
w w w. ra d i sy s . co m
Revision A • July 2006

SoftStax® Porting Guide

Version 4.7

July 2006
Copyright ©2006 by RadiSys Corporation

All rights reserved.
EPC and RadiSys are registered trademarks of RadiSys Corporation. ASM, Brahma, DAI, DAQ, MultiPro, SAIB, Spirit, and ValuePro are
trademarks of RadiSys Corporation.
DAVID, MAUI, OS-9, OS-9000, and SoftStax are registered trademarks of RadiSys Corporation. FasTrak, Hawk, and UpLink are
trademarks of RadiSys Corporation.
† All other trademarks, registered trademarks, service marks, and trade names are the property of their respective owners.

Copyright and publication information

This manual reflects version 4.7 of SoftStax.
Reproduction of this document, in part or whole, by any means,
electrical, mechanical, magnetic, optical, chemical, manual, or
otherwise is prohibited, without written permission from RadiSys
Microware Communications Software Division, Inc.

Disclaimer

The information contained herein is believed to be accurate as of
the date of publication. However, RadiSys Corporation will not be
liable for any damages including indirect or consequential, from
use of the OS-9 operating system, Microware-provided software,
or reliance on the accuracy of this documentation. The
information contained herein is subject to change without notice.

Reproduction notice

The software described in this document is intended to
be used on a single computer system. RadiSys
Corporation expressly prohibits any reproduction of the
software on tape, disk, or any other medium except for
backup purposes. Distribution of this software, in part
or whole, to any other party or on any other system
may constitute copyright infringements and
misappropriation of trade secrets and confidential
processes which are the property of RadiSys
Corporation and/or other parties. Unauthorized
distribution of software may cause damages far in
excess of the value of the copies involved.

3

Contents

Chapter 1: Getting Started
SoftStax Overview .. 10.

OS-9 Environment and I/O Capabilities ... 10.

Available I/O Services ... 14.

Service Calls ... 14.

Porting.. 15.

Porting OS-9 .. 15.

Porting Drivers ... 15.

Creating Boot Files ... 16.

Porting SoftStax.. 16.

Sample Application Source Files ... 16.

Example 1: Connection Oriented Example .. 17.

Example 2: Bidirectional I/O through os_lib.l Example ... 17.

Example 3: Loopback test.. 17.

SoftStax Architecture .. 17.

SRC Directory ... 17.

OS9 Directory.. 17.

OS9000 Directory.. 17.

Source File Directory Structure .. 18.

Chapter 2: Creating SoftStax Drivers
The SoftStax Driver .. 20.

Driver Conventions .. 20.

Driver Names .. 20.

Device Descriptor Names... 20.

Driver Data Structures .. 20.

Driver Static Storage .. 21.

Logical Unit Static Storage ... 22.

Path Descriptor .. 23.

Pushing and Popping Drivers to Paths .. 24.

Sequence of Events when Pushing a Protocol Driver .. 25.

Sequence of Events when Popping a Protocol Driver .. 26.

Two Paths Open to One Driver ... 27.

Logical Units... 29.

Driver Entry Points ... 30.

dr_iniz() ... 30.

dr_term().. 31.

dr_getstat() ... 31.

SPF_GS_UPDATE.. 31.

SPF_GS_PROTID .. 32.

dr_setstat() ... 32.

SPF_SS_OPEN ... 32.

SoftStax® Porting Guide

4

SPF_SS_CLOSE ... 32.

SPF_SS_PUSH.. 32.

SPF_SS_POP .. 33.

ITE_SET_CONN... 33.

dr_downdata() ... 33.

dr_updata() .. 33.

Interrupt Service Routines... 33.

Driver Interrupt Service Routine Conventions.. 34.

Writing and Installing the Interrupt Service Routine .. 34.

Defining a Macro as an Interrupt Service Routine ... 34.

Installing the ISR.. 34.

OS-9 Interrupt Service Routine Glue Code... 35.

Driver Callup/Calldown Macros... 36.

FMCALLUP_TIMER_RESTART... 36.

FMCALLUP_TIMER_START ... 37.

FMCALLUP_TIMER_STOP.. 37.

SMCALL_DNDATA() ... 37.

SMCALL_UPDATA()... 37.

SMCALL_GS() .. 37.

SMCALL_SS() ... 37.

DR_FMCALLUP_PKT() .. 37.

DR_FMCALLUP_CLOSE() ... 37.

DR_FMCALLUP_NTFY() ... 37.

DR_FMCALLUP_UPDATE()... 37.

Outgoing Data Processing .. 37.

Incoming Data Processing .. 38.

Driver Data Structures (spf.h) ... 40.

spf_popts ...42
spf_desc...46
spf_drstat ..47
spf_lustat ...49

ITEM Support .. 52.

item_pvt.h .. 52.

Notification List ... 52.

item.h... 53.

device_type..54
addr_type ..56
notify_type ..58

Notification via Signals.. 61.

Notification via Events .. 61.

Notification Extensions ... 61.

SoftStax Working Environment .. 61.

Defs Files.. 61.

Driver Source Files ... 61.

defs.h ... 61.

SPF_DRSTAT, SPF_LUSTAT, SPF_PPSTAT definitions... 61.

SPF_LUSTAT_INIT definitions .. 62.

history.h... 62.

proto.h... 63.

Contents

5

main.c.. 63.

entry.c .. 63.

misc.c... 63.

Makefiles ... 63.

Hardware Driver makefile Descriptors .. 64.

Protocol Drivers makefile Descriptors.. 64.

MON Directory ... 64.

Making a Driver using the SPPROTO Template... 64.

Creating Device Descriptors ... 65.

Makefile Summary.. 66.

spfdrvr.mak.. 66.

spfdesc.mak.. 66.

spf_desc.h... 66.

SoftStax Support Facilities for the Driver.. 66.

Libraries... 66.

mbuf Library (mbuf.l).. 67.

Timer Service Library (sptimer.l) .. 67.

timer_start()... 68.

timer_restart().. 68.

timer_stop() ... 68.

Per Path Storage Library (ppstat.l) ... 68.

Debugging Library (dbg_mod.l)... 68.

Flow Control.. 68.

Driver Considerations... 69.

Hardware Drivers .. 69.

High-level Data Link Control (HDLC) Controllers .. 69.

...
ATM Drivers.. 69.

Data Link Layer Driver Considerations.. 69.

Hold-on-Close (HOC).. 70.

Network Layer Drivers .. 70.

ITE_DIAL.. 70.

ITE_HANGUP... 70.

..
ITE_ANSWER... 70.

Additional Hold-on-Close .. 71.

HOC Scenarios .. 71.

Scenario #1 .. 71.

Scenario #2 .. 73.

Scenario #3 .. 73.

Out-of-Band Protocol Considerations with ITEM.. 74.

In-Band Configuration of Out-of-Band Connections ... 74.

ib_cfg_pb...76
ITE_RESOURCE_LIST.. 78.

ITE_IBRES_CFG ... 78.

Profiles for out-of-band connectivity.. 79.

Profile Implementation at the Driver Level .. 79.

bri_profile ...80
Sample xxx_pr.h .. 81.

SoftStax® Porting Guide

6

Additions to defs.h... 81.

Profile API calls ... 82.

Chapter 3: SPPROTO Driver
SoftStax Driver Overview: spproto ... 84.

defs.h .. 84.

history.h ... 85.

proto.h.. 86.

main.c... 86.

OS Allocated Memory Available for Driver Use ... 86.

Allocation Example ... 87.

Allocating Per Path Storage for the Driver.. 88.

Allocation Example ... 89.

entry.c... 90.

dr_iniz() ... 90.

dr_term().. 90.

dr_getstat() ... 91.

SPF_GS_DEVENTRY .. 91.

SPF_GS_PROTID .. 91.

SPF_SS_UPDATE... 91.

stk_txsize Parameter .. 92.

stk_txoffset Parameter ... 92.

stk_txtrailer Parameter .. 92.

stk_ioenabled Parameter .. 93.

Unknown Codes .. 93.

dr_setstat() ... 93.

Setstat Codes That Must be Supported by All Drivers .. 94.

SPF_SS_OPEN ... 94.

SPF_SS_CLOSE ... 94.

SPF_SS_PUSH.. 94.

SPF_SS_POP .. 94.

Codes Implemented Only by Drivers With Flow Control Ability.. 95.

SPF_SS_FLOWOFF / SPF_SS_FLOWON... 95.

Codes Implemented Only by Network Layer Protocol Drivers ... 95.

ITE_DIAL.. 95.

ITE_ANSWER... 95.

ITE_HANGUP... 96.

ITE_FEHANGUP_ASGN / ITE_FEHANGUP_RMV ... 96.

ITE_RCVR_ASGN / ITE_RCVR_RMV... 96.

Unknown Codes .. 96.

dr_updata() .. 97.

SPF_FMCALLUP_PKT / SMCALL_UPDATA.. 97.

dr_downdata() ... 97.

Driver Interrupt Service Routine Conventions.. 98.

Writing and Installing the Interrupt Service Routine (ISR) ... 98.

Defining a Macro as an Interrupt Service Routine ... 99.

Installing the ISR ... 99.

OS-9 Interrupt Service Routine Glue Code .. 99.

Data Transmission Conventions .. 100.

Data Reception Conventions ... 101.

Contents

7

Chapter 4: SPLOOP Driver
Overview .. 104.

Addressing .. 104.

Restrictions... 105.

Chapter 5: sp8530 Device Driver
Overview .. 108.

sp8530 Entry Points ... 109.

dr_iniz() ... 109.

dr_term() ... 109.

dr_getstat() .. 109.

dr_setstat()... 109.

dr_downdata() ... 109.

dr_updata().. 110.

Z85C30 ISR ... 110.

Transmit Interrupts .. 110.

Transmit Buffer Empty .. 110.

Receive Interrupts .. 110.

Receive Character Available... 110.

End of Frame (SDLC) .. 110.

External/Status interrupts ... 111.

TxUnderrun/EOM ... 111.

Break/Abort ... 111.

Chapter 6: sp82525 Driver
Overview .. 114.

Data Reception and Transmission Characteristics .. 114.

Default Descriptor Values... 114.

ITEM Addressing ... 114.

Other Default Settings.. 114.

Considerations for Other Drivers ... 114.

Chapter 7: Using DPIO
Utilities ... 116.

chtype..117
rm_vsect ..119

DPIO Libraries ... 120.

System-state Libraries... 120.

conv_lib.l ... 120.

cpu.l... 121.

lock.l.. 121.

Compiling... 121.

The File Manager.. 122.

Example: Test File Manager... 123.

Example: Makefile for OS-9 (for 68K) Target Processor .. 124.

Example: Makefile for OS-9 Target Processor.. 125.

Device Driver.. 125.

Example: Test File Manager Device Driver .. 126.

Example: Makefile for OS-9 (for 68K) Target Processor .. 127.

Example: Makefile for OS-9 Target Processor.. 128.

The Device Descriptor .. 128.

SoftStax® Porting Guide

8

Example DPIO Device Descriptors ... 130.

testdesc_const.c .. 130.

testdesc_stat.c... 131.

testdesc_os9.c... 132.

systype.h .. 135.

Appendix A: Debugging
Debugging: dbg_mod.l Overview.. 138.

Using Debug ... 138.

Rombug ... 138.

dump Utility... 139.

Debug Data String Conventions ... 140.

Rule ... 140.

Appendix B: The mbuf Facility
Installing the mbuf Facility ... 142.

OS-9 for 68K Systems .. 142.

OS-9 Systems ... 143.

SPF_NOFREE/SPF_DONE .. 144.

SPF_RXERR .. 144.

Example of mbuf Queue Structure ... 144.

9

1 Getting Started

This chapter explains the OS-9® environment and the Input/Output (I/O)
capabilities of SPF file manager drivers. The concepts for porting SoftStax®
components and drivers to your delivery system are also explained. The following
sections are included:

• SoftStax Overview

• Available I/O Services

• Porting

• Porting SoftStax

• SoftStax Architecture

SoftStax® Porting Guide

10

SoftStax Overview
SoftStax handles data received from high-bandwidth, wide-area networks as well as
low speed, control channel communications. By using SoftStax, applications can
reference specific stacks of required protocol modules and device drivers. The
application navigates through these components using an identified data path.

SoftStax consists of the following modules:

• a file manager (SPF)

• debugging library (dbg_mod.l)

• ITEM library

• MBUFLIB library (mbuf.l)

• per path storage library (ppstat.l)

• timer service library (timer.l)

• template protocol driver (SPPROTO)

• drivers for various HDLC controllers

• connection oriented or connectionless network emulation driver (SPLOOP)

• LAN Communications

OS-9 Environment and I/O Capabilities

Applications interact with OS-9 I/O devices by opening a path. This is like opening
a file handle in the UNIX system. When an application opens a path to a device,
OS-9 creates a path descriptor. The path descriptor gets its default initialization
parameters from a device descriptor. A path identifier is returned to the application.

When you request operating system services using an _os_xxx() I/O system call,
the path identifier maps to a path descriptor. This path descriptor is passed to the
file manager to process the service request.

Most devices allow many paths open to the same device. Therefore, many
applications may be serviced by the same device. The device identifies the individual
requests by using the path descriptor.

When the path is closed, OS-9 sends the close request to the I/O system. When the
call returns, the path descriptor is deleted. The figures on the following pages are
identical from the application perspective. That is, the application uses the same
system calls to communicate to a disk device or network device. This is because OS-
9 implements a unified I/O concept. From the application’s perspective, it simply
opens a device, gets and receives information, and closes the path to the device. Its
operation is totally independent from the type of I/O system used. An application
requests the same data I/O using a different I/O system and can not tell the
difference.

Chapter 1: Getting Started

11

Assume the application object will not be recompiled. In order for the unified I/O
concept to work, the /disk descriptor describes the network (SoftStax)
environment instead of the random block environment. Because the descriptor still
has the same name, the application is object code compatible. However, when
/disk is opened, it sets up a path through SPF. The I/O functionality is identical
from the application’s perspective.

Therefore, as shown in the following two figures, the application is binary
compatible between both environments. The only things that change in the two
systems are the different I/O system below and the /disk descriptor which contains
different information for each environment.

For more information about the I/O systems available for OS-9, contact
Microware Customer Support:

RadiSys Microware Communications Software Division, Inc.
1500 N.W. 118th St.
Des Moines, IA 50325
Phone: (515) 224-0458
Fax: (515) 224-1352
Internet: support@microware.com

SoftStax® Porting Guide

12

Figure 1-1. OS-9 Environment and Usage for a Disk Drive I/O System

1. _os_open(“/disk”, &path)

Name of Returned path identifier for
this instance (file handle)

2. _os_read(path, user_buffer, read_size)

Path Identifier

Buffer where

Amount to read

3. _os_close(path)

Path Identifier

the data will
be read into

device

Random
Block File

Manager

Disk Drive
Driver

Application

OS-9

Disk
Drive

"/disk"
— Config
params —

device
descriptor

Chapter 1: Getting Started

13

Figure 1-2. OS-9 Environment and Usage for a Networked
 I/O System

1. _os_open(“/disk”, &path)

Name of Returned path identifier for
this instance (file handle)

2. _os_read(path, user_buffer, read_size)

Path Identifier

Buffer where

Amount to read

3. _os_close(path)

Path Identifier

the data will
be read into

device

SPF File
Manager

Network
Interface

Driver

Application

OS-9

"/disk"
— Config
params —

The
Network

device
descriptor

SoftStax® Porting Guide

14

Available I/O Services
Two libraries are available at the application layer, os_lib.l and ITEM. These
libraries provide five I/O services to the application:

• device manipulation

• path manipulation

• call control

• data I/O

• MPEG program control

Service Calls

The following table lists service calls provided by the two libraries:

Table 1-1. Service Calls Provided by Library

os_lib.l ITEM Description
_os_attach()
_os_detach()

ite_dev_attach()
ite_dev_detach()

Use device descriptor only.

_os_open()
_os_close()

ite_path_open()
ite_path_close()

Create/remove a path
descriptor instance.

_os_dup() ite_path_dup() Create new path
identification (ID) referencing
an existing path descriptor.

ite_path_clone() Create different path
descriptor with the same
connection as path being
cloned.

_os_read()
_os_write()

ite_data_read()
ite_data_write()

Read and write data over the
path.

_os_getstat()
_os_setstat()

Perform control functions on
the path.

_os_gs_ready() ite_data_ready() Get number of bytes
available for reading on path.

_os_ss_sendsig() Register for signal when data
is available on path.

_os_ss_relea() Remove signal on data ready.
ite_data_avail_asgn()
ite_data_avail_rmv()

Register to be notified of
incoming data available to
read and remove registration.

ite_ctl_addrset() Set address.
ite_ctl_connstat() Get address and connection

information.
ite_ctl_connect() Dial.
ite_ctl_disconnect() Hang-up.

Chapter 1: Getting Started

15

Porting
In general, the porting process consists of the following steps:

1. Port the Microware OS-9 operating system to your hardware.

2. Port/create the hardware driver and/or protocol drivers.

3. Create device descriptors.

4. Create a boot file.

Porting OS-9

If you have not already done so, the first step is to install OS-9 on your hardware.

Porting Drivers

Microware and third-party vendors supply protocols for all OS-9 targets. These
drivers typically do not need to be ported. However, most hardware drivers, even if
available from Microware, usually require at least a descriptor modification for the
correct base address, interrupt vector, and interrupt level of the hardware.

To port a driver, you must perform the following steps:

Step 1. Customize each entry point within the driver to fit your hardware configuration.

Step 2. Customize the device descriptors to fit the driver.

Step 3. Use the OS-9 make utility to make the driver and descriptors into final object files.

Step 4. Subject the driver to normal debugging, testing, and validation.

Detailed requirements and instructions for installation and configuration of the
SoftStax components are provided in this manual. Unless otherwise noted, entry
points required to customize SoftStax components are located in the section
describing the corresponding subsystem.

ite_ctl_rcvrasgn() Register to receive incoming
call notification.

ite_ctl_rcvrrmv() Remove incoming call
registration.

ite_ctl_answer() Answer incoming call.
ite_data_readmbuf()
ite_data_writembuf()

No copy, high throughput
data delivery and reception.

Table 1-1. Service Calls Provided by Library (Continued)

os_lib.l ITEM Description

For more information on installing OS-9 onto your particular target board, refer
to the appropriate OS-9 for <product> Board Guide.

SoftStax® Porting Guide

16

Creating Boot Files

Set up a boot file containing an entry for each subsystem.

Porting SoftStax
While SoftStax and protocol drivers are hardware independent, the hardware
drivers and device descriptors must be ported to your hardware. In some cases,
protocol driver descriptors may need to be created.

Before you begin porting, check with Microware to determine if the appropriate
protocol driver(s) needed for communication between your equipment and the
network are available. If not, you can use the spproto driver template to create a
protocol driver that communicates with the network your equipment uses.

Your application can use the following Application Programming Interface (API)
libraries:

• ITEM (Integrated Telecommunications Environment for Multimedia).

• socket.l (Socket library for SoftStax provided with the LAN
Communications).

To port SoftStax to your hardware, use the following steps :

Step 1. Port OS-9 to your system (required).

Step 2. Customize the device descriptors for all protocol and hardware drivers you use in
the system.

Step 3. Modify the hardware driver if necessary, and recompile for the target OS-9 system.

If the required protocol drivers are not provided by SoftStax, create protocol drivers
using the MWOS/SRC/DPIO/SPF/DRVR/SPPROTO source as a template and compile
for the target OS-9 system.

Sample Application Source Files

Three example applications are provided in SoftStax and can be found in
$(MWOS)/SRC/SPF/EXAMPLES. The subdirectories under this directory are
EXAMPLE1, EXAMPLE2, and EXAMPLE3. Use these examples to become familiar with
the SoftStax environment.

For more information on installing OS-9 onto your particular target board, refer
to the appropriate OS-9 for <product> Board Guide.

SoftStax device descriptors, driver interfaces, defined values and conventions,
and the SPPROTO template are discussed in Chapter 3, SPPROTO Driver, later
in this manual.

Chapter 1: Getting Started

17

Example 1: Connection Oriented Example

This example creates two processes, ex1_snd and ex1_rcv. They use the SPF file
manager, sploop driver with the loopc0 and loopc1 (connection oriented)
descriptors in SPF. The processes use the ITEM interface library to communicate
with SPF.

Example 2: Bidirectional I/O through os_lib.l Example

This example creates an application called spf_test. This application can be used
with any driver and descriptors as well as protocol driver stacks to test system I/O
throughput. Use this example to test the sp8530 driver on the MVME 147 board.
To run the Z8530 driver, this example uses SPF, the sp8530 driver, and the sp3 and
sp4 device descriptors.

You can also run this example using the sploop driver with the loopcl5 and
loopcl6 (connectionless) descriptors. This application uses the standard I/O calls
found in os_lib.l.

Example 3: Loopback test

This example is a loopback test where one process establishes a connection to itself
and passes data to itself. This driver uses SPF, sploop driver, and loop and loop1
device descriptors. The application uses the ITEM interface.

Any of these examples and makefiles can be used as templates to create your own
application. If you plan to use the ITEM interface, try starting with the source for
Example 1 or Example 3.

SoftStax Architecture
The starting point of the structure is at MWOS, or the Microware OS directory. From
this point, there are three subdirectories: SRC, OS9, and OS9000.

SRC Directory

The SRC directory contains source code that can be made for all OS-9 targets. This
includes SoftStax, its applications, libraries, drivers, and descriptors.

OS9 Directory

The OS9 directory contains source code that can only be made for OS-9 targets, as
well as the objects for all 68xxx family processors. This is where the objects
compiled from the MWOS/SRC directory for 68xxx targets (like the SP8530 driver for
the MVME147 CPU board) reside.

OS9000 Directory

The OS9000 directory is a little more complicated because multiple processor
families use OS-9000 (including an 80386 subdirectory and a PPC subdirectory).

Refer to Appendix A: Examples in the Using SoftStax manual for more
information about these examples.

SoftStax® Porting Guide

18

These subdirectories contain all the source code that can be compiled for their
respective processor families and the objects compiled from the MWOS/SRC directory.

Source File Directory Structure

The following rules apply to the source file directory structure:

• All source files for drivers are placed under MWOS/SRC/DPIO/SPF/DRVR.

• Protocol driver makefiles and descriptor definition files are placed under
MWOS/SRC/DPIO/SPF/DRVR.

• Makefiles for a port of any hardware driver are present under the appropriate
processor PORTS directory, along with the spf_desc.h file, and the associated
objects. Protocol driver makefiles go in the source directory for the protocol
driver.

• Protocol objects and descriptors go under <processor>/CMDS/BOOTOBJS/SPF.

19

2 Creating SoftStax
Drivers

This chapter provides an in-depth look at network services, driver data structures,
path and device descriptors, driver entry points, available facilities, interrupt service
routines, and driver types. The following sections are included:

• The SoftStax Driver

• Driver Data Structures

• Pushing and Popping Drivers to Paths

• Logical Units

• Driver Entry Points

• Interrupt Service Routines

• Driver Callup/Calldown Macros

• Driver Data Structures (spf.h)

• ITEM Support

• SoftStax Working Environment

• Making a Driver using the SPPROTO Template

• Makefile Summary

• SoftStax Support Facilities for the Driver

• Driver Considerations

SoftStax® Porting Guide

20

The SoftStax Driver
SoftStax drivers fall into one of two categories: protocol drivers or hardware
drivers. A hardware driver interfaces directly to hardware registers on some
network interface card. The hardware driver is always on the bottom of the
protocol stack for a path.

The protocol driver usually does not interface directly to any hardware. Typically, it
is a state-machine implementation processing incoming and outgoing data per some
protocol specification. Some protocol drivers may interface with hardware. For
example, RSA® encryption protocol drivers may use an RSA encryption chip to
process the data instead of a software implementation.

Driver Conventions

Driver Names

SoftStax driver names generally start with an sp or rt prefix. The sp denotes an
SoftStax driver. Examples in your package are spx25, splapb, and sp8530. The rt
prefix denotes a special MPEG-2 network device for interactive multimedia
systems.

Device Descriptor Names

Device descriptors for hardware drivers are typically spX, where X is a number. The
descriptors in the package for the sp8530 chip are labelled sp0, sp3, and sp4.
Device descriptors for MPEG drivers are typically labelled rtX where X is a number.

Device descriptors for protocol drivers are slightly different. They are typically
labelled by just the suffix of the protocol driver they describe and, optionally, a
number or letter suffix for more than one descriptor if needed. This makes the
protocol stacks easier to read.

For example, the descriptors for spx25 are labelled x25, x25a, and x25b. The a and
b suffixes are used on the x25 descriptor because the protocol ends in a number and
it makes the descriptor name a little easier to read. The descriptors for splapb are
labelled lapb, lapb0, lapb3, and lapb4. Because this protocol ends in a letter,
numbers are appended to the end of the protocol name.

Driver Data Structures
When writing an SoftStax driver, it is important to know what modules are doing at
various points of the Input/Output (I/O) process. It is also important to know the
structures being allocated automatically for the driver. The following diagram
outlines what is occurring at attach time.

At attach time, OS-9 allocates and initializes the following structures for the driver:

dev_list Device list entry (io.h)

spf_drstat Driver static storage (spf.h)

spf_lustat Logical unit static storage (spf.h)

Chapter 2: Creating SoftStax Drivers

21

Figure 2-1. Architecture at Attach Time

Driver Static Storage

The driver static storage contains the following items:

• entry points for the driver

• attach count

• port-specific variables

• driver common variables

• driver specific variables defined by a particular driver

The driver static structure is defined in:

 $(MWOS)/SRC/DEFS/SPF/spf.h.

Perform the following edit command to look specifically at the driver static
structure for SPF:

(umacs -v spf.h, search for “spf_drstat {“)

The OS initializes the driver static by using the structure defined in main.c of the
driver source directory. This initialized structure is compiled directly into the driver
object. If there are different device descriptors in memory for the same driver, OS-9
uses the following rules when allocating new driver static.

If two descriptors are using the same driver and the port address is the same, the
same driver static storage is used. If the port addresses are not the same, OS-9
allocates and initializes a new version of the driver static for the new descriptor
being initialized.

SPF

net_drvr

"/net_dev"
FM=spf

DRVR=net_drvr
Port Address
Logical Unit

device entry

driver
static

logical uni
static

= Modules

= Allocated Storage

SoftStax® Porting Guide

22

Logical Unit Static Storage

The logical unit static storage contains the following items:

• a pointer to the path descriptor

• up and down driver pointers for this path’s stack relative to this driver

• other variables common to all drivers

• specific variables defined by a particular driver

The logical unit static storage structure is defined in:

$ (MWOS)/SRC/DEFS/spf.h

Perform the following edit command to look specifically at the logical unit structure
in SPF:

(umacs -v spf.h, search for “spf_lustat {“)

The OS initializes the logical unit static by using the values stored in the device
descriptor. If there are different device descriptors in memory for the same driver,
OS-9 uses the following rules when allocating new logical unit static.

If two descriptors are using the same driver and the port address is the same and the
logical unit number (LUN) is the same, the same logical unit static storage is used. If
either the port address or the LUN are not the same, OS-9 allocates and initializes a
new version of the logical unit static for the new descriptor being initialized.

At open time, OS-9 allocates the following structure:

spf_pdstat Path descriptor (spf.h)

At open time, a path descriptor gets allocated and initialized. A path identifier (32
bit integer) is returned to the application to reference the newly opened path.

The following diagram illustrates the architecture at open time.

