
RadiSys. 118th Street
Des Moines, Iowa 50325

515-223-8000

Revision A • April 2003www.radisys.com

Utilities Reference

Version 4.2

April 2003
Copyright ©2003 by RadiSys Corporation.

All rights reserved.
EPC and RadiSys are registered trademarks of RadiSys Corporation. ASM, Brahma, DAI, DAQ, MultiPro, SAIB, Spirit, and ValuePro are
trademarks of RadiSys Corporation.
DAVID, MAUI, OS-9, OS-9000, and SoftStax are registered trademarks of RadiSys Corporation. FasTrak, Hawk, and UpLink are
trademarks of RadiSys Corporation.
† All other trademarks, registered trademarks, service marks, and trade names are the property of their respective owners.

Copyright and publication information

This manual reflects version 4.2 of OS-9.
Reproduction of this document, in part or whole, by
any means, electrical, mechanical, magnetic, optical,
chemical, manual, or otherwise is prohibited, without
written permission from RadiSys Corporation.

Disclaimer

The information contained herein is believed to be
accurate as of the date of publication. However,
RadiSys Corporation will not be liable for any damages
including indirect or consequential, from use of the
OS-9 operating system, Microware-provided software,
or reliance on the accuracy of this documentation.
The information contained herein is subject to change
without notice.

Reproduction notice

The software described in this document is intended to
be used on a single computer system. RadiSys Corpo-
ration expressly prohibits any reproduction of the soft-
ware on tape, disk, or any other medium except for
backup purposes. Distribution of this software, in part
or whole, to any other party or on any other system may
constitute copyright infringements and misappropria-
tion of trade secrets and confidential processes which
are the property of RadiSys Corporation and/or other
parties. Unauthorized distribution of software may
cause damages far in excess of the value of the copies
involved.

Utilities Reference 3

Contents

: Contents.

Chapter 1: Utilities.

Standard Utility Documentation ... 18.

Command Syntax.. 18.

Operating System (OS).. 18.

Command Options.. 19.

Description of the Utility .. 19.

Examples.. 19.

See Also ... 19.

Formal Syntax Notation ... 20.

List of OS-9 Utilities .. 21.

activ... 25.

alias... 26.

assign .. 28.

attr .. 29.

backup... 32.

Single Drive Backup .. 33.

Two Drive Backup... 33.

bfed ... 35.

binex.. 40.

bootgen ... 42.

Method 1: .. 44.

Method 2: .. 44.

Method 3: .. 44.

break ... 46.

build .. 47.

cfp ... 48.

chd .. 51.

chm ... 52.

chx .. 53.

chown .. 55.

Contents

4 Utilities Reference

cmp, os9cmp.. 56.

code .. 58.

com ... 59.

compress.. 69.

copy... 71.

count ... 75.

cudo .. 77.

date ... 79.

dcheck ... 80.

Repairing the Bitmap .. 82.

Restrictions .. 83.

debug .. 84.

deiniz ... 85.

del, os9del ... 87.

deldir ... 90.

delmdir .. 92.

devs ... 94.

dir.. 97.

diskcache ... 102.

dosfile .. 104.

dpsplit .. 105.

dsave ... 106.

dump, os9dump ... 111.

echo .. 113.

editmod ... 115.

edt ... 120.

events .. 122.

ex .. 125.

exbin.. 126.

expand... 128.

fdisk... 130.

Partition Information... 131.

fixmod.. 135.

format.. 139.

Format on Non-Autosize Devices ... 141.

Format on Autosize Devices .. 143.

Continuing the Format Procedure .. 144.

free .. 145.

Contents

Utilities Reference 5

frestore .. 147.

fsave .. 151.

grep ... 156.

Expressions .. 158.

Example Expressions ... 159.

help ... 161.

hist .. 162.

ident .. 164.

iniz .. 168.

irqs .. 170.

kermit .. 174.

kill ... 182.

link .. 184.

list ... 185.

lmm ... 187.

ln... 189.

load ... 190.

login .. 193.

The Password File... 194.

logout .. 196.

makdir ... 197.

makmdir .. 199.

maps ... 201.

mbc ... 202.

mdattr.. 203.

mdir ... 205.

merge, os9merge.. 208.

mfree ... 210.

mkdatmod.. 212.

moded ... 214.

Selecting the Current Module .. 216.

Edit Mode .. 216.

Listing Module Fields .. 217.

The Moded.fields File ... 217.

Example Module Description in Moded.fields:... 220.

The Provided Moded.fields File: ... 220.

mshell .. 221.

MShell Features.. 221.

Contents

6 Utilities Reference

mv ... 222.

os9cmp .. 224.

os9del .. 225.

os9deldir .. 226.

os9dump.. 228.

os9gen... 229.

Method 1 ... 231.

Method 2 ... 231.

Method 3 ... 231.

os9make .. 233.

os9merge ... 236.

p2init ... 237.

padrom .. 238.

park ... 240.

paths ... 241.

partition ... 243.

pcdcheck.. 247.

pcformat .. 249.

pd.. 252.

pinfo .. 254.

Creating New Descriptors .. 256.

pr .. 260.

printenv.. 263.

procs.. 264.

profile .. 272.

qsort .. 273.

rename .. 275.

romsplit .. 276.

save ... 278.

set ... 280.

setenv .. 282.

setime .. 283.

Systems with Battery Backed Up Clocks .. 284.

setpr .. 286.

shell ... 287.

sleep .. 290.

su .. 291.

suspend ... 292.

Contents

Utilities Reference 7

sysid .. 294.

tape ... 295.

tapegen ... 297.

tapestart .. 300.

tar ... 301.

tee ... 303.

tmode .. 304.

touch, os9touch .. 315.

tr ... 317.

tsmon .. 321.

umacs .. 324.

unassign .. 325.

undel ... 326.

undel ... 328.

unlink .. 330.

unsetenv .. 332.

w, wait ... 333.

what .. 334.

xmode.. 335.

OS-9 Examples ... 344.

Chapter 2: Using the debug Utility.

Symbolic Debugging ... 346.

Starting debug .. 346.

Exiting the Debugger... 347.

Relocation Registers .. 347.

Breakpoints... 348.

debug Commands ... 349.

Execution Commands.. 349.

Stack Traceback Command ... 353.

Memory Change Commands ... 354.

Memory Commands .. 355.

Hex/ASCII Dump Memory Display .. 356.

Instruction Disassembly Memory Display... 357.

Floating Point Memory Displays ... 359.

Display/Change Machine Registers... 361.

Memory Fill .. 367.

Memory Search .. 369.

Linking to a Module .. 374.

Contents

8 Utilities Reference

Symbolic Debugging ... 375.

Creating a Process to Debug ... 381.

Starting the Debugger from the Shell Command Line .. 382.

Setting and Displaying debug Options .. 383.

Expressions and the V Command ... 386.

Binary Operations (operate on the left and right operand) 387.

Unary Operators (operate on the right operand) ... 388.

Indirect Operators... 388.

Command Summary.. 391.

Chapter 3: Using the editmod Utility.

Use Instructions .. 396.

Creating Modules.. 396.

Listing Modules .. 396.

Editing Modules .. 396.

Editing an Array .. 398.

Editing a String ... 399.

Editing a Variable Length List .. 399.

Expressions... 400.

$ prefix .. 400.

@ prefix ... 401.

Internet address.. 401.

Ethernet address... 401.

DPIO Descriptors .. 401.

Programming Guide .. 402.

Features ... 402.

Pre-Processor.. 403.

Exclusions .. 403.

Additions ... 404.

Macro Definitions ... 404.

Expressions... 405.

Search Directories ... 406.

Configuration File ... 408.

Help Text ... 409.

Module Creation ... 410.

Description Files.. 411.

Definition Blocks ... 412.

Structures .. 412.

Numerical Member ... 413.

Pointer to Another Definition Block .. 414.

Contents

Utilities Reference 9

Sub-Structure ... 415.

Repeat Structures ... 415.

Arrays .. 416.

Pointer Arrays... 417.

Strings ... 418.

Initialization Block... 418.

Module Block ... 419.

Header Generation ... 420.

Type Aliases ... 420.

Comments ... 420.

emit <string>; ... 421.

_editmod_HM macro .. 421.

General Rules ... 422.

Example ... 422.

Design the Data Module ... 423.

Create the Description File .. 424.

Create the Module with editmod .. 428.

Display the Contents of the Module with editmod.. 429.

Edit the Module .. 430.

Chapter 4: Using the os9make Utility.

Overview .. 434.

os9make Operation .. 434.

Implicit Rules, Definitions, and Assumptions ... 435.

UCC Rule Modes .. 436.

Modes.. 437.

Special Macros ... 437.

os9make Generated Command Lines ... 439.

os9make Command Line Options... 440.

Makefile Entries .. 441.

Dependencies ... 442.

Commands... 442.

Comments.. 443.

Includes ... 443.

Macros... 444.

Syntax.. 444.

Line Continuation ... 446.

Macro Substitution.. 447.

for Loop ... 449.

Target Dependent Macros... 450.

Contents

10 Utilities Reference

Conditionals ... 452.

Syntax.. 452.

Boolean Expressions ... 452.

Operators... 454.

Precedence .. 455.

Abbreviations ... 455.

Looping.. 456.

for Syntax... 456.

Chapter 5: Using the mshell Utility.

Automatic mshell Login ... 460.

Command Line Editing .. 460.

Change Default Command Line Editing Keys .. 461.

History Buffer .. 462.

History Substitution ... 463.

View History ... 464.

History Compression ... 464.

Command Completion... 465.

Pathlist Completion ... 467.

Command Name Aliases (Assigns) ... 469.

Assign.. 469.

Unassign.. 470.

Enhanced Piping Facilities ... 470.

Command Line Batchfiles .. 470.

Set Matching Wildcards ... 471.

Procedure File Programming Language .. 472.

Parameter Passing to Procedure Files ... 472.

Environment Variable Substitution.. 473.

Programming Variable Substitution .. 474.

Command Output Substitution... 474.

Variable Substitution Modifiers... 475.

Procedure File Line Concatenation ... 476.

Procedure File Debugging Facilities.. 477.

Built-in Commands.. 478.

profile Command .. 478.

UNIX-like Data Directory Commands ... 479.

prenv Built-in Command.. 480.

set Command ... 481.

which Command... 482.

Contents

Utilities Reference 11

mshell Command Line Options .. 482.

Parameter Passing among mshells ... 486.

Invoking the Initialization File ... 487.

Prompt Format String .. 488.

Non-blocking Readln... 490.

mshell Directives ... 491.

Operators ... 492.

Variables .. 492.

%status Variable ... 493.

Functions ... 494.

Constants ... 494.

Quoted String Constants ... 495.

Integer Constants ... 495.

Logical Constants ... 495.

Identifier Constants... 496.

Directive Descriptions .. 497.

mshell Functions ... 512.

abs() .. 516.

assign() .. 517.

asc() .. 518.

chdir() .. 519.

chmdir() ... 520.

chr()... 521.

chxdir() .. 522.

close() .. 523.

cmpnam() .. 524.

create() .. 525.

dir() ... 526.

dup().. 527.

env() .. 528.

execute() .. 529.

exist()... 530.

findstr() .. 531.

filematch().. 532.

getdata() .. 533.

getuid() .. 534.

hex() .. 535.

index() ... 536.

Contents

12 Utilities Reference

input().. 537.

input1() .. 538.

lassign() ... 539.

left() .. 540.

len()... 541.

lower() ... 542.

mid().. 543.

modate() .. 544.

next_file() ... 545.

open() .. 546.

param().. 547.

read()... 548.

readln() .. 549.

right() .. 550.

rindex() .. 551.

seek()... 552.

size() .. 553.

strcat() ... 554.

strchr() ... 555.

strcmp() ... 556.

strlen() ... 557.

strpbrk() ... 558.

strrchr() .. 559.

strstr() .. 560.

tell() ... 561.

tohex() ... 562.

uns() .. 563.

upper() ... 564.

var_rep() .. 565.

write() .. 566.

writeln() ... 567.

Example Programs .. 568.

Chapter 6: Using the shell Utility.

Overview of shell Utility.. 570.

Setting shell Options ... 572.

The Shell Environment... 572.

The Environment Utilities ... 574.

Contents

Utilities Reference 13

Using Environment Variables as Command Line Parameters 575.

Using Parameters with Procedure Files ... 575.

The profile Command.. 577.

The login shell, .login, and .logout ... 578.

shell Command Line Syntax ... 579.

Command Line Execution .. 582.

Example Command Lines .. 584.

Chapter 7: Using the uMacs Utility.

uMACS Overview .. 586.

Terminal Capabilities .. 586.

Cursor Positioning ... 586.

Search and Replace .. 587.

Cut and Paste... 587.

Format Commands ... 587.

Buffers ... 587.

Command Basics .. 587.

Execute Commands .. 588.

Key Bindings .. 589.

Change Key Bindings .. 589.

Find Current Key Bindings ... 590.

The Help Command.. 590.

Repeat Commands ... 591.

Abort Command ... 591.

Macro Commands .. 591.

The Execute-File Command ... 592.

The .umacsrc File ... 592.

Command Summary: key and help... 593.

Introduction to Windows and Buffers .. 594.

The Status Line... 594.

Switching Windows ... 595.

Start uMACS ... 595.

Input/Output Command... 596.

Insert File ... 597.

Read File.. 597.

Find File ... 597.

View File .. 597.

Change File Name .. 598.

Saving Files .. 598.

Contents

14 Utilities Reference

Execute Operating System Commands ... 598.

uMACS Editing Modes ... 599.

Add or Delete a Mode ... 600.

Exit uMACS .. 601.

The uMACS Command Set .. 601.

Cursor Positioning Commands ... 602.

Next or Previous Word, Line, or Paragraph ... 603.

Next or Previous Page ... 604.

Go To Beginning or End of Line/File ... 604.

Go to a Specified Line ... 604.

Insert Text .. 604.

Insert a Non-Printable Character.. 605.

New Lines .. 606.

Insert a Tab.. 606.

Insert a File .. 606.

Delete Text ... 606.

The Kill Buffer .. 607.

Delete Word/Blank Lines ... 608.

Place a Region of Text Into the Kill Buffer .. 608.

Insert Kill Buffer Contents .. 609.

Search and Replace .. 609.

Search Forward and Backward... 610.

Replace.. 611.

Region Commands.. 612.

Mark Region Boundaries ... 613.

Copy or Move a Region ... 613.

Paste ... 613.

Change a Region’s Character Case .. 614.

Format Commands.. 614.

Change Character Case .. 615.

Reformat Paragraph Margins ... 615.

Transpose Characters.. 616.

Buffer Commands ... 616.

Display Current Buffers .. 617.

Change Buffer or File Name .. 617.

Edit a Buffer ... 618.

Open a New Buffer ... 618.

Switch Buffers ... 618.

Buffer Position .. 619.

Contents

Utilities Reference 15

Delete Buffer .. 619.

Execute Buffer .. 619.

Window Commands .. 620.

Open Additional Windows ... 621.

Move to the Next or Previous Window .. 621.

Scroll Text .. 622.

Change Window Size... 622.

Delete All But Current Window... 622.

Termcap File Format... 622.

The Termcap File .. 623.

Terminal Capabilities .. 624.

Special Characters .. 624.

Termcap Capabilities .. 625.

Cursor Addressing ... 625.

Example Notations.. 626.

Example Termcap Entries .. 627.

uMACS Command Summary.. 627.

Chapter 8: Using the mar Utility.

Overview .. 634.

Code Overview.. 634.

Parameter Definitions ... 634.

Pathlists.. 635.

Pathlist Examples .. 635.

Example 1.. 635.

Example 2.. 636.

Appendix A: ASCII Conversion Chart.

Contents

16 Utilities Reference

Utilities Reference 17

1 Utilities Chapter 1

This chapter provides a list, in alphabetical order, of OS-9® utilities. It
includes the following sections:

• Standard Utility Documentation
• Formal Syntax Notation
• List of OS-9 Utilities

Chapter 1: Utilities

18 Utilities Reference

Standard Utility Documentation
For quick reference purposes, the format of the utility information has
been standardized. Each utility contains the following headings and
corresponding information, if applicable:

• Command Syntax
• Operating System (OS)
• Command Options
• Description of the Utility
• Examples
• See Also

Command Syntax
The Syntax field identifies the rules governing the structure of the utility
command line.

• Syntax specified in the command section does not include the shell
built-in options (e.g., alternate memory size, I/O redirection, piping,
etc.). The shell filters these options out from the command line
before processing the program being called.

Operating System (OS)
The OS field identifies Microware operating systems with which the
utility is packaged and other operating systems on which the utility is
functional. Some utilities function under other operating systems in
addition to OS-9 and OS-9 for 68K.

Some path names and code examples may refer to OS-9000.
These references pertain to the OS-9 (non-68K) operating
system.

Chapter 1: Utilities

Utilities Reference 19

Command Options
The Options field lists the available options for each utility.

• Unless otherwise specified, command line option order is
insignificant. For example, the following command lines provide the
same results:
attr -a junk -pw
attr junk -pw -a
attr junk -a -pw

• The equal sign (=) used in many utility options and the k used in the
alternate memory size option are generally optional. For example,
you may write -b=256k as -b256, -b256k, or -b=256.
However, the equal sign is mandatory when using -z=<file>
option.

• Utilities that use the -z option expect input of one file name per
line. Some utilities do not interpret comments (lines beginning with a
"*") in a -z file.

• The -? option is available although not listed for most utilities.
Typing -? displays the options, function, and command syntax of the
utility. Exceptions are built-in shell commands, such as chd and set.

• A few utilities offer only the -? option. You cannot list other options
on the command line. Built-in shell commands, such as chd and
set, do not have options including the -? option.

Description of the Utility
The Description field presents a narrative detailing the uses, features,
and specific instructions for each utility.

Examples
The Examples field provides one or more illustrations of using the utility.

See Also
The See Also field provides a reference to related utilities that offer
additional information.

Chapter 1: Utilities

20 Utilities Reference

Formal Syntax Notation
Each command section includes a syntactical description of the
command line. These symbolic descriptions use the following notations:

[] = Enclosed items are optional.

{ } = Enclosed items may be used 0, 1, or multiple
times.

< > = Enclosed item is a description of the
parameter to use.

For example:

<path> = A legal path list

<devname> = A legal device name

<modname> = A legal memory module name

<procID> = A process number

<opts> = One or more options specified in the
command description

<arglist> = A list of parameters

<text> = A character string ended by end-of-line

<num> = A decimal number, unless otherwise
specified

<file> = An existing file

<string> = An alphanumeric string of ASCII
characters

Chapter 1: Utilities

Utilities Reference 21

List of OS-9 Utilities
Table 1-1 provides a list of OS-9 utilities, including utility name and a
brief description. The complete documentation follows.

Table 1-1. OS-9 Utilities

Utility Name Description
activ Activates a Process
alias Sets Device Pathlist Alias
assign Single Word Command Line Substitutions
attr Changes/Examines File Security Attributes
backup Makes a Backup Copy of Disk
bfed Screen-Oriented Disk Editor
binex Converts Binary Files to S-Record Format
bootgen Builds and Links a Bootstrap File
break Invokes System Level Debugger or Reset System
build Builds Text File from Standard Input
cfp Command File Processor
chd Changes the Current Data Directory
chm Change the Current Module Directory
chx Change the Current Execution Directory
chown Changes the Ownership of a File/Directory
cmp, os9cmp Compares Two Binary Files
code Prints the Hex Value of the Input Character
com Communicates With a Remote System
compress Compresses ASCII Files
copy Copies Data from One File to Another
count Counts Characters, Words, and Lines in File
cudo Convert text file EOL characters
date Displays System Date and Time
dcheck Checks Disk File Structure
debug Debugs and Tests 68000 Machine Language

Programs
deiniz Detaches Device
del, os9del Deletes a File
deldir Deletes All Files in Directory
delmdir Deletes Existing Module Directories
devs Displays System’s Device Table

Chapter 1: Utilities

22 Utilities Reference

dir Displays Names of Files in Directory
diskcache Enables, Disables, or Displays Status of Cache
dosfile Converts DOS Text to OS-9 and Vise Versa
dpsplit Splits/Rejoins the DPIO descriptor
dsave Generates Procedure File to Copy Files
dump, os9dump Displays Formatted Dump
echo Echoes Text to Output Path
editmod Creates, Displays, and Edits Modules
edt Line-Oriented Text Editor
events Displays Active System Events
ex Chains to a Program
exbin Converts S-Record to Binary
expand Expands Compressed File
fdisk Displays/Alters the Partition Table
fixmod Fixes Module CRC and Parity
format Initializes Disk Media
free Displays Free Space Remaining on Mass-Storage

Device
frestore Restores Directory from Backup
fsave Incremental Directory Backup
grep Searches File for Pattern
help On-Line Utility Reference
hist Command History
ident Prints OS-9 Module Identification
iniz Attaches Devices
irqs Displays System’s IRQ Polling Table
kermit Transfers Sequential Files Over Asynchronous Lines
kill Aborts Processes
link Links Previously Loaded Module into Memory
list Lists Contents of Text File
lmm Loads Modules At Pathlist
ln Creates a Hard Link to an Existing File
load Loads Module(s) from File into Memory
login Timesharing System Login
logout Timesharing System Logout

Table 1-1. OS-9 Utilities (Continued)

Utility Name Description

Chapter 1: Utilities

Utilities Reference 23

makdir Creates Directory File
makmdir Creates a New Module Directory
maps Prints Process Memory Usage Information
mdattr Changes Module Directory Security Permissions
mdir Displays Module Directory
merge,
os9merge

Copies and Combines Files to Standard Output

mfree Displays Free System RAM
mkdatmod Packages File into Data Module
moded Edits OS-9 Modules
mshell Command Interpreter
mv Move a File/Directory From One Directory to

Another
os9cmp Compares Two Binary Files
os9del Deletes a File
os9deldir Delete files within a directory.
os9dump Displays Formatted Dump
os9gen Builds and Links Bootstrap File
os9make Maintains, Updates, and Regenerates Groups of

Programs
os9merge Copies and Combines Files to Standard Output
p2init Links and Initializes An OS9P2 Module
padrom Extends File Size
park Park Hard Drive Heads
paths Display Process Paths
partition Partition OS-9/68k hard disks
pcdcheck Check specified device for correct FAT file system
pcformat Creates a FAT File System for use with PCF
pd Prints Working Directory
pinfo Partition Table Utility
pr Prints Files
printenv Prints Environment Variables
procs Displays Processes
profile Reads Commands from File and Return
qsort In-Memory Quick Sort

Table 1-1. OS-9 Utilities (Continued)

Utility Name Description

Chapter 1: Utilities

24 Utilities Reference

rename Changes File Name
romsplit Splits File
save Saves Memory Module(s) to File
set Sets Shell Options
setenv Sets Environment Variables
setime Activates and Sets System Clock
setpr Sets Process CPU Priority
shell Command Interpreter
sleep Suspends Process for Period of Time
su Fork a New Shell with a New User ID
suspend De-activate an Active Process
sysid Print System Identification
tape Tape Controller Manipulation
tapegen Creates a bootable tape
tapestart Initialize RBF Device from Tape
tar Tape Archive
tee Copies Standard Input to Multiple Output Paths
tmode Changes Terminal Operating Mode
touch,
os9touch

Update Last Modification Date of File

tr Transliterate Characters
tsmon Supervises Idle Terminals and Initiate Login

Command
umacs Advanced Screen Editor
unassign Discards Single Word Command Line Substitutions
undel Retrieves Deleted OS-9 for 68K RBF Files
undel Retrieves Deleted OS-9 RBF Files
unlink Unlinks Memory Module
unsetenv Clears Environment Parameter
w, wait Waits for One/All Child Process(es) to Terminate
what Display Version Strings
xmode Examines or Changes Device Initialization Mode

Table 1-1. OS-9 Utilities (Continued)

Utility Name Description

activ Chapter 1: Utilities

Utilities Reference 25

activ
Activates a Process

Syntax
activ {<procID>}

OS
OS-9

Description
The activ utility activates processes that were stopped by the suspend
utility.

Type activ and the process ID of the process to activate a process. The
process ID can be obtained by using the procs utility. Suspended
processes are identified with a z in the state status.

Example
$ procs -e
Id PId Grp.Usr Prior MemSiz Sig S CPU Time Age Module & I/O
2 0 0.0 128 30.75k 0 w 0.04 0:10 tsmon <>>>term
3 5 0.0 128 11.00k 0 z 7.00 0:01 eatmpu <>>>term
4 0 0.0 128 30.75k 0 s 0.04 0:10 tsmon <>>>t3
5 2 0.0 128 9.00k 0 w 3.09 0:10 shell <>>>term
6 5 0.0 128 35.25k 0 * 0.07 0:00 procs <>>term
>dd
$ activ 3
$ procs -e
Id PId Grp.Usr Prior MemSiz Sig S CPU Time Age Module & I/O
2 0 0.0 128 30.75k 0 w 0.04 0:10 tsmon <>>>term
3 5 0.0 128 11.00k 0 a 13.73 0:01 eatmpu <>>>term
4 0 0.0 128 30.75k 0 s 0.04 0:10 tsmon <>>>t3
5 2 0.0 128 9.00k 0 w 3.46 0:10 shell <>>>term

6 5 0.0 128 35.25k 0 * 0.05 0:00 procs <>>term >dd

See Also
suspend

Only super users may use this utility.

Chapter 1: Utilities alias

26 Utilities Reference

alias
Sets Device Pathlist Alias

Syntax
alias <alias name> <actual name>

OS
OS-9

Options
-d Deletes the specified alias name.

-l Prints the current list of aliases. -l must be
used alone.

-z Gets list of aliases from standard input.
Cannot be used with -d.
Lists one pair per line in the form:
<devname> <pathlist>

-z[=]<file> Gets list of aliases from <file>. Cannot be
used with -d.

Description
The alias utility assigns an alternate name to a device pathlist. Pathlist
aliases allow you to refer to specific device pathlists with shorter or more
convenient names.

Type alias, the alternate (alias) name, and the actual pathlist to
assign an alternate name to a pathlist. IOMAN expands all alias
references into their associated pathlist name.

• The <actual name> must exist. OS-9 does not verify the
existence of <actual name>.

• A real device name as <alias name> is discouraged.

alias Chapter 1: Utilities

Utilities Reference 27

Example
$ dir /h1
Error #000:221
$ alias /h1 /n0/tony/h0
$ dir /h1
 Directory of /h1 16:00:55
CMDS DEFS LIB SYS USR
SysBoot startup
$

Chapter 1: Utilities assign

28 Utilities Reference

assign
Single Word Command Line Substitutions

Syntax
assign [<name> <definition>]

OS
OS-9

Options
The assign utility only has zero or two arguments.

Description
The assign utility equates a single word to a string for command line
substitution.

The substitution occurs when <name> appears as the command to
execute.

Not all occurrences of <name> in the command line are replaced. Only
in those occurrences where <name> is a command to be executed is the
<name> replaced.

Example
$ assign ls dir Changes ls to dir

$ assign cd chd Changes cd to chd

$ assign Changes ls to dir and cd to chd

cd chd
ls dir

This command does not appear in the CMDS directory as it is a
built-in shell command.

attr Chapter 1: Utilities

Utilities Reference 29

attr
Changes/Examines File Security Attributes

Syntax
attr [<opts>] {<path>} {<permissions>}

OS
OS-9; OS-9 for 68K

Options
-a Suppresses the printing of attributes. In OS-9,

suppresses the warning that appears if group
attributes are specified.

-q Quiet mode suppresses “can’t open” file error
messages.

-x Searches for the specified files in the
execution directory. The files must have
execute permission to be found using -x.

-z Reads the file names from standard input.

-z=<file> Reads the file names from <file>.

Description
The attr utility examines or changes the security attributes
(<permissions>) of the specified files.

Type attr, followed by the pathlist for the files whose security
permissions you want to change or examine. Then, enter a list of
permissions to turn on or off.

Permission is granted by specifying the permission code preceded by a
hyphen (-).

Permission is withdrawn by specifying the permission code preceded by
a hyphen and an n (-n).

Permissions not explicitly named by permission code are unaffected.

Chapter 1: Utilities attr

30 Utilities Reference

If permissions are not specified on the command line, the attr utility
displays the current file attributes.

Attempts to change permission attributes of a file by a user other than
the owner, except super user, is disallowed. A super user can examine or
change the attributes of any file in the system.

When using the PCF system, the only two relevant command line
options are -npwngwnw (which shuts off write permission) and -pwgww
(which turns on write permission). No other permissions options are
relevant because it is impossible to make attribute changes on a
directory.

See Also
deldir
makdir

Examples
$ attr myfile

Displays the current attributes of myfile.

$ attr myfile -npr -npw
Withdraws public read and public write permissions.

$ attr myfile -rweprpwpe
Grants both the public and the owner read, write, and execute
permissions.

$ attr -z
Displays the attributes of the file names read from standard input.

$ attr -z=file1
Displays the attributes of the file names read from file1.

$ attr -npwpr *
Withdraws public write and grant public read for all files in the
directory.

attr Chapter 1: Utilities

Utilities Reference 31

$ attr *.lp
Lists the attributes of all files with names ending in .lp.

On OS-9 for 68K, the owner is the creator of the file. Owner access is
given to any user with the same group ID number as the owner. The
public is any user with a different group ID number than the owner. You
can determine file ownership with the dir -e command.

Table 1-2. Permission Codes

OS-9 for 68K
Files

OS-9
Files

OS-9
Directory

Specification

d d d Directory file
s o o Single user file or directory

Non-sharable file or directory
r r r Read permission to owner
w w w Write permission to owner
e e Execute permission to owner

s Search permission to owner
gr gr Read permission to group
gw gw Write permission to group
ge Execute permission to group

gs Search permission to group
pr pr pr Read permission to public
pw pw pw Write permission to public
pe pe Execute permission to public

ps Search permission to public

Specifying group attributes on OS-9 for 68K gives a non-fatal
warning that they are ignored. This warning is suppressed when
the -a option is used.

Chapter 1: Utilities backup

32 Utilities Reference

backup
Makes a Backup Copy of Disk

Syntax
backup [<opts>] [<srcpath> [<destpath>]]

OS
OS-9; OS-9 for 68K

Options
-b[=]<num> Allocates <num> k bytes of memory for use by

the backup buffer. backup uses a 4K buffer
by default. The greater the allocation of
memory, the faster backup runs.

-r Causes backup to continue upon occurrence
of a read error.

-v Prevents backup from making a verification
pass.

Description
The backup utility physically copies all data from one device to another.

A physical copy is performed sector by sector without regard to file
structures. In most cases, the specified devices must have the same
format and must be devoid of defective sectors.

• When an OS-9 bootable floppy is copied using backup, you
also need to use the bootgen utility to make the target floppy
bootable.

• This backup utility does not work with PCF.

backup Chapter 1: Utilities

Utilities Reference 33

In the following description, source disk is the disk to back up
(from disk) and destination disk is the disk to copy onto (to disk).

Single Drive Backup
A single drive backup requires exchanging disks in and out of the disk
drive.

To begin the backup procedure, put the source disk in the drive and
type backup/d0. The system asks if you are ready to backup. Type y if
you are ready.

Initially, the backup utility reads a portion of the source disk into
memory. The backup utility then prompts you to exchange disks.
Remove the source disk from the drive, and insert the destination disk.
The backup utility writes the previously stored data onto the destination
disk. This exchange process continues until all of the data on the source
disk is copied to the destination disk. When the backup is finished, an
exchange is again requested. This places the source disk back in the
drive.

The -b option increases the amount of memory the backup procedure
uses. This decreases the number of disk exchanges required.

Two Drive Backup
On a two drive system, device names /d0 and /d1 are assumed if both
device names are omitted on the command line. If the second device
name is omitted, a single unit backup is performed on the drive
specified.

To begin the backup procedure, put the source disk in the source drive
and the destination disk in the destination drive. By default, the source
drive is /d0 and the destination drive is /d1. Enter backup, the name of
the source drive, and the name of the destination drive. The system
asks if you are ready to backup. Enter y if you are ready. If errors do not
occur, the backup procedure is complete.

Before backing up a disk, you should write protect the source disk
with the appropriate write protect mechanism to prevent
accidentally confusing the source disk and the destination disk
during exchanges.

Chapter 1: Utilities backup

34 Utilities Reference

Errors
The backup procedure includes two passes by default. The first pass
reads a portion of the source disk into a buffer in memory and then
writes it to the destination disk. The second pass verifies that the data
was copied correctly.

If errors occur on the first pass, the source disk or source drive is at
fault.

If errors occur in the second pass, the destination disk is at fault. If
backup fails repeatedly on the second pass, reformat the destination
disk and retry the backup.

Examples
$ backup /D2 /D3

Backs up the disk in /d2 to the disk in /d3.

$ backup -v
Backs up the disk in /d0 to the disk in /d1 without making a
verification pass.

$ backup -b40 /d0 /d2
Allocates 40K of memory to use in backing up /d0 to /d2.

bfed Chapter 1: Utilities

Utilities Reference 35

bfed
Screen-Oriented Disk Editor

Syntax
bfed [<opts>] <path> [<opts>]

OS
OS-9; OS-9 for 68K

Options
-s[=]<num> Reads the block number specified.

-v Opens <path> in view mode.

Description
The bfed utility, a screen-oriented binary file editor, enables editing of
files and disks in binary sector format and moving sectors around on a
disk. The bfed utility also allows the user to copy sectors from one disk
to another to help in recovering accidentally deleted files.

The bfed utility operations are oriented to the disk sector buffer which
is always displayed and may be filled with data from a file or written to a
file. The buffer may also be edited by hand at any time for complete
control of the data in a file.

Typically, you might type bfed myfile on the command line. The
bfed utility would then open myfile and display the first sector.
Alternatively, you can type bfed without any command line arguments
and use the c or o commands to create or open, respectively, an edit
file. The contents of the current buffered sector are then examined or
modified and then optionally written out to the file.

The bfed utility allows two edit files to be open at a time. You may
display one or the other using the a command. You may also move
sectors from one edit file to another using the m command.

Chapter 1: Utilities bfed

36 Utilities Reference

One of the bfed utility’s more useful capabilities is its ability to recover
a deleted file by writing the "deleted" sectors to a recovery file. It is
important that the recovery file be on a different mass storage device
than the deleted file to ensure that the sectors of the deleted file are not
overwritten.

To recover a deleted file, open the recovery file using the c (create edit
file) command. Use the m command to copy sectors to the new file.

Another feature of the bfed utility is the distinction between the buffer
sector and the current sector. If the buffer's current contents were read
from the edit file, the buffer sector is the location in the file from which
the data came. The current sector, which is independent, is the current
position in the edit file for reading or writing. Thus, it is possible to read
a sector from one location in a file and to copy it to another location.

All numbers that the bfed utility asks for are assumed to be
hexadecimal; however, by using a leading # in the number, the bfed
utility interprets the number as decimal. To enter 100 in decimal, type
#100.

The following commands are available for the bfed utility. Please note
that all values are given in hexadecimal.

Table 1-3. bfed Commands

Command Description
a Switches the current active file. Most of the bfed

utility’s commands operate on the active edit file, which
is denoted by an * at the start of the status line for that
file. The buffer displayed on the screen is the buffer
associated with the current active file.

c Creates a new edit file. This is especially useful when
recovering a deleted file, and it is the only way to open
a file that does not exist.

e Ends the edit session for the current active file; that is, it
closes the active file. If the buffer has been modified,
the bfed utility displays a prompt asking if you want to
continue. When answering in the affirmative, the buffer
is not discarded but may not be written unless another
edit file is opened.

bfed Chapter 1: Utilities

Utilities Reference 37

f<value> Fills the buffer with an arbitrary, user-supplied value.
The value may be a byte, word, or long, with byte size
being the default. Size is specified by entering the
number in the format nnnn.s where s is b, w, or l. The
size is optional with the default being byte.

g Reads the current sector into the sector buffer.
i Displays the information from the File Descriptor sector

for the active edit file.
l Accepts a pattern and start and end points in the active

file in which to look for the pattern. The pattern may be
a number in byte, word or long sizes, or it may be a
string of characters by preceding the string with a "
(double-quote mark). Thus to search for the string
help, you would enter "help when prompted. When
entering the start and end points, <CR> defaults to the
start and end of the file, respectively.

m<1st
sector>
<count>

Moves sectors from the active edit file to the other edit
file. You may specify the start point and number of
sectors from the source (active) file, but the copy uses
the current sector in the target as the starting location.
When an error is encountered, you are prompted about
continuing. If you continue, garbage is written in the
target where the error occurred.

n<sector> Sets the current sector to <sector> number.
o<path> Opens an edit file. The file must already exist.
p<sector> Picks and reads a new sector from the active edit file.

You are allowed to select a sector that is beyond the end
of file.

q Quits disk editing session.
r Repaints the screen.
s Substitutes a byte for a new value. Prompts for location

and new value.
v Toggles view mode on or off for the active edit file.

When in view mode you may not alter the edit file in any
way, although you may edit the buffer.

Table 1-3. bfed Commands (Continued)

Command Description

Chapter 1: Utilities bfed

38 Utilities Reference

The bfed utility has a feature enabling editing of a sector on the screen
in either hexadecimal or ASCII. From the command line, the <tab>
command positions the cursor into the hexadecimal display on the
screen. Entering hex values replaces the existing ones in the buffer.
Changes must be saved by writing to the disk with the w command.

In edit mode, the <tab> key toggles between hexadecimal and ASCII
edit modes. In ASCII edit mode, typed characters are placed in the
buffer. Note that changes in either edit mode, hexadecimal or ASCII,
causes an update of both hexadecimal and ASCII displays to new
values. Cursor control in screen edit mode uses the following keystrokes
for up, left, right, and down movements respectively:

^P = Up
^B = Left
^F = Right
^N = Down

w Writes the buffer to the current sector in the active edit
file. If the buffer is a partial sector (such as the last
sector in a file), you are prompted for writing a full
sector (and thus changing the file size) or writing only a
partial sector.

x Displays a number in decimal and hexadecimal.
z Sets the file size of the edit file. The size change is

immediate.
< Steps backward to the previous block.
> Steps forward to the next block.
+ Steps forward 256 bytes in the file.
- Steps backward 256 bytes in the file.
<tab> Steps through command, hexadecimal editing, and

ASCII editing modes.
<CR> Steps forward 256 bytes.

Table 1-3. bfed Commands (Continued)

Command Description

bfed Chapter 1: Utilities

Utilities Reference 39

When in either hexadecimal or ASCII edit mode, return to the
command mode is accomplished by pressing the <tab> key. Use the \
key as an escape character in ASCII mode, thus allowing the entry of
control keys into the buffer. For example, to enter the value <tab> into
the buffer in ASCII mode, type \ then <tab>. The ^P, ^B, ^F, ^N,
and <tab> characters are entered in this manner.

Another useful feature is the ability to enter a decimal number in
hexadecimal edit mode. Upon pressing #, a prompt is displayed for
entry of a decimal number in the form n.b where n is the decimal
number and s is the size of b for byte, w for word, or l for long. If size is
not specified, the default is byte. It is not necessary to use a leading 0 to
specify a decimal number.

Entering data at the end of the sector in edit mode causes display of the
following prompt:

Do you wish to write the current sector and continue to
the next?

Entering data at the end of the sector will work in either hexadecimal or
ASCII edit modes.

Chapter 1: Utilities binex

40 Utilities Reference

binex
Converts Binary Files to S-Record Format

Syntax
binex {<option(s)>) [<inpath>] [<outpath>] [<opts>]

OS
OS-9; OS-9 for 68K; WIN; UNIX

Options
-a[=]<hex> Specifies the load address in hex.

-b[=]<value>[k] Specifies the conversion buffer size to use. The
‘k’ sub-option converts <value> to k bytes.

-s[=]<num> Specifies which type of S-record format binex
is to generate. Default is 1.

-x Gets file from the execution directory. (OS-9
and OS-9 for 68K only)

-z[[=]<file>] Reads the command line arguments and
options from <file>. Default is stdin.

Description
The binex utility converts binary files to S-record files.

S-record files are a type of text file containing records that represent
binary data in ASCII hexadecimal form. This Motorola-standard format
is used by many commercial PROM programmers, emulators, logic
analyzers, and similar devices that use the RS-232 interface. It can be
useful for transmitting files over data links that can only handle
character type data. It can also be used for converting assembler or
compiler generated programs to load on non-OS-9 systems.

binex Chapter 1: Utilities

Utilities Reference 41

The binex utility converts the binary file specified by <path1> to a new
file with S-record format. The new file is specified by <path2>.
S-records have a header record to store the program name for
informational purposes and each data record has an absolute memory
address. This absolute memory address is meaningless to the operating
systems because they use position-independent code.

To specify the type of S-record file to generate, use the -s=<num>
option. <num> = 1, 2, etc., corresponding to S1, S2, etc.

Standard input and output are assumed if both paths are omitted. If the
second path is omitted, standard output is assumed.

Examples
The following example downloads a program to T1. This type of
command downloads programs to devices such as PROM
programmers.

$ binex scanner.S1 >/T1

The next example generates prog.S1 in S1 format from the binary file,
prog.

$ binex -s1 prog prog.S1

See Also
exbin

Table 1-4. S-Record Types Generated

Record Description
S1 Uses a two-byte address field. (Default)
S2 Uses a three-byte address field.
S3 Uses a four-byte address field.
S7 Terminates blocks of S3 records.
S8 Terminates blocks of S2 records.
S9 Terminates blocks of S1 records.

Chapter 1: Utilities bootgen

42 Utilities Reference

bootgen
Builds and Links a Bootstrap File

Syntax
bootgen [<opts>] <devname> {<path>}

OS
OS-9

Options
-b[=]<num> Assigns <num> k bytes of memory for

bootgen. Default memory size is 4k.

-e Uses type 41 partition.

-e1 Allows the placing of type 41 boots on systems
that support booting from type 41 partitions.

-i[=]<file> Sets the logical block offset to 0 for a specified
device and then writes the specified file to
block 0 of that device. This option is only valid
on PCAT versions.

-l[=]<file> Makes a “low level boot” using <file>.
The name of the generated boot file is
firstboot.

-n Installs new bootstrap files. This option does
not save the old bootstrap files.

-q Sets block zero pointing to <path>. (Quick
Boot)

-x Searches the execution directory for pathlists.

-z Reads the file names from standard input.

-z=<file> Reads the file names from <file>.

bootgen Chapter 1: Utilities

Utilities Reference 43

Description
The bootgen utility creates and links the sysboot file required on any
disk from which OS-9 is to be bootstrapped. The bootgen utility makes
a copy of an existing boot file, adds modules to an existing boot file or
creates an entirely new boot file for a different system. These are just a
few examples.

Type bootgen and the name of the device on which the sysboot file is
to be installed. If a sysboot file already exists on the target device, it is
renamed. The sysboot file is copied onto the target device. The File
Descriptor’s starting address is linked in the disk’s Identification Block
(LSN 0) for use by the OS-9 bootstrap firmware.

If the -z option is used, the bootgen utility first uses the files specified
on the command line and then the file names from its standard input,
or from the specified pathlist, one pathlist per line. If the names are
entered manually, no prompts are given and the end-of-file key (usually
<escape>) or a blank line is entered after the line containing the last
pathlist. Files included with the -z option can contain comment lines.
Comment lines are lines starting with an asterisk (*).

To determine what modules are necessary for your boot file, use ident
with the sysboot file that came with your system.

The -el option allows placing type 41 boots on systems that support
booting on type 41 partitions. PowerPC PrepSpec includes the ability of
systems conforming to the standard to boot devices with type 41
partitions. The fdisk utility must be used to set up the partition as type
41. Once the disk is formatted, a type 41 boot may be placed on the
disk.

$ chd /h0/MWOS/OS9000/603/PORTS/MVME1603/CMDS/BOOTOBJS/ROM
$ bootgen -el=/hs01fmt coreboot -b400

• For PCAT Users:
Place PCAT specific IPL on system.
chd /h0/MWOS/OS9000/80386/PORTS/PCAT/CMDS/BOOTOBJS/IPL
bootgen -i=iplhd /hs01fmt

Place first boot on system.
chd /h0/MWOS/OS9000/80386/PORTS/PCAT/CMDS/BOOTOBJS/ROM

Place OS-9 boot on system.
chd /h0/MWOS/OS9000/80386/PORTS/PCAT/CMDS/BOOTOBJS/BOOTFILE
bootgen /hs01fmt h0_s8xx

Chapter 1: Utilities bootgen

44 Utilities Reference

• For PowerPC Users:
Place type 41 boot on system.
chd /h0/MWOS/OS9000/603/PORTS/MVME1603/CMDS/BOOTOBJS/ROM
bootgen -el=coreboot /hs01fmt

Place OS-9 boot on system.
chd /h0/MWOS/OS9000/603/PORTS/MVME1603/CMDS/BOOTOBJS/BOOTFILE
bootgen /hs01fmt h0_scsi

The -q option updates information in the disk’s Identification Block by
directing it to point to a file already contained in the root directory of
the specified device.

The -q option is useful when restoring the sysboot.old file as the
valid boot on the disk. bootgen renames the specified file to be
sysboot and saves the current boot as described previously.

Examples
This command manually installs a boot file on device /d1 which is an
exact copy of the sysboot file on device /d0.

$ bootgen /d1 /d0/sysboot

The following three methods manually install a boot file on device /d1.
The bootfile on /d1 is a copy of the sysboot file on device /d0 with the
addition of modules stored in the files /d0/tape.driver and
/d2/video.driver:

Method 1:
$ bootgen /d1 /d0/sysboot /d0/tape.driver /d2/video.driver

Method 2:
$ bootgen /d1 /d0/sysboot -z
/d0/tape.driver
/d2/video.driver
[ESCAPE]

Method 3:
$ bootgen /d1 -z
/d0/sysboot
/d0/tape.driver
/d2/video.driver
[ESCAPE]

bootgen Chapter 1: Utilities

Utilities Reference 45

You can automatically install a boot file by building a “bootlist” file and
using the -z option to either redirect bootgen standard input or use the
specified file as input:

$ build /d0/bootlist
Create file bootlist

? /d0/sysboot
Enter first file name

? /d0/tape.driver
Enter second file name

? /d2/video.driver
Enter third file name

? * V1.2 of video driver
Comment line

? [RETURN]
Terminate build

$ bootgen /d1 -z </d0/bootlist
Redirect standard input

$ bootgen /d1 -z=/d0/bootlist
Read input from pathlist

The following command makes the TestBoot file the current boot, but
saves the current SysBoot file as SysBoot:

$ bootgen /d1 -q testboot

bootgen treats any input line preceded by an asterisk (*) as
a comment.

Chapter 1: Utilities break

46 Utilities Reference

break
Invokes System Level Debugger or Reset System

Syntax
break

OS
OS-9; OS-9 for 68K

Description
The break utility executes an F$SysDbg (OS-9), F_SYSDBG (OS-9000)
system call. This call stops the operating system and all user processes
and returns control to the ROM debugger. The debugger’s g[o]
command resumes execution of the operating system.

You should only call the break utility from the system’s console device,
because the debugger only communicates with that device. If the
break utility is called from another terminal, you must still use the
system’s console device to communicate with the debugger.

Only super users may use this utility.

The break utility is used only for system debugging. It should not be
included with or run on a production system.

If there is not a debugger in ROM or if the debugger is disabled, the
break utility resets the system.

The system clock is not updated when the system is running ROMbug.
It is recommended that a setime be performed when returning from
ROMbug to standard system operation.

Be aware of any open network paths when you use the break
utility as all timesharing is stopped. Network paths are not
serviced while the system is in ROMbug and protocol time-outs
may occur.

build Chapter 1: Utilities

Utilities Reference 47

build
Builds Text File from Standard Input

Syntax
build <path>

OS
OS-9; OS-9 for 68K

Description
The build utility creates a file specified by a given pathlist.

Type build and a pathlist. A question mark prompt (?) displays. This
requests an input line. Each line entered is written to the output file.

To terminate the build utility:

• Enter a line consisting of only a carriage return.
• Enter an end-of-file character at the beginning of an input line. The

end-of-file character is typically <escape>.

Example
$ build newfile
? Build should only be used
? in creating short text files.
? [RETURN]
$ list newfile
Build should only be used
in creating short text files.

Chapter 1: Utilities cfp

48 Utilities Reference

cfp
Command File Processor

Syntax
cfp [<opts>] [<path1>] {<path2>}

OS
OS-9; OS-9 for 68K

Options
-b[=]<size> Specifies the buffer size in k bytes used by cfp

for processing the command file.

-d Deletes the temporary file. This is the default.

-nd Does not delete the temporary file.

-e Executes the procedure file. This is the
default.

-ne Does not execute the procedure file. Instead,
the cfp utility lists the procedure file to
standard output. If the -s option is specified,
any path on the command line is treated as a
<path2> substitution string.

-s=<str> Reads <str> instead of a procedure file. If the
string contains characters interpreted by the
shell, the entire option needs to be enclosed in
quotes. It does not make sense to specify both
a procedure file and this option.

-t=<path> Creates the temporary file at <path> rather
than in the current working directory.

-z Reads the file names from standard input
substitution strings.

-z=<file> Reads the file names from <file> after
processing any existing <path2>.

cfp Chapter 1: Utilities

Utilities Reference 49

Description
The cfp utility creates a temporary procedure file in the current data
directory and then invokes the shell to execute it.

Type cfp, the name of the procedure file to execute (<path1>), and the
file(s) (<path2>) for the names to substitute when executing the
<path1> procedure file and creating a temporary procedure file.

All occurrences of an asterisk (*) in the procedure file (<path1>) are
replaced by the given pathlists, <path2>, unless preceded by the tilde
character (~). For example, ~* translates to *. The command
procedure is not executed until all input files have been read.

For example, if you have a procedure file in your current data directory
called copyit that consists of a single command line, copy *, all of
your C programs from two directories, PROGMS and MISC.JUNK, are
placed in your current data directory by typing:

$ cfp copyit ../PROGMS/*.c ../MISC.JUNK/*.c

If you use the "-s=<string>" option, you may omit the name of the
procedure file, but you must enclose the option and its string in quotes.
The -s option causes cfp to use the string instead of a procedure file.
For example:

$ cfp "-s=copy *" ../PROGMS/*.c ../MISC.JUNK/*.c

In the above examples, the cfp utility creates a temporary procedure
file to copy every file ending in .c in both PROGMS and MISC.JUNK to
the current data directory. The procedure file created by the cfp utility
is deleted when all the files have been copied.

Using the -s option is convenient because you do not have to edit the
procedure file to change the copy procedure. For example, if you are
copying large C programs, you may want to increase the memory
allocation to speed up the process.

You can allocate the additional memory on the cfp command line:

$ cfp "-s=copy -b100 *" ../PROGMS/*.c ../MISC.JUNK/*.c

You must use double quotes to force the shell to send the string
-s=copy * as a single parameter to cfp. The quotes also
prevent the shell from expanding the asterisk (*) to include all
pathlists in the current data directory.

Chapter 1: Utilities cfp

50 Utilities Reference

You can use the -z and -z=<file> options to read the file names from
either standard input or a file. Use the -z option to read the file names
from standard input. For example, if you have a procedure file called
count.em that contains the command count -l * and you want to
count the lines in each program to see how large the programs are
before you copy them, enter the following command line:

$ cfp -z count.em

The command line prompt does not appear because the cfp utility is
waiting for input. Enter the file names on separate command lines. For
example

$ cfp -z count.em
../PROGMS/*.c
../MISC.JUNK/*.c

When you have finished entering the file names, press the carriage
return a second time to get the shell prompt.

If you have a file containing a list of the files to copy, enter:

$ cfp -z=files "-s=copy *"

Example
In this example, test.p is a procedure file that contains the command
line list * >/p2. The command cfp test.p file1 file2 file3
produces a procedure file containing the following commands:

list file1 >/p2
list file2 >/p2
list file3 >/p2

The following command accomplishes the same thing:

$ cfp "-s=list * >/p2" file1 file2 file3

chd Chapter 1: Utilities

Utilities Reference 51

chd
Changes the Current Data Directory

Refer to chx for details.

Chapter 1: Utilities chm

52 Utilities Reference

chm
Change the Current Module Directory

Refer to chx for details.

chx Chapter 1: Utilities

Utilities Reference 53

chx
Change the Current Execution Directory

Syntax
chd [<path>]
chm [<path>]
chx <path>

chd/chx OS
OS-9; OS-9 for 68K

chm OS
OS-9

Description
These commands are built-in shell commands used to change the
working data directory, working module directory or working execution
directory.

Type chd and the pathlist of the new data directory to change your data
directory.

Type chx and the pathlist of the new execution directory to change your
execution directory.

On OS-9 (non-68K), type chm and the pathlist of the new module
directory to change your primary module directory.

In all cases a full or relative pathlist may be used. Relative pathlists used
by the chd, chm and chx utilities are relative to the current data,
module and execution directory, respectively.

If the HOME environment variable is set, the chd command with no
specified directory changes your data directory to the directory specified
by HOME.

OS-9: If the MDHOME environment variable is set, the chm command
with no specified directory changes your current module directory to the
directory specified by MDHOME.

Chapter 1: Utilities chx

54 Utilities Reference

chm does not search the alternate pathlist for a module directory if the
directory is not found in the current module directory.

Examples
$ chd /d1/PROGRAMS
$ chx ..
$ chx /D0/CMDS; chd /D1
$ chm /usr/tony
$ chm //tony/newproj

These commands do not appear in the CMDS directory as they
are built in to the shell.

chown Chapter 1: Utilities

Utilities Reference 55

chown
Changes the Ownership of a File/Directory

Syntax
chown [<opts>] <group>.<user> {<file>}

OS
OS-9; OS-9 for 68K

Options
-s Does not print details of changes (Silent).

-z Reads file names from standard input.

-z=<file> Reads file names from <file>.

Description
The chown utility changes the owner ID of a file or directory to the
owner ID specified.

Examples
$ chown 1.1 prog.c

Changes the file owner ID to 1.1

You must be a super user to change the ownership of a file.

Chapter 1: Utilities cmp, os9cmp

56 Utilities Reference

cmp, os9cmp
Compares Two Binary Files

Syntax
cmp {<option(s)>} <path1> <path2> OS-9/68K or OS-9
os9cmp {<option(s)>} <path1> <path2> DOS or UNIX

cmp OS
OS-9; OS-9 for 68K

os9cmp OS
WIN; UNIX

Options
-b[=]<size> Assigns <size> k bytes of memory for the cmp

utility to use. The cmp utility uses a 4K
memory by default.

-s Stops the comparison when the first mismatch
occurs and prints an error message (Silent
mode).

-t Prints only the byte totals compared and
different.

-x Searches the current execution directory for
both of the specified files. (cmp only)

Description
The cmp utility opens two files and performs a comparison of the binary
values of the corresponding data bytes of the files. If any differences are
encountered, the file offset (address), the hexadecimal value, and the
ASCII character for each byte display.

The comparison ends when an end-of-file is encountered on either file.
A summary of the number of bytes compared and the number of
differences found is displayed.

Type cmp and the pathlists of the files to compare.

cmp, os9cmp Chapter 1: Utilities

Utilities Reference 57

Examples
The following example uses an 8K buffer to compare file1 with
file2.

$ cmp file1 file2 -b=8
Differences
 (hex) (ascii)
byte #1 #2 #1 #2
======== == == == ==
00000019 72 6e r n
0000001a 73 61 s a
0000001b 74 6c t l
Bytes compared: 0000002d
Bytes different: 00000003
file1 is longer

The following example compares file1 with itself.

$ cmp file1 file1
Bytes compared: 0000002f
Bytes different: 00000000

Chapter 1: Utilities code

58 Utilities Reference

code
Prints the Hex Value of the Input Character

Syntax
code

OS
OS-9; OS-9 for 68K

Description
The code utility prints the input character followed by the hex value of
the input character.

Unprintable characters print as a period (.). The keys specified by
tmode quit and tmode abort terminate code.

tmode quit is normally <control>E, and tmode abort is normally
<control>C.

The most common use of code is to discover the value of an unknown
key on the keyboard or the hex value of an ASCII character.

Examples
$ code
ABORT or QUIT characters will terminate CODE
a -> 61
e -> 65
A -> 41
. -> 10
. -> 04
$

com Chapter 1: Utilities

Utilities Reference 59

com
Communicates With a Remote System

Syntax
com <devicename> [<functionkeyfile>]

OS
OS-9

Description
The com utility allows you to communicate with a remote system using
an RS-232 serial port.

<devicename> is the name of the communications I/O port to be used
during the session. You must give this name or an error message
displays and com aborts.

<functionkeyfile> is the name of a file that specifies up to ten user
defined functions keys that transmits text sequences through com.

You must make sure that the I/O port to be used is properly wired to the
modem or remote computer and is set to the correct baud rate. If you
are connecting two computers using a hard-wired connection, you may
need a null modem device. You can use the com utility to help test
your connections.

The default configuration of your terminal and the I/O port (as given in
device descriptors and displayed by the tmode command) are not
important to com because the configuration is automatically set by the
com utility to the appropriate values.

Upon entering the com utility you should see the following message:

% Com V2.0 Copyright 1986 Microware Systems Corp.
% You are talking to the remote system. (on line);
metachar: ^Z

The % character always begins each com utility generated message.
This differentiates com utility messages from the data received from the
remote computer.

