

Home

OS-9[®] for MP5 Board Guide

Version 4.7

Copyright and publication information

This manual reflects version 4.7 of Microware OS-9. Reproduction of this document, in part or whole, by any means, electrical, mechanical, magnetic, optical, chemical, manual, or otherwise is prohibited, without written permission from RadiSys Microware Communications Software Division, Inc.

Disclaimer

The information contained herein is believed to be accurate as of the date of publication. However, RadiSys Corporation will not be liable for any damages including indirect or consequential, from use of the OS-9 operating system, Microware-provided software, or reliance on the accuracy of this documentation. The information contained herein is subject to change without notice.

Reproduction notice

The software described in this document is intended to be used on a single computer system. RadiSys Corporation expressly prohibits any reproduction of the software on tape, disk, or any other medium except for backup purposes. Distribution of this software, in part or whole, to any other party or on any other system may constitute copyright infringements and misappropriation of trade secrets and confidential processes which are the property of RadiSys Corporation and/or other parties. Unauthorized distribution of software may cause damages far in excess of the value of the copies involved.

July 2006 Copyright ©2006 by RadiSys Corporation All rights reserved. EPC and RadiSys are registered trademarks of RadiSys Corporation. ASM, Brahma, DAI, DAQ, MultiPro, SAIB, Spirit, and ValuePro are trademarks of RadiSys Corporation. DAVID, MAUI, OS-9, OS-9000, and SoftStax are registered trademarks of RadiSys Corporation. FasTrak, Hawk, and UpLink are trademarks of RadiSys Corporation. † All other trademarks, registered trademarks, service marks, and trade names are the property of their respective owners.

Table of Contents

Table o	of Co	3	
Chapter	1: Ir	nstalling and Running OS-9® for PowerPC	5
	6	Development Environment Overview	
	7	Requirements and Compatibility	
	7	Host Hardware Requirements (PC Compatible)	
	7	Host Software Requirements (PC Compatible)	
	8	Target Hardware Requirements	
	9	Connecting the Target to the Host	
	10	Building the OS-9 ROM Image	
	10	Overview	
	10	Coreboot	
	10	Bootfile	
	11	Starting the Configuration Wizard	
	13	Creating the ROM Image	
	13	Select System Type	
	13	Configure Coreboot Options	
	17	Configure Bootfile Options	
	23	Building the Image	
	25	Transferring the ROM Image to the Target	
	25	Configure the EBDS Debugger	
	28	Creating a Startup File	
	29	Example Startup File	
	31	Optional Procedures	
	31	Preliminary Testing	

RadiSys. MICROWARE SOFTWARE

33

41

Chapter 2: Board Specific Reference

34	Boot Menu Options
36	Vector Descriptions for PowerPC [™] 555
38	Error Exceptions: Vectors 2, 6 and 7
38	Vectored Interrupts: Vector 5
39	User Trap Handlers: Vector 7
39	System Calls: Vector 12
10	DoworDCTM Degisters Depend to a New Process
40	PowerPC ···· Registers Passed to a New Process
40	PowerPC ¹ ^m Registers Passed to a new Process
40 (A :	Board Specific Modules
40 (A: 42	Board Specific Modules Low-Level System Modules
40 (A : 42 42	Board Specific Modules Low-Level System Modules Configuration Modules
40 (A : 42 42 42 42	Board Specific Modules Low-Level System Modules Configuration Modules Console Driver
40 42 42 42 42 42 42	Board Specific Modules Low-Level System Modules Configuration Modules Console Driver Ethernet Driver

Appendix

42	Low-Level System Modules
42	Configuration Modules
42	Console Driver
42	Ethernet Driver
43	System Modules
43	Timer Module
43	Debugging Module
44	High-Level System Modules
44	Interrupt Controllers
44	Ticker
44	Abort Handler
45	Shared Libraries
45	I/O and Disk Descriptors
45	Serial and Console Drivers
46	Ethernet Driver
47	Common System Modules List

Chapter 1: Installing and Running OS-9® for PowerPC

This chapter describes installing and configuring OS-9® on the MP5 target board. It includes the following sections:

- Development Environment Overview
- Requirements and Compatibility
- Connecting the Target to the Host
- Building the OS-9 ROM Image
- Transferring the ROM Image to the Target
- Creating a Startup File
- Optional Procedures

Development Environment Overview

Figure 1-1 shows a typical development environment for the MP5 board. The components shown include the minimum required to enable OS-9 to run on the MP5 board.