Chapter 2: Creating SoftStax Drivers

23

Figure 2-2. Architecture at Open Time

Path Descriptor

The following lists attributes of a path descriptor:

• there is one path descriptor for every open path in the system

• a path descriptor allows processes to share paths

Path descriptors contain the following items:

• OS-9 common section for all OS-9 paths

• path options set for a particular network operation

• ITEM support structure

• top driver storage (deventry, read queue, drstat, lustat for this path)

• file manager specific variables

The path descriptor structure is defined in the following code:

$(MWOS)/SRC/DEFS/spf.h

Perform the following edit command to look specifically at the path descriptor
structure in SPF:

umacs -v spf.h, search for “spf.pdstat {”

device entry

driver
static

net_drvr

SPF
"/net_dev"
FM = spf

DRVR = net_drvr

logical
unit

static

OS-9 Common

Path Options

ITEM Support

Top Driver

FM Params

At open time:

Application
Path

Path Descriptor

pd
up
dwn

=

SoftStax® Porting Guide

24

The file manager initializes the path descriptor by using values stored in the device
descriptor. So, not only does the device descriptor contain initialized storage for the
logical unit, but also initializes storage for parameters in the path descriptor.

One note about the path descriptor’s Top Driver section: SoftStax drivers do not
store incoming data. Incoming data gets queued on a path descriptor. Therefore, to
create the best abstraction for the driver, think of a top driver being assigned to
every open path. Protocols at the top of the driver module stack always interface to
this top driver when passing up data intended for a particular path. In this way,
drivers always have a driver above them. It is the file manager’s top driver that is
handling the data reception and enqueuing it for the path to read on request. Also,
this top driver acts exactly like any other hardware or protocol driver that might
exist.

Pushing and Popping Drivers to Paths
After detailing attach and open, one driver is associated with the newly opened
path. This section outlines what happens as the application begins pushing more
protocol drivers on the path. The following example displays the prot_drvr being
used on top of net_drvr.

SoftStax is manipulating three variables in the logical unit: lu_updrvr,
lu_dndrvr, and lu_pathdesc (noted in the figures as up, dwn, and pd
respectively). At open time, pd points to the path descriptor just opened and the
updriver pointer points to the top driver section in the path descriptor. The
downdriver link is set to NULL. It is the lu_updrvr and lu_dndrvr variables in
the logical unit that form the links up and down the protocol stack.

Chapter 2: Creating SoftStax Drivers

25

Figure 2-3. Pushing a Protocol Driver

Sequence of Events when Pushing a Protocol Driver

The following process occurs when pushing a protocol driver:

1. prot_drvr called at dr_iniz() entry point.

2. This is the standard initialization of the protocol driver as outlined previously in
the Figure 2-1 discussion.

3. File manager creates the new updriver/downdriver links in logical unit of
net_drvr.

4. The links to the up and down drivers for a path are stored in the logical unit as
shown in the diagrams. What these pointers point to is the device entry for the
protocols above and below. This way the links up and down also directly have
the parameter required to call the driver at its entry points as we’ll see later.

5. net_drvr called at SPF_SS_PUSH setstat.

6. The net_drvr is being informed a protocol driver is being pushed above it.
There may be some housekeeping taking place here. This is discussed later.

7. File manager creates the new updriver/downdriver links in the logical unit of
prot_drvr.

device entry

drstat

net_drvr

prot_drvr

logical
unit

static

OS-9 Common

Path Options

ITEM Support

Top Driver

FM Params

Pushing another driver on the stack:

Application
Path

Path Descriptor

pd
up
dwn

device entry

drstatlogical
unit

static

pd
up
dwn

=

SoftStax® Porting Guide

26

8. The downdriver points to the net_drvr’s device entry. The updriver points at
the device entry structure in the driver section of the path descriptor (where
net_drvr’s updriver was pointing before the push).

9. net_drvr called at SPF_SS_OPEN setstat.

10. Now, proto_drvr gets a chance to perform its open procedure as outlined
previously in the Figure 2-2 discussion.

The protocol drivers are stacked using their device entry structures.
There are now two drivers stacked on the path. The next discussion details popping
the top driver off of the path.

Figure 2-4. Popping a Protocol Driver

Sequence of Events when Popping a Protocol Driver

The following process occurs when popping a protocol driver:

1. prot_drvr called at SPF_SS_CLOSE.

2. The protocol should clean up the path related structures and perform any peer-
to-peer graceful close messaging for this path.

3. FM modifies the up and down driver links for net_drvr.

4. The net_drvr updrvr pointer points to a new device entry--the one stored in
the path descriptor used by the top driver in SoftStax.

5. net_drvr called at SPF_SS_POP setstat.

6. The net_drvr is being informed the protocol driver above it for this path is no
longer there. As this point, there may be other housekeeping taking place to
store the new updrvr pointer in certain areas the driver allocated on a per open
path basis. This is detailed later.

7. prot_drvr gets detached.

8. Normal detach is where prot_drvr would deinitialize itself.

net_drvr

OS-9 Common

Path Options

ITEM Support

Top Driver

FM Params

Popping a driver off the stack:

Application
Path

Path Descriptor

device entry

drstat

logical
unit

static

pd
up
dwn

=

Chapter 2: Creating SoftStax Drivers

27

SoftStax does not allow applications to pop the bottom driver off of the stack. If this is
attempted, SoftStax returns an EOS_BTMSTK error.

Two Paths Open to One Driver

SoftStax allows multiple paths open to the same driver. However, the logical unit
can only hold one updriver/downdriver pair. Two cases are possible to allow two
paths open to net_drvr:

• The protocol going on top of the driver is the same protocol. In this case,
everything is correct as the updrvr variable in the logical unit gets updated and
points to the device entry for the same protocol as the previous path.

• The protocol going on top of the driver is a different protocol. In this case,
another structure is required to store the up and down links for each path. This
structure is called the per path storage or ppstat. Refer to the following
example.

Figure 2-5. Path #1 Opens the TCP/IP Protocol Stack

The first part of this scenario involves Path #1 opening the Transmission Control
Protocol/Internet Protocol (TCP/IP) stack. The TCP and IP drivers both allocate
per-path storage and copy the following from the logical unit to the per path storage
area at SPF_SS_OPEN time:

• lu_pathdesc

• lu_updrvr

• lu_dndrvr

With SoftStax 2.2 the pps_add_entry() call is in ppstat.l made at SPF_SS_OPEN
time completing the processing described above. The source to the per path storage
library can be found in MWOS/SRC/DPIO/SPF/LIB/PPSTAT. The per path storage
variables also map incoming data packets to a particular path or driver above.

logical
unit

static

Path
#1

logical
unit

static

TCP

unit

staticpath 1

TCP per-path storage IP per-path storage list

logical
unit

static

lustat
up
pplist

drstat

down

up
down

logical
unit

static

IP

logical
unit

static

lustat
up
pplist

drstat

down

Deventry

Deventry

path 1

up
down

SoftStax® Porting Guide

28

For instance, IP uses the protocol field in the IP header to determine which up driver
should receive the incoming packet. IP performs an SPF_GS_PROTID at
SPF_SS_PUSH time to secure the protocol ID of the protocol above. IP then stores
this in the per path storage structure so it can correctly map incoming data packets
to the correct path.

Figure 2-6. Path #1 Opens the TCP/IP Protocol Stack

When the second path is opened and stack created, notice the IPs logical unit
updrvr now points to UDP instead of TCP. IP lost the link to TCP for Path #1 in its
logical unit. However, since IP creates per path storage and has saved the link to
TCP in Path #1 per path storage, the system is correctly configured. IP can route
incoming packets to TCP and UDP by matching the incoming protocol ID field in
the IP header to the correct per path storage and pass the data up using the ppstat
updrvr variable.

When data goes down the stack, IP looks in the lu_pathdesc and finds the correct
per path storage matching that lu_pathdesc pointer. Once found, it uses the
parameters in that per path storage to encapsulate the packet and send it down to
lower drivers. The lu_pathdesc pointer in the logical unit is always correct at
every entry point except dr_updata(). This is the incoming data entry point.

When data comes up the stack (dr_updata), IP specifically searches the per path list
for a matching protocol type (TCP/IP/...). Once found, it passes the packet up
using the updrvr pointer in that per path storage. Generically, for a given protocol,
the protocol uses an indicator in that protocol’s incoming data encapsulation to
map this incoming packet to a particular per path storage element.

logical
unit

static

Path
#1

logical
unit

static

TCP

unit

staticpath 1

TCP per-path storage UDP per-path storage list

logical
unit

static

lustat
up
pplist

drstat

down

up
down

logical
unit

static

IP

logical
unit

static

lustat
up
pplist

drstat

down

Deventry

Deventry

path 2

up
down

logical
unit

static

UDP
Deventry

logical
unit

static

Path
#2

path 2

up
down

path 1

up
down

tcp udp

logical
unit

static

lustat
up
pplist

drstat

down

Chapter 2: Creating SoftStax Drivers

29

Logical Units
Typically, protocol drivers may only have one descriptor (/ip). Therefore, there is
really no difference between the logical unit static and the driver static. Both would
be allocated only once when the descriptor is initialized/opened.

However, the logical unit is extremely useful for hardware drivers.

Figure 2-7. 4-Port Network I/F Board

The above figure shows a 4-port network interface circuit board. The board has
four on-board interface chips and one interrupt controller. The interrupt controller
has a register set used by the driver to query and service interrupts for the entire
circuit board. Each interface chip has a register set for control and data
reception/transmission.

This environment maps exactly to the OS-9 driver environment. Create a defined
volatile structure of the interrupt controller register set and store a pointer to this
structure in the driver static specific section. Also, create a defined volatile structure
of the interface chip register set and store a pointer to this structure in the logical
unit specific section. Then, create four device descriptors: /sp1, /sp2, /sp3, and
/sp4.

The driver static is allocated only once for the board and contains the interrupt
controller register access point and pointers to all logical units for the interfaces
currently being used. Logical units are uniquely allocated for each interface chip
used.

Each descriptor has a different Logical Unit Number (LUN). In fact, you could make
the logical unit number the offset from the base address where the interface chip
register set can be found. For instance, from the previous figure /sp1 LUN might
equal 0x10 and /sp2 LUN might equal 0x20.

For a structure allocation point of view, when an application opens /sp1, driver
static and logical unit static would be allocated. A pointer to logical unit static
would also be stored in the driver static. Now, the application opens /sp2. /sp2 has
the same port address as /sp1 so the same driver static would be used. However,
the LUN is different between /sp1 and /sp2. Therefore, a new logical unit would be
allocated for interface #2 and stored in the driver static.

Board
Interrupt

Controller

I /F1

I/F2

I/F3

I/F4

Offset 0x10

Offset 0x20

Offset 0x30

Offset 0x40

/sp1

/sp2

/sp3

/sp4

Port Address = 0XA000

SoftStax® Porting Guide

30

When the interrupt service routine is written, it gets as its parameter the driver
static. The main ISR body checks the board interrupt controller. If interface #2
generated the interrupt, the main ISR passes /sp2 logical unit to the handler for the
interface. Since the processing for each interface is identical and the only difference
is what logical unit you are using, the interrupt service routine can be written very
efficiently.

Driver Entry Points
Driver entry points include:

dr_iniz(dev_list *deventry)

dr_term(dev_list *deventry)

dr_getstat(dev_list *deventry, spf_ss_pb *pb)

dr_setstat(dev_list *deventry, spf_ss_pb *pb)

dr_downdata(dev_list *deventry, mbuf *mb)

dr_updata(dev_list *deventry, mbuf *mb)

dr_iniz()

Rule: This entry point is called by SPF if this is the first attach (open) of a particular
logical unit.

For example, there are two descriptors in memory, /sp1 and /sp2. /sp1 uses LUN
1 and /sp2 uses LUN 2.

1. Application one opens /sp1.

2. The first entry opens to /sp1 and creates a deventry, drstat, and lustat for the
network driver. Since this is the first attach to logical unit #1, SPF calls dr_iniz
of the network driver.

dr_att_cnt = 1; lu_att_cnt = 1

3. Hardware registers may need to be initialized the first time the driver is called
(like the interrupt controller explained previously):

if (drstat->dr_att_cnt == 1) {

/* Initialize those hardware registers */

/* register the interrupt service routine */

}

4. The driver knows this is the first attach to this particular logical unit because it
is the rule for dr_iniz being called. The driver performs the necessary actions
for initializing the registers or protocol state machine associated with the logical
unit.

Chapter 2: Creating SoftStax Drivers

31

dr_term()

Rule: SPF only calls dr_term on the last detach of the logical unit.

This entry point simply undoes all actions performed by dr_iniz(). Typically, if
dr_att_cnt = 0, de-install the ISR and turn off the hardware.

dr_getstat()

There may be many custom getstats your driver may need to handle. Mandatory
getstats to be implemented by any driver are discussed in this section and are
already implemented in the spproto template.

SPF_GS_UPDATE

Update the protocol stack statistics. Every time the protocol stack on a path
changes, SPF issues an SPF_GS_UPDATE getstat. The parameter block passes
spf_ss_update parameter block (spf.h).

First, the driver allows the protocol to pass all the way to the bottom of the stack.
When it returns, it updates the parameter block as required for the statistics. The
following parameters are found in the spf_ss_update parameter block.

stk_ioenabled If the I/O is disabled (you can not talk to your peer), set equal
to DRVR_IODIS.

If you are at the bottom of the stack, set equal to DRVR_IOEN
or DRVR_IODIS depending on whether the I/O is enabled or
not. Otherwise, leave the variable alone.

stk_txsize Maximum Transmission Unit (MTU) for this driver. If your
MTU is smaller than the MTU currently in the variable,
replace it.

If your protocol performs fragmentation and reassembly, you
can store this variable in your per path storage and pass up
0xFFFF. When data packets come down the stack, your driver
can then fragment the packet based on the MTU stored in the
per path storage.

stk_txoffset If you require a header area to perform your data
encapsulation for transmit data, add your requirements to the
current value in this variable.

stk_txtrailer If you require a trailer area to perform your data
encapsulation for transmit data, add your requirements to the
current value in this variable.

The path stores these values for the stack in the top driver’s
area. When the application writes data, SPF uses the
txoffset and txtrailer variables for the path to leave
room before and after the user data in the mbuf. This is used
so protocols don’t have to allocate their own mbufs and chain
them to add headers and trailers to the outgoing packet.

SoftStax® Porting Guide

32

stk_reliable If your protocol provides reliable data transfer to protocols
above, set to STK_RELIABLE. This is used for things that may
not have to calculate CRCs at higher layers if it is aware the
lower protocols are providing reliability.

stk_hold_on_close If your protocol initiates messaging to close the peer-peer
protocol communication when the application executes a
close() call, add 1 to this variable. Otherwise, do not write
to this field.

SPF_GS_PROTID

Return your protocol ID value (spf.h or prot_ids.h) in the parameter field
(param) of the spf_ss_pb passed to you in the getstat.

dr_setstat()

There may be many custom setstats and Integrated Telecommunications
Environment for Multimedia (ITEM) setstats your driver can handle. The
mandatory setstats implemented by any driver are discussed next.

SPF_SS_OPEN

RESULT OF: ite_path_open() or _os_open()

SPF_SS_OPEN is called every time a path is opening to this driver. If your driver
needs per path storage, it would be allocated and initialized at this point.

SPF_SS_CLOSE

RESULT OF: ite_path_close() or _os_close()

This setstat gets called every time a path using this driver closes. If your driver needs
per path storage it would be found for this path and deallocated.

SPF_SS_PUSH

RESULT OF: opening a protocol stack or calling ite_path_push()

SPF_SS_PUSH gets called when a new protocol is being pushed on top of your driver
for this path. This means your lu_updrvr changed for this path. Therefore, set
your per path storage to the new lu_updrvr in the logical unit. As described later,
the addressing may also change when protocols get pushed on top. If this is the case,
your driver may have to store the current addressing from the ITEM address section
in the path descriptor to the per path storage area if the ITEM addressing changes
because of the protocol being pushed.

Detailed information concerning this function is located in the <links>Driver
Considerations section of this manual.

If you are creating a commercially available protocol stack for SoftStax, contact
RadiSys Microware Communications Software Division, Inc. for assignment of
your protocol IDs.

Chapter 2: Creating SoftStax Drivers

33

SPF_SS_POP

RESULT OF: closing a stack or calling ite_path_pop()

This setstat gets called when the driver on top of your driver is getting popped off of
this path. This means your lu_updrvr changed for this path. Therefore, you should
set your per path storage to the new lu_updrvr in the logical unit. Also since this
driver is now on top of the driver stack again, you may need to restore your stored
addressing in the ITEM section of the path descriptor.

ITE_SET_CONN

This setstat is used to set local and remote addressing for a device. If the addressing
being set is the same as the ITEM addressing in the path descriptor, SPF handles the
address automatically without driver processing. If the addressing does not match
what is in the path descriptor, SPF sends the ite_conn_pb found in item_pvt.h
down to the drivers. This enables the application to control the addressing of all
protocols on the stack, even if they are using different addressing schemes further
down the stack.

dr_downdata()

This entry point is called when there is a data packet attempting to be transmitted
to the remote peer. The file manager acquires how many bytes to leave at the front
of the packet using the stk_txoffset field from the SPF_GS_UPDATE getstat. The
protocol simply adjusts the m_offset and m_size fields in the mbuf accordingly to
include its added header (and trailer), encapsulates the data, and sends the packet
down the stack using the SMCALL_DNDATA() macro.

dr_updata()

This entry point is called when an incoming packet is available to be processed by
the driver. Drivers at the bottom of protocol stacks typically have dr_updata()
entry points returning EOS_UNKSVC. This is because the bottom driver uses the
receive interrupt service routine to receive data, not the dr_updata entry point.

The protocol driver should de-encapsulate the data, send any acknowledgments,
and update retransmission queues. If any data in the packet needs to go further up
the stack, the driver uses the SMCALL_UPDATA() macro to send the mbuf up to the
protocol driver above.

Interrupt Service Routines
SoftStax hardware drivers typically have Interrupt Service Routines (ISR). When the
downdata entry point gets called in a hardware driver, it enqueues the data on the
transmit queue, enables transmit interrupts, and returns. The transmit interrupt
service routine then takes care of sending the data out the network interface. The
hardware driver also enables itself to receive data, usually at SPF_SS_OPEN time.
When incoming data comes in, the receive interrupt service routine reads the data
into an mbuf and sends the data up via the FMCALLUP_PKT() macro.

SoftStax® Porting Guide

34

Driver Interrupt Service Routine Conventions

This section describes situations to watch for when writing an interrupt service
routine.

Writing and Installing the Interrupt Service Routine

The following code segment shows an example function prototype for the interrupt
service routine and a conditionalized definition. The function prototype is found in
proto.h. The conditionalized definition is found in defs.h. These files are covered
in more detail later.

error_code hw_isr(Dev_list dev_entry);

#if defined(_OS9000)

 #define HW_ISR hw_isr
/* OS-9000 interrupt service routine */

#elif defined(_OSK)

 extern void hw_isr_os9();

 #define HW_ISR hw_isr_os9
/* OS-9 interrupt service routine */

#endif

Defining a Macro as an Interrupt Service Routine

Defining a macro as an ISR allows your driver to be source code compatible across
processors. Notice the real name of the interrupt service routine is hw_isr().
However, when running under OS-9 for 68K processor family, there is assembly
language code converting OS-9 for 68K interrupt service routine conventions to the
OS-9 interrupt service routine conventions. This code is labeled hw_isr_os9.

As shown in the previous segment, when _OS9000 is defined, the name of the ISR is
hw_isr() only because the hw_isr_os9 code segment is not needed. (The compiler
automatically defines _OS9000 when compiling for all processors except 68XXX
and the OS-9000 operating system. _OSK is defined by the compiler when compiling
for the 68XXX family.)

Installing the ISR

This section describes the interrupt service routine installation found in the
dr_iniz() entry point.

if ((err = _os_irq(lustat->lu_vector,

lustat->lu_priority, HW_ISR, dev_entry)) != SUCCESS)

{

 return(err);

}

The sp82525 driver has these items coded in the source provided.

Chapter 2: Creating SoftStax Drivers

35

The interrupt vector and priority can be found in the logical unit structure and are
initialized by the device descriptor. The HW_ISR macro is in the _os_irq() call. The
correct name gets resolved at compile time, so there is portability across processors.
The last parameter in the _os_irq() call is device_entry. This parameter gets
passed to the protocol driver’s interrupt service routine when it runs. However,
depending on the driver, you could pass pointers to other structures. Pass whatever
is most useful for the interrupt service routine to have when executing.

OS-9 Interrupt Service Routine Glue Code

This section describes the OS-9 for 68K interrupt service routine glue code. Glue
code is code inserted into the driver to ensure compatibility between OS-9 for 68K
and OS-9 systems so the driver can run in either or both operating systems without
any further source code changes.

The following example is the interrupt-service routine glue code included for OS-9.
It ensures the hw_isr() routine is properly called. Do not modify this call unless
you are using other labels for your functions.

#if defined(_OSK)

/* interrupt service routine glue-code for OS-9 */

_asm("hw_isr_os9:

move.l a2,d0;/* put Dev_list in a2 into d0/*

bsr hw_is;/* call interrupt service/*
/* routine/*

tst.l d0;/*see if SUCCESS returned/*

beq.s hw_isr_os9_exit;
/*if so, return/*

ori #Carry,ccr;/* else E_NOTME returned/*
/* --set carry bit/*

hw_isr_os9_exit

rts

");

#endif

For more information on the _os_irq() call, refer to the Ultra C Library
Reference Manual. This manual says _os_irq() is only an OS-9000 call. The
conv_lib.l has created a binding to make this call valid for OS-9 also.

This code segment has been included in the hardware driver examples
available with SoftStax. If you are using one of these drivers as a template for
your hardware driver, the code is located in the interrupt service routine source
file.

SoftStax® Porting Guide

36

Driver Callup/Calldown Macros
The following macros are used for driver callup/calldown:

#define FMCALLUP_TIMER_RESTART (mydeventry, tpb)

#define FMCALLUP_TIMER_START (mydeventry, tpb)

#define FMCALLUP_TIMER_STOP (mydeventry, tpb)

#define SMCALL_DNDATA (mydeventry, dst_deventry, mb)

#define SMCALL_UPDATA (mydeventry, dst_deventry, mb)

#define SMCALL_GS (mydeventry, dst_deventry, pb)

#define SMCALL_SS (mydeventry, dst_deventry, pb)

#define DR_FMCALLUP_PKT (my_deventry, dst_deventry, mb)

#define DR_FMCALLUP_CLOSE (mydeventry, pathdesc)

#define DR_FMCALLUP_NTFY (mydeventry, npb)

#define DR_FMCALLUP_UPDATE (my_deventry, pathdesc)

Parameters for these macros include:

mydeventy is the device entry of the current driver. It always gets passed
to the driver at every entry point.

dst_deventry corresponds to the updrvr/downdrvr pointers stored in the
per path storage or logical unit structure. If the call is
intended for the driver above, use the updrvr pointer. If the
call is going down, use the dndrvr.

tpb is the timer parameter block. It is of type timer_pb, which is
found in timer.h.

mb is a pointer to an mbuf structure. It is either allocated locally
or passed to the driver in the dr_updata() or
dr_downdata() entry points.

npb is the notify parameter block. It is of type notify_type
which is found in item.h.

pathdesc is a pointer to the path descriptor.

pb is a parameter block for the up/down setstats and getstats.
The parameter block must either be or start with the
spf_ss_pb structure found in spf.h.

FMCALLUP_TIMER_RESTART

Restart the timer. This will restart a cyclic timer, or push out the time at which a
one-shot timer will time out.

Refer to the Using SoftStax manual for more information about the
spf_ss_pb structure.

Chapter 2: Creating SoftStax Drivers

37

FMCALLUP_TIMER_START

Initiate a registered timer.

FMCALLUP_TIMER_STOP

Stop the timer and delete it from the list.

SMCALL_DNDATA()

Use SMCALL_DNDATA to pass packets down the stack.

SMCALL_UPDATA()

Use SMCALL_UPDATA to pass packets up the stack.

SMCALL_GS()

Use SMCALL_GS to send a getstat up or down the stack.

SMCALL_SS()

Use SMCALL_SS to send a setstat up or down the stack.

DR_FMCALLUP_PKT()

Use DR_FMCALLUP_PKT to enqueue a packet received by the hardware driver in the
interrupt context on the SPF receive thread queue.

DR_FMCALLUP_CLOSE()

DR_FMCALLUP_CLOSE is used by the driver using hold-on-close to notify the file
manager the protocol has executed a graceful close thus providing messaging when
the application has closed the path.

DR_FMCALLUP_NTFY()

DR_FMCALLUP_NTFY provides an easy way for protocols to tell SPF to send the
notification the application may have registered for.

DR_FMCALLUP_UPDATE()

DR_FMCALLUP_UPDATE causes SPF to generate an SPF_GS_UPDATE getstat down the
path. It is used when drivers pull stacks underneath for a path.

Outgoing Data Processing

Figure 2-8 shows the threads of execution for outgoing data packets. Writes happen
as one autonomous step on the application’s thread. When the _os_write call is
executed, the protocols encapsulate the data and send it down to be enqueued on
the _os_write() thread. Once the data is enqueued, _os_write() returns control
to the application.

The hardware driver’s transmit ISR sends the data out asynchronously through the
network interface hardware.

SoftStax® Porting Guide

38

As displayed in the figure below, steps occur sequentially as a result of the
_os_write() call. Steps A and B occur asynchronously as a result of the driver’s
interrupt service routine.

Figure 2-8. Sequence of Events for Writing Data

Incoming Data Processing

Figure 2-9 shows the threads of execution for processing incoming data packets.
The receive interrupt service routine gets a complete packet. It determines the device
entry of the protocol directly above it, and makes the FMCALLUP_PKT call.

The FMCALLUP_PKT call enqueues the data on the SPF receive thread process receive
queue and sets an event to wakeup the process. At this point, you are now out of
interrupt context.

When the receive thread (spf_rx) is scheduled to run, it takes the packet on the
receive queue and calls protocol A’s dr_updata entry point with the received
packet. Protocols process the incoming data on the SPF_RX thread, not interrupt
service routine context.

Receive data is queued by the SPF top driver on the path’s receive queue. It waits
there until the application does an _os_read().

Two important notes concern received data:

Protocol B

Hardware
Driver

Application

TX ISR

1.) _os_write()

Protocol A

2.) dr_downdata()
3.) <Encapsulate Data>
4.) SMCALL_DNDATA

5.) dr_downdata()
6.) <Encapsulate Data>
7.) SMCALL_DNDATA

8.) dr_downdata()
9.) Enqueue on TX queue
 return;

A.) Anything on TXQ?
B.) Fill TX FIFO
 return; I/F Hardware

RX ISR must use FMCALLUP_PKT to send data up.

Chapter 2: Creating SoftStax Drivers

39

There are two options for sending data to higher drivers for processing:
SMCALL_UPDATA and FMCALLUP_PKT. FMCALLUP_PKT uses the receive thread context
to send the data up the stack. If the ISR uses SMCALL_UPDATA, the packets processed
by all protocols in interrupt service routine context. This could cause receive FIFO
overflow problems.

Recall that the second parameter in the FMCALLUP_PKT call is the device entry to
send the packet to. This device entry pointer is stored in the mbuf immediately after
the mbuf header. When the receive thread processes the mbuf, it uses this pointer to
determine which driver to pass the mbuf to. Hardware drivers need to perform a
get_mbuf() call instead of an m_get() call for this reason. The get_mbuf() call
leaves room for this device entry pointer immediately after the mbuf header. The
m_get() call does not.