Chapter 1: Utilities com

60 Utilities Reference

At this point, your terminal is directly connected to the communications
port. This is called communications mode. At this time, you should dial
the remote system if you are using a modem. If you are using a hard-
wired connection, or after the modem connection is made, you may
immediately perform any log-in procedure that may be required by the
remote system.

In communications mode, all data sent by the remote computer is
immediately displayed on your terminal. Anything typed on your
keyboard is immediately transmitted to the remote system.
Communications in either direction is done on a character-by-character
basis.

The usual OS-9 keyboard control keys (such as backspace, line delete,
etc.) and your tmode settings (such as echo, auto line feed, screen
pause, etc.) do not work within the com utility. Instead, your terminal
responds only to the control characters supported by the remote system.

All control keys (except the meta-character (<control>-z) and
function keys (see the programmable function keys section below) are
passed directly to the remote computer for processing without
interference by the com utility or OS-9.

Similarly, all data received from the remote system passes directly to
your terminal, except for ASCII null (hex 00) and rubout (hex 7F)
characters, which are disposed of.

This transparency of data transmission eliminates possible conflicts
between terminal control functions of OS-9 and the remote computer
system.

You can enter control mode at any time from communication mode
by typing the meta-character (<control>-z). While you are in control
mode, the data link is kept open. However, it is always wise to halt any
output from the remote system before entering control mode to prevent
possible data loss. Most computers stop output when they receive an
X-OFF character (<control>-s) and resume output when an X-ON
character (<control>-q) is received.

com Chapter 1: Utilities

Utilities Reference 61

A summary of the control mode commands are shown in Table 1-5.
They are followed by a more detailed explanation. These commands
are not case sensitive.

When you enter control mode, the com utility displays the following:

% COM:

At the prompt, you can enter any of the above commands. You can use
the r command at any time to return to communications mode.

If an error occurs in a control mode command, an error message
displays along with the corresponding OS-9 error number.

Table 1-5. Control Mode Commands

Command Specification
c Change directory on host system.
d Download file from remote system.
e Echo on/off. The default is off.
l Lock upper case on/off. The default is off.
m Change meta-char (^z).
p Copy communications to print file.
q Exit to operating system.
r Return to remote system.
t Strip parity from data remote on/off. The default is on.
u Upload to remote system.
x Send XON to remote system, return on-line.
* Automatic download on/off. The default is off.
$ OS9 shell command.
<cr> Display help menu.
. Automatic download quick mode. Default is disabled.

About System Hardware Configuration:

The communications port and your terminal must be interrupt-
driven for the com utility to work, as most OS-9 serial I/O ports
are. In addition, your terminal must be able to operate at a baud
rate equal to or faster than the communications port baud rate.
You may discover a maximum speed at which your OS-9 system
can receive data without “dropped characters” or read errors.
This depends on CPU clock speed, the type of I/O interface, and
the number of active tasks on the system.

Chapter 1: Utilities com

62 Utilities Reference

Change Directory Command
The c command allows you to change your current working directory
on the host system. This is useful when uploading and downloading
files.

Echo On/Off Command
Most computers automatically echo characters from the terminal
keyboard to the display screen. This is referred to as full duplex
operation. Some systems do not echo characters, so the terminal must
echo locally. This is known as half duplex operation. The e command
allows you to turn local echo on or off. The default setting is full duplex
(local echo off). If the remote system responds to your input, but does
not echo keyboard input to the screen, you should switch the com utility
to half duplex (local echo on).

Case Lock Command
The l command alternately turns the upper case lock on and off. When
the case lock is on, all lower case characters received from the remote
system are automatically converted to upper case. Characters sent from
your keyboard are not converted. The default setting is off.

Set Meta-Character Command
The m command allows the meta-character to be changed. The meta-
character returns to command mode when you are in communications
mode. The default meta-character is <control>-z. If it is necessary to
send a <control>-z to the remote system, changing the meta-
character to an unused character allows <control>-z to be
transmitted. Similarly, if you are talking to a third device or system
through a second com link, you will want to change the meta-character
on the first com.

Quit Command
The q command closes any open files and terminates com. You must
log-off the remote system (and hang up the phone line) before using
this command.

com Chapter 1: Utilities

Utilities Reference 63

Strip Parity Command
The t command strips the parity bit on data received from the remote
system. By default, this option is ON.

Send XON and Return to Communications Mode
The x command is identical to the r command, except that an XON
character is sent to the remote system before returning to
communications mode.

OS-9 Shell Command
The $ command can be used to create a shell and return control to the
host system. You may execute a single command by typing $
<command line>. After typing $, the prompt changes to the following:

% Com: $OS9:

By typing $<cr>, you enter the new shell until a subsequent escape
(EOF) key is entered. The escape (EOF) key returns you to the com
utility.

For example:

% Com: $ mfree
Current total free RAM: 4240.00 K-bytes
% Com:

Programmable Function Keys
The com utility has a “programmable function key” feature that allows
up to ten user-defined text sequences to be stored for transmission upon
a simple keyboard command. You can use this feature to eliminate
repetitive typing of common keyboard entries such as user ID logins,
program names, or auto-dial modem phone numbers. This is a
software feature that does not require use of a terminal with special
function keys.

Ten function keys are available. Select them by typing <control>-f
followed by a number key (0-9). For example, the function key number
four is selected by typing:

<control>-F4

Chapter 1: Utilities com

64 Utilities Reference

The text associated with each function key is read from a disk file. You
must specify the file name on the command line when you start the com
utility. For example, if your function key file is called mykeys, start com
like this:

com /t1 mykeys

You can create a personalized text file using a text editor or OS-9’s
build utility. The file contains up to ten text lines. Each line of the file is
used as the string for the associated function key. The first line is
function key 0, the second is function key 1, etc. The maximum size of
this file is 512 characters.

Each line is transmitted exactly as stored in the file with one exception:
a less than character (<) sends a <return> character to the remote
system. This permits you to specify whether or not the transmitted
function key string should be followed by a <return> character or not.
It also allows the transmitted string to be several “lines.”

Below is an example function key file:

dial 202 555 2626<
user12<
mypassword<
basic myprogram<run<
bye<
dir<
dir
chd
list
basic

Because you specify the name of the function key file when you run the
com utility, you can create many different function key files for use with
different systems.

com Chapter 1: Utilities

Utilities Reference 65

Uploading And Downloading Files
An important feature of the com utility is its ability to transfer data
between the remote computer and files on your OS-9 system. The
control mode u and d commands are used for these functions.

“Downloading” refers to copying data from the remote system to a file
on your system. The downloaded data can be a text file, the output of a
program, S-records or any ASCII character data.

“Uploading” refers to copying data from a file on your system to the
remote computer. The data transmitted can be any type of text.
Normally, the data file to be transmitted is created with a text editor or
generated by a program.

The only restriction on uploading and downloading is that the data
must be text. Binary files must be converted to S-record files before
being transmitted, otherwise certain bytes would be mistaken for
control characters.

Downloading Files
The d command downloads files. When this command is input, the com
utility asks you for the name of the file to be created for holding
received data. You can then enter the name of any legal OS-9 file name
(pathlist). If the file already exists, the com utility returns the following
prompt:

% File already exists. Rewrite (y/n)?

If the com utility can open the file without error, it automatically switches
to communications mode and stores all data received from the remote
system on the file. If the communications line is operating in full duplex
mode, the data stored will include any data typed on your keyboard that
was echoed back from the remote system.

To terminate the download, type <control>-z to enter command
mode and enter the d command again. You can now enter another
filename or press ENTER to return to command mode.

Chapter 1: Utilities com

66 Utilities Reference

Below is a sample download session:

% Com: Download filename: stock.prices
online:
run summary
The Dow-Jones average closed up 7-1/2 points today at
1225 in heavy trading, fueled by Wall Street rumors of
a lower third quarter inflation forecast.
<control>-Z
% Com:

Auto-Download
Another way to download files is to use the auto-download option.
Auto-download is toggled on and off with the asterisk (*) command.
The advantage to using auto-download is that the entire transfer can
be done in communications mode instead of switching back to
command mode. This is especially helpful when downloading more
than one file.

After switching to communications mode, an auto-download is started
by the character sequence ~>: (tilde, greater than, colon) followed by
the destination file name. If this file already exists on the host system,
the com utility allows you to overwrite it. Downloading of this file is
terminated by the character sequence ~> (tilde, greater than).

Below is a sample auto-download session (this example assumes the
remote computer is an OS-9 system):

% Com: *
% Com: *** automatic download mode ***
% Com: R
online: echo \7e\3e\3a; echo stock.prices
Downloading file: stock.prices
run summary
The Dow-Jones average closed up 7-1/2 points today at
1225 in heavy trading, fueled by Wall Street rumors of
a lower third quarter inflation forecast.
echo \7e\3e
file closed

If the remote system is an OS-9 system, auto-download procedure may
be “automated” by using a cfp file. For example:

"echo \7E\3E\3A; echo *; list *; echo \7E\3E\0D"

com Chapter 1: Utilities

Utilities Reference 67

Auto-Download Quick Mode
When downloading files, the text being transferred is echoed to your
screen. If the dot (.) command is used, the com utility prints dots to
show the progress of the transfer instead of echoing the text.

Download Data Buffering
When data is being downloaded, the com utility saves the received text
in a 1K memory buffer. When this buffer is full (or when the download is
terminated, if earlier) its contents are written to the disk file.

This buffering and XON-XOFF protocol is critical for OS-9 systems that
have disk controllers that halt the system while accessing the disk.
Otherwise, incoming data could be lost. In order for the com utility to
work properly, the remote computer must recognize the XON-XOFF
protocol.

In the case (worst case) of an OS-9 system that does not recognize
XON-XOFF, with a disk controller that halts the system while talking to
a remote system, the maximum file size that can be reliably
downloaded corresponds to the size of the com buffer.

Systems with disk controllers that halt the CPU should also not run any
other simultaneous task that accesses the disk while the com utility is
running.

Uploading Files
The u command uploads files. After this command is input, the com
utility asks you for the name of the file to be transmitted. You can then
enter any legal OS-9 file name (path list). If the com utility can locate
and open the file without error, it automatically switches to
communications mode and begins sending the contents of the file to
the remote system.

If the communications link is in full duplex mode, you will see the
transmitted data echoed back to your terminal. If you want to abort the
upload, type <control>-z to enter command mode, type the u
command again and type <return> instead of a file name.

Chapter 1: Utilities com

68 Utilities Reference

Below is a example upload session:

% Com: Upload filename: message.to.linc
Dear Lincoln,
I got your message today. I will be visiting you
on June 12th so we can finalize our plans. I’m looking
forward to seeing you then.
Regards,
Steve
<control>-Z
% Com:

If you want the remote computer to save the uploaded file, you must
give the correct command for that system to store a file before starting
the upload. You may also have to give the correct command after the
upload to tell the remote system to close the file. If the remote system
does not have a special upload command, you can often use the
system’s text editor program or merge-type utilities to receive uploaded
files.

You can also use the upload command to send short commonly used
commands to the remote system such as log-on sequences.

compress Chapter 1: Utilities

Utilities Reference 69

compress
Compresses ASCII Files

Syntax
compress [<opts>] {<path>}

OS
OS-9; OS-9 for 68K

Options
-d Deletes the original file. This is inappropriate

when no pathlist is specified on the command
line and standard input is used.

-n Creates an output file.

-z Reads file names from standard input.

-z=<file> Reads file names from <file>.

Description
The compress utility reads the specified text file(s), converts it to
compressed form, and writes the compressed text file to standard
output or to an optional output file.

Type compress and the path of the text file to compress. If files are not
given, standard input is used.

The compress utility replaces multiple occurrences of a character with
a three character coded sequence: aaaaabbbbbcccccccccc would be
replaced with ~Ea~Eb~Jc.

Each compressed input file name is appended with _comp. If a file with
this name already exists, the old file is overwritten with the new file.
Typical files compress about 30% smaller than the original file.

The compress utility reduces the size of a file to save disk space. Refer
to the expand utility for details on how to expand a compressed file.

Only use the compress and expand utilities on text files.

Chapter 1: Utilities compress

70 Utilities Reference

Examples
In the first example, file1 is compressed, file1_comp is created, and
file1 is deleted.

$ compress file1 -dn

In this example, file2 is compressed, file3 is created from the
redirected standard output, and file2 is deleted.

$ compress file2 -d >file3

copy Chapter 1: Utilities

Utilities Reference 71

copy
Copies Data from One File to Another

Syntax
copy [<opts>] <path1> [<path2><dir>]

OS
OS-9; OS-9 for 68K

Options
-a

Aborts the copy routine if a source file error occurs. This option
cancels the continue (y/n) ? prompt of the -w option.

-b[=]<num>
Allocates <num> k bytes of memory for buffering by copy. The
default is 8k.

-c[=][[<host>]<target]
Convert ASCII files from <host> to <target> where:
d = MS-DOS(CRLF)
o = OS-9 or OS-9/68K(CR)
u = UNIX(LF)

Default <host> is ANY and <target> is o.

-f
Rewrites destination files with no write permission.

-n
Does not copy original file descriptor information (attributes, etc.)
to the destination.

-p
Does not print a list of the files copied. This option is only for
copying multiple files.

-r
Overwrites the existing file.

Chapter 1: Utilities copy

72 Utilities Reference

-v
Verifies the integrity of the new file.

-w[=]<dir>
Copies one or more files to <dir>. This option prints the file name
after each successful copy. If an error such as no permission to
copy occurs, the prompt Continue (y/n)? is displayed.

-x
Uses the current execution directory for <path1>.

-z
Reads file names from standard input.

-z=<file>
Reads file names from <file>.

Description
The copy utility copies data from <path1> to <path2>. If <path2>
already exists, the contents of <path1> overwrites the existing file when
the -r option is specified. If <path2> does not exist, it is created.

If files are not given on the command line and the -z option is not
specified, an error is returned.

You can copy any type of file. Copied files are not modified in any way
unless the -c option is specified. The -c option should not be used on
binary files.

The attributes of <path1> are copied exactly.

You must have permission to copy the file.

You must be the owner of the file specified by <path1> or have public
read permission in order to copy the file.

You must also be able to write to the specified directory.

In any case, if the copy procedure is successful, <path2> has your
group.user number unless you are the super user. If you are the super
user, <path2> has the same group.user number as <path1>.

copy Chapter 1: Utilities

Utilities Reference 73

If <path2> is omitted, the destination file has the same name as the
source file. It is copied into the current data directory. Therefore, the
following two copy commands have the same effect:

$ copy /h0/cmds/file1 file1
$ copy /h0/cmds/file1

The copy utility can also copy one or more files to the same directory
by using the -w=<dir> option. The following command copies file1
and file2 into the BACKUP directory:

$ copy file1 file2 -w=BACKUP

If used with wildcards, the -w=<dir> option becomes a selective
dsave. The following command copies all files in the current data
directory that have names ending with .lp into the LP directory:

$ copy *.lp -w=lp

Specification of the -w option for a destination directory name is
optional. If the last path given to the copy command is an already
existing directory name, then the destination directory name will be this
path. For instance, to copy all files in the current directory to /r0, type:

$ copy * /r0

Data is transferred using large block reads and writes until an end-of-
file occurs on the input path. Because block transfers are used, normal
output processing of data does not occur on character-oriented devices
such as terminals, printers, etc. Therefore, the list utility is preferred
over the copy utility when a file consisting of text is sent to a terminal or
printer.

Any error that occurs while creating or writing a destination file aborts
the copy utility.

The copy utility always runs faster if you specify additional memory with
the -b option. This allows the copy utility to transfer data with a
minimum number of I/O requests

Chapter 1: Utilities copy

74 Utilities Reference

Examples
The following example copies file1 to file2. If file2 already exists,
error #218 is returned.

$ copy file1 file2

This example copies file1 to file2 using a 15K buffer.

$ copy file1 file2 -b=15

This example copies all files in the current data directory to MYFILE.

$ copy * -w=MYFILE

This example copies all files in the current data directory that have
names ending in .lp.

$ copy *.lp -w=MYFILE

This example copies /d1/joe and /d0/jim to FILE.

$ copy /d1/joe /d0/jim -w=FILE

This example writes file3 over file4.

$ copy file3 file4 -r

This example copies a set of ASCII files, converting them to several
different line termination styles. In the end, the directories OS9 and
OS9000 will contain identical files.

$ copy OS9/*.c -c=d -w=DOS
$ copy DOS/*.c -c=u -w=UNIX
$ copy UNIX/*.c -c=o -w=OS9000

count Chapter 1: Utilities

Utilities Reference 75

count
Counts Characters, Words, and Lines in File

Syntax
 count [<opts>] {<path>}

OS
OS-9; OS-9 for 68K

Options
-b Counts characters and gives a breakdown of

their occurrence.

-c Counts characters.

-d[=]<number> Divides the count of lines by the specified
number.

-l Counts lines.

-w Counts words.

-z Reads file names from standard input.

-z=<file> Reads file names from <file>.

Description
The count utility counts the number of lines in a file. Options include
character count and word count.

To count the number of lines in a file, enter count and the pathlist of
the file to examine. If a pathlist is not specified, the count utility
examines lines from standard input.

The count utility recognizes the line feed and form feed characters as
line delimiters.

By using -c, the count utility counts the number of characters in a file.

Chapter 1: Utilities count

76 Utilities Reference

By using -w, the count utility counts the number of words in a file. A
word is defined as a sequence of non-blank, non-carriage-return
characters.

By using -l, the number of lines in a file is displayed. A line is defined
by zero or more characters ending in a carriage-return.

Example
$ list file1
first line
second line
third line

$ count -clw file1
"file1" contains 34 characters
"file1" contains 6 words
"file1" contains 3 lines

cudo Chapter 1: Utilities

Utilities Reference 77

cudo
Convert text file EOL characters

Syntax
cudo [<opts>] [<file name>] [<opts>]

OS
OS-9

Options
-c<to>

Convert file from any type to type <to>:

-c<from><to>
Convert file from type <from> to type <to>:
d DOS format
o OS-9 format
u UNIX format

-e
Add a <ctrl Z> to the end of the file

-q
Quiet mode

-r
Remove any <ctrl Z> from the file

-z
Get list of input file names from standard input

-z=<path>
Get list of input file names from <path>

Chapter 1: Utilities cudo

78 Utilities Reference

Description
This utility converts text file end-of-line (EOL) characters to and from
UNIX, DOS, or OS-9 ASCII file formats.

OS-9 has, since its original version for the 6809, considered the ASCII
CR (carriage return) to mark the end of a line, whereas Unix uses the
ASCII LF (line feed) to mark the end of a line and MS-DOS uses the
two-byte sequence CR LF. The cudo utility can be used to convert text
files between the three EOL character formats.

For example, if you intend to edit OS-9 hosted text files from a Windows
machine via NFS, you need to be aware of the difference in OS-9 end-
of-line characters versus that for DOS (vs. that for UNIX). Once a text
file with OS-9 end-of-line formatting has been saved using a Windows
editor, you will more than likely need to use the cudo utility to convert
the EOL characters from the MS-DOS format (CR LF) back to OS-9
(CR).

Examples
$ cudo –cdo readme.txt

Convert file from MS-DOS EOL format to OS-9.

$ cudo –co readme.txt

Convert file with unknown EOL format to OS-9.

date Chapter 1: Utilities

Utilities Reference 79

date
Displays System Date and Time

Syntax
date [<opts>]

OS
OS-9; OS-9 for 68K

Options
-j

Displays the Julian date and time.

-m
Displays the military time (24 hour clock) after the date.

Description
The date utility displays the current system date and system time. The
system date and time are set by the setime utility.

Examples
$ date
December 18, 1994 Tuesday 2:20:20 pm

$ date -m
December 18, 1994 Tuesday 14:20:24

See Also
setime

Chapter 1: Utilities dcheck

80 Utilities Reference

dcheck
Checks Disk File Structure

Syntax
dcheck [<opts>] <devname>

OS
OS-9; OS-9 for 68K

Options
-b[=]<low>[:<high>]

Print file names containing blocks in the given range. (OS-9 only)

-d[[=]<num>]
Prints the path to the directory <num> deep.

-r
Prompts to turn on or off bits in the bit map (Repair mode.)

-y
Does not prompt for repair, but answers yes to all prompts (Repair
mode). This option may only be used with the -r option.

Description
The dcheck utility is a diagnostic tool which detects the condition and
general integrity of the directory/file linkages of a disk device.

Type dcheck, the option(s) desired, and the name of the disk device to
check.

The dcheck utility first verifies and prints some of the vital file structure
parameters. It moves down the tree file system to all directories and files
on the disk. As it moves down the tree file system, the dcheck utility
verifies the integrity of the file descriptor sectors (FDs) and reports any
discrepancies in the directory/file linkages.

From the segment list associated with each file, the dcheck utility builds
a sector allocation map. This map is created in memory.

dcheck Chapter 1: Utilities

Utilities Reference 81

For OS-9 Users:
• Sectors are called blocks.
• Cluster size is one block.

If any FDs describe a segment with a cluster not within the file structure
of the disk, the dcheck utility reports the following message:

OS-9 for 68K:
*** Bad FD segment (xxxxxx-yyyyyy)
OS-9:
*** bad fd segment ($xxxxxxxx-$yyyyyyyy)

This indicates that a segment starting at sector xxxxxx (hexadecimal)
and ending at sector yyyyyy cannot be used on this disk. The entire FD
is probably bad if any of its segment descriptors are bad. Therefore, the
allocation map is not updated for bad FDs.

While building the allocation map, the dcheck utility ensures that each
disk cluster appears only once in the file structure. If a cluster appears
more than once, the dcheck utility displays a message:

OS-9 for 68K:
Sector xxxxxx (byte=nn bit=n) previously allocated
OS-9:
Block $xxxxxxxx previously allocated

For OS-9 for 68K Users:
The above message indicates the cluster at sector xxxxxx has been
found at least once before in the file structure. byte=nn bit=n
specifies in which byte of the bitmap this error occurred and in which bit
in that byte. The first byte in the bitmap is numbered zero. For the
dcheck utility’s purposes, bits are numbered zero through seven; the
most significant bit is numbered zero. The message may be printed
more than once if a cluster appears in a segment in more than one file.

Occasionally, sectors on a disk are marked as allocated even though
they are not associated with a file or the disk’s free space. This is most
commonly caused by media defects discovered by format. These
defective sectors are not included in the free space for the disk. This can
also happen if a disk is removed from a drive while files are still open, or
if a directory containing files is deleted by a means other than deldir.

Chapter 1: Utilities dcheck

82 Utilities Reference

If all the sectors of a cluster are not used in the file system, the dcheck
utility prints a message:

OS-9 for 68K:
xxxxxx cluster only partially used
OS-9:
Block $xxxxxxxx not in file structure

The allocation map created by the dcheck utility is then compared to
the allocation map stored on the disk. Any differences are reported in
messages:

OS-9 for 68K:
Sector xxxxxx (byte=nn bit=n) not in file structure
Sector xxxxxx (byte=nn bit=n) not in bit map
OS-9:
Block $xxxxxxxx not in bitmap

On OS-9 for 68K, the first message indicates sector number xxxxxx
was not found as part of the file system but is marked as allocated in
the disk’s allocation map. In addition to the causes previously
mentioned, some sectors may have been excluded from the allocation
map by the format program because they were defective. They could be
the last sectors of the disk, whose sum is too small to comprise a cluster.

The second message indicates that the cluster starting at sector xxxxxx
is part of the file structure but is not marked as allocated in the disk’s
allocation map. This type of disk error could cause problems later. It is
possible that this cluster may later be allocated to another file. This
would overwrite the current contents of the cluster with data from the
newly allocated file. All current data located in this cluster would be
lost. Any clusters reported as previously allocated by the dcheck utility
have this problem.

Repairing the Bitmap
The dcheck utility can repair two types of disk problems using the -r
option. If a cluster was found in the file structure but not in the bitmap,
the bit may be turned on in the bitmap to include the cluster. If the
cluster was marked in the bitmap but not in the file structure, the bit in
the bitmap may be turned off.

Do not use the -r option unless you thoroughly understand what
you are doing. The disk errors could be caused by previously
mentioned problems and perhaps should not be repaired.

dcheck Chapter 1: Utilities

Utilities Reference 83

Restrictions
1. Only the super user (user 0.n) may use this utility.
2. The dcheck utility should have exclusive access to the disk being

checked. The dcheck utility can be fooled if the disk allocation map
changes while it is building its bitmap file from the changing file
structure.

Example
$ dcheck /r0
Volume - ’Ram Disk (Caution: Volatile)’ on device /r0
$001000 total sectors on media, 256 bytes per sector
Sector $000001 is start of bitmap
$0200 bytes in allocation map, 1 sector(s) per cluster
Sector $000003 is start of root dir
Building allocation map...
$0003 sectors used for id sector and allocation map
Checking allocation map...

’Ram Disk (Caution: Volatile)’ file structure is intact
5 directories, 60 files
580096 of 1048576 bytes (0.55 of 1.00 meg) used on media

Chapter 1: Utilities debug

84 Utilities Reference

debug
Debugs and Tests 68000 Machine Language Programs

Syntax
debug [<opts> <prog> <prog opts>]

OS
OS-9

Options
-m=<n> Increases memory size for program.

Description
The debug utility debugs and tests user-state 68000 machine language
programs written for the OS-9 for 68000 operating system.

The debug utility uses:

• Software techniques to control a process to debug.
• The F$DFork and F$DExec system calls to create and execute the

process to debug. These system calls provide an environment that
allows the debugger to control how a process executes without
affecting other processes on the system.
Full access to the 68000 user-mode registers is provided. On
68020/68881-based systems, full access to user-mode 68020
registers and all 68881 floating point registers are provided.

For more information about the debug utility, refer to Chapter 2.

deiniz Chapter 1: Utilities

Utilities Reference 85

deiniz
Detaches Device

Syntax
deiniz [<opts>] {<modname>}

OS
OS-9; OS-9 for 68K

Options
-z

Reads the module names from standard input.

-z=<file>
Reads the module names from <file>.

Description
The deiniz utility removes the device from the system device table. In
addition, the deiniz utility uses the I$Detach (OS-9 for 68K) or
I_Detach (OS-9) system call to accomplish this.

Type deiniz, followed by the name of the module(s) to detach.

<modname> may begin with a slash (/). The module names may be
read from standard input or from a specified pathlist if the -z option is
used.

Do not use the deiniz utility to detach a module unless you have
explicitly initialized it. If you use the deiniz utility to detach a device
that you have not initialized, you could cause problems for other users
who may be using the module.

Chapter 1: Utilities deiniz

86 Utilities Reference

See Also
I$Detach OS-9 Technical Manual
I_Detach OS-9000 Technical Manual
iniz

Example
$ deiniz t1 t2 t3

del, os9del Chapter 1: Utilities

Utilities Reference 87

del, os9del
Deletes a File

Syntax
del [<opts>] {<path>} OS-9 or OS-9/68K
os9del [<opts>] {<path>} DOS or UNIX

del OS
OS-9; OS-9 for 68K

os9del OS
WIN; UNIX

Options
-d

Deletes hard link to directories. (OS-9 only)

-e
Erases the disk space that the file occupied.

-f
Deletes files with no write permission.

-p
Prompts for each file to be deleted with the following prompt:
delete <filename> ? (y,n,a,q)
y = yes.
n = no.
a = deletes all specified files without further
prompts.
q = quits the deleting process.

-q
Quiet mode. Suppress File Not Found error messages.

-x
Looks for the file in the current execution directory. (del only)

Chapter 1: Utilities del, os9del

88 Utilities Reference

-z
Reads the file names from standard input.

-z=<file>
Reads the file names from <file>.

-@<path>
Reads the file names from <file>. (os9del only)

Description
The del utility deletes the files specified by the pathlists.

You must have write permission for the files to be deleted. You cannot
delete directory files with the del utility unless their attribute is changed
to non-directory.

Examples
These examples use the following directory structure:

$ dir
 Directory of /D1 14:29:46
junk myfile newfile number_five old_test_program
test_program
$ del newfile

Delete newfile.
$ del *_*Delete all files in the current data directory
with an underscore character in their name

After executing the preceding two examples, the directory has the
following files:

$ dir
Directory of /D1 14:30:37
junk myfile

To delete all files in the current directory, type:

$ dir -u ! del -z

To delete a file that starts with a dash, type:

$ del ./-foo

del, os9del Chapter 1: Utilities

Utilities Reference 89

See Also
attr
deldir

Chapter 1: Utilities deldir

90 Utilities Reference

deldir
Deletes All Files in Directory

Syntax
deldir [<opts>] {<path>}

OS
OS-9; OS-9 for 68K

Options
-e

Erases the disk space that files in the directory occupied.

-f
Deletes files regardless of whether write permission is set.

-l
Check for hard links to directories.
When -l is used, each directory is checked for other hard directory
links. If other hard links are detected, the directory contents will
not be deleted or will search for other directories to delete. If no
hard links are detected, the contents are deleted.
Failure to use -l in the presense of hard links leads to the removal
of directory contents, though (empty) directories will be left on the
disk.

-q
Quiet mode. No questions are asked. The directory and its sub-
directories are all deleted, if possible.

-x
Deletes directories relative to the execution directory.

-z
Reads the directory names from standard input.

-z=<file>
Reads the directory names from <file>.

deldir Chapter 1: Utilities

Utilities Reference 91

Description
The deldir utility deletes a directory and the files (and subdirectories)
it contains.

When the deldir utility is run, it prints a prompt message:

$ deldir OLDFILES
Deleting directory: OLDFILES
Delete, List, or Quit (d, l, or q) ?

After listing the files, the deldir utility prompts with:

delete ? (y,n)

The directory to be deleted may include directory files, which may
themselves include directory files. In this case, the deldir utility
operates recursively (that is, lower-level directories are also deleted).
The lower-level directories are processed first.

You must have the correct access permission to delete all files and
directories encountered. If not, the deldir utility aborts when it
encounters the first file for which you do not have write permission.

The deldir utility automatically calls dir and attr, so they must
reside in the current execution directory. When the deldir utility calls
dir, it executes a dir -ea command to show all files contained in the
directory.

Table 1-6. Prompt Response

Response Action
d Initiate the process to delete the files.
l Cause dir -e to run so you can have an opportunity

to see the files in the directory before they are deleted.
q Abort the command before action is taken.

Do not delete the current data directory (.).

Chapter 1: Utilities delmdir

92 Utilities Reference

delmdir
Deletes Existing Module Directories

Syntax
delmdir [<opts>] {<module directory>}

OS
OS-9

Options
-z Reads the module directory names from

standard input.

-z=<file> Reads the module directory names from
<file>.

Description
The delmdir utility deletes existing module directories.

The module directory to delete may contain both modules and module
sub-directories. These sub-directories may contain sub-directories, or
modules, etc. The delmdir utility recursively deletes all sub-directories
when the parent directory is deleted.

The delmdir utility does not delete the module directory if there are
modules located in the directory which are in use or if any of the sub-
directories are in use.

The delmdir utility does not search the alternate module directories if
the directory to be deleted is not located in the current module
directory.

You must have the appropriate access permissions to a module
directory in order to delete it.

See Also
makdir
chm
mdir

delmdir Chapter 1: Utilities

Utilities Reference 93

Example
$ mdir USR
 Module Directory of USR
proram1 program2 program3
$ delmdir USR
$ mdir USR
$

Chapter 1: Utilities devs

94 Utilities Reference

devs
Displays System’s Device Table

Syntax
devs

OS
OS-9; OS-9 for 68K

Options
-a

Lists extended information about each device. (OS-9 only)

Description
The devs utility displays a list of the system’s device table.

The device table contains an entry for each active device known. The
devs utility does not display information for non-initialized devices.

Under OS-9 for 68K, the devs display header lists the system name,
the operating system version, and the maximum number of devices
allowed in the device table.

Under OS-9, the devs display header lists the system hardware
architecture, operating system version, and the CPU class.

Each line in the devs utility’s display contains five fields:

Table 1-7. devs Display Fields

OS-9 for 68K OS-9 Description
Device Device Name of the device descriptor.
Driver Driver Name of the device driver.
File Mgr File Mgr Name of the file manager.
Data Ptr Address of the device driver’s static

storage.

devs Chapter 1: Utilities

Utilities Reference 95

Example
The following example displays the OS-9 device table for a system
named Tazz:

$ devs
Tazz_VME147 OS-9/68K V3.0.3 (128 devices max)

 Device Driver File Mgr Data Ptr Links
---------- ---------- ---------- --------- ------
term sc8x30 scf $007fda40 7
h0 rbsccs rbf $007fcbe0 31175
d0 rb320 rbf $007e94a0 1
dd rbsccs rbf $007fcbe0 23
t10 sc335 scf $006d3a70 5
t11 sc335 scf $006d3850 5
t12 sc335 scf $006d3630 5
t13 sc335 scf $006d3410 5
t20 sc335 scf $006d31f0 5
t21 sc335 scf $006d2fd0 5
t22 sc335 scf $006d2db0 5
t23 sc335 scf $006d2b90 5
5803 rb320 rbf $007e94a0 20
3803 rb320 rbf $007e94a0 1
mt2 sbgiga sbf $006d9640 1
n0 n9026 nfm $006d63a0 372
nil null scf $006d6340 10
socket sockdvr sockman $006c0500 4
lo0 ifloop ifman $006c0380 4

Links Device use count. Each time a user
executes a chd to an RBF device, the use
count of that device increments one.
Therefore, the Links field may be
artificially high.

DrvStat Location of device driver’s static storage.
FMStat File manager static storage.
LUStat Logical unit static storage.
Users User count

Table 1-7. devs Display Fields (Continued)

OS-9 for 68K OS-9 Description

Chapter 1: Utilities devs

96 Utilities Reference

le0 am7990 ifman $006bed60 1
pipe null pipeman $0068ecc0 3
pk pkdvr pkman $0048dc90 1
pkm00 pkdvr pkman $00427b50 1
3807 rb320 rbf $007e94a0 12
pcd0 rb320 pcf $007e94a0 3
pks00 pkdvr scf $004279b0 2

See Also
iniz
deiniz

dir Chapter 1: Utilities

Utilities Reference 97

dir
Displays Names of Files in Directory

Syntax
dir [<opts>] {<path>}

OS
OS-9; OS-9 for 68K

Options
-a

Displays all file names in the directory. This includes file names
beginning with a period.

-b
Does not display block address in extended listing (OS-9 only)

-d
Appends a slash (/) to all directory names listed. This does not
affect the actual name of the directory.

-e
Displays an extended directory listing.

-e=<opt>
Displays an extended directory listing. (OS-9 only)† opt = c, a,
m, u, and b
a = last access time
b = last backup time
c = creation time
m = last modified time (default)
u = last update time

-f
Displays the file link count in extended listing (OS-9000 only).

-h
Displays the file host number in extended listing (OS-9 only).

Chapter 1: Utilities dir

98 Utilities Reference

-i
Inverts the order of sorted listings (OS-9 only).

-n
Displays directory names without displaying the file names they
contain. This option is especially useful with wildcards.

-o
Does not display file owner in extended listing (OS-9000 only).

-r
Recursively displays the directories. †

-r=<num>
Displays the directories recursively up to the <num> level below the
current directory. †

-s
Displays an unsorted listing. †

-t
Sorts on file date and time instead of name. (OS-9000 only).

-u
Displays an unformatted listing. †

-x
Displays the current execution directory. †

-z
Reads the directory names from standard input.

-z=<file>
Reads the directory names from <file>.

† This does not include file names beginning with a period.

dir Chapter 1: Utilities

Utilities Reference 99

Description
The dir utility displays a formatted list of file names of the specified
directory file on standard output.

Type dir and the directory pathlist, if desired.

If parameters are not specified, the current data directory is shown. If
you use the -x option, the current execution directory is shown. If a
pathlist of a directory file is specified, the files of the indicated directory
are shown.

Using the -e options, you can create your own listing, showing specific
items as needed. Valid <opt> values are: c, a, m, u, or b.

$dir -e=a Displays time last append occurred.

$dir -e=b Displays time of last backup.

$dir -e=c Displays creation time.

$dir -e=m Displays time last modified.

$dir -e=u Displays time of last update.

Because the shell does not interpret the -x option, wildcards do not
work as expected when you use this option.

Unless you use the -a option, the dir utility does not display file names
that begin with a period (.).

Unformatted Directory Listing
You can print an unformatted directory listing using the -u option. This
displays only the names of the entries of a directory. No directory
header is displayed. Entries are printed as follows:

$ dir -u
DIR1
file1
file2
file3

You can send the output of a dir -u command through a pipe to
another utility or program that can use a pipe. For example:

$ dir -u ! attr -z

Chapter 1: Utilities dir

100 Utilities Reference

The above command displays the attributes of every entry in the current
directory.

You can use the -e option to display an extended directory listing
without the header by adding the -u option.

Examples
The first example displays the current data directory:

$ dir
Directory of . 12:12:54
BK BKII RELS ed10.c ed11.c
ed2.c

In the second example, the parent of the working data directory is
displayed:

$ dir ..

This example displays the NEWSTUFF directory:

$ dir NEWSTUFF

The next example displays the entire description of the current data
directory:

dir -e
 Directory of . 13:54:44
 Owner Last modified Attributes Sector Bytecount Name
------- ------------- ---------- ------ --------- ----
 1.78 90/11/28 0357 d-ewrewr 383C8 160 NOTES
 1.78 90/11/28 0357 d-ewrewr 383E8 608 PROGRAMS
 1.78 90/11/28 0357 d-ewrewr 383D8 160 TEXT
 1.78 90/11/14 0841 ------wr F4058 438 arrayex.c
 1.78 90/11/12 0859 ------wr F4068 538 arrayex.r
 1.78 90/11/09 0852 ------wr F2AB0 312 asciiinfo
 0.0 90/04/27 1719 ----r-wr 71EC8 4626 atari.doc
 1.78 90/11/14 0911 ------wr B4548 636 bobble.c
 1.78 90/11/14 0910 ------wr B4AA8 815 bobble.r
 1.78 90/10/18 1259 ------wr BD418 619 cd.order
 1.78 90/06/06 1009 ---wr-wr 82B8 5420 cdichanges
 1.78 90/11/28 1102 ------wr E0C68 1478 checks.c
 1.78 90/11/28 1102 ------wr E1D08 1075 checks.r
 1.78 90/09/07 0848 ------wr 708B8 274 datafile
 0.78 90/04/12 1206 ---wr-wr 70EE8 1065 drvr.a
 1.78 90/11/13 1544 ------wr B1650 112 exloop

dir Chapter 1: Utilities

Utilities Reference 101

To display the execution directory, type:

$ dir -x

To display the entire description of the execution directory, type:

$ dir -xe

To display the contents of the current directory and all directories one
level below this directory, type:

$ dir -r=1

The next example displays the entire description of all files within the
current directory. This includes files within all subdirectories of the
current directory.

$ dir -er

This example displays all directory and file names that begin with B.

$ dir -n B*

To display all named pipes for device /pipe, type:

$ dir /pipe

Chapter 1: Utilities diskcache

102 Utilities Reference

diskcache
Enables, Disables, or Displays Status of Cache

OS-9 for 68K Syntax
diskcache [<opts>] [<dev>]

OS-9 Syntax
diskcache [<opts>] {<devname>[=<num>k]}

OS
OS-9; OS-9 for 68K

Options
-c

Disables CRC checking of cached sectors. (OS-9 for 68K)

-d
Disables cache for <dev>.

-e
Enables cache for <dev>.

-i
Disables statistical information. (OS-9 for 68K)

-l
Display the cache status for <dev>. (OS-9 for 68K)

-t=<size>
Specifies the size limit of the total cache. (OS-9 for 68K)

-s
Prints cache status information for the specified device. (OS-9)

diskcache Chapter 1: Utilities

Utilities Reference 103

Description
The diskcache utility enables, disables, or displays the status of
cache. Caching may be enabled for any type of RBF device, and more
than one device may be cached at a time.

OS-9 for 68K Systems: Use the -t option to set the total amount of
system memory used for caching all enabled drives. If not explicitly
defined, diskcache automatically selects a reasonable value based on
the amount of free system memory.

OS-9 Systems: The following command enables caching on the hard
disk (/h0) with an 800k cache: diskcache -e /h0=800k

Use the -e and -d options to dynamically enable or disable caching on a
per drive basis while the system is running.

Statistical information regarding the hit/miss ratios and amount of
memory allocated can be inspected on a drive by drive basis using the -
l /(device) OS-9 for 68K option, or -s /(device) OS-9 option.

An example output of this information follows.

Current size = 1047552
 Size limit = 1048576
crc enabled, stats enabled

Device: /h0:1:1
 Requests Sectors Hits Zaps >2 Xfr Hit Rate
 Reads: 47592 55436 21874 143 662 39.5%
 Writes: 7723 8065 7342 68
 Dir Reads: 54048 54048 34526 18387<-Sctr Zero 63.9%
Hit compares = 63399 (1/hit)
Miss compates = 92685 (3/miss)

The Device: /h0:1:1 line of information uses the following syntax:
[[<dev>[<bias>:<rebias>]]. Where <bias> is the bias when last
used, and <rebias> is the bias when last reused. The hit (miss)
compares show total number of hits or misses, and average number of
compares in cache before each hit or miss).

If caching is to be enabled on drives with different sector sizes, include
the device with the largest sector size in the initial cache enabling.

Attempting to add a drive (with a sector size larger than any currently
cached drive) to the cache system after initial cache startup results in
continuous “misses” for that drive, as the sector size is too large.

Chapter 1: Utilities dosfile

104 Utilities Reference

dosfile
Converts DOS Text to OS-9 and Vise Versa

Syntax
dosfile [<opts>] [<file_name>] [<opts>]

OS
OS-9

Options
-d

Converts OS-9 text file to DOS format.

-r
Rewrites the target file if it exists.

-b[=]<size>
Use buffer of <size> kilobytes.

Description
The dosfile utility converts DOS text tiles to OS-9 format or OS-9 text
files to DOS format.

Similar functionality is also implemented in the copy command for both
OS-9 for 68K and OS-9. This utility may be removed in a future release.

dpsplit Chapter 1: Utilities

Utilities Reference 105

dpsplit
Splits/Rejoins the DPIO descriptor

Syntax
dpsplit [<opts>] <desc> [<opts>]

OS
OS-9; OS-9 for 68K; WIN; UNIX

Options
-j

Joins <desc>.1 and <desc>.2 into <desc>.

-s
Splits <desc> into <desc>.1 and <desc>.2.

Description
The dpsplit utility was designed to make development of the DPIO
descriptors for the OS-9/68000 operating system easier. Because the
editmod utility cannot handle a fully constructed DPIO descriptor, the
descriptor must be split to be edited or listed.

Use the dpsplit utility to split the DPIO descriptor, and the editmod
utility to edit or list the split components, then the dpsplit utility again,
to rejoin the descriptor.

When creating a DPIO descriptor, the editmod utility can be used to
create both components and the dpsplit utility can be used to join the
components.

Example
dpsplit -s nv0 Creates nv0.1 and nv0.2

editmod -l nv0.1 List contents of the wrapper module

<<< listing not shown >>>

dpsplit -j nv0 Join nv0.1 and nv0.2 back to nv0

Chapter 1: Utilities dsave

106 Utilities Reference

dsave
Generates Procedure File to Copy Files

Syntax
dsave [<opts>] [<path>]

OS
OS-9; OS-9 for 68K

Options
-a

Does not copy any file that has a name beginning with a period.

-b[=]<n>
Allocates <n> k bytes of memory for copy and chm if needed.

-c[=][[<host>]<target]
Convert ASCII files from <host> to <target> where:
d = MS-DOS(CRLF)
o = OS-9 or OS-9/68K(CR)
u = UNIX(LF)

Default <host> is ANY and <target> is o.

-d
Compares dates with files of the same name and copies files with
more recent dates.

-d=<date>
Compares the specified date with the date of files with the same
name and copies any file with a more recent date than that
specified. See format for <date> above.

-e
Executes the output immediately.

-f
Uses copy’s -f option to force the writing of files.

dsave Chapter 1: Utilities

Utilities Reference 107

-i
Indents for directory levels.

-l
Does not save directories below the current level.

-m
Does not include makdir commands in the procedure file.

-n
Does not load copy (cmp, os9cmp if -v is specified).

-o
Uses os9gen (OS-9 for 68K), bootgen (OS-9), to create a bootfile
on the specified destination device if a bootfile exists on the source
device. The default name used for the bootfile is OS9Boot (OS-9
for 68K), SysBoot (OS-9). This option creates a bootable disk.
Merely copying OS9Boot or SysBoot to a new disk does not make
it bootable.

-o=<name>
Uses os9gen (OS-9 for 68K), bootgen (OS-9), to create a bootfile
on a new device, using the specified name. This option creates a
bootable disk. Merely copying OS9Boot or SysBoot to a new disk
does not make it bootable.

-r
Write any source file over a file with the same name in the
destination directory. This is the same as using the copy utility with
the -r option.

-s
Skip files on error. This turns off the prompt to continue the dsave
routine when an error occurs.

-t
Do not issue tmode commands.

-v
Verify files with the cmp, os9cmp utility.

Chapter 1: Utilities dsave

108 Utilities Reference

Description
The dsave utility backs up or copies all files in one or more directories.
It generates a procedure file, which is either executed later to actually
do the work or is executed immediately using the -e option.

Type dsave and the path of the new directory. The dsave utility writes
commands on standard output to copy files from the current data
directory to the directory specified by <path>. If <path> is not
specified, the copies are directed to the current data directory when the
procedure file is executed.

You should direct the dsave utility's standard output to a procedure file
that you can later execute or use the -e option to execute the dsave
utility’s output immediately.

If the dsave utility encounters a directory file, it automatically includes
the makdir and chd commands in the output before generating copy
commands for files in the subdirectory. The procedure file duplicates all
levels of the file system connected downward from the current data
directory.

If the current working directory is the disk’s root directory, the dsave
utility creates a procedure file to backup the entire disk, file by file. This
is useful when you need to copy many files from different format disks,
or from a floppy disk to a hard disk.

If an error occurs, the dsave utility displays the following prompt:

continue (y,n,a,q)?

Enter one of the following responses:

If for any reason you do not wish to be bothered by this prompt, use the
-s option. This skips any file which cannot be copied and continues the
dsave utility with no prompt.

Table 1-8. Responses

Response Description
y Continue. Ignore the error.
n Do not continue. Save work to this point.
a Copy all possible files. Skip all files where an error

occurs. Do not display the error or prompt.
q Quit the dsave procedure.

dsave Chapter 1: Utilities

Utilities Reference 109

The dsave utility helps keep up-to-date directory backups. When you
use the -d or -d=<date> options, the dsave utility compares the date
of the file to copy with a file of the same name in the directory it is to be
copied to.

• -d copies any file with a more recent date.
• -d=<date> copies a file with a date more recent than that specified.

The format for the date is as follows:

<year> <delimiter> <month> <delimiter> <day> where:

<year> is any two digit whole number from 00 to 99

<delimiter> colon (:), semicolon (;), slash (/), comma
(,), or space ()

<month> 1 to 12

<day> 1 to 31

A common error occurs when using the dsave utility if the destination
directory has files with the same name as the source directory. Because
a file name must be unique within a directory, this produces an error.
Use the -r option to prevent this error.

Examples
The first three examples accomplish the same goal: copying all files in
/d0/MYFILES/STUFF to /d1/BACKUP/STUFF. Each example highlights
a different method of using the dsave utility.

In the first example, no path is specified in the dsave command and a
procedure file is generated. Therefore, you must change data
directories before executing the procedure file. If the directory is not
changed, an error message occurs:

#218--file already exists in this directory under the same name.

$ chd /d0/MYFILES/STUFF Selects the directory to copy.

$ dsave >/d0/makecopy Makes the procedure file makecopy.

$ chd /d1/BACKUP/STUFF Select the destination directory for makecopy.

$ /d0/makecopy Runs makecopy.

Chapter 1: Utilities dsave

110 Utilities Reference

The second example uses the /d1/BACKUP/STUFF path in the dsave
command. You do not need to change directories before executing the
procedure file. This example also allocates 32K of memory for the copy
procedure, which saves time.

$ chd /d0/MYFILES/STUFF
$ dsave -ib=32 /d1/BACKUP/STUFF >saver
$ saver

The third example is like the second, but without a procedure file.

$ chd /d0/MYFILES/STUFF
$ dsave -ieb32 /d1/BACKUP/STUFF

In the following example, dir -e shows the creation dates of the files.
This shows the -d option of the dsave utility.

$ dir -e WORKFILES BACKUP
 Directory of WORKFILES 14:10:03
 Owner Last modified Attributes Sector Bytecount Name
------- ------------- ---------- ------ --------- ----
 30.110 95/05/02 1358 ------wr 1201FC 38 program.c
 30.110 94/05/12 1617 ------wr 10AE0 1 prog.2

 Directory of BACKUP 14:10:03
 Owner Last modified Attributes Sector Bytecount Name
------- ------------- ---------- ------ --------- ----
 30.110 94/12/20 0947 ------wr C0378 38 program.c
 30.110 94/05/12 1617 ------wr C0370 1 prog.2

$ chd WORKFILES
$ dsave -deb32 ../BACKUP
$ cd ..

$ dir -es WORKFILES BACKUP

 Directory of WORKFILES 14:12:23
 Owner Last modified Attributes Sector Bytecount Name
------- ------------- ---------- ------ --------- ----
 30.110 95/05/02 1358 ------wr 1201FC 38 program.c
 30.110 94/05/12 1617 ------wr 10AE0 1 prog.2

 Directory of BACKUP 14:12:22
 Owner Last modified Attributes Sector Bytecount Name
------- ------------- ---------- ------ --------- ----
 30.110 95/05/02 1358 ------wr 14025C 38 program.c
 30.110 94/05/12 1617 ------wr C0370 1 prog.2

Here, only prog2 is copied because the data in WORKFILE is current.

dump, os9dump Chapter 1: Utilities

Utilities Reference 111

dump, os9dump
Displays Formatted Dump

Syntax
dump {<option(s)>} [<path> [<starting offset>]]
os9dump {<option(s)>} [<path> [<starting offset>]]

dump OS
OS-9; OS-9 for 68K

os9dump OS
WIN; UNIX

Options
-a

Interpret path as memory range of either: <start>[-end] or
<start>[:size].

-c
Does not compress duplicate lines.

-k
Displays shift-JIS Kanji code in the ASCII format area.

-m
Dumps from a memory resident module.

-s
Interprets the starting offset as a sector number. This is useful for
RBF devices with a sector size not equal to 256.

-x
Indicates that <path> is an execution directory. You must have
execute permission for the pathlist.

Chapter 1: Utilities dump, os9dump

112 Utilities Reference

Description
The dump utility produces a formatted display of the physical data
contents of <path>. <path> may be a mass storage file or any other
I/O device. The dump utility is commonly used to examine the contents
of non-text files.

Type dump and the pathlist of the file to display. A starting address
within a file may also be specified.

If <path> is omitted, the dump utility uses standard input. The output is
written to standard output.

When <starting offset> is specified, the contents of the file are
displayed starting with the appropriate address. <addr> is must be a
hexadecimal number.

The data is displayed 16 bytes per line in both hexadecimal and ASCII
character format. Data bytes that have non-displayable values are
represented by periods.

The addresses shown in the dump are relative to the load addresses of
the memory modules.

Examples
$ dump Display keyboard input in hex.

$ dump myfile >/P Dump myfile to printer.

$ dump shortfile Dump shortfile.

Sample Output
Starting Data bytes in hexadecimal format Data bytes in ASCII
format
Address
Addr 0 1 2 3 4 5 6 7 8 9 A B C D E F 0 2 4 6 8 A C E
-------- ---- ---- ---- ---- ---- ---- ---- ---- ----------------
00000000 6d61 696e 2829 0d7b 0d09 696e 7420 783b main().{..int x;
00000010 0d09 0d09 6765 745f 7465 726d 5f64 6566get_term_def
00000020 7328 293b 0d09 783d 6d65 6e75 2829 3b0d s();..x=menu();.

echo Chapter 1: Utilities

Utilities Reference 113

echo
Echoes Text to Output Path

Syntax
echo [<opts>] {<text>}

OS
OS-9; OS-9 for 68K

Options
-n

Separates the text with carriage returns.

-r
Does not send a carriage return after <text>.

-z
Reads the text from standard input.

-z=<file>
Reads the text from <file>.

Description
The echo utility echoes its parameter to the standard output path.

The echo utility is used to generate messages in shell procedure files or
to send an initialization character sequence to a terminal.

Type echo and the text to output. The echo utility reads the text until a
carriage return is encountered. The input then echoes on the output
path.

You can embed a hexadecimal number representing a character in a
character string, but you must precede it with a backslash (\). The shell
removes all but one embedded space from character strings passed to
the echo utility. Therefore, to allow for more than one blank between
characters, you must enclose the string with double quotes. A single
backslash (\) is echoed by entering two backslashes (\\).

Chapter 1: Utilities echo

114 Utilities Reference

Do not include any of the punctuation characters used by the shell in
the text unless you enclose the string with double quotes.

Examples
$ echo "Here is an important message!"

Here is an important message!

$ echo \1b >/p1 Send an <escape> character to a printer
(/p1).

$ echo column1 column2 column3

column1 column2 column3

$ echo "column1 column2 column3"

column1 column2 column3

editmod Chapter 1: Utilities

Utilities Reference 115

editmod
Creates, Displays, and Edits Modules

Syntax
editmod [<opts>] [<module>] [<opts>]

OS
OS-9; OS-9 for 68K; WIN; UNIX

Options
-a[=]<dir>

Specifies an alternative MWOS directory structure.

-b
Enables verbose debugging messages. Multiple -b options
increase the amount of output. For example: editmod -bbb -c
test shows very verbose debugging messages while the module
test is being created.

-c
Creates a module.

-d[=]<name>[[=]<value>]
Defines name for the pre-processor. If the optional value is not
supplied, the empty string is name's value.

-e
Edits the contents of a module.

-f[=]file
Specifies the file which contains the named module. If the module
being edited or listed is contained in a larger file, use this option.
The OS-9 for 68K boot file is an example of this situation. To edit
the init module within the boot file, the following command line
is used:

editmod -f=OS9Boot init -e
The edited module’s size is not constrained by the size of the
module prior to editing module.

Chapter 1: Utilities editmod

116 Utilities Reference

-h[=]<struct>
Emits the symbol <struct> as a C structure (or macro, see -m)
to standard output or to the pathlist specified with -o. Multiple -h
options may be used on a single command line. This option is
most commonly used to generate a header file that is included by
the device driver.

-i[=]<file>
Specifies a non-interactive edit file name (used in conjunction with
-e). The file specified is read after all other description files.
Generally, the file contains init blocks as well as symbol
redefinitions. These items are processed and the modified module
is written to the file.

-l
Lists the contents of a module.

-m[=]<name>=<struct>
Emits the symbol struct as a C pre-processor macro called name
to standard output or to the pathlist specified with -o. Only a
single -m may be used on a command line. This option generates
a header file that is included by the device driver.

-nc[=]<file>
Overrides the initial file read in creation mode. Normally,
systype.des is read when -c is used. This option allows you to
specify a different file name. For example, to read testfile.des
instead of systype.des:
editmod -nc=testfile.des -c -dTEST testmod

-nd[=]<name>
Renames the driver for a descriptor module. If the descriptor being
edited has the same format as a sc8042 module, but uses a driver
with a different name, use this option. For example:
editmod -nd=<name> newterm

editmod Chapter 1: Utilities

Utilities Reference 117

-nf[=]<name>
Renames the file manager for a descriptor module. When editing a
descriptor module such as the term module, the names of the file
manager and driver are used to determine what description files to
read. If the descriptor being edited has the same format as a
sc8042 module, but uses a file manager with a different name,
use this option. For example:
editmod -nf=<name> newterm

-nm[=]<name>
Renames the module. When editing a data or system module such
as the init module, the module name determines what
description file to read. If the module being edited has the same
format as the init module but is named differently, use this
option. For example:
editmod -nm=init newinit

-o[=]<file>
Overrides the output file name when a module is being edited.
This option allows you to edit one descriptor but write the edited
version to a different file. This option cannot be used when -f is
used.

-p
Prints the pre-processed version of the description files that
editmod reads. This can be useful when developing the
description files to examine what is actually being seen by
editmod in the presence of conditional code.

-q[=]<name>[[=]<qvalue>]
Define name (with optional qvalue) for pre-processor qvalue will
replace with double-quotes on either end.

-t?
Displays target OS and CPU options.

Chapter 1: Utilities editmod

118 Utilities Reference

-to[=]<name>
Specifies the target operating system for the generated module.

-tp[=]<name>
Specifies the target processor for the generated module. Refer to
the output of -t? for information about valid target processors.

-v[=]<dir>
Adds a directory to the list of directories searched for include files.

-z
Reads command line arguments from standard input.

-z[=]<file>
Reads command line arguments from <file>.

Description
The editmod utility creates, displays, and edits modules. It has the
following attributes:

• Comprehensive — Use the editmod utility for all aspects of module
maintenance: creation, examination, and modification. The
editmod utility supports these actions on device descriptors, system
modules, and data modules. You can use it in conjunction with the
os9make utility to create modules non-interactively. It is not
necessary to use the moded utility, compilers, assemblers, and
linkers.

