h>

#include <sys/types.h>

#include <sys/ioctl.h>

#include <sys/socket.h>

#include <sys/errno.h>

#include <netinet/in.h>

#include <netinet/tcp.h>
Using LAN Communications 243

Appendix E: Example Programs
#include <netdb.h>

#include <SPF/spf.h>

#include <UNIX/ioctl.h>

/* Macro Definitions */

#define PORT_NUM"27000"

#define INIT77/* commands */

#define DATA78

#define END79

#define FMODES_IWRITE

#if defined(_OSK)

#define _os_sleep(t,s) _os9_sleep(t)

#else

 signal_code sig = 0;

#endif

/* Global Variables */

char msgbuf[20480];

char hostname[NI_MAXHOST];

char service[NI_MAXSERV];

/* Function Prototypes */

void main(int, char **, char **);

void usage(void);

void main(int argc, char* argv[], char* envp[])

{

int s;

int sx;

u_int32 size;

int totbytes = 0;

int noblock = 0;

path_id ofile;

u_int32 vflag = 0;

u_int32 count = 1;
Using LAN Communications 244

Appendix E: Example Programs
u_int32 tics;

int family = AF_INET;

error_code error;

struct addrinfo hints;

struct addrinfo *ai;

struct sockaddr_storage peer;

char *filename = NULL;

char *ptr;

while (--argc > 0) {

if (*(ptr = *++argv) == '-') {

while (*++ptr) {

switch (*ptr|0x20) {

case '4':

family = AF_INET;

break;

case '6':

family = AF_INET6;

break;

case 'n':

noblock = IO_ASYNC;

break;

case 'v':

vflag = 1;

break;

case '?':

default:

usage();

}

}

Using LAN Communications 245

Appendix E: Example Programs
} else {

if (filename == NULL) {

filename = *argv;

} else {

usage();

}

}

}

if (filename == NULL) {

usage();

}

if ((error = _os_create(filename, FMODE, &ofile,

S_IREAD|S_IWRITE)) != SUCCESS) {

fprintf(stderr, "can't open file '%s'\n", filename);

exit(error);

}

memset (&hints, 0, sizeof(hints));

hints.ai_family = family;

hints.ai_flags = AI_PASSIVE;

hints.ai_socktype = SOCK_STREAM;

if (error = getaddrinfo(NULL, PORT_NUM, &hints, &ai)) {

fprintf(stderr, "getaddrinfo failed\n");

_os_close(ofile);

exit(errno);

}

if ((sx = socket(ai->ai_family, ai->ai_socktype, ai->ai_protocol)) <
0) {

fprintf(stderr,"can't open socket\n");

_os_close(ofile);

exit(errno);

}

if (bind(sx, ai->ai_addr, ai->ai_addrlen) < 0) {

fprintf(stderr,"can't bind socket\n");
Using LAN Communications 246

Appendix E: Example Programs
_os_close(sx);

_os_close(ofile);

exit(errno);

}

if (listen(sx, 1) < 0) {

fprintf(stderr,"tcp_listen - failed!\n");

_os_close(sx);

_os_close(ofile);

exit(errno);

}

size = sizeof(peer);

if ((s = accept(sx, (struct sockaddr *)&peer, &size)) < 0) {

fprintf(stderr, "accept failed\n");

_os_close(s);

_os_close(sx);

_os_close(ofile);

exit(errno);

}

_os_close (sx);

freeaddrinfo(ai);

if ((error = getnameinfo((struct sockaddr *)&peer, peer.ss_len,
hostname,

sizeof(hostname), service, sizeof(service), 0)) != 0) {

fprintf(stderr, "getnameinfo failed\n");

_os_close(s);

_os_close(sx);

_os_close(ofile);

exit(error);

}

printf("connected to %s, port %s\n", hostname, service);
Using LAN Communications 247

Appendix E: Example Programs
if (noblock) {

printf("using non-blocking sockets\n");

if (ioctl(s, FIONBIO, (caddr_t)&noblock)) {

fprintf(stderr, "can't set socket nonblocking\n");

