
w w w. ra d i sy s . co m
Revision A • July 2006

USB Peripheral SDK for OS-
9®

Version 1.1

July 2006
Copyright ©2006 by RadiSys Corporation

All rights reserved.
EPC and RadiSys are registered trademarks of RadiSys Corporation. ASM, Brahma, DAI, DAQ, MultiPro, SAIB, Spirit, and ValuePro are
trademarks of RadiSys Corporation.
DAVID, MAUI, OS-9, OS-9000, and SoftStax are registered trademarks of RadiSys Corporation. FasTrak, Hawk, and UpLink are
trademarks of RadiSys Corporation.
† All other trademarks, registered trademarks, service marks, and trade names are the property of their respective owners.

Copyright and publication information

This manual reflects version 1.1 of USB Host SDK for OS-9.
Reproduction of this document, in part or whole, by any means,
electrical, mechanical, magnetic, optical, chemical, manual, or
otherwise is prohibited, without written permission from RadiSys
Microware Communications Software Division, Inc.

Disclaimer

The information contained herein is believed to be accurate as of
the date of publication. However, RadiSys Corporation will not be
liable for any damages including indirect or consequential, from
use of the OS-9 operating system, Microware-provided software,
or reliance on the accuracy of this documentation. The
information contained herein is subject to change without notice.

Reproduction notice

The software described in this document is intended to
be used on a single computer system. RadiSys
Corporation expressly prohibits any reproduction of the
software on tape, disk, or any other medium except for
backup purposes. Distribution of this software, in part
or whole, to any other party or on any other system
may constitute copyright infringements and
misappropriation of trade secrets and confidential
processes which are the property of RadiSys
Corporation and/or other parties. Unauthorized
distribution of software may cause damages far in
excess of the value of the copies involved.

Table of Contents

Chapter 1: Introduction 7

8 Contents of this Package
9 USB Overview
9 Features
10 Performance
10 Communication

Chapter 2: Hawkview 13

14 Hawkview Overview
15 Running Hawkview
17 Browsing the OS-9 Target
18 Module Directory
18 Processes
19 Devices
19 Events
19 IRQ Vectors
19 Open Paths
19 Memory
20 Disk Devices
21 Modifying the OS-9 Target
21 Moving Modules
21 Deleting Items
21 Creating Directories
USB Peripheral SDK for OS-9 3

Chapter 3: Running USB 23

24 Requirements and Compatibility
24 Assumptions
24 Host Hardware Requirements (PC Compatible)
24 Host Software Requirements (PC Compatible)
25 Target Hardware Requirements
25 Target Software Requirements
26 Installing USB on the Target

Chapter 4: Device Drivers 29

30 Overview of Device Driver
30 Driver Requirements
31 Standard Driver Information
31 Driver Names
31 Device Descriptor Names
32 Driver Files
32 Common Files
33 Driver Specific Files
34 USB Device Drivers
34 Device Driver Structures
34 SPF_DRSTAT
35 SPF_LUSTAT
35 spf_desc.h
36 Device Driver Entry Points
36 entry.c
37 USB Driver Hardware Routines
37 hardware.c
40 Common USB Driver Codes
40 usb.c
41 Common Code Structures
41 usb_desc_block
42 Writing the USB Device Driver
4 USB Peripheral SDK for OS-9

42 Choose a Hardware Solution
43 Create New Driver Source Directory and Makefiles
47 Writing Applications

Product Discrepancy Report 49
USB Peripheral SDK for OS-9 5

6 USB Peripheral SDK for OS-9

Chapter 1: Introduction

This chapter contains the following sections:

• Contents of this Package

• USB Overview

Contents of this Package

This package is an add-on to OS-9® that must be installed on top of an
existing OS-9 installation.

Following is a list of directories and their contents. Each directory is
included with the USB Peripheral SDK for OS-9 and located in the MWOS
tree.

• DOS/BIN

contains hawkview.exe

• DOS/DRIVERS

contains a modified bulkusb driver and install file

• OS9000/<PROCESSOR>/CMDS

contains hawkview daemon to run on the OS-9 machine

• OS9000/<PROCESSOR>/PORTS/<BOARD>/CMDS/BOOTOBJS/SPF

contains SPF USB driver and descriptor

• SRC/TOOLS/HAWKVIEW

contains headers for hawkview daemon and application

• SRC/UTILS/OS/COM/HAWKVIEW

contains OS-9 source for hawkview daemon
8 USB Peripheral SDK for OS-9

1Introduction
USB Overview

USB is an external expansion bus that provides an easy and convenient
method of adding peripherals to a PC. In addition, USB connectivity is
becoming as prevalent in the embedded industry as it is in the PC industry.
Many developers need a real-time operating system with well-integrated
USB support to drive their hardware to the next level of connectivity; OS-9
provides this dynamic and flexible I/O architecture.

Features

Ease-of-use has been one of USB’s most compelling features. An external
universal serial bus port eliminates the need for multiple ports (modems,
printers, disks, etc.). A single port may be used to add multiple devices
without requiring the end user to add adapters to configure communication
software. In addition, it is possible to attach as many as 127 peripherals,
which may be connected through USB hubs.

