
RadiSys. 118th Street
Des Moines, Iowa 50325

515-223-8000

Revision A • April 2003www.radisys.com

Using OS-9®

Version 4.2

April 2003
Copyright ©2003 by RadiSys Corporation.

All rights reserved.
EPC and RadiSys are registered trademarks of RadiSys Corporation. ASM, Brahma, DAI, DAQ, MultiPro, SAIB, Spirit, and ValuePro are
trademarks of RadiSys Corporation.
DAVID, MAUI, OS-9, OS-9000, and SoftStax are registered trademarks of RadiSys Corporation. FasTrak, Hawk, and UpLink are
trademarks of RadiSys Corporation.
† All other trademarks, registered trademarks, service marks, and trade names are the property of their respective owners.

Copyright and publication information

This manual reflects version 4.2 of OS-9.
Reproduction of this document, in part or whole, by
any means, electrical, mechanical, magnetic, optical,
chemical, manual, or otherwise is prohibited, without
written permission from RadiSys Corporation.

Disclaimer

The information contained herein is believed to be
accurate as of the date of publication. However,
RadiSys Corporation will not be liable for any damages
including indirect or consequential, from use of the
OS-9 operating system, Microware-provided software,
or reliance on the accuracy of this documentation.
The information contained herein is subject to change
without notice.

Reproduction notice

The software described in this document is intended to
be used on a single computer system. RadiSys Corpo-
ration expressly prohibits any reproduction of the soft-
ware on tape, disk, or any other medium except for
backup purposes. Distribution of this software, in part
or whole, to any other party or on any other system may
constitute copyright infringements and misappropria-
tion of trade secrets and confidential processes which
are the property of RadiSys Corporation and/or other
parties. Unauthorized distribution of software may
cause damages far in excess of the value of the copies
involved.

OS-9 Technical Manual 3

Contents

.

Chapter 1: Basic Commands and Functions.

Logging onto a Timesharing System .. 10.

Introduction to the Shell.. 11.

Performing a Command Search ... 12.

Using the Keyboard .. 12.

Line Editing Control Keys .. 12.

Interrupt Keys ... 15.

The Page Pause Feature ... 16.

Standard OS-9 Utilities ... 16.

 Using the help Utility ... 17.

Using free and mfree .. 17.

Chapter 2: The OS-9 File System.

OS-9 File Storage ... 20.

The File Pointer .. 20.

Text Files ... 22.

Executable Program Module Files .. 23.

Random Access Data Files .. 23.

File Ownership ... 23.

Attributes and the File Security System ... 24.

Directory Attributes ... 25.

The OS-9 File System.. 26.

Current Directories ... 27.

DIrectories and Single-User Systems... 27.

Directories and Multi-User Systems .. 27.

The Home Directory.. 28.

Directory Characteristics .. 28.

Accessing Files and Directories: The Pathlist ... 29.

Full Pathlists ... 29.

Relative Pathlists... 30.

Basic File System Utilities ... 32.

Contents

4 OS-9 Technical Manual

The dir Utility ... 33.

dir and Wildcards.. 33.

dir Options ... 34.

The -e Option ... 34.

The -r Option .. 34.

The chd and chx Utilities ... 35.

Using chd ... 35.

Using chx ... 35.

Navigating through Directory Trees.. 36.

Using the pd Utility ... 38.

Creating New Directories... 38.

Rules for Constructing File Names ... 39.

Creating Files ... 40.

Creating Short Text Files ... 40.

Editing Text Files .. 41.

Using µMACS ... 41.

Examining File Attributes ... 41.

Listing Files .. 42.

Copying Files .. 43.

Copying a File into an Existing File ... 44.

Copying Multiple Files ... 45.

Copying Large Files .. 45.

Using Procedure Files to Copy Files.. 45.

Selectively Copying Multiple Files ... 47.

Errors During dsave... 49.

Indenting for Directory Levels .. 49.

Keeping Current Directory Backups .. 49.

Deleting Files and Directories .. 50.

Deleting Files .. 50.

Deleting Directories ... 51.

Chapter 3: OS-9 Memory Modules.

OS-9 Memory Modules.. 54.

Using Memory Modules... 54.

Loading Modules into Memory... 55.

Module Security .. 56.

The Link Count... 57.

Modules Remaining in Memory ... 58.

Module Directories ... 58.

Current Module Directory .. 59.

Contents

OS-9 Technical Manual 5

Displaying the Contents of Module Directories .. 60.

Memory Module Directory Attributes .. 61.

Creating New Memory Module Directories .. 62.

Deleting Memory Module Directories ... 64.

Chapter 4: The Shell.

The Function of the Shell .. 66.

Shell Options.. 66.

The Shell Environment .. 69.

Changing the Shell Environment .. 71.

Using Environmental Variables as Command Line Parameters 71.

Built-In Shell Commands ... 72.

Shell Command Line Processing .. 73.

Special Command Line Features.. 75.

Execution Modifiers... 76.

Additional Memory Size Modifier.. 76.

I/O Redirection Modifiers... 77.

Standard Devices .. 78.

Process Priority Modifier .. 80.

Wildcard Matching.. 81.

Command Separators ... 83.

Sequential Execution... 83.

Multi-tasking: Concurrent Execution ... 84.

Pipes and Filters ... 85.

Unnamed Pipes .. 86.

Named Pipes.. 87.

Command Grouping ... 88.

Shell Procedure Files... 89.

Using Parameters with Procedure Files ... 90.

Using profile When Running Procedure Files... 92.

The Login Shell and Special Procedure Files ... 92.

Using assign When Running Procedure Files... 93.

Time-Sharing System Startup Procedure File .. 94.

The Password File ... 96.

Creating a Temporary Procedure File... 97.

Multiple Shells .. 99.

The procs Utility ... 100.

Waiting for Background Procedures ... 103.

Stopping Procedures ... 104.

Contents

6 OS-9 Technical Manual

Command History ... 106.

Error Reporting ... 107.

Chapter 5: Making Files.

The make Utility ... 110.

Running the Make Utility ... 112.

Implicit Definitions .. 112.

Macro Recognition ... 113.

make Generated Command Lines .. 115.

make Options ... 116.

Examples Using the make Utility ... 117.

Updating a Document... 117.

Compiling C Programs .. 118.

Using Macros ... 119.

Creating make.. 120.

Chapter 6: Performing Backups.

Incremental Backups... 122.

Making an Incremental Backup: The fsave Utility .. 122.

fsave Options .. 123.

The fsave Procedure .. 124.

Example fsave Commands ... 125.

Restoring Incremental Backups: The frestore Utility ... 126.

frestore Options .. 126.

The Interactive Restore Process .. 128.

Example Command Lines... 132.

Incremental Backup Strategies... 132.

Daily Backup Strategy.. 132.

Single Tape Backup Strategy.. 133.

Use of Tapes or Disks .. 134.

Using the tape Utility .. 135.

Backing Up the System Disk .. 137.

Formatting a Disk ... 137.

Multiple Drive Format ... 138.

Single Drive Format .. 138.

Continuing the Formatting Process .. 139.

The Backup Procedure .. 140.

Multiple Drive Backup ... 141.

Single Drive Backup .. 141.

Contents

OS-9 Technical Manual 7

Chapter 7: OS-9 System Management.

Setting Up the System Defaults:
the Init Module ... 144.

 Extension Modules ... 150.

Changing System Modules .. 150.

Making Bootfiles... 152.

Bootlist Files ... 152.

Bootfile Requirements ... 152.

Making RBF Bootfile ... 153.

Using the RAM Disk.. 153.

Volatile RAM Disks ... 154.

Non-Volatile RAM Disks .. 154.

Making a Startup File.. 154.

Initializing Devices: iniz r0 h0 d0 t1 p1 ... 156.

Loading Utilities Into Memory: load -z=sys/loadfile ... 158.

Loading the Default Device Descriptor: Load bootobjs/r0.dd 159.

Multi-user Systems: tsmon /t1 &... 159.

Time Zones and the TZ Environment Variable.. 160.

Time Zones .. 160.

System Shutdown Procedure.. 161.

Managing Processes in a Real-time Environment.. 163.

Manipulating the Priority of a Process .. 163.

Changing the System’s Process Scheduling... 164.

Using System-State Processes and User-State Processes .. 165.

Using the tmode and xmode Utilities ... 166.

Using the tmode Utility ... 166.

Using the xmode Utility ... 167.

The termcap File Format ... 167.

termcap Capabilities ... 169.

Example String Notations .. 174.

Example termcap Entries ... 174.

Appendix A: ASCII Conversion Chart.

ASCII Symbol Definitions... 176.

Contents

8 OS-9 Technical Manual

Using OS-9 9

1 Basic Commands and Functions Chapter 1

This chapter contains information that can help you get started with the
OS-9 operating system. It discusses the most frequently used system
commands. The following sections are included:

• Logging onto a Timesharing System
• Introduction to the Shell
• Using the Keyboard
• Standard OS-9 Utilities
• Using the help Utility
• Using free and mfree

This manual contains specific information about how to use the
OS-9 operating system. For general information about OS-9 and
how to get it up and running, refer to the Getting Started with
OS-9 manual.

Chapter 1: Basic Commands and Functions

10 Using OS-9

Logging onto a Timesharing System

Logging onto a multi-user system applies to both “hardwired” and
“dial-up” terminals. Until you press the <Return> key, idle terminals on
multi-user systems do nothing but “beep”. Pressing the <Return> key
starts the log-on utility called login. login maintains system security
and starts each user with a personalized environment.

Once login is started, the system requests your user name and the
password the system manager assigned to you. The system echoes your
user name, but for security purposes your password is not echoed. You
are given three attempts to enter a valid user name and password
before the program quits.

The following is an example of the login procedure:

OS-9000/80386 V2.0 80486/PCAT 93/10/24 14:51:12
User Name: smith
Password: [not echoed]
Process #10 logged on 93/10/24 14:51:20
Welcome!
[1]$

Depending on how the system is set up, a system-wide message of the
day (MOTD) may display on your screen. Typically, you will be set up
inside your main working directory; this allows one or more initial
programs to run automatically. To log off, simply press the <Escape>
(end-of-file) key or type logout any time your main shell is active.

If you are using a single-user system, such as a personal
computer, you may skip this section.

For more information about login and tsmon, refer to the
Utilities Reference manual.

Chapter 1: Basic Commands and Functions

Using OS-9 11

Introduction to the Shell
Every operating system has a command interpreter. A command
interpreter is a translator between the command you type in and the
commands the operating system understands and executes. The
command interpreter in
OS-9 is called the “shell”.

The shell is normally started as part of the system startup sequence on a
single user system or after logging onto a timesharing system.

The shell functions in two ways:

1. It accepts interactive commands from your keyboard.
2. It reads a sequence of command lines from a special type of file

called a “procedure file” or “script file”. The shell executes each
command line in the procedure file as if the command lines had
been typed in manually from the keyboard.

When the shell is ready for command input, it displays a $ prompt. This
enables you to enter a command line, followed by a carriage return.

The first word of the command line is the name of a command. It may
be in upper or lower case. The command may be the name of the
following entities:

• an OS-9 utility
• an application program or programming language
• a procedure file

Most commands accept additional parameters or options and some
may require them. These parameters or options provide the command
and/or the shell with additional information, such as searching file
names and directory names. Most options are preceded by a hyphen
(-) character. Each parameter is separated by a space character.

The shell provides many functions and options. Chapter 4, The
Shell exclusively discusses the shell and its features. Refer to that
chapter for more detailed information on the shell.

Chapter 1: Basic Commands and Functions

12 Using OS-9

Performing a Command Search
The shell follows a special searching sequence for locating the
command in memory or on disk. The search sequence is as follows:

1. Current module directory
2. Alternate module directory
3. Subsequent module directory (as specified by the MDPATH

environment variable)
4. The current execution directory
5. Subsequent execution directory (as specified by the PATH

environment variable)

Once this sequence is complete, the current data directory is searched
for procedure file by the given name. If it cannot find the command you
specified, the error 000:216,“file not found” should be reported.

Below is an example of a simple shell command line:

$ list myfile

The name of the command is list. The file name myfile is passed to
the list command as a parameter.

Using the Keyboard
Most input to OS-9, programming languages, and application
programs is line oriented. This means that as you type, the characters
are collected, but not sent to the program until you press the <Return>
key. This gives you a chance to correct typing errors before they are sent
to the program.

OS-9 has several line editing features. Each of these features uses
control keys generated by pressing the <Control> key and some other
character key simultaneously.

Line Editing Control Keys
The line editing control keys are listed in Table 1-1.

Chapter 1: Basic Commands and Functions

Using OS-9 13

Table 1-1. Line Editing Control Keys

Key Function
<Control>A Repeat the previous input line.

The last line entered is displayed again, but not
executed. The cursor is positioned at the end of the
line. You can either enter the line as it is or add more
characters to it. You can also edit the line by
backspacing and typing over old characters.

<Control>B Move the cursor one space to the left (non-
destructive).

<Control>F Move the cursor one space to the right if the cursor is
not at the end of the line (non-destructive).

<Control>H Backspace to erase previous characters.

Most keyboards have a special <backspace> key that
can be used directly without using the <Control> key.

<Control>I Insert mode toggle key; switch input to insert mode.

This enables you to insert characters into an existing
input line. Insert mode is terminated by entering
<Control>I again, another control sequence, or a
carriage return.

<Control>K Truncate the line from the current cursor position to
the end-of-line. Reset the end-of-line position to the
cursor position.

<Control>L Delete the word to the left of the cursor, shift left what
is currently right of the cursor, and leave the cursor
position on the first character of the deleted word.

<Control>M End-of-record.

This has the same effect as a carriage return.
<Control>P Display the current input line again.

This is mainly used for hardcopy terminals that cannot
erase deleted characters.

<Control>Q Resume the input and output previously stopped by
<Control>S.

The <Control>Q function is known as “XON”.

Chapter 1: Basic Commands and Functions

14 Using OS-9

<Control>R Delete the word to the right of the cursor, shift left all
text that is currently to the right of the deleted word.
Leave the cursor at its original position.

<Control>S Halt input and output until <Control>Q is entered.

The <Control>S function is known as “XOFF”. This
is a function used by many serial I/O devices, such as
printers, to control output speed.

<Control>W Temporarily halt output so you can read the screen
before data scrolls off. Output resumes when any
other key is pressed.

Refer to the section on the page pause feature for
more information.

<Control>X Delete the current line.
<Control>Z Move the cursor to the beginning of the current line

(non-destructive).
ESCAPE or
<Control>[

End-of-file.

All OS-9 I/O devices, including terminals, are
accessed as files. This key simulates the effect of
reaching the end of a disk file.

Table 1-1. Line Editing Control Keys (Continued)

Key Function

Chapter 1: Basic Commands and Functions

Using OS-9 15

Interrupt Keys
There are two important control keys called interrupt keys. These work
differently from the line editing keys because you can use them at any
time, not just when a program requests input. They are typically used to
halt or alter a running program. These control keys are detailed in Table
1-2.

The control keys above are the key assignments commonly used in
most OS-9 systems. You can, however, change the correspondence
between control keys and their functions, so your keys may be different.
To redefine the function of control keys, use the tmode utility. This
command enables you to customize OS-9 to the specific computer’s
keyboard layout.

Table 1-2. Interrupt Keys

Key Function
<Control>C Send an interrupt signal to the most recent program.

This functions differently from program to program. If
a program does not make specific interrupt provisions,
it aborts the program. If a program has provisions for
interrupts, <Control>C usually provides a way to stop
the current function and return to a master menu or
command mode. In the shell you can use
<Control>C to convert the foreground program to a
background program, if the program has not begun
I/O to the terminal.

<Control>E Send a program abort signal to the program presently
running.

In most cases, this key prematurely aborts the current
program and returns you to the shell.

For more information about tmode, refer to Chapter 7, OS-9
System Management or the Utilities Reference manual.

Chapter 1: Basic Commands and Functions

16 Using OS-9

The Page Pause Feature
The “page pause” feature stops the scrolling of output on the screen.
This is helpful when long lines of output scroll too quickly to be read.
OS-9 counts output lines until a full screen has been displayed. It then
halts output until you press any key. This is repeated for each screen of
output.

In addition, page pause counts a wrapped line as a single line. If the
screen is displaying lines that wrap, you may set the page length to a
number smaller than 24 so that the page pauses at the bottom of a
screen full of information.

You can use tmode to turn this feature on and off, or to change the
number of lines per screen. The tmode commands are shown in Figure
1-3.

Standard OS-9 Utilities
OS-9 provides over ninety standard utilities and built-in shell
commands. Some of the most commonly used utilities are listed in
Figure 1-4.

Table 1-3. tmode

Key Function
tmode pause Turn the page pause mode on.
tmode nopause Turn the page pause mode off.
tmode page=n Set the page length to <n> lines, where <n>

is the number of lines.

Refer to the Utilities Reference manual for a more detailed
explanation of each utility.

Table 1-4. Common OS-9 Utilities

attr backup build chd
chx copy date del
deldir dir dsave echo
edt format free help
kill list makdir merge
mfree pd pr procs
rename set setime shell
wait

Chapter 1: Basic Commands and Functions

Using OS-9 17

 Using the help Utility
The most important command to learn when beginning to use the
OS-9 utilities is help. The help utility is an on-line quick reference. To
use this utility, type help, a utility name, and a carriage return. The
utility function, syntax, and available options are listed.

For example, if you cannot remember the function or syntax of the
backup utility, you can type help backup after the $ prompt:

$ help backup
Syntax: backup [<opts>] [<srcpath> <dstpath>]

[<opts>]
Function: backup disks
Options:

 -b=<size> use larger buffer (default is 4k)
 -r don’t exit if read error occurs
 -v do not verify

$

The descriptions are short and precise and using this command is a
quick way to find information without looking up the utility in the
documentation.

This same information is also available by typing the utility name
followed by a question mark (-?). Each utility has the -? option.

Using free and mfree
During the format procedure, a disk is divided into data blocks of a
pre-defined number of bytes. When OS-9 stores a file, the file’s
contents are stored in physically contiguous blocks. To find out how
many blocks are available on the disk, use the free utility. This utility
displays the amount of unused disk space in number of blocks and
bytes. It also displays the disk name, its creation date, and the capacity
of the device.

Typing help by itself displays the syntax and use of the help
utility.

Chapter 1: Basic Commands and Functions

18 Using OS-9

For example:

$ free /h1
"OS-9000/68030 Hobbes’ Disk" created on: Thu Sep 7

03:37:10 1989
Capacity: 208935 blocks, 102.019 Mbytes
Free: 10 blocks, 0 bytes
Largest Free Block: 3 blocks, 0 bytes

free uses a 4K buffer by default. To increase the buffer size, use the -b
option. For example, to use a 10K buffer you could type the following
command:

$ free -b=10

mfree displays the address and size of unused memory available for
allocation.

For example:

$ mfree
Current total free RAM: 1808.00 K-bytes

To learn more about unused memory, use the -e option with mfree.

For example:

$ mfree -e

Minimum allocation size: 4.00 K-bytes
Number of memory segments: 7
Total RAM at startup: 3841.90 K-bytes
Current total free RAM: 1808.00 K-bytes

Free memory map:
 Segment Address Size of Segment
 ----------------- --------------------------
 $7E000 $1000 4.00 K-bytes
 $8D000 $1000 4.00 K-bytes
 $A3000 $1000 4.00 K-bytes
 $B9000 $1000 4.00 K-bytes
 $CC000 $1BE000 1784.00 K-bytes
 $291000 $1000 4.00 K-bytes
 $296000 $1000 4.00 K-bytes

The equal sign (=) is optional. You may also type: free -b10.

Using OS-9 19

2 The OS-9 File System Chapter 2

This chapter contains a detailed explanation of the tree-structured file
and directory system. The following sections are included:

• OS-9 File Storage
• The OS-9 File System
• Current Directories
• Accessing Files and Directories: The Pathlist
• Basic File System Utilities

Chapter 2: The OS-9 File System

20 Using OS-9

OS-9 File Storage
All information stored on an OS-9 computer system is organized into a
set of files and directories.

• A file contains data, text, or a program.
• A directory contains names and locations of a file and other

subdirectories within it.

This storage structure is hierarchical; it enables you to organize your
files by topic, work group, or any other method. When a file is created,
its information is stored as an ordered sequence of bytes. These bytes
are organized into blocks. A block is a pre-defined group of bytes,
anywhere from 256 bytes to 32768 bytes in powers of two. For
example, a block may be composed of 512 bytes; every 512 bytes are
grouped together as a block.

During the format procedure, each block is marked as “unused” and
the allocation map keeps track of each. If a block is in use, it is marked
in the allocation map as “in use” at the beginning of each disk. When a
block is marked in use, OS-9 moves to the next available set of
contiguous blocks and continues storing the information. Each of these
sets of blocks is called a “segment”. The size of the segment is
determined by the number of contiguous blocks available. When a file
is shortened or deleted, the previously used blocks are unmarked in the
allocation map and become available for use by another file.

Within a text file, each byte contains one character. Data is written to a
file in the order it is provided. Data is read from a file exactly as it is
stored in the file.

The File Pointer
When a file is created or opened, a file pointer is also created and
maintained for it. The file pointer holds the address of the next byte to
write or read (Figure 2-1). As data in the file is read or written, the file
pointer is automatically moved. Therefore, successive read or write
operations transfer data sequentially (Figure 2-2).

Chapter 2: The OS-9 File System

Using OS-9 21

You can use an OS-9 system call, seek, to directly access any part of a
file by positioning the file pointer to any location in the file. The seek
system call can be accessed with the C function, _os_seek.

Figure 2-1. Pointer Example 1

When creating or opening a file, the file pointer is positioned to read
from or write to the first component.

Figure 2-2. Pointer Example 2

After reading or writing the first component of a file, the file pointer
points to the second component.

Figure 2-3. Pointer Example 3

For more information about _os_seek, refer to the Ultra C
Library Reference manual.

Chapter 2: The OS-9 File System

22 Using OS-9

The file pointer points to the current end-of-file (Figure 2-3). Attempting
another read operation causes an end-of-file error. Another write
operation increases the size of the file.

Figure 2-4. Pointer Example 4

The next write operation adds a new component to the file and moves
the file pointer to the new end-of-file (Figure 2-4).

Reading up to the last byte of the file causes the next read operation to
return an end-of-file status (Figure 2-3). Attempting to read past the
end-of-file mark causes an error. To expand a file, simply write past the
previous end of the file (Figure 2-4).

Because all OS-9 files have the same physical organization, you can
generally use file manipulation utilities on any file, regardless of its
logical use. The main logical types of files used by OS-9 are listed below
and are explained in the following sections.

• text files
• executable program module files
• data files
• directories (Directories are the exception and are covered

separately.)

Text Files
Text files contain variable length lines of ASCII characters. Each line is
terminated by a carriage return (hex $OD). Text files typically contain
documentation, procedure files, and program source code. You can
create text files with any text editor or the build utility.

Chapter 2: The OS-9 File System

Using OS-9 23

Executable Program Module Files
Executable program modules store programs generated by assemblers
and compilers. Each file may contain one or more modules with
standard OS-9 module format.

Random Access Data Files
A data file is created and used primarily by high-level languages such
as C, Pascal, and BASIC. The file is organized as an ordered sequence
of records of varying sizes. If each record has exactly the same length,
its beginning address within the file can be computed to enable you to
access records in any order. OS-9 does not directly deal with records
other than providing the basic file manipulation functions high level
languages that support random access records require.

File Ownership
When you create a file or directory, OS-9 automatically stores a
“group.user” ID with it. The group.user ID is formed from your group
number and your user number.

group number Enable people working on the same project or
working in the same department to share a
common group identification.

user number Identify a specific user.

The group.user ID determines file ownership. OS-9 users are divided
into three classes, as described in Table 2-1.

For more information about modules, refer to the OS-9 Technical
Manual.

Table 2-1. User Classes

Class Description
owner Any user with the same group and user number as the

person who created the file. The super-user group (0.x)
is also considered the owner of the file.

group any user with the same group number as the person
who created the file

public any person with a group ID differing from the person
who created the file

Chapter 2: The OS-9 File System

24 Using OS-9

On multi-user systems, the system manager generally assigns the
group.user ID for each user. This number is stored in a special file called
a password file.

A user with a group.user ID of 0.0 is referred to as a “super user”. A
super user can access and manipulate any file or directory on the
system regardless of the file’s ownership. On a multi-user system, the
super user is generally the system manager, although other people such
as group managers or project leaders can also be super users. On
single-user systems, users have super user status by default.

Attributes and the File Security System
File use and security are based on file attributes. Each file has ten
attributes. These attributes are displayed in a sixteen character listing.

The term “permission” is used when one of the ten possible attribute
characters is set. Permission determines who can access a file or
directory and how it can be used. If a permission is not valid for the file
or directory being examined, a hyphen (-) is in its position.

Below is an attribute listing for a file in which all permissions are valid:

-o---ewr-ewr-ewr

By convention, attributes are read from right to left. They include those
shown in Table 2-2.

Table 2-2. File Attributes

Attribute Abbr Description
Owner Read r The owner can read the file.

When off, this denies any access to the file.
Owner Write w The owner can write to the file.

When off, this attribute can be used to protect
files from being accidentally deleted or
modified.

Owner Execute e The owner can execute the file.
Group Read gr The group can read the file.
Group Write gw The group can write to the file.
Group Execute ge The group can execute the file.
Public Read pr The public can read the file.

Chapter 2: The OS-9 File System

Using OS-9 25

Directory Attributes
Directories have slightly different attributes from files. Instead of
attributes for permission to execute files, directories have attributes for
permission to search through directories for files. Below is an attribute
listing for a directory in which all permissions are valid:

do---swr-swr-swr

By convention, directory attributes are also read from right to left. They
are listed in Table 2-3.

Public Write pw The public can write to the file.
Public Execute pe The public can execute the file.
Exclusive Use o When set, only one user at a time can open

the file.

Table 2-2. File Attributes (Continued)

Attribute Abbr Description

Table 2-3. Directory Attributes

Attribute Abbr Description
Owner Read r The owner can read the file.

When off, this denies any access to the file.
Owner Write w The owner can write to the file.

When off, this attribute can be used to
protect files from accidentally being deleted
or modified.

Owner Search s The owner can search the directory for files.
Group Read gr The group can read the file.
Group Write gw The group can write to the file.
Group Search gs The group can search the directory for files.
Public Read pr The public can read the file.
Public Write pw The public can write to the file.
Public Search ps The public can search the directory for files.
Exclusive Use o When set, only one user at a time can open

the file.
Directory d When set, indicates a directory.