Figure 1-1 MP5 Development Environment Overview

Target System

Host Development System

Requirements and Compatibility

Host Hardware Requirements (PC Compatible)

The host PC must have the following minimum hardware characteristics:

- Windows 95, 98, ME, 2000 (SP2 or higher), or NT (SP4 or higher)
- 300-400 MB of free disk space
- An ethernet card
- 16MB of RAM (32MB is recommended)
- one free serial port and one free parallel port

Host Software Requirements (PC Compatible)

The host PC must have the following applications:

- EBDS Debugger application for downloading the OS-9 ROM image to the target
- a terminal emulation program

Note

The examples in this document use the terminal emulation program, Hyperterminal, which ships with all Windows operating systems.

Target Hardware Requirements

Your target board requires the following hardware:

- a power supply (running at 12 V)
- an EBDS Lite Debugger parallel cable
- an RS-232 null modem serial cable

Connecting the Target to the Host

Complete the following steps to connect the target to the host machine:

- Step 1. Connect the target system to a power supply. Make sure the power switch is in the OFF position.
- Step 2. Connect the target to the serial port of your host system using an RS-232 null modem cable. Depending on your host system, you may need either a straight or reversed serial cable.
- Step 3. Connect one end of the serial cable to the COM1 port on the target. On the MP5, COM1 is labeled **Ser. 19200** on the board. Connect the other end of the serial cable to the desired communication (COM) port on the host system.
- Step 4. Connect the EBDS parallel cable to the target for ROM transfer. Connect the other end of the EBDS Lite cable to the appropriate connector.
- Step 5. Apply power to the board and start the EBDS Debugger. You should now be able to access the registers for the board.

Building the OS-9 ROM Image

Overview

The OS-9 ROM image is a set of files and modules that collectively make up the OS-9 operating system. the specific ROM image contents can vary from system to system, depending upon hardware capabilities and user requirements.

To simplify the process of loading and testing OS-9, the ROM image is generally divided into two parts--the low-level image, called coreboot; and the high-level image, called bootfile.

Coreboot

The coreboot image is generally responsible for initializing hardware devices and locating the high-level (or bootfile) image as specified by its configuration. For example, from a FLASH part, a harddisk, or Ethernet. It is also responsible for building basic structures based on the image it finds and passing control to the kernel to bring up the OS-9 system.

Bootfile

The bootfile image contains the kernel and other high-level modules (initialization module, file managers, drivers, descriptors, applications). The image is loaded into memory based on the device you select from the boot menu. the bootfile image normally brings up an OS-9 shell prompt, but can be configured to automatically start an application.

Microware provides a Configuration Wizard to create a coreboot image, a bootfile image, or an entire OS-9 ROM image. The Wizard can also be used to modify an existing image. The Configuration Wizard is automatically installed on your host PC during the OS-9 installation process.

Starting the Configuration Wizard

The Configuration Wizard is the application used to build the coreboot, bootfile, or ROM image. To start the Configuration Wizard, perform the following steps:

Step 1. From the Windows desktop, select Start -> RadiSys -> OS-9 for cproduct> -> Configuration Wizard. You should see the following opening screen:

Configuration Wizard ? X Select a board RadiSvs • MICROWARI SOFTWARE Select a configuration-Create new configuration CONFIGURATION WIZARD Ose existing configuration -Radi Choose Wizard Mode 🙃 Beginner Mode: Create a basic bootfile step-by-step. Advanced Mode: Create a bootfile MICROWARE SOFTWARE using advanced configuration options. Select MWOS Location-C:WWOS ΟK Exit.

Figure 1-2 Configuration Wizard Opening Screen

Step 2. Select your target board from the **Select a board** pull-down menu.

- Step 3. Select the Create new configuration radio button from the **Select a configuration** menu and type in the name you want to give your ROM image in the supplied text box. This names your new configuration, which can later be accessed by selecting the **Use** existing configuration pull down menu.
- Step 4. Select the Advanced Mode radio button from the **Choose Wizard Mode** field and click OK. The Wizard's main window is displayed. This is the dialog from which you will proceed to build your image. An example is shown in **Figure 1-3**.

Figure 1-3 Configuration Wizard Main Window

۵ 🍪	Config	uration V	Wizard - T	EST						- D ×
<u>F</u> ile	<u>E</u> dit	<u>S</u> earch	$\underline{W}indow$	Config	ure 🤅	S <u>o</u> urces	: Cust	omize <u>I</u>	<u>H</u> elp	
D	e I	. 6	X 🖻	Ê	ę	BL	66	9 8		
						_				
	[Confi	iguration \	Wizard - Te:	st] F	lash S	ize:0x00	00597			11.

Creating the ROM Image

This section describes how to use the Configuration Wizard to create and configure your OS-9 ROM image.

Note

The following section provides an example of an OS-9 ROM image successfully built on a host PC and transferred to the MP5 target board. You may have to modify your selections depending on your application.

Select System Type

Configure system type options by selecting Configure -> Sys -> Select System Type from the Main Configuration window.