_os_close(ofile);

_os_close(s);

_os_close(sx);

exit(errno);

}

} else {

printf("using blocking sockets\n");

}

do {

count = sizeof(msgbuf);

if ((count = recv(s,msgbuf,count, 0)) == (u_int32) -1) {

if (errno == EOS_EOF) {

break; /*at end of file*/

}

if (noblock & (errno == EWOULDBLOCK)) {

if (vflag)

printf("Total Bytes read: %d. Read would block,
sleeping...",

totbytes);

tics = 0x80000040; /* 1/4 second */

_os_sleep(&tics, &sig);

count = 1;/* force one more interation */

if (vflag) printf("trying read again.\n");

} else {

fprintf(stderr, "can't recv (cnt=%d)\n", count);

exit(errno);

}

} else if (count > 0) {

if ((errno = _os_write(ofile, msgbuf, &count)) != SUCCESS) {

fprintf(stderr, "can't write output\n");

exit(errno);

}

Using LAN Communications 248

Appendix E: Example Programs
totbytes += count;

}

} while (count);

_os_close(s);

_os_close(ofile);

printf("read %d bytes\n", totbytes);

exit(0);

}

void usage(void)

{

fprintf(stderr, "Syntax: tcprecv [<opts>] <filename>\n"

"Options:\n"

" -4 Use IPv4 addresses (default)\n"

" -6 Use IPv6 addresses\n"

" -n Use non blocking sockets\n"

" -v Verbose mode\n");

exit(0);

}

Example Four: Sending Multicast Messages
The example programs msend and mrecv send multicast messages over the network,
demonstrating the receipt of packets by multiple destinations. Since multicasting is a
connectionless protocol, mrecv may not see every packet sent.

The msend program will send either the message entered at the command line or a
default message once, then exit. The signal handler in mrecv processes any system
signal as a signal to kill the process. The preferred method for executing this is to
use <Ctrl C> or <Ctrl E> from the keyboard.

msend requires a route in the IP routing table that will return as a match for the
multicast group being used. This is required even if the interface is explicitly named
using the -i option. For example, consider the following routing table:

$ netstat -rn

Table E-1. Internet

Destination Gateway Flags Refs Use Interface
127.0.0.1 127.0.0.1 UH 0 1 lo0

172.16 172.16.2.226 U 1 122 enet1

172.16.2.226 127.0.0.1 UHS 0 0 lo0
Using LAN Communications 249

Appendix E: Example Programs
Using msend to send to group 225.0.0.172 will result in an error since the routing
table contains no route that will match that IP address. Running either of the
following route commands will allow it to work:

route add -net default 172.16.2.250

-OR-

route add -net 225.0.0.0 172.16.2.226 240.0.0.0

Now msend will successfully transmit the packet on the enet1 interface. If a '-i
192.168.3.19' command line option is added, the packet will be sent from the enet0
interface instead.

Source code for both of these files is in the following directory:

MWOS/SRC/SPF/INET/EXAMPLES/MULTICAST

192.168.3 192.168.3.19 U 0 0 enet0

192.168.3.19 127.0.0.1 UHS 0 0 lo0

Table E-1. Internet (Continued)

Destination Gateway Flags Refs Use Interface
Using LAN Communications 250

Appendix E: Example Programs
msend
Send multicast packet.

Syntax

msend [<opts>]

Options

[-v] [-l] [-t ttl] [-p port] [-g group] [-i interface] [-m message]

-v Enable verbose mode. (Default: off)

-l Enable loopback reception of packet. (Default: off)

-t Set TTL of output packets. (Default: 1)

-p Set port of output packets. (Default: 4433)

-g Select destination group. (Default:225.0.0.172)

-i Select outgoing interface. (Default: route table lookup of
group)

-m Select message to send. (Default: "This is a test message")
Using LAN Communications 251

Appendix E: Example Programs
mrecv
Receive multicast packet.