Typical applications of the USB technology include the following:

• a hand-held data collection unit with a USB output to a PC

• a smart phone with USB “docking” capability

• a synchronized address book database with PC

• a PC-based Graphic User Interface for smart telephone control

• an in-car navigation data upload function to a laptop computer

• a smart device control and/or configuration from desktop PC or a laptop
computer

• a high speed transport for audio/video devices such as digital cameras,
DV cameras, or audio encoders
USB Peripheral SDK for OS-9 9

Performance

Electrically, there are three distinct types of devices that may be present in
a USB network. These include the following:

• host (root hub)

• hub

• node (device)

There may be only one host for each USB network, and while loops are not
allowed, multiple levels of hubs are permitted. These features make USB a
tiered star topology. In addition, devices may only include “leaf” nodes or be
integrated into hubs as functions.

Communication

USB provides communication between software on the host and its USB
function (present on the device). Functions have different communication
flow requirements for different client-to-function interactions.

• Software is an important part of USB’s communication flow.

• The USB is a polled bus; the Host Controller initiates all data transfers.

• All bus transactions involve the transmission of as many as three
packets. Each transaction begins when the Host Controller sends a
USB packet describing the type and direction of transaction, the USB
device address, and the point number. This packet is referred to as the
“token packet”. From here, the addressed USB device selects itself by
decoding the appropriate address fields.

In a given transaction, data is transferred from either host to device or
device to host. The direction of data transfer is specified in the token
packet. Following this, the source of the transaction sends a data packet
or indicates that it contains no data transfer. In general, the destination
responds with a handshake packet indicating whether or not the transfer
was successful.
10 USB Peripheral SDK for OS-9

1Introduction
• The USB data transfer model between a source or destination on the
host and an endpoint on a device is referred to as a “pipe”. There are
two types of pipe data--message and stream. While message data
contains a defined USB structure, stream data does not.

Additionally, pipes have associations of data bandwidth, transfer service
type, and endpoint characteristics such as directionality and buffer
sizes. Most pipes come into existence when a USB device is
configured.
USB Peripheral SDK for OS-9 11

12 USB Peripheral SDK for OS-9

Chapter 2: Hawkview

This chapter discusses Hawkview, including its components and
capabilities. The following sections are included:

• Hawkview Overview

• Running Hawkview

• Browsing the OS-9 Target

• Modifying the OS-9 Target

Hawkview Overview

Hawkview is a demonstration application included with the USB SDK. With
a layout similar to the Windows Explorer, Hawkview allows you to browse
and modify the OS-9 system from your Windows desktop.

From Hawkview, you can browse to specific sets of information, such as
active devices, open paths, and filesystem directory contents. For example,
depending on your board, the PCF descriptor for the IDE PC card may
either be mhe1 or mhc1. By clicking on the appropriate descriptor, you can
view its current directory.

In addition, Hawkview allows you to browse current processes, IRQ
vectors, events, and memory lists.
14 USB Peripheral SDK for OS-9

2Hawkview
Running Hawkview

When the USB device driver has been iniz’d and the Hawkview daemon
on the OS-9 target is running, you can start Hawkview. Complete the
following steps to run Hawkview.

Step 1. Execute hawkview.exe on your Windows PC. The Hawkview
Properties window should appear, as shown in Figure 2-1 .

Figure 2-1

Step 2. Under Connect Using, select the USB radio button; click OK.
Hawkiew attempts to connect to the USB device.

This connection attempt may fail, causing the following error message to
appear:

USB device not present or not functioning

Couldn’t connect via USB
USB Peripheral SDK for OS-9 15

The list below shows some possible causes and solutions associated with
the above error message:

• The USB device is not connected. To
correct this error, simply plug in the USB device.

• Device enumeration with the host failed. There
is an unknown device item under the USB items in the System
Properties. To correct this error, cause a USB reset and try to connect
with Hawkview again.

• The Hawkview daemon is not running on the target.
Run procs on the target to make sure it is running. If not, run
hawkview & to start the daemon.
16 USB Peripheral SDK for OS-9

2Hawkview
Browsing the OS-9 Target

Once connected, Hawkview shows a list of browseable items in the left side
of the OS-9 target window, as shown in Figure 2-2 .

Figure 2-2
USB Peripheral SDK for OS-9 17

Module Directory

The module directory (shown in Figure 2-3) displays the current modules
in memory on your board. From this directory you can view the current
modules in memory on the OS-9 target board. The module directory also
displays extended module information, such as who the owner of the
module is, what type of module it is, what the module’s edition number is,
where it is in memory, and how much stack it requires.

Figure 2-3

In addition, you can retrieve modules from the target by right-clicking on the
module, then selecting Retrieve from Target, and choosing a local
directory on your PC.

Processes

The Processes item shows you the current state of every process in the
system. This includes information such as the current process state, the
CPU used, the number of OS and I/O calls, and the last system call made.
Browse Processes if you would like extended information on processes
currently running on the OS-9 target.
18 USB Peripheral SDK for OS-9

2Hawkview
Devices

The Devices list shows all of the currently iniz'd devices in the system.
For each of the descriptors, the list gives the name of the driver and
location of the driver static storage. It is also useful for determining whether
or not a specific driver is initialized.

