
w w w. ra d i sy s . co m
Revision A • July 2006

OS-9® for SuperH 7750SE01
Board Guide

Version 4.7

July 2006
Copyright ©2006 by RadiSys Corporation

All rights reserved.
EPC and RadiSys are registered trademarks of RadiSys Corporation. ASM, Brahma, DAI, DAQ, MultiPro, SAIB, Spirit, and ValuePro are
trademarks of RadiSys Corporation.
DAVID, MAUI, OS-9, OS-9000, and SoftStax are registered trademarks of RadiSys Corporation. FasTrak, Hawk, and UpLink are
trademarks of RadiSys Corporation.
† All other trademarks, registered trademarks, service marks, and trade names are the property of their respective owners.

Copyright and publication information

This manual reflects version 4.7 of Microware OS-9.
Reproduction of this document, in part or whole, by any means,
electrical, mechanical, magnetic, optical, chemical, manual, or
otherwise is prohibited, without written permission from RadiSys
Microware Communications Software Division, Inc.

Disclaimer

The information contained herein is believed to be accurate as of
the date of publication. However, RadiSys Corporation will not be
liable for any damages including indirect or consequential, from
use of the OS-9 operating system, Microware-provided software,
or reliance on the accuracy of this documentation. The
information contained herein is subject to change without notice.

Reproduction notice

The software described in this document is intended to
be used on a single computer system. RadiSys
Corporation expressly prohibits any reproduction of the
software on tape, disk, or any other medium except for
backup purposes. Distribution of this software, in part
or whole, to any other party or on any other system
may constitute copyright infringements and
misappropriation of trade secrets and confidential
processes which are the property of RadiSys
Corporation and/or other parties. Unauthorized
distribution of software may cause damages far in
excess of the value of the copies involved.

3

Contents

Chapter 1: Installing and Configuring OS-9®
Development Environment Overview ... 8.

Requirements and Compatibility .. 8.

Host Hardware Requirements (PC Compatible)... 8.

Host Software Requirements (PC Compatible)... 8.

Target Hardware Requirements ... 9.

Target Hardware Setup... 9.

Settings... 9.

Jumpers ... 9.

Switches... 9.

Installing the EPROM Devices ... 10.

Connecting the Target to the Host.. 10.

Establishing a Serial Connection .. 11.

Set Up HyperTerminal for Windows .. 11.

Building the OS-9 Bootfile Image.. 12.

Starting the Configuration Wizard ... 13.

Building the Bootfile Image .. 14.

Creating a Startup File .. 16.

Chapter 2: Optional Procedures
Placing a Coreboot Image in Flash Memory ... 20.

Building the Coreboot Image.. 20.

Embedding the Coreboot Image in a Bootfile ... 23.

Writing the Coreboot Image into Flash Memory.. 23.

Placing a ROM Image into Flash Memory.. 24.

Embedding the ROM Image in a Bootfile... 25.

Programming the ROM Image into FLASH Memory ... 26.

Creating a Coreboot Image with an EPROM Programmer ... 27.

Making a ROM Image with an EPROM Programmer .. 29.

Compressing the Bootfile Image.. 30.

Chapter 3: Board-Specific Reference
The Fastboot Enhancement... 32.

Overview.. 32.

Implementation Overview .. 33.

B_QUICKVAL ... 33.

B_OKRAM.. 33.

B_OKROM ... 33.

B_1STINIT .. 33.

B_NOIRQMASK... 34.

B_NOPARITY ... 34.

Implementation Details .. 34.

Compile-time configuration ... 34.

OS-9® for SuperH 7750SE01 Board Guide

4

Runtime Configuration.. 35.

Enabling PCMCIA IDE Interrupts .. 35.

Before You Begin ... 36.

Enabling PCMCIA IDE Interrupts on the SuperH .. 36.

Updating the llcis Module.. 36.

Updating the PCMCIA Utility.. 37.

Updating the RBF/PCF PCMCIA IDE Device Descriptors.. 37.

Appendix A:
Board-Specific Modules

SuperH Hardware Support Devices .. 40.

PIC Support ... 40.

Module .. 40.

PCMCIA Support for IDE Type Devices .. 40.

Module .. 40.

Descriptors .. 40.

Super I/O Support for IDE Type Devices .. 40.

Module .. 40.

Descriptors .. 40.

Super I/O Support for PS/2 Type Devices ... 41.

Module .. 41.

Descriptor.. 41.

Super I/O Support for Parallel Port .. 41.

Module .. 41.

Descriptor.. 41.

Real-Time Clock .. 41.

Module .. 41.

Power Management Extension ... 41.

Module .. 41.

Ticker (System Clock) Support... 41.

Module .. 41.

Serial Support... 41.

Module .. 41.

Descriptors /term /t1 .. 42.

Descriptors /t2 ... 42.

Baud Rates... 42.

Module .. 42.

Descriptors /term /t3 .. 43.

Module .. 43.

Descriptors /term /t4 .. 43.

Baud Rates... 43.

RAM Disk Support .. 43.

Module .. 43.

Descriptors .. 44.

Optional Serial Support.. 44.

Module .. 44.

Descriptors .. 44.

Init Modules... 44.

MAUI Hardware Support Modules .. 44.

Module .. 44.

Contents

5

Descriptor.. 44.

Module .. 44.

Descriptor.. 44.

SPF Hardware Support Modules .. 44.

Module .. 44.

Descriptor.. 45.

Module .. 45.

Descriptor.. 45.

Module .. 45.

Descriptor.. 45.

Low-Level System Modules List.. 45.

High-Level System Modules List... 47.

OS-9® for SuperH 7750SE01 Board Guide

6

7

1 Installing and Configuring OS-9®

The procedures in this chapter are designed to help you to set up the SuperH
evaluation board and create an bootfile image. The following sections are included:

• Development Environment Overview

• Requirements and Compatibility

• Target Hardware Setup

• Connecting the Target to the Host

• Building the OS-9 Bootfile Image

• Creating a Startup File

OS-9® for SuperH 7750SE01 Board Guide

8

Development Environment Overview
Figure 1-1 shows a typical development environment for the SuperH 7750SE01
board. These components include the minimum required to enable OS-9® to run on
the SH7750 board.

Figure 1-1. SH7750 Development Environment

Requirements and Compatibility
The following sections represent the host and target requirements for using the
SH7750SE01 board.

Host Hardware Requirements (PC Compatible)

Your host PC should have the following minimum hardware characteristics:

• 32MB of RAM

• An Ethernet network card

• A PCMCIA card reader/writer

Host Software Requirements (PC Compatible)

Your host PC must have the following software installed:

• Microware OS-9 for SH4

• Microsoft® Windows 95, 98, ME, 2000, or NT

Power

Chapter 1: Installing and Configuring OS-9®

9

Target Hardware Requirements

Your SuperH evaluation board requires the following hardware:

• A power supply

• An RS-232 null modem serial cable

• An Ethernet cable (for connecting to an Ethernet network)

• VGA display and serial mouse (for use with MAUI®)

Target Hardware Setup

Settings

The factory default settings for the DIP switches and jumpers may not work with
OS-9. Be sure the DIP jumpers and switches agree with the following settings:

Jumpers

• J1 has pins 1 and 2 connected. (The default RTC power is from main power
source--not CNB.)

• J2 has pins 1 and 2 open.

• J3 has pins 1 and 2 connected.

Switches

The switch settings described are not the factory defaults. They are the switch
settings that must be used to ensure OS-9 will run properly on the reference board.
If a switch setting is not specified, use the factory default setting.

SW3 has switches 2, 3, 6

set to ONSets clock mode, bus size and endian selection

SW3 has switch 1 set to OFF

SW4 has switches 3, 4 set to ON

sets board to boot from EPROM

SW5 used for setting IP address
(most significant byte) ON = 0 and OFF = 1

SW6 used for setting IP address ON = 0 and
OFF = 1

SW7 used for setting IP address ON = 0 and
OFF = 1

SW8 used for setting IP address
(most significant byte) ON = 0 and OFF = 1

Refer to the Hitachi documentation for information on hardware setup prior to
installing and configuring OS-9 on your SuperH evaluation board.

OS-9® for SuperH 7750SE01 Board Guide

10

This can also be used for setting the least significant byte of the board’s
Ethernet address, since the least significant byte is the same for both the
IP address and the Ethernet address.

Within each general purpose switch, the bit order is as follows: bit 1 is switch 8 and
bit 8 is switch 1.

Installing the EPROM Devices

The first stage in configuring your SuperH evaluation board is to transfer the pre-
configured coeboot image (included with your Microware OS-9 package) onto the
EPROM devices on your evaluation board.

The coreboot image is generally responsible for initializing hardware devices and
locating the high-level image as specified by its configuration, such as a FLASH
part, hard disk, or Ethernet. It is also responsible for building basic structures based
on the image it finds and passing control to the kernel to bring up the OS-9 system.

To install the EPROM devices, place them into sockets M13 (HIGH) and
M14(LOW).

Figure 1-2. EPROM locations on the SuperH Evaluation Board

Connecting the Target to the Host
Connecting the SH7750SE01 to your host PC involves attaching the power, serial,
Ethernet, and video cables to the solution engine. Once you have the board
connected, you can use the serial console in Hawk™ to verify the serial connection.

Refer to Placing a Coreboot Image in Flash Memory for information on
programming a new coreboot image into the flash devices.

SH7750

M16

M13 M14

CN5
CN3 CN2

CN10

CN9CN4

M15

Chapter 1: Installing and Configuring OS-9®

11

Establishing a Serial Connection

To establish a serial connection, complete the following steps:

Step 1. Attach a 10BaseT Ethernet cable to connector CN4.

