
w w w. ra d i sy s . co m
Revision C • July 2006

Getting Started with
PersonalJava™ Solution for
OS-9® (SuperH)

Version 3.1

July 2006
Copyright ©2006 by RadiSys Corporation

All rights reserved.
EPC and RadiSys are registered trademarks of RadiSys Corporation. ASM, Brahma, DAI, DAQ, MultiPro, SAIB, Spirit, and ValuePro are
trademarks of RadiSys Corporation.
DAVID, MAUI, OS-9, OS-9000, and SoftStax are registered trademarks of RadiSys Corporation. FasTrak, Hawk, and UpLink are
trademarks of RadiSys Corporation.
† All other trademarks, registered trademarks, service marks, and trade names are the property of their respective owners.

Copyright and publication information

This manual reflects version 3.1 of PersonalJava™ Solution for
OS-9.
Reproduction of this document, in part or whole, by any means,
electrical, mechanical, magnetic, optical, chemical, manual, or
otherwise is prohibited, without written permission from RadiSys
Microware Communications Software Division, Inc.

Disclaimer

The information contained herein is believed to be accurate as of
the date of publication. However, RadiSys Corporation will not be
liable for any damages including indirect or consequential, from
use of the OS-9 operating system, Microware-provided software,
or reliance on the accuracy of this documentation. The
information contained herein is subject to change without notice.

Reproduction notice

The software described in this document is intended to
be used on a single computer system. RadiSys
Corporation expressly prohibits any reproduction of the
software on tape, disk, or any other medium except for
backup purposes. Distribution of this software, in part
or whole, to any other party or on any other system
may constitute copyright infringements and
misappropriation of trade secrets and confidential
processes which are the property of RadiSys
Corporation and/or other parties. Unauthorized
distribution of software may cause damages far in
excess of the value of the copies involved.

Table of Contents

Chapter 1: Introduction 5

7 PersonalJava™ Solution for OS-9 Runtime Components
8 OS-9
8 OS-9 Real-Time Operating System
8 Networking
9 SoftStax
9 LAN Communications
9 Graphics
9 Multimedia Application User Interface
9 Window Manager
10 Application Framework
10 Java Abstract Windowing Toolkit
10 Java Virtual Machine (JVM)
10 Applications and Applets
11 Sample Applications
12 Additional Java Tools
12 Running Java On a Diskless System
13 Java Development Tools
14 Windows® Java Development Kit (JDK)

Chapter 2: Running PersonalJava Demos 15

16 System Requirements
17 Installing PersonalJava™ Solution for OS-9
17 Installing the PersonalJava™ Solution for OS-9 Files
18 Installing Files onto the Host
18 Installing Files onto the Target
19 Building the PersonalJava Demo Bootfile
Getting Started with PersonalJava Solution for OS-9 (SuperH) 3

26 Running the PersonalJava Demo Bootfile
27 Running Java Applets
27 Create a Java ready bootfile
30 Copy the PJava support files onto your target
30 Copy the Applet to the Target
30 Run the loadjava script
32 Running an Applet
34 Considerations for Running Your Own PersonalJava

Applications

Appendix A: Java Load Script 37

38 Example Java Load Script
38 SuperH loadjava Script
4 Getting Started with PersonalJava Solution for OS-9 (SuperH)

Chapter 1: Introduction

This manual provides you with the information you need to get started
with PersonalJava™ Solution for OS-9®. The information in this manual
is valid for the SH7709SE01 Solution Engine, SH7709ASE01 Solution
Engine, EBX7709 Reference Platform, and SH7750SE01 Solution
Engine. Information that is specific to a certain platform is appropriately
labeled.

For More Information
More In
fo More
Informatio
n More Inf
ormation M
ore Inform
ation More

-6-

Refer to the current version of OS-9 Release Notes for possible
last-minute updates to PersonalJava™ Solution for OS-9 or the SuperH
board.

NoteNote
Before proceeding, be certain you have installed either OS-9 for
Embedded Systems or the OS-9 Board Level Solution (BLS) for your
processor, on your Windows-based host system. If you do not have
either of these packages, contact your OS-9 supplier.
5

1 Introduction
For More Information
More In
fo More
Informatio
n More Inf
ormation M
ore Inform
ation More

-6-

Refer to the CD-ROM insert for information about installing
PersonalJava™ Solution for OS-9 on your Windows-based host
platform.
6 Getting Started with PersonalJava Solution for OS-9 (SuperH)

1Introduction
PersonalJava™ Solution for OS-9 Runtime
Components

PersonalJava™ Solution for OS-9 is a complete system software
solution for developing Java-enabled devices. The PersonalJava™
Solution for OS-9 system consists of a scalable real-time operating
system with specific software modules that help you create Java
enabled devices without worrying about system software customization.