Syntax

mrecv [<opts>]

Options

[-v] [-p port] [-g group] [-i interface]

-v Enable verbose mode. (Default: off)

-p Set port for selecting incoming packets. (Default: 4433)

-g Select destination group. (Default: 225.0.0.172)

-i Select receiving interface. (Default: route table lookup of
group)
Using LAN Communications 252

F Dynamic Configuration of the
inetdb Module

This appendix contains the folloiwng section:

• Sample inetdb Module
253

Appendix F: Dynamic Configuration of the inetdb Module
Sample inetdb Module
The netdb.l and ndblib.l libraries provide functions that enable direct updating
of the inetdb module.

To create an inetdb module through an application, the function
ndb_create_ndbmod() is used. (See library function for syntax.)

The following example creates an inetdbX module with room for additional entries:

/* <<<<<<<<<<<<<<<<<<<< ndbcreate.c >>>>>>>> */

/*

** Syntax: ndbcreate <filename>

** Function: Create an inetdbX data module

*/

#include <stdio.h>

#include <errno.h>

#include <netdblib.h>

/*

** The following is the creation size array for the configuration

** files.

**

** hosts: 100 bytes (Up to 4 entries)

** hosts.equiv: 0 (not used)

** networks: 80 bytes (Up to 2 entries)

** protocols: 50 bytes (Up to 2 entries)

** services: 50 bytes (Up to 2 entries)

** inetd.conf: 50 bytes (Up to 1 entry)

** resolv.conf: 100 bytes (Up to 1 entry)

** host.config: 0 (not used)

** interfaces.conf: 400 bytes (Up to 2 entries)

** hostname string: 65 bytes (Up to 65 characters)

** routes.conf: 128 bytes (Up to 2 entries)

*/

int size_array[11] = { 100, 0, 80, 50, 50, 50, 100, 0, 400, 65, 128 };

void main(int argc, char* argv[], char* envp[]);

void main(int argc, char* argv[], char* envp[])

{

Using LAN Communications 254

Appendix F: Dynamic Configuration of the inetdb Module
char *mod_name;

int num_files;

int perm =
 MP_OWNER_READ|MP_OWNER_WRITE|MP_GROUP_READ|MP_WORLD_READ;

if (argc == 1) {

fprintf(stderr, "Module name required (e.g. inetdb2)\n");

exit(0);

}

mod_name = argv[1];

num_files = 11; /* Create data module with configuration
file space */

if (errno = ndb_create_ndbmod(mod_name, num_files, size_array,
 perm, 0)) {

fprintf(stderr, "Can't create data module %s\n",mod_name);

exit(errno);

}

exit(0);

}

The configuration entries can be updated with the following functions:

• hosts: puthostent(), delhostent()

• networks: putnetent(), delnetent()

• protocols: putprotoent(), delprotoent()

• services: putservent(), delservent()

• resolv.conf: putresolvent(), delresolvent()

• interfaces.conf: putintent(), delintent()

• hostname: sethostname()

• routes.conf: putroutent(), delroutent()

The routes and interfaces entries must be added before the IP stack is
initialized. IP reads these entries only at that time. All other entries can be
updated after the stack has been brought up.
Using LAN Communications 255

Appendix F: Dynamic Configuration of the inetdb Module
Manipulating a Host Entry

Following is an example of how to manipulate a host entry:

/* <<<<<<<<<<<<<<<<<<<<<< hostent.c >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> */

/*

** Syntax: hostent

** Function: Manipulate an inetdbX data module host entry

*/

#include <stdio.h>

#include <errno.h>

#include <netdb.h>

void main(int argc, char* argv[], char* envp[]);

void main(int argc, char* argv[], char* envp[])

{

struct hostent host, *gethost; /* host structure in inetdb */

static struct in_addr addr; /* IP address of host structure */

static struct in_addr *h_addrs[2] = {&addr,0}; /* List of IP
 addresses */

static char *h_aliases[3] = {"alpha", "beta", 0};