Step 2. Connect one end of a serial cable to connector CN2 on the SH7750SE01 board.
Connect the other end to COM1 on the Host PC. Depending on your PC system,
you may either need a straight or a reversed serial cable to make this connection. If
you do not know what type of serial cable your machine uses, try a reversed cable
first. If the connection fails (no boot messages appear in the communication
program’s window), try a straight serial cable.

Step 3. Insert the adapter plug into the power connector CN5 to apply power to the board.

Set Up HyperTerminal for Windows

To use Hyperterminal to connect your board and the host machine, complete the
following steps:

Step 1. For Windows 95/98: From the Windows desktop, select Start -> Programs ->
Accessories -> HyperTerminal to open HyperTerminal.

For Windows NT: From the Windows desktop, select Start -> Programs ->
Accessories -> HyperTerminal -> Hyperterminal to start Hyperterminal.

Step 2. Enter a name for your HyperTerminal session.

Step 3. Select an icon for the new HyperTerminal session.

Step 4. For Windows 95/98: Click OK. The Phone Number dialog box appears.

For Windows NT: Click OK. The Connect To dialog box appears.

Step 5. For Windows 95/98: In the Phone Number dialog box, go to the Connect Using
drop-down combo box and select the communications (COM) port that is
connected to the SuperH evaluation board.

For Windows NT: In the Connect To dialog box, go to the Connect Using drop-
down combo box and select the communications (COM) port that is connected to
your SuperH evaluation board.

Step 6. Click OK. The COM# Properties dialog box appears (# represents the number of
your chosen COM port, such as COM1).

Step 7. In the Port Settings tab, enter the settings as indicated in the following list:

• Bits per second: 9600

• Data bits: 8

• Parity: None

• Stop Bits: 1

• Flow Control: Xon/Xoff

OS-9® for SuperH 7750SE01 Board Guide

12

Step 8. Click OK. A connection should be established.

Step 9. Turn on the SuperH evaluation board. A boot menu similar to the one in the
following illustration will appear after boot messages are displayed.

OS-9000 Bootstrap for the SuperH

ATA IDE disk found

Now trying to Override autobooters

BOOTING PROCEDURES AVAILABLE ----------- <INPUT>

Boot from PCMCIA PCCARD ---------------- <pcm_pc>
Boot embedded OS-9000 in-place --------- <bo>
Copy embedded OS-9000 to RAM and boot -- <lr>
Enter system debugger ------------------ <break>

Once you have connected the host system to the evaluation board, you can build a
bootfile and place it on a PCMCIA IDE card, using the steps in the following
sections.

Building the OS-9 Bootfile Image
The bootfile image contains the kernel and other high-level modules (initialization
module, file managers, drivers, descriptors, and applications). The image is loaded
into memory based on the device selected from the boot menu. The bootfile image
normally brings up an OS-9 shell prompt, but can be configured to automatically
start an application.

Chapter 1: Installing and Configuring OS-9®

13

Starting the Configuration Wizard

The OS-9 coreboot image in the supplied coreboot image allows for booting from
PCMCIA IDE cards. To boot from a PCMCIA IDE card, you need to place an OS-9
bootfile image on the card. The Configuration Wizard is used to create this bootfile
image. The Configuration Wizard is a special purpose utility that simplifies the task
of building OS-9 boot images. It is automatically placed on your host PC when you
install one of the Microware OS-9 for SuperH packages.

The Configuration Wizard is the application used to build the coreboot, bootfile, or
ROM image. To start the Configuration Wizard, perform the following steps:

Step 1. From the Windows desktop, select Start -> RadiSys -> Microware OS-9 for
<product> -> Configuration Wizard. You should see the following opening
screen:

Figure 1-3. Configuration Wizard Opening Screen

Step 2. Select your target board from the Select a board pull-down menu.

Step 3. Select the Create new configuration radio button from the Select a
configuration menu and type in the name you want to give your ROM image in the
supplied text box. This names your new configuration, which can later be accessed
by selecting the Use existing configuration pull down menu.

Step 4. Select the Advanced Mode radio button from the Choose Wizard Mode field and
click OK. The Wizard’s main window is displayed. This is the dialog from which you
will proceed to build your image. An example is shown in Figure 1-4.

OS-9® for SuperH 7750SE01 Board Guide

14

Figure 1-4. Configuration Wizard Main Window

Building the Bootfile Image

Once in the Advanced mode of the Configuration Wizard, build a bootfile image by
completing the following steps:

Step 1. If you want to use the target board across a network, you will need to configure the
Ethernet settings within the Configuration Wizard. To do this, select Configure ->
Bootfile -> Network Configuration from the Wizard’s main menu.

Step 2. From the Network Configuration dialog, select the Interface Configuration tab.
From here you can select and enable the interface. For example, you can select the
appropriate Ethernet card from the list of options on the left and specify whether
you would like to enable IPv4 or IPv6 addressing. Figure 1-5 shows an example of
this tab.

Chapter 1: Installing and Configuring OS-9®

15

Figure 1-5. Interface Configuration

Step 3. Select the SoftStax® Setup tab; select Enable SoftStax. Click OK.

Step 4. To enable the PCMCIA IDE function, select System Disk Configuration in the
Bootfile Configuration Buttons group.

Step 5. Select IDE Configuration; select Enable IDE Disk. Click OK.

Step 6. Click the Build Images button to display the Master Builder window. (Do not
change other settings at this point.)

Step 7. In the Master Builder window, select the following check boxes:

• Disk Support

• Disk Utilities

• SoftStax® (SPF) Support

To learn more about IPv4 and IPv6 functionalities, refer to the
Using LAN Communications manual.

Contact your system administrator if you do not know the network values for
your board.

OS-9® for SuperH 7750SE01 Board Guide

16

• User State Debugging Modules

Step 8. Click Bootfile Only Image and click Build. This builds the bootfile image that
can be placed on the PCMCIA IDE card.

Step 9. Insert the PCMCIA IDE card into the PCMCIA slot of your host computer. Click
Save As to save the bootfile to the root directory of the PCMCIA IDE card. Name
the bootfile os9kboot.

Step 10. Click Finish and select File -> Save Settings to save the configuration. Select
File -> Exit to quit the Wizard.

Step 11. Make sure the power to the board is turned off and remove the PCMCIA IDE card
from the host machine.

Step 12. Position the PCMCIA card so that the end with the PCMCIA female connector is
facing the PCMCIA socket and the label on the top of the card is facing down.

Step 13. Slide the card into the socket until the card snaps onto the connector pins and the
eject button pops out.

Step 14. Apply power to the board. The SH7709SE01 solution engine will boot to the mshell
prompt, “$”.

Step 15. To use Hawk to load and debug your applications, start the debugging daemons by
typing the following commands:

spfndpd<>>>/nil&
ndpio<>>>/nil&

To perform system-state debugging, you will need to create a new coreboot image.

Creating a Startup File
When the Configuration Wizard is set to use a hard drive, or another fixed drive
such as a PC Flash Card, as the default device, it automatically sets up the init
module to call the startup file in the SYS directory in the target (For example:
/h0/SYS/startup, /mhc1/SYS/startup). However, this directory and file will
not exist until you create it. To create the startup file, complete the steps below:

Step 1. If not already available, create a SYS directory on the target machine where the
startup file will reside (for example: makdir /h0/SYS).

Step 2. On the host machine, navigate to MWOS/OS9000/SRC/SYS. You should see the
following files:

• motd: Message of the day file

• password: User/password file

• termcap: Terminal description file

• startup: Startup file

Below is the example startup file as it appears in this directory:

If you insert a PCMCIA card into the PCMCIA socket of the SuperH evaluation
board with power applied to the board, you will damage the PCMCIA card.

Chapter 1: Installing and Configuring OS-9®

17

-tnxnp
tmode -w=1 nopause
*
setime </term ; start system clock
setime -s ;* start system clock
link mshell csl; * make "mshell" and "csl" stay in memory
* iniz r0 h0 d0 t1 p1 term ;* initialize devices
* load utils ;* make some utilities stay in memory
* tsmon /term /t1 & ;* start other terminals
list sys/motd
setenv TERM vt100
tmode -w=1 pause
mshell<>>>/term -l&

Because the command lines in the startup file are system-dependent, it may be
necessary to modify the file to fit your system configuration. It is recommended that
you modify the file before transferring it to the target machine.

Step 3. Transfer all files to the newly created SYS directory on the target machine. (You can
use Kermit, or FTP in ASCII mode to transfer these files.)

Step 4. Since the files are still in DOS format, you will be required to convert them into the
OS-9 format with the cudo utility. The following command is an example:
cudo -cdo password

This will convert the password file from DOS to OS-9 format.

Refer to the Making a Startup File section in Chapter 9 of the Using OS-9
manual for more information on startup files.

For a complete description of all the cudo command options, refer to the
Utilities Reference Manual located on the Microware OS-9 CD.

OS-9® for SuperH 7750SE01 Board Guide

18

19

2 Optional Procedures

The following sections detail the optional procedures you may wish to perform
once you have installed and configured OS-9.

These procedures involve customizing the coreboot image.The main reason for
changing the coreboot image is to take advantage of ROM Ethernet services, such
as System State Debugging. The System State Debugging limitation occurs because
the IP address used in the EPROM image is set to 0.0.0.0. If you want System
State Debugging, you must create a new version of the coreboot image with an IP
address assigned to the board.

The following sections are included:

• Placing a Coreboot Image in Flash Memory

• Placing a ROM Image into Flash Memory

• Programming the ROM Image into FLASH Memory

• Creating a Coreboot Image with an EPROM Programmer

• Making a ROM Image with an EPROM Programmer

• Compressing the Bootfile Image

If you are only doing User State Debugging under SoftStax, changing the
coreboot image is not necessary.

