
w w w. ra d i sy s . co m
Revision A • July 2006

Using SoftStax®

Version 4.7

July 2006
Copyright ©2006 by RadiSys Corporation

All rights reserved.
EPC and RadiSys are registered trademarks of RadiSys Corporation. ASM, Brahma, DAI, DAQ, MultiPro, SAIB, Spirit, and ValuePro are
trademarks of RadiSys Corporation.
DAVID, MAUI, OS-9, OS-9000, and SoftStax are registered trademarks of RadiSys Corporation. FasTrak, Hawk, and UpLink are
trademarks of RadiSys Corporation.
† All other trademarks, registered trademarks, service marks, and trade names are the property of their respective owners.

Copyright and publication information

This manual reflects version 4.7 of SoftStax.
Reproduction of this document, in part or whole, by any means,
electrical, mechanical, magnetic, optical, chemical, manual, or
otherwise is prohibited, without written permission from RadiSys
Microware Communications Software Division, Inc.

Disclaimer

The information contained herein is believed to be accurate as of
the date of publication. However, RadiSys Corporation will not be
liable for any damages including indirect or consequential, from
use of the OS-9 operating system, Microware-provided software,
or reliance on the accuracy of this documentation. The
information contained herein is subject to change without notice.

Reproduction notice

The software described in this document is intended to
be used on a single computer system. RadiSys
Corporation expressly prohibits any reproduction of the
software on tape, disk, or any other medium except for
backup purposes. Distribution of this software, in part
or whole, to any other party or on any other system
may constitute copyright infringements and
misappropriation of trade secrets and confidential
processes which are the property of RadiSys
Corporation and/or other parties. Unauthorized
distribution of software may cause damages far in
excess of the value of the copies involved.

3

Contents

Chapter 1: Overview
OS-9 Networking Overview .. 8.

OS-9.. 8.

SoftStax... 8.

RadiSys Hawk... 8.

System Requirements ... 9.

Protocol Developers .. 9.

Chipset Manufacturers .. 9.

Bridge, Router, Gateway, Internet Equipment Manufacturers ... 9.

Architecture and Design Philosophy .. 9.

I/O Design... 10.

The SoftStax Environment .. 12.

Application Environment... 12.

Application Environment Design Goals... 12.

Application Development ... 12.

Understandable Applications .. 13.

Network independence ... 13.

Data Structures and Uses... 13.

API and Services Provided ... 14.

Device-oriented calls ... 14.

Path-Oriented calls ... 14.

Call-Control Calls... 15.

Data Manipulation Calls .. 15.

Asynchronous Notification Calls .. 15.

Using the Application Environment... 15.

Protocol Stack Framework... 16.

Design Goals ... 16.

Software Baseline.. 16.

Open Architecture .. 17.

Stack and Layer Interoperability ... 17.

Protocol Stack Development ... 17.

Protocol Stack Add-ons .. 17.

Debugging Real-time Problems ... 17.

Driver Architecture ... 17.

Protocol Driver Data Structures.. 17.

Entry Points of a Protocol Driver.. 18.

Inter-driver Communication Primitives ... 18.

Chapter 2: OS-9 Network I/O System Components
Components .. 20.

Protocol and Hardware Drivers .. 20.

Device Descriptors .. 21.

Contents

Using SoftStax 4

Application Programming Interface (API).. 21.

The OS Library... 21.

The ITEM Library .. 22.

Network Specific APIs .. 22.

SoftStax Source File Directory Structure .. 23.

Chapter 3: I/O APIs
ITEM Library Interface.. 26.

Overview... 26.

ITEM Philosophy .. 26.

Network Independence ... 26.

Operating System Independence ... 26.

Connection-oriented and Connectionless Networks .. 27.

ITEM Definitions Files .. 27.

Interactive Multimedia Channel Management .. 27.

item.h Structures ... 27.

device_type... 28.

addr_type ... 33.

notify_type ... 36.

Initializing notify_type Structure Fields... 37.

Example Using ntfy_ctl ... 39.

ite_cctl_pb .. 42.

Creating Your Own Library Call Extensions ... 43.

spf_ss_pb.. 44.

Using the Parameter Block in Setstat/Getstat Calls .. 45.

Chapter 4: The SoftStax Device Descriptor
Descriptors .. 50.

Internals .. 50.

Example: Create the Proto2 Device Descriptor ... 50.

Example: Using Logical Unit Number... 51.

The SoftStax Driver ... 55.

Driver Conventions ... 55.

Driver Names ... 55.

Device Descriptor Names.. 55.

Chapter 5: Advanced Programming Topics
SPF Protocol Stacking.. 58.

Creating a Protocol Stack on a Path .. 58.

Passing a Protocol Stack with an Open Call .. 58.

Pushing and Popping... 59.

Push and Pop Details .. 59.

Using the PROTSTAK Field .. 60.

Chapter 6: Testing Applications and Protocols with SLOOP
About SPLOOP ... 62.

Connection Oriented vs Connectionless Descriptors ... 63.

Using SPLOOP For Application Testing .. 63.

Using SPLOOP For Protocol Testing ... 64.

.. 66.

Contents

Using SoftStax 5

Appendix A: Examples
Example Applications .. 68.

How to Make an Application.. 68.

Example 1: Standard Telecommunications Application ... 68.

ex1_snd.c .. 68.

Example 2: Using os_lib.l... 84.

spf_test.c ... 85.

Example 3: Loopback Process Application .. 91.

example3.c .. 91.

Appendix B: Using SoftStax with Multimedia Devices
Networked Multimedia Device Basics.. 104.

Multimedia Device Specifics .. 104.

Multimedia Device Run-Time Model .. 106.

DET Software Configuration .. 106.

ITEM Functions .. 107.

ITEM Interface ... 107.

Control Channel Interface .. 107.

Data Channel Interface ... 108.

Resident Network Communications Protocol ... 108.

BLOB Loader.. 108.

Network Protocol ... 108.

Server Protocol Stack .. 108.

Network Management Entity (NME) ... 109.

Contents

Using SoftStax 6

7

1 Overview

SoftStax® is the core component for communications and networking in the
Microware OS-9® environment.

For information about... Go to this page...
OS-9 Networking Overview ... 8
System Requirements.. 9
Architecture and Design Philosophy .. 9
Application Environment ... 12
Protocol Stack Framework... 16

OS-9 Network Programming Reference 8

OS-9 Networking Overview
Before delving into the specifics of the OS-9 networking environment, it is
extremely important to understand the overall communications and networking
product line.

The OS-9 networking environment includes many integrated components. Together
these create an off-the-shelf software solution for communications equipment that
is inter-operable with virtually any standard or proprietary network.

This package forms the basis of the OS-9 networking environment. For
development, you need a minimum of SoftStax and Microware Hawk. For testing,
you also need the OS-9 objects available in the OS-9 Development Kit for your
specific target processor.

OS-9

This component, which is specific to your OS-9 target, contains all the binaries,
definitions files, and header files needed for developing and testing the OS-9 target.

SoftStax

SoftStax includes the following components:

• ITEMIntegrated Telecommunications Environment for Multimedia—an
application programming interface

• SPF Stacked Protocol File manager—the network infrastructure

• SPPROTO a template driver that can be used to create your own protocol
drivers

• SPLOOP a loopback driver that emulates connection-oriented or connectionless
networks for application and protocol testing, source and objects for a variety
of HDLC controllers, and Serial Communications Controllers (SCCs) for
integrated microprocessors

• examples sample applications for testing your system

• LAN Communications: TCP/UDP/IP protocols, PPP/SLIP, and hardware drivers
for Ethernet chipsets

RadiSys Hawk

RadiSys Hawk is an open, integrated development environment that supports many
of the embedded industry’s third-party development tools, such as compilers, in-
circuit emulators, debuggers, and testing tools.

OS-9 Network Programming Reference 9

System Requirements

Protocol Developers

Protocol developers require OS-9 for Embedded Systems. You can test your
protocol stack without requiring a real network by using the SPLOOP driver and
creating network side emulation software.

Optionally, the protocol stack or ethernet access to the OS-9 target can be
performed using LAN Communications.

Chipset Manufacturers

Chipset manufacturers require OS-9 for Embedded Systems. Source code for SPF
hardware drivers is available in SoftStax. This code can be used as a starting point
to develop your driver. You can use the SPPROTO template to create your driver,
but it is recommended that you use the sp82525 driver as a template. The sp82525
driver is specific to a hardware driver and is, in most cases, a better starting point
for your development.

Bridge, Router, Gateway, Internet Equipment Manufacturers

LAN equipment manufacturers require OS-9 for Embedded Systems. Depending on
the multi-network operation of the equipment, other communications paks can be
integrated providing quick multi-protocol support for any environment.

Architecture and Design Philosophy
OS-9 implements a unified Input/Output (I/O) system. The programming interface
used by the application is identical whether the application is using a hard drive,
serial device, or network interface. This programming interface consists of calls to
open, close, read, write, and set/get (called setstats and getstats) I/O configuration
information .

Refer to Chapter 6, Testing Applications and Protocols with SLOOP for more
detailed information on how to use the SPLOOP driver.

OS-9 Network Programming Reference 10

Figure 1-1. OS-9 I/O System

I/O Design

Every I/O system for OS-9 consists of a file manager, device driver, and device
descriptor. The file manager performs all logical features of the specific I/O
system—implementing the Hardware Abstraction Layer (HAL) for the system. The
device driver controls the specific hardware, distilling driver creation down to
hardware initialization, termination, and an interrupt service routine. The device
descriptor is identifiable by the application that dynamically links all the modules.
The application opens a path using a device descriptor module name. The OS-9
then uses the information contained in the device descriptor as a roadmap to create
a link between the application, file manager, and device driver. The link created by
OS-9 for the application is called a path. The application uses the resulting path to
access the services provided by the I/O system. All modules in the system are fully
re-entrant and position independent.

Applications and Utilities

OS-9 Kernel

I/O Manager

Initialization

Clock

Shared Libraries

Trap Handlers

File Manager File Manager

Device Manager Device Manager

Device
Descriptor

Device
Descriptor

OS-9 Network Programming Reference 11

Figure 1-2. SoftStax I/O System

SoftStax™ extends the I/O system philosophy by enabling the mapping of more
than one driver on a given path; it allows multiple drivers to be stacked onto one
another. This extension represents the implementation of the OSI Model as defined
by the International Standards Organization.

Figure 1-3. SoftStax and the OSI Seven-Layer Model

Protocol stack implementation begins with a specification that uses the OSI Model
as the abstract framework. This enables a protocol layer implementation to be
interoperable with other protocol layer (or protocol driver) implementations for
OS-9.

File Manager

Initialize device
Open path to device
Close path to device
Read data
Write data
De-initialize device

Device Driver

Initialize physical device
Read physical unit
Write physical unit
Get device status
Set device status
De-initialize physical
device

Device Descriptor

Logical name
File manager name
Device driver name
Hardware controller
address
Initialization
parameters

Map hardware to file
manager and device driver

Hardware
Independent

Hardware
Dependent

Physical
Hardware

Stacked Protocol File
Manager

Network Layer

Data Link Layer

Physical Layer
DevDesc

“ /phys_lyr”

DevDesc
“ /net_lyr”

DevDesc
“ /dlink_lyr”

OSI Mode Stacker/
Unstacker

Protocol Driver Modules

Hardware-Specific Module

OS-9 Network Programming Reference 12

The SoftStax Environment

The SoftStax environment consists of the following: an Application Programming
Interface (API) called ITEM (Integrated Telephony Environment for Multimedia),
the Stacked Protocol File Manager (SPF), a template protocol driver (SPROOTO), a
network emulation driver (SPLOOP), and various HDLC driver implementations.
Network-independent application examples are also provided as guidelines for
application development.

Figure 1-4. SoftStax Architecture

Application Environment
To write an application for SoftStax you must understand the following concepts:

• application environment design goals

• data structures and their uses

• API and services provided

Application Environment Design Goals

ITEM defines the application environment of OS-9 for Communications and the
SoftStax framework.

Application Development

One design goal of ITEM is to eliminate the complexities involved with an
application using network services. Applications are not forced to build pieces of
network-specific messages and pass them through the API to perform call control.
For example, an ISDN application is not required to pass in the channel ID, bearer
capability, or low-layer compatibility information elements like parameters in order
make a connection. This simplifies the application, frees the application from being
network specific, and does not require the programmer to be "ISDN-literate."

Network
Management

Custom
Applications

Example
Application

Network Access API

Stacked Protocol File Manager

Legacy
Protocols

Device Driver
Framework

Network
Emulation

OS-9 Network Programming Reference 13

Understandable Applications

ITEM is intuitive to the general programmer and does not reflect a specific network
protocol state machine.

Network independence

ITEM enables application binaries to run across multiple network topologies
without recompiling or relinking. Network independence is achieved by abstracting
properties of the network.

Data Structures and Uses

Data structures were created to achieve application environment design goals and
enable the application to remain network independent. Abstracting application-
visible aspects of any network is the key to making network independence a reality.
Abstractions for the network device and network addressing were created using
structures called device_type and address_type. The third data structure in ITEM
abstracts the asynchronous notification method called a notify_type structure. This
provides a level of operating system independence.

Figure 1-5. SoftStax Data Structures

The descriptor automatically initializes all of the parameters in the device_type and
addr_type structures when the path is created. Since automatic initialization occurs
as an implicit kernel service, applications need not be aware of these two structures.
This enables applications in their most simple form to continue operating with
ITEM. If required, ITEM contains API calls to get and set all variables within the
device_type and addr_type structures.

notify_type

device_type

addr_type
(local address)

addr_type
(remote address)

class
trigger

timeout

class
trigger

timeout

mode
call state
receiver state
local address
remote address

OS-9 Network Programming Reference 14

Applications use the notify_type structure for network event registration and
removal. Notification requests can be set through the ITEM API for the following
items:

• link down/link up

• incoming call

• connection active/far-end hangup

• data available to be read

• end of MPEG-II program

• flow control on/off

• custom protocol or device driver network events

API and Services Provided

The API is another important characteristic of the application environment. The
ITEM API is modeled after the telephone, a paradigm with which everyone is
familiar. ITEM provides scalable capabilities and is simple to use. However, in cases
where applications require complex network-specific services, add-on
communications paks come with APIs that expose detailed access to particular
network topologies. For example, the Microware LAN Communications includes a
BSD4.4 compatible socket library. The advantage of this approach is that
developers know the level of network independence for the libraries used by the
application.

The ITEM API contains five main categories of service:

• device oriented

• path oriented

• call control

• data manipulation

• asynchronous notification

Device-oriented calls

These calls manipulate individual protocol layers or device drivers. They include
calls to initialize, terminate individual layers, get the layer name, get the type of
service the layer provides, and get and set permissions for a layer.

Path-Oriented calls

These calls manipulate entire protocol stacks for a given path. Also available are
calls to open and close incarnations of a protocol stack and to dynamically add and
remove protocol layers. Profiles are used to simplify the correct quality of service
for connections by the applications. These profiles are identified by the application
as primitives (i.e. VOICE, DATA, MPEG, IP, etc.). Therefore, applications can
request connections based on a service profile primitive. The protocol layer maps
the primitive to the specific connection messages required to create the correct type
of connection for the desired service.

OS-9 Network Programming Reference 15

Call-Control Calls

This group of calls provides call-control services required for connection-oriented
networks. The SoftStax framework allows these calls to be made successfully even if
the application is running over a connectionless network for true portability across
all types of network topologies.

Data Manipulation Calls

The data manipulation calls enable synchronous or asynchronous reading and
writing operation. Zero copy across the user interface is available not just with
TCP/IP, but with all SoftStax protocols through the read and write mbuf calls. For
convenience, data can also be read by packets or individual bytes.

Asynchronous Notification Calls

In addition to the asynchronous calls defined by the previous sections, far-end
hangup and protocol stack status change can also be registered by the application.
The facility also allows layer-specific notifications if required.

Using the Application Environment

Below is an example of a stack consisting of an ISDN driver, LAP-D data link layer,
and Q.931 network layer.

Figure 1-6. Example ISDN Stack

q931

spq931

splapd

spisdn

isdn0

lapd

Appl ication

Path

Device Descriptors

Device Drivers

D Channel

B Channels

OS-9 Network Programming Reference 16

There are three ways the application can invoke this configuration:

• explicitly, 1 call

ite_path_open("/isdn0/lapd/q931", READ | WRITE, &pathID, NULL);

• explicitly, 3 calls

ite_path_open("/isdn0", READ | WRITE, &pathID, NULL);

ite_path_push(pathID, "/lapd");

ite_path_push(pathID, "/q931");

• implicitly

ite_path_open("/network", READ | WRITE, &pathID, NULL);

In this case, the isdn0 descriptor is configured to contain an implicit push of the
/lapd/q931 stack. This descriptor is then named /network. In this manner, the
application simply opens /network. In addition, new descriptors containing
different protocol stacks can be loaded into the OS-9 system. This method
enables the application to run over different network topologies without
disruption.

Addressing can be defined by using the '#' delimiter when opening each layer.
Referring to the ISDN example above, spisdn uses D channel, splapd uses TEI/SAPI
{00}, and spq931 uses 515-223-8000 for their respective addresses. The open call
would look like the call below:

ite_path_open("/isdn0#D/lapd#00/q931#5152238000", READ|WRITE, &pathID,
NULL);

Protocol Stack Framework
To write an application for SoftStax, developers must define the following:

• design goals

• driver architecture

• optimized driver services

• data and control flow through the architecture

Design Goals

SoftStax defines the communications software framework within OS-9 for
Communications.