Figure 1-1 shows the PersonalJava™ Solution for OS-9 architecture.
Each software subsystem found in PersonalJava™ Solution for OS-9 is
defined in the following sections.

Figure 1-1 PersonalJava™ Solution for OS-9 Runtime Components

Key:
Java for OS-9 Components
Customer-supplied Components

Data Java APIs

Other APIs

LAN Communications

Java Virtual Machine

SoftStax

Networking

Graphics

OS-9

APIsApplications and Applets

Sample Java applets
and applications

Browser and other
Java applications
and applets

(JVM)

AFW WinMgr MAUI

OS-9 Real-Time Operating System
Getting Started with PersonalJava Solution for OS-9 (SuperH) 7

1 Introduction
NoteNote
Many of these components were installed with your OS-9 for
Embedded Systems or OS-9 Board Level Solution package. You
must have installed one of these packages prior to installing
PersonalJava™ Solution for OS-9.

OS-9

At the core of PersonalJava™ Solution for OS-9 is the OS-9 operating
system and its support modules.

OS-9 Real-Time Operating System

OS-9 is an architecturally advanced, high performance real-time
operating system available for several microprocessor families. At its
core is the OS-9 stand-alone microkernel.

Coupled with the power of the microkernel, the unique modular
architecture of OS-9 enables dynamic loading of any OS-9 system or
user application module while the system is up and running.

Networking

The ability to communicate with other computers or devices is essential
for a Java-enabled device. PersonalJava™ Solution for OS-9 uses the
standard SoftStax® I/O implementation so a variety of transport layers
can be used with Java.
8 Getting Started with PersonalJava Solution for OS-9 (SuperH)

1Introduction
SoftStax

SoftStax provides a consistent application-level interface using a variety
of networking protocols. The protocols necessary for using
PersonalJava™ Solution for OS-9 are included in LAN
Communications.

LAN Communications

The Microware LAN Communications software consists of a TCP/IP
protocol stack with User Datagram Protocol (UDP) support, Serial Line
Internet Protocol/Compressed Serial Line Internet Protocol
(SLIP/CSLIP) support, PPP support, and drivers for supported
hardware.

Graphics

One of the strengths of Java as a programming language is its support
for graphics. To handle graphics, PersonalJava™ Solution for OS-9
uses four components: Multimedia Application User Interface (MAUI®),
Window Manager, the Application Framework (AFW), and the Java
Abstract Windowing Toolkit (AWT).

Multimedia Application User Interface

MAUI is a high-level library that manages the display of graphics, text,
and user input.

Window Manager

The PersonalJava™ Solution for OS-9 Window Manager is a MAUI
application that manages windows. Three versions of the Window
Manger are available, each with different levels of functionality.
Getting Started with PersonalJava Solution for OS-9 (SuperH) 9

1 Introduction
Application Framework

The AFW is a class library that contains the code necessary to display
Graphic User Interface (GUI) components and handle events for an
interactive application.

Java Abstract Windowing Toolkit

The PersonalJava (PJAVA) environment includes an AWT package that
allows Java applications to display GUI components, render images,
draw graphics primitives, and respond to events. This package is
standard across all PJAVA implementations, although some features
are optional in PersonalJava implementations. All optional AWT
functionality is fully supported in Microware’s PersonalJava™ Solution
for OS-9.

Java Virtual Machine (JVM)

Consumer devices that interpret Java applications must contain the
JVM. Java applications are comprised of Java classes consisting of byte
codes.

Java byte codes are machine-independent and interpreted by the Java
Virtual Machine. The purpose of the JVM is to interpret these Java byte
codes and initiate appropriate actions on the host platform. In addition
to executing byte codes in all classes within the system, the Java Virtual
Machine also handles signals and Java exceptions, manages RAM, and
is responsible for the simultaneous execution of multiple threads within
the context of the JVM process.

Applications and Applets

Along with the basic system components, Microware has included
several sample applications and applets on the PersonalJava™
Solution for OS-9 CD.
10 Getting Started with PersonalJava Solution for OS-9 (SuperH)

1Introduction
Sample Applications

Several sample applications have been included in this package. They
are located in MWOS\SRC\PJAVA\EXAMPLES. Additional sample
applets from Sun are located in MWOS\DOS\jdk1.1.8\demo.
Getting Started with PersonalJava Solution for OS-9 (SuperH) 11

1 Introduction
Additional Java Tools

Running Java On a Diskless System

PersonalJava™ Solution for OS-9 includes a tool called
JavaCodeCompact (JCC) that enables sets of Java class files to be
pre-loaded in RAM or placed in ROM. This is accomplished by
pre-processing the class files into an assembly language file that is
eventually turned into a module. The module can then be loaded at
run-time at a pre-determined address or loaded into the ROM of the
device. This process eliminates the need to have the class files
themselves, often called classes.zip, resident on the device.