For the MP5 target board, you can bypass this option and use the default settings.

Configure Coreboot Options

- Step 1. From the Main Configuration window, select Configure -> Coreboot -> Main configuration.
- Step 2. Select the **Debugger** tab. The following window is displayed:

Figure 1-4 Coreboot Configuration - Debugger Tab

Step 3. Under Select Debugger, select RomBug. This sets Ethernet as the method for user state debugging. Select None if you do not want to debug your program.

Note

To perform system state debugging, select Ethernet under **Remote Debug Connection**. If you set Ethernet as the method for system state debugging, you will not be able to perform user state debugging via Ethernet. In addition, to perform system state debugging, you must also set the parameters in the **Ethernet** tab of the coreboot main configuration window.

Radi

MICROWARE SOFTWARE

Step 4. Select the Ethernet tab. The following window is displayed:

MP5:moogle					? ×
Define O	ther Boot Options	. 1		Coreboot Opti	ions 🔰
Debugger	Ethernet	SI	P	Define F	IOM Ports
	Low-Level	l Etherne	t Setup		
Ethernet Setup			- Etherne	t Boot Options-	
IP Address	172.16.3.49			Add to Boot	Menu 🔽
IP Broadcast	172.16.255.255			Auto Bo	ot 🗖
Subnet Mask	255.255.0.0			Autobo	
IP Gateway	172.16.1.254				
IP Gateway 172.16.1.254 Note: This option requires use of a bootp server.					
	[(04		Cancel	Help

Figure 1-5 Coreboot Configuration - Ethernet Tab

Select Add to Boot Menu under **Ethernet Boot Options** to include the TFTP boot capability.

WARNING

Due to ROM size limitation, you are not able to put both ROMBug and low-level ethernet driver together on the same coreboot file.

Step 5. Select the Define Other Boot Options tab. The following window is displayed:

Figure 1-6 Coreboot Configuration - Define Other Boot Options Tab

MP5:moogle				? ×		
Debugger Define Ot	Ethernet	Slip	Define ROM Ports Coreboot Options			
♥ OverRide Bool bo' Boot embedde	ter ed OS-9000 in-place — enu					
✓ Auto Boot ✓ Ir' Copy embedde	d OS-9000 to RAM and	I Boot				
Auto Boot	Auto Boot Mente					
🔽 Quit - Restart 9	ôystem					
		ок Г	Cancel Hel;			

- Step 6. Select Break Enter System Debugger.
- Step 7. Click OK and return to the Main Configuration window.

Configure Bootfile Options

In configuring the bootfile options, it is necessary to configure the network and disk settings. To modify these settings, complete the following steps:

Step 1. From the **Network Configuration** dialog, select the Interface Configuration tab. From here you can select and enable the interface. For example, you can select the appropriate Ethernet card from the list of options on the left and specify whether you would like to enable IPv4 or IPv6 addressing. **Figure 1-7** shows an example of the **Interface Configuration** tab.

Figure 1-7 Bootfile -> Network Configuration -> Interface Configuration

Bootfile -> Network Configuration: 1	TEST	X X
Bootfile -> Network Configuration : xescaring Interface Configuration Behemet Connection Spe30 Spe31 Spe31 Spe31 Spe31 Spe31 Spe31 Spe31 Spe31	IEST Intux continuity forecontinuity Ethernet Card Configuration spe30 Card Status Configured, Enabled □ User-defined interfaces.conf entry IP Use IPv4 Address for this interface IPv4 IP Specify IP < Server assigned IP address Address 192.168.1.1 Subnet Mask 255.255.255.0 □ Use IPv6 Address for this interface	Interface Export Interface Report Report Last updated 06/03/2002 at 12:46:57 PM Ethemet: ENABLED PPP: DISABLED SLIP: ENABLED Ethemet Configuration Cards Configured: 1 Cards Configured: 1 Cards Using IPv4: 1 IPv4 from server: 0 Cards using IPv6: 0 Autoconfigure IPv6: 0 Enabled Cards 3COM PC Card Socket #0 Card Name: spe30
	Use IPv6 Address for this interface IPv6 Specify an IP © Autoconfigure IP address Address Address Address Advanced Options Commit Change	3COM PC Card Socket #0 Card Name: spe30 Descriptor: spe30 IP Address: 192.168.1.1 IP Subnet Mask: 255.255.255.0 SLIP Configuration IP Source: 0.0.0.0 IP Destination: 0.0.0.0
		OK Cancel

For More Information

To learn more about IPv4 and IPv6 functionalities, refer to the *Using LAN* manual, included with this product CD.

For More Information

Contact your system administrator if you do not know the network values for your board.

- Step 2. Once you have made your settings in the **Network Configuration** dialog, click OK.

