
w w w. ra d i sy s . co m
Revision C • July 2006

Getting Started with
PersonalJava™ Solution for
OS-9® (X86)

Version 3.1

July 2006
Copyright ©2006 by RadiSys Corporation

All rights reserved.
EPC and RadiSys are registered trademarks of RadiSys Corporation. ASM, Brahma, DAI, DAQ, MultiPro, SAIB, Spirit, and ValuePro are
trademarks of RadiSys Corporation.
DAVID, MAUI, OS-9, OS-9000, and SoftStax are registered trademarks of RadiSys Corporation. FasTrak, Hawk, and UpLink are
trademarks of RadiSys Corporation.
† All other trademarks, registered trademarks, service marks, and trade names are the property of their respective owners.

Copyright and publication information

This manual reflects version 3.1 of PersonalJava™ Solution for
OS-9.
Reproduction of this document, in part or whole, by any means,
electrical, mechanical, magnetic, optical, chemical, manual, or
otherwise is prohibited, without written permission from RadiSys
Microware Communications Software Division, Inc.

Disclaimer

The information contained herein is believed to be accurate as of
the date of publication. However, RadiSys Corporation will not be
liable for any damages including indirect or consequential, from
use of the OS-9 operating system, Microware-provided software,
or reliance on the accuracy of this documentation. The
information contained herein is subject to change without notice.

Reproduction notice

The software described in this document is intended to
be used on a single computer system. RadiSys
Corporation expressly prohibits any reproduction of the
software on tape, disk, or any other medium except for
backup purposes. Distribution of this software, in part
or whole, to any other party or on any other system
may constitute copyright infringements and
misappropriation of trade secrets and confidential
processes which are the property of RadiSys
Corporation and/or other parties. Unauthorized
distribution of software may cause damages far in
excess of the value of the copies involved.

3

Contents

Chapter 1: Introduction
PersonalJava Solution for OS-9 Runtime Components ... 6.

OS-9... 6.

OS-9 Real-Time Operating System... 6.

Networking.. 7.

SoftStax ... 7.

LAN Communications... 7.

Graphics... 7.

Multimedia Application User Interface (MAUI)... 7.

Window Manager.. 7.

Application Framework ... 7.

Java Abstract Windowing Toolkit.. 7.

Java Virtual Machine (JVM) .. 8.

Applications and Applets ... 8.

Sample Applets .. 8.

Additional Java Tools ... 8.

Running Java On a Diskless System ... 8.

Java Development Tools ... 8.

Windows® Java Development Kit (JDK) .. 9.

Chapter 2:
Running PersonalJava Demos

System Requirements .. 12.

Installing PersonalJava Solution for OS-9 ... 12.

Installing the PersonalJava Solution for OS-9 files.. 12.

Installing PersonalJava Solution onto the Host System .. 12.

Installing Files onto the Target ... 12.

Building the PersonalJava Demo Bootfile ... 13.

Installing PersonalJava Solution on the Target Hardware .. 13.

Running Java Applets... 14.

Run the loadjava script .. 14.

Running an Applet... 15.

Considerations for Running Your Own PersonalJava Applications.. 16.

Appendix A: Java Load Script
Example Java Load Script... 20.

X86 loadjava Script.. 20.

Getting Started with PersonalJava™ Solution for OS-9® (X86)

4

5

1 Introduction

This manual provides the information you need to get started with PersonalJava
Solution for OS-9®.

• Refer to the current version of OS-9 Release Notes for possible last-minute
updataes to PersonalJava Solution for OS-9 or the StrongARM board.

• Refer to the CD-ROM insert for information about installing PersonalJava
Soluction for OS-9 on your Windows-based host platform.

Before you proceeding, be certain you have installed either OS-9 for Embedded
Systems or the OS-9 Board Level Solution (BLS) for your processor, on your
Windows-based host system. If you do not have either of these packages,
contact your OS-9 supplier.

Getting Started with PersonalJava™ Solution for OS-9® (X86)

6

PersonalJava Solution for OS-9 Runtime Components
PersonalJava Solution for OS-9 is a complete system software solution for
developing Java-enabled devices. The PersonalJava Solution for OS-9 system
consists of a scalable real-time operating system with specific software modules that
help you create Java enabled devices without worrying about system software
customization.