For More Information
More In
fo More
Informatio
n More Inf
ormation M
ore Inform
ation More

-6-

Refer to Using JavaCodeCompact for OS-9 for instructions on using
this tool in the OS-9 environment and refer to Using PersonalJava™
Solution for OS-9 for information about creating Java applications for a
diskless OS-9 target.
12 Getting Started with PersonalJava Solution for OS-9 (SuperH)

1Introduction
Java Development Tools

Since Java is architecture neutral, users can develop their Java
applications using any of the GUI-based Java development packages
on the market. Some of these include Metrowerks CodeWarrior,
Sunsoft’s Java Workshop, and Symantec’s Visual Cafe to name a few.
As long as the output of the development environment is standard Java
class files containing standard byte codes, the code is compatible with
PersonalJava™ Solution for OS-9.

Standard Java class files contain a great deal of information about the
source code from which they were compiled, including symbol names.
With the appropriate tools, it is possible to de-compile Java code into an
almost exact replica of the source code. Some of these tools address
this problem by munging or obfuscating the object code so
de-compilation is not as easy. Refer to Java-related web sites and
UseNet news groups for information on these tools.

For More Information
More In
fo More
Informatio
n More Inf
ormation M
ore Inform
ation More

-6-

For more information about CodeWarrior, visit the Metrowerks website
at http://www.metrowerks.com/.

For more information about Java Workshop, visit the Sun website at
http://www.sun.com/.

For more information about Visual Cafe, visit the Symantec website at
http://www.Symantec.com/.
Getting Started with PersonalJava Solution for OS-9 (SuperH) 13

1 Introduction
Windows® Java Development Kit (JDK)

To make it easier for you to perform native method work, Microware has
included the Windows JDK v.1.1.8 in the package for the host system.

The javah.exe executable in this package has been modified to
generate code that works with the Microware UltraC/C++ compiler.

The pre-loader classes are contained in the jcc.zip file. This file is on
the Windows host machine in the \MWOS\DOS\JDK1.1.8\lib
directory.
14 Getting Started with PersonalJava Solution for OS-9 (SuperH)

Chapter 2: Running PersonalJava

Demos

This chapter explains how to install and run Microware’s PersonalJava
demo application as well as your own Java applets and applications.

Microware's PersonalJava can run in a completely diskless
environment. For your convenience, this section explains how to run
PersonalJava using a PCMCIA IDE card as an IDE disk. In addition, this
chapter includes information on loading modules and running scripts
from the PCMCIA IDE card after the system has booted. In a truly
embedded system, the modules that were loaded would have been
placed in the boot and the script's commands would be accomplished
programmatically.

NoteNote
Before you begin, you must either have installed Microware OS-9 for
Embedded Systems or the Microware OS-9 Board Level Solution
for the target on your Windows-based host. If you do not have these
packages, contact your OS-9 supplier.

NoteNote
The procedures in this chapter use the E: drive on your host (this may
vary depending on where you chose to install your PersonalJava™
Solution for Microware OS-9 package).
15

2 Running PersonalJava Demos
System Requirements

Your SuperH reference board must have the following to run Java for
OS-9:

• 16MB of RAM

• 2MB of FLASH (Boot)

• VGA display

• Keyboard (optional)

• PS/2 or serial mouse
16 Getting Started with PersonalJava Solution for OS-9 (SuperH)

2Running PersonalJava Demos
Installing PersonalJava™ Solution for OS-9

Before you begin, do a test boot of your target and establish a virtual
terminal connection between the PC and the target.

NoteNote
For an in-depth discussion on how to connect the target to your PC,
refer to the OS-9 board guide manual for your reference board.

Installation of Java on the target is initiated on the PC and finished on
the target. Therefore, the following instructions are divided into these
headings:

• Installing the PersonalJava™ Solution for OS-9 Files

• Building the PersonalJava Demo Bootfile

• Running the PersonalJava Demo Bootfile

• Running Java Applets

• Considerations for Running Your Own PersonalJava
Applications

Installing the PersonalJava™ Solution for OS-9 Files

Before you can use PersonalJava (PJAVA) Solution for OS-9, you need
to install it on your host system and on your SuperH reference board.