Software Baseline

The SoftStax footprint is 20Kb RAM and 25Kb ROM for all processor
architectures. SoftStax is a kernel extension that uses services unique to OS-9 to
provide a run-time communications architecture that maximizes performance and
minimizes footprint and CPU utilization.

OS-9 Network Programming Reference 17

Open Architecture

SoftStax is completely specified and documented to allow all third-party protocol
stack companies, OS-9 for Communications users, and hardware driver providers
to efficiently implement their technologies for OS-9.

Stack and Layer Interoperability

SoftStax provides one universal framework for every protocol layer. This enables
protocols implemented by multiple parties to be interoperable.

Protocol Stack Development

SoftStax provides a protocol layer template driver, a network emulation driver,
timer services, and buffer management services.

The template driver provides a "null layer" implementation to which a protocol
state machine can be immediately added. The network emulation driver enables
validation of protocol stacks without requiring access to the network. Timer
services and buffer management services are also provided.

Protocol Stack Add-ons

Communications software development requires integration of an RTOS,
application, one or more protocol stacks, and device drivers--all written to different
frameworks. Through this, SoftStax enables developers to immediately understand
a common baseline regardless of the OS-9 for Communications product add-on.

Debugging Real-time Problems

SoftStax provides a facility for tracing the events that lead up to real-time bugs. This
facility is provided through a debugging library for real-time execution capture.

Driver Architecture

Protocol Driver Data Structures

The OS-9 kernel provides automatic allocation and initialization of data structures
for drivers. This service is used by OS-9 for Communications to allocate and
initialize data areas for protocol drivers without requiring creation of code to
allocate and initialize data areas.

OS-9 automatically creates four data structures for a driver, including the following:

• device entry

• driver storage

• logical unit storage

• path descriptor

A library is also provided to create a per path data structure for the driver, called the
per path storage.

OS-9 Network Programming Reference 18

Figure 1-7. SoftStax Driver Architecture

Entry Points of a Protocol Driver

All ITEM API calls are realized at the driver layer as DrGetstat and DrSetstat calls.
Parameter blocks are formatted with the ITEM service request and associated
parameters. For device drivers, the DrUpdata entry point is not used, and an
interrupt service routine, which can be considered as the incoming data entry point
for a device driver, is implemented.

Inter-driver Communication Primitives

Inter-driver communications primitives are implemented not as inter-process
communication, but as direct jumps to the entry point of the driver above and
below. This aspect is the key to a high-performance system.

The DR_FMCALLUP_PKT macro minimizes the amount of time spent in an interrupt
service routine by queuing the data on a receive queue for processing by the receive
process.

Path
Descriptor

Maps to Path ID

Per Path
Storage

One per every path
using the driver

Device Entry

Logical Unit
Storage

Driver
Storage

Cornerstone data
structure for each

driver sect ion

Pre-interface data area

Global driver
data area

19

2 OS-9 Network I/O System
Components

This chapter provides an in depth look at the components that comprise OS-9
Network I/O.

For information about... Go to this page...
Components ... 20
SoftStax Source File Directory Structure .. 23

OS-9 Network Programming Reference 20

Components
SoftStax enables a wide variety of network devices to connect to local and wide-
area networks. For low-end network devices, SoftStax may be all that is required to
connect a device to a network. SoftStax components consist of a file manager—
Stacked Protocol File manager (SPF), protocol drivers, hardware drivers, device
descriptors, application interface libraries, and example applications. These
components provide the flexibility needed to create network hardware and protocol
independence.

SPF is the OSI seven-layer model stacker that application data uses to travel through
OS-9 and the network protocol stack. It provides the ability to stack and unstack
drivers used by the application.

SPF performs the following tasks:

• stacks and unstacks protocol drivers on a given OS-9 path

• queues receive data for each path

• blocks and unblocks applications attempting to read or write data

• provides the standard OS-9 I/O (input/output) interface

Protocol and Hardware Drivers

Protocol drivers typically implement a protocol state machine as defined by some
national or international standards body. For example, LAP-B and UDP are typical
protocols. Protocol drivers share the same characteristics as hardware drivers.

The term driver used without qualification is applicable to both hardware and
protocol drivers. Protocol drivers are usually software protocol state machines and
hardware drivers interface directly to network hardware.

SoftStax provides a template protocol driver called SPPROTO, which serves as the
starting point for developing new protocol drivers.

The base package also provides source and objects for a variety of HDLC
controllers and serial communications controllers found in integrated
microprocessors.

SoftStax enables you to create and completely test client/server network
applications without having access to the network. This is accomplished by opening
paths to the SPLOOP driver provided in SoftStax. There following lists three types
of descriptors the application can open:

• straight loopback

• descriptors emulating a connection oriented network

• descriptors emulating a connectionless network

OS-9 Network Programming Reference 21

Using a single OS-9/SoftStax target machine, the applications can execute and
interact with each other while SPLOOP emulates the correct type of network.
Applications can be completely validated in this manner, which drastically reduces
development time for networked equipment and greatly reduces the cost of
developing the application.

Device Descriptors

Device descriptors contain default information for a given driver. A device
descriptor might contain time-out values, initial values having to do with a
particular protocol state machine, or hardware initialization variables for hardware
drivers. Optionally, a string can be embedded in the device descriptor telling the file
manager which protocol drivers and hardware drivers to use when a path is opened
using this descriptor.

Application Programming Interface (API)

APIs provide an easy-to-use interface enabling applications to interact with other
applications over various types of networks. Some APIs are general purpose and
allow applications to communicate with one another, independent of the network
architecture.

The Integrated Telecommunications Environment for Multimedia (ITEM) is a
general purpose API provided with SoftStax. The goal of this API is to provide
network independent multimedia access.

Other APIs are specific to a particular type of network. The socket.l API library is
an example of this. An application using this type of library has the disadvantage of
becoming less portable across networks. However, the application using a network-
specific API has access to and can take advantage of special services the network
provides.

The OS Library

The OS-9 operating system environment has an API named os_lib.l. This library is
used for access to all OS-9 I/O systems, not just SoftStax.

The following table outlines the most commonly used calls from this library with a
brief description.

Refer to Chapter 6, Testing Applications and Protocols with SLOOP for more
information on using the SPLOOP driver.

Refer to Chapter 4, The SoftStax Device Descriptor for more information on
creating and modifying device descriptors.

Table 2-1. os_lib.l I/O Calls

Call Description
_os_attach() Initialize a device
_os_detach() Deinitialize a device
_os_open() Open a path to a device

OS-9 Network Programming Reference 22

The ITEM Library

SoftStax has its own special API called ITEM. This API allows the same access as
the OS library, but extends the API to include network independent call control,
channel management, MPEG stream information gathering, and notification on
different kinds of network events.

Network Specific APIs

Most SoftStax Communications using a specific protocol stack provide a special
API to access the unique properties of that specific protocol stack. However, there
are trade-offs involved for using these APIs.

If an application only uses ITEM to communicate, it is guaranteed the ability to run
over any network architecture and to be interoperable with Communication Paks
available for OS-9/SoftStax. Once APIs specific to a particular network are used by
the application, the application may be able to take more sophisticated control of
the network. However, because the application is dedicated to a specific network, it
is more difficult to port the application and have it work correctly on a different
type of network.

_os_close() Close a path to a device
_os_ss_sendsig() Send a signal when data is available to be read on this path
_os_gs_ready() Return the number of bytes available to be read on this path
_os_read() Read data
_os_write() Write data

Table 2-1. os_lib.l I/O Calls (Continued)

Call Description

• Refer to the section Creating Your Own Library Call Extensions in Chapter
3, I/O APIs for more information about using this library to create your own
specialized API access to a specific network protocol stack.

• Refer to the Ultra C/C++ Library Reference Manual for more information
about these calls.

The ITEM library is covered in more detail in the section in Chapter 3, I/O APIs.

OS-9 Network Programming Reference 23

SoftStax Source File Directory Structure
If you are porting or creating an application, the templates for source code and
makefiles can be found in the EXAMPLES subdirectory as shown in the following
figure:

Figure 2-1. Source File Directory Structure for SoftStax

Typically, applications have two places in which their objects can be placed. The
examples place their objects in the local EXAMPLES/CMDS/PPC directories. Your
application may place the object under the appropriate CMDS directory under the
processor family type (such as MWOS/OS9000/PPC/CMDS).

/DEFS/SPF

/EXAMPLE1 /EXAMPLE2 /EXAMPLE3

/SPLOOP /SPPROTO /Z8530 /SP82525 /PPSTAT

/DRVR

all source
file
templates
for sploop
drivers &
makefiles

all source
file
templates
for spf
drivers &
makefiles

source code
for Z8530
SCC
hardware
driver

source code
for 82525
HDLC
controller

per path
storage
library
source

misc.c
pull.c

example3
source

spf_test
source

exl_snd
exl_rcv
source

item.h
item_pvt.h
mbuf.h
prot_ids.h

timer.h
z8530.h
ppstat.h

alarm.h, alloc.h
defconv.h, devdesc.h
dexec.h, evtbl.h
fork.h, io.h, ioedt.h
lock.h, logic.h,
moddir.h, proctbl.h
rbf.h, reg68k.h
scfdesc.h, scfstat.h
srvcb.h, svctbl.h

(dbg_mod.h)

(make template files)

spf_oob.h
spf.h

/LIB/DESC

cnst.c
desc.tpl
os9.c
stat.c

/EXAMPLES

/MAKETMPL

/SPF

/MAKETMPL

/MWOS

/SRC

/DEFS /DPIO

/SPF

OS-9 Network Programming Reference 24

25

3 I/O APIs

This chapter discusses the functions and structures available in ITEM and os_lib.l.

For information about... Go to this page...
ITEM Library Interface .. 26
Creating Your Own Library Call Extensions.. 43

Chapter 3: I/O APIs

OS-9 Network Programming Reference 26

ITEM Library Interface
This section provides an overview of ITEM (Integrated Telecommunications
Environment for Multimedia), describes the ITEM library, and discusses each
component of the item.h file in the order listed in that file.

Overview

The ITEM library provides the application with a network-independent application
programming interface. Since an application can use generic call control library
calls to communicate with the SoftStax I/O system, it does not need to know the
type of network being used. This is important if application portability is a
requirement. You can use ITEM to communicate with, and over, connection-
oriented or connectionless networks.

ITEM also provides calls specific to the digital television environment. These calls
include operations for channel management and MPEG program control and can be
found in the Microware Digital Broadcast Environment (DBE) Communications
Pak. Extensions to ITEM are also available in other SoftStax Communication Paks.

Most standard networking APIs expose too many network details and are far more
complex than they need to be. Application programmers do not see programming
to a network interface API as a fun exercise, but as a necessary evil. ITEM allows
the programmer to write applications with just a few calls, but also has the
flexibility to allow more detailed API access if needed.

Unlike most network APIs, ITEM uses a paradigm with which everyone is familiar:
the telephone. As a result, the API is very intuitive. Call indicator applications
connect, register for far-end hang-up, interact, and then disconnect. Call receiver
applications register to be notified on incoming calls. Once notified, the call can be
screened, answered, registered for far-end hang-up, interacted with, and then
disconnected from.

ITEM Philosophy

Before going through the ITEM library, it is important to understand the
philosophy behind this API.

The goal of ITEM is to provide a network independent and operating system
independent API. If these two things are the goal of the API, then ITEM must
abstract issues that could potentially be network or operating system specific.

Network Independence

In order to provide network independence, the API must abstract the connection
management, addressing, and the network device and protocol stack.

Operating System Independence

In order to provide operating system independence, the asynchronous notifications
(signals, semaphores) must be abstracted.

Chapter 3: I/O APIs

OS-9 Network Programming Reference 27

Connection-oriented and Connectionless Networks

Before data can be sent and received by the two network endpoints, the network
must perform call control to create a connection between those endpoints. Once
this connection is established, data follows the same route to and from those
endpoints. As a result, once the end-to-end connection is set up, the round-trip
delay is known. This is a connection-oriented network similar to the standard
telephone system.

A connectionless network does not perform call control procedures for sending data
between endpoints. An end-point wraps the data with the source and destination
address of the packet and sends it to the network. In turn, the network keeps
sending the packet along until it reaches its destination.

Round-trip delay is an important characteristic of a connectionless network.
Caused by packets traveling between the same source and destination endpoints,
but using completely different routes, connectionless networks have an
unpredictable round-trip delay. The internet and Internet Protocol (IP) networks are
examples of connectionless networks.

ITEM Definitions Files

The item.h file in the MWOS/SRC/DEFS/SPF directory that contains the core
functionality applications must have to use the ITEM interface. This file contains all
structures, macros, and function prototypes for device control, path control, and
connection control over the network.

Interactive Multimedia Channel Management

The ITEM API also provides channel management and MPEG program control
calls for the digital TV industry. These calls can be found in The Microware Digital
Broadcast Environment (DBE) Pak available for use with SoftStax.

item.h Structures

The item.h file contains two core support structures and one substructure:

• device_type (contains the substructure addr_type)
The device_type structure provides a network device abstraction for the
application, enabling the application to deal with all network devices
identically, regardless of the network device specifics.

• notify_type
The notify_type structure enables the application to customize the method by
which it should be notified when specific network events occur. This allows for
operating system independence.

The following pages show the declarations for these structures.

Chapter 3: I/O APIs

OS-9 Network Programming Reference 28

device_type

The device_type structure contains general information about the network type,
the current call state of the device, our-end and far-end address information, and a
display array.

As described in Chapter 4, The SoftStax Device Descriptor, the device descriptor
provides initial values for the path as it opens the device. An application that is
unaware of the type of network it is running on is not required to know anything
about the network device. It only needs to know the name of the device descriptor
so it can open the path.

The application may assume that the device descriptor it used to open the path has
all the right values for connecting to the far-end. Smarter applications enabling the
user to set new addresses use the device type mechanism to allow unique addressing
and call state information regardless of the network specifics.

Declaration

The device_type structure is declared in the file SPF/item.h as follows:

typedef struct device_type {

u_int16 dev_mode;

u_char dev_netwk_in,dev_netwk_out;

#define ITE_NET_NONE 0x00

#define ITE_NET_CTL 0x01

#define ITE_NET_DATA 0x02

#define ITE_NET_MPEG2 0x03

#define ITE_NET_CHMGR 0x04

#define ITE_NET_OOB 0x05

#define ITE_NET_VIPDIR 0x06

#define ITE_NET_SESCTL 0x07

#define ITE_NET_X25 0x08

#define ITE_NET_ANY 0xFF

u_int16 dev_callstate;

#define ITE_CS_IDLE 0x0001

#define ITE_CS_INCALL 0x0002

#define ITE_CS_CONNEST 0x0004

#define ITE_CS_ACTIVE 0x0008

#define ITE_CS_CONNTERM 0x0010

#define ITE_CS_CONNLESS 0x0020

#define ITE_CS_SUSPEND 0x0040

The open call does not establish the connection. An ite_ctl_connect() must
be executed before the connection is established. For connectionless networks,
only an open call is needed to send and receive data through ITEM.

Chapter 3: I/O APIs

OS-9 Network Programming Reference 29

u_char dev_rcvr_state;

#define ITE_ASGN_RSVD0x00

#define ITE_ASGN_NONE0x01

#define ITE_ASGN_THEIRNUM0x02

#define ITE_ASGN_ANY0x03

#define ITE_ASGN_PROFILE0x04

u_char dev_rsv1;

u_int32 dev_rsv2

addr_type dev_ournum,dev_theirnum;

char dev_display[ITE_MAX_DISPLAYSIZE];

} device_type, *Device_type;

Fields

dev_mode

Characterize the mode of the device (for example, readable or writable). Legal
values are: FAM_READ, FAM_WRITE, and FAM_NONSHARE found in modes.h.

dev_netwk_in/dev_netwk_out

Allow for independent characterization of the input and output sides of the
network device. This enables an ITEM network device to behave differently,
with respect to data transmission and reception characteristics.

Typically, both transmit and receive sides are of the same class (as defined in
item.h). However, in asymmetrical networks (such as those used in some
interactive TV trials), the transmit side of the network device may be one type,
while the receive side is another. Legal values of these parameters do not
describe specific networks, but identify a generic category for the network
device.

Values for dev_netwk_in/dev_netwk_out are as follows:

Value Description
ITE_NET_CTL Control channel

A description of the network device in the interactive TV
environment. This device provides upstream data
transmission from set top box to server.

ITE_NET_DATA High-speed data device
Similar to ITE_NET_MPEG2, but having the ability to receive
high-speed data in formats other than MPEG-2.

ITE_NET_MPEG2 MPEG-2 Data channel network device
A network device receiving the high-speed MPEG-2 data and
delivering it to the transport demultiplexer chip or Stream
Control Block (SCB) buffers for display of the audio and video
data by the MPEG I/O system.

Chapter 3: I/O APIs

OS-9 Network Programming Reference 30

dev_callstate

Shows the current call state of the device.

The call state values are defined as bit fields. This allows applications to be
notified when one (of a group of call states) is reached.

For example, if a protocol driver allows notification when a specific call state
is reached, you would write code similar to the following:

notify_on_callstate(ITE_CS_ACTIVE|ITE_CS_CONNTERM)

<attempt to dial>

<wait for notification>

In this case, you are notified when your dial was answered and you are
connected. You are also notified if the call was unanswered and a timeout
occurred.

When notification is received, the application performs an
ite_ctl_connstat() to determine which state the connection is in since
notification was set up for ITE_CS_ACTIVE and ITE_CS_CONNTERM.

ITE_NET_CHMGR Channel management network device
This device is used only to receive channel entry information
from the network.