Chapter 2: The OS-9 File System

26 Using OS-9

The OS-9 File System
OS-9 uses a tree-structured, or hierarchical, organization for its file
system on mass storage devices such as disk systems. (Figure 2-5.)
Each mass storage device has a master directory, called the root
directory.

The root directory is created automatically when a new disk is
formatted. It contains the names of the files and the subdirectories on
the disk. Every file is listed in a directory by name and each file has a
unique name within a directory.

An OS-9 directory can contain both files and subdirectories. Each
subdirectory can contain more files and subdirectories. This enables
you to embed subdirectories within other subdirectories. The only limit
to this division is the amount of available disk space.

Figure 2-5. The File System

With the exception of the root directory, each file and directory in the
system has a parent directory. A parent directory is the directory directly
above the file or directory being discussed. For example in Figure 2-5,
the parent directory of file2 is SUB-DIRECTORY1. Likewise, the parent
directory of SUB-DIRECTORY1 is the root directory.

Chapter 2: The OS-9 File System

Using OS-9 27

Current Directories
Two working directories are always associated with each user or
process. These directories are called the current data directory and the
current execution directory.

The following terms are important in the discussion of directories:

• data directory: the location in which text files are stored and created
• execution directory: the location in which executable files live

This current directory concept enables you to organize your files and
keep them separate from other users on the system. The word “current”
is used to reflect the idea that you can move through the tree structure
of the OS-9 file system to a different directory; this different directory
becomes your current data or execution directory.

DIrectories and Single-User Systems
On a single user system, OS-9 chooses the root directory of your system
disk as the initial current data directory. The initial current execution
directory is the CMDS directory. The CMDS directory is located in the root
directory of the system disk.

Directories and Multi-User Systems
On a multi-user system, the current data and execution directories are
established as part of the initial login sequence. When you log in, your
initial directories are set up according to your password file entry. A
password entry is established for each user on a multi-user system. This
entry lists information such as the user’s password and current
directories.

The execution directory on a multi-user system is usually the CMDS
directory, which is shared with other users. CMDS contains OS-9 utilities
and other executable files.

Chapter 2: The OS-9 File System

28 Using OS-9

The Home Directory
On typical multi-user systems, all users have their own data directory.
Through the /H0/CMDS environment variable, each user may also have
a private execution directory to avoid conflict with other users.

The private data directory enables you to organize your files by project,
function, or any other method without affecting other users’ files. The
data directory specified in the password file entry is known as the home
directory. When you first login to the system, your information is placed
in this directory. This can also be accomplished by using the chd utility
without parameters.

On single user systems, you may establish a home directory by setting
the HOME environment variable.

Directory Characteristics
Below are some important characteristics relating to directory files:

• Directories have similar ownership and attributes as other files.
However, directories always have the d attribute set, and contain
attributes that allow for file searching, while files have attributes for
executing files.

• Each file name within a directory must be unique. For example, you
cannot store two files named trial in the same directory. Files may
have different names if they are stored in separate directories.

• All files are stored on the same device as the directory in which they
are listed.

• You are limited to the number of files you can store in a directory by
the amount of free disk space in your system.

For more information about:

• chd: Refer to the Utilities Reference manual.
• the HOME environment variable: Refer to Chapter 4, The Shell.

Chapter 2: The OS-9 File System

Using OS-9 29

Accessing Files and Directories: The Pathlist
You can access all files or directories in your current data directory by
specifying the name of the file or directory after typing the correct
command. In cases where only a file or directory name is given, OS-9
does not look outside your current data directory to find that particular
file or directory.

If you want to access a file that does not live in your current data
directory or run a program that does not live in your current execution
directory, you must either change the current directory or specify a
pathlist through the file system for OS-9 to follow.

There are two types of pathlists: full pathlists and relative pathlists.
These are explained in the following sections.

Full Pathlists
A full pathlist starts at the root directory and follows the directory names
in the list down the file structure to a specific file or directory. A full
pathlist must begin with a slash character (/). (Slashes separate names
within the pathlist.)

The following example is a full pathlist from the root directory, /d1,
through two subdirectories, PASCAL and TESTS, to the file futureval.

/d1/pascal/tests/futureval

The example below specifies a path from the root directory, /h0,
through the USR subdirectory, to the NICHOLLE subdirectory.

/h0/usr/nicholle

A full pathlist begins at the root directory regardless of where
your current data directory is located. It lists each directory
located between the root directory and a specific file or
subdirectory.

Chapter 2: The OS-9 File System

30 Using OS-9

Example
Suppose your data directory is RESEARCH. A full pathlist to current
would then be /h0/WORK/current (as shown in Figure 2-6).

Figure 2-6. Full Pathlist Example

Relative Pathlists
A relative path starts at the current directory and proceeds up or down
through the file structure to the specified file or directory. A relative
pathlist does not begin with a slash (/). (Slashes separate names within
a relative pathlist.)

When you use a relative pathlist and the desired destination requires
moving up the directory tree, you can use special naming conventions
to make moving around the pathlist easier.

• A single period (.) refers to the current directory.
• Two periods (..) refer to the current directory’s parent directory.
• Add a period for each higher directory level.

For example, to specify a directory two levels above the current
directory, three periods are required. Four periods refer to a directory
three levels above the current directory.

You can also use a Unix-style pathlist such as ../../../

A relative pathlist begins at your current directory regardless of
its location in the overall file structure.

Chapter 2: The OS-9 File System

Using OS-9 31

Example
Suppose your data directory is RESEARCH. A relative pathlist to
current would then be .../current (as shown in Figure 2-7).

Figure 2-7. Relative Pathlist Example

The following example is a relative pathlist that begins in your current
directory and goes through the subdirectory DOC and LETTERS to the
file jim.

DOC/LETTERS/jim

The next pathlist goes up to the next directory above your current
directory and then through the subdirectory CHAP to the file page.

../CHAP/page

The next pathlist specifies a file within your current directory. No
directories are searched other than the current directory.

Using a relative pathlist name substitute does not change the
directory’s name.

Chapter 2: The OS-9 File System

32 Using OS-9

Basic File System Utilities
Some OS-9 utility commands manipulate the file system. These utilities
include dir, chd, chx, pd, build, makdir, list, copy, dsave, del,
deldir, and attr. The given examples refer to an example file system
(Figure 2-8).

Figure 2-8. Diagram of a Typical File System

Chapter 2: The OS-9 File System

Using OS-9 33

The dir Utility
The dir utility displays the contents of a directory. Typing dir by itself
displays the contents of your current data directory. For the following
example, the current data directory is /h0. Typing dir, as shown in
Figure 2-8, results in the following output:

$ dir
 directory of . 13:56:58
C CMDS DEFS IO LIB
MACROS SYS SYSMODS USR STARTUP

To look at directories other than your current data directory, you must
either provide a pathlist to the desired directory or change your current
data directory.

To display the contents of another directory without changing your
current data directory, type dir and the pathlist to the directory. For
example, if you are in the root directory and you want to see what is in
the DEFS directory, type the following command:

dir defs

dir now displays the names of the file in the DEFS directory. The name
defs is a relative pathlist. You can type dir defs because DEFS is in
your current data directory. You can also use the full pathlist, dir
/h0/defs and get the same result.

To display the contents of your current execution directory, type
dir -x.

dir and Wildcards
Wildcards can be used with dir and with most other utilities. OS-9
recognizes two wildcards, as described in Figure 2-4.

Table 2-4. OS-9 Wildcards

Wildcard Description
An asterisk (*) An asterisk replaces any number of letter(s),

number(s), or special character(s). Consequently,
an asterisk by itself expands to include all of the
files in a given directory.

A question mark (?) A question mark replaces a single letter, number,
or special character.

Chapter 2: The OS-9 File System

34 Using OS-9

For example, the command dir * lists the contents of all directories
located in the current data directory. The command dir /h0/cmds/d*
lists all files and directories in the CMDS directory beginning with the
letter d. The command dir prog_? lists all files in your current
directory having a file name with prog_ followed by a single character.

dir Options
dir has several options are fully documented in the Utilities Reference
manual. The -e and -r options are discussed in this section.

The -e Option
The -e option gives an extended directory listing. An extended directory
listing displays all files within the specified directory with their attributes,
sizes, and the sectors where the files are stored. The following example
uses the file structure shown in Figure 2-8.

$ dir usr/bob -e
 Directory of USR/Bob 12:30:27

 Owner Last modified Attributes Block Bytecount Name
------- ------------- ---------------- ------ --------- ----
 22.150 89/09/25 1057 --------------wr 12CB0 5744 letter
 22.150 89/09/19 1057 d-------------wr 12CAF 15944 PROG
 22.150 89/09/25 1103 d-------------wr 12C90 11113 TEXT

The -r Option
The -r option displays the contents of the specified directory and any
files contained within its subdirectories. Typing dir usr/usr1 -r lists
the following output:

Directory of . 12:30:15
 PROG TEXT letter
Directory of PROG 12:30:15
 funct main
Directory of TEXT 12:30:15
 manual

You can use any dir option with another. Typing dir -er displays all
files within the current data directory, all files within its subdirectories,
and provides an extended listing of their attributes and sizes.

b For more information on using wildcards, refer to Chapter 4, The
Shell.

Chapter 2: The OS-9 File System

Using OS-9 35

The chd and chx Utilities
The chd and chx utilities enable you to travel around the file system.

• chd changes the current data directory.
• chx changes the current execution directory.

Using chd
To change your current data directory, type chd followed by a full or
relative pathlist. For example, if your current data directory is /h0 and
you want your current data directory to be USR, type chd and the
pathlist of USR.

• Using a relative pathlist, type the following command:
chd usr

• Using a full pathlist, type the following command:
chd /h0/usr

Your current data directory is now USR. When you type dir, you should
see the contents of USR:

directory of . 14:04:32
USR1 USR2 USR3

To see which files are in the USR1 directory, type dir usr1. Change
directories by typing chd usr1, then dir after the new prompt.

To return to your home directory, which in this case is /h0, type chd
without including a pathlist. After changing the directory, dir displays
the contents of /h0.

Using chx
The chx command enables you to redefine an existing directory as a
personal execution directory. If you have programs you do not want
other users to execute, you may find it useful to define a personal
execution directory. To do this, type chx, followed by a full or relative
pathlist to the directory. When using a relative pathlist with chx, note
that the pathlist is relative to your current execution directory.

Chapter 2: The OS-9 File System

36 Using OS-9

If your current data directory is USR and you want to change your
current execution directory from CMDS to USR2, you can type the
relative pathlist chx ../usr/usr2 or the full pathlist chx
/h0/usr/usr2. When you type a command after you have changed
your current execution directory, OS-9 searches USR2 instead of CMDS.

Typing dir -x displays the contents of your current execution directory,
USR2:

Directory of .. 20:54:18
map pics new.c

Navigating through Directory Trees
You can use special naming conventions to move around the file
system. Naming conventions are periods specifying the current
directories and directories higher in the file structure. Consider the
following example:

. refers to the current directory

.. refers to the parent directory

... refers to two directory levels higher

When used as the first name in a path, you can use these naming
conventions with relative pathlists.

Examples
The following examples relate to the file structure in Figure 2-9. The
examples assume your initial current data directory is PROG.

• The contents of PROG are displayed below. It is functionally the same
command as dir.
dir .

directory of . 14:04:32
funct main

• The command below displays the contents of PROG’s parent
directory, USR1.
dir ..

directory of .. 14:05:58
PROG TEXT letter

Chapter 2: The OS-9 File System

Using OS-9 37

• The example below displays the contents of TEXT by specifying a
path starting with the parent directory:
dir ../text

directory of ../text 14:06:47
manual

• The following command changes the current data directory from
PROG to USR3:
chd .../usr3

USR3 is accessed from PROG using the relative path .../usr3.

Figure 2-9. Accessing Directories Using a Relative Path

Chapter 2: The OS-9 File System

38 Using OS-9

You can use any number of periods (.) to access higher directories. One
period is added for each level. An error is not returned if you specify a
greater number of directory levels above your current data directory
than actually exist. Instead, this indicates the root directory on your
system.

For example, the command below displays the contents of the root
directory:

dir

This may be helpful if you are not sure how deep into the directory
structure you have travelled.

• The following example changes your current data directory from
PROG to MACROS:
chd/macros

Using the pd Utility
The pd utility displays the complete pathlist from the root directory to
your current data directory.

For example (if your current data directory is USR2):

pd
/h0/USR/USR2

While inside your current execution directory, type pd -x to display the
pathlist to that directory.

Creating New Directories
To create new directories, use the makdir utility. For example, to create
a directory called MARKET, type the following command:

makdir MARKET

MARKET now is a new directory in your current directory.

If you want the new directory created somewhere other than in your
current directory, you must specify a pathlist. For example, makdir
/h0/usr/MARKET creates the new directory in USR.

Chapter 2: The OS-9 File System

Using OS-9 39

Figure 2-10. Creating the /h0/USR/MARKET Directory

Rules for Constructing File Names
When creating files and directories, you must follow certain rules. A file
name can contain from one to 43 upper and lower case letters,
numbers, and special characters, as listed in Table 2-5. While the file
name may begin with any of the following characters or digits, each file
name must contain at least one letter or number. Within these
limitations, a name can contain any combination of the following
examples:

File names must not contain spaces. Instead, use an underscore (_) or
a period (.) should be used to improve the readability of file and
directory names. OS-9 does not distinguish upper case from lower case
letters. For example, the names FRED and fred are considered the
same name.

Typically, directory names are in upper case and file names are in lower
case. It is not required, but it helps to easily distinguish directories from
files.

Table 2-5. Characters Allowed in File Names

Description Example
Upper case letter: A - Z
Lower case letter: a - z
Decimal digits: 0 - 9
Underscore: _
Period: .
Dollar sign: $

Chapter 2: The OS-9 File System

40 Using OS-9

Table 2-6 lists are some examples of legal names:

Table 2-7 lists are some examples of illegal names:

File names beginning with a period are not displayed by dir unless you
use the -a option. This enables you to hide files within a directory.

Creating Files
You can create files in many ways. Text files are generally created with
the build utility, the edt utility, or the µMACS text editor. These file
building tools are provided with the OS-9 package.

Creating Short Text Files
Use the build utility to create short text files. To use build, type
build, followed by the name of the file you want to create. build
responds with a “?” prompt, which tells you that build is waiting for
input. To terminate build, type a carriage return at the ? prompt.
Consider the following example:

$ build test
? Creating a text file is easy
? when you use the buid utility,
? but you cannot edit files with build.
?
$

You cannot edit files with build.

Table 2-6. Legal File Names

raw.data.2 project_review_backup
X6809 $SHIP.DIR
...c 12345

Table 2-7. Illegal File Names

Name Description
Max*min * is not a legal character
open orders name cannot contain a space

Chapter 2: The OS-9 File System

Using OS-9 41

Editing Text Files
To create and edit text files, use the edt utility. edt is a line-oriented
text editor with the capability to create and edit source files. To use edt,
type edt and the desired pathlist. edt displays a question mark (?)
prompt and waits for an edit command. If the file is found, edt
performs the following tasks:

1. Opens the file.
2. Displays the last line of the file.
3. Displays the ? prompt.

Using µMACS
Most people prefer using µMACS to create and edit files. µMACS is a
screen-oriented text editor for creating and modifying text files and
programs. Through the use of multiple buffers, µMACS enables you to
display different files or different portions of the same file on the same
screen. In addition, extensive formatting commands enable you to
complete the following tasks:

• Reformat paragraphs with new user-defined margins.
• Transpose characters.
• Capitalize words.
• Change words or sections into upper or lower case.

Examining File Attributes
When you create a file using build or µMACS, only the owner read
and owner write permissions are set. When you create a directory, it
initially has all the permissions set except the single user permission.

To examine file attributes, use the attr utility. To use this utility, type
attr, followed by the name of a file. Consider the following example:

$ attr newtest
--------------wr

For more information about µMacs, refer to the Utilities
Reference manual.

Chapter 2: The OS-9 File System

42 Using OS-9

The file newtest has the permissions set for owner reading and owner
writing. Access to this file by anyone other than the owner is denied.

If you use attr with a list of one or more attribute abbreviations, the
file attributes are changed accordingly, provided you have the proper
write permission to access the file. You do not need to list the attribute
abbreviations in any particular order. The letter n preceding an attribute
removes that permission.

The following command enables public read and write permission and
removes execution permission for both the owner and the public:

$ attr newtest -pw -pr -ne -npe

The owner always has the right to delete a file, change the user
privileges, etc. Users in the same group have the same permissions as
the owner.

The directory attribute is somewhat different than the other attributes. It
could be dangerous to be able to change directory files to normal files
or a normal file to a directory. For this reason, you cannot use attr to
turn the directory (d) attribute on; use makdir to turn this attribute on.
Furthermore, you can only use attr to turn the directory attribute off if
the directory is empty.

Listing Files
The list utility displays the contents of files. By default, list displays
the lines of text on your terminal screen. To examine a file, type list,
followed by the name of the file. For example:

$ list test
Creating a text file is easy
when you use the build utility,
but you cannot edit files with build.
$

Users with the same group.user ID as the person who created the
file are considered owners. However, if the file is created by a
group 0 user, only users in the super group can read, write, or
execute the file.

Chapter 2: The OS-9 File System

Using OS-9 43

It is important to remember that you cannot list a directory. If you type
the command list USR, the following error message and error
number will be returned:

list: can’t open "USR". Error# 000:214.

The above message means you cannot access USR because it is a
directory.

list displays text files. All distributed files in CMDS are executable
program module files. If you try to list the contents of a random access
data file or an executable program module file, you see what appears
to be random data displayed on your screen. This may also include
unprintable characters--such as escape or delete--that could change
your terminal’s operating parameters. If the operating characteristics of
your terminal are affected, try turning the terminal off and on. If this
does not re-initialize the terminal, consult your terminal operating
manual.

Copying Files
The copy utility makes a duplicate of a file. To copy a file, type copy,
followed by the name of the file to be copied, followed by the name of
the duplicate file. For example:

$ copy test newtest

If you list the file newtest, it is an exact copy of test.

The file you are copying, as well as the duplicate file, can be located in
any directory; these do not have to be in your current data directory. For
files located outside of your current data directory, use full or relative
pathlists. The following example uses Figure 2-11. The first command
copies the file gee in the USR2 directory to a file named new.info in
the TEXT directory:

copy /h0/usr/usr2/gee /h0/usr/usr1/text/new.info

Assuming your data directory is USR, the following commands have the
same effect:

copy /h0/usr/usr2/gee usr1/text/new.info
copy usr2/gee usr1/text/new.info

gee is copied from USR2/gee to USR1/TEXT/new.info using the
command copy usr2/gee usr1/text/new.info.

Chapter 2: The OS-9 File System

44 Using OS-9

Figure 2-11. Copying Files

Copying a File into an Existing File
If you try to copy the contents of one file into an existing file, you will
receive the following message: Error #000:218 Tried to create
a file that already exists. If you know the file exists but you
want to overwrite it anyway, use the -r option. For example, the
following command replaces the contents of green with the contents of
fall.

$ copy fall green -r

When you list the contents of both files, it becomes obvious that they
are identical.

Chapter 2: The OS-9 File System

Using OS-9 45

Copying Multiple Files
At some point, you may want to copy more than one file at a time into
another directory. By using the -w=<dir> option of copy, you can copy
more than one file with a single command. For example, if your current
directory is PROG and you want to copy all of the files in PROG into the
TEXT directory, you would type the following command line:

$ copy * -w=../text

This option prints the name of the file after each successful copy. If an
error occurs, the prompt continue (y/n) is displayed.

Copying Large Files
If you have a large file, the copy procedure may be slow because the
system has to perform multiple read and write statements from a small
4K buffer. To make the copy procedure faster when copying large files,
use the -b option to increase the buffer size. To use the -b option, type
copy, the original file name, the new file name, and -b=<num>k.

For example, typing copy gee mine -b=20k allocates a 20K buffer
for copying the file gee into the file mine.

Using Procedure Files to Copy Files
T the dsave utility copies all files and directories within a specified
directory by generating a procedure file. The procedure file is either
executed later to actually perform the copy or, by specifying the -e
option, executed immediately.

A procedure file is a special OS-9 file containing OS-9 commands.
Each command is specified on a line, one command per line. When the
procedure file is executed, the OS-9 commands it contains are
executed in the order they are listed in the procedure file.

To use the dsave utility, type dsave followed by the pathlist of the
directory into which the files are copied, followed by any options you
wish to use.

For more information about copy, refer to the Utilities Reference
manual.

For more information about procedure files, refer to Chapter 4,
The Shell.

Chapter 2: The OS-9 File System

46 Using OS-9

If no pathlist is specified for the destination, the files are copied to the
current data directory when the procedure file is executed. If you do not
specify the
-e option or redirect the output to a file, dsave sends the output to the
terminal.

The example below uses the directory structure shown in Figure 2-12.

Figure 2-12. Dsave Example Directory Structure

If PROGMS is your current data directory and you type dsave
../notes, the following output appears on your screen:

$ dsave ../notes
-t
chd ../notes
tmode -w=1 nopause
load copy
makdir MY.PROJ
chd MY.PROJ
copy -b=10 /h0/PROGMS/MY.PROJ/prog1
copy -b=10 /h0/PROGMS/MY.PROJ/test.c
chd ..
makdir CONVERSION
chd CONVERSION
copy -b=10 /h0/PROGMS/CONVERSION/temp.c
copy -b=10 /h0/PROGMS/CONVERSION/tally.c
chd ..
unlink copy
tmode -w=1 pause
$

Chapter 2: The OS-9 File System

Using OS-9 47

Because the output was not redirected to a procedure file and the -e
option was not used, the above commands were not executed. They
were merely echoed to your screen.

If you now type dsave ../notes -e, the commands are again
echoed to the screen. However, the contents of the PROGMS directory
are copied into the NOTES directory.

Selectively Copying Multiple Files
You can redirect the output of dsave to a file. When you redirect the
output, the commands output from dsave are essentially captured in a
file. You can later execute this file to actually perform the dsave
operation.

To redirect the output from dsave to a file, use the redirection modifier
for standard output. The standard output modifier is the greater than
(redirect) symbol.

For example, from the PROGMS directory, you can redirect the output
from dsave into a file called make.bckp by typing:

dsave >make.bckp

This command creates make.bckp in the current data directory. To
perform the dsave, type make.bckp at the command line.

Redirecting the output to a file is helpful when you want to save most,
but not all, of the file in the directory or directory being saved. You can
edit make.bckp before performing the dsave. This enables you to save
only selected files.

Regardless of how you decide to perform the dsave, if dsave
encounters a directory file, it automatically creates a new directory and
changes to that directory before generating copy commands for files in
the subdirectory.

In the dsave example, the directory structure looks like the following
diagram when dsave has finished:

Chapter 2: The OS-9 File System

48 Using OS-9

Figure 2-13. dsave Example Directory Structure

If the current working directory is the root directory of the disk, dsave
creates a file that backs up the entire disk, file by file. This is useful
when you need to copy many files from different format disks or from a
floppy disk or a hard disk.

Chapter 2: The OS-9 File System

Using OS-9 49

Errors During dsave
If an error occurs during the dsave process, the following prompt is
displayed:

continue (y,n,a,q)?

You can use the -s option to turn off the prompt. This skips any file that
cannot be copied and continues the dsave routine without the error
prompt.

Indenting for Directory Levels
When you copy several subdirectories, you can use the -i option to
indent for directory levels. This helps to keep track of which files are
located in which directories.

Keeping Current Directory Backups
You can use dsave to keep current directory backups. Use the -d or
-d=<date> options to compare the date of the file to be copied with a
file of the same name in the directory where it is to be copied. The -d
option copies any file with a more recent date. The -d=<date> option
copies any file with a date more recent than that specified. The
following example shows the use of dsave with the -d option:

$ chd /d0/BACKUP
$ dir
Directory of . 14:14:32
 Owner Last Modified Attributes Sector Bytecount Name
------- ------------- ---------- ------ --------- ----
 12.4 92/11/12 1417 ------wr 20CO 11113 program.c
 12.4 92/10/05 1601 ------wr 313D 5744 prog.2
$ chd /d0/WORKFILES
$ dir

Table 2-8. Responses to dsave Errors.

Response Indicates you...
y want to continue with dsave
n do not want to continue with dsave
a want all possible files copied and do not want the

prompt displayed on error
q want to exit dsave

Chapter 2: The OS-9 File System

50 Using OS-9

Directory of . 14:14:32
 Owner Last Modified Attributes Sector Bytecount Name
------- ------------- ---------- ------ --------- ----
 12.4 92/11/12 1417 ------wr DODO 11113 program.c
 12.4 92/11/12 1601 ------wr 3458 5780 prog.2
$ dsave -deb32 /d0/BACKUP
$ chd /d0/BACKUP
$ dir
Directory of . 14:14:32

 Owner Last Modified Attributes Sector Bytecount Name
------- ------------- ---------- ------ --------- ----
 12.4 92/11/12 1417 ------wr 5990 11113 program.c
 12.4 92/11/12 1601 ------wr A12B 5780 prog.2

Only prog.2 was copied to the BACKUP directory because the date was
more recent in the WORKFILES directory.

Deleting Files and Directories
Use the del and deldir utilities to eliminate unwanted file and
directories.

• del deletes a file.
• deldir deletes a directory.

If you no longer need a file, deleting the file frees disk space. You must
have permission to write to the file or directory in order to delete it.

Deleting Files
To delete a file, type del, followed by the name of the file you want
deleted. For example, to delete the file test you created with build,
you would type the following command:

del test

If you execute dir, test is no longer displayed.

When deleting files, you may use wildcards. For example, if you have
three files, trial, trial1, and trial.c in a directory, you can use
the * wildcard in the command to delete all three files.

For more information about dsave, refer to the Utilities
Reference manual.

Use caution when you use wildcards with utilities like del and
deldir. It is easy to unintentionally delete files you want to save.

Chapter 2: The OS-9 File System

Using OS-9 51

The del -p option displays the following prompt before deleting a file:

delete <filename> ? (y,n,a,q)

This helps prevent deleting files you want to keep.

Deleting Directories
To delete a directory, use the deldir utility to delete directories.
deldir first deletes all the files and directories in the given directory,
and then, if no errors occur, finally deletes the directory name. For
example:

$ deldir USER2
Deleting directory: USER2
Delete, List, or Quit (d, l, or q) ?

Table 2-9. Responses to Del -p Option

Response Action
y Delete the file.
n Do not delete the file.
a Delete specified files without further prompts.
q Exit the deleting process.

Table 2-10. Responses to Deldir Command

Response Action
d Delete the directory.
l List the directory contents.
q Quit without deleting any files.

Do not delete a file or directory unless you are sure you do not
need it. Files and directories deleted with the del and deldir
commands are permanently removed.