Note

The addresses shown are for demonstration only. Contact your network administrator to obtain your IP Setup information. The MP5 board does not have a hardware assigned MAC address.

Step 3. To use the target board across a network, you must enable the Ethernet network settings. Click the Specify an IP Address button, then complete the following information:

- enter your IP address
- enter your broadcast address
- enter the subnet mask
- set the pulldown menu at the bottom of the window to SMC 91C96 On-board

Step 4. Select the **DNS Configuration** tab. The following window is displayed. More than one DNS server can be added in this dialog box.

MP5:moogle	? ×
Interface DNS Configuration Gateway SoftStax Setup SoftStax Options	
O Disable DNS	
Host: moogle Digmain: microware.com	
DNS Server Search Order	
172.16.1.128 Add	
172.16.1.32 172.16.1.232 172.16.1.128 Remove	
DNS Suffix Search Order	
microware.com Add	
microware.com Remove	
OK Cancel	Help

Figure 1-8 Bootfile Configuration - DNS Configuration Tab

If your network does not use DNS, click Disable DNS, and move to the **Gateway** tab. If you have DNS available, click Enable DNS and type your host name and domain.

Note

You add DNS IP addresses by clicking on the box directly under DNS Server Search Order and typing the IP address. Click the Add button when complete. More than one DNS server can be added by repeating these steps.

- Step 5. Select the Gateway tab. Add new gateway addresses by clicking on the box and typing in the gateway name. Click the Add button when complete.
- Step 6. Select the SoftStax[®] Setup tab. The following window is displayed:

Figure 1-9 Bootfile Configuration - SoftStax Setup Tab

MP5:moogle	<u>?</u> ×
Interface DNS Configuration Gateway SoftStax Setup S Disable SoftStax Enable SoftStax Memory pool size Start inetd Start telnetd Default Start ftpd Start ftpd Mount point mpoint:/h0 Mount as /mdev Startup Command Execution Path Mount options 	oftStax Options
	OK Cancel Help

The options above represent daemons that can be automatically started if you want to FTP, Telnet or both from a PC to the OS-9 target. Clicking on Start NFS Client enables you to remote mount the target. For this demonstration, you will telnet to the target and establish a Sender and a Receiver window.

- Step 7. Click Enable SoftStax.
- Step 8. Click Start inetd.
- Step 9. Click OK.
- Step 10. Select the SoftStax Options tab.

The SoftStax Options tab enables you to include networking utilities in the ROM image. By default, none of the utilities are included because of ROM size limitation.

- Step 11. Click OK at the bottom of the Network Configuration menu to complete network configuration and return to the Main Configuration window.
- Step 12. From the Main Configuration window, select Configure -> Bootfile -> Disk Configuration. The **Disk Configuration** window appears.

The Disk Configuration window contains the following tabs:

RAM Disk

This tab enables you to create a RAM disk of any size for loading modules onto the target.

• Init Options

This tab sets the configuration for OS-9 to initialize itself on the target.

Step 13. Select the Init Options tab. The following window is displayed:

MP5:moogle			?×		
RAM Disk Init Options	;				
-Initial Module Name-	Initial Device	Name	Tick Rate		
C Shell	🔿 No Disk		100		
MShell	O /h0	O User	- Ticks Per Time Slice		
O User	C 7d0	C NFS Mount	2		
Initial Device Name					
	·				
mshell	·				
Parameter List setenv SHELL m:	shell; alias /dd /i	r0;chd /r0; echo \\;	2dnx\\3bmakdir /r0/SYS		
System Time Zone (minutes offset from GMT) Use system time offset					
		ОК	Cancel Help		

Figure 1-10 Bootfile Configuration - Init Options Tab

- Select the MShell option for the initial module name. This causes OS-9 to start a console shell usable from your terminal window. Select /dd in the Initial Device Name section.
- The tick rate is 100 and ticks per timeslice is set to 2. If you look at the Parameter List box, you see the commands that OS-9 executes upon system start-up.
- Step 14. Click OK to return to the Main Configuration window.

Building the Image

Complete the following steps to build the target board image.

Step 1. From the Main Configuration window, select Configure -> Build Image. The Master Builder window appears. (Figure 1-11 shows the Master Builder window configuration.)

Figure 1-11 Master Builder Window

Master Builder		?×
Build Type / Options	Include	Include
C Coreboot Only Image	🔽 ROM Utility Set	MAUI Support
C Bootfile Only Image	RomBug in Bootfile (p2init)	🗖 JAVA Support
Coreboot + Bootfile	SNDP in Bootfile (p2init)	🗖 Keyboard Support
Pack ROM	🔲 User State Debugging Modules	Mouse Support
Check Build	Disk Support	🗖 VGA Support
	☑ Disk Utilities [fdisk, format]	PCMCIA Support (Card Soft)
Save As Build Port	SoftStax (SPF) Support	🔽 User Modules
Help Finish	NFS Client Support	

- Step 2. Select the Coreboot + Bootfile option.
- Step 3. Select the ROM Utility Set, Disk Support, Disk Utilities, SoftStax (SPF) Support and User Modules boxes under the Include options.