OS-9® for SuperH 7750SE01 Board Guide

20

Placing a Coreboot Image in Flash Memory
To place a coreboot image onto the SuperH board, you need to build the coreboot
image, embed it in a bootfile, and program it into flash memory.

It is possible to create a new bootfile that can overwrite your current bootfile. To do
this, you need to take steps to protect your current bootfile. To save the current
bootfile, either change the current bootfile’s name or move it to a subdirectory on
the PCMCIA card.

Building the Coreboot Image

Complete the following steps to build the coreboot image:

Step 1. From the Windows desktop, select Start -> RadiSys -> Microware OS-9 for
<product> -> Configuration Wizard. You should see the following opening
screen:

Figure 2-1. Configuration Wizard Opening Screen

Step 2. Select your target board from the Select a board pull-down menu.

Step 3. Select the Create new configuration radio button from the Select a
configuration menu and type in the name you want to give your ROM image in the
supplied text box. This names your new configuration, which can later be accessed
by selecting the Use existing configuration pull down menu.

Chapter 2: Optional Procedures

21

Step 4. Select the Advanced Mode radio button from the Choose Wizard Mode field and
click OK. The Wizard’s main window is displayed. This is the dialog from which you
will proceed to build your image. An example is shown in Figure 2-2.

Figure 2-2. Configuration Wizard Main Window

Step 5. If you want to use the target board across a network, you will need to configure the
Ethernet settings within the Configuration Wizard. To do this, select Configure ->
Bootfile -> Network Configuration from the Wizard’s main menu.

Step 6. From the Network Configuration dialog, select the Interface Configuration
tab. From here you can select and enable the interface. For example, you can select
the appropriate Ethernet card from the list of options on the left and specify
whether you would like to enable IPv4 or IPv6 addressing. Figure 2-3 shows an
example of the Interface Configuration tab.

OS-9® for SuperH 7750SE01 Board Guide

22

Figure 2-3. Interface Configuration

Step 7. Click OK to close the window.

Step 8. Click Build Images to display the Master Builder window.

Step 9. Click Coreboot Only Image setting and click Build. The coreboot image is built.

Step 10. Click Finish to dismiss the Master Builder window.

To learn more about IPv4 and IPv6 functionalities, refer to the
Using LAN manual, included with this product CD.

Contact your system administrator if you do not know the network values for
your board.

Chapter 2: Optional Procedures

23

Embedding the Coreboot Image in a Bootfile

To embed the coreboot image into your boot, complete the steps below:

Step 1. In the SuperH Configuration Wizard window, click the Configure System
Options button. The Wizard’s main window appears.

Step 2. Click on the Bootfile Options tab and select PF-CORE. PF-CORE includes the
new coreboot image in the new bootfile as a data module. Click OK.

Step 3. Click Build Images to open the Master Builder window.

Step 4. Click Bootfile Only Image and click Build. The bootfile image is built, and the
Save As button is enabled when the build is completed.

Step 5. Save the bootfile to the root directory of the PCMCIA IDE card. Use the name
os9kboot.

Step 6. Click Finish to close the Master Builder window, and select File -> Save
Settings to save the configuration.

Step 7. Select File -> Exit to quit from the Wizard.

Writing the Coreboot Image into Flash Memory

To write the coreboot image into FLASH memory, complete the following steps:

Step 1. Remove power from the SuperH evaluation board.

Step 2. Locate the eight-switch dip switch labeled SW4 on the SuperH evaluation board.

Figure 2-4. Location of Switch 4 (SW4)

Step 3. Set switch SW4-3 (switch 3 on SW4) to the ON position. This tells the system to
boot from the EPROM instead of the flash memory.

Step 4. Remove the PCMCIA IDE card containing os9kboot from the PC host and insert
the card into the PCMCIA socket on the SuperH board.

Step 5. Open the Serial console in Hawk.

See Set Up HyperTerminal for Windows for more information on opening the Serial
console.

Step 6. Apply power to the SuperH evaluation board. A boot menu similar to the following
illustration appears:

OS-9000 Bootstrap for the SuperH

SH7750

M15 M16
M13 M14

Power CN3 CN2

SW4

CN5 CN9

CN10

OS-9® for SuperH 7750SE01 Board Guide

24

ATA IDE disk found

Now trying to Override autobooters

BOOTING PROCEDURES AVAILABLE ----------- <INPUT>

Boot from PCMCIA PCCARD ---------------- <pcm_pc>
Boot embedded OS-9000 in-place --------- <bo>
Copy embedded OS-9000 to RAM and boot -- <lr>
Enter system debugger ------------------ <break>
Restart the System --------------------- <q>

Step 7. Type pcm_pc to finish booting with the bootfile on the PCMCIA IDE card. The new
bootfile containing the coreboot image is now loaded into the SuperH evaluation
board’s RAM memory. You are ready to load the coreboot image into flash ROM.

Step 8. At the shell prompt ($), type the following command: pflash.
This command erases flash memory, writes the new coreboot image into the flash
memory and verifies the contents of the flash memory.

Step 9. When the shell prompt appears again, remove power from the SuperH evaluation
board.

Step 10. Set switch 4-3 to the OFF position.

Step 11. Reboot the system. The SuperH board is now using the new coreboot image in flash
memory.

Once you have completed these steps, restore your original bootfile by deleting the
bootfile that was created in this section and replacing it with your original bootfile.

To make your original bootfile active, restart the system.

Placing a ROM Image into Flash Memory
To put a ROM image onto the SuperH board, you have to build the image, embed it
in another bootfile to transfer it to the board, and store it in flash memory.

Once you place a ROM image into flash memory, you have the ability to boot to the
shell from flash memory instead of from your PCMCIA IDE card. If you want this
combined image to have the same bootfile settings you currently use, start the
Wizard with the configuration name under which you saved those settings.

Step 1. Open the Configuration Wizard as described in the Starting the Configuration
Wizard section.

Step 2. If you want to use the target board across a network, you will need to configure the
Ethernet settings within the Configuration Wizard. To do this, select Configure ->
Bootfile -> Network Configuration from the Wizard’s main menu.

Step 3. Select any other coreboot or bootfile options you want included in your ROM
image, then open the Master Builder window from the Wizard menu and select
Coreboot + Bootfile and click Build. The ROM image is built and saved.

Step 4. Click the Finish button to close the Master Builder window.

Chapter 2: Optional Procedures

25

Embedding the ROM Image in a Bootfile

To embed the ROM image into your boot, complete the following steps:

Step 1. In the SuperH Configuration Wizard window, click Configure System Options.
The SH4:<your configuration name> window appears.

Step 2. Click on the Bootfile Options tab.

Step 3. Click PF-ROM. PF-ROM will include the ROM image in the new bootfile as a data
module.

Step 4. If there are any other bootfile options you want active at this time, select them as
well.

Step 5. Click OK to close the window.

Step 6. Click Build Images to open the Master Builder window.

Step 7. Click Bootfile Only Image and then click Build. The bootfile containing the
ROM image is built and saved. The Save As button is enabled when the build is
completed.

Step 8. Save the bootfile to the root directory of the PCMCIA IDE card. Use the name
os9kboot.

Step 9. Click Finish to close the Master Builder screen, and select File -> Save
Settings to save the configuration.

Step 10. Select File -> Exit to quit from the Wizard.

OS-9® for SuperH 7750SE01 Board Guide

26

Programming the ROM Image into FLASH Memory
To program the ROM image into Flash memory, complete the following steps:

Step 1. Remove power from the SuperH evaluation board.

Step 2. Locate the eight-switch dip-switch labeled SW4 on the SuperH evaluation board.

Figure 2-5. Location of Switch 4

Step 3. Set switch SW4-3 (switch 3 on SW4) to the ON position. This tells the system to
boot from the EPROM instead of the flash memory.

Step 4. Remove the PCMCIA IDE card from the PC host and insert the card into the
PCMCIA socket on the SuperH board.

Step 5. Open the Serial console in Hawk. Refer to Set Up HyperTerminal for Windows for
more information on opening the Serial console.

Step 6. Apply power to the board. A boot menu appears, similar to that shown below:

OS-9000 Bootstrap for the SuperH

ATA IDE disk found

Now trying to Override autobooters

BOOTING PROCEDURES AVAILABLE ----------- <INPUT>

Boot from PCMCIA PCCARD ---------------- <pcm_pc>
Boot embedded OS-9000 in-place --------- <bo>
Copy embedded OS-9000 to RAM and boot -- <lr>
Enter system debugger ------------------ <break>
Restart the System --------------------- <q>

Select a boot method from the above menu:

Step 7. Type pcm_pc to finish booting. The new bootfile containing the ROM image is
loaded into the SuperH evaluation board’s RAM memory; you are ready to load the
ROM image into flash ROM.

Step 8. At the shell prompt ($), type the following command:

pflash

The pflash command erases flash memory, writes the new ROM into the flash
memory, and verifies the contents of the flash memory.

SH7750

M15 M16
M13 M14

Power CN2

SW4

CN5 CN9

CN10

CN3

Chapter 2: Optional Procedures

27

Step 9. When you get the shell prompt again, turn off the SuperH evaluation board.

Step 10. Set switch SW4-3 to the OFF position.

Step 11. Restart the system and enter <bo> at the Boot Menu. The SuperH board will boot to
the shell using the new ROM image in flash memory.

Creating a Coreboot Image with an EPROM Programmer
This section instructs you on how to create the coreboot image through the point
where you transfer the file to your EPROM programmer. Refer to the instructions
for your EPROM programmer to learn how to program the new coreboot image
into the EPROMS.

Step 1. Open the Configuration Wizard as described in the Starting the Configuration
Wizard section.

Step 2. If you want to use the target board across a network, you will need to configure the
Ethernet settings within the Configuration Wizard. To do this, select Configure ->
Bootfile -> Network Configuration from the Wizard’s main menu.