Events

The Events list shows all of the current events that have been created on
the system. If you are creating events in your application or driver, this list is
useful for determining whether or not the event has been set up correctly.

IRQ Vectors

The IRQ Vectors list helps you find out which vectors are being used and
which modules control a specific vector.

Open Paths

The Open Paths list allows you to see all of the open paths in the sytem
and which processes have them opened.

Memory

The Memory item allows you to see what memory is allocated. For
example, browse the Memory item if you are writing an application and the
OS-9 system runs out of memory. For debugging purposes, you may want
to learn where memory is being allocated and for what purpose.

You can also use the Memory item to view the OS-9 target’s memory. Once
you have chosen a specific set of memory, you can retrieve the contents of
that memory space by right-clicking on the space and selecting Retrieve
from Target.
USB Peripheral SDK for OS-9 19

Disk Devices

The disk devices are browseable file systems that navigate in much the
same way as the Module Directory; they also give a similar type of
information. Common disk descriptors are r0, mhc1and mhe1.
20 USB Peripheral SDK for OS-9

2Hawkview
Modifying the OS-9 Target

The following sections describe ways in which Hawkview allows you to
modify your OS-9 target.

Moving Modules

You can drag and drop modules from your Windows desktop to a disk
device or the module directory of your OS-9 target. You can also drag
modules from the OS-9 system disk devices to the Module Directory or
another disk device.

 Deleting Items

Hawkview allows you to delete items from the Module Directory list,
Events list, and disk devices. To do this, right-click on the item you want to
delete and choose Delete from the menu.

Creating Directories

Hawkview supports creating directories in the Module Directory or any
of the disk devices. To do this, right-click on the directory and choose New
Folder.
USB Peripheral SDK for OS-9 21

22 USB Peripheral SDK for OS-9

Chapter 3: Running USB

This chapter provides information on installing and running the
Universal Serial Bus (USB) Software Developer’s Kit (SDK). It includes
the following sections:

• Requirements and Compatibility

• Installing USB on the Target

Requirements and Compatibility

The following describes the assumptions and requirements associated with
using USB for OS-9.

Assumptions

This manual assumes you have installed OS-9 on your PC and created an
OS-9 bootfile for your reference board.

Host Hardware Requirements (PC Compatible)

Your host PC should have the following hardware:

• a 266 MHz PC w/ Host USB (Universal Serial Bus) port

• an IDE PC card reader/writer

• an IDE PC flash card

Host Software Requirements (PC Compatible)

Your host PC should have the following software:

• Windows 98 w/ Service Pack 1 or Windows 2000

• Hawkview Application

• bulkusb.sys (located in $(MWOS)/DOS/DRIVERS)
24 USB Peripheral SDK for OS-9

3Running USB
Target Hardware Requirements

The device requires one of the following boards:

• SuperH 7709SE01 board

• Assabet board

Target Software Requirements

The device requires the following software:

• OS-9 or OS-9 for 68K port to target (with SoftStax®)

• Hawkview Application for OS-9

• USB driver
USB Peripheral SDK for OS-9 25

Installing USB on the Target

Complete the steps below to install the USB SDK onto your target.

NoteNote
For ARM users:

If you are installing USB on an ARM platform, you must set the system
speed to 191 MHz in order for Hawkview to work properly.

Step 1. Copy the following files from your MWOS directory onto the PC card or
in the boot:

• $(MWOS)/OS9000/<PROCESSOR>/CMDS/hawkview

• $(MWOS)/OS9000/<PROCESSOR>/PORTS/<board>/CMDS/
BOOTOBJS /SPF/<driver>

• $(MWOS)/OS9000/<PROCESSOR>/PORTS/<board>/CMDS/
BOOTOBJS/SPF/usb0

Step 2. Plug in all of the necessary cables, including those listed below:

• Power

• Serial

• USB

Boot your board, if necessary.

Step 3. At the OS-9 shell prompt, load the modules that have been placed on
the PC card by entering the following command on the command line:

chd /
load -d hawkview <driver> usb0

Step 4. Initialize the OS-9 USB driver by typing iniz /usb0 on the command
line.
26 USB Peripheral SDK for OS-9

3Running USB
Step 5. Run the hawkview daemon in the background by entering
hawkview & on the command line.

Step 6. Cause a USB reset by unplugging the USB cable from the board and
plugging it back in.

Step 7. Using Windows Explorer, browse to $(MWOS)/DOS/DRIVERS; pick the
BULKUSB.INF file to install the driver. This only must be done once on
the Host PC.

If the driver has not been previously installed on your Windows 98 machine,
Windows brings up the Add New Hardware wizard. After completing the
fields in the wizard, proceed to step eight.

Step 8. Execute hawkview.exe on your PC. It is located in
$(MWOS)/DOS/BIN.

The Hawkview Properties box appears. Select the USB radio button.

Step 9. Click OK.