Figure 1-1 shows the PersonalJava Solution for OS-9 architecture. Each software
subsystem found in PersonalJava Solution for OS-9 is defined in the following
sections.

Figure 1-1. PersonalJava Solution for OS-9 Runtime Components

Many of these components were installed with your OS-9 for Embedded Systems or OS-
9 BLS package.

OS-9

At the core of PersonalJava Solution for OS-9 is OS-9 and its support modules.

OS-9 Real-Time Operating System

OS-9 is an architecturally advanced, high performance real-time operating system
available for several microprocessor families. At its core is the
OS-9 stand-alone microkernel.

Coupled with the power of the microkernel, the unique modular architecture of OS-
9 enables dynamic loading of any OS-9 system or user application module while the
system is up and running.

Key:
Java for OS-9 Components
Customer-supplied Components

Data Java APIs

Other APIs

LAN Communications

Java Virtual Machine

SoftStax

Networking

Graphics

OS-9

APIsApplications and Applets

Sample Java applets
and applications

Browser and other
Java applications
and applets

(JVM)

AFW Window Manager MAUI

OS-9 Real-Time Operating System

Chapter 1: Introduction

7

Networking

The ability to communicate with other computers or devices is essential for a Java-
enabled device. PersonalJava Solution for OS-9 uses the standard SoftStax® I/O
implementation so a variety of transport layers can be used with Java.

SoftStax

SoftStax provides a consistent application-level interface using a variety of
networking protocols. The protocols necessary for using PersonalJava Solution for
OS-9 are included in LAN Communications.

LAN Communications

The Microware LAN Communications software consists of a TCP/IP protocol stack
with UDP support, SLIP/CSLIP support, PPP support, and drivers for supported
hardware.

Graphics

One of the strengths of Java as a programming language is its support for graphics.
To handle graphics, PersonalJava Solution for OS-9 uses four components:
MAUI®, Window Manager, the Application Framework (AFW), and the Java
Abstract Windowing Toolkit (AWT).

Multimedia Application User Interface (MAUI)

MAUI is a high-level library that manages the display of graphics, text, and user
input, as well as audio.

Window Manager

The PersonalJava Solution for OS-9 Window Manager (winmgr) is a MAUI
application that manages windows. Three versions of the Window Manager are
available, each with different levels of functionality.

Application Framework

The AFW is a class library that contains the code necessary to display Graphical
User Interface (GUI) components and handle events for an interactive application.

Java Abstract Windowing Toolkit

The PersonalJava (PJAVA) environment includes an AWT package that allows Java
applications to display GUI components, render images, draw graphics primitives,
and respond to events. This package is standard across all PJAVA implementations,
although some features are optional in PersonalJava implementations. All optional
AWT functionality is fully supported in Microware’s PersonalJava Solution for
OS-9.

Getting Started with PersonalJava™ Solution for OS-9® (X86)

8

Java Virtual Machine (JVM)

Consumer devices that interpret Java applications must contain the Java Virtual
Machine (JVM). Java applications are comprised of Java classes consisting of byte
codes.

Java byte codes are machine-independent and interpreted by the JVM. The purpose
of the JVM is to interpret these Java byte codes and initiate appropriate actions on
the host platform. In addition to executing byte codes in all classes within the
system, the JVM also handles signals and Java exceptions, manages RAM, and is
responsible for the simultaneous execution of multiple threads within the context of
the JVM process.

Applications and Applets

Along with the basic system components, Microware has included several sample
applications and applets on the PersonalJava Solution for OS-9 CD.

Sample Applets

Several sample applets have been included in this package. They are located in
MWOS\SRC\PJAVA\EXAMPLES. Additional sample applets from Sun are located in
MWOS\DOS\jdk1.1.8\demo.

Additional Java Tools

Running Java On a Diskless System

PersonalJava Solution for OS-9 includes a tool called JavaCodeCompact (JCC) that
enables sets of Java class files to be pre-loaded in RAM or placed in ROM. This is
accomplished by pre-processing the class files into an assembly language file that is
eventually turned into a module. The module can then be loaded at run-time at a
pre-determined address or loaded into the ROM of the device. This process
eliminates the need to have the class files themselves, often times called
classes.zip, resident on the device.