ITE_NET_OOB Signalling device
This network device is used primarily to perform signalling
with the network and to establish the end-to-end connections
requested. No end-to-end data is sent or received on this
device.

ITE_NET_VIPDIR Video Information Provider network device
Device used to only receive VIP directory information.

ITE_NET_SESCTL Session Control
Device responsible for performing session setup/termination,
and miscellaneous functions in the Interactive TV
environment.

ITE_NET_ANY All-purpose device
General all-purpose device providing some multiple of the
above network interfaces described by the above values.

Value Description
ITE_CS_IDLE No end-to-end connection

There is no valid end-to-end connection at this time and
none is attempting to be established.

ITE_CS_INCALL Incoming call
An incoming call has come in on this device.

ITE_CS_CONNEST Connection setup in progress
The device is in the process of setting up a connection.

Value Description (Continued)

Chapter 3: I/O APIs

OS-9 Network Programming Reference 31

dev_rcvr_state

Present unique challenges within the operating system. For instance, network
devices can initiate I/O by receiving a far-end connection request. Because any
endpoint on the network has the ability to initiate a connection, you must deal
with this type of asynchronous behavior. The dev_rcvr_state indicates
whether anyone is registered to receive notification for an incoming call on
this network device.

When the ite_ctl_rcvrasgn() API call is executed, SoftStax logs the
assignment type in this field.

dev_rsv1

Reserved for future use.

ITE_CS_ACTIVE Active connection
The device has an active connection.

ITE_CS_CONNTERM Connection termination in process
The device is terminating a connection.

ITE_CS_CONNLESS Connectionless device
The device is connectionless. Therefore, no call control is
needed to send and receive messages over this network
device.

ITE_CS_SUSPEND Call Suspended
Call has been suspended (put on hold).

Value Description
ITE_ASGN_NONE No assignment

If an incoming call comes in on this device, it is ignored
because nobody has registered to receive notification of
the incoming call.

ITE_ASGN_THEIRNUM Assign their number
This device listens for an incoming call request, but only
notifies the path registered if the incoming call address
information matches the dev_theirnum address
information in the device_type structure. This is similar to
providing a call screening mechanism for an application.

ITE_ASGN_ANY Any address
The registered path receives notification of any incoming
call regardless of the calling address.

ITE_ASGN_PROFILE Assign on matching profile
The registered path receives notification of all incoming
calls that match the profile setting for the path. Refer to
the section, in the SoftStax Porting Guide, Out-Of-Band
Considerations With ITEM for more information.

Value Description (Continued)

Chapter 3: I/O APIs

OS-9 Network Programming Reference 32

dev_rsv2

Reserved for future use.

dev_ournum/dev_theirnum

Contain address information for our-end and far-end. This address
information is contained in the addr_type structure within item.h. The
addr_type structure contains generic information about the address, as well
as a character string containing the address.

dev_display

This is the location at which protocols typically store display information
such as caller ID when making connections. The application can retrieve this
via the ite_ctl_connstat() ITEM call, then display the information.

Chapter 3: I/O APIs

OS-9 Network Programming Reference 33

addr_type

Declaration

The addr_type substructure is declared in the file SPF/item.h as follows:

typedef struct addr_type {

u_char addr_class;

#define ITE_ADCL_NONE 0x00

#define ITE_ADCL_UNKNOWN 0x01

#define ITE_ADCL_E164 0x02

#define ITE_ADCL_INET 0x03

#define ITE_ADCL_RSV1 0x04

#define ITE_ADCL_X25 0x05

#define ITE_ADCL_ATM_ENDSYSTEM 0x06

#define ITE_ADCL_LPBK 0x07

#define ITE_ADCL_NSAP 0x08

#define ITE_ADCL_DTE 0x09

#define ITE_ADCL_DCE 0x0A

#define ITE_ADCL_LAPD 0x0B

u_char addr_subclass;

#define ITE_ADSUB_NONE 0x00

#define ITE_ADSUB_UNKNOWN 0x01

#define ITE_ADSUB_VC 0x02

#define ITE_ADSUB_PVC 0x03

#define ITE_ADSUB_LUN 0x04

#define ITE_ADSUB_SLINK 0x05

#define ITE_ADSUB_MLINK 0x06

u_char addr_rsv1;

u_char addr_size;

char addr[32];

} addr_type, *Addr_type;

Chapter 3: I/O APIs

OS-9 Network Programming Reference 34

Fields

addr_class

Defined as shown in item.h (in MWOS/SRC/DEFS/SPF).

The address class does not imply the protocol used to make the connection.
For example, an address class of E.164 does not imply the ISDN Q.931
protocol will be used for the signalling, even though Q.931 does use E.164
addressing. Standard telecommunication also uses E.164, as do many other
protocols. The format for the E.164 addr_class is: (xxx)yyy-zzzz, where xxx is
the area code, yyy is the local code, and zzzz is the number for the specific end
point.

addr_subclass

Indicate that a particular address class may contain sub-classes.

Value Description
ITE_ADCL_NONE No addressing.
ITE_ADCL_UNKNOWN Unknown address class.
ITE_ADCL_E164 E.164 address specification.
ITE_ADCL_INET Standard Internet (sockaddr structure) addressing.
ITE_ADCL_RSV1 Reserved for future use.
ITE_ADCL_ATM_ENDSYSTEM Asynchronous Transfer Mode (ATM) addressing.
ITE_ADCL_LPBK Loopback addressing using logical units.
ITE_ADCL_NSAP Network Service Access Point Addressing. This is a

unique 20 byte value used for session control
addressing in the interactive TV environment.

ITE_ADCL_DTE Data Terminal Equipment address (LAP-B control
byte).

ITE_ADCL_DCE Data Communications Equipment address (LAP-B
control byte).

ITE_ADCL_LAPD Terminal Endpoint (TEI), Service Access Point (SAPI)
2 octet pair.

Value Description
ITE_ADSUB_NONE No subclass address.
ITE_ADSUB_UNKNOWN Unknown subclass.
ITE_ADSUB_VC Virtual circuit.
ITE_ADSUB_PVC Permanent virtual circuit.
ITE_ADSUB_LUN Sub-address is based on the logical unit number (based

on the sploop driver).
ITE_ADSUB_SLINK Single-link address (point-to-point).
ITE_ADSUB_MLINK Multi-link address (point-to-multipoint).

Chapter 3: I/O APIs

OS-9 Network Programming Reference 35

addr_rsv1

Reserved for future use.

addr_size

Contain the number of valid bytes in the addr[] array.

addr[32]

Contains the specific address value. The application can set and read this
array. The addr[] field should be interpreted based on the address class and
sub-class as described in the addr_class and addr_subclass fields.

For example, the string 2267786 translates into the following bytes in the
addr[] array: addr[0x32/0x32/0x36/0x37/0x37/0x38/0x36]

If the address class is labelled as ITE_ADCL_E164, this address is interpreted as
an E.164 address or 226-7786. If the class is UDP/IP, it is interpreted as a
sockaddr structure, address family 0x3232, port address 0x3637, IP address
0x37.0x38.0x36.0x00.

Chapter 3: I/O APIs

OS-9 Network Programming Reference 36

notify_type

The notify_type structure provides an abstraction for notification of all network
asynchronous events. OS-9 provides various ways to notify applications of
asynchronous events, including sending a signal, setting events, or callbacks.

The notify_type structure enables the application to customize how it is notified of
asynchronous events. When the application uses asynchronous calls, a pointer to
the notify_type structure is passed as one of the parameters so SoftStax knows to
send the correct notification information to the application, as well as to use the
correct method when sending the notification. Also, when applications allocate and
send the notify_type structure as a parameter of the asynchronous function call,
SoftStax copies the contents of the structure passed and keeps its own copy of the
structure in the path storage area.

Declaration

The notify_type structure is declared in the file SPF/item.h as follows:

typedef struct notify_type

{

struct notify_type *ntfy_next;

u_char ntfy_class;

u_char ntfy_on;

u_char ntfy_rsv1;

u_char ntfy_ctl_type;

void *ntfy_ctl;

u_int32 ntfy_timeout;

u_int32 ntfy_rsv[2];

union

{

struct

{

u_int32 proc_id;

u_int32 sig2send;

} sig;

struct

{

u_int32 ev_id;

int32 ev_val;

} ev;

struct

Chapter 3: I/O APIs

OS-9 Network Programming Reference 37

{

u_int32 ev_id;

int32 ev_inc_val;

} inc_ev;

struct

{

u_int32 mmbox_handle;

error_code (*callback_func)();

} mmbox;

struct

{

void *callbk_param;

error_code (*callback_func)();

} callbk;

} notify;

} notify_type, *Notify_type;

Initializing notify_type Structure Fields

Macros are defined in item.h to easily fill out notify_type structures. For example,
if you want to be notified of an incoming call, allocate a notify_type structure
using the ITEM_SIGNAL_NOTIFY() macro to acquire signal number 1000 and a
timeout value of 500 ticks, when SoftStax detects an incoming call.

notify_type incall_npb;

NPB_INIT_SIG (incall_npb, 500, 1000);

At this point use the ite_ctl_rcvrasgn() call, which passes a pointer to the
notify_type structure you built.

If you change any of the parameters in your notify_type structure after the receiver
assignment call is made (such as putting a 2000 in the sig2send parameter), the
change does not affect the copy stored by SoftStax. You still get signal 1000 sent to
you when SoftStax detects an incoming call.

SoftStax copies the information into a local notify_type structure in the path
descriptor structure.

Chapter 3: I/O APIs

OS-9 Network Programming Reference 38

Fields

ntfy_next

Enable SoftStax to chain notifications. This should always be set to NULL,
which is handled automatically by the NPB_INIT_xxx macros.

ntfy_class

Identify the type of notification you want to receive. This field is set to
ITE_NCL_SIGNAL by the NPB_INIT_SIG macro, and to ITE_NCL_EVENT by the
NPB_INIT_EV macro.

ntfy_on

Identify the trigger event telling SoftStax on which asynchronous event you
want to be notified. You may be familiar with some of these events, while
others are new because of unique network environments.

Value Description
ITE_NCL_BLOCK Block waiting for notification.
ITE_NCL_SIGNAL Send a signal.
ITE_NCL_EVENT Set an event.
The following field values are reserved and not implemented:
ITE_NCL_MMBOX Send a MAUI mailbox message.
ITE_NCL_CALLBACK Call a callback function.
ITE_NCL_SIGINC Send incrementing signals.
ITE_NCL_EVENTINC Send incrementing events.

Value Description
ITE_ON_LINKDOWN Notifies the caller if the end-to-end link goes down. If

communication fails at any layer of the protocol stack, a link-
down notification is sent.

ITE_ON_INCALL Notifies the caller of an incoming call. Only the network
layer protocol driver implements this notification based on
the dev_rcvrstate field description.

ITE_ON_CONN Notifies the caller when an outgoing call connection is
established and active.

ITE_ON_DATAVAIL Notifies the caller when incoming data is received and
available to be read (send a signal on data ready).

ITE_ON_ENDPGM Notifies the application when a specific MPEG-2 program is
being viewed. This is an MPEG-2 specific call.

ITE_ON_FEHANGUP Notifies the application if the far-end initiates a hang-up.
ITE_ON_DNLDONE Notifies the initiator after the client-side application is

downloaded. An interactive TV-specific notification.
ITE_ON_MSGCONF Notifies application that the confirmed message was

successfully received by the far-end.

Chapter 3: I/O APIs

OS-9 Network Programming Reference 39

ntfy_rsv1

Reserved for future use.

ntfy_ctl_type

Imply the structure of the ntfy_ctl pointer.

void *ntfy_ctl

Indicate some notifications may need to have special parameters passed to the
driver to implement a specific or protocol-defined notification. In this case, a
structure is created so the application and protocol driver can agree on the
parameters. Next, a notify type value is assigned to indicate the parameter
being passed in ntfy_ctl() is a pointer to a specific structure.

Example Using ntfy_ctl

Suppose James wants to be notified if Mark, Staci, Darrin, or Mike calls. James
needs a protocol driver supporting this notification. Follow the procedure listed
below to create such a driver:

Step 1. Create a structure that both James and the protocol driver acknowledge.

typedef struct ntfy_names

{

char *namelist[4];

u_int32 namelist_count;

char caller[8];

} ntfy_names, *Ntfy_names;

Step 2. Define a ntfy_ctl_type value (user-defined values are 0xA0 through 0xFE).

#define NTYPE_NAMES 0xA0

Step 3. Point the namelist pointer to the string names of Mark, Staci, Darrin, and Mike in
the namelist string array.

Step 4. Place a 4 in the namelist_count field.

Step 5. Place the pointer to the ntfy_names structure in the ntfy_ctl field of the notify
parameter block.

Step 6. Fill ntfy_ctl_type with NTYPE_NAMES.

Step 7. Execute the protocol-specific notification by the application.

ITE_ON_RESADD Notifies application when requested resources have been
added. This call is used in the interactive TV environment for
session control.

ITE_ON_LINKUP Notifies the caller if the link comes back up after being
down.

ITE_ON_FCTLON Not used.
ITE_ON_FCTLOFF Not used.

Value Description (Continued)

Chapter 3: I/O APIs

OS-9 Network Programming Reference 40

If the protocol driver has the notification implemented properly, James receives
notification and is able to look in the caller field of the ntfy_names structure and
find out who just called him.

ntfy_timeout

Handle time-outs (in seconds) for notification requests. For example, if you
make a phone call, you usually let the phone ring a set number of times before
you decide no one is home and hang-up. The timeout parameter sets a limit on
the amount of time to wait for the notification trigger to occur. If the timeout
value is 0, you wait indefinately or until the trigger event occurs.

ntfy_rsv

Reserved for future use.

Notify union

Depending on the value in the ntfy_class field of the notify_type structure,
the application selects one of the following unions (sig or ev) to respond to a
notification.

sig

Of type union and depends on the notification class. The structure for this
signal provides the process ID and signal to send. The proc_id field is
automatically specified by SoftStax, so the application only needs to set the
value in the sig2send field. The sig2send field is filled automatically by the
ITEM_SIGNAL_NOTIFY() macro.

proc_id

The process identifier for the application. Typically, the application does not
know the process IDs, so SoftStax sets this field for the application.

sig2send

Indicate the signal number to send. Microware reserves signal codes up to
255, so this number should be greater than 255.

ev

Of type union and allows applications to have events set for notification. The
application is expected to create the event, and specify the event ID and event
value fields. The ev structure is automatically filled out by the
ITEM_EVENT_NOTIFY() macro.

ev_id

The event identifier. This value is returned as a result of an _os_ev_creat()
call.

ev_val

The event value set when the asynchronous trigger event occurs.

Chapter 3: I/O APIs

OS-9 Network Programming Reference 41

inc_ev

Of type union and allows applications to set incrementing events for
notification.

ev_id

The event identifier. This value is returned as a result of an _os_ev_creat()
call.

ev_inc_val

Event value is incremented by this amount each time the notification is
triggered.

mmbox

Not currently implemented.

mmbox_handle

Not currently implemented.

callback_func

Not currently implemented.

callbk

Of type union and allows applications and drivers to be notified via a callback
function.

callbk_param

Point to a parameter to pass to the callback function.

callback_func

Points to the function to call.

The Ultra C manuals contain a thorough explanation of events and how to
use them. Contact your Microware sales representative for information on
how you can obtain these manuals.

Chapter 3: I/O APIs

OS-9 Network Programming Reference 42

ite_cctl_pb

This structure is the call control parameter block. It is used to support out-of-band
signalling through ITEM. Within ITEM, the notify_type structure supports
standard connectivity functions like ite_ctl_connect(), ite_ctl_disconnect(),
and the ite_ctl_answer(). When creating the notify type structure, the
ntfy_ctl_type must be set to NTYPE_SESSCTL and the ite_cctl_pb must be allocated
with the ntfy_ctl pointer pointing at it. This enables end-to-end user data to be
passed between the caller and receiver during the signalling procedures allowed by
many protocols. If none of these special parameters are needed, the ntfy_ctl field
can be set to NULL and not used.

Declaration

The ite_cctl_pb structure is declared in the file SPF/item.h as follows:

typedef struct ite_cctl_pb {

void *ib_reslist;

u_int16 response,

reason,

rsv1,

usr_data_cnt;

void *usr_data;

} ite_cctl_pb, *Ite_cctl_pb;

Fields

ib_reslist

When using out-of-band signalling protocols, the resulting in-band resources
allocated (as a result of the connection) is returned in this field when the
ite_ctl_answer() call is executed.

response/reason

Contain network-specific information about the result of the request. For
example, as defined by your network, you can send ite_ctl_answer and
instruct SoftStax to send a ConnectFailure response by reason of
LocalNodeBusy. Likewise with ite_ctl_answer(), codes can be returned to
indicate success or failure of the operation. These codes are network-
dependent and are defined in communication packs that support these fields.

rsv1

Reserved for future use.

usr_data_cnt/usr_data

Send data opaquely through the network to the endpoint you are attempting
to signal. For instance, during the ite_ctl_connect() call, you can pass
“Hello Mike” as user data to the endpoint at which you want to connect. User
data sent from a remote site is placed on your path’s receive queue and could
be read if you performed an ite_data_read() call on your path.

Chapter 3: I/O APIs

OS-9 Network Programming Reference 43

Creating Your Own Library Call Extensions
os_lib.l is the standard operating system library provided with OS-9 to access all
file managers, including SPF. These file managers all use _os_lib.l calls to access
SPF and the drivers below it.

You can also create your own extensions to the API libraries. For example, to create
a protocol driver with special functions that applications need to access, do the
following:

Step 1. Use the _os_setstat() and _os_getstat() calls provided in _os_lib.l and the
spf_ss_pb structure in spf.h.