Step 3. Select any other coreboot options you want included in your coreboot image.

Step 4. Select Configure -> Build Image to display the Master Builder window.

Step 5. Click Coreboot Only Image and click Build.

Step 6. Click Save As to save the coreboot image to a directory of your choosing. The
default file name is coreboot.

Step 7. Click Finish to close the Master Builder window, and select File -> Save
Settings to save the configuration.

Step 8. Select File -> Exit to quit from the Wizard.

Step 9. Transfer the coreboot image to the EPROMs with the EPROM programmer. You
will need to follow the documentation for the EPROM programmer to complete
this step.

Step 10. With the power to the board turned off, insert the EPROMs into the SuperH board.

Step 11. Set SW4-3 (switch 3 on SW4) to the ON position so the board will boot from the
EPROMs.

Step 12. Turn on power to the board. A boot menu appears, similar to that shown below:

OS-9000 Bootstrap for the SuperH

ATA IDE disk found

Now trying to Override autobooters

BOOTING PROCEDURES AVAILABLE ----------- <INPUT>

Boot from PCMCIA PCCARD ---------------- <pcm_pc>
Boot embedded OS-9000 in-place --------- <bo>
Copy embedded OS-9000 to RAM and boot -- <lr>
Enter system debugger ------------------ <break>

OS-9® for SuperH 7750SE01 Board Guide

28

Restart the System --------------------- <q>

Step 13. Select the booting method you want to use to boot the system to the shell prompt.

Chapter 2: Optional Procedures

29

Making a ROM Image with an EPROM Programmer
The following steps detail how to create the ROM image through the point where
you transfer the file to your EPROM programmer. Refer to your EPROM
programmer’s instructions to learn how to program the new ROM image into the
EPROMS.

Step 1. Open the Configuration Wizard as described in the Starting the Configuration
Wizard section.

Step 2. If you want to use the target board across a network, you will need to configure the
Ethernet settings within the Configuration Wizard. To do this, select Configure ->
Bootfile -> Network Configuration from the Wizard’s main menu.

Step 3. Select the coreboot and bootfile options you want included in your ROM image.

Step 4. Select Configure -> Build Image to display the Master Builder window.

Step 5. Click Coreboot+Bootfile Image, and click Build.

Step 6. Make sure the ROM image is not larger than your available EPROM memory. If it
is too big, you complete one of the following three actions:

• select the Pack ROM option

• turn off some of the bootfile options

• select the Pack ROM option and deselect some bootfile options

Step 7. Click Save As to save the ROM image to a directory of your choosing. If you do
not have that directory on the drive, you can create it.

Step 8. Click Finish to close the Master Builder window.

Step 9. Select File -> Save Settings, and File -> Exit to close Configuration
Wizard.

Step 10. Transfer the ROM image to the EPROMS with the EPROM programmer. You will
need to follow the documentation for the EPROM programmer to complete this
step.

Step 11. With the power to the board turned off, insert the EPROMS into the SuperH board.

Step 12. Set switch 4-3 (switch 3 on SW4) to the ON position so the board will boot from
the EPROMS.

Step 13. Turn on power to the board. A boot menu appears, similar to the example below:

OS-9000 Bootstrap for the SuperH

ATA IDE disk found

Now trying to Override autobooters

BOOTING PROCEDURES AVAILABLE ----------- <INPUT>

Boot from PCMCIA PCCARD ---------------- <pcm_pc>
Boot embedded OS-9000 in-place --------- <bo>
Copy embedded OS-9000 to RAM and boot -- <lr>

OS-9® for SuperH 7750SE01 Board Guide

30

Enter system debugger ------------------ <break>
Restart the System --------------------- <q>

Step 14. Select the booting method you want to use to boot the system to the shell prompt.

Compressing the Bootfile Image
OS-9 bootfiles can be compressed to allow more modules to be loaded into a
bootfile; this can be useful if you plan on storing your image on a small FLASH part
or a floppy disk.

Complete the following steps to compress your image:

Step 1. Verify that your coreboot contains the uncompress module. This module can be
found in the pre-built ROM and coreboot images that were shipped with your
Microware OS-9 product.

Step 2. Open the Configuration Wizard and select Configure -> Coreboot -> Main
Configuration from the main menu.

Step 3. Select the Bootfile Compression tab. Verify that the Include bootfile uncompress
module box is checked and select OK.

Step 4. When you are ready to build the image, open the Master Builder dialog. Verify that
the Compress Bootfile box is checked and then press Build to begin the installing
the image.

The bootfile compression utility performs the compression at approximately a
2.5:1 ratio.

The uncompress module must be included in order for the compression to
execute properly.

31

3 Board-Specific Reference

This chapter represent board specific considerations for using Microware OS-9 for
SH4. The following sections are included:

• The Fastboot Enhancement

• Enabling PCMCIA IDE Interrupts

OS-9® for SuperH 7750SE01 Board Guide

32

The Fastboot Enhancement
The Fastboot enhancements to OS-9 were added to address the needs of embedded
systems that require faster system bootstrap performance than normal. OS-9’s
normal bootstrap performance is mostly attributable to its flexibility. OS-9 can
handle many different runtime configurations to which it dynamically adjusts
during the bootstrap process.

The Fastboot concept consists of informing OS-9 that the defined configuration is
static and valid. These assumptions eliminate the dynamic searching OS-9 normally
performs during the bootstrap process and allow the system to perform a minimal
amount of runtime configuration. As a result, a significant increase in bootstrap
speed is achieved.

Overview

The Fastboot enhancement consists of a set of flags that control the bootstrap
process. Each flag informs some portion of the bootstrap code that a particular
assumption can be made and that the associated bootstrap functionality should be
omitted.

One very important feature of the Fastboot enhancement is that not only can the
control flags be statically defined when the embedded system is initially configured,
but they may also be dynamically altered during the bootstrap process itself. For
example, the bootstrap code could be configured to query dip switch settings,
respond to device interrupts, or respond to the presence of specific resources which
would indicate different bootstrap requirements.

Also, the Fastboot enhancement’s versatility allows for special considerations under
certain circumstances. This versatility would be useful in a system where normally
all resources are known, static and functional, but additional validation is required
during bootstrap for a particular instance such as a resource failure. The low-level
bootstrap code could respond to some form of user input that would inform it that
additional checking and system verification is desired.

Chapter 3: Board-Specific Reference

33

Implementation Overview

The Fastboot configuration flags have been implemented as a set of bit fields. An
entire 32-bit field has been dedicated for bootstrap configuration. This four-byte
field is contained within the set of data structures shared by the ModRom sub-
components and the kernel. Hence, the field is available for modification and
inspection by the entire set of system modules (high-level and low-level). Currently,
there are just six bit flags defined with eight bits reserved for user-definable
bootstrap functionality. The reserved user-definable bits are the high-order eight bits
(31-24). This leaves bits available for future enhancements. The currently defined
bits and their associated bootstrap functionality are listed below:

B_QUICKVAL

The B_QUICKVAL bit indicates that only the module headers of modules in ROM
are to be validated during the memory module search phase. This causes the CRC
check on modules to be omitted. This option is potentially a large time saver due to
the complexity and expense of CRC generation. If a system has many modules in
ROM, where access time is typically longer than RAM, omitting the CRC check on
the modules will drastically decrease the bootstrap time. It is fairly rare that
corruption of data occurs in ROM. Therefore, omitting CRC checking will usually
be a safe option.

B_OKRAM

The B_OKRAM bit informs both the low-level and high-level systems that they
should accept their respective RAM definitions without verification. Normally, the
system probes memory during bootstrap based on the defined RAM parameters.
This allows system designers to specify a possible RAM range which the system will
validate upon startup. Thus the system can accommodate varying amounts of
RAM. But in an embedded system where the RAM limits are usually statically
defined and presumed to be functional, there is no need to validate the defined
RAM list. Bootstrap time is saved by assuming that the RAM definition is accurate.

B_OKROM

The B_OKROM bit causes acceptance of the ROM definition without probing for
ROM. This configuration option behaves just like the B_OKRAM option except
that it applies to the acceptance of the ROM definition.

B_1STINIT

The B_1STINIT bit causes acceptance of the first init module found during cold-
start. By default, the kernel searches the entire ROM list passed up by the ModRom
for init modules before it accepts and uses the init module with the highest
revision number. In a statically defined system, a good deal of time can be saved by
using this option to omit the extended init module search.

OS-9® for SuperH 7750SE01 Board Guide

34

B_NOIRQMASK

The B_NOIRQMASK bit informs the entire bootstrap system that it should not
mask interrupts for the duration of the bootstrap process. Normally, the ModRom
code and the kernel cold-start mask interrupts for the duration of the system
startup. But some systems that have a well defined interrupt system (i.e. completely
calmed by the sysinit hardware initialization code) and also have a requirement
to respond to an installed interrupt handler during system startup can enable this
option to prevent the ModRom and the kernel cold-start from disabling interrupts.
This is particularly useful in power-sensitive systems that need to respond to
“power-failure” oriented interrupts. Some portions of the system may still mask
interrupts for short periods during the execution of critical sections.

B_NOPARITY

If the RAM probing operation has not been omitted, the B_NOPARITY bit causes
the system to not perform parity initialization of the RAM. Parity initialization
occurs during the RAM probe phase. The B_NOPARITY option is useful for
systems that either require no parity initialization at all or systems that only require
it for “power-on” reset conditions. Systems that only require parity initialization for
initial “power-on” reset conditions can dynamically use this option to prevent
parity initialization for subsequent “non-power-on” reset conditions.

Implementation Details

This section describes the compile-time and runtime methods by which users can
control the bootstrap speed of their system.