/*fill in the host entry*/

addr.s_addr = inet_addr("10.0.0.1");

host.h_name = "gamma";

host.h_aliases = h_aliases;

host.h_addr_list = (char **)h_addrs;

host.h_length = sizeof(struct in_addr);

host.h_addrtype = AF_INET;

/*Insert Host Entry in InetdbX module*/

if ((errno = puthostent(&host)) == -1) {

fprintf(stderr,"Error in puthostent!\n");

exit(errno);

}

/*Read Host Entry in InetdbX module*/

if ((gethost = gethostbyname(host.h_name)) == NULL) {
Using LAN Communications 256

Appendix F: Dynamic Configuration of the inetdb Module
fprintf(stderr,"Error in gethostbyname!\n");

exit(errno);

}

printf("Obtained host entry %s\n",gethost->h_name);

/*Delete Host Entry in InetdbX module*/

if ((errno = delhostbyname(host.h_name)) == -1) {

fprintf(stderr,"Error in delhostbyname!\n");

exit(errno);

}

exit(0);

}

Changing the DNS Client Entry

Following is an example of how to change the DNS client entry:

/* <<<<<<<<<<<<<<<<<<<< resolvent.c >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> */

/*

** Syntax: resolvent

** Function: Manipulate an inetdbX data module DNS client entry

*/

#include <stdio.h>

#include <errno.h>

#include <netdb.h>

#include <resolv.h>

void main(int argc, char* argv[], char* envp[]);

void main(int argc, char* argv[], char* envp[])

{

struct resolvent res, *getres; /* DNS client resolve structure in
 inetdb */

memset(&res, 0, sizeof(res));

res.domain = "alphatest.com";

res.nameservers[0] = "10.0.0.1";

res.nameservers[1] = "10.0.0.2";

res.search[0] = "alphatest.com";

res.search[0] = "betatest.com";

res.search[0] = "gammatest.com";
Using LAN Communications 257

Appendix F: Dynamic Configuration of the inetdb Module
/*Insert Resolve Entry in InetdbX module*/

if ((errno = putresolvent(&res)) == -1) {

fprintf(stderr,"Error in putresolvent!\n");

exit(errno);

}

/*Read Resolve Entry in InetdbX module*/

if ((getres = getresolvent()) == NULL) {

fprintf(stderr,"Error in getresolvent!\n");

exit(errno);

}

printf("Obtained resolve entry for domain %s\n",getres->domain);

/*Delete Resolve Entry in InetdbX module*/

if ((errno = delresolvent()) == -1) {

fprintf(stderr,"Error in delresolvent!\n");

exit(errno);

}

exit(0);

}

Adding an Interface Entry

Following is an example of how to add an interface entry:

/* <<<<<<<<<<<<<<<<<<<<<<< interface.c >>>>>>>>>>>>>>>>>>>>>>>>>>> */

/*

** Syntax: interface

** Function: Manipulate an inetdbX data module hostname and interface

*/

#include <stdio.h>

#include <errno.h>

#include <netdb.h>

#include <net/if.h>

void main(int argc, char* argv[], char* envp[]);

These functions must be called before ipstart is run.
Using LAN Communications 258

Appendix F: Dynamic Configuration of the inetdb Module
void main(int argc, char* argv[], char* envp[])

{

struct n_ifnet ifnet, *getint; /*Structure to add Interface*/

struct n_ifaliasreq ifalias[1];

struct sockaddr_in *sock_int;

memset(&ifnet, 0, sizeof(ifnet));

memset(&ifalias, 0, sizeof(ifalias));

/*Build interface entry */

strcpy(ifnet.if_name, "enet0"); /* Interface Name */

strcpy(ifnet.if_stack_name,

"/sple0/enet"); /* Device Path to open */

ifnet.if_flags = IFF_UP|IFF_BROADCAST /* Device Flags */

/*ifnet.mw_flags = IFF_NOMULTICAST;*//* Override driver default */

strcpy(ifalias[0].ifra_name, "enet0");