Java Development Tools
Since Java is architecturally neutral, you can develop your Java applications using
any of the GUI-based Java development packages on the market. Some of these
include Metrowerks CodeWarrior, Sunsoft’s Java Workshop, and Symantec’s Visual
Cafe. As long as the output of the development environment is standard Java class
files containing standard byte codes, the code is compatible with PersonalJava
Solution for OS-9.

• Refer to Using JavaCodeCompact for OS-9 for instructions on using this tool
in the OS-9 environment.

• Refer to Using PersonalJava Solution for OS-9 for information about
creating Java applications for a diskless
OS-9 target.

Chapter 1: Introduction

9

Standard Java class files contain a great deal of information about the source code
from which they were compiled, including symbol names. With the appropriate
tools, it is possible to de-compile Java code into an almost exact replica of the
source code.

Some of these tools address this problem by munging or obfuscating the object code
so de-compilation is not as easy. Refer to Java-related web sites and UseNet news
groups for information on these tools.

Windows® Java Development Kit (JDK)
To make it easier for you to perform native method work, Microware has included
the Windows JDK v.1.1.8 in the package for the host system.

The javah.exe executable on the host machine has been modified to generate code
that works with the Microware UltraC/C++ compiler.

The pre-loader classes are contained in the jcc.zip file. This file is on the Windows
host machine in the \MWOS\DOS\jdk1.1.8\lib directory.

• For more information about CodeWarrior, visit the Metrowerks website at
http://www.metrowerks.com/.

• For more information about Java Workshop, visit the Sun website at
http://www.sun.com/.

• For more information about Visual Cafe, visit the Symantec website at
http://www.Symantec.com/.

Getting Started with PersonalJava™ Solution for OS-9® (X86)

10

11

2 Running PersonalJava Demos

This chapter explains how to install and run Microware’s PersonalJava demo
application and how to run your own Java applets and applications.

Microware's PersonalJava Solution can run in a disk based system or in a
completely diskless environment. The examples used in this chapter assume you are
installing PersonalJava Solution on a system that includes a standard IDE disk;
however, the disk can be a PCMCIA ATA flash device, a SCSI disk, or a RAM disk
loaded through an Ethernet connection using FTP.

The following procedures assume that your target system is diskless. Refer to
Using PersonalJava Solution for OS-9 for information about using a disk-based
target system.

You must install Microware OS-9 for x86 before you can install PersonalJava
Solution for OS-9.

The procedures in this chapter use the C:\ drive on your host (this may vary
depending on where you chose to install your PersonalJava Solution for OS-9
package).

Getting Started with PersonalJava™ Solution for OS-9® (X86)

12

System Requirements
The hardware and software requirements for using PersonalJava Solution for OS-9 on
your host and target are listed in the appropriate OS-9 board guide.

Installing PersonalJava Solution for OS-9

Installing the PersonalJava Solution for OS-9 files

PersonalJava Solution for OS-9 is first installed on the host system and then on the
target X86/Pentium system.

Installing PersonalJava Solution onto the Host System

Step 1. Insert the CD-ROM containing PersonalJava Solution for OS-9 (X86) into your
CD-ROM drive.

Step 2. The installation menu should come up automatically. If the installation menu fails
to appear, navigate to the Autorun directory on the CD-ROM and double click on
Autrorun.exe.

Step 3. Select PersonalJava Solution for OS-9 (X86) from the setup menu.

Step 4. Follow the directions in the installer windows. Enter the PersonalJava Solution for
OS-9 password, when prompted. The password is located on the password card
included with the PersonalJava Solution for OS-9 package.

Step 5. Enter the destination MWOS folder, when prompted. Microware OS-9 for X86
must have been previously installed in this folder.

Step 6. Select the components to install, either PersonalJava Solution, PersonalJava
Documentation or both.

Step 7. Select the program folder. By default, the package installs into Microware OS-9 for
X86, some Microware OS-9 packages created an OS-9 for X86 program folder.
Verify that you install Personal Java in the same folder as the previously installed
OS-9 for X86 product.

Step 8. Click Next to complete the install.

Be sure you are installing PersonalJava Solution for OS-9 into your MWOS
directory tree. If you do not install PersonalJava Solution for OS-9 in your MWOS
directory, PersonalJava Solution for OS-9 may not work correctly.