Chapter 2: The OS-9 File System

52 Using OS-9

Using OS-9 53

3 OS-9 Memory Modules Chapter 3

This chapter describes OS-9 memory modules and module directories.
The utilities used with modules and module directories are also
discussed. The following sections are included:

• OS-9 Memory Modules
• Module Directories

Chapter 3: OS-9 Memory Modules

54 Using OS-9

OS-9 Memory Modules
In addition to organizing your programs and other files into a file
system, OS-9 manages both the physical assignment of memory to
programs and the logical contents of the memory. To do this, OS-9 uses
memory modules.

A memory module is a logical, self-contained program, program
segment, or collection of data. Any program or file can become a
memory module. Modules are created by compiling and linking
programs or by creating data modules. Each module must have three
parts:

• A module header contains information that describes the module
and its use. The information contained in the module header
includes the module name, size, type, language, memory
requirements, and entry point.

• A module body contains information such as initialization data,
program instructions and constant tables.

• A Cyclic Redundancy Check (CRC) value verifies the module
integrity.

In addition to a module header, a module body, and a CRC value, a
module must also be position-independent and re-entrant. A re-entrant
module does not modify itself; this enables two or more processes to
use the module simultaneously. A position-independent module does
not depend on being loaded at a specific memory location; this enables
OS-9 to load the program wherever memory space is available. In
many operating systems, you must specify a load address to place the
program in memory. OS-9 determines an appropriate load address only
when the program is run.

Using Memory Modules
Memory modules are extremely useful. They provide efficient use of
available disk and memory storage, simplify programming jobs, and
enable the system to run faster. In addition, they make it easy to
customize and adapt OS-9.

An important characteristic of memory modules is that they can be
shred by several tasks or users at the same time. For example, if four

For more information on modules, refer to the OS-9 Technical
Manual.

Chapter 3: OS-9 Memory Modules

Using OS-9 55

users want to run µMACS at the same time, only one copy of the
µMACS program module is loaded into memory. Other operating
systems typically load four exact copies of µMACS into memory,
requiring 300% more memory than if OS-9 were used. In addition, the
shared module system is completely automatic and usually transparent
to the user.

Also, with memory modules, frequently used functions can share
common library modules and you can split large and complex
programs into smaller, “testable” modules.

Loading Modules into Memory
Modules can be loaded into memory during the startup procedure or
after the system has been accessed. Modules loaded during the startup
procedure can be loaded either in bootfile or in the startup file. Both of
these methods for loading modules are discussed in the chapter on
system management.

Modules that are used less frequently can be loaded after the system
startup. To load one or more specified modules into memory, type
load, then the pathlist(s) of the module(s) to be loaded into your
current module directory. Pathlists may be relative to your current
execution directory. If the module is located in your current execution
directory, only the file name is needed after the load command:

load <file>

Modules necessary for system startup or modules that are used
frequently should be loaded during the startup procedure.
Loading modules at system startup places them in contiguous
spaces of memory; therefore, the memory will be less
fragmented.

Chapter 3: OS-9 Memory Modules

56 Using OS-9

If <file> is not in your execution directory and the shell environment
variable PATH is defined, load searches each directory specified by
PATH until <file> is successfully loaded from a directory. This
corresponds to the shell execution search method using the PATH
environment variable. The names of the modules are added to the
module directory. If a module is loaded having the same name as a
module already in the current module directory, the module having the
highest revision level is kept. The modules are normally loaded from the
current execution directory.

Module Security
The OS-9 file security mechanism enforces certain requirements
regarding owner and access permission when loading modules into a
module directory. You must have file access permission to the file
loaded. If the file is to be loaded from an execution directory, you must
have the execute and read permissions for the file. If the file is to be
loaded from a directory other than the execution directory, and the -d
option is used, only the read permission is required.

You must have module access permission to the module to be loaded.
This is different from the file access permission of the file containing the
target module. The module owner and access permissions are stored in
the module header and can be examined by the ident utility. To
prevent loading super user programs by ordinary users, OS-9 enforces
the following restriction: If the module group ID is zero (super group),
then the module can be loaded only if the process group ID or the file
group ID is zero.

If you are not the owner of a module and not a super user, the public
execute and/or public read access permissions must be set. The module
access permissions are divided into three groups: the owner, the group,
and the public. Only the owner of the module or the super user can set
the module access permissions.

There is one other restriction. You must have write permission for the
module directory into which you are loading the module. Module
directory attributes are discussed later in this chapter.

Environmental variables are discussed in Chapter 4, The Shell.

Chapter 3: OS-9 Memory Modules

Using OS-9 57

The Link Count
When modules are loaded into memory, they are added to the module
directory structure. Each directory entry contains the module address
and a count of the processes using the module. This count is called the
link count.

When a process forks to a primary memory module, the module link
count is automatically incremented by one. When the process is
finished with the primary module, the link count is automatically
decremented.

You can also use the link utility to link to a memory module if you
want to keep the module in memory. To link to a module, type link
and the name(s) of the module(s) to be linked. The link count of the
specified module is incremented by one each time it is linked.

For example, if you have loaded the module leap1 into memory, it has
a link count of 1. If another user also decides to use leap1 and links to
the memory module, the link count becomes 2.

When you have finished using a module you have linked to with the
link utility, remove your link to the module by typing unlink and the
name(s) of the module(s) to be unlinked. The link count is decremented
by 1.

In the example above, if you have finished using leap1, type the
following command:

unlink leap1

The link count for leap1 becomes 1 because another user is still using
the module.

The link count becomes 0 if the other user decides to unlink from leap1.
The module directory entry is deleted and the memory is de-allocated.
It is good practice to unlink modules whenever possible to make the
most efficient use of available memory resources.

Unless you have explicitly linked to a module using link, you do
not need to unlink the module

Chapter 3: OS-9 Memory Modules

58 Using OS-9

Modules Remaining in Memory
There are three cases when a module is not removed from memory,
even if the module’s link count reaches 0:

• Modules have been loaded during system bootstrap.
• The modules being loaded are sticky modules.
• Modules are still in use.

Modules loaded during system bootstrap cannot be unlinked from
memory regardless of their link count. It is potentially fatal to your
system to unlink memory modules such as the kernel.

A sticky module sticks in the system even when it has a link count of 0.
A sticky module is removed from memory only when unlink is used to
lower the module link count to -1. You can use the fixmod utility to
make a module sticky. Generally, sticky modules are modules used
frequently enough to warrant them staying in the system at all times.

The third case involves modules with their link counts lowered to 0
 (or -1 for sticky modules), but are still in use. For example, if one user is
using µMACS and another user lowers µMACS’ link count to 0, the
module stays in memory because the module is still in use.

Module Directories
OS-9 is unique because memory modules may be arranged in a
hierarchical directory structure just like files and directories. Therefore,
when you load a module into memory, you must make a decision as to
which module directory should contain the module.

Immediately after OS-9 is booted, a single module directory is created
in which all of the modules were loaded during system startup--unless
either sysgo or the startup file has been modified to build a memory
module directory structure. You may create additional module
directories at any time. This enables you to organize modules in
memory. Each module directory can contain other module directories.

Chapter 3: OS-9 Memory Modules

Using OS-9 59

Figure 3-1. Root Module Directory

OS-9 enables you to load modules into specific directories, even if a
module of the same name is loaded into another directory. This means
you can make changes to a program and load it into your own module
directory. Once in the module directory, the module can be accessed
instead of a module with the same name elsewhere in the module
directory system. From this directory, you can test and debug the
module without affecting other system users.

For example, if you are using a module called mine that is loaded into
your module directory, another user could be using or developing
another mine module in a different directory.

Module directories also enable you to load programs into memory
without the programs becoming known to the public.

Current Module Directory
Memory module directories are similar to other directories, as you can
specify a current module directory. The current module directory is
important for accessing memory modules.

For example, when modules are loaded into memory, they are added to
the process current module directory. Likewise, when a process forks a
new process, OS-9 searches the current module directory for the target
module first. If the search fails, OS-9 searches the process’ alternate
module directories. Failing to find the module in memory, OS-9
attempts to load the target module into the current module directory.

The development of new and existing modules is the major
advantage of this hierarchical module structure.

Chapter 3: OS-9 Memory Modules

60 Using OS-9

You can set the initial current module directory in your .login file. Use
the MDPATH environment variable in the .login file to establish the
alternate module directory. You can change the current memory
module directory using the chm built-in shell command. To change
module directory, type chm and the pathlist to the new module
directory.

You can use full or relative pathlists when specifying module directory
pathlists. However, pathlists beginning from the root module directory
begin with a single slash (/). Pathlists beginning with either two slashes
(//) or no slash specify the pathlist begins at the current module
directory.

For example, the following pathlist begins at the root module directory:

chm /user/paul

The next two commands both begin at the your current module
directory:

chm //doc/proj1
chm doc/proj1

If the MDHOME environment variable is set, typing chm with no pathlist
changes your current module directory to the directory specified by the
MDHOME environment variable.

Displaying the Contents of Module Directories
You can display the contents of memory module directories with the
mdir utility. To see the contents of a particular memory module
directory, type mdir and the pathlist to the module you want to display.
Pathlists may be either full or relative.

For example, to display the contents of the UTILS module directory
located in the root module directory, type the following command:

mdir /utils

A screen containing the contents of the UTILS folder should display:

 Module Directory of /utils
<FILE1> <FILE2> <FILE3> csl

dir

For more information on the chm built-in shell command, refer to
the Utilities Reference manual.

Chapter 3: OS-9 Memory Modules

Using OS-9 61

To display an extended listing of a module directory, use the -e option.
The extended listing displays detailed information concerning each
module located in the directory. The following is an example of a mdir
-e command.

 mdir //doc -e
 Module Directory of //doc
 Addr Size Owner Perm Type Revs Ed # Lnk Module name
------ -------- ----------- ---- ---- ---- ----- ----- ------------
36a170 1940 22.148 0333 MDir 0000 0 1 <FILE1>
2f90f0 7948 7.17 0555 MDir a000 7 2 <FILE2>
2adda0 1834 0.22 0555 MDir 8001 7 1 RIC
033a68 45408 22.148 0555 Subr c000 18 7 csl
318f20 23402 1.169 0555 Prog c001 36 0 dir

Memory Module Directory Attributes
You can examine and change module attributes using the mdattr
utility. To use the mdattr utility, type mdattr and the module directory
pathlist. For example:

mdattr leap1
---r---r--wr leap1

Memory module directories can have owner, group, and public
attributes. These attributes are each divided into four fields (from right
to left):

• read attribute
• write attribute
• reserved
• reserved

The attribute abbreviations are listed in Table 3-1.

Table 3-1. Attribute Abbreviations

Abbreviation Means
r owner read permission
w owner write permission
gr group read permission
gw group write permission
pr public read permission
pw public write permission

Chapter 3: OS-9 Memory Modules

62 Using OS-9

A module directory with all permissions set looks like similar to that
shown below:

--wr--wr--wr

The first wr series is the public read and write permissions. The second
is the group read and write permission. The third is the owner read and
write permissions. The hyphens (-) are place holders for reserved fields.

A permission is changed by giving its abbreviation preceded by a
hyphen (-). It is turned off by preceding its abbreviation with a hyphen
followed by the letter n (-n). Permissions not explicitly named are not
affected. If no permissions are specified, the current file attributes are
printed.

To see the attributes of the module leap1, type the following
command:

$ mdattr leap1
------wr--wr leap1

leap1 has the group and owner read and write permissions set. To
remove the group write permission and add the public read permission
to leap1, type the following command:

$ mdattr leap1 -ngw -pr
---r---r--wr leap1

Creating New Memory Module Directories
To create new memory module directories, use the makmdir utility. The
makmdir utility creates the new module directory in the directory
specified. To create a new memory module directory, type makmdir
followed by the module directory pathlist specifying the new module
directory.

Chapter 3: OS-9 Memory Modules

Using OS-9 63

The following example uses this memory module directory structure:

Figure 3-2. Before makmdir Command

To create the directory TONY in the USER directory, type the following
command:

makmdir /user/TONY

The module directory structure looks like the following figure:

Figure 3-3. After makmdir Command

makmdir creates the new module directory with the read and write
permissions set for the owner, group, and public. In addition, makmdir
only searches the current module directory for a specified module path
when creating a new module directory. The alternate pathlists specified
by the MDPATH environment variable are not searched if a specified
module path is not found in the current module directory.

For example, if USER is your current module directory and you want to
make a new directory in a directory called TEST, OS-9 does not search
the alternate module directories for a module directory named TEST.

Chapter 3: OS-9 Memory Modules

64 Using OS-9

Deleting Memory Module Directories
You can delete memory module directories using the delmdir utility. To
delete a module directory, type delmdir, the pathlist for the module
directory, and any desired options.

If the module directory to be deleted contains sub-directories, the sub-
directories are also deleted. For example, if the USER directory in the
previous example is deleted, the directories AMY, TONY, and JESSICA
are also deleted.

delmdir searches only the current module directory for a specified
module path when deleting a module directory. The alternate pathlists
specified by the MDPATH environment variable are not searched if a
specified module path is not found in the current module directory.

Modules within the directory to be deleted or any of its sub-directories
must not be in use. If a module in a directory is in use when delmdir is
called, delmdir is not successful. You must also have the appropriate
access permissions to a module directory in order to delete it.

Using OS-9 65

4 The Shell Chapter 4

This chapter contains a detailed description of the shell, the OS-9 user
interface. It includes the following sections:

• The Function of the Shell
• The Shell Environment
• Built-In Shell Commands
• Shell Command Line Processing
• Shell Procedure Files
• Time-Sharing System Startup Procedure File
• Creating a Temporary Procedure File
• Multiple Shells
• Waiting for Background Procedures
• Command History
• Error Reporting

Chapter 4: The Shell

66 Using OS-9

The Function of the Shell
The shell is the OS-9 command interpreter program. The shell takes the
commands you enter and translates them into commands the operating
system understands and executes.

The shell also provides an environment that can be configured by the
user; this allows you to personalize the way OS-9 works on your system.
You can use the shell to change the shell prompt, send error messages
to a file, or backup your disk before you log out.

The shell command starts the shell program. This command is
automatically executed following system startup or after logging on to a
timesharing terminal. When the shell is ready for commands, it displays
the following prompt:

[1]$

This prompt indicates the shell is active and waiting for a command
from your keyboard. From here you can type a command line followed
by a carriage return.

Shell Options
A number of options are available to the shell. By default, some are
automatically turned on following startup or log on. The available shell
options are listed in Table 4-1.

The [1] in the prompt is the history number for that command
line. This has been omitted from the rest of the prompts shown in
this manual. The command line history is discussed in this
chapter.

Table 4-1. Shell Options

Option Description
-a Echo the command line if it is altered after if is

entered.

This is the default option.
-c=<num> Specify the number of previously executed

commands the shell should remember.

This provides a history of your commands. If <num> is
not specified, the default is 40.

Chapter 4: The Shell

Using OS-9 67

-e=<file> Print error messages from <file>. If no file is
specified, /dd/SYS/errmsg is used.

Without this option, the shell prints only error
numbers with a brief message description. Each error
is described in the appendix on error codes in the OS-
9 Technical Manual.

-h Display the command’s history number in front of the
command line prompt.

This is the default option.
-l The logout built-in command is required to

terminate the login shell. <eof> does not cause the
shell to terminate.

-na Does not echo the command line if it is altered after
it is entered.

-nc Does not keep track of your command history.
-ne Print no error messages.

This is the default option.
-nh Does not display the command’s history number.
-nl <eof> terminates the login shell.

<eof> is normally caused by pressing the <Esc> key.
This is the default option.

-np Does not display the prompt.
-nq Does not keep assigns in environment.
-ns Does not save your command history from one login

session to the next.

This is the default option.
-nt Does not echo input lines.

This is the default option.
-nv Turns off verbose mode.

This is the default option.
-nx Does not abort process on error.

Table 4-1. Shell Options (Continued)

Option Description

Chapter 4: The Shell

68 Using OS-9

You can change shell options with either of two methods. The two
methods accomplish the same function.

1. Type the option on the command line or after the shell command.
For example:
• $ -np turns off the shell prompt.

• $ shell -np creates a new shell that does not prompt. When
the new shell is exited, the original shell prompts.

2. Use set, a special shell command. To set shell options, type set,
followed by the options desired. When using the set command, a
hyphen (-) is unnecessary before the letter option. For example:
• $ set np turns off the shell prompt.

• $ shell set p creates a new shell that does not prompt. When
the new shell is exited, the original shell prompts.

-p Displays the prompt.

The default prompt is a dollar sign ($).
-p=<string> Set the current shell prompt equal to <string>.
-q Keep assigns in environment.

This is the default option.
-s Save your command history from one login session to

the next.

The command history is saved in a .history file in
your home directory.

-t Echo input lines.
-v Verbose mode: display a message for each directory

searched when executing a command.
-x Abort process on error.

This is the default option.

Table 4-1. Shell Options (Continued)

Option Description

Chapter 4: The Shell

Using OS-9 69

The Shell Environment
The shell maintains a unique list of environment variables for each user
on an OS-9 system. These variables affect the operation of the shell or
other programs subsequently executed and can be set according to
your preference.

All environment variables can be accessed by any process called by the
shell or descendant shells. This enables you to use the environment
variables as global variables.

If an environment variable is redefined by a subsequent shell, the
variable is only redefined for that shell and its descendents. The
environment variable is not redefined for the parent shell.

The environment variables shown in Table 4-2 are automatically set up
when you log on to a time-sharing system.

Table 4-2. Environment Variables

Variable Description
PORT The name of the terminal.

An example of a valid name is /t1. The tsmon utility
automatically sets up PORT.

HOME Your home directory.

The home directory is specified in your password file entry
and is your current data directory when you first log on
the system. This is also the directory used when the
command chd with no parameter is executed.

SHELL The first process executed upon logging on to the system.
USER The user name you type when prompted by the login

command.
PATH Specify any number of directories.

Directory paths must be separated by a colon (:). The
shell uses PATH as a list of command directory to search
when executing a command. If the default commands
directory does not include the file or module to be
executed, each directory specified by PATH is searched
until the file/module is found or the list is exhausted.

Chapter 4: The Shell

70 Using OS-9

For single user systems, these variables can be set with the setenv
command. A procedure file may also be set up with your normal
configuration of these variables. This procedure file could then be
executed each time you start up your terminal.

Other environment variables include those shown in Table 4-3:

Table 4-3. Optional Environment Variables

Variable Description
MDHOME Specify your home module directory.

This is the module directory used when executing the
command chm with no parameter.

MDPATH Specify any number of module directories to search.

Module directory paths must be separated by a colon (:).
The shell uses MDPATH as a list of module directories to
search when executing a command.

PROMPT Specify the current prompt.

By specifying an at sign (@) as the first character of your
prompt, you may easily keep track of how many shells you
have running under each other. @ is used as a replaceable
macro for the shell level number. The base level is set by the
environment variable _sh.

_sh Specify the base level for counting the number of shell
levels.

For example, set the shell prompt to @howdy: and _sh to 0:

$ setenv _sh 0
$ -p="@howdy: "
howdy: shell
1.howdy: shell
2.howdy: eof
1.howdy: eof
howdy:

TERM Specify the type of terminal being used.

TERM allows word processors, screen editors, and other
screen dependent programs to know what type of terminal
configuration is used.

Environment variables are case sensitive. OS-9 cannot recognize
a variable if the proper case is not used.

Chapter 4: The Shell

Using OS-9 71

Changing the Shell Environment
Three commands are available for use with environment variables:
setenv, unsetenv, and printenv. These variables are only known to
the shell in which they are defined and any descendant processes from
that shell.

These three commands are described in the Utilities Reference manual.

Using Environmental Variables as Command Line Parameters
When you use the following syntax, the shell replaces the environment
variable with its value:

$(<env var>)

For example, if HOME is set to /h0/USR/ROB and you enter the
command dir $(HOME), the shell executes the command dir
/h0/USR/ROB.

Table 4-4. Environment Variable Commands

Command Description
setenv Declare the variable and sets its value.

The variable is put in an environment storage area
accessed by the shell. For example:

$ setenv PATH ..:/h0/cmds:/d0/cmds:/dd/cmds
$ setenv _sh 0

setenv does not change the environment of the parent
process of the shell from which setenv was issued.

unsetenv Clear the value of the variable and removes it from
storage. For example:

$ unsetenv PATH
$ unsetenv _sh

printenv Print the variables and their values to standard output.
For example:

$ printenv
PATH ..:/h0/cmds:/d0/cmds:/dd/cmds
PROMPT howdy
_sh 0

Chapter 4: The Shell

72 Using OS-9

This substitution is useful for entire command lines. By using setenv, a
command line can be assigned to an environment variable:

setenv PR "procs -ea"

Any time $(PR) appears on the command line, the shell automatically
substitutes procs -ea.

Built-In Shell Commands
The shell has a special set of commands or option switches built in to
the shell. These commands are executed without loading a program
and creating a new process. They can be executed regardless of your
current execution directory.

The built-in commands and their functions are as listed in Table 4-5.

Table 4-5. Built-in Shell Command

Command Description
* <text> Indicates a comment: <text> is not

processed.
assign Allows you to assign commands and strings

to a single word for command line
substitutions.

chd <path> Change the current data directory to the
directory specified by <path>.

chm <path> Change the current module directory to the
module directory specified by <path>.

chx <path> Change the current execution directory to
the directory specified by <path>.

ex <name> Directly execute the named program. This
replaces the shell process with a new
execution module.

hist Display the history of your commands.
kill <proc ID> Abort the process specified by <proc ID>.
logout Terminate the current shell.

If the login shell is to be terminated,
the.logout file in the home directory is
executed and then the login shell is
terminated.

Chapter 4: The Shell

Using OS-9 73

Shell Command Line Processing
The shell reads and processes command lines one at a time from its
input path (usually your keyboard). Each line is first parsed to identify
and process any of the following parts that may be present:

Only the keyword needs to be present for the shell to process a
command line. Parameters, execution modifier, and separators are
optional. After the keyword has been identified, the shell processes any
execution modifiers and separators. Any text not yet processed is
assumed to be parameter and is passed to the program called.

profile Execute a procedure file without forking a
child shell.

set <options> Set options for the shell.
setenv <env var>
<value>

Set an environment variable to a specified
value.

setpr <proc ID>
<priority>

Change the process priority.

unassign Unassign an assignment made with
assign.

unsetenv <env var> Delete the environment variable from the
environment.

w Wait for a child process to terminate.
wait Wait for all child processes to terminate.

Table 4-5. Built-in Shell Command (Continued)

Command Description

Table 4-6. Command Line Parts

Part Description
keyword name of a program, procedure file, built-in command,

or pathlist
parameters names of files, programs, values, variables, and

constants to be passed to the program being executed
execution
modifiers

These modify a program’s execution by redirecting
I/O or changing the priority or memory allocation of a
process.

separators When multiple commands are placed on the same
command line, separators specify whether they should
be executed sequentially or concurrently.

Chapter 4: The Shell

74 Using OS-9

The keyword must be the first word in the command line. If the keyword
is a built-in command, it is executed immediately. If the keyword is not a
built-in command, the shell assumes it is a program name and
attempts to locate it. The shell searches for the command in the
following sequence:

1. The shell checks the memory to see if the program has already been
loaded into the module directory. If it is already in memory, there is
no need to load another copy. The shell then calls the program to be
executed.

2. If the program is not in memory, your current execution directory is
searched. An attempt to load the program is made if it is found. If
this fails, the shell tries to execute it as a procedure file. If this fails,
the shell attempts the same procedure using the next directory
specified in the PATH environment variable. This continues until the
command is successfully executed or the list of directory is
exhausted.

3. Your current data directory is searched. If the specified file is found,
it is processed as a procedure file. Procedure files are assumed to
contain one or more shell command lines. These command lines
are processed by a newly created, or child shell as if they had been
typed in manually. After all commands from the procedure files are
executed, control returns to the old, or parent shell. Because the
commands are processed by the child shell, all built-in commands in
the procedure file such as chd and chx only affect the child shell.

An error is returned if the program is not found. If the program is found
and executed, the shell waits until the program terminates. When the
program terminates, it reports any errors returned. If there are more
input lines, the shell gets the next line and the process is repeated.

This sample command line calls a program:

$ prog #12K sourcefile -l -j >/p

In this example:

prog is the keyword.

#12K is a modifier requesting an alternate memory
size be assigned to this process.

In this case, 12K is used as memory.

sourcefile -l -j are parameters passed to prog.

Chapter 4: The Shell

Using OS-9 75

> is a modifier redirecting output to a file or
device.

In this case, > redirects the output to the
printer (/p).

/p is the system printer.

Special Command Line Features
In addition to basic command line processing, the shell facilitates the
following jobs:

• memory allocation
• I/O redirection, including filter
• process priority
• wildcard pattern matching
• multi-tasking; concurrent execution

These functions are accessed by using execution modifiers, separators,
and wildcard characters. The combination of ways you can use these
capabilities is virtually unlimited.

Characters comprising execution modifiers, separators, and wildcards
are stripped from the part(s) of the command line passed to a program
as parameter. Characters cannot be passed as parameters to programs
unless contained in quotes.

Table 4-7. Execution Modifiers

Modifier Description
Additional memory size
^ Process priority
> Redirect output
< Redirect input
>> Redirect error output

Table 4-8. Separators

Separator Description
; Sequential execution
& Concurrent execution

Chapter 4: The Shell

76 Using OS-9

Execution Modifiers
The shell processes execution modifiers before the program is run. If an
error is detected in any of the modifiers, the run is aborted and the error
reported.

Additional Memory Size Modifier
Every executable program is converted to machine language for
storage. During the conversion process, a module header is created for
the program. A module header is part of all executable programs and
holds the program’s name, size, memory requirements, and other
details.

When an executable program is processed by the shell, the minimum
amount of working memory specified in the program module header is
allocated. To increase the default memory size, memory can be
assigned in 1K increments using the pound sign modifier (#) followed
by a number of allocated kilobytes: #10k or #10. The shell adds the
allocated number of kilobytes to the default listed in the program
header.

+ Concurrent execution
! Pipe construction for standard output
!! Pipe construction for standard error
!!! Pipe construction for both output and error

Table 4-8. Separators (Continued)

Separator Description

Table 4-9. Wildcards

Wildcard Description
* Matches any character
? Matches a single character

A complete explanation of module headers is available in the
OS-9 Technical Manual.

Chapter 4: The Shell

Using OS-9 77

The increase in memory allocation only affects one command. If you
want to increase the allocation for the next command, you must add
the modifier (#) again.

I/O Redirection Modifiers
Redirection modifiers redirect the program’s standard I/O paths to
alternate file or devices. Usually, programs do not use specific file or
device names. This makes the redirection of standard I/O to any file or
device fairly simple without altering the program. Programs normally
receiving input from a terminal or sending output to a terminal use one
or more of these standard I/O paths:

Standard Input Path Pass data from a keyboard to a program.