Hawkview should display a tree of browseable items in the left side of the
OS-9 target.
USB Peripheral SDK for OS-9 27

28 USB Peripheral SDK for OS-9

Chapter 4: Device Drivers

This chapter defines the design standards for an OS-9 SoftStax
Universal Serial Bus (USB) device driver implementation. It includes the
following sections:

• Overview of Device Driver

• Driver Files

• USB Device Drivers

• Common USB Driver Codes

• Common Code Structures

• Writing the USB Device Driver

• Writing Applications

Overview of Device Driver

The standard OS-9 Universal Serial Bus (USB) Device Driver is configured
to use one control endpoint, endpoint 0. This endpoint negotiates with the
USB host and two bulk endpoints, Bulk IN and Bulk OUT, for bi-directional
communication with the host.

Figure 4-1 OS-9 USB Device Endpoint Use

Driver Requirements

OS-9 USB device drivers are innumerable through communication between
endpoint 0 and the USB host. In order to run the Hawkview application, the
base USB device driver must have two bulk endpoints (endpoint 1 is a Bulk
OUT and endpoint 2 is a Bulk IN). All requirements of both the control and
bulk endpoints come from the USB specification. However, certain
hardware may have limitations, forcing a specific configuration.

Endpoint 0 should be capable of sending at least a 64-byte packet to
accommodate descriptors needing returned. Endpoints 1 and 2 have no
size requirements as long as the endpoint descriptor lists the maximum
sizes.

OS-9 USB device
Windows 98/

Windows 2000
PC

Control Endpoint (Endpoint 0)

Bulk OUT (Endpoint 1)

Bulk IN (Endpoint 2)

OS-9 USB device endpoint usage
30 USB Peripheral SDK for OS-9

4Device Drivers
Standard Driver Information

The following details conventions for driver and device descriptor names.

Driver Names

SoftStax USB device side drivers usually start with the spusbd prefix. The
spusbd denotes a SoftStax USB device side driver. Examples include
spusbdsa, spusbdsl11, and spusbd823.

Device Descriptor Names

Device descriptors for USB Drivers should be usbX (where X is a number).
Most devices only have one device interface; therefore, they have usb0 as
their descriptor.
USB Peripheral SDK for OS-9 31

Driver Files

The following is a typical list of driver files found in the MWOS tree. These
files implement a USB device side hardware driver and USB protocol.

$(MWOS)/SRC/DPIO/SPF/DRVR/USBD/cproto.h
$(MWOS)/SRC/DPIO/SPF/DRVR/USBD/entry.c
$(MWOS)/SRC/DPIO/SPF/DRVR/USBD/usb.c
$(MWOS)/SRC/DPIO/SPF/DRVR/USBD/pp_stg.c
$(MWOS)/SRC/DPIO/SPF/DRVR/USBD/<DRVR>/defs.h
$(MWOS)/SRC/DPIO/SPF/DRVR/USBD/<DRVR>/history.h
$(MWOS)/SRC/DPIO/SPF/DRVR/USBD/<DRVR>/proto.h
$(MWOS)/SRC/DPIO/SPF/DRVR/USBD/<DRVR>/main.c
$(MWOS)/SRC/DPIO/SPF/DRVR/USBD/<DRVR>/hardware.h
$(MWOS)/SRC/DPIO/SPF/DRVR/USBD/<DRVR>/hardware.c
$(MWOS)/<OS>/<CPU>/PORTS/<PORT>/SPF/<DRVR>/DEFS/spf_desc.h
$(MWOS)/<OS>/<CPU>/PORTS/<PORT>/SPF/<DRVR>/makefile
$(MWOS)/<OS>/<CPU>/PORTS/<PORT>/SPF/<DRVR>/spfdesc.mak
$(MWOS)/<OS>/<CPU>/PORTS/<PORT>/SPF/<DRVR>/spfdrvr.mak
$(MWOS)/<OS>/<CPU>/PORTS/<PORT>/SPF/<DRVR>/spfdbg.mak

Common Files

The following describes common files found in the above driver source:

cproto.h contains prototypes for the common
functions

entry.c contains all of the entry points called by the
SPF file manager

These calls are detailed in the Device
Driver Entry Points section of this
document.
32 USB Peripheral SDK for OS-9

4Device Drivers
usb.c contains the code necessary to answer
requests from the host to enumerate the
device

The Common Code Structures section of
this document discusses these functions in
detail.

pp_stg.c contains the per-path storage functions for
the driver

Driver Specific Files

defs.h contains all of the SPF structure definitions
needed to compile for a specific USB device
driver

This file includes spf.h, proto.h,
history.h, and hardware.h. For USB,
this file contains macros extending the SPF
data structures. The USB Device Drivers
section of this document outlines these
macros.

history.h contains the driver edition history and
macros defining the edition of the driver

proto.h contains all of the function prototypes for
this driver

Each time a new function is added to the
driver, its prototype should be added to this
file.

main.c contains the initialized data for the driver
static storage (spf_drstat)

hardware.h contains all of the necessary hardware
specific definitions

hardware.c contains hardware specific functions, such
as hw_init(), hw_isr(), hw_term(),
etc.
USB Peripheral SDK for OS-9 33

USB Device Drivers

The following section describes device driver structures and endpoints.

Device Driver Structures

The following device driver structures can be found in defs.h.