NoteNote
You will be prompted for your password during the installation process,
so have it ready before you start.
Getting Started with PersonalJava Solution for OS-9 (SuperH) 17

2 Running PersonalJava Demos
Installing Files onto the Host

Step 1. Insert the OS-9 for SuperH CD-ROM into your CD-ROM drive.

Step 2. Start the installer program and select the PersonalJava option.

Step 3. Follow the directions in the installer windows.

NoteNote
Be sure you are installing PersonalJava™ Solution for OS-9 into your
MWOS directory tree. If you do not install PersonalJava™ Solution for
OS-9 in your MWOS directory, PersonalJava™ Solution for OS-9 may
not work correctly.

Installing Files onto the Target

The files that will go onto the target are found in the MWOS directory on
the host machine. The path to the files is as follows:
MWOS\OS9000\<proc>\PORTS\<board>\PJAVA.

NoteNote
<proc> is either SH3 or SH4, depending on your target. <board> is
either SH7709, SH7709ASE, EBX7709, or SH7750SE.

The PJAVA folder contains two relevant items, including pjava.mat and
readme.txt. pjava.mat is an archive (in the Microware Archive Tool
(MAT) format) of the files to go on the target. readme.txt explains how to
install the MAT archive onto the PCMCIA IDE PC Card either from OS-9
or your Windows host machine.
18 Getting Started with PersonalJava Solution for OS-9 (SuperH)

2Running PersonalJava Demos
Building the PersonalJava Demo Bootfile

This section tells you how to run the Microware Java demo programs on
your SuperH reference board. If you want to run other applets and
applications instead of these demos, then you should skip to the
following section: Running Java Applets.

NoteNote
The Java Development Kit (JDK) as shipped from Sun Microsystems,
Inc. is targeted strictly at desktop environments. PersonalJava™
Solution for OS-9 may be used on either disk-based or diskless
systems. The examples you will be running use a diskless system.
Getting Started with PersonalJava Solution for OS-9 (SuperH) 19

2 Running PersonalJava Demos
Step 1. From the Windows Start Menu, select Programs -> Microware
OS-9 for <product> -> Configuration Wizard. The following
window appears:

Complete the following on the opening screen:

• Verify that the MWOS location is correct. If it not, click the MWOS
Location field, browse to the MWOS directory tree that was
installed when you installed your Microware OS-9 for Embedded
Systems or Microware OS-9 Board Level Solution package, and
select it.

Example: C:\MWOS

• Select your target’s board model in the Port Selection box.

• Select the Advanced Mode option.

• Fill in the Configuration Name field with the name of the Java
demo configuration file JavaDemo. This file is installed into the
MWOS tree on your PC at
C:\MWOS\OS9000\<proc>\PORTS\<portname>
\BOOTS\INSTALL\INI\JavaDemo.ini

NoteNote
For SH-3 based reference platforms, <proc> is SH3. For SH-4 based
reference platforms, <proc> is SH4.
20 Getting Started with PersonalJava Solution for OS-9 (SuperH)

2Running PersonalJava Demos
For the SH7709SE01 Reference Board, <portname> is SH7709. For
the SH7709ASE01 Reference Board, <portname> is SH7709ASE. For
the EBX7709 Reference Platform, <portname> is EBX7709. For the
SH7750SE01, <portname> is SH7750SE.

For subsequent uses of a configuration, Configuration Wizard
automatically adds the board model to the beginning of the
configuration name. Do not attempt to modify this portion of the name.

• Click OK

For More Information
More In
fo More
Informatio
n More Inf
ormation M
ore Inform
ation More

-6-

Refer to the online help available with the Configuration Wizard for
additional information about using the Configuration Wizard.

Step 2. From the Configuration Wizard menu options, select Configure ->
Bootfile -> Network Configuration. Select the Interface
tab at the top of the window. The following window appears:

Step 3. Select Specify An IP Address and fill in the Ethernet address text
boxes with the Ethernet address information for your target:
Getting Started with PersonalJava Solution for OS-9 (SuperH) 21

2 Running PersonalJava Demos
• IP Address - your IP address in this field

• IP Broadcast - your IP Broadcast in this field

• Subnet Mask - your Subnet Mask in this field

• MAC Address - your MAC address in this field (may be optional, or
may not appear, depending on your target)

NoteNote
You may need to contact your network administrator for the Ethernet
addressing information.

Step 4. Click the Ethernet check box to select it. A check mark will appear in
the box to show it is selected.

Step 5. Make sure the name of the Ethernet interface chip appears in the drop
down combo box. For the SH7709SE01, SH7709ASE01, and
SH7750SE01, be sure ‘DP83902A’ is selected. For the EBX7709 be
sure ‘3COM PC CARD Socket #0’ is selected.