Installing Files onto the Target

The files that go onto the target are found in the MWOS directory on the host
machine. The path to the files is as follows: MWOS\OS9000\80386\PORTS\<port
name>\PJAVA.

The PJAVA folder contains two relevant items: pjava.mat and readme.txt.
pjava.mat is a Microware Archive Tool (MAT) archive of the files to go on the
target and readme.txt explains how to install the MAT archive onto the your disk.

Chapter 2: Running PersonalJava Demos

13

Building the PersonalJava Demo Bootfile

This section discusses creating a disk-based boot for your X86 target hardware. It
assumes that your target system is configured with a serial console, both floppy and
IDE disk drives, VGA graphics and keyboard, a PS/2 style bus mouse, a supported
network card and at least 16 MB of RAM. Refer to the OS-9 for PCAT Board
Guide and the Wizard on-line help system for instructions on building a boot for
other hardware options.

Follow the instructions in the OS-9 for PCAT Board Guide for detailed instructions
on installing OS-9 on the target system and configuring a disk based boot image.

Once configured, your OS-9 target system should perform the following tasks:

• boot OS-9 from a hard disk

• bring the OS-9 system console up on a serial port, using an emulator running on
the Windows host computer, such as hyperterminal

• have a working ethernet connection, tested by establishing a Telnet or FTP
connection from the Windows host computer to the OS-9 target system

• have MAUI graphics configured on the target OS-9 system, tested by running
the MAUI fcopy or fdraw demo programs on the target

Installing PersonalJava Solution on the Target Hardware

The procedures in this stage assume the following things:
• your target system boots from the hard disk without error

• you have an OS-9 system prompt, using the terminal emulation program
running on your Windows host computer

• you have an Ethernet connection between the host and target machines, you can
telnet and FTP to the target, from the Windows host computer

• you have a supported graphics card and have installed the MAUI graphics
system

Complete the following steps on the target machine:

Step 1. Use FTP to download the pjava tar file (x86_pjava.tar) from the
MWOS\OS9000\80386\PJAVA directory on the host computer. Perform the following
steps:

cd MWOS\OS9000\80386\PORTS\PCAT\PJAVA

You should create a new disk based boot, even if you already have a target
system running OS-9 for X86.

The OS-9 console must be moved to a serial port so that it does not conflict
with the Java window manager running on the VGA/SVGA graphics hardware.
This example assumes that the OS-9 console appears on COM1, and is
connected to a host computer running a terminal emulation program such as
Hyperterminal.

Getting Started with PersonalJava™ Solution for OS-9® (X86)

14

ftp <target>

User: super

Password: user

ftp> bin

ftp> cd /h0

ftp> send pjava.mat

ftp> quit

Step 2. Untar the pjava image by typing the following commands on the OS-9 system
console.

$ chd /h0/MWOS

$ load -d /h0/CMDS/mat

$ tmode nopause

$ mat -x -v ../pjava.mat

Running Java Applets

This section describes what you need to do to prepare your target board to run the
Sun Demo applets or your own applets. The Sun JDK v1.1 demo applets are
contained in MWOS/DOS/jdk1.1.8/demo.

Run the loadjava script

The loadjava script sets up the OS-9 environment variables, loads the MAUI
support modules into memory, initializes the modules, and runs the MAUI input
process.

The loadjava script must be run every time the board is booted.

You can set up the loadjava script to run every time by defining it as a system
startup script.

Step 1. From the OS-9 console, change directories to the SYS directory by typing the
following on the command line:
chd /h0/SYS

Step 2. Enter the following commands to run the loadjava script:
tmode nopause
profile loadjava

As the loadjava script executes, you should see a series of messages scroll up the
screen.

Step 3. Type the following command to display the environment variables:
printenv

Refer to Using OS-9 manual or the board guide for your processor for more
information on startup files.

Chapter 2: Running PersonalJava Demos

15

Step 4. Compare the listing on your screen with the following listing. Make sure that the
listed environment variables are set correctly.

Step 5. Make sure the maui_inp process is running by typing the following command:
procs

You should see a listing of the processes that are currently running on your target
computer. It should look similar to the following illustration.

Step 6. Check that maui_inp is listed under the module heading.

You are now ready to run your applet.