SPF_DRSTAT

The SPF_DRSTAT macro in defs.h extends the spf_drstat SPF
structure. The USB common code requires the following definitions to be in
the driver static storage. Any further definitions are driver-specific.

#define SPF_DRSTAT \
 usb_desc_block *descriptors; \
 error_code (*cache_cctl)(u_int32 control, void *addr, u_int32 size); \
 void *dr_cglobs; \
 ... \
 ...

The initializer for the spf_drstat structure goes into main.c.
spf_drstat dr_stat = {
 SPF_VERSION, /* dr_version */
 NULL, /* dr_fmcallup */
 dr_iniz, /* dr_iniz */
 dr_term, /* dr_term */
 dr_getstat, /* dr_getstat */
 dr_setstat, /* dr_setstat */
 dr_downdata, /* dr_downdata */
 dr_updata, /* dr_updata */
 0, /* dr_att_cnt */
 NULL, /* dr_lulist */
 DR_ALLOC_LU_PERPORT, /* dr_lumode */
 { 0 }, /* dr_rsv1[] */
 0, /* dr_use_cnt */
 &descriptors, /* descriptor block */
 NULL, /* cache_cctl() */
 &_bdata, /* globals */
 ..., /* additional data */
 ... /* additional data */
};
34 USB Peripheral SDK for OS-9

4Device Drivers
SPF_LUSTAT

The SPF_LUSTAT macro in defs.h extends the spf_lustat structure.
All the fields in this structure are driver-specific extensions for the logical
unit stat. This macro looks similar to the following macro:
#define SPF_LUSTAT \
 Pp_udc_stat lu_ppstat; /* Per path static */\
 pp_udc_stat lu_sdlc_const; /* default initial values for ppstat */\
 void* lu_dbg; /* debugging pointer */\
 char lu_dbg_name[16]; /* Name of debug module */\
 u_int32 lu_irqlevel; /* IRQ level */\
 u_int32 lu_vector; /* IRQ vector number */\
 u_int32 lu_priority; /* IRQ polling priority */\
 u_int32 lu_irqmask; /* IRQ mask level */\
 void* lu_cache_static; /* static storage for cache_cctl() */

The macro SPF_LUSTAT_INIT (shown below) lists the initial values for the
extensions above to the spf_lustat structure.
#define SPF_LUSTAT_INIT \
 NULL, /* lu_ppstat */\
 DEFAULT_PPSTAT, /* Default values */\
 NULL, /* lu_dbg */\
 {DEBUG_NAME}, /* lu_dbg_name */\
 IRQLEVEL, /* lu_irqlevel */\
 IRQVECTOR, /* lu_vector */\
 PRIORITY, /* lu_priority */\
 IRQMASK /* lu_irqmask */

spf_desc.h

There are no special settings for USB. Refer to the Using SoftStax
manual for more information about settings in spf_desc.h that are
pertinent to building descriptors and device drivers.
USB Peripheral SDK for OS-9 35

Device Driver Entry Points

The USB device driver contains the following SoftStax entry points:

entry.c
error_code dr_iniz(Dev_list deventry)

error_code dr_term(Dev_list deventry)

error_code dr_getstat(Dev_list deventry, Spf_ss_pb pb)

error_code dr_setstat(Dev_list deventry, Spf_ss_pb pb)

error_code dr_downdata(Dev_list deventry, mbuf mb)

error_code dr_updata(Dev_list deventry, mbuf mb)

dr_iniz() entered only if no other device descriptors
are currently attached (iniz’d) to the USB
driver

First, dr_iniz() installs the hardware
interrupt service routine (ISR). Next, it
initializes the USB hardware on a specific
platorm by calling hw_init().

dr_term() disables the USB hardware with a call to
hw_term() and removes the installed ISR

The file manager calls dr_term() when
the last path is closed on the device
(deiniz’d).

dr_getstat() All of the SoftStax drivers have the
SPF_SS_UPDATE entry point (explained
below):

• SPF_SS_UPDATE is the lowest
(device) level driver. This function
only fills certain variables into the
parameter block passed to it and
returns.

dr_setstat() This entry point handles the SPF_SS_OPEN
and SPF_SS_CLOSE setstat subcodes
(explained below):
36 USB Peripheral SDK for OS-9

4Device Drivers
• SPF_SS_OPEN calls the adjacent
upper-layer protocol at its
dr_setstat with subcode
SPF_SS_UPDATE to indicate the
driver is ready for I/O.

• SPF_SS_CLOSE returns the device
list entry of this driver’s adjacent
lower-layer protocol. Since this is a
device driver at the lowest level, the
NULL pointer is returned.

dr_downdata() initiates the transfer of an mbuf by calling
hw_xmit()

dr_updata() called by the driver to send a received mbuf
up the SoftStax stack to the application

USB Driver Hardware Routines

The following functions are called from common code (entry.c or
usb.c). They are hardware specific functions; thus, they need to be
written for each USB device driver.

hardware.c
error_code hw_init(Dev_list dev)
error_code hw_term(Dev_list dev)
error_code hw_isr(Dev_list dev)
error_code hw_xmit(Dev_list dev, mbuf mb)
error_code hw_setaddr(Dev_list dev, u_int8 address)
void hw_ep0_sendByte(Dev_list dev, u_int32 index, u_int8 byte)
void hw_ep0_sendBlock(Dev_list dev, u_int8 *src, u_int32 len)
void hw_ep0_sendDone(Dev_list dev, u_int32 len)

hw_init() dr_iniz() calls this function when a path
to the device is opened.