The _os_setstat() and _os_getstat() calls require the following parameters:

Path ID

contains the path ID returned when you open the device with the _os_open()
or ite_path_open() call.

Code

must always contain the code SS_SPF. The application uses this code to
communicate with SPF.

Parameter block

contains the address to the parameter block structure required by the driver.
The following section explains how to create and use the parameter block.
SPF assumes the parameter block has the structure of spf_ss_pb as defined in
the spf.h file.

Step 2. Add the SoftStax driver base code or protocol ID to the port_ids.h definitions file.

Chapter 3: I/O APIs

OS-9 Network Programming Reference 44

spf_ss_pb

Declaration

The spf_ss_pb structure is declared in the file SPF/spf.h as follows:

typedef struct spf_ss_pb {

u_int32 code,

size;

void *param;

u_int8 updir;

#define SPB_GOINGUP 1

#define SPB_GOINGDWN 0

u_int8 rsv[3];

} spf_ss_pb, *Spf_ss_pb;

Fields

code

The value of your special getstat or setstat code as outlined below.

size

The size in bytes of what the param field points to (if needed).

param

A pointer to an application buffer or structure.

updir

Always set to SPB_GOINGDWN.

rsvis

Reserved for future use.

Chapter 3: I/O APIs

OS-9 Network Programming Reference 45

Using the Parameter Block in Setstat/Getstat Calls

The best way to illustrate how to use the parameter block is by example. Suppose
you wrote a hardware driver controlling the interface chips for the network. This
chip has a special feature that generates Dual Tone Multi-Frequency (DTMF) tones.
You want to include this feature in your hardware driver, but the libraries you are
using do not contain generic calls.

The steps to create a generic call are listed below:

Step 1. Create a library called dtmflib.l.
It must contain one call that you create called dtmf_send(). The parameters passed
are the path identifier and the DTMF tone number
{0-9,#,*}. Your function prototype might look like this:

dtmf_send(path_id path, u_char tone_val);

The goal is to organize the information passed into the call into the SPF parameter
block and use the _os_setstat() call to send it to your driver.

Step 2. Assign a protocol type value for your hardware driver. The spf.h file (see the
MWOS/SRC/DEFS/(SPF_PR_xxx) directory) has a listing of the values supported by
Microware, as well a list of values to be released with the next release of the
SoftStax. There is also a file (prot_ids.h in the MWOS/SRC/DEFS/SPF directory) used
specifically by users to register their protocol and hardware drivers.

The spf.h file specifies that user-defined protocol IDs range from 0x0900 through
0xFFFF. Locate a free value and place it in prot_ids.h. For example:

#define SPF_PR_MYDRVR 0x0900

Step 3. Create a file (call it mydrvr.h) applications can include (just as item.h is included in
MWOS/SRC/DEFS/SPF) to access the special features of your driver.

Step 4. Define the base value for your driver-specific setstats and getstats:

#define SS_MYDRVR_BASE(SPF_PR_MYDRVR << 16)

The above statement means any time your protocol driver gets a code with
SPF_PR_MYDRVR in the high-order word of the code, this setstat/getstat is intended to
be serviced by your driver.

Step 5. Add your setstats:

#define SS_DTMF_SEND SS_MYDRVR_BASE + 0x01

/* You might want to later allow for turning*/

/* DTMF on/off */

#define SS_DTMF_ON SS_MYDRVR_BASE + 0x02

#define SS_DTMF_OFF SS_MYDRVR_BASE + 0x03

and so on...

Step 6. Establish the conventions for the parameter block getting passed. This tells your
driver where to find the variables within the parameter block. For the dtmf_send()
call, place SS_DTMF_SEND in the spf_ss_pb.code field.

Chapter 3: I/O APIs

OS-9 Network Programming Reference 46

Step 7. Place the tone number in the spf_ss_pb.param field. The code might look something
like the following:

error_code dtmf_send(path_id path, char tone_val)

{

 spf_ss_pb spb;

 /*

Step 8. Integrity check the parameters passed in. In this example, the only legal values for
tone_val are 0-9 and # and *. Check it here and return an illegal argument error if
the parameter is not valid.

*/

 spb.code = SS_DTMF_SEND;

 spb.param = (void *)tone_val;

 spb.updir = SPB_GOINGDWN;

 return(_os_setstat(path, SS_SPF, &spb);

}

Step 9. Enter your updir value.

This example does not explain the updir field in the spf_ss_pb. Updir indicates the
direction of the SetStat or GetStat. If updir = 1 (or SPB_GOINGUP as defined in
spf.h), the driver below is passing up a SetStat request. If updir is 0 (or
SPB_GOINGDOWN as defined in spf.h), the requester is above you in the stack.
Therefore, the updir value tells the protocol driver processing the request to send
the results of the operation either up or down the stack. Libraries always set this
parameter to SPB_GOINGDWN.

Chapter 3: I/O APIs

OS-9 Network Programming Reference 47

Figure 3-1. Effect of updir Field Value

In this case, the fields provided in the spf_ss_pb are sufficient to hold all variables
passed. However, if you have multiple parameters to pass, it is preferred that you
define your own parameter block. The first structure in the parameter block must
be the spf_ss_pb (as defined in spf.h). This is because SPF processes all subcodes (a
subcode is the value you place in the spb.code field of the parameter block)
expecting the spf_ss_pb.

Application
dtmf_send (path’8')

DTMFlib.l

SPF

not serviced

not serviced

Driver entry points

Protocol drivers

updir= SPB_GOINGDOWN

Stack

Hardware driver: identifies
the high word in the code as
its setstat and sends DTMF a

tone for ‘8’ .

Chapter 3: I/O APIs

OS-9 Network Programming Reference 48

49

4 The SoftStax Device
Descriptor

This chapter looks at device descriptors and SoftStax drivers.

For information about... Go to this page...
Descriptors .. 50
The SoftStax Driver ... 55

Chapter 4: The SoftStax Device Descriptor

OS-9 Network Programming Reference 50

Descriptors
The device descriptor provides the following:

• default information that SoftStax requires in order to open a path on for an
application

• all of the information required to initialize the network device

• default values for the path descriptor structure

• default initial values for the logical unit of the driver

To create or modify the device descriptor, change the parameters located in the
spf_desc.h file.

The spf_desc.h file can be found in one of two places, depending on the driver to
which it belongs. A hardware device descriptor is found in the PORTS directory
containing the makefiles used to make the driver and descriptor. For example, you
can find an example spf_desc.h file in:

MWOS/OS9000/ARMV4/PORTS/SIDEARM/SPF/SPE509/DEFS

If it is a protocol driver, the spf_desc.h file is found in the DEFS directory in the
source directory of the protocol driver. For example, the spf_desc.h file for spproto
is found in:

MWOS/SRC/DPIO/SPF/DRVR/SPPROTO/DEFS

Internals

The example spf_desc.h file in this section belongs to the SPPROTO driver.
Display this .h file on your workstation.

The first thing to notice is the spf_desc.h file includes item.h. This is because the
item.h file contains many of the macros needed to initialize the item structures in
the path descriptor.

You also see that each logical section within this file begins with #ifdef
<descriptor name>. This is because this single file creates all device descriptors for a
given SoftStax driver. The makefile templates to make these descriptors are set up to
include the section of the spf_desc.h file ifdefed with the intended name of the
descriptor.

Example: Create the Proto2 Device Descriptor

To create a device descriptor named proto2, cut and paste a section between the
#ifdef and #endif of the spf_desc.h file and change the #ifdef to #ifdef proto2.
When you make the proto2 device descriptor, the only section of the spf_desc.h file
used during this compile is contained in the #ifdef proto2 section.

Look at the values within one of these sections. For this example, you can look at
the #ifdef proto section in the spf_desc.h file for SPPROTO. It is located in:

/MWOS/SRC/DPIO/SPF/DRVR/SPPROTO/DEFS

Chapter 4: The SoftStax Device Descriptor

OS-9 Network Programming Reference 51

The first macro to define is PORTADDR. Since protocol drivers usually do not have a
hardware port address, set this to 0. For hardware drivers, this is the port address of
the hardware.

The next macro is LUN (logical unit number). A logical unit is storage allocated to a
driver containing specific information for a given hardware port.

For example, assume you have a circuit board with four serial controllers on it, but
only one common interrupt register. Make descriptors /sp0 through /sp3 for each
of the ports. Each descriptor has the same base port address value because of the
common interrupt service routine registers. The driver static would probably
contain fields relating to this interrupt logic. However, you cannot store variables
specific to a given port in the driver static or another port; this may overwrite the
data stored for a different port. This area, then, is where you can use the logical unit
number field.

Set the logical unit number as follows:

Example: Using Logical Unit Number

if the LUN is different, OS-9 allocates unique logical unit storage for each descriptor.
Therefore, variables common to all ports are stored in the driver static storage area,
and variables specific to a port are stored in the logical unit static.

For hardware drivers, a given port is usually a uniform offset away from its
previous and next ports. For example, if a base address of the circuit board
described above is at 0xA0000, then each of the four serial ports is located at
0xA0010, 0xA0020, 0xA0030, and 0xA0040 respectively. The port address for the
circuit board would be 0xA0000. For convenience, specify the LUNs for /sp0
through /sp3 as 0x10, 0x20, 0x30, and 0x40.

The logical unit might contain a pointer to the register map structure representation
of one instance of the serial port. When the receive interrupt service routine occurs,
the base port address interrogates the interrupt-reason registers to find out which of
the four ports generated the interrupt. Once this is known, the LUN for the
interrupting port is added to the base port address and this address is used to access
the registers of the channel generating the interrupt.

In this example for proto, LUN is set to 0x7F.

Table 4-1. Logical Unit Number

Description LUN
/sp0 0

/sp1 1

/sp2 2

/sp3 3

For more information on logical units see the Logical Units section in the
SoftStax Porting Guide.

Chapter 4: The SoftStax Device Descriptor

OS-9 Network Programming Reference 52

Following along in the spf_desc.h file:

MODE

sets the device mode. Most modes are set for read and write capability as
shown in the macros from MWOS/<os>/SRC/DEFS/modes.h.

ASYNCFLAG

initializes the pd_ioasync variable in the path options. SPF uses a variable to
determine whether or not to block. If the IO_READ_ASYNC bit is set in the
pd_ioasync field, the read side of path is in asynchronous mode. When a read
occurs on the path and no data is available, SPF returns an EWOULDBLOCK error
instead of doing an _os_sleep() in the file manager. The reading and writing
data paths can be independently controlled by only setting either the
IO_WRITE_ASYNC bit or IO_READ_ASYNC bits. If the IO_WRITE_ASYNC is not set,
SPF blocks if the application does a write and no mbufs are available. If set,
the application returns an EOS_NOBUFS error instead of blocking the write.

PKTFLAG

initiates the pd_iopacket variable in the path options. This variable is a bit
field used by SPF to determine packet-oriented operation for the path. Setting
this field to 0 (IO_CHAR) causes normal character-oriented operation (for
example, the requested number of bytes to read is returned regardless of
packet boundaries).

• If the IO_DGRAM_TOSS bit is set in this field and the reader only reads a
portion of the current packet, the rest of the packet is tossed
(UDP Datagram operation).

• If IO_NEXPKT_ONLY is set and the requested read size is larger, SPF returns
only the contents of the next packet.

• If IO_PACKET is set and the requested read size is larger, SPF returns all
available mbuf packet chains. If there is no data available at the time of
the read call, SPF will block one time to wait for incoming data. For
example, the read queue has four packets of ten bytes. The user is
requesting 80.

For IO_CHAR, 40 bytes is read and the application blocks for a timeout period
specified by BLOCKTIME. If ASYNCFLAG is set, SPF returns 40 bytes and
an EWOULDBLOCK error.

• For IO_PACKET, SPF returns 40 bytes without blocking.

• For IO_NEXPKT_ONLY, SPF returns ten bytes.

The next example shows the same four packets of ten bytes; the application
performs a read of five bytes and IO_DGRAM_TOSS is set:

SPF returns five bytes, and the next five bytes in the packet would be thrown
away. The resulting queue would have three packets of ten bytes.

Chapter 4: The SoftStax Device Descriptor

OS-9 Network Programming Reference 53

BLOCKTIME

initiates the pd_iotime variable in the path options. This indicates how long to
block in the read() operation if no data is available. The BLOCKTIME should be
set to the number of ticks to wait for incoming data. If the read() operation
times out before being fulfilled, SPF returns the number of bytes read along
with the buffer the bytes were read into. In this case, the error code ETIMEDOUT
is returned.

READSZ

is used for flow control. If the READSZ macro is defined as 0, SPF does not
perform receive-buffer flow control. It will not attempt to prevent receive
packets from coming in during an overflow condition.

If READSZ is not 0, and the number of bytes waiting to be read equals the
READSZ value, SPF issues an SPF_SS_FLOWON setstat to the drivers. In turn, a
driver implementing a flow control mechanism tells its peer to stop sending
data until the application reads the data below the READSZ threshold. When
the application reads the data below the threshold, SPF issues an
SPF_SS_FLOWOFF setstat to the drivers below. The driver implementing the flow
control mechanism (as above) tells its peer to continue transmitting.

WRITESZ

is used for flow control on the transmit queue of the driver. The hardware
driver must enforce this value.

The next group of parameters initializes the device_type structure ITEM uses for
the path.

PROTSTAK

allows the application to open a device name such as /proto. Within the
/proto descriptor, the PROTSTAK macro could be defined as /lapb/x25a. This
way, the application does not need to be aware of the protocol stack. It can
open a generic device name and have the stack configured within the device
descriptor. If the stack changes, the application object is untouched. You
change the PROTSTAK macro to the new stack and recompile the proto
descriptor.

DRV_NAME

is the driver name string. This is defined as SPPROTO for the /proto
descriptor.

This functionality only works if there is a device driver implementing flow
control in the stack.

Refer to the ITEM definitions in Chapter 3, I/O APIs for information on these
parameters.

It is important to remember if you open /proto and protstak =/a/b, the stack
being opened is actually /proto/a/b.

Chapter 4: The SoftStax Device Descriptor

OS-9 Network Programming Reference 54

TXSIZE

determines the Maximum Transmission Unit (MTU) for this driver. If a
protocol says the maximum amount of data to send in one packet is 100
bytes, this field should be set to 100.

TXOFFSET

tells SPF how many bytes to leave free at the beginning of the transmit packet
so the protocol has enough room for the header. For example, LAP-B uses two
bytes for a header, followed by the payload. In this case, LAP-B sets the
TXOFFSET macro to 2.

TXTRAILER

tells SPF how much room (in bytes) is needed for the encapsulation at the end
of a transmit packet. When SPF creates an mbuf for transmission, the size of
the mbuf will be the payload + TXOFFSET + TXTRAILER.

PATH_HOLDONCLOSE

allows the path to stay open even after the application has called close() to
allow the protocols to gracefully terminate.

PROTTYPE

sets to the defined protocol ID value in either spf.h or prot_ids.h.

Look at spf.h and find the place in the listing that says:

Device descriptor Macro definitions

This part of spf.h defines default values to the macros in spf_desc.h. Because
of this, you have the option to omit a macro from the spf_desc.h file if you
want its value to be set to the default value provided in spf.h.

The last line in the section is #include <SPPROTO/defs.h>.

Typically, the defs.h file within the driver source file contains the logical unit
specific structure and the initialized data for that structure. This is why it is
included here. However, if each descriptor has its own default setup for each
logical unit that depends on the descriptor (such as in the sp8530 driver), put
the macros for those variables into the spf_desc.h sections individually.

For example, assume you want the first port on your serial card to run at
4800 baud and the second to run at 9600 baud. Use a variable called
lu_baudrate in your logical unit specific structure. In the initialized data
section of the logical unit for defs.h, use a macro named BAUDRATE. Next, in
the section for /sp0 in spf_desc.h you could place #define BAUDRATE 4800. In
the #ifdef sp1 section of the spf_desc.h, put #define BAUDRATE 9600.

Refer to the SoftStax Porting Guide for detailed driver information. When
making descriptors, it is best to consult the driver documentation to see if the
PATH_HOLDONCLOSE macro should or should not be set.

Refer to the SoftStax Porting Guide for more information about the defs.h file.

Chapter 4: The SoftStax Device Descriptor

OS-9 Network Programming Reference 55

Review the source files for making the descriptor in SPF/DESC. The makefiles use
the spf_desc.h file to automatically make these source files. Reviewing the
makefiles, the DESC source files, and the spf_pdstat and spf_desc structures in
spf.h provides you with a more in-depth understanding of the structure of an
SoftStax device descriptor.

The SoftStax Driver
SoftStax drivers fall into one of two categories: protocol drivers or hardware
drivers. A hardware driver interfaces directly to hardware registers on some
network interface cards. The hardware driver is always on the bottom of the
protocol stack for a path.

The protocol driver does not usually interface directly to any hardware. Typically, it
is a state-machine implementation that processes incoming and outgoing data
according to a protocol specification. Some protocol drivers may interface with
hardware. For example, RSA® encryption protocol drivers may use an RSA
encryption chip to process the data instead of developing a software
implementation.

Driver Conventions

Driver Names

SoftStax driver names generally start with an sp or rt prefix. The sp denotes an
SoftStax driver. Examples in your package are spx25, splapb, and sp8530. The rt
prefix denotes a special MPEG-2 network device for interactive multimedia
systems.