Notice the only context that received data is processed in receive thread context.
Therefore, if a driver gets called at dr_updata() in receive thread context, sends a
message, and then sleeps waiting for the response, the system stops forever. Once
you put the receive thread to sleep, there is no way for more data to come up any
stack, the response never comes, and no more received packets are processed
because it’s impossible to context switch the receive thread since it is in system state.

Protocols never sleep in dr_updata().

SoftStax® Porting Guide

40

Figure 2-9. Protocol Stack Data Processing for Incoming Packets

Driver Data Structures (spf.h)
Driver writers need to familiarize themselves with three main header files: spf.h,
item.h, and item_pvt.h. spf.h contains all of the OS-9 system level structures
and definitions for SoftStax. The item.h file is an application oriented header file
exposing the structures and functions available to the application. The item_pvt.h
file contains all setstat / getstat codes and parameter blocks used by ITEM to
implement the ITEM API.

The spf.h header file is broken into three sections:

• application oriented (nothing predefined)

• driver oriented (#define SPF_DRVR)

• file manager oriented (#define SPF_FM)

Drivers should define SPF_DRVR before including spf.h so they include all
structures for driver use as well as application use. This is already done in the
spproto template and hardware drivers.

The following data structures provide these functions:

Application

Top Driver
Read Queue

Protocol B

Protocol A

HW Driver

I/F Hardware

SPF_RX

RX ISR

_OS_READ()

path descriptor

9.) Top driver in SPF
enqueues data on path’s
read queue in top driver
data area in path
descriptor

1.) Data on RX queue
2.) Send to deventry

SPF

8.) SMCALL_UPDATA
7.) process incoming data

(ack, retx)
6.) dr_updata()

5.) SMCALL_UPDATA
4.) process incoming data

(ack, retx)
3.) dr_updata()

A.) Incoming Data IRQ?
B.) read RX FIFO->mbuf
C.) IF End of pkt, FMCALLUP_PKT

Chapter 2: Creating SoftStax Drivers

41

Table 2-1. Structures

Structure Function
spf_popts Path Descriptor Options
spf_desc Device Descriptors
spf_drstat Driver Static
spf_lustat Logical Unit Static

SoftStax® Porting Guide

42

spf_popts

Declaration

The path options structure spf_popts is declared in the file spf.h as follows:

struct spf_popts {

#if defined(_OSK)

u_int8 pd_devtype;

u_int8 pd_buf1;

#elif defined(_OS9000)

u_int16 pd_devtype;

#endif

u_int16 pd_devclass;

u_int8 pd_version;

u_int8 pd_ioenabled;

u_int8 pd_ioasync;

#define IO_SYNC 0

#define IO_ASYNC 1

#define IO_WRITE_ASYNC 2

#define IO_READ_ASYNC 3

u_int8 pd_iopacket;

#define IO_CHAR 0

#define IO_PACKET 1

#define IO_DGRAM_TOSS 2

#define IO_NEXTPKT_ONLY 4

#define IO_PACKET_TRUNC 6

u_int32 pd_optsize;

u_int32 pd_iotime;

u_int32 pd_readsz;

u_int32 pd_writesz;

u_int16 pd_rsv;

u_int16 pd_txsize;

u_int16 pd_txoffset;

u_int16 pd_txtrailer;

u_int16 pd_txmsgtype;

#define TXMSG_CONF 0x8000

u_int8 pd_reliable;

u_int8 pd_rsv2[93];

};

Chapter 2: Creating SoftStax Drivers

43

Description

The path descriptor options are structures that applications can request and get
information on how the path they are using is configured. The application can also
set certain path options for different operations. This section discusses the fields in
the path options structure spf_popts.

Fields

pd_devtype

Always defined as DT_SPF.

pd_buf1

The long word alignment.

pd_devclass

Always defined as DC_SEQ.

pd_version

The compatability version for SoftStax use.

pd_ioenabledI/O

Enabled and disabled on this path.

pd_ioasync

Defines asynchronous operation.

IO_SYNC

Uses synchronous read and write operations.

IO_WRITE_ASYNC

Enables asynchronous write operation. If no buffer is available, an
EWOULDBLOCK error returns instead of blocking.

IO_READ_ASYNC

Enable asynchronous read operation. If no data is available, an EWOULDBLOCK
error returns instead of blocking.

IO_ASYNC

Enable asynchronous read and write operations.

pd_iopacket

Defines packet oriented operation.

IO_CHAR0 = Character oriented (read number of bytes into buffer and return). If
data is not available to be read yet, the application blocks until the entire read
request is fulfilled. Non-zero is packet oriented mode. In packet oriented mode,
there are other modes of operation.

IO_PACKET

All path option sections are 128 bytes long.

SoftStax® Porting Guide

44

Return all available packets if the read request is larger than the amount of data
in the queue. If there is no data available at the time of the read call, spf will
block one time to wait for incoming data.

IO_DGRAM_TOSS

Used for UDP datagram operation only. If the amount of data read is smaller
than the current packet on the read queue, discard the rest of the packet.

IO_NEXTPKT_ONLY

Indicates the number of requested bytes is really the size of the read buffer
passed in by the requestor. Only the next packet is returned in the buffer. For
example, if the next packet is 50 bytes long and the application does a read of
1000 bytes, SoftStax returns the 50 byte packet even if there may be more
packets waiting on the read queue.

IO_PACKET_TRUNC

Indicates that if a portion of the packet does not get read (a read of 50 bytes
when a 100 byte packet is received), throw the rest of the packet away.

pd_optsize

Always set to 128 bytes.

pd_iotime

The timeout value for the path. If the data is not available to be read at the time
of the read() call, this is the number of ticks the application is willing to wait
for the data. If the read is not fulfilled within the time period, the application
returns with what data was available and the number of bytes read into the
buffer.

pd_readsz / pd_writesz

Flow control parameters set on the path so read and write queues on a given
path cannot starve the buffer pool for the whole system. The pd_readsz
variable is enforced by SPF. The pd_writesz must be enforced by the driver
owning the TX queue.

pd_rsv

Reserved for future use.

pd_txsize, pd_txoffset; pd_txtrailer; pd_reliable

Stack parameters as gathered by the SPF_GS_UPDATE call.

pd_txmsgtype

Sets transmit message mode of operation. These flags allow for flexibility of
reliable transmission of data. This would be enforceable by the drivers.

Chapter 2: Creating SoftStax Drivers

45

TXMSG_CONF

A way to allow for blocking writes. Typically, when data is transmitted by
_ite_data_write(), it is enqueued on a driver transmit queue and the call
returns immediately. The driver would have to block on this current write until
the data was successfully sent. Then, the application performing the write
would wakeup and continue.

pd_rsv2

Padding at the end which will be used in future releases and therefore should
not be used by drivers for any other reason.

SoftStax® Porting Guide

46

spf_desc

Declaration

The device descriptor structure spf_desc is declared in the file spf.h as follows:

struct spf_desc {

dd_com dd_desccom;

spf_popts dd_popts;

device_type dd_item;

u_int32 dd_pmstak;

u_int8 dd_rsv1[16];

};

Description

The device descriptor spf_desc contains structures allowing SPF to initialize a
newly opened path to a default configuration. In general, the device descriptor
initializes the default path options as above, the ITEM structure for the path, and
the protocol module stack for the path. The following is a description of spf_desc.

Fields

dd_desccom

A common header for all OS-9 device descriptors found in io.h.

dd_popts

Defines default values for the path options section when an application opens a
path using this descriptor.

dd_item

Defines default values for the ITEM device_type structure when an
application opens a path using this descriptor.

dd_pmstak

The offset to the protocol stack string for this descriptor. This string indicates
the protocol drivers used by this path from the bottom up (left to right creates
the lowest driver in the stack to highest).

dd_rsv1

Reserved for future use.

The spf_desc section details how these values are initialized in the descriptor.

Chapter 2: Creating SoftStax Drivers

47

spf_drstat

Declaration

The driver static structure spf_drstat is declared in the file spf.h as follows.

struct spf_drstat {

u_int32 dr_version;

error_code(*dr_fmcallup)(

u_int32 code,

void* param1,

void* param2);

/* definition section--not shown */

error_code (*dr_iniz)(Dev_list deventry);

error_code (*dr_term)(Dev_list deventry);

error_code(*dr_getstat)(

Dev_list deventry,

Spf_ss_pb gs_pb);

error_code (*dr_setstat)(

Dev_list deventry,

Spf_ss_pb ss_pb);

error_code (*dr_downdata)(

Dev_list deventry,

mbuf mb);

error_code (*dr_updata)(

Dev_list deventry,

mbuf mb);

u_int32 dr_att_cnt;

Spf_lustat dr_lulist;

u_int8 dr_lumode;

#define DR_ALLOC_LU_PERPORT 0

#define DR_ALLOC_LU_PERPATH 1

The definition section has been omited in the description below. Refer to spf.h
for the complete declaration.

SoftStax® Porting Guide

48

u_int8 dr_rsv1[11];

u_int32 dr_use_cnt;

#ifdef SPF_DRSTAT

SPF_DRSTAT

#endif

};

Fields

dr_version

The current version of SoftStax for future compatibility.

dr_fmcallup()

Used by the file manager to inform the driver of the file manager’s callup service
routine address. SPF fills this in when the device is initialized.

dr_xxx

The entry points of the driver.

dr_att_cnt

The number of attaches done to this driver.

dr_lulist

Set to 0. This field is not used.

dr_lumode

Set to 0. This field is not used.

dr_use_cnt

The number of paths using this driver in their protocol stack.

dr_rsv1

Reserved for future use.

SPF_DRSTAT

This macro is defined so all drivers can place specific variables within the driver
static by defining this macro and associated structure in defs.h in the driver
source code.

Refer to Driver Entry Points for more information about these fields.

Chapter 2: Creating SoftStax Drivers

49

spf_lustat

Declaration

The logical unit static structure spf_lustat is declared in the file spf.h as follows.

struct spf_lustat {

/* general logical unit fields */

u_int32 lu_att_cnt;

u_int32 lu_use_cnt;

void* lu_port;

u_int16 lu_num;

/* SPF specific fields */

u_int8 lu_ioenabled;

#define DRVR_IOEN 1

#define DRVR_IODIS 0

u_int8 lu_reliable;

u_int16 lu_rsvd;

u_int16 lu_txsize;

u_int16 lu_txoffset;

u_int16 lu_txtrailer;

void* lu_attachptr;

Dev_list lu_updrvr;

Dev_list lu_dndrvr;

Spf_pdstat lu_pathdesc;

/* definition section--not shown */

Spf_lustat lu_next

u_int8 lu_hold_on_close;

#define PATH_NOHOLD 0

#define PATH_HOLD 1

u_int8 lu_flags;

#define LU_UIOWRITE 0x01

#define LU_UIOREAD 0x02

The definition section has been omited in the description below. Refer to spf.h
for the complete declaration.

SoftStax® Porting Guide

50

u_int16 lu_pps_size;

Spf_ppstat lu_pps_list;

void *lu_pps_resv;

/* Logical Unit Options Fields */

spf_luopts lu_luopts;

#ifdef SPF_LUSTAT

SPF_LUSTAT

#endif

};

Fields

lu_att_cnt

The current number of attaches to this logical unit.

lu_use_cnt

The number of paths using this driver’s logical unit in their protocol stack.

lu_port

The port address for the driver. For protocol drivers, this can be set
to 0.

lu_num

The logical unit number assigned to this logical unit.

lu_ioenabled

Refer to SPF_GS_UPDATE for the individual driver.

DRVR_IOENIO

Enabled.

DRVR_IODISIO

Disabled.

lu_reliable

Refer to SPF_GS_UPDATE for the individual driver.

lu_rsvd

Reserved for future use.

lu_txsize

Refer to SPF_GS_UPDATE for the individual driver.

lu_txoffset

Refer to SPF_GS_UPDATE for the individual driver.

lu_trailer

Chapter 2: Creating SoftStax Drivers

51

Refer to SPF_GS_UPDATE for the individual driver.

lu_attachptr

The location where the device entry returned by the first attach to the driver by
the file manager is stored. When the first path is opened, the lu_attachptr is
initialized by the FM. The last path close to this driver causes the FM to use this
to detach the last time to the driver so its memory will be deallocated from
memory.

lu_updrvr, lu_dndrvr, and lu_pathdesc

Described previously in the stacking/unstacking example. Macros are available
for easy reference to ITEM and notification information in the path by accessing
the lu_pathdesc of the logical unit.

lu_next

Allows logical units to be chained.

lu_hold_on_close

Indication of hold-on-close path (described later).

PATH_NOHOLD

Advises to not hold-on-close.

PATH_HOLD

Indicates hold-on-close.

lu_flags

Flags.

lu_pps_size

Set to the size of your per path storage in bytes.

lu_pps_list

Points to the per path storage linked list area.

lu_pps_resv

Points to per path reserved.

lu_luopts

Contains information on the device class and version.

SPF_LUSTAT

A macro defined so all drivers can place specific variables in the logical unit
static by defining this macro and assocated structure in defs.h in the driver
source code.

SoftStax® Porting Guide

52

ITEM Support
The purpose of ITEM is to provide applications with an Application Programming
Interface (API) that is network independent and operating system independent.
ITEM provides three levels of abstraction to achieve this goal:

• abstraction of the network device itself using the device_type structure

• abstraction of the addressing by using the addr_type structure

• abstraction of how notification on asynchronous triggering activity happen by
using the notify_type structure

First, the item_pvt.h file is discussed. The path_type structure found in
item_pvt.h encompasses all three of the abstractions. item.h is discussed next.
These are the abstractions the application can access and the API calls available to
perform network independent control.

item_pvt.h

Referring back to Figure 2-2, this is the section in the path descriptor labeled ITEM
Support. This is the structure path_type.

The path_type structure consists of:

• notification list

• device_type structure

The item_pvt.h contains the following:

• the definition for the ITEM structure in the path descriptor found in
item_pvt.h

• ITEM codes

• parameter blocks used by ITEM to provide the API. These parameter blocks are
used by the drivers to realize the API services available through ITEM.

Notification List

When the ITEM notification requests are made, SoftStax logs the request for
notification in the notification array for that path. With the exception of
ITE_ON_DATAVAIL, when the driver detects one of these conditions, it is expected to
use the notification entry in the appropriate path descriptor to notify the requestor
of the occurrence of the condition by using the DR_FMCALLUP_NTFY() macro
described earlier.

For example, an application requests to be notified on incoming call. This request is
completely processed by SoftStax by logging the request in the notification array for
the path. The call control protocol in that path’s stack gets an incoming connect
request message. The protocol queries the notify list of the path and finds there is a
process waiting for this notification by examining the ntfy_on field of the
notify_type structure. It then makes the DR_FMCALLUP_NTFY() call by using a
pointer to the ON_INCALL element of the notify list in the path descriptor.

Chapter 2: Creating SoftStax Drivers

53

The following notifications are available to the application:

item.h

item.h is the file applications include when using the ITEM API.

item.h has four sections:

• device_type declaration

• addr_type declaration

• notify_type declaration

• function prototypes

The main function of ITEM is to provide a network access abstraction for the
application. Therefore, the storage structures and API allow applications to access
generic connectivity and notifications. Even though different networks may
implement signalling and addressing differently, the end result achieved from the
perspective of the application is the same.

The structures defined in item.h are generic and protocol drivers are expected to
maintain and use the ITEM structures so applications interoperate over any kind of
network protocol.

Table 2-2. Notifications

Notification Type
Setstat / Getstat code used in
item.pvt.h

Link down ITE_ON_LINKDOWN

Incoming call ITE_ON_INCALL

Connection established ITE_ON_CONN

Data available ITE_ON_DATAVAIL

End of MPEG-2 program ITE_ON_ENDPGM

Far End hangup ITE_ON_FEHANGUP

End of download procedure ITE_ON_DNLDONE

Message confirmation ITE_ON_MSGCONF

Resource added to session ITE_ON_RESADD

Data link up ITE_ON_LINKUP

SoftStax® Porting Guide

54

device_type

Declaration

The device_type structure is declared in the file SPF/item.h as follows:

typedef struct device_type {

u_int16 dev_mode;

u_char dev_netwk_in, dev_netwk_out;

#define ITE_NET_NONE 0x00

#define ITE_NET_CTL 0x01

#define ITE_NET_DATA 0x02

#define ITE_NET_MPEG2 0x03

#define ITE_NET_CHMGR 0x04

#define ITE_NET_OOB 0x05

#define ITE_NET_VIPDIR 0x06

#define ITE_NET_SESCTL 0x07

#define ITE_NET_X25 0x08

#define ITE_NET_ANY 0xFF

u_int16 dev_callstate;

#define ITE_CS_IDLE 0x0001

#define ITE_CS_INCALL 0x0002

#define ITE_CS_CONNEST 0x0004

#define ITE_CS_ACTIVE 0x0008

#define ITE_CS_CONNTERM 0x0010

#define ITE_CS_CONNLESS 0x0020

#define ITE_CS_SUSPEND 0x0040

u_char dev_rcvr_state;

#define ITE_ASGN_RSVD 0x00

#define ITE_ASGN_NONE 0x01

#define ITE_ASGN_THEIRNUM 0x02

#define ITE_ASGN_ANY 0x03

#define ITE_ASGN_PROFILE 0x04

u_char dev_rsv1;

u_int32 dev_rsv2

addr_type dev_ournum, dev_theirnum;

char dev_display[ITE_MAX_DISPLAYSIZE];

} device_type, *Device_type;

Chapter 2: Creating SoftStax Drivers

55

Description

device_type contains general information about network type, current call state,
local and remote addressing, and a virtual display area.

Fields

dev_mode

Characterizes the mode of the device (readable or writable). Legal values are:
FAM_READ, FAM_WRITE, and FAM_NONSHARE.

dev_netwk_in

Allows for independent characterization of the input side of the network device.
Refer to Using SoftStax for legal values of this field.

dev_netwk_out

Allows for independent characterization of the output side of the network
device. Refer to Using SoftStax for legal values of this field.

dev_callstate

Shows the current call state for the device. Refer to Using SoftStax for legal
values of this field.

dev_rcvr_state

Indicates whether anyone is registered to receive notification for an incoming
call on this network device. Refer to Using SoftStax for legal values of this field.

dev_rsv1

Reserved for future use.

dev_rsv2

Reserved for future use.

dev_ournum

The address information for our-end.

dev_theirnum

The address information for their-end.

dev_display

An array that may be used by signalling protocols for messages such as caller
ID. The application can perform an ite_path_constat() call and print the
display information to a screen or LCD display.

SoftStax® Porting Guide

56

addr_type

Declaration

The addr_type structure is declared in the file SPF/item.h as follows:

typedef struct addr_type {

u_char addr_class;

#define ITE_ADCL_NONE 0x00

#define ITE_ADCL_UNKNOWN 0x01

#define ITE_ADCL_E164 0x02

#define ITE_ADCL_INET 0x03

#define ITE_ADCL_RSV1 0x04

#define ITE_ADCL_X25 0x05

#define ITE_ADCL_ATM_ENDSYSTEM 0x06

#define ITE_ADCL_LPBK 0x07

#define ITE_ADCL_NSAP 0x08

#define ITE_ADCL_DTE 0x09

#define ITE_ADCL_DCE 0x0A

#define ITE_ADCL_LAPD 0x0B

u_char addr_subclass;

#define ITE_ADSUB_NONE 0x00

#define ITE_ADSUB_UNKNOWN 0x01

#define ITE_ADSUB_VC 0x02

#define ITE_ADSUB_PVC 0x03

#define ITE_ADSUB_LUN 0x04

#define ITE_ADSUB_SLINK 0x05

#define ITE_ADSUB_MLINK 0x06

u_char addr_rsv1;

u_char addr_size;

char addr[32];

} addr_type, *Addr_type;

Description

This structure abstracts the specific addressing for the application. The address has
an address class and subclass telling the application what kind of addressing is used.
Addressing may change down the stack. The address size and array where the actual
address is stored follows.

Chapter 2: Creating SoftStax Drivers

57

The address type in the path_type structure only belongs to the top protocol in the
stack. When a protocol with a new addressing type is pushed on, the old top
protocol must save the current addressing for their protocol during the
SPF_SS_PUSH. This addressing information should be copied back into the ITEM
path structure during SPF_SS_POP.

It is legal for stacks to be created which have different addressing and therefore
different ITEM address types at each layer. For example, say you are doing end-to-
end signalling using UDP/IP over an Asynchronous Transfer Mode (ATM) interface.
The ATM interface itself has its own kind of address type--
ITE_ADCL_ATM_ENDSYSTEM (refer to item.h). Then, the UDP/IP protocols use
socket addressing. Furthermore, the top end-to-end signalling may use Network
Service Access Point (NSAP) addressing. With any luck, the only addressing
exposed to the application would be NSAP, because that’s the addressing used in the
ITEM structure since that protocol driver is on top. However, if the application
needs to change the socket address, it can use the ite_ctl_addrset() call. It
simply creates an addr_type structure with ITE_ADCL_INET and sends the new
socket address down. Since the SoftStax ITEM structure uses NSAP, it transparently
passes down until it gets to UDP, where the new socket address will be stored for
that path. Using ite_ctl_addrset() call, the application can manipulate
addressing at any layer of the stack.

Fields

addr_class

Indicates the address class. Refer to Using SoftStax for legal values of this field.

addr_subclass

Indicates the address sub-class. Refer to Using SoftStax for legal values of this
field.

addr_rsv1

Reserved for future use.

addr_size

The number of valid bytes in the addr array.

addr

Contains the specific address value.

SoftStax® Porting Guide

58

notify_type

Declaration

The notify_type structure is declared in the file SPF/item.h as follows:

typedef struct notify_type {

struct notify_type *ntfy_next;

u_char ntfy_class;

u_char ntfy_on;

u_char ntfy_rsv1;

u_char ntfy_ctl_type;

void *ntfy_ctl;

u_int32 ntfy_timeout;

u_int32 ntfy_rsv[2];

union

{

struct {

u_int32 proc_id;

u_int32 sig2send;

} sig;

struct {

u_int32 ev_id;

int32 ev_val;

} ev;

struct {

u_int32 ev_id;

int32 ev_inc_val;

} inc_ev;

struct {

u_int32 mmbox_handle;

error_code (*callback_func)();

} mmbox;

Chapter 2: Creating SoftStax Drivers

59

struct {

void *callbk_param;

error_code (*callback_func)();

} callbk;

} notify;

} notify_type, *Notify_type;

Description

When asynchronous ITEM requests are issued by the application, this structure is
used to allow the application to tell the system in what way they wish to be notified
when the triggering activity occurs. Currently, the mechanisms used for notification
are the ITE_NCL_SIGNAL, ITE_NCL_EVENT, and ITE_NCL_CALLBACK. You may also
use ITE_NCL_BLOCK, however, this makes the request synchronous.

Fields

The caller fills in the ntfy_class, ntfy_ctl_type, ntfy_ctl, and notify fields
of the structure before issuing a call to the driver. The remaining fields are for
internal driver use.

The fields set by the caller are described below:

ntfy_class

Specifies whether the request should execute synchronously or asynchronously,
and for asynchronous requests the type of notification desired. Valid values are:

ITE_NCL_BLOCK

Specifies a synchronous request.

ITE_NCL_SIGNAL

Specifies an asynchronous request with notification via a signal.

ITE_NCL_EVENT

Specifies an asynchronous request with notification via an event.

ITE_NCL_CALLBACK

Specifies an asynchronous request with notification via a call-back function.

ITE_NCL_EVENTINC

Specifies incrementing events notification.

ITE_NCL_SIGNALINC

Specifies incrementing signal notification.

ntfy_on

When the ITE_NCL_CALLBACK ntfy_class is specified, the caller is
executing in system state. Typically this ntfy_class is used only by device
drivers issuing asynchronous requests to other device drivers.

SoftStax® Porting Guide

60

Specifies what notification in the array the application is interested in.

ntry_rsv1

Reserved for future use.

ntfy_ctl_type

Identifies the type of pointer set in the ntfy_ctl field. For asynchronous calls,
the ntfy_ctl_type field should be set to NTYPE_RETURN. For synchronous
calls, the ntfy_ctl_type field should be set to NTYPE_NONE.

ntfy_ctl

Set to point to the caller’s return_type structure for asynchronous calls. This
structure contains a single field set by the driver to the completion status of the
asynchronous call before the notification is issued. The return_type structure
is defined in the file SPF/item.h.

The return_type structure simply provides a location for an error code to be
returned. Thus, this structure must remain allocated and unused by the caller
until the asynchronous call has completed. When a caller is notified an
asynchronous call has completed, it should check the return_type structure to
determine whether or not the call was successful.

ntfy_timeout

The amount of time the blocking application waits for the notification before
returning.

ntfy_rsv

Reserved for future use.

proc_id

For internal driver use when notifying via signals.

sig2send

Specifies the signal number desired for a notification via a signal.

ev_id

Specifies the event identifier for a notification via an event.

ev_val

Specifies the desired event value for a notification via an event.

ev_inc_val

Specifies the value to increment the event by when incrementing events.

callback_func

Specifies the address of the call-back function for a notification via a call-back
function.

callbk_param

Specifies the desired parameter value for the call-back function for a notification
via a call-back function.

Chapter 2: Creating SoftStax Drivers

61

Notification via Signals

When this application requests this type of notification, it only fills out the
sig2send field of the notify union. The file manager automatically acquires the
current process ID and initializes it in the proc_id parameter of the notify union.

Notification via Events

The application fills out the event ID as well as the value of the event in the notify
union. If incrementing events are used, the ev_inc_val parameter should also be
filled out.

Notification Extensions

Extensions allow for incrementing signals or events as well as sending Multimedia
Application User Interface (MAUI®) mailbox messages. At this point, MAUI
messages are not used.

SoftStax Working Environment

Defs Files

The generic OS definitions are located in MWOS/SRC/DEFS or the DEFS subdirectory
for the processor family (such as MWOS/OS9000/PPC/DEFS). All SoftStax definition
files are found in MWOS/SRC/DEFS/SPF.

Keep in mind when you create an application and use the makefiles that make the
examples, the previous discussion is handled automatically. These makefiles are
defined to search the correct subdirectories for the correct target processor.

Driver Source Files

The following discussion elaborates on all the files found in the SPPROTO
subdirectory.

defs.h

Contains standard include files for a driver. spf.h gets defined after SPF_DRSTAT
and SPF_LUSTAT macros because these macros are referenced in spf.h.

SPF_DRSTAT, SPF_LUSTAT, SPF_PPSTAT definitions

These macros allow the driver to define its own variables in the logical unit driver
static and per path static storage structures. For example, add variables x and y to
the driver static, variable z to the logical unit, and a and b to the per path storage.

#define SPF_PPSTAT \

u_int32 a; \

u_int32 b;

#define SPF_DRSTAT \

u_int32 x; \

SoftStax® Porting Guide

62

u_init32 y;

#define SPF_LUSTAT \

u_init32 *z;

SPF_LUSTAT_INIT definitions

This is where the descriptor gets the initialized values for the logical unit static. Per
the previous example, initialize z to 5.