Standard Output Path Pass output data from a program to a display.

Standard Error Path This can be used for either input or output,
depending on the nature of the program using
it. This path is commonly used to output
routine status messages, such as prompts and
errors to the terminal’s display. By default, the
standard error path uses the same device as
the standard output path.

A new process can only be created by an existing process. The new
process is known as the “child process”. The process creating the child
process is known as the “parent process”. Each child process inherits
the standard I/O paths from the parent process.

When the shell creates a new process, it inherits the shell’s standard I/O
paths. Upon startup or login, standard input is the terminal keyboard.
The standard output and standard error are directed to the display.
Consequently, the child process standard input is the keyboard. The
child process standard output and standard error are directed to the
display.

Programs written in C use extra memory for stack space only.

Chapter 4: The Shell

78 Using OS-9

Below are the three redirection modifiers:

< Redirect the standard input path.

> Redirect the standard output path.

>> Redirect the standard error path.

When you use a redirection modifier on a shell command line, the shell
opens the corresponding paths and passes them to the new process as
its standard I/O paths. When you use redirection modifiers on a
command line, they must be immediately followed by a path describing
the file or device to or from which the I/O is to be redirected.

Standard Devices
Each physical input/output device supported by the system must have a
unique name within a module directory. Although the device names
used on a system are somewhat arbitrary, it has become customary to
use the names Microware assigns to standard devices in OS-9
packages. The standard devices are shown in Table 4-10.

The h0fmt and h1fmt device descriptors have a bit set allowing you to
use the format and os9gen utilities on them. To avoid accidentally
formatting a hard disk, you should use the device names h0, h1, etc.

Table 4-10. Standard Devices

Device Description
term Primary system terminal
t1, t2, etc. Other serial terminals
p Parallel printer
p1 Serial printer
dd Default disk drive
d0 Floppy disk drive unit 0
d1, d2, etc. Other floppy disk drives
h0, h1, etc. Hard disk drives (format-inhibited)
h0fmt, h1fmt, etc. Hard disk drives (format-enabled)
n0, n1, etc. Network devices
mt0, mt1 Tape devices
r0 RAM disk

Chapter 4: The Shell

Using OS-9 79

Device names may only be used as the first name of a pathlist and must
be preceded by a slash (/) to indicate the name is an I/O device. If the
device is not a mass storage multi-file device like a disk drive, the device
name must be the only name in the path. This restriction is true for
devices such as terminals and printers.

For example, the standard output of list can be redirected to write to
the system printer instead of the terminal:

$ list correspondence >/p

Files referenced by I/O redirection modifier are automatically opened or
created and closed as appropriate by the shell. In the below example,
the output of dir is redirected to the path /d1/savelisting:

$ dir >/d1/savelisting

If list is used on the path /d1/savelisting, output from dir is
displayed as follows:

$ List /d1/savelisting
 directory of . 10:15:00

file1 myfile savelisting

You can use redirection modifiers before and/or after the program
parameter, but you can use each modifier only once in a given
command line. Redirection modifiers can be used together to cause
more than one of the standard paths to be redirected. For example,
shell <>>>/t1 redirects all three standard paths to /t1.

The plus and hyphen characters (+ and -) can be used with output style
redirection modifier. The >- modifier redirects output to a file. If the file
already exists, the output overwrites it. The >+ modifier adds the output
to the end of the file. The following example overwrites dirfile with
output from the execution directory listing:

dir -x >-dirfile

The below example adds the listing of newfile to the end of oldfile.

list newfile >+oldfile

Spaces must not occur between redirection operators and the device or
file path.

Chapter 4: The Shell

80 Using OS-9

Process Priority Modifier
On multi-user systems or when multi-tasking, many processes seem to
be simultaneously executed. Actually, OS-9 uses a scheduling algorithm
to allocate execution time to active processes.

All active processes are sorted into a queue based on the age of the
process. The age is a number between 0 and 65535 based on how long
a process has waited for execution and its initial priority.

On a timesharing system, the system manager assigns the initial priority
for processes started by each user. This priority for the initial process is
listed in the password file. The initial process is usually the shell. On a
single user system, processes have their priority set in the Init module.
All child processes inherit the parent process priority.

When a process enters the active queue, it has an age set to its initial
priority. Every time a new active process is submitted for execution, all
earlier processes’ ages are incremented. The process with the highest
age is executed first.

If you want a program to run at a higher priority, use the caret modifier
(^). By specifying a higher priority, a process is placed higher in the
execution queue. For example:

$ format /d1 ^255

In this example, the process format is assigned a priority of 255. By
assigning a lower number, a lower priority can be specified.

Specifying too high of a priority for a process can cause all other
processes to be locked out until their ages mature.

For example, if you specify a priority of 2000 for a program and
all the other processes have an age of less than 100, your
program is the only process executed on the system until either
your program terminates or another process’ age reaches 2000.
If another process’ age reaches 2000, it runs once and enters
back in the queue at its initial priority. Once again, your program
either runs until it terminates or until another process’ age
reaches 2000.

Chapter 4: The Shell

Using OS-9 81

Wildcard Matching
The shell uses some alternate ways to identify file and directory names.
The shell accepts wildcards in the command line. The two recognized
wildcard characters are the asterisk (*) and the question mark (?).

An asterisk (*) matches any group of zero or more characters. A
question mark (?) matches any single character. The shell searches the
current data directory or the directory given in a path for matching file
names.

For the following examples, a directory containing the following file is
used:

 directory of FILES 14:45:20

diary diary2 form form.backup forms
login.names logistics logs old oldstuff
setime.c shellfacts sizes sizes.backup utils1

The command list log* lists the contents of login.names,
logistics, and logs. The pattern log* matches all file names
beginning with log followed by zero or more characters. The following
commands demonstrate the function of this wildcard.

Table 4-11. Commands Using * Wildcards

Command Result
list s* List all files in the current data directory

beginning with s: shellfacts, setime.c,
and sizes.

del * Delete every file in the current data directory (in
this example, FILES).

dir ../*.backup List all files in the parent directory ending with
.backup.

dir -x d* List all files in the current execution directory
starting with the letter d. This can be helpful if
you are unsure of the spelling of a particular
utility.

Chapter 4: The Shell

82 Using OS-9

The question mark (?) matches any single character in the position
where the wildcard character is located. For example, the command
line list log? only lists the contents of the file logs. The following
commands demonstrate the function of this wildcard.

In both examples, the shell searches only for names with five
characters.

Wildcards may also be used together. For example, the command list
*.? lists any files ending in a period followed by any letter, number or
special character, regardless of what comes before the period. In this
case, list *.? lists the contents of the file setime.c.

The shell only attempts to expand a character string containing a
wildcard if the character string could be a pathlist. The shell does not
expand wildcards used in the keyword of a command line. For
example, the shell does not expand the asterisk in the following:

d* forms

The shell disregards wildcard characters enclosed in double quotes. For
example:

echo "*"

This echoes an asterisk (*) to standard output (usually the terminal). If
the double quotes around the asterisk were left out, the shell expands
the wildcard to include every file name in the current directory and
outputs each name to the terminal.

Table 4-12. Commands Using ? Wildcards

Command Result
del form? Delete the file forms but not form.
list s???? List the contents of sizes, but not setime.c or

shellfacts.

.You must be careful when using wildcards with utilities such as
del and deldir. Wildcards should not be used with the -x or -z
options of most utilities.

Chapter 4: The Shell

Using OS-9 83

Command Separators
A single shell input line can include more than one command line.
These command lines may be executed sequentially or concurrently.
Sequential execution causes one program to complete its function and
terminate before the next program is allowed to begin execution.
Concurrent execution allows several command lines to begin execution
and run simultaneously.

Commands can be sequentially executed by separating the command
with a semicolon (;). Commands can be concurrently executed by
separating the commands with an ampersand (&) or plus sign (+).

Sequential Execution
When one command per line is entered from the keyboard, programs
are executed one after another, or sequentially. All programs executed
sequentially are individual processes created by the shell. After initiating
a sequentially executed program, the shell waits until the program it
created terminates. The command line prompt does not return until the
program has finished.

For example, the following command lines are executed one after
another. The copy command is executed first, followed by the dir
command.

$ copy myfile /D1/newfile
$ dir >/p

You can specify more than one program on a single shell command line
for sequential execution by separating each program name and its
parameter from the next one with a semicolon (;). For example:

$ copy myfile /D1/newfile; dir >/p

The shell first executes copy and then dir. The command line executes
exactly as the previous two command lines unless an error occurs.

If an error is returned by any program, subsequent commands on the
same line are not executed regardless of the -nx option. In all other
regards, a semicolon (;) and a carriage return act as identical
separators.

Chapter 4: The Shell

84 Using OS-9

The following example copies the contents of oldfile into newfile.
When the copy command finished, oldfile is deleted. Then the
contents of newfile are listed.

$ copy oldfile newfile; del oldfile; list newfile

In the next example, the output from dir is redirected into myfile in
the d1 directory. The output from list is then redirected to the printer.
Finally, temp is deleted.

$ dir >/d1/myfile; list temp >/p; del temp

Multi-tasking: Concurrent Execution
Programs may be executed concurrently using the ampersand (&) or
plus sign (+) separators. This allows programs to run at the same time
as other programs, including the shell. The shell does not wait to
complete a process before processing the next command. Concurrent
execution is how a background program is started.

Multi-tasking is accomplished by using the concurrent execution
separators. The number of programs that can run at the same time is
not fixed; it depends upon the amount of free memory in the system
and the memory requirements of the specific programs.

Below is an example:

$ dir >/P& list file1& copy file1 file2; del temp

The dir, list, and copy utilities run concurrently because they were
separated by an ampersand (&). del does not run until copy has
terminated because sequential execution (;) was specified.

By adding an ampersand (&) or plus sign (+) to the end of a command
line, regardless of the type of execution specified, the shell immediately
returns command to the keyboard, displays the $ prompt, and waits for
a new command. This frees you from waiting for a process or sequence
of processes to terminate.

This is especially useful when making a listing of a long text file on a
printer. Instead of waiting for the listing to print to completion, using
either of the concurrent execution separators allows you to use your
time more efficiently.

Chapter 4: The Shell

Using OS-9 85

The plus sign (+) separator allows you to fork a process to run in the
background as an orphan process. An orphan process does not have a
parent process. This means regardless of how the process terminates,
you are not notified. Also, when the wait command is executed, the
shell does not wait for the process to finish execution. Executing an
orphan process is useful for executing non-terminating processes.

For example, you could execute tsmon and any networking utilities
concurrently using the plus sign separator:

$ tsmon /t1 +

tsmon is started, but your shell is not considered to be the parent
process.

If you have several processes running at once, you can display a status
summary of all your processes with the procs utility. procs gives you a
complete list of your current processes and pertinent information about
each process.

Pipes and Filters
The third kind of separator is the exclamation point (!) used to
construct “pipelines”. Pipelines consist of two or more concurrent
programs whose standard input and/or output paths connect to each
other using “pipes”. A pipe is simply a way to connect the output of a
process to the input of another process, so the two run as a sequence of
process: a pipeline. Pipes are one of the primary means for transferring
data from process to process for inter process communications. Pipes
are first-in, first-out buffers.

All programs in a pipeline are executed concurrently. The pipes
automatically synchronize the programs so the output of one never gets
ahead of the input request of the next program in the pipeline. This
ensures data cannot flow through a pipeline any faster than the slowest
program can process it.

Any program that reads data from standard input can read from a pipe.
Any program that writes data to standard output can write data to a
pipe. Several utilities are designed so the standard output of one can be
piped to the standard input of another.

The procs utility is discussed later in this chapter in the section
The procs Utility.

Chapter 4: The Shell

86 Using OS-9

For example:

$dir -e ! pr

This example causes the standard output of dir to be piped to the
standard input of the pr utility instead of on the terminal screen. pr
reads the output of dir even though pr reads standard input by
default. pr then displays the result.

In Figure 4-1 the standard output of the dir -e command is piped to
the standard input of the pr command through an un-named pipe. The
pr utility displays the results of the dir -e command.

Figure 4-1. Unnamed Pipe

The pr command may be modified with the following options:

• Two exclamation points (!!) pipe the standard error from one
program to another.

• Three exclamation points (!!!) pipe both the standard output and
standard error from one program to another.

The pipes used by OS-9 are “unnamed pipes” and “named pipe”s.

Unnamed Pipes
Unnamed pipes are created by the shell when an input line with one or
more exclamation point (!) separators is processed. For each
exclamation point, the standard output of the program named to the
left of the exclamation point is redirected by a pipe to the standard
input of the program named to the right of the exclamation point.
Individual pipes are created for each exclamation point present. For
example:

$ update <master_file ! sort !!! write_report >/p

In this example, the input for the program update is redirected from
master_file.update to the standard input for the program sort.
The standard and error output from sort, in turn, become the
standard input for the program write_report. Standard output from
write_report is redirected to the printer.

Chapter 4: The Shell

Using OS-9 87

Named Pipes
Named pipes are similar to unnamed pipes with one exception: a
named pipe works as a holding buffer that can be opened by another
process at a different time.

Named pipes are created by re-directing output to /pipe/<file>,
where <file> is any legal OS-9 file name. For example:

$ list letters >/pipe/letters &

The output from the list command is redirected into a named pipe,
/pipe/letters. The information remains in the pipe until it is listed,
copied, deleted, or used in some other manner.

In Figure 4-2 the output from the command list letters is
redirected to the named pipe, /pipe/letters. The pipe
/pipe/letters remains open until the contents are used in some way.
In this example, another user could later copy letters from the pipe
into a file in their own directory by typing a command such as:

copy /pipe/letters /h0/usr/me/letters

Once the file /pipe/letters is copied, the named pipe is deleted.

Figure 4-2. Named Pipes

You can also create named pipes by writing to the named pipe from a
program. Named pipes are similar to mass-storage files, except for the
limitation to their size. Named pipes have attributes and owners. They
may be deleted, copied, or listed using the same syntax you would use
to delete, copy, or list a file. You may change the attributes of a named
pipe just as you would change the attributes of a file.

Chapter 4: The Shell

88 Using OS-9

dir works with /pipe. This displays all named pipes in existence. A
dir -e command may be deceiving. If a named pipe is created by any
utility other than copy, the default pipe size equals 128 bytes. copy
expands the size of the pipe to the size of the file. This indicates the first
128 bytes of the output are in the named pipe. However, if the procs
utility is executed, you see a path remains open to /pipe. If you were to
copy or list the pipe, for example, the pipe continues to receive input
and passes it to its output path until the input process is finished. When
the pipe is empty, the named pipe is deleted automatically.

Some of the most useful applications of pipelines are character set
conversion, data compression/decompression, and text file formatting.
Programs designed to process data as components of a pipeline are
often called filters.

Command Grouping
You can enclose sections of shell input lines in parentheses. This
enables you to apply modifier and separators to an entire set of
programs. The shell processes them by calling itself recursively as a new
process to execute the enclosed program list. For example, the
following commands produce the same result:

$ (dir /d0; dir /d1) >/p
$ dir /d0 >/p; dir /d1 >/p

However, one subtle difference exists. The printer is continuously
controlled by one user in the first example, while in the second case,
another user could access the printer between the dir commands.

You can use command grouping to execute a group of programs
sequentially with respect to each other and concurrently with respect to
the shell that initiated them. For example:

$ (del *.backup; list stuff_* >/p)&

This command begins to sequentially delete all files ending in .backup
and then list to the printer the contents of any files starting with
stuff_. At the same time a $ prompt appears, indicating the shell is
waiting for a new command.

A useful extension of this form is to construct pipelines consisting of
sequential and/or concurrent programs. For example:

$ (dir CMDS; dir SYS) ! makeuppercase ! transmit

Chapter 4: The Shell

Using OS-9 89

This command line outputs the dir listings of CMDS and SYS, in that
order, through a pipe to the program makeuppercase. The total output
from makeuppercase is then piped to the program transmit.

It is important to remember that OS-9 processes commands from left to
right. In the following example, the dir command is executed first,
followed by the procs and del commands located inside the
parentheses.

$ dir& (procs; del whatever)

Shell Procedure Files
A procedure file is a text file containing one or more command lines
that are identical to command lines manually entered from the
keyboard. The shell executes each command line in the exact sequence
given in the procedure file.

A simple procedure file might consist of dir on one line and date on
another. When the name of this procedure file is entered from the
command line, dir is run followed by date.

Procedure files have a number of valuable applications:

• eliminating repetitive manual entry of commonly used command
sequences

• enabling the computer to execute a lengthy series of programs in
the background while the computer is unattended or while you are
running other programs in the foreground

• initializing your environment when you first login

You can run procedure file in the background by adding the & operator:

$ procfile&
+4

If a procedure file is run in the background, it should not contain any
terminal I/O. Any terminal I/O caused by a background procedure file
will minimally cause two or more processes try to control the same I/O
path.

Chapter 4: The Shell

90 Using OS-9

Notice the +4 returned by the shell in the example above. This is the
process number assigned to the shell running procfile. The same
effect could be achieved by using the <control>C interrupt:

$ procfile
[<control>C is typed]
+4

Using <Control>C to place a procedure in the background only works
if the procedure has not yet performed I/O to the terminal. Another
limitation of the <Control>C interrupt occurs when the shell has not
had time to set up the command for execution. If the shell has not
loaded files from the disk, established pipelines, or completed other set-
up activities the <Control>C causes the shell to abort the operation
and return the shell prompt. For this reason, it is usually better to use
the ampersand to place a procedure in the background.

OS-9 does not have any limit on the number of procedure files that can
be simultaneously executed as long as memory is available.

Using Parameters with Procedure Files
The shell allows you to pass as many parameters as you wish to a
procedure file. These parameters are entered on the command line and
replace the variables located within the procedure file.

For example, if you have a procedure file, files, you can list the first
parameter and delete the second parameter:

$ list files
list $(P0)
del $(P1)

When you enter files and two filenames, the first filename replaces
$(P0) and the second replaces $(P1):

files starter update

This command lists the file starter to your terminal screen and
deletes update.

.Procedure files themselves can cause sequential or concurrent
execution of additional procedure files.

Chapter 4: The Shell

Using OS-9 91

If you add a third filename to the command line, it is ignored unless the
variable $(P2) is added to the procedure file. If there is a variable
$(P2), the third parameter is recognized and used.

The $(P*) variable is a concatenation of all the parameters passed to
the procedure file. The following example shows a procedure file using
the $(P*) variable and printing out the environment within the shell.

[7]POS: build listfil
? list $(P*)
? printenv
?
[8]POS: listfil data1 data2 data3
This is the first file Contents of data1
This is the second file Contents of data2
This is the third file Contents of data3
PORT=/pks01
HOME=/h0/USR/ROBB
SHELL=shell
USER=robb
PATH=/h0/cmds
TERM=kt7
_sh=1
PROMPT=@POS:
P0=data1 First parameter
P1=data2 Second parameter
P2=data3 Third parameter
P*=data1 data2 data3 Value of variable P*
PN=3 Number of parameters
 passed to file listfil

The shell uses the PN variable to keep track of the number of
parameters passed to any given procedure file.

When the procedure file has finished executing, the shell environment
returns to its previous state. The variables are not passed from the
procedure file back to the shell.

Do not use setenv to set variables such as P0, and P1 as they
are not passed between the shell and the procedure file.

Chapter 4: The Shell

92 Using OS-9

Using profile When Running Procedure Files
Typically, when a procedure file is executed, a new shell is forked to
process the procedure file. Any changes affecting the shell (such as
changing any of the current directories or changing the shell
environment) made from within a procedure file do not affect the
environment of the shell from which the procedure file was called.

The profile built-in shell command executes a procedure file without
forking a child shell. This makes it possible to change current directory
and environment variables from within a procedure file. For example, if
you frequently work on a project located in directory
/h0/USR/PROJ/MYPROJ and you want the environment variable FRAME
to equal pickone whenever you work on your project, you could have a
procedure file similar to the following:

$ list myproject
chd /h0/usr/proj/myproj
setenv FRAME pickone

When you want to work on your project, type the following command:

profile myproject

You current data directory is /h0/USR/PROJ/MYPROJ and FRAME is set
to pickone. You may still pass parameter to procedure file by using
profile.

The Login Shell and Special Procedure Files
The login shell is the initial shell created by the login sequence to
process the user input command after logging in. To use these files,
they must be located in your home directory.

.login is processed each time the login command is executed. This
allows you to run a number of initializing commands without
remembering each and every command. .login is processed as a
command file by the login shell immediately after successfully logging
on to a system. After all commands in the .login file are processed,
the shell prompts you for more commands. The main difference in
handling .login is the login shell itself actually executes the command
rather than creating another shell to execute the commands.

Chapter 4: The Shell

Using OS-9 93

It is possible to issue commands such as set and setenv within
.login and have them affect the login shell. This is especially useful
for setting up the environment variables MDHOME, MDPATH, PATH,
PROMPT, TERM, and _sh.

Below is an example .login file:

setenv PATH
..:/h0/cmds:/d0/cmds:/dd/cmds:/h0/doc/spex

setenv PROMPT "@what next: "
setenv _sh 0
setenv TERM abm85h
setenv MDHOME
querymail
date
dir

.logout is processed when logout is executed to exit the login shell
and leave the system. .logout is processed before the login shell
terminates. logout only processes the .logout file when given to the
login shell; subsequent shells simply terminate. You could use this to
execute any clean up procedures you do on a regular schedule. This
might be anything from instigating a backup procedure of some sort to
printing a reminder of things to do.

Below is an example .logout file:

procs
wait
echo "all processes terminated"
* basic program to instigate backup if necessary *
disk_backup
echo "backup complete"

Using assign When Running Procedure Files
The OS-9 shell allows you to assign command and strings to a single
word, or assignment, for command line substitution. For example, if you
prefer to use the command cd instead of chd, enter the following
command line:

assign cd chd

Chapter 4: The Shell

94 Using OS-9

You can also assign strings to a single word. For example, if you
frequently copy a number of large files, assign the string copy -b=50
to copylg:

assign copylg “copy -b=50”

You must place strings of text containing blanks in double quotes.

To find out what assignments you have already made, enter assign
with no parameter:

$ assign
cd chd
copylg copy -b=50

To remove an assignment, enter unassign and the assignment(s) you
wish to remove:

unassign cd

unassign does not report errors.

By default, your assignments are kept in your environment list. This
allows them to be passed from shell to shell. If you do not want your
assignments to be kept in your environment list, use the -nq shell
option. The assignments are still passed to any procedure file forked by
the shell, but they are not available to the child shells.

Assignments can be used in procedure files. For example, you can set
up a procedure file to copy several large files from one directory to
another. You could use copylg, which you previously assigned.
However, if someone else uses your procedure file, they may not have a
copylg assignment, or they may have it assigned to something else.
Therefore, you can unassign copylg and re-assign it within your
procedure file. Assignments made within a procedure file are not
passed back to the parent shell.

Time-Sharing System Startup Procedure File
OS-9 systems used for timesharing usually have a procedure file that
brings the system up by means of one simple command or by using the
system startup file. This procedure file initiates the timesharing monitor
for each terminal. It begins by starting the system clock and initiating
concurrent execution of a number of processes having their I/O
redirected to each timesharing terminal.

Chapter 4: The Shell

Using OS-9 95

tsmon is a special program that monitors terminals for activity.
Typically, tsmon is executed as part of the start-up procedure when the
system is first brought up and remains active until the system shuts
down.

tsmon is normally used to monitor I/O devices capable of bi-directional
communication, such as CRT terminals. However, tsmon may also be
used to monitor a named pipe. If this is done, tsmon creates the named
pipe and then waits for data to be written to it by some other process.

It is possible to run several tsmon processes concurrently, each one
watching a different group of devices. Because tsmon can monitor up
to 28 device name pathlists, multiple tsmon processes must be run
when more than 28 devices are to be monitored. Multiple tsmon
processes can be useful for other reasons. For example, it may be
desirable to keep modems or terminals suspected of hardware trouble
isolated from other devices in the system.

Below is a sample procedure file for a timesharing system with
terminals named term, t1, t2, t3, and t71:

* system startup procedure file
echo Please Enter the Date and Time
setime </term
tsmon /t1 /t2 /t3&
tsmon /t71 * This terminal has been misbehaving

In the previous example, setime has its input redirected from the
system console term. This is necessary because it would otherwise
attempt to read the time information from its current standard input
path which is the procedure file and not the keyboard.

This login procedure does not work until a file called /d0/SYS/
password with the appropriate entries has been created.

For more information on tsmon, see Chapter 7, OS-9 System
Management.

Chapter 4: The Shell

96 Using OS-9

The Password File
A password file is located in the SYS directory. Each line in the file is a
login entry for a user, which includes fields separated by a comma.

User name
The user name may contain up to 32 characters including spaces.
If this field is empty, any name matches.

Password
The password may contain a maximum of 32 characters including
spaces. If this field is omitted, no password is required for the
specified user.

Group.user ID number
Both the group and the user portion of this number may be from 0
to 65535. 0.0 is the super user. This number is used by the file
security system as the system-wide user ID to identify all processes
initiated by the user. The system manager should assign a unique
user ID to each potential user.

Initial process priority
This number may be from 1 to 65535. It indicates the priority of
the initial process.

Initial execution directory
This field is usually set to /d0/CMDS. Specifying a period (.) for this
field defaults to the current execution directory.

Initial data directory
This is usually the specific user directory. Specifying a period (.) for
this directory defaults to the current directory.

Initial ProgramThis field contains the name and
parameter of the

 program to be initially executed. This is usually shell.

Fields left empty are indicated by two consecutive commas.

The following is a sample password file:

superuser,secret,0.0,255,.,.,shell -p="@howdy"

suzy,morning,1.5,128,.,/d0/SUZY,shell

paul,dragon,3.10,100,.,/d0/PAUL,Basic

Chapter 4: The Shell

Using OS-9 97

Creating a Temporary Procedure File
To perform tasks requiring a sequence of commands, you can create
temporary procedure files. The cfp utility creates a temporary
procedure file in the current data directory and calls the shell to execute
it. After the task has been completed, cfp automatically deletes the
procedure file unless you use the -nd option to specify you do not want
the procedure file deleted.

The following is the syntax for the cfp utility:

cfp [<opts>] [<path1>] {<path2>}

To use the cfp utility, type cfp, the name of the procedure file
(<path1>), and the file(s) (<path2>) to be used by the procedure file.
The name of the procedure file may be omitted if the -s=<string>
option is used.

All occurrences of an asterisk (*) in the procedure file are replaced by
the given pathlist(s) unless preceded by the tilde character (~). For
example, ~* translates to *. The command procedure is not executed
until all input files have been read.