Step 4. Click Build. It should display progress information and show the statistics of the image just created. The rom and rom2 file is created in the following directory:

MWOS/OS9000/555/PORTS/MP5/BOOTS/INSTALL/PORTBOOT

Note

Since the Flash region on the MP5 is not contiguous, the the OS-9 ROM image needs to be split into rom and rom2.

Transferring the ROM Image to the Target

Configure the EBDS Debugger

EBDS Debugger is the debugging utility that must be installed on your PC host. It is used to transfer the ROM image from your host to the target system. Perform the following steps to install and configure the EBDS Debugger:

Step 1. Copy the EBDS software by extracting the ebds.zip file to a directory (The default is C:\). Run reg_ebdsdrv to install it, then restart the PC to incorporate the changes.

Step 2. Connect the target board to the host PC using the EBDS Lite Debugger parallel cable. Run the EBDS Debugger by typing ebds_nt. You should now see the list of hardware registers of the MP5.

C:\EBDS\EBDS_NT.EXE	
😑 File Run Debug Target Config Window Help	
User Programming Model	2
XER:20000000 CR:20000000 LR:FFF4C56C CTR:FFF536D4	
TBU:00000000 TBL:DB039A16 IP:FFF4C58C	
ILE EE PR FP ME FEO SE BE FE1 IP RI LE	
MSR: 0 0 0 0 1 0 0 0 0 0 0 0	
GPR's3	
r0:0004AF70 r1:00050754	
r2:0004AF30 r3:FFFF7FFF	
r4:00001000 r5:00000200	
r6:00255BC0 r7:00259BA0	
r8:00259C90 r9:00259D40	
r10:0000001 r11:00000001	
r12:00000000 r13:00000200	
r14:00000000 r15:00000200	
r16:00000201 r17:00000000	
r18:00000000 r19:00000001	
r20:00000000 r21:00000000	
r22:00000009 r23:00000000	
r24:FFFFFFFF r25:0000000	
r26:00252348 r27:00000000	
r28:0004AF78 r29:00255BC0	
r30:000586D4 r31:0004AF70	
Supervisor Programming Model	4
DSISR:00001883 DAR:B000030E EIE:00000000 EID:00000000	NRI:00000000
SRR0:FFF4C58C SRR1:00001000 TBU:00000000 TBL:DB039A16	DEC :000007DC
SPRG0:0004AF30 SPRG1:00050754 SPRG2:20000000 SPRG3:00050754	PVR:00020020
IMMR:30310808 BBCMCR:00002000 MI_GRA:00000200 FPECR:00000000	
RBA0:E94ED000 RBA1:851A6000 RBA2:CE025000 RBA3:CF32D000	
MIRA0:FF2E9900 MIRA1:EB0F73C0 MIRA2:FD6BD300 MIRA3:4FBBD000	
Debug Register	
CMPA:00002002 CMPB:01000000 CMPC:00800000 CMPD:00000000	ECR:02240001
DER:2002000F COUNTA:81140000 COUNTB:47980000 CMPE:84000030	CMPF:00040251
CMPG:00020010 CMPH:80018008 LCTRL1:00000000 LCTRL2:00000000	ICTRL:00000000
BAR:00010041	
Command Line	
2002-2	
	¥
CONTINUESSS STATUS STADDED RESET 1 CABLE I TTE DOPT I DT1 LOC	- AEE
CLOWNEDDD DIALODIDIAL KEDELITE LOKULEHI LOK	A MART

Figure 1-12 EBDS Debugger Main Window

Step 3. On the Command Line, type do oakfl1.do to flash the first image to ROM. When given the flash prompt, type 0xfff00000 as the start address and 0xfffffff0 as the end address. The flash process starts from here.

Figure 1-13 EBDS Debugger Flash Utility Window

Step 4. After the flash process is complete, return to the command line. Type do oakfl2.do to flash the second image to ROM. When given the prompt, type 0xffe00000 as the start address and 0xffeffff0 as the end address. The second image will then be flashed to ROM.

WARNING

Both images must be flashed to the ROM, otherwise, the target will not run properly.

- Step 5. Disconnect the debugger cable and reboot the target.
- Step 6. Use Hyperterminal to communicate with target.