If your applet requires resources that are not present on your target hardware (sound
for example), then it may not work correctly.

Running an Applet

The best way to test the PJava installation on the OS-9 target is to download and
run an applet. Several example applets were installed in the
\MWOS\DOS\jdk1.1.8\demo directory on the Windows host. This example
downloads and runs the Jumping Box applet.

The PersonalJava Solution Window Manager must be started before running this
example applet. At the OS-9 console, type: winmgr ^250 <>>>/nil&

Step 1. Change to the JumpingBox demo directory on the Windows computer.

cd \mwos\dos\jdk1.1.8\demo\Fractal

Step 2. Use FTP to download the Jumping box example files.

ftp <target>

User: super

Password: user

ftp> bin

ftp> cd /h0

ftp> send example1.html

ftp> prompt

MWOS=/h0/MWOS
JAVA_HOME=/h0/MWOS/SRC/PJAVA
CLASSPATH=/h0/MWOS/SRC/PJAVA/LIB/classe
s.zip:.
PATH=/h0/MWOS/OS9000/80386/CMDS:$PATH
PORT=/term
HOME=/h0
USER=java_user

Id PId Grp.Usr Prior MemSiz Sig S CPU Time
Age Module & I/O
 2 0 0.0 128 52.00k 0 w 0.28
??? mshell <>>>term
 3 2 0.0 128 68.00k 0 s 0.05
??? telnetd <>>>nil

Getting Started with PersonalJava™ Solution for OS-9® (X86)

16

ftp> mput *.class

ftp> quit

Step 3. Run the applet from the OS-9 console by typing the following:

chd /h0
pappletviewer example1.html
or
pjava sun.applet.AppletViewer example1.html

Considerations for Running Your Own PersonalJava Applications

The loadjava script took care of a number of details that you should be aware of
when running your own applications. The following section is a complete list of
details that need to be addressed.

If your ultimate target is a diskless system, then the steps taken in loadjava have to
be accomplished by setting the environment variables in the init module and
including the loaded modules in the bootfile/ROM image.

The environment variables need to be set correctly for the target system. Omit
environment variables that are not applicable (e.g. for a diskless environment,
variables set to disk paths need not be set). These include the following items:

• MWOS–location of your MWOS directory

• JAVA_HOME–location of your Java properties files

• CLASSPATH–list of directories and zip files to search for class files

• LD_LIBRARY_PATH–list of directories to search for native method libraries

• PATH–list of directories to search for executable files

• PORT–device used to communicate with the user

• USER–name used to refer to the user

• HOME–home directory for the user

• TZ–time zone setting for the system

The modules (executable code and configuration data) for PersonalJava Solution
need to be in memory or at their appropriate location on the disk if applicable.
These include the following modules:

winmgr PersonalJava Window Manager (alternatively,
winmgrs or winmgrg could be used)

winmgr.dat Window Manager settings

stock_8.res 8-bit image resources for the Window Manager and
application framework

stock_9.res 16-bit image resources for the Window Manager and
application framework

pjava–PersonalJava Solution

libmawt.so AWT shared library module

Chapter 2: Running PersonalJava Demos

17

libmawt_0.dat pre-computed color palette

font modules various modules related to font rendering

MAUI modules various modules related to graphics support

*.properties properties files needed by PersonalJava Solution (e.g.
from a modman archive)

Before running a graphical PersonalJava application, the Window Manager must be
started. Before running the window manager, the MAUI input process must be
started. The following command lines show an example startup sequence:

• maui_inp ^255 <>>>/nil &

• winmgr ^200 <>>>/nil &

• pjava <application class>

Examine the system running the demos and the loadjava script for more
information on configuring a system to run your own PersonalJava applications.

Getting Started with PersonalJava™ Solution for OS-9® (X86)

18

19

A Java Load Script

This appendix lists an example script that can be used to start Java on your target
platform. An implementation of this script called loadjava is placed in the SYS
directory when you install the pjava.mat file onto your target system’s local
storage device.

Getting Started with PersonalJava™ Solution for OS-9® (X86)

20

Example Java Load Script
This load script was used to set up the OS-9 init module to run Java. Use this script
as a basis for your own scripts when configuring your system to run Java
applications.