Compile-time configuration

The compile-time configuration of the bootstrap is provided by a pre-defined macro
(BOOT_CONFIG) which is used to set the initial bit-field values of the bootstrap flags.
Users can redefine the macro for recompilation to create a new bootstrap
configuration. The new over-riding value of the macro should be established by
redefining the macro in the rom_config.h header file or as a macro definition
parameter in the compilation command.

The rom_config.h header file is one of the main files used to configure the
ModRom system. It contains many of the specific configuration details of the low-
level system. Here is an example of how a user can redefine the bootstrap
configuration of their system using the BOOT_CONFIG macro in the rom_config.h
header file:

#define BOOT_CONFIG (B_OKRAM + B_OKRcOM + B_QUICKVAL)

And here is an alternate example showing the default definition as a compile switch
in the compilation command in the makefile:

SPEC_COPTS = -dNEWINFO –dNOPARITYINIT –dBOOT_CONFIG=0x7

This redefinition of the BOOT_CONFIG macro would result in a bootstrap method
which would accept the RAM and ROM definitions as they are without
verification, and also validate modules solely on the correctness of their module
headers.

Chapter 3: Board-Specific Reference

35

Runtime Configuration

The default bootstrap configuration can be overridden at runtime by changing the
rinf->os->boot_config variable from either a low-level P2 module or from the
sysinit2() function of the sysinit.c file. The runtime code can query jumper
or other hardware settings to determine what user-defined bootstrap procedure
should be used. An example P2 module is shown below.

If the override is performed in the sysinit2() function, the effect is not realized
until after the low-level system memory searches have been performed. This means
that any runtime override of the default settings pertaining to the memory search
must be done from the code in the P2 module code.

#define NEWINFO

#include <rom.h>

#include <types.h>

#include <const.h>

#include <errno.h>

#include <romerrno.h>

#include <p2lib.h>

error_code p2start(Rominfo rinf, u_char *glbls)

{

/* if switch or jumper setting is set… */

if (switch_or_jumper == SET) {

/* force checking of ROM and RAM lists */

rinf->os->boot_config &= ~(B_OKROM+B_OKRAM);

}

return SUCCESS;

}

Enabling PCMCIA IDE Interrupts
Due to a problem with losing interrupts when using certain PCMCIA IDE cards
with the SuperH (SH7750) board, the default configuration of OS-9 has been set to
polled mode for accessing PCMCIA IDE type devices.

The following PCMCIA IDE cards are known to have problems with interrupts:

• the SanDisk PCMCIA PC CARD ATA 4MB card

• the SanDisk PCMCIA PC CARD ATA 20MB card

OS-9® for SuperH 7750SE01 Board Guide

36

The following PCMCIA IDE cards have not shown any problems with interrupts:

• the Viking PCMCIA PC CARD ATA 12MB card

• the EXP Disk Traveler HDG 1.4GB card

• the Maxtor Hard Card series

All of the above cards (including the SanDisk cards) will work with polled mode. If
you need to enable interrupts for use with your applications, you will need to follow
the steps outlined in Enabling PCMCIA IDE Interrupts on the SuperH.

Before You Begin

You need to test to see if your PCMCIA IDE card will work with PCMCIA
interrupts enabled. If the following sequence of three commands work, then you
can safely enable interrupts on your system.

$chd /mhc1

$save kernel

$ident kernel

Enabling PCMCIA IDE Interrupts on the SuperH

To enable interrupts on PCMCIA IDE devices the Microware Socket Services and
device descriptors must be updated.

The Microware PCMCIA Socket Services are included in a p2module called llcis
as well as in the pcmcia utility’s module. Both of these modules should be compiled
with interrupts enabled to use PCMCIA IDE interrupts.

Updating the llcis Module

Update the makefile for the llcis module by completing the following steps:

Step 1. Change to the LLCIS directory. The LLCIS directory is found in the following path:
MWOS\OS9000\SH4\PORTS\SH7750SE\ROM\LLCIS.
LLCIS contains a file named makefile.

Step 2. Using a text editor, open makefile.

Step 3. Remove the ‘#’ character from the following line:
SPEC_COPTS = -dSINGLE_SOCKET # -dUSE_IRQ

Step 4. Type os9make from the LLCIS directory to build a new llcis module.

If you are only creating a bootfile image, select llcis from the Bootfile
Options tab in the wizard to load the low-level Microware Socket Services.
When using this option, you do not need to re-create the flash coreboot
image.

Chapter 3: Board-Specific Reference

37

Updating the PCMCIA Utility

After you update the makefile for the llcis module, you need to update the
makefile for the PCMCIA utility. The path to the PCMCIA utility’s makefile is as
follows:

MWOS\OS9000\SH4\PORTS\SH7750SE\UTILS\PCMCIA\makefile.

Step 1. Change to the PCMCIA directory.

Step 2. Using a text editor, open the file named makefile.

Step 3. Remove the ‘#’ character from the following line:

Step 4. SPEC_COPTS = -dSINGLE_SOCKET -k # -dUSE_IRQ

Step 5. Type os9make from the PCMCIA directory to build a new pcmcia module.

Updating the RBF/PCF PCMCIA IDE Device Descriptors

After you update the modules llcis and pcmcia, you need to update the PCMCIA
IDE device descriptors. The PCMCIA IDE device descriptors are found in the
config.des file. The path to the config.des file is as follows:

MWOS\OS9000\SH4\PORTS\SH7750SE\RBF\RB1003\config.des

Step 1. Change to the RB1003 directory.

Step 2. Using a text editor, open the file named config.des.

Step 3. Find the following section of code in the file:

init dev_specific {

ds_idetype = IDE_TYPE_PCMCIA;

ds_polled = IDE_POLLED;

ds_altstat = HD_ALTSTAT;

ds_timeout = 30;

};

Step 4. Change IDE_POLLED to IDE_INTERRUPTS in the following line:

ds_polled = IDE_POLLED;

Step 5. Save your changes to the config.des file and change to the following directory:
MWOS\OS9000\SH4\PORTS\SH7750SE\RBF\RB1003\DESC

Step 6. Type os9make. This will build the RBF descriptors.

Step 7. You have now enabled OS-9 to use PCMCIA IDE interrupts with the SH7750SE.
You should now create a new build using the Configuration Wizard.

OS-9® for SuperH 7750SE01 Board Guide

38

39

A
Board-Specific Modules

This appendix provides a list of the SuperH hardware support devices and gives an
alphabetical listing of the coreboot and bootfile modules. The following sections are
included:

• SuperH Hardware Support Devices

• Low-Level System Modules List

• High-Level System Modules List

OS-9® for SuperH 7750SE01 Board Guide

40

SuperH Hardware Support Devices
The following sections provide a list of the SuperH hardware support devices,
including modules and descriptors; the modules and descriptors for each support
device are found in the following location:

MWOS\OS9000\SH4\PORTS\SH7750SE\CMDS\BOOTOBJS

PIC Support

Module

Not available

PCMCIA Support for IDE Type Devices

Module

rb1003

Descriptors

/hc1.h0 PCMCIA RBF type device, primary master partition #1 *

/hc1fmt PCMCIA RBF type device, primary master partition 1, format enabled *

/hcfmt PCMCIA RBF type device, primary master entire disk, format enabled *

/mhc1 PCMCIA PC type device, primary master partition 1

/mhc1.h0 PCMCIA PC type device, primary master partition 1, default device

/mhc1fmt PCMCIA PC type device, primary master, partition #1, format enabled

/mhcfmt PCMCIA PC file system type device, primary master entire disk, format
enabled

Super I/O Support for IDE Type Devices

Module

rb1003sio

Descriptors

/hcsio1.h0Super I/O RBF type device, partition #1 *

/hcsio1fmtSuper I/O RBF type device, primary master partition 1, format enabled
*

/hcsiofmtSuper I/O RBF type device, primary master entire disk, format enabled *

/mhcsio1 Super I/O PC file system type device, primary master partition 1

The Configuration Wizard does not support using a PCMCIA IDE card with RBF.
If an item above is marked with an “*”, it is assumed that the PC file system will
be used.

Appendix A: Board-Specific Modules

41

/mhcsio1.h0Super I/O PC file system type device, primary master partition 1,
default device

/mhcsio1fmtSuper I/O PC file system type device, primary master partition #1,
format enabled

/mhcsiofmtSuper I/O PC file system type device, primary master entire disk, format
enabled

Super I/O Support for PS/2 Type Devices

Module

sc8042k

Descriptor

/kxo keyboard descriptor

/m0 mouse descriptor

Super I/O Support for Parallel Port

Module

scp87303

Descriptor

/p printer descriptor

Real-Time Clock

Module

rtc7750

Power Management Extension

Module

pwrext

Ticker (System Clock) Support

Module

tk7750

Serial Support

Module

sc7750

OS-9® for SuperH 7750SE01 Board Guide

42

Descriptors /term /t1

t1 is assigned to the SCIF port of the 7750 internal UART. The connector is located
at the rear of the board near the Ethernet connector. It is labeled as CN2 SH7750
SCIF.

t1: serial port #1

Driver Name: sc7750

Default Baud Rate: 9600

Default Parity: None

Default Data Bits: 8

Software/Hardware/Auto handshaking is supported.

To use it: Select scif7750 p1 in the Configuration Wizard.

Module

scscish4

Descriptors /t2

t2 is assigned to the SCI port of the 7750 internal UART. The connector is located
on the HY7709PCHK-I/O expansion board. It is labeled as RS232 Ch1 CN3.

t2: serial port #2

Driver Name: scscish4

Default Baud Rate 9600

Default Parity: None

Default Data Bits: 8

To use it: Select sci7750 P1 in the Configuration Wizard.