• Host/Target independent — The editmod utility may be used on any
host platform to manipulate modules for any target platform.

• Stand-alone — With the exception of supporting description files,
the editmod utility does not require any other resources to
manipulate modules.

• Extensible — End-Users can write the supporting files necessary for
the editmod utility to understand modules of their own creation.

name Target Operating System
osk OS-9 for 68K
os9000, os9k OS-9

For more information about the editmod utility, refer to
Chapter 3.

editmod Chapter 1: Utilities

Utilities Reference 119

• Unconstrained — The editmod utility does not limit module
modifications based on previous module contents. This includes
support for variable length lists such as the colored memory list in
the init module. In addition, a module within a boot file may be
modified to any length.

• User interface — The editmod utility allows entry of C expressions
with additional operand types for hexadecimal constants, binary
constants, internet addresses, and ethernet addresses.

Examples
To edit the cnfgdata module, first set your MWOS environment variable,
then type:

editmod -e cnfgdata -dc_all

Chapter 1: Utilities edt

120 Utilities Reference

edt
Line-Oriented Text Editor

Syntax
edt [<opts>] <path>

OS
OS-9; OS-9 for 68K

Options
cc

Exist, a buffer of the indicated size is assigned for the new file.

Description
The edt utility is a line-oriented text editor that allows you to create and
edit source files.

Type edt and the pathlist desired. If the file is new or cannot be found,
the edt utility creates and opens it. The edt utility then displays a
question mark prompt (?) and waits for a command. If the file is found,
the edt utility opens it, displays the last line, and then displays the ?
prompt.

The first character of a line must be a space if text is to be inserted. If
any other character is typed in the first character position, the edt
utility tries to process the character as an edt command. The edt utility
command format is very similar to BASIC’s editor.

The edt utility determines the size of the file to edit and uses the
returned size plus 2K as the edit buffer. If the file does not already exist,
the edit buffer is initialized to 2K. When the end of the edit buffer is
reached, a message is displayed.

edt Chapter 1: Utilities

Utilities Reference 121

edt Commands
All edt commands begin in the first character position of a line.

For the following search and replace commands, <delim> may be any
character. The asterisk (*) option indicates that all occurrences of the
pattern are searched for and replaced if specified.

Search command: searches for the occurrences of a pattern. For
example:

s[*]<delim><search string><delim>

s/and/ Finds the first occurrence of and.

s*,Bob, Finds all occurrences of Bob.

Replace command: finds and replaces a given string. For example:

c[*]<delim><search string><delim><replace string><delim>

c/Tuesday/Wednesday/
Replaces the first occurrence of Tuesday with Wednesday.

c*"employee"employees"
Replaces all occurrences of employee with employees.

Table 1-9. edt Commands

Command Description
<num> Moves the cursor to line number <num>.
<esc> Closes the file and exits. q also does this.
<cr> Moves the cursor down one line (carriage return).
+[<num>] Moves the cursor down <num> lines. Default is one.
-[<num>] Moves the cursor up <num> lines. Default is one.
<space> Inserts lines.
c Change string in current line.
d[<num>] Deletes <num> lines. If <num> is not specified, the

default value of <num> is one.
l[<num>] Lists <num> lines. <num> may be positive or negative.

The default value of <num> is one.
l* Lists all lines in the entire file.
q Quits the editing session. Command returns to the

program that called the editor or the shell.
s Searches for occurrences of a pattern.

Chapter 1: Utilities events

122 Utilities Reference

events
Displays Active System Events

OS-9 for 68K Syntax
events

OS-9 Syntax
events [<opts>]

OS
OS-9; OS-9 for 68K

Options
-h

Displays the event values in hexadecimal format.

-k[=]name
Kills the event.

Description
The events utility displays a list of the active events on the system and
information about each event. The events utility header line lists the
system name and the version number.

Each line in the events utility display contains the following fields:

Table 1-10. events Fields

OS-9 for
68K

OS-9 Description

event ID Event ID Event ID number.
name Name Name of the event.

Owner Owner of the event. (OS-9 only)
Perm Event’s permission field. For example,

0333 represents an event with all permissions
set. Permissions are left to right: reserved,
public, group, owner. (OS-9 only)

events Chapter 1: Utilities

Utilities Reference 123

You cannot delete an event unless the link count is zero.

If there are no active events currently on the system, the events utility
displays the message “No active events.”

Example
The following example displays the active system events for an OS-9 for
68K system named Calvin:

Calvin OS-9/68K V3.0
event ID name value W-inc S-inc links
--------- ------------ ---------- ------ ------ ------
 10000 evtfffe4000 1 -1 1 1
 20001 irqfffe4000 0 -1 1 1
 30002 SysMbuf 121952 0 0 1
 40003 net_input 0 -1 -1 1
 50004 Sur00227750 0 0 0 1
 60005 Str002261f0 0 0 0 1
 70006 Stw002261f0 0 0 0 1
 80007 Str00227380 0 0 0 1
 90008 Stw00227380 0 0 0 1
 a0009 Str00232a50 0 0 0 1
 b000a Stw00232a50 0 0 0 1
 c000b Str0020ac30 0 0 0 1
 d000c Stw0020ac30 0 0 0 1
 e000d pkm00i 0 0 0 1
 f000e pkm00o 0 0 0 1
 10000f teln.1 0 -1 -1 1
 130012 Str0020adf0 0 0 0 1
 140013 Stw0020adf0 0 0 0 1

value Value Current contents of the event variable
W-inc W-inc Wait increment. Assigned when the event is

created and does not change.
S-inc S-inc Signal increment. Assigned when the event is

created and does not change.
links Links Event use count. When the event is created,

links is assigned value one. It increments
each time a process links to the event.

Table 1-10. events Fields (Continued)

OS-9 for
68K

OS-9 Description

Chapter 1: Utilities events

124 Utilities Reference

See Also
F$Event service request OS-9 for 68K Technical Manual.
F_Event system call OS-9 Technical Manual.

ex Chapter 1: Utilities

Utilities Reference 125

ex
Chains to a Program

Syntax
ex <path> [<arglist>]

OS
OS-9; OS-9 for 68K

Description
The ex utility is a built-in shell command that causes the shell to chain
to another program. It permits a transition from the shell to another
program without creating another process, thus conserving system
memory.

The ex utility is used when the shell is called from another program to
execute a specific program, after which the shell is not needed. For
example, applications which use only BASIC need not waste memory
space on shell.

The ex utility should always be the last command on a shell input line
because any command lines following it are never processed.

Because this is a built in shell command, it does not appear in the CMDS
directory.

Example
$ ex BASIC
$ echo "Starting tsmon" ; ex tsmon /t1 /t2 /term

Chapter 1: Utilities exbin

126 Utilities Reference

exbin
Converts S-Record to Binary

Syntax
exbin {<option(s)>} [<inpath>[<outpath>]]

OS
OS-9; OS-9 for 68K

Options
-b[=]<num>[k]

Specifies the conversion buffer size in bytes to use. The k
sub-option converts <num> to k bytes.

Description
The exbin utility converts S-record files to binary.

S-record files are a type of text file containing records that represent
binary data in hexadecimal form. This Motorola-standard format is
often used by commercial PROM programmers, emulators, logic
analyzers, and similar devices that use the RS-232 interface. It can be
useful for transmitting files over data links that can only handle
character type data. It can also be used for converting assembler or
compiler generated programs to load on non-OS-9/OS-9for 68K
systems.

<inpath> is assumed to be an S-Record format text file which the
exbin utility converts to pure binary form in a new file, <outpath>.
The load addresses of each data record must describe contiguous data
in ascending order.

The exbin utility does not generate or check for the proper module
headers or CRC check value required to actually load the binary file.
You can use ident to check the validity of the modules if they are to be
loaded or run. The exbin utility converts any of the S-record types
mentioned above.

Standard input and output are assumed if both paths are omitted. If the
second path is omitted, standard output is assumed.

exbin Chapter 1: Utilities

Utilities Reference 127

Examples
The following example generates CMDS/prog in binary format from the
S1 type file, prog.S1.

$ exbin prog.S1 cmds/prog

See Also
binex

Chapter 1: Utilities expand

128 Utilities Reference

expand
Expands Compressed File

Syntax
expand [<opts>] {<path>}

OS
OS-9; OS-9 for 68K

Options
-d

Deletes the old version of the file. This option should not be used
when a pathlist is not specified on the command line and standard
input is used.

-n
Sends output to a file instead of the standard output. The file has
_exp appended to it, unless the file name already has a _comp
suffix. In this case, the _comp is removed.

-z
Reads the file names from standard input.

-z=<file>
Reads the file names from <file>.

Description
The expand utility restores compressed files to their original form. It is
the complement command of the compress utility.

Type expand and the name of the file to expand.

If file names are not given on the command line, standard input is
assumed.

expand Chapter 1: Utilities

Utilities Reference 129

Examples
$ expand data.a -nd

Expands and then delete data.a, creating data.a_exp.

$ expand file1_comp
Expands file1_comp and displays output on standard output.

$ expand -nd file2_compfile2_comp
Expanded and then deleted, creating file2 with the expanded
output.

Chapter 1: Utilities fdisk

130 Utilities Reference

fdisk
Displays/Alters the Partition Table

Syntax
fdisk [<opts>]

OS
OS-9

Options
-a[=]<num>

Makes partition <num> the active partition.

-d[=]<dev>
Examines/changes device. Default = /hc.

-c
Forces terminal mode (curses off).

-e
Includes partition information in display mode.

-i
Initialize the partition table to zero.

-s
Shows partition table.

fdisk Chapter 1: Utilities

Utilities Reference 131

Description
Although OS-9 may be used without disk partitions of any kind, the use
of partitions is strongly recommended, even if only one partition is used.

There are several reasons for using partitions with OS-9.

Hard Disk Booting
Without partitions, you must boot from floppy disk.

Multiple Operating Systems
When disk partitioning is employed, other operating systems may
share the same physical disk.

OS-9 is compatible with most Boot Managers, including OS-2 Boot
Manager and Linux LILO. If a boot manager is not used, OS-9 includes
an IPL (Initial Program Loader) which prompts you for information on
where to boot from.

Partition Information
The OS-9 partition for x86 is defined as a primary partition type 0x9.

OS-9 for the Power PC includes extended type41 and 0x41. The RBF
file system only understands these two type partitions.

The fdisk utility allows a maximum of four primary partitions to be
created.

The fdisk utility also allows extended partitions to be converted to
OS-9 primary partitions.

You may have to use extended partitions for other operating systems
such as DOS, OS/2 and WINDOWS.

Further, with OS-9 “PCF” DOS extended partitions and logical drives
may be accessed.

When converting extended partitions to OS-9, all data on the
extended partition is deleted. This includes any logical partitions
associated with the extended partition.

Do NOT place OS-9 on a logical drive partition.

Chapter 1: Utilities fdisk

132 Utilities Reference

To create or delete a partition, you must enter fdisk in the interactive
mode:

fdisk -d=/hcfmt

or

fdisk -d=/hcfmt -e

The following options display:

1. Create OS-9000 partition
2. Set Active Partition
3. Delete partition
4. Display partition information
5. Change extended DOS partition to OS-9000 partition
6. Write master boot record (MBR)

Create OS-9 Partition (1)
This option allows the creation of OS-9 partitions. When partitions are
created, you are prompted for the size of the partition in terms of
cylinders.

Cylinder size is not in megabytes. Although, some cylinders may be 1
MEG in size. Enter the number of cylinders to allocate for the partition,
not the number of bytes.

Set Active Partition (2)
This option allows you to specify which partition is bootable. If DOS is
set as the active partition, and the system is reset, then DOS loads. To
allow OS-9 to boot, you would have to use the DOS version of fdisk to
set the OS-9 partition to active.

If a boot manager is used, then set the Boot Manager as active.

Delete Partition (3)
Use the delete option with care. Extended partitions may include any
logical drives associated with them.

fdisk Chapter 1: Utilities

Utilities Reference 133

Display Partition Information (4)
This option displays the partition tables. If the -e option is used from
the command line, additional information about the partition tables
displays.

The extended/additional information includes:

st
Start-flag (if 80 drive is startable)

s_head
Start head (byte)

s_cyl_blk
Start Cylinder block (word)

type
Partition type (word)

e_head
End head (byte)

e_cyl_blk
End cylinder block (word)

s_blk
Start block (LBA) (long-word)

size
Size of block (LBA) (long-word)
{end}s_blk + size

Change Extended DOS Partition to OS-9 Partition (5)
This option converts an extended partition to an OS-9 partition. Use this
option with care. Extended partitions may include logical drives.

Chapter 1: Utilities fdisk

134 Utilities Reference

Write Master Boot Record (MBR) (6)
This option writes the master boot record to disk. The master boot
record is required to boot IDE and SCSI devices on x86 platforms.

If the disk is newly formatted or does not appear to boot, this option
may correct the problem.

Examples
To modify the partition table for SCSI disk ID 1, type:

fdisk -d=/hs1fmt

To find out the partition information of a drive, type:

fdisk -d=/hs1fmt -s

See Also
pinfo

fixmod Chapter 1: Utilities

Utilities Reference 135

fixmod
Fixes Module CRC and Parity

Syntax
fixmod {<option(s)>} {<modname>}

OS
OS-9; OS-9 for 68K; WIN; UNIX

Options
-d[=<path>]

Locates and dumps all modules in file to separate files (in either
the current directory or the specified path).

-f
Forces dump of module even if destination filename already exists.

-j[=<pathname>]
Skips junk (invalid module data) and continue locating modules in
the specified file.

-l[=]<name>
Specify module on which to operate.

-q
Quiet mode. Does not display status as files are updated.

-r
Changes the revision number only.

-u
Updates an invalid module CRC or parity.

-ua[=]<att.rev>
Changes module’s attribute/revision level.

-ub
Fixes the sys/rev field in BASIC packed subroutine modules.

Chapter 1: Utilities fixmod

136 Utilities Reference

-ue[=]<sysedit>
Changes module’s edition to <sysedit>.

-ug
Updates the corresponding STB module with the new CRC of the
module being modified.

-un[=]<name>
Changes the name stored in the module header. This option can
only be used on files that contain a single module.

-uo=<grp>.<usr>
Sets the module owner’s group.user number to <g>.<u>. Only the
super user is allowed to use this option.

-up=<perm>
Sets the module access permissions to <perm>. <perm> must be
specified in hexadecimal.

-us[=]<size>[k]
Sets the module required stack size to the specified value. The ‘k’
sub-option converts <size> to k bytes.

-x
Looks for the module in the execution directory. (OS-9, OS-9 for
68K only)

-z
Reads the module names from standard input.

-z=<file>
Reads the module names from <file>.

Description
The fixmod utility verifies and updates module parity and module CRC
(cyclic redundancy check). You can also use the fixmod utility to set the
access permissions and the group.user number of the owner of the
module. The fixmod utility can process OS-9 for 68K, OS-9/80386,
and OS-9/PowerPC modules, regardless of the host operating system.

fixmod Chapter 1: Utilities

Utilities Reference 137

Use the fixmod utility to update the CRC and parity of a module every
time a module is patched or modified in any way. OS-9 and OS-9 for
68K cannot recognize a module with an incorrect CRC.

You must have write access to the file in order to use the fixmod utility
on it.

Use the -u option to recalculate and update the CRC and parity.
Without -u, the fixmod utility only verifies the CRC and parity of the
module.

The -up=<perm> option sets the module access permissions to
<perm>. <perm> must be specified in hexadecimal. You must be the
owner of the module or a super user to set the access permissions.

The permission field of the module header is divided into four sections
from right to left:

owner permissions
group permissions
public permissions
reserved for future use

Each of these sections are divided into four fields from right to left:

read attribute
write attribute
execute attribute
reserved for future use

The entire module access permissions field is given as a three-digit
hexadecimal value. For example, the command fixmod -up=555
specifies the following module access permissions field:

-----e-r-e-r-e-r

The -uo<grp>.<usr> option allows the super user to change the
ownership of a module by setting the module owner’s group.user
number.

Examples
$ fixmod dt Checks parity and CRC for module dt.

$ fixmod dt -u Checks parity and CRC for module dt and
updates them if necessary.

Chapter 1: Utilities fixmod

138 Utilities Reference

The following example changes the name stored in the module header:

$ chd /h0/CMDS

$ copy dir ls

$ fixmod -u -n=ls ls

Module: dir - Fixing header parity - Fixing module CRC

See Also
CRC and parity OS-9 for 68K Technical Manual

OS-9 Technical Manual
ident

format Chapter 1: Utilities

Utilities Reference 139

format
Initializes Disk Media

Syntax
format [<opts>] <devname>

OS
OS-9; OS-9 for 68K

Options
-bo=<num>

Sets the block offset to <num>. (OS-9)

-c
Uses the interactive mode. (OS-9)

-c=<num>
Specify the number of sectors per cluster. <num> must be decimal
and must be a power of 2. The default is 1. (OS-9)

-dd
Initializes a double-density (floppy) disk.

-ds
Initializes a double-sided (floppy) disk.

-e
Displays elapsed verify time. This is useful for checking the sector
interleave values. (OS-9 for 68K)

-h=<num>
Sets the number of heads to <num>. (OS-9)

-i=<num>
Specifies the number for sector interleave offset value. <num> is
decimal.

-m=<num>
Sets the bitmap address to <num>. (OS-9)

Chapter 1: Utilities format

140 Utilities Reference

-nf
Specifies no fast verify mode. (OS-9 for 68K)

-np
Specifies no physical format.

-nv
Specifies no physical verification.

-o
Performs interleave optimization. (OS-9)

-r
Inhibits the ready prompt. This option is ignored if the device is a
non-partitioned hard disk under OS-9 for 68K or any hard disk
under OS-9.

-sd
Initializes a single-density (floppy) disk.

-ss
Initializes a single-sided (floppy) disk.

-s=<num>
Uses a spiral skew of <num>. (OS-9)

-t=<num>
Specifies the number of cylinders given in decimal.

-to=<num>
Sets the track offset to <num>. (OS-9)

-v=<name>
Specifies the volume name. This name can be 32 characters
maximum. If the name contains blanks, enclose the option and
name with quotation marks. For example, "-v=Name of disk".

format Chapter 1: Utilities

Utilities Reference 141

Description
The format utility physically initializes, verifies, and establishes an
initial file structure on a disk. You must format all disks before using
them on an OS-9 or OS-9 for 68K system.

Type format, the name of the device to format, and any options. The
format utility determines whether the device is:

• Autosize (for example, devices such as SCSI CCS drives).
• Non-autosize (such as standard floppy disks and many hard disks).

An autosize device is one which can be queried to determine the
capacity of the device.

The format utility checks a bit in PD_Ctrl to determine whether or not
a device is autosize. If this bit is zero, the device is non-autosize. If one,
the media is autosize.

Format on Non-Autosize Devices
If the format utility determines that your device is non-autosize, the
format utility reads a description of the disk from the device descriptor
module. The values in the descriptor determine the default values for
the number of sides (single or double), number of tracks, sector size,
and density. At this time, the default cluster size is set at one.

The format utility determines the media capacity by multiplying
together the number of:

• Cylinders (PD_CYL).
• Tracks (PD_TKS).
• Sectors per track (PD_SCT, PD_T0S).

Because the format utility calculates the device capacity using this
formula, you can use the -t=<num> and -ss/-ds options to affect the
capacity of the device.

Chapter 1: Utilities format

142 Utilities Reference

On OS-9 for 68K, the following information is displayed before
formatting begins:

 Disk Formatter
OS-9/68K V2.4 Delta MVME147 - 68030
------------ Format Data ------------
Fixed values:
 Physical floppy size: 5 1/4"
 (Universal Format)
 Sector size: 256
 Sectors/track: 16
 Track zero sect/trk: 16
 Sector offset: 1
 Track offset: 1
 LSN offset: $000000
Total physical cylinders: 80
 Minimum sect allocation: 8
Variables:
 Recording format: MFM all tracks
 Track density in TPI: 96
Number of log. cylinders: 79
 Number of surfaces: 2
Sector interleave offset: 1
Formatting device: /d0
proceed?

You can change the values in the variables section when formatting
floppy disks by using command line options or by answering n to the
prompt. The format utility asks for any required options not given on
the command line.

When formatting hard disks, answering n to the prompt returns control
to the shell. You can change hard disk parameters only by command
line options or by changing the device descriptor.

You can only change the values in the Fixed values section by
altering the device descriptor module of the specific unit.

format Chapter 1: Utilities

Utilities Reference 143

Format on Autosize Devices
If the format utility determines that the device has the autosize feature,
the format utility performs an SS_DSize SetStat call to the drive to
request the capacity of the device. The driver then queries the actual
drive. The value returned to the format utility is the capacity of the
device. Because the format utility performs no calculations when
determining the capacity, the -t and -ss/-ds options do not affect the
capacity of the device.

The following information is displayed before formatting commences:

 Disk Formatter
OS-9/68K V2.4 Delta MVME147 - 68030
------------ Format Data ------------
Fixed values:
 Disk type: hard
 Sector size: 512
 Disk capacity: 208936 sectors
 (106975232 bytes)
 Sector offset: 0
 Track offset: 0
 LSN offset: $000000
 Minimum sect allocation: 8
Variables:
Sector interleave offset: 1
Formatting device: /h1
proceed?

When formatting hard disks, answering n to the prompt returns control
to the shell. You can only change the sector interleave offset. The
format utility cannot change the other values.

You can only change the values in the Fixed values section by
altering the device descriptor module of the specific unit.

Chapter 1: Utilities format

144 Utilities Reference

Continuing the Format Procedure
The formatting process works as follows:

1. The disk surface is physically initialized and sectored.
2. Each sector is read back and verified. If the sector fails to verify after

several attempts, the offending sector is excluded from the initial
free space on the disk. As the verification is performed, track
numbers are displayed on the standard output device for non-
autosize devices; logical sector numbers are displayed for autosize
devices.

3. The disk allocation map, root directory, and identification sector are
written to the first few sectors of track zero. These sectors cannot be
defective.

The format utility uses a “fast verify” mode. This means that the
format utility reads a minimum of 32 sectors. If the cluster size is
greater than 32 sectors, one cluster’s worth of sectors is read.

• If the cluster size is less than 32 sectors, 32 sectors are read.
• If you want the format utility to use the cluster size regardless of the

number of sectors per cluster, you must use the -nf option. For
example, if your cluster size has one sector, 32 sectors are read by
default, while only one sector would be read if you specify -nf.

You must run os9gen or bootgen to create the bootstrap after the disk
has been formatted if you use the disk as a system disk.

Examples
$ format /D1 -dsdd -v="database" -t=77
$ format /D1 -sssd -r

free Chapter 1: Utilities

Utilities Reference 145

free
Displays Free Space Remaining on Mass-Storage Device

Syntax
free [<opts>] {<devname>}

OS
OS-9; OS-9 for 68K

Options
-b[=]<num> Uses the specified buffer size in k bytes.

-le Creates big-endian file system.

-be Creates little-endian file system

Description
The free utility displays the number of unused sectors on a device
available for new files or for expanding existing files.

The free utility also displays the disk’s name, creation date, cluster
size, and largest free block in bytes.

For OS-9 Users:

• Sectors are called blocks.
• Cluster size is one block. (Cluster information is not used in OS-9).

Type free followed by the name of the device to examine. The device
name must be the name of a mass-storage, multi-file device.

Data sectors are allocated in groups called clusters. The number of
sectors per cluster depends on the storage capacity and physical
characteristics of the specific device.

For example, a given disk system uses eight sectors per cluster. A free
command shows the disk has 32 sectors free. Because disk space is
allocated in clusters, a maximum of four new files could be created
even if each had only one sector.

Chapter 1: Utilities free

146 Utilities Reference

OS-9 Example
$ free /r0

“Ram Disk” created on: Sat Nov 23 18:59:04 1996
Capacity: 32768 blocks, 8.000 Mbytes
Free: 32725 blocks, 7.989 Mbytes
Largest Free Block: 32725 blocks, 7.989 Mbytes

For RAM disk size of 8MEG use the following
Blocks/track = 8192*4 = 32768
Size of block in bytes = 256

Total size (Blocks/track*BlockSize) = 8388608 (8MEG)

OS-9 for 68K Example
$ free

“Tazz: /H0 Wren V” created on: Oct 6, 1990
Capacity: 2347860 sectors (256-byte sectors, 8-sector
clusters)
1508424 free sectors, largest block 1380120 sectors
386156544 of 601052160 bytes (368.26 of 573.20 Mb) free
on media (64%)
353310720 bytes (336.94 Mb) in largest free block

frestore Chapter 1: Utilities

Utilities Reference 147

frestore
Restores Directory from Backup

Syntax
frestore [<opts>] [<path>]

OS
OS-9; OS-9 for 68K

Options
-a

Forces access permission for overwriting an existing file. You must
be the owner of the file or a super user (0.n) to use this option.
(OS-9 for 68K)

-a[=]<number>
Consider media to begin after <number> tape marks. (OS-9)

-b[=]<int>
Specifies the buffer size in k bytes used to restore the files.

-c
Checks the validity of files without the interactive shell.

-d[=]<path>
Specifies the source device. The default source device is /mt0.

-e
Displays the pathlists of all files in the index as the index is read
from the source device.

-f[=]<path>
Restores from a file.

Chapter 1: Utilities frestore

148 Utilities Reference

-i
Displays the backup name, creation date, group.user number of
the owner of the backup, volume number of the disk or tape, and
whether the index is on the volume. This option does not restore
any files. The information is displayed, and frestore is
terminated.

-j[=]<int>
Sets the minimum system memory request in k bytes. (OS-9 for
68K)

-p
Suppresses the prompt for the first volume.

-q
Overwrites already existing files when used with the -s option.

-s
Forces frestore to restore all files from the source device without
an interactive shell.

-t[=]<dirpath>
Specifies an alternate location for the temporary index file.

-v
Displays the backup name, creation date, group.user number of
the owner of the backup, and volume number of the disk or tape.
This option does not restore any files. The information is displayed,
and frestore is terminated.

-x[=]<int>
Pre-extends a temporary file. <int> is specified in kilobytes.

-z[=]<path>
Adds pathlists <path> to restoration list. Pathlists start from root of
tape directory. (OS-9 for 68K)

OS-9 for 68K Users: -j allows you to specify the size of the dynamic
memory requests made by the frestore utility. As the frestore utility
builds its index structure in memory, it requests additional memory from
the system as needed. Since the number of requests allowed is limited,
increasing the minimum request size may be needed on systems with
very large backups or with fragmented free memory.

frestore Chapter 1: Utilities

Utilities Reference 149

Description
The frestore utility restores a directory structure from multiple
volumes of tape or disk media. Typing frestore by itself on the
command line attempts to restore a directory structure from the device
/mt0 to the current directory.

Specifying the pathlist of a directory on the command line causes the
files to be restored in the specified directory. The fsave utility creates
the directory structure and an index of the directory structure.

If more than one tape/disk is involved in the fdisk utility backup, each
tape/disk is considered a different volume. The volume count begins at
one (1). When you begin an frestore operation, you must use the last
volume of the backup first. The last volume of the backup contains the
index of the entire backup.

The frestore utility first attempts to locate and read in the index of
the directory structure from the source device. The device you are
restoring from is the source device. It then begins an interactive session
with you to determine which files and directories in the backup should
be restored to the current directory.

The -s option forces the frestore utility to restore all files/directories
of the backup from the source device without the interactive shell.

The -d option allows you to specify a source device other than /mt0.

The -v option causes the frestore utility to identify the name and
volume number of the backup mounted on the source device. It also
displays the date the backup was made and the group.user number of
the person who made the backup. This option does not restore any
files. After displaying the appropriate information, the frestore utility
terminates. This is helpful for locating the last volume of the backup if a
mix-up has occurred.

The -i option duplicates the -v option and also checks to see if the
index is on the volume being checked.

The -e option echoes each file pathlist as the index is read off the
source device.

The frestore utility cannot restore a file that requires more than four
disks. If the backup index requires more than a single volume, the
frestore utility fails with a header block corrupt error.

Chapter 1: Utilities frestore

150 Utilities Reference

Examples
The following command restores files and directories from the source
device /mt0 to the current directory by way of an interactive shell.

$ frestore

The next command restores files and directories from the source device
/d0 to the current directory using a 32K buffer. As each file is read
from the index, the file’s pathlist is echoed to the terminal.

$ frestore -eb=32 -d=/d0

The next command restores all files/directories found on the source
device /mt1 to the directory BACKUP without using the interactive shell.

$ frestore -d=/mt1 -s BACKUP

The following command displays the backup and the volume number:

$ frestore -v
Backup: DOCUMENTATION
Made: 11/30/90 10:10
By: 0.0
Volume: 0

This command does not restore the backup.

fsave Chapter 1: Utilities

Utilities Reference 151

fsave
Incremental Directory Backup

Syntax
fsave [<opts>] [<dir>]

OS
OS-9; OS-9 for 68K

Options
-a

Appends backup data to data already existing on tape. (OS-9)

-b[=]<int>
Allocate a <int> k byte buffer to read files from source disk.

-d[=]<dev>
Specifies the target device to store the backup. The default target
device is /mt0.

-e
Does not echo the file pathlist as it is saved to the target device.

-f[=]<path>
Saves to a file.

-g[=]<int>
Specifies a backup of files owned by group number <int> only.

-i
Provides information about backup: the amount of time it took to
perform the backup and the number of kilobytes per second.
(OS-9)

-j[=]<num>
Sets the minimum system memory request in k bytes. (OS-9 for
68K)

Chapter 1: Utilities fsave

152 Utilities Reference

 -l[=]<int>
Specifies the level of backup to be performed.

-m[=]<path>
Specifies the pathlist of the date backup log file to be used. The
default is /h0/sys/backup_dates.

-p
Turns off the mount volume prompt for the first volume.

-s
Displays the pathlists of all files needing to be saved and the size of
the entire backup without actually executing the backup
procedure.

-t[=]<dirpath>
Specifies an alternate location for the temporary index file.

-u[=]<int>
Specifies a backup of files owned by user number <int> only.

-v
Does not verify the disk volume when mounted.

-x[=]<int>
Pre-extends the temporary file. <int> is specified in kilobytes.

OS-9 for 68K Users: -j allows you to specify the size of the dynamic
memory requests made by the fsave utility. As the fsave utility builds
its index structure in memory, it requests additional memory from the
system as needed. Since the number of requests allowed is limited,
increasing the minimum request size may be needed on systems with
very large backups or with fragmented free memory.

Description
The fsave utility performs an incremental backup of a directory
structure to tape(s) or disk(s).

Typing fsave by itself on the command line makes a level 0 backup of
the current directory onto the target device /mt0.

fsave Chapter 1: Utilities

Utilities Reference 153

Use the -l option to specify different backup levels. A higher level
backup only saves files changed since the most recent backup with the
next lower number. For example, a level 1 backup saves all files
changed since the last level 0 backup.

The backup log file, /h0/sys/backup_dates, is updated each time
an fsave command is executed. The backup log keeps track of the
name of the backup and the date it was created. More importantly, it
keeps track of the level of the backup.

When the fsave utility is executed, this backup log is examined for the
specified level of the current backup and the previous backups with the
same name. Once the backup is finished, a new entry is entered in the
file indicating the date, name, and level of the current backup. The
fsave utility does not accept a device name as a directory. For
example, if fsave /h0 is entered, error #216 is returned.

Prior to performing the first backup, a log file named backup_dates
must be created and must be completely blank (no end of file marks,
etc.). To create this blank file, type the following:

 touch /h0/sys/backup_dates

The fsave Procedure
When you start an fsave procedure, the fsave utility first builds the
directory structure. You are then prompted to mount the first volume to
use:

fsave: please mount volume.
(press return when mounted).

If you use a disk as the backup medium, the fsave utility verifies the
disk and displays the following information:

verifying disk

The numbers above are used as an example. If you use a tape as the
backup medium, the backup begins at this point.

As each file is saved to the backup device, its pathlist is echoed to the
terminal. If this is a long backup, use the -e option to turn off the
echoing of pathlists.

If the fsave utility receives an error when trying to backup a file, it
displays a message and continues the fsave operation.

Chapter 1: Utilities fsave

154 Utilities Reference

If the backup requires more than one volume, the fsave utility prompts
you to mount the next volume before continuing.

At the end of the backup, the fsave utility prints the following
information:

fsave: Saving the index structure

Logical backup name:
Date of backup:
Backup made by:
Data bytes written:
Number of files:
Number of volumes:
Index is on volume:

By specifying one or more directories on the command line, the fsave
utility performs recursive backups for each specified pathlist. You can
specify a maximum of 32 directories on the command line.

Use the -d option to specify an alternative target device. The default
device is /mt0.

Use the -m option to specify an alternative backup log file. The default
pathlist is /h0/sys/backup_dates.

Any data on the disk before using the fsave utility is destroyed by the
backup.

When using disks for backup purposes, be aware that the fsave
utility does not use an RBF file structure to save the files on the
target disk. It creates its own file structure. This makes the
backup disk unusable for purposes other than the fsave and
frestore utilities without reformatting.

For a full description of the fsave, frestore, and tape utilities,
refer to Making Backups in Using OS-9 or Using OS-9 for 68K.
The information includes work through examples and backup
strategies for disk and tape.

fsave Chapter 1: Utilities

Utilities Reference 155

Examples
The following command specifies a level 0 backup of the current
directory. It assumes the device /mt0 is to be used.
/h0/SYS/backup_dates is used as the backup log file.

$ fsave

This command specifies a level 2 backup of the current directory. The
device /mt1 is used. /h0/misc/my_dates is used as the backup log
file.

$ fsave -l=2 -d=/mt1 -m=/h0/misc/my_dates

The next command specifies a level 0 backup of all files owned by the
super user in the CMDS directory, assuming CMDS is in your current
directory. /d2 is the target device used for this backup. The backup log
file used is /h0/sys/backup_dates. The mount volume prompt is not
generated for the first volume, and a 32K buffer reads the files from the
CMDS directory.

$ fsave -pb=32 -g=0 -u=0 -d=/d2 CMDS

Chapter 1: Utilities grep

156 Utilities Reference

grep
Searches File for Pattern

Syntax
grep [<opts>] [<expression>] {[<path>]}

OS
OS-9; OS-9 for 68K

Options
-c

Counts the number of matching lines.

-e=<expr>
Searches for <expr>. This is the same as <expression> in the
command line.

-f=<path>
Reads the list of expressions from <path>.

-g
Formats output similar to UNIX grep.

-i
Searches for text, insensitive to upper/lower case.

-l
Prints only the names of the files with matching lines.

-m=<num>
Prints specified number of lines from each matched occurrence.

-n
Prints the relative line number within the file followed by the
matched expression.

-s
Does not display matching lines. Silent Mode.

grep Chapter 1: Utilities

Utilities Reference 157

-v
Prints all lines except for those that match.

-z
Reads the file names from standard input.

-z=<path>
Reads the file names from <path>.

You cannot use -l and -n at the same time, nor can you use -n and -s
at the same time. You cannot use -f when information to grep is read
from STDIN.

Description
The grep utility searches the input pathlists for lines matching
<expression>.

Type grep, the expression to search for, and the pathlist of the file to
search. If the <path> is not specified, the grep utility searches
standard input.

If the grep utility finds a line that matches <expression>, the line is
written to the standard output with an optional line number of where it
is located within the file. When multiple files are searched, the output
has the name of the file preceding the occurrence of the matched
expression.

Chapter 1: Utilities grep

158 Utilities Reference

Expressions
An <expression> specifies a set of characters. A string which is a
member of this set is said to match the expression. To facilitate the
creation of expressions, some metacharacters are defined to create
complex sets of characters.

Table 1-11. Expression Special Characters

Character Specification
. ANY. The period (.) is defined to match any ASCII

character except new line.
~ BOL or NEGATE. The tilde (~) is defined to modify a

character class as described above when located between
square brackets ([]). At the beginning of an entire
expression, it requires the expression to compare and
match the string at only the beginning of the line.

The NEGATE character modifies the character class so it
matches any ASCII character not in the given class or
newline.

[] CHARACTER CLASS. The square brackets ([]) define a
group of characters which match any single character in
the compare string. The grep utility recognizes certain
abbreviations to aid the entry of ranges of strings:

[a-z] Equivalent to the string
abcdefghijklmnopqrstuvwxyz

[m-pa-f] Equivalent to the string mnopabcdef

[0-7] Equivalent to the string 01234567
* CLOSURE. The asterisk (*) modifies the preceding single

character expression, so it matches zero or more
occurrences of the single character. If a choice is
available, the longest such group is chosen.

grep Chapter 1: Utilities

Utilities Reference 159

Example Expressions
You can combine any meta-characters and normal characters to create
an expression:

$ EOL. The dollar sign ($) requires the expression to
compare and match the string only at end- of-line.
ESCAPE. The backslash (\) removes special significance
from special characters. It is followed by a base and a
numeric value or a special character. If the base is not
specified, the base for the numeric value defaults to
hexadecimal. An explicit base of decimal or hexadecimal
can be specified by preceding the numeric value with a
qualifier of d or x, respectively. It also allows entry of
some non-printing characters such as:

\t=Tab character
\n=New-line character
\l=Line feed character
\b=Backspace character
\f=Form feed character

Table 1-11. Expression Special Characters (Continued)

Character Specification

Table 1-12. Meta-characters Example Expressions

Expression Same as
abcd abcd
ab.d abcd, abxd, ab?d, etc.
"ab *d" "abd", "ab d", "ab d", "ab d",

etc.
~abcd abcd (only if very first characters on a line)
abcd$ abcd (only if very last characters on a line)
~abcd$ abcd (only if abcd is the complete line)
[Aa]bcd abcd, Abcd
abcd[0-9a-zA-z] abcd followed by any alphanumeric character
bcd[~a-d] bcd followed by any ASCII char except a, b, c,

d, or new line

Chapter 1: Utilities grep

160 Utilities Reference

Examples
To write all lines of myfile that contain occurrences of xyz to standard
output, enter:

$ grep xyz myfile

This example searches myfile for expressions input from words,
counts the number of matches, and gives the line number found with
each occurrence:

$ grep -f=words myfile -nc

help Chapter 1: Utilities

Utilities Reference 161

help
On-Line Utility Reference

Syntax
help [<utility names>]

OS
OS-9; OS-9 for 68K

Description
The help utility displays information about a specific utility.

Type help and the name of the desired utility for information about any
utility. The help utility displays the function, syntax, and options of the
utility. After the information displays, control returns to the shell.

For information about the help utility, type help by itself. The help
utility lists the syntax and function of the help utility.

Built-in shell commands do not have help information.

Examples
$ help build
$ help attr

Chapter 1: Utilities hist

162 Utilities Reference

hist
Command History

Syntax
hist

OS
OS-9

Description
The hist utility is a built-in shell command that displays the commands
that you have already entered.

As commands are entered, they are stored in a buffer. This is a history
of your commands. To see the commands that you have entered, type
hist on the command line.

Commands residing in a buffer may be executed or retrieved using
tildes (~). One tilde followed by a number (~<num>) executes the
command that <num> points to. For example, entering ~4 on the
command line causes the shell to execute the fourth command in your
history list.

Entering a number after two tildes (~~<num>) places the command in
the command line buffer, just as if were the last command entered. For
example, if you type ~~3, the command is placed in a buffer as if it had
just been executed. By typing <control>A, you can retrieve the
command line. It is placed after the shell prompt. This allows you to edit
the command line before executing it.

A single tilde “~” followed by alphabetic characters specifies the most
recent command executed that began with those letters. For example:
~pro executes the most recent command line that began with the
letters “p”, “r”, and “o”.

hist Chapter 1: Utilities

Utilities Reference 163

Examples
[5]$ hist
Shell History

 1) makdir /h0/usr/TMS
 2) chd /h0/usr/tms
 3) build stat
 4) procs
 5) hist
[6]$ ~4

Id PId Grp.Usr Prior MemSiz Sig S CPU Time Age Module & I/O
3 2 6.10 128 5.25k 0 w 5.02 02:34 shell <>>>term
4 3 6.10 128 8.50k 0 * 0.08 00:00 procs <>>term

[7]$ hist
Shell History

 3) build stat
 4) procs
 5) hist
 6) procs
 7) hist
[8]$ ~~3
[8]$ <control>A
[8]$ build stat

Chapter 1: Utilities ident

164 Utilities Reference

ident
Prints OS-9 Module Identification

Syntax
ident {<option(s)>} {<modname>}

OS
OS-9; OS-9 for 68K; WIN; UNIX

Options
-c

Prints the total number of modules and the combined size of those
modules in bytes.

-e
Displays the edition number of Microware executables (DOS and
UNIX hosted executables only).

-h
Prints hexadecimal numbers instead of decimal numbers.

-m
Searches for the specified modules in memory via _os_link(),
rather than opening them as files.

-o
Displays the offset within the file for located modules. If -o is used
with -m, ident displays the memory address of modules.

-q
Displays a one line summary of each module. The line contains
the module’s name, size, owner, edition number, and CRC
information.

-qa
Displays a one line summary of each module. The line contains
the module’s name, processor, OS revision, edition number, and
CRC information.

ident Chapter 1: Utilities

Utilities Reference 165

-r
Displays module information in columns. Columns include offset (if
-o is used), name, type, size, data size, stack size, edition number
and CRC.

-s
Silent mode. Like -q mode, but only displays information for
modules with bad CRCs.

-x
Searches for modules in the execution directory (OS-9 and OS-9
for 68K only).

-z
Reads the module names from standard input.

-z=<file>
Reads the module names from <file>.

Description
The ident utility displays module header information and the
additional information that follows the header for OS-9 for 68K
modules.

The ident utility also checks for incomplete module headers,
incorrectly set header parity words, and incorrectly set module CRCs.

The ident utility is capable of identifying modules for any OS-9
platform regardless of host OS.

The ident utility displays the following information in this order:

actual module name
module size
owner
CRC bytes (with verification)
header parity (with verification)
edition
type/language and attributes/revision words
access permission

For relevant modules it also includes:

execution offset
data size

Chapter 1: Utilities ident

166 Utilities Reference

stack size
initialized data offset
offset to the data reference lists

The ident utility prints the interpretation of the type/language and
attribute/revision bytes at the bottom of the display.

The access permissions are divided into four 4-bit sections from right to
left:

owner permissions
group permissions
public permissions
reserved permissions

Each of these sections are divided into four 1-bit fields from right to left:

read permission
write permission
execute permission
reserved permission bit

If a permission is allowed, the first letter of the permission (r, w, e) is
displayed. If a permission is denied, a dash is displayed.

All reserved fields are displayed as dashes unless the fields are turned
on. In that case, the fields are represented with question marks. In any
case, the kernel ignores these fields as they are reserved for future use.

Owner permissions allow the owner to access the module. Group
permissions allow anyone with the same group number as the owner to
access the module. Public permissions allow access to the module
regardless of the group.user number. The following example allows the
owner and the group to read and execute the module, but bars access
to the public:

Permission: $055 ---------e-r-e-r

Example
$ ident -m ident
Header for: ident
Module size: $1562 #5474
Owner: 0.0
Module CRC: $FA8ECA Good CRC
Header parity: $2471 Good parity
Edition: $C #12

ident Chapter 1: Utilities

Utilities Reference 167

Ty/La At/Rev: $101 $C001
Permission: $555 -----e-r-e-r-e-r
Exec. off: $4E #78
Data size: $15EC #5612
Stack size: $C00 #3072
Init. data off: $1482 #4250
Data ref. off: $151A #5402
68000 Prog Mod, Object Code, Sharable, Sticky Module

Chapter 1: Utilities iniz

168 Utilities Reference

iniz
Attaches Devices

Syntax
iniz [<opts>] {<devname>}

OS
OS-9; OS-9 for 68K

Options
-z

Reads the device names from standard input.

-z=<file>
Reads the device names from <file>.

Description
The iniz utility performs an I$Attach (OS-9 for 68K), I_Attach
(OS-9) system call on each device name passed to it. This initializes and
links the device to the system.

Type iniz and the name(s) of the device(s) to attach a device to the
system. The operating system searches the system module directory
using the name of the device to see if the device is already attached.

If the device is not attached, an initialization routine is called to link the
device to the system.

If the device is attached, it is not re-initialized but the link count is
incremented.

The device names may be listed on the command line, read from
standard input, or read from a specified pathlist.

Do not use the iniz utility to attach non-sharable device modules as
they become “busy” forever.

iniz Chapter 1: Utilities

Utilities Reference 169

See Also
I$Attach system call OS-9 for 68K Technical Manual.
I_Attach system call OS-9 Technical Manual.
deiniz

Examples
$ iniz h0 term

Increments the link counts of modules h0 and term.

$ iniz -z
Increments the link count of any modules with names read from
standard input.

$ iniz -z=/h0/file
Increments the link count of all modules whose names are
supplied in /h0/file.

Chapter 1: Utilities irqs

170 Utilities Reference

irqs
Displays System’s IRQ Polling Table

Syntax
irqs [<opts>]

OS
OS-9; OS-9 for 68K

Description
The irqs utility displays a list of the system’s IRQ polling table. The
IRQ polling table contains a list of the service routines for each interrupt
handler known by the system.

The irqs utility display header lists the system name and the OS-9
version number.

For OS-9 for 68K, the irqs utility display header lists the system name,
the OS-9 for 68K version number, the maximum number of devices
allowed in the device table, and the maximum number of entries in the
IRQ table.

Each line in the OS-9 irqs utility display contains six fields:

Table 1-13. Fields in OS-9 irqs Utility

Name Description
vector Exception vector number used by the device. The first

number is the exception number in decimal and the
second number is the exception number in hex format.

prior Software polling priority
drivstat Address of the device driver’s static storage
irq svc Interrupt service routine’s entry point

irqs Chapter 1: Utilities

Utilities Reference 171

Each line in the OS-9 for 68K irqs utility display contains seven fields:

Options
-?

Displays the options.

-d
Displays extended information about available device list entries.
(OS-9)

driver Name of the module which contains the interrupt
service routine, usually a device driver

dev list If the drivstat is also the driver device entry ‘dev
list’, then the ‘dev list’ entry displays, otherwise,
‘<na>’ displays.

If the ‘dev list’ entry displays, then option ‘-d’
displays additional information about the device.

Table 1-13. Fields in OS-9 irqs Utility (Continued)

Name Description

Table 1-14. Fields in OS-9 for 68K irqs Utility

Name Description
vector Exception vector number used by the device. A second

number, the hardware interrupt level, is displayed for
auto-vectored interrupts.

prior Software polling priority.
port addr Base address of the interrupt generating hardware. The

operating system does not use this value, but passes to
the interrupt service routine.

data addr Address of the device driver’s static storage.
irq svc Interrupt service routine’s entry point.
driver Name of the module which contains the interrupt

service routine, usually a device driver.
device Name of the device descriptor. If a device name is not

displayed, then the entries relate to IRQ handlers that
support anonymous devices (for example, the clock
ticker, DMA devices associated with other peripherals.)

Chapter 1: Utilities irqs

172 Utilities Reference

Example OS-9
The following example displays the IRQ polling table for a system
named Calvin:

$ irqs

PC-AT Compatible 80386 OS-9000 V2.0 for Intel x86

 vector $ prior drivstat irq svc driver dev list
------- ----- --------- --------- --------- --------- -------
 64 ($40) 10 $00fd3f40 $0005dlb5 tk8253 <na>
 65 ($41) 10 $00ffd080 $00069alc sc8042 $00ffd080
 66 ($75) 10 $00ff7474 $0007cla8 aha1540 <na>

$ irqs -d

PC-AT Compatible 80386 OS-9000 V2.0 for Intel x86

Vector: 65 ($41) Priority 10 IRQ_SVC $00ffd080
Device: term Driver: sc8042 File MGR: scf
DrvStat: $00ffd080 FMStat: $00ffe3d0 LUStat: $00ffc8d0 Port:
$000b8000
Users: 2 Mode: $2003 Type: 0 Class: 1 Logical Unit: 0 Current
Process: 3

Example OS-9 for 68K
$ irqs

Calvin OS-9/68K V2.4 (max devs: 32, max irqs: 32)

vector prior port addr data addr irq svc driver device
------- ----- --------- --------- --------- --------- -------
 68 0 $fffe1800 $00230b90 $00215084 am7990
 69 5 $fffe4000 $003bd560 $00012ad2 scsi147
 70 5 $fffe4000 $003bd560 $00012ad2 scsi147
 72 0 $fffe1000 $00000000 $0000ccda tk147
 88 5 $fffe3002 $003be3f0 $0000dacc sc8x30 term
 88 5 $fffe3000 $003bd300 $0000dacc sc8x30 t1
 89 5 $fffe3800 $002044a0 $0000dacc sc8x30 t3
 89 5 $fffe3802 $003bbbe0 $0000dacc sc8x30 t2
 90 5 $ffff1001 $003bc560 $0000e6b6 sc68560 t4
 91 5 $ffff1041 $003bc120 $0000e6b6 sc68560 t5
255 5 $ffff8800 $00245a50 $002458e0 n9026 n0

irqs Chapter 1: Utilities

Utilities Reference 173

See Also
_os_irq()

Ultra C Library Reference Manual

_os_irq()
OS-9 Technical Manual

F$IRQ system-state service request
OS-9 for 68K Technical Manual

Chapter 1: Utilities kermit

174 Utilities Reference

kermit
Transfers Sequential Files Over Asynchronous Lines

Syntax
kermit <mode>[<options>] <option arg>...

kermit c[8le line esc.char](connect mode)

kermit s[dx8ifl line] file ...(send mode)

kermit r[dx8iflk line](receive mode)

kermit h[dx8ifl line](host server mode)

kermit g[dx8iflk line] file...(get file from server)

kermit q[dx8ifl line](quit remote host server)

OS
OS-9; OS-9 for 68K

Options
d

Verbose. The states the kermit utility goes through are printed
along with other traces of its operation. A second, third, and even
fourth d flag causes the kermit utility to give an even more
detailed trace.

kermit Chapter 1: Utilities

Utilities Reference 175

e
Escape. Allows you to set the first character of the two character
escape sequence for connect mode. When you type the escape
character, the kermit utility holds it and waits for the next
character.
If the next character is:
• c or C

The kermit utility closes the connection with the remote host.
The same as the escape character, the escape character itself is
passed.

• P or p, or an exclamation point (!)
To accommodate Unix users, the kermit utility forks a shell.
(Use your EOF character to return to the kermit connect
mode.)

• 8
Toggles the setting of the eighth-bit flag (which, for connect
mode, controls whether the most significant bit of characters
received from the remote host is masked out before being
displayed).

• 0
Sends an ASCII NUL to the remote host.

• A question mark (?) displays information about these escape
sequences. If, in connect mode, you type any character other
than those named above after typing the escape character, an
ASCII BEL is echoed to the terminal and characters are not
passed to the remote host.

• All other typed characters are passed through unchanged. The
default escape character is tilde (~).

f
No filename case conversion. the kermit utility does not perform
filename case conversions.

Chapter 1: Utilities kermit

176 Utilities Reference

i
Image. Allows slightly more efficient file transfer between OS-9 for
68K machines. The kermit utility typically converts between its
host’s end-of-line conventions and its internal representation
(CRLF); image mode bypasses this transformation. It is useful
when sending binary data (for which modification of the data
could be ruinous).

k
Kermit. If you specify k on a Receive or Get kermit, data received
is written to standard output rather than to the specified files. This,
along with the “-” pseudo file name, makes the kermit utility
useful with redirection and pipes.

l
Line. Use this when you want to specify the TTY line that the
kermit utility should use to communicate with the other machine.
This is specified as a regular file name (for example, /t2).
If you do not specify the l option, the kermit utility uses standard
input and assumes it is running on the remote host (that is, NOT
the machine to which your terminal is attached).
If you specify the l option, the port name (TTY line) must be the
first argument following the options.

xXON/XOFF
Flow control. Turn off XON/XOFF flow control. The kermit utility
protocol does not use any control characters except SOH, CR, and
LF, so that the usual XON/XOFF characters (<control>q and
<control>s respectively) can be used for flow control. You may
want to turn flow control off to avoid spurious XOFF characters on
a noisy line.

kermit Chapter 1: Utilities

Utilities Reference 177

8
Eighth-bit quoting. Request eighth-bit quoting. the kermit utility
honors requests to do eighth-bit quoting whether this flag appears
or not, so you only need to specify it when you send files over a
known seven-bit communications line to avoid the overhead of
eighth-bit quoting. In connect mode, the 8 flag indicates that the
most significant bit of incoming characters should be masked out.
The file arguments are only meaningful to a Send or Get kermit.
The receiving the kermit utility attempts to store the file with the
same name that was used to send it. The OS-9 for 68K kermit
utility, unless the you use the f flag, converts outgoing file names
to uppercase and incoming ones to lower case. If a file name
contains a slash (/), all outgoing kermit utilities strip off the
leading part of the name through the last slash. In the Get
command, file names are sent to the remote host as is and the file
names sent back are converted as usual for a receiving kermit
utility. (Wildcard characters may be expanded on the remote end.)
A Send kermit takes a dash (-) file name to mean that you want
standard input to be read and sent. In this case, the name STDIN
is sent in the send-init packet so that a receiving kermit has a
reasonable file name to write to.

Description
The kermit utility is a protocol for transferring sequential files between
computers over asynchronous telephone lines. It provides for reliable
file transfer and primitive virtual terminal communication between
machines.

The kermit utility’s protocols and the original implementation were
developed at Columbia University.

The kermit utility has been implemented on many different
computers. You can transfer files of arbitrary ASCII data (7-bit
characters) of any length. The file transfer protocol uses small (96
character) checksum packets, with ACK/NACK responses and time-
outs. The OS-9 kermit utility uses a ten-second time-out and ten
retries.

The arguments for the kermit utility are a set of flags (no spaces
between the flags), three optional arguments (which, if included, must
be in the same order as the examples previous), and if this is a Send or
Get operation, a list of one or more files.

Chapter 1: Utilities kermit

178 Utilities Reference

A sample working implementation of the kermit “kernel” was written
in the C language. This kernel was intended to illustrate the protocol
and did not include a user interface or features such as server support,
8-bit quoting, file warning, timeouts, etc. Several sites have added the
necessary trappings to make this a production version of kermit,
usually under the UNIX operating system. Limited server functions have
also been added to the OS-9 for 68K version.

Command line options must all be in the same context, “-cl” not
“-c -l”.

The following does not work for debugging:
 kermit -d -d -d -cl /t4

The following does work for level 3 debugging:
 kermit -dddcl /t4

The escape option must precede the connect option.

The following does not work for escape:
 kermit -cle ^g/t4

The following does work for escape:
 kermit -ecl ^g /t4

Modes
The kermit utility has six modes. The mode is specified by the first flag.
You can only specify one mode.

Table 1-15. Modes

Mode Specification
c Connect; virtual terminal connection.
s Send; transfer files in a non-server mode. Used with a

remote kermit server.
r Receive; transfer files in a non-server mode.
g Get; used with a remote kermit server.
q Quit; used with a remote kermit server. q sends a generic

finish packet to the remote kermit server.
h Host; make the OS-9 for 68K system a server. The Host

command has not been fully implemented and tested as of
this writing.

kermit Chapter 1: Utilities

Utilities Reference 179

Example 1
On the OS-9 for 68K target, the kermit, lmm, and shell utilities, and
pipe capability must be present.

The following example is for loading a module into memory when it is
passed serially to the system. The lmm utility opens the pipe and waits
for a module to be placed serially into the pipe. The kermit utility waits
to receive a binary file from the current port and places the file into the
pipe to be read by the lmm utility.

To initiate the process type the following on the OS-9 for 68K shell:

$ lmm /pipe/hello&
$ kermit rik >-/pipe/hello

Once this is done, break out of whatever communications software you
are running, then use the kermit utility to send the binary file down
from the host machine.

Example 2
For the next example, assume two OS-9 for 68K machines. You are
logged on OS-9a (the local machine), and want to communicate with
OS-9b (the remote machine). There is a modem on /t2. You want to
connect to OS-9b, then transfer file1 to that machine.

• Type:
kermit cl /t2

The kermit utility answers:
kermit: connected...

• Dial the remote machine and connect the modem.
Anything typed on the terminal is sent to the remote machine.
Output from that machine is displayed on your terminal.

• Press <return>.
A login: prompt displays.

• Type your login and press <return>.
• Start the kermit utility on the remote machine so that you can send

the file.
• Start the remote (in this case receiving) kermit utility, then the

local, (sending) one.
Remember that you are talking to OS-9b right now.

Chapter 1: Utilities kermit

180 Utilities Reference

• Type:
kermit r

There is now a Receive kermit on OS-9b.
• Type ~ (the escape character) and the letter c to kill the local

(Connecting) kermit:
~c

The kermit utility responds:
kermit: disconnected.

• Type:
kermit sl /t2 file1

The kermit utility responds:
Sending file1 as FILE1

When the transmission is finished, the kermit utility responds with
either a Send complete or a Send failed message, depending on
the success of the transfer. To transfer a file from OS-9b (remote) to
OS-9a (local), use these commands:

kermit cl /t2
(connected to OS-9b)
kermit s file9
~c (talking to OS-9a again)
kermit rl /t2

After all the transfers are done, you should connect again, log out of
OS-9b, kill the Connect kermit utility and hang up the phone.