Creating a Startup File

When the Configuration Wizard is set to use a hard drive, or another fixed drive such as a PC Flash Card, as the default device, it automatically sets up the init module to call the startup file in the SYS directory in the target (For example: /h0/SYS/startup, /mhc1/SYS/startup). However, this directory and file will not exist until you create it. To create the startup file, complete the following steps:

- Step 1. Create a SYS directory on the target machine where the startup file will reside (for example: makdir /h0/SYS, makdir /dd/SYS).
- Step 2. On the host machine, navigate to the following directory:

MWOS/OS9000/SRC/SYS

In this directory, you will see several files. The files related to this section are listed below:

- motd: Message of the day file
- password: User/password file
- termcap: Terminal description file
- startup: Startup file
- Step 3. Transfer all files to the newly created SYS directory on the target machine. (You can use Kermit, or FTP in ASCII mode to transfer these files.)
- Step 4. Since the files are still in DOS format, you will be required to convert them into the OS-9 format with the cudo utility. The following command is an example:

cudo -cdo password

This will convert the password file from DOS to OS-9 format.

For More Information

For a complete description of all the cudo command options, refer to the *Utilities Reference Manual* located on the OS-9 CD.

Step 5. Since the command lines in the startup file are system-dependent, it may be necessary to modify this file to fit your system configuration. It is recommended that you modify the file before transferring it to the target machine.

Example Startup File

Below is the example startup file as it appears in the MWOS/OS9000/SRC/SYS directory:

```
-tnxnp
tmode -w=1 nopause
*OS-9 - Version 3.0
*Copyright 2001 by Microware Systems Corporation
*The commands in this file are highly system dependent and
*should be modified by the user.
*setime </term
                           ;* start system clock
setime -s
                            ;* start system clock
                            ;* make "mshell" and "csl" stay in memory
link mshell csl
* iniz r0 h0 d0 t1 p1 term ;* initialize devices
* load utils
                            ;* make some utilities stay in memory
* tsmon /term /t1 &
                            ;* start other terminals
list sys/motd
setenv TERM vt100
tmode -w=1 pause
mshell<>>>/term -l&
```


For More Information

Refer to the **Making a Startup File** section in Chapter 9 of the **Using OS-9** manual for more information on startup files.

Optional Procedures

Preliminary Testing

Once you have established an OS-9 prompt on your target system, you can perform the following procedures to test your system:

- Step 1. Type mdir at the prompt. This displays all of the modules in memory.
- Step 2. Type procs at the prompt. This displays the processes currently running in the system.
- Step 3. Test the networking on your system by selecting a host on the Ethernet network and running the ping utility. The following display shows a successful ping to a machine called visor:

```
$ ping visor
PING visor.microware.com (172.16.4.162): 56 data bytes
64 bytes from 172.16.2.51: ttl=128 time=0 ms
```

Step 4. Test telnet.

Select a host machine that allows telnet access and try the OS-9 telnet utility. The following display shows a successful telnet to a machine called delta.

Step 5. Test telnet from your host PC to the reference board.

From the Windows **Start** menu, select Run and type the following command:

telnet <hostname>

Step 6. Click OK. A telnet window should display with a \$ prompt. Type mdir from the prompt. You should see the same module listing as you see on the serial console port.

Chapter 2: Board Specific Reference

This chapter contains information that is specific to the MP5 reference boards. It contains the following sections:

- Boot Menu Options
- Vector Descriptions for PowerPC[™] 555
- PowerPC[™] Registers Passed to a New Process

For More Information

For general information on porting OS-9, see the OS-9 Porting Guide.

Boot Menu Options

Select your boot device menu options using the Configuration Wizard. For each boot device option, you can select whether you want it to be displayed on a boot menu, setup to autoboot, or both. The autoboot option enables the device selected to automatically boot up the high-level bootfile, thus bypassing the boot device menu.

MICROWARE SOFTWAR

Note

When using the Configuration Wizard, select only one device for autoboot on your system.

Following is an example of the Boot Menu displayed in the terminal emulation window (using Hyperterminal):

OS-9 Bootstrap for the PowerPC(tm)

Now trying to Override autobooters.

BOOTING PROCEDURES AVAILABLE ----- <INPUT>

Boot Embedded OS-9 in-place ------ <bo> Copy Embedded OS-9 to RAM and Boot - <lr> Boot over the Ethernet ----- <eb> Boot via. Kermit Download ----- <ker> Enter System Debugger ----- <break> Restart the System ----- <q>

Select a boot method from the above menu:

Table 2-1 Supported Boot Methods	
Type of Boot	Description
Boot from the Ethernet	boot from a BootP server (eb)
Boot embedded OS-9 in-place	boot OS-9 from Flash ROM (bo)
Copy embedded OS-9 to RAM and Boot	copy OS-9 from ROM (if stored there) to RAM and boot (lr)