/* Fill in interfaces address information */

/* IP Address */

sock_int = (struct sockaddr_in *) &ifalias[0].ifra_addr;

sock_int->sin_family = AF_INET;

sock_int->sin_addr.s_addr = inet_addr("10.0.0.1");

/* Broadcast Address */

sock_int = (struct sockaddr_in *) &ifalias[0].ifra_broadaddr;

sock_int->sin_family = AF_INET;

sock_int->sin_addr.s_addr = inet_addr("10.255.255.255");

/* Subnet Mask */

sock_int = (struct sockaddr_in *) &ifalias[0].ifra_mask;

sock_int->sin_family = AF_INET;

sock_int->sin_addr.s_addr = inet_addr("255.0.0.0");

/* Insert Interface Entry in InetdbX module */

if ((errno = putintent(&ifnet,ifalias,1)) == -1) {

fprintf(stderr,"Error in putintent!\n");

exit(errno);

}

Using LAN Communications 259

Appendix F: Dynamic Configuration of the inetdb Module
/*Read Interface Entry in InetdbX module*/

if ((getint = (struct n_ifnet *)getintent()) == NULL) {

fprintf(stderr,"Error in getintent!\n");

exit(errno);

}

printf("Obtained Interface entry for device name %s\n”,

getint->if_name);

/* Delete Interface Entry in InetdbX module */

if ((errno = delintbyname(getint->if_name)) == -1) {

fprintf(stderr,"Error in delintbyname!\n");

exit(errno);

}

exit(0);

}

Adding, Obtaining, and Deleting a Route Entry

Following is an example of how to add, get, and delete a route entry from the
inetdbx data module.

These functions must be called before ipstart is run.

/* <<<<<<<<<<<<<<<<<<<<<<<<<<<<<< uproute.c >>>>>>>>>>>>> */

/*

** Syntax: uproute

** Function: Manipulate an inetdbX data module route entry

*/

#include <stdio.h>

#include <errno.h>

#include <netdb.h>

#include <net/route.h>

void main(int argc, char* argv[], char* envp[]);

void main(int argc, char* argv[], char* envp[])

{

struct rtreq route,*getroute; /*Structure for Route Entry*/
Using LAN Communications 260

Appendix F: Dynamic Configuration of the inetdb Module
memset(&route,0,sizeof(route));

/* The following example adds a host route entry */

route.req = RTM_ADD; /*Add Route request*/

route.flags &= ~RTF_HOST;

route.flags |= RTF_UP|RTF_GATEWAY;

/*Fill in destination host route address*/

((struct sockaddr_in *) &route.dst)->sin_addr.s_addr =

inet_addr("11.0.0.1");

((struct sockaddr_in *) &route.dst)->sin_family = AF_INET;

* (u_char *) &route.dst = sizeof(struct sockaddr_in);

/*Fill in gateway route address*/

((struct sockaddr_in *) &route.gateway)->sin_addr.s_addr =

inet_addr("10.0.0.1");

((struct sockaddr_in *) &route.gateway)->sin_family = AF_INET;

* (u_char *) &route.gateway = sizeof(struct sockaddr_in);

/*Insert Route Entry in InetdbX module*/

if ((errno = putroutent(&route)) == -1) {

fprintf(stderr,"Error in putroutent!\n");

exit(errno);

}

/*Read Route Entry in InetdbX module*/

if ((getroute = getroutent()) == NULL) {

fprintf(stderr,"Error in getroutent!\n");

exit(errno);

}

printf("Obtained route entry for host %s\n",

inet_ntoa(((struct sockaddr_in*) &getroute->dst)->sin_addr));

/*Delete Route Entry in InetdbX module*/

if ((errno = delroutent(&route)) == -1) {

fprintf(stderr,"Error in delroutent!\n");

exit(errno);

}

exit(0);
Using LAN Communications 261

Appendix F: Dynamic Configuration of the inetdb Module
Initializing the IP Stack

Starting the IP stack via an application program can be done with the function
ip_start() provided in socket.l.