Step 6. Select the DNS Configuration tab at the top of the window. The
following window appears:

Complete the following fields:
22 Getting Started with PersonalJava Solution for OS-9 (SuperH)

2Running PersonalJava Demos
• Select Enable DNS

• Enter your target’s host name in the Host field

• Enter your target’s domain name in the Domain field

• Enter your target’s DNS Server Search Order addresses. Add as
many addresses as are valid for your location.

• Enter your target’s DNS Suffix Search Order. Add as many suffixes
as are valid for your location.

NoteNote
You may need to contact your network administrator for the DNS
information.

Step 7. Select the Gateway tab at the top of the window. The following window
appears:

Complete the following:

• Enter your New Gateway network address. Add as many addresses
as are valid for your location.

• Click OK to close the window.
Getting Started with PersonalJava Solution for OS-9 (SuperH) 23

2 Running PersonalJava Demos
NoteNote
You may need to contact your network administrator for the Gateway
information.
24 Getting Started with PersonalJava Solution for OS-9 (SuperH)

2Running PersonalJava Demos
Step 8. Build the JavaDemo bootfile image. From the Configuration Wizard
configuration window, select Configure -> Build Image. The
following window appears:

Step 9. Make sure the Bootfile Only Image build type is selected.

Step 10. In the Master Builder window, click Build. The bootfile is created in
C:\MWOS\OS9000\<portproc>\PORTS\<portname>\BOOTS\
INSTALL\PORTBOOT directory.

Step 11. Click Save As. A Save As dialog box appears.

Step 12. Navigate to the root directory of the PCMCIA IDE card. The c:\
directory is an example of a root directory.

Step 13. Type os9kboot into the File name text box.

Step 14. Click Save. The bootfile is saved to the root directory.

Step 15. Click Finish.

Step 16. Exit the Configuration Wizard.
Getting Started with PersonalJava Solution for OS-9 (SuperH) 25

2 Running PersonalJava Demos
Running the PersonalJava Demo Bootfile

NoteNote
The procedures in this stage use the G: drive on your Windows host to
designate on which drive the PCMCIA IDE card is mapped.

Complete the following steps on your PC:

Step 1. Create the PJAVA directory on your PCMCIA disk.

Using the Windows Explorer, navigate to your PCMCIA disk and create
a directory at the root called PJAVA.

Step 2. Navigate to the following directory:

C:\MWOS\OS9000\<proc>\PORTS\<portname>\CMDS\BOOTOBJS\PJAVA

Copy all .mod files, go.demo, and pjruntime to the G:\PJAVA
directory.

Step 3. Turn off the power to the SuperH reference board.

NoteNote
Inserting and removing a PCMCIA card with the power on is not
supported. Damage may occur to the PCMCIA card if it is inserted or
removed while power is applied to the board.

Step 4. Remove the PCMCIA IDE card from the computer.

Step 5. For the SH7709SE01, SH7709ASE01, and SH7750SE01: Turn the
card upside down, and slide the card into the PCMCIA slot (located on
the underside of the reference board) until the card snaps onto the pins.
For the EBX7709: Slide the card into the bottom slot of the EBX7709
Reference Platform until the card snaps onto the pins.
26 Getting Started with PersonalJava Solution for OS-9 (SuperH)

2Running PersonalJava Demos
Step 6. Start your virtual terminal program. HyperTerminal is an example of a
virtual terminal program.

Step 7. Apply power to the board. Depending on how your system is
configured, either the boot menu appears or you automatically boot
from the PCMCIA card.

Step 8. If the boot menu appears, type pcm_pc. The os9kboot built from the
JavaDemo configuration file boots the reference board using the
PCMCIA IDE card.

If you have a virtual console connected to the OS-9 target machine, you
should see something similar to the following displayed:

OS-9000 kernel was found.
A valid OS-9000 bootfile was found.
Loading PersonalJava run-time components...
Loading PersonalJava for OS-9 examples...
+3
+4
Starting PersonalJava...
+6

 $

On the SuperH board’s monitor, the PersonalJava LaunchPad
application displays after a few moments. You can select the demo you
want to run from the LaunchPad application.

Running Java Applets

This section describes what you need to do to prepare your SuperH
reference board to run the Sun Demo applets or your own applets. The
JDK v1.1 demo applets are contained in MWOS/DOS/jdk1.1.8/demo
on your host computer.