Vector Descriptions for PowerPC[™] 555

Table 2-2 Vector Descriptions for PowerPC[™] 555

Vector Number	Assignment
0	Reserved
1	System reset
2	Machine check
3	Reserved
4	Reserved
5	External interrupt
6	Alignment
7	Program
8	Floating-point unavailable
9	Decrementer
10	Reserved
11	Reserved
12	System call
13	Trace
14	Floating Point Assist

Table 2-2 Vector Descriptions for PowerPC[™] 555

Vector Number	Assignment
15	Reserved
16	Software emulation error
17	Reserved
18	Reserved
19	Instruction protection error
20	Data protection error
28	Data breakpoint
29	Instruction breakpoint
30	Maskable external breakpoint
31	Non-maskable external breakpoint

Note

The vector numbers in **Table 2-2** are logical vector numbers. The actual processor vectors can be computed by multiplying the logical vector number by 256.

Error Exceptions: Vectors 2, 6 and 7

These exceptions are usually considered fatal program errors and unconditionally terminate a user program. If F_DFORK creates the process or the process was debug attached with F_DATTACH, then the resources of the erroneous process remain intact and control returns to the parent debugger to allow a postmortem examination.

A user process may use the F_STRAP system call to install an exception handler to catch the errors and recover from the exceptional condition. When a recoverable exception occurs, the process' exception handler installed with the F_STRAP system call is executed with a pointer to the process' normal static data and the current stack pointer.

In addition, the process' exception handler will receive - as parameters - the vector number of the error, the program instruction counter of where the error occurred, and the fault address of the error if applicable. The exception handler must decide whether and where to continue execution. Programs written in the C language may use the setjmp and longjmp library routines to properly recover from the erroneous condition.

If any of these exception occur in system-state during a system call made by the process due to the process passing bad data to the kernel, the process' exception handler is not called. Instead, the appropriate vector error is returned from the system call.

Vectored Interrupts: Vector 5

In general, the PowerPC processor family uses a single interrupt vector for all external interrupts. However, most systems supporting the PowerPC family use additional external logic to support more powerful nested interrupt facilities. Hence, the vector numbers used by OS-9 device drivers are usually logical vectors outside of the range of the hardware vectors listed above.

Note

The F_IRQ system call may also be used to install exception handlers on some non-hardware interrupt vectors. The above table lists the exceptions that may be monitored using the F_IRQ facility. The installed exception handler is called just like any other interrupt service routine when the associated exception occurs.

User Trap Handlers: Vector 7

This vector is used for dispatching user code into system-state trap handlers. The vector provides a mechanism for programs to switch states and dispatch to a subroutine module to execute code in system-state.

System Calls: Vector 12

This vector is used for service call dispatching to the OS-9 operating system as well as user services installed using the F_SSVC service request.

PowerPC[™] Registers Passed to a New Process

The following PowerPC registers are passed to a new process (all other registers are zero):

r1 = stack pointer r2 = static storage (data area) base pointer r3 = points to fork parameters structure (listed in f_fork) r13 = points to the constant data of code area of the module

Note

 r_2 is biased by the amount specified in the m_dbias field of the program module header, which allows object programs to access a larger amount of data using indexed addressing. You can usually ignore this bias because the OS-9 linker automatically adjusts for it.

Appendix A: Board Specific Modules

This chapter contains an overview of the board-specific low-level system modules and the high-level system modules. Each listing includes a brief description. The following sections are included:

- Low-Level System Modules
- High-Level System Modules
- Common System Modules List

Low-Level System Modules

The following low-level system modules are tailored specifically for the MP5 target platforms. These modules can be found in the following directory:

MWOS/OS9000/555/PORTS/MP5/CMDS/BOOTOBJS/ROM

Configuration Modules

cnfgdata	Provides low-level configuration data including configuration of a serial console
cnfgfunc	Retrieves configuration parameters from the cnfgdata module
commcnfg	Retrieves the name of the low-level auxiliary communication port driver from the cnfgdata module
conscnfg	Retrieves the name of the low-level console driver from the cnfgdata module
initext	User-customizable system initialization module

Console Driver

iosci55a Provides console services for the built-in SCI serial port

Ethernet Driver

ll91c94

Provides network driver services for the SMC91C96 on-board ethernet chip

System Modules

portmenu	Retrieves a list of configured booter names from the ROM cnfgdata module
romcore	Bootstrap code
romstart	Provides the ROMStart prefix code
Timer Module	

Timer Module

tbtimer

Provides polling timer services using tblo and tbhi registers

Debugging Module

usedebug

Debugger configuration module

High-Level System Modules

The following OS-9 system modules are tailored specifically for MP5 series platforms. Unless otherwise specified, each module can be found in the following directory:

MWOS/OS9000/555/PORTS/MP5/CMDS/BOOTOBJS

Interrupt Controllers

These modules provide extensions to the vectors module by mapping the single interrupt generated by an interrupt controller into a range of pseudo vectors which are recognized by OS-9 as extensions to the base CPU exception vectors.

siu5irq	Provides interrupt acknowledge and dispatching support for the SIU interrupt controllers on the PowerPC 555 series platforms.
	This also maps the nested PIC interrupts 0-15 to OS-9 pseudo vectors 64-88 (0x40-0x58)
Ticker	
tk555	Provides the system ticker through the SIU built-in timer
Abort Handler	
abort	Provides handler for the abort interrupt which calls into the system-state debugger
	If no system-state debugger is configured, the system will perform a soft reset.