Baud Rates

The following OS-9 baud rates are supported by the sc7750 and scscish4 drivers:

The following OS-9 baud rates are not supported by the sc7750 driver:

Module

sc16550

Table A-1. Supported SC7750, scscish4 Baud Rates

50 75 110 134.5 150 300
600 1200 1800 2000 2400 3600
4800 7200 9600 19200 38400

Table A-2. sc7750, scscish4 Baud Rates Not Supported

31250 56000 57600 64000 115200

Appendix A: Board-Specific Modules

43

Descriptors /term /t3

t3 is assigned to the SMC 37C935 16550 (compatible UART). The connector is
located on the side of the board near the Ethernet connector. It is labeled as CN3
COM1.

t3: serial port #3

Default Baud Rate: 9600

Default Parity: None

Default Data Bits: 8

To use it: Select 16550 p1 in the Configuration Wizard.

Module

sc16550

Descriptors /term /t4

t4 is assigned to the SMC 37C935 16550 (compatible UART). The connector for t4
is located on an expansion board.

t4: serial port #4

Default Baud Rate: 9600

Default Parity: None

Default Data Bits: 8

To use it: Select 16550 p2 in the Configuration Wizard.

Baud Rates

The following OS-9 baud rates are supported by the sc16550 driver:

The following OS-9 baud rates are not supported by the sc16550 driver:

RAM Disk Support

Module

ram

Table A-3. Supported sc16550 Baud Rates

50 75 110 134.5 150 300
600 1200 1800 2000 2400 3600
4800 7200 9600 19200 38400

Table A-4. sc16550 Baud Rates Not Supported

31250 56000 57600 64000 115200

OS-9® for SuperH 7750SE01 Board Guide

44

Descriptors

/r0 default size 512k *

/r0.dd

* The Configuration Wizard allows you to set the size of the RAM disk.

Optional Serial Support

Optional serial support using polled serial driver services via ROM driver is
available.

Module

scllio low-level serial driver

Descriptors

/term device descriptor for using the low-level console for high-level I/O

Init Modules

configurerself-configured init module created by Configuration Wizard

nodisk standard init module with no initial device

MAUI Hardware Support Modules

Module

gx_ygv618 Yamaha YGV618 graphic device driver

Descriptor

gfx Yamaha YGV618 graphics device descriptor

Module

gx_hd66420LCD HD66420 graphics device driver

This module is not currently supported.

Descriptor

gfx_lcd LCD HD66420 graphics device descriptor

This descriptor is not currently supported.

SPF Hardware Support Modules

Module

sphdlc HDLC framer driver

Appendix A: Board-Specific Modules

45

Descriptor

hdlc0 HDLC device descriptor

Module

spslip SLIP protocol driver

Descriptor

sps10 SLIP dd

Module

sp7750 Ethernet driver for the National DP83902 chip

Descriptor

spne0 DP83902 Ethernet device descriptor

Low-Level System Modules List
Table A-5 lists all of the coreboot modules available for the SH7750SE Reference
platform. The list is organized alphabetically. The modules are not placed in the
coreboot file in this order, and each module is not necessarily used in every build.

Table A-5. Coreboot Image Modules

Module Description
bootsys This is a module that provides booter services.
cnfgdata This is the standard cnfgdata module (data module

containing configuration parameters).
cnfgdata_
configurer

This is a cnfgdata module (data module containing
configuration parameters) created by Configuration
Wizard.

cnfgfunc This is a module that retrieves configuration parameters
from the cnfgdata module.

commcnfg This is a module that retrieves the name of the low-level
auxiliary communication port driver from the cnfgdata
module.

conscnfg This is a module that retrieves the name of the low-level
console driver from the cnfgdata module.

console This is a provides high-level I/O hooks into low-level
console serial driver.

dbgentry This is a module that provides hooks to low-level
debugger server.

dbgserv This is a debugger server module.
excption This is a low-level exception services module.
fdman This is the RBF (Random Block File) floppy and IDE drive

manager. (RBF is the native OS-9 file system.)

OS-9® for SuperH 7750SE01 Board Guide

46

flshcach This is a module that provides the low-level cache flushing
routine

ide This is a low-level IDE booter module.
initext This is a user-customizable system initialization module.
ioscifsh7750 This is a low-level serial driver for SH7750 SCIF serial port.
ioscish7750 This is a low-level serial driver for SH7750 SCI serial ports.
io16550 This is a low-level driver for 16550-compatible UART

serial ports.
ll83902 This is a low-level Ethernet driver module.
llbootp This is a low-level BOOTP booter module.
llcis This is a low-level PCMCIA configuration information

service module.
llip This is a low-level IP protocol module.
llkermit This is a low-level Kermit protocol module.
llslip This is a low-level SLIP protocol module.
lltcp This is a low-level TCP protocol module.
lludp This is a low-level UDP protocol module.
notify This is a module that coordinates use of low-level I/O

drivers in system and user-state debugging.
override This is a target-independent booter module that enables

overriding of the autobooter. If the space bar is pressed
within three seconds after booting the target, a boot menu
is displayed. Otherwise, booting proceeds with the first
autobooter.

parser This is a parser is called by the booters to parse the key
fields from the cnfgdata module and the user input (user
parameter fields) during system boot.

pcman This is a PCF (PC File) floppy and IDE drive manager.
portmenu This retrieves a list of configured booter names from the

ROM cnfgdata module.
protoman This is a low-level protocol manager module.
restart This is a booter module that restarts boot process.
romboot This is a booter module that locates the OS-9 bootfile

stored in ROM, FLASH, or NVRAM.
rombreak This is a booter module that enables the break option in

the boot menu (used to enter the debugger module).
RomBug This is a ROM monitor debugger client module.
romcore This is a bootstrap code for Hawk IDE.
sh4timer This is a simulated low-level timer module.
sndp This is a system state debug client module.
usedebug This is a debugger configuration module.

Table A-5. Coreboot Image Modules (Continued)

Module Description

Appendix A: Board-Specific Modules

47

High-Level System Modules List
Table A-6 lists all of the bootfile modules available for Microware OS-9 for
SuperH. The list is organized alphabetically. The modules are not placed in the
bootfile in this order, and each module is not necessarily used in every build.

Table A-6. Bootfile Image Modules

Module, Device Driver, File
Manager, or Descriptor Description

abort This abort the switch handler.
activ This is a module containing the activ system

command. activ activates processes that were stopped
by suspend.

alias This is a utility that assigns an alternate name to a
device pathlist.

aloha This is a MAUI demonstration program that draws text
and receives input.

arp This is the arp utility displays and modifies the Internet-
to-Ethernet address translation tables used by the
address resolution protocol (ARP).

attr This is a utility that examines or changes the security
attributes (<permissions>) of the specified file(s).

backup This is the backup utility copies all data from one
device to another.

bfed This is a screen-oriented binary file editor utility.
binex This utility converts binary files to S-record files.
bootpd This is a module that is the server daemon handling

client BOOTP requests.
bootgen This is a utility that builds and links a bootstrap file.
break This is a module containing the break basic system

command. break executes a system call that stops the
operating system and all user processes and returns
control to the ROM debugger.

build This is a utility that builds a text file from standard input.
cache This is a module that enables the data cache.
cdb This is a default MAUI Configuration Description Block

for Yamaha YGV618 daughter board
cdb_lcd This is a MAUI Configuration Description Block for LCD

HD66420 daughter board.
This item is not currently supported.

cfp This is the utility that creates a temporary procedure file
in the current data directory and then invokes the shell
to execute it.

chown This is the utility that changes the owner ID of a file or
directory to the owner ID specified.

OS-9® for SuperH 7750SE01 Board Guide

48

cmp This is the utility that opens two files and performs a
comparison of the binary values of the corresponding
data bytes of the files.

code This is the utility that prints the input character followed
by the hex value of the input character.

compress This is the utility that reads the specified text file(s),
converts it to a compressed form, and writes the
compressed text file to standard output or to an optional
output file.

configurer This is the OS-9 initialization module.
copy This is the utility that copies data from one file to

another file.
csl This is the C shared library module.
count This is the utility that counts the number of lines in a file.

Options include character count and word count.
date This is the module containing the date basic system

command. date displays the current system date and
time.

dcheck This is the utility that detects the integrity of the directory
and file linkages of a disk device.

default.fnt This is a module containing MAUI default fonts. Used
by the hello and aloha demo programs.

deiniz This is the utility that removes a device from the system
device table (de-initializes the device).

del This is the utility that deletes the specified files.
deldir This is the utility that deletes the specified data directory

along with the files and subdirectories contained within
it.

delmdir This is the utility that deletes existing module directories.
devs This is the utility that displays a list of all of the initialized

devices in the system.
dhcp This is the DHCP client negotiation utility.
dir This is the utility that displays a formatted list of file

names from the specified directory.
diskcache This is the utility that enables, disables, or displays the

status of a disk cache.
DPSplit This is the utility that is used to split and rejoin the DPIO

descriptor.
dsave This is the utility that copies a directory and its contents

to another location.
dump This produces a formatted display of the physical data

contents of a mass storage file.

Table A-6. Bootfile Image Modules (Continued)

Module, Device Driver, File
Manager, or Descriptor Description

Appendix A: Board-Specific Modules

49

echo This is the utility that echoes its parameter to the
standard output path.