#define SPF_LUSTAT_INIT \

5

history.h

history.h includes edition/attributes for any editorials present on the driver and
descriptors. The history.h file is principally a file to track the history of the driver
and descriptors. There are two _asm instructions in this file. This is where the
system attributes and revision status are updated. Type the following instruction to
see the system attributes and status:

os9ident $ MWOS/OS9/68000/CMDS/BOOTOBJS/spproto

or on an OS-9 for 68K or OS-9 system enter:

ident MWOS/OS9/68000/CMDS/BOOTOBJS/spproto

This command lists all vital statistics for the module spproto. On your display,
look through the Edition and Ty/La At/Rev lines. Note the same values appear as
in the _asm() lines of the history.h file of spproto.

The _sysattr definition is especially important. For example, assume you have an
old driver in ROM and the _sysattr value is 0xA001. You found a bug in this
driver and fixed it. Before recompiling, you change the _sysattr value to 0xA002.
You bring the target system up and it loads the old driver from ROM into memory.
Instead of having to reprogram your ROM every time to check the fix, you can load
the new driver into memory. OS-9 compares the _sysattr values of the driver and
uses the one with the highest value. In this case, because you changed the value of
your driver to 0xA002, it replaces the old driver. If you did not change it, the values
would have been the same and the older module would remain in memory and be
used.

The _sysedit value allows you to keep track of the driver and descriptor versions
in the field, so you should always increment _sysedit values before releasing
changes. You should also document those changes. This way, if problems occur, you
can trace the driver via the _sysedit value and your documentation.

If you find two OS-9 modules with the same version number, they may still be
different. A quick check to compare the module size and module CRC using the
os9ident or ident commands show if they are different in any way.

The initialization for SPF_DRSTAT variable goes in main.c where the driver
static is defined.

Chapter 2: Creating SoftStax Drivers

63

proto.h

proto.h defines the function prototypes for the driver.

main.c

main.c contains the initialization variables OS-9 uses to initialize the driver static
structure before calling the driver. Make sure to include initialized values for the
variables declared in the SPF_DRSTAT macro.

entry.c

entry.c contains code for all the entry points in a driver. Typically, if implementing
a state machine, you have separate source files to process incoming and outgoing
packets used in dr_updata() and dr_downdata(). This provides source code
modularity.

misc.c

The misc.c file can be found in /MWOS/SRC/DPIO/SPF/DRVR

This file contains two subtle but important standard functions hardware drivers
used to get and free mbufs. The mbuf facility itself includes two standard calls to get
and free packets: m_get() and m_free(). Do not use the m_get() call if this is a
hardware driver using the DR_FMCALLUP_PKT() call.

For instance, on the receive side, SoftStax hardware drivers put the device entry
handle of the next highest protocol on the stack in every receive mbuf to correctly
pass the packet up the stack. The get_mbuf() function provided in misc.c
automatically reserves room right after the mbuf header for the device entry pointer
and puts this information into the mbuf. If the protocol layout is changed in the
future, drivers using misc.c simply need to be recompiled. Whereas, drivers that do
not use misc.c need to be modified.

There are also mbuf nofree support functions provided for drivers wanting to use
the SPF_NOFREE functionality.

Makefiles

A driver makefile (spfdrvr.mak) is located in the SPPROTO subdirectory. The
spfdrvr.mak creates a driver object . This object is stored in the
CMDS/BOOTOBJS/SPF for the correct processor family.

When making a descriptor for a particular driver, the makefiles for those descriptors
are in one of two places in the MWOS directory structure depending on whether it is a
hardware driver or a protocol driver.

Refer to Appendix B, The mbuf Facility for detailed information concerning
SPF_NOFREE.

SoftStax® Porting Guide

64

Hardware Driver makefile Descriptors

For hardware drivers where the object typically goes with a particular port to a
board, the makefile for the descriptor is usually found in the processor family
subdirectory under PORTS.

Example hardware driver makefile source code has been included for
demonstration purposes. For example, the SPPRO100 source in
SPF/DRVR/SPPRO100 makes a driver for use on the ENP-3511 board. Therefore, if
you look at the MWOS/OS9000/ARMV4BE/PORTS/ENP3511/SPF directory, you see
the makefiles for this port-specific compile of the SPPRO100 driver with respect to
the ENP-3511 board. Directly under the SPPRO100 subdirectory is the DEFS
subdirectory. This contains the spf_desc.h file that can be added to or modified to
change or create device descriptors for the spPRO100 driver. The object is stored in
the CMDS/BOOTOBJS/SPF directory within the PORTS/ENP3511 subdirectory.

When making the objects for a specific port, the objects are stored in a local
CMDS/BOOTOBJS/SPF directory and the makefiles are located in the corresponding
PORTS directory such as MWOS/OS9000/ARMV4BE/PORTS/ENP3511/SPF. The
makefiles found in this directory can be used as templates and are portable to
other PORTS directories for making your own SoftStax driver and descriptor port.

Protocol Drivers makefile Descriptors

The descriptor makefiles are stored in the MWOS/SRC/DPIO/SPF/DRVR directory
under the protocol driver name. For example, the SPPROTO directory contains
defs.h, the file the descriptor needs to compile properly along with spfdesc.mak,
the makefile for the descriptor. Directly under the SPPROTO directory is the DEFS
subdirectory. It contains all the initialization information for creating the specific
descriptors.

MON Directory

All objects for the file manager and drivers are in the CMDS/BOOTOBJS/SPF
directory. However, special debugging objects exist that create data modules in
memory and log the processing of that driver. If problems occur, this debug module
can be used to quickly find and fix the problem.

When making the objects for a specific port, the objects are stored in a local
CMDS/BOOTOBJS directory as shown for this example. The makefiles found in this
directory can be used as templates and are portable to other PORTS directories for
making your own SoftStax driver and descriptor port.

Making a Driver using the SPPROTO Template
In this example, create your own driver using the SPPROTO directory as the
template.

Refer to Chapter 3, SPPROTO Driver in this manual for more information.

Chapter 2: Creating SoftStax Drivers

65

Complete the following steps to create a driver:

Step 1. Create a directory called SPMYDRVR under the MWOS/SRC/DPIO/SPF/DRVR directory
on your host machine.

Step 2. Copy the SPPROTO directory and its contents to the SPMYDRVR directory.

You should have a directory called SPMYDRVR with the same contents as SPPROTO.

Step 3. Create your driver by editing all the .c and .h files.

The SPPROTO template only provides one .c file, entry.c. You may want to create
more.c files.

For example, say the spmydriver has entry.c, foo1.c, and foo2.c. Add foo1.c
and foo2.c to the makefile so the driver compiles correctly. The best way to do
this is to search through spfdrvr.mak for instances of “entry”, when you find
one, add the same command lines for “foo1” and “foo2”.

Step 4. Edit the driver makefiles to create the driver, spmydrvr.

Step 5. Open the spfdrvr.mak file for editing.

Step 6. Change the TRGTS macro to:

TRGTS = spmydrvr

Step 7. Search the spfdrvr.mak file for all spproto occurrences and change them to
spmydrvr.

Step 8. Customize each entry point to fit your hardware configuration.

Step 9. Customize device descriptors to fit your drivers.

Step 10. Use the make utility to create object files.

Step 11. Test your driver.

Creating Device Descriptors

Go to the MWOS/SRC/DPIO/SPF/DRVR/SPPROTO directory and walk through the
changes required by spfdesc.mak and DEFS/spf_desc.h to make a new
descriptor.

The spproto driver comes with one descriptor: proto.

Complete the following steps to make a new descriptor:

Step 1. Open the spfdesc.mak file for editing.

Step 2. Add new descriptor names to the following line:

TRGTS = proto

The new line looks like:

TRGTS = proto proto1

This is the only change to the spfdesc.mak file.

Step 3. Go to the DEFS directory.

SoftStax® Porting Guide

66

Step 4. Open the spf_desc.h file for editing. The file has a section with #ifdef proto
and #endif wrapped around it.

Step 5. Copy this wrapper.

Step 6. Edit the values for the new section you created. Make sure to change the #ifdef
line for the new section to read #ifdef proto1.

Step 7. Type the following after changing the makefile and adding the initialization for
proto1.

os9make -f=spfdesc.mak ppc

When completed, look in the MWOS/OS9000/PPC/CMDS/BOOTOBJS/SPF directory.
You see your new device descriptor, proto1.

Makefile Summary

spfdrvr.mak

Makes the driver. When using this option, remember the following:

• define the MWOS macro correctly

• define the correct target(s)

• add .c files to CFILES, RFILES/IFILES macros

• use OPTMZ macro for optimization tuning

• any added files require the .r and .i dependency

spfdesc.mak

Makes the device descriptors. When using this option:

• define MWOS correctly

• create all desired targets

• use TRGTS macro location where descriptor’s names are defined

spf_desc.h

Contains macros defined to ensure the path options and ITEM structure initializes
correctly for this descriptor.

SoftStax Support Facilities for the Driver

Libraries

Libraries the driver uses can be found under the processor type LIB subdirectory
(OS9000/PPC/LIB).

spf.h defines defaults for all macros in spf_desc.h. If macros are not
defined, they are defined in a default manner by spf.h.

Chapter 2: Creating SoftStax Drivers

67

mbuf Library (mbuf.l)

The system mbuf facility is a pre-allocated pool of memory the OS reserves. This
provides faster allocation than malloc() and buffers can be quickly
allocated/deallocated by the system. This library uses:

• mbuf structure

• mbuf calls

Timer Service Library (sptimer.l)

The timer library enables drivers to set up one-shot and cyclic timers for doing
protocol processing such as timeouts. These are not intended as accurate, high
resolution timers and should not be used as such.

The timers are implemented using a single system alarm that schedules the receive
thread to execute the requested funtion when the timer expires. This system alarm is
run twice as fast as the shortest timer resulting in an accuracy of approximately 1/2
the smallest timer interval. The accuracy may further be reduced due to overhead of
scheduling the receive thread to execute the timer function.

Include the <SPF/timer.h> header file in defs.h to use timer services.

The timer_pb structure is defined in timer.h. The first six parameters in the
timer_pb structure are not to be written to by the driver. The timer service keeps
these variables. The variables from timer_type on down are to be initialized by the
driver for the desired timer.

Variables to be initialized by the driver for timer service:

timer_type Defined as TIMER_ONE_SHOT or TIMER_CYCLIC.

timer_call_type Drivers should always set this to CALL_FUNCTION.

timer_interval Timer interval in milliseconds desired.

t_func Function to call when timer expires.

t_pb Parameter to pass to t_func.

Once these parameters are set, the driver can make the timer_start() call.

These structures are used for the lifetime of the timer by the timer service, so they
are not reusable unless the timer for the timer_pb has been stopped.

The following three API calls are available for the driver:

Refer to Appendix B, The mbuf Facility for detailed information concerning the
mbuf facility.

Timer functions cannot be used in an interrupt service routine.

SoftStax® Porting Guide

68

timer_start()

This starts a cyclic or one-shot timer depending on how you fill out the timer
parameter block in timer.h. Calling timer_start() with an already started time
restarts the timer.

timer_restart()

This restarts a cyclic timer and readjusts it to go off at the same interval, but at the
current time the call was made. Calling timer_restart() with a timer that hasn’t
been started starts the timer.

timer_stop()

This stops a timer and takes it out of the timer queue.

Per Path Storage Library (ppstat.l)

The per path storage library provides standard calls drivers can make to create,
delete, and search through the per path list as described at the beginning of this
manual. The SPPROTO driver uses this library so you can see where these driver
library calls are used.

Debugging Library (dbg_mod.l)

This facility allows writers to create debugging output data modules in memory to
gather statistics in real time as well as log any errors that occur and might otherwise
be hard to report.

Attributes of this library include the following:

• name is usually called dbg_xxx by convention

• one or more drivers can use the same debug data module

• debug driver interface calls

Use rombug to view the output.

Flow Control

Earlier in the manual, the pd_readsz and pd_writesz parameters were discussed.
When data is enqueued on a path, SoftStax looks to see if the data now exceeds the
pd_readsz value. If it does, SoftStax issues an SPF_SS_FLOWON setstat down the
stack. At this point, if a driver implements flow control, it initiates messaging to
stop the flow of data.

When the application reads data from the queue, SoftStax determines if the read
queue size is now below the pd_readsz threshold. If it is, SoftStax issues an
SPF_SS_FLOWOFF setstat down the stack. At this point, the driver implementing
flow control sends messages to its peer to begin the flow of data again. It is up to
the hardware driver enqueuing transmit data to enforce the size of the transmit
queue size using the dr_writesz parameter in the path.

Chapter 2: Creating SoftStax Drivers

69

Driver Considerations

Hardware Drivers

Attributes of hardware drivers include:

• volatile structures and variables/optimization

• interrupt service routines TX/RX Error reporting and FMCALLUP_PKT

• multiple protocols on top of the same driver

High-level Data Link Control (HDLC) Controllers

Standard HDLC does not allow for multiple endpoint addressing and multi-
protocol support on a given single HDLC link. Because of this, the stacking and
unstacking aspects of this kind of driver are slightly different.

Typically, HDLC hardware drivers keep the associated protocol driver above in
another variable in the logical unit. (Example: lu_prot_above.) At SPF_SS_PUSH,
the driver copies the lu_updrvr to lu_prot_above. If this logical unit is used to
attempt another push, the protocol returns an EOS_DEVBSY error, meaning only one
protocol can be pushed on this interface of the driver. When called at SPF_SS_POP,
the lu_prot_above is still copied from lu_updrvr, but the driver once again
allows the next SPF_SS_PUSH to occur on this logical unit successfully.

ATM Drivers

ATM communication protocol drivers allow multiple endpoint addressing via the
VPI/VCI addresses. A given ATM interface (logical unit) can run multiple protocols
above based on the VPI/VCI. This means ATM drivers end up allocating per-path
storage for each VPI/VCI opened. Every path has a one-to-one correspondence with
a VPI/VCI. The per-path storage stores the updriver for the path.

Data Link Layer Driver Considerations

Data link layers provide reliable data transmission (retransmission queues
SPF_NOFREE). Data link layer protocols typically provide a reliable transport for
protocols above. To provide reliability, all currently unacknowledged packets must
be kept by the protocol in case they need to be retransmitted.

The mbuf facility provides for an SPF_NOFREE flag in the m_flags field. When the
hardware driver completes transmission of the mbuf, it calls m_free_p() to release
the packet. This library call checks for the SPF_NOFREE bit. If it is set, the library
simply sets the SPF_DONE bit. Otherwise, it returns the mbuf to the memory pool.
Therefore, when the data link layer driver really wants to return the mbuf, the
protocol must clear the SPF_NOFREE bit before calling an m_free_xxx library call.

mbuf leaks occur if drivers using the SPF_NOFREE bit do not clear it before using the
library to return an mbuf to the memory pool using m_free_p.

Refer to the SP82525 driver source code for an implementation of this.

SoftStax® Porting Guide

70

Hold-on-Close (HOC)

Hold-on-Close allows you to hold the path open while the path closes for graceful
closing.

For some protocols, there are multiple messages that must go back and forth in
order to gracefully terminate a connection. These messages are sometimes initiated
by the application calling the ite_path_close() or _os_close() calls. The path
descriptor, deventry, drstat, lustat, and pp_stg must be present until the
messaging completes. However, the OS deallocates the path descriptor immediately
after close(). If this is the last path open to the protocol, the deventry, drstat,
and lustat also returns immediately after close.

If you increment the stk_hold_on_close parameter during the SPF_GS_UPDATE,
your structures are present until termination has completed allowing graceful
protocol termination for the path.

When the application closes the path, SPF calls your driver at SPF_SS_APPCLOSE. In
this setstat you should initiate the termination messaging, then set a timer and
return. When incoming confirmation messages come in, send the appropriate reply
message and on completion of the messaging (or timeout waiting), call the
DR_FMCALLUP_CLOSE() macro to tell SPF the protocol has completed the close.
SPF then immediately calls SPF_SS_CLOSE on the path.

Network Layer Drivers

ITE_DIAL

Uses ite_conn_pb in item_pvt.h. At this point, your protocol should send the
connect request message, change states, and set the ITEM device type
dev_callstate field to ITE_CS_CONNEST. Notice this call uses a notify parameter
block. When the incoming connect confirmation comes in, change the ITEM
dev_callstate field to ITE_CS_ACTIVE and send the notification in the ON_CONN
element of the path’s notification list.

ITE_HANGUP

Uses the spf_ss_pb in spf.h. The parameter points to the caller’s ite_cctl_pb
found in item.h. Some protocols allow response and reason fields as well as user
data to be passed between endpoints when disconnecting. This parameter block is
filled by the user. If the parameter field is NULL, the protocol should use default
values if needed by the protocol. The protocol always assumes normal clearing
procedures on hangup unless otherwise noted.

ITE_ANSWER

Uses the ite_conn_pb and ite_cctl_pb in the cctl_pb field of the ite_conn_pb.
The protocol should send the connect confirmation and either set the
dev_callstate to ITE_CS_ACTIVE, or if another confirmation from the network
is required, wait until it arrives.

Chapter 2: Creating SoftStax Drivers

71

Additional Hold-on-Close

Hold-on-close drivers must call up after they have attempted to gracefully close. If
they do not, SPF never closes the path it has duped and extra paths are left around
after every use of the protocol.

HOC drivers must set the PATH_HOLDONCLOSE variable in spf_desc.h to
PATH_HOLD. If drivers do not have this macro set, it defaults to PATH_NOHOLD or
historical operation.

HOC drivers must add the following to the SPF_GS_UPDATE getstat:

IF lustat->lu_dndrvr {

add: upb->stk_hold_on_close +=1;

/* Make sure increments! */

} ELSE {

add: upb->stk_hold_on_close=1;

}

When HOC drivers get called at SPF_SS_CLOSE for a path before getting called at
SPF_SS_APPCLOSE, the driver should simply terminate immediately without
attempting graceful closing of the path. This is because the user has issued a pop of
this protocol off of the stack.

HOC drivers must implement the SPF_SS_APPCLOSE setstat. This is the setstat code
used when SPF is indicating to the HOC driver to begin graceful closing with its
peer.

The final issue concerning SPF_SS_APPCLOSE is non-HOC drivers need not
implement this setstat because it gets passed down transparently to the protocols
that understand it. This implementation is backwards compatible with old protocol
and device drivers.

Do not sleep during SPF_SS_CLOSE because SPF_SS_CLOSE is issued by the SPF
receive thread.

HOC Scenarios

The following three scenarios are diagrammed to assist you in understanding the
flow through the system:

1. Open a no-HOC path. Push HOC driver #1. Push HOC driver #2. Pop HOC
driver #2. Pop HOC driver #1. Close the resulting no-HOC path.

2. Open a path with one HOC driver and close the path.

3. Open a path with two HOC drivers and close the path. All other scenario
derivatives are proven by correct operation of these.

Scenario #1

Step 1. Open no HOC path

fm_open as usual.

SoftStax® Porting Guide

72

Step 2. Push HOC driver #1.

SPF_SS_PUSH:

push()

update()

-HOC 0->1 so _os_dup() called on path

{pathcount=2, HOC=1}

Step 3. Push HOC driver #2.

SPF_SS_PUSH:

push()

update()

-HOC 1->2, (only dup if HOC was 0, and now non-0)

Step 4. Pop the path (HOC driver #2)

SPF_SS_POP:

pop()

-HOC driver #2 gets called at
SPF_SS_CLOSE:

/* HOC driver notes SS_CLOSE called before

SS_APPCLOSE, so it must just close without any

graceful messaging*/

update()

-HOC 2->1, (SPF does nothing)

Step 5. Pop the path again (HOC driver #1)

SPF_SS_POP:

pop()

-HOC driver #1 gets called at SPF_SS_CLOSE:

/*HOC driver notes SS_CLOSE called before

SS_APPCLOSE, so it must just close without any

graceful messaging*/

update()

-HOC 1->0, Since HOC was non-zero and is now zero,

SPF calls _os_close()

fm_close()

-pathcount=1, but HOC=0, do nothing and exit.

Step 6. Close the no HOC path

fm_close()

-Normal close as before.

Chapter 2: Creating SoftStax Drivers

73

Scenario #2

Step 1. Open one HOC path

fm_open as usual.

Step 2. Close one HOC path.

fm_close()

-pathcount=1, but HOC=0, do nothing and exit.

Step 3. Close the no HOC path

fm_close()

{pathcount=1, HOC=1} so SPF calls SPF_SS_APPCLOSE

SPF_SS_APPCLOSE:

<HOC protocol initiates close messaging and returns>

<After either messaging has completed successfully or

protocol times out, the driver will use the

DR_FMCALLUP_CLOSE() macro in spf.h>

DR_FMCALLUP_CLOSE (in spf)

hoc_func()

fm_close()

pathcount=0, so close normally.

Scenario #3

Step 1. Open two HOC paths.

fm_open as usual.

-update()

HOC 0-> so SPF will _os_dup() path (SPF checks
0 to non-0) {pathcount=2}

Step 2. Close two HOC paths.

fm_close()

{pathcount=1, HOC=2} so SPF calls SPF_SS_APPCLOSE

SPF_SS_APPCLOSE: <first HOC protocol initiates

close messaging and returns>

<After either messaging has completed successfully or

protocol times out, the first driver uses

DR_FMCALLUP_CLOSE() macro in spf.h>

DR_FMCALLUP_CLOSE (in spf)

HOC 2->1 so SPF issues the SPF_SS_APPCLOSE again

<1st HOC protocol stored the fact for this path, it

SoftStax® Porting Guide

74

already completes the APPCLOSE, so it passes it

transparently down>

<2nd HOC protocol gets SPF_SS_APPCLOSE and initiate

its messaging and returns>

<After either messaging has completed successfully or

protocol times out, the second driver uses the

DR_FMCALLUP_CLOSE() macro in spf.h>

DR_FMCALLUP_CLOSE (in spf)

HOC 1->0 so SPF calls _os_close()

_os_close (HOC path)

fm_close()

pathcount=0, so close normally.

Out-of-Band Protocol Considerations with ITEM

There are two key issues to discuss when talking about out-of-band protocol stacks.
The first is the ability to configure the ib-band connection correctly once the out-of-
band signalling is completed. The second is to provide quality of service labels, or
profiles, which allow applications to make out-of-band calls using a simple profile
which translates into more complex messaging for the protocol stack below.

In-Band Configuration of Out-of-Band Connections

Much like standard Plain Old Telephone Service (POTS) today, many protocols are
Out-of-band protocols. That is you dial digits to the network administration entity
to get an end-to-end connection to somewhere else.

For example:

Chapter 2: Creating SoftStax Drivers

75

Figure 2-10. Sequence of Events for Out-of-Band Protocol Connection

The figure Figure 2-10 shows the 5 steps that take place when an out-of-band (oob)
connection is created between the entity labelled App 1 and another endpoint. From
the application’s perspective, everything is the same except for the additions of steps
4 and 5.

The spf_oob.h definitions file contains structures and definitions for the in-band
configuration block. The idea here is that the application makes a connection. Once
notified that the connection is complete, the application requests the in-band
configuration block from the protocol stack by making the ite_ctl_reslist()
call. The second parameter in the call is a pointer to the in-band configuration block
ib_cfg_pb. If the pointer contains NULL, no in-band device is needed and end-to-
end communication can take place on this (the signalling) path. If a non-NULL
pointer is returned, an in-band path must be opened using this block.

ITEM

FM

OOB Prot

Prot Stack

HW Drvr

*In-band
Handling

Device
"/rd1"

App1

cfg
parms

IB1

Establish Connection
Returned in-band resource
Create the in-band config block (IB1)
Send connect notification

1

2

4

ite_path_open(&path1)

ite_ctl_connect(path1, local, remote, npb)

<once connect notification received>
ite_ctl_reslist(path1, &reslist, #elements)

3

5 ite_ibpath_open(&path2, IB1)
<use the in-band path>

*Note: In most cases the in-band handling device wil l be the same
hardware driver with an in-band protocol stack instead of
the out-of-bound protocol stack.

SoftStax® Porting Guide

76

ib_cfg_pb

Declaration

The ib_cfg_pb structure is declared in the file SPF/spf_oob.h as follows:

typedef struct ib_cfg_pb {

Ib_cfg_pb ib_next;

char ib_name[IB_NAME_SIZE];

u_int32 oob_syspath;

u_int16 ib_flags;

#define NEW_IB_RES 0x0001

#define CLEAR_NEWIB 0xFFFE

u_int16 ib_obj_type;

#define IB_OBJ_ATM 1

#define IB_OBJ_BRI 2

u_int8ib_object[32];

error_code (*ib_callback) (

Ib_cfg_pb ibpb,

void *spb);

error_code (*oob_callback) (

Ib_cfg_pb ibpb,

void *spb);

#define IB_STATE_CHANGE 0x01

#define IB_CHECK_IN 0x02

#define CB_CONN_TERM 0x03

void *ib_deventry;

void *oob_deventry;

u_char ib_state;

#define IB_FREE 0x00

#define IB_AWAIT_ADD 0x01

#define IB_ACTIVE 0x02

#define IB_AWAIT_DEL 0x03

#define IB_RESERVED 0x04

#define IB_WAIT_CHECKIN 0x05

u_char ib_rsv2[3];

};

Chapter 2: Creating SoftStax Drivers

77

Description

The application may read the variables down to the ib_object array. From the
ib_callback field on down is only used for communication between the in-band
and out-of-band drivers.

Fields

ib_next

Points to next block in list (Driver use only).

ib_name

The name of the descriptor to use for the end-to-end communication.

oob_syspa

The system path number of the out-of-band path that created this block.

ib_flags

The flags field. NEW_IB_RES: Set if this is a new block not yet received by the
application.

ib_obj_type

The in-band object type. Used to interpret contents of the ib_object array.

ib_object

Includes in-band specific information for proper in-band driver configuration.

ib_callback

Used for communication from oob protocol to ib protocol

oob_callback

Used for communication from ib protocol to oob protocol.

ib_deventry

The in-band driver’s device entry.

oob_deventry

The oob driver’s device entry.

ib_state

The current state of the ib connection.

ib_rsv2

Used for long word alignment/reserved for future use.

For ease of use, there is the ite_ibpath_open() ITEM call used to open an in-
band path without needing to look inside the in-band configuration block. The
application also has the option of performing a standard open() call using the
ib_name[] string in the block.

SoftStax® Porting Guide

78

There are two things that must be added to the spf_oob.h file for proper
registration of your oob protocol. First, in order for all applications and protocol
stacks to be interoperable with your protocol (IP over ATM and MPEG over ISDN),
we need to create a profile ID for your protocol along with an in-band object
structure. This way, based on the profile ID, the application can map the
ib_object structure correctly.

Creation of a protocol ID is simply defining a PR_STRUCT_... macro in spf_oob.h
with the others. Contact Microware to register this value.

Creating an in-band object structure to cast the ib_object array with is protocol
dependent. Notice for the ATM example, the in-band object maps to a VPI/VCI
connection. ISDN maps to a call reference and channel ID. Depending on what kind
of addressing identification your protocol has, this structure reflects that for the
ibobj_xxx protocol.

The two setstat codes for getting the parameter block and setting the in-band
resource configuration for an in-band driver are listed below:

ITE_RESOURCE_LIST

FROM: ite_ctl_reslist

This getstat is implemented by the out-of-band protocol. The ITE_RESOURCE_LIST
setstat uses the ite_rescfg_pb in item_pvt.h. The out of band protocol should
return the number of in-band connections (called resources) pb.spb.size. Usually,
this number is only 1. However, some interactive TV session control protocols
create many in-band connections as a result of one service call. The pointer to the
in-band resource list (ib_cfg_pb in spf_oob.h) is returned in pb.spb.param.