Create a Java ready bootfile

For your system to run PersonalJava, you need to have a bootfile that
contains networking modules and Multimedia Application User Interface
(MAUI) modules. If you followed the directions in the OS-9 board guide
for your reference board, you should have the networking modules
Getting Started with PersonalJava Solution for OS-9 (SuperH) 27

2 Running PersonalJava Demos
already loaded. Since including the MAUI support modules into the
bootfile was not part of the directions in those manuals, you need to
rebuild the bootfile to include the MAUI support modules.

Step 1. Follow the directions in your board guide for building a bootfile. Stop
before you make a build and come back to step 2 in this section.

Step 2. Click on the System Disk Configuration button in the bootfile button
group, then click on the IDE Configuration tab. You should see the
contents of the IDE configuration tab. Click on Map IDE disk as
/dd.

NoteNote
If the Map IDE disk as /dd checkbox is grayed out, then you need
to deselect the Map RAM disk as /dd checkbox.

Step 3. Click on the Init Options tab.
28 Getting Started with PersonalJava Solution for OS-9 (SuperH)

2Running PersonalJava Demos
Step 4. Select MShell as the initial module name and /dd as the initial device.

Step 5. Click OK to close the dialog box.

Step 6. Click the Build Image button to display the Master Builder window.

Step 7. Make sure that the check boxes in the Master Builder window match the
following illustration:

Step 8. Build the bootfile by clicking Build in the Master Builder screen.

Step 9. Load the bootfile onto the SuperH board by following the directions in
your reference board’s OS-9 for SuperH board guide.
Getting Started with PersonalJava Solution for OS-9 (SuperH) 29

2 Running PersonalJava Demos
Copy the PJava support files onto your target

Once you have created the bootfile, you need to copy the support files
for Personal Java onto your PCMCIA card. Use the mat utility to
extract the contents of the pjava.mat file onto the PCMCIA card. First
create an MWOS directory on the root of your hardcard. Then cd to that
directory, and use a command like the following to extract the archived
files (this example assumes you installed the Personal Java for OS-9
package into MWOS on your C: drive):

mat -to -xv c:/mwos/OS9000/SH4/PORTS/SH7750SE/PJAVA/pjava.mat

Copy the Applet to the Target

Once you have copied the Personal Java for OS-9 support files onto
your hardcard, you need to copy the applet you want to run to the
PCMCIA card.

WARNING!
When removing and inserting the IDE PCMCIA card into your board,
make sure the power to the board is off. Otherwise, you may damage
the PCMCIA card and the board.

Run the loadjava script

The loadjava script sets up the OS-9 environment variables, loads the
MAUI support modules into memory, initializes the modules, runs the
MAUI input process, and starts the PersonalJava window manager.

NoteNote
The loadjava script must be run every time the board is booted.
30 Getting Started with PersonalJava Solution for OS-9 (SuperH)

2Running PersonalJava Demos
For More Information
More In
fo More
Informatio
n More Inf
ormation M
ore Inform
ation More

-6-

You can set up the loadjava script to run every time by defining it as a
system startup script. See “Making a Startup File” in Chapter 9 of
Using OS-9.

Step 1. Insert your PCMCIA card into your target, and turn on the power.

Step 2. The target should boot up to a console prompt.

Step 3. Change directories to the SYS directory.
 chd /mhc1/SYS

Step 4. Enter the following commands to run the loadjava script:
 tmode nopause
 profile loadjava
As the loadjava script executes, you will see a series of messages scroll
up the screen.

Step 5. Type the following command to display the environment variables:
 printenv

Step 6. Compare the listing on your screen with the following listing. Make sure
that the listed environment variables are set correctly.

MWOS=/dd/MWOS

JAVA_HOME=/dd/MWOS/SRC/PJAVA

CLASSPATH=/dd/MWOS/SRC/PJAVA/LIB/classes.zip:.

PATH=/dd/MWOS/OS9000/SH3/CMDS:$PATH

LD_LIBRARY_PATH=/dd/MWOS/OS9000/LIB/SHARED

PORT=/term

HOME=/dd

USER=java_user

TZ=CST
Getting Started with PersonalJava Solution for OS-9 (SuperH) 31

2 Running PersonalJava Demos
NoteNote
If you are using the SH7750SE01 Solution Engine, the path
environment variable is different from the above listing. For the
SH7750SE01 solution engine, the definition should be as follows:
 PATH=/dd/MWOS/OS9000/SH4/CMDS:$PATH

Step 7. Make sure the maui_inp and Window Manager processes are running
by typing the following command:
 procs
You will see a listing of the processes that are currently running on your
reference board. It will look similar to the following illustration.

Step 8. Check that maui_inp and winmgr are listed under the Module
heading.