This function is responsible for initializing
the hardware and allocating any memory
required so the device can communicate
USB Peripheral SDK for OS-9 37

with the USB host. This function is the
appropriate place to initialize the DMA
hardware, if applicable.

hw_term() dr_term() calls this function when the last
path to this device has been closed.

dr_term()undoes the work that
hw_init()performed. Its responsibilities
include turning off the USB device,
de-allocating the memory allocated by
hw_init(), and, if necessary, turning off
DMA.

hw_isr() This function is the interrupt handler.

The OS-9 interrupt handler calls
hw_isr()each time the USB device gets
an interrupt. Usually, this means that the
state of the line or the state of the device
has changed. Possible state changes
include a packet received by the USB
device, a packet requested by the host, a
USB device suspended or resumed by the
host, or an error condition. For each of these
changes, a bit in the status register (SR)
changes.

hw_setaddr() The common code
handle_device_request()calls this
function to change the USB address of the
USB device.

Setting the USB device address is
hardware-specific; thus, this function
triggers a change after the next interrupt to
the USB device.

hw_xmit() This function, called by dr_downdata(), is
responsible for passing the data in the mbuf
from the application to the correct endpoint.
38 USB Peripheral SDK for OS-9

4Device Drivers
 It is also responsible for initializing a DMA
transfer if DMA is used or copying the data
directly to an outgoing FIFO. hw_xmit()
must also keep track of the size of the data
in case a transmit error occurs or the mbuf
data is found to be larger than the outgoing
FIFO can handle.

hw_ep0_sendByte() This function is called by the USB common
code to add a byte to the send buffer for
endpoint 0.

hw_ep0_sendBlock() This function loads a block of data into the
send buffer for the control endpoint. The
USB common code in usb.c calls this
function.

hw_ep0_sendDone() This function sets the length of the control
endpoint’s send buffer and to start sending
the data. This function sets the length of the
control endpoint’s message and notifies the
driver that the message is ready to be sent.
Primarily, the USB common code in usb.c
calls hw_ep0_sendDone(). In addition, it
sends an empty packet or ends a data
transaction in the driver code.
USB Peripheral SDK for OS-9 39

Common USB Driver Codes

The following is a list of common USB driver codes.

usb.c

error_code handle_device_request(Dev_list dev)
error_code handle_class_request(Dev_list dev)
error_code handle_vendor_request(Dev_list dev)

handle_device_request()

responsible for answering all of the standard
device requests as stated in the USB
Specification

This function handles the return of all of the
configuration descriptors and makes the call
to hw_setaddr()to set the USB hardware
address.

handle_class_request() SoftStax USB device drivers are currently
not required to implement any class specific
requests.

This function is present for completeness.

handle_vendor_request()

responsible for answering vendor-specific
requests from the device

On some platforms, the function is used to
work around specific USB hardware bugs.
40 USB Peripheral SDK for OS-9

4Device Drivers
Common Code Structures

The following provides a list of common codes structures.

usb_desc_block

This structure passes buffers and the USB device descriptor information
from the driver proper to the USB common code. The common code uses
indesc to read incoming descriptor data. indesc points to the input buffer
where the device driver reads a request descriptor from the host.

The lengths and data for device and configuration descriptors include
device_len, device, config_len and config. The common code
uses these to pass descriptor information back to the USB host. A pointer
to this structure is required in the spf_dr_stat structure.
typedef struct {
 usb_device_request *indesc; /* pointer to the request descriptor */
 u_int32 device_len;/* length of the device descriptor */
 u_int8 *device; /* pointer to the device descriptor */
 u_int32 config_len;/* length of the configuration descriptor */
 u_int8 *config; /* pointer to the config. descriptor */
} usb_desc_block;

The following is an example of initialization for this structure:
usb_device_request inDesc[2];

#define DEVLEN 0x12
unsigned char udc_device[] = {
 0x12,USB_WVAL_DEVICE,0x10,0x01,0xff,3,0,0x40,0x5e,4,0x0a,0x93,0,0,0,0,0,1
};

#define CONFLEN 32
unsigned char udc_conf[] = {
 9,USB_WVAL_CONFIGURATION,CONFLEN,0,1,1,0,0x80,0x00,
 9,USB_WVAL_INTERFACE,0,0,2,0,0,0,0,
 7,USB_WVAL_ENDPOINT,0x82,2,0x40,0,0,
 7,USB_WVAL_ENDPOINT,0x01,2,0x40,0,0,
};

usb_desc_block descriptors = {
 &inDesc[0],
 DEVLEN,
 udc_device,
 CONFLEN,
 udc_conf
};
USB Peripheral SDK for OS-9 41

Writing the USB Device Driver

The following are the requirements for writing a device driver:

• OS-9/OS-9000 port to the platform

• SoftStax port to the platform

• Win98 or Win2000 PC w/ USB host controller and Microsoft Windows
2000 DDK

• USB hardware knowledge

• USB traffic analyzer (recommended)

• VID and PID for USB device driver

The steps to write a USB device driver are described in the Create New
Driver Source Directory and Makefiles section.