You do not need to exit the connect mode kermit as shown above; you
can escape to a shell from within it, and from that shell invoke kermit
in send or receive mode.

Miscellaneous Notes
To maximize throughput and avoid inefficient constructs such as busy
wait loops for timing out, the OS-9 for 68K kermit utility uses the
SS_RDY and SS_SSIG status requests and reads all pending characters
from the communications port. Therefore, it does not work on devices
for which SS_RDY and SS_SSIG are not supported, and does not work
efficiently on devices for which the SS_RDY does not return a correct
count of pending characters. The latter condition is peculiar to
extremely old SCF device drivers which would return one rather than the
true count of pending input characters.

kermit Chapter 1: Utilities

Utilities Reference 181

The kermit utility can interrupt a file transfer. The OS-9 for 68K
kermit utility now notices X and Z in ACK packets, and recognizes
<control >x and <control>z in local non-server mode.

The kermit utility protocol uses only printing ASCII characters,
<control>a, and CRLF. Therefore, he OS-9 for 68K kermit utility
leaves the XON/XOFF fields of the path descriptors it uses intact to
avoid buffer overruns unless you specify the x option.

Since BREAK is not an ASCII character, the OS-9 for 68K kermit utility
cannot send a BREAK to the remote machine. On some systems, a
BREAK is read as a NUL.

The OS-9 for 68K kermit utility supports timeouts, so that it is stable
when communicating with “dumb” versions of the kermit utility that
do not have timeouts. The OS-9 for 68K kermit utility also supports
repeat-count encoding and eighth-bit encoding.

Errors
cannot open device

Wrong permissions.

could not create file
A Receive kermit could not create the file being sent to it.

nothing to connect to
A Connect kermit was started without a line argument.

can't stat
Attempting to kermit across a device whose driver does not
support the SS_RDY getstat call.

See Also
lmm

Chapter 1: Utilities kill

182 Utilities Reference

kill
Aborts Processes

Syntax
kill [<opts>] {<procID list>}

OS
OS-9; OS-9 for 68K

Options
-<num>

Signal value to send

Description
The kill utility is a built-in shell command. It sends a signal to the
processes having the specified process ID numbers.

If no signal value is specified, the SIGKILL signal is sent which
unconditionally terminates the processes.

Type kill, and the ID number(s) of the process(es) to send the signal.
The processes must have the same user ID as the user executing the
command. Use procs to obtain the process ID numbers.

If a process is waiting for I/O, it cannot die until it completes the current
I/O operation. Therefore, if you kill a process and procs shows it still
exists, the process is probably waiting for the output buffer to be flushed
before it can die.

The command kill 0 kills all processes owned by the user.

Because kill is a built-in shell command, it does not appear in the
CMDS directory.

kill Chapter 1: Utilities

Utilities Reference 183

Examples
$ kill 6 7
$ procs
 Id PId Grp.Usr Prior MemSiz Sig S CPU Time Age Module & I/O
 2 1 0.0 128 0.25k 0 w 0.01 ??? sysgo <>>>term
 3 2 0.0 128 4.75k 0 w 4.11 01:13 shell <>>>term
 4 3 0.0 5 4.00k 0 a 12:42.06 00:14 xhog <>>>term
 5 3 0.0 128 8.50k 0 * 0.08 00:00 procs <>>term
 6 0 0.0 128 4.00k 0 s 0.02 01:12 tsmon <>>>t1
 7 0 0.0 128 4.00k 0 s 0.01 01:12 tsmon <>>>t2
$ kill 4
$ procs
 Id PId Grp.Usr Prior MemSiz Sig S CPU Time Age Module & I/O
 2 1 0.0 128 0.25k 0 w 0.01 ??? sysgo <>>>term
 3 2 0.0 128 4.75k 0 w 4.11 01:13 shell <>>>term
 4 3 0.0 128 8.50k 0 * 0.08 00:00 procs <>>term

To send a signal 3 to processes 28 and 32 type:

$ kill -3 28 32

Chapter 1: Utilities link

184 Utilities Reference

link
Links Previously Loaded Module into Memory

Syntax
link [<opts>] {<modname>}

OS
OS-9; OS-9 for 68K

Options
-z

Reads the file names from standard input.

-z=<file>
Reads the file names from <file>.

Description
The link utility locks a previously loaded module into memory.

Type link and the name(s) of the module(s) to lock into memory.

The link count of the module specified increments by one each time it is
linked.

Use unlink to unlock the module when it is no longer needed.

Examples
$ link prog1 prog2 prog3

$ link -z=linkfile
Links modules from linkfile.

$ link -z
Links modules from standard input.

list Chapter 1: Utilities

Utilities Reference 185

list
Lists Contents of Text File

Syntax
list [<opts>] {<path>}

OS
OS-9; OS-9 for 68K

Options
-z

Reads the file names from standard input.

-z=<file>
Reads the file names from <file>.

Description
The list utility displays text lines from the specified path(s) to standard
output.

Type list and the pathlist.

The list utility terminates when it reaches the end-of-file of the last
input path. If more than one path is specified, the first path is copied to
standard output, the second path is copied next, and so on. Each path
is copied to standard output in the order specified on the command
line.

The list utility is most commonly used to examine or print text files.

Chapter 1: Utilities list

186 Utilities Reference

Examples
To redirect the listing, startup, to the printer and place the entire
command in the background, enter:

$ list /d0/startup >/P&

The following example lists text from files to standard output in the
same order as the command line:

$ list /D1/user5/document /d0/myfile /d0/Bob/text

To list all files in the current data directory, enter:

$ list *

The following example reads the name(s) of the file(s) to list from
namefile and lists their contents.

$ list -z=namefile

The following line lists the contents of the named pipe staff while
consuming all the data from the pipe.

$ list /pipe/staff

lmm Chapter 1: Utilities

Utilities Reference 187

lmm
Loads Modules At Pathlist

Syntax
lmm [<options>] <pathlist>

OS
OS-9; OS-9 for 68K

Options
-q

Runs in quiet mode; do not exit with error.

-u
Do not attempt to unload old module.

Description
The lmm utility loads the module at the specified pathlist.

Use lmm to initiate a process to load a memory module from a pathlist.
The filename of the pathlist must be the same as the module that you
wish to load.

The lmm utility may be run as a background process (&).

The lmm utility performs the following steps:

1. Checks the pathlist for existence each second for two minutes until it
exists. If after two minutes the pathlist does not appear, then the lmm
utility exits.

2. Reads a module header from the path.
3. Infers the module name from the pathlist by stripping any preceding

pathlist components from the pathlist.
For example, each of the following pathlists has an inferred module
name of testmod:
/h0/TEST/testmod
/pipe/testmod
testmod

Chapter 1: Utilities lmm

188 Utilities Reference

4. Unloads any module with the inferred name from memory.
If unloading the module fails, the lmm utility reads the remaining
data from the pathlist and exits with error EOS_KNWMOD.

5. Reads the remaining module from the pathlist and loads it into
memory.

Example
The following example starts the lmm utility in the background and then
uses kermit to download a module in the foreground. It demonstrates
the method that you might use to load a module on a ROM-based
system.

$ lmm /pipe/testmod &
+118
$ kermit rik >-/pipe/testmod
$ mdir testmod
 Module Directory at 14:05:09
testmod

See Also
kermit

ln Chapter 1: Utilities

Utilities Reference 189

ln
Creates a Hard Link to an Existing File

Syntax
ln <link to create> <file to link to>

OS
OS-9

Description
The ln utility creates a directory entry as specified as the first argument
that refers to the same file descriptor as the second argument.

Type ln, the pathlist of the hard link you want to create and the pathlist
of the file you want to link to.

Examples
ln /h0/DEFS/errno.h /h0/MWOS/OS9000/SRC/DEFS/errno.h
ln /h0/CMDS/ls /h0/CMDS/dir

Chapter 1: Utilities load

190 Utilities Reference

load
Loads Module(s) from File into Memory

Syntax
load [<opts>] {<path>}

OS
OS-9; OS-9 for 68K

Options
-c=<color>

Specifies a specific memory color in which to load the module.

-d
Loads the file from your current data directory, instead of your
current execution directory.

-d=<path>
Specifies path relative to current data directory from which to load
the module.

-i
Ignore errors loading modules and keep going.

-l
Prints the pathlist of the file loaded.

-s
Loads “sticky” modules only.

-w=<moddir>
Loads modules into module directory <moddir>. (OS-9 only)

-z
Reads the file names from standard input.

-z=<file>
Reads the file names from <file>.

load Chapter 1: Utilities

Utilities Reference 191

Description
The load utility loads one or more modules specified by <path> into
memory.

Unless a full pathlist is specified, <path> is relative to your current
execution directory. Therefore, if the module to load is in your execution
directory, you need only enter its name:

load <file>

If <file> is not in your execution directory and if the shell environment
variable PATH is defined, the load utility searches each directory
specified by PATH until <file> is successfully loaded from a directory.

This corresponds to the shell execution search method using the PATH
environment variable. By using the -l option, the load utility prints the
pathlist of the successfully loaded file.

The module names are added to the module directory. If a module is
loaded with the same name as a module already in memory, the
module having the highest revision level is kept.

File Security
The file security mechanism enforces certain requirements regarding
owner and access permissions when loading modules into the module
directory.

You must have file access permission to the file to be loaded. If the file
is loaded from an execution directory, the execute permission (e) must
be set. If the file is loaded from a directory other than the execution
directory and the -d option is specified, only the read permission (r) is
required.

Unless the file has public execute and/or public read (OS-9: group
execute/group read) permissions, only the owner of the file or a super
user can load the file. Use the dir -e command to examine a file’s
owner and access permissions.

You must have module-access permission to the file being loaded. Do
not confuse this with the file-access permission. The module owner and
access permissions are stored in the module header; use ident to
examine them.

Chapter 1: Utilities load

192 Utilities Reference

To prevent ordinary users from loading super user programs, the
operating system enforces the following restriction: if the module group
ID is zero (super group), you can load the module only if the process’
group ID and the file’s group ID is also zero.

If you are not the owner of a module and not a super user, the public
execute and/or read access permissions must be set. The module
access permissions are divided into three groups:

• owner
• group
• public

Only the owner of the module or a super user can set the module
access permissions.

Example
$ mdir
 Module Directory at 14:44:35
kernel init p32clk rbf p32hd
h0 p32fd d0 d1 ram
r0 dd mdir

$ load edit

$ mdir
 Module Directory at 14:44:35
kernel init p32clk rbf p32hd
h0 p32fd d0 d1 ram
r0 dd edit mdir

login Chapter 1: Utilities

Utilities Reference 193

login
Timesharing System Login

Syntax
login [<name>] [,] [<password>]

OS
OS-9; OS-9 for 68K

Options
-n Verifies a password entry’s contents.

If an entry exists for the name and password
supplied on the command line, the
information (except the password itself) is
printed to standard output.

This option operates in a non-interactive
mode.

Description
The login utility provides login security in timesharing systems.

It is automatically called by the timesharing monitor tsmon, or you can
explicitly call it after the initial login to change a terminal’s user.

The login utility requests a user name and password, which is checked
against a validation, or password file. If the information is correct, the
user’s system priority, user ID, and working directories are set up
according to information stored in the file. The login utility then forks
the pd utility to acquire the current working and execution directories.
The initial program specified in the password file is also executed. This
initial program is usually the shell utility. The date, time, and process
number also display.

If you cannot supply a correct user name and password after three
attempts, the login attempt is aborted.

If you do not need the shell from which you called login, you may
discard it using the ex utility to start the login command: ex login.

Chapter 1: Utilities login

194 Utilities Reference

To log off, you must terminate the initial program specified in the
password file. For most programs, including shell, you can do this by
typing an end-of-file character (escape) as the first character on a line.

If the file motd exists in the SYS directory with the password file, a
successful login displays the contents of motd on your terminal screen.

The Password File
The password file must be present in the SYS directory being used:
/h0/SYS, /d0/SYS, etc. The file contains one or more variable-length
text entries; one for each user name. These entries are not shell
command lines. Each entry has seven fields. Each field is delimited by a
comma. The fields are

1. User name
This field may be up to 32 characters long. It cannot include spaces.
The user name may not begin with a number, a period, or an
underscore, but these characters may be used elsewhere in the
name. If this field is empty, any name matches.

2. Password
This field may contain up to 32 characters including spaces. If this
field is omitted, no password is required for the specified user.

3. Group User ID number
This field allows 0 to 65535 groups and 0 to 65535 users. 0.n is the
super user. The file security system uses this number as the system-
wide user ID to identify all processes initiated by the user. The system
manager should assign a unique ID to each potential user.

4. Initial Process Priority
The initial process priority can be from 1 to 65535.

5. Initial Execution Directory Pathlist
The initial execution directory is usually /h0/CMDS. Specifying a
period (.) for this field defaults the initial execution directory to the
CMDS file located in the current directory, usually /h0 or /d0.

6. Initial Data Directory Pathlist
 This is the specific user directory. Specifying a period (.) for this
field defaults to the current directory.

7. Initial Program
The name and parameters of the program to initially execute. This is
usually shell.

login Chapter 1: Utilities

Utilities Reference 195

Sample Password File
superuser,secret,0.0,255,.,.,shell -p="@howdy"
brian,open sesame,3.7,128,.,/d1/STEVE,shell
sara,jane,3.10,100,/d0/BUSINESS,/d1/LETTERS,wordprocess
-OR-
robert,,4.0,128,.,/d1/ROBERT,Basic
mean_joe,midori,12.97,100,Joe,Joe,shell

Using password file entries, the login utility sets the following shell
environment variables. Programs can examine these environment
variables to determine various characteristics of the user’s environment:

Environment variables are case-sensitive.

To show how the login utility uses the password file to set up
environment variables, examine the previous sample password file.
Assume login’s data and execution directories are /h0 and
/h0/CMDS, respectively, logging in as mean_joe executes a shell with
the data directory of /h0/Joe and the execution directory of
/h0/CMDS/Joe.

The environment variables passed to the shell are set as follows:

HOME=/h0/Joe
SHELL=shell
USER=mean_joe
PATH=/H0/Cmds

Table 1-16. Environment Variables

Name Description
HOME Initial data directory pathlist.
SHELL Name of the initial program executed.
USER User name.
PATH Login process’ initial execution directory. If a period (.)

is specified, PATH is not set.

Chapter 1: Utilities logout

196 Utilities Reference

logout
Timesharing System Logout

Syntax
logout

OS
OS-9; OS-9 for 68K

Description
The logout utility terminates the current shell. If the shell to terminate
is the login shell, the logout utility executes the .logout procedure
file before terminating the shell.

Type logout and a carriage return to terminate the current shell. This
terminates the current shell in the same manner as an end-of-file
character, with one exception. If the shell to be terminated is the login
shell, the logout utility executes the procedure file .logout.

The login shell is the initial shell created by the login utility when you
log on the system. In order for the logout utility to execute the
.logout file, .logout must be located in the directory specified by the
HOME environment variable. These commands do not appear in the
CMDS directory as they are built in to the shell.

Example
3.lac: list .logout
procs
wait
date
echo "see you later. . ."
3.lac: logout
2.lac: logout
1.lac: logout
 Id PId Grp.Usr Prior MemSiz Sig S CPU Time Age Module & I/O
 2 1 0.0 128 0.25k 0 w 0.01 ??? sysgo <>>>term
 3 2 0.0 128 4.75k 0 w 4.11 01:13 shell <>>>term
 4 3 0.0 128 8.50k 0 * 0.08 00:00 procs <>>term
 5 0 0.0 128 4.00k 0 s 0.02 01:12 tsmon <>>>t1
July 7, 1989 11:59 pm
see you later . . .

makdir Chapter 1: Utilities

Utilities Reference 197

makdir
Creates Directory File

Syntax
makdir [<opts>] {<path>}

OS
OS-9; OS-9 for 68K

Options
-p

Creates all missing components of the specified path.

-q
Quiet mode.

-x
Creates the directory in the execution directory.

-z
Reads the directory names from standard input.

-z=<file>
Reads the directory names from <file>.

Description
The makdir utility creates a new directory file specified by the given
pathlist.

Type makdir and the pathlist specifying the new directory.

You must have write permission for the new directory’s parent directory.
The new directory is initialized and does not initially contain files except
for the pointers to itself (.) and its parent directory (..). All access
permissions are enabled except single use, or non-sharable.

Chapter 1: Utilities makdir

198 Utilities Reference

Examples
$ makdir /d1/STEVE/PROJECT

Creates directory project in /d1/STEVE

$ makdir DATAFILES
Creates directory DATAFILES in current working execution
directory.

$ makdir ../SAVEFILES
Creates directory SAVEFILES in parent of current working data
directory.

$ makdir RED GREEN BLUE ../PURPLE
Creates directories RED, GREEN and BLUE in current working data
directory and PURPLE in parent of current working data directory.

$ makdir -p MWOS/SRC/TOOLS/UTILS
Creates directory: MWOS (if it does not already exist) in current
working directory, and SRC (if it does not already exist) as a child of
MWOS, and TOOLS (if it does not already exist) as a child of SRC.
And finally, the UTILS directory (if it does not already exist) is
created as a child of the tools directory.

makmdir Chapter 1: Utilities

Utilities Reference 199

makmdir
Creates a New Module Directory

Syntax
makmdir [<opts>] {<module directory>}

OS
OS-9; OS-9 for 68K

Options
-z

Reads the module directory names from standard input.

-z=<file>
Reads the module directory names from <file>.

Description
The makmdir utility creates a new module directory.

Type makmdir, the module directory pathlist and any desired options to
create a new directory.

You must have write permission for the new directory’s parent module
directory. The new module directory is created with all of the access
permissions enabled. A module directory’s access permissions can be
changed using the mdattr utility.

It is an OS-9 convention to capitalize module directory names.

The makmdir utility only searches the current module directory for a
specified module when creating a new module directory.

The alternate pathlists specified by the MDPATH environment variable
are not searched if a specified module is not found in the current
module directory.

For example, if USER is your current module directory and you want to
make a new directory in a directory called TEST, OS-9 does not search
the alternate module directories for a module directory named TEST.

Chapter 1: Utilities makmdir

200 Utilities Reference

Examples
$ makmdir USERS
$ makmdir ../UTILS
$ makmdir -z=/h0/sys/users

maps Chapter 1: Utilities

Utilities Reference 201

maps
Prints Process Memory Usage Information

Syntax
maps [<opts>]

OS
OS-9 for 68K

Options
-l

Loops printing process information.

-m
Prints map of memory usage.

-p=<id>
Prints information for process <ID>.

-r
Prints ranges of memory used.

-w
Shows write permissions in map.

Description
Prints information about process memory usage.

Chapter 1: Utilities mbc

202 Utilities Reference

mbc
Compress or Uncompress Bootfile

Syntax
mbc {<file> [<opts>]}

OS
Windows

Options
-o=<file>

Output file.
default compressed = <file>.z
default uncompressed = <file>.uz

-u
Uncompress.

Description
The mbc utility is used to compress an OS-9 bootfile. This utility may
also be used to uncompress a compressed bootfile.

Example
C:\mbc os9kboot -o=os9kboot

mdattr Chapter 1: Utilities

Utilities Reference 203

mdattr
Changes Module Directory Security Permissions

Syntax
mdattr [<opts>] {<module directory> <permissions>}

OS
OS-9

Options
-a

Suppresses the printing of attributes.

-z
Reads the module directory names from standard input.

-z=<file>
Reads the module directory names from <file>.

Description
The mdattr utility changes the security (access) permissions of a
module directory.

Type mdattr, followed by the module directory name whose security
permissions are to be changed or examined. Then enter a list of
permissions which are to be turned on or off.

A permission is turned on by giving its abbreviation preceded by a
hyphen (-[abbr]). It is turned off by preceding its abbreviation with a
hyphen followed by the letter n (-n[abbr]). Permissions not explicitly
named are not changed.

If permissions are not specified on the command line, the module
directory attributes display.

You cannot examine or change the attributes of a module directory you
do not own unless you are the super user. A super user can examine or
change the attributes of any module in the system.

Chapter 1: Utilities mdattr

204 Utilities Reference

The module directory permission abbreviations are:

r Read permission to owner

w Write permission to owner

gr Read permission to group

gw Write permission to group

pr Read permission to public

pw Write permission to public

The owner is the creator of the module directory. Owner access is
allowed to any user with the same user ID number as the owner.

The group is any user with the same group ID number. The user ID
number and the group ID number are combined to form a group.user
ID number.

The public is any user with a different group.user ID number than the
owner.

Module directory ownership can be readily determined with the mdir -
e command.

Examples
$ mdattr sc83

Displays the current attributes of sc83.

$ mdattr sc83 -npr -npw
Turns off the public read and public write permissions.

$ mdattr sc83 -rwprpw
Turns on both the public and owner read and write permissions.

$ mdattr -z
Displays the attributes of the module directory names read from
standard input.

See Also
makmdir
mdir

mdir Chapter 1: Utilities

Utilities Reference 205

mdir
Displays Module Directory

Syntax
mdir [<opts>] [<modname>]

OS
OS-9; OS-9 for 68K

Options
-a

Displays the language field instead of the type field in an extended
listing.

-c
Prints the total number of modules and the combined size of those
modules in bytes.

-e
Displays the extended module directory.

-r
Displays directories recursively. (OS-9)

-t=<type>
Displays only the modules of the specified type.

-u
Displays an unformatted listing used for piping output.

Chapter 1: Utilities mdir

206 Utilities Reference

Description
OS-9 for 68K: The mdir utility displays the present module names in
the system module directory. The system module directory contains all
modules currently resident in memory. By specifying individual module
names, only specified modules are displayed (if resident in memory.)

OS-9: The mdir utility displays the present module names in the
specified module directory. You may use either a full or relative pathlist
when specifying a module directory. By specifying individual module
names, only specified modules are displayed if resident in memory.

If you use -e, the mdir utility displays an extended listing of the physical
address, size, owner, revision level, user count, and the type of each
module.

The module type is listed using the following mnemonics:

User-defined modules not corresponding with this list are displayed by
their number.

By using -a, mdir displays each module’s language instead of the type
in an extended listing. The language field uses the following
mnemonics:

Table 1-17. mdir -e option type Mnemonics

Mnemonic Description
Prog Program Module
Subr Subroutine Module
Mult Multi Module
Data Data Module
Trap Trap Handler Module
Sys System Module
FMan File Manager
Driv Device Driver Module
Desc Device Descriptor Module
MDir
(OS-9)

Module Directory (not truly a module that
consumes memory)

Table 1-18. mdir Lang Mnemonic

Mnemonic Description
Obj 68000/80386/PowerPC Machine Code
Bas Basic09 I Code

mdir Chapter 1: Utilities

Utilities Reference 207

If the language field is inappropriate for the module, a blank field is
displayed. For example, d0, t1, or init.

Examples
To save space, the following examples are incomplete. Module
directories are generally much larger.

$ mdir
 Module Directory at 15:32:38

kernel syscache ssm init tk147 rtclock rbf
$ mdir -e
Addr Size Owner Perm Type Revs Ed # Lnk Module name
-------- ------- -------- ----- ---- ---- ----- ---- -------
00006f00 27562 0.0 0555 Sys a000 83 2 kernel
0000daaa 368 0.0 0555 Sys a000 10 1 syscache
0000dc1a 1682 0.0 0555 Sys a000 29 1 ssm
0000e2ac 622 0.0 0555 Sys 8000 20 0 init
0000e51a 322 0.0 0555 Sys a000 7 1 tk147
0000e65c 494 0.0 0555 Subr a000 8 0 rtclock
0000e84a 8952 0.0 0555 Fman e000 79 26 rbf

$ mdir -ea
Addr Size Owner Perm Lang Revs Ed # Lnk Module name
-------- -------- ------- ---- ---- ---- ---- ----- ---- -------
00006f00 27562 0.0 0555 Obj a000 83 2 kernel
0000daaa 368 0.0 0555 Obj a000 10 1 syscache
0000dc1a 1682 0.0 0555 Obj a000 29 1 ssm
0000e2ac 622 0.0 0555 8000 20 0 init
0000e51a 322 0.0 0555 Obj a000 7 1 tk147
0000e65c 494 0.0 0555 Obj a000 8 0 rtclock
0000e84a 8952 0.0 0555 Obj e000 79 26 rbf

Pasc Pascal I Code
C C I Code
Cobl Cobol I Code
Fort Fortran I Code

Table 1-18. mdir Lang Mnemonic (Continued)

Mnemonic Description

Not all modules listed by the mdir utility are executable as
processes; always check the module type code to make sure it is
executable before executing an unfamiliar module.

Chapter 1: Utilities merge, os9merge

208 Utilities Reference

merge, os9merge
Copies and Combines Files to Standard Output

Syntax
merge {<option(s)>} {<path>}

merge OS
OS-9; OS-9 for 68K

os9merge OS
DOS; UNIX

Options
-a[=]<num>

File alignment. Default is 1.

-b[=]<size>
Allocates <size> k bytes for use by merge. The default memory
size is 4K.

-o[=]<file>
Output file. Default is stdout.

-x
Searches the current execution directory for files to be merged
(merge only).

-z
Reads the file names from standard input.

-z=<file>
Reads the file names from <file>.

merge, os9merge Chapter 1: Utilities

Utilities Reference 209

Description
The merge utility copies multiple input files specified by <path> to
standard output.

The merge utility is commonly used to combine several files into a
single output file.

Data is copied in the order the pathlists are specified on the command
line.

The merge utility does no output line editing such as automatic line
feed.The standard output is generally redirected to a file or device.

Examples
$ merge compile.list asm.list >/p
$ merge file1 file2 file3 file4 >combined.file -b=32k
$ merge -x load link copy >Utils1
$ merge -z=/h0/PROGS/file1 >merged_files

Chapter 1: Utilities mfree

210 Utilities Reference

mfree
Displays Free System RAM

Syntax
mfree [<opts>]

OS
OS-9; OS-9 for 68K

Options
-e

Displays an extended free memory list.

-s
Displays system information summary.

Description
The mfree utility displays a list of areas in memory not presently in use
and available for assignment. The address and size of each free
memory block are also displayed.

Examples
$ mfree
Current total free RAM: 1392.00 K-bytes
$ mfree -e
Minimum allocation size: 4.00 K-bytes
Number of memory segments: 25
Total RAM at startup: 4095.00 K-bytes
Current total free RAM: 1392.00 K-bytes
Free memory map:
 Segment Address Size of Segment
 ----------------- --------------------------
 $55000 $7000 28.00 K-bytes
 $6A000 $B000 44.00 K-bytes
 $80000 $8A000 552.00 K-bytes
 $10E000 $1A000 104.00 K-bytes
 $12F000 $1E000 120.00 K-bytes

mfree Chapter 1: Utilities

Utilities Reference 211

 $151000 $60000 384.00 K-bytes
 $1B5000 $2000 8.00 K-bytes
 $1B8000 $E000 56.00 K-bytes
 $1DE000 $1000 4.00 K-bytes
 $208000 $4000 16.00 K-bytes
 $21C000 $5000 20.00 K-bytes
 $245000 $1000 4.00 K-bytes
 $249000 $1000 4.00 K-bytes

Chapter 1: Utilities mkdatmod

212 Utilities Reference

mkdatmod
Packages File into Data Module

Syntax
mkdatmod -tp=<name> {<option(s)>} <in-file> <out-file>

OS
OS-9; OS-9 for 68K; WIN; UNIX

Options
-b[=]<size>[k|K]

Specify size of copy buffer. <size> is always in K bytes (optional).
The default memory size is 32K.

-n[=]<name>
Name of data module (default=<in-file>

-r
Reverse operation (take off module header/footer)

-to[=]<name>
Specify target operating system, where <name> is target system:
os9 or osk (OS-9 for 68K)
os9000 or os9k (OS-9)

-tp[=]<name>
Specify target processor and options, where <name> is target:
386 or x86 (Intel x86 (386+) family)
68k (Motorola 68k family)
arm (ARM family)
mips (MIPS family)
ppc (PowerPC family)
sh, sh3 (Hitachi SH3 family)
sh4 (Hitachi SH4 family)
sparc (SPARC family)

-z[[=]<file>]
Read command line arguments from <file> (stdin if no file).

mkdatmod Chapter 1: Utilities

Utilities Reference 213

Description
The mkdatmod utility packages a file into a data module. mkdatmod
can also strip the header and footer off an existing data module.

To create a data module, type mkdatmod, the processor type of the
destination module (using the -tp option), followed by the source file
<in-file> and the destination data module <out-file>. The
created data module <out-file> retains <in-file> as the module
name unless specified otherwise with -n[=]<name>.

To reverse the operation and strip the header and footer off an existing
data module, type mkdatmod -r, followed the by the data module <in-
file> and the destination file <out-file>.

mkdatmod automatically calls the fixmod utility during data module
creation to set the module parity and CRC (fixmod -u), so fixmod
must be accessible on your system.

Examples
$ mkdatmod -tp=ppc junk junkmod
Module: junk - Fixing header parity -Fixing module CRC
$ mkdatmod -r junkmod junk

See Also
fixmod

Chapter 1: Utilities moded

214 Utilities Reference

moded
Edits OS-9 Modules

Syntax
moded [<opts>] [<path>]

OS
OS-9 for 68K

Options
-d[=]<path>

Uses <path> for the field descriptions (moded.fields).

-e[=]<path>
Uses <path> for the error message file.

-f[=]<path>
Specifies a file consisting of one or more modules to load into the
moded buffer.

Description
The moded utility edits individual fields of certain types of OS-9 for 68K
modules. Currently, you can use the moded utility to change the init
module and any OS-9 for 68K device descriptor module.

The moded utility can edit modules which exist in their own files or
modules which exist among other modules in a single file such as a
bootstrap file. The moded utility updates the module’s CRC and header
parity if changes are made.

Regardless of how you call the moded utility, you always enter the
editor’s command mode. This is designated by the moded: prompt.

If parameters are not specified on the moded command line, the current
module is not loaded into memory.

If a file is specified on the command line, it is assumed to contain a
module of the same name. This module is loaded into the editor’s
buffer and becomes the current module.

moded Chapter 1: Utilities

Utilities Reference 215

If the -f option is used, the specified file is loaded into the editor’s
memory. If a module of the same name exists in the file, it becomes the
current module. If the module does not exist, there is not a current
module.

If the -f option is used and a module name is specified on the
command line, the specified module becomes the current module.

You can execute the following commands from command mode:

Once the moded utility is invoked, it attempts to read the
moded.fields file. This file contains module field information for each
type of module to edit. Without this file, the moded utility cannot
function.

moded searches for moded.fields in the following directories in this
order:

1. Device /dd .
2. The default system device, as specified in the init module

(M$SysDev). If the init module cannot be linked to, the SYS
directory is searched for on the current device.

If the moded utility cannot find moded.fields, it returns an error.

Table 1-19. Commands

Command Description
e(dit) Edits the current module.
f(ile) Opens a file of modules.
l(ist) Lists the contents of the current module.
m(odule) Finds a module in a file.
w(rite) Updates the module CRC and writes to the file.
q(uit) Returns to the shell.
$ Calls the OS-9 shell.
? Prints this help message.

Chapter 1: Utilities moded

216 Utilities Reference

Selecting the Current Module
If you do not specify a module or file on the command line, you may
open a module or file from command mode using the e or f
commands, respectively.

• e prompts for a file name and a module name if different from the
file name. This module then becomes the current module.

• f prompts for the name of a file containing one or more modules. If
a module in the file has the same name as the file, it becomes the
current module by default.

• Use the m command to change the current module.

Edit Mode
To edit the current module, use the e command. If there is not a current
module, the editor prompts for the module name to edit. The editor
prints the name of a field, its current value, and prompts for a new
value. At this point, you can enter any of the following edit commands:

If the definition of any field is unfamiliar, use the ?? command for a
short description of the current field.

Once you have made all necessary changes to the module, exit edit
mode by reaching the end of the module or by typing a period.

At this point, the changes made to the module exist only in memory.

To write the changes to the actual file, use the w command. This also
updates the module header parity and CRC.

Table 1-20. Edit Commands

Command Specification
<expr> A new value for the field.
- Re-displays the last field.
. Leaves the edit mode.
? Prints the edit mode commands.
?? Prints a description of the current field.
<cr> Leaves the current value unchanged.

moded Chapter 1: Utilities

Utilities Reference 217

Listing Module Fields
To examine the field values of the current module, use the l command.
This displays a formatted list of the field names and their values.

The Moded.fields File
The moded.fields file contains descriptions of specific types of
modules. Each module description consists of three parts:

• the module type,
• the field descriptor, and
• the description lines.

Comments may be interspersed throughout the file by preceding the
comment line with an asterisk.

For example:

* this is a comment line
* it may appear anywhere in the moded.fields file

1. The module type
This is a single line consisting of the module type as specified in
M$Type in the module header and the device type as specified in
PD_DTP in the device descriptor. Both values are specified as
decimals and are separated from each other by a comma.
The module type line is the only line which begins with a pound sign
(#).
The following example line describes an RBF device descriptor
module:
#15,1

Two module type values are accepted.

Table 1-21. Module Type Values

Value Specification
12 System module (init module only)
15 Device descriptor module

Chapter 1: Utilities moded

218 Utilities Reference

The device type value is only used when a device descriptor module is
being described. The following device type values are accepted.:

1. The field descriptor
This consists of two lines. The first is a textual description of the
module field; the baud rate, parity. and descriptor name. The moded
utility uses this description as a prompt to change this field’s value.
The second line has the following format:
<type>,<offset>,<base>,<value>[,<name>]

<type> specifies the field size in bytes. This is a decimal value.
The following values are accepted.:

<offset>
Specifies the offset of the field from the beginning of the module.
This is a hexadecimal value.
For device-specific fields (see <name>), this offset is the offset of
the field within the DevCon section of the descriptor (and not the
module start).

Table 1-22. Device Type Values

Value Specification
0 SCF
1 RBF
2 PIPE
3 SBF
4 NET
6 UCM
7 SOCKET
11 GFM

Table 1-23. Type Values

Value Specification
1 Byte
2 Word
3 3 byte value
4 Long word
5 Long word offset to a string
6 Word offset to a string

moded Chapter 1: Utilities

Utilities Reference 219

<base>
specifies the numeric base in which the field value is displayed by
the moded utility. The following bases are supported.

<value>
Specifies the default value of the field. This is currently unused; set
it to zero.

<name>
Specifies the driver name for this and each field description that
follows until a new <name> is specified or a module type line is
encountered. This field is optional.
For example, <name> allows descriptors with DevCon sections
specific to certain drivers to be edited.
The following lines describe a “descriptor name” field:
descriptor name
5,c,0,0
The field consists of a long-word offset to a string. It is offset 12
bytes from the beginning of the module. The display base is in
ASCII.

1. Description lines
After the Field Descriptor lines, you can use any number of lines to
describe the field.
This description displays when the edit mode command, ??, is used.
Each description line must begin with an exclamation point (!) to
differentiate it from a Field Descriptor. These lines are optional, but
they are useful when editing uncertain module fields.
The following lines might be used to describe the example used for
the Field Descriptor:
! This field contains the name that the descriptor
! will be known by when in memory.

Table 1-24. Bases Supported

Value Specification
0 ASCII
8 Octal
10 Decimal
16 Hexadecimal

Chapter 1: Utilities moded

220 Utilities Reference

2. Repeated Sequences.
Braces ({ })can be used to surround a sequence of field descriptor
and description lines to imply that the sequence is repeated one or
more times.
The fields are assumed to be repeated within the descriptor until the
value of the first field is zero. The offset values used within the
repeated sequence determine the format of each structure.
The first offset specified denotes the offset where the repeated
sequences begin. Subsequent offsets specify the format of the
repeated sequences. Refer to the supplied moded.fields file for an
example of repeated sequences.

Example Module Description in Moded.fields:
The following example shows one way to set up a module description:

**
*the following section describes an RBF device descriptor *
**
#15,1
descriptor name
5,c,0,0
! This field contains the name that the descriptor will
! be known by when in memory.
port address
4,30,16,0
! This is the absolute physical address of the hardware
! controller.
irq vector
1,34,10,0
! This is the irq vector that the device will assert.
! Auto-vectored interrupt devices will use vectors 25-31.
! Vectored interrupt devices will use vectors 64-255.

The Provided Moded.fields File:
The provided moded.fields file comes with module descriptions for
standard RBF, SBF, SCF, PIPE, NETWORK, UCM, and GFM module
descriptors. It also includes a description for the init module.

mshell Chapter 1: Utilities

Utilities Reference 221

mshell
Command Interpreter

Syntax
mshell

OS
OS-9; OS-9 for 68K

Description
MShell is a command interpreter designed to help you become as
productive as possible when working with the OS-9/OS-9 for 68K
operating systems. It accomplishes this by providing keyboard shortcuts
and a means to automate menial tasks. It is compatible with the
current OS-9/OS-9 for 68K shell.

MShell started as a port of the OS-9 standard shell to OS-9 for 68K.
From that point, enhancements replaced some built-in features of OS-9
and features unique to MShell were added. Now, MShell contains
many of the same features as UNIX shells, as well as some OS-9/OS-9
for 68K specific options.

MShell Features
Refer Chapter 5 for more information.

MShell has many features that do not exist in the standard OS-
9/OS-9for 68K shell. These features fall into three basic categories:

• Command line interface.
• Procedure files.
• Built-In Commands and Command Line Options.

Chapter 1: Utilities mv

222 Utilities Reference

mv
Move a File/Directory

From One Directory to Another

Syntax
mv [<opts>] <srcpath> [<srcpaths>] [<dstpath>]

OS
OS-9; OS-9 for 68K

Options
-f

Forces move even if the <srcpath> is write-protected. (OS-9)

-r
Rewrites existing files. (OS-9)

-w[=]<dir name>
Moves specified file(s) to <dir name>. (OS-9)

-x
Gets files from execution directory.

-z
Gets file names from standard input.

-z[=]<file>
Gets file names from <file>.

mv Chapter 1: Utilities

Utilities Reference 223

Description
The mv utility moves a file or directory from one directory into another.

You can also use the mv utility to do a rename operation although the
rename utility is better suited for this purpose.

Type mv, the pathlist of the file or directory to move, then the pathlist of
where it is to be moved. If more than one file is to be moved, type mv,
the names of the files to be moved separated by spaces. Use the -w
option to specify the directory where the files are to be moved.

Examples
Move joe from CMDS to CMDS/DAVEL.

$ mv CMDS/joe CMDS/DAVEL/joe

Move steve to current directory.

$ mv CMDS/steve

Move all the files directories in the current directory.

$ mv * -w=/h0/USR/YOU/YOURFILES

Move the files listed in whatfiles.

$ mv -z=whatfiles -w=/h0/USR/YOU/THESEFILES

Chapter 1: Utilities os9cmp

224 Utilities Reference

os9cmp
Compares Two Binary Files

Refer to cmp, os9cmp.

os9del Chapter 1: Utilities

Utilities Reference 225

os9del
Deletes a File

Refer to del, os9del.

Chapter 1: Utilities os9deldir

226 Utilities Reference

os9deldir
Delete Files within a Directory

Syntax
deldir [<opts>] {<path>}

os9del OS
WIN

Options
-e

Erases the disk space that files in the directory occupied.

-f
Deletes files regardless of whether write permission is set.

-l
Check for hard links to directories.
When -l is used, each directory is checked for other hard directory
links. If other hard links are detected, the directory contents will
not be deleted or will search for other directories to delete. If no
hard links are detected, the contents are deleted.
Failure to use -l in the presense of hard links leads to the removal
of directory contents, though (empty) directories will be left on the
disk.

-z
Reads the directory names from standard input.

-z=<file>
Reads the directory names from <file>.

os9deldir Chapter 1: Utilities

Utilities Reference 227

Description
os9deldir deletes directories and all subdirectories and files from an
OS-9 formatted disk from a Windows host.It works similarly to deldir;
however, os9deldir does not echo directory names back to the user
for confirmation. If it encounters a file for which write permissions are
not set, os9deldir will exit.

Example
The following example uses the -f option to delete a directory.

Step 1. At the C:/> prompt, type os9dir /d0. This allows you to view the
contents of the OS-9 floppy disk. The following information is displayed:

Directory of /d0 16:45:49

CMDS SYS firstboot iplfd
iplhd iplhdnoq sysboot

Step 2. Type os9deldir /d0/SYS next to delete the SYS directory. The
following message should appear:

os9deldir.EXE: can't access 'startup' - C:/>

This message tells you that you do not have the necessary permissions
to delete the file startup; therefore, the SYS directory will still appear
when you perform another os9dir/ do command. To delete a file
from this directory, regardless of permission, type the following
command:

os9deldir -f /d0/SYS

The file should now be gone.

See Also
del, os9del
deldir

Chapter 1: Utilities os9dump

228 Utilities Reference

os9dump
Displays Formatted Dump

Refer to dump, os9dump.

os9gen Chapter 1: Utilities

Utilities Reference 229

os9gen
Builds and Links Bootstrap File

Syntax
os9gen [<opts>] <devname> {<path>}

OS
OS-9 for 68K

Options
-b[=]<num>

Allocates <num> k bytes for use by os9gen. The default memory
size is 64K.

-e
Allows you to use large (greater than 64K) and/or non-contiguous
files. Extended Boot. Bootstrap ROMs must support this feature.

-q[=]<file>
Set sector zero pointing to <file>. Quick Boot.

-r
Removes the pointer to the boot file. This file is not deleted.

-x
Searches the execution directory for pathlists.

-z
Reads the file names from standard input.

-z=<file>
Reads the file names from <file>.

Chapter 1: Utilities os9gen

230 Utilities Reference

Description
The os9gen utility creates and links the OS9Boot file required on any
disk from which OS-9 for 68K is to be bootstrapped.

You can use the os9gen utility to:

• Make a copy of an existing boot file.
• Add modules to an existing boot file.
• Create an entirely new boot file for a different system.

Type os9gen and the name of the device on which to install the
OS9Boot file.

The os9gen utility creates a working file called TempBoot on the device
specified. Each file specified on the command line is opened and
copied to the TempBoot file.

Only super users (0.n) may use this utility. Also, you can only use the
os9gen utility on format-enabled devices.

After all input files are copied to TempBoot, any existing OS9Boot file
on the target device is renamed OldBoot. If an OldBoot file is already
present, the os9gen utility deletes it before renaming OS9Boot.

TempBoot is then renamed OS9Boot. Its starting address and size are
linked in the disk’s Identification Sector (LSN 0) for use by the OS-9 for
68K bootstrap firmware.

If your boot file is non-contiguous or larger than 64K, use the -e option.

Your bootstrap ROMs must support this feature. If they do not, you
should not use this option.

If you use the -z option, the os9gen utility first uses the files specified
on the command line and then the file names from its standard input,
or from the specified pathlist, one pathlist per line. If the names are
entered manually, no prompts are given and the end-of-file key (usually
<escape>).

To determine what modules are necessary for your boot file, use the
ident utility with the OS9Boot file that came with your system.

The -q option updates information in the disk’s Identification Sector by
directing it to point to a file already contained in the root directory of
the specified device.

os9gen Chapter 1: Utilities

Utilities Reference 231

The -q option is useful when restoring the OldBoot file as the valid
boot on the disk. The os9gen utility renames the specified file to be
OS9Boot and saves the current boot as described previously.

The -r option removes the pointer to the boot file but does not delete
the file. This is useful if you delete the bootfile from your disk (using
the del command).

Deleting the bootfile from the file structure does not remove the
bootfile pointers from the disk’s Identification Sector. You can also
use it to make a disk non-bootable without deleting the bootfile.

Examples
This command manually installs a boot file on device /d1 which is an
exact copy of the OS9Boot file on device /d0.

$ os9gen /d1 /d0/os9boot

The following three methods manually install a boot file on device /d1.
The boot file on /d1 is a copy of the OS9Boot file on device /d0 with
the addition of modules stored in the files /d0/tape.driver and
/d2/video.driver:

Method 1
$ os9gen /d1 /d0/os9boot /d0/tape.driver
/d2/video.driver

Method 2
$ os9gen /d1 /d0/os9boot -z
/d0/tape.driver
/d2/video.driver
[ESCAPE]

Method 3
$ os9gen /d1 -z
/d0/os9boot
/d0/tape.driver
/d2/video.driver
[ESCAPE]

Chapter 1: Utilities os9gen

232 Utilities Reference

You can automatically install a boot file by building a bootlist file and
using the -z option to either redirect the os9gen utility’s standard input
or use the specified file as input:

$ build /d0/bootlist

Create file bootlist

? /d0/os9boot

Enter first file name

? /d0/tape.driver

Enter second file name

? /d2/video.driver

Enter third file name

? * V1.2 of video driver

Comment line

? [RETURN]

Terminate build

$ os9gen /d1 -z </d0/bootlist

Redirects standard input

$ os9gen /d1 -z=/d0/bootlist

Reads input from pathlist

The os9gen utility treats any input line preceded by an asterisk (*) as a
comment.

The following command makes the OldBoot file the current boot and
saves the current OS9BOOT file as OldBoot:

$ os9gen /d1 -q=oldboot

os9make Chapter 1: Utilities

Utilities Reference 233

os9make
Maintains, Updates, and Regenerates Groups of Programs

Syntax
os9make {<option(s)>} [<target>] {[<target>]}
[<macros>]

OS
OS-9; OS-9 for 68K; WIN; UNIX

Options
-b

Does not use built-in rules.

-bo
Does not use built-in rules for object files.

-d
Prints the dates of the files in the makefile (debug mode).

-dd
Double debug mode. Very verbose.

-e
Imports environment variables as macros in the makefile.

-ee
Forces imported environment variables (implies -e flag) to override
all other macro definitions. This includes command line definitions
unless -ll is in effect.

-f-
Reads the makefile from standard input.

-f[=]<path>
Specifies <path> as the makefile. If you do not specify -f- or -
f=<path>, os9make looks for a file named makefile. If <path>
is specified as a hyphen (-), os9make commands are read from
standard input.

Chapter 1: Utilities os9make

234 Utilities Reference

-i
Ignores errors.

-l
Switches the order of precedence to os9make later macros
override previous definitions. This flag forces os9make to behave
similar to the order of precedence used by UNIX make.

-ll
Forces command line macros to have the highest precedence
(cannot be overridden). This flag also turns on the -l flag.

-m
Ignores undefined macros rather than causing a fatal os9make
error.

-mode[=]<mode>
Sets the mode (compat, ucc, or c68). If used on the command
line, this option overrides the environment variable (MWMAKEOPTS).
If the option is set in the makefile, it overrides both the
environment variable and the command line option.

-n
Displays commands but do not execute them.

-nn
Same as -n but do execute change directories and call sub makes.

-o
Dependencies without ROFs (.r) will succeed and not give an
error. For example:
RDIR = rels
make.date: clean
 touch make.date
clean: zfile
 del $(RDIR)/state.r

Assumptions abou .r/.o are made, however, when no
dependencies are provided (for example, clean:).

-p
Don’t change slash to backslash in makefile lines (os9make only).

os9make Chapter 1: Utilities

Utilities Reference 235

-r
Views the built-in rules for the current mode. For example,
os9make -rn lists the current rules without running the makefile.

-s
Silent Mode. Executes commands without echo.

-t
Updates the file dates without executing commands.

-u
Does the make regardless of the file dates.

-w
Why. Print reason for executing command.

-x
Uses the cross-compiler/assembler.

-z[=<path>]
Gets a list of files to make from standard input or <path>.

Description
The os9make utility determines whether a file needs to be updated. It
examines the dates of the target file and the files used to create the
target file. If the os9make utility determines that the file must be
updated, it executes specified commands to recreate the file.

The os9make utility has several built-in assumptions specifically
designed for compiling high-level language programs; however, you
may use os9make to maintain any files dependent on updated files.

The os9make utility executes commands from a special type of
procedure file called a “makefile”. The makefile describes the
dependent relationships between files used to create the <target>
file(s). A makefile may describe the commands to create many files.

If the os9make utility is called without a target file on the command
line, the os9make utility attempts to make the first target file described
in the makefile. If one or more target file is entered on the command
line, the os9make utility reads and processes the entire makefile and
only attempts to make the appropriate file(s).

Chapter 1: Utilities os9merge

236 Utilities Reference

os9merge
Copies and Combines Files to Standard Output

Refer to merge, os9merge.

p2init Chapter 1: Utilities

Utilities Reference 237

p2init
Links and Initializes An OS9P2 Module

Syntax
p2init <module>

OS
OS-9; OS-9 for 68K

Description
Use the p2init utility to install OS9P2 modules.

Only the super user may use this utility.

The p2init utility initializes an OS9P2 system extension module after
the operating system is already up and running. This provides
additional functionality which would not be available when the OS9P2
module is initialized as part of the system startup.

You can also use the p2init utility to add OS9P2 modules to a running
ROM-based system.

For Version 3.0 of OS-9/Atomic OS-9 for 68K, FPU and FPSP math
emulation modules may not be installed with the p2init utility.

Chapter 1: Utilities padrom

238 Utilities Reference

padrom
Extends File Size

Syntax
padrom {<option(s)>} <size> <file> [<file>]

OS
OS-9; OS-9 for 68K

Options
-b[=]<num>[k]

Specifies the buffer size in bytes to use. The ‘k’ sub-option converts
<num> to k bytes. The default is 16k.

Description
Use the padrom utility when making the ROMs for OS-9 Board Support
Packages (BSP).

The padrom utility appends bytes with a hex value of FF to the named
file, extending the file to the specified <size>.

Examples
The following shows how to use the padrom utility to extend the size of
the booter and modules files.

$ dir -e booter modules
 Owner Last modified Attributes Sector Bytecount Name
 ------- ------------- ---------- ------ --------- ----
 0.29 93/11/12 1142 ------wr 1CEB38 12153 booter
 0.29 93/11/12 1143 ------wr 1CEB48 256 modules

If you try to pad a file to a size smaller than its current size, the padrom
utility displays the following message.

$ padrom 0x2000 booter
padrom: file booter already bigger than 8192

This example specifies a hex value for <size>.

$ padrom 0x8000 booter

padrom Chapter 1: Utilities

Utilities Reference 239

This example specifies a decimal value for <size>.

$ padrom 1024 modules
$ dir -e booter modules
 Owner Last modified Attributes Sector Bytecount Name
------- ------------- ---------- ------ --------- ----
 0.29 93/11/12 1144 ------wr 1CEB38 32768 booter
 0.29 93/11/12 1144 ------wr 1CEB48 1024 modules

Chapter 1: Utilities park

240 Utilities Reference

park
Park Hard Drive Heads

Syntax
park [<opts>] [<device>] [<opts>]

OS
OS-9

Description
The park utility parks hard drive heads.

paths Chapter 1: Utilities

Utilities Reference 241

paths
Display Process Paths

Syntax
paths [<opts>] [<process id list>]

OS
OS-9; OS-9 for 68K

Options
-e Displays all processes of all users.

Description
The paths utility displays path information about processes running on
the system owned by the user invoking the routine.

Processes can switch states rapidly, usually many times per second.
Therefore, the display is a snapshot taken at the instant the command
is executed and shows only those processes running at that exact
moment.

Display information about specific processes by listing their process IDs
in <process id list>.

The paths utility with no options displays ten pieces of information for
each process:

Table 1-25. Process Information

Name Specification
Id Process ID
PId Parent process ID
Grp.usr Owner of the process (group and user)
MemSiz Amount of memory the process is using
Module &
I/O

Process name and I/O paths:

If several of the paths point to the same pathlist, the
identifiers for the paths are merged.

Chapter 1: Utilities paths

242 Utilities Reference

Examples
$ paths -e
 Id PId Grp.Usr MemSiz Module & I/O
 2 0 0.0 4.00k sysgo <h0:startup >>>term
3)term
 3 2 0.0 52.00k mshell <>>>term
 22 0 0.0 32.00k telnetdc <pks00 4)pkm00 5)nil
6)socket
 30 0 0.0 20.00k routed <>>>nil 3)socket
 31 0 0.0 2.00k ifman
 32 0 0.0 2.00k sockman
 35 0 0.0 24.00k telnetd <>>>nil 3)socket
 36 0 0.0 24.00k ftpd <>>>nil 3)socket
 37 22 0.190 52.00k mshell <>>>pks00
 52 37 0.190 44.00k umacs <>>>pks00
 55 3 0.0 40.00k paths <>>>term
 56 0 0.0 64.00k ftpdc <>socket >>nil

partition Chapter 1: Utilities

Utilities Reference 243

partition
 Partition OS-9/68k hard disks

Syntax
partition [<opts>] <device name> [<descs>] [<opts>]

OS
OS-9 for 68K

Options
-r

Replace any existing files.

-w=<dir>
Write partition descriptors to specified directory <dir>. Default is
current directory.

-z=<file>
Reads names of partition descriptors from <file>.

Description
OS-9 for 68K logical disk drives are limited to approximately 4GB in
size. The partition utility facilitates breaking a large (greater than 4GB)
drive up into a number of smaller logical drives. Using the partition
utility, the size of each partition is specified after which a device
descriptor is created for each partition. The created device descriptors
can then be read in by the partition utility to allow subsequent
modification of the partitions.

The partition utility takes the name of the device to be partitioned as
follows:

partition /h0

Chapter 1: Utilities partition

244 Utilities Reference

The first action of partition is to create partitions for any space on
the device that is not allocated. If descriptors for existing partitions were
included on the command line or via the -z option, only the space not
covered by those descriptors will be allocated. After completing the
initial allocation, the following options display:

1. create new partition
2. edit existing partition
3. delete existing partition
4. display partition information
5. write device descriptors for partitions
6. format a partition
7. format all partitions
8. exit

You enter the number of the action to be performed. For any numerical
choice such as a partition number of command number, the letter ‘x’
can also be entered to abort the command (or exit the utility in the case
of a command number.)

Create New Partition (1)
This option allows the creation of a new partition. You will are prompted
for a name for the partition. The default name is the name of the device
being partitioned followed by a number representing its partition
number. For example, if the device being partitioned is named h1, the
partition names will be h11, h12, etc. If the default name is acceptable,
simply type the enter key. This is name of the device descriptor
generated for the partition.

You are then prompted to enter the partition’s size as number of
megabytes, number of gigabytes or percent of the total disk capacity.
The default is the smaller of the maximum partition size or the amount
of space remaining on the device. If the default size is acceptable,
simply type the enter key. To specify megabytes enter the number (the
number can optionally be followed by m and can be a decimal fraction)
for example 214 or 214.3m. To specify gigabytes enter the number as a
decimal fraction followed by g, for example 3.4g. To specify the
percentage of the total drive capacity, enter the number followed by the
% sign, for example 45%. If there is insufficient space left to allocate the
partition, the partition size is set to the amount of space available. If the
size specified is larger than the maximum of 4GB, the partition size is
set to the maximum.

partition Chapter 1: Utilities

Utilities Reference 245

Edit Partition (2)
This option allows the size and name of a partition to be changed. You
will be prompted to enter the partition number after which you will be
prompted to enter the name and size of the partition as described
above for Create New Partition (1).

Delete Partition (3)
This option deletes a partition. You are prompted to enter the partition
number to delete. Use the delete option with care.

Display Partition Information (4)
This option allows you to view the name and size of each existing
partition. If there is any disk space un-allocated, that information will
also be displayed.

Write Device Descriptors (5)
This option causes the device descriptors for each partition to be
generated. For each descriptor, a format enabled version is also
created. The format enabled version has the suffix fmt appended to the
partition name. The device descriptors by default are written to the
BOOTOBJS directory in the current execution directory by default. This
can be overridden using the -w option described above. If any of the
files to be written already exist, you will be prompted as to whether you
want to overwrite them or not. Using the -r option causes files to be
overwritten without any prompting.

Format a Partition (6)
This option allows a single partition to be formatted. The partition is
neither physically or logically formatted since this is not normally
needed for SCSI drives.

Format All Partitions (7)
This option allows all the defined partitions to be logically formatted.
The user is prompted before each partition is formatted to ensure that
none are accidentally overwritten. The partitions are neither physically
or logically formatted since this is not normally needed for SCSI drives.

Chapter 1: Utilities partition

246 Utilities Reference

Exit (8)
This option exits the partition utility. If partition sizes have changed since
the partitions were formatted, the user is prompted as to whether a
format should be done. If the answer is yes, the Format All
Partitions (7) option is invoked. If partition information has
changed since the last time the device descriptors were written, you are
prompted as to whether or not the descriptors should be written before
exiting.

pcdcheck Chapter 1: Utilities

Utilities Reference 247

pcdcheck
Check Specified Device for Correct FAT File System

Syntax
pcdcheck [<opts>] {<devname>} [<opts>]

OS
OS-9

Options
-n

Answer “no” to all repair prompts.

-q
Quiet mode. (Only display error messages.)

-r
Read-only mode. (Do not modify filesystem.)

-v
Verbose mode.

-y
Answer “yes” to all repair prompts.

Description
The pcdcheck utility may be used to check for a valid PCF
(FAT12 / FAT16 / FAT32) format on a device.