ITE_IBRES_CFG

FROM: ite_ibpath_open

This setstat is optionally implemented by the in-band protocol. If this setstat is not
implemented, the device descriptor used to open the in-band path configures the
device, not the in-band parameter block. After SPF_SS_OPEN, the device gets called
at this setstat to configure itself per the parameters negotiated by the out-of-band
protocol. A pointer to the ib_cfg_pb structure is in the spb->param field. Inter-
driver communication is achieved through this in-band parameter block between
the in-band device and out-of-band device using the ib_callback() and
oob_callback entry points in the ib_cfg_pb. This way, the in-band resource can
know things like when the out-of-band connection has gone away without
depending on the application being correctly written.

Chapter 2: Creating SoftStax Drivers

79

Profiles for out-of-band connectivity

The second part of the spf_oob.h file deals with profiles for out-of-band protocols.
A profile is a simple mapping of a requested service type from the application’s
perspective to various parameters and information elements that must be used in
order to set up an in-band connection that can provide that kind of service.
Applications remain portable because they simply ask to set a profile like IP
connection or MPEG connection. These profile identifiers map to stored structures
for particular protocols that in turn use the profile type to know how to create the
connection request message.

The spf_oob.h file specifies the types of profiles using the ITE_SVC_ prefix. These
profiles are passed between applications and protocols using the conn_type
structure. The conn_type structure also contains other generic kinds of service
options like data rate and subaddressing if applicable to the protocol stack.

Profile Implementation at the Driver Level

First of all, the protocols key off of the ITE_SVC_xxx macros in spf_oob.h. The
specification of the protocol also determines whether the protocol can distinguish
between profiles or not (the protocol requests the connection the same regardless of
the kind of data being sent and received over the connection). If the protocol makes
no distinction, then profiling for the protocol returns unknown service errors.

The next step is to create an xxx_pr.h file (where xxx is the name of your
protocol). Examples of these files are isdn_pr.h and atm_pr.h found in the ISDN
or ATM Communications Paks respectively. This file contains the profile structure
as well as all the protocol specific structures and definitions needed to implement
the profile options for the services.

If we are implementing protocol xxx, we would create an xxx_profile structure in
xxx_pr.h. A sample xxx_profile structure is shown on the following page.

SoftStax® Porting Guide

80

bri_profile

Declaration

typedef struct bri_profile {

u_char pr_struct_type;

u_char pr_svc_type;

ITE_SVC_VOICE 1

ITE_SVC_DATA_ANY 2

ITE_SVC_DATA_MPEG 3

ITE_SVC_DATA_IP 4

u_int16 pr_size;

char pr_desc[16];

bri_profile_body pr_body;

} bri_profile, *Bri_profile;

Description

The general concept is that the first variables are present in the structure regardless
of the specific profile, then there is a structure that follows these variables which
contains the protocol specific piece of the profile.

Fields

pr_struct_type

Should be PR_STRUCT_xxx found in spf_oob.h. Contact Microware to register
your profile ID.

pr_service_type

The profile key macro in spf_oob.h (ITE_SVC_...).

pr_size

The size of the xxx_profile structure.

pr_desc[16]

The in-band descriptor string to open for this profile. This string is copied into
the ib_name[] field when ib_cfg_pb is created.

pr_body

A structure created with the protocol specific parameters to provide an in-band
connection for this profile.

Chapter 2: Creating SoftStax Drivers

81

Now that we have created the profile structure, its time to put the profiles in the
driver. Since we want the descriptor to hold all the profiles understood by the driver,
an array of xxx_profile structures are kept in the logical unit
(lu_profile_list[]). This way the spf_desc.h file can be used to initialize these
array profiles as needed for voice, data, IP, and MPEG call operation. Also, the
logical unit should have one of these profiles to use as the default profile if none is
specified explicitly (lu_profile_default). This lu_profile_default value is
the array element to use in the list as the default. Notice also that the ITE_SVC_xxx
macros in spf_oob.h go from 1 to 4. These values can be used as array indexes for
ease of profile listing (the [1] element in the profile list is ITE_SVC_VOICE profile).

After the profile array has been implemented, there should be an xxx_profile
structure in the per path storage also. The profiles in the logical unit are not
changeable without changing the descriptor. Once a path is opened, the default
profile gets copied into the xxx_profile structure stored in the per path storage. It
is this copy that can be read and modified by the application owning the path.

The following information shows additions to the defs.h file for the driver and a
simplified example of an xxx_pr.h file.

Sample xxx_pr.h

typedef struct xxx_profile_body {

u_char qos1[8]; /* Example quality of*/

/* svc param */

} xxx_profile_body, *Xxx_profile_body;

typedef struct xxx_profile {

u_char pr_struct_type;

u_char pr_svc_type;

u_int16 pr_desc[16];

xxx_profile_body pr_body;

} xxx_profile, *Xxx_profile;

Additions to defs.h

Initialization defaults for SPF_LUSTAT_INIT:

#ifndef QOS_VOICE #ifndef QOS_DATA

#define QOS_VOICE {\ #define QOS_DATA {\

PR_STRUCT_XXX,\ PR_STRUCT_XXX,\

ITE_SVC_VOICE,\ ITE_SVC_DATA_ANY,

{“/voice_desc”},\ {“/data_desc”},\

{0,0,0,0,0,0,0,0} {1,1,1,1,1,1,1,1}\

} }

SoftStax® Porting Guide

82

#ifndef DEFAULT_PROFILE

#define DEFAULT_PROFILE ITE_SVC_VOICE

#endif

Added variables to logical unit:

xxx_profile lu_profile_list[2];

/* Only distinguished voice/data */

u_int32 lu_profile_default;

/* Default profile index*/

Added variable to per path storage:

xxx_profile pp_profile;

/* The profile used for this path*/

SPF_LUSTAT_INIT additions:

{\

QOS_VOICE,\

QOS_DATA,\

},\

{DEFAULT_PROFILE - 1},\

Profile API calls

The last thing to cover is the driver implementation of the profile API calls found in
ITEM and prototyped in spf_oob.h.

Now that we know how the profile mechanism is implemented in the driver, we
need to expose enough flexibility to the application to allow it to change or
customize profiles for its own use. Two API calls have been created for this,
ite_path_profileget() and ite_path_profileset().

Refer to the OS-9 Networking Programming Reference for more information about the
ite_path_profileget() and ite_path_profileset() calls.

83

3 SPPROTO Driver

This chapter details the SPPROTO driver and provides a template for writing other
drivers to be written. The following sections are included:

• SoftStax Driver Overview: spproto

• defs.h

• history.h

• proto.h

• main.c

• entry.c

SoftStax® Porting Guide

84

SoftStax Driver Overview: spproto
The SPPROTO driver is the template driver provided with SoftStax. It is composed
of the following basic source files:

• defs.h

• history.h

• proto.h

• entry.c

• main.c

defs.h
This file includes all definition files required for the driver to compile properly.
Most of the include files are standard OS-9 for 68K include files. One of the
exceptions is defconv.h. This file equates all OS-9 structure names and macros to
their corresponding names in OS-9 for 68K. This is part of the Dual Ported I/O
(DPIO) support. SoftStax driver source is source code portable across processors.

The spf.h file is included in defs.h, as well as the local files proto.h and
history.h described on the following pages.

One important note about drivers using spf.h include files is the line #define
SPF_DRVR, which must be included before including spf.h. This is because spf.h
is conditionalized into the following three sections:

• application oriented

• driver and descriptor oriented

• file manager oriented

Applications including <spf.h> without defining SPF_DRVR or SPF_FM, get the first
part of spf.h, which includes macro definitions and function prototypes. If you
define SPF_DRVR before including spf.h (as spproto does), you bring in definitions
for all structures the driver needs to know about. Finally, if you define SPF_FM, the
entire spf.h file is brought in.

The other part of defs.h is the declaration of the device-specific part of the logical
unit. The definition begins with #define SPF_LUSTAT. You can find this macro
used in the spf_lustat structure of spf.h.

The driver then defines SPF_LUSTAT as all the variables that should be part of the
logical unit for the driver specific portion. spproto only defines two variables in its
logical unit specific static storage area, lu_dbg and lu_dbg_name. These pointers
are used by the debugging data module version of the driver to identify the pointer
to the debug data module and the name of the debug data module to create or link.

Only the SPF manager should include the SPF_FM macro. Otherwise, your
driver runs the risk of being incompatible with future versions of SoftStax.

Chapter 3: SPPROTO Driver

85

spf.h should be included after the SPF_LUSTAT macro is defined. If not,
SPF_LUSTAT will not be defined when the compiler is resolving the spf_lustat
data structure in spf.h, and the logical unit specific storage for these two structures
will not be included.

SPF_DRSTAT is also declared here. This is very much like the logical unit discussion
previously, only for the driver static. Again, notice in the spf.h spf_drstat
structure (at the bottom), there is a #ifdef SPF_DRSTAT.

When you write drivers, declare the variables you need in the device-specific portion
of the driver static, the same as in the logical unit. Only the declared variables can
be found in defs.h. The initialization of the entire driver static structure is
discussed in main.c.

The SPPROTO driver does not have any device-specific definitions in the driver
static structure. In this defs.h file, there is only the comment pertaining to where
this declaration goes above the logical unit definitions.

history.h
The history.h file is principally a file to track the history of the driver and the
descriptors. There are two _asm instructions in this file. This is where the system
attributes and revision status are updated. Type the following instruction to see the
system attributes and status:

os9ident $ MWOS/OS9/68000/CMDS/BOOTOBJS/SPF/spproto

or on an OS-9 for 68K or OS-9 system enter:

ident MWOS/OS9/68000/CMDS/BOOTOBJS/SPF/spproto

This command lists all vital statistics for the module spproto. On your display,
look through the Edition and Ty/La At/Rev lines. Note the same values appear as
in the _asm() lines of the history.h file of spproto.

The _sysattr definition is especially important. For example, assume you have an
old driver in ROM and the _sysattr value is 0xA001. You found a bug in this
driver and fixed it. Before recompiling, you change the _sysattr value to 0xA002.
You bring the target system up and it loads the old driver from ROM into memory.
Instead of having to reprogram your ROM every time to check the fix, you can load
the new driver into memory. OS-9 compares the _sysattr values of the driver and
uses the one with the highest value. In this case, because you changed the value of
your driver to 0xA002, it replaces the old driver. If you did not change it, the values
would have been the same and the older module would remain in memory and be
used.

Refer to Appendix A, Debugging for more information on debugging data
module support.

Refer to Chapter 2, Creating SoftStax Drivers for more information about
spf_drstat.

SoftStax® Porting Guide

86

The _sysedit value allows you to keep track of the driver and descriptor versions
in the field, so you should always increment _sysedit values before releasing
changes. You should also document those changes. This way, if problems occur, you
can trace the driver via the _sysedit value and your documentation.

If you find two OS-9 modules with the same version number, they may still be
different. A quick check to compare the module size and module Cycle Redundancy
Check (CRC) using the os9ident or ident commands shows if they are different
versions.

proto.h
This file contains all function prototypes for the driver. Any time a new function is
added to the driver, place the function prototype for that function in this header file.
The dr_xxx prototypes defined in this file are the standard entry points for the
driver. The prototypes defined after the dr_xxx prototypes are those of locally
defined functions in the driver.

main.c
This file contains the initialized values for the driver static storage structure. Note
the initialized values are declared for the entire spf_drstat structure. They are also
declared this way because the driver static structure needs to be declared as a
globally accessible structure for the driver.

An interesting part of the main.c file is the assembly language code at the bottom.
This code defines the _m_share field in the module header for portability reasons.
When OS-9 sets up the global static for the driver before calling an entry point, it
looks at the _m_share field to find the driver static structure. This is because the
optimizing compiler is allowed to put the static storage anywhere in the code space
of the module for optimization reasons. OS-9 for 68K cannot assume the driver
static is the first thing after the module header.

OS Allocated Memory Available for Driver Use

Before discussing the spproto template driver source code, let’s review the memory
structures the operating system allocates and makes available to the driver.

When an application makes an attach call using /device_name, the operating
system must assign or map a device list entry with the dev_list structure to the
device name being attached. If the device was previously attached, the attach count
in the established dev_list structure would be incremented and the pointer
returned to the application. If this is the first attach to this device name, a new
dev_list structure would be allocated, initialized, and passed back to the
application.

Chapter 3: SPPROTO Driver

87

For every unique device descriptor being used in the system, there is a
corresponding device_list entry structure. This device_list structure uniquely
identifies a particular device within the OS-9 system and is therefore the
cornerstone structure used by SoftStax I/O systems for stacking drivers. The updrvr
and dndrvr pointers point to the dev_list structures of the protocols stacked
above and below the current protocol. In every driver entry point, SoftStax passes a
pointer (to the dev_list structure) to the driver.

The following figure shows a graphical representation of the dev_list structure
and some of the things that can be accessed using it.

Figure 3-1. The Dev_List Structure

Attaching the same device name multiple times causes the v_att_cnt in the
dev_list structure to be incremented.

Opening the same device name multiple times causes the v_use_cnt in the
dev_list structure to be incremented. The path descriptor created as a result of the
open() call is also added to the v_paths list. (The v_paths list is generally not
used because SoftStax puts the current path descriptor making the call in the
lu_pathdesc parameter in the logical unit).

Pointers to the driver static and logical unit static structures are also found in the
dev_list structure.

Two devices in the system have the same driver static if the driver names are the
same and the port addresses are the same.

Two devices in the system have the same logical unit static if the driver names and
port addresses and logical unit numbers are the same.

Allocation Example

descriptor

lustat

port address

v_att_cnt

v_use_cnt

v_paths

spf_drstat
pointer

pointer to
descriptor

module

spf_lustat

logical unit
pointer

drstat

module
driver name
port address

LUN

v_drstat v_dd_mod v_lu_stat

pointer to a linked
list of open paths
on this device

Dev_list deventry

Table 3-1. Devices

/a /b /c /d
drvr_y drvr_y drvr_y drvr_y

portaddr 10 portaddr 20 portaddr 20 portaddr 20

SoftStax® Porting Guide

88

Since /a is the first attach, unique storage is created for all three structures.

When /b is attached, the port address is different, so unique driver and logical unit
static is created and a new dev_list structure is used.

Now /c gets attached. /c has the same port address but a different logical unit
number than device /b, so a different logical unit static and dev_list is created,
but the driver static is the same as device /b.

Then /d gets attached. /d has the same port address and the same logical unit
number but a different descriptor number than device /c, so a different dev_list is
created, but the driver static and the logical unit static are the same as device /c.

Allocating Per Path Storage for the Driver

The driver and logical unit static storage areas tend to be used for board and chip
level storage areas. But what about unique storage for each path using the driver?
Historically, this has been an easy answer: the path descriptor.

The OS allocates a unique path descriptor for each path opened in the system.
However, SoftStax is the only OS-9 I/O system allowing multiple drivers to be
stacked on the same path. Before, with a 1-to-1 correspondence between the path
and driver, you just reserve storage for the driver in the path descriptor. But with the
1-to-n correspondence SoftStax has between a path and the driver stack being used,
this is not possible. Drivers that de-multiplex up or down the stack need to keep per
path static storage.

The initial structure for the per path storage is found in spf.h as the structure
spf_ppstat. Notice this structure defines the SPF_PPSTAT, just like the logical unit
and driver static structures, so each driver can customize the per path storage to
their requirements.

LUN 1 LUN 1 LUN 2 LUN 2

DESC 1 DESC 1 DESC 1 DESC 2

Table 3-1. Devices

/a /b /c /d

Table 3-2. Device Descriptors

Steps Dev_list driver static Logical Unit Static
attach /a:--> DEVLIST1 DRVRSTAT1 LUSTAT1

attach /b:--> DEVLIST2 DRVRSTAT2 LUSTAT2

attach /c:--> DEVLIST3 DRVRSTAT2 LUSTAT3

attach /d:--> DEVLIST4 DRVRSTAT2 LUSTAT3

Chapter 3: SPPROTO Driver

89

When the driver is called at the SPF_SS_OPEN, SPF_SS_PUSH, and SPF_SS_POP
setstats, the lu_updrvr and lu_dndrvr variables in the logical unit are correct,
that is, they point to the drivers dev_list for this path’s stack directly above and
below this driver respectively. However, subsequent opens to the same device may
cause the variables in the logical unit to change. It is for this reason, at
SPF_SS_OPEN, SPF_SS_PUSH, and SPF_SS_POP time, lu_updrvr, lu_dndrvr, and
lu_pathdesc should be stored in the per path storage area.

Allocation Example

There are three protocol drivers in a system, Internet Protocol (IP), User Data
Packet (UDP) and Transmission Control Protocol (TCP). Path #1 opens TCP/IP.
When IP gets called at SPF_SS_OPEN, IP allocates per path storage for path #1. IP
stores the path descriptor for path #1, the pointer to the driver below (lu_dndrvr
= NULL), and the pointer to the driver above (lu_updrvr = path #1). Then IP
gets called at SPF_SS_PUSH time (pushing TCP). IP sets the new updrvr variable in
the per path storage for path #1 to the new driver above (TCP). TCP also gets called
at open and allocates per path storage for path #1.

At this point, IP has one per path storage element in the per path storage list as does
TCP. The IP de-multiplexes incoming packets based on the protocol type in the
incoming packet and the protocols above it on all the paths. TCP de-multiplexes
incoming packets based on the destination port/IP address matching the local socket
address in the path’s our_num addr_type structure.

Now, path #2 opens /UDP/IP. The IP gets called at SPF_SS_OPEN. This time the IP’s
lu_updrvr points to the dev_list for path #2, overwriting the previous pointer
which pointed to TCP’s dev_list. This works since you have already stored the
previous lu_updrvr in the per path storage for path #1. IP creates a new per path
storage structure for path #2 and stores the path descriptor for path #2, the
lu_updrvr and lu_dndrvr in the new per path storage. IP gets called at PUSH for
path #2 (pushing UDP). At this point, IP stores the new lu_updrvr which points to
UDPs dev_list in path #2’s per path storage area. UDP also gets called at open
and creates its own per path storage for path #2.

IP has two per path storage areas: one for path #1 (TCP) and one for path #2
(UDP). When a packet is received, IP goes through the per path storages and
matches the protocol types in the packet with the same protocol type in the per path
storage list. If the packet was type TCP, it would match path #1 storage and use the
updrvr pointer in the per path storage to send the packet to TCP. TCP compares
the destination port and IP address with the socket address of each path to pass the
incoming packet up to the right path.

SoftStax® Porting Guide

90

entry.c
The entry.c file contains all entry points called in the driver by the file manager.
The spproto source code is well documented so as you write drivers, the comments
tell you under what conditions this entry point gets called by the file manager or
upper/lower layer drivers, as well as what to watch out for within particular entry
points. This section details each entry point of spproto. Then, interrupt service
routine conventions for the SoftStax hardware drivers are covered.

dr_iniz()

The dr_iniz entry point allows the driver to set up and initialize anything that
must be available when an _os_attach() or ite_dev_attach() is performed at
the application level. Typically, the driver installs the interrupt service routine for
the driver in this entry point. Because the driver static and logical unit static are
already initialized by the operating system during the attach, there is no need for the
driver to do it again in the dr_iniz() entry point unless there are relocatable
pointers that must be stored dynamically at attach time.

One of these relocatable pointers might be for MPEG-2 devices that talk to the
duxman module. These drivers would attach to the duxman module and get a
pointer stored in an appropriate variable in the driver static. Note DEBUG is defined
and a debug data module dbg_proto is being created.

SoftStax calls the dr_iniz() entry point only when it is the first to attach to a
particular logical unit for the driver (lu_att_cnt = 1). SoftStax pre-increments
the lu_att_cnt and the dr_att_cnt variables, so the respective attach counts
include the current attach being processed.

dr_term()

This entry point should undo whatever was done in the dr_iniz() entry point. If
an interrupt service routine was installed, it should be de-installed here. If linking
and registration with the duxman module happened during dr_iniz(), unregister
the device with duxman at this time. The only exception is you do not get rid of the
debug data module at this point, as you might want to look at it after termination.

SPF calls the dr_term() entry point only when it is the last detach to a particular
logical unit for the driver (the lu_att_cnt = 0). SPF pre-decrements the
lu_att_cnt and dr_att_cnt variables, so the respective attach counts are minus
the one being currently processed.

Refer to Chapter 2, Creating SoftStax Drivers for more information about driver
entry points.

Chapter 3: SPPROTO Driver

91

dr_getstat()

This entry point should support the following standard getstats listed, as well as any
specific functionality.

SPF_GS_DEVENTRY

For this getstat, the driver places the deventry pointer into the param field of the
spf_ss_pb as shown in spproto’s entry.c.

SPF_GS_PROTID

As with IP, some protocols demultiplex based on the protocol types above them.
spf.h defines all the protocols Microware supports. prot_ids.h can be used to
add user specific protocol types. This getstat should return your protocol type in
the param field of the spf_ss_pb structure (all defined protocol identifiers are
prefixed by SPF_PR_xxx).

SPF_SS_UPDATE

For increased efficiency, protocols are expected to pass certain parameters to SPF so
it can act intelligently when performing I/O. These parameters are:

• Maximum Transmission Unit (MTU). This is saved as lu_txsize in each
logical unit of the driver.

• Transmit Offset. States how much room at the front of each transmit packet the
protocol needs for its header (saved as lu_txoffset in the logical unit of each
driver).

• Transmit Trailer. Specifies how much room the protocol needs for its trailer at
the end of each transmit packet (saved as lu.txtrailer).

• I/O enabled. Saved as lu_ioenabled in the logical unit of each driver.

Whenever the protocol stack for a given path changes, SPF performs an
SPF_SS_UPDATE getstat to gather the updated parameters. For example, when an
SPF_SS_PUSH or SPF_SS_POP is successfully executed, SPF performs an
SPF_SS_UPDATE getstat to gather the new I/O information for the stack.

When a driver is called at this entry point, this is the expected processing:

1. Call the lower driver with the same getstat (if there is a lower driver).

2. Fill out the spf_update_pb passed into the getstat. If the driver is at the
bottom, it needs to fill the following fields:

• stk_txsize field in the spf_update_pb with the driver’s MTU.

• stk_txoffset with the number of bytes the driver needs to add to the
header.

Implementing driver-specific getstats and generating the library binding is
described in the os_lib API in the Using the Parameter Block in
Setstat/Getstat Calls section of Using SoftStax.

SoftStax® Porting Guide

92

• stk_txtrailer with the number of bytes the driver needs to add to the
end.

• stk_ioenabled, based on whether the driver is able to send and receive
data for this path.

If the driver is not the bottom driver on the stack, it must fill out the
spf_update_pb per the following parameter requirements.

stk_txsize Parameter

This is the most complex of the parameters. If your driver does not have
segmentation (fragmentation) and re-assembly capabilities, your lu_txsize is the
MTU of your protocol. For example, LAP-B has no fragment/reassemble
capabilities and its MTU is 4096 bytes. Most hardware drivers do not have
fragment/re-assemble capabilities. Therefore, the algorithm for setting the
stk_txsize field is to fill it with the smallest value between your lu_txsize field
and the stk_txsize field passed up when you did the getstat. SPF automatically
fragments packets for this stack so the MTU is never exceeded.

There is, however, one note of qualification. If the application using SPF is itself a
protocol and it sends down a packet bigger than the stack’s MTU, SoftStax
fragments that packet. It then shows up on the other end as multiple packets and is
not reassembled into the one original packet sent. For applications doing byte count
reads, this is not a problem. But if the application needs to do packet-by-packet
reads, this can cause a problem. In this case, the application must ensure the
protocol stack can support its MTU or make sure there is a protocol on the stack
supporting segmentation and reassembly.

If your driver does support segmentation and re-assembly (such as X.25), your
MTU effectively becomes 0xFFFF, which causes added responsibilities. You always
send up a stk_txsize of 0xFFFF, but when a packet gets passed to you, remember
the MTU of the stack below you and fragment the packet to protect it from getting
packets that are too large.

stk_txoffset Parameter

Add your header requirements to the stk_txoffset field passed back to you by the
getstat (to the lower protocol). When it gets passed up to SPF, it is stored with the
path, and when writes occur, SPF adds the appropriate header size to reserve room
for the entire stack’s header requirements.

stk_txtrailer Parameter

This parameter is used to add your trailer requirements to the stk_txtrailer field
passed back by the getstat (to the lower protocol). When it gets passed up to SPF, it
is stored with the path when writes occur. SPF adds the trailer size for packet
allocation so there is room for the protocol’s trailer bytes.

Chapter 3: SPPROTO Driver

93

stk_ioenabled Parameter

This parameter indicates whether reads and writes can be performed on this stack.
If your driver’s I/O is not yet established, it makes no difference what the stack is
below. stk_ioenabled is DRVR_IODIS (or I/O disabled). Otherwise, if your
protocol is enabled, stk_ioenabled becomes the value of the lower driver’s
lu_ioenabled field.

SPF_SS_UPDATE is initiated by SPF on any change in the protocol stack for a given
path. It bubbles all the way up to SoftStax for storage in that specific path static. If
the lu_ioenabled status changes for any driver, that driver should use the
SPF_SS_UPDATE setstat to call and notify SPF of the change in the driver’s I/O
status.

Unknown Codes

The convention for unknown codes is to find out whether the getstat is going up or
down the stack. To do this, use the updir field in spf_ss_pb. If the getstat is going
up the stack, pass the data up via the SMCALL_GS macro in spf.h. If the getstat is
going down the stack, check if you have a lower driver. If you do not, return
EOS_UNKSVC. If you do, pass the getstat down to the lower driver and return the
results transparently.

dr_setstat()

The dr_setstat entry point is where all call control requests come through to be
processed. Some setstat codes must be supported by all drivers. Other setstat codes
are only supported by the drivers implementing the code’s functionality.

For example, ITEM supports many call control setstats (ITE_DIAL, ITE_ANSWER,
and ITE_HANGUP). All of these codes represent layer three, or network layer services
in the OSI model. Therefore, the protocol driver taking care of the layer three
functionality should incorporate these setstats.

Most hardware drivers are only concerned with sending and receiving packets. In
this case, they would not support the previous call control setstats.

The following section discusses which codes must be supported by all drivers. Then,
discussion continues concerning the rest according to which layer protocol would
typically support the particular setstat.

DRVR_IOEN means the protocol is successfully communicating with its peer. It
does not imply a connection has been established.

SoftStax® Porting Guide

94

Setstat Codes That Must be Supported by All Drivers

SPF_SS_OPEN

FROM: _os_open() or ite_path_open()

SPF calls the driver every time a new path opens using this driver. It is usually at this
point, if not already established, the protocol driver attempts to communicate with
its peer and initialize the link. If you are writing a protocol driver, be aware of the
layer level at which your protocol is used. In general, a hardware driver does most
of its own setup and initialization at dr_iniz() time.

Protocol drivers at the second layer level do most of the initialization during the
SPF_SS_OPEN setstat. For every path it translates into initializing a new data link
layer entity. Q.931 is like this, where for every open path in the system, a Terminal
Endpoint number is assigned by the network. In this case, this assignment would
happen at SPF_SS_OPEN time.

Data link layer protocols having a unique initialization for every port (such as LAP-
B) initialize at dr_iniz() time for each new logical unit.

Layer three protocols typically keep a table of the path descriptor and a potential
connection. For example, X.25 keeps a table of all the paths. When connections are
made on those paths, the connection information is kept in the table with the path
descriptor. In this way, when X.25 receives data over a given connection, it knows
for which path the data is destined.