For example, if you have a procedure file in your current data directory
called copyit consisting of a single command line: copy *, you could
put all of your C programs from two directories, PROGMS and
MISC.JUNK, into your current data directory by typing the following
command:

$ cfp copyit ../progms/*.c ../misc.junk/*.c

If you do not have a procedure file, you can use the -s option. The -s
option causes the cfp utility to read the string surrounded by quotes
instead of a procedure file. For example:

$ cfp "-s=copy *" ../progms/*.c ../misc.junk/*.c

In this case, the cfp utility creates a temporary procedure file to copy
every file ending in .c in both PROGMS and MISC.JUNK to the current
data directory. The procedure file created by cfp is deleted when all the
files have been copied.

Chapter 4: The Shell

98 Using OS-9

Using the -s option is convenient because you do not have to edit the
procedure file if you want to change the copy procedure. For example,
if you are copying large C programs, you may want to increase the
memory allocation to speed up the process. You could allocate the
additional memory on the cfp command line:

$ cfp "-s=copy -b100 *" ../progms/*.c
../misc.junk/*.c

You can use the -z and -z=<file> options to read the file names from
either standard input or a file. The -z option is used to read the file
names from standard input. For example, if you have a procedure file
called count.em containing the command count -l * and you want
to count the lines in each program to see how large the programs are
before you copy them, you could type the following command line:

$ cfp -z count.em

The command line prompt does not appear because the cfp utility is
waiting for input. Type in the file names on separate command lines.
For example:

$ cfp -z count.em
../progms/*.c
../misc.junk/*.c

When you have finished typing the file names, press the carriage return
a second time to get the shell prompt.

If you have a file containing a list of the files you want copied, you could
type the following command:

$ cfp -z=files "-s=copy *"

For more information on cfp, see the Utilities Reference manual.

Chapter 4: The Shell

Using OS-9 99

Multiple Shells
Like all OS-9 utilities, the shell can be simultaneously executed by more
than one process. This means in addition to all users having their own
shells, an individual user can have multiple shells.

New shells can be created with the procedure file. For example, to
execute a shell whose standard input is obtained from procfile, type
the following command:

$ shell <procfile

The new shell automatically accepts and executes the command lines
from the procedure file instead of a terminal keyboard. This technique
is sometimes called batch processing.

Shells can also fork new shells by simply processing the procedure file:

$ procfile

Basically, both of the above commands execute the commands found in
the procfile file. By creating new shells, you can also move around
the file system more efficiently. To demonstrate this application use the
sample directory system in Figure 4-3.

Figure 4-3. An Example Directory

If your current data directory is DIR_9 and you want to work on
file_8, you could change your current data directory to DIR_8 and
access the file by typing the following command:

chd /d0/DIRECTORY_3/DIR_8

file_1

file_5 file_6

 file_2
 file_3

file_4

file_7 file_8

Chapter 4: The Shell

100 Using OS-9

To return to DIR_9 you execute a similar command. This is somewhat
inconvenient and involves always knowing the path to each directory.

Instead, you can create a shell and change directories:

$ (chd /d0/DIRECTORY_3/DIR_8)

This makes your current directory DIR_8, but you can return to DIR_9
by pressing the <Escape> (Esc) key. By this method, you may use any
directory as a base directory and fork a shell out to any other directory.

You may continue to imbed as many shells as you like. Each time you
press the <Escape> key, you are taken to the previous shell. In this
fashion you could conceivably escape from DIRECTORY_2 to DIR_8 to
DIR_6 to DIR_9.

You should experiment with the multiple shell aspects to fully use OS-9.

Because of the nature of jumping from shell to shell, it is easy to get
lost. pd displays a complete pathlist from the root directory to your
current data directory.

Likewise, when running multiple shells, it is easy to forget how many
shells are running. If the _sh environment variable is set to 1 and the
shell prompt includes an “at” sign (@), the number of shells replaces the
@ in the prompt. For example, if three shells are being run under each
other and the history count is on, the prompt might look like the
following example:

3.[5]now what:

The procs Utility
Because OS-9 is a multi-tasking operating system, you often have more
than one process executing at a time. The procs utility displays a list of
processes running on the system you own. This allows you to keep track
of your current processes.

Processes can switch states rapidly, usually many times per second.
Therefore the procs display is a snapshot taken at the instant the
command is executed and shows only those processes running at that
exact moment.

Chapter 4: The Shell

Using OS-9 101

procs displays ten items of information for each process:

Table 4-13. Information From procs

Name Description
Id The process ID
PId The parent process ID
Grp.usr The group and user number of the owner of the process
Prior The initial priority of the process
MemSiz The amount of memory the process is using
Sig The number of any pending signals for the process
S State of the process

*CPU = Process is currently in the CPU. This will always
be the procs command since it has to be running when it
takes the snapshot of the process table.

a = Active. Process wants CPU time, but must wait
because another process is in the CPU.

d = Debug. Process is currently being debugged.

e = Event. Process is blocked waiting on an event.

p = Semaphore. Process is blocked waiting on
semaphore.

s = Sleeping. Process is blocked waiting on a signal or
time value to elapse.

w = Waiting. Process is waiting on a child process to
terminate.

z = Suspended. Process is blocked by a kernel system
call.

- = Zombie. Process has been terminated, but the
parent has not performed a wait to read the exit status.

P Wait on semaphore
CPU Time The amount of CPU time the process has used

Chapter 4: The Shell

102 Using OS-9

Below is an example of procs:

$ procs
Id PId Grp.Usr Prior MemSiz Sig S CPU Time Age Module & I/O
2 1 22.150 128 0.25k 0 w 0.01 ??? sysgo <>>>term
3 2 22.150 128 4.75k 0 w 4.11 1:13 shell <>>>term
4 3 22.150 5 4.00k 0 a 12:42.06 0.14 xhog <>>>term
5 3 22.150 128 8.50k 0 * 0.08 0:00 procs <>>>term
6 0 22.150 128 4.00 0 s 0.02 1:12 tsmon <>>>t1
7 0 22.150 128 4.00k 0 s 0.01 1:12 tsmon <>>>t2

procs -a displays the process ID, the parent process ID, the process
name and standard I/O paths, and six new pieces of information:

Age The elapsed time since the process started
Module &
I/O

The process name and standard I/O paths:

< = standard input
> = standard output
>> = standard error output

If several of the paths point to the same pathlist, the
identifiers for the paths are merged.

Table 4-13. Information From procs (Continued)

Name Description

Table 4-14. Information From procs -a

Information Description
Aging The age of the process based on the initial priority

and how long it has waited for processing
F$calls The number of service request calls made
I$calls The number of I/O requests made
Last The last system call made
Read The number of bytes read
Written The number of bytes written

Chapter 4: The Shell

Using OS-9 103

The following is an example of procs -a:

$ procs -a
Id PId Aging F$calls I$calls Last Read Written Module & I/O
2 1 129 5 1 Wait 0 0 sysgo <>>>term
3 2 132 116 127 Wait 282 129 shell <>>>term
4 3 11 1 0 TLink 0 0 xhog <>>>term
5 3 128 7 4 GPrDsc 0 0 procs <>>>term
6 0 130 2 7 ReadLn 0 0 tsmon <>>>t1
7 0 129 2 7 ReadLn 0 0 tsmon <>>>t2

The -b option displays all information from procs and procs -a. The
-e option displays information for all processes in the system.

Waiting for Background Procedures
If the multi-tasking ability of OS-9 is used, there are times when a
number of procedures are running in the background. If it is important
to wait for these tasks to finish before running a new procedure, use the
w or wait built-in shell command.

• w wait for the last child process to be executed to finish.
• wait wait for all child processes running in the background to finish.
• A child process is a process being executed by the current shell or a

child of the shell.
• wait does not wait until a process forked with the plus sign (+)

concurrent execution separator finishes execution. Processes forked
with the plus sign are orphan processes.

For example, to create a document from three different files, where
each file has to be sorted by different fields, use the following files:

start of first procedure file

qsort -f=1 file1&
qsort -f=2 file2&
qsort -f=3 file3&
wait
merge file1 file2 file3 >report

start of second procedure file
qsort -f=1 file1
qsort -f=2 file2
qsort -f=3 file3
merge file1 file2 file3 >report

The first procedure file is faster, as each file is processed concurrently.

Chapter 4: The Shell

104 Using OS-9

Stopping Procedures
You can use two methods to stop a procedure. The first method involves
the <Control>C or <Control>E signal. The second method uses the
kill utility.

• <Control>C stops the shell from waiting for the process to
terminate and returns a prompt for a command.

• <Control>E forwards the keyboard abort signal to the process and
immediately prompts for input.

The shell handles these keyboard generated signals in the following
manner. If either of these signals are received while the shell is waiting
for keyboard input the following messages are issued:

$ Read I/O error - Error #000:177 [^E typed]
$ Read I/O error - Error #000:177 [^C typed]

These are the standard messages given whenever an I/O error occurs
when reading command input data.

If the shell is waiting for keyboard input and <Control>E is typed, the
shell forwards the keyboard abort signal to the current process and
immediately prompts for command input:

$ sleep 500
[^E is typed]
abort
$

The abort message is typed by the shell to acknowledge receipt of the
interrupt.

If the shell is waiting for keyboard input and you enter <Control>C, the
shell stops waiting for the current process to terminate and prompts for
command input. This action is similar to using an ampersand on the
command line. For example:

$ sleep 500
[^C is typed]
+8
$

Chapter 4: The Shell

Using OS-9 105

It is important to remember that using <Control>C in this fashion is
possible only if the command in question has not yet performed I/O to
the terminal. The signal is only received by the last process to perform
I/O. If the shell has not yet finished setting up the command for
execution, the signal causes the shell to abort the operation and returns
the prompt.

You must own the procedure or be the super user to kill a specified
process.

You can also use the kill utility to terminate background processes by
specifying the process number of the process to be killed. Obtain the
process number of the process from procs. Use the kill utility in the
following manner:

kill <proc num>

For example, if you want to terminate a process called xhog, you would
first execute a procs:

$ procs
Id PId Grp.Usr Prior MemSiz Sig S CPU Time Age

Module & I/O
 3 2 7.03 128 4.75k 0 w 4.11 01:13

shell <>>>term
 4 3 7.03 5 4.00k 0 a 12:42.06 00:14

xhog <>>>term
 5 3 7.03 128 8.50k 0 * 0.08 00:00

procs <>>term

From procs, you can see the process number for xhog is four. You can
then type the following command:

$ kill 4

When you execute procs again, you find xhog is no longer shown.

To use the kill utility, complete the following steps:

Step 1. Use the procs utility to get the process number.

Step 2. Type kill <proc num>.

Chapter 4: The Shell

106 Using OS-9

Either of these methods terminates any process running in the
background with one exception: if a process is waiting for I/O, it may
not die until the current I/O operation is complete. Therefore, if you
terminate a process and procs shows it still exists, it is probably waiting
for the output buffer to be flushed before it can die.

Command History
As you enter command lines, the commands are saved in a buffer. This
is a history of your commands. To see the commands you have entered,
type hist on the command line:

[5]$ hist
Shell History

 1) makdir /h0/usr/TMS
 2) chd /h0/usr/tms
 3) build stat
 4) procs
 5) hist
[6]$

These commands may be re-executed or retrieved using tildes (~). One
tilde followed by a number (~<num>) executes the command pointed to
by <num>. For example, entering ~4 on the command line causes the
shell to execute the fourth command in your history list.

In the example above, the procs command is executed:

[6]$ ~4
Id PId Grp.Usr Prior MemSiz Sig S CPU Time Age Module & I/O
 3 2 6.10 128 5.25k 0 w 5.02 02:34 shell

<>>>term
 4 3 6.10 128 8.50k 0 * 0.08 00:00 procs <>>term
[7]$ hist
Shell History

 3) build stat
 4) procs
 5) hist
 6) procs
 7) hist
[8]$

Entering ~4 -e tells the shell to execute procs -e.

Chapter 4: The Shell

Using OS-9 107

You can also re-execute/retrieve commands using a tilde followed by
text (~<text>). The OS-9 shell searches backwards through the history
buffer for the text. For example, if you enter ~uma on the command line,
the command umacs stat is executed.

You cannot include spaces in your text. Also, the text must be the first
characters in the command line. In the previous example, entering
~acs would produce an error.

Entering a number after two tildes (~~<num>) places the command in
the command line buffer, just as if it were the last command entered.
For example, by typing ~~3, the command is placed in a buffer as if it
had just been executed. By entering <Control>A, you can retrieve the
command line. It is placed after the shell prompt:

[8]$ ~~3
[8]$ <control>A
[8]$ build stat

You can either execute the command by pressing a carriage return or
you can edit the command line and then execute it:

[8]$ build stat.tst

In the previous example, the history number ([8]) did not change when
the ~~3 command and the <Control>A were entered. The history
number only changes when a command line is entered. The ~~3
causes the command to be placed in the buffer. Likewise, <Control>A
causes the command to be placed on the command line. Entering
blank lines also does not increase the history count.

You can also enter text after two tildes (~~<text>). For example, you
could type ~~uma. Then enter <Control>A to retrieve the command.
Once it appears on the command line, you can edit it.

Error Reporting
Many programs, including the shell, use the OS-9 standard error
reporting function. This displays a brief description of the error and an
error number on the standard error path.

If an expanded error description is desired, set the -e and the -v shell
options. This prints error messages from /dd/SYS/errmsg on
standard output.

Chapter 4: The Shell

108 Using OS-9

Using OS-9 109

5 Making Files Chapter 5

This chapter explains the make utility in detail. The following sections
are included:

• The make Utility
• Examples Using the make Utility

Chapter 5: Making Files

110 Using OS-9

The make Utility
Many types of files are dependent upon various other files in their
creation. If the files comprising the final product are updated, the final
product becomes out-of-date. The make utility is designed to automate
the maintenance and
recreation of files that change over time.

make maintains files by using a special type of procedure file known as
a “makefile”. The makefile describes the relationship between the final
product and the files comprising the final product. For the purpose of
this discussion, the final product is referred to as the “target file” and
the files comprising the target file are referred to as “dependents”.

A makefile contains three types of entries:

• dependency entries
• command entries
• comment entries

A dependency entry specifies the relationship of a target file and the
dependents used to build the target file. The entry has the following
syntax:

<target>:[[<dependent>],<dependent>]

The list of files following the target file is known as the dependency list.
Any number of dependents can be listed in the dependency list. Any
number of dependency entries can be listed in a makefile. A dependent
in one entry may also be a target file in another entry. However, there is
only one main target file in each makefile. The main target file is
usually specified in the first dependency entry in the makefile.

If necessary, a command entry specifies the command that was
executed to update a particular target file. make updates a target file
only if its dependents are newer than itself. If no instructions for update
are provided, make attempts to create a command entry to perform the
operation.

make recognizes a command entry via a line beginning with one or
more spaces or tabs. Any legal OS-9 command line is acceptable. More
than one command entry can be given for any dependency entry. Each
command entry line is assumed to be complete unless it is continued
from the previous command with a backslash (\). Comments should
not be interspersed with commands.

Chapter 5: Making Files

Using OS-9 111

For example:

<target>:[[<file>],<file>]
<OS-9 command line>
<OS-9 command line>\
<continued command line>

A comment entry consists of any line beginning with an asterisk (*). All
characters following a pound sign (#) are also ignored as comments
unless a digit immediately follows the pound sign. In this case, the
pound sign is considered part of the command entry. All blank lines are
ignored. For example:

<target>:[[<file>],<file>]

* the following command will be executed if the
* dependent files are newer than the target file
<OS-9 command line> # this is also a comment

Spaces and tabs preceding non-command continuation lines are
ignored.

You can continue any entry on the following line by placing a space
followed by a backslash (\) at the end of the line to be continued. All
entries longer than 256 characters must be continued on another line.
All continuation lines must adhere to the rules for its type of entry. For
example, if a command line is continued on a second line, the second
line must begin with a space or a tab:

FILE: aaa.r bbb.r ccc.r ddd.r eee.r \
fff.r ggg.r

touch aaa.r bbb.r ccc.r \
ddd.r eee.r fff.r ggg.r

Chapter 5: Making Files

112 Using OS-9

Running the Make Utility
To run the make utility, type make, followed by the name of the file(s) to
create and any options desired.

make processes the makefile three times.

• During the first pass, make examines the makefile and sets up a
table of dependencies. This table of dependencies stores the target
file and the dependency files exactly as they are listed in the
makefile. When make encounters a name on the left side of a colon,
it first checks to see if it has encountered the name before. If it has,
make connects the lists and continues.

• After reading the makefile, make determines the target file on the
list. It then makes a second pass through the dependency table.
During this pass, make tries to resolve any existing implicit
dependencies. Implicit dependencies are discussed below.

• make does a third pass through the list to get and compare the file
dates. When make finds a file in a dependency list that is newer than
its target file, it executes the specified command(s). If no command
entry is specified, make generates a command based on the
assumptions given in the next section. Because OS-9 only stores the
time down to the closest minute, make remakes a file if its date
matches one of its dependents.

When a command is executed, it is echoed to standard output. make
normally stops if an error code is returned when a command line is
executed.

To understand the relationship of the target file, its dependents and the
commands necessary to update the target file, the structure of the
makefile must be carefully examined.

Implicit Definitions
Any time a command line is generated, make assumes the target file is
a program to compile. Therefore if the target file is not a program to
compile, any necessary command entries must be specified for each
dependency list. make uses the following definitions and rules when
forced to create a command line.

object files Files with no suffixes. An object file is made
from a file capable of relocation and linked
when it needs to be made.

Chapter 5: Making Files

Using OS-9 113

relocatable files Files appended by the suffix: .r. Relocatable
files are made from source files and are
assembled or compiled if they need to be
made.

source files Files having one of the following suffixes: .a,
.c, .f, or .p.

default compiler cc

default assembler The default options are processor specific;
some examples include:

• appc for PowerPC processors

• a386 for 80386 processors

default linker cc

Use the default linker only with programs
using Cstart. default directory for all files
current data directory (.)

Macro Recognition
In addition to recognizing compilation rules and definitions, make
recognizes a macro by the dollar sign ($) character in front of the
name. If a macro name is longer than a single character, the entire
name must be surrounded by parentheses. For example, $R refers to
the macro R, $(PFLAGS) refers to the macro PFLAGS, $(B) and $B
refer to the macro B, and $BR is interpreted as the value for the macro
B followed by the character R. You may place macros in the makefile for
convenience or on the command line for flexibility. Macros are allowed
in the form of <macro name> = <expansion>. The expansion is
substituted for the macro name whenever the macro name appears.

Defining a macro in a command line macro overrides the macro
definition in a makefile. To increase make’s flexibility, you can define
special macros in the makefile. make uses these macros when
assumptions must be made in generating command lines or when
searching for unspecified file. For example, if no source file is specified
for program.r, make searches either the directory specified by SDIR or
the current data directory for program.a
(or .c, .p, .f).

Chapter 5: Making Files

114 Using OS-9

make recognizes the following special macros:

Table 5-1. make Macros

Macro Definition
CC=<comp> make uses this compiler when generating

command lines. The default is cc.
CFLAGS=<opts> These compiler options are used in any necessary

compiler command lines.
LC=<link> make uses this linker when generating command

lines. The default is cc.
LFLAGS=<opts> These linker options are used in any necessary

linker command lines.
ODIR=<path> make searches the directory specified by <path>

for all files with no suffix or relative pathlist. If ODIR
is not defined in the makefile, make searches the
current directory by default.

RC=<asm> make uses this assembler when generating
command lines. The default for users on 680x0
processors is r68. The default for users on x86
processors is cc.

RDIR=<path> make searches the directory specified by <path>
for all relocatable files not specified by a full
pathlist. If RDIR is not defined, make searches the
current directory by default.

RFLAGS=<opts> These assembler options are used in any necessary
assembler command lines.

SDIR=<path> make searches the directory specified by <path>
for all source files not specified by a full pathlist. If
SDIR is not defined in the makefile, make searches
the current directory by default.

Chapter 5: Making Files

Using OS-9 115

Some reserved macros are expanded when a command line associated
with a particular file dependency is forked. You may use these macros
only on a command line. When you need to be explicit about a
command line but have a target program with several dependencies,
these macros are useful. In practice, they are wildcards with the
following meanings:

make Generated Command Lines
make is capable of generating three types of command lines: compiler
command lines, assembler command lines, and linker command lines.

• Compiler command lines are generated if a source file with a suffix
of .c, .p or, .f needs to be recompiled. The compiler command
line generated by make has the following syntax:
$(CC) $(CFLAGS) -r=$(RDIR) $(SDIR)/<file>[.c, .f, or .p]

• Assembler command lines are generated when an assembly
language source file needs to be re-assembled. The assembler
command line generated by make has the following syntax:
$(RC) $(RFLAGS) $(SDIR)/<file>.a -o=$(RDIR)/<file>.r

• Linker command lines are generated if an object file needs to be
relinked in order to re-make the program module. The linker
command line generated by make has the following syntax:
$(LC) $(LFLAGS) $(RELS)/<file>.r -f=$(ODIR)/<file>

Table 5-2. make Wildcards

Macro Definition
$@ expands to the file name made by the command
$* expands to the prefix of the file to be made
$? expands to the list of files found to be newer than the

target on a given dependency line

When make is generating a command line for the linker, it looks
at its list and uses the first relocatable file it finds, but only the
first one. For example:

prog: x.r y.r z.r

generates:

cc x.r, not cc x.r y.r z.r or cc prog.r

Chapter 5: Making Files

116 Using OS-9

make Options
Several options allow make even greater versatility for maintaining
files/modules. You can include these options on the command line in
the makefile or when you run make.

When a command is executed, it is echoed to standard output unless
the -s, or silent, option is used or the command line starts with an “at”
sign (@). When the -n option is used, the command is echoed to
standard output but not actually executed. This is useful when building
your original makefile.

make normally stops if an error code is returned when a command line
is executed. Errors are ignored if the -i option is used or if a command
line begins with a hyphen.

It is often helpful to see the file dependencies and the dates associated
with each of the file in the list. The -d option turns on the make
debugger and gives a complete listing of the macro definitions, a listing
of the files as it checks the dependency list and all the file modification
dates. If it cannot find a file to examine its date, it assumes a date of -
1/00/00 00:00, indicating the necessity to update the file.

If you want to update the date on a file, but do not want to remake it,
you can use the -t option. make merely opens the file for update and
then closes it, thus making the date current.

If you are explicit about your makefile dependencies and do not want
make to assume anything, you may use the -b option to turn off the
built-in rules governing implicit file dependencies.

Table 5-3. make Options

Options Description
-? Display the usage of make.
-b Do not use built in rules.
-bo Do not use built in rules for object files.
-d Print the dates of the files in makefile

(debug mode).
-dd Double debug mode. Verbose.
-f- Read the makefile from standard input.
-f=<path> Specify <path> as the makefile.

If <path> is specified as a hyphen (-), make
commands are read from standard input.

Chapter 5: Making Files

Using OS-9 117

Examples Using the make Utility
The remainder of this chapter shows details different ways to maintain
programs with make.

Updating a Document
The following example shows how make maintains current
documentation composed of different sections:

utils.man: chap1 chap2 apdx
 del utils.man.old;rename utils.man utils.man.old
 merge chap1 chap2 apdx >utils.man
chap1: c1a c1b c1c c1d
 del chap1.old; rename chap1 chap1.old
 list c1a c1b c1c c1d ! lxfilter >chap1
chap2: c2a c2b c2c
 del chap2.old; rename chap2 chap2.old
 list c1a c1b c1c c1d ! lxfilter >chap1
apdx: functions header footer
 del apdx.old; rename apdx apdx.old
 qsort functions >/pipe/func
 list header /pipe/func footer ! lxfilter >apdx

The above makefile creates the file utils.man. utils.man is created
from three files: chap1, chap2, and apdx. Each of these files is in turn
created from the files listed in their dependency lists.

If chap1, chap2, and/or apdx have dependencies with a more recent
date, the command following their respective dependency entries are
executed. If chap1, chap2, and/or apdx are re-created, the commands
following the initial dependency entry are executed.

-i Ignore errors.
-n Do not execute commands, but does display them.
-s Silent mode: execute commands without echo.
-t Update the dates without executing commands.
-u Do the make regardless of the dates on files.
-x Use the cross-compiler/assembler.
-z Read a list of make targets from standard input.
-z=<path> Read a list of make targets from <path>.

Table 5-3. make Options (Continued)

Options Description

Chapter 5: Making Files

118 Using OS-9

Compiling C Programs
In this example, make is used to compile high level language modules.
Each command and dependency is specified.

program: xxx.r yyy.r
 cc xxx.r yyy.r -xf=program
xxx.r: xxx.c /d0/defs/oskdefs.h
 cc xxx.c -r
yyy.r: yyy.c /d0/defs/oskdefs.h
 cc yyy.c -r

This makefile specifies program is made up of two .r files: xxx.r and
yyy.r. These files are dependent upon xxx.c and yyy.c respectively
and both are dependent on the oskdefs.h file.

If either xxx.c or /d0/defs/oskdefs.h has a date more recent than
xxx.r, the command cc xxx.c -r is executed. If yyy.c or
/d0/defs/oskdefs.h is newer than yyy.r, then cc yyy.c -r is
executed. If either of the former commands are executed, the
command cc xxx.r yyy.r -xf=program is also executed.

In this example, make specifies each command it must execute. Often
this is unnecessary, as make uses specific definitions, macros, and built-
in assumptions to facilitate program compilation and generate its own
commands.

Knowing how make works and understanding the implicit rules can
simplify coding immensely:

program: xxx.r yyy.r
 cc xxx.r yyy.r -xf=program
xxx.r yyy.r: /d0/defs/oskdefs

This makefile exploits the make utility awareness of file dependencies.
No mention is made of the C language files; therefore, make looks in
the directory specified by the macro definition SDIR = <path> and
adjusts the dependency list accordingly. In this case, make searches the
current directory by default. make also generates a command line to
compile xxx.r and yyy.r if either needs updating.

Further simplification is possible if program is made up of only one
source file:

program:

Chapter 5: Making Files

Using OS-9 119

make assumes the following from this simple command:

• program has no suffix. It is an object file and therefore relies on
relocatable files to be made.

• No dependency list is given; therefore, make creates an entry in the
table for program.r.

• After creating an entry for program.r, make creates the entry for a
source file connected to the relocatable file.