Example
$ pcdcheck -v /mhc1

/mhc1@: Phase 1 -- Checking boot sector area

/mhc1@: 62880 blocks, size 512 bytes (30.70 Mbytes)

/mhc1@: FAT_start=1 FAT_sects=62 dir_start=125
data_start=157

Chapter 1: Utilities pcdcheck

248 Utilities Reference

/mhc1@: format=FAT16 clusters=15690 label="NO NAME"

/mhc1@: Phase 2 -- Checking directory structure

/mhc1@: 27 directories containing 386 files

/mhc1@: Phase 3 -- Checking File Allocation Table
(FAT16)

/mhc1@: 8 free clusters (16.00 Kbytes)

See Also
dcheck

pcformat Chapter 1: Utilities

Utilities Reference 249

pcformat
Creates a FAT File System for use with PCF

Syntax
pcformat [<opts>] {<devname>}

OS
OS-9

Options
-N

Do not create file system; just print out parameters

-B <path>
Get bootstrap from file

-F <type>
FAT type (12, 16, or 32)

-I <value>
Volume ID

-L <str>
Volume label (up to 11 chars)

-O <str>
OEM string

-S <count>
Bytes/sector

-a <count>
Sectors/FAT

-b <count>
Block size

-c <count>
Sectors/cluster

Chapter 1: Utilities pcformat

250 Utilities Reference

-e <count>
Root directory entries

-f <count>
Standard format (sectors per track)

-h <count>
Drive heads

-i <sec>
File system info sector

-k <sec>
Backup boot sector

-m <type>
Media descriptor (0xf0, etc.)

-n <count>
Number of FATs

-o <count>
Hidden sectors

-q
Quiet (no prompt, just format)

-r <count>
Reserved sectors

-s <count>
File system size (sectors)

-u <count>
Sectors/track

-?
Displays the options

pcformat Chapter 1: Utilities

Utilities Reference 251

Description
The pcformat utility creates a PC file system on a low-level formatted
random access device under PCF. It does not do low-level formatting or
sector integrity checking. Instead, pcformat uses information in the
device descriptor to create an empty PC file system that can then be
used with PCF.

For many removable media devices, it is important to verify that the
media being formatted has been low-level formatted and is free from
errors. The low-level formatting and error checking should be done
using the format utility.

The pcformat utility can format FAT12, FAT16 and FAT32 file systems
with a variety of options.

PCF and pcformat support FAT12, FAT16, and FAT32 file formats.
Although PCF and pcformat have been tested to interoperate well,
some FAT32 file system configurations are not supported by Windows®.
It is recommended that FAT32 be used only on partitions 2GB and
larger.

When formatting, pcformat will attempt to determine the size of the
drive directly from the driver as well as the information in the device
descriptor.

The pcformat utility supports the following standard floppy formats:
160, 180, 320, 360, 720, 1200, 1440, 2880. You can force a
particular floppy format on any floppy device by using the –f option
followed by the desired format.

pcformat /md0_3 –f 360

Chapter 1: Utilities pd

252 Utilities Reference

pd
Prints Working Directory

Syntax
pd [<opts>]

OS
OS-9; OS-9 for 68K

Options
-a

Displays all directory paths.

-d
Displays the current data directory.

-m
Displays the current and alternate module directory paths. (OS-9)

-x
Displays the path to the current execution directory.

Description
The pd utility displays a pathlist showing the path from the root
directory to your current data directory.

Programs can use the pd utility to discover the actual physical location
of files or by users to find their whereabouts in the file system.

The command pd -x displays the pathlist from the root directory to the
current execution directory.

pd Chapter 1: Utilities

Utilities Reference 253

Examples
$ chd /D1/STEVE/TEXTFILES/MANUALS

$ pd
/d1/STEVE/TEXTFILES/MANUALS

$ chd ..

$ pd
/d1/STEVE/TEXTFILES

$ chd ..

$ pd
/d1/STEVE

$ pd -x
/d0/CMDS

Chapter 1: Utilities pinfo

254 Utilities Reference

pinfo
Partition Table Utility

Syntax
pinfo <device name>

OS
OS-9

Description
Although OS-9 only supports the use of four primary partitions it is
possible to use DOS extended partitions with the PCF file manager.

To use DOS extended partitions device descriptors must be created
which include the 'logical sector offset' to the partition desired. Further,
the 'logical unit number' must match the extended partition primary
entry.

To aid in creation of PCF DOS extended descriptors for OS-9, the
pinfo utility may be used.

The pinfo utility displays the value of the 'logical unit number' and
'logical sector offset' required to create the new descriptor. Also, the
"FMGR" section shows if the given partition is supported by PCF.

The pinfo utility displays information related to the way your hard disk
is currently partitioned. If the partitions are changed new descriptors for
the extended partitions are required.

The pinfo utility expects one argument, the device name. The device
name should be the name of the RAW device descriptor and not a
descriptor based on a partition.

IDE:/hcfmt or /hdfmt
SCSI:/hs0fmt, /hs1fmt through /hs7fmt

pinfo Chapter 1: Utilities

Utilities Reference 255

Examples
The following example of a DOS formatted hard disk contains one DOS
primary partition, one DOS extended partition and ten DOS logical
partitions.

$ pinfo /hcfmt

Primary Partitions
Partition LUN LSNOFFS Par_Type FMGR
--
01 01 0x00000000 DOS 16-bit FAT >=32M PCF
02 02 0x00000000 DOS Extended NA
03 03 0x00000000 EMPTY NA
04 04 0x00000000 EMPTY NA

================ Extended Partitions ====================

Partition LUN LSNOFFS Par_Type FMGR
--
01 01 0x00064680 DOS 16-bit FAT >=32M PCF
02 01 0x000c8d00 DOS 16-bit FAT >=32M PCF
03 01 0x00191a00 DOS 16-bit FAT >=32M PCF
04 01 0x001c3d40 DOS 16-bit FAT >=32M PCF
05 01 0x001f6080 DOS 16-bit FAT >=32M PCF
06 01 0x002283c0 DOS 16-bit FAT >=32M PCF
07 01 0x0025a700 DOS 16-bit FAT >=32M PCF
08 01 0x0028ca40 DOS 16-bit FAT >=32M PCF
09 01 0x002bed80 DOS 16-bit FAT >=32M PCF
10 01 0x002f10c0 DOS 16-bit FAT >=32M PCF

Chapter 1: Utilities pinfo

256 Utilities Reference

Creating New Descriptors
Use editmod to create new descriptors for the DOS logical drives.
There are three ways to do this.

Step 1. Create descriptor information in systype.h and create new makefiles.
This is done the same way as stock descriptors are created.

Step 2. Cloning. This is the quickest method. If you are cloning an IDE PCF
based descriptor, enter the following:

$ chd /h0/mwos/os9000/80386/ports/pcat/cmds/bootobjs/desc/rb1003
$ copy mhc1 mhc5
$ editmod -dPORT -e mhc5

1. module header
2. Device descriptor data definitions
3. PCF path options
4. PCF Logical Unit Static Storage

Which? [?/1-4/p/t/a/w/q] 1
1. module owner's group number : 0
2. module owner's user number : 0
3. module name : "mhc1"
4. access permissions : 0x555
5. type/lang : 0xf01
6. rev/attr : 0x8000
7. edition : 1

Which? [?/1-7/p/t/a/w/q] 3
module name : "mhc1"
New string: mhc5

1. module owner's group number : 0
2. module owner's user number : 0
3. module name : "mhc5"
4. access permissions : 0x555
5. type/lang : 0xf01
6. rev/attr : 0x8000
7. edition : 1

Which? [?/1-7/p/t/a/w/q] p
1. module header
2. Device descriptor data definitions
3. PCF path options
4. PCF Logical Unit Static Storage

pinfo Chapter 1: Utilities

Utilities Reference 257

Which? [?/1-4/p/t/a/w/q] p
1. module header
2. Device descriptor data definitions
3. PCF path options
4. PCF Logical Unit Static Storage

Which? [?/1-4/p/t/a/w/q] 3
 1. number of surfaces : 5
 2. verify disk writes (0=verify) : 1
 3. device format : 0x8003
 4. number of cylinders : 930
 5. default blocks/track : 17
 6. default blocks/track for trk0 : 17
 7. segment allocation size : 1
 8. block interleave offset : 1
 9. track base offset : 0
10. block base offset : 0
11. # tries : 7
12. size of block in bytes : 512
13. control word : 0x7
14. first write precomp cylinder : 128
15. first reduced write current cylinder : 930
16. park cylinder for hard disks : 0
17. lsn offset for partition : 0
18. max transfer size in terms of bytes : 0x10000

Which? [?/1-18/p/t/a/w/q] 17
 lsn offset for partition : 0
 New value: 0x00064680
 1. number of surfaces : 5
 2. verify disk writes (0=verify) : 1
 3. device format : 0x8003
 4. number of cylinders : 930
 5. default blocks/track : 17
 6. default blocks/track for trk0 : 17
 7. segment allocation size : 1
 8. block interleave offset : 1
 9. track base offset : 0
10. block base offset : 0
11. # tries : 7
12. size of block in bytes : 512
13. control word : 0x7
14. first write precomp cylinder : 128
15. first reduced write current cylinder : 930
16. park cylinder for hard disks : 0
17. lsn offset for partition : 411264
18. max transfer size in terms of bytes : 0x10000

Chapter 1: Utilities pinfo

258 Utilities Reference

Which? [?/1-18/p/t/a/w/q] p
 1. module header
 2. Device descriptor data definitions
 3. PCF path options
 4. PCF Logical Unit Static Storage

Which? [?/1-4/p/t/a/w/q] p
 1. module header
 2. Device descriptor data definitions
 3. PCF path options
 4. PCF Logical Unit Static Storage

Which? [?/1-4/p/t/a/w/q] 2
 1. device port address : 0x1f0
 2. logical unit number : 1
 3. path descriptor size : 0x168
 4. device type : 10
 5. device mode capabilities : 0xffff
 6. file manager name : "pcf"
 7. driver name : "rb1003"
 8. sequential or random : 2

Which? [?/1-8/p/t/a/w/q] 2
logical unit number : 1
New value: 1
 1. device port address : 0x1f0
 2. logical unit number : 1
 3. path descriptor size : 0x168
 4. device type : 10
 5. device mode capabilities : 0xffff
 6. file manager name : "pcf"
 7. driver name : "rb1003"
 8. sequential or random : 2

Which? [?/1-8/p/t/a/w/q] w
Which? [?/1-8/p/t/a/w/q] q

$ editmod -dPORT -l mhc5

module owner's group number : 0
module owner's user number : 0
module name : "mhc5"
access permissions : 0x555
type/lang : 0xf01
rev/attr : 0x8000
edition : 1
device port address : 0x1f0
logical unit number : 1
path descriptor size : 0x168
device type : 10

pinfo Chapter 1: Utilities

Utilities Reference 259

device mode capabilities : 0xffff
file manager name : "pcf"
driver name : "rb1003"
sequential or random : 2
number of surfaces : 5
verify disk writes (0=verify) : 1
device format : 0x8003
number of cylinders : 930
default blocks/track : 17
default blocks/track for trk0 : 17
segment allocation size : 1
block interleave offset : 1
track base offset : 0
block base offset : 0
tries : 7
size of block in bytes : 512
control word : 0x7
first write precomp cylinder : 128
first reduced write current cylinder : 930
park cylinder for hard disks : 0
lsn offset for partition : 411264
max transfer size in terms of bytes : 0x10000
drive initialized flag : 0x0
interrupt vector : 0x4e
interrupt level : 6
interrupt priority : 10
step rate : 2
DMA transfer mode : 0
drive logical unit number : 0
controller id : 0
total number of cylinders : 930

Step 3. To automate the procedure for Method 2, create script file.

-nx -t

copy mhc1 mhc5 -rf
editmod -e -dPORTS mhc5 >>>/nil
1
3
mhc5
p
p
3
17
0x00064680
p
p
2
2
1
w
q

Chapter 1: Utilities pr

260 Utilities Reference

pr
Prints Files

Syntax
pr [<opts>] {<path>}

OS
OS-9; OS-9 for 68K

Options
An equal sign (=) specifies the additional parameters are optional.

-c[=]<char>
Uses <char> as the specified column separator. A <space> is the
default column separator.

-d[=]<num>
Specifies the actual page depth in lines (default is 66).

-f
Pads the page using a series of \n (new line), instead of a \f (form
feed).

-h[=]<num>
Sets the number of blank lines after title line. The default is 5.

-k[=]<num>
Sets the <num> columns that the output file prints for multi-column
output.

-l[=]<num>
Sets the left margin to <num>. The default is 0.

-m
Prints files simultaneously, one file per column. If three files are
given on the command line, each file is printed in its own column
on the page.

pr Chapter 1: Utilities

Utilities Reference 261

-n[=]<num>
Specifies the line numbering increment: <num>. The default is 1.

-o
Truncates lines longer than the right margin. By default, long lines
are wrapped around to the next line.

-p[=]<num>
Specifies the number of lines per page: <num>. The default is 61.

-r[=]<num>
Sets the right margin to <num>. The default is 79.

-t
Does not print the title.

-u[=]<title>
Use specified title instead of file name. <title> may not be
longer than 48 characters.

-x[=]<num>
Sets the starting page number to <num>. The default is 1.

-z
Reads the file names from standard input.

-z=<file>
Reads the file names from <file>.

Description
The pr utility produces a formatted listing of one or more files to the
standard output.

Type pr and the pathlist(s) of the files to list. The listing is separated into
pages. Each page has the page number, the name of the listing, and
the date and time printed at the top.

The pr utility can produce multi-column output. When printing multiple
output columns with the -m option, if an output line exceeds the column
width, the output line is truncated.

The pr utility can also print files simultaneously, one per column.

Chapter 1: Utilities pr

262 Utilities Reference

If files are not specified on the command line and the -z option is used,
standard input is assumed to be a list of file names, one file name per
input line, to print out.

If files are not specified on the command line and the -z option is not
used, standard input is displayed on standard output.

Files and options may be intermixed.

A typical page of output consists of 66 lines of output. Therefore, the pr
utility uses the following default parameters: 61 lines of output with 5
blank lines as a trailer. The 61 lines of output contain one line for the
title, 5 blank lines for a header, and 55 lines of text. The trailer can be
reduced or eliminated by expanding the number of lines per page.

Examples
The following example prints file1 using the default values of 55 lines
of text per page, one line for the title, and 5 lines each for the header
and trailer:

$ pr file1 >/p1

The following example prints file1 with no title. This uses 56 lines of
text per page:

$ pr file1 -t >/p1

The following example prints file1 using 90 lines per page. Pagination
begins with page 10:

$ pr file1 -x=10 p=90 >/p1

To display a numbered, unformatted listing of the data directory, type:

$ dir -u ! pr -n

printenv Chapter 1: Utilities

Utilities Reference 263

printenv
Prints Environment Variables

Syntax
printenv

OS
OS-9; OS-9 for 68K

Description
The printenv utility prints any defined environment variables to
standard output.

Example
$ printenv
NAME=andy
TERM=abm85
LIST=/p1
As_long_as_you_want=long_value

See Also
setenv
unsetenv

Chapter 1: Utilities procs

264 Utilities Reference

procs
Displays Processes

Syntax
procs [<opts>][<process id list>]

OS
OS-9; OS-9 for 68K

Options
-a

Displays alternate information.

-b
Displays regular and alternate procs information.

-e
Displays all processes of all users.

-t
Displays thread information (OS-9 only; not valid for OS-9 for 68K
systems).

-x
Displays an extended process descriptor listing (OS-9 only; not
valid for OS-9 for 68K systems).

Description
The procs utility displays a list of processes running on the system
owned by the user invoking the routine.

Processes can switch states rapidly, usually many times per second.
Therefore, the display is a snapshot taken at the instant the command
is executed and shows only those processes running at that exact
moment.

Display information about specific processes by listing their process IDs
in <process id list>.

procs Chapter 1: Utilities

Utilities Reference 265

The procs utility displays the following information for each process:

Table 1-26. Process Information

Name Specification
Id Process ID
PId Parent process ID
Thd Thread count (OS-9 only)
Grp.usr Owner of the process (group and user)
Prior Initial priority of the process
MemSiz Amount of memory the process is using
Sig Last pending signal value for the process/exit status for

dead process
CPU Time Amount of CPU time the process has used
Age Elapsed time since the process started
S State of the process

Currently in CPU. Process is currently in the CPU. This will
always be the procs command since it has to be running
when it takes the snapshot of the process table.

Active. Process must wait; another process is in the CPU.

Debug Mode. Process is currently being debugged.

Waiting on Event. Process is blocked, waiting on an event.

Waiting on a Semaphore. Process is blocked, waiting on a
semaphore.

Waiting on a Child. Process is blocked, waiting on a child
process to terminate.

Suspended. Process blocked by special kernel system call.

Zombie. Process has been terminated, but the parent has
not performed a wait to read the exit status.

Module &
I/O

Process name and standard I/O paths:

< Standard input
> Standard output
>> Standard error output

If several of the paths point to the same pathlist, the
identifiers for the paths are merged.

Chapter 1: Utilities procs

266 Utilities Reference

The command procs -a displays the following information:

• the process ID
• the parent process ID
• the process name, and
• standard I/O paths and
• six new pieces of information

Extended Process Descriptor Listing
The -x option displays an extended process descriptor listing of OS-9
values. To view this list, type the following command from a shell
prompt:

procs -x <process ID number>

Below is an example of the output you will receive.

$ procs -x 2

 2 mshell Owner: 0.0

 Parent ID: 0 Thread Child Count: 0

 Child Count: 1 (3)

 System SP: $8ffe8e74 User SP: $0c2714f8 Exception SP:
$8ffe8f7c

 Static Storage: $0c26c000 Static Size: $5770

 Priority: 128 Age: 128

 Queue: Sleeping

 Status: $600 ()

 Main module directory: / Alt module directory: /

 Current memory usage: 40.00k Number of segments: 3

 Ticks: 87 CPU Time: 0.87 Age: ???

 F_Calls:1377 I_Calls:7090 Last:F_SLEEP Input:50016
Output:2933

 Sched Constant: 7ffef73a SS Preemptable: No Deadlock Chain:
0

 Deadlock Chain: 0 Primary Data Size: 22384

 Signal intercept routine installed.

 Signal level: 0 flag: 0 mask: 0 count: 0

 Signal Recursion: 0 Max Signals: 32

 No trap handlers installed.

procs Chapter 1: Utilities

Utilities Reference 267

Subroutine Libraries: csl
The following table defines the fields from the code above. The values
for these fields will vary depending on your system and process ID.

Table 1-27. Extended Process Descriptor Listing (-x Option)

Name Specification
2 Process ID.
mshell Program name.
Owner Owner of the process (Grp.usr).
Parent ID Parent process ID (PId).
Child Count Thread count.
System SP System stack pointer.
User SP User stack pointer.
Exception SP Exception stack pointer.
Static
Storage

Address of static storage.

Static Size Size of static storage.
Priority Initial priority of the process.
Age Elapsed time since the process started.

Chapter 1: Utilities procs

268 Utilities Reference

Queue State of the process (S).

*CPU = Process is currently in CPU. This will always
be the procs command since it has to be running
when it takes the snapshot of the process table.

a = Active. Process must wait because another
process is in the CPU currently.

d = Debug. Process is currently being debugged.

e = Event. Process is blocked waiting on an event.

p = Semaphore. Process is blocked waiting on a
semaphore.

s = Sleeping. Process is blocked waiting on a signal
or time value to elapse.

w = Waiting. Process is blocked waiting on a child
process to terminate.

z = Suspended. Process is blocked by a special
kernel system call.

- = Zombie. Process has been terminated, but
parent has not performed a wait to read exit status.

Table 1-27. Extended Process Descriptor Listing (-x Option)

Name Specification

procs Chapter 1: Utilities

Utilities Reference 269

Status Possible Values:

FpuProc: Process is using the FPU.

RthProc: Representative thread process.

DbgProc: Process is being debugged.

SupStat: Process is executing in system-state.

TimSlep: Process is in a timed sleep.

TimOut: Process's time slice has expired. When it
returns to user-state, it will give up its time slice.

ImgChg: SPU/MMU memory map has changed.

SigPend: Process has a signal pending.

TraceBT: Trace this process; when returning to user
state, suspend and wait for it to be debugged.

Condemn: Process terminated by kernel.

DeadPrc: Process has terminated. The process is
waiting for the exit status to be read. In system state,
the process is required to terminate itself.

Main module
directory

Main directory from which the system will attempt to
execute modules.

Alt module
directory

If the module is not found on the main module
directory, it will be chosen from the list of alternative
directories, if any.

Current
Memory Usage

Amount of memory currently being used.

Number of
segments

Number of sections in memory.

Ticks Number of clock ticks the process has executed.
CPU Time Amount of CPU time the process has used.
Age Elapsed time since the process started.
F_Calls Number of service request calls made.
I_Calls Number of I/O requests made.
Last Last system call made.

Table 1-27. Extended Process Descriptor Listing (-x Option)

Name Specification

Chapter 1: Utilities procs

270 Utilities Reference

Input Number of bytes read.
Output Number of bytes written.
Sched
Constant

Number used to determine the relative age between
processes in the active queue.

Preemptable Declares whether or not the program can be
interrupted.

Deadlock
chain

Process ID of the next process in a deadlock chain.
This is 0 if the process is not in a deadlock chain.

Primary Data
Size

Size of the primary data.

Signal
Interrupt

Declares whether or not a signal interrupt handler
has been installed.

Signal Level The process' signal mask level. This is the count of
nested signal masks that are currently in place.

Signal Flag A flag used in system-state to avoid race conditions
related to signal arrival and signal handling.

Signal Mask This value is reserved and should always be 0.
Signal Count The number of unhandled signals currently pending
Signal
Recursion

The number of times that a signal has been received
by the process and the process has not called
_os_rte() to return from the signal handler.
_os_siglngj() takes advantage of the difference
between non-recursive and recursive signal
handling.

Maximum
Signals

Maximum number of signals the process can store.

Trap Handlers Provides a list of installed trap handlers.
Subroutine
Libraries

Provides a list of installed subroutine libraries.

Table 1-28. Additional Process Information

Name Specification
Aging Age of the process based on the initial priority

and how long it has waited for processing.
F$calls Number of service request calls made.
I$calls Number of I/O requests made.
Last Last system call made.

Table 1-27. Extended Process Descriptor Listing (-x Option)

Name Specification

procs Chapter 1: Utilities

Utilities Reference 271

The -b option displays both sets of information.

The -e option displays information for all processes in the system.

Detailed explanation of all information displayed by the procs utility is
available in the OS-9 Technical Manual or the OS-9 for 68K Technical
Manual.

Examples
$ procs
Id PId Grp.Usr Prior MemSiz Sig S CPU Time Age Module & I/O
 2 1 0.0 128 0.25k 0 w 0.01 ??? sysgo <>>>term
 3 2 0.0 128 4.75k 0 w 4.11 01:13 shell <>>>term
 4 3 0.0 5 4.00k 0 a 12:42.06 00:14 xhog <>>>term
 5 3 0.0 128 8.50k 0 * 0.08 00:00 procs <>>term
 6 0 0.0 128 4.00k 0 s 0.02 01:12 tsmon <>>>t1
 7 0 0.0 128 4.00k 0 s 0.01 01:12 tsmon <>>>t2

$ procs -a
Id PId Aging F$calls I$calls Last Read Written Module & I/O
 2 1 129 5 1 Wait 0 0 sysgo <>>>term
 3 2 132 116 127 Wait 282 129 shell <>>>term
 4 3 11 1 0 TLink 0 0 xhog <>>>term
 5 3 128 7 4 GPrDsc 0 0 procs <>>>term
 6 0 130 2 7 ReadLn 0 0 tsmon <>>>t1
 7 0 129 2 7 ReadLn 0 0 tsmon <>>>t2

$ procs 1
Id Pld Grp. Usr Prior MemSiz Sig S CPU Time Age Module & I/O
1 0 0.0 65535 0.00k 0 86:42:07.19 90.58 Kernel <>>>term

Read Number of bytes read.
Written Number of bytes written.

Table 1-28. Additional Process Information

Name Specification

Chapter 1: Utilities profile

272 Utilities Reference

profile
Reads Commands from File and Return

Syntax
profile <path>

OS
OS-9; OS-9 for 68K

Description
The profile utility causes the current shell to read its input from the
named file and then return to its original input source which is usually
the keyboard.

The file specified in <path> may contain any utility or shell commands,
including those to set or un-set environment variables or to change
directories. These changes remain in effect after the command
executes. This is in contrast to calling a normal procedure file by name
only, which a child shell would then execute. This would not affect the
environment of the calling shell.

You can nest profile commands. That is, the file itself may contain a
profile command for another file. When the latter profile
command completes, the first one resumes.

A particularly useful application for profile files is within the .login
and .logout files of a system’s users. For example, if each user
includes the following line in their .login file, system-wide commands
(such as common environments and news bulletins) can be included in
the file /dd/SYS/login_sys:

profile /dd/SYS/login_sys

You can use a similar technique for .logout files.

Because this is a built-in shell command, it does not appear in the CMDS
directory.

qsort Chapter 1: Utilities

Utilities Reference 273

qsort
In-Memory Quick Sort

Syntax
qsort [<opts>] {<path>}

OS
OS-9; OS-9 for 68K

Options
-c[=]<char>

Specifies the field separation character. If an asterisk (*), question
mark (?), or comma (,) are used as field separation characters,
You must enclose the option and the character by quotation marks.

-f[=]<num>
Specifies the sort field. Only one -f field is allowed on a command
line.

-z
Reads the file names from standard input.

-z=<file>
Reads the file names from <file>.

Description
The qsort utility is a quick sort algorithm that sorts any number of lines
up to the maximum capacity of memory.

Type qsort and the pathlist(s) of the file(s) to sort.

The qsort utility sorts the file(s) by a user-specified field or field one by
default.

The field separation character defaults to a space if the separation
character is not specified.

If the file names are not given on the command line, standard input is
assumed.

Chapter 1: Utilities qsort

274 Utilities Reference

Multiple separation characters in a row are counted as a single field
separator. For example, if a comma is specified as the field separation
character, three commas in a row (,,,) signify only one field separator.
To create two null fields, you must insert a space between each comma
(, , ,).

Examples
$ qsort file1 file2 file3

Individually sorts the files and displays.

$ list file1 file2 file3 ! qsort
Sorts the files together and displays.

$ dir -ue ! qsort -f=2
Sorts extended directory listing by entry date, field 2.

$ qsort file -f=2 "-c=*"
Sorts file by field 2 using an asterisk (*) as the field separation
character.

$ qsort file -f=2 "-c=,"
Sorts file by field 2 using a comma (,) as the field separation
character.

$ qsort -z
Reads file names from standard input.

rename Chapter 1: Utilities

Utilities Reference 275

rename
Changes File Name

Syntax
rename [<opts>] <path> <new name>

OS
OS-9; OS-9 for 68K

Options
-f

Forces rename even if the file is write-protected (OS-9 only).

-x
Indicates that <path> starts at the current execution directory. You
must have execute permission for the specified file.

Description
The rename utility assigns a new name to the mass storage file
specified in the pathlist.

Type rename, followed by the name of the file to rename, followed by
the new name.

You must have write permission for the file to change its name.

You cannot use the names “.” or “..” for <path>.

Examples
$ dir
 Directory of . 16:22:53
blue myfile
$ rename blue purple
$ dir
 Directory of . 16:23:22
myfile purple
$ rename /h0/HARRY/test1 test2
$ rename -x screenclear clearscreen

Chapter 1: Utilities romsplit

276 Utilities Reference

romsplit
Splits File

Syntax
romsplit {<optopn(s)>} {<path>}

OS
OS-9; OS-9 for 68K; WIN; UNIX

Options
-b[=]<size>

Specifies the buffer size in k bytes. Defaults to 16k.

-q
Splits the input file into four files.

-x
Reads the input file from execution directory (OS-9, OS-9 for 68K
only).

Description
The romsplit utility splits the input file specified by <path> into two or
four files.

The romsplit utility converts a ROM object image into an 8-bit wide
file. This is useful when a PROM programmer cannot burn more than
one PROM at a time and the system has the ROMs addressed as 16-bit
or 32-bit wide memory.

If the -q option is not specified, the romsplit utility copies the even
bytes of data to a new file with the same name with a .0 extension. The
odd bytes are copied to a new file with the same name with a .1
extension.

romsplit Chapter 1: Utilities

Utilities Reference 277

If the -q option is specified, the following copying scheme is used:

Table 1-29. Copying Data

Byte Number Destination File
0, 4, 8, 12 etc. <path>.0
1, 5, 9, 13 etc. <path>.1
2, 6, 10, 14 etc. <path>.2
3, 7, 11, 15 etc. <path>.3

Chapter 1: Utilities save

278 Utilities Reference

save
Saves Memory Module(s) to File

Syntax
save [<opts>] {<modname>}

OS
OS-9; OS-9 for 68K

Options
-f[=]<path>

Saves all specified modules to <path>.

-r
Rewrites existing files.

-x
Saves modules into the current execution directory.

-z
Reads the module names from standard input.

-z=<file>
Reads the module names from <file>.

Description
The save utility copies the specified module(s) from memory into your
current data directory. The file(s) created in your directory have the
same name(s) as the specified module(s).

Type save, followed by the name(s) of the module(s) to save.
<modname> must exist in the module directory when saved.

The new file is given access permissions for all modes except public
write.

If you specify more than one module, each module is stored in a
separate file, unless you use the -f option. In that case, all modules
listed are saved in the specified file.

save Chapter 1: Utilities

Utilities Reference 279

To save a module, the module must have read access permission for
either your group or user ID.

The save utility uses the current data directory as the default directory.
You should generally save executable modules in the default execution
directory.

Examples
$ save -x dir copy
$ save -f=/d1/math_pack add sub mul div

Saving separate module directories in OS-9 requires that you either use
chm to change the module directory or create a directory of the same
name as the module directory to save.

$ makmdir MYMODS
create module directory

$ makdir MYMODS
create directory of same name

$ load -dw=MYMODS modules
load modules into module directory

$ mdir -u ! save -z
save modules back to disk

$ mdir -u ! save -z -f=memmods
save modules to a single file

Chapter 1: Utilities set

280 Utilities Reference

set
Sets Shell Options

Syntax
set [<opts>]

OS
OS-9; OS-9 for 68K

Options
Refer to your shell documentation for available options.

Description
The set utility changes shell options for the individual shell in which
they are declared.

To change the options for your current shell, enter set and the desired
shell options. This command is the equivalent of typing the options
directly after the shell prompt on the command line. This is the
preferred method of changing shell parameters within procedure files
because of its clarity.

The hyphen that usually proceeds declared options is unnecessary
when using the set command.

The options specified by the set utility change the shell parameters
only in the shell in which they are declared. All descendant shells have
the default parameters unless changed within the new shell.

set is a built-in shell command. Therefore, it is not in the CMDS
directory.

MShell allows the set command to be used to examine the current
value of all options. Entering the command line set<cr> displays all
shell options. See mshell for more information.

set Chapter 1: Utilities

Utilities Reference 281

Examples
All commands on the same line have the same effect:

$ set x $ set -x $ -x
$ set xp="JOE" $ set -xp="JOE" $ -xp="JOE"

Chapter 1: Utilities setenv

282 Utilities Reference

setenv
Sets Environment Variables

Syntax
setenv <name> <evalue>

OS
OS-9; OS-9 for 68K

Description
The setenv utility sets environment variables within a shell for use by
the individual shell’s child processes.

<name> and <evalue> are strings stored in the environment list by
shell. These variables are known to the shell in which they are defined
and are passed on to descendent processes from that shell.

Do not confuse setenv with the shell set command. It has a
completely different function. The setenv command is a built-in shell
command. Therefore, it is not in the CMDS directory.

Examples
$ setenv PATH ../h0/CMDS:/d0/CMDS:/dd/CMDS
$ setenv TERM abm85
$ setenv _sh 0
$ setenv As_long_as_you_want long_value

setime Chapter 1: Utilities

Utilities Reference 283

setime
Activates and Sets System Clock

Syntax
setime [<opts>] [y m d h m s [am|pm]]

OS
OS-9; OS-9 for 68K

Options
-d

Does not echo date/time when set.

-s
Reads time from battery backed up clock.

-q
Specifies that setime should not enter interactive mode for any
reason. (setime typically enters into interactive mode when no
command line arguments have been specified or when any illegal
command line arguments are specified.)

Description
The setime utility sets the system date and time. Once set, it activates
the system interrupt clock.

Type setime, and enter the year, month, day, hour, minute, second,
and am or pm as parameters on the command line.

The setime utility does not require field delimiters, but allows you to
use the following delimiters between the year, month, day, etc.:

colon (:), semicolon (;), slash (/), comma (,), or space ()

If semicolons are used as field delimiters, the date and time string must
be enclosed by quotes so that the semicolons are not interpreted by the
shell. For Example

$ setime "91;1;15;1;25;30;pm"

Chapter 1: Utilities setime

284 Utilities Reference

If parameters are not given, the setime utility issues the prompt:

$ setime
 yy/mm/dd hh:mm:ss [am/pm]
Time:

The yy field in the setime utility works as follows: for each yy value
from 70 to 99, the corresponding year value is 1970 through 1999. For
each yy value from 00 to 69, the corresponding year value is 2000
through 2069.

When no am|pm field is specified, the system time uses the 24 hour
clock. For example, 15:20 is 3:20 pm. Midnight is specified as 00:00.
Noon is specified as 12:00. Using the am|pm field allows you to use the
12 hour clock. If a conflict exists between the time and the am|pm field
(such as 15:20 pm) the system ignores the am/pm designation.

The setime utility uses the date utility to echo the date and time after
it is set.

The system ticker is required to be running so setime time sharing
operation can commence. The OS-9 kernel automatically starts the
system ticker during system cold start unless the init module’s
M$Compat flag (B_NoClock) is set. If the system has a battery-backed
clock, this command also sets the system’s date and time.

If this system does not have a battery-backed clock, (or the init
module flag is set), you should run this utility to set the system date and
time for the file system.

Systems with Battery Backed Up Clocks
The setime utility should still be run to start timeslicing, but you only
need to give the -s. The date and time are read from the clock.

See Also
The date utility.

Examples
$ setime 91 01 13 15 45Set to:

January 13, 1991, 3:45 PM

$ setime 910113 154500Set to:

setime Chapter 1: Utilities

Utilities Reference 285

January 13, 1991, 3:45 PM

$ setime 91/01/13/3/45/pmSet to:
January 13, 1991, 3:45 PM

$ setime -s
For systems with a battery-backup clock sets time to the value of
the battery-backed clock.

If no parameters are specified, the user is prompted:

$ setime
 yy/mm/dd hh:mm:ss [am/pm]
Time: 91 01 13 15 45
January 13, 1991 Sunday 3:45:00 pm

Chapter 1: Utilities setpr

286 Utilities Reference

setpr
Sets Process CPU Priority

Syntax
setpr <procID> <priority>

OS
OS-9; OS-9 for 68K

Description
The setpr utility changes the CPU priority of a process.

Type setpr, the process ID, and the new priority value of the process to
change.

The setpr utility may only be used with a process having your ID. Use
procs to obtain the ID number and present priority of any current
process.

The priority number is a decimal number in the range of 1 (lowest) to
65535 (hex FFFF).

This command does not appear in the CMDS directory as it is a built-in
shell command.

Example
$ setpr 8 250

Change the priority of process number 8 to 250

shell Chapter 1: Utilities

Utilities Reference 287

shell
Command Interpreter

Syntax
shell [[set] <arglist>]

OS
OS-9; OS-9 for 68K

Options
-a

Echoes command line if altered after entry. (OS-9)

-na
Does not echo altered command line. (OS-9)

-c=<num>
Specifies the number of previously executed commands the shell
should “remember.” This provides a history of your commands. If
<num> is not specified, the default is 40. (OS-9)

-nc
Does not keep a command line history. (OS-9)

-e
Prints error messages from /dd/SYS/errmsg.

-e=<file>
Prints error messages from <file>.

-ne
Does not print error messages, only error numbers. This is the
default.

-h
Displays the command’s history number in front of the command
line prompt. This is the default option. (OS-9)

Chapter 1: Utilities shell

288 Utilities Reference

-nh
Does not display the command’s history number. (OS-9)

-l
Requires the logout command to terminate the login shell. End-
of-File <eof> does not terminate the shell.

-nl
Terminates the login shell when using end-of-file <eof>. The
<Esc> key normally sends an <eof> to the shell.

-p
Displays prompt. The default prompt is $ (dollar sign).

-p=<string>
Sets current shell prompt equal to <string>.

-np
Does not display prompt.

-q
Passes “assign”s from shell to shell. (OS-9)

-nq
Does not pass “assign”s from shell to shell. (OS-9)

-s
Saves your command history from one login session to the next.
The command history is saved in a .history file in your home
directory. (OS-9)

-ns
Does not save your command history from one login session to the
next. This is the default. (OS-9)

-t
Echoes input lines.

-nt
Does not echo input lines. This is the default.

shell Chapter 1: Utilities

Utilities Reference 289

-v
Displays a message using verbose mode for each directory
searched when executing a command.

-nv
Turns off verbose mode.

-x
Aborts process upon error. This is the default.

-nx
Does not abort on error.

Description
The shell utility is the operating system’s command interpreter
program. It reads data from its standard input which is usually the
keyboard or a file and interprets the data as a sequence of commands.

The basic function of the shell utility is to initiate and control
execution of other programs.

See Also
For more information about using the shell utility, refer to Chapter 6.

Chapter 1: Utilities sleep

290 Utilities Reference

sleep
Suspends Process for Period of Time

Syntax
sleep [<opts>] <num>

OS
OS-9; OS-9 for 68K

Options
-s

Changes count representation to seconds.

Description
The sleep utility puts your process to sleep for a number of ticks or
seconds.

This utility is generally used to generate time delays in procedure files.

Type sleep, followed by the number of ticks you want the process to
sleep.

A tick count of one causes the process to give up its current time slice
and return immediately.

A tick count of zero causes the process to sleep indefinitely, usually until
awakened by a signal.

The duration of a tick is system-dependent.

Only one number may be used on the command line. If none is
specified, <num> defaults to zero.

Examples
$ sleep 25

Sleep for 25 ticks.

$ sleep -s 1000
Sleep for 1000 seconds.

su Chapter 1: Utilities

Utilities Reference 291

su
Fork a New Shell with a New User ID

Syntax
su <name> [<,>] <password>

OS
OS-9; OS-9 for 68K

Options
-p

Do not change prompt.

Description
The su utility allows you to start a new shell with a different user ID.
This allows you to change user ID’s without logging off and logging
back on to the system. The system’s password file is searched for the
name and password given. If a matching entry is found in the password
file, a new shell is forked with the associated user ID specified in the
password file entry.

Chapter 1: Utilities suspend

292 Utilities Reference

suspend
De-activate an Active Process

Syntax
suspend <process id>

OS
OS-9

Description
The suspend utility de-activates or suspends an active process.

Type suspend and the process ID of the process you wish to suspend.
Obtain the process ID from the procs utility.

The suspend utility uses the _os_suspend system call to remove the
process from the system’s active queue. It places the process in a limbo
state. While it is in this limbo state, it is not a member of any system
queue.

The queue identifier for suspended processes is a z. This indicates an
inactive state.

You must be extremely careful not to suspend a process that
currently owns a device. If a process is suspended while using a
device, the device is inaccessible until the process is activated.

Only super users may suspend an active process of another user.

suspend Chapter 1: Utilities

Utilities Reference 293

Example
$ procs -e
Id PId Grp.Usr Prior MemSiz Sig S CPU Time Age Module & I/O
2 0 0.0 128 30.75k 0 w 0.04 0:10 tsmon <>>>term
3 5 0.0 128 11.00k 0 a 7.00 0:01 eatmpu <>>>term
4 0 0.0 128 30.75k 0 s 0.04 0:10 tsmon <>>>t3
5 2 0.0 128 9.00k 0 w 3.09 0:10 shell <>>>term
6 5 0.0 128 35.25k 0 * 0.07 0:00 procs <>>term
>dd
$ suspend 3

$ procs -e
Id PId Grp.Usr Prior MemSiz Sig S CPU Time Age Module & I/O
2 0 0.0 128 30.75k 0 w 0.04 0:10 tsmon <>>>term
3 5 0.0 128 11.00k 0 z 8.73 0:01 eatmpu <>>>term
4 0 0.0 128 30.75k 0 s 0.04 0:10 tsmon <>>>t3
5 2 0.0 128 9.00k 0 w 3.46 0:10 shell <>>>term
6 5 0.0 128 35.25k 0 * 0.05 0:00 procs <>>term
>dd

$ procs -e
Id PId Grp.Usr Prior MemSiz Sig S CPU Time Age Module & I/O
2 0 0.0 128 30.75k 0 w 0.04 0:10 tsmon <>>>term
3 5 0.0 128 11.00k 0 z 8.73 0:01 eatmpu <>>>term
4 0 0.0 128 30.75k 0 s 0.04 0:10 tsmon <>>>t3
5 2 0.0 128 9.00k 0 w 3.47 0:10 shell <>>>term
6 5 0.0 128 35.25k 0 * 0.05 0:00 procs <>>term
>dd

See Also
activ

Chapter 1: Utilities sysid

294 Utilities Reference

sysid
Print System Identification

Syntax
sysid [<opts>]

OS
OS-9

Options
-a

Prints reserved string.

Description
The sysid utility prints out the identification information of the system.
This information includes the OEM number, serial number, specific
processor number, processor type, floating point processor, time zone,
and the system copyright message.

tape Chapter 1: Utilities

Utilities Reference 295

tape
Tape Controller Manipulation

Syntax
tape {<opts>} [<dev>]

OS
OS-9; OS-9 for 68K

Options
-b[=<num>]

Skips the specified number of blocks. The default is one block. If
<num> is negative, the tape skips backward.

-e=<num>
Erases a specified number of blocks of tape. (* is to end of tape.)

-f[=<num>]
Skips the specified number of tapemarks. The default is one
tapemark. If <num> is negative, the tape skips backward.

-o
Puts tape off-line.

-r
Rewinds the tape.

-s
Determines the block size of the device.

-t
Retains the tape.

-w[=<num>]
Writes a specified number of tapemarks. The default is one
tapemark.

Chapter 1: Utilities tape

296 Utilities Reference

-z
Reads a list of device names from standard input. The default
device is /mt0.

-z=<file>
Reads a list of device names from <file>.

If you specify more than one option, the tape utility executes each
option function in a specific order. Therefore, you can skip ahead a
specified number of blocks, erase, and then rewind the tape all with the
same command.

Description
The tape utility provides a means to access a tape controller from a
terminal. The tape utility can rewind, erase, skip forwards and
backwards, and write tapemarks to a tape.

If the tape device <dev> is not specified on the command line and the -
z option is not used, tape uses the default device /mt0.

The order of option execution is as follows:

1. Get device name(s) from the -z option.
2. Skip the number of tapemarks specified by the -f option.
3. Skip the number of blocks specified by the -b option.
4. Write a specified number of tapemarks.
5. Erase a specified number of blocks of tape.
6. Rewind the tape.
7. Put the tape off-line.

Examples
$ tape /mt0 -r

Rewind tape on device /mt0.

$ tape -f=5 -e=2 -r
Skip forward five files on device /mt0, erase the next two blocks,
and then rewind the tape.

tapegen Chapter 1: Utilities

Utilities Reference 297

tapegen
Creates a bootable tape

Syntax OS-9 for 68K
tapegen [<opts>] <filename> <filename>

Syntax OS-9
tapegen [<opts>] <devnam> [<filename>] [<opts>]

OS
OS-9; OS-9 for 68K

Options
-b=<bootfile>

Installs an OS-9 for 68K boot file. (OS-9 for 68K)

-b[=]<num>
Use buffer of <num> kilobytes. (OS-9)

-bz
Reads boot module names from standard input. (OS-9 for 68K)

-bz=<bootlist>
Reads boot module names from the specified bootlist file. (OS-9
for 68K)

-c
Checks and displays header information. (OS-9 for 68K)

-d[=]<dev>
Specifies the tape device name. The default is /mt0. (OS-9 for
68K)

-i[=]<file>
Installs an initialized data file on the tape. This is usually a RAM
disk image. (OS-9 for 68K)

Chapter 1: Utilities tapegen

298 Utilities Reference

-o
Takes the tape drive off-line when finished. (OS-9 for 68K)

-s
Swaps bytes in tape header. (OS-9)

-t[=]<target>
Specifies the name of the target system. (OS-9 for 68K)

-v[=]<volume>
Specifies the name of the tape volume. (OS-9 for 68K)

-x
Searches execution directory for files. (OS-9)

-z
Reads list of files from standard input.

-z=<file>
Reads file names from the specified file.

Description
The tapegen utility creates the “bootable” tape.

The tapegen utility performs a function similar to the os9gen utility.
Both utilities place the bootstrap file on the media and mark the media
identification block with information regarding the bootstrap file. In
addition, the tapegen utility can add an initialized data on the tape, for
application-specific purposes.

Type tapegen followed by any desired options.

OS-9 for 68K Examples
The following example makes a bootable tape. The disk image is
derived from the /dd device.

$ tapegen -b=OS9Boot.tape -i=/dd@ “-v=OS-9/68K Boot Tape” -
t=MySystem

This example makes a bootable tape with no initialized data file. The
“header” information is displayed after writing the tape.

$ tapegen -b=OS9Boot.h0 -c

tapegen Chapter 1: Utilities

Utilities Reference 299

OS-9 Example
$ chd /h0/MWOS/OS9000/603/PORTS/MVME1603/CMDS/BOOTOBJS/BOOTFILE

$ tapegen /mt0 h0_scsi -b400

$ chd /h0/MWOS/OS9000/603/PORTS/MVME1603

$ tapegen /mt0 -b400 -z=BOOTLIST/h0_scsi.bl

Chapter 1: Utilities tapestart

300 Utilities Reference

tapestart
Initialize RBF Device from Tape

Syntax
tapestart [<opts>] [<device name>] [<opts>]

OS
OS-9 for 68K

Options
<device name>

RBF device to initialize (defaults to whatever is specified in the
init module).

-d=<tdevname>S
pecifies the tape device (default is ‘/mt0’).

-o
Forces the tape drive “offline” when finished.

On some drives the -o option ejects the tape.

Description
This utility is used to initialize the ram disk when booting off tape.

tar Chapter 1: Utilities

Utilities Reference 301

tar
Tape Archive

Syntax
tar <options> <file or directory names>

OS
OS-9; OS-9 for 68K

Options
-b N

Specifies blocking factor N (block size = Nx512 bytes).

-B
Re-blocks as we read.

-c
Creates an archive.

-D
Dumps record number within archive with each message.

-e
Swaps bytes within 16-bit hunks.

-f F
Reads/writes archive from file or device F.

-i
Ignores blocks of zeros in the archive, which normally mean EOF.

-k
Keeps existing files, does not overwrite them from the archive.

-m
Does not extract file modified time.

-o
Writes an old V7 format archive, rather than P1003 format.

Chapter 1: Utilities tar

302 Utilities Reference

-p
Extracts protection information.

-s
Sorts list of names to extract to match the archive.

-t
Lists a table of contents of an archive.

-T F
Gets names to extract or create from file F.

-v
Lists (verbosely) what files we process.

-x
Extracts files from an archive.

Description
The tar utility archives multiple files or directories onto a magnetic
tape or file, lists a table of contents of an archive, or restores (extracts)
multiple files or directories from a tape to another media maintaining
integrity of attributes as archived.

The tar utility’s action is controlled by the first option indicating exactly
one function from the set -c, -t, or -x. Other arguments to the tar utility
are file or directory names that specify which files to archive, list, or
extract. In all cases, the appearance of a directory name refers
recursively to the files and subdirectories of that directory.

Example
$ tar cvf tarfile *.output
dos.output
dosexxp.output
expr.output
$ tar tvf tarfile
-rw------- 110/30 21056 Jun 27 14:29 1994 dos.output
-rw------- 110/30 9 Jul 11 11:48 1994 dosexp.output
-rw------- 110/30 9 Jul 11 12:46 1994 expr.output
$ tar xvf tarfile
-rw------- 110/30 21056 Jun 27 14:49 1994 dos.output
-rw------- 110/30 9 Jul 11 11:48 1994 dosexp.output
-rw------- 110/30 9 Jul 11 12:46 1994 expr.output

tee Chapter 1: Utilities

Utilities Reference 303

tee
Copies Standard Input to Multiple Output Paths

Syntax
tee {<path>}

OS
OS-9; OS-9 for 68K

Description
The tee utility is a filter that copies all text lines from its standard input
to its standard output and any other additional pathlists given as
parameters.

Type tee and the pathlist(s) to which standard input is to be redirected.
This utility is generally used with input redirected through a pipe.

Examples
The example below uses a pipeline and the tee utility to simultaneously
send the output listing of dir to the terminal, printer, and a disk file:

$ dir -e ! tee /printer /d0/dir.listing

This example sends the output of an assembler listing to a disk file and
the printer:

$ asm pgm.src l ! tee pgm.list >/printer

This example broadcasts a message to three terminals:

$ echo WARNING System down in 10 minutes ! tee /t1 /t2
/t3

Chapter 1: Utilities tmode

304 Utilities Reference

tmode
Changes Terminal Operating Mode

Syntax
tmode [<opts>] [<arglist>]

OS
OS-9; OS-9 for 68K

Options
-a

Prints input mapping table values in ASCII format. (OS-9)

-c
Prints input mapping table values as control characters. (OS-9)

-h
Prints input mapping table values in hexadecimal format. (OS-9)

-v
Displays all mapped control characters including those passed
through. (OS-9)

-w=<path#>
Changes the path number <path#> affected.

tmode Chapter 1: Utilities

Utilities Reference 305

Description
The tmode utility displays or changes the operating parameters for a
path. It accomplishes this by getting and optionally setting a path's
options.

The changes made by the tmode utility only last as long as the path
that it modifies lasts. That is, if the modified path is closed the
modifications are lost. This differs from the xmode utility in that it
modifies the default options used to create paths so any changes made
with it are permanent, but largely do not effect any open paths. See
your technical reference manual for more information on paths and the
xmode utility documentation for more information on permanently
changing path and device options.

You can only use tmode on paths to SCF, GFM, or UCM devices.

To change the operating parameters of the path to your terminal, type
tmode and any parameters you want changed. If parameters are not
given, the tmode utility displays the present value for the each path
option. Otherwise, the tmode utility processes the parameter(s) given
on the command line.

Parameters are given in a variety of ways. If the parameter to be
changed is either enabled or disabled (such as pause or echo) then the
option is enabled by just specifying the name of the option.

tmode pause Enables the pause option.

tmode echo Enables the echo option.

To disable these types of options, the option name is specified prefixed
with the word "no".

tmode nopause noecho Disables the pause and echo options.

If the parameter has a name and a value then these are specified
together, separated by an equal sign. Generally, the value 0 disables an
option. For example, to disable xon and xoff processing for a path use
the command line.

tmode xon=0 xoff=0 Disables XON and XOFF processing options

For OS-9 for 68K, the value is the hex number for the option (0x is
implied). For OS-9, the value is either the hex value (preceded by 0x),
the "control character" (caret [^] followed by the character), or the
ASCII mnemonic for the character.

Chapter 1: Utilities tmode

306 Utilities Reference

To return one of these type values to its default, use the name of the
option without the equal sign and value.

tmode xon xoff Re-enables XON and XOFF options with default
values

For OS-9, setting the character mapping table is accomplished by either
specifying the character to be mapped and the behavior or the behavior
followed by the character to be mapped. The character can be
expressed by either the hex value (preceded by 0x), the "control
character" (caret [^] followed by the character), or the ASCII mnemonic
for the character. For example, to add ^Y with IGNORE mapping you
could use any of these command line arguments:

^Y=IGNORE
IGNORE=^Y
0x19=IGNORE
IGNORE=0x19
EM=IGNORE
IGNORE=EM

Use the -w=<path#> option to specify which path number to affect. If
none is given, standard input is affected.

If you use the tmode utility in a shell procedure file, you must use -
w=<path#> to specify one of the standard paths other than standard
input (1 or 2) to change the terminal’s operating characteristics.

The change remains in affect until the path is closed. For a permanent
change to a device characteristic, you must change the device’s initial
operating parameters using xmode. See the xmode utility for more
information.

tmode Chapter 1: Utilities

Utilities Reference 307

OS-9 for 68K Users:Two of the options that are displayed by tmode
effect all paths open to the device: type and baud. baud is the baud
rate for the device and type contains bit-fields for the word size, stop
bits, and parity. Baud is set by setting the baud option. The bit-fields for
the word size, stop bits, and parity portions of the type option are set by
using the cs, stop, and par options.

Table 1-30. tmode Parameter Names

OS-9 for
68K Name

OS-9
Name

Specification

abort=h (See
xmode.)

Aborts character (normally <control>C,
default = 03).

For OS-9 for 68K, numeric value of
character in hexadecimal.

For OS-9, numeric value of character in
hexadecimal if prefixed with 0x, "control
character" when prefixed with caret (^), or
ASCII mnemonic.

baud=n (See
xmode.)

Baud rate: The baud rate may currently be
set to the following values:

n = 50 300 2400 19200 57600
 75 600 3600 38400 115200
 110 1200 4800 56000 midi
 124.5 1800 7200 64000 extern
 150 2000 9600 31250

bell=h bell=h Sets bell (alert) output character
(default = 07).

For OS-9 for 68K, numeric value of
character in hexadecimal.

For OS-9, numeric value of character in
hexadecimal if prefixed with 0x, "control
character" when prefixed with caret (^), or
ASCII mnemonic.

bsb bsb Erases on backspace. Backspace
characters are echoed as a backspace-
space-backspace sequence. Default.

Chapter 1: Utilities tmode

308 Utilities Reference

bse=h Sets output backspace character
(default = 08).

For OS-9 for 68K, numeric value of
character in hexadecimal.

bsl del Backspaces over line. Lines are deleted by
sending backspace-space-backspace
sequences to erase the line. Default.

bsp=h bsp=h OS-9 for 68K: Sets the backspace input
and output character (normally, control-H,
default = 08).

OS-9: Sets the backspace output
character.

For OS-9 for 68K, numeric value of
character in hexadecimal.

For OS-9, numeric value of character in
hexadecimal if prefixed with 0x, "control
character" when prefixed with caret (^), or
ASCII mnemonic.

cs=n (See xmode. Sets character length using one of the
following values:

n = 8, 7, 6 or 5 (bits)

Changing character length changes the
type value.

del=h (See Table
1-30.)

Sets input delete line character (normally
<control>X, default = 18).

For OS-9 for 68K, numeric value of
character in hexadecimal.

dup=h (See Table
1-30.)

Sets the duplicate last input line character
(normally <control>A, default = 01).

For OS-9 for 68K, numeric value of
character in hexadecimal.

Table 1-30. tmode Parameter Names (Continued)

OS-9 for
68K Name

OS-9
Name

Specification

tmode Chapter 1: Utilities

Utilities Reference 309

echo echo Inputs characters echoed back to terminal.
Default.

eof=h eof=h For OS-9 for 68K, sets end-of-file input
character (normally <esc>, default = 1B)
that causes an EOS_EOF to be returned
when entered as the first character of a
read or readln system call. Numeric value
of character in hexadecimal.

For OS-9, it sets the character that will
appear in the input buffer when a
character mapped to endofile is entered as
the non-first character of a read or readln
system call. Numeric value of character in
hexadecimal if prefixed with 0x, "control
character" when prefixed with caret (^), or
ASCII mnemonic.

eor=h eor=h Sets end-of-record input character
(normally <cr>, default = 0D).

For OS-9 for 68K, numeric value of
character in hexadecimal.

For OS-9, numeric value of character in
hexadecimal if prefixed with 0x, "control
character" when prefixed with caret (^), or
ASCII mnemonic.

lf lf Auto line feed on. Line feeds are
automatically echoed to terminal on input
and output carriage returns. Default.

nobsb nobsb No erase on backspace. Echoes single
backspace only.

nobsl nodel No backspace over line. Lines are deleted
by printing a new line sequence for hard-
copy terminals.

noecho noecho No echo.
nolf nolf Auto line feed off.
nopause nopause Screen pause mode off.

Table 1-30. tmode Parameter Names (Continued)

OS-9 for
68K Name

OS-9
Name

Specification

Chapter 1: Utilities tmode

310 Utilities Reference

normal normal Sets the terminal back to its default
characteristics. This does not affect the
following values: type, baud rate, parity,
character length, and stop bits.

null=n nulls=n Sets null count. Number of null ($00)
characters transmitted after carriage
returns for return delay. The number is
decimal. The default null count is 0.

noupc noupc Upper and lower case characters
permitted. Default.

pag=n (See
xmode.)

Sets video display page length to n lines,
where n is in decimal. Used for pause
mode, see previous.

par=s (See
xmode.)

Shows parity using one of the following
strings: odd, even, or none. Changing
parity affects the type value.

pause pause Screen pause on. Output suspended upon
full screen. See pag parameter for
definition of screen size. Output can be
resumed by typing any key.

psc=h (See
xmode.)

Sets pause character (normally
<control>W, default = 17).

For OS-9 for 68K, numeric value of
character in hexadecimal.

quit=h (See
xmode.)

Quits character (normally <control>E,
default = 05).

For OS-9 for 68K, numeric value of
character in hexadecimal.

reprint=h (See Table
1-30.)

Sets reprint line character (normally
<control>D, default = 04).

For OS-9 for 68K, numeric value of
character in hexadecimal.