SPF_SS_CLOSE

FROM: _os_close() or ite_path_close()

Close allows the driver to undo, for the closing path, whatever was done in the
SPF_SS_OPEN setstat. SPF calls this setstat only if this is the last process to close the
path.

SPF_SS_PUSH

FROM: ite_path_push()

This setstat is called by the file manager to notify the driver currently on the top of
the stack that a driver is getting pushed onto the top of the stack. The file manager
takes care of setting up the links to the new protocol on the path. Some protocols
might want to integrity check the protocol being pushed by calling up the stack for
its protocol ID. In most cases, the protocol drivers do not need to do anything.

SPF_SS_POP

FROM: ite_path_pop()

This setstat is called by the file manager to notify the driver (the new top of the
stack after the pop is completed) that the driver above it is being popped off. Again,
in most cases the driver being called does nothing and returns successfully.

Chapter 3: SPPROTO Driver

95

Codes Implemented Only by Drivers With Flow Control Ability

SPF_SS_FLOWOFF / SPF_SS_FLOWON

SPF implements a backflow mechanism when receiving data to prevent receive
buffer overflow. This backflow method is governed by the pd_readsz field in the
path options section of the path descriptor. This variable, when non-zero, tells SPF
when to tell the lower drivers to stop sending received packets, thus creating data
backflow. A protocol able to tell its peer to stop sending data should generate this
packet when the SPF_SS_FLOWON setstat code is received. Conversely, when the
SPF_SS_FLOWOFF setstat is received, the packet telling the peer to start sending data
again should be generated.

For example, LAP-B has as one of its services, flow control via the receiver ready
(RR) and “receiver not ready” (RNR) messages. When SPF_SS_FLOWON is received
by splapb, it sends the RNR message to its peer and the peer’s protocol driver stops
sending data. Then, when the application has read less than the number of bytes
specified by the pd_readsz field’s worth of data, SPF sends the SPF_SS_FLOWOFF
setstat. This causes splapb to send the RR message to its peer. The peer LAP-B
protocol then starts sending data again. A pd_readsz of zero causes SPF to never
send the flow control setstats.

Codes Implemented Only by Network Layer Protocol Drivers

ITE_DIAL

FROM: ite_ctl_connect()

CAUSE: An ite_ctl_connect() call was made by the application.

EXPECTED SERVICE: This setstat causes the network layer protocol driver to
initiate connection setup between two midpoints. The protocol driver should use
either the our_num/their_num addresses passed into the setstat (if non-NULL) to
establish the connection, or use the our_num/their_num values in the conn_info
structure of the path descriptor’s path_type structure in item_pvt.h if either or
both addresses are passed in as NULL.

ITE_ANSWER

FROM: ite_ctl_answer()

CAUSE: The application was notified of an incoming call and is expected to answer
it.

EXPECTED SERVICE: The protocol driver communicates with the network to
create an active connection. After the protocol driver initiates the call-answering
procedure, it returns. The caller passes a notify_type pointer in the param field of
the parameter block. When the network confirms the connection, the driver
performs the proper notification. If the parameter field is NULL, the caller needs to
call the ite_ctl_connstat() to see if the connection is active.

SoftStax® Porting Guide

96

ITE_HANGUP

FROM: ite_ctl_disconnect()

CAUSE: The application needs to disconnect the active connection.

EXPECTED SERVICE: The protocol driver initiates call termination procedures
and returns.

ITE_FEHANGUP_ASGN / ITE_FEHANGUP_RMV

FROM: ite_fehangup_asgn()/ite_fehangup_rem()

CAUSE: The application needs to be notified when the far-end hangs up. The caller
assumes there is an active connection when this call is made.

EXPECTED SERVICE: SPF takes care of inserting all notification requests into the
notification array. The driver is expected to send notification if the far-end initiates
hang-up procedures. If this is a removal, SPF takes care of removing the request
from the notification list. The driver is expected to clear the local storage.
Therefore, if far-end hang-up occurs, no notification is sent.

ITE_RCVR_ASGN / ITE_RCVR_RMV

FROM: ite_rcvrasgn()/ite_rcvrrem()

CAUSE: The application needs to be notified when and if an incoming call occurs.

EXPECTED SERVICE: SPF takes care of inserting all notification requests into the
notification array. The protocol driver is expected to send the notification if there is
an incoming call. Also, the protocol driver needs to store the device_type
structure for this notification. If the dev_rcvr_state = ITE_ASGN_ANY,
notification is always performed.

If dev_rcvr_state = ITE_ASGN_THEIRNUM, notification is performed only if the
calling address matches the dev_theirnum address for the path to be notified. If
this is a removal, SPF takes care of removing the request from the notification list
and the protocol driver is expected to clear local storage. If an incoming call occurs,
no notification is sent.

With connectionless protocol drivers, the convention is call control setstats cause
connectionless protocols to return an EOS_UNKSVC error to the caller.

Unknown Codes

The convention for unknown codes is to use the updir field in the spf_ss_pb to
determine if this setstat is going up or down the stack.

• If the setstat is going up, you pass the data up via the SMCALL_SS macro in
spf.h.

• If the setstat is going down, first check if you have a lower protocol driver in the
stack. If you do not, return EOS_UNKSVC. If you do, pass the setstat down to the
lower protocol driver and return the results transparently.

Chapter 3: SPPROTO Driver

97

dr_updata()

This entry point is called by the lower-layer protocol driver when incoming data is
received. Hardware drivers never get called by the dr_updata() routine because
their interrupt service routine is what is used to receive the incoming data. Think of
this entry point as a protocol driver’s interrupt service routine. During this entry
point, deal with the protocol header of the incoming data packet and send responses
to the dr_downdata() entry point of the lower layer protocol as needed.

SPF_FMCALLUP_PKT / SMCALL_UPDATA

The spf.h file defines two macros: SPF_FMCALLUP_PKT and SMCALL_UPDATA. The
first macro calls the packet call-up function in SPF while the second calls the upper-
layer protocol directly.

Typically, receive packet data flow begins when the interrupt service routine receives
one complete packet. At this point, the driver is running in the interrupt service
routine. While the driver is executing code in this routine, interrupts are masked to
the level of the hardware driver. Therefore, the processing in the interrupt service
routine context should be as short as possible.

If the receive interrupt service routine called SMCALL_UPDATA() directly, the higher
layer protocol(s) process the incoming packet and send out any response messages
in an interrupt service routine context. This makes the possibility of missing the
next received packet quite high and results in poor system performance.

To handle this, SPF starts an independent system-state receive process when the first
SPF path open occurs. Then, when the interrupt service routine receives a complete
packet and the FMCALLUP_PKT macro is called, SPF queues the receive packet and
sets an event for the receive thread process to wake up and send the packet to the
next protocol above the hardware driver. The only data packet reception happens
on interrupt service routine context. All subsequent processing of the packet occurs
on SPF receive thread process context. At this point, after the next higher protocol
receives the packet, it uses the SMCALL_UPDATA macro to pass the packet up the
chain.

Protocol drivers also need to know the SPF receive process is a system-state process.
Since SoftStax does not allow system state time slicing, this thread is not time sliced.
Therefore, protocol drivers should never sleep in their dr_updata entry point
routines. If the drivers are sleeping on the receive thread, all receive packets stop
being processed.

dr_downdata()

This entry point is typically straight-forward for drivers and encompasses the
following procedure:

1. Receive an mbuf to be transmitted.

2. Back off the m_offset field by the number of bytes the newly added header
takes.

3. Add your header and trailer as needed.

SoftStax® Porting Guide

98

4. Increment the m_size field of the mbuf by the number of bytes the driver added
for the new header.

5. Store the mbuf on a retransmission queue if the protocol driver implements
retransmission.

6. Set the SPF_NOFREE bit (if your protocol implements retransmission).

7. Send to the next lower driver in the stack.

Driver Interrupt Service Routine Conventions

This section describes situations to watch for when writing an interrupt service
routine.

Writing and Installing the Interrupt Service Routine (ISR)

Write your interrupt service routine and then install it in the OS-9 interrupt table.
The following code segment shows an example function prototype for the interrupt
service routine and a conditionalized definition:

error_code hw_isr(Dev_list dev_entry);

#if defined(_OS9000)

#define HW_ISR hw_isr
/* OS-9000 interrupt service routine */

#elif defined(_OSK)

extern void hw_isr_os9();

#define HW_ISR hw_isr_os9
/* OS-9 interrupt service routine */

#endif

If a driver sets the SPF_NOFREE bit on an mbuf, it is expected to clear it before
freeing the mbuf. If you call m_free() with an mbuf that has the SPF_NOFREE
bit set, m_free() simply sets the SPF_DONE bit in the mbuf and returns.

Chapter 3: SPPROTO Driver

99

Defining a Macro as an Interrupt Service Routine

Defining a macro as an interrupt service routine allows your driver to be source
code compatible across processors. Notice the real name of the interrupt service
routine is hw_isr(). However, when running under OS-9 for 68K processor family,
there is assembly language code converting OS-9 for 68K interrupt service routine
conventions to the OS-9 interrupt service routine conventions. This code is labeled
hw_isr_os9.

As shown in the above segment, when _OS9000 is defined, the name of the ISR is
hw_isr() only because the hw_isr_os9 code segment is not needed. (The compiler
automatically defines _OS9000 when compiling for 80X86 and the OS-9 operating
system. _OSK is defined by the compiler when compiling for the 68XXX family.)

Installing the ISR

This section describes the interrupt service routine installation found in the
dr_iniz() entry point.

if ((err = _os_irq(lustat->lu_vector,

lustat->lu_priority, HW_ISR, dev_entry)) != SUCCESS)

{

return(err);

}

The interrupt vector and priority can be found in the logical unit structure and are
initialized by the device descriptor. The HW_ISR macro is in the _os_irq() call. The
correct name gets resolved at compile time, so there is portability across processors.
The last parameter in the _os_irq() call is device_entry. This parameter gets
passed to the protocol driver’s interrupt service routine when it runs. However,
depending on the driver, you could pass pointers to other structures. Pass whatever
is most useful for the interrupt service routine to have when executing.

If there are two logical units of a driver with two different device entries sharing the
same interrupt service routine, then it is better to install the interrupt service routine
with the driver static and store both device entries in the driver static.

OS-9 Interrupt Service Routine Glue Code

Glue code is code inserted into the driver to ensure compatibility between OS-9 for
68K and OS-9 so the driver can run in both without additional source code
changes. The following code shows an example of the interrupt service routine glue
code. Do not modify this call unless you are using other labels for your functions.

#if defined(_OSK)

/* interrupt service routine glue-code for OS-9 */

_asm("hw_isr_os9:

For more information on the _os_irq() call, refer to the Ultra C Library
Reference Manual. This manual says _os_irq() is only an OS-9000 call. The
conv_lib.l has created a binding to make this call valid for OS-9 also.

SoftStax® Porting Guide

100

move.l a2,d0; /* put Dev_list in a2 into d0*/

bsr hw_is; /* call interrupt service*/

/*routine*/

tst.l d0; /*see if SUCCESS returned*/

beq.s hw_isr_os9_exit;
/*if so, return*/

ori #Carry,ccr;
/* else E_NOTME returned */
/*--set carry bit*/

hw_isr_os9_exit

rts

");

#endif

Data Transmission Conventions

Each interrupt service routine has its own method for transmitting data. However,
when packet transmission is complete, the interrupt service routine should use
m_free() to free the transmitted packet.

/* see if we just transmitted the last character in this packet */

if (lustat->lu_tx_left == 0) {

mbuf mb = lustat->lu_tx_hd;

WR_8530(control->channel, 10,
control->encoding|CRC_INIT_1|IDLE)

control->new_packet = 2;

/* change to next mbuf packet chain -return old one */

lustat->lu_tx_hd = lustat->lu_tx_mb = mb->m_qnext;

lustat->lu_tx_out = mtod(lustat->lu_tx_mb, u_char*);

lustat->lu_tx_left = lustat->lu_tx_mb->m_size;

mb->m_qnext = NULL;

m_free(mb);

}

This code segment checked to see if the last character in the packet had been sent,
and if so, manipulated the local pointers to point to the next packet if there was
one, and called m_free() to free the transmitted mbuf.

Chapter 3: SPPROTO Driver

101

If there is a protocol driver (driver one) above the protocol driver (driver two)
implementing retransmission, driver one should keep a pointer to the just released
mbuf until its peer acknowledges with a successful packet reception. Problems result
if the peer does not acknowledge the mbuf. The higher layer protocol (driver one)
attempts to use the pointer to the mbuf already freed by the code segment to re-send
the packet.

The return m_free() checks for the SPF_NOFREE bit in the mbuf, which identifies
whether a higher layer protocol is holding a pointer to this mbuf for possible
retransmission. If this is the case, m_free() sets the SPF_DONE flag to indicate the
driver has transmitted the packet. If the SPF_NOFREE bit is not set, m_free()
returns the mbuf to the free pool.

Data Reception Conventions

misc.c provides a function to return mbufs to the pool. It also provides a function
to get mbufs from the pool. Control information is embedded in the received mbuf
to allow the SoftStax receive thread to pass the packet up the stack correctly. The
misc.c file get_mbuf() call inserts the device entry pointer into the receive packet
before it returns the packet to the caller.

/* get head of receive packet chain */

if (get_mbuf(lustat->lu_updrvr, lustat->lu_rx_pktsz,

&lustat->lu_rx_mb) != SUCCESS)

{

/* return with lost-data error */

lustat->lu_rx_err = RXERR_MBUF;

return(-1);

}

This code segment checks to see if the head of the receive queue is NULL. If so, it gets
an mbuf by executing the get_mbuf() call. The parameters to this call are as
follows:

• the pointer to the device entry of the driver above (lustat->lu_updrvr)

• the size of the packet payload to allocate (here it is stored in the lu_rx_pktsz
field)

• a pointer to where the returned mbuf pointer is stored.

SoftStax® Porting Guide

102

103

4 SPLOOP Driver

This chapter details the SPLOOP driver which provides SoftStax with the following
functionality:

• communicate standard Input/Output (I/O) data loopback over a single path

• connection-oriented network data loopback over a single path

• connectionless network emulation enabling applications to test their ability to
run over connectionless networks

• connection-oriented network emulation enabling applications to test their
ability to run over connection oriented networks

The following sections are included:

• Overview

• Addressing

• Restrictions

SoftStax® Porting Guide

104

Overview
When writing applications, it is extremely important to understand the power and
functionality of the SPLOOP driver. Because the ITEM (Integrated
Telecommunications Environment for Multimedia) interface provides network
independence, this driver allows you to write and test applications on a local OS-9
machine, just as if the applications were running over a real network. Examples 1
and 3 in Chapter 1 use SPLOOP to show the functionality of the ITEM API.

The sploop driver can act as a connectionless network emulator, a connection-
oriented emulator, or a straight loopback driver. The operation is determined by the
logical unit number in the device descriptor.

The sploop driver keeps a 10-element array and divides this array into two parts. If
you open a device with a logical unit from number 0 through 4, you have opened a
connection-oriented path. If the device open has a logical unit number from 5
through 9, you have opened a connectionless device. If you open a device with a
logical unit number greater than 9, you have opened a loopback device.

The descriptors provided with the software package indicate these types. The loop
descriptor has a logical unit of 0x7F. Therefore, any paths opened using this device
are loopback. loopc0 and loopc1 are connection-oriented device descriptors using
logical units 0 and 1 respectively. loopcl5 and loopcl6 are connectionless devices
using logical units five and six.

Addressing
In the device descriptors for this driver, the address class and subclass parameters
are ITE_ADCL_LPBK and ITE_ADSUB_LUN respectively. This means the SPLOOP
driver has its own address class to emulate the addressing, and class uses logical unit
numbers for individual addresses. The SPLOOP driver interprets the first character
in the addr[] array of the addr_type structure as the logical unit.

For example, if you put a 1 in the dev_theirnum.addr[0] field and executed an
ite_ctl_connect(), the driver attempts to connect to the process with the open
path to logical unit number 1.

Refer to Appendix A: Examples in Using SoftStax for more information.

Refer to Chapter 2, Creating SoftStax Drivers for more information about the
addr_type structure.

Chapter 4: SPLOOP Driver

105

Restrictions
Connectionless paths cannot send messages to connection-oriented paths. Likewise,
connection-oriented paths cannot attempt to connect to connectionless paths.
Loopback paths obviously only communicate after that single loopback path.

• For details on how applications use sploop, refer to
Chapter 1, Getting Started and review Examples 1 and 3. These examples
show how sploop emulates various environments.

• For additional details on using SPLOOP for testing, refer to Chapter 8: Using
SPLOOP to Test Applications and Protocols in Using SoftStax.

SoftStax® Porting Guide

106

107

5 sp8530 Device Driver

This chapter describes the sp8530 device driver provided for use with the Zilog
Z85C30 SCC (Serial Communications Controller) on the Motorola MVME147
monoboard computers and on the MATRIX Corporation MS-SIO4A VME boards
for controlling serial ports. The Z85C30 SCC handles the synchronous bit-oriented
protocols SDLC and HDLC, synchronous byte oriented protocols, and
asynchronous formats.

The following sections are included:

• Overview

• Z85C30 ISR

SoftStax® Porting Guide

108

Overview
The sp8530 device driver is different from other Microware Z85C30 drivers as it
uses the Z85C30 in SDLC mode, not in asynchronous mode.

It is the physical-layer SoftStax driver sitting below the SoftStax LAP-B driver in the
data-link layer and the SoftStax X.25 driver in the network layer.

Figure 5-1. SPF Driver Layers

The sp8530 driver makes use of the following Z85C30 SDLC capabilities:

• Automatic flag insertion between messages.
The flag character has the bit pattern 0x7E. This character is only transmitted
between messages.

• Abort sequence generation and checking.
The abort sequence is 7 to 13 consecutive ones (for example, 1111111). The
transmitting Z85C30 generates an abort sequence after an underrun error
condition is detected and then retransmits the message from the start.

Upon receiving an abort sequence, the receiving Z85C30 discards the partially
received message before the abort sequence and expects the message to be
retransmitted.

• Automatic zero insertion and detection.
The flag character is guaranteed to be transmitted only between messages, that
is, message payloads will not contain character 0x7E.

The transmitting Z85C30 guarantees this by watching the payload and inserting a 0
after all strings of five consecutive ones (11111). The receiving Z85C30 watches the
receive stream for strings of five consecutive ones. If the next bit is a 0, it is deleted.
If the next bit is a 1, the six consecutive ones are not recognized as data but as part
of either a flag or abort sequence.

• CRC generation, detection, and checking.
At the end of a message the transmitter appends a 16 bit CRC before sending
the flag character marking the end of the current message and the beginning of
the next message (if there is one).

SPF LAP-B
driver

SPF driver

SPF X25
driver

SPF driver

higher
level

lower
level

Data-Link Layer Network Layer

Chapter 5: sp8530 Device Driver

109

After receiving the flag, the receiver uses the previous 16 bits as the CRC and checks
the entire message against this CRC.

sp8530 Entry Points

The sp8530 device driver has the following SoftStax entry points.

dr_iniz()

This function is entered only if no other device descriptors are attached to the
sp8530 driver. First, dr_iniz() installs the hardware interrupt service routine
(ISR). Next, this function initializes the 15 Z85C30 write registers with data from
the device descriptors logical unit specific static storage structure. Then, dr_iniz()
sends commands to initialize the Z85C30 for operations.

dr_term()

This function removes the installed ISR (Interrupt Service Routines) and disables
interrupts from the Z85C30.

dr_getstat()

All the SoftStax drivers have the following entry point:

SPF_SS_UPDATEThis is the lowest (device) level driver. This function only fills
certain variables into the parameter block passed to it and returns.

dr_setstat()

This entry point handles the following three setstat subcodes:

SPF_SS_OPENCalls the adjacent upper-layer protocol at its dr_setstat with
subcode SPF_SS_UPDATE to indicate the sp8530 driver is ready for I/O.

SPF_SS_CLOSEReturns the device list entry of this driver’s adjacent lower-layer
protocol. Since this is a device driver at the lowest level, the NULL pointer
is returned.

SPF_SS_NEWTOPChanges this driver’s adjacent upper-layer protocol driver and
then calls the dr_setstat entry of this new upper-layer driver with
subcode SPF_SS_UPDATE to indicate a successful change.

dr_downdata()

This function initiates transmission of an mbuf by calling hw_tx_handler() to
place the first data byte of the mbuf on the Z85C30 output FIFO or by placing the
mbuf in an existing queue of mbufs to be transmitted.

Refer to the SCC Users Manual for a complete description of the Zilog SCC
hardware. It is available from this address:
Zilog, Inc.
Campbell, CA 95008-6600
Telephone 408-370-8000
Fax 408-370-8056

SoftStax® Porting Guide

110

The transmission of this first byte causes Z85C30 to generate a transmit buffer
empty interrupt. The Z85C30 ISR then calls hw_tx_handler() again to place the
second byte on the output FIFO.

After the last byte of the mbuf has been placed on the output FIFO, the last call to
hw_tx_handler() causes the CRC and flag to be transmitted.

dr_updata()

This function is included for compatibility with SoftStax. Since sp8530 is a device
driver, no lower-layer driver uses this entry point to send data up the protocol stack.

The ISR for Z85C30 is included with the driver code.

Z85C30 ISR
The ISR handles the following interrupts from the Z85C30:

• Transmit Interrupts

• Receive Interrupts

• External/Status Interrupts

Transmit Interrupts

Transmit Buffer Empty

This interrupt occurs when the transmit buffer becomes empty. A byte must first
have been placed in this buffer before it can become empty.

The ISR responds to the interrupt by:

1. Writing the next byte to be transmitted to the output FIFO, if there is another
data byte in the mbuf.

2. Disabling this interrupt until the 16 bit CRC and flag have been transmitted,
only if the last byte of the mbuf was written to the output FIFO.

Receive Interrupts

Receive Character Available

The ISR calls hw_rx_handler() to write the received byte into an mbuf.

End of Frame (SDLC)

The ISR checks for reception errors. If any are found, the mbuf is returned to the
pool. If there are no errors, the mbuf is passed up to SoftStax dr_fmcallup() entry
point which signals SoftStax receive thread.

The receive thread passes the mbuf to SoftStax fm_rx() entry point, which passes it
to the next higher protocol driver by finding the device entry of this driver
embedded in the mbuf (preceding the data).

Chapter 5: sp8530 Device Driver

111

External/Status interrupts

TxUnderrun/EOM

This interrupt occurs when a new data byte has not been written to the output FIFO
as expected (TxUnderrun). If the last byte has been transmitted, Z85C30 sends the
CRC and flag. If bytes remain to be transmitted, Z85C30 sends the abort sequence
to the receiving Z85C30.

The ISR resends the entire mbuf after sending the abort sequence.

Break/Abort

This interrupt is caused by receiving the abort sequence. The transmitter sends this
when a transmit underrun occurs and more bytes remain to be transmitted.

The receiving ISR discards any bytes received for the aborted message by setting the
current mbuf data pointer back to the start of the data area and reducing the count
of bytes received by the number of bytes being discarded in the aborted message.

SoftStax® Porting Guide

112

113

6 sp82525 Driver

This chapter describes the sp82525 driver that controls the 82525 Dual Channel
HDLC controller manufactured by Siemens. The following sections are included:

• Overview

• Default Descriptor Values

SoftStax® Porting Guide

114

Overview
The sp82525 driver is an OS-9 module that controls the 82525 Dual Channel
HDLC controller produced by Siemens. This chip has the capability of controlling
two independent HDLC or SDLC channels simultaneously. It also has built in
capability to do some limited HDLC address detection, and CRC generation and
checking as well as packet framing.

Data Reception and Transmission Characteristics

The sp82525 driver does not keep per path storage. The driver allows one protocol
to be pushed on top per channel. If many paths open the same protocol stack on the
sp82525, it is allowed. However, if there is already a driver stacked on the sp82525
and another path attempts to push a different driver on the same channel, the
sp82525 driver returns an EOS_DEVBSY error.

Default Descriptor Values

ITEM Addressing

The ITEM (Integrated Telecommunications Environment for Multimedia)
addressing for this driver is specified as ITE_NET_CTL since this driver is typically
used to send and receive control information. The driver’s call state is defined as
active.

Other Default Settings

The /hscx_1A and /hscx_1B descriptors contain default information for proper
configuration when using Microware’s ISDN prototype board. For proper
operation with your hardware, make sure you modify the PORTADDR, VECTOR,
PRIORITY, and IRQLEVEL macros in bch_desc.h to match the configuration of
your hardware.

The RX_TIMESLOT and TX_TIMESLOT need to be modified to use the correct
timeslot on the inter-chip TDM bus as required. This is configured for use with the
AM79c30 ISDN Transceiver chip which used the SPI bus, timeslots Bd and Be to
move data between the chips.

Considerations for Other Drivers

None. This is a standard SoftStax driver with no extra necessary interfaces.

115

7 Using DPIO

Dual-ported input/output (DPIO) enables you to simultaneously develop file
managers and device drivers in the C programming language for OS-9. This chapter
describes how to use DPIO and includes the following sections:

• Utilities

• DPIO Libraries

• Compiling

• The File Manager

• Device Driver

• The Device Descriptor

• Example DPIO Device Descriptors

SoftStax® Porting Guide

116

Utilities
Because the Ultra C compiler does not automatically create file managers and
drivers for 68K systems, it is necessary to create them using the following two steps:

Step 1. Identify the DPIO module as a “program” module when compiling. This allows the
module to have initialized data, a key factor for OS-9 system modules.

Step 2. Use the chtype utility to change the module from type “program” to type “file
manager” or “driver”.

Device descriptors are slightly different. The DPIO device descriptor is the
concatenation of a 68K device descriptor and an OS-9 device descriptor. The
process of compiling, merging, and linking these two modules requires the use of
the chtype utility, along with a second utility, rm_vsect, which intercedes at an
intermediate step to modify the compiler’s assembly language output to allow the
two modules to be merged before linking.

Makefiles distributed with OS-9 products, as well as the sample code found later in
this manual, demonstrate all of these steps and give clear examples of how to
perform them.

Chapter 7: Using DPIO

117

chtype

Syntax

chtype [<options>] <filename> [<options>]

Description

chtype is only available for OS-9 for 68K DPIO modules. It is a DPIO development
tool that modifies program modules and changes the module type to file manager,
device driver, or device descriptor.

The chtype utility accepts the following options:

-? Display the command’s syntax, options, and description. For example, to
display information about the chtype utility, type:
chtype -?

-t[=]MT_xxxChange the module to the specified type. Valid module types are
shown in the table below.

For example, to change the module type of the file named myfile to a
device descriptor, type:

chtype -t=MT_DEVDESC myfile

-x The specified file is in the execution directory. For example, to indicate
that myfile is in an execution directory and to change its type to a device
descriptor, type:

chtype -xt=MT_DEVDESC myfile

Table 7-1. -t Option Module Types

Type Change Module To An OS-9
MT_DEVDESC Device descriptor module
MT_DEVDRVR Device driver module
MT_FILEMAN File manager module
MT_PROGRAM Program module
MT_SYSTEM System state module

SoftStax® Porting Guide

118

To create an OS-9 for 68K DPIO file manager, perform the following:

Step 1. Compile the file manager as a program by linking it to fmstart.r.

Step 2. Run chtype on the module with MT_FILEMAN as the specified type:

chtype -t=MT_FILEMAN myfileman

You must run chtype on all file managers, device drivers, and device
descriptors before attempting to use them. If you do not, you will get a “module
not found” error (E$MNF, E_MNF, or EOS_MNF).