Shared Libraries

picsub

Provides interrupt enable and disable routines to handle platform-specific interrupt controller issues for device drivers

This module is called by all drivers and **should** be included in your <code>bootfile</code>.

I/O and Disk Descriptors

pipe	Pipeman descriptor that provides a RAM-based FIFO, which can be used for process communication. It is located in the following directory:
	MWOS/OS9000/555/PORTS/MP5/CMDS /BOOTOBJS/DESC
r0	RBF descriptor that provides access to a RAM disk. A variant called $r0.dd$ is available if you want to call the RAM disk /dd. These descriptors are located in the following directory:
	MWOS/OS9000/555/PORTS/MP5/CMDS /BOOTOBJS/DESC/RAM

Serial and Console Drivers

sc555	Provides support for the internal SCI serial module.
	The descriptors for this driver, named t1 and term_t1, are located in the following directory:
	MWOS/OS9000/555/PORTS/MP5/CMDS /BOOTOBJS/DESC/SC555
scllio	Provides support for the low-level polled serial driver.

The descriptors for this driver, named term and vcons, are located in the following directory:

MWOS/OS9000/555/PORTS/MP5/CMDS /BOOTOBJS/DESC/SCLLIO

Ethernet Driver

sc91c94

Provides support for SMC91C96 on-board ethernet chip.

The descriptor for this driver, named spsmc0, is located in the following directory:

MWOS/OS9000/555/PORTS/MP5/CMDS /BOOTOBJS/SPF

Common System Modules List

The following low-level system modules provide generic services for OS-9 modular ROM. They are located in the following directory:

MWOS/OS9000/PPC/CMDS/BOOTOBJS/ROM

Table 2-3 Common System Modules List

Module	Description
bootsys	Provides booter services
console	Provides high-level I/O hooks into low-level console serial driver.
dbgentry	Provides hooks to low-level debugger server
dbgserv	Debugger server module
excption	Service module
fdc765*	Provides PC-style floppy support
fdman*	Provides general booting services for RBF file systems
flboot*	Provides SCSI floppy disk booter
flshcach	Provides the cache flushing routine
fsboot*	Provides TEAC SCSI floppy disk booter
hlproto	Allows user-state debugging
hsboot*	Provides SCSI hard disk booter

Table 2-3 Common System Modules List (continued)

Module	Description
ide*	Provides target-specific standard IDE support, including PCMCIA ATA PC cards
iovcons*	Provides a virtual console driver that provides a Telnet daemon (telnetd)-like interface to the low-level system console
llbootp	Provides low-level BootP services
llip	Provides low-level (Internet Protocol) IP services
llkermit	Provides a Kermit protocol booter
llslip	Provides low-level Serial Line over IP (SLIP) services
lltcp	Provides low-level Transmission Control Protocol (TCP) services
lludp	Provides low-level User Datagram Protocol (UDP) services
notify	Coordinates the use of low-level I/O drivers in system and user-state debugging
override	Enables overriding of the auto booter
	If Spacebar is pressed within three seconds of booting the target, a boot menu is displayed. Otherwise, booting proceeds with the first auto booter.
parser	Parses key fields from the cnfgdata module and the user parameter fields

Module	Description
pcman*	Provides booter support module providing general booting services for PCF file systems (PC FAT file systems)
protoman	Provide a protocol management services.
	This module provides the initial communication entry points into the protocol module stack.
restart	Restarts boot process
romboot	Locates the OS-9 bootfile in ROM or Flash part
rombreak	Enables break option from the boot menu
rombug	Debugger client module
scsiman*	Provides booter support module that provides general SCSI command protocol services
sndp	Provides System-state Network Debugging Protocol (SNDP) services
	This module acts as a debugging client on the target, invoking the services of dbgserv to perform debug tasks.
srecord*	Receives a Motorola S-record format file from the serial port and loads it into memory
swtimer*	Software timer
tsboot*	Provides SCSI TEAC tape drive booter
type41*	Primary partition type

Table 2-3 Common System Modules List (continued)

Table 2-3 Common System Modules List (continued)

Module	Description
vcons	Provides console terminal pathlist
vsboot*	Provides SCSI tape booter

* Not applicable to the MP5 board