Table 1-30. tmode Parameter Names (Continued)

OS-9 for
68K Name

OS-9
Name

Specification

tmode Chapter 1: Utilities

Utilities Reference 311

stop=n (See
xmode.)

Sets the number of stop bits used:

n = 1, 1.5 or 2

Changing the stop bit value affects the
type value.

tabc=h tab=h Tabs character (normally <control>I,
default = 09).

For OS-9 for 68K, numeric value of
character in hexadecimal.

For OS-9, numeric value of character in
hexadecimal if prefixed with 0x, "control
character" when prefixed with caret (^), or
ASCII mnemonic.

tabs=n tabsiz=n Number of characters between tab stops.
The number is in decimal. The default is 4
characters between tab stops.

time=h Sets the timeout value in 256th’s of a
second for unblocked I_READ and
I_READLN operations.

If the number of characters requested is
not satisfied within the duration of ticks
specified, the I/O operation returns with
the number of characters available.

If time=1 the I/O operation does not wait.
Instead, the number of characters
available are returned.

type=h (See
xmode.)

ACIA initialization value: shows parity,
character size, and number of stop bits.
Value in hexadecimal.

This value is affected by changing the
individual par(ity), cs (character length),
and stop (stop bits) values.

upc upc Upper case only. Lower case characters
are converted automatically to upper case.

Table 1-30. tmode Parameter Names (Continued)

OS-9 for
68K Name

OS-9
Name

Specification

Chapter 1: Utilities tmode

312 Utilities Reference

For OS-9, numeric value of character in hexadecimal if prefixed with
0x, "control character" when prefixed with caret (^), or ASCII
mnemonic.

xon=h (See
xmode.)

Resumes output input character (normally
<control>Q, default = 11).

For OS-9 for 68K, numeric value of
character in hexadecimal.

For OS-9, numeric value of character in
hexadecimal if prefixed with 0x, "control
character" when prefixed with caret (^), or
ASCII mnemonic.

xoff=h (See
xmode.)

Suspends output input character (normally
<control>S, default = 13).

For OS-9 for 68K, numeric value of
character in hexadecimal.

For OS-9, numeric value of character in
hexadecimal if prefixed with 0x, "control
character" when prefixed with caret (^), or
ASCII mnemonic.

Table 1-30. tmode Parameter Names (Continued)

OS-9 for
68K Name

OS-9
Name

Specification

Table 1-31. tmode Parameter Names (OS-9)

Name Description
delchrl=h Sets input backspace character (delete character-

left). (Normal ^H).
delchru=h Sets the "delete character under the cursor"

character. (Normal ^D).
deline=h Sets input delete line character (normally

<control>X).
delwrdl=h Sets the delete word left character. (Normal ^L).

Numeric value of character is hexadecimal by
default.

tmode Chapter 1: Utilities

Utilities Reference 313

delwrdr=h Sets the delete word right character. (Normal ^R).

Numeric value of character is hexadecimal by
default.

endofile=h Sets the end-of-file character. (Normal <esc>).

Numeric value of character is hexadecimal by
default.

endorec=h Sets the end-of-record character. (Normal <cr>).

Numeric value of character is hexadecimal by
default.

insrtmode=h Sets the enter insert mode character. (Normal ^I).

Numeric value of character is hexadecimal by
default.

movebeg=h Sets the move cursor to the beginning of the line
character. (Normal ^Z).

Numeric value of character is hexadecimal by
default.

moveend=h Sets move to the end-of-line character (normally
^A).

moveleft=h Sets the move cursor left character. (Normal ^B).

Numeric value of character is hexadecimal by
default.

moveright=h Sets the move cursor right character. (Normal ^F).

Numeric value of character is hexadecimal by
default.

reprint=h Sets reprint line character (Normal ^P).
truncate=h Sets the truncate to end-of-line character. (Normal

^K).

Numeric value of character is hexadecimal by
default.

Table 1-31. tmode Parameter Names (OS-9) (Continued)

Name Description

Chapter 1: Utilities tmode

314 Utilities Reference

OS-9 for 68K Example:
tmode noupc nopause Disable upper-case lock and page pause

tmode reprint=10 Change reprint character to <control>P

tmode xon=0 xoff=0 Disable XON and XOFF processing

OS-9 Example:
tmode noupc nopause Disable upper-case lock and page pause

tmode REPRINT=0x04 Change reprint character to <control>D

tmode pause page=65 Enable page pause and set page size to 65

touch, os9touch Chapter 1: Utilities

Utilities Reference 315

touch, os9touch
Update Last Modification Date of File

Syntax
touch {<option(s)>) {<path>} OS-9 for 68K or OS-9
os9touch {<option(s)>) {<path>} DOS or UNIX

touch OS
OS-9; OS-9 for 68K

os9touch OS
WIN

Options
-c

Does not create a file if not found.

-q
Does not quit if an error occurs.

-x
Searches the execution directory for the file.

-z
Reads the file names from standard input.

-z=<path>
Reads the file names from <path>.

Description
The touch utility updates the last modification date of a file. Usually,
this command is used with a os9make command’s makefile.

Associated with every file is the date the file was last modified. The
touch utility opens a file and updates the modification date to the
current date and closes it.

Chapter 1: Utilities touch, os9touch

316 Utilities Reference

Type touch and the pathlist of the file to update. The touch utility
searches the current data directory for the file to update if another
directory or the -x option is not specified.

If the specified file is not found, touch creates a file with a current
modification date.

Examples
$ touch -c /h0/sys/motd

Do not create file if it does not exist.

$ dir -u ! touch -z
Update all files in current directory.

tr Chapter 1: Utilities

Utilities Reference 317

tr
Transliterate Characters

Syntax
tr [<opts>] <str1> [<str2>] [<path1>] [<path2>]

OS
OS-9; OS-9 for 68K

Options
-c

Transliterates all ASCII characters (1 through $7F) to <str2>,
except for the set of characters in <str1>.

-d
Deletes all matching input characters and expressions.

-s
Squeezes all repeated output characters or expressions in <str2>
to single characters or expressions.

-v
Same as -c.

-z
Reads standard input for list of file names.

-z=<path>
Reads the file names from <path>.

Chapter 1: Utilities tr

318 Utilities Reference

Description
The tr utility transliterates characters from <str1> into a
corresponding character from <str2>.

If <str1> contains more characters than <str2>, the final character in
<str2> is used for each excess character in <str1>.

Type tr and the characters to search for (<str1>), and optionally, the
replacement characters (<str2>), the input file’s pathlist (<path2>)
and the output file’s pathlist (<path2>).

<str1> is required.

If <str2> is missing, all characters in <str1> are deleted from the
output.

If <path1> and <path2> are missing, standard input and output are
assumed.

If only one path is specified, it is used as the input file pathlist.

You can generally give options anywhere on the command line. If you
wish to use the pathlists but not <str2>, you must specify the -d option
prior to the pathlists.

Similarly, if you use the -z option to read pathlists from standard input,
the -z must precede <path2>.

The -s option does not differentiate between characters originally in
<str2> and transliterated characters. It always returns a string with no
consecutively repeated characters. For example, the command tr -s
abcde x transliterates the string exasperate into xspxrxtx.

The -s and -d options are mutually exclusive.

If you use the -c option to change all but a certain sequence of
characters, it also changes carriage returns and newlines unless they
are specified in the sequence of characters.

<str1> and <str2> are interpreted as character classes. To facilitate
creating character classes, use the following meta-characters:

tr always deletes ASCII nul ($00).

tr Chapter 1: Utilities

Utilities Reference 319

Table 1-32. Meta-characters

Char Specification
 - RANGE

The hyphen (-) is defined as representing all characters
lexicographically greater than the preceding character and
less than the following character. For Example

[a-z] is equivalent to the string
abcdefghijklmnopqrstuvwxyz.

[m-pa-f] is equivalent to the string mnopabcdef.

[0-7] is equivalent to the string 01234567.

Refer to Appendix A, ASCII Conversion Chart for character
values.

\ ESCAPE
The backslash (\) removes special significance from special
characters. It is followed by a base and a numeric value or a
special character. If the base is not specified, the base for the
numeric value defaults to hexadecimal. An explicit base of
decimal or hexadecimal can be specified by preceding the
numeric value with a qualifier of d or x, respectively. It also
allows entry of some non-printing characters such as:

\t=Tab character
\n=Newline character
\l=Line feed character
\b=Backspace character
\f=Form feed character

Chapter 1: Utilities tr

320 Utilities Reference

Examples
The following examples use standard input for the input to the tr utility.
The output is sent to standard output. Thus, the first line following each
command line is the standard input, and the second line is the standard
output.

$ tr abcd jklm
aabdc_efg
jjkml_efg

Transliterates standard input, converting
each a, b, c, and d to j.

$ tr abcd j
abcd_efgh
jjjj_efgh

Transliterates standard input, converting
each a, b, c, and d to j.

$ tr a-d k
abc_abcd-efgh
kkk_kkkk-efgh

Transliterates standard input, converting
each character contained in the
expression abcd to k.

$ tr abcd
abcd_efgh
_efgh

Transliterates standard input, deleting
each a, b, c, and d.

$ tr -d abcd
abcdefg
efg

Transliterates standard input, deleting
each a, b, c, and d.

$ tr -s dcba eocd
edenbcada
encoded

Transliterates standard input converting d
to e, c to o, b to c, and a to d.
Consecutively repeated output
characters, the matching eocd, are
squeezed into a single character.

$ tr -c a-zA-Z \n
one word per line
one
word
per
line

Transliterates standard input, converting
all non-alphabetic characters to newline
characters.

tsmon Chapter 1: Utilities

Utilities Reference 321

tsmon
Supervises Idle Terminals and Initiate Login Command

Syntax
tsmon [<opts>] {/<dev>}

OS
OS-9; OS-9 for 68K

Options
-d

Displays statistics when a ^\ character (control-backslash or hex
$1C) is typed on a monitored terminal.

-l=<prog>
Forks <prog>, an alternate login program.

-p
Displays an “online” prompt to each timesharing terminal being
monitored by the tsmon utility.

-r=<prog>
Forks an alternate shell program for remote commands.

-z
Reads the device names from standard input.

-z=<path>
Reads the device names from <path>.

Chapter 1: Utilities tsmon

322 Utilities Reference

Description
The tsmon utility supervises idle terminals and starts the login utility in
a timesharing application.

Typically, the tsmon utility is executed as part of the start-up procedure
when the system is first brought up and remains active until the system
shuts down.

/<dev> specifies a terminal to monitor. This is generally an SCF device.

You can specify up to 28 device name pathlists for the tsmon utility to
monitor.

When you type a carriage return on any of the specified paths, the
tsmon utility automatically forks login, with standard I/O paths
opened to the device. If login fails because you could not supply a
valid user name or password, control returns to the tsmon utility.

Most programs terminate when an end-of-file character (normally
<escape>) is entered as the first character on a command line. This
logs you off the system and returns control to the tsmon utility. The
tsmon utility prints a message when you log off:

Logout after 11 minutes, 30 seconds. Total time 3:57:46.

The Total time figure is the total amount of time that the terminal
has accumulated on-line since the tsmon utility was started.

The tsmon utility is normally used to monitor I/O devices capable of bi-
directional communication, such as CRT terminals. However, you may
use the tsmon utility to monitor a named pipe. If this is done, the tsmon
utility creates the named pipe, and then waits for data to be written to it
by some other process.

When data arrives, the tsmon utility starts a shell with its input
redirected to the pipe file. This is useful for starting remote processes in
a networked environment.

You can run several tsmon utility processes concurrently, each one
watching a different group of devices. This must be done when more
than 28 terminals are monitored, but is sometimes useful for other
reasons, such as if you want to keep modems or terminals suspected of
hardware trouble isolated from other devices in the system.

The tsmon utility forks login with the PORT environment variable set to
the SCF device name and all other environment variables cleared.

tsmon Chapter 1: Utilities

Utilities Reference 323

Examples
This command starts timesharing on term and t1, printing a welcome
message to each. A similar command might be used as the last line of
a system startup file.

tsmon -dp /term /t1&

2 devices online (confirmation by tsmon)

The -d option causes the tsmon utility to print various statistics about
the devices being monitored whenever control-backslash (^\) is typed
on either terminal. The statistics might look something like this:

tsmon started 12-11-90 20:38:15 with 2 devices
0:36:06
 /term quiet at 0:08:07 cumulative time 3:29:30
logins: 1/9
*/t1 quiet at 0:36:03 cumulative time 3:57:46
logins: 2/4

The standard input device shown for the tsmon utility by the procs
utility always indicates the last device to gain the tsmon utility’s
attention.

You must implement the SS_SSig I$SetStat (OS-9 for 68K),
I_SETSTAT (OS-9) function (send signal on data ready) on any device
to be monitored by the tsmon utility. Because this function is used (for
example, instead of I$ReadLn or I_READLN), it is possible to output
data to a terminal that is not logged in without having to wait for
someone to press a key.

Chapter 1: Utilities umacs

324 Utilities Reference

umacs
Advanced Screen Editor

Syntax
umacs [<opts>] {<files>}

OS
OS-9; OS-9 for 68K

Description
µMACS is a screen-oriented text editor you can use to create and
modify text files. µMACS can maintain multiple buffers so you can work
with several files and/or portions of the same file at once.

See Also
For more information about the µMACS Utility, refer to Chapter 7.

unassign Chapter 1: Utilities

Utilities Reference 325

unassign
Discards Single Word Command Line Substitutions

Syntax
unassign <name> {<name>}

OS
OS-9

Description
Discards relationships assigned with the assign command.

This command does not appear in the CMDS directory as it is a built-in
shell command.

Example
$ assign
cd chd
h hist
l list
ls dir
printenv prenv

$ unassign cd
$ assign
h hist
l list
ls dir
printenv prenv

Chapter 1: Utilities undel

326 Utilities Reference

undel
Retrieves Deleted OS-9 for 68K RBF Files

Syntax
undel [<opts>] <path> [<dstpath>]

OS
OS-9 for 68K

Options
-o[=]<dev> Specify alternate device.

Description
The OS-9 for 68K undel utility provides a way to possibly recover an
undeleted file. The undel utility allows you to copy the data of the
deleted file to a new file on another device.

The OS-9 for 68K undel utility is only capable of restoring one file at a
time.

If the -o option is not selected, the OS-9 for 68K undel selects the
destination device as follows:

The file can be recovered if none of the disk storage formerly being
used by the deleted file is allocated to some other file on the disk.

Source Attempted Destinations
/h0 /r0, /d0
/d0 /r0, /h0
/r0 /h0, /d0
<other> /r0, /d0

undel Chapter 1: Utilities

Utilities Reference 327

OS-9 for 68K RBF marks files as deleted by placing a null in the first
byte of the filename in the directory entry. For that reason, the OS-9 for
68K undel cannot tell the difference between the names of files that
were deleted that only differ by the first character. For instance, the file
boo, foo, and zoo would all look the same. undel select the first name
that matches all but the first character of the indicated filename.
The OS-9 undel does not have this problem.

Examples
The following command line attempts to recover the file procs, from
the current directory, by copying it to /r0/procs.

$ undel procs

The following command line attempts to recover the file procs, from
the current directory, by copying it to /h1/procs.

$ undel procs -o=/h1

The following example demonstrates that you don’t always get what
you want (see Note).

$ build foo
? foo
?
$ build boo
? boo
?
$ del foo boo
$ undel boo
$ list /r0/boo
foo

Chapter 1: Utilities undel

328 Utilities Reference

undel
Retrieves Deleted OS-9 RBF Files

Syntax
undel [<opts>] <srcpath> [<dstpath>]

OS
OS-9

Options
-b[=]<num>

Allocates <num> k bytes of memory to be used as a buffer for
undel. undel uses 4K by default.

-r
Overwrites the existing file(s).

-w[=]<dir>
Restores one or more files to <dir>. This option prints a message
as to which file is being restored.

-x
Uses the current execution directory for <srcpath>.

-z
Reads file names from standard input.

-z=<file>
Reads file names from <file>.

Description
When OS-9 RBF deletes a file, the file can be recovered if none of the
disk storage formerly being used by the deleted file is allocated to some
other file on the disk.

The OS-9 undel utility provides a way to possibly recover an undeleted
file. The undel utility allows you to copy the data of the deleted file to a
new file on another device.

undel Chapter 1: Utilities

Utilities Reference 329

The under utility copies the data of the deleted file <srcport> to
<dstpath>. <dstpath> must not be on the same device as
<srcpath>.

If <dstpath> already exists, the contents of <srcpath> overwrite the
existing file if the -r option is used.

The undel utility is capable of restoring multiple files to the same
destination directory. If more than two command line parameters are
specified, the last parameter is assumed to be the destination directory
unless the -w option was also specified.

If the -w option was specified, all path names given on the command
line are treated as source path names.

The wildcard characters asterisk (*) and question mark (?) can be used
with the undel utility; however, they must be placed in quotes to
prevent the shell from attempting to expand them.

Examples
The following command line attempts to recover the file
/h0/CMDS/procs by copying it to /r0/procs.

undel /h0/cmds/procs /r0/procs

The following command line attempts to recover all files ending in .c
by copying them to the directory /r0/MYSOURCE. A message displays
telling you which files are being undeleted.

undel "*.c" -w=/r0/MYSOURCE

The following command line attempts to recover the main.c and
funcs.c files by copying them to the directory /r0/MYSOURCE:

undel main.c funcs.c /r0/MYSOURCE

The following command line attempts to recover main.c by overwriting
the existing file in the directory /r0/MYSOURCE:

undel main.c /r0/MYSOURCE/main.c -r

Chapter 1: Utilities unlink

330 Utilities Reference

unlink
Unlinks Memory Module

Syntax
unlink [<opts>] {<modnames>}

OS
OS-9; OS-9 for 68K

Options
-f

Forces a module (if not in use) to be purged from the module
directory.

-z
Reads the module names from standard input.

-z=<file>
Reads the module names from <file>.

Description
The unlink utility tells the operating system that you no longer need
the memory module(s) named. Type unlink and the name(s) of the
module(s) to unlink. The link count decrements by one. If the link count
becomes zero, the module directory entry is deleted and the memory is
de-allocated.

The -f option can be slow on OS-9 for 68K because of retries. Unlike
OS-9, the OS-9 for 68K _os_unload() does not return an error code
in some cases when it fails to unlink the module. It is a good practice to
unlink modules whenever possible to make most efficient use of
available memory resources.

The -f option does not work on modules present in the boot.
This prevents accidental unlinking of core components (such
as the kernel).

The -f option does not work on sticky modules. For more
information, refer to the Using OS-9 manual.

unlink Chapter 1: Utilities

Utilities Reference 331

See Also
link
load.

Examples
$ unlink pgm pm5 pgm9

Unlinks pgm, pgm5, and pgm9 and lowers the link count of each
module by one.

$ dir -u ! unlink -z
Pipes an unsorted listing of the current data directory to unlink.
This unlinks all modules contained in the directory, lowering the
link count of each module by one.

$ mdir -u ! unlink -f -z
Pipes the current module directory listing to the unlink which then
flushes all modules (which are currently not in use) from the
system. Under OS-9 for 68K this may take awhile because of the
number of retries.

$ unlink -z=namefile
Unlinks each module listed in namefile and lowers the link count
of each module by one.

$ mdir
 Module Directory at 14:44:35
kernel init p32clk rbf p32hd
h0 d0 r0 edit mdir
$ unlink edit
$ mdir
 Module Directory at 14:44:35
kernel init p32clk rbf p32hd
h0 d0 r0 mdir

Chapter 1: Utilities unsetenv

332 Utilities Reference

unsetenv
Clears Environment Parameter

Syntax
unsetenv <name>

OS
OS-9; OS-9 for 68K

Description
The unsetenv utility deletes the specified environment variable from
the environment list.

Type unsetenv, followed by the environment parameter to delete. This
removes the variable from the environment list.

If the specified variable has not been previously defined, the unsetenv
utility has no effect and it gives you no message.

These commands do not appear in the CMDS directory as they are built-
in to the shell.

Examples
$ unsetenv _sh
$ unsetenv TERM

See Also
setenv
printenv

w, wait Chapter 1: Utilities

Utilities Reference 333

w, wait
Waits for One/All Child Process(es) to Terminate

Syntax
w
wait

OS
OS-9; OS-9 for 68K

Description
The w utility causes the shell to wait for the termination of one child
process before returning with a prompt.

The wait causes the shell to wait for all child processes to terminate
before returning with a prompt.

Type w or wait and a carriage return. When the shell prompt is
displayed, the child process(es) have terminated.

This command does not appear in the CMDS directory as it is a built-in
shell command.

Examples
$ list file1 >/p1&
$ list file2.temp ! filter >file2&
$ wait
$ list file2 >/p1

In this example, the prompt returns when the first of these three
processes (one, two, or three) terminates:

$ one&
$ two&
$ three&
$ w
$

Chapter 1: Utilities what

334 Utilities Reference

what
Display Version Strings

Syntax
what [<opts>] <file names> [<opts>]

OS
OS-9; OS-9 for 68K; DOS

Options
-s

Stop searching after the first occurrence of the pattern.

Description
The what utility searches each filename for occurrences of the pattern
@(#) and prints what follows up to a ", >, or null character.

This utility is useful for finding embedded version stings that exist in
some modules.

Examples
$ what OS9/68000/CMDS/maui

xmode Chapter 1: Utilities

Utilities Reference 335

xmode
Examines or Changes Device Initialization Mode

Syntax
xmode [<opts>] <devname> [<arglist>] {<devname>}

OS
OS-9; OS-9 for 68K

Options
-a

Prints input mapping table values in ASCII format. (OS-9)

-c
Prints input mapping table values as control characters. (OS-9)

-h
Prints input mapping table values in hexadecimal format. (OS-9)

-v
Displays all mapped control characters including those passed
through. (OS-9)

-z
Reads device names from standard input.

-z=<file>
Reads device names from <file>.

Description
The xmode utility displays or changes the default operating parameters
for a device. It accomplishes this by getting and optionally setting a
device's default options.

For OS-9, the changes made by the xmode utility last as long as the
device that it modifies is initialized (see iniz, devs). That is, if the
modified device is de-initialized the modifications are lost.

Chapter 1: Utilities xmode

336 Utilities Reference

For OS-9 for 68K, the changes made by the xmode utility last as long as
the device descriptor for the device remains in memory (generally until
the machine is rebooted). This differs from the tmode utility in that it
modifies only an open path's options.

See your technical reference manual for more information on paths
and the tmode utility documentation for more information on
temporarily changing path and device options.

You can only use xmode for SCF, GFM and UCM devices.

OS-9 for 68K Users: On SSM systems, the module header permissions
of the module must allow the appropriate write permission; otherwise
an access error occurs. The typical default for modules is write-
protected, this means you need to use fixmod on the module before it
is loaded into memory.

Generally, changes made with using the xmode utility should be made
prior to iniz-ing the device as changes made after the device is
initialized will only affect paths opened after the changes have been
made. For Example Assuming that device t1 is not initialized, the
following command sequence opens all paths to t1 without the pause
option.

xmode /t1 nopausesets the nopause option
iniz /t1initializes t1

The exceptions are the five parameters type, par, cs, stop, and baud.
Any change to these options affects all currently open paths as well as
any paths opened to the device in the future.

To change the operating parameters of a terminal device, type xmode,
the name of the device, and any parameters you want changed. If
parameters are not given, the xmode utility displays the present value
for the each device option. Otherwise, the xmode utility processes the
parameter(s) given on the command line.

For OS-9, the device name is optional, the xmode utility assumes the
device that is open on standard input is to be displayed/modified.

xmode Chapter 1: Utilities

Utilities Reference 337

Parameters are given in a variety of ways. If the parameters to be
changed is either enabled or disabled (such as pause or echo) then the
option is enabled by just specifying the name of the option.

xmode /term pause
Enables the pause option.

xmode /term echo
Enables the echo option.

To disable these types of options the option name is specified prefixed
with the word "no".

xmode /term nopause noecho
Disables the pause and echo options.

If the parameter has a name and a value then these are specified
together, separated by an equal sign. Generally, the value 0 disables an
option. For example, to disable xon and xoff processing for a path use
the command line.

xmode /term xon=0 xoff=0
Disables XON and XOFF processing options.

For OS-9 for 68K, the value is the hex number for the option (0x is
implied).

For OS-9, the value is either the hex value (preceded by 0x), the
"control character" (caret [^] followed by the character), or the ASCII
mnemonic for the character.

On OS-9 for 68K, to return one of these type values to its default, use
the name of the option without the equal sign and value.

xmode /term xon xoff
Enables XON and XOFF options with default values.

Chapter 1: Utilities xmode

338 Utilities Reference

For OS-9, setting the character mapping table is accomplished by either
specifying the character to be mapped and the behavior or the behavior
followed by the character to be mapped. The character can be
expressed by either the hex value (preceded by 0x), the "control
character" (caret [^] followed by the character), or the ASCII mnemonic
for the character. For example, to add ^Y with IGNORE mapping you
could use any of these command line arguments:

^Y=IGNORE
IGNORE=^Y
0x19=IGNORE
IGNORE=0x19
EM=IGNORE
IGNORE=EM

For OS-9, xmode sets two different I/O system items: the default path
options and the logical unit options. Changes to the path options will
only take effect when new paths are opened. Changes to the logical
unit options take effect immediately to all paths already open to the
device as well as paths that are opened in the future.

For OS-9, numeric value of character in hexadecimal if prefixed with
0x, "control character" when prefixed with caret (^), or ASCII
mnemonic.

Table 1-33. xmode Parameter Names

OS-9 for
68K Name

OS-9 Name
Specification

abort=h abort=h Aborts character (normally <control>C,
default = 03).

For OS-9 for 68K, numeric value of
character in hexadecimal.

baud=n baud=n Baud rate. The baud rate may currently be
set to the following values:

n = 50 300 2400 19200 57600
 75 600 3600 38400 115200
 110 1200 4800 56000 midi
 124.5 1800 7200 64000 extern
 150 2000 9600 31250

This value is not affected by xmode
normal.

xmode Chapter 1: Utilities

Utilities Reference 339

bell=h bell=h Sets bell (alert) output character (default =
07).

For OS-9 for 68K, numeric value of
character in hexadecimal.

bsb bsb Erases on backspace. Backspace characters
are echoed as a backspace-space-
backspace sequence. Default.

bse=h bsp=h Sets output backspace character (normally
<control>H, default = 08).

For OS-9 for 68K, numeric value of
character in hexadecimal.

bsl del Backspaces over line. Lines are deleted by
sending backspace-space-backspace
sequences to erase the line. Default.

bsp=h bsp=h Sets the backspace input character
(normally <control>H, default=08).

For OS-9, sets the backspace output
character.

For OS-9 for 68K, numeric value of
character in hexadecimal.

cs=n wordsize =
n

Sets the character length using one of the
following values:

n = 8, 7, 6 or 5 (bits)

Setting character length changes the type
value. This value is not affected by xmode
normal.

del=h See Table
1-34.

Sets input delete line character (normally
<control>X, default = 18).

For OS-9 for 68K, numeric value of
character in hexadecimal.

echo echo Inputs characters echoed back to terminal.
Default.

Table 1-33. xmode Parameter Names (Continued)

OS-9 for
68K Name

OS-9 Name
Specification

Chapter 1: Utilities xmode

340 Utilities Reference

eof=h eof=h For OS-9 for 68K, sets end-of-file input
character (normally <esc>, default = 1B)
that causes an EOS_EOF to be returned
when entered as the first character of a
read or readln system call. Numeric value
of character in hexadecimal.

For OS-9, it sets the character that will
appear in the input buffer when a character
mapped to endofile is entered as the non-
first character of a read or readln system
call.

eor=h eor=h Sets end-of-record input character
(normally <cr>, default = 0D).

For OS-9 for 68K, numeric value of
character in hexadecimal.

dup=h See Table
1-34.

Sets duplicate last input line character
(normally <control>A, default = 01).

For OS-9 for 68K, numeric value of
character in hexadecimal.

lf lf Auto line feed on. Line feeds are
automatically echoed to terminal on input
and output carriage returns. Default.

nobsb nobsb No erase on backspace. Echoes single
backspace only.

nobsl nodel No backspace over line. Lines are deleted
by printing a new line sequence.

noecho noecho No echo.
nolf nolf Auto line feed off.
nopause nopause Screen pause mode off.
normal Sets the terminal back to its default

characteristics. This does not affect the
following values: type, baud rate, parity,
character length, and stop bits.

noupc noupc Upper and lower case characters are
permitted. Default.

Table 1-33. xmode Parameter Names (Continued)

OS-9 for
68K Name

OS-9 Name
Specification

xmode Chapter 1: Utilities

Utilities Reference 341

null=n null=n Sets null count. Number of null ($00)
characters transmitted after carriage
returns for return delay. The number is
decimal. By default, the null count is set to
zero.

pag=n page=n Sets video display page length to n lines. n
is a decimal number. Used for pause
mode.

par=s Sets parity using one of the following
strings: odd, even, or none. Setting parity
affects the type value. This value is not
affected by xmode normal.

parity=s Sets parity using one of the following
strings: odd, even, or none.

pause pause Screen pause on. Output suspended upon
full screen. See pag parameter for
definition of screen size. Output can be
resumed by typing any key.

psc=h psc=h Sets pause character (normally
<control>W, default = 17).

For OS-9 for 68K, numeric value of
character in hexadecimal.

quit=h quit=h Quits character (normally <control>E,
default = 05).

For OS-9 for 68K, numeric value of
character in hexadecimal.

reprint=h (See Table
1-34.)

Sets reprint line character (normally
<control>D, default = 04).

For OS-9 for 68K, numeric value of
character in hexadecimal.

stopbits=n Sets the number of stop bits used:

n = 1, 1.5, or 2 (stop bits)

Table 1-33. xmode Parameter Names (Continued)

OS-9 for
68K Name

OS-9 Name
Specification

Chapter 1: Utilities xmode

342 Utilities Reference

stop=n Sets the number of stop bits used:

n = 1, 1.5 or 2 (stop bits)

Setting the stop bit value affects the type
value. This value is not affected by xmode
normal.

tabc=h tab=h Tab character (normally <control>I,
default = 09).

For OS-9 for 68K, numeric value of
character in hexadecimal.

tabs=n tabsiz=n Number of characters between tab stops.
The number is in decimal. By default, there
are four characters between tab stops.

time=n Sets the timeout value in 256ths of a
second for unblocked I_READ and
I_READLN operations. If the number of
characters requested is not satisfied within
the duration of ticks specified, the I/O
operation returns with the number of
characters available. If time=1 the I/O
operation does not wait. Instead, the
number of characters available are
returned.

type=h ACIA initialization value. Sets parity,
character size, and number of stop bits.
Value in hexadecimal. This value is affected
by changing the individual par(ity), cs
(character length), and stop (stop bits)
values. This value is not affected by the
xmode normal command.

upc upc Upper case only. Lower case characters are
converted automatically to upper case.

Table 1-33. xmode Parameter Names (Continued)

OS-9 for
68K Name

OS-9 Name
Specification

xmode Chapter 1: Utilities

Utilities Reference 343

For OS-9, numeric value of character in hexadecimal if prefixed with
0x, "control character" when prefixed with caret (^), or ASCII
mnemonic.

xon=h xon=h Resumes output input character (normally
<control>Q, default = 11).

For OS-9 for 68K, numeric value of
character in hexadecimal.

xoff=h xoff=h Suspends output input character (normally
<control>S, default = 13).

For OS-9 for 68K, numeric value of
character in hexadecimal.

Table 1-33. xmode Parameter Names (Continued)

OS-9 for
68K Name

OS-9 Name
Specification

Table 1-34. OS-9 Control Keys that Affect the Input Line

Name Description
delchrl=h Sets input backspace character (delete character-left).

(Normal ^H.)
delchru=h Sets the "delete character under the cursor" character.

(Normal ^D.)
deline=h Sets input delete line character (normally

<control>X).
delwrdl=h Sets the delete word left character. (Normal ^L).

Numeric value of character is hexadecimal by default.
delwrdr=h Sets the delete word right character. (Normal ^R).

Numeric value of character is hexadecimal by default.
endofile=h Sets the end-of-file character. (Normal <esc>).

Numeric value of character is hexadecimal by default.
endorec=h Sets the end-of-record character. (Normal <cr>).

Numeric value of character is hexadecimal by default.
insrtmode=h Sets the enter insert mode character. (Normal ^I).

Numeric value of character is hexadecimal by default.

Chapter 1: Utilities xmode

344 Utilities Reference

OS-9 for 68K Examples
xmode /term noupc nopause

Disables upper-case lock and page pause.

tmode /term reprint=1
Changes reprint character to <control>P.

tmode /term xon=0 xoff=0
Disables XON and XOFF processing.

OS-9 Examples
tmode /term noupc nopause

Disables upper-case lock and page pause.

tmode /term REPRINT=0x04
Changes reprint character to <control>D.

tmode /term pause page=65
Enables page pause and set page size to 65.

movebeg=h Sets the move cursor to the beginning of the line
character. (Normal ^Z).

Numeric value of character is hexadecimal by default.
moveend=h Sets move to the end-of-line character (normally

<control>A).
moveleft=h Sets the move cursor left character. (Normal ^B).

Numeric value of character is hexadecimal by default.
moveright=h Sets the move cursor right character. (Normal ^F).

Numeric value of character is hexadecimal by default.
reprint=h Sets reprint line character (Normal ^P).
truncate=h Sets the truncate to end-of-line character.

(Normal ^K).

Numeric value of character is hexadecimal by default.

Table 1-34. OS-9 Control Keys that Affect the Input Line (Continued)

Name Description

Utilities Reference 345

2 Using the debug Utility Chapter 2

The debug utility is a software tool for debugging and testing user-state
68000 machine language programs written for the OS-9 for 68000
operating system.

debug uses:

• Software techniques to control a process to debug.
• The F$DFork and F$DExec system calls to create and execute the

process to debug. These system calls provide an environment that
allows the debugger to control how a process executes without
affecting other processes on the system.

Full access to the 68000 user-mode registers is provided. On
68020/68881-based systems, full access to user-mode 68020 registers
and all 68881 floating point registers are provided.

Chapter 2: Using the debug Utility

346 Utilities Reference

Symbolic Debugging
The OS-9 linker (l68) produces a symbol module for a program if you
specify the l68 -g option when the program is linked. This option
places global data and code symbols in a data module. debug
automatically loads the symbol table data (STB) module when the
debugging session begins.

This method of separating symbolic debugging information from the
executable program module provides a number of advantages. The
symbol information is not loaded into memory until the program is
actually debugged. No production linkage or symbol stripping is
required to remove the symbols from the code. You can keep the STB
module for possible future debugging of the production code. The CRC
of the program module is stored in the STB module and validated by
the debugger to ensure that the symbol module matches the version of
the program being debugged.

Starting debug
Type debug at the shell prompt. The debug utility then waits for a
command with the prompt: dbg:

The f command is the first command entered in a debug session. This
creates a process to execute the program to debug.

If any parameters are specified on the shell command line, they are
assumed to be arguments for the f command.

If any parameters are specified, the f command is implicitly executed
upon startup.

If redirection, priority specification, and stack size (<, >, ^, #) are given,
be sure to enclose the arguments in quotes to protect them from
interpretation by the shell.

The f command can pass up to 64 arguments to the process.

A full explanation of entering debug via the shell command line and the
f command appear in later sections of this chapter.

Chapter 2: Using the debug Utility

Utilities Reference 347

Exiting the Debugger
Use the q command to exit the debugger. The process being debugged
is terminated and all its resources returned to the system. Any module
linked by the l command is unlinked as well as any symbol modules in
use.

Relocation Registers
The debugger maintains eight relocation registers. These registers are
used for storing memory base addresses for later use in commands and
expressions.

The registers are referenced by the names r0 through r7. The r0
register is hard-wired to zero.

When an address is specified, the default relocation register is added to
the address automatically. Setting the default relocation register to zero
disables this action.

The default relocation register is not added if a symbolic address or an
expression is specified.

The following commands deal with the relocation registers.

Examples
dbg: @
the default relocation register is .r0 00000000
dbg: .r4 1fe00
dbg: @
the default relocation register is .r4 0001fe00
dgb: .r
rn: 00000000 00000000 00000000 0001fe00 00000000
00000000 00000000 00000000

Table 2-1. Relocation Register Commands

Command Specification
@ Prints the default relocation register.
@<num> Sets the default relocation register to <num>.

<num> = 0 to 7.
.r Displays the relocation registers.
.r<num> <val> Sets specified relocation register to <val>.

Chapter 2: Using the debug Utility

348 Utilities Reference

Breakpoints
The debugger sets up to 16 simultaneous breakpoint addresses.
Breakpoints can only be set at even-byte addresses.

The debugger supports two distinct types of breakpoints: soft
breakpoints and hard breakpoints. Each is used in a different manner.

A soft breakpoint is not actually placed in the code, but is emulated by
the F$DExec system call. This allows you to set breakpoints in ROM
code or code that another process is currently executing. Because the
soft breakpoint facility is implemented in software, the program runs
much slower than normal in this mode.

A hard breakpoint is an illegal instruction placed in the code that
causes an illegal instruction exception. Because of this, you cannot use
a hard breakpoint in ROM code. If another process is executing the
code being debugged, it will most likely exit with an illegal instruction
error when the breakpoint instruction is reached. The program runs at
full speed when using hard breakpoints.

By default, the debugger uses soft breakpoints. To continue the
program at full speed using hard breakpoints, use the x -1 command.
For more information, see the execution commands section in this
chapter.

The following commands deal with breakpoints:

Table 2-2. Breakpoint Commands

Command Specification
b Displays the breakpoint list.
b<addr> Sets the breakpoint at <addr>.
k <addr> Kills breakpoints at <addr>.
k * Kills all breakpoints.

Chapter 2: Using the debug Utility

Utilities Reference 349

Examples
dbg: b
breakpoint count = 0
dbg: b main
dbg: b
breakpoint count = 1
main (00162f40)
dbg: b main+1f0
dbg: b
breakpoint count = 2
main (00162f40)
main+1f0 (00163130)
dbg: k main+1f0
dbg: k
clear all breakpoints? y
dbg: k *

debug Commands
To get a brief synopsis of debugger commands, type ? at the prompt.

Execution Commands
The debug utility provides a number of commands to initiate and
control program execution:

Table 2-3. Execution Commands

Command Specification
i Instruction count

Displays the number of instructions the program
executed. This count does not include instructions
executed in system state or during the x -1 command.

g Go
Runs the program until a breakpoint, exception, or the
F$Exit system call is encountered.

g <addr> Go from address
Runs the program starting execution at <addr>, until a
breakpoint, exception, or the F$Exit system call is
encountered.

Chapter 2: Using the debug Utility

350 Utilities Reference

All code executed in system state (including system calls) is considered
a single instruction. If a system call or exception transfers control to a
user handler, tracing continues at the first instruction of the user
handler.

The F$TLink system call executes the initialization routine of a user
trap handler in user state. When tracing a program that has issued an
F$STrap system call to handle an exception, control is transferred
immediately to the exception handler code when the exception occurs.

gs Go and stop
Executes the program until the next instruction is
encountered. This is the same as the Go command, but
it sets a breakpoint at the next instruction. The
breakpoint is automatically removed when the debugger
regains control.

gs <addr> Go and stop at address
Executes the program starting at the address in the PC
register up to the specified <addr>. This is the same as
the Go command, but it sets a breakpoint at <addr>.
The breakpoint is automatically removed when the
debugger regains control.

t Trace
Executes one instruction and re-displays the machine
registers.

t <count> Trace instructions
Executes <count> instructions and re-displays the
machine registers. Each instruction is displayed as it is
executed. Breakpoints are ignored while tracing.

x <count> Execute instructions
Executes <count> instructions and re-displays the
machine registers. Breakpoints are in effect and no
instruction trace is displayed. If <count> is -1, hard
breakpoints are set in the program allowing full-speed
debugging. If <count> is positive, soft breakpoints are
used and control returns after <count> instructions have
been executed.

Table 2-3. Execution Commands (Continued)

Command Specification

Chapter 2: Using the debug Utility

Utilities Reference 351

The gs command is useful when stopped at a bsr or db instruction.
The program runs until control is returned from the subroutine or the
decrement loop terminates.

The x and t commands cause the debugger to enter a repeat
command mode. If <cr> is entered at the exe: or tra: prompt, the
last t or x command respectively, is performed again. Even though
<cr> has a special meaning at this point, any other command may be
given.

For example:

dbg: i
instructions executed = 16 (0x10)
dbg: x10
dn: 00000001 00000000 00000082 00000003 00000000 00000076 00001020
00000020
an: 0001B2FE 00000020 00000000 001809C0 0001B306 0001B298 000222F0
0001B298
pc: 00180A5C cc: 00 (-----)
_cstart+0x4E >670C beq.b _cstart+0x5C
exe: <cr> entered; repeat x10 command
dn: 00000001 00000000 00000084 00000003 00000000 00000076 00001020
0000000B
an: 0001B2F6 0000000B 00000000 001809C0 0001B306 0001B298 000222F0
0001B298
pc: 00180A5C cc: 00 (-----)
<68881 in Null state>
_cstart+0x4E >670C beq.b _cstart+0x5C
exe: <cr> entered; repeat x10 command again
dn: 00000001 00000000 00000086 00000003 00000000 00000076 00001020
00000000
an: 0001B2EE 00000000 00000000 001809C0 0001B306 0001B298 000222F0
0001B298
pc: 00180A5C cc: 04 (--Z--)
<68881 in Null state>
_cstart+0x4E >670C beq.b _cstart+0x5C->
exe: i
instructions executed = 64 (0x40)
dbg:

The program may stop before the next instruction breakpoint is
reached if another breakpoint, exception or F$Exit is reached
first.

Chapter 2: Using the debug Utility

352 Utilities Reference

A program can cause the kernel to transfer control to specific code
within the program by issuing an F$STrap system call. Given in the call
are a list of exception vector offsets and handler addresses for each
exception that the program wishes to handle. Any exceptions not
explicitly handled by the program cause the process to abort when the
exception occurs. If a given exception occurs while tracing the program,
control is immediately transferred to the handler. The debugger cannot
tell that the exception occurred other than through the transfer of
control.

If the program causes an exception and does not have an exception
handler installed, control transfers to the debugger, the appropriate
error number/message is printed, and for bus and address exceptions
the following information is displayed:

execution error - class=0161 violation address=00555553 inst =
5988
Error #000:102 bus trap
dn: 0000000C 000C0064 00000080 00000003 00000000 000000A2 00001050
00000000
an: 00555555 0001EB50 00000000 0015B610 00000000 0001EAAC 00025B00
0001EAAC
pc: 0015B678 cc: 04 (--Z--)
_cstart+0x1A >4A68FFFE tst.w -2(a0)
tra:

class is the stack frame special status word on the
68010/68020; for the 68000 this is the first word of the
exception frame. violation address is the access address
that caused the exception. inst is the instruction input buffer for
the 68000/68010; for the 68020 this is the instruction pipe stage
B word. On the 68010, the PC shown by the debugger may be
advanced up to five words due to instruction pipeline buffering.

Chapter 2: Using the debug Utility

Utilities Reference 353

Stack Traceback Command
You can examine the flow of execution with the stack traceback
command. When you use this command, the debugger displays the
functions on the call stack and their absolute addresses. The following
syntax is used for this command:

Example
dbg: gs printf
dn: 001972BE 00000000 00000001 00000003 00000001
0008434A 00004380 000000
an: 001972BE 00000000 00084342 00084338 00084334
00084218 00088000 000841
pc: 00197506 cc: 00 (-----)
<FPCP in Null state>
printf >4E550000 link.w a5,#0
dbg: t
dn: 001972BE 00000000 00000001 00000003 00000001
0008434A 00004380 000000
an: 001972BE 00000000 00084342 00084338 00084334
000841D4 00088000 000841
pc: 0019750A cc: 00 (-----)
<FPCP in Null state>
printf+0x4 >48E7C080 movem.l d0-d1/a0,-(a7)
tra: w
Stack traceback via (a5):
printf+0x4 (0019750A)
main+0xA4 (00196F04)
_cstart+0xE4 (00196D24)

Table 2-4. Stack Traceback Command

Command Description
w[<n>] Linkstack traceback via (a5). <n> = depth of

traceback. If <n> is not specified, a complete
traceback is displayed.

Chapter 2: Using the debug Utility

354 Utilities Reference

Memory Change Commands
You can examine and change memory with the debugger memory
change command. When you use this command, the debugger
automatically enters the memory change mode. There are three forms
of this command:

Addresses specified by the word and longword change commands must
be even for non-68020 processors. The debugger displays the address
and the values at the address and prompt for the new value:

dbg: d1 .d0 Display memory

0x1EF7E - 6A626364 65660000 00000000 00000000
jbcdef..........

dis: c .d0 Enter change mode

0x1EF7E :6A ’a Store the character a

0x1EF7F :62 20 Store a blank

0x1EF80 :63 - Back up

0x1EF7F :20 #20 Different base (use 10)

0x1EF80 :63 - Back up

0x1EF7F :14 + Advance

0x1EF80 :63 . Exit change mode

dbg: d1 .d0 Display memory

0x1EF7E - 61146364 65660000 00000000 00000000 a.cdef..........

Table 2-5. Memory Change Command

Command Specification
c<addr> Change byte values.
cw<addr> Change word values.
cl<addr> Change longword values.

Chapter 2: Using the debug Utility

Utilities Reference 355

Changing longword values is similar:

tra: d1 i_ Display memory

i_ - 00000000 00000000 00000000 00000000

dis: cl i_ Enter longword change mode

i_ :00000000 #10000 New value

j_ :00000000 #44 New value

k_ :00000000 . Exit change mode

dbg: d1 i_ Display memory

i_ - 00002710 0000002C 00000000 00000000 ..’....,........

The change values may also be given all at once with no intermediate
memory display:

tra: d1 i_

i_ - 00000000 00000000 00000000 00000000

dis: cl i_ #10000 #44 . Enter change mode, store 2 values, exit
change

dbg: d1 i_
i_ - 00002710 0000002C 00000000 00000000 ..’....H........

Memory Commands
Memory is displayed using the memory display command: d. This
command allows interpretation of memory in a number of ways. The
general form of the display memory command is:

d[M][N] <addr> [<len>]

Table 2-6. Memory Display Parameters

Parameter Specification
[M] Optional format indicator.
[N] Number of lines (0-9) of dump to display. This value is

used only if <len> is not given.

Chapter 2: Using the debug Utility

356 Utilities Reference

If not present, the memory dump is displayed in the normal
hexadecimal/ASCII dump format. You can specify one of the following
codes to cause the dump to interpret a memory as follows:

Hex/ASCII Dump Memory Display
In the ASCII field of the hex/ASCII dump, bytes in the range of
$20 - $7E are displayed as the ASCII character equivalent. All other
values are displayed as a period (.)

dbg: d _cstart Use hex/ASCII dump format (256 bytes)

_cstart - 2D468010 2D468014 3D438018 4A85671E -F..-F..=C..J.g.
_cstart+0x10 - 08050000 661441F5 58004A68 FFFE660A
....f.AuX.Jh.~f.
_cstart+0x20 - 598849E8 FFFC7001 60204235 58FF204D Y.Ih.|p.B5X. M
_cstart+0x30 - D7EB000C 42A72F0B 74016100 10186076
Wk..B’/.t.a...‘v
_cstart+0x40 - 43E80004 2D4984E8 74002260 2E09670C Ch..-I.ht.".g.
_cstart+0x50 - D3CD4229 FFFF2089 528260EE 538067E0 SMB)..
.R.S.g~pc
_cstart+0x60 - 4A826610 4A68FFFE 670A4228 FFFF2448
J.f.Jh.~g.B(..$H
_cstart+0x70 - 58886006 208D2448 52825282 4A946718 X. .$HR.R.J.g.

<addr> Starting address for the memory display. This value
must be even for instruction disassembly and floating
point display.

<len> Number of bytes to display. If not given, the default is
256 for hex/ASCII display, 16 for instruction
disassembly, and 12, 8, and 4 for X, D, and F floating
point formats, respectively. <len> is rounded so that
a full line is always displayed. For example, if 1 is
specified, 16 bytes are actually displayed.

Table 2-6. Memory Display Parameters (Continued)

Parameter Specification

Table 2-7. Dump Memory Interpretation Codes

Code Specification
I Instruction disassembly.
F Single precision floating point.
D Double precision floating point.
X Extended precision floating point (only if 68881 is

available).

Chapter 2: Using the debug Utility

Utilities Reference 357

_cstart+0x80 - 28544A1C 66FCB5CC 631E0C1C 00FC6618
(TJ.f|5Lc....|f.
_cstart+0x90 - 528C2654 D7CD6014 0C2D00FC 00026608 R.&TWM.-.|..f.
_cstart+0xA0 - 266D0004 D7CD6004 D7EB000C 210B2F08 &m..WMWk..!./.
_cstart+0xB0 - 4228FFFF 2F026100 0E7E6500 01086114
B(../.a..~e...a.
_cstart+0xC0 - 4CDF0003 9BCD2F2E 84E86100 01367000
L_...M/..ha..6p.
_cstart+0xD0 - 61001340 207CFFFF 8572D1CE 2D488004 a..@ |...rQN-
H..
_cstart+0xE0 - 2D4F8000 2D4F8008 203CFFFF FF042F08 -O..-O..
<..../.
_stkchec+0x2 - 41F70800 B1EE8008 640AB1EE 80046508
Aw..1n..d.1n..e.
dis: d _cstart 44 Same as before but at 44 bytes
_cstart - 2D468010 2D468014 3D438018 4A85671E -F..-F..=C..J.g.
_cstart+0x10 - 08050000 661441F5 58004A68 FFFE660A
....f.AuX.Jh.~f.
_cstart+0x20 - 598849E8 FFFC7001 60204235 58FF204D Y.Ih.|p.B5X. M
_cstart+0x30 - D7EB000C 42A72F0B 74016100 10186076 Wk..B’/.t.a...
_cstart+0x40 - 43E80004 2D4984E8 74002260 2E09670C Ch..-I.ht.".g.
dis: d5 _cstart Five line display
_cstart - 2D468010 2D468014 3D438018 4A85671E -F..-F..=C..J.g.
_cstart+0x10 - 08050000 661441F5 58004A68 FFFE660A
....f.AuX.Jh.~f.
_cstart+0x20 - 598849E8 FFFC7001 60204235 58FF204D Y.Ih.|p.B5X. M
_cstart+0x30 - D7EB000C 42A72F0B 74016100 10186076 Wk..B’/.t.a...
_cstart+0x40 - 43E80004 2D4984E8 74002260 2E09670C Ch..-I.ht.".g.
dis: d1 _cstart One line display
_cstart - 2D468010 2D468014 3D438018 4A85671E -F..-F..=C..J.g.
dis: d _cstart 1 Same as above
_cstart - 2D468010 2D468014 3D438018 4A85671E -F..-F..=C..J.g.

Instruction Disassembly Memory Display
In the instruction disassembly display format, conditional instructions
may be followed with a hyphen, followed by a right angle bracket (->)
indicator. If -> is present, the instruction performs its TRUE operation;
otherwise, the instruction performs the FALSE operation. The
appropriate condition code register is examined to determine which
case the processor performs. The following conditional instruction
categories use this feature:

Table 2-8. Conditional Instructions

Instruction Description
Bcc Branch on condition.
DBcc Decrement and branch on condition.

Chapter 2: Using the debug Utility

358 Utilities Reference

Example
dis: di _cstart Instruction disassembly
_cstart >2D468010 move.l d6,_totmem(a6)
_cstart+0x4 >2D468014 move.l d6,_sbsize(a6)
_cstart+0x8 >3D438018 move.w d3,_pathcnt(a6)
_cstart+0xC >4A85 tst.l d5
_cstart+0xE >671E beq.b _cstart+0x2E
_cstart+0x10 >08050000 btst.b #0,d5
_cstart+0x14 >6614 bne.b _cstart+0x2A->
_cstart+0x16 >41F55800 lea.l 0(a5,d5.l),a0
_cstart+0x1A >4A68FFFE tst.w -2(a0)
_cstart+0x1E >660A bne.b _cstart+0x2A->
_cstart+0x20 >5988 subq.l #4,a0
_cstart+0x22 >49E8FFFC lea.l -4(a0),a4
_cstart+0x26 >7001 moveq.l #1,d0
_cstart+0x28 >6020 bra.b _cstart+0x4A
_cstart+0x2A >423558FF clr.b -1(a5,d5.l)
_cstart+0x2E >204D movea.l a5,a0
dis: di _cstart 5 Disassemble 5 instructions

_cstart >2D468010 move.l d6,_totmem(a6)
_cstart+0x4 >2D468014 move.l d6,_sbsize(a6)
_cstart+0x8 >3D438018 move.w d3,_pathcnt(a6)
_cstart+0xC >4A85 tst.l d5
_cstart+0xE >671E beq.b _cstart+0x2E

Scc Set according to condition.
TRAPcc Trap on condition.
FBcc Branch on floating condition.
FScc Set according to floating condition.
FDBcc Decrement and branch on floating condition.
FTRAPcc Trap on floating condition.

Table 2-8. Conditional Instructions

Instruction Description

Chapter 2: Using the debug Utility

Utilities Reference 359

Floating Point Memory Displays
Floating point conditional instructions use the condition portion of the
68881 FPSR register, the others use the processor CC register. During
memory disassembly display, the -> indicator appears based on the
static value of the condition register value when the disassembly
occurred. The following are examples of floating point memory
displays:

dis: d1 f_ Display in hex/ASCII format

f_ - 3F2AAAAB 00000000 00000000 00000000
?**+............

dis: df f_ Display in single-precision decimal

f_ - 3F2AAAAB 0.6666666865348816

dis: d1 a_ Display in hex/ASCII format

a_ - 3FE55555 55555555 3F2AAAAB 00000000
?eUUUUUU?**+....

dis: dd a_ Display in double-precision decimal

a_ - 3FE5555555555555 0.6666666666666666

To display a floating point number in machine registers, give the name
of the register preceded by an ampersand (&). Normal expression
evaluation uses the value in the register as a pointer to the desired
value. Using ampersand (&) syntax, the value in the register is used.

dn: 3FE55555 55555555 00000001 00000003 00000000
000000A6 00001210 00000000

an: 0001DB78 00000000 0001E7EE 0001E7E2 0001E7DE 00000000 00025610
0001E758
pc: 0010CD40 cc: 00 (-----)
<68881 in Null state>
main+0x2C 2F2E801E move.l a_+0x4(a6),-(a7)
dbg: dd &.d0 Display double precision value in register
[reg] - 3FE5555555555555 0.6666666666666666
dn: 3F2AAAAB 55555555 00000001 00000003 00000000 000000A6 00001210
00000000
an: 0001DB78 00000000 0001E7EE 0001E7E2 0001E7DE 00000000 00025610
0001E750
pc: 0010CD4C cc: 00 (-----)
<68881 in Null state>
main+0x38 61001750 bsr.w _T$FtoD

Chapter 2: Using the debug Utility

360 Utilities Reference

dbg: gs
dn: 3FE55555 60000000 00000001 00000003 00000000 000000A6 00001210
00000000
an: 0001DB78 00000000 0001E7EE 0001E7E2 0001E7DE 00000000 00025610
0001E750
pc: 0010CD50 cc: 00 (-----)
<68881 in Null state>
main+0x3C 2F01 move.l d1,-(a7)
tra: df f_ Display single precision float
f_ - 3F2AAAAB 0.6666666865348816
dis: dd f_ Display using wrong format
f_ - 3F2AAAAB00000000 0.0002034505596384406 Garbage value
dis: dd .d0 Uses .d0 as a pointer (wrong)
0x3F2AAAAB bus error.
dis: dd &.d0 Uses value in .d0 (correct)
[reg] - 3F2AAAAB55555555 0.0002034505984435479
dis: df &.d0
[reg] - 3F2AAAAB 0.6666666865348816

Displaying values in the 68881 floating point registers is similar.

Utilities Manual 2-19
dn: 3FE55555 60000000 00000001 00000003 00000000 000000A6 00001210
00000000
an: 0001DB78 00000000 0001E7EE 0001E7E2 0001E7DE 00000000 00025610
0001E750
pc: 0010DDB0 cc: 00 (-----)
fp0:3FFE0000 AAAAAB00 00000000 fp4:7FFF0000 FFFFFFFF FFFFFFFF
fpcr: 0000 XN
fp1:7FFF0000 FFFFFFFF FFFFFFFF fp5:7FFF0000 FFFFFFFF FFFFFFFF
fpiar: 00000000
fp2:7FFF0000 FFFFFFFF FFFFFFFF fp6:7FFF0000 FFFFFFFF FFFFFFFF
fpsr: 00000000
fp3:7FFF0000 FFFFFFFF FFFFFFFF fp7:7FFF0000 FFFFFFFF FFFFFFFF (---
- 0)
main+0x3C 2F01 move.l d1,-(a7)
dbg: dd .fp0 Uses .fp0 as a pointer (wrong)
0x3FFE0000 bus error.
dbg: dd &.fp0 Uses value in .fp0 (correct, wrong format)
[reg] - 3FFE0000AAAAAB00 1.875000635782897
dis: dx .fp0
0x3FFE0000 bus error.
dbg: dx &.fp0 Uses value in .fp0 (correct format - ’X’)
[reg] - 3FFE0000AAAAAB0000000000 0.6666666865348816

Chapter 2: Using the debug Utility

Utilities Reference 361

Display/Change Machine Registers
Use the period (.) command to display and change the machine
registers:

The register display appears as follows:

dn: 0000000C 000C0064 00000080 00000003 00000000
000000A6 00001210 00000000
an: 00000000 0001E820 00000000 0010CAC0 00000000
0001E778 00025610 0001E778
pc: 0010CB12 cc: 00 (-----)
<68881 in Null state>
_cstart> 2D468010 move.l d6,_totmem(a6)

The first two lines of the display show the data and address registers
from D0 - D7 and A0 - A7 respectively. The third line shows the
program counter and status register. Only the user byte (containing the
processor condition code values) is available. The condition code bits
are interpreted and displayed after the condition code register hex value
in parentheses.