Chapter 7: Using DPIO

119

rm_vsect

Syntax

rm_vsect < input_file.a > output_file.a

Description

rm_vsect is a general development tool that takes an assembly language file (.a
file) from the standard input, removes the vsect wrapper, and prints it out to the
standard output. rm_vsect’s main use lies in making OS-9 device descriptors.

To remove the vsect declarations from a .c source file, perform the following:

Step 1. Compile the .c file to an assembly language (.a) file, using your compiler’s
command line options.

Step 2. Run the rm_vsect utility:

rm_vsect <file.a >file_new.a

Step 3. Assemble the new .a file into a .r file and continue making the descriptor.

SoftStax® Porting Guide

120

DPIO Libraries
The libraries supporting DPIO file managers are located in the following directories:

Libraries and root psects for OS-9 for 68K target processors:

MWOS/OS9/68000/LIB

Libraries and root psects for OS-9 target processors are located in one of the
following subdirectories.

For OS-9/PPC target processors:

MWOS/OS9000/PPC/LIB

Special root psects that support DPIO are located in the
MWOS/OS9/68000/LIB/DPIO subdirectory and include:

System-state Libraries

There are two system-state libraries supporting DPIO for OS-9 (for 68K):
conv_lib.l and lock.l. A summary follows.

conv_lib.l

The conv_lib.l library contains _os_* functions not provided in the standard
68K libraries. It contains the following functions for OS-9 (for 68K) system state
only.

_os_ev_wait()

_os_getstat()

_os_gs_luopt()

_os_initdata()

_os_irq()

_os_salarm_cycle()

_os_salarm_set()

_os_setstat()

_os_sleep()

_os_ss_luopt()

Table 7-2. Root psects for DPIO

Name Root Psect Category
drvstart.r OS-9 for 68K/DPIO device driver modules.
fmstart.r OS-9 for 68K/DPIO file manager modules.

All functions are only available in system-state.

Refer to the OS-9000 Technical Manual and the Ultra C Library Reference for
more information about these functions.

Chapter 7: Using DPIO

121

cpu.l

The cpu.l library is obsolete. It has been merged with os_lib.l for OS-9 for the
68K starting with DPIO 2.1, and OS-9 version 3.0.2.

This library formerly contained the following functions:

change_static()

get_static()

grab_static()

irq_static()

irq_disable()

irq_maskget()

irq_enable()

irq_restore()

irq_save()

swap_static()

lock.l

The lock.l library contains resource lock descriptor manipulation routines for OS-
9 for 68K. The functions can only be used in system state.

_os_acqlk()

_os_caqlk()

_os_crlk()

_os_dellk()

_os_rellk()

Compiling
When compiling your source code under DPIO for an OS-9 for 68K target
processor, perform the following steps.

Step 1. Specify the MWOS/SRC/DPIO/DEFS directory as the first header file directory to
search.

Step 2. The next directory searched must be the standard OS-9 for 68K header file directory
located in MWOS/OS9/SRC/DEFS.

Step 3. Specify the MWOS/SRC/DEFS directory as the next header file directory to search.

The following is a makefile example command line for an OS-9 for 68K target:

xcc test.c -v=$(MWOS)/SRC/DPIO/DEFS

Refer to the Ultra C Library Reference for more information about these
functions.

SoftStax® Porting Guide

122

-v=$(MWOS)/OS9/SRC/DEFS -v=$(MWOS)/SRC/DEFS

When compiling your source code under DPIO for an OS-9 target processor,
perform the following steps:

Step 1. Specify the MWOS/OS9000/SRC/DEFS header file directory first.

Step 2. Next, specify the MWOS/SRC/DEFS header file directory.

The following is a makefile example command line for an OS-9 (non 68K) target:

xcc test.c -v=$(MWOS)/OS9000/SRC/DEFS

-v=$(MWOS)/SRC/DEFS

The File Manager
You must observe the following requirements for file managers that use DPIO to
run on both OS-9 and OS-9 for 68K:

• Include the defconv.h Header File

Each source file compiled for OS-9 (for 68K) DPIO file managers must include
the defconv.h header file. In addition, defconv.h must be the first header file
the source file encounters. It is located in the MWOS/SRC/DPIO/DEFS directory.
This header file contains conversion macros that give OS-9 names to OS-9 (for
68K) types and macros. For example, the open.c source file might begin like
this:

#ifdef _OSK
#include <defconv.h>
#endif
#include <srvcb.h>
#include <io.h>
#include <module.h>
.
.
.

• Define Path Options

Due to restrictions of path options under OS-9 (for 68K), dual-ported file
managers must define a path options size of exactly 128 bytes. This preserves
the compatibility between OS-9 and OS-9 (for 68K).

• Call File Manager Entry Points

The DPIO glue code maintains a consistent interface between OS-9 (for 68K)
IOMAN and dual-ported file managers. One of these characteristics involves
calls to the open() and close() file manager entry points. When open() is
called, the glue code calls the attach() entry point followed by the open()
entry point. This is consistent with file managers written under OS-9, allowing
the file manager to perform functions with each attach of a device. However,
since OS-9 (for 68K) will call attach() for the first but not subsequent open()
calls, the attach count is one more than the true device count for the system in
an OS-9 (for 68K) environment.

Chapter 7: Using DPIO

123

To gain a true attach count, the system manager may wish to iniz the devices
for DPIO before running applications. The glue code also ensures that when
close() is called, the close() and detach() file manager entry points are
called.

• Compile a DPIO File Manager

Many of the rules for compiling a DPIO file manager for OS-9 (for 68K) remain
the same. For example, after the fmstart.r file, the first file found on the
linker command line must be the file containing the addresses of the file
manager’s entry points. The following is a typical linker command line:

xcc $(MWOS)/OS9/68000/LIB/DPIO/fmstart.r main.r
status.r open.r close.r $(LIBS)$(DEFS)-fd=myfm

main.r is the file containing the addresses of each entry point. OS-9 and OS-9
(for 68K) both require that the entry points be the first area of static storage
encountered in the file manager.

Example: Test File Manager

The following is an example source for the Test File Manager (TFM). The example
is not provided electronically.

Note that this source is intended only to show the concepts of DPIO file managers;
it is not intended as an actual OS-9 or OS-9 (for 68K) file manager.

/***
* tfm.c
* This file contains the source for the Test File
* Manager
* (TFM) ***/
/* Header Files
***/
#ifdef _OSK
#include <defconv.h>/* OS-9 DPIO conversion defs */
#endif
#include <types.h>/* Type defs */
#include <errno.h>/* Error code defs */
#include <module.h>/* Memory module defs */
#include <srvcb.h>/* Service control block defs */
#include <io.h>/* I/O defs */
#include <testfm.h>/* TFM defs */
/* Function Prototypes
**/
error_code open(), close();
/* File Manager Static Storage
**/
testfm_fm_stat fm_stat = {
 open,/* File manager entry points */
 close,
 0,0,0,0;/* File manager static storage */
}

SoftStax® Porting Guide

124

/* Open Entry Point
***/
error_code open(ctrl_block, path_desc)
I_open_pb ctrl_block;/* parameter block pointer */
Testfm_path_desc path_desc;/* Test path descriptor type */
{
 /* Initialize path here */
 return SUCCESS;
}
/* Close Entry Point */
error_code close(ctrl_block, path_desc)
I_close_pb ctrl_block;/* parameter block pointer */
Testfm_path_desc path_desc;/* Test path descr type */
{
 /* Deinitialize path here */
 return SUCCESS;
}
/* End of tfm.c
**/

Example: Makefile for OS-9 (for 68K) Target Processor

The following example makefile produces a test file manager for an OS-9 for 68K
target processor.

#
makefile
#
This makefile will make the Test File Manager (TFM).
The target processor is OS-9/68000.
#
#
MWOS = /h0/MWOS
RDIR = RELS
ODIR = ../CMDS
DEFINES =
DEFS = -v=. \
 -v=$(MWOS)/SRC/DPIO/DEFS \
 -v=$(MWOS)/OS9/SRC/DEFS \
 -v=$(MWOS)/SRC/DEFS
LIBS = -l=$(MWOS)/OS9/68000/LIB/os_lib.l
COMP = cc $(DEFS) $(DEFINES) -eas=$(RDIR) -r -o=7\

 -to=osk -tp=68k
LINK = cc $(LIBS) -k -to=osk -tp=68k
START = $(MWOS)/OS9/68000/LIB/DPIO/fmstart.r
RFILES = $(RDIR)/tfm.r
$(ODIR)/tfm: $(RFILES)
 $(LINK) $(START) $(RFILES) -fd=$(ODIR)/tfm
 chtype -t=MT_FILEMAN $(ODIR)/tfm
$(RDIR)/tfm.r: tfm.c
 $(COMP) tfm.c

Chapter 7: Using DPIO

125

Example: Makefile for OS-9 Target Processor

The following example makefile produces a test file manager for an OS-9 target
processor.

#
makefile
#
This makefile will make the Test File Manager (TFM).
The target processor is OS-9000/80386.
#

MWOS = /h0/MWOS
RDIR = RELS
ODIR = ../CMDS
DEFINES =
DEFS = -v=. \
 -v=$(MWOS)/OS9000/SRC/DEFS \
 -v=$(MWOS)/SRC/DEFS
LIBS = -l=$(MWOS)/OS9000/80386/LIB/os_lib.l
COMP = cc $(DEFS) $(DEFINES) -r=$(RDIR) -r -o=7\

 -to=os9000 -tp=386
LINK = cc $(LIBS) -k -to=os9000 -tp=386

START = $(MWOS)/OS9000/80386/LIB/fmstart.r
RFILES = $(RDIR)/tfm.r
$(ODIR)/tfm: $(RFILES)
 $(LINK) $(START) $(RFILES) -fd=$(ODIR)/tfm
$(RDIR)/tfm.r: tfm.c
 $(COMP) tfm.c

#

Device Driver
You must observe the following requirements for device drivers that use DPIO to
run on both OS-9 and OS-9 (for 68K).

• Include the defconv.h Header File

The rules governing the defconv.h header file in the file manager also apply in
the device driver. defconv.h must be the first header file found by the driver
source when compiling for OS-9 (for 68K).

Each source file compiled OS-9 (for 68K) DPIO device drivers must include the
defconv.h header file. In addition, defconv.h must be the first header file the
source file encounters. It is located in the MWOS/SRC/DPIO/DEFS directory. This
header file contains conversion macros that give OS-9 names to OS-9 (for 68K)
types and macros. For example, a source file might begin like this:

#ifdef _OSK
#include <defconv.h>
#endif
#include <srvcb.h>

SoftStax® Porting Guide

126

#include <io.h>
#include <module.h>
.
.
.

• Set Carry Bit: DPIO Device Driver Characteristics

To maintain compatibility between operating systems, device driver interrupt
service routines should have wrappers for OS-9 (for 68K) to set the carry bit
when returning non-SUCCESS error codes.

• Compile a DPIO File Manager

Many of the rules for compiling a DPIO device driver for OS-9 (for 68K) remain
the same. For example, after the drvstart.r file, the first file found on the
linker command line must be the file containing the addresses of the driver’s
entry points.

Example: Test File Manager Device Driver

The following is an example source for the test file manager device driver
(tfmdrvr). This file is not provided electronically.

This source is intended only to show the concepts of DPIO device drivers and is not
intended as an actual OS-9 or OS-9 (for 68K) device driver.

/* Header Files
**/
#ifdef _OSK
#include <defconv.h>/* OS-9 DPIO conversion defs */
#endif
#include <types.h>/* Type defs */
#include <errno.h>/* Error code defs */
#include <module.h>/* Memory module defs */
#include <srvcb.h>/* Service control block defs */
#include <io.h>/* I/O defs */
#include <testfm.h>/* TFM defs */
/* Function Prototypes
**/
error_code activate(), terminate();
/* Driver Static Storage
**/
testfm_drvr_stat drvr_stat = {
 activate,/* Driver entry points */
 terminate,
 0,0,0,0;/* Driver static storage */
}

Chapter 7: Using DPIO

127

/* Activate Entry Point
**/
error_code activate(dev_entry)
Dev_list dev_entry;/* OS-9000-like device entry */
{
 /* Turn on the hardware here */
 return SUCCESS;
}
/* Terminate Entry Point
**/
error_code terminate(dev_entry)
Dev_list dev_entry;/* OS-9000-like device entry*/
{
 /* Turn off the hardware here */
 return SUCCESS;
}
/* End of tfmdrvr.c
***/

Example: Makefile for OS-9 (for 68K) Target Processor

The following example makefile produces tfmdrvr for an OS-9 for 68K target
processor:

#
makefile
#
This makefile will make the tfmdrvr Device Driver.
The target processor is OS-9/68000.
#
NOTE: The compilation options in this file correspond to Ultra C
#

MWOS = /h0/MWOS
RDIR = RELS
ODIR = ../CMDS
TMPDIR = /dd
DEFINES =
DEFS = -v=. \
 -v=$(MWOS)/SRC/DPIO/DEFS \
 -v=$(MWOS)/OS9/SRC/DEFS \
 -v=$(MWOS)/SRC/DEFS
LIBS = -l=$(MWOS)/OS9/68000/LIB/os_lib.l
COMP = cc $(DEFS) -eas=$(RDIR) -r -o=7 -to=osk\

 -tp=68kc -td=$(TMPDIR)
LINK = cc -td=$(TMPDIR) $(LIBS) -k -to=osk -tp=68kc
START = $(MWOS)/OS9/68000/LIB/DPIO/drvstart.r
RFILES = $(RDIR)/tfmdrvr.r
$(ODIR)/tfmdrvr: $(RFILES)
 $(LINK) $(START) $(RFILES) -fd=$(ODIR)/tfmdrvr
 chtype -t=MT_DEVDRVR $(ODIR)/tfmdrvr
$(RDIR)/tfmdrvr.r: tfmdrvr.c
 $(COMP) tfmdrvr.c

SoftStax® Porting Guide

128

Example: Makefile for OS-9 Target Processor

The following example makefile produces tfmdrvr for an OS-9 target processor:

#
makefile
#
This makefile will make the tfmdrvr Device Driver.
The target processor is OS-9000/80386.
#
NOTE: The compilation options in this file correspond to
Ultra C #
#
MWOS = /h0/MWOS
RDIR = RELS
ODIR = ../CMDS
TMPDIR = /dd
DEFS = -v=. \
 -v=$(MWOS)/OS9000/SRC/DEFS \
 -v=$(MWOS)/SRC/DEFS \
LIBS = -l=$(MWOS)/OS9000/80386/LIB/os_lib.l
COMP = cc $(DEFS) -eas=$(RDIR) -r -o=7 -to=os9000\

 -tp=386 -td=$(TMPDIR)
LINK = cc -td=$(TMPDIR) $(LIBS) -k -to=os9000 -tp=386
START = $(MWOS)/os9000/80386/LIB/drvstart.r
RFILES = $(RDIR)/tfmdrvr.r
$(ODIR)/tfmdrvr: $(RFILES)
 $(LINK) $(START) $(RFILES) -fd=$(ODIR)/tfmdrvr
$(RDIR)/tfmdrvr.r: tfmdrvr.c
 $(COMP) tfmdrvr.c
#

The Device Descriptor
The figure below illustrates an OS-9 for 68K DPIO device descriptor.

Chapter 7: Using DPIO

129

Figure 7-1. OS-9 for 68K DPIO Device Descriptor

Two module types form this descriptor. Each descriptor type is a complete module.
chtype merges these modules and alters them to appear as a single OS-9 (for 68K)
device descriptor module.

The upper half of the OS-9 (for 68K)/DPIO device descriptor structure is a complete
OS-9 (for 68K) device descriptor containing the following:

• module name

• file manager

• driver name

• OS-9 (for 68K) path options section. DPIO file managers do not use this section

The lower half of OS-9 (for 68K)/DPIO Device Descriptor is an OS-9 device
descriptor compiled in OS-9 (for 68K) as a program module. It contains the
following:

• OS-9 device descriptor common section (dd_com)

• OS-9 logical unit initialized static storage

• OS-9 path option initialized static storage

A common technique for finding the dd_com section of a device descriptor is to use
the following code:

dd_com *dd;
dd=(dd_com*)(((char*)(Dev_list->v_dd_mod))+(Dev_list ->v_dd_mod-
>m_exec));

SoftStax® Porting Guide

130

Example DPIO Device Descriptors
Following is an example of the DPIO device descriptor test1. The test1 device
descriptor is made from the following files:

An OS-9 device descriptor is made up of the OS-9 common section and the logical
unit/path options section. An OS-9 for 68K device descriptor is made up of three
parts—the OS-9 for 68K common section, the OS-9 common section, and the
logical unit/path options section.

To add a new descriptor for either OS-9 or OS-9 for 68K, simply add the new
definitions to systype.h and the new targets to the makefiles.

The following are listings of the six files used to make OS-9 and OS-9 (for 68K)
DPIO device descriptors.

testdesc_const.c

The following is the testdesc_const.c file:

/*

* $Workfile: testdesc_const.c $

*

* This is the OS-9000 device descriptor constant

* section. */

/* Header Files */

#include <systype.h>

/* Device descriptor constant data structure */

struct myconst {

 test_desc desc;

 char fm_name[32];

Table 7-3. test1 Files

File Description
testdesc_const.c OS-9 device descriptor common section.
testdesc_stat.c Logical unit and path options section.
testdesc_os9.c OS-9 (for 68K) device descriptor common section (for OS-9

(for 68K) descriptors only).
systype.h Device descriptor definitions.
makek68k OS-9 (for 68K) device descriptor makefile.
makep386 OS-9/80386 device descriptor makefile.

Chapter 7: Using DPIO

131

 char drv_name[32];

} myconst = {

 /* desc */

 {

 /* Device Descriptor Common Fields */

 PORTADDR,/* dd_port: hardware base address */

 LUN,/* dd_lu_num: logical unit number */

 sizeof(test_path_desc),
/* dd_pd_size: path descriptor size */

 DT_TEST,/* dd_type: device type */

 MODE,/* dd_mode: device mode capabilities */

 myconst.fm_name,/* dd_fmgr: file mngr name offset */

 myconst.drv_name,/* dd_drvr: driver name offset */

 DC_SEQ,/* dd_class: device class */

 0,/* dd_dscres: reserved for future IOMAN */

 /* Other descriptor specific fields here */

 },

 /* fm_name[32]: file manager name */

 {

 FMNAME

 },

 /* drv_name[32]: device driver name */

 {

 DRIVERNAME

 }

};

testdesc_stat.c

The following is the testdesc_stat.c file:

/**

* $Workfile: testdesc_stat.c $

 **

SoftStax® Porting Guide

132

* These are the device descriptor logical unit static,

* logical unit options, and path descriptor options

* sections.

 ***/

/* Header Files
**/

#include <systype.h>

/* Logical Unit Static Storage Declarations
*********************************/

test_lu_stat my_lu = {

 /* Logical unit specific fields here */

};

testdesc_os9.c

The following is the testdesc_os9.c file:

/**

 * $Workfile: testdesc_os9.c $

 **

 * This is the OS-9 device descriptor section.

 ***/

/* Header Files **/

#include <systype.h>

/* Macro Definitions ************************************/

#define OPTS_SZ 128

#define MCOMMON_SZ 0x30

#define MDESC_SZ 0x18

#define FMNAME_SZ 32

#define DRVNAME_SZ 32

#define FM_OFFSET (MCOMMON_SZ + MDESC_SZ + OPTS_SZ)

Chapter 7: Using DPIO

133

#define DRVR_OFFSET (FM_OFFSET + FMNAME_SZ)

/* Device descriptor OS-9 section data structure **********/

struct myos9 {

 /* from mod_dev in <module.h> */

 char *_mport;/* device port address */

 unsigned char_mvector;/* trap vector number */

 unsigned char _mirqlvl; /* irq interrupt level */

 unsigned char _mpriority; /* irq polling priority */

 unsigned char _mmode;/* device mode capabilities */

 short_mfmgr;/* file manager name offset */

 short_mpdev;/* device driver name offset */

 short_mdevcon;/* device configuration offset */

 unsigned short _mdscres[1]; /* (reserved) */

 unsigned long _mdevflags; /* reserved */

 unsigned short _mdscres2[1]; /* reserved */

 unsigned short _mopt; /* option table size */

 unsigned char _mdtype; /* device type code */

 /* other needed fields */

 charopts[OPTS_SZ-1];/* for long-word alignment */

 charfm_name[FMNAME_SZ];/* file manager name */

 chardrv_name[DRVNAME_SZ];/* device driver name */

} myos9 = {

 /* OS-9 device descriptor section */

 PORTADDR+LUN,/* _mport: device port address */

 VECTOR,/* _mvector: trap vector number */

 IRQLEVEL,/* _mirqlvl: irq interrupt level */

 PRIORITY,/* _mpriority: irq polling priority */

 MODE,/* _mmode: device mode capabilities */

 FM_OFFSET,/* _mfmgr: file manager name offset */

SoftStax® Porting Guide

134

 DRVR_OFFSET,/* _mpdev: device driver name offset */

 0, /* _mdevcon: device configuration offset */

 { 0 },/* _mdscres[1]: reserved */

 0, /* _mdevflags: reserved */

 { 0 }, /* _mdscres2[1]: reserved */

 OPTS_SZ,/* _mopt: option table size */

 DT_TEST,/* _mdtype: device type code */

 /* opts[OPTS_SZ-1]: long-word alignment *
 * NOTE: _mdtype is the first byte of the options
 field */

 {

 0

 },

 /* fm_name[FMNAME_SZ]: file manager name */

 {

 FMNAME

 },

 /* drv_name[DRVNAME_SZ]: driver name */

 {

 DRIVERNAME

 }

};

Chapter 7: Using DPIO

135

systype.h

The following is the systype.h file:

/**

 * $Workfile: systype.h $

 **

 * This is the device descriptor definitions file.

 **/

/* Header Files
***/

#include <types.h>

#include <const.h>

#include <module.h>

#include <io.h>

#include <sg_codes.h>

#include <modes.h>

#include <reg68k.h>

#include <testdesc_defs.h>

/* Other needed header files included here */

/**

* Makes device descriptor: test1 */

#ifdef test1

#define PORTADDR 0xFFFF0A01 /* Base address of hardware
*/

#define VECTOR 0x96 /* Port vector */

#define IRQLEVEL 5 /* Port IRQ Level */

#define IRQ_MASK ((IRQLEVEL << 8) | SUPERVIS)
/* CPU interrupt mask */

#define PRIORITY 16/* IRQ polling priority */

#define LUN 1/* Logical unit number */

#define MAXCREF 3/* Max # call refs in virtual unit */

SoftStax® Porting Guide

136

#define FMNAME “test_fm” /* Name of file manager */

#define DRIVERNAME “test_drvr” /* Name of device driver */

#define MODE S_ISIZE | S_IREAD | S_IWRITE
/* Descriptor mode */

/* Other device specific definitions here */

#endif /* test1
**/

137

A Debugging

This chapter details debugging processes built directly into your driver for
troubleshooting problematic drivers. The following sections are included:

• Debugging: dbg_mod.l Overview

• Using Debug

SoftStax® Porting Guide

138

Debugging: dbg_mod.l Overview
The dbg_mod.l library allows programmers to incorporate debugging information
into drivers they are developing. The library creates a data module in memory into
which the driver can write information. The data module can be reviewed for
debugging information. This library allows you to debug in real time; the system
never stops as it does with rombug.

To use the library, define the following in the driver’s or logical unit’s static storage:

void* dbg_ptr;

This keeps the address of the debug information and passes it to all library calls.
Include the dbg_mod.h header so you can acquire prototype information for the
library calls.

Generally, the code to use the library is conditionalized so you can make a non-
debug version of the driver. This conditioned code is in the form of:

#ifdef DEBUG

<The library call>

#endif

Using Debug
A variety of debug information can be placed into the data module. There two
methods used to look at the information include the following:

• rombug

• dump utility

When dumping the data, both rombug and the dump utility display 16 bytes of data
in one line, both in hex and in ASCII. The dbg_mod.l library uses this, either
truncates or pads strings to fit, and places all data into the module as four-byte
u_int32 values.

Rombug

When in rombug, view the debug data module by linking to it and dumping from an
offset in the .r7 register. The steps to view the debug data module are listed below.

Step 1. Start at the rombug: prompt.

If you are not at this prompt already, break into rombug by typing break.

Step 2. Type link X at the rombug prompt to link to debug data module. X is the name of
the data module to view. rombug can link to modules loaded into memory.

Once linked, the .r7 relocation register points to the beginning of the module.
From this pointer, it is easy to access the data area of a data module.

Step 3. View the information from the beginning of the module.

For descriptions of each library call used for debugging, refer to Chapter 2 of
the OS-9 Networking Programming Reference.

Appendix A: Debugging

139

After the module is linked by rombug, obtain a pointer to the data section. The
offset to the data differs between OS-9 for 68K and OS-9.

• for OS-9 for 68K, the offset is 0x34

• for OS-9, the offset is 0x64

Step 4. Obtain a pointer.

Step 5. Point the register to the data section.

Typically, the .r7 register is modified to point to the data section.

To modify .r7 for OS-9 for 68K, type:

 .r7 .r7+34

To modify .r7 for OS-9, type:

 .r7 .r7+64

This sets the .r7 register to the beginning of the debug static area of the module,
and past the module header so the data module looks correct when dumping.

Step 6. Look at information from the end of the module.

The .r6 register can be set to point to the last entry in the debug information.

Step 7. Type.r6[.r7+4] to set .r6.

This sets the register .r6 line after the last debug statement put into the debug
module.

The writing in the debug module rolls over to the beginning of the module after
writing to the end of the module. You will never know where the last statement of
the module is without setting the .r6 register.

Step 8. Analyze the contents of the messages in the debug module by looking at the
statements behind the statement pointed to by .r6.

dump Utility

Use the dump utility to look at the debug data module without entering rombug.
However, use the dump utility mainly to save the debug data module to a file. Then,
use a text editor to view or print the information.

For OS-9 for 68K, the dump command syntax is:

$ dump <module name> -m 34 >-<output file>

For OS-9, the dump command syntax is shown below:

$ dump <module name> -m 64 >-<output file>

SoftStax® Porting Guide

140

Debug Data String Conventions

As described before in the debug_data() usage call, this call writes a string into the
debug data module. In future releases of SoftStax, we may provide a windowing
graphical user interface (GUI) application that will automatically monitor the debug
data module and print out helpful debugging messages in real time while the test
applications are running. This eliminates the need for using rombug after the fact
when a bug or crash occurs. In order to create this utility, drivers drivers must
adhere to a convention when creating the strings in the module. This convention
allows the debugging application to identify the protocol and print standard helpful
test messages to the screen when it identifies the standard debug strings in the data
module.

Rule

Your protocol should have a unique two-character prefix that begins every string.
For example, spproto uses PR. UDP/TCP/IP use UP, TP, and IP respectively. The ER
prefix is reserved for reporting error strings in the debug module. Since all drivers
have standard entry points, the same debug data string should be put into the data
module when this entry point is hit. This is the format for those standard strings
where XX stands for the protocol prefix:

-XXIniz, XXTerm
3rd param = deventry

-XXUpdate, XXOpen, XXClose, XXPush, XXPop
3rd param = path descriptor

-XXGetProtId
3rd param = protocol ID value

-XXSsUnknown, XXGsUnknown
3rd param = pb->code

-XXDN,XXUP for the debug4data() call

-XXDnMbEmpty, XXUpMbEmpty
3rd param = mbuf pointer

The spproto driver already adheres to these standard debugging strings, so if the
SPPROTO driver is used as the template, everything will be acceptable.