You are now ready to run your applet.

Running an Applet

Once the board is set up by the loadjava script, you can run any desired
example applet.

Id PId Grp.Usr Prior MemSiz Sig S CPU Time Age Module & I/O
 2 5 0.0 256 24.00k 0 s 0.03 0:02 maui_inp <>>>nil
 3 0 0.0 128 96.00k 0 s 0.08 ??? inetd <>>>nil
 4 0 0.0 128 20.00k 0 e 0.00 ??? spf_rx
 5 0 0.0 128 52.00k 0 w 0.48 0:04 mshell <>>>term
 6 5 0.0 250 168.00k 0 s 1.55 0:02 winmgr <>>>nil
 7 6 0.0 256 180.00k 0 s 0.58 0:02 maui_win <>>>nil
 8 5 0.0 128 48.00k 0 * 0.04 0:00 procs <>>>term
32 Getting Started with PersonalJava Solution for OS-9 (SuperH)

2Running PersonalJava Demos
NoteNote
If your applet requires resources that are not present on the SuperH
board (sound for example), then it may not work correctly.

Step 1. Change to the directory on your PCMCIA card containing the applet.
Example: chd
/mhc1/MWOS/DOS/jdk1.1.7B/demo/TicTacToe/1.1

Step 2. Run the applet by typing the following:
pappletviewer <htmlfile>
or
pjava sun.applet.AppletViewer <htmlfile>
Getting Started with PersonalJava Solution for OS-9 (SuperH) 33

2 Running PersonalJava Demos
Considerations for Running Your Own PersonalJava
Applications

The JavaDemo Configuration Wizard configuration file and go.demo
script took care of a number of details that you should be aware of when
running your own applications. The following section is a complete list of
details that need to be addressed. Many of them are taken care of in the
loadjava script.

For More Information
More In
fo More
Informatio
n More Inf
ormation M
ore Inform
ation More

-6-

See Appendix A: Java Load Script for an example loadjava script.

If your ultimate target is a diskless system, then the steps taken in
loadjava will have to be accomplished by setting the environment
variables in the init module and including the loaded modules in the
bootfile or ROM image.

1. The environment variables need to be set correctly for the target
system. Omit environment variables that are not applicable (e.g. for
a diskless environment, variables set to disk paths need not be set).
These include the following:

• MWOS – location of your MWOS directory

• JAVA_HOME – location of your Java properties files

• CLASSPATH – list of directories and zip files to search for class files

• LD_LIBRARY_PATH – list of directories to search for native method libraries

• PATH – list of directories to search for executable files

• PORT – device used to communicate with the user

• USER – name used to refer to the user

• HOME – “home” directory for the user

• TZ – time zone setting for the system

2. The modules (executable code and configuration data) for
PersonalJava™ Solution need to be in memory or at their
appropriate location on the disk, if applicable. These modules
include the following:
34 Getting Started with PersonalJava Solution for OS-9 (SuperH)

2Running PersonalJava Demos
• winmgr – PersonalJava window manager (alternatively, winmgrs or
winmgrg could be used)

• winmgr.dat – window manager settings

• stock_8.res – 8-bit image resources for the window manager and
application framework

• stock_9.res – 16-bit image resources for the window manager and
application framework (available only on the SH7709SE01, SH7709ASE01,
and SH7750SE01 Solution Engines)

• pjava – PersonalJava starter application

• libjavai.so - PersonalJava virtual machine

• libmawt.so – AWT shared library module

• libmawt_0.dat – pre-computed color palette

• libjavafile.so - file handling native methods

• libnet.so - TCP/IP network handling native methods

• libzip.so - ZIP file handling native methods

• font modules – various modules related to font rendering

• MAUI modules – various modules related to graphics support

• *.properties – property files needed by PersonalJava™ Solution (e.g.
from a modman archive)

3. Before running a graphical PJAVA application, Window Manager
must be started. Before running Window Manager, the MAUI input
process must be started. The following command lines show an
example startup sequence:

maui_inp ^255 <>>>/nil &

winmgr ^250 <>>>/nil &

pjava <application class>

Examine the system running the demos and the loadjava script for more
information on configuring a system to run your own PersonalJava
applications.
Getting Started with PersonalJava Solution for OS-9 (SuperH) 35

2 Running PersonalJava Demos
36 Getting Started with PersonalJava Solution for OS-9 (SuperH)

Appendix A: Java Load Script

This appendix lists the Java Load Script needed to start Java on your
target platform.
37

AJava Load Script
Example Java Load Script

This load script was used to set up the OS-9 init module to run Java.
Use this script as a basis for your own scripts when configuring your
system to run Java applications.