The System Memory Buffer handler (sysmbuf) must be installed before starting the
IP stack.

/* <<<<<<<<<<<<<<<<<<<<<<<< ip_start.c >>>>>>>>>>>>>>>>>>>>>>>>>>>> */

/*

** Syntax: ip_start

** Function: Initialize IP stack

*/

#include <types.h>

#include <const.h>

#include <stdio.h>

#include <errno.h>

void main(int argc, char* argv[], char* envp[]);

void main(int argc, char* argv[], char* envp[])

{

error_code err;

printf("Initializing IP Stack\n");

if ((err = ip_start()) !=success) {

fprintf(stderr,"Error returned from ip_start\n");

exit(err);

}

printf("Initialization complete.\n");

exit(0);

}

Using LAN Communications 262

	Using LAN Communications
	Contents
	Networking Basics Chapter 1
	Basic Networking Terminology
	Datagrams
	Fragmentation
	Encapsulation

	Client and Server

	Available Network Protocols
	Internet Protocol (IP)
	Transmission Control Protocol (TCP)
	User Datagram Protocol (UDP)

	Network Addressing
	Current vs. Legacy LAN Com Stack
	IPv4 Addresses
	Network Classes
	Class A
	Class B
	Class C
	Class D
	Class E

	Subnet Masks
	IPv6 Addresses
	Representation
	Prefixes

	Serial Line Internet Protocol (SLIP) Driver Chapter 2
	SPSLIP Introduction
	Installation

	SPSLIP Transmission Process
	Initialization
	Sending Data
	Reading Data
	Header Compression

	SPSLIP Device Descriptor

	LAN Communications Overview Chapter 3
	Introduction
	LAN Communications Requirements

	LAN Communications Components
	Application Programming Interfaces (APIs)
	File Manager
	Protocol Drivers
	Data Module

	Software Description
	LAN Communications Architecture

	Point-to-Point Protocol (PPP) Chapter 4
	Introduction to PPP
	PPP Drivers and Descriptors
	Protocol Drivers
	Utility Programs

	Installation
	PPP Initialization
	Sending Data
	Reading Data

	PPP Protocol Functions
	Stack Configuration
	Chat Scripting
	Authentication Database
	Connect/Disconnect

	PPP Device Descriptors
	Overriding Default Settings
	PPP Descriptor Makefiles
	Rebuilding the Descriptor
	Example: Changing the Baud Rate

	Utilities
	PPP Daemon Utility
	PPP Daemon Command Line Arguments
	pppd Script Commands
	Mode Settings

	Chat Scripting Commands
	Troubleshooting Modem Settings for PPP

	pppauth
	Setting Up the Client Machine
	Prepare Chat Script
	Setup Authentication
	Start PPP Daemon Process
	Running PPP Over a Modem Link

	Protocol Drivers Chapter 5
	SPF IP (spip) Protocol Driver
	Data Reception and Transmission Characteristics
	Default Descriptor Values for spip
	Configuring the ip0 Descriptor

	Considerations for Other Drivers
	Drivers Above SPIP
	Drivers Below SPIP

	Getstats and Setstats above SPIP
	SPF_SS_ATTIF
	SPF_SS_DETIF
	ioctl
	Other Supported ioctl Commands

	Getstats and Setstats Below SPIP
	SPF_SS_SETADDR
	SPF_SS_DELADDR
	IP_SS_IOCTL
	SPF_GS_SYMBOLS

	SPF RAW (spraw) Protocol Driver
	Data Reception and Transmission Characteristics
	Default Descriptor Values for spraw
	Configuring the raw0 Descriptor

	Consideration for Other Drivers

	SPF Routing Domain (sproute) Protocol Driver
	Data Reception and Transmission Characteristics
	Default Descriptor Values for sproute
	Configuring the route0 Descriptor