Some standard error strings that may occur in your protocol specific
implementation not already in SPPROTO include the following:

Table A-1. SPPROTO Error Strings

Cause String
m_getn() fails ERNoMbAvail, status in 3rd parameter.
Can’t find per path entry ERNoPPEntry 3rd param is ptr to per path list.
Anytime srqmem() fails ERSrqmem, 3rd param = error returned from

call.

141

B The mbuf Facility

An mbuf is a common data structure used to efficiently store variable-length data
blocks. mbufs can be queued, allocated, and deallocated, and are used for
compatibility between local area networking packets and wide area networking
packets.

The mbuf structure and function declarations are detailed in Chapter 2 of the
OS-9 Networking Programming Reference.

SoftStax® Porting Guide

142

Installing the mbuf Facility
Both the local and wide area network file managers use mbufs as the basis for data
transfer. Thus, before starting any of these file managers, install the mbuf facility by
performing the following steps:

Step 1. Load the sysmbuf module. sysmbuf controls the allocation and deallocation of
mbufs from the system mbuf free pool. The sysmbuf module may be added to the
system boot.

Step 2. Run the mbinstall utility, which installs the user-installed system call and allocates
memory for use as the system mbuf free pool.

Optionally, on OS-9 for 68k family machines, the sysmbuf module may be named
in the P2 Extension Module list of the init module and initialized as the system first
boots up, eliminating the need to run mbinstall.

You should only call mbinstall once after a system reset to set up a system-wide
mbuf pool.

The default system mbuf pool size is 128K. This should be sufficient for all but the most
heavily loaded systems. Systems with multiple network adapters may need to increase
the available mbuf pool size.

OS-9 for 68K Systems

For OS-9 for 68K systems, use one of the following:

• sysmbuf_010 for processors less than the 68020.

• sysmbuf_020 for processors 68020 or greater. sysmbuf_020 uses the more
efficient bit instructions available with these processors.

By default, these modules both allocate 128K of memory for the system mbuf pool.
You can patch the module to increase (or decrease) the amount of memory allocated
for the system mbuf pool.

Because multiple IRQ service routines call and share the mbuf code, by default, the
mbuf code masks IRQs to level 7 to protect allocation and deallocation requests.
With the fast algorithm sysmbuf uses, this is usually not a problem. You can patch
the module to limit the raising of the mask to the level of the highest IRQ service
routine using mbufs. Use this feature with extreme care. If not done properly, this
destroys the integrity of the mbuf free space resulting in a non-functioning system.
Normally, you should not raise the mask to the level of the highest IRQ service
routine using mbufs unless the operation of the network interferes with a higher-
level IRQ routine.

By default, the minimum block size you can allocate is 64 bytes. A smaller block
size uses more bitmap memory and requires more iterations through the code, but
wastes less memory for small allocations. A larger block size uses less bitmap
memory and requires less iterations through the search code, but wastes more
memory for small allocations.

Appendix B: The mbuf Facility

143

The 64 byte allocation size allows up to 2048 bytes to be bit mapped in one 32-bit
search/load/store. Maximum allocation is dependent upon the memory available
and memory allocated to other systems. SoftStax rarely requests blocks less than 64
bytes. 64 bytes has been demonstrated to be nearly the optimal size for SoftStax
routines. Ethernet mbuf requests are never larger than 1536. However, in some
SoftStax protocols, SoftStax may often request mbufs of less than 10 bytes for many
types of packets.

OS-9 Systems

For OS-9 systems, sysmbuf, by default, allocates 128K of memory for the system
mbuf pool.

To modify the default attributes of sysmbuf, use the mbinstall utility. mbinstall
has three options that enable you to specify the memory pool size, the block size,
and the memory color:

For example, to set the system mbuf pool size to 256K, use the command line:

mbinstall -m256

Table B-1. Locations of Interest

Offset Length Meaning
003c long Processor identifier: 68010 or 68020 (not changeable).
0040 short Maximum IRQ mask level: 7 (patchable).
0042 short Reserved.
0044 long Colored memory typecode: 0 (patchable).
0048 long Minimum allocation blocksize: 64 (patchable).
004c long Memory to use for mbufs: 128kb (patchable).

OS-9 Sysmbuf can only be installed using the mbinstall utility, while the OS-
9 for 68K version can be installed using the mbinstall utility or by specifying it
in the P2 Extension Module list in the Init module and including it in the boot.

Table B-2. mbinstall Options

Option Description
-m=<size> Memory pool size in kilobytes. The default is 128K.
-b=<size> Block size in bytes. The default is 64.
-t=<num> Memory color. The default is 0.

SoftStax® Porting Guide

144

SPF_NOFREE/SPF_DONE

You are writing a protocol driver that enables reliable data transfer. Typically, you
create a modulo array to store the pointers to data sent down for transmission, but
not yet acknowledged by the far end. However, when the driver is through
transmitting the packet, it typically performs an m_free_p() on the transmitted
mbuf. If this were allowed to happen, the mbuf in the unacknowledged array would
be lost. The mbuf library implements the SPF_NOFREE to indicate the mbuf must
not be returned to the free pool. When any m_free_x() call is done, the library
checks for the SPF_NOFREE bit. If it is set, the library does not return the mbuf to
the free pool. Instead, the library only sets the SPF_DONE bit to indicate that the
packet has been transmitted.

With this approach, hardware drivers can still call the regular m_free() functions
and the library takes care of the SPF_NOFREE details.

There are special calls provided in misc.c in the SoftStax driver section that enable
you to get and free “nofree” mbufs. These calls internally set and clear the
SPF_NOFREE bit for proper operation.

SPF_RXERR

If a driver receives an mbuf and detects an error, but the incoming packet may still
be useful to the protocol driver above, the SPF_RXERR bit may be set in the mbuf’s
m_flags field. Not all drivers check this bit on incoming mbufs, so it should only be
used in situations where it is known that a protocol driver above you understands
the flag.

Example of mbuf Queue Structure

Figure B-1. Example of mbuf Queue Structure

Each square in <links>Figure B-1. Example of mbuf Queue Structure represents one
mbuf structure.

msg #1 msg #2 msg #3 msg #4

m_qnext pointers go this way

m
_p

ne
xt

 p
oi

nt
er

s
go

 th
is

 w
ay

Appendix B: The mbuf Facility

145

The mbuf packet chain consists of the series of mbufs pointed to by the mbuf-
>m_pnext fields. In this figure, the mbuf packet chain for message #1 consists of
three mbufs.

The mbuf queue consists of the series of mbuf packet chains pointed to by the
mbuf->m_qnext fields. In this figure, the mbuf queue consists of messages one
through four.

SoftStax® Porting Guide

146

147

N A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

Index

Symbols
_os_dup() 14.

_os_irq() 35., 99.

A
addr 57.

addr_class 57.

addr_rsv1 57.

addr_size 57.

addr_subclass 57.

addr_type 56., 104.

Addressing 104.

Restrictions 105.

Allocating Per Path Storage 88.

API Libraries 16.

ATM Drivers 69.

B
block size 142.

Boot Files 16.

C
call

control setstats 93.

Call Control
ite_ctl_addrset() 14.

ite_ctl_answer() 15.

ite_ctl_connect() 14.

ite_ctl_connstat() 14.

ite_ctl_disconnect() 14.

ite_ctl_rcvrasgn() 15.

ite_ctl_rcvrrmv() 15.

callback_func 60.

callbk_param 60.

Calldown Functions 36.

change_static() 121.

chtype 117., 129.

codes
unknown 93.

connectionless
network emulator 104.

connection-oriented
emulator 104.

conv_lib.l 35., 99., 120.

cpu.l 121.

CRC generation and detection 108.

create
DPIO file manager 118.

D
data

reception conventions 101.

transmission conventions for ISR 100.

Data I/O
ite_data_avail_asgn() 14.

ite_data_avail_rmv() 14.

ite_data_readmbuf() 15.

ite_data_ready() 14.

ite_data_writembuf() 15.

Data Link Layer Drivers 69.

Data Processing 37.

Debug Data String Conventions 140.

Debugging 138.

dbg_mod.l 68., 138.

dump utility 139.

rombug 138.

defconv.h 84., 122., 125.

Defs Files 61.

defs.h 61.

SPF_DRSTAT 61.

SPF_LUSTAT 61.

SPF_LUSTAT_INIT 62.

defs.h description 84.

Descriptors 65.

dd_desccom 46.

dd_item 46.

dd_pmstak 46.

dd_popts 46.

dd_rsv1 46.

Device 65.

dev_callstate 55.

dev_display 55.

dev_list 20.

dev_mode 55.

dev_netwk_in 55.

dev_netwk_out 55.

dev_ournum 55.

dev_rcvr_state 55., 96.

dev_rsv1 55.

dev_rsv2 55.

dev_theirnum 55.

Device
Descriptors 10.

SoftStax® Porting Guide

148

N A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

device_type Structure 54.

device
descriptor

and the chtype utility 118.

DPIO structure 129.

illustration of DPIO 128.

driver
and the chtype utility 118.

DPIO requirements 125.

Device Descriptors 88.

DPIO 84.

compiling your source code 121.

create OS-9 file manager 118.

defined 115.

device
driver 125.

file manager 122.

libraries 120.

dr_downdata 30., 109.

dr_downdata() 97.

dr_getstat 30., 109.

dr_getstat() 91.

dr_iniz 30., 109.

dr_iniz() 90.

dr_setstat 30., 109.

dr_setstat() 93.

dr_term 30., 109.

dr_term() 90.

dr_updata 30., 110.

dr_updata() 97.

Driver
Callup/Calldown Functions 36.

Considerations 69.

Data Structures 20., 40.

entry points 30.

Static Structure 21.

types 69.

driver
conventions 20.

Driver Source Files 61.

Driver Static
dr_att_cnt 48.

dr_fmcallup() 48.

dr_lulist 48.

dr_lumode 48.

dr_rsv1 48.

dr_use_cnt 48.

dr_version 48.

SPF_DRSTAT 48.

DRVR_IODIS 50.

DRVR_IOEN 50.

drvstart.r 120.

dst_deventry 36.

Dual Ported I/O
see DPIO 84.

dump utility 139.

E
E$MNF 118.

E_MNF 118.

Entry Point 109.

entry points 30.

dr_downdata() 33.

dr_getstat() 31.

dr_iniz() 30.

dr_setstat() 32.

dr_term() 31.

dr_updata() 33.

entry.c 63.

SPF_GS_PROTID 32.

SPF_GS_UPDATE 31.

SPF_SS_CLOSE 32.

SPF_SS_POP 33.

SPF_SS_PUSH 32.

stk_hold_on_close 32.

stk_ioenabled 31.

stk_reliable 32.

stk_txoffset 31.

stk_txsize 31.

stk_txtrailer 31.

entry.c 63.

EOS_MNF 118.

EOS_UNKSVC 93., 96.

ev_id 60.

ev_inc_val 60.

ev_val 60.

example 87., 89.

create DPIO file manager 118.

device
driver 126.

file manager 123.

interrupt service routine function prototype 34.,
98.

makefile
OS-9/68000 device driver 127.

OS-9/68000 file manager 124.

OS-9000/68020 device driver 128.

OS-9000/68020 file manager 125.

makefile command line 121.

mbuf queue 144.

systype.h 135.

testdesc_const.c 130.

testdesc_os9.c 132.

testdesc_stat.c 131.

Examples 16., 64.

149

N A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

F
file manager

and the chtype utility 118.

DPIO 122.

rules for DPIO 123.

flag insertion 108.

Flow Control 68., 95.

fmstart.r 120., 123., 126.

G
get_static() 121.

glue code for ISR 35., 99.

grab_static() 121.

H
Hardware Drivers 69.

HDLC 107.

HDLC Controllers 69.

header file
defconv.h 122., 125.

history.h 84.

description 85.

editorials on driver 62.

Hold-on-Close
HOC 71.

HW_ISR 35., 99.

I
I/O

enabling 91.

I/O Services 14.

ib_callback 77.

ib_deventry 77.

ib_flags 77.

ib_name 77.

ib_next 77.

ib_obj_type 77.

ib_object 77.

ib_rsv2 77.

ib_state 77.

identifier 10.

include files 84.

Incoming Data Processing 38.

initialize
main.c 63.

Interrupt Service Routine 34., 98.

Interrupts 33.

IO_ASYNC 43.

IO_PACKET_TRUNC 44.

IO_READ_ASYNC 43.

IO_SYNC 43.

IO_WRITE_ASYNC 43.

IP 89.

IRQ 142.

irq_disable() 121.

irq_enable() 121.

irq_maskget() 121.

irq_restore() 121.

irq_save() 121.

irq_static() 121.

ISP 143.

ISR 33., 98.

ITE_ADCL_LPBK 104.

ITE_ADSUB_LUN 104.

ITE_ANSWER 95.

ite_ctl_answer() 15.

ite_ctl_connstat() 14.

ite_ctl_disconnect() 14.

ite_ctl_rcvrrmv() 15.

ITE_DIAL 95.

ITE_FEHANGUP_ASGN 96.

ITE_FEHANGUP_RMV 96.

ITE_HANGUP 96.

ITE_IBRES_CFG 78.

ITE_NCL_BLOCK 59.

ITE_NCL_CALLBACK 59.

ITE_NCL_EVENT 59.

ITE_NCL_EVENTINC 59.

ITE_NCL_SIGNAL 59.

ITE_NCL_SIGNALINC 59.

ITE_RCVR_ASGN 96.

ITE_RCVR_RMV 96.

ITE_RESOURCE_LIST 78.

ITE_SET_CONN 33.

ITEM
call control setstats 93.

ITEM Library 16., 52.

ITE_ANSWER 70.

ite_data_read() 14.

ite_data_write() 14.

ite_dev_attach() 14.

ite_dev_detach() 14.

ITE_DIAL 70.

ITE_HANGUP 70.

ITE_ON_CONN 53.

ITE_ON_FEHANGUP 53.

ITE_ON_INCALL 53.

ITE_ON_LINKDOWN 53.

ITE_ON_MSGCONF 53.

ite_path_clone 14.

ite_path_close() 14.

ite_path_dup() 14.

ite_path_open() 14.

item.h 53.

item_pvt.h 52.

SoftStax® Porting Guide

150

N A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

Notification List 52.

L
layer

network 93.

physical 108.

Libraries 66., 138.

lock.l 121.

Logical Unit Static
lu_att_cnt 50.

lu_attachptr 51.

lu_dndrvr 51.

lu_hold_on_close 51.

lu_ioenabled 50.

lu_next 51.

lu_num 50.

lu_opts 51.

lu_pathdesc 51.

lu_port 50.

lu_pps_idata 51.

lu_pps_list 51.

lu_pps_size 51.

lu_reliable 50.

lu_rsv2 51.

lu_trailer 50.

lu_txoffset 50.

lu_txsize 50.

lu_updrvr 51.

lu_use_cnt 50.

SPF_LUSTAT 51.

Logical Unit Static Storage 20., 22., 29.

loopback
devices 105.

lu.txtrailer 91.

lu_ioenabled 91.

lu_pathdesc 87.

lu_txoffse 91.

lu_txsize 91., 92.

M
m_free() 100.

main.c 63.

main.r 123.

makefile example 121.

Makefiles 61., 63., 66.

spf_desc.h 66.

spfdesc.mak 66.

spfdrvr.mak 66.

MATRIX Corporation MS-SIO4A 107.

Maximum Transmission Unit 31., 91.

mb 36.

mbinstall 142., 143.

mbuf
description of 141.

installing 142.

packet chain 145.

queue 145.

mbuf.l 67.

Memory 86.

misc.c 63.

modules 10.

MON Directory 64.

Motorola MVME147 107.

MT_DEVDESC 117.

MT_DEVDRVR 117.

MT_FILEMAN 117.

MT_PROGRAM 117.

MT_SYSTEM 117.

MTU 31.

MWOS 17.

mydeventy 36.

N
naming

a device descriptor 20.

a driver 20.

Network Layer Drivers 70.

Network Layer Protocol Driver 95.

Networked I/O System 13.

Notification Extensions 61.

Notification via Events 61.

Notification via Signals 61.

notify_type 58.

npb 36.

ntfy_class 59.

ntfy_ctl 60.

ntfy_ctl_type 60.

ntfy_on 59.

ntfy_rsv 60.

ntfy_timeout 60.

ntry_rsv1 60.

O
oob_callback 77.

oob_deventry 77.

oob_syspath 77.

os_lib.1
_os_attach() 14.

_os_close() 14.

_os_detach() 14.

_os_getstat() 14.

_os_open() 14.

_os_read() 14.

_os_setstat() 14.

151

N A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

_os_write() 14.

OS-9
interrupt table 98.

OS9 Directory 17.

OS-9 Environment 13.

OS-9000
structure names 84.

OS9000 Directory 17.

Outgoing Data Processing 37.

Out-of-band Protocol 74.

P
Path descriptor 23.

IO_CHAR 43.

IO_DGRAM_TOSS 44.

IO_NEXTPKT_ONLY 44.

IO_PACKET 43.

pd_buf1 43.

pd_devclass 43.

pd_devtype 43.

pd_ioenabled 43.

pd_iopacket 43.

pd_iotime 44.

pd_optsize 44.

pd_readsz 44.

pd_reliable 44.

pd_txmsgtype 44.

pd_txoffset 44.

pd_txsize 44.

pd_txtrailer 44.

pd_version 43.

pd_writesz 44.

TXMSG_CONF 45.

path identifier 10.

Path Storage 88.

PATH_HOLD 51.

PATH_NOHOLD 51.

pathdesc 36.

Paths 27.

pb 36.

pd_ioasync 43.

pd_rsv 44.

physical layer
mwSoftStax driver 108.

Popping a Protocol Driver 26.

porting 15.

Porting Drivers 15.

pr_body 80.

pr_desc 80.

pr_service_type 80.

pr_size 80.

pr_struct_type 80.

proc_id 60.

proto.h 84.

description 86.

function prototypes 63.

Pushing a Protocol Driver 25.

lu_dndrvr 27.

lu_pathdesc 27.

lu_updrvr 27.

R
rombug 138.

S
SCR Directory 17.

SDLC 107.

sequence generation 108.

Setstat Codes 94.

sig2send 60.

SMCALL_GS 93.

SMCALL_SS 96.

SMCALL_UPDATA 97.

socket.l 16.

source code
compiling under DPIO 121.

Source File Directory Structure 18.

Source Files 61.

sp8530 driver 17.

sp8530 Entry Points 109.

spf.h 40., 84.

SPF_DONE 101.

spf_drstat 20.

SPF_FMCALLUP_PKT 97.

SPF_GS_PROTID 91.

spf_lustat 20.

SPF_NOFREE 98., 101.

spf_popts 43.

spf_ppstat 88.

SPF_SS_CLOSE 94., 109.

SPF_SS_DEVENTRY 91.

SPF_SS_FLOWOFF 95.

SPF_SS_FLOWON 95.

SPF_SS_NEWTOP 94., 109.

SPF_SS_OPEN 32., 94., 109.

spf_ss_pb 93., 96.

SPF_SS_POP 94.

SPF_SS_UPDATE 91., 109.

sploop driver
description 103.

spproto 84.

spproto driver 84.

SPPROTO Template 64.

stk_ioenabled 93.

stk_txoffset 92.

SoftStax® Porting Guide

152

N A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

stk_txsize 92.

stk_txtrailer 92.

Storage 88.

swap_static() 121.

sysmbuf 142., 143.

SysMbuf_010 142.

SysMbuf_020 142.

T
TCP 89.

Template 64.

Testing 138.

timer restart() 68.

Timer Service Library (timer.l) 67.

timer_start() 68.

timer_stop() 68.

transmit
offset 91.

Transmit Trailer 91.

TRGTS 65.

Troubleshooting 138.

U
UDP 89.

Unknown Codes 93., 96.

updir
using to determine unknown code information

93.

V
v_paths 87.

Z
zero insertion 108.

Zilog 109.

Zilog Z85C30 SCC 107.

	SoftStax® Porting Guide
	Contents
	Getting Started Chapter 1
	SoftStax Overview
	OS-9 Environment and I/O Capabilities

	Available I/O Services
	Service Calls

	Porting
	Porting OS-9
	Porting Drivers
	Creating Boot Files

	Porting SoftStax
	Sample Application Source Files
	Example 1: Connection Oriented Example
	Example 2: Bidirectional I/O through os_lib.l Example
	Example 3: Loopback test

	SoftStax Architecture
	SRC Directory
	OS9 Directory
	OS9000 Directory
	Source File Directory Structure

	Creating SoftStax Drivers Chapter 2
	The SoftStax Driver
	Driver Conventions
	Driver Names
	Device Descriptor Names

	Driver Data Structures
	Driver Static Storage
	Logical Unit Static Storage
	Path Descriptor

	Pushing and Popping Drivers to Paths
	Sequence of Events when Pushing a Protocol Driver
	Sequence of Events when Popping a Protocol Driver
	Two Paths Open to One Driver

	Logical Units
	Driver Entry Points
	dr_iniz()
	dr_term()
	dr_getstat()
	SPF_GS_UPDATE
	SPF_GS_PROTID

	dr_setstat()
	SPF_SS_OPEN
	SPF_SS_CLOSE
	SPF_SS_PUSH
	SPF_SS_POP
	ITE_SET_CONN

	dr_downdata()
	dr_updata()

	Interrupt Service Routines
	Driver Interrupt Service Routine Conventions
	Writing and Installing the Interrupt Service Routine
	Defining a Macro as an Interrupt Service Routine

	Installing the ISR
	OS-9 Interrupt Service Routine Glue Code

	Driver Callup/Calldown Macros
	FMCALLUP_TIMER_RESTART
	FMCALLUP_TIMER_START
	FMCALLUP_TIMER_STOP
	SMCALL_DNDATA()
	SMCALL_UPDATA()
	SMCALL_GS()
	SMCALL_SS()
	DR_FMCALLUP_PKT()
	DR_FMCALLUP_CLOSE()
	DR_FMCALLUP_NTFY()
	DR_FMCALLUP_UPDATE()
	Outgoing Data Processing
	Incoming Data Processing

	Driver Data Structures (spf.h)
	spf_popts
	spf_desc
	spf_drstat
	spf_lustat

	ITEM Support
	item_pvt.h
	Notification List
	item.h
	device_type
	addr_type
	notify_type
	Notification via Signals
	Notification via Events
	Notification Extensions

	SoftStax Working Environment
	Defs Files
	Driver Source Files
	defs.h
	SPF_DRSTAT, SPF_LUSTAT, SPF_PPSTAT definitions
	SPF_LUSTAT_INIT definitions
	history.h
	proto.h
	main.c
	entry.c
	misc.c

	Makefiles
	Hardware Driver makefile Descriptors
	Protocol Drivers makefile Descriptors

	MON Directory

	Making a Driver using the SPPROTO Template
	Creating Device Descriptors

	Makefile Summary
	spfdrvr.mak
	spfdesc.mak
	spf_desc.h

	SoftStax Support Facilities for the Driver
	Libraries
	mbuf Library (mbuf.l)
	Timer Service Library (sptimer.l)
	timer_start()
	timer_restart()
	timer_stop()
	Per Path Storage Library (ppstat.l)
	Debugging Library (dbg_mod.l)

	Flow Control

	Driver Considerations
	Hardware Drivers
	High-level Data Link Control (HDLC) Controllers
	ATM Drivers
	Data Link Layer Driver Considerations
	Hold-on-Close (HOC)
	Network Layer Drivers
	ITE_DIAL
	ITE_HANGUP
	ITE_ANSWER

	Additional Hold-on-Close
	HOC Scenarios
	Scenario #1
	Scenario #2
	Scenario #3

	Out-of-Band Protocol Considerations with ITEM
	In-Band Configuration of Out-of-Band Connections

	ib_cfg_pb
	ITE_RESOURCE_LIST
	ITE_IBRES_CFG
	Profiles for out-of-band connectivity
	Profile Implementation at the Driver Level

	bri_profile
	Sample xxx_pr.h
	Additions to defs.h
	Profile API calls

	SPPROTO Driver Chapter 3
	SoftStax Driver Overview: spproto
	defs.h
	history.h
	proto.h
	main.c
	OS Allocated Memory Available for Driver Use
	Allocation Example

	Allocating Per Path Storage for the Driver
	Allocation Example

	entry.c
	dr_iniz()
	dr_term()
	dr_getstat()
	SPF_GS_DEVENTRY
	SPF_GS_PROTID
	SPF_SS_UPDATE
	stk_txsize Parameter
	stk_txoffset Parameter
	stk_txtrailer Parameter
	stk_ioenabled Parameter
	Unknown Codes

	dr_setstat()
	Setstat Codes That Must be Supported by All Drivers
	SPF_SS_OPEN
	SPF_SS_CLOSE
	SPF_SS_PUSH
	SPF_SS_POP

	Codes Implemented Only by Drivers With Flow Control Ability
	SPF_SS_FLOWOFF / SPF_SS_FLOWON

	Codes Implemented Only by Network Layer Protocol Drivers
	ITE_DIAL
	ITE_ANSWER
	ITE_HANGUP
	ITE_FEHANGUP_ASGN / ITE_FEHANGUP_RMV
	ITE_RCVR_ASGN / ITE_RCVR_RMV
	Unknown Codes

	dr_updata()
	SPF_FMCALLUP_PKT / SMCALL_UPDATA

	dr_downdata()
	Driver Interrupt Service Routine Conventions
	Writing and Installing the Interrupt Service Routine (ISR)
	Defining a Macro as an Interrupt Service Routine
	Installing the ISR
	OS-9 Interrupt Service Routine Glue Code
	Data Transmission Conventions
	Data Reception Conventions

	SPLOOP Driver Chapter 4
	Overview
	Addressing
	Restrictions

	sp8530 Device Driver Chapter 5
	Overview
	sp8530 Entry Points
	dr_iniz()
	dr_term()
	dr_getstat()
	dr_setstat()
	dr_downdata()
	dr_updata()

	Z85C30 ISR
	Transmit Interrupts
	Transmit Buffer Empty

	Receive Interrupts
	Receive Character Available
	End of Frame (SDLC)

	External/Status interrupts
	TxUnderrun/EOM
	Break/Abort

	sp82525 Driver Chapter 6
	Overview
	Data Reception and Transmission Characteristics

	Default Descriptor Values
	ITEM Addressing
	Other Default Settings
	Considerations for Other Drivers

	Using DPIO Chapter 7
	Utilities
	chtype
	rm_vsect

	DPIO Libraries
	System-state Libraries
	conv_lib.l
	cpu.l
	lock.l

	Compiling
	The File Manager
	Example: Test File Manager
	Example: Makefile for OS-9 (for 68K) Target Processor
	Example: Makefile for OS-9 Target Processor

	Device Driver
	Example: Test File Manager Device Driver
	Example: Makefile for OS-9 (for 68K) Target Processor
	Example: Makefile for OS-9 Target Processor

	The Device Descriptor
	Example DPIO Device Descriptors
	testdesc_const.c
	testdesc_stat.c
	testdesc_os9.c
	systype.h

	Debugging Appendix A
	Debugging: dbg_mod.l Overview
	Using Debug
	Rombug
	dump Utility
	Debug Data String Conventions
	Rule

	The mbuf Facility Appendix B
	Installing the mbuf Facility
	OS-9 for 68K Systems
	OS-9 Systems
	SPF_NOFREE/SPF_DONE
	SPF_RXERR
	Example of mbuf Queue Structure

	Index