EditMod This is the utility that creates, displays, and edits
modules.

edt This is the utility that is a line-oriented text editor that
allows you to create and edit source files.

enet This is the descriptor for the generic ethernet driver
(spenet)

events This is the utility that displays a list of the active events
on the system and information about each event.

exbin This is the utility that converts S-record files to binary.
expand This is the utility that restores compressed files to their

original form. It is the complement command of the
compress utility.

exportfs This is the utility that indicates to the NFS server system
which devices can be mounted by remote hosts.

fcopy This is a MAUI demonstration program that blits
(copies) bitmap graphics to the screen.

fdisk This is the utility that makes RBF (Random Block File
Manager) disk partitions (not required for PCF IDE PC
Cards).

fdraw This is a MAUI demonstration program that draws
squares to the screen.

fixmod This is the utility that verifies and updates module parity
and module CRC.

format This is the utility that initializes the RBF (Random Block
File Manager) file structure on a disk device (not
required for PCF IDE PC Cards).

fpuexcpt This is the SH-4 FPU exception handler.
free This is the utility that displays free space remaining on a

mass-storage device
frestore This is the utility that restores a directory structure from

multiple volumes of tape or disk media.
fsave This is the utility that performs an incremental backup

of a directory structure to tape(s) or disk(s).
ftp This is the utility that contains a user interface to the file

transfer protocol (FTP) server deamon process.
ftpd This is contains the incoming FTP daemon process.
ftpdc This is the incoming communications handler for FTP.
fun.c8 This is the image module for fcopy.
gfx This is the default MAUI graphics descriptor for the

YGV618 daughter board.

Table A-6. Bootfile Image Modules (Continued)

Module, Device Driver, File
Manager, or Descriptor Description

OS-9® for SuperH 7750SE01 Board Guide

50

gfx_lcd This is an LCD screen MAUI graphics descriptor for LCD
HD66820 daughter board.
This item is not currently supported.

grep This is the utility that searches the input files for lines
matching an expression.

gx_hd66420 This is an LCD MAUI graphics driver module.
This item is not currently supported.

gx_ygv618 This is the default MAUI graphics driver module for
YGV618 daughter board.

gxdevcap This is the utility that displays device capabilities
information about each graphic device on the system.

hc1.h0 This is a PCMCIA IDE device descriptor hc1 as the
startup device (/h0).

hc1fmt This is a hard disk device descriptor (partition 1) with
formatting enabled.

hcfmt This is a hard disk device descriptor (entire disk) with
formatting enabled.

hcsiofmt This is a super I/O RBF type device, primary master
entire disk, format enabled.*

hcsio1fmt This is a super I/O RBF type device, primary master
partition 1, format enabled.*

hcsio1.ho This is a super I/O RBF type device,
partition #1. *

hdlc0 This is a descriptor module for the HDLC framer driver
(sphdlc)

hello This is a MAUI demonstration program that draws text
to the screen.

help This is a module containing the help command. help
displays information about a specific utility.

hlproto This is a protoman file manager module for user-state
connections.

hostname This is the utility that displays or sets internet name of
host.

idbdump This is the utility that displays a formatted listing of the
entries in the internet database.

idbgen This is the utility that generates network database
modules.

ident This is the utility that displays module header
information and the additional information that follows
the header from OS-9 memory modules.

ifconfig This is the utility that configures network interface
settings.

Table A-6. Bootfile Image Modules (Continued)

Module, Device Driver, File
Manager, or Descriptor Description

Appendix A: Board-Specific Modules

51

inetd This is the module for the master internet daemon
process.

inetdb This is a LAN configuration data module.
inetdb2 This is a LAN configuration data module.
iniz This is the utility that initializes and links the device to

the system.
inp This is a MAUI input demonstration program.
ioman This file manager handles all I/O requests.
ip0 This is a descriptor module for the SPF IP protocol driver

(spip).
ipcp0 This is a descriptor module for a PPP client driver

(spipcp).
ipstart This module initializes the IP stack.
irqs This is the utility that displays a list of the system’s IRQ

polling table.
jview This is a MAUI demo application that displays JPEG

images.
kermit This utility is an OS-9 implementation of the kermit

protocol.
kernel This is the OS-9 kernel.
kx0 This is the keyboard descriptor.
link This is the utility that increases the link count of the

specified memory module.
list This is the utility that displays text lines from the

specified path or paths (typically a file or files) to
standard output.

llcis This is a low-level PCMCIA configuration information
service module.

ln This is the utility that creates a directory entry (a hard
link) that refers to a file.

load This is the utility that loads one or more specified
modules into memory.

login This is the utility that provides login security in multi-user
systems.

lcp0 This is a descriptor module for a LAN PPP client driver
(splcp).

m0 This is the mouse descriptor (PS/2).
m0_t3 This is the mouse descriptor (serial).
makdir This is the utility that creates a new directory.
make This is the utility that rebuilds a file if any of its sources

have been updated.

Table A-6. Bootfile Image Modules (Continued)

Module, Device Driver, File
Manager, or Descriptor Description

OS-9® for SuperH 7750SE01 Board Guide

52

makmdir This is the utility that creates a new module directory.
maui This is a shared library module (contains the MAUI API).
maui_inp This is an input daemon for MAUI applications.
maui_win This is a window daemon for MAUI applications.
mbinstall_csl This is the utility that installs the user-installed system

call and allocates memory for use as the system mbuf
pool.

mdattr This is the utility that changes the security (access)
permissions of a module directory.

mdir This is a module containing the mdir basic system
command. mdir displays the present module names in
the module directory.

merge This is the utility that copies the specified multiple input
files to standard output.

mfm This is the MAUI file manager.
mfree This is a module containing the mfree basic system

command. mfree displays a list of areas in memory not
presently in use and available for assignment.

mhc1 This is a device descriptor for PCMCIA IDE drive 0,
partition 1 (for socket 0).

mhc1.h0 This descriptor acts as a startup device (/h0).
mount This is the utility that indicates to OS-9 that a file system

is to be associated with a local device and accessed via
NFS.

mountd This is the daemon that answers file system mount
requests.

mp_bsptr This is a bus mouse serial protocol module.
mp_kybrd This is a MAUI Input Process Protocol Module for

generic VT100 type keyboard input.
mp_msptr This is a MAUI Input Process Protocol Module for a two-

button serial mouse.
mp_xtkbd This is an XT scan code keyboard protocol module.
msgrdr This is a message reading MAUI demonstration

program.
msgwrtr This is a message writing MAUI demonstration program.
mshell This acts as an expanded command interpreter.
mt_maui This is a shared library module (contains the MAUI API).
mv This is the utility that moves a file or directory from one

directory into another.
mwlogo.c8 This is an image module for fcopy.

Table A-6. Bootfile Image Modules (Continued)

Module, Device Driver, File
Manager, or Descriptor Description

Appendix A: Board-Specific Modules

53

ndbmod This is the utility that is used to dynamically update the
internet data module.

ndpio This is a user-state remote debugger module for use
with Hawk.

netdb_dns This is a LAN trap handler module for DNS name
resolution.

netstat This is the utility that reports network information.
nfs This is the NFS file manager.
nfs_devices This is an NFS device descriptor.
nfsc This is an NFS client auxiliary process.
nfsd This is an NFS daemon.
nfsnul This is an NFS device driver.
nfsstat This is the utility that displays statistics about NFS and

RPC.
nil This is a device descriptor.
null This is a device driver.
on This is the utility that is used to execute a remote

command.
p0 This is a printer descriptor.
p2init This utility installs OS-9 P2 modules.
park This is the utility that parks hard drive heads.
pcf This is the PC File manager (MS-DOS devices)
pcmcia This is the PCMCIA (PC Card) socket control manager

command that initializes the PCMCIA socket.
pd This is the utility that shows the path from the root

directory to the current data directory.
pflash This is the utility that clears and programs flash memory

on the target.
pflashcore This is a data module that contains a coreboot image. It

is used when PF-CORE is selected in the Wizard.
pflashrom This is a data module that contains a ROM image. Used

when PF-ROM is selected in the Wizard.
ping This module sends an ICMP echo request to a specified

host and waits for a reply.
ping6 This module sends an ICMPv6 echo request to a

specified host and waits for a reply.
pipe This is a pipe descriptor.
pipeman This is the file manager for pipes.
pjruntime This is Microware’s PersonalJava Solution runtime

(available only after Microware’s PersonalJava Solution
has been installed).

Table A-6. Bootfile Image Modules (Continued)

Module, Device Driver, File
Manager, or Descriptor Description

OS-9® for SuperH 7750SE01 Board Guide

54

pk This is a module containing the descriptor for the
pseudo keyboard.

pkdvr This is a module containing the pseudo keyboard driver.
pkman This is a module containing the file manager for the

pseudo keyboard.
portmap This is the daemon that converts RPC program numbers

into DARPA protocol port numbers.
pppauth This is the utility that creates an authentication module

for splcp.
pppd This is a module containing the PPP daemon.
pr This is the utility that produces a formatted listing of one

or more files to standard output.
printenv This is the utility that prints any defined environment

variables to standard output.
procs This shows the current process list.
pwrext This is the power management extension module.
pwrman This is a power management module.
pwrplcy This is a power management module (contains platform

specific code).
qsort This is the utility that performs a quicksort on any

number of lines up to the maximum capacity of
memory.

r0 This is a device descriptor for the Random Block File
(RBF) RAM disk.

r0.dd This is a device descriptor for the Random Block File
(RBF) RAM disk as the default device.

ram This is a device driver for a RAM disk.
raw0 This is a descriptor for the SPF RAW protocol driver

(spraw).
rb1003 This is a device driver for PCMCIA IDE hard drives.
rb1003sio This is a device driver for Super I/O IDE hard drives.
rbf This is the Random Block File (RBF) manager (OS-9 file

system devices).
rename This is the utility that assigns a new name to the mass

storage file specified in the pathlist.
RomBug This is the RomBug debugger client module.
romsplit This is the utility that splits the specified input file into

two or four files.
route This updates and prints the current routing table.
route0 This is a descriptor module for the SPF routing domain

protocol driver (sproute)

Table A-6. Bootfile Image Modules (Continued)

Module, Device Driver, File
Manager, or Descriptor Description

Appendix A: Board-Specific Modules

55

route6d The route6d is a routing daemon; it supports RIP over
IPv6.