Device Descriptor Names

Device descriptors for hardware drivers are typically spX, where X is a number. The
descriptors in the package for the sp8530 chip are labelled sp0, sp3, and sp4.
Device descriptors for MPEG drivers are typically labelled rtX where X is a number.
The Digital Broadcast Environment Pak includes a real-time driver named rt_drvr
and uses descriptor rt0.

Device descriptors for protocol drivers are slightly different. They are typically
labelled by just the suffix of the protocol driver they describe and a number or letter
suffix. This makes the protocol stacks easier to read.

For example, the descriptors for spx25 are labelled x25, x25a, and x25b. The a and b
suffixes are used on the x25 descriptor because the protocol ends in a number and it
makes the descriptor name a little easier to read. The descriptors for splapb are
labelled lapb, lapb0, lapb3, and lapb4. Because this protocol ends in a letter,
numbers are appended to the end of the protocol name.

Chapter 4: The SoftStax Device Descriptor

OS-9 Network Programming Reference 56

57

5 Advanced Programming
Topics

This chapter explains how SoftStax stacks protocols on a path, what options are
available to the application, and the purpose and internal details for the SoftStax
device descriptors and SoftStax device drivers.

For information about... Go to this page...
SPF Protocol Stacking ... 58

Chapter 5: Advanced Programming Topics

OS-9 Network Programming Reference 58

SPF Protocol Stacking
The SPF manager controls protocol stacks on paths by initializing the storage areas
of each driver. When a protocol stack is opened, the driver looks in its respective
storage area to find the upper and lower layer protocols and establishes
communication.

Creating a Protocol Stack on a Path

There are three methods used to create a protocol stack on a path:

• passing a protocol stack explicitly with an open call

• pushing and popping

• using the PROTSTAK field of the device descriptor (using spf_desc.h)

Passing a Protocol Stack with an Open Call

Create a protocol stack by passing in a protocol stack string in the open call. For
example, to open an X.25 connection over an sp8530 serial controller chip, your
open call might look like the following:

_os_open(“/sp0/lapb0/x25a”, mode, &path);

This causes SPF to perform the following:

1. Parse the device string by first opening the sp0 device associated with the 8530
hardware device driver.

2. Stack the LAP-B device driver on top of the sp0 device.

3. Stack the X.25 driver on top of the LAP-B device driver.

When the caller writes a packet, it is encapsulated with an X.25 header, then a LAP-
B header, and is passed to the 8530 chip. The 8530 chip appends the CRC and
transmits the packet.

You can also pass addressing information within the string. The “#” character is
used to delimit this. For instance, if you want the far end address X.25 dials to be
8888, you open the following name:

/sp0/lapb0/x25a#8888

This passes the addressing information to the X.25 driver.

Be careful with this method. Certain protocol drivers may not understand
addresses and therefore can not use the data behind the # character. Consult
the documentation for the driver you are using for details on whether it
implements the # delimiter.

Chapter 5: Advanced Programming Topics

OS-9 Network Programming Reference 59

Pushing and Popping

Use the ite_path_push() and ite_path_pop() calls to dynamically link and unlink
the SoftStax protocol stacks on the SPF path.

Instead of explicitly opening the stack in the previous example, we could create the
stack step-by-step if we used the following pseudo-code:

ite_path_open (“/sp0”, mode, &path, NULL);

/* first driver on the stack */

ite_path_push (path, “lapb0”);

/* Now two drivers stack on the path */

ite_path_push (path, “/x25a#8888”);

/* The stack is complete */

You can also push and pop protocols dynamically on an existing protocol stack.
Using the previous example, assume you have an open X.25 path to far-end 8888.
You are communicating with the far-end and now you must send credit card
information. You do not want to send this information in plain text format, so you
need some means of encrypting the data.

Now, assume you have an RSA protocol driver and descriptor labelled
/rsa1. Execute ite_path_push() to link the RSA protocol driver at the top of your
path’s protocol stack. At this point, you do an ite_data_write() of your credit card
information. The data being written is encrypted by the RSA driver, then passed
down the X.25 stack as before. When you are done sending the secure information,
perform an ite_path_pop(path) and the RSA protocol driver is unlinked from your
path. You are now back to the X.25 protocol stack on your path.

Push and Pop Details

This section describes some important items that are required when pushing and
popping protocols.

SoftStax allows the application to pop protocols off the stack until it reaches the
last (or bottom) driver on the stack. When the bottom of the stack has been
reached, subsequent attempts to pop the last driver on the stack causes SoftStax to
return an EOS_BTMSTK error. If popping causes an EOS_NOSTACK error, there are
probably no drivers associated with the path. This is checked and verified by
SoftStax during the pop() call. SoftStax also assumes the application knows what it
is doing when the stacks are being created on a path. Therefore, if the application
stacks the protocols incorrectly, SoftStax attempts to process the data as the
protocols were stacked. For example, opening a protocol stack such as
/proto/proto/proto is legal, although it is not recommended.

There are no checks in place to review a protocol stack for redundancies, or to
verify the stack for incorrectly stacked protocols.

Chapter 5: Advanced Programming Topics

OS-9 Network Programming Reference 60

Using the PROTSTAK Field

A third alternative is to use the PROTSTAK field in the spf_desc.h descriptor to
specify the protocol stack to use. This allows the application to open a device
according to its functions, without knowing about the protocol stack.

For example, an application might open a device descriptor called
/channel_mgr. Within this device descriptor, the PROTSTAK field in the spf_desc.h
used to make /channel_mgr might specify /sp0/lapb0/x25a. For another network,
the /channel_mgr device might have a stack of /sp0/Q2110/Q2931. This allows the
application to be completely portable.

Refer to Chapter 4, The SoftStax Device Descriptor for details about the
PROTSTAK field.

61

6 Testing Applications and Protocols
with SLOOP

This chapter examines setting up and using the SPLOOP driver for testing
applications.

For information about... Go to this page...
About SPLOOP ... 62
Using SPLOOP For Application Testing.. 63
Using SPLOOP For Protocol Testing .. 64

Chapter 6: Testing Applications and Protocols with SLOOP

OS-9 Network Programming Reference 62

About SPLOOP
The sploop driver enables protocol drivers and applications to be tested without
needing access to the network. The SPLOOP driver consists of one SoftStax driver
and 5 descriptors. The loopc0 and loopc1 descriptors are used to open connection
oriented paths to SPLOOP. Example 1 provided with SoftStax shows how these
descriptors are used. The loopcl5 and loopcl6 descriptors are used to open
connectionless paths to SPLOOP. The loop descriptor opens a direct loopback path
through SPLOOP. The number at the end of the descriptor indicates the Logical
Unit Number (LUN) the descriptor uses. Each SPLOOP descriptor can only be
opened once. Subsequent opens to the same decscriptor returns an EOS_DEVBSY
error. Since the ITEM API uses a telephone paradigm, you can think of the logical
unit number as the phone number for the SPLOOP descriptor.

The sploop driver uses the LUN as its ITEM addressing. If you look at the
spf_desc.h file in the SPLOOP directory, you see these five descriptors initialize their
ITEM addressing using ADCL_LPBK and ADSUB_LUN. The our_addr is the LUN of this
descriptor. For connectionless descriptors, the their_addr contains the LUN that
receives the data when the application or protocol sends data down the stack. For
connection oriented descriptors, the their_addr is the LUN that called if an
ite_ctl_connect() call is made. The their_addr is not used for the loop descriptor
since data goes down and comes up the same path.

The SPLOOP driver keeps an array of logical unit static pointers. Every time a path
is opened using an sploop descriptor, a pointer to the logical unit static is stored in
the array indexed by the LUN of the logical unit. For example, when loopc1 is
opened, the logical unit static created by opening loopc1 is stored in the [1] element
of the logical unit array in SPLOOP. Array elements zero through four contain
connection oriented logical units. Array elements five through ten contain
connectionless logical units. Thus you can only create five connection oriented
descriptors without changing the SPLOOP source code. You can create up to six
connectionless descriptors. Creating an SPLOOP descriptor with a LUN greater
than ten defaults that descriptor to being straight loopback.

The connectionless logical units can only communicate with another connectionless
logical unit specified by the their_addr of the logical unit. Connection oriented
paths can only call other connection oriented paths.

SoftStax sets these descriptors up so loopcl5 pairs with loopcl6 and loopc0 pairs
with loopc1.

Refer to Appendix A, Examples for more information about the examples.

Chapter 6: Testing Applications and Protocols with SLOOP

OS-9 Network Programming Reference 63

Connection Oriented vs Connectionless Descriptors

Paths opening connection oriented descriptors must perform call control to connect
to another connection oriented path using SPLOOP before they can read or write
data. Paths opening connectionless descriptors can immediately send and receive
data assuming there are open paths to both sides of a connectionless descriptor pair.

If an application is being developed for a connection oriented network, the
application client and server should use the loopc0/loopc1 pair for testing.
Applications being developed for connectionless networks should use the
loopcl5/loopcl6 pair. Applications being developed for both, should test with both
pairs.

Protocol driver testing always uses the loopcl5/loopcl6 pair.

Using SPLOOP For Application Testing
Figure 6-1 and Figure 6-2 show how client server applications use SPLOOP to test
on connectionless and connection oriented paths.

Figure 6-1. Typical Application Test Setup--Connection Oriented Environment

ite_path_open (“/loopc0”,)
ite_ctl_connect()
<read,write>
ite_ctl_disconnect(path)
ite_path_close()

ite_path_open (“/loopc1”)
ite_ctl_rcvrasgn()
<incoming call>
ite_ctl_answer()
ite_fehangup_asgn()
<write,read>
<far-end hangup>
ite_ctl_disconnect()
ite_path_close()

SPLOOP

ITEM
API Layer

LUN0
LUN1

Client
Application

Server
Application

ite_path_open (“/loopc0”,)
ite_ctl_connect()
<read,write>
ite_ctl_disconnect(path)
ite_path_close()

ite_path_open (“/loopc1”)
ite_ctl_rcvrasgn()
<incoming call>
ite_ctl_answer()
ite_fehangup_asgn()
<write,read>
<far-end hangup>
ite_ctl_disconnect()
ite_path_close()

SPLOOP

ITEM
API Layer

LUN0
LUN1

Client
Application

Server
Application

Chapter 6: Testing Applications and Protocols with SLOOP

OS-9 Network Programming Reference 64

Figure 6-2. Typical Application Test Setup--Connectionless Environment

The first example provides an example program that using connection-oriented
paths. You may wish to use this example as a starting point for easier development.

Using SPLOOP For Protocol Testing
Figure 6-3 shows how SPLOOP can be used to validate protocol drivers.

Step 1. Create the protocol driver. Depending on the services provided, you would also
create an application that fully exercises all the services and functionality of the
protocol driver.

Step 2. Create an emulator for the peer side of the protocol being tested.

Notice in the figure the test application opens the /loopcl5/proto_to_test stack.
The emulator simply opens the loopcl6 descriptor. When the test application
performs an ite_ctl_connect() for example, the protocol might generate some
kind of connect packet and send it down the stack to SPLOOP. The SPLOOP driver
would then send it up the loopcl6 path where the packet would be read, validated,
and responded to by the peer protocol emulator.

ite_path_open (“/loopcl5”,)
<read,write>
ite_path_close()

ite_path_open (“/loopcl6”)
<write,read>
ite_path_close()

SPLOOP

ITEM
API Layer

LUN5 LUN6

Client
Application

Server
Application

Chapter 6: Testing Applications and Protocols with SLOOP

OS-9 Network Programming Reference 65

Figure 6-3. Protocol Driver Test Setup

Figure 6-4 gives the test application a little more control over the emulator and test
environment. The setup assumes that there is another sploop descriptor pair called
loopcl7 and loopcl8. The test setup is identical to the previous one, but the pipe
between the test application and the emulator using the loopcl7-loopcl8 pipe is used
by the test application to control the emulator. This way, the test application can set
the emulator to respond incorrectly or not at all to validate protocol timeouts, error
conditions, and re-transmission.

Figure 6-4. Advanced Driver Test Setup

The SPLOOP driver then sends the loopcl6 path where the packet is read, validated,
and responded by the peer protocol emulator environment for testing applications
and protocol drivers. This is the fastest way to create high quality applications and
protocols that work in the OS-9/SoftStax network environment and results in fewer
errors.

Test

Application

ITEM
ite_path_open (“/loopcl5/protocol_under_test”)

Protocol
Under
Test

ITEM
ite_path_open (“/loopcl6”)

Protocol

Emulator

SPLOOP

LUN6

LUN5

Test

Application

ITEM
ite_path_open (“/loopcl5/protocol_under_test”)

Protocol
Under

Test

ITEM
ite_path_open (“/loopcl6”)

Protocol

Emulator

SPLOOP

LUN6

LUN5

ite_path_open (“/loopcl7”) ite_path_open (“/loopcl8”)

LUN7
LUN8

Chapter 6: Testing Applications and Protocols with SLOOP

OS-9 Network Programming Reference 66

67

A Examples

This appendix provides example applications using SoftStax.

For information about... Go to this page...
Example Applications .. 68
Example 1: Standard Telecommunications Application ... 68
Example 2: Using os_lib.l .. 84
Example 3: Loopback Process Application .. 91

Appendix A: Examples

OS-9 Network Programming Reference 68

Example Applications
Now that you have a basic understanding of OS-9 modules and SoftStax
architecture, you may want to look at some example applications and become
familiar with how to use the SoftStax I/O system. Each of these three examples can
be found in the MWOS/SRC/SPF/DEMOS directory.

• Example 1: Standard Telecommunications Application is a standard
telecommunications application written in two processes.

• Example 2: Using os_lib.l is a send/receive application using os_lib.l to test
protocol and hardware drivers.

• Example 3: Loopback Process Application is an application showing both
connection-oriented and connectionless-oriented call control looping back on
one path.

How to Make an Application

Source code for the example applications in this chapter is found in the
MWOS/SRC/SPF/DEMOS directory.

For each of the example applications, there is a file named makefile. On an OS-9
system, typing the command make creates an example application using the
makefile. On a UNIX system, the command to use is os9make.

The make process generates relocatable object (.r) files and an executable for each
target processor. These are stored in individual target directories. For example,
PowerPC relocatables are stored in /RELS/ppc. The final binary executables are
stored in the appropriate CMDS directory such as:

MWOS/OS9000/PPC/CMDS for Power PC executables.

Example 1: Standard Telecommunications Application
The ex1_snd.c and ex1_rvc.c programs show a simple hello world application.
Use these programs to develop a better understanding of the ITEM interface. Use
the SPLOOP driver provided with the package to test this program.

You can also use this example to test drivers to make sure the standard
telecommunications calls are correctly implemented.

ex1_snd.c
/* ex1_snd.c

*

* This source code is the connection initiator. It opens an ITEM path and
* makes a connection to the ex1_rcv.c program (which must be running on
* the system). After making a connection, this program sends a "hello
* world" message to the receiver program and awaits a response. The
* response message is displayed and a disconnect is performed before
* exiting.

*/

Appendix A: Examples

OS-9 Network Programming Reference 69

_asm("_sysedit: equ 1");/* set edition to #1 */

/* include files:

* modes.h for file access modes (FAM_READ and
* FAM_WRITE)

* const.h for various constants (SUCCESS)

* cglob.h for external _glob_data variable (needed
* for _os_intercept call)

* item.h for ITEM structures (device_type,
* notify_type, *addr_type) and for ITEM function
* prototypes

*/

#include <stdio.h>

#include <modes.h>

#include <const.h>

#include <cglob.h>

#include <SPF/item.h>

/* system-specific definitions:

* DEVICE is our ITEM device

* SND_MESSAGE is the message to send to the ex1_rcv.c
* program upon connection.

* Modify these parameters for your particular test setup

*/

#define DEVICE "loopc0"

#define SND_MESSAGE"hello world"

/* Define the signals used for notification */

#define CONNECT_SIG0x2001

#define FEHANGUP_SIG0x2002

#define DATAVAIL_SIG0x2003

/* global variables for the sender application:

* connect_flag, datavail_flag, and fehangup_flag are
* set to 1 by the sighand function upon receiving
* CONNECT_SIG,DATAVAIL_SIG, or FEHANGUP_SIG,
* respectively.*/

/* define signal receive flags to use with notification */

u_int8 connect_flag, fehangup_flag, datavail_flag;

/* The signal handler function intercepts any

* incoming signal and sets the appropriate global flag variable. Signal
* handlers are important due to the asynchronous nature of network
* communication. As a general rule,I/O should not be performed within the
* signal handler function.

*/

Appendix A: Examples

OS-9 Network Programming Reference 70

void sighand(int rcvd_signal)

{

switch(rcvd_signal)
{

case CONNECT_SIG:

connect_flag = 1;

break;

case DATAVAIL_SIG:

datavail_flag = 1;

break;

case FEHANGUP_SIG:

fehangup_flag = 1;

break;

}

_os_rte(); /* return to program from signal handler */

} /* End signal handler */

void main(void)

{

/* main program variables:

* dev_name = pointer to the name of our DEVICE

* ite_path = path to our DEVICE

* device_info = structure used to obtain call statistics and information

* my_addr = address structure used to set our class and subclass

* connect_npb = connection notification parameter block

* fehangup_npb = far-end hang-up notification parameter block

* datavail_npb = data available notification parameter block

* rcv_size = used to remember the size of our data receive packets

* snd_size = used to remember the size of our data send packets

* rcv_buffer = data receive buffer

* snd_buffer = data send buffer

* err = used for error checking

*/

char *dev_name = DEVICE;

path_id ite_path;

device_type device_info;

/* The device_type structure is used to obtain call information and

 * statistics

 */

Appendix A: Examples

OS-9 Network Programming Reference 71

addr_type my_addr;

notify_type connect_npb, fehangup_npb, datavail_npb;

u_int32 rcv_size, snd_size;

u_char rcv_buffer[32], snd_buffer[32];

error_code err;

/* Most applications will need a signal handler due to the asynchronous

 * nature of using a network device. Be sure to reset any signal flags

 * used to zero!