Assuming it found program.a, make checks the dates on the various
files and generates one or both of the following commands if required:

appc program.a -o=program.r
cc program.r -f=program

Using Macros
Using these inherent features of make is especially helpful if you have
several object files you want make to check:

* beginning
ODIR = /d0/cmds
RDIR = rels
UTILS = attr copy load dir backup dsave
SDIR = ../utils/sources
utils.files: $(UTILS)
 touch utils.files
* end

make searches rels for the .r files (attr.r, copy.r, and so on). and
looks in ../utils/sources for the .c files named in the UTILS=
line. make then generates the proper commands to compile and/or link
any of the programs needing to be made. If one of the files in UTILS is
made, the command touch utils.files is forked to maintain a
current overall date.

Chapter 5: Making Files

120 Using OS-9

Creating make
The following example is a makefile to create make:

* beginning
ODIR = /h0/cmds
RDIR = rels
CFILES = domake.c doname.c dodate.c domac.c
RFILES = domake.r doname.r dodate.r
PFLAGS = -p64 -nh1
R2 = ../test/domac.r
RFLAGS = -q
make: $(RFILES) $(R2) getfd.r
 linker
$(RFILES): defs.h
$(R2): defs.h
 cc $*.c -r=../test
print.file: $(CFILES)
 pr $? $(PFLAGS) >-/p1
 touch print.file
*end

The makefile in this example looks for the .r files listed in RFILES in
the directory specified by RDIR: rels. The only exception is
../test/domac.r, which has a complete pathlist specified.

Even though getfd.r does not have any explicit dependents, its
dependency on getfd.a is still checked. The source files are all found
in the current directory.

This makefile can also be used to make listings. By typing make
print.file on the command line, make expands the macro $? to
include all of the files updated since the last time print.file was
updated. If you keep a dummy file called print.file in your directory,
make only prints out the newly made files. If no print.file exists, all
files are printed.

Using OS-9 121

6 Performing Backups Chapter 6

This chapter explains the concept of incremental backups. The OS-9
utilities that create backups are detailed here. This chapter also offers
two different strategies for making backups. The following sections are
included:

• Incremental Backups
• Using the tape Utility
• Backing Up the System Disk

Chapter 6: Performing Backups

122 Using OS-9

Incremental Backups
Incremental backups save significant time and storage space compared
to full system backups. Incremental backups save only the files that
have changed since the last backup. A full system backup must still be
performed, but with the use of incremental backups a full system
backup does not need to be performed very often.

OS-9 provides two utilities to facilitate incremental backups. You can
use each with either tape or disk media:

• fsave
• frestore

Certain terms are important to know for the discussion of incremental
backups:

Level 0 backup is a common term used to denote a full system
backup.

Consequent incremental backups are
referenced by different level numbers. For
example, a level 5 backup includes all files
changed since the most recent backup with a
level less than 5. While this sounds complex, it
is actually quite easy to use and extremely
helpful.

Source device is the directory structure or file you are
backing up.

Target device is the tape or disk that holds your backup
information.

Making an Incremental Backup: The fsave Utility
The fsave utility performs an incremental backup of a directory
structure to tape(s) or disk(s). The syntax for the fsave utility is shown
below:

fsave [<opts>] [<path>]

Typing fsave alone on the command line makes a level 0 backup of
the current directory onto a target device with the name /mt0.

/mt0 is the OS-9 device name for a tape device.

Chapter 6: Performing Backups

Using OS-9 123

/h0/sys/backup_date is a backup log file maintained by fsave.
Each time an fsave is executed, the backup log is updated. The
backup log keeps track of the name of the backup, the date it was
created and, more importantly, the level of the backup. When fsave is
executed, this backup log is examined to find the specified level of the
current backup and the previous backups with the same name. Once
the backup is finished, a new entry is made in the file indicating the
date, name, level, and other information about the current backup.

fsave Options
During the discussion of the actual fsave procedure, references to
fsave options are made. The options are shown in Table 6-1.

Table 6-1. fsave Options

Option Description
-? Display the usage of fsave.

-b[=]<int> Allocate <int>k buffer size to read files from the
source disk.

-d[=]<dev> Specify the target device to store the backup. The
default is /mt0.

-e Do not echo file pathlists being saved to target
device.

-f[=]<path> Save to the file specified by <path>.
-g[=]<int> Specify a backup of files owned by group number

<int> only.
-l[=]<int> Specify the level of the backup to be performed.
-m[=]<path> Specify the pathlist of the date backup log file to

be used. The default is /h0/sys/backup_dates.
-p Turn off the mount volume prompt for the first

volume.
-s Display the pathlists of all files needing to be saved

and the size of the entire backup without actually
executing the backup procedure.

-t[=]<dirpath> Specify alternate location for the temporary index
file.

-u[=]<int> Specify backup of files owned by user number
<int>.

Chapter 6: Performing Backups

124 Using OS-9

The fsave Procedure
When starting an fsave procedure, fsave prompts you to mount the
first volume to use. Volume, in this case, refers to the disk or tape used
to store the backup:

fsave: please mount volume.
(press return when mounted).

If a disk is used as the backup medium, fsave verifies the disk and
displays the following information: (The numbers below are used only
as an example.)

verifying disk
Bytes held on this disk: 546816
Total data bytes left: 62431
Number of Disks needed: 1

The most common error found when executing fsave is a record lock
error. Record lock errors are caused when another user has the file in
question open. fsave operations should only be done when no one
else is using the system to prevent record lock errors. If a tape is used as
the backup medium, no preliminary information is displayed and the
backup begins at this point.

As each file is saved to the backup device, the file pathlist is echoed to
the terminal. If this is a long backup, you may want to use the -e option
to turn off the echoing of pathlists.

If fsave receives an error when trying to backup a file, it displays the
following message and continues the fsave operation:

error saving <file>, error - <error number>, it is incomplete

If the backup requires more than one volume, fsave prompts you to
mount the next volume before continuing.

-v Do not verify the disk volume when mounted.
-x[=]<int> Pre-extend temporary file. <int>; given in

kilobytes.

Table 6-1. fsave Options (Continued)

Option Description

Chapter 6: Performing Backups

Using OS-9 125

At the end of the backup, fsave prints the following information:

fsave: Saving the index structure
Logical backup name:
Date of backup:
Size of backup:
Size of temp/index:
Backup made by:
Data bytes written:
Number of files:
Number of volumes:
Index is on volume:

The index to the backup is saved on the last volume used.

fsave performs recursive backups for each pathlist if one or more
directories are specified on the command line. A maximum of 32
directories may be specified on the command line.

The -d option allows you to specify an alternate target device. The
default device is /mt0.

Use the -m option to specify an alternative backup log file. The default
pathlist is /h0/sys/backup_dates.

Different levels of backups may be specified with the -l option. A
higher level backup only saves files that have changed since the most
recent backup with the next lower number. For example, a level 1
backup saves all files changed since the last level 0 backup.

When using disks for backup purposes, fsave does not use an RBF file
structure to save the file on the target disk. It creates its own file
structure. This makes the backup disk unusable for any purpose other
than fsave and frestore without reformatting the disk.

Example fsave Commands
Typing fsave on a command line specifies a level 0 backup of the
current directory. This assumes the device /mt0 is to be used and
/h0/SYS/backup_dates is used as the backup log file for this backup.

Any data stored on the disk before use by fsave is destroyed by
the backup.

Chapter 6: Performing Backups

126 Using OS-9

The following command specifies a level 2 backup of the current
directory using the /mt1 device. /h0/misc/my_dates is used as the
backup log file:

$ fsave -l=2 -d=/mt1 -m=/h0/misc/my_dates

The following command specifies a level 0 backup of all files owned by
user 0.0 in the CMDS directory, if CMDS is in your current directory:

$ fsave -pb=32 -g=0 -u=0 -d=/d2 CMDS

This backup uses /d2 as the target device and
/h0/sys/backup_dates as the backup log file. The mount volume
prompt is not generated for the first volume. A 32k buffer is used to
read the files from the CMDS directory.

Restoring Incremental Backups: The frestore Utility
The frestore utility restores a directory structure from multiple
volumes of tape or disk media. The syntax for the frestore utility is
listed below:

frestore [<opts>] [<path>]

Typing frestore on the command line attempts to restore a directory
structure from the device /mt0 to the current directory.

Specifying the pathlist of a directory on the command line causes the
file to be restored in that directory. The directory structure and an index
of the directory structure are created by fsave.

If more than one tape or disk is involved in the fsave backup, each
tape or disk is considered to be a different volume. The volume count
begins at one (1). When beginning a frestore operation, the last
volume of the backup must be used first because it contains the index
of the entire backup.

frestore first attempts to locate and read the index of the directory
structure of the source device. frestore then begins an interactive
session with the user to determine which file and directory in the
backup should be restored to the current directory.

frestore Options
During the discussion of the actual frestore procedure, references
are made to frestore options. The options are shown in Table 6-2.

Chapter 6: Performing Backups

Using OS-9 127

Table 6-2. frestore Options

Option Description
-? Display the usage of frestore.

-b[=]<int> Specify the buffer size used to restore the files.
-c Checks the validity of files without using the

interactive shell.
-d[=]<path> Specify the source device. The default is /mt0.
-e Display the pathlists of all files in the index, as

the index is read from the source device.
-f[=]<path> Restore from a file.
-i Display the backup name, creation date,

group.user number of the owner of the backup,
volume number of the disk or tape and whether
the index is on the volume.

This option does not cause any files to be
restored. The information is displayed, and
frestore is terminated.

-p Suppress the prompt for the first volume.
-q Overwrite an already existing file when used with

the -s option.
-s Force frestore to restore all files from the

source device without an interactive shell.
-t[=]<dirpath> Specify an alternate location for the temporary

index file.
-v Display the same information as the -i option,

but does not check for the index.

This option does not cause any files to be
restored. The information is displayed and
frestore is terminated.

-x[=]<int> Pre-extend the temporary file. <int> is given in
kilobytes.

Chapter 6: Performing Backups

128 Using OS-9

The Interactive Restore Process
Once frestore has been called, the following prompt is displayed:

frestore: mount the last volume
(press return when ready)

When you are ready, frestore reads the index and creates the
directory structure of the backup. It then displays the prompt:

frestore>

This prompt indicates you are in the interactive shell. If the index is not
on the mounted volume, frestore displays an error message and
again prompts you to mount the last volume.

Once in the interactive shell, the frestore command and options are
displayed when a return is typed at the prompt:

frestore> commands:
add [<path>] [-g=<#> -u=<#> -r -a] -- marks file for restoration
del [<path>] [-g=<#> -u=<#> -r -a] -- unmarks files for restoration
dir [<dir names>] [-e] -- displays a directory or directory
chd <path> -- changes directories within the restore file
structure
pwd -- gives the pathlist to current dir in the restore file
structure
cht <path> -- changes directories on target system rest [<path>] [-
f -q] -- restores marked files in and below the current dir
check [-f] -- checks validity if marked files in and below the
current dir
dump [<file>] -- dumps the contents of a file to stdout
list [<file>] -- list the contents of an ASCII file to stdout
$ -- forks a shell
quit -- quit frestore program

options:
 -g=<group#> -- only mark files with ’group#’
 -u=<user#> -- only mark files with ’user#’
 -r -- mark directories recursively

 -e -- display directory with extended format
 -f -- force restoration of already restored files
 -q -- overwrite already existing files without question
 -a -- force marking or unmarking of an already restored file

or dir
 * -- matches any string of characters on ’add’ or ’del’ only
 ? -- matches any single character on ’add’ or ’del’ only

frestore>

Chapter 6: Performing Backups

Using OS-9 129

The index from the source device sets up a restore file structure
paralleling the usual OS-9 file and directory structure.

The dir and chd shell command can display the restore file structure.
For example:

frestore>dir
 Directory of .

DIR1 file1 file2 file3

All files to be backed up onto the source device appear in the restore
file structure regardless of what volume they appear in. Information
concerning the file structure is available using the -e option with the
dir command:

frestore>dir -e
Directory of .
Owner Last modified Attributes Volume Block Offset Size
Name
------ -------------- ----------- ------ ----- ------ ----- ---
1.23 89/08/22 16/14 ----r-wr 1 0 0 CF12 file1
1.23 89/08/25 11/00 ----r-wr 1 2 0 A356 file2
1.23 89/08/21 11/12 ----r-wr 1 4 0 45F0 file3
1.23 89/08/24 10/57 d-ewrewr 0 5 0 120 DIR1

In the interactive shell, you can mark the files you want restored with
the add command. Groups of files can be marked using the -g, -u and
-r options of the add command. The -g option marks files by group
number. To mark files by user number, use the -u option. All directories
within a specified directory may be marked by using the -r option.

• Files may be marked one at a time by specifying relative or complete
pathlists within the restore file structure.

• An entire directory may be marked by specifying the pathlist of the
directory.

Marking files does not restore them. It merely marks them as to be
restored. You can see this when you use the dir command. Each file
added to the to be restored list is marked by a plus sign (+) by its
filename.

Chapter 6: Performing Backups

130 Using OS-9

For example, the following directory has file1 and file2 marked for
restoration, but file3 is not marked. The directory DIR1 and DIR2
also have marked files:

frestore>add file1 file2 dir1/file5 dir1/file6
dir2/file7

frestore>dir
 Directory of .

+DIR1 +DIR2 +file1 +file2
file3
frestore>dir dir1

 Directory of DIR1
file4 +file5 +file6
frestore>dir dir2

 Directory of DIR2
+file7 file8

The del command can unmark files. Entire directories may be
unmarked by specifying the directory name on the command line. If the
-r option is also used, all files and directories included in the specified
directory are unmarked. For example:

frestore>del -r dir2
frestore>dir

 Directory of . 10:42:32
+DIR1 DIR2 +file1+file2
file3
frestore>dir dir2

 Directory of DIR2
file7 file8

Once files are marked, use the rest command to restore the current
directory of the target device.

Files existing on the target system with the same name are overwritten
without prompting if del -q is used. Otherwise, frestore displays the
following prompt:

frestore: file1 already exists
 write over it or skip it (w/s)

An asterisk (*) preceding the name of a file in a dir listing indicates an
error occurred while backing up this file. This file is incomplete and
should not be restored.

Chapter 6: Performing Backups

Using OS-9 131

The cht command allows you to change directories on the target
device. This allows you to selectively restore files to specific directories.

After restoring files, you may continue marking files. Files previously
restored have a hyphen (-) displayed next to their names in the restore
file structure:

frestore>dir
 Directory of . 10:42:32

-DIR1 DIR2 -file1 -file2
file3
frestore>dir dir1

 Directory of DIR1
file4 -file5 -file6

There are two methods of restoring files more than once. The first
method uses the -a option with the add command. This forces the
file(s) previously marked as restored to be marked as “to be restored”.
The second method requires the -f option to be used with the rest
command. This forces any file previously marked as restored to be
restored in the current directory.

The -s option forces frestore to restore all files and directories of the
backup from the source device without the interactive shell.

Using the -d option allows you to specify a source device other than
/mt0. For example, to restore all files/directories found on the source
device /mt1 to the directory BACKUP without using the interactive shell,
type:

$ frestore -d=/mt1 -s BACKUP

The -v option causes frestore to identify the name and volume
number of the backup mounted on the source device. The date the
backup was made and the group.user number of the person who made
the backup are also displayed. This option does not restore any files.
For example:

$ frestore -v
Backup: DOCUMENTATION
Made: 9/16/89 10:10
By: 0.0
Volume: 0

Chapter 6: Performing Backups

132 Using OS-9

The -i option displays the above information and also indicates
whether the index is on the volume. Both the -v and -i options
terminate frestore after displaying the appropriate information.
These options are useful when trying to locate the last volume of the
backup if any mix-up has occurred.

The -e option echoes each file pathlist as the index is read off the
source device.

Example Command Lines
To restore files and directories from the source device /mt0 to the
current directory by way of an interactive shell, type the following
command:

$ frestore

The following example restores files/directories from the source device
/d0 to the current directory using a 32-K buffer to write the restored
files. As each file is read from the index, the file’s pathlist is echoed to
the terminal.

$ frestore -eb=32 -d=/d0

Incremental Backup Strategies
Many different strategies are available for those concerned with
regularly scheduled backups. Most strategies are well documented in
computer books and magazines. The following two strategies are
offered as examples.

Daily Backup Strategy
This strategy requires making a level 0 backup once every four weeks.
Level 1, level 2, level 3, and level 4 backups are made on the weeks
following the level 0 backup. Between each major backup, four daily
backups are made: level 5, 6, 7, and 8. A recommended daily schedule
is graphically presented in Figure 6-1.

This strategy is ideal for small microcomputer systems backed up by
floppy disks. Mounting disks is much easier and faster than tapes. Each
daily backup can usually be kept on one disk to make storage simple.
This strategy is perfect for small timely backups with little redundancy in
the backups.

Chapter 6: Performing Backups

Using OS-9 133

One major disadvantage of this scheme is the restore time necessary in
case of a major system failure such as a hard disk being formatted,
erased or corrupted. Because of the lack of redundancy, more
frestore operations are necessary to re-create the systems file
structure. On large systems with tape backups, this is a major
consideration.

Figure 6-1. Day of Backup

Single Tape Backup Strategy
While most strategies rely on scheduled backup level changes, the
single tape backup strategy depends on the size of the backup. The
idea behind this strategy is to increase the level of the backup only
when the backup cannot fit on a single tape. The only scheduled level
backup is the level 0 backup. The level 0 backup occurs only when a
higher level backup would not fit on a single tape or once a month,
whichever occurs first. An example month’s schedule is graphically
presented in Figure 6-2.

Chapter 6: Performing Backups

134 Using OS-9

Figure 6-2. Single Tape Backup Strategy

This strategy is suitable for tape backups of larger systems. Tapes are
used efficiently because the question of how many tapes are needed
never arises. This strategy also cuts down on person hours, tape
mounting, and storage space used for tapes. It allows for enough
redundancy to make restoring a full system relatively simple.

Disadvantages, however, do exist. Each time a backup is done, the size
of the backup must be determined by using fsave -s. This takes an
increasing amount of time, as the tape is filled.

Use of Tapes or Disks
Whatever strategy is used, you must make a decision concerning the
number of tapes or disks to use. This decision must weigh the emphasis
placed on redundancy, resources, person-hours, and storage. It must be
offset with the possibility of tape or disk failure and system restoration.

Chapter 6: Performing Backups

Using OS-9 135

In the first example strategy, the daily backups must be made on
different volumes to overcome the lack of redundancy. The four daily
volumes can be used week after week as daily backup volumes because
of the lower level backups at the beginning of each week.

In the second example, theoretically, the same tape could be used for
each day until a new level backup is reached. This ensures no
redundancy and minimal storage. It is also the most risky in case of
tape failure. Using a number of alternating tapes for each level down
on storage allows a safety net in the case of tape failure. Using
alternating level 0 tapes is another possibility.

Using the tape Utility
OS-9 provides a tape controller utility to facilitate setting up, reading
and rewinding tapes from the terminal. When using tape media to
backup or restore your system, the tape utility is very practical. The
syntax of the tape utility is shown below:

tape {<opts>} [<dev>]

If the tape device <dev> is not specified on the command line and the -
z option is not used, tape uses the default device /mt0.

tape has the following available options:

Table 6-3. tape Options

Options Description
-? Display the use of tape.
-b[=<num>] Skip a specified number of blocks. Default is 1 block.

If <num> is negative, the tape skips backward.
-e=<num> Erase a specified number of blocks of tape.
-f[=<num>] Skip a specified number of tapemarks. Default is 1

tapemark. If <num> is negative, the tape skips
backward.

-o Put tape off-line.
-r Rewind the tape.
-s Determine the block size of the device.
-t Retension the tape.
-w[=<num>] Write a specified number of tapemarks. Default is 1

tapemark.

Chapter 6: Performing Backups

136 Using OS-9

If more than one option is specified, tape executes each option
function in a specific order. Therefore, it is possible to skip ahead a
specified number of blocks, erase and then rewind the tape all with the
same command. The order of option execution is as follows:

1. Get device name(s) from the -z option.
2. Skip the number of tapemarks specified by the -f option.
3. Skip the number of blocks specified by the -b option.
4. Write a specified number of tapemarks.
5. Erase a specified number of blocks of tape.

-z Read a list of device names from standard input. The
default is /mt0.

-z=<file> Read a list of device names from <file>.

Table 6-3. tape Options (Continued)

Options Description

Chapter 6: Performing Backups

Using OS-9 137

Backing Up the System Disk
Before you begin working with OS-9, make a backup of your master
system disk. The backup procedure involves making an exact copy of a
disk. It is important to have a backup copy of your system disk available
in case your system disk becomes damaged; when damaged, the disk
becomes unreadable.

Before you can back up your system disk, you need a properly
formatted disk. OS-9 cannot read from or write to new disks until they
have been formatted. The format utility initializes new disks for reading
and writing. The OS-9 utility that makes copies of disks, backup,
requires the backup disk to be the same size and format as the original
disk.

The following section provides the steps you should take to back up a
disk on a typical OS-9 system (booting from a floppy drive (usually
called /d0)).

The OS-9 system installation contains a menu-driven program,
install, which optionally partitions and formats the destination drive
and copies the OS-9 installation to that drive.

Formatting a Disk
The format of OS-9 system disks vary by the type of disk drive and by
manufacturer. Usually, the format is set to the maximum capacity of the
disk drive.

Refer to the following documentation for more information:

• Utilities Reference (information about format and backup)
• Chapter 4, The Shell (a list of naming conventions used by

OS-9)

If you have a hard disk or are booting from a media other than a
floppy disk, refer to Chapter 7, OS-9 System Management.

Before formatting your first disk, read the entire section on
formatting disks.

Refer to the Basic File System Utilities section in Chapter 2, The
OS-9 File System for additional information about the format
utility.

Chapter 6: Performing Backups

138 Using OS-9

You can place several parameters on the command line with the
format command, as shown in Table 6-4.

Multiple Drive Format
If your system has two floppy disk drives, place the system disk in one
drive and the new disk in the other drive. In multiple drive systems, one
drive is normally labeled /d0 and the other is labeled /d1. At the $
prompt, type format, the drive name of the new disk, any desired
options, then press the <Return> key to enter the command line. For
example:

$ format /d1 -ds -dd

This command line asks the machine to format the disk in the second
drive as a double-sided, double-density disk. You should adjust the
options to conform to your disk format.

Single Drive Format
If your system has only one disk drive, you must load the format utility
into memory.

The load utility puts a copy of a program into the computer’s memory.
To load the format utility into memory, type the following command at
the $ prompt:

load format

Table 6-4. Command Line Parameters

Parameter Type of disk
-sd single density
-dd double density
-ss single sided
-ds double sided

Refer to your hardware documentation for the maximum
capacity of your drives. Also, refer to the label of your system disk
for the proper format of your backup copy.

Refer to the Basic File System Utilities section in Chapter 2, The
OS-9 File System for more information about the load utility.

Chapter 6: Performing Backups

Using OS-9 139

Once format has been loaded into memory, you can remove your
system disk from the drive. OS-9 can execute the copy of format
residing in memory. You can load and execute any OS-9 utility in this
fashion.

Once you have loaded format, complete the following steps:

Step 1. Remove the system disk from the drive.

Step 2. Place the disk you are formatting into the drive.

Step 3. Enter the following at the $ prompt to format the disk:

format /d0 -ss -dd

This command line specifies the disk should be formatted as a single-
sided, double-density disk. Adjust the options as needed to conform to
your disk format.

Continuing the Formatting Process
In the case of both single and multiple drive systems, format displays
the specific disk format settings, followed by a prompt:

ready to format <drive name> (y/n/q)?

<drive name> is replaced by the name of the device you are trying to
format, such as /d0.

Complete the following steps to continue the formatting process:

Step 1. If the drive name and parameters in the prompt are correct, type y for
“yes”.

Step 2. If the values in the variable section are not correct, type n for “no”.
format then prompts you for the changes to the current values of the
options. After the variables have been set, you are queried again as to
whether or not you want the disk to be physically formatted. This
prompt is not issued for the
-np option on the command line.

If the drive name in the prompt is not the name of the drive with
the blank disk, type q to quit, or you may erase your only system
disk.

Chapter 6: Performing Backups

140 Using OS-9

Step 3. If you type y at the prompt, you are asked for a name for the disk--
unless you specified one with the -v option on the command line.

Step 4. You are then asked if you want to perform a physical verification. The
physical verification process reads all sectors on the media and marks
any bad sectors found as already allocated. This ensures the OS-9 file
system does not attempt to use the bad sectors.

The Backup Procedure
After a disk is formatted, you can run backup. The backup utility
makes an exact copy of the OS-9 system disk. There are other ways to
make a copy of a disk, but this is the preferred method. The backup
process involves copying the contents of your system disk to a formatted
disk.

• During the backup procedure, the system disk is referred to as the
source disk. The backup disk is called the destination disk.

• This procedure makes copies of any disk, not just the system disk.
• It is recommended that you write-protect your source disk when

using the backup procedure. This prevents confusion when
exchanging the source and destination disks.

backup makes two passes:

• The first pass reads a portion of the source disk into a buffer in
memory and writes it to the destination disk.

• The second pass verifies everything was copied to the new disk
correctly.

Generally, if an error occurs on the first pass, something is wrong with
the source disk or the drive it is in.

If an error occurs during the second pass, the problem is with the
destination disk. If backup repeatedly fails on the second pass,
reformat the disk to make sure it has no bad sectors. If the disk
reformats correctly, try the back up procedure again.

Never back up a system disk to a disk having any bad sectors
reported by format.

Chapter 6: Performing Backups

Using OS-9 141

Multiple Drive Backup
If your system has two floppy disk drives, perform the following steps to
make a multiple drive backup:

Step 1. Place the source disk in /d0.

Step 2. Place the destination disk in /d1.

Step 3. Type backup at the $ prompt.

Step 4. Press the <Return> key.

The system assumes you want to backup the disk in /d0. It responds to
backup with the following prompt:

ready to BACKUP /D0 to /D1?

Step 5. Enter one of the following responses

y Type this key if the correct disks are in the
correct drives.

q Type this key if the disks are not in the correct
drives. Enter q to exit the backup process.

When you type y, the system copies all information on the disk in /d0
onto the disk in /d1 and returns the $ prompt.

Single Drive Backup
If your system has a single diskette drive, complete the following steps:

Step 1. Make sure your system disk is in /d0 and type the following command:

load backup

Step 2. Take your system disk out of /d0, and put your source disk in the disk
drive (in this case, it is unnecessary as your system disk is your source
disk). Type: backup /d0

This tells the system you are performing a single drive backup. The
system responds with the following prompt:

ready to BACKUP /D0 to /D0?

Chapter 6: Performing Backups

142 Using OS-9

Step 3. Enter one of the following responses

y Ready to perform the backup.

q Not ready to perform the backup. You exit the
backup procedure when you enter q.

If you type y, the system begins a series of prompts to complete the
backup procedure. This consists of swapping the source and destination
disks in the disk drive as prompted by the system.