Choose a Hardware Solution

Choose hardware for the USB device that meets the needs of the project.
For this example, Assabet is the board running OS-9 and the SA-1100 is
the CPU. The SA-1100 has an on-chip ASIC for USB. The hypothetical
example driver name is spusbdsa1100. The setup for this driver is one
control endpoint, one Bulk IN endpoint, and one Bulk OUT endpoint.
42 USB Peripheral SDK for OS-9

4Device Drivers
Create New Driver Source Directory and Makefiles

The following steps lead you through creating a new (sample) driver source
directory and makefile:

Step 1. Copy the files from $(MWOS)/SRC/DPIO/SPF/DRVR/USBD/SAMPLE

to $(MWOS)/SRC/DPIO/SPF/DRVR/USBD/SPUSBDSA1100.

Step 2. Copy the files from $(MWOS)/OS9000/SAMPLES/USB/SPF/EXAMPLE
to $(MWOS)/OS9000/ARM4/PORTS/<ASSABET>/SPF/SPUSBDSA1100.

Step 3. Make the following changes to spfdrvr.mak and spfdbg.

change the following:

TRGTS = spsample
TRGT_FNAME = spsample
PICSUB = # PICLIB

to the following:
TRGTS = spusbdsa1100
TRGT_FNAME = spusbdsa1100
PICSUB = -l=$(PORT)/LIB/pic1100.l

Step 4. Make the following changes in spf_desc.h.

change the following:
#define PRIORITY 0
#define IRQVECTOR 0x00
#define PORTADDR 0x00000000
#define IRQLEVEL 0
#define DRV_NAME "spsample"

to the following:
#define PRIORITY 1
#define IRQVECTOR 0x4d
#define PORTADDR 0x80000000
#define IRQLEVEL 4
#define DRV_NAME "spusbdsa1100"

Step 5. Modify the descriptors pointed to in usb_desc_block structure in
hardware.c.
USB Peripheral SDK for OS-9 43

device_desc[] and config_desc[] are device-dependent structures
that describe the device to the host. They must be accurate concerning the
specification of the device; they tell the host which driver is to be used for
the device, describe the endpoints, and give the host input on power
consumption.

More information about these descriptors can be found in the The
Universal Serial Bus Specification in the web site address,
http://www.usb.org.

Step 6. Add code to hw_init() and hw_term() in hardware.c.

You should be able to iniz’d and deiniz’d the device after completing
the code in these two functions.

If the activated device causes interrupts, you can set a breakpoint on
hw_isr() before the device is iniz’d; the debugger should then stop on
hw_isr(). Setting a breakpoint on hw_isr() verifies that the device is
receiving interrupts and that you have initialized it properly.

Step 7. Add code to hw_isr() in hardware.c to handle interrupts.

hw_isr() is responsible for handling all of the interrupts that the USB
device can generate. Usually, a change in the state of bits in the status
register identifies these interrupts. However, only the hw_isr() routine
handles all of the possible interrupts. In addition, the most important action
is to implement code to handle an endpoint 0 interrupt in order to get the
device enumerated by the host.

Place the data received by an endpoint 0 interrupt into the inDesc
structure. Then, make a check to determine what type of request this is
(device, class, or vendor) and call the correct handling routine
(handle_devcie_request(), handle_class_request(), or
handle_vendor_request()).
44 USB Peripheral SDK for OS-9

4Device Drivers
The code should look similar to the code below:
{
 u_int8 type;
 type = (indesc->bmRequestType & USB_BMREQ_TYPE_MASK);
 if (type == USB_BMREQ_TYPE_STANDARD) {
 handle_device_request(dev);
 } else if (type == USB_BMREQ_TYPE_CLASS) {
 handle_class_request(dev);
 } else if (type == USB_BMREQ_TYPE_VENDOR) {
 handle_vendor_request(dev);
 }
}

Step 8. Add code to hw_ep0_xxx() and hw_setaddr() routines in
hardware.c.

• hw_ep0_sendByte() adds a byte to the send buffer for transmitting
data back to the host.

• hw_ep0_sendBlock() adds a block of bytes to the transmit buffer for
transmitting data back to the host.

• hw_ep0_sendDone() signifies the end of processing for the input
request and tells the driver that the buffer is ready to be sent.