The bit interpretation is:

(XNZVC)

C = Carry

V = Overflow

Z = Zero

N = Negative

X = Extend

The following discussion of the 68881 coprocessor registers applies
only to OS-9 systems running on a 68020 processor with the 68881
installed as a coprocessor.

Table 2-9. Display/Change Machine Register Commands

Command Specification
. Display machine registers.
.<reg> <val> Change machine register.

Chapter 2: Using the debug Utility

362 Utilities Reference

If the display 68881 registers option is set, the next line(s) indicate the
state of the 68881 coprocessor. If the coprocessor is not present on the
system, the following message appears:

<No 68881 available>

If the process has yet to access the 68881, the following message
appears:

<68881 in Null state>

When the process accesses the 68881, a floating point register dump
appears. If the setting of the debugger decimal register display option
indicates hex display, the 68881 coprocessor registers appear as such:

fp0:40010000 D5555555 55555200 fp4:7FFF0000 FFFFFFFF FFFFFFFF
fpcr: 0000 XN
fp1:7FFF0000 FFFFFFFF FFFFFFFF fp5:7FFF0000 FFFFFFFF FFFFFFFF
fpiar: 00000000
fp2:7FFF0000 FFFFFFFF FFFFFFFF fp6:7FFF0000 FFFFFFFF FFFFFFFF
fpsr: 00000208
fp3:7FFF0000 FFFFFFFF FFFFFFFF fp7:7FFF0000 FFFFFFFF FFFFFFFF (---
- 0)

If a decimal display is indicated, the registers appear in the following format:

fp0:6.666666666666666 fp4:<NaN> fpcr: 0000 XN
fp1:<NaN> fp5:<NaN> fpiar: 00000000
fp2:<NaN> fp6:<NaN> fpsr: 00000208
fp3:<NaN> fp7:<NaN> (---- 0)

The value of the registers are printed in decimal using scientific
notation when the value becomes very large or very small. IEEE not-a-
number values are printed as <NaN>, plus and minus infinity values are
printed as <+Inf> and <-Inf>, respectively. The extended precision
values are converted to double precision before printing, so conversion
overflow may result. The hexadecimal format display can be used to
determine the exact values in the registers.

The eight 68881 floating point registers are displayed in either
hexadecimal or decimal form depending on the floating point register
display option setting. The 68881 status registers appear to the far right
of the display:

 fpcr: 0000 -- 68881 control register

 fpiar: 00000000 68881instruction address register

 fpsr: 00000000 68881 status register

 (---- 0) FPSR interpretation bits

Chapter 2: Using the debug Utility

Utilities Reference 363

The -- field next to the FPCR register displays an interpretation of the
68881 rounding mode and precision. These fields are interpreted as
follows:

The FPSR condition code byte and the quotient byte are displayed as
follows:

Immediately following the main floating register display, the debugger
interprets the exception enable byte of the control register and the
exception status and accrued exception bytes of the status register. If all
bits in the byte are zero, nothing is printed. Otherwise, the bits are
displayed as follows:

XE:(BSUN,SNAN,OPERR,OVFL,UNFL,DZ,INEX2,INEX1)FPCR
exception enable

AX:(IOP,OVFL,UNFL,DZ,INEX,???,???,???) FPSR accrued
exception

XS:(BSUN,SNAN,OPERR,OVFL,UNFL,DZ,INEX2,INEX1)FPSR
exception status

fpcr: 0000 - -

Rounding mode:
Z = Toward zero
- = Toward minus infinity
+ = Toward plus infinity

Rounding Precision:
S = Single
D = Double

N = Nearest

X = Extended

(- - - - 0)

Quotient byte value (displays in signed decimal)

Floating point condition codes

? = NaN or Unordered
I = Infinity

Z = Zero
N = Negative

¸
″

ž

Chapter 2: Using the debug Utility

364 Utilities Reference

A full register display example follows:

dn: 00000000 00000000 00000001 00000003 00000000
000000A2 00001050 00000000
an: 000152D2 00000000 00015F4E 00015F46 00015F42
00000000 0001CF30 00015ED4
pc: 00139364 cc: 04 (--Z--)
fp0:40010000 C0000000 00000000 fp4:7FFF0000 FFFFFFFF
FFFFFFFF fpcr: 0000 XN
fp1:7FFF0000 FFFFFFFF FFFFFFFF fp5:7FFF0000 FFFFFFFF
FFFFFFFF fpiar: 00000000
fp2:7FFF0000 FFFFFFFF FFFFFFFF fp6:7FFF0000 FFFFFFFF
FFFFFFFF fpsr: 00000008
fp3:7FFF0000 FFFFFFFF FFFFFFFF fp7:7FFF0000 FFFFFFFF
FFFFFFFF (---- 0)
AX:(INEX)
_exit+0x6 >DEADDEAD add.l -8531(a5),d7

You can change processor registers with the period (.) command. Any
processor register or coprocessor control register can be changed with
this command:

.<regname> <expr>

Valid register names are:

.d0 - .d7

.a0 - .a7

.sp, .pc, .cc

.fpsr, .fpcr, .fpiar (for 68881 only)

Example
dn: 00000000 00000000 00000001 00000003 00000000
000000A6 00001210 00000000
an: 0001DB78 00000000 0001E7EE 0001E7E2 0001E7DE
00000000 00025610 0001E770
pc: 000F8FA8 cc: 04 (--Z--)
_exit+0x6 DEADDEAD add.l -8531(a5),d7
dbg: .d4 100 Set D4 to 100
dbg: . Display registers
dn: 00000000 00000000 00000001 00000003 00000100
000000A6 00001210 00000000
an: 0001DB78 00000000 0001E7EE 0001E7E2 0001E7DE

Chapter 2: Using the debug Utility

Utilities Reference 365

00000000 00025610 0001E770
pc: 000F8FA8 cc: 04 (--Z--)
dbg: .d4 .d2+.a6 Set D4 using an expression
dbg: . Display registers
dn: 00000000 00000000 00000001 00000003 00025611
000000A6 00001210 00000000
an: 0001DB78 00000000 0001E7EE 0001E7E2 0001E7DE
00000000 00025610 0001E770
pc: 000F8FA8 cc: 04 (--Z--)
dbg: .d4 No <value> means zero
dbg: .
dn: 00000000 00000000 00000001 00000003 00000000
000000A6 00001210 00000000
an: 0001DB78 00000000 0001E7EE 0001E7E2 0001E7DE
00000000 00025610 0001E770
pc: 000F8FA8 cc: 04 (--Z--)

The floating point register change command allows the change value
to be either a double precision decimal constant or a left-justified
hexadecimal value:

.fp<n> <float-decimal constant> or

.fp<n> <96-bit left-justified hex constant> or

.fp<n> .fp<n>

<n> is one of 0 - 7 representing the desired 68881 general floating
point register.

The syntax for <float-decimal constant> is:

[+/-]digits[.digits][Ee[+/-]integer]

The syntax for <96-bit left-justified hex constant> is:

0xh

Chapter 2: Using the debug Utility

366 Utilities Reference

h represents up to 12 hexadecimal digits. If less than 12 digits are
given, the value is padded on the right with zeroes. Remember that bits
68 through 80 of an extended precision value in IEEE are always zero.

dbg: .fp0 4 Set FP0 to 4.0
dbg: .
dn: 00000000 00000000 00000001 00000003 00000000
000000A6 00001210 00000000
an: 0001DB78 00000000 0001E7EE 0001E7E2 0001E7DE
00000000 00025610 0001E770
pc: 000F8FA8 cc: 04 (--Z--)
fp0:40010000 80000000 00000000 fp4:7FFF0000 FFFFFFFF
FFFFFFFF fpcr: 0000 XN
fp1:7FFF0000 FFFFFFFF FFFFFFFF fp5:7FFF0000 FFFFFFFF
FFFFFFFF fpiar: 00000000
fp2:7FFF0000 FFFFFFFF FFFFFFFF fp6:7FFF0000 FFFFFFFF
FFFFFFFF fpsr: 00000208
fp3:7FFF0000 FFFFFFFF FFFFFFFF fp7:7FFF0000 FFFFFFFF
FFFFFFFF (---- 0)
AX:(INEX) XS:(INEX2)
_exit+0x6 >DEADDEAD add.l -8531(a5),d7
dbg: .fp0 0x4 Set FP0 with hex value (left
justified)
dbg: .
dn: 00000000 00000000 00000001 00000003 00000000
000000A6 00001210 00000000
an: 0001DB78 00000000 0001E7EE 0001E7E2 0001E7DE
00000000 00025610 0001E770
pc: 000F8FA8 cc: 04 (--Z--)
fp0:40000000 00000000 00000000 fp4:7FFF0000 FFFFFFFF
FFFFFFFF fpcr: 0000 XN
fp1:7FFF0000 FFFFFFFF FFFFFFFF fp5:7FFF0000 FFFFFFFF
FFFFFFFF fpiar: 00000000
fp2:7FFF0000 FFFFFFFF FFFFFFFF fp6:7FFF0000 FFFFFFFF
FFFFFFFF fpsr: 00000208
fp3:7FFF0000 FFFFFFFF FFFFFFFF fp7:7FFF0000 FFFFFFFF
FFFFFFFF (---- 0)
AX:(INEX) XS:(INEX2)
_exit+0x6 >DEADDEAD add.l -
8531(a5),d7
dis: .fp0 0x40200000aef5 Another hex value

Chapter 2: Using the debug Utility

Utilities Reference 367

Memory Fill
Use the mf command to fill memory with a given pattern:

mf[S][N] <start> <end> <value>

* If the length of the fill determined from <start> and <end> is not an even word or
longword multiple (for a word and longword fill), the length is trimmed to the next lowest
respective multiple.

There are two special types of memory fill when using the byte fill size:

1. <value> may start with a double quote character ("") in which case
all remaining characters are used as a fill string.

2. <value> can be multiple byte values in which case each successive
value is used as fill characters.

In both cases, the pattern is reused from the beginning if the fill count
has not been exhausted.

Table 2-10. Memory Fill Parameters

Parameter Specification
[S] Specifies the size of the fill. If [S] is not given, byte

length is assumed. Three values are allowed for the
[S] parameter: b, w, or l for byte, word, or longword,
respectively.

[N] Indicates that the fill is to be performed without
regard to word/longword boundaries (for example,
word and longword fills are done on a byte for byte
basis). Fills of word and longword size must begin on
an even address on a non-68020 processor unless the
[N] parameter is given.

<start> and
<end>*

Starting and ending addresses for the memory fill.

<value> Pattern used to fill the memory range.

Chapter 2: Using the debug Utility

368 Utilities Reference

Example
d3 70000 Display memory
0x00070000 - FEEDC0DE FEEDC0DE FEEDC0DE FEEDC0DE ~m@^~m@^~m@^~m@^
0x00070010 - FEEDC0DE FEEDC0DE FEEDC0DE FEEDC0DE ~m@^~m@^~m@^~m@^
0x00070020 - FEEDC0DE FEEDC0DE FEEDC0DE FEEDC0DE ~m@^~m@^~m@^~m@^
dis: mfb 70000 70003 a1 Fill with byte
dbg: d2 70000
0x00070000 - A1A1A1A1 FEEDC0DE FEEDC0DE FEEDC0DE !!!!~m@^~m@^~m@^
0x00070010 - FEEDC0DE FEEDC0DE FEEDC0DE FEEDC0DE ~m@^~m@^~m@^~m@^
dis: mfw 70000 7000f 5252 Fill with word
dbg: d2 70000
0x00070000 - 52525252 52525252 52525252 52525252 RRRRRRRRRRRRRRRR
0x00070010 - FEEDC0DE FEEDC0DE FEEDC0DE FEEDC0DE ~m@^~m@^~m@^~m@^
dis: mfl 70000 70002 81186226 Fill with longword
dbg: d3 70000
0x00070000 - 81186226 81186226 81186226 81186226 ..b&..b&..b&..b&
0x00070010 - FEEDC0DE FEEDC0DE FEEDC0DE FEEDC0DE ~m@^~m@^~m@^~m@^
0x00070020 - FEEDC0DE FEEDC0DE FEEDC0DE FEEDC0DE ~m@^~m@^~m@^~m@^
dis: mfwn 70001 70007 0102 Non-aligned fill word
dbg: d3 70000
0x00070000 - 81010201 02010201 81186226 81186226b&..b&
0x00070010 - FEEDC0DE FEEDC0DE FEEDC0DE FEEDC0DE ~m@^~m@^~m@^~m@^
0x00070020 - FEEDC0DE FEEDC0DE FEEDC0DE FEEDC0DE ~m@^~m@^~m@^~m@^
dbg: mfb 70000 7000f "shazam! Fill with a string
dbg: d4 70000
0x00070000 - 7368617A 616D2173 68617A61 6D217368 shazam!shazam!sh
0x00070010 - FEEDC0DE FEEDC0DE FEEDC0DE FEEDC0DE ~m@^~m@^~m@^~m@^
0x00070020 - FEEDC0DE FEEDC0DE FEEDC0DE FEEDC0DE ~m@^~m@^~m@^~m@^
0x00070030 - FEEDC0DE FEEDC0DE FEEDC0DE FEEDC0DE ~m@^~m@^~m@^~m@^
0x00070040 - FEEDC0DE FEEDC0DE FEEDC0DE FEEDC0DE ~m@^~m@^~m@^~m@^
0x00070050 - FEEDC0DE FEEDC0DE FEEDC0DE FEEDC0DE ~m@^~m@^~m@^~m@^
0x00070060 - FEEDC0DE FEEDC0DE FEEDC0DE FEEDC0DE ~m@^~m@^~m@^~m@^
0x00070070 - FEEDC0DE FEEDC0DE FEEDC0DE FEEDC0DE ~m@^~m@^~m@^~m@^
dis: mf 70000 70010 1 2 3 4 3+2 Fill with multiple byte values
dbg: d4 70000
0x00070000 - 01020304 05010203 04050102 03040501
0x00070010 - 02EDC0DE FEEDC0DE FEEDC0DE FEEDC0DE .m@^~m@^~m@^~m@^
0x00070020 - FEEDC0DE FEEDC0DE FEEDC0DE FEEDC0DE ~m@^~m@^~m@^~m@^
0x00070030 - FEEDC0DE FEEDC0DE FEEDC0DE FEEDC0DE ~m@^~m@^~m@^~m@^

Chapter 2: Using the debug Utility

Utilities Reference 369

Memory Search
Use the ms command to search memory for a given pattern:

ms[S][N] <start> <end> [:<mask>] <value>

* If the length of the search determined from <start> and <end> is not an
even word or longword multiple (for a word and longword search), the length is
trimmed to the next lowest respective multiple.

There are two special types of memory search when using the byte
search size:

• <value> may start with a double quote character (") in which case
all remaining characters are used as a search string.

• <value> can be multiple byte values in which case each successive
value is used as a search pattern.

A <mask> may be specified to limit the comparison to only those bits set
in the mask. If <mask> is not specified, the mask used is -1 (all bits set).
<mask> is ignored for multiple character patterns.

Table 2-11. Memory Search Parameters and Specifications

Parameter Specification
[S] Specifies the size of the search. If [S] is not

given, byte length is assumed. Three values
are allowed for the [S] parameter: b, w, or l
for byte, word, or longword, respectively.

[N] Indicates that the search is to be performed
without regard to word/longword boundaries
(for example, word and longword searches are
done on a byte for byte basis). Fills of word and
longword size must begin on an even address
on a non-68020 processor unless the [N]
parameter is given.

<start> and
<end>*

Starting and ending addresses for the memory
search.

<value> Pattern used to search the memory range.

Chapter 2: Using the debug Utility

370 Utilities Reference

Example
dbg: d1 btext
btext - 4AFC0001 0000259E 000C0064 00000048 J|....%....d...H
dis: msw btext btext+259e 1 Search for word-aligned 0001
btext+0x2 - 00010000 259E000C 00640000 00480555
....%....d...H.U
sprintf+0x1C0 - 0001206F 000C58AF 000C2008 56802200 .. o..X/..
.V.".
putc+0x42 - 000141EF 00072208 306A000E 2008206A ..Ao..".0j..
. j
fclose+0x20 - 0001670E 200A6126 28006006 4A6A000C ..g.
.a&(.‘.Jj..
fseek+0xB8 - 000167BC 0CAF0000 00010020 6608202A ..g<./.....
f. *
fseek+0xC0 - 00010020 6608202A 00089092 988024AA ... f.
......$
ftell+0x2E - 00017200 306A000E 20086100 057C588F ..r.0j..
.a..|X.
_setbase+0x2A - 00016606 303C0080 60027040 48C0816A
..f.0<..‘.p@H@.j
_setbase+0xC8 - 00010012 603E306A 00122008 22000CAE ‘>0j..
."...
_iobinit+0x16 - 00018182 3D7C0002 819C3D7C 0002819E
....=|....=|....
_T$LDiv+0x14 - 00016122 E20A6402 4480E20A 64024481
..a"b.d.D.b.d.D.
getstat+0x - 0001672E 0C010006 673A0C01 00026710
..g.....g:....g.
getstat+0x2 - 00016000 03044E40 008D6500 02FC206F
..‘...N@..e..| o
lseek+0xC - 00016716 0C010002 670672CB 6000013C
..g.....g.rK‘..<
_utinit+0x2 - 00014E75 4E752F05 7A004A80 6A047A08
..NuNu/.z.J.j.z.
Tens16+0xA6 - 00013C67 0EF54646 D4973C9C D2B297D8
..<g.uFFT.<.R2.X
_T$DInt+0x3A - 00015247 E288E291 51CEFFF2 64125281
..RGb.b.QN.rd.R.
_T$DMul+0x18E - 000108C0 001F6030 0C828000 00006604
...@..‘0......f.
PackD+0x58 - 00010101 01010101 01011111 01111101
................
PackD+0xE0 - 000104E8 00000000 00000001 04E40000
...h.........d..
PackD+0xEA - 000104E4 00000000 0085230F 0D74000F
...d......#..t..

dbg: msw btext btext+259e 4e40 Search for system calls
_stkchec+0x30 - 4E40008C 321F4E75 202E8000 90AE8008 N@..2.Nu
.......

Chapter 2: Using the debug Utility

Utilities Reference 371

trapinit+0x1A - 4E400021 64066100 12CE6564 2F490014
N@.!d.a..Ned/I..
trapinit+0xBA - 4E400006 4E400006 12D866FC 4E7548E7
N@..N@...Xf|NuHg
trapinit+0xBE - 4E400006 12D866FC 4E7548E7 C080203C
N@...Xf|NuHg@. <
getstat+0x2C - 4E40008D 650002FC 206F0010 20826000 N@..e..| o..
.‘.
getstat+0x3E - 4E40008D 650002EA 20016000 02E2206F N@..e..j
.‘..b o
getstat+0x50 - 4E40008D 600002D6 48E76080 C1414A81
N@..‘..VHg‘.AAJ.
setstat+0x1E - 4E40008E 600002B0 48E76080 20403001 N@..‘..0Hg‘.
@0.
access+0x8 - 4E400084 650002A2 4E40008F 60000294
N@..e.."N@..‘...
access+0x10 - 4E40008F 60000294 48E76080 20403001 N@..‘...Hg‘.
@0.
open+0xA - 4E400084 60000286 48E76080 4E40008F
N@..‘...Hg‘.N@..
close+0x4 - 4E40008F 6000027A 48E76080 20403001 N@..‘..zHg‘.
@0.
mknod+0xA - 4E400085 6500026A 60000260 48E76080
N@..e..j‘..‘Hg‘.
create+0x10 - 4E400083 6000023A 48E76080 2F092040
N@..‘..:Hg‘./. @
creat+0x16 - 4E400083 2049225F 64000218 0C0100DA N@..
I"_d......Z
creat+0x36 - 4E400084 650001FE 74007202 4E40008E
N@..e..~t.r.N@..
creat+0x42 - 4E40008E 640001F0 34014E40 008F3202
N@..d..p4.N@..2.
creat+0x4C - 4E40008F 32026000 01E648E7 60802040
N@..2.‘..fHg‘. @
unlinkx+0x8 - 4E400087 650001D6 600001CC 48E76080
N@..e..V‘..LHg‘.
unlink+0x8 - 4E400087 650001C2 600001B8 48E76080
N@..e..B‘..8Hg‘.

dup+0x4 - 4E400082 600001B0 48E76080 2041222F N@..‘..0Hg‘.
A"/
read+0xA - 4E400089 65062001 6000019A 0C4100D3 N@..e.
.‘....A.S
readln+0xA - 4E40008B 60DC48E7 60802041 222F0010 N@..‘\Hg‘.
A"/..
write+0xA - 4E40008A 6500016E 20016000 016648E7 N@..e..n
.‘..fHg
writeln+0xA - 4E40008C 60E648E7 6080122F 00136726
N@..‘fHg‘../..g&
lseek+0x1E - 4E40008D 640E60F2 72054E40 008D6404
N@..d.‘rr.N@..d.

Chapter 2: Using the debug Utility

372 Utilities Reference

lseek+0x28 - 4E40008D 640460E8 7400D497 22024E40
N@..d.‘ht.T.".N@
lseek+0x36 - 4E400088 65DC2001 60000114 48E76080 N@..e\
.‘...Hg‘.
ebrk+0x42 - 4E400028 204A245F 650000C8 2D4884D8 N@.(
J$_e..H-H.X
sbrk+0x14 - 4E400007 64000008 225F6000 00642D40
N@..d..."_‘..d-@
_srqmem+0x2 - 4E400028 650A2D40 84E0200A 245F4E75 N@.(e.-@.‘
.$_Nu
_srtmem+0x8 - 4E400029 245F6000 000691C8 C1886406
N@.)$_‘....HA.d.
_exit+0x2 - 4E400006 DEADDEAD 003C0001 4E754E75 N@..^-^-
.<..NuNu

dbg: msl btext btext+259e :ffffff80 4e400000Only non-I/O calls
sbrk+0x14 - 4E400007 64000008 225F6000 00642D40
N@..d..."_‘..d-@
_srqmem+0x2 - 4E400028 650A2D40 84E0200A 245F4E75 N@.(e.-@.‘
.$_Nu
_srtmem+0x8 - 4E400029 245F6000 000691C8 C1886406
N@.)$_‘....HA.d.
_exit+0x2 - 4E400006 DEADDEAD 003C0001 4E754E75 N@..^-^-
.<..NuNu

dbg: msln btext btext+259e :ffffff80 4e400000 Non-longword
boundary search
trapinit+0x1A - 4E400021 64066100 12CE6564 2F490014
N@.!d.a..Ned/I..
trapinit+0xBA - 4E400006 4E400006 12D866FC 4E7548E7
N@..N@...Xf|NuHg
trapinit+0xBE - 4E400006 12D866FC 4E7548E7 C080203C
N@...Xf|NuHg@. <
ebrk+0x42 - 4E400028 204A245F 650000C8 2D4884D8 N@.(
J$_e..H-H.X
sbrk+0x14 - 4E400007 64000008 225F6000 00642D40
N@..d..."_‘..d-@
_srqmem+0x2 - 4E400028 650A2D40 84E0200A 245F4E75 N@.(e.-@.‘
.$_Nu
_srtmem+0x8 - 4E400029 245F6000 000691C8 C1886406
N@.)$_‘....HA.d.
_exit+0x2 - 4E400006 DEADDEAD 003C0001 4E754E75 N@..^-^-
.<..NuNu

dbg: ms btext btext+259e "math String search
trapinit+0x7B - 6D617468 00000000 00223C00 0000402F
math....."<...@/

dis: ms btext btext+259e "*String search
trapinit+0x34 - 2A2A2A2A 20537461 636B204F 76657266 **** Stack
Overf

Chapter 2: Using the debug Utility

Utilities Reference 373

trapinit+0x35 - 2A2A2A20 53746163 6B204F76 6572666C *** Stack
Overfl
trapinit+0x36 - 2A2A2053 7461636B 204F7665 72666C6F ** Stack
Overflo
trapinit+0x37 - 2A205374 61636B20 4F766572 666C6F77 * Stack
Overflow
trapinit+0x48 - 2A2A2A2A 0D002A2A 2A2A2043 616E2774 ****..****
Can’t
trapinit+0x49 - 2A2A2A0D 002A2A2A 2A204361 6E277420 ***..****
Can’t
trapinit+0x4A - 2A2A0D00 2A2A2A2A 2043616E 27742069 **..****
Can’t i
_T$DMul+0x150 - 2A04CA81 84852A04 4685C285 C8808284
.J....F.B.H...
_T$DMul+0x156 - 2A044685 C285C880 8284C085 4A826A3C
*.F.B.H...@.J.j<
_T$DDiv+0x64 - 2A3C0000 07FF2801 C885B981 80842803
*<....(.H.9...(.
NormD+0x66 - 2A044685 C285C882 82846022 E8B9E8B8
*.F.B.H...‘"h9h8

dbg: ms btext btext+259e 2a 00Same as above but null terminated
sprintf+0x3B8 - 2A0047EE 803E2004 720FC081 2C002200 *.Gn.>
.r.@.,.".
putc+0x7 - 2A000C48 C0028000 0080220C 80000080
*..H@.....".....
putc+0x1B - 2A000C48 C07222C0 810C8000 00000266
*..H@r"@.......f
putc+0x35 - 2A000C48 C0080000 02672A48 78000141
*..H@....g*Hx..A
putc+0x6B - 2A000C48 C0080000 08660620 0A610001 *..H@....f.
.a..
putc+0x8D - 2A000C48 C0080000 0766160C 97000000
*..H@....f......
fclose+0xD - 2A000C48 C0080000 0F671430 2A000C48
..H@....g.0..H
fclose+0x19 - 2A000C48 C0080000 01670E20 0A612628 *..H@....g.
.a&(
_setbase+0x4B - 2A000C48 C0080000 07670E41 FA049E25
*..H@....g.Az..%
_setbase+0x75 - 2A000C48 C0720CC0 81660000 9E4A6A00
*..H@r.@.f...Jj.
_setbase+0x89 - 2A000C48 C0080000 07670835 7C020000
*..H@....g.5|...
_setbase+0xFB - 2A001248 C0D1AE81 54700848 C0816A00
*..H@Q..Tp.H@.j.
_setbase+0x10D - 2A000432 2A001248 C1D08125 40000824
..2..HAP.%@..$
_setbase+0x111 - 2A001248 C1D08125 40000824 80588F4C
*..HAP.%@..$.X.L
dbg:

Chapter 2: Using the debug Utility

374 Utilities Reference

Linking to a Module
Use the l command to link to a memory module. If the named module
is not in memory, debug tries to load a file (in the execution directory)
of the given name. The module’s address is placed in the .r7
relocation register. Subsequent l commands unlink the previously
linked module and link to the new module. The module is automatically
unlinked when the debugger terminates.

Example
dbg: l term Link to the module named TERM
dbg: @7 Set default relocation register to
dbg: .r Display relocation registers
Rn: 00000000 00000000 00000000 0001FE00 00000000
00000000 00000000 000230C
dbg: d8 0 Display memory
0x00000000+r7 - 4AFC0001 0000007A 00000000 00000070
J|.....z.......p
0x00000010+r7 - FFFF0F00 80000004 00000000 00000000
................
0x00000020+r7 - 00000000 00000000 00000000 0000C5F3
..............Es
0x00000030+r7 - 00FF8080 1B030123 00640068 00000000
.......#.d.h....
0x00000040+r7 - 00000000 0000001C 00000100 01010001
................
0x00000050+r7 - 1808180D 1B040117 03050807 000F0070
...............p
0x00000060+r7 - 11130904 53636600 73633638 36383100
....Scf.sc68681.
0x00000070+r7 - 7465726D 00000022 24014AFC 00010000
term..."$.J|....
dis:

Table 2-12. Link Memory Module Command

Command Specification
l <name> Link debugger to the module specified by <name>.

Chapter 2: Using the debug Utility

Utilities Reference 375

Symbolic Debugging
The debugger’s symbolic debugging facility allows easy debugging
without linkage maps or address tables for reference. The -g option of
the linker (l68) writes symbol information into an OS-9 data module.
The linker places the symbols associated with global code and data
offsets into the symbol table. If a symbol module is available for the
code module being debugged, symbolic addresses can be used in most
debugger commands.

The linker’s -g option creates a symbol module in the execution
directory. The name of the module is that of the code module with
.stb appended. If a directory named STB exists in the execution
directory, the linker places the symbol module in that directory. This is
helpful to reduce the number of entries in the execution directory.

Upon successful creation of a process to execute a program module
(see the f command), the debugger searches the execution directory
for the symbol module. If not found in the execution directory, the STB
directory in the execution directory is searched. If the STB directory
does not exist or the symbol module was not found, the debugger
begins the same search sequence using directories given in the PATH
environment variable. This search sequence is the same as the shell
uses.

If the symbol module cannot be located, the following message is
reported:

 - can’t find ’prog.stb’. Error #000:216 file not found

When the symbol module is successfully loaded, it is examined to verify
that it matches the code module being debugged. The module CRC of
the program module is stored in the symbol module. If this CRC value
does not match that of the code module, the following message is
reported:

 - symbol module ’c68.stb’ is obsolete.

This message indicates one of three problems:

• The symbol module does not match the code module.
• The code module does not match the symbol module.
• The debugger does not recognize the format of the symbol module.

Chapter 2: Using the debug Utility

376 Utilities Reference

The cause of this error is usually that an old version of the symbol
module and/or code module is already in memory. Be sure that the
program has been properly linked by the linker and that old versions of
the program are removed from memory.

If the debugger cannot locate a symbol module, the program can still
be debugged but the symbolic facilities are not available. Because the
program’s symbols are kept in a separate module, a program need not
have a final production compilation to remove the symbol information.
You can keep the symbol modules of production programs in case
additional debugging is required.

The debugger maintains a table of symbol modules containing an entry
for each program module being debugged. Normally, this consists of a
primary program module and any trap handler module symbol tables.
The debugger automatically locates and uses the proper symbol
module when that point in the program is reached.

The following commands deal with the symbol table features:

Table 2-13. Symbol Table Commands and Specifications

Command Specification
s Display all symbols in all symbol modules.
s [mod:]<symb> Display a single symbol from the current symbol

module or symbol module [mod:]. The asterisk
(*) and question mark (?) wildcard symbols may
be used in the symbol name.

sm Display symbol module table.
ss Set current symbol module to the module

containing the current PC.
ss <addr> Set current symbol module to the module

containing <addr>.
ss <name>: Set current symbol module to the symbol

module specified by <name>.
sd <name> Display data symbols only for the specified

symbol module.
sc <name> Display code symbols only for the specified

symbol module.

Chapter 2: Using the debug Utility

Utilities Reference 377

Examples
dbg: f progx Create process running progx
default symbols belong to ’progx’ Current symbol module
set to progx
dn: 0000000A 000C0064 00000080 00000003 00000000
000000A2 00001050 00000000
an: 00000000 0001B660 00000000 0016F030 00000000
0001B5BC 00022610 0001B5BC
pc: 0016F07E cc: 00 (-----)
<68881 in Null state>
_cstart >2D468010 move.l d6,_totmem(a6)
dbg: sm Display known symbol modules
Mod Addr Code Lo Code Hi Data Lo Data Hi Count Name
0016e850 0016f030 0016f51e 0001a610 0001a9bc 83
*progx

Code Lo and Code Hi are the base and end addresses of the program
module. Data Lo and Data Hi are the lower and upper addresses of
the initial process data area when the process was forked. Note that
the data addresses have the (a6)+32768 bias removed.

dbg: gs main
Installed symbol module for trap handler ’cio’
dn: 00000001 0001B62E 0001A62A 0001B636 00000000
000000A2 00001050 00000000
an: 0001A9BE 001F214A 0001B62E 0001B626 0001B622
00000000 00022610 0001B5B4
pc: 0016F280 cc: 00 (-----)
<68881 in Null state>
main >48E7F080 movem.l d0-d3/a0,-
(a7)

Program

Current

Number of symbols

Upper data

Lower data
Upper code

Lower code
Address

address

address
address

address

Symbol
Module

module name

symbol module

Chapter 2: Using the debug Utility

378 Utilities Reference

When control is returned to debug, the debugger checks to see if the
process has called a trap handler module (via the F$TLink system call)
to install a trap handler. If so, debug attempts to locate a symbol table
module for the trap handler. If found, the symbol module is entered
into the symbol module table. You can then reference code and data
addresses in the trap handler by symbol name.

The asterisk (*) before the symbol module name indicates the current
symbol module. Symbols without a symbol module qualifier are
assumed to be in this symbol module. Symbols in other symbol
modules are accessed by preceding the symbol name with a colon-
terminated symbol module name.

dbg: sm
Mod Addr Code Lo Code Hi Data Lo Data Hi Count Name
0016c5d0 001f20c0 001f4b48 0016cd70 0016d7dc 109 cio
0016e850 0016f030 0016f51e 0001a610 0001a9bc 83 *progx
dis: gs main+1c
dn: 4042C28F 5C28F5C3 40040000 00000000 00000000 000000A2
00001050 00000000
an: 0001A9BE 001F214A 0001B62E 0001B626 0001B622 00000000
00022610 0001B5A0
pc: 0016F29C cc: 00 (-----)
<68881 in Null state>
main+0x1C >4E4F0012 tcall T$Math,T$DMul
dbg: gs
Installed symbol module for trap handler ’math’
dn: 40577333 33333334 02080000 00000000 00000000 000000A2
00001050 00000000
an: 0001A9BE 001F214A 0001B62E 0001B626 0001B622 00000000
00022610 0001B5A0
pc: 0016F2A0 cc: 00 (-----)
fp0:40050000 BB999999 99999E00 fp4:7FFF0000 FFFFFFFF FFFFFFFF
fpcr: 0000 XN
fp1:7FFF0000 FFFFFFFF FFFFFFFF fp5:7FFF0000 FFFFFFFF FFFFFFFF
fpiar: 00000000
fp2:7FFF0000 FFFFFFFF FFFFFFFF fp6:7FFF0000 FFFFFFFF FFFFFFFF
fpsr: 00000208
fp3:7FFF0000 FFFFFFFF FFFFFFFF fp7:7FFF0000 FFFFFFFF FFFFFFFF
(---- 0)
AX:(INEX) XS:(INEX2)
main+0x20 >48EE000383A2 movem.l d0-d1,varx(a6)
dbg: sm
Mod Addr Code Lo Code Hi Data Lo Data Hi Count Name
0016c5d0 001f20c0 001f4b48 0016cd70 0016d7dc 109 cio
0016e850 0016f030 0016f51e 0001a610 0001a9bc 83 *progx
00181b80 001109c0 001114ca 0001a610 0001a60e 75 math

Chapter 2: Using the debug Utility

Utilities Reference 379

The ss command with no parameter sets the current symbol module to
the module containing the current program counter address:

dbg: ss
default symbols belong to ’progx’

The s command with no parameter displays all symbols in all symbol
modules in the following format: the symbol name, a type code (D =
data symbol, C = code symbol) and the absolute address of the symbol.

dbg: s
math:_jmptbl D 00022610 math:end D 00022610
math:btext C 001109C0 math:MathEnt C 00110A10
math:EntErr C 00110A36 math:TermEnt C 00110A40
math:InitEnt C 00110A40 math:_T$LtoA C 00110ABA
math:_T$UtoA C 00110AD0 math:_T$FtoA C 00110B14
math:_T$DtoA C 00110B22 math:ASCNUM C 00110CB2
math:OVRFLO C 00110D1E math:NXTDIG C 00110D3E

. . .
math:_T$FInt C 00111472 math:_T$DInt C 00111480
math:_T$FtoD C 00111496 math:_T$DtoF C 001114A4
math:bname C 001114B2 _mtop D 00022614
_stbot D 00022618 errno D 0002261C
_totmem D 00022620 _sbsize D 00022624
_pathcnt D 00022628 _iob D 0002262A

. . .
getenv C 0016F442 _initarg C 0016F446
etext C 0016F49C exit C 0016F4CA
abort C 0016F4D6 _exit C 0016F4D8
_utinit C 0016F4E2 _dumprof C 0016F4E8
cio:errnoptr D 00174D70 cio:freturn D 00174D74
cio:fstorage D 00174D78 cio:errno D 00174D7C
cio:_mtop D 00174D80 cio:_mend D 00174D84
cio:_fcbs D 00174D88 cio:_caller D 00174D8C
cio:ememptr D 00174D90 cio:ememcnt D 00174D94
cio:environ D 00174D98 cio:_chcodes D 00175751

. . .
cio:munload C 001F4A78 cio:_sysret0 C 001F4A88
cio:_sysret C 001F4A8C cio:_os9err C 001F4A8E
cio:bname C 001F4A9A

Chapter 2: Using the debug Utility

380 Utilities Reference

A symbol can be given as the parameter to the s command. Each
symbol module is searched for the symbol and displayed if present.
Symbols in symbol modules, other than the current symbol module, are
prefixed by the name of the containing module:

dbg: s printfFind symbol in any module
printf C 000FC60E cio:printf C 001F2C96
dbg: s btextFind symbol in any module
math:btext C 001109C0 btext C 000F52A0
cio:btext C 001F20C0
dbg: s cio:printf Find symbol in given module
cio:printf C 001F2C96
dbg: s p*Wildcard: all symbols starting with p
printf C 000FC60E puts C 000FC61E
putc C 000FC626 putw C 000FC62A
cio:puts C 001F2B3A cio:printf C 001F2C96
cio:putc C 001F3C66 cio:putw C 001F3D1E
dbg: ssSet current module to where PC is pointing
default symbols belong to ’cio’
dbg: sm
Mod Addr Code Lo Code Hi Data Lo Data Hi Count Name
0016c5d0 001f20c0 001f4b48 0016cd70 0016d7dc 109 *cio
0016e850 0016f030 0016f51e 0001a610 0001a9bc 83 progx
00181b80 001109c0 001114ca 0001a610 0001a60e 75 math
dbg:
dbg:ss progxSet symbol module to progx
dbg:sm Show symbol modules
Mod Addr Code Lo Code Hi Data Lo Data Hi Count Name
000f2f30 001f20c0 001f4b48 000f36d0 000f413c 109 cio
000f51b0 00181690 00181b7e 00014f30 000152dc 83 *progx
00181b80 001109c0 001114ca 00014f30 00014f2e 75 math

dbg: sdShow all data symbols
math:_jmptbl D 0001CF30 math:end D 0001CF30
_mtop D 0001CF34 _stbot D 0001CF38
errno D 0001CF3C _totmem D 0001CF40
_sbsize D 0001CF44 _pathcnt D 0001CF48
_iob D 0001CF4A _fcbs D 0001D2CA
environ D 0001D2CE varx D 0001D2D2
_jmptbl D 0001D2DE end D 0001D2DE
cio:errnoptr D 000FB6D0 cio:freturn D 000FB6D4
cio:fstorage D 000FB6D8 cio:errno D 000FB6DC
cio:_mtop D 000FB6E0 cio:_mend D 000FB6E4
cio:_fcbs D 000FB6E8 cio:_caller D 000FB6EC
cio:ememptr D 000FB6F0 cio:ememcnt D 000FB6F4
cio:environ D 000FB6F8 cio:_chcodes D 000FC0B1
cio:_jmptbl D 000FC13E cio:end D 000FC13E

dbg: sd progx:Show data symbols in progx

Chapter 2: Using the debug Utility

Utilities Reference 381

_mtop D 0001CF34 _stbot D 0001CF38
errno D 0001CF3C _totmem D 0001CF40
_sbsize D 0001CF44 _pathcnt D 0001CF48
_iob D 0001CF4A _fcbs D 0001D2CA
environ D 0001D2CE varx D 0001D2D2
_jmptbl D 0001D2DE end D 0001D2DE

dbg: sc progx:Show code symbols in progx
btext C 00181690 bname C 001816D8
_cstart C 001816DE _stkcheck C 001817CC
_stkchec C 001817CC stacksiz C 00181804
freemem C 0018180E trapinit C 00181818
main C 001818E0 _iobinit C 00181934
fopen C 001819CE fdopen C 001819D2
freopen C 001819D6 setbuf C 001819DA

. . .
os9exec C 00181A96 _prgname C 00181A9A
modloadp C 00181A9E getenv C 00181AA2
_initarg C 00181AA6 etext C 00181AFC
exit C 00181B2A abort C 00181B36
_exit C 00181B38 _utinit C 00181B42
_dumprof C 00181B48

Creating a Process to Debug
The f command creates a process to debug. The parameters accepted
are similar to those accepted by the shell:

f <prog> [#mem] [^prior] [<stdin] [>stdout] [args]

The program module <prog> is forked with the special F$DFork
system call. This action provides a controlled process environment for
the debugger. The program module is located in a similar fashion as
the shell; the PATH environment variable is used as a list of alternate
search directories to search if the command is not found in the
execution directory.

The shell pipe (!) and concurrent (&) features are not supported. You
cannot redirect the standard error path as this is the path that the
debugger uses for command input and display output. Shell filename
wildcards cannot be used on the f command but can be given when
debug is run directly from the shell.

You can use the f command at anytime during the debugging session.
If a process was already being debugged, that process is terminated
before the new process is created.

Chapter 2: Using the debug Utility

382 Utilities Reference

After the new process is created, control is returned to the debugger
immediately. The debugger displays the first instruction to be executed
in the program:

dbg: f progx -eCreate process running progx with argument -e
default symbols belong to ’progx’

dn: 0000000C 000C0064 00000080 00000003 00000000
000000AA 00001060 00000000
an: 00000000 00015F90 00000000 000F52A0 00000000
00015EE4 0001CF30 00015EE4
pc: 000F52EE cc: 00 (-----)
<68881 in Null state>
_cstart >2D468010 move.l d6,_totmem(a6)
dbg: q

Starting the Debugger from the Shell Command Line
You can start the debugger from the shell command line. Any
arguments given to debug are processed as if the f command was
given. Any metacharacters recognized by the shell must be quoted if
intended for debug. Metacharacters seen by the shell affect debug itself
rather than the program being debugged.

For example:

shell: debug progx -e h1 h2

This command is the equivalent to the f command issued in the
debugger:

dbg: f progx -e h1 h2

To pass a memory override to the progx process, the following two
commands are equivalent:

shell: debug progx "#32k" -e h1 h2
dbg: fprogx #32k -e h1 h2

The debugger uses the standard error path to determine the console
device on which the debugger is running. The debugger opens a
separate path to this device so as not to interfere with the debugged
process’ standard error path. This action is useful to debug programs
that run as filters:

shell: qsort data.file ! debug datafilter ! datamerge

Chapter 2: Using the debug Utility

Utilities Reference 383

In this case, the pipes are set up by the shell and the datafilter process
runs within the pipeline but under control of the debugger.

If shell filename wildcard processing is desired, run the debugger from
the shell command line as normal:

shell: debug progx -f *.c

The wildcards are expanded and passed to debug, which in turn passes
the filenames to progx.

Setting and Displaying debug Options
The o command displays and changes debugger options. To display
available options use o?:

The o command displays the current option settings:

dbg: o
Hexformat = 0x, Input radix = 16
Show 68881 registers ON in hex

The ob option controls the number input radix. You can use this option
to change the input radix between 16 and 10. The initial input radix is
16. To avoid confusion, the value given as the parameter of the ob
command is assumed to be decimal.

Table 2-14. debug Options

Option Description
b<n> Numeric input base radix.
d Toggle 68881 decimal register display.
f Toggle 68881 register display.
x Toggle disassembly hex output format.
? Display options help.

Chapter 2: Using the debug Utility

384 Utilities Reference

Examples
dbg: v 10Display 10

0x00000010 (16) 0x00000010
dbg: ob 10Change radix to base 10

Hexformat = 0x, Input radix = 10
Show 68881 registers ON in

dbg: v 10Display 10
0x0000000A (10) 0x0000000A

dbg: od
Hexformat = 0x, Input radix = 10Show 68881

registers ON in hex

The od option toggles the 68881 register display between decimal and
hexadecimal

dbg: .
dn: 00000000 00000000 00000001 00000003 00000000
000000A2 00001050 00000000
an: 000152D2 00000000 00015F4E 00015F46 00015F42
00000000 0001CF30 00015ED4
pc: 00139364 cc: 04 (--Z--)
fp0:40010000 C0000000 00000000 fp4:7FFF0000 FFFFFFFF
FFFFFFFF fpcr: 0000 XN
fp1:7FFF0000 FFFFFFFF FFFFFFFF fp5:7FFF0000 FFFFFFFF
FFFFFFFF fpiar: 00000000
fp2:7FFF0000 FFFFFFFF FFFFFFFF fp6:7FFF0000 FFFFFFFF
FFFFFFFF fpsr: 00000008
fp3:7FFF0000 FFFFFFFF FFFFFFFF fp7:7FFF0000 FFFFFFFF
FFFFFFFF (---- 0)
AX:(INEX)
_exit+0x6 DEADDEAD add.l -8531(a5),d7
dbg: od
Hexformat = 0x, Input radix = 10
Show 68881 registers ON in decimal
dbg: .
dn: 00000000 00000000 00000001 00000003 00000000
000000A2 00001050 00000000
an: 000152D2 00000000 00015F4E 00015F46 00015F42
00000000 0001CF30 00015ED4
pc: 00139364 cc: 04 (--Z--)
fp0:6 fp4:<NaN>
fpcr: 0000 XN

Chapter 2: Using the debug Utility

Utilities Reference 385

fp1:<NaN> fp5:<NaN>
fpiar: 00000000
fp2:<NaN> fp6:<NaN>
fpsr: 00000008
fp3:<NaN> fp7:<NaN>
(---- 0)
AX:(INEX)
_exit+0x6 DEADDEAD add.l -8531(a5),d7

The of option toggles the 68881 register display on and off.

dbg: .
dn: 00000000 00000000 00000001 00000003 00000000
000000A2 00001050 00000000
an: 000152D2 00000000 00015F4E 00015F46 00015F42
00000000 0001CF30 00015ED4
pc: 00139364 cc: 04 (--Z--)
fp0:6 fp4:<NaN>
fpcr: 0000 XN
fp1:<NaN> fp5:<NaN>
fpiar: 00000000
fp2:<NaN> fp6:<NaN>
>fpsr: 00000008
fp3:<NaN> fp7:<NaN>
(---- 0)
AX:(INEX)
_exit+0x6 DEADDEAD add.l -8531(a5),d7
dbg: of
Hexformat = 0x, Input radix = 10
Show 68881 registers OFF
dbg: .
dn: 00000000 00000000 00000001 00000003 00000000
000000A2 00001050 00000000
an: 000152D2 00000000 00015F4E 00015F46 00015F42
00000000 0001CF30 00015ED4
pc: 00139364 cc: 04 (--Z--)
_exit+0x6 DEADDEAD add.l -8531(a5),d7
dbg:

Chapter 2: Using the debug Utility

386 Utilities Reference

The ox option toggles the hex number indicator between $ (for
assembler programmers) and 0x (for C programmers):

dbg:di .pc
_cstart >2D468010 move.l d6,_totmem(a6)
_cstart+0x4 >2D468014 move.l d6,_sbsize(a6)
_cstart+0x8 >3D438018 move.w d3,_pathcnt(a6)
_cstart+0xC >4A85 tst.l d5
_cstart+0xE >671E beq.b _cstart+0x2E
_cstart+0x10 >08050000 btst.b #0,d5
_cstart+0x14 >6614 bne.b _cstart+0x2A->
dis: ox
Hexformat = $, Input radix = 16
Show 68881 registers ON in hex
dbg: di .pc
_cstart >2D468010 move.l d6,_totmem(a6)
_cstart+$4 >2D468014 move.l d6,_sbsize(a6)
_cstart+$8 >3D438018 move.w d3,_pathcnt(a6)_
cstart+$C >4A85 tst.l d5
_cstart+$E >671E beq.b _cstart+$2E
_cstart+$10 >08050000 btst.b #0,d5
_cstart+$14 >6614 bne.b _cstart+$2A->

Expressions and the V Command
Any debugger command accepting an address or numeric value can
also accept an expression. An expression operands are shown in
<links>Table 2-15. Expression Operands.

Table 2-15. Expression Operands

Operand Specification
<symbol> Code or data symbol. Data symbols are

automatically biased by -32767 before use.
<num> <num> is interpreted as a number in the default

radix.
#<num> <num> is a valid decimal (base 10) number.
$<num> <num> is a valid hexadecimal (base 16)

number.
0x<num> <num> is a valid hexadecimal (base 16)

number.

Chapter 2: Using the debug Utility

Utilities Reference 387

An expression may contain any of the following operators.

In the following tables, e1 and e2 represent any legal expression.

Binary Operations (operate on the left and right operand)
Binary operations are shown in <links>Table 2-16. Binary Operations.

’<char> The ASCII value of <char> is sign extended to
a number.

.d0 - .d7 The value of the given data register.

.a0 - .a7 The value of the given address register.

.sp The value of the .a7 register.

.pc The value of the program counter.

.cc The value of the condition code register.

.fpsr The value of the 68881 FPSR register.

.fpcr The value of the 68881 FPCR register.

.fpiar The value of the 68881 FPIAR register.

Table 2-15. Expression Operands (Continued)

Operand Specification

Table 2-16. Binary Operations

Operator Function
e1 + e2 Add e2 to e1.
e1 - e2 Subtract e2 from e1.
e1 * e2 Multiply e1 by e2.
e1 / e2 Divide e1 by e2.
e1 > e2 Bitwise right shift e1 by e2 bits.
e1 < e2 Bitwise left shift e1 by e2 bits.
e1 & e2 Bitwise AND of e1 and e2.
e1 | e2 Bitwise OR of e1 and e2.
e1 ^ e2 Bitwise Exclusive OR of e1 and e2.

Chapter 2: Using the debug Utility

388 Utilities Reference

Unary Operators (operate on the right operand)
Unary operators are shown in <links>Table 2-17. Unary Operators.

Indirect Operators
Indirect operators are shown in <links>Table 2-18. Indirect Operators.

All expression evaluation is performed using 32-bit two’s complement
arithmetic. Traditional operator precedence is not observed; evaluation
is simply left to right. Parentheses may be used to force evaluation
order. Most commands requiring a count accept an asterisk (*) to
mean infinity.

The v command evaluates an expression and prints the value in
decimal, hexadecimal, and as a symbolic address.

dn: 0000000C 000C0064 00000080 00000003 00000000
000000A2 00001050 00000000
an: 00000000 00015F80 00000000 000F32A0 00000000
00015EDC 0001CF30 00015EDC
pc: 000F32EE cc: 00 (-----)
<68881 in Null state>
_cstart >2D468010 move.l d6,_totmem(a6)
dbg: v .d1

Table 2-17. Unary Operators

Operator Function
- e1 Negate e1.
~ e1 Complements e1.

Table 2-18. Indirect Operators

Operator Function
[e1] The expression e1 is used as the address of a long

value for this term.
[e1]l The expression e1 is used as the address of a long

value for this term.
[e1]w The expression e1 is used as the address of a word

value which is sign-extended to 32-bits and used
as the value for this term.

[e1]b The expression e1 is used as the address of a byte
value which is sign-extended to 32-bits and used
as the value for this term.

Chapter 2: Using the debug Utility

Utilities Reference 389

0x000C0064 (786532) 0xC0064
dbg: v .pc
0x000F32EE (996078) _cstart
dbg: v .pc+10
0x000F32FE (996094) _cstart+0x10
dbg: v .pc+400
0x000F36EE (997102) _initarg+0x38
dbg: v .d1
0x000C0064 (786532) 0xC0064
dbg: v .d5
0x000000A2 (162) 0xA2
dbg: v .d5>4
0x0000000A (10) 0xA
dbg: v .sp+8
0x00015EE4 (89828) 0x15EE4
dbg: gs main
Installed symbol module for trap handler ’cio’
dn: 00000001 00015F4E 00014F4A 00015F56 00000000
000000A2 00001050 00000000
an: 000152DE 001F214A 00015F4E 00015F46 00015F42
00000000 0001CF30 00015ED4
pc: 000F34F0 cc: 00 (-----)
<68881 in Null state>
main >48E7F080 movem.l d0-d3/a0,-(a7)
dbg: v .a1
0x001F214A (2040138) cio:CIOTrap
dbg: v .d1
0x00015F4E (89934) 0x15F4E
dbg: v [.d1]
0x00015F46 (89926) 0x15F46
dbg: d1 [.d1]
0x15F46 - 70726F67 78000000 00015F46 00000000
progx....._F....

Chapter 2: Using the debug Utility

390 Utilities Reference

More expression examples:

dn: 00000000 00012345 00000000 0000004A 00000000 0000FA08 00000000
00000000
an: 00008164 00000000 00000045 00000000 00000000 00000000 00002044
00000000
pc: 00000000 cc: 00 (-----)
<68881 in Null state>
dis: v .d1
0x00012345 (74565) 0x00012345
dbg: v .d5>3
0x00001F41 (8001) 0x00001F41
dbg: v 11+69
0x0000007A (122) 0x0000007A
dbg: v #11+#69 Explicit decimal numbers
0x00000050 (80) 0x00000050
Utilities Manual 2-45
dbg: v fe61*2 Some hex values confuse debug
Symbol ’fe61*2’ not found
dbg: v 0xfe61*2 Use 0x for clarity
0x0001FCC2 (130242) 0x0001FCC2
dbg: v .a0-24
0x00008140 (33088) 0x00008140
dbg: v .a0&fff
0x00000164 (356) 0x00000164
dbg: v .d5-5*.a2
0x004362CF (4416207) 0x004362CF
dbg: v .d5-(5*.a2)
0x0000F8AF (63663) 0x0000F8AF
dbg: v .a2^.d3
0x0000000F (15) 0x0000000F
dbg: d1 .a6
0x00002044 - 001FEF70 001FF4F4 00156440 000023E4 ..op..tt..d@..#d
dis: v [.a6] Memory indirection
0x001FEF70 (2092912) 0x001FEF70
dbg: v [.a6]+10
0x001FEF80 (2092928) 0x001FEF80
dbg: v [.a6]w
0x0000001F (31) 0x0000001F
dbg: v [.a6]w+1
0x00000020 (32) 0x00000020
dbg: v [.a6]b
0x00000000 (0) 0x00000000

Chapter 2: Using the debug Utility

Utilities Reference 391

Command Summary
<links>Table 2-19. debug Utility Command Summary shows a list of
all debug commands and a brief description.

Table 2-19. debug Utility Command Summary

Command Description
b Displays breakpoint list.
b<addr> Sets breakpoint at <addr>.
c<addr> Changes byte values.
cw<addr> Changes word values.
cl<addr> Changes longword values.
d[M][N] <addr>
[<len>]

Memory display. [M] is an optional format
indicator. If not present, the memory dump
is displayed in the normal hexadecimal
ASCII dump format. One of the following
codes can be given to cause the dump to
interpret a memory as follows:

I: Instruction disassembly.

F: Single precision floating point.

D: Double precision floating point.

X: Extended precision floating point (if
68881 is available).

f <prog> <params> Creates the process to execute the specified
program. <params> may be one of the
following:

#<mem>
^<prior>
<<path>
><path>
<args>

Pipes and standard error redirection are not
allowed.

g Go: Runs the program until a breakpoint,
exception, or the F$Exit system call is
encountered.

Chapter 2: Using the debug Utility

392 Utilities Reference

g <addr> Go from address: Runs the program
starting execution at <addr>, until a
breakpoint, exception, or the F$Exit
system call is encounter

gs Go and stop: Executes the program until
the next instruction is encountered. This is
the same as the Go command, but it sets a
breakpoint at the next instruction. The
breakpoint is automatically removed when
the debugger regains control.

gs <addr> Go and stop at address: Executes
program up to the specified <addr>. This is
the same as the Go command, but it sets a
breakpoint at <addr>. The breakpoint is
automatically removed when the debugger
regains control.

i Displays the number of instructions
executed by the program. This count does
not include instructions executed in system
state or during the x -1 command.

k <addr> Kills breakpoints at <addr>.
k * Kills all breakpoints.
l <name> Links debugger to the module specified by

<name>.
mf[S][N] <st> <end>
<val>

Memory fill. [S] designates the size of the
fill. If [N] is specified, the fill is not required
to be on even word/longword boundaries.
<st> and <end> designate the starting and
ending addresses of the fill. <val>
designates the fill pattern.

ms[S][N] <st> <end>
[:<m>] <val>

Memory search. [S] designates the size of
the search. If [N] is specified, the search is
not required to be on even word/longword
boundaries. <st> and <end> designate the
starting and ending addresses of the
search. <val> designates the search
pattern. <m> is a mask used to limit the
search to the bits set in <m>.