The first prompt is shown below:

ready destination, hit a key

Step 4. Remove the source disk from the drive.

Step 5. Insert the destination disk.

Step 6. Press any key to continue the backup procedure.

The next system prompt is shown below:

ready source, hit a key

Step 7. Remove the destination disk from the drive.

Step 8. Insert the source disk.

Step 9. Press any key to continue the backup procedure.

Step 10. Continue exchanging disks until the backup procedure is completed.

When you have backed up the system disk, store the original disk in a
safe place and use the duplicate as your working system disk.

PC-AT system users must perform an additional step to back up
the PC-AT system diskette. Refer to the OS-9 Porting Guide to
find these steps.

Using OS-9 143

7 OS-9 System Management Chapter 7

System managers have a range of options to consider. OS-9 allows
system managers to tailor their system to the needs of users.

This chapter discusses several topics with which system managers
should become familiar. The following sections are included:

• Setting Up the System Defaults: the Init Module
• Extension Modules
• Changing System Modules
• Making Bootfiles
• Using the RAM Disk
• Making a Startup File
• Time Zones and the TZ Environment Variable
• System Shutdown Procedure
• Managing Processes in a Real-time Environment
• Using the tmode and xmode Utilities
• The termcap File Format

Chapter 7: OS-9 System Management

144 Using OS-9

Setting Up the System Defaults:
the Init Module

The Init module is sometimes referred to as the configuration
module. It is a non-executable module located in memory in the
sysboot file or in ROM. The Init module contains system parameters
used to configure OS-9 during startup. The parameters set up the initial
table sizes and system device names. For example, the amount of
memory to allocate for internal tables, the name of the first program to
run (usually either sysgo or shell), an initial directory, etc. are
specified. You can examine the system limits defined in the Init
module at any time.

The values in the Init module table are the system defaults. You can
change these defaults by remaking the Init module. This is discussed
later in this chapter.

The following is a list of the system defaults listed in the Init module.
The fields in the Init module are defined by the structure init_data
which is defined in init.h.The initialization macros are discussed later
in this chapter.

Throughout this chapter, the system directory referred to are the
defaults found in the Init module, unless otherwise specified.

The Init module must be present in the system in order for OS-9
to work.

Chapter 7: OS-9 System Management

Using OS-9 145

The Init module system defaults are detailed in Table 7-1.

Table 7-1. Init Module System Defaults

Name
Initialization
Macros

Description

m_cachelist CACHELIST This is the offset to the cache region
list declared in the default.des file
in the port directory for the system.

m_compat COMPAT This byte is used for revision
compatibility. The following bits are
currently defined:

• Bit 0: set to ignore sticky bit in
module headers

• Bit 1:set to patternize memory
when allocated and returned

• Bit 2:set to inform the kernel not
to automatically set the clock
during coldstart

m_consol CONS_NAME This is the offset to the initial I/O
pathlist string, usually /term.

This pathlist is opened as the
standard I/O path for the initial
process. It is generally used to set up
the initial I/O paths to and from a
terminal. This offset should contain
zero if no console device is in use.

m_cpucompat CPUCOMPAT This field is reserved for system-
specific flags.

m_cputyp MPUCHIP CPU type: 403, 603, 80386, etc.
m_dsptbl DSPTBLSZ This field contains the number of

entries in the system call dispatch
table.

There must be at least 256 entries in
this table, and each entry requires
eight bytes.

Chapter 7: OS-9 System Management

146 Using OS-9

m_events EVENTS This is the initial number of entries
allowed in the events table. If this
table becomes full, it expands
automatically. Refer to the OS-9
Technical Manual for specific
information on events.

m_extens EXTENSIONS This is the offset to the name string
of a list of customization modules, if
any.

A customization module is intended
to complement or change existing
standard system calls used by OS-9.
These modules are searched for at
startup and are usually found in the
bootfile. If found, they are executed
in system state.

Module names in the name string
are separated by spaces. The default
name string to be searched for is
OS9P2. If there are no
customization modules, this value
should be set zero.

NOTE: Refer to the following
section for more information on
extension modules.

m_instal INSTALNAME This is the offset to the installation
name string.

m_ioman IOMAN_NAME This is the offset to the name string
of the module handling I/O system
calls. This string is normally set to
ioman.

m_maxage MAXPTY This is the initial system maximum
natural age. m_maxage is discussed
later in this chapter and in the OS-9
Technical Manual.

Table 7-1. Init Module System Defaults (Continued)

Name
Initialization
Macros

Description

Chapter 7: OS-9 System Management

Using OS-9 147

m_memlist MEMLIST This is the offset to the memory list
declared in default.des and
defined in alloc.h.

For a complete discussion on
colored memory, see the OS-9
Technical Manual.

m_maxmem MAXMEM This field contains the top limit of
free RAM.

m_maxsigs MAXSIGS This field specifies the default
maximum number of signals queued
up for a process.

m_minpty MINPTY This is the initial system minimum
executable priority. m_minpty is
discussed later in this chapter and in
the OS-9 Technical Manual.

m_os9lvl OS_LEVEL OS-9 Level/Version/Revision/ Edition
OS_VERSION OS_REVISION
OS_EDITION.This four byte field is
divided into three parts: level: 1 byte
version: 2 bytes edition: 1 byte For
example, level 2, version 2.0, edition
0 is 2200.

m_os9rev OS_REVISION This is the offset to the OS-9 level
revision string.

m_paths PATHS This is the initial number of open
paths in the system.

If this table becomes full, it is
expanded automatically.

Table 7-1. Init Module System Defaults (Continued)

Name
Initialization
Macros

Description

Chapter 7: OS-9 System Management

148 Using OS-9

m_preio PREIOS This is an offset to the name string
of a list of pre-I/O customization
modules, if any.

These extension modules are
initialized and called prior to the
initialization of the I/O system during
bootstrap. For more information on
customization modules, refer to the
description of m_extens and the
following section.

m_procs PROCS This is the number of entries in the
process descriptor table.

If this table becomes full, it is
expanded automatically.

m_rtclock RTC_NAME This is the offset to the real-time
clock module name string.

The kernel attempts to call this
module when the time is set, i.e.
when _os_setime is called.

m_site SITE This field contains the installation
site code.

This user-definable field may be
used to identify the site of the
system.

m_slice SLICE This is the number of clock ticks per
time-slice. The value is usually set to
1.

m_sparam SYS_PARAMS This is the offset to the parameter
string (if any) to be passed to the first
executable module.

Table 7-1. Init Module System Defaults (Continued)

Name
Initialization
Macros

Description

Chapter 7: OS-9 System Management

Using OS-9 149

m_sysdrive SYS_DEVICE This is the offset to the initial default
directory name string, usually /d0 or
/h0.

The system initially does a chd and
chx to this device prior to forking the
initial device. If the system does not
use disk, this offset must be zero.

m_sysgo SYS_START This is the offset to the name string
of the first executable module.

m_syspri SYS_PRIOR This is the system priority at which
the first module (usually Sysgo or
Shell) is executed. This is generally
the base priority at which all
processes start. This value is
commonly set to 128.

m_ticker TICK_NAME This is the offset to the name string
of the module used to generate the
system clock tick. The kernel
attempts to call this module when
the first _os_setime system call is
made.

m_ticksec TICK_SEC This is the number of ticks a second
of time is divided into. This value is
usually set to 100.

m_tmzone SYS_TMZONE This is the system time zone in
minutes offset from Greenwich
Mean Time (GMT).

This field would be 360 for a system
six time zones west of GMT and -
360 for a system six time zones east
of GMT.

m_usract USRACCT This is the offset to the name string
of the user accounting module.

Table 7-1. Init Module System Defaults (Continued)

Name
Initialization
Macros

Description

For more information on the Init module, see the OS-9 Technical
Manual.

Chapter 7: OS-9 System Management

150 Using OS-9

 Extension Modules
Extension modules can be attached to OS-9 during the system cold-
start procedure to increase the functionality of OS-9. Extension modules
can be used for a variety of functions such as user accounting, system
security, and system caching.

In the Init module, the m_extens offset points to a list of module
names. By default, the name of the list is OS9P2. If the modules are
found during cold-start, they are called. If an error is returned, the
system stops. Three of these modules are listed below:

Cache The cache module enables the system to
control any hardware caches present.

This module can be customized to take
advantage of any cache hardware the system
may have.

SSM The system security module (SSM) enables
memory protection.

FPU The floating point unit (FPU) module currently
supplies five functions.

These functions include saving, loading, and
resetting the floating point processor content;
setting a null context for a process; and testing
for a null context.

Also, in the Init module, the m_preio offset points to a list of module
names that are initialized during bootstrap prior to the initialization of
the I/O system. This enables the installation of services that may be
required during the initialization of the I/O system.

Changing System Modules
The provided system modules have been configured to satisfy the needs
of the majority of users. However, you may wish to alter the existing
modules or create new modules. New system modules and alterations
to existing system modules can be made by changing the defaults in the
systype.h file. The system modules most commonly altered are the
device descriptors and the Init module.

Chapter 7: OS-9 System Management

Using OS-9 151

The systype.h file is located in the PORTS directory. It contains
macros such as TERM, DiskH0, and others for each device descriptor
and the Init module. These macros contain basic memory map
information, exception vector methods (for example, vectors in RAM or
ROM), I/O device controller memory addresses and initialization data,
and other information for each device descriptor and the Init module.

The systype.h file consists of five main sections used when installing
OS-9:

• Init module CONFIG macro
• SCF Device Descriptor macros and definitions
• RBF Device Descriptor macros and definitions
• ROM configuration values
• target system specific definitions

The macros related to the Init module are surrounded in systype.h
with #if defined(INITMOD). The definitions provided here override
the default values when the Init module is made. This allows port-
specific system tuning without modifying the generic file that all ports
use to define the system configuration.

The macros device descriptors are surrounded in systype.h with #if
defined (<desc>) where <desc> is the name of the descriptor being
created. For example, you'll find a pre-processor directive like #if
defined(TERM). The macros following this line, up to the
corresponding #endif, relate to the TERM macro for your machine. The
fields affected by these macros are discussed more fully in the OS-9
Technical Manual.

The ROM configuration values appear in systype.h surrounded by
#if defined(CNFGDATA). These definitions control how your ROM
modules behave for your particular port. These definitions and their
effects are discussed more fully in the BSP Reference or OS-9 Porting
Guide provided with your package.

System specific definitions, such as control register and vectors, should
be placed in systype.h. This allows the system-specific definitions to
be maintained in a single, system-specific file.

For more information on the make utility, refer to the chapter on
making files and the make utility description in the Utilities
Reference manual.

Chapter 7: OS-9 System Management

152 Using OS-9

To change your system configuration, change the definitions appearing
in your port systype.h file with any text editor. Since all relevant
system components include systype.h, the change takes place the
next time they are regenerated.

Use the make utility to regenerate the appropriate system components.
Running the makefile in your PORTS directory regenerates all the port
specific modules for your system. Since your changes likely only affect a
small subset of these modules, you should find the makefile that is
relevant to the changes you have made. For example, to change the
baud rate of the /t1 device, find the makefile for that descriptor
(SCF/SC16550/DESC) and execute it. This regenerates the /t1 device
descriptor.

Making Bootfiles
A bootfile contains a list of modules to be loaded into memory during
the system’s bootstrap sequence. The provided bootfiles have been
configured to satisfy the majority of users, but you may want to add or
remove modules from an existing bootfile.

Bootlist Files
Bootfiles are usually created using a bootlist file and the -z option
of bootgen utility. The bootlist file contain a list of files, one file per
line, to use in creating the bootfile. Using a bootlist file is a
convenient way to maintain bootfile contents, as the bootlist file can
easily be edited. The bootlist files are usually located in the ports
directory (for example: /h0/MWOS/OS9000/603/PORTS/MVME1603)
along with the individual files used for constructing the bootfile.

Bootfile Requirements
The contents and module order of a bootfile are usually determined by
the end-user’s system configuration and requirements. However, the
following points should be noted when you construct a bootfile:

• The kernel must be present in the system, either in ROM or in the
bootfile. If the kernel is in the bootfile, it must be the first module.

• The Init module must be present in the system, either in ROM or in
the bootfile.

All other modules are dependent upon the system configuration.

Chapter 7: OS-9 System Management

Using OS-9 153

Making RBF Bootfile
To make a bootfile for an RBF device (hard disk or floppy disk), you
need to edit the bootlist file to match your requirements and then
run the bootgen utility:

chd /h0/MWOS/OS9000/<CPU-family>/PORTS/
<processor>/BOOTLIST
<edit bootlist file>
bootgen <device> -z=<bootlist>

For example:

chd /h0/MWOS/OS9000/80386/PORTS/PCAT/BOOTLIST

The <device> specified is the disk on which you want to install the
bootfile. If this device is a hard disk, specify the format-enabled device
name (for example, h0fmt).

For example, to make a floppy-disk bootfile, type the following
command: bootgen /d0 -z=d0_765.bl

To make a hard disk bootfile, type the following command:

bootgen /h0fmt -z=h0_ide.bl

Using the RAM Disk
OS-9 provides support for RAM disks. These disks reside solely in
Random Access Memory (RAM). The information stored on a RAM disk
can be accessed significantly faster than the same information stored
on a hard or floppy disk. Any file may be stored and accessed on a RAM
disk. To use a RAM disk, you must have a device descriptor, a RAM disk
driver and the RBF file manager.

In many system configurations, a RAM disk is used as the default
system device. When the RAM disk is used as the default system device,
it is known as device dd, instead of r0. The name of the device
descriptor is .r0.dd. Using this descriptor allows compilers to use the
RAM disk as a “fast access” device for temporary file. The RAM disk is
usually initialized at startup with definition and library files, if it is to be
used as the default system device.

Refer to the BSP Reference or OS-9 Porting Guide for more
information.

Chapter 7: OS-9 System Management

154 Using OS-9

RAM disks are either volatile or non-volatile. A volatile RAM disk
disappears when the system is reset or the power is shut off. A non-
volatile RAM disk resides in a place such as battery backed up RAM
and does not disappear when the system is reset or powered down.

Volatile RAM Disks
Volatile RAM disks may be allocated memory either from free system
memory or from outside free system memory. Volatile RAM disks not
allocated from the free system memory must not be part of the system
memory list, and they must have a port address greater than or equal to
1024. This port address indicates the actual start address of the RAM
disk.

Non-Volatile RAM Disks
A non-volatile RAM disk must be located in an area of memory the
system will not try to allocate. If it is located in an area known to the
system, the RAM disk may be cleared because the memory is assumed
to be un-allocated and may later be used by the system. In addition, the
format protect bit must be set for non-volatile RAM disks and the port
address must be greater than or equal to 1024.

Making a Startup File
Using bootfiles is not the only way of loading modules and device into
memory at the time of startup. A startup procedure is executed each
time OS-9 is booted and the standard sysgo is used. On disk-based
systems, the startup procedure executes a startup file. The startup
file is located in the sys directory in the root directory of the system
disk.

The startup file is an OS-9 procedure file. It contains OS-9
commands to be executed immediately after booting the system.

While some modules and devices, such as the kernel, should be loaded
from the sysboot file, having the startup file load most modules can
be advantageous. For example, it is easier to upgrade a system by
modifying the startup file. To change this file, you simply use a text
editor and make the changes. To change the sysboot file, you must
also use the bootgen utility.

Chapter 7: OS-9 System Management

Using OS-9 155

A procedure file is made up of executable commands. Each command
is executed exactly as if it were entered from the shell command line.
Each line starting with an asterisk (*) is a comment and is not executed.

From the root directory, the startup file can be examined by entering
the following command:

$ list sys/startup

A listing similar to the following is displayed:

-t -np
*
* OS-9000
* Copyright 1996 by Microware Systems Corporation
* Copyright 2001 by RadiSys Corporation
*
* The command in this file are highly system dependent and

should
* be modified by the user.
*
* setime; * start system clock
link shell csl ; * make "shell" and "csl" stay in memory
* iniz r0 h0 d0 t1 p1 ; * initialize device
* load -z=sys/loadfile ; * make some utilities stay in memory
* load bootobjs/r0.dd ; * get default device descriptor
* tsmon /t1 & ; * start other terminals
list sys/motd

The first executable line, -t -np, turns on the talk mode option of the
shell and turns off the prompt option for the duration of this procedure.
The talk mode option echoes each executed command to the terminal
display. This allows you to see what command are being executed.

The other executable lines in the distributed startup file are followed
by a comment explaining the purpose of the command. Some standard
commands are provided as comments. If you want the command
executed during the startup procedure, use a text editor to remove the
asterisk preceding the command.

For example, to execute the setime command when the startup file
is executed, remove the asterisk preceding the command.

For systems with battery-backed up clocks, run setime with the
-s option to start time-slicing. The date and time are read from
the clock.

Chapter 7: OS-9 System Management

156 Using OS-9

If you are concerned that your system may be unusable due to a
corrupt or missing startup file, set the parameter string in the init
module as shown below:

...;mshell --lp=backup- &; profile /h0/sys/startup & \n

This setting first brings up mshell, then profiles the startup files. (This
may result in the forking off of more than one mshell.) Once you are
satisfied the startup file is present and functioning, you can change your
init string back to the following setting:

...;/h0/sys/startup & \n

Initializing Devices: iniz r0 h0 d0 t1 p1
The iniz r0 h0 d0 t1 p1 commented command initializes the
following specific devices:

When OS-9 opens a path to a device, it first checks to see if the device
is known to OS-9. To be known, a device must be initialized and
memory must be allocated for its device driver. If the device is unknown
at the time of the request, OS-9 initializes the device, allocates memory
and opens the path. For example, a simple dir /d0 command
initiates this sequence of events if d0 has not been previously initialized.

The iniz utility initializes devices. iniz performs an I_ATTACH system
call on each device name passed to it. This initializes and links the
device to the system.

To initialize a device after the system has been started, type iniz and
the name(s) of the device(s) to attach to the system. iniz goes through
the procedure of initializing the device(s) and allocating the memory
needed for the device. If the device is already attached, it is not re-
initialized, but the link count is incremented.

Table 7-2. iniz Initialiized Devices

Device Description
r0 RAM disk
h0 Hard disk
d0 Floppy disk
t1 Terminal
p1 Serial Printer

Chapter 7: OS-9 System Management

Using OS-9 157

For example, to increment the link count of modules, t2 and t3, type
the following command:

$ iniz t2 t3

The device names can be read from standard input with the -z option
or from a file with the -z=<file> option. To increment the link counts
of devices listed in a file called /h0/add.file, type the following
command:

iniz -z=/h0/add.files

You can use the deiniz utility to deinitialize a device. deiniz checks
the link count before removing the device from storage. If the link count
is greater than one, deiniz lowers the link count. If the link count is
one, deiniz lowers the link count to zero, and removes the device from
the system device table. The device then becomes unknown to OS-9.

To use the deiniz utility, type deiniz followed by the name(s) of the
devices(s) to remove from the system.

For example, to decrement the link count of module p2, type the
following command:

$ deiniz p2

deiniz can read the device names from standard input with the -z
option or from a file with the -z=<file> option. To remove the file
listed in a file called /h0/not.needed, type the following command:

$ deiniz -z=/h0/not.needed

Non-sharable devices must be placed in a bootfile to become
known to the system. If a non-sharable device is initialized, it is
unusable because the link count has been incremented, which
makes it appear to be in use.

This initialize/de-initialize sequence can result in slower execution
of programs and may cause memory fragmentation problems. To
avoid these symptoms, it is recommended that all devices
connected to the system at startup be initialized in the startup
file.

For more information on the iniz and deiniz utilities, refer to
the Utilities Reference manual.

Chapter 7: OS-9 System Management

158 Using OS-9

Initializing the connected device at startup initializes the device and
allocates memory for its driver for the duration of the time the system is
running, unless specifically de-initialized. For example, a system with
two floppy drives and one hard disk drive can initialize these devices in
the startup file:

iniz h0 d0 d1 t1 p1 p

Loading Utilities Into Memory: load -z=sys/loadfile
The next line of the startup file loads a number of utilities into
memory. If a utility is not already in memory, it must be loaded into
memory before it is used. Pre-loading basic utilities at startup time
avoids the necessity of loading the utility each time it is executed.

To load utilities into memory at startup, you must create a file
containing the names of each utility to load, one utility per line. While
the file may have any name, Microware recommends loadfile. You
can locate this file in any directory as long as its location is specified on
the command line. If loadfile is located in the SYS directory, the
startup file command line will look like the following example:

load -z=sys/loadfile

Previous versions of the operating system had the following commented
line in the startup file:

load utils

This method involved creating a utils file by merging the desired
utilities into a single file in the command directory. While you may still
use this method, using loadfile is preferable because it uses less disk
space and is easier to edit.

Chapter 7: OS-9 System Management

Using OS-9 159

Loading the Default Device Descriptor: Load bootobjs/r0.dd
Many OS-9 compilers and application programs look for definition files
and libraries in directories located on the default system device. The
default system device is known as dd. dd may be defined as any disk
device, but it is usually synonymous for one of the following devices:

If a default device is to be used (dd) and the device descriptor is not in
the bootfile, then the device descriptor must be loaded. The next line in
the startup file loads the device descriptor. The default device used is
the RAM disk named r0. If you want another device to be the default
device descriptor, change the .r0 extension to reflect the appropriate
device. If you have a dd device in your bootfile or if no default device is
to be used, leave this line as a comment.

Multi-user Systems: tsmon /t1 &
The tsmon utility is used to make your system a multi-user system. This
utility supervises idle terminals and initiates the login procedure for
multi-user systems. The startup file command line, tsmon /t1&,
initiates the time-sharing monitor on the serial port /t1.

tsmon can monitor up to 28 device name pathlists. Therefore, if you
have multiple devices for tsmon to monitor, you can name up to 28
devices on each tsmon command line. Use the ex built-in shell
command to execute tsmon without creating another shell. This
conserves system memory. For example:

ex tsmon /term /t1 /t2 /t3 /t4 /t5&

When a carriage return is entered on any of the specified paths, tsmon
automatically forks login and standard I/O paths are opened to the
device.

Table 7-3. Disk Devices

Device Description
r0 RAM disk
h0 Hard disk
d0 Floppy disk

For more information on the tsmon utility, refer to the Utilities
Reference manual.

Chapter 7: OS-9 System Management

160 Using OS-9

\The login procedure uses the password file located in the SYS
directory for individual login validation. The provided password file
has two example login entries. Each of the fields in an entry in the
password file is explained in the chapter on the shell and in the login
utility description in the Utilities Reference manual. If login fails
because you could not supply a valid user name or password, control
returns to tsmon.

Time Zones and the TZ Environment Variable
The TZ environment variable is used to specify the time zone for the C
functions to use. TZ should have the following format:

zzz[+/-n][:ddd]

In addition, the value of m_tmzone in the init module should be set to
match the system time zone offset from GMT when daylight savings
time is not in effect.

Time Zones
The following table gives brief descriptions of each time zone.

You must set the TZ environment variable correctly in order to
accurately track daylight savings time. However, if it is not
necessary to track daylight savings time, you do not need to set
TZ--provided that m_tmzone in the init module has been set
correctly.

Refer to the Ultra C Library Reference for more information about
the TZ environment variable and time functions.

Table 7-4. Time Zones and Descriptions

Zone Description
GMT/UTC Greenwich Mean Time (or Coordinated Universal

Time)
PST/PDT USA Pacific Standard Time/Daylight Savings Time
MST/MDT USA Mountain Standard Time/Daylight Savings Time
CST/CDT USA Central Standard Time/Daylight Savings Time
EST/EDT USA Eastern Standard Time/Daylight Savings Time
YST Yukon Standard Time (Most of Alaska)
AST Aleutian/Hawaiian Standard Time
EET Eastern European Time

Chapter 7: OS-9 System Management

Using OS-9 161

System Shutdown Procedure
There are times when you want to shut your system down. When you
reset or power down your system, you may need to do more than just
press the reset button. Certain programs need to be shut down
gracefully. For example, most network communications, print spools,
and inter-system processes need special attention. These processes may
have options or other arrangements needing consideration before
shutting down your system.

CET Central European Time
WET Western European Time
JST Japan Standard Time
MIT Midway Islands Time
HST Hawaii Standard Time
PNT Phoenix Standard Time
IET Indiana Eastern Standard Time
PRT Puerto Rico Standard Time
CNT Canada Newfoundland Time
AGT Argentina Standard Time
BEZ Brazillian Standard Time
CAT Central Africa
ECT European Central Time
ART Arabic Standard Time
EAT Eastern African Time
MET Middle Eastern Time
NET Near East Time
PLT Pakistan Lahore Time
IST India Standard Time
BST Bangladesh Standard Time
VST Vietnam Standard Time
CTT China Taiwan Standard Time
ACT Australia Central Time
AET Australian Eastern Time
SST Solomon Standard Time
NST New Zealand Standard Time

Table 7-4. Time Zones and Descriptions (Continued)

Zone Description

Chapter 7: OS-9 System Management

162 Using OS-9

In addition to taking care of processes requiring special attention, you
should prepare the system users for the shutdown. If at all possible,
users should be allowed enough time to save their file and close their
workstation. One way of alerting users that the system is going down is
by echoing a message using the echo and tee utilities. However, you
should realize messages sent over the system in this manner are not
seen by users who do not press a carriage return after the message has
been sent. For example, if a programmer is sitting at a shell prompt, the
message does not appear on the terminal screen until a carriage return
is entered.

In this case, verbal warnings are important. This means in addition to
sending a warning message out over the system, you may want to use
either an intercom system or the telephone to talk to each person
connected to the system.

You can simplify the process of actually shutting down your system by
creating a procedure file. Once created, you can run the procedure
from the shell command line prompt or a separate password entry may
be created for the sole purpose of shutting down the system.

For example, if you have a procedure file called shutdown.sys, you
could create the following password file entry:

sys,shutdown,0.0,128,.,sys,shell shutdown.sys

Once you login as user sys with password shutdown, the shutdown
procedure begins because the system immediately has the shell execute
the shutdown.sys file. The following code is an example of a useful
procedure file for shutting down the system:

-t -nx -np
*
* System Shutdown Procedure
*
echo WARNING The system will shut down in 3 minutes ! tee /t1

/t2 /t3 /t4 /t5
sleep -s 60
echo WARNING The system will shut down in 2 minutes ! tee /t1

/t2 /t3 /t4 /t5
sleep -s 115
echo WARNING 5 seconds to system shut down ! tee /t1 /t2 /t3 /t4

/t5
sleep -s 5
spl -$; * terminate spooler
sleep -s 3; * wait 3 seconds
break; * call ROM debugger

Chapter 7: OS-9 System Management

Using OS-9 163

The first six commands after the comment identifying the procedure
function broadcast three warnings to the terminals on the system. The
first warning tells the users the system is going down. The other two
warnings serve as reminders.