The following code shows a possible way to implement the hw_ep0_xxx()
routines (obuffer[] is the buffer the interrupt handler uses to transmit
data, while obuffer_ready is a boolean indicating the buffer is ready to
send and obuffer_length is the length of the descriptor to pass to the
host):

u_int8 obuffer[256]; /* the output buffer for transmission on endpoint 0 */
u_int32 obuffer_ready=0;/* boolean, is the buffer ready for transmission */
u_int32 obuffer_length; /* output buffer length */

void hw_ep0_sendByte(Dev_list dev, u_int32 index, u_int8 byte)
{
 u_int8 *dest = ((u_int8*)&obuffer[0]) + index;

 *dest = byte;
}

void hw_ep0_sendBlock(Dev_list dev, u_int8 *src, u_int32 len)
{
 u_int8 *dest = &obuffer[0];

 while (len--) {
 *(dest++) = *(src++);
 }
}

void hw_ep0_sendDone(Dev_list dev, u_int32 len)
{
 obuffer_length = len;
 obuffer_ready = 1; /* this is cleared by the transmitter when finished */
}

USB Peripheral SDK for OS-9 45

When it receives the descriptor, handle_device_request() calls
hw_setaddr() to set its device address. On some devices, you can set
the address right away, but in others the address waits for the next
message from the host controller. The behavior is device-dependent.

Upon completion of these steps and when the USB cable is plugged in, the
host should enumerate the USB device. The errata for the SA-1100 tells
the driver writer that the USB cable should be connected before the code
touches USB registers. This may not be true with other hardware.

Step 9. Add code to hw_isr().

Since the host has enumerated this device, add code to hw_isr() to
receive information on the Bulk OUT endpoint. SoftStax USB device drivers
use mbufs to pass information up the SPF stack to the application. If DMA
is used, data can be copied directly into an mbuf for transfer to the
application. If there is no DMA, the FIFO must be copied by the CPU into
an mbuf for transfer to the application.

Since the SA-1100 accesses its FIFOs using DMA, DMA directly into an
mbuf. This means that you also need to flush the cache before Bulk data is
received into the mbuf. Once there, it can be sent up the SPF stack using
DR_FMCALLUP_PKT (dev, dev, mbuf).

You can now test using the dump command on the target and
rwbulk.exe from the Windows host. You can use rwbulk to send data to
the device; dump displays this data on the OS-9 console. When everything
is correct, proceed to the next step.

Step 10. Add code to hw_xmit().

hw_xmit() receives an mbuf and queues it to a list to send to the host or
start the send process if the queue is empty. If beginning the process,
hw_xmit()is starts the DMA on the mbuf or copies the data from the mbuf
to the outgoing FIFO. However, if the mbuf is added to a queue, hw_isr()
sends each mbuf in the queue, but only when data is requested from the
USB host (via an IN packet for that endpoint).

hw_xmit()should also use DMA to transmit the mbuf on the SA-1100.

Step 11. Test with rwbulk.exe and the loopback program in the Writing
Applications section of this document; then, test using hawkview.exe
for Windows and hawkview daemon for OS-9.
46 USB Peripheral SDK for OS-9

4Device Drivers
Writing Applications

The following is an example of a simple loopback program. When run, it
opens the USB descriptor, giving it access to a bulk read and write
endpoint. Following this, it loops, blocking on a read of a 64-byte packet.
When it receives a packet it writes the same data back to the host.
#include <stdio.h>
#include <errno.h>
#include <modes.h>
#include <types.h>

#define DRVR_NAME "/usb0"
char * name = DRVR_NAME;
u_int32 mode = S_IREAD | S_IWRITE;
path_id ppid;

#define BUF_LEN 0x40
unsigned char buffer[BUF_LEN];

void main(int argc, char *argv[])
{
 error_code err;
 u_int32 count = BUF_LEN;

 err = _os_open(name, mode, &ppid);
 if (err) {
 exit(_errmsg(err, "Can't open: %s", name));
 }

 while (1) {
 if ((err = _os_read(ppid, buffer, &count)) == EOS_EOF) {
 _os_close(ppid);
 exit(_errmsg(err, "Reached EOF on %s", name));
 }
 _os_write(ppid, buffer, &count);
 }
}

USB Peripheral SDK for OS-9 47

48 USB Peripheral SDK for OS-9

	USB Peripheral SDK for OS- 9®
	Table of Contents
	Chapter 1: Introduction
	Contents of this Package
	USB Overview
	Features
	Performance
	Communication

	Chapter 2: Hawkview
	Hawkview Overview
	Running Hawkview
	Browsing the OS-9 Target
	Module Directory
	Processes
	Devices
	Events
	IRQ Vectors
	Open Paths
	Memory
	Disk Devices

	Modifying the OS-9 Target
	Moving Modules
	Deleting Items
	Creating Directories

	Chapter 3: Running USB
	Requirements and Compatibility
	Assumptions
	Host Hardware Requirements (PC Compatible)
	Host Software Requirements (PC Compatible)
	Target Hardware Requirements
	Target Software Requirements

	Installing USB on the Target

	Chapter 4: Device Drivers
	Overview of Device Driver
	Driver Requirements
	Standard Driver Information
	Driver Names
	Device Descriptor Names

	Driver Files
	Common Files
	Driver Specific Files

	USB Device Drivers
	Device Driver Structures
	SPF_DRSTAT
	SPF_LUSTAT
	spf_desc.h

	Device Driver Entry Points
	entry.c

	USB Driver Hardware Routines
	hardware.c

	Common USB Driver Codes
	usb.c

	Common Code Structures
	usb_desc_block

	Writing the USB Device Driver
	Choose a Hardware Solution
	Create New Driver Source Directory and Makefiles

	Writing Applications