Table 2-19. debug Utility Command Summary (Continued)

Command Description

Chapter 2: Using the debug Utility

Utilities Reference 393

o<opt> Displays and changes debugger options. To
display available options use o?:

b<n> Numeric input base radix.
d Toggle 68881 decimal register display.
f Toggle 68881 register display.
x Toggle disassembly hex output format.
? Display options; help.

q Exits the debugger. The process being
debugged is terminated and all its
resources returned to the system. Any
module linked by the l command is
unlinked as well as any symbol modules in
use.

s Displays all symbols in all symbol modules
s [mod:]<symb> Displays a single symbol from the current

symbol module or symbol module [mod:].
The asterisk (*) and question mark (?)
wildcard symbols may be used in the
symbol name.

sm Displays symbol module table.
ss Sets current symbol module to the module

containing the current PC.
ss <addr> Sets current symbol module to the module

containing <addr>.
ss <name>: Sets current symbol module to the symbol

module specified by <name>.
sd <name> Displays data symbols only for the specified

symbol module.
sc <name> Displays code symbols only for the specified

symbol module.
t Trace: The debugger executes one

instruction and re-displays the machine
registers.

Table 2-19. debug Utility Command Summary (Continued)

Command Description

Chapter 2: Using the debug Utility

394 Utilities Reference

t <count> Trace instructions: The debugger
executes <count> instructions and re-
displays the machine registers. Each
instruction is displayed as it is executed.
Breakpoints are ignored while tracing.

v <expr> Prints the value of expression in
hexadecimal and decimal

w [<n>] Linkstack traceback via (a5). <n> = depth
of traceback. If <n> is not specified, a
complete traceback is displayed.

x <count> Execute instructions. The debugger
executes <count> instructions and re-
displays the machine registers. Breakpoints
are in effect and no instruction trace is
displayed. If <count> is -1, hard
breakpoints are set in the program allowing
full-speed debugging. If <count> is
positive, soft breakpoints are used and
control returns after <count> instructions
have been executed.

@ Prints the default relocation register.
@<num> Sets default relocation register to <num>.

<num> = 0 to 7.
.r Displays the relocation registers.
.r<num> <val> Sets the specified relocation register to

<val>.
? Displays debugger commands.

Table 2-19. debug Utility Command Summary (Continued)

Command Description

Utilities Reference 395

3 Using the editmod Utility Chapter 3

editmod creates, displays, and edits OS-9 and OS-9 for 68K modules.
In addition, it can also generate header files for inclusion in code that
deals with these modules. It has the following attributes:

• Comprehensive — Use editmod for all aspects of module
maintenance: creation, examination, and modification. editmod
supports these actions on device descriptors, system modules, and
data modules. You can use it in conjunction with the make utility to
create modules non-interactively. It is no longer necessary to use the
moded utility, compilers, assemblers, and linkers.

• Host/Target independent — editmod may be used on any host
platform to manipulate modules for any target platform.

• Stand-alone — With the exception of supporting description files,
editmod does not require any other resources to manipulate
modules.

• Extensible — End users can write the supporting files necessary for
editmod to understand modules of their own creation.

• Unconstrained — editmod does not limit module modifications
based on previous module contents. This includes support for
variable length lists such as the colored memory list in the init
module. In addition, a module within a boot file may be modified to
any length.

• User interface — editmod allows entry of C expressions with
additional operand types for hexadecimal constants, binary
constants, internet addresses, and ethernet addresses.

This section contain a basic guide to using editmod and a technical
programmer’s guide for creating modules.

Chapter 3: Using the editmod Utility

396 Utilities Reference

Use Instructions

Creating Modules
The -c option is used to create modules. For example, the following
command line creates a device descriptor called term:

editmod -c term -dTERM

• -c specifies the creation mode.
• term is the name of the output file.
• -dTERM defines the identifier TERM.

Listing Modules
The contents of a module are displayed using the -l option. For
example, the following command line lists the contents of the init
module.

editmod -l init

• -l selects the view mode.
• init is the file name of the module to list

Editing Modules
The contents of a module can be edited by using the -e option. A series
of navigable menus access all the editable fields in the module. The
following is a sample annotated editing session.

To start editing a module, use the following command line:

editmod -e init

• -e selects the edit mode
• init is the file name of the module to edit

After the descriptions and module have been read, the following menu
is presented:

 1. Module header information
 2. Init module information

Which? [?/1-2/p/t/a/w/q]

Refer to the programmer’s guide for more information about
creating modules.

Chapter 3: Using the editmod Utility

Utilities Reference 397

The valid responses appear in the table below:

Entering 1 transfers you to the following menu:

 1. Group number : 0x1
 2. User number : 0x0
 3. Module name : "init"
 4. Module access permissions : 0x555
 5. Module language : 0x0
 6. Module type : 0xc
 7. Module revision : 0x0
 8. Module attributes : 0x80
 9. Module edition : 0x1

Which? [?/1-9/p/t/a/w/q]

There are nine editable items in the menu. Entering 1 displays the
prompt:

Group number : 0x1
New value:
At this point, any of the following may be entered: ?,
<CR>, or a C expression.

Table 3-1. Valid Responses to Which?

Response Description
? Prints help about the valid responses
1 or 2 Selects a portion of the module to edit
p Returns to the previous menu. Since this menu has

no previous menu, entering p would cause it to be
re-displayed.

t Returns to top menu. Using t at a sub-menu would
return you to this menu. Since this is the top menu,
entering t would cause it to be re-displayed.

a Aborts module editing without writing the module. If
the module has been modified, you are asked if
losing the changes is desired.

w Writes the current version of the module into the
output file.

q Writes the modified module to the output file and
exits.

Chapter 3: Using the editmod Utility

398 Utilities Reference

? prints help on the semantics of the item. For example:

New value: ?

This is the group number of the owner of the module.

New value:

Pressing <CR> leaves the item at its present value.

A C expression may also be entered. This expression may contain pre-
processor identifiers, operators, and constants. Assuming a #define
SUPER_GROUP 0 had appeared in the description files, you might enter:

New value: SUPER_GROUP

The menu is re-displayed below. Notice the change in the first line.

 1. Group number : 0x0
2. User number : 0x0
 3. Module name : "init"
 4. Module access permissions : 0x555
 5. Module language : 0x0
 6. Module type : 0xc
 7. Module revision : 0x0
 8. Module attributes : 0x80
 9. Module edition : 0x1

Which? [?/1-9/p/t/a/w/q]

This example is trivial because you are editing an integer field. Module
editing may involve the editing of arrays, strings, or variable length lists.

Editing an Array
The array is displayed and you are asked which item in the array you
want to edit:

Which array
0x01, 0x02, 0x03

Which element? (0 - 2)

Chapter 3: Using the editmod Utility

Utilities Reference 399

At this prompt, a C expression may be entered specifying which item in
the array to edit or ? may be used to get help on the semantics of the
array elements.

Entering 1 yields:

Old value = 0x2
New value =

Again, a C expression for the new value may be entered or ? may be
used to get semantics help.

Editing a String
Changing a string is as simple as entering a new one. The old string
value is displayed and new one is prompted for.

Module name : "init"
New string:

At this point, one of three things may be entered:

• ? provides help on the semantics of the string.
• <CR> results in no change to the string.
• A new string to replace the current one. The new string may contain

C-style character escapes (\n, \012, etc.).

To change the string to the “NULL” string, enter NULL in response to the
New string: prompt.

Editing a Variable Length List
Some items in modules are not a constant size. For example, some
init modules contain a list of colored memory structures terminated
with an entry with type zero. This is shown in the following menu:

1. Memory list nodes [0]
2. Memory list nodes [1]
3. Memory list nodes [2]
4. Memory list nodes [3]
5. Add additional item to list
6. Delete item from list

Which? [?/1-5/p/t/a/w/q]

Chapter 3: Using the editmod Utility

400 Utilities Reference

This indicates that there are currently four nodes in the list (numbered
zero through three).

Selecting menu item six allows any of the four memory list nodes to be
deleted.

Selecting menu option five adds one to this list and re-displays the
menu as follows. Note the change in item 5.

1. Memory list nodes [0]
2. Memory list nodes [1]
3. Memory list nodes [2]
4. Memory list nodes [3]
5. Memory list nodes [4]
6. Add additional item to list
7. Delete item from list
Which? [?/1-5/p/t/a/w/q]

The items in the list are edited using the procedures described above.

Expressions
editmod contains an user input expression interpreter. When editing
fields within the editor, you may enter expressions that contain the
following elements:

Constants character, hexadecimal, octal, decimal (See
below for additional constant types)

Operators all the non-assignment operators are
supported

Preprocessor macros any preprocessor macros entered are replaced
with their appropriate values

The expression interpreter has been extended for use within editmod to
include additional constant types.

$ prefix
The ’$’ can be used as the prefix for hexadecimal constants. For
example, $555 is the same as 0x555.

Chapter 3: Using the editmod Utility

Utilities Reference 401

@ prefix
The ’@’ can be used as the prefix for binary constants. For example,
@011101110111 is the same as 0x777.

Internet address
Internet addresses may be used. They appear as a dot(.) separated
four item sequence of decimal numbers in the range zero to 255. For
example: 190.20.0.45.

Ethernet address
Ethernet addresses may be used. They appear as a colon(:) separated
six item sequence of hexadecimal numbers in the range zero to
255(0xff). The 0x or $ prefix is not valid. For example,
6f:ab:0:65:6:4.

DPIO Descriptors
editmod contains some support for OS-9 Dual Ported Input/Output
(DPIO) descriptors. editmod assumes an OS-9 system-state program
module is a DPIO “secondary” descriptor and that, in creation mode,
OS-9 system-state programs may have initialized data.

A utility called DPSplit is also provided to separate and join “primary”
and “secondary” descriptors. To edit a DPIO descriptor, use the
following process:

Step 1. Use DPSplit to split the file into the individual modules.

Step 2. Edit either modsule.

Step 3. Use DPSplit to join the individual modules back into a single DPIO
descriptor.

Chapter 3: Using the editmod Utility

402 Utilities Reference

To create a DPIO module, use the following process:

Step 1. Use editmod to create the “primary” module.

Step 2. Use editmod to create the “secondary” module.

Step 3. Use DPSplit to join the individual modules into a single DPIO
descriptor.

Programming Guide
If you create a new driver, file manager or system module, you need to
know how to create the description files necessary for editmod to
understand the format of your descriptors or modules.

Generally, you define the structure of all the sections of the module and
the format of the module itself. With this information, editmod has
what it needs to create a module from scratch, display the contents of
an existing module, edit the contents of an existing module, or generate
C structure definitions suitable for inclusion in code that manipulates
the modules.

The remainder of this section describes some basic aspects of
editmod’s source language, shows the syntax of the language used to
describe the module contents, gives some ground rules that must be
followed when creating module descriptions, and details how to use the
editmod utility.

Features
The description files have the following features:

C-like pre-processor editmod features a C-like pre-processor that
should be familiar to C programmers. The
additions and omissions are outlined in a
following section.

C-like syntax editmod’s description files are written much
like C structure definitions and assignment
statements. The extensions to the expression
interpreter were outlined in a preceding
section.

Chapter 3: Using the editmod Utility

Utilities Reference 403

The description language has the following features:

Structures definition of a sequence of possibly non-
identically typed data items. A structure may
contain other structures or pointers to other
data items.

Arrays definition of a sequence of identically typed
data items.

Pointer arrays definition of a sequence of pointers to data
items.

Strings definition of a NIL terminated sequence of
ASCII characters.

Repeat structures definition of a series of structures that repeats
until a certain condition is met.

Module layout definition of the exact layout of the module.
This technique is superior to relying on a
compiler to preserve the programmer’s
ordering from the source file.

Help text ASCII descriptions of the various data items
that editmod uses when interfacing with the
user.

Pre-Processor
editmod has a built-in pre-processor that is very much like a C pre-
processor. The following sections give more specific information.

Exclusions
The following items are not included in editmod’s pre-processor:

Macros editmod does not support the definition of
macros with arguments. The following is not
valid:

#define field(x, y) x->y

Identifier catenation The ##syntax used by ANSI compilers is not
supported in editmod.

Chapter 3: Using the editmod Utility

404 Utilities Reference

Pre-processor directive line extension
The ’\’ at the end of a pre-processor directive
line to include the following line is not
supported by editmod.

Additions
The following additional pre-processor directive is supported by
editmod.

#cinclude <filename> or #cinclude "filename"

• The #cinclude directive tells editmod to include filename as a C
header file. This syntax is used to allowed editmod to extract all the
non-macro #define’s from a C header file. Any header files
included by a header file included with #cinclude are considered
to be a C include file. With this technique, description writers can
include system header files and use symbolic names in help text to
aid the user while editing. For example, if modes.h was included,
S_IREAD could be used when entering device mode capabilities.

• All symbol names are available to the pre-processor during pre-
processor expressions. That is, one can test for the definition of data
structures with #ifdef, #ifndef, or #if defined(). This can be
useful for determining of a given structure has already been defined
by a previously processed .des file.

For example,

#if !defined(devcon)
struct devcon
{

u_int32 empty = 0;
};

#endif

Macro Definitions
_editmod is defined automatically to indicate that the editmod utility is
currently being used. For example,

• _editmod indicates that the editmod utility is being used. This
might be useful for C header files that are included via #cinclude
in description files.

Chapter 3: Using the editmod Utility

Utilities Reference 405

• _editmod_HM indicates that editmod is reading a description file
while in header mode. See the emit keyword for an example of
where this may be useful.

• _DPIO indicates that the module being edited or listed is a DPIO OS-
9 system state program.

• M_EDIT is set to the edition of the module being edited or listed.
This may be used to allow editmod to handle multiple formats for
the same module.

The remainder of the automatically defined macros are operating
system or processor specific.

Expressions
The description file contains expressions in various contexts. editmod
has an extended expression interpreter that includes additional constant
types and operations on non-integer constants. The following are the
basic features:

Constants character, hexadecimal, octal, decimal (See
below for additional constant types).

Operators all non-assignment based operators are
included.

sizeof() operation

Variables members of other structures can be
referenced within expressions.

Table 3-2. Target operating system macros

Operating System Macro
OS-9/68000 _OSK

OS-9 _OS9000

Table 3-3. Target processor macros

Processor Family Macros
68000 _MPF68K, _BIG_END

x86/Pentium™ _MPF386, _LIL_END

PowerPC™ _MPFPOWERPC, _BIG_END

Chapter 3: Using the editmod Utility

406 Utilities Reference

The following additional features are provided:

Additional constant types
Refer to the <links> Use Instructions section
on expressions.

numof() operation provided to determine the number of items in
a repeat structure.

Operations on Internet and ethernet addresses
The following six operators are allowed on
addresses: +, -, |, &, ==, and !=. These
integer operations are applied to each
addresses respective fields. That is:

 3:4:5:10:11:12 + 6:2:2:3:4:4 = 9:6:7:13:15:16
 192.60.2.10 & 255.255.255.0 = 192.60.2.0
 192.60.2.10 == 0.0.0.0 = 0 (False)

Search Directories
The list of search directories is built of the following components in the
order listed:

1. User-specified directories.
Any directories specified on the command line with -v are added to
the list.

2. Directories dictated by the module (see options -nd, -nf, and -nm).
The directories that relate to the module being edited/listed are
added. If creation mode is being used, no additional directories are
added at this point.
For all types of modules the directory:
MWOS/SRC/DESC

is added to the list. This is where description files for non-descriptor
modules that are not operating system specific are located.
For non-descriptor modules, the configuration file is examined for an
entry indicating that the current module being edited needs a
specific directory added (refer to the section on the configuration file
for more information). If so, that directory is added to the list.

Chapter 3: Using the editmod Utility

Utilities Reference 407

For all types of modules the directory
MWOS/os/SRC/DESC

where os is the name of the target operating system is added to the
list. This is the directory that holds operating system specific
description files.
If the module being edited/listed is a descriptor, the file manager
specific directory
MWOS/os/SRC/IO/fm/DESC

where os is the name of the operating system and fm is the name of
the file manager. If the configuration file has an entry for the file
manager, the specified directory is added in place of the file
manager specific directory.
If the module being edited/listed is a descriptor, the device driver
specific directory
MWOS/os/SRC/IO/fm/DRVR/driver

where os is the name of the operating system and driver is the
name of the device driver. If the configuration file has an entry for
the device driver, the specified directory is added in place of the
device driver specific directory.
A complete list of directories for an OS-9 descriptor module added
by step #2 might be:
MWOS/SRC/DESC added for all modules
MWOS/OS9/SRC/DESC added for all OS-9 modules
MWOS/OS9/SRC/IO/SCF/DESC it is an SCF descriptor
MWOS/OS9/SRC/IO/SCF/DRVR/SC68681

the device driver is sc68681

A complete list of directories for an OS-9 non-descriptor module
added by step #2 might be:
MWOS/SRC/DESC added for all modules
MWOS/OS9000/SRC/DESC added for all OS-9 modules

The location of MWOS and the pathlist separators varies among hosts.

OS/processor specific #include file directories.

Chapter 3: Using the editmod Utility

408 Utilities Reference

The C include file directories are added to the list.

Configuration File
A configuration file is read to augment the search directories shown in
the preceding section. The configuration file can be found at
MWOS/SRC/DESC/editmod.cfg. It contains lines with the format:

name,os,directory

where name is the module, file manager, or device driver name whose
description files reside in a nonstandard directory, os is the operating
system that this particular override applies (OS9 or OS9000), and
directory is the directory to used in place of the standard pathlist.

The directory parameter can be either an absolute or relative pathlist. If
the pathlist is relative, it is relative to the root of the host system’s MWOS
directory structure.

For example, if you were developing a new file manager and driver for
OS-9 in sub-directories in your HOME directory, you would add the
following lines to the configuration file:

new_fm,os9000,/h0/USR/WARREN/NEWFM
new_driver,os9000,/h0/USR/WARREN/NEWDRVR

If you were working on a new OS-9 for 68K system module called
init2, you would add the following line to the configuration file:

init2,os9,OS9/SRC/SYSMODS/INIT2

The items specified in the configuration file are only considered when
modules are being edited or listed. During module creation, the
directories for the description files are provided by using the -v option.

Table 3-4. #include file directories

Target OS #include File Directories
OS-9/68000 MWOS/SRC/DEFS

MWOS/OS9/SRC/DEFS
OS-9/80386 MWOS/SRC/DEFS

MWOS/OS9000/SRC/DEFS
MWOS/OS9000/80386/SRC/DEFS

OS-9/PPC MWOS/SRC/DEFS
MWOS/OS9000/SRC/DEFS
MWOS/OS9000/PPC/SRC/DEFS

Chapter 3: Using the editmod Utility

Utilities Reference 409

Help Text
Various parts of a description file may have help text associated with
them. This is the ASCII text that editmod uses to communicate with the
user as well as for emitting comments in the generated header files.
There is more information detailing where help text is used in the
following sections. The basic format of the help text is:

"name:semantics_help"

name is a short (generally less than 30 characters) name for the field.
This part of the help text is used when displaying the field for the user or
as the comment associated with the item in the generated header file.

semantics_help is the description the user sees when they ask for
help on entering a new value for the field.

As in ANSI C the help text does not have to be, nor is it allowed to be,
all in a single double-quoted string. editmod concatenates multiple
double-quoted strings in a row. The following example illustrates how a
help text appears in the description file, assuming module.h had been
included in the description files.

"Module permissions:"
"The module permissions enable/disable various classes
of users from accessing a\n"
"module. The following values can be used to set the
bits:\n"
" MP_OWNER_READ (0x0001)\n"
" MP_OWNER_WRITE (0x0002)\n"
" MP_OWNER_EXEC (0x0004)\n"
" MP_GROUP_READ (0x0010)\n"
" MP_GROUP_WRITE (0x0020)\n"
" MP_GROUP_EXEC (0x0040)\n"
" MP_WORLD_READ (0x0100)\n"
" MP_WORLD_WRITE (0x0200)\n"
" MP_WORLD_EXEC (0x0400)\n"

If an item has help text it implies that the member is editable. Many
fields are not editable, yet they should have comments in the emitted
header file. Use dot(.) as the first character of the help text to indicate
an non-editable field that should have a comment if emitted in a
header file. For example:

 u_int32 v_lun, ".Logical Unit Number";

Chapter 3: Using the editmod Utility

410 Utilities Reference

This would define a non editable unsigned 32-bit integer item called
v_lun that would appear as

 u_int32 v_lun; /* Logical Unit Number */

in a generated header file.

Refer to the following data structure specific section for information
concerning what style of help text is valid in what context.

Module Creation
When the -c option of editmod is used to create a module, editmod
begins the task by reading a single description file. It searches the
current directory for systype.des. If systype.des is not found, it
searches for config.des. However, you can use the -nc option to
override these searches and specify the initial description file. The initial
description file generally contains mutually exclusive sections that
contain the initialization information for various modules. For example:

#if defined(INIT)
/* init module specific information */

#endif

#if defined(TERM)
/* /term descriptor specific information */

#endif

You must also define a pre-processor identifier (TERM or INIT in the
example above) to specify which module is being created.

A sample command line to create a module is as follows:

editmod -c term -dTERM

• -c specifies the creation mode.
• term is the name of the output file.
• -dTERM defines the pre-processor identifier TERM to the empty

string.

Chapter 3: Using the editmod Utility

Utilities Reference 411

Description Files
Description files are text files that describe the format of modules. They
reside in directories shown in the following section. The description files
read by editmod vary depending on editmod’s operational mode.

editmod’s creation mode reads, by default, a single description file
called systype.des. Generally, this description file #include’s the
appropriate description files to generate a module. Again, the locations
of these included files is described in the following section.

editmod’s display and edit modes read description files based on the
module’s contents. If the module is a non-descriptor module, the
module name is used to construct a file name in the form
module_name.des. This description file and those that are #include’s
are read to determine the format of the module. For descriptor
modules, two description files with names based on the file manager
and driver names are read in sequence: a file named
driver_name.des then a file named file_manager_name.des.
These description files together define the format of the module.

File names generated by editmod are limited to the MS-DOS file
name format of a maximum of eight characters followed by an optional
dot and three character maximum extension. Since the extension is
always .des, the file’s base name is limited to eight characters.
Therefore, if a module’s name, file manager, or driver has a name
greater than eight characters, it is truncated to be exactly eight. For
example, if the driver was scp68681lc, the description file would be
named scp68681.des.

Description files contain three basic elements:

• Definition Blocks
• Initialization Block
• Module Block

Chapter 3: Using the editmod Utility

412 Utilities Reference

Definition Blocks
Definition blocks are the most basic elements of the definition file. They
define the structure and relationships of the various module parts. In C,
this is very similar to declaring global variables and defining data
structures.

Four types of objects can be defined in a definition block:

• Structures
• Repeat Structures
• Arrays
• Strings

Notes on syntaxes shown:

• This font indicates an item that would appear in the description
file exactly as shown.

• This font indicates an item that can have various values that are
explained following the syntax diagram.

• Underlined items in the syntax diagrams indicate items that are
optional.

Structures
Structures define all the information related to a set of members. The C
struct is very similar in syntax to a structure definition.

location struct tag {
members

}, helptext;

• location is the section of the module that the structure is to be
placed. The keywords that are valid here are code or data. If a
location is not specified, the code area is assumed. Refer to the
section on module blocks for more information about putting
structures into position within the module.

• tag is the name that is associated with the structure. The
importance of the name will be seen later.

• members define the layout of data within the structure. The
following section describes the syntax of the members.

Chapter 3: Using the editmod Utility

Utilities Reference 413

• helptext is a double-quoted string that is used when
communicating with the user during module display and editing.
The current user interface in editmod does not use the semantics
portion of the help text on structure definitions.

Each member of the structure may be either a:

• Numerical Member
• Pointer to Another Definition Block
• Sub-Structure

Numerical Member
A numerical member definition is in the form:

type name = expr , helptext;

type specifies the type of the numerical member. The valid types and
their general size and alignments are listed in the table below.

The alignment shown in the table above is the most likely alignment for
the object with the exception of et_addr which has the same size and
alignment on all processors. Some target processors may have different
alignment characteristics.

Table 3-5. Types and their characteristics

type Size Alignment Display
char 1 1 ’<val>’
u_char 1 1 hexadecimal
int8 1 1 decimal
u_int8 1 1 hexadecimal
int16 2 2 decimal
u_int16 2 2 hexadecimal
int32 4 2 decimal
u_int32 4 2 hexadecimal
in_addr 4 2 internet address
et_addr 6 1 ethernet address

Chapter 3: Using the editmod Utility

414 Utilities Reference

See the section on header generation for information about type
aliases.

• name is the name of the member. This name is referenced by
initialization blocks.

• expr is an optional initialization expression. A numerical member
that does not have an initialization expression has a default value of
zero.

• helptext is a double-quoted string that is used when
communicating with the user during module display and editing.

Pointer to Another Definition Block
The syntax for a structure member that is a pointer to another definition
block is:

pointer type name = tag + expr, helptext;

type is one of the types from Table 1-23 on page 218. This determines
the width of the pointer. For example,

pointer u_int16 fm_name = fm_string;

declares a structure member named fm_name that is a 16-bit wide
pointer to fm_string.

• name is the name to be given to the pointer member. This name can
be referenced from initialization blocks.

• tag is the name of the data structure that is pointed to by the pointer.
The destination data structure may be any type: string, structure,
array, pointer array, or repeat structure.

• expr is an offset within the data structure that name is to point to.

Pointer members may have "dot" helptext that will be used when header
files are generated. Otherwise, the item pointed at determines if the
member is editable.

Chapter 3: Using the editmod Utility

Utilities Reference 415

Sub-Structure
A member of a structure may also be a sub-structure. The syntax for
defining such a member is:

struct name tag, helptext;

• name is the tag for the structure that is to be in the structure being
defined.

• tag is an optional name for the included structure. When editmod
is operating in header generation mode the tag field is not optional
so it is best to always include a tag field.

• helptext is the text emitted as a comment in a generated header
file. It must being with a dot(.). This text is not used to communicate
with the user; instead, the help text for the structure being named is
used.

A given structure can only be named as the sub-structure of only one
structure. Otherwise, it would be impossible to initialize sub-structures
because the name would be ambiguous.

Repeat Structures
Repeat structures define an item that is a list of structures that
terminate on some condition. The definition is very similar to that of a
structure.

location repeat name [times]{
members

} until (expr), helptext;

• location is where the repeat structure is to be placed. It may be
either data or code. If a location is not specified, the code area is
assumed.

• name identifies the repeat structure. It is most likely referenced by a
pointer member.

• times is an optional expression that determines the number of
times that the repeat must terminate. Use this field to indicate that
the termination condition must be met multiple times before the
repeat stops.

Chapter 3: Using the editmod Utility

416 Utilities Reference

• members are the list of items contained in a single list node for the
repeat. The members define a “template” for the format of a single
list node. For example, if a member if a pointer member to a string
symbol all members of all list nodes in that same position are
pointers to string symbols. The structure of the individual list nodes
does not vary from one to another. The example shows the usage of
a repeat structure.

• expr specifies condition that terminates the list of nodes. This is
used when reading the nodes from the disk file. The number of
nodes in the list is determined by the corresponding init blocks
(discussed later) in the creation case.

• helptext is a double-quoted string used when communicating with
the user during module display and editing. The current user
interface in editmod does not use the semantics portion of the help
text on repeat definitions.

An example repeat structure might be:

code repeat rep_struct {
u_int32 is_last = 0;
u_int32 mem_start;
u_int32 mem_end;

} until (rep_struct.is_last), "Example repeat
structure";

Arrays
Array definitions define a block of identically typed objects. The syntax
for defining an array is:

location array type name [expr] = { data } , helptext;
• location is where the array is to be placed. It may be either data or

code. If a location is not specified, the code area is assumed.
• type specifies the type of each element of the array.
• name is the name of the array. It may be referenced by pointer

structure members.
• expr is an expression for the size of the array. The array size may be

dependent on members of structures.
• data is a comma-separated list of expressions that initialize the

array. The array can be uninitialized. This is indicated by not
providing any initialization expressions.

Chapter 3: Using the editmod Utility

Utilities Reference 417

• helptext is the text used to communicate with the user regarding
the array.

An example array might be:

code array int16 example_array[10] = {
1, 3, 5, 7, 9, -2, -4, -6, -8, 0

}, "An example array of numbers";

Pointer Arrays
Pointer array definitions define an array of pointers to other data
structures. The syntax is as follows:

location pointer array type name [expr] = { names },
helptext;

• location is where the pointer array is to be placed. It may be either
data or code. If a location is not specified, the code area is
assumed.

• type specifies the width of each element of the array.
• name is the name of the array. It may be referenced by pointer

structure members.
• expr is an expression for the size of the array. The array size may be

dependent on members of structures.
• names is a comma-separated list of identifiers that the elements of

the array point to. There must be enough to satisfy the size of the
array. All pointer arrays are initialized.

• helptext is the text that is used to communicate with the user
regarding the pointer array.

An example pointer array might be:

data pointer array int32 ptr_array[3] = {
larry_string, moe_string, curly_string

}, "The most famous trio";

Chapter 3: Using the editmod Utility

418 Utilities Reference

Strings
A string definition defines a NIL terminated list of characters. The
syntax is:

location string name = value , helptext;
• location is where the string is to be placed. It may be either data

or code. If a location is not specified, the code area is assumed.
• name is the name for the string. It may be referenced by pointer

arrays or pointer structure members.
• value is a double quoted string that defines the value for the string

data structure.
• helptext is the text used to communicate with the user regarding

the string.

An example string might be:

data string larry_string = "Larry", "Example string";

Initialization Block
Initialization blocks set values in data structures. They are used by
editmod when a module is being created from scratch. The syntax is:

init name[index] {
inits

};

• name specifies the name of the structure/repeat that is to be
initialized.

• index is the index into the variable length list of a repeat structure.
Although index is an expression, it must resolve to a positive integer.
If the item to be initialized is a structure, then index is omitted.

• inits is a series of assignments in the form:
name = expr;

• name is the member of the struct/repeat member that is to be
initialized.

• expr is the expression that the member is to be initialized with.

Chapter 3: Using the editmod Utility

Utilities Reference 419

The following example demonstrates an initialization block:

struct example {
u_int16 mem1 = 0x10;
u_int32 mem2;
char mem3 = '\0';

};

init example {
mem1 = 0x11;
mem2 = -5;
mem3 = 'R';

};

The init block shown overrides the initialization of mem1 and mem3
and initializes mem2. See the example at the end of this section for an
example of a repeat initializer.

When editing or displaying a module, init blocks are ignored.

Module Block
The module block defines the format for the entire module. Each valid
set of description files has a single module block. The syntax for a
module blocks is:

module { names };

names is a comma-separated list of names of data structures that are
part of the module.

Assuming two code area data structures (mod_head and code_info)
and a data area structure (data_info) had been defined, the following
is an example module block:

module {
mod_head,
code_info,
data_info

};

This defines the module to be mod_head followed by code_info in the
code area and data info in the data area. More information about
module blocks is presented in the full example at the end of this section.

Chapter 3: Using the editmod Utility

420 Utilities Reference

Header Generation
editmod has the ability to generate C header files for inclusion in code
that deals with modules. The information related to this capability has
been gathered in this section for easy reference.

A header is generated by giving editmod the name of the description
file containing the symbol and the name of the symbol(s) to be emitted.
A number of features can be used within the description file to generate
an appropriate header file.

Type Aliases
Any basic type may have a type alias associated with it. The type alias
is the string to be emitted for the symbol when editmod is operating in
header file generation mode. The syntax is

<basic type> ("<type alias>")

The <type alias> string may include the printf-like format escape
%s that is replaced by editmod with the name of the symbol. Use of the
%s escape is not required. If the type alias is an empty string ("") then
editmod does not emit any information for that symbol. For example, if
the type desired for the header file is "char os9rev[4]", that array
might be represented in editmod's language as:

int8 ("char os9rev[4];") os9level;
int8 ("") os9release;
int8 ("") os9major;
int8 ("") os9minor;

This would generate a header file containing

char os9rev[4];

and would allow editing of the individual fields of the four byte array.

Comments
The "short description" portion of the help text is used as comments in
emitted header files. For example,

u_int32 v_lun, "Logical Unit Number:This is the logical unit
number.";

would be emitted as:

u_int32 v_lun; /* Logical Unit Number */

Chapter 3: Using the editmod Utility

Utilities Reference 421

emit <string>;
This syntax allows text to added to the emitted header file. It may only
be used within a struct or repeat. If editmod is not in header mode,
these lines are ignored. The following is an example of its use:

#if defined(DEV_SPECIFIC)
emit "#if defined(DEV_SPECIFIC)";

struct dev_specific v_devspec;
emit "#endif";
#endif

would appear as:

#if defined(DEV_SPECIFIC)
struct dev_specific v_devspec;

#endif

emit is useful for inserting pre-processing information into a header
file.

_editmod_HM macro
The pre-processor macro EM_HEADER_MODE is defined when editmod
is operating in header mode. This is useful for allowing editmod to see
an entire structure even when certain defines aren't present. From the
previous example, if one were to generate a header file for the .des file
containing the text above with a command line like:

editmod pcf.des -h=pcf_lu_stat

One would not get any of the text shown above because
DEV_SPECIFIC would not be defined so the pre-processor would skip
all the text between the #if/#endif.

The example shown above should be written:

#if defined(DEV_SPECIFIC) || defined(EM_HEADER_MODE)
emit "#if defined(DEV_SPECIFIC)";

struct dev_specific v_devspec;
emit "#endif";
#endif

This causes the expected result while generating headers.

Chapter 3: Using the editmod Utility

422 Utilities Reference

General Rules
• Symbol definitions are seen in the order of their declaration with

later redefinitions overriding previous declarations.
• A symbol redefinition without help text inherits the original symbol

definition’s help text, if it had any.
• The basic principles of modules may not be violated (parity, size,

data, m_exec, idata, irefs, CRC, etc.). editmod fills in all
appropriate fields to generate a legal module.

• All “pointer” type items must be initialized.
• Only two pointers types may be NULL. A NULL string pointer is

defined as a pointer to a string that was never given a value. A NULL
repeat pointer is defined as a pointers to a repeat structure that was
not given any members by init blocks. All other pointers are not
NULL.

• Data area pointers must be 32 bits wide.
• Repeat structures must at least have one item.
• A structure may be named as a sub-structure by only one other

structure.
• Each set of description files must contain exactly one module block.
• Symbols named in module block may not be variable sized. Strings

and repeat structures, for example, are not permitted.
• Pointers may not point from an item in the code area to an item in

the data area.

Example
The following example shows how to build, display, and edit a data
module. There are a number of steps involved:

Step 1. Design the Data Module.

Step 2. Create the Description File.

Step 3. Create the Module with editmod.

Step 4. Display the Contents of the Module with editmod.

Step 5. Edit the Module.

Chapter 3: Using the editmod Utility

Utilities Reference 423

Design the Data Module
This example uses the OS-9/x86 operating system.

The steps in this example create the following:

Module Header

execution offset

Data Module Information

revenues list

names array

wish array

number of wishes

Wish Numbers

"<name string>"

"<name string>"

"<name string>"

"<name string>"

"<name string>"

Names

date string

reveue amount ($)

Revenues List

"<date string>"

date string

reveue amount ($)

"<date string>"

(terminated by entry with $0 revenue)

(size based on
 ’number of wishes’)

Chapter 3: Using the editmod Utility

424 Utilities Reference

Create the Description File
Given the information from the design stage, a description file may be:

1 struct mh_com
{

2 u_int16 m_sync;
3 u_int16 m_sysrev = 1;
4 u_int32 m_size;
5 u_int16 m_group = 0, "Group number";
6 u_int16 m_user = 0, "User number";
7 pointer u_int32 m_name = mod_name;
8 u_int16 m_access = 0x555, "Module access
permissions";
9 u_int8 m_lang = 0x00, "Module language";
10 u_int8 m_type, "Module type";
11 u_int8 m_rev = 0x00, "Module revision";
12 u_int8 m_attr = 0x80, "Module attributes";
13 u_int16 m_edit = 1, "Module edition";
14 u_int32 m_needs;
15 u_int32 m_usage;
16 u_int32 m_symbol;
17 pointer u_int32 m_exec = mod_body;
18 u_int32 m_excpt;
19 u_int32 m_data;
20 u_int32 m_stack;
21 u_int32 m_idata;
22 u_int32 m_idref;
23 u_int32 m_init;
24 u_int32 m_term;
25 u_int16 m_ident;
26 u_int32 m_spare1;
27 u_int32 m_spare2;
28 u_int16 m_parity;
29 }, "Module header information";
30
31 string mod_name, "Module name";
32
33 struct mod_body

{
34 u_int32 num_wishes = 3, "Number of wishes";

Chapter 3: Using the editmod Utility

Utilities Reference 425

35 pointer u_int16 (“u_int16 %s”) wishes =
wish_array,

“.Offset to wish_array”;
36 pointer u_int32 (“u_int32 %s”) names = name_array,

“.Offset to name_array”;
37 pointer u_int16 (“u_int16 %s”) revs = revenues,

“.Offset to revenues”;
38 }, "Module Data";
39
40 array u_int8 wish_array[mod_body.num_wishes] =

{
41 1, 2, 3
42 }, "Wish numbers";
43
44 pointer array u_int32 name_array[5] =

{
45 al_string, ge_string, ja_string, ia_string,
jas_string
46 }, "Character names";
47
48 string al_string = "Aladdin", "Main character";
49 string ge_string = "Genie", "Magic character";
50 string ja_string = "Jafar", "Evil character";
51 string ia_string = "Iago", "Animal character";
52 string jas_string = "Jasmine", "Female character";
53
54 string mod_name = "data";
55
56 repeat revenues

{
57 int32 amount,"Revenue amount:This is the amount of
revenue"
58 " realized on the given date";
59 pointer u_int16 date = date_string;
60 } until (revenues.amount == 0), "Revenue List";
61
62 string date_string, "Revenue date:The date the
revenue was
realized";
53

Chapter 3: Using the editmod Utility

426 Utilities Reference

64 init mh_com
{

65 m_type = 4;
66 m_edit = 7;
67 };
68
69 init revenues[0]

{
70 amount = 10000000;
71 date = date1_string;
72 };
73 string date1_string = "93/06/04";
74
75 init revenues[1]

{
76 amount = 0; /* terminate the revenues list (for
now) */
77 };
78
79 module

{
80 mh_com,
81 mod_body
82 };

Table 3-6. Annotations for Module Description

Line(s) Description
1-29 Defines the module header structure. This information

would normally be supplied by Microware. The fields that
have help text associated with them are editable by the
user.

31 Here we define the string that eventually holds the name
of the module. The actual name is not specified until line
54. This demonstrates the ability to re-define symbols and
keep the help text.

33 - 38 This structure is the module's data. In the module, it is
pointed to by the m_exec field in the module header.
Three of its members, wishes, names, and revs are
pointers to other data structures.

Chapter 3: Using the editmod Utility

Utilities Reference 427

40 - 42 Defines the array wish_array. The size is an expression
related to the num_wishes field in the mod_body
structure. Its members are 8-bit unsigned numbers
initialized to 1, 2, and 3.

44 - 46 Defines the pointer array name_array. Each of the
elements is a reference to another data structure (strings
in this case).

48 - 52 Definitions of the strings referred to in name_array.
54 Re-definition of the string mod_name. Since this version

does not have help text, it adopts the help text from the
previous mod_name definition.

56 - 60 Definition of the repeat structure revenues that defines a
list of structures containing an integer and a pointer to a
string. The list is terminated by a node where amount is
zero.

62 The template for the date strings pointed to by the date
entry of the repeat structure. The help text supplied here
is inherited by each node in the revenues list.

64 - 67 This init block initializes the m_type and m_edit fields of
the module. The m_type field is initialized with four to
indicate that we are constructing a data module.

69 - 72 This init block creates the first node in the revenues list.
The amount is set to 10,000,000 and the string is
redirected to point to date1_string.

73 Definition of date1_string. This string is referenced by
the init block above it.

75 - 77 This init block creates a second node in the revenues list.
The amount is set to zero to satisfy the termination
condition of the repeat structure.

79 - 82 The module block describes the format of the module. It
begins with mh_com in the code area followed by
mod_body in the code area.

Table 3-6. Annotations for Module Description (Continued)

Line(s) Description

Chapter 3: Using the editmod Utility

428 Utilities Reference

Create the Module with editmod
Assuming the description file shown above is in a file called
systype.des, the following command line would create the data
module from scratch:

editmod -c data

The following annotated hex dump shows the module follows the
chosen format:

 Addr 0 1 2 3 4 5 6 7 8 9 A B C D E F 0 2 4
6 8 A C E
-------- ---- ---- ---- ---- ---- ---- ---- ---- ----

00000000 fc4a 0100 b400 0000 0000 0000 a600 0000
|J..4.......&...
00000010 5505 0004 0080 0700 0000 0000 0000 0000
U...............
00000020 0000 0000 5000 0000 0000 0000 0000 0000
....P...........
00000030 0000 0000 0000 0000 0000 0000 0000 0000
................
00000040 0000 0000 0000 0000 0000 0000 0000 1234
...............4
00000050 0300 0000 ab00 5c00 0000 7000 8d00 0000
....+.\...p.....
00000060 9b00 0000 9500 0000 a100 0000 8500 0000
........!.......
00000070 8096 9800 7c00 0000 0000 0000 3933 2f30
....|.......93/0
00000080 362f 3034 004a 6173 6d69 6e65 0041 6c61
6/04.Jasmine.Ala
00000090 6464 696e 004a 6166 6172 0047 656e 6965
ddin.Jafar.Genie
000000a0 0049 6167 6f00 6461 7461 0001 0203 0000
.Iago.data......
000000b0 00dd c420 .]D

Chapter 3: Using the editmod Utility

Utilities Reference 429

The following table illustrates the annotations for hex dump:

Display the Contents of the Module with editmod
Use the -l option to list the contents of a module.

editmod -l data

The following output was generated by listing the data module created
in Step #3:

$ editmod -l data
Group number : 0x0
User number : 0x0
Module name : "data"
Module access permissions : 0x555
Module language : 0x0
Module type : 0x4
Module revision : 0x0
Module attributes : 0x80
Module edition : 0x7

Table 3-7. Annotations for hex dump of module

Addr (hex) Description
0 - 4f mh_com structure — The type (byte 0x13) is four for

data module and the edition number (bytes 6 and
7) is seven. These numbers were installed by the
init block for mh_com.

50 - 5b mod_body structure — Pointers are stored in the
module as offsets from the base of the module.

5c - 6f name_array array — Five two-byte pointers to
strings in a row.

70 - 75 revenues' first node
76 - 7b revenues' last node
7c - aa strings — Various strings pointed to by various data

structures.
ab - ad wish_array — The three byte array holding the

values one, two, and three.
ae - af padding — Two bytes of padding to round the

module size up to a four byte boundary.
b0 - b3 CRC — The modules CRC value is recorded in the

last four bytes.

Chapter 3: Using the editmod Utility

430 Utilities Reference

Number of wishes : 0x3
Wish numbers:
0x01, 0x02, 0x03
Character names:
Main character : "Aladdin"
Magic character : "Genie"
Evil character : "Black Bart"
Animal character : "Spot"
Female character : "Jeannie"
Revenue List [0]
Revenue amount : 10000000
Revenue date : "93/06/04"
Revenue List [1]
Revenue amount : 0

The editor can also be used to interactively examine the module’s
contents.

Edit the Module
The following is a sample editing session. The user’s input is denoted by
the magenta font.

$ editmod -e data

 1. Module header information
 2. Module Data

Which? [?/1-2/p/t/a/w/q] 2 select the module data to edit

 1. Number of wishes : 0x3
 2. Wish numbers
 3. Character names
 4. Revenue List
Which? [?/1-4/p/t/a/w/q] 4 select the revenue list to edit

 1. Revenue List [0]
 2. Revenue List [1]
 3. Add additional item to list

Which? [?/1-3/p/t/a/w/q] 3 add another revenue node to the list

Chapter 3: Using the editmod Utility

Utilities Reference 431

 1. Revenue List [0]
 2. Revenue List [1]
 3. Revenue List [2]
 4. Add additional item to list

Which? [?/1-4/p/t/a/w/q] 2 edit the second one (used to be
terminating entry)
 1. Revenue amount : 0
 2. Revenue date : NULL

Which? [?/1-2/p/t/a/w/q] 1 change the amount field

Revenue amount : 0
New value: 50000000 enter the $50,000,000 revenue

 1. Revenue amount : 50000000
 2. Revenue date : NULL

Which? [?/1-2/p/t/a/w/q] 2 set the date of realization

Revenue date : NULL
New string: 94/01/01 first day of 1994

 1. Revenue amount : 50000000
 2. Revenue date : "94/01/01"

Which? [?/1-2/p/t/a/w/q] p move to previous menu

 1. Revenue List [0]
 2. Revenue List [1]
 3. Revenue List [2]
 4. Add additional item to list

Which? [?/1-4/p/t/a/w/q] 3 check the last entry in the list to verify
that amount is zero

 1. Revenue amount : 0
 2. Revenue date : NULL

Which? [?/1-2/p/t/a/w/q] q write the module and exit

Chapter 3: Using the editmod Utility

432 Utilities Reference

The following is a listing of the module after the changes were made:

$ editmod -l data
Group number : 0x0
User number : 0x0
Module name : "data"
Module access permissions : 0x555
Module language : 0x0
Module type : 0x4
Module revision : 0x0
Module attributes : 0x80
Module edition : 0x7
Number of wishes : 0x3
Wish numbers:
0x01, 0x02, 0x03
Character names:
Main character : "Aladdin"
Magic character : "Genie"
Evil character : "Black Bart"
Animal character : "Spot"
Female character : "Jeannie"
Revenue List [0]
Revenue amount : 10000000
Revenue date : "93/06/04"
Revenue List [1] note the new revenue list entry
Revenue amount : 50000000
Revenue date : "94/01/01"
Revenue List [2] note the new terminating revenue list entry
Revenue amount : 0
Revenue date : NULL

To generate the header file for the mod_body structure we might use a
command line like:

 editmod data.des -h=mod_body

This generates the following header file:

#if !defined(_TYPES_H)
#include <types.h>
#endif
/* Module Data */
struct mod_body
{
 u_int32 num_wishes/* Number of wishes */
 u_int16 wishes; /* Offset to wish_array */
 u_int32 names; /* Offset to name_array */
 u_int16 revs; /* Offset to revenues */
};

Utilities Reference 433

4 Using the os9make Utility Chapter 4

This chapter provides an in-depth description of the os9make utility. It
includes the following sections:

• Overview
• Implicit Rules, Definitions, and Assumptions
• os9make Command Line Options
• Makefile Entries

Chapter 4: Using the os9make Utility

434 Utilities Reference

Overview
The os9make utility analyzes files and determines whether they must be
updated. The utility compares the dates of a specific target file with the
dates of the file(s) used to create it (called dependencies). In general, if
os9make determines that a target file is older than at least one of its
dependencies, it executes specified commands to recreate the target
file.

The os9make utility has several built-in assumptions specifically
designed for compiling high-level language programs; however,
os9make can be used to maintain any files dependent on updated files.

os9make Operation
The os9make utility starts by reading the entire makefile and setting up
a table of dependencies exactly as listed in the makefile. When the
os9make utility encounters a name on the left side of a colon, it first
checks to see if it has encountered the name before. If it has, the
os9make utility connects the lists and continues.

After reading the makefile, os9make determines the target file(s). The
target file is the main file to be made on the list. It then makes a second
pass through the dependency table.

During the second pass, the os9make utility looks for object files with no
relocatable files in their dependency lists and for relocatable files with
no source files in their dependency lists. This facilitates program
compilation. If the os9make utility needs to find any source files or
relocatable files to complete the dependency lists, it looks for them in
the specified data directory, unless a macro is specified.

The os9make utility does a third pass through the list to get the file
dates and compare them. When the os9make utility finds a file in a
dependency list that is newer than its target file, it executes the specified
command(s). If a command entry is not specified, a command is
generated based on the assumptions given in the next section. Some
operating systems only store the time down to the closest minute. The
os9make utility remakes a file if its date matches one of its dependents.

When a command is executed, it is echoed to standard output unless
the -s, or silent, option is used or the command line starts with an “at”
sign (@). When the -n option is used, the command is echoed to
standard output but is not actually executed.

Chapter 4: Using the os9make Utility

Utilities Reference 435

The os9make utility normally stops if an error code is returned when a
command line is executed. Errors are ignored if the -i option is used or
a command line begins with a hyphen.

Use the -d option to see the file dependencies and the dates associated
with each of the files in the list. The -d option turns on the os9make
utility debugger and gives a complete listing of the macro definitions, a
listing of the files as it checks the dependency list, and all the file
modification dates. If it cannot find a file to examine its date, it assumes
a date of -1/00/00 00:00, indicating the necessity to update the file.

To update the date on a file without remaking it, use the -t option. The
os9make utility opens the file for update and then closes it, updating
the date to the current date.

If you are quite explicit about your makefile dependencies and do not
want the os9make utility to assume anything, use the -b option to turn
off the built-in rules governing implicit file dependencies.

Implicit Rules, Definitions, and Assumptions
Any time a command line is generated, the os9make utility assumes the
target file is a program to compile. Therefore, if the target file is not a
program to compile, the command entries must be included for each
dependency list. The os9make utility uses the following definitions and
rules when forced to create a command line.

Table 4-1. os9make Utility Definitions and Rules

Files Definition/Rule
Object Files with no suffix. An object file is made from a

relocatable file and linked when it needs to be made.
Relocatable Files appended by either the .r suffix (compat and ucc

modes) or the .o suffix (c89 mode). Relocatable files
are made from source files and assembled or compiled
if they need to be made.

Source Files with one of the following suffixes:

ucc mode:
.a .o .i .pp .c .f

compat mode:
.a .c .f

c89 mode:
.s .be .ic .i .c .f

Chapter 4: Using the os9make Utility

436 Utilities Reference

Only use the default linker with programs that use cstart.r.

UCC Rule Modes
To make an executable from a “.cpp”:

$(CC) $(CFLAGS) $(SDIR)/$*.cpp -f=$(ODIR)/$*

To make an executable from a “.cxx”:

$(CC) $(CFLAGS) $(SDIR)/$*.cxx -f=$(ODIR)/$*

To make a “.r” from a “.cpp”:

$(CC) $(CFLAGS) $(SDIR)/$*.cpp -eas=$(RDIR)

To make a “.r” from a “.cxx”:

$(CC) $(CFLAGS) $(SDIR)/$*.cxx -eas=$(RDIR)

To make a “.a” from a “.cpp”:

$(CC) $(CFLAGS) $(SDIR)/$*.cpp -eao=$(SDIR)

To make a “.a” from a “.cxx”:

$(CC) $(CFLAGS) $(SDIR)/$*.cxx -eao=$(SDIR)

To make a “.o” from a “.cpp”:

$(CC) $(CFLAGS) $(SDIR)/$*.cpp -ebe=$(SDIR)

To make a “.o” from a “.cxx”:

$(CC) $(CFLAGS) $(SDIR)/$*.cxx -ebe=$(SDIR)

Table 4-2. Default Modes

Description Default
Compiler

Assembler

Linker

Mode

Directory for all files

cc

r68, a386, or a ppc

cc

ucc

The current data directory (.)

Chapter 4: Using the os9make Utility

Utilities Reference 437

To make a “.i” from a “.cpp”:

$(CC) $(CFLAGS) $(SDIR)/$*.cpp -efe=$(IDIR)

To make a “.i” from a “.cxx”:

$(CC) $(CFLAGS) $(SDIR)/$*.cxx -efe=$(IDIR)

Modes
The following modes are built into the os9make utility.

The following methods instruct os9make to use a particular mode:

1. Set the MWMAKEOPTS environment variable to the desired mode. For
example:

setenv MWMAKEOPTS -mode=c89

2. Use the -mode=<mode> option on the command line. This method
overrides the environment variable. For example:

os9make -mode=compat

3. Use the -mode=<mode> option within your makefile. This overrides
both the environment variable and command line option.

Special Macros
Special macros can be defined and used in the makefile for greater
flexibility in os9make. The os9make utility uses these macros when
assumptions must be made in generating command lines or searching
for unspecified files. For example, if a source file is not specified for
program.r, os9make searches the specified directory, SDIR, or “.”, for
program.a (or .c, .p, .f).

Table 4-3. os9make Utility Modes

Mode Specification
compat The compat files reflect the compat mode of the Ultra C

executive. This is also the mode to use with the V3.2 C
Compiler.

c89 The c89 rules reflect the c89 mode of the Ultra C
executive.

ucc The ucc rules reflect the ucc mode of the Ultra C executive

Refer to the Using Ultra C/C++ manual, the Using the Executive
chapter for more information about Ultra C/C++ modes.

Chapter 4: Using the os9make Utility

438 Utilities Reference

The os9make utility recognizes the following special macros.

Table 4-4. Special Macros Recognized by os9make

Macro Description
IDIR=<path> The os9make utility searches the directory

specified by path for all I-code files not specified
by a full path list. If IDIR is not defined in the
makefile, the os9make utility searches the current
directory by default.

ODIR=<path> The os9make utility searches the directory
specified by <path> for all files that have no suffix
or relative pathlist. If ODIR is not defined in the
makefile, the os9make utility searches the current
directory by default.

SDIR=<path> The os9make utility searches the directory
specified by <path> for all source files not
specified by a full pathlist. If SDIR is not defined in
the makefile, the os9make utility searches the
current directory by default.

RDIR=<path> The os9make utility searches the directory
specified by <path> for all relocatable files not
specified by a full pathlist. If RDIR is not defined,
the os9make utility searches the current directory
by default.

CFLAGS=<opts> These compiler options are used in any necessary
compiler command lines.

RFLAGS=<opts> These assembler options are used in any
necessary assembler command lines.

LFLAGS=<opts> These linker options are used in any necessary
linker command lines.

CC=<comp> The os9make utility uses this compiler when
generating command lines. The default compiler
is cc.

RC=<asm> The os9make utility uses this assembler when
generating command lines. The default assembler
is r68.

LC=<link> The os9make utility uses this linker when
generating command lines. The default linker is
cc.

Chapter 4: Using the os9make Utility

Utilities Reference 439

os9make Generated Command Lines
The os9make utility can generate the following types of command lines:

1. Compiler Command Lines
These are generated if a source file with a suffix of .c, .f, or .p
must be recompiled. The os9make utility generates a compiler
command line with the following syntax:
compat and ucc mode:
$(CC) $(CFLAGS) $(SDIR)/<file> -f=$(ODIR)/<file>

c89 mode:
$(CC) $(CFLAGS) $(SDIR)/<file> -f $(ODIR)/<file>

2. Assembler Command Lines
These are generated if an assembly language source file needs to
be reassembled. The os9make utility generates the assembler
command line with the following syntax:
compat and ucc mode:
$(RC) $(RFLAGS) $(SDIR)/<file>.a -o=$(RDIR)/<file>.r

c89 mode:
$(RC) $(RFLAGS) $(SDIR)/<file>.s -o=$(RDIR)/<file>.o

3. Linker Command Lines
These are generated if an object file must be relinked in order to
remake the program module. The os9make utility generates the
linker command line with the following syntax:
ucc and compat mode:
$(LC) $(LFLAGS) $(RDIR)/<file>.r -f=$(ODIR)/<file>

c89 mode:
$(LC) $(LFLAGS) $(RDIR)/<file>.o -f $(ODIR)/<file>

You can include options on the command line when running the
os9make utility or in the makefile for convenience.

When the os9make utility is generating a command line for the
linker, it looks at its list and uses the first relocatable file that it
finds, but only the first one. For example:

prog: x.r y.r z.r

Generates:
cc x.r, not cc x.r y.r z.r or cc prog.r

Chapter 4: Using the os9make Utility

440 Utilities Reference

The os9make utility language is highly specific. Therefore, use caution
when using dummy files with names like print.

The os9make utility is always case-dependent with respect to directory
names and file names.

Unless a file is specifically an object file or the -b option is used to turn
off the implicit rules, use a suffix for your dummy files. For example, use
print.file and xxx.h for your header files.

os9make Command Line Options
Below is the syntax for using the os9make utility on the command line:

os9make {[<-opts>] [< target file >] [< macros >]}

Command line parameters override the MWMAKEOPTS
environment variable.

Table 4-5. os9make Comand Line Options

Option Description
-b Do not use built-in rules.
-bo Do not use built-in rules for object files.
-c ignore DOS command line length.
-cl[=]<length> Specify DOS command line length.
-d Debug mode: print file dates in makefile.
-dd Double debug mode: verbose.
-e Import environment variables as macros.
-ee Imported environment variables override others.

(-e is implied.)
-f[=]<xxx> Use <xxx> as the makefile (default: makefile).
-f- Read the makefile from stdin.
-i ignore errors on commands and keep going.
-l Make later macros override previous definitions.
-ll Command line macros cannot be overridden.

(-l is implied.)
-mode[=]<mode> Rule mode (c89, compat, and ucc).
-m Undefined macros are treated as empty strings.
-n Do not execute commands; print them instead.
-nn Same as -n; however, change directories and

call sub makes