The remaining command lines shut down the system:

Managing Processes in a Real-time Environment
The ability to manage processes in a real-time environment is one of
the advantages of OS-9. OS-9 has three primary methods by which
system managers can manage processes in a real-time environment:

• Manipulating process priority.
• Using d_minpty and d_maxage to alter the system process

scheduling.
• Having system-state processes as well as user-state process.

Manipulating the Priority of a Process
When processes are executed on the command line, their initial
priorities can be changed using the process priority modifiers discussed
in the chapter on the shell. This enables users with a crucial task to set
the priority on their process higher so it runs sooner and more often
than less crucial processes.

The initial priority is also a parameter for the fork and chain system
calls.

Table 7-5. Command Lines

Command line Description
spl -$ This command terminates the spooler. All unfinished

jobs are lost when the spooler is terminated.
sleep -s 3 This command causes the system to wait three

seconds before executing the next command line. This
allows the previous command time to complete
execution.

break This command sends a break call to the low-level
debugger. When this debugger receives this call, it
takes control of the system.

Chapter 7: OS-9 System Management

164 Using OS-9

Changing the System’s Process Scheduling
The way OS-9 schedules processes can be affected by the d_minpty
and d_maxage system global variables. d_minpty and d_maxage are
available to super users through the _os_setsys system call. These
system variables can be used to effect the aging of processes.

d_minpty defines a minimum priority below which processes are
neither aged nor considered candidates for execution. Processes with
priorities less than d_minpty remain in the active queue and continue
to hold any system resources they held before d_minpty was set.

If you have a critical process needing to be run and several other users
have processes they want to run, use the process priority modifier to
increase the priority of the critical process. Then, set d_minpty to a
value less than the priority you assigned to the critical process but
greater than the priority of the other processes. The critical process now
continues using the CPU until another process with a priority greater
than d_minpty is entered into the active queue or the critical process is
finished.

For example, if d_minpty is set to 500 and you set the priority of your
process at 600, your process continues to use the CPU while processes
with priorities less than 500 are not able to run until d_minpty is reset.

 d_minpty is potentially dangerous. If the minimum system priority is
set above the priority of all running tasks, the system completely shuts
down and can only be recovered by a reset. It is crucial to restore
d_minpty to zero when the critical task finishes or to reset d_minpty or
a process’ priority in an interrupt service routine.

The initial priority of a process is aged each time it is passed by
for execution while it is waiting for CPU time.

d_minpty is usually set to zero. All processes are eligible for
aging and execution when this value is set to zero because all
processes have an initial priority greater than zero.

d_maxage defines a maximum age over which processes are not
allowed to mature. By default, this value is set to zero. When
d_maxage is set to zero, it has no effect on the processes waiting
to use the CPU.

Chapter 7: OS-9 System Management

Using OS-9 165

When set, d_maxage essentially divides tasks into two classes: low
priority and high priority. A low priority task is considered to be any task
with a priority below d_maxage. Low priority tasks continue aging until
they reach the d_maxage cutoff, but they are not executed unless there
are no high priority tasks waiting to use the CPU.

A high priority task is any task with a priority above d_maxage. A high
priority task receives the entire available CPU time, but it is not aged.
When the high priority task(s) are inactive, the low priority tasks run.

For example, if d_maxage is set to 2000 and three processes with initial
priorities of 128 are in the active queue, the processes run just as if
d_maxage had not been set. Then, if a process with an initial priority of
2500 is entered into the active queue, it receives CPU time when the
process currently in the CPU has finished. Once using the CPU, the
high priority process runs uninterrupted until a process with a higher
priority is entered into the active queue or the process finishes. When
the process finishes executing, the low priority processes again are able
to use the CPU.

Any process performing a system call is not preempted until the call is
finished, unless the process voluntarily gives up its timeslice. This
exception is made because these processes may be executing critical
routines affecting shared system resources and could be blocking other
unrelated processes.

Using System-State Processes and User-State Processes
The second method OS-9 uses to manage real-time priority processing
is the existence of system-state processes. System-state processes are
processes running in a supervisor or protected mode. System-state
processes basically have unlimited access to system memory and other
resources. When a process in system state wants to use the CPU, it
waits until it has the highest age.

User-state processes do not have access to all points in memory and do
not have access to all of the commands. When a process in user-state
gains time in the CPU, it runs only for the time specified by the
timeslice. When it has finished using its timeslice, it is entered back into
the active queue according to its initial priority.

Chapter 7: OS-9 System Management

166 Using OS-9

Using the tmode and xmode Utilities
The tmode and xmode utilities are also available to help you customize
OS-9. Use the tmode utility to display or change the operating
parameters of the user’s terminal. The xmode utility is similar to the
tmode utility. Use the xmode utility to display or change the initialization
parameters of any
SCF-type device such as a video display, printer, or RS-232 port. Some
common uses are to change the baud rates and control key definitions.

Using the tmode Utility
To use the tmode utility, type tmode and any parameter(s) you need
changed. If no parameters are given, the present values for each
parameter are displayed. Otherwise, the parameter(s) given on the
command line are processed. You can pass any number of parameters
on a command line. Each parameter is separated by a space.

If a parameter is set to zero, OS-9 no longer uses the parameter until it
is re-set to a code OS-9 recognizes. For example, the following
command sets the <tab> and <bell> output characters to zero.

tmode tab=0x00 bell=0x00

OS-9 does not output tabs or bells until the values are re-set.

To re-set the values of a parameter to their default as given in this
manual, specify the parameter with no value.

You can use the -w=<path#> option to specify the path number to be
affected. If a path number is not provided, standard input is affected.

If tmode is used in a shell procedure file, the option -w=<path#> must
be used to specify one of the standard paths (1 or 2) to change the
terminal’s operating characteristics. The change remains in effect until
the path is closed.

To effect a permanent change to a device characteristic, you must first
initialize the device, and then use the xmode utility to alter the device’s
initial operating parameters.

The tmode parameters are documented in the Utilities Reference
manual.

Chapter 7: OS-9 System Management

Using OS-9 167

Using the xmode Utility
To use the xmode utility, type xmode and any parameter(s) to change. If
no parameters are given, the present values for each parameter are
displayed. Otherwise the parameter(s) given on the command line are
processed. You can give any number of parameters on a command line.
Each parameter is separated by spaces or commas. You must specify a
device name if the given parameter(s) are to be processed.

Like tmode, if a parameter is set to zero, the device no longer uses the
parameter until it is re-set to a recognizable code. To re-set the values of
parameters to their default, specify the parameter with no value. This
re-sets the parameter to the default value as given in this manual.

Using xmode, you can also define control keys affecting the input line.
For example, <control>B is, by default, defined as a backspace key
for the command line. You can use xmode to redefine <control>B to
perform another function or to redefine another key to backspace on
the input line.

The termcap File Format
The termcap file is a text file containing control code definitions for
one or more types of terminals. Each entry is a complete description list
for a particular kind of terminal.

The first section of a termcap entry is divided into three parts.

• a two character entry
• the most common name
• a long name

Each part is a different way of naming the terminal. A bar (|) character
separates the parts of a termcap entry. The first part is a two character
entry. The second part is the most common name for the terminal. This
name must contain no blanks. The final part is a long name fully
describing the terminal. This name may contain blanks for readability.
For example:

kh|abm85h|kimtron abm85h:

The xmode parameters are documented in the Utilities Reference
manual.

Chapter 7: OS-9 System Management

168 Using OS-9

You can check the values stored in TERM by using the printenv
command:

$ printenv
TERM=abm85h

You must set the TERM environment variable to the name used in the
second part of the name section. In the following example, TERM is set
to abm85h:

$ setenv TERM abm85h

The rest of the entry consists of a sequence of control code
specifications for each control function. Each item in the list is
separated by a colon (:) character. An entry may be continued onto the
next line by using a backslash (\) character as the last character of the
line. It must appear after the last colon of the previous item. The next
line must begin with a colon. For example:

ka|amb85|kimtron abm85:\
:ct=\E3: ...

Each item begins with a terminal capability. Each capability is a two
character abbreviation. Each capability is either a boolean itself or it is
followed by a string or a number. If a boolean capability is present in the
termcap entry, then the capability exists on that terminal.

All numeric capabilities are followed by a pound sign (#) and a number.
For example, the number of columns capability for an 80 column
terminal could be described as follows:

co#80:

All string capabilities are followed by an equal sign (=) and a character
string. A time delay in milliseconds may be entered directly after the
equal sign (=) if padding is allowed in that capability. The padding
characters are supplied by tputs() after the remainder of the string is
transmitted to provide the time delay. The time delay may be either an
integer or a real. The time delay may be followed by an asterisk (*). The
asterisk specifies the padding is proportional to the number of lines
affected.

Chapter 7: OS-9 System Management

Using OS-9 169

It is often useful to specify the time delay using the real format. For
example, the clear screen capability is specified as ^z with a time delay
of 3.5 milliseconds by the following entry:

cl=3.5*^z:

Escape sequences are indicated by a \E . A control character is
indicated by a circumflex (^) preceding the character. The following
special character constants are supported:

Characters are specified as three octal digits after a backslash (\). For
example, if a colon must be used in a capability definition, it must be
specified by \072. If it is necessary to place a null character in a
capability definition use \200. C routines using termcap strip the high
bits of the output, therefore \200 is interpreted as \000.

termcap Capabilities
The following table contains a list of termcap capabilities recognized by
termcap. Not all of these capabilities need to be present for most
programs to use termcap. They are provided for completeness. (P)
indicates padding may optionally be specified. (P*) indicates the
optional padding may be based on the number of lines affected:

Table 7-6. Supported Special Character Constants

Escape Sequence Character Hexadecimal code
\b backspace ($08)
\f formfeed ($0C)
\n newline ($0A)
\r return ($0D)
\t tab ($09)
 \\ backslash ($5C)
\^ circumflex ($5E)

Table 7-7. termcap Capabilities

Name Type Padding Description
ae string (P) End alternate character set.
al string (P*) Add new blank line.
am boolean End alternate character set.
as string (P) Start alternate character set.
bc string Backspace if not ^H.

Chapter 7: OS-9 System Management

170 Using OS-9

bs boolean Terminal can backspace with ^H.
bt string (P) Back tab.
bw boolean Backspace wraps from column 0 to

last column.
CC string Command character in prototype if

terminal settable.
cd string (P*) Clear to end of display.
ce string (P) Clear to end of line.
ch string (P) Horizontal cursor motion only, line

stays same.
cl string (P*) Clear screen.
cm string (P) Cursor motion.
co numeric Number of columns in line.
cr string (P*) Carriage return (default ^M).
cs string (P) Change scrolling region (VT100), like

cm.
cv string (P) Vertical cursor motion only.
da boolean Display may be retained above.
dB numeric Number of milliseconds of backspace

delay needed.
db boolean Display may be retained below.
dC numeric Number of milliseconds of carriage

return delay needed.
dc string (P*) Delete character.
dF numeric Number of milliseconds of formfeed

delay needed.
dl string (P*) Delete line.
dm string Delete mode (enter).
dN numeric Number of milliseconds of newline

delay needed.
do string Down one line.
dT numeric Number of milliseconds of tab delay

needed.
ed string End of delete mode.
ei string End insert mode.

NOTE: If ic is used, enter: ec=:.

Table 7-7. termcap Capabilities (Continued)

Name Type Padding Description

Chapter 7: OS-9 System Management

Using OS-9 171

eo string Can erase overstrikes with a blank.
ff string (P*) Hardcopy terminal page eject

(default ^L).
hc boolean Hardcopy terminal.
hd string Half-line down (1/2 linefeed).
ho string Home cursor (if no cm).
hu string Half-line up.
hz string Hazeltime: cannot print tildas (~).
ic string (P) Insert character.
if string Name of file containing initialization

string.
im boolean Insert mode (enter).

NOTE: If ic is specified use :im=:
in boolean Insert mode distinguishes nulls on

display.
ip string (P*) Insert pad after character inserted.
is string Terminal initialization string.
k0-k9 string Sent by other function keys 0-9.
kb string Sent by backspace key.
kd string Sent by down arrow key.
ke string Take terminal out of keypad transmit

mode.
kh string Sent by home key.
kl string Sent by left arrow key.
kn numeric Number of other keys.
ko string termcap entries for other non-

function keys.
kr string Sent by right arrow key.
ks string Put terminal in keypad transmit

mode.
ku string Sent by up arrow key.
l0-l9 string Labels on other function keys.
li numeric Number of lines on screen or page.
ll string Last line, first column (if no cm entry).
ma string Arrow key map.
mi boolean OK to move while in insert mode.

Table 7-7. termcap Capabilities (Continued)

Name Type Padding Description

Chapter 7: OS-9 System Management

172 Using OS-9

ml string Memory lock on above cursor.
ms boolean OK to move while in standout and

underline mode.
mu string Turn off memory lock.
nc boolean Carriage return down not work.
nd string Non-destructive space.
nl string (P*) Newline character.
ns boolean Terminal is a non-scrolling CRT.
os boolean Terminal overstrikes.
pc string Pad character (rather than null).
pt boolean Has hardware tabs.
se string End stand out mode.
sf string (P) Scroll forwards.
sg numeric Number of blank characters left by se

or so.
so string (P) Begin stand out mode.
sr string (P) Scroll reverse.
ta string Tab (other than ^I or without

padding).
tc string Entry of terminal similar to last

termcap entry.
te string String to end programs using cm.
ti string String to begin programs using cm.
uc string Underscore one character and move

past it.
ue string End underscore mode.
ug numeric Number of blank characters left by us

or ue.
ul boolean Terminal underlines but does not

overstrike.
up string Upline (cursor up).
us string Start underscore mode.
vb string Visible bell.
ve string Sequence to end open/visual mode.
vs string Sequence to start open/visual mode.
xb boolean Beehive terminal (f1=<esc>, f2=^C).

Table 7-7. termcap Capabilities (Continued)

Name Type Padding Description

Chapter 7: OS-9 System Management

Using OS-9 173

Of the capabilities, the most complex and important capability is cm:
cursor addressing. The string specifying the cursor addressing is
formatted similar to the C function: printf(). It uses % notation to
identify addressing encodings of the current line or column position.
The line and the column to be addressed could be considered the
arguments to the cm string. All other characters are passed through
unchanged. The following is the notation used for cm strings:

xn boolean Newline is ignored after wrap.
xr boolean Return acts like ce \r\n.
xs boolean Standout not erased by writing over it.
xt boolean Tabs are destructive.

Table 7-7. termcap Capabilities (Continued)

Name Type Padding Description

Table 7-8. cm String Notation

Notation Description
%d A decimal number (origin 0)
%2 Same as %2d
%3 Same as %3d
%. ASCII equivalent of value
%+x Adds x to value, then %
%>xy If value > x adds y, no output
%r Reverses the order of row and column, no output
%i Increments line/column (for 1 origin)
%% Gives a single %
%n Exclusive or row and column with 0140
%B BCD (16*(x/10) + (x%10), no output
%D Reverse coding (x-2*(x%16)), no output

Chapter 7: OS-9 System Management

174 Using OS-9

Example String Notations (Continued)
The following examples illustrate the use of the preceding notations:

cm=6\E&%r%2c%2Y
This terminal needs a 6 millisecond delay, rows and columns reversed,
and rows and columns to be printed as two digits

cm=5\E[%i%d;%dH
This terminal needs a 5 millisecond delay, rows and columns separated
by a semicolon (;), and because of its origin of 1, rows and columns are
incremented. The <esc>[, ; and H are transmitted unchanged.
(VT100)

cm=\E=%+ %+
This terminal uses rows and columns offset by a blank character.
(ABM85H)

Example termcap Entries
ka|abm85|kimtron abm85:\
:ce=\ET:cm=\E=%+ %+ :cl=^Z:\
:se=\Ek:so\Ej:up=^K:sg#1

If two entries in the same termcap file are very similar, one can be
defined as identical to the other with certain exceptions. To do this, tc is
used with the name of the similar terminal. This capability must be the
last in the entry. All exceptions to the other terminal must appear before
the tc listing. If a capability must be cancelled, use <cap>@. For
example, this might be a complete entry:

kh|abm85h|kimtron abm85h:\
:se=\EG0:so\EG4:tc=abm85:

Using OS-9 175

A ASCII Conversion Chart Appendix A

This appendix contains an ASCII conversion chart.

Appendix A: ASCII Conversion Chart

176 Using OS-9

ASCII Symbol Definitions
ASCII is an acronym for American Standard Code for Information
Interchange. It consists of 96 printable and 32 nonprintable characters.

The unprintable characters are defined in Table 7-9.

Table 7-9. ASCII Symbol Definitions

Symbol Definition Symbol Definition
ACK acknowledge FS file separator
BEL bell GS group separator
BS backspace HT horizontal

tabulation
CAN cancel LF line feed
CR carriage return NAK negative

acknowledgment
DC device control NUL null
DEL delete RS record shipment
DLE data link escape SI shift in
EM end of medium SO shift out
ENQ enquiry SOH start of heading
EOT end of transmission SP space
ESC escape STX start of text
ETB end of transmission SUB substitute
ETX end of text SYN synchronous idle
FF form feed US unit separator

VT vertical tabulation

Appendix A: ASCII Conversion Chart

Using OS-9 177

Table 7-10 includes binary, decimal, octal, hexadecimal, and ASCII
conversions.

Table 7-10. ASCII Conversions

Binary Decimal Octal Hexadecimal ASCII
0000000 0 0 0 NUL
0000001 1 1 1 SOH
0000010 2 2 2 STX
0000011 3 3 3 ETX
0000100 4 4 4 EOT
0000101 5 5 5 ENQ
0000110 6 6 6 ACK
0000111 7 7 7 BEL
0001000 8 10 8 BS
0001001 9 11 9 HT
0001010 10 12 A LF
0001011 11 13 B VT
0001100 12 14 C FF
0001101 13 15 D CR
0001110 14 16 E SO
0001111 15 17 F SI
0010000 16 20 10 DLE
0010001 17 21 11 DC1
0010010 18 22 12 DC2
0010011 19 23 13 DC3
0010100 20 24 14 DC4
0010101 21 25 15 NAK
0010110 22 26 16 SYN
0010111 23 27 17 ETB
0011000 24 30 18 CAN
0011001 25 31 19 EM
0011010 26 32 1A SUB
0011011 27 33 1B ESC
0011100 28 34 1C FS
0011101 29 35 1D GS
0011110 30 36 1E RS
0011111 31 37 1F US
0100000 32 40 20 SP

Appendix A: ASCII Conversion Chart

178 Using OS-9

0100001 33 41 21 !
0100010 34 42 22 "
0100011 35 43 23 #
0100100 36 44 24 $
0100101 37 45 25 %
0100110 38 46 26 &
0100111 39 47 27 ’
0101000 40 50 28 (
0101001 41 51 29)
0101010 42 52 2A *
0101011 43 53 2B +
0101100 44 54 2C ,
0101101 45 55 2D -
0101110 46 56 2E .
0101111 47 57 2F /
0110000 48 60 30 0
0110001 49 61 31 1
0110010 50 62 32 2
0110011 51 63 33 3
0110100 52 64 34 4
0110101 53 65 35 5
0110110 54 66 36 6
0110111 55 67 37 7
0111000 56 70 38 8
0111001 57 71 39 9
0111010 58 72 3A :
0111011 59 73 3B ;
0111100 60 74 3C <
0111101 61 75 3D =
0111110 62 76 3E >
0111111 63 77 3F ?
1000000 64 100 40 @
1000001 65 101 41 A
1000010 66 102 42 B
1000011 67 103 43 C

Table 7-10. ASCII Conversions (Continued)

Binary Decimal Octal Hexadecimal ASCII

Appendix A: ASCII Conversion Chart

Using OS-9 179

1000100 68 104 44 D
1000101 69 105 45 E
1000110 70 106 46 F
1000111 71 107 47 G
1001000 72 110 48 H
1001001 73 111 49 I
1001010 74 112 4A J
1001011 75 113 4B K
1001100 76 114 4C L
1001101 77 115 4D M
1001110 78 116 4E N
1001111 79 117 4F O
1010000 80 120 50 P
1010001 81 121 51 Q
1010010 82 122 52 R
1010011 83 123 53 S
1010100 84 124 54 T
1010101 85 125 55 U
1010110 86 126 56 V
1010111 87 127 57 W
1011000 88 130 58 X
1011001 89 131 59 Y
1011010 90 132 5A Z
1011011 91 133 5B [
1011100 92 134 5C \
1011101 93 135 5D]
1011110 94 136 5E ^
1011111 95 137 5F _
1100000 96 140 60 ‘
1100001 97 141 61 a
1100010 98 142 62 b
1100011 99 143 63 c
1100100 100 144 64 d
1100101 101 145 65 e
1100110 102 146 66 f

Table 7-10. ASCII Conversions (Continued)

Binary Decimal Octal Hexadecimal ASCII

Appendix A: ASCII Conversion Chart

180 Using OS-9

1100111 103 147 67 g
1101000 104 150 68 h
1101001 105 151 69 i
1101010 106 152 6A j
1101011 107 153 6B k
1101100 108 154 6C l
1101101 109 155 6D m
1101110 110 156 6E n
1101111 111 157 6F o
1110000 112 160 70 p
1110001 113 161 71 q
1110010 114 162 72 r
1110011 115 163 73 s
1110100 116 164 74 t
1110101 117 165 75 u
1110110 118 166 76 v
1110111 119 167 77 w
1111000 120 170 78 x
1111001 121 171 79 y
1111010 122 172 7A z
1111011 123 173 7B {
1111100 124 174 7C |
1111101 125 175 7D }
1111110 126 176 7E ~
1111111 127 177 7F DEL

Table 7-10. ASCII Conversions (Continued)

Binary Decimal Octal Hexadecimal ASCII

	HOME
	Using OS-9®
	Contents
	Basic Commands and Functions
	Logging onto a Timesharing System
	Introduction to the Shell
	Performing a Command Search

	Using the Keyboard
	Line Editing Control Keys
	Interrupt Keys
	The Page Pause Feature

	Standard OS-9 Utilities
	Using the help Utility
	Using free and mfree

	The OS-9 File System
	OS-9 File Storage
	The File Pointer
	Text Files
	Executable Program Module Files
	Random Access Data Files
	File Ownership
	Attributes and the File Security System
	Directory Attributes

	The OS-9 File System
	Current Directories
	DIrectories and Single-User Systems
	Directories and Multi-User Systems
	The Home Directory
	Directory Characteristics

	Accessing Files and Directories: The Pathlist
	Full Pathlists
	Relative Pathlists

	Basic File System Utilities
	The dir Utility
	dir and Wildcards
	dir Options
	The -e Option
	The -r Option

	The chd and chx Utilities
	Using chd
	Using chx

	Navigating through Directory Trees
	Using the pd Utility
	Creating New Directories
	Rules for Constructing File Names
	Creating Files
	Creating Short Text Files
	Editing Text Files
	Using µMACS
	Examining File Attributes
	Listing Files
	Copying Files
	Copying a File into an Existing File
	Copying Multiple Files
	Copying Large Files
	Using Procedure Files to Copy Files
	Selectively Copying Multiple Files
	Errors During dsave
	Indenting for Directory Levels
	Keeping Current Directory Backups
	Deleting Files and Directories
	Deleting Files
	Deleting Directories

	OS-9 Memory Modules
	OS-9 Memory Modules
	Using Memory Modules
	Loading Modules into Memory
	Module Security
	The Link Count
	Modules Remaining in Memory

	Module Directories
	Current Module Directory
	Displaying the Contents of Module Directories
	Memory Module Directory Attributes
	Creating New Memory Module Directories
	Deleting Memory Module Directories

	The Shell
	The Function of the Shell
	Shell Options

	The Shell Environment
	Changing the Shell Environment
	Using Environmental Variables as Command Line Parameters

	Built-In Shell Commands
	Shell Command Line Processing
	Special Command Line Features
	Execution Modifiers
	Additional Memory Size Modifier
	I/O Redirection Modifiers
	Standard Devices

	Process Priority Modifier
	Wildcard Matching
	Command Separators
	Sequential Execution
	Multi-tasking: Concurrent Execution
	Pipes and Filters
	Unnamed Pipes
	Named Pipes
	Command Grouping

	Shell Procedure Files
	Using Parameters with Procedure Files
	Using profile When Running Procedure Files
	The Login Shell and Special Procedure Files
	Using assign When Running Procedure Files

	Time-Sharing System Startup Procedure File
	The Password File

	Creating a Temporary Procedure File
	Multiple Shells
	The procs Utility

	Waiting for Background Procedures
	Stopping Procedures

	Command History
	Error Reporting

	Making Files
	The make Utility
	Running the Make Utility
	Implicit Definitions
	Macro Recognition
	make Generated Command Lines
	make Options

	Examples Using the make Utility
	Updating a Document
	Compiling C Programs
	Using Macros
	Creating make

	Performing Backups
	Incremental Backups
	Making an Incremental Backup: The fsave Utility
	fsave Options
	The fsave Procedure
	Example fsave Commands

	Restoring Incremental Backups: The frestore Utility
	frestore Options
	The Interactive Restore Process
	Example Command Lines

	Incremental Backup Strategies
	Daily Backup Strategy
	Single Tape Backup Strategy
	Use of Tapes or Disks

	Using the tape Utility
	Backing Up the System Disk
	Formatting a Disk
	Multiple Drive Format
	Single Drive Format
	Continuing the Formatting Process
	The Backup Procedure
	Multiple Drive Backup
	Single Drive Backup

	OS-9 System Management
	Setting Up the System Defaults: the Init Module
	Extension Modules
	Changing System Modules
	Making Bootfiles
	Bootlist Files
	Bootfile Requirements
	Making RBF Bootfile

	Using the RAM Disk
	Volatile RAM Disks
	Non-Volatile RAM Disks

	Making a Startup File
	Initializing Devices: iniz r0 h0 d0 t1 p1
	Loading Utilities Into Memory: load -z=sys/loadfile
	Loading the Default Device Descriptor: Load bootobjs/r0.dd
	Multi-user Systems: tsmon /t1 &

	Time Zones and the TZ Environment Variable
	Time Zones

	System Shutdown Procedure
	Managing Processes in a Real-time Environment
	Manipulating the Priority of a Process
	Changing the System’s Process Scheduling
	Using System-State Processes and User-State Processes

	Using the tmode and xmode Utilities
	Using the tmode Utility
	Using the xmode Utility

	The termcap File Format
	termcap Capabilities
	Example String Notations (Continued)
	Example termcap Entries

	ASCII Conversion Chart
	ASCII Symbol Definitions