routed This is a network routing daemon used to maintain
routing tables.

rpcdb This is an NFS/RPC database module.
rpcdbgen This is the utility that generates an OS-9 data module

from host information supplied in the rpcdbgen call.
rpcdump This is the utility that displays information in the RPC

database module rpcdb.
rpcgen This is the utility that generates source code for

implementing an RPC application.
rpcinfo This is the utility that calls an RPC server in an attempt

to find a single version or all versions of a specific
program.

rpr This copies a file to the remote system and prints it.
rstatd This daemon returns statistics obtained from the kernel.

rstatd is called by rup.
rtc7750 This is the real-time clock module.
rtsol Utility to Send ICMPv6 Router Solicitation message

to the specified interfaces
rup This displays a system status for the specified host.
rusers This displays a list of users logged into the specified

host.
rusersd This returns a list of users on the system.
save This is the utility that copies the specified module(s)

from memory into the current data directory as files.
sc8042k This is a PS/2 keyboard and mouse driver.
sc16550 This is a serial driver for the 16550 serial ports.
sc7750 This is a serial driver for the SH7750 internal UART.
scf This is the file manager for Sequential Character File

(SCF) devices.
scp87303 This is a printer driver.
scscish4 This is a serial driver for the sci 7750 internal UART.
setime This is a module containing the setime basic system

command. setime sets the system date and time.
sfont This is a MAUI demo application that prints information

about a specified UCM font in memory.
shell This is a command interpreter.
showimg This is a MAUI demo application that displays a

specified IFF image file for about 10 seconds.

Table A-6. Bootfile Image Modules (Continued)

Module, Device Driver, File
Manager, or Descriptor Description

OS-9® for SuperH 7750SE01 Board Guide

56

showmount This is the utility that displays the remote hosts and the
local OS-9 devices mounted to the OS-9 NFS server.

sleep This is the utility that puts a running process to sleep for
a specified amount of time.

sndp This is a system-state debugging client.
sp7750 This is a driver for NS DP835902 Ethernet controller.
spne0 This is a descriptor for the Ethernet driver sp7750.
spenet This is a generic ethernet driver module.
spf This is a module containing the SPF (Stackable Protocol

File) manager.
spfndpd This is a user-state remote debugger module (network

debugger protocol server daemon).
spfndpdc This is a user-state remote debugger module (network

debugger protocol server connection handler).
spfnppd This is the Hawk Profiler server daemon module.
spfnppdc This is the Hawk Profiler server connection handler.
sphdlc This is a HDLC framer driver module that is part of the

PPP stack.
spip This is a module containing the SPF IP protocol driver.
spipcp This is the module that implements the Network Control

Protocol for IP with the PPP stack.
splcp This is the module that implements the LCP protocol

within the PPP stack.
spraw This is a module containing the SPF RAW protocol driver

(standard raw socket interface into the IP layer).
spray This is sends a one-way stream of packets to the host

using RPC and reports how many were received by the
host and the transfer rate.

sprayd This records the packets sent by the spray RPC client.
sproute This is a module containing the SPF routing domain

protocol driver
spsl0 This is a module containing the descriptor for the SLIP

protocol driver (spslip)
spslip This is a module containing the SLIP protocol driver
sptcp This is a module containing the SPF TCP protocol driver
spudp This is a module containing the SPF UDP protocol driver
ssm This is a MMU module that provides processes with

address space protection
su This is the utility that allows you to start a new shell with

a different user ID.

Table A-6. Bootfile Image Modules (Continued)

Module, Device Driver, File
Manager, or Descriptor Description

Appendix A: Board-Specific Modules

57

suspend This is the utility that de-activates or suspends an active
process.

sysid This is the utility that prints out the identification
information of the system.

sysif This is a power management module that provides a
system specific interface to hardware components that
do not have a device driver interface to OS-9.

sysmbuf This is a module that controls the allocation and
deallocation of mbufs from the system mbuf free pool.

t1 This is a device descriptor for the SCIF port of the 7750
internal UART.

t1_auto This is a device descriptor for the SCIF port of the 7750
internal UART (automatic CTS/RTS).

t1_hw This is a device descriptor for the SCIF port of the 7750
internal UART1 (hardware flow control).

t2 This is a device descriptor for the SCI port of the 7750
internal UART.

t3 This is a device descriptor for the 16550-compatible
port 1.

t4 This is a device descriptor for the 16550-compatible
port 2.

tape This is the utility that provides a means to access a tape
controller from a terminal.

tapegen This is the utility that creates a “bootable” tape.
tar This is the utility that archives multiple files or directories

onto a magnetic tape or file.
tcp0 This is a descriptor for the SPF TCP protocol driver

(sptcp).
tee This utility is a filter that copies all text lines from its

standard input to its standard output as well as any
specified path lists.

telnet This is the utility that allows the user to execute
commands on a remote host.

telnetd This is the telnet server daemon process.
telnetdc This is the telnet server connection handler.
term1 This is a device descriptor for using the console through

the 7750 SCIF port.
term1_auto This is a device descriptor for using the console through

the 7750 SCIF port (automatic CTS/RTS).
term1_hw This is a device descriptor for using the console through

the 7750 SCIF port (hardware flow control).

Table A-6. Bootfile Image Modules (Continued)

Module, Device Driver, File
Manager, or Descriptor Description

OS-9® for SuperH 7750SE01 Board Guide

58

term2 This is a device descriptor for using the console through
the 7750 SCI port.

term3 This is a device descriptor for using the console through
the 16550-compatible port 1.

term4 This is a device descriptor for using the console through
the 16550-compatible port 2.

tftpd This is the TFTP Server Daemon.
tftpdc This is the TFTP Server Connection Handler.
tk7750 This is a system clock module.
tmode This is a module containing the tmode basic system

command. tmode displays or changes the operating
parameters for an I/O path.

touch This is a utility that updates the last modification date of
a file.

tr This is a utility that transliterates characters from string
1 into a corresponding character from string 2.

transh4 This is the address translation module for SH7750.
travel.c8 This is an image module for fdraw
tsmon This is the utility that supervises idle terminals and starts

the login utility in a timesharing application.
udp0 This is a descriptor module for the SPF UDP protocol

driver (spudp).
umacs This is a screen-oriented text editor used to create and

modify text files.
undel This utility allows you to copy the data of the deleted file

to a new file on another device.
undpd This is a low-level user-state remote debugger module

(network debugger protocol server daemon)
undpdc This is a low-level user-state remote debugger module

(network debugger protocol server connection handler)
unlink This utility reduces the specified modules link count by

one. When the link count reaches zero, OS-9 will
remove the module from memory.

vectsh7750 This is a vector module for SH7750.
windraw This is a window based block drawing MAUI

demonstration program.
winink This is a window based pen drawing MAUI

demonstration program.
winmgr This is the MAUI demo Window Manager.
xmode This utility displays or changes the default operating

parameters for a device.

Table A-6. Bootfile Image Modules (Continued)

Module, Device Driver, File
Manager, or Descriptor Description

	OS-9® for SuperH 7750SE01 Board Guide
	Contents
	Installing and Configuring OS-9® Chapter 1
	Development Environment Overview
	Requirements and Compatibility
	Host Hardware Requirements (PC Compatible)
	Host Software Requirements (PC Compatible)
	Target Hardware Requirements

	Target Hardware Setup
	Settings
	Jumpers
	Switches

	Installing the EPROM Devices

	Connecting the Target to the Host
	Establishing a Serial Connection
	Set Up HyperTerminal for Windows

	Building the OS-9 Bootfile Image
	Starting the Configuration Wizard
	Building the Bootfile Image

	Creating a Startup File

	Optional Procedures Chapter 2
	Placing a Coreboot Image in Flash Memory
	Building the Coreboot Image
	Embedding the Coreboot Image in a Bootfile
	Writing the Coreboot Image into Flash Memory

	Placing a ROM Image into Flash Memory
	Embedding the ROM Image in a Bootfile

	Programming the ROM Image into FLASH Memory
	Creating a Coreboot Image with an EPROM Programmer
	Making a ROM Image with an EPROM Programmer
	Compressing the Bootfile Image

	Board-Specific Reference Chapter 3
	The Fastboot Enhancement
	Overview
	Implementation Overview
	B_QUICKVAL
	B_OKRAM
	B_OKROM
	B_1STINIT
	B_NOIRQMASK
	B_NOPARITY

	Implementation Details
	Compile-time configuration
	Runtime Configuration

	Enabling PCMCIA IDE Interrupts
	Before You Begin
	Enabling PCMCIA IDE Interrupts on the SuperH
	Updating the llcis Module
	Updating the PCMCIA Utility
	Updating the RBF/PCF PCMCIA IDE Device Descriptors

	Appendix A Board-Specific Modules
	SuperH Hardware Support Devices
	PIC Support
	Module

	PCMCIA Support for IDE Type Devices
	Module
	Descriptors

	Super I/O Support for IDE Type Devices
	Module
	Descriptors

	Super I/O Support for PS/2 Type Devices
	Module
	Descriptor

	Super I/O Support for Parallel Port
	Module
	Descriptor

	Real-Time Clock
	Module

	Power Management Extension
	Module

	Ticker (System Clock) Support
	Module

	Serial Support
	Module
	Descriptors /term /t1
	Descriptors /t2
	Baud Rates
	Module
	Descriptors /term /t3
	Module
	Descriptors /term /t4
	Baud Rates

	RAM Disk Support
	Module
	Descriptors

	Optional Serial Support
	Module
	Descriptors

	Init Modules
	MAUI Hardware Support Modules
	Module
	Descriptor
	Module
	Descriptor

	SPF Hardware Support Modules
	Module
	Descriptor
	Module
	Descriptor
	Module
	Descriptor

	Low-Level System Modules List
	High-Level System Modules List