	Consideration for Other Drivers

	SPF TCP (sptcp) Protocol Driver
	Data Reception and Transmission Characteristics
	Default Descriptor Values for sptcp
	Configuring the tcp0 Descriptor

	Considerations for Other Drivers

	SPF UDP (spudp) Protocol Driver
	Data Reception And Transmission Characteristics
	Default Descriptor Values for spudp
	Configuring the udp0 Descriptor

	Considerations for Other Drivers

	SPF Ethernet (spenet) Protocol Driver
	Data Reception and Transmission Characteristics
	Default Descriptor Values for spenet
	Configuring the enet Descriptor
	Other Default Settings

	Drivers Below spenet
	Getstats for SPENET
	SPF_GS_ARPENT
	SPF_GS_ARPTBL
	ENET_GS_STATS

	Setstats for SPENET
	SPF_SS_ADDARP
	SPF_SS_DELARP

	BOOTP Server Chapter 6
	Bootstrap Protocol
	Server Utilities

	bootptab Configuration File Setup
	Hardware Type
	Address
	Host Name, Home Directory, and Bootfile
	Bootfile Size
	Sending a Host Name

	Sharing Common Values Between Tags
	bootptab File Example

	Utilities Chapter 7
	Overview
	Utilities
	Syntax Usage

	arp
	bootpd
	bootptest
	dhcp
	ftp
	ftpd
	ftpdc
	hostname
	idbdump
	idbgen
	ifconfig
	inetd
	ipstart
	mbdump
	ndbmod
	netstat
	ping
	ping6
	route
	route6d
	routed
	rtsol
	telnet
	telnetd
	telnetdc
	tftp
	tftpd
	tftpdc

	Programming Chapter 8
	Programming Overview
	Socket Types
	Stream Sockets
	Datagram Sockets
	Raw Sockets

	Establishing a Socket
	Stream Sockets
	Server Steps
	Client Steps

	Using Connect
	Datagram Sockets
	Connect a Socket

	Header Files
	Reading Data Using Sockets
	Writing Data Using Sockets
	Setting up Non-Blocking Sockets
	Broadcasting
	Broadcasting Process
	Receiving Process

	Multicasting
	Sending Multicasts
	Receiving Multicasts

	Controlling Socket Operations

	Configuring LAN Communications Appendix A
	Configuring Network Modules
	Step 1: Updating Files
	Step 2: Creating Modules
	Contents of inetdb
	Contents of inetdb2
	Step 3: Configure the Interface Descriptor
	Step 4: Load LAN Modules

	Starting the Protocol Stack
	Example Configuration
	Configuration Files
	Hosts
	Networks
	Protocols
	Services
	inetd.conf Configuration File
	resolv.conf Configuration File
	interfaces.conf Configuration File
	routes.conf Configuration File
	rpc Configuration File

	Error Messages Appendix B
	OS-9 Messages

	Legacy LAN Modules Appendix C
	Drivers
	Utilities
	Configuration Wizard Legacy Features

	LAN Communications Stack Migration Reference Appendix D
	Definitions
	References
	Migration from Legacy to Current Stack
	Utility Updates
	The Code Base
	Updates to Network Configuration Files
	Ethernet Drivers
	Miscellaneous Updates

	Example Programs Appendix E
	Example One: Datagram Socket Operation for IPv4
	beam.c
	target.c

	Example Two: Datagram Socket Operation for IPv6
	beam6.c
	target6.c

	Example Three: Stream Socket
	tcpsend.c
	tcprecv.c

	Example Four: Sending Multicast Messages
	msend
	mrecv

	Dynamic Configuration of the inetdb Module Appendix F
	Sample inetdb Module
	Manipulating a Host Entry
	Changing the DNS Client Entry
	Adding an Interface Entry
	Adding, Obtaining, and Deleting a Route Entry
	Initializing the IP Stack