X86 loadjava Script

The following example loadjava script is used on a X86 target. This script will vary
slightly depending on your target platform. Refer to your target’s version for a more
applicable example.

-tnpna

* * * * * * * * * * * * * * * * * * * *

* Load script for PersonalJava v3.x

*

*

* Set environment variables

*

let drive = "dd"

setenv MWOS /%drive/MWOS

setenv JAVA_HOME $MWOS/SRC/PJAVA

setenv CLASSPATH $JAVA_HOME/LIB/classes.zip:\

$JAVA_HOME/LIB/javamath.zip:\

$JAVA_HOME/LIB/javasql.zip:\

$JAVA_HOME/LIB/javarmi.zip:\

$JAVA_HOME/LIB/sunrmi.zip:.

if (len(env("PATH")) == 0)

 setenv PATH /%drive/CMDS

endif

setenv PATH $MWOS/OS9000/80386/CMDS:$PATH

setenv LD_LIBRARY_PATH $MWOS/OS9000/80386/LIB/SHARED

setenv PORT /term

setenv HOME /%drive

setenv USER java_user

setenv TZ CST

Appendix A: Java Load Script

21

let graphical_apps = TRUE

if (%graphical_apps == TRUE)

*

* All lines below this point are only needed if graphical Personal

* Java applications are being used. Assign FALSE to graphical_apps

* if you don't need this support.

*

*

* Load the Java Window Manager application, settings file, and a

* file containing the resource module 'stock_x.res'

*

* winmgrs - Simplest/smallest Window Manager - No window frames

* winmgr - Standard Window Manager (default)

* winmgrg - Debug version - "Send Shutdown Message" &

* "Dump Window Tree" fuctionality

*

* winmgr.dat - Window Manager settings file

*

* stock_8.res - 8-bit bitmap and cursor support (default)

* stock_9.res - 16-bit bitmap and cursor support

*

let winmgr = "winmgr"; * winmgr, winmgrg, or winmgrs

let resfile ="stock_8.res"; * stock_8.res or stock_9.res

load -d $MWOS/OS9000/80386/CMDS/%winmgr

load -d $MWOS/OS9000/80386/CMDS/winmgr.dat

load -d $MWOS/OS9000/80386/PORTS/PCAT/CMDS/%resfile

*

* Load the pre-generated libmawt Color Cube module

*

load -d $MWOS/OS9000/80386/PORTS/PCAT/LIB/SHARED/libmawt_0.dat

*

Getting Started with PersonalJava™ Solution for OS-9® (X86)

22

* Load fonts for "font.properties"

*

load -d $MWOS/OS9000/80386/ASSETS/FONTS/AGFA/MT/*

load -d $MWOS/OS9000/80386/ASSETS/FONTS/AGFA/TT/utt.ss

*

* Initialize the keyboard and mouse devices, if needed

*

iniz m0 k0

*

* Launch the MAUI input process

*

maui_inp ^256 <>>>/nil &

*

* Start window manager loaded above

*

%winmgr ^250 <>>>/nil &

-nt

unlet winmgr resfile

endif

-nt

unlet graphical_apps drive

	Getting Started with PersonalJava™ Solution for OS-9® (X86)
	Contents
	Introduction Chapter 1
	PersonalJava Solution for OS-9 Runtime Components
	OS-9
	OS-9 Real-Time Operating System

	Networking
	SoftStax
	LAN Communications

	Graphics
	Multimedia Application User Interface (MAUI)
	Window Manager
	Application Framework
	Java Abstract Windowing Toolkit

	Java Virtual Machine (JVM)
	Applications and Applets
	Sample Applets

	Additional Java Tools
	Running Java On a Diskless System

	Java Development Tools
	Windows® Java Development Kit (JDK)

	Chapter 2 Running PersonalJava Demos
	System Requirements
	Installing PersonalJava Solution for OS-9
	Installing the PersonalJava Solution for OS-9 files
	Installing PersonalJava Solution onto the Host System
	Installing Files onto the Target

	Building the PersonalJava Demo Bootfile
	Installing PersonalJava Solution on the Target Hardware
	Running Java Applets
	Run the loadjava script
	Running an Applet

	Considerations for Running Your Own PersonalJava Applications

	Java Load Script Appendix A
	Example Java Load Script
	X86 loadjava Script