SuperH loadjava Script

The following example loadjava script is used on a SuperH target. This
script will vary slightly depending on your target platform. Refer to your
target’s version for a more applicable example.
-tnpna
* * * * * * * * * * * * * * * * * * * *
* Load script for PersonalJava v3.x
*

*
* Set environment variables
*

let drive = "dd"

setenv MWOS /%drive/MWOS
setenv JAVA_HOME $MWOS/SRC/PJAVA
setenv CLASSPATH $JAVA_HOME/LIB/classes.zip:\
$JAVA_HOME/LIB/javamath.zip:\
$JAVA_HOME/LIB/javasql.zip:\
$JAVA_HOME/LIB/javarmi.zip:\
$JAVA_HOME/LIB/sunrmi.zip:.
if (len(env("PATH")) == 0)

setenv PATH /%drive/CMDS
endif
setenv PATH $MWOS/OS9000/SH4/CMDS:$PATH
setenv LD_LIBRARY_PATH $MWOS/OS9000/SH4/LIB/SHARED
setenv PORT /term
setenv HOME /%drive
setenv USER java_user
setenv TZ CST

let graphical_apps = TRUE
if (%graphical_apps == TRUE)
*
* All lines below this point are only needed if graphical Personal
* Java applications are being used. Assign FALSE to graphical_apps
* if you don't need this support.
*

38 Getting Started with PersonalJava Solution for OS-9 (SuperH)

AJava Load Script
*
* Load the Java Window Manager application, settings file, and a
* file containing the resource module 'stock_x.res'
*
* winmgrs - Simplest/smallest Window Manager - No window frames
* winmgr - Standard Window Manager (default)
* winmgrg - Debug version - "Send Shutdown Message" &
* "Dump Window Tree" fuctionality
*
* winmgr.dat- Window Manager settings file
*
* stock_8.res- 8-bit bitmap and cursor support (default)
* stock_9.res- 16-bit bitmap and cursor support
*
let winmgr = "winmgr";* winmgr, winmgrg, or winmgrs
let resfile ="stock_8.res";* stock_8.res or stock_9.res

load -d $MWOS/OS9000/SH4/CMDS/%winmgr
load -d $MWOS/OS9000/SH4/CMDS/winmgr.dat
load -d $MWOS/OS9000/SH4/PORTS/SH7750SE/CMDS/%resfile

*
* Load the pre-generated libmawt Color Cube module
*
load -d $MWOS/OS9000/SH4/PORTS/SH7750SE/LIB/SHARED/libmawt_0.dat

*
* Load fonts for "font.properties"
*
load -d $MWOS/OS9000/SH4/ASSETS/FONTS/AGFA/MT/*
load -d $MWOS/OS9000/SH4/ASSETS/FONTS/AGFA/TT/utt.ss

*
* Initialize the keyboard and mouse devices, if needed
*
iniz m0 t3

*
* Launch the MAUI input process
*
maui_inp ^256 <>>>/nil &

*
* Start window manager loaded above
*
%winmgr ^250 <>>>/nil &
-nt
unlet winmgr resfile
endif

-nt
unlet graphical_apps drive
Getting Started with PersonalJava Solution for OS-9 (SuperH) 39

AJava Load Script
40 Getting Started with PersonalJava Solution for OS-9 (SuperH)

	Getting Started with PersonalJava™ Solution for OS-9® (SuperH)
	Table of Contents
	Chapter 1: Introduction
	PersonalJava™ Solution for OS-9 Runtime Components
	OS-9
	OS-9 Real-Time Operating System

	Networking
	SoftStax
	LAN Communications

	Graphics
	Multimedia Application User Interface
	Window Manager
	Application Framework
	Java Abstract Windowing Toolkit

	Java Virtual Machine (JVM)
	Applications and Applets
	Sample Applications

	Additional Java Tools
	Running Java On a Diskless System

	Java Development Tools
	Windows® Java Development Kit (JDK)

	Chapter 2: Running PersonalJava Demos
	System Requirements
	Installing PersonalJava™ Solution for OS-9
	Installing the PersonalJava™ Solution for OS-9 Files
	Installing Files onto the Host
	Installing Files onto the Target

	Building the PersonalJava Demo Bootfile
	Running the PersonalJava Demo Bootfile
	Running Java Applets
	Create a Java ready bootfile
	Copy the PJava support files onto your target
	Copy the Applet to the Target
	Run the loadjava script
	Running an Applet

	Considerations for Running Your Own PersonalJava Applications

	Appendix A: Java Load Script
	Example Java Load Script
	SuperH loadjava Script