 */

connect_flag = fehangup_flag = datavail_flag = 0;

if ((err = _os_intercept(sighand, _glob_data))
!= SUCCESS)

{

printf("Error %03d:%03d installing signal
handler\n", err/256, err%256);

exit(0);

}

/* First, initialize the source address information

 * structure in ITEM. If the default source address

 * information in the descriptor is correct, you

 * do not have to do this part. You can use NULL where
 * the src_info variable is in the ite_path_open()
 * call. The address class is set to ITE_ADCL_LPBK
 * because the loopback driver is used. The
 * subclass is ITE_ADSUB_LUN to denote the
 * Logical Unit Number is the address.

 */

my_addr.addr_class = ITE_ADCL_LPBK;

my_addr.addr_subclass = ITE_ADSUB_LUN;

/* set up our notification blocks to receive
 * signals for far-end hang-up (FEHANGUP_SIG),
 * connection (CONNECT_SIG), and

 * data available (DATAVAIL_SIG). This sets up
 * parameter blocks used

 * later to request notification.

 */

connect_npb.ntfy_class = ITE_NCL_SIGNAL;

connect_npb.ntfy_timeout = 10;/* 10 second timeout */

connect_npb.ntfy_sig2send = CONNECT_SIG;

fehangup_npb.ntfy_class = ITE_NCL_SIGNAL;

fehangup_npb.ntfy_timeout = 10;/* 10 second timeout */

Appendix A: Examples

OS-9 Network Programming Reference 72

fehangup_npb.ntfy_sig2send = FEHANGUP_SIG;

datavail_npb.ntfy_class = ITE_NCL_SIGNAL;

datavail_npb.ntfy_timeout = 10;/* 10 second timeout */

datavail_npb.ntfy_sig2send = DATAVAIL_SIG;

/* Open the ITEM path to our DEVICE for both READ and
WRITE */

if ((err = ite_path_open(DEVICE, FAM_READ | FAM_WRITE,
&ite_path, &my_addr)) != SUCCESS)

{

printf("Error %03d:%03d on ite_path_open(%s)\n",
err/256, err%256, dev_name);

exit(0);

}

/* Now we get the device_type structure from our path.

 * The source address information was set correctly

 * from the ite_path_open call, but we'll check to

 * verify it was done when we get the structure back.

 */

if ((err = ite_ctl_connstat(ite_path, &device_info))
!= SUCCESS)

{

printf("Error %03d:%03d getting connection status
for path\n", err/256, err%256);

exit(0);

}

if (device_info.dev_ournum.addr_class !=
ITE_ADCL_LPBK)

{

printf("Address class not set during open\n");

exit(0);

}

if (device_info.dev_ournum.addr_subclass !=
ITE_ADSUB_LUN)

{

printf("Address subclass not set during open\n");

exit(0);

}

printf("\nite_open(%s) successful\n", DEVICE);

Appendix A: Examples

OS-9 Network Programming Reference 73

/* Now we make the call. Notice the source and destination address fields
* are NULL because we use a loopback driver with descriptors containing
* default source/destination address information. We also use our
* connection notification parameter block to tell ITEM to notify us when a
* connection is made.
*/

if ((err = ite_ctl_connect(ite_path, NULL, NULL,
&connect_npb)) !=SUCCESS)

{

printf("Error %03d:%03d during attempt to
connect\n", err/256, err%256);

printf("Are you sure the receiver program is
running?\n");

exit(0);

}

/* Go to sleep and await connection notification
 * signal. The sleep time should be slightly longer
 * than the connection timeout value. When a
 * connection is made, the sleep() call will return
 * immediately.

 */

sleep(connect_npb.ntfy_timeout + 5);

/* Did we make a connection?

 * If not, report a timeout error and exit.

 * If yes, display a connection message along with the

 * address we connected to. Note for subclass
 * ITE_ADSUB_LUN, addresses are stored as a u_int8 in
 * the first byte of the addr field.

 */

if (!connect_flag)

{ /* connection was not made */

printf("Timeout error during connection attempt\n");

exit(0);

} else

{

printf("Connected to destination address %d\n",
device_info.dev_theirnum.addr[0]);

}

/* Now, use the fehangup_npb notification parameter
 * block to request ITEM notify us on far-end
 * hang-up.

 */

if ((err = ite_fehangup_asgn(ite_path, &fehangup_npb))
!= SUCCESS)

Appendix A: Examples

OS-9 Network Programming Reference 74

{

printf("Error %03d:%03d during fehangup signal
assignment\n", err/256, err%256);

exit(0);

}

/* We want to be prepared to respond when the

 * receiver program sends a response to us.

 * To do this, we'll ask ITEM to notify us when data

 * becomes available (using our datavail_npb block).

 */

if ((err =ite_data_avail_asgn(ite_path,
&datavail_npb)) != SUCCESS)

{

printf("Error %03d:%03d during datavail signal
assignment\n", err/256, err%256);

exit(0);

}

/* Now that we have the end-to-end connection
 * established, we'll send 'hello world' to the
 * receiver program.

 */

strcpy(snd_buffer, SND_MESSAGE);

snd_size = strlen(snd_buffer) + 1;

if ((err = ite_data_write(ite_path, snd_buffer,
&snd_size)) !=SUCCESS)

{

printf("Error %03d:%03d during ite_data_write\n",
err/256, err%256);

exit(0);

}

/* Now, wait for the receiver to send a response.
 * We know we've received a response when
 * datavail_flag is set by our signal handler routine.

 */

if (!datavail_flag)

{

sleep(datavail_npb.ntfy_timeout + 5);

}

/* If our data available flag has not been set, we
 * timed out while waiting for the receiver's response
 * packet. Report the timeout error and exit.
 */

if (!datavail_flag)

Appendix A: Examples

OS-9 Network Programming Reference 75

{

printf("Timeout error while awaiting response\n");

exit(0);

}

/* We have been notified there is a response
 * waiting for us, so lets find out how many bytes are
 * in the response using ite_data_ready.
 */

if ((err = ite_data_ready(ite_path, &rcv_size))
!= SUCCESS)

{

printf("Error %03d:%03d on ite_data_ready call\n",
err/256, err%256);

exit(0);

}

/* Knowing how many bytes are in the response message,

 * we read the incoming data into our rcv_buffer.

 */

if ((err = ite_data_read(ite_path, rcv_buffer,
&rcv_size)) !=SUCCESS)

{

printf("Error %03d:%03d during ite_data_read\n",
err/256, err%256);

exit(0);

}

/* Display the received response. */

printf("Response received = <%s>\n", rcv_buffer);

/* Time to disconnect from the receiver.

 * We are not using an in-band path (ib_path), so the

 * second parameter of the ite_ctl_disconnect call must

 * be set to NULL.

 */

if ((err = ite_ctl_disconnect(ite_path, NULL))
!= SUCCESS)

{

printf("Error %03d:%03d on ite_ctl_disconnect\n",
err/256, err%256);

exit(0);

}

/* Close our ITEM path and exit. */

if ((err = ite_path_close(ite_path)) != SUCCESS)

Appendix A: Examples

OS-9 Network Programming Reference 76

{

printf("Error %03d:%03d on ite_path_close\n",
err/256, err%256);

exit(0);

}

exit(0);

} /* End ex1_snd.c */

/* In example 1, the receiver accepts incoming calls from
 * any caller and reads the incoming data. After reading *the incoming
message, the receiver sends the
 * RESPONSE_MSG message back to the sender. The receiver
 * also demonstrates the caller identification
 * capabilities of ITEM if the network supports caller ID.

 */

/* ex1_rcv.c

 *

 * This source code is the connection receiver. It opens

 * an ITEM path, and uses the receiver assignment call to

 * wait for an incoming connection. Next, it reads the

 * incoming data and sends the RESPONSE_MSG response.

 * Note on connectionless networks, the

 * receiver assignment error EOS_CONN will occur. The

 * application should determine it is

 * attempting to receive data on a connectionless network,

 * and therefore the read should happen without waiting
 * for the notification by the system software.

 */

_asm("_sysedit: equ 1");/* set edition to #1 */

/* include files:

* modes.h for file access modes (FAM_READ and

* FAM_WRITE)

 * const.h for various constants (SUCCESS)

 * signal.h for signal value constants (SIGQUIT and
* SIGINT)

 * cglob.h for external _glob_data variable (needed for

 * _os_intercept call)

 * item.h for ITEM structures (device_type,
* notify_type,

 * addr_type) and for ITEM function prototypes

 */

Appendix A: Examples

OS-9 Network Programming Reference 77

#include <stdio.h>

#include <modes.h>

#include <const.h>

#include <signal.h>

#include <cglob.h>

#include <SPF/item.h>

/* system-specific definitions:

 * DEVICE is the ITEM device

 * RESPONSE_MSG is the message to send the
* ex1_snd.c program upon receiving a
* message.

 * Modify these parameters for your particular setup.

 */

#define DEVICE "/loopc1"

#define RESPONSE_MSG"Message Received"

/* Define the signals used for notification */

#define INCALL_SIG0x2001

#define DATAVAIL_SIG0x2002

#define FEHANGUP_SIG0x2003

/* Global variables for the receiver application:

 * incall_flag and datavail_flag are set to 1 by the
 * sighand function upon receiving INCALL_SIG or
 * DATAVAIL_SIG, respectively. connected_flag is set to
 * 1 by the main program once a connection has been
 * established. connected_flag is reset to 0 by the
 * sighand function upon receiving a FEHANGUP_SIG
 * signal. exit_flag lets the main program know when the
 * user has pressed CTRL-E or CTRL-C to exit the
 * program.

 */

u_int8 incall_flag, connected_flag, datavail_flag,
exit_flag;

/* signal handler function -- its purpose is to intercept
 * any incoming signal and set the appropriate global flag
 * variable. Signal handlers are important due to the
 * asynchronous nature of network communication. As a
 * general rule, I/O should not be performed

 * within the signal handler function.

 */

void sighand(int rcvd_signal)

{

switch(rcvd_signal)

Appendix A: Examples

OS-9 Network Programming Reference 78

{

case SIGQUIT:

case SIGINT:

exit_flag = 1;

break;

case INCALL_SIG:

incall_flag = 1;

break;

case FEHANGUP_SIG:

connected_flag = 0;

break;

case DATAVAIL_SIG:

datavail_flag = 1;

break;

}

_os_rte();/* return to program from signal handler */

} /* End signal handler */

void main(void)

{

 /* main program variables:
 * dev_name = pointer to the name of our DEVICE
 * ite_path = path to our DEVICE
 * device_info = structure used to obtain call
 * statistics and information, including the caller-id
 * string my_addr = address structure used to set our
 * class and subclass
 * incall_npb = incoming call notification parameter block
 * fehangup_npb = far-end hang-up notification
 * parameter block
 * datavail_npb = data available notification
 * parameter block
 * rcv_size = used to remember the size of data receive * packets
 * snd_size = used to remember the size of data send
 * packets
 * rcv_buffer = data receive buffer
 * snd_buffer = data send buffer
 * err = used for error checking
 */

char *dev_name = DEVICE;

path_id ite_path;

device_type device_info;

addr_type my_addr;

notify_type incall_npb, fehangup_npb,
datavail_npb;

u_int32 rcv_size, snd_size;

Appendix A: Examples

OS-9 Network Programming Reference 79

u_char rcv_buffer[32],
snd_buffer[32];

error_code err;

 /* Most applications will need a signal handler due
 * to the asynchronous nature of using a network
 * device. Be sure to reset any global notification
 * flags to zero!
 */

if ((err = _os_intercept(sighand, _glob_data))
!= SUCCESS)

{

printf("Error %03d:%03d installing signal
handler\n", err/256, err%256);

exit(0);

}

incall_flag = connected_flag = datavail_flag =
exit_flag = 0;

 /* Set up our address class, subclass, and address.
 * Our address class is set to ITE_ADCL_LPBK since we
 * are using a loopback driver. Our subclass is
 * ITE_ADSUB_LUN to denote our Logical Unit Number * is our
address.

my_addr.addr_class = ITE_ADCL_LPBK;

my_addr.addr_subclass = ITE_ADSUB_LUN;

 /* Set up our notification blocks to let us receive
 * signals for far-end hang-up (FEHANGUP_SIG),
 * incoming call (INCALL_SIG), and data available
 * (DATAVAIL_SIG). Notice we are merely setting
 * up the parameter blocks.We will use these parameter
 * blocks later to request notification
 */

incall_npb.ntfy_class = ITE_NCL_SIGNAL;
incall_npb.ntfy_timeout = 50; /* no timeout for

incoming calls */

incall_npb.ntfy_sig2send = INCALL_SIG;

fehangup_npb.ntfy_class = ITE_NCL_SIGNAL;

fehangup_npb.ntfy_timeout = 10;
/* 10 second timeout */

fehangup_npb.ntfy_sig2send = FEHANGUP_SIG;

datavail_npb.ntfy_class = ITE_NCL_SIGNAL;

datavail_npb.ntfy_timeout = 10;
/* 10 second timeout */

datavail_npb.ntfy_sig2send = DATAVAIL_SIG;

/* Open the ITEM path to our DEVICE for both READ and
WRITE */

Appendix A: Examples

OS-9 Network Programming Reference 80

printf("opening path...\n");

if ((err = ite_path_open(DEVICE, FAM_READ | FAM_WRITE,
&ite_path, &my_addr)) != SUCCESS)

{

printf("Error %03d:%03d on ite_path_open\n", err/
256, err%256);

exit(0);

}

printf("ite_path_open(%s) successful\n", DEVICE);

 /* the big loop -- loop forever (waiting for calls and
 * answering them) until the user hits CTRL-E or CTRL-C
 * to exit.

s*/

while (exit_flag == 0)

{

 /* initialize incall and connected flags */
incall_flag = connected_flag = 0;

 /* Ensure we do not have a data_available
 * assignment on our ITEM path left over from the
 * previous time through the loop.
 */

if ((err = ite_data_avail_rmv(ite_path)) != SUCCESS)

{

printf("Error %03d:%03d Removing data available

assignment\n", err/256, err%256);

}

 /* Request notification of an incoming call. This is
 * set up by the ite_ctl_rcvrasgn (receiver assignment)
 * call. Notice we are passing the address to our
 * incall notification block to tell ITEM to send a
 * INCALL_SIG upon noticing an incoming call.
 */

if ((err = ite_ctl_rcvrasgn(ite_path, NULL,
&incall_npb)) != SUCCESS)

{
printf("Error %03d:%03d performing receiver

assignment\n", err/256, err%256);

}

printf("Waiting for incoming call...\n");

 /* Sleep until an incoming call. Remember, although
 * sleep(0) will sleep forever, our process will be
 * awakened whenever a signal is received.
 */

sleep(0);

Appendix A: Examples

OS-9 Network Programming Reference 81

 /* Do we have an incoming call? If so, use
 * ite_ctl_connstat to get the caller-id
 * string and display it. It is possible to perform an
 * ite_ctl_disconnect(ite_path, NULL) to refuse a
 * connection if we are screening calls based on their
 * caller-id strings. After displaying the caller-id
 * string, answer the incoming call using
 * ite_ctl_answer and set our connected_flag.
 * We also need to request notification when the
 * ex1_snd.c program disconnects from us (far-end
 * hangup).
 */

if (incall_flag)

{

if ((err = ite_ctl_connstat(ite_path,
&device_info)) != SUCCESS)

{

printf("Error %03d:%03d performing
ite_ctl_connstat\n", err/256, err%256);

exit(0);

}

printf("Incoming caller-id: <%s>\n",
device_info.dev_display);

 /* Note we are not using an in-band path
 * (ib_path), so the second parameter in the
 * ite_ctl_answer call must be NULL.
 */

if ((err = ite_ctl_answer(ite_path, NULL, NULL)) !=
SUCCESS)

{

printf("Error %03d:%03d from ite_ctl_answer\n",
err/256, err%256);

exit(0);

}

printf("Connected\n");

incall_flag = 0;

connected_flag = 1;

 /* request notification upon far-end hang-up */

if ((err = ite_fehangup_asgn(ite_path,
&fehangup_npb)) != SUCCESS)

{

printf("Error %03d:%03d performing fehangup
 assignment\n", err/256, err%256);

exit(0);

}

Appendix A: Examples

OS-9 Network Programming Reference 82

} else

{

 /* We awoke from a signal, but it was not due to an
 * incoming call. It is probably the user wanting to
 * exit the program. Let's remove our receiver
 * assignment (INCALL_SIG).
 */

if ((err = ite_ctl_rcvrrmv(ite_path)) != SUCCESS)

{

printf("Error %03d:%03d from receiver remove\n",
err/256, err%256);

}

}

 /* As long as we are connected to the sender program,
 * stay in this loop.
 */

while (connected_flag)

{

 * Request ITEM to notify us when data is available
 * from the sender program. Notice we are using
 * datavail_npb to have the DATAVAIL_SIG sent when
 * data is available.
 */

if ((err = ite_data_avail_asgn(ite_path,
&datavail_npb)) != SUCCESS)

{

printf("Error %03d:%03d performing data
available assignment\n", err/256, err%256);

exit(0);

}

 /* Now, wait for the incoming data packet. Let's sleep for five
seconds longer than our requested timeout.
 * After sleeping, if we have not been notified of
 * available data but we are still connected, report a
 * timeout condition. */

if (!datavail_flag && connected_flag)

{

sleep(datavail_npb.ntfy_timeout + 5);

}

if (!datavail_flag && connected_flag)

{

printf("Timeout waiting for data from sender\n");

exit(0);

}

Appendix A: Examples

OS-9 Network Programming Reference 83

 /* We have been notified data is either available
 * or far-end hang-up has occurred. If hang-up has
 * occurred, we drop out of our while loop and
 * wait for another incoming call. If data is
 * available, we need to find out how many bytes the
 * incoming data packet contains.
 */

if (datavail_flag)

{

if ((err = ite_data_ready(ite_path, &rcv_size))
!= SUCCESS)

{

printf("Error %03d:%03d on ite_data_ready\n",
err/256, err%256);

exit(0);

}

 /* Knowing how many bytes are to be read, we read
 * the incoming data into our rcv_buffer.
 */

if ((err = ite_data_read(ite_path, rcv_buffer,
&rcv_size)) != SUCCESS)

{

printf("Error %03d:%03d during hello world
read\n", err/256, err%256);

exit(0);

} else

{

printf("ite_data_read() result: [%s]\n",
rcv_buffer);

}

 /* reset our datavail_flag */

datavail_flag = 0;

 /* Let's send our RESPONSE_MSG back to the sender
 * program to acknowledge we received the data. */

strcpy(snd_buffer, RESPONSE_MSG);

snd_size = strlen(RESPONSE_MSG) + 1;

if ((err = ite_data_write(ite_path, snd_buffer,
&snd_size)) != SUCCESS)

{

printf("Error %03d:%03d during
ite_data_write\n", err/256, err%256);

continue;

}

}

Appendix A: Examples

OS-9 Network Programming Reference 84

}

 /* We reach this point only if we have been
 * disconnected by the sending program. Report this
 * fact to the user.
 */

printf("Disconnected\n\n");

connected_flag = 0;

}

 /* We reach this point only if the user has asked to
 * exit using CTRL-E or CTRL-C. We close our ITEM path
 * and exit.
 */

if ((err = ite_path_close(ite_path)) != SUCCESS)

{

printf("Error %03d:%03d during ite_path_close\n",
err/256, err%256);

}

exit(0);

} /* End ex1_rcv.c */

Example 2: Using os_lib.l
The spf_test.c program is an application that does not perform call control. It
uses the I/O calls in os_lib.l to open paths and transmit and receive data. This
program uses _os_xxx calls in os_lib.l to perform tests on the packets flowing
through SoftStax. The syntax for this test is:

spf_test <descriptor name> <ITE or DCE> <packets to send> <number of
bytes in each packet>

Run this example program with the loopback driver by entering the following
commands:

spf_test /loopc16 DCE 10 100

spf_test /loopc15 DTE 10 10

The first command causes spf_test to use loopc16 to open a path. The DCE entry
means the process waits for receive data first. The remainder of the command line
indicates it receives, then transmits, ten packets of 100 bytes each.

The next command causes this incarnation of the spf_test process to use loopc15
to open a path. The DTE entry means the process transmits ten packets of 100
bytes, then waits to receive ten packets of 100 bytes.

Appendix A: Examples

OS-9 Network Programming Reference 85

spf_test.c
/***

 * SPF example/test program*

 /* Copyright 1995 by Microware Systems Corporation
 * Copyright 2001 by RadiSys Corporation
 Reproduced Under License
 *

 * This source code is the proprietary confidential
 * property of Microware Systems Corporation, and is
 * provided to licensee solely for documentation and
 * educational purposes. Reproduction, publication, or
 * distribution in any form to any party other than the
 * licensee is strictly prohibited.
 /*

_asm("_sysedit: equ 1");

_asm("_sysattr: equ 0xC001");

 /*

 * Header Files

 /*

#include <stdio.h>

#include <types.h>

#include <ctype.h>

#include <const.h>

#include <errno.h>

#include <modes.h>

#include <signal.h>

#include <module.h>

#include <SPF/spf.h>

 /*

 * Macro Definitions

 /*

Appendix A: Examples

OS-9 Network Programming Reference 86

 /*

 *Global Variables

 */

u_char buf[10000]= {0};

u_int32 COUNT= 1;

u_int32 BUFSZ= 100;

path_id path= 0;

 /*

 * Signal Handler

 */

void sighand(int sig)

{

switch (sig)

{

case SIGINT :

case SIGQUIT :

case SIGHUP:

fprintf(stderr,"Termination signal received\n");

_os_close(path);

_os_exit(SUCCESS);

break;

default :

fprintf(stderr,"Unknown signal received

%d\n",sig);

break;

}

}

 /*
 * Send Data
 */

error_code send_data()

{

u_int32 loop;

u_int32 count;

u_int32 byte;

Appendix A: Examples

OS-9 Network Programming Reference 87

printf("Sending data: \n"); fflush(stdout);

for (loop=1;loop<=COUNT;loop++)

{

printf(">%d>",loop);

for(byte=0;byte<BUFSZ;byte++)

{

buf[byte] = loop;

}

count = BUFSZ;

if ((errno = _os_write(path,buf,&count)) != SUCCESS)

{

printf("ERROR: %s\n\n",strerror(errno));

return(errno);

}

}

printf("SUCCESSFUL\n\n");fflush(stdout);

return(SUCCESS);

}

 /*
 * Receive Data
 */
error_code recv_data()

{

u_int32 loop;

u_int32 count;

u_int32 byte;

printf("Receiving data: \n"); fflush(stdout);

for (loop=1;loop<=COUNT;loop++)

{

printf("<%d<",loop);

buf[0] = 0;

count = BUFSZ;

Appendix A: Examples

OS-9 Network Programming Reference 88

if ((errno = _os_read(path,buf,&count)) != SUCCESS)

{

printf("ERROR: %s\n\n",strerror(errno));

return(errno);

}

if (buf[0] != (loop%256))

{

printf(" ERROR: Out of Order Number Received\n");

return(EOS_READ);

}

}

printf(" ... SUCCESSFUL\n\n");fflush(stdout);

return(SUCCESS);

}

 /*
 * Main Program
 */
void main(int argc, char *argv[])

{

int32 val = 0,

ticks_left;

error_code err = SUCCESS;

 /* set up signal handler */

signal(SIGINT,sighand);

signal(SIGQUIT,sighand);

signal(SIGHUP,sighand);

/* print header */

printf("\n***** %s *****\n\n",argv[0]);

/* check command line arguments */

Appendix A: Examples

OS-9 Network Programming Reference 89

if ((argc < 3) || (argv[1][0] == '-'))

{

printf("HELP:\n");

printf(" Syntax: %s </device> <DTE/DCE>
[<count:default=%d>]
[<bufsize:default=%d>]\n\n",
argv[0],COUNT,BUFSZ);

_os_close(path);

_os_exit(SUCCESS);

}

/* get new count */

if (argc >= 4)

{

COUNT = atoi(argv[3]);

}

printf("COUNT = [%d]\n\n",COUNT);

/* get new buffer size */

if (argc >= 5)

{

BUFSZ = atoi(argv[4]);

if (BUFSZ > sizeof(buf))

{

printf("ERROR: maximum buffer size = '%d'\n\n");

_os_close(path);

_os_exit(EOS_PARAM);

}

}

printf("BUFSZ = [%d]\n\n",BUFSZ);

/* open indicated device */

printf("Opening device [%s] ... ",argv[1]);

if ((errno =
_os_open(argv[1],S_IREAD|S_IWRITE,&path))
!= SUCCESS)

Appendix A: Examples

OS-9 Network Programming Reference 90

{

printf("ERROR: %s\n\n",strerror(errno));

_os_close(path);

_os_exit(errno);

}

printf("SUCCESSFUL\n\n");

if (strcmp(argv[2],"DCE") == 0)

{

printf("DCE\n\n");

/* receive data */

if ((errno = recv_data()) != SUCCESS)

{

_os_close(path);

_os_exit(err);

}

/* send data */

if ((errno = send_data()) != SUCCESS)

{

_os_close(path);

_os_exit(err);

}

} else if (strcmp(argv[2],"DTE") == 0)

{

printf("DTE\n\n");

/* send data */

if ((errno = send_data()) != SUCCESS)

{

_os_close(path);

_os_exit(err);

}

/* receive data */

if ((errno = recv_data()) != SUCCESS)

Appendix A: Examples

OS-9 Network Programming Reference 91

{

_os_close(path);

_os_exit(err);

}

} else

{

printf("ERROR: Unknown Command [%s]\n\n",argv[2]);

_os_close(path);

_os_exit(EOS_ILLARG);

}

if ((ticks_left = sleep(1)) != 0)

{

printf("spf_test: signal received before the 1 sec sleep
complete\n");

}

_os_close(path);

_os_exit(SUCCESS);

}

Example 3: Loopback Process Application
The example3.c program uses the /loop descriptor to perform call control and send
and receive data over the same path. Note how the program registers to receive
incoming calls, then connects. The incoming call signal comes over the same path.
After the program answers, the connect signal is received and it sends and receives a
test message.

example3.c
/***

 * ID: @(#) example3.c 1.2@(#)

 * Date: 6/26/96

 **

 * Example to show connectionless and connection-oriented *ITEM
communication

**

 * Copyright 1996 by Microware Systems Corporation

Appendix A: Examples

OS-9 Network Programming Reference 92

 * Copyright 2001 by RadiSys Corporation

 * Reproduced Under License

 * This source code is the proprietary confidential
 * property of Microware Systems Corporation, and is
 * provided to licensee solely for documentation and
 * educational purposes. Reproduction, publication, or
 * distribution in any form to any party
 * other than the licensee is strictly prohibited.

**

_asm("_sysedit: equ 1");/* set edition to #1 */

/* include files:

 * modes.h for various file access modes (FAM_READ and
 * FAM_WRITE)

 * const.h for various constants (SUCCESS)
 * cglob.h for external _glob_data variable (needed
 * for _os_intercept call)
 * item.h for ITEM structures (device_type,
 * notify_type) and for ITEM function prototypes

 */

#include <stdio.h>

#include <modes.h>

#include <const.h>

#include <cglob.h>

#include <SPF/item.h>

/* System-specific definitions:

 * DEVICE = our ITEM loopback device

 * DATA_STRING = the message to send and receive on
 * the ITEM path

 */

#define DEVICE "/loop"

#define DATA_STRING"This is example #3 data."

/* Define the signals used for notification */

#define SIG_CONNECT0x2001

#define SIG_INCALL0x2002

#define SIG_DATAVAIL0x2003

#define SIG_FEHANGUP0x2004

Appendix A: Examples

OS-9 Network Programming Reference 93

 /* Global variables:
 * connect_flag = set to 1 by sighandler when a
 * SIG_CONNECT is received. incall_flag = set to 1 by
 * sighandler when a SIG_INCALL is received.
 * datavail_flag = set to 1 by sighandler when a
 * SIG_DATAVAIL is received.
 * fehangup_flag = set to 1 by sighandler when a
 * SIG_FEHANGUP is received.
 */
u_int8 connect_flag, incall_flag, datavail_flag,

fehangup_flag;

 /* signal handler function -- intercepts any incoming
 * signal and set the appropriate global flag variable.
 */

void sighandler(int signal)

{

switch (signal)

{

case SIG_CONNECT:

connect_flag = 1;

break;

case SIG_INCALL:

incall_flag = 1;

break;

case SIG_DATAVAIL:

datavail_flag = 1;

break;

case SIG_FEHANGUP:

fehangup_flag = 1;

break;

default:

 /* spurrious signal received */

break;

}

_os_rte();/* return to program from signal handler */

} /* End signal handler */

void main(void)

{

/* main program variables:
 * ite_path = path to our DEVICE

Appendix A: Examples

OS-9 Network Programming Reference 94

 * data_length= used to store length of
* DATA_STRING message

 * count = used in read/write functions
* to give # of bytes

 * buffer = receive storage buffer

 * device_info= structure used to obtain
* caller-id string

 * connect_npb= connection notification
* parameter block

 * incall_npb= incoming call notification
* parameter block

 * datavail_npb= data available notification
* parameter block

 * fehangup_npb= far-end hang-up notification
* parameter block

 * err = used for error checking

 */

path_id ite_path;

u_int32 data_length, count;

u_char buffer[256];

device_type device_info;

notify_type connect_npb, incall_npb,
datavail_npb, fehangup_npb;

error_code err;

 /* set up our notification parameter blocks for
 * connection, incoming call, and data available.
 * Notice we're merely setting up the parameter
 * blocks... we'll use them later to request
 * notification.

 */
connect_npb.ntfy_class = ITE_NCL_SIGNAL;

connect_npb.ntfy_timeout = 10;/* 10 second timeout */

connect_npb.ntfy_sig2send = SIG_CONNECT;

incall_npb.ntfy_class = ITE_NCL_SIGNAL;

incall_npb.ntfy_timeout = 10;/* 10 second timeout */

incall_npb.ntfy_sig2send = SIG_INCALL;

datavail_npb.ntfy_class = ITE_NCL_SIGNAL;

datavail_npb.ntfy_timeout = 10;/* 10 second timeout */

datavail_npb.ntfy_sig2send = SIG_DATAVAIL;

fehangup_npb.ntfy_class = ITE_NCL_SIGNAL;

fehangup_npb.ntfy_timeout = 10;/* 10 second timeout */

Appendix A: Examples

OS-9 Network Programming Reference 95

fehangup_npb.ntfy_sig2send = SIG_FEHANGUP;

/* Initialize data_length, our signal flags and signal
handler. */

data_length = strlen(DATA_STRING);

connect_flag = incall_flag = datavail_flag =
fehangup_flag = 0;

if ((err = _os_intercept(sighandler, _glob_data))
!= SUCCESS)

{

printf("Error %03d:%03d from _os_intercept\n", err/
256, err%256);

exit(0);

}

printf("\n** START OF CONNECTIONLESS COMMUNICATION

**\n");

 /* For connectionless communication, the loopback
 * descriptors contain the default addressing
 * information.

 */
 /* Open an ITEM path to our DEVICE for both READ &
 * WRITE access. */

if ((err = ite_path_open(DEVICE, FAM_READ | FAM_WRITE,
&ite_path, NULL)) != SUCCESS)

{

printf("Error %03d:%03d from ite_path_open (%s)\n",
err/256, err%256, DEVICE);

exit(0);

}

printf("ite_path_open call successful.\n");

 /* Using our data available notification parameter
 * block, we ask ITEM to send us a SIG_DATAVAIL signal
 * when data is ready to be read from our ITEM path.

 */

if ((err = ite_data_avail_asgn(ite_path,
&datavail_npb)) != SUCCESS)

{

printf("Error %03d:%03d from ite_data_avail_asgn\n",
err/256, err%256);

exit(0);

}

Appendix A: Examples

OS-9 Network Programming Reference 96

 /* write data to ite_path... since we are using a
 * loopback driver, our data will come right back to
 * us, triggering a SIG_DATAVAIL signal to be sent.

 */

count = data_length;

if ((err = ite_data_write(ite_path, DATA_STRING,
&count)) != SUCCESS)

{

printf("Error %03d:%03d from ite_data_write\n", err/
256, err%256);

exit(0);

}

/* Sleep until data available signal is received. */

if (datavail_flag == 0) sleep(0);

if (datavail_flag == 0)

{

printf("SIG_DATAVAIL not received on ite_path!\n");

exit(0);

}

printf("SIG_DATAVAIL signal received correctly... %d
bytes of data\n", count);

 /* Determine how many bytes of data need to be read.
 * It should be the same number of bytes we wrote out!

 */

if ((err = ite_data_ready(ite_path, &count))
!= SUCCESS)

{

printf("Error %03d:%03d back from
ite_data_ready\n",err/256, err%256);

exit(0);

}

if (count != data_length)

{

printf("Received length is not correct!\n");

printf("%d bytes received... should be %d bytes.\n",
count, data_length);

}

 /* Knowing how many bytes there are, read the data

Appendix A: Examples

OS-9 Network Programming Reference 97

 * into our buffer. Be sure to null-terminate the
 * string.

 */
if ((err = ite_data_read(ite_path, buffer, &count))

!= SUCCESS)

{

printf("Error %03d:%03d from ite_data_read\n", err/
256, err%256);

exit(0);

}

buffer[count] = '\0';

/* Display the send/receive results. */

printf("Data sent: <%s>\nData received: <%s>\n",
DATA_STRING, buffer);

/* Close our ITEM path. */

if ((err = ite_path_close(ite_path)) != SUCCESS)

{

printf("Error %03d:%03d from ite_path_close on
ite_path\n", err/256, err%256);

}

printf("ite_path_close call successful.\n");

printf("\n** START OF CONNECTION-ORIENTED
COMMUNICATION **\n");

 /* For connection-oriented communication, the
 * loopback descriptors may or may-not contain the
 * default address information. In this example, we
 * assume the addressing information is held in the
 * descriptor. Below, we reinitialize our global flags.

 */
connect_flag = incall_flag = datavail_flag =

fehangup_flag = 0;

 /* Open an ITEM path to our DEVICE for READ and WRITE
 * access. */

if ((err = ite_path_open(DEVICE, FAM_READ | FAM_WRITE,
&ite_path, NULL)) != SUCCESS)

{

printf("Error %03d:%03d from ite_path_open (%s)\n",
err/256, err%256, DEVICE);

exit(0);

}

printf("ite_path_open call successful.\n");

Appendix A: Examples

OS-9 Network Programming Reference 98

 /* The first thing a receiver program should do is a
 * receiver assignment to be notified of any incoming
 * calls. We use our incall notification parameter
 * block to ask ITEM to send us a SIG_INCALL signal
 * when we have an incoming call.

 */
if ((err = ite_ctl_rcvrasgn(ite_path, NULL,

&incall_npb)) != SUCCESS)

{

printf("Error %03d:%03d from ite_ctl_rcvrasgn\n",
err/256, err%256);

exit(0);

}

 /* For a caller program, a call is placed using the
 * ite_ctl_connect function. We need to pass in our
 * connect notification parameter
 * block so ITEM sends a SIG_CONNECT when a connection
 *is established.

 */

if ((err = ite_ctl_connect(ite_path, NULL, NULL,
&connect_npb)) != SUCCESS)

{

printf("Error %03d:%03d from ite_ctl_connect\n",
err/256, err%256);

exit(0);

}

printf("ite_ctl_connect call successful.\n");

 /* The receiver program will be awaiting an incoming
 * call signal (SIG_INCALL).

 */
if (incall_flag == 0) sleep(0);

if (incall_flag == 0)

{

printf("Error -- SIG_INCALL not received!\n");

exit(0);

}

printf("SIG_INCALL signal received correctly.\n");

 /* After receiving a SIG_INCALL signal, the receiver
 * program can look at the caller-id information. If
 * this is not important, this can be omitted. Using
 * this technique, incoming calls can be screened. An
 * ite_ctl_disconnect can be used to refuse an incoming
 * call. */

Appendix A: Examples

OS-9 Network Programming Reference 99

if ((err = ite_ctl_connstat(ite_path, &device_info))
!= SUCCESS)

{

printf("Error %03d:%03d performing
ite_ctl_connstat\n", err/256, err%256);

exit(0);

}

printf("Incoming caller-id: <%s>\n",
device_info.dev_display);

 /* After noticing an incoming call, the receiver
 * program answers the call using the ite_ctl_answer
 * function. This will establish a connection and send
 * a SIG_CONNECT to the caller program.
 */

if ((err = ite_ctl_answer(ite_path, NULL, NULL)) !=
SUCCESS)

{

printf("Error %03d:%03d from ite_ctl_answer\n",
err/256, err%256);

exit(0);

}

printf("ite_ctl_answer call successful.\n");

 /* After issuing an ite_ctl_connect call, the caller
 * program will wait for a SIG_CONNECT to be sent,
 * meaning a connection has been established.

 */
if (connect_flag == 0) sleep(0);

if (connect_flag == 0)

{

printf("Error -- SIG_CONNECT never received after
ite_ctl_answer!\n");

exit(0);

}

printf("SIG_CONNECT signal received correctly.\n");

 /* Both the caller and receiver programs need to be
 * notified on far-end hang-up (the other party
 * disconnects). This is done using the
 * ite_fehangup_asgn call with our far-end hang-up
 * notification parameter block (fehangup_npb).
 */

Appendix A: Examples

OS-9 Network Programming Reference 100

if ((err = ite_fehangup_asgn(ite_path, &fehangup_npb))
!= SUCCESS)

{

printf("Error %03d:%03d from ite_fehangup_asgn\n",
err/256, err%256);

exit(0);

}

 /* Just as we sent our DATA_STRING in a connectionless
 * environment (above), we'll now send our DATA_STRING
 * the exact same way since our connection has now been
 * established. We start by having the receiver program
 * request ITEM send a SIG_DATAVAIL when data is
 * available for reading.
 */

if ((err = ite_data_avail_asgn(ite_path,
&datavail_npb)) != SUCCESS)

{

printf("Error %03d:%03d from ite_data_avail_asgn\n",
err/256, err%256);

exit(0);

}

 /* Now, the sender will write data to the connected
 * ITEM path. This will cause the SIG_DATAVAIL signal
 * to be sent to the receiving program.
 */

count = data_length;

if ((err = ite_data_write(ite_path, DATA_STRING,
&count)) != SUCCESS)

{

printf("Error %03d:%03d from ite_data_write\n",
err/256, err%256);

exit(0);

}

 * The receiver program will await the SIG_DATAVAIL
 * signal.
 */

if (datavail_flag == 0) sleep(0);

Appendix A: Examples

OS-9 Network Programming Reference 101

if (datavail_flag == 0)

{

printf("SIG_DATAVAIL not received on ite_path!\n");

exit(0);

}

printf("SIG_DATAVAIL signal received correctly... %d
bytes of data\n", count);

 /* Determine how many bytes of data need to be read.
 * It should be the same number of bytes we wrote out!
 */

if ((err = ite_data_ready(ite_path, &count))
!= SUCCESS)

{

printf("Error %03d:%03d back from ite_data_ready\n",
err/256, err%256);

exit(0);

}

if (count != data_length)

{

printf("Received length is not correct!\n");

printf("%d bytes received... should be %d bytes.\n",
count, data_length);

}

 /* Knowing how many bytes there are, read the data into
 * our buffer. Be sure to null-terminate the string.
 */

if ((err = ite_data_read(ite_path, buffer, &count))
!= SUCCESS)

{

printf("Error %03d:%03d from ite_data_read\n",
err/256, err%256);

exit(0);

}

buffer[count] = '\0';

 /* Display the send/receive results. */

printf("Data sent: <%s>\nData received: <%s>\n",
DATA_STRING, buffer);

Appendix A: Examples

OS-9 Network Programming Reference 102

 /* Our caller program now must disconnect from the
 * receiver program using the ite_ctl_disconnect
 * function. This causes a SIG_FEHANGUP to be sent to
 * the other end of the connection if fehangup
 * notification is active. Because we are not using an
 * in-band path (ib_path), the second parameter of
 * the ite_ctl_disconnect call must be NULL.
 */

if ((err = ite_ctl_disconnect(ite_path, NULL))
!= SUCCESS)

{

printf("Error %03d:%03d from ite_ctl_disconnect\n",
err/256, err%256);

}

 /* The other party would now receive a SIG_FEHANGUP signal */

if (fehangup_flag == 0) sleep(0);

if (fehangup_flag == 0)

{

printf("Error -- SIG_FEHANGUP never received after
ite_ctl_disconnect!\n");

}

else

{

printf("SIG_FEHANGUP signal received correctly.\n");

}

 /* Close our ITEM path. */

if ((err = ite_path_close(ite_path)) != SUCCESS)

{

printf("Error %03d:%03d from ite_path_close on
ite_path\n", err/256, err%256);

}

else

{

printf("ite_path_close call successful.\n");

}

/* Exit program */

printf("** END OF EXAMPLE #3 **\n\n");

exit(0);

}

103

B Using SoftStax with Multimedia
Devices

This appendix shows how to configure SoftStax to be used with Networked
Multimedia Devices.

For information about... Go to this page...
Networked Multimedia Device Basics.. 104

Appendix B: Using SoftStax with Multimedia Devices

OS-9 Network Programming Reference 104

Networked Multimedia Device Basics
Figure B-1 shows the general end-to-end architecture of the multimedia delivery
system.

The solid lines represent the physical and data link connections between each entity
and its adjacent entity. The dashed lines represent the communication path through
one or more of the entities.

The multimedia device in this figure has a default communication path, (not
shown), between it and the network administrative entity. This path is used to make
and break connections between the multimedia device and a given server. The result
of the connection establishment is the control and data channel communications
paths (CCH and DCH, respectively). Depending on the session being established,
this may take the form of many messaging paths, one messaging path carrying
MPEG, and one messaging path with a control protocol.

Figure B-1. General Network Topology for Multimedia Network Delivery

The following information is specific to a deployed Digital Entertainment Terminal
(DET) in an interactive multimedia network. SoftStax can also be used in a variety
of network intelligent consumer devices such as PDAs and pagers.

Multimedia Device Specifics

This section examines the multimedia device architecture.

Network
I/F

Module
(NIM)

Digital
Entertainment

Terminal
(DET)

Multimedia Device

CCH/DCH

Network Admin. Entity

Phys/DL Connection Network

Has
download

application &
associated

protocol
stacks

Server

Possible Network Architectures

Hybrid Fiber Coax (HFX)
ATM
X.25
Primary Rate ISDN
UDP/IP
MMDS

Appendix B: Using SoftStax with Multimedia Devices

OS-9 Network Programming Reference 105

Every device has two logical components:

• Digital Entertainment Terminal (DET)

This component has the MPEG decoders, graphics chips, and processing power
to run a session between the multimedia device and the server. For example, the
session may be Video-on-Demand (VOD), database applications, or interactive
gaming. The default resident application also runs on the DET. The resident
application in Figure B-2 is identified as the player shell.

• Network Interface Module (NIM)

This component deals with the network-specific protocol. It establishes and
terminates connections as well as transmits user data between the multimedia
device and multimedia device server.

Figure B-2. Type 1 Multimedia Device Architecture

Figure B-3. Type 2 Multimedia Device Architecture

The important distinction between the architectures in Figure B-2 and
Figure B-3 is where the application and network protocol processing is performed.

Type 1 multimedia devices have a motherboard containing the DET components
and a plug-in module with a separate processor that comprises the NIM. Having the
DET processor dedicated to application processing while the network processing is
performed on a different processor is an advantage.

Type 2 multimedia devices have only one processor performing all application and
network protocol processing. This limits the available computing power for the
application.

ITEM

A0 Messaging
Protocol

Physical

UPLINK

Digital Entertainment
Terminal

(DET)

A0 A1

To/
From
Server

Network Interface Module
(NIM)

ITEM

A0 Messaging
Protocol

Physical

Transport
Conversion

Module

ITEM

Call Ctl
Data Link

Physical

Player
Shell

ITEM

Call Control
Data Link

Physical

UPLINK

Multimedia Device

A0

A1

To/
From
Server

Player
Shell

Appendix B: Using SoftStax with Multimedia Devices

OS-9 Network Programming Reference 106

Notice that there are two reference points on the model, the A0 and the A1. The A0
reference point is network-independent. The A1 reference point is the interface
between the multimedia device and the network, which is network-dependent. The
idea is that NIMs belong to the network provider, while DETs are customer
equipment. This allows the DET to be portable across all networks.

Multimedia Device Run-Time Model

Figure B-4 shows the run-time model for a multimedia device. This section
concentrates on the ITEM interface and the components below it. Higher layer
software uses ITEM to receive private data not intended for video/graphics display
hardware and to communicate with a network administrative entity or server using
a protocol layer through the control channel interface.

Figure B-4. Multimedia Device Run-time Model

DET Software Configuration

Figure B-5 shows the placement of the DET software modules and where ITEM fits
in relationship to these modules.

Remote
Control
Input
Interface

Human
Interface

Graphics
Hardware
Interface

GUI MPEG
Interface

MPEG
I/O

Data
Channel
Interface

Control
Channel
Interface

ITEM INTERFACE

APPLICATION

Appendix B: Using SoftStax with Multimedia Devices

OS-9 Network Programming Reference 107

Figure B-5. ITEM Software Environment

ITEM Functions

In Figure B-6, a dashed box indicates a downloadable module.

Figure B-6. A Closer Look at the ITEM Interface

ITEM Interface

The ITEM interface block provides an API for higher layer software to access the
Microware network I/O system.

Control Channel Interface

The control channel interface communicates between the control channel hardware
and the protocols above it as it sends and receives control channel information. This
is typically implemented as a hardware driver sending and receiving packets over
the physical interface.

Player Shell

Session
Control

Channel
Map UpLink

Application

ITEM

OS-9/OS-9000

SPF

BLOB
Loader

X.25 UDP
other

protocols

LAP-B IP

Data Channel
Drivers

Control Channel
Drivers

Protocol
Drivers

Hardware
Drivers

ITEM INTERFACE

Management
Entity

Data and Control Channel Interface

Server*
Protocol

Stack

Network*
Protocol

BLOB
Loader

(i.e. DSM-CC)

Resident
Network

Communications
Protocol

Appendix B: Using SoftStax with Multimedia Devices

OS-9 Network Programming Reference 108

Data Channel Interface

The data channel interface receives the high speed data input path. It provides the
MPEG I/O system with MPEG data for playing audio and video assets and receives
any private data intended for higher layer software over the data channel. Current
implementations are receive data only. However, ITEM and the data channel
interface do not preclude this from being a bi-directional path. The data channel
interface is typically implemented as a hardware driver receiving (and in some cases,
sending) packets (typically MPEG-2 streams) on the data channel.

Resident Network Communications Protocol

For a Type 1 multimedia device, this block implements the communication protocol
between the DET and NIM, where the network-specific protocol is running
between the NIM and the network.

For a Type 2 multimedia device, this block is either a resident network-specific
protocol stack or a protocol requesting the network-specific protocol stack to be
downloaded from the network when the multimedia device runs through its first
initialization. The implementation can use the BLOB loader software block to
accomplish the download of the network protocol.

BLOB Loader

This block implements the protocol used by the network and/or servers in the
network to download modules to the multimedia device.

Network Protocol

This module can be resident on the multimedia device or downloaded to the
multimedia device using the resident network communications module previously
described. The network protocol implements the functions required to
communicate to a specific network architecture, such as HFC, ATM UNI 3.1([2]),
and ISDN D-channel layers 2 and 3.

For a Type 1 multimedia device, this module runs on the NIM processor. The A0
messaging protocol runs on the DET to send and receive commands between the
DET and NIM. For a Type 2 multimedia device, this module runs on the DET
processor.

Server Protocol Stack

The OS-9 environment provides a server protocol stack that can be dynamically
downloaded and installed as part of the system software. There are two advantages
to this environment:

• First, multiple applications can be downloaded and use the same server protocol
stack without the overhead of sending the protocol stack with each application.
The download procedure can inform the server that the desired protocol stack is
already available, saving the time and memory required for a subsequent
download of the same stack.

Appendix B: Using SoftStax with Multimedia Devices

OS-9 Network Programming Reference 109

• Second, in environments where multiple applications need to use the same
protocol stack to communicate with a server, the protocol stack saves memory.
Protocol stacks embedded within applications are not re-entrant. However, if a
protocol stack is loaded independently, multiple applications can access the
same protocol stack simultaneously, saving the extra memory required for the
same stack binary embedded in every application on the multimedia device.
There are no software constraints on the number of server protocol stacks on
the multimedia device at any given time. The available memory on a given DET
determines the number of protocol stacks.

Network Management Entity (NME)

NME maintains a log of any exception condition, anomalies, or status reports
generated by any module under ITEM. This information is accessed through the
ITEM interface and returned to the application by the NME.

Appendix B: Using SoftStax with Multimedia Devices

OS-9 Network Programming Reference 110

	Using SoftStax®
	Contents
	Overview Chapter 1
	OS-9 Networking Overview
	OS-9
	SoftStax
	RadiSys Hawk

	System Requirements
	Protocol Developers
	Chipset Manufacturers
	Bridge, Router, Gateway, Internet Equipment Manufacturers

	Architecture and Design Philosophy
	I/O Design
	The SoftStax Environment

	Application Environment
	Application Environment Design Goals
	Application Development
	Understandable Applications
	Network independence

	Data Structures and Uses
	API and Services Provided
	Device-oriented calls
	Path-Oriented calls
	Call-Control Calls
	Data Manipulation Calls
	Asynchronous Notification Calls

	Using the Application Environment

	Protocol Stack Framework
	Design Goals
	Software Baseline
	Open Architecture
	Stack and Layer Interoperability
	Protocol Stack Development
	Protocol Stack Add-ons
	Debugging Real-time Problems

	Driver Architecture
	Protocol Driver Data Structures
	Entry Points of a Protocol Driver
	Inter-driver Communication Primitives

	OS-9 Network I/O System Components Chapter 2
	Components
	Protocol and Hardware Drivers
	Device Descriptors
	Application Programming Interface (API)
	The OS Library
	The ITEM Library
	Network Specific APIs

	SoftStax Source File Directory Structure

	I/O APIs Chapter 3
	ITEM Library Interface
	Overview
	ITEM Philosophy
	Network Independence
	Operating System Independence

	Connection-oriented and Connectionless Networks
	ITEM Definitions Files
	Interactive Multimedia Channel Management

	item.h Structures

	device_type
	addr_type
	notify_type
	Initializing notify_type Structure Fields
	Example Using ntfy_ctl

	ite_cctl_pb
	Creating Your Own Library Call Extensions
	spf_ss_pb
	Using the Parameter Block in Setstat/Getstat Calls

	The SoftStax Device Descriptor Chapter 4
	Descriptors
	Internals
	Example: Create the Proto2 Device Descriptor
	Example: Using Logical Unit Number

	The SoftStax Driver
	Driver Conventions
	Driver Names
	Device Descriptor Names

	Advanced Programming Topics Chapter 5
	SPF Protocol Stacking
	Creating a Protocol Stack on a Path
	Passing a Protocol Stack with an Open Call
	Pushing and Popping
	Push and Pop Details

	Using the PROTSTAK Field

	Testing Applications and Protocols with SLOOP Chapter 6
	About SPLOOP
	Connection Oriented vs Connectionless Descriptors

	Using SPLOOP For Application Testing
	Using SPLOOP For Protocol Testing

	Examples Appendix A
	Example Applications
	How to Make an Application

	Example 1: Standard Telecommunications Application
	ex1_snd.c

	Example 2: Using os_lib.l
	spf_test.c

	Example 3: Loopback Process Application
	example3.c

	Using SoftStax with Multimedia Devices Appendix B
	Networked Multimedia Device Basics
	Multimedia Device Specifics
	Multimedia Device Run-Time Model
	DET Software Configuration
	ITEM Functions
	ITEM Interface
	Control Channel Interface
	Data Channel Interface
	Resident Network Communications Protocol
	BLOB Loader
	Network Protocol
	Server Protocol Stack
	Network Management Entity (NME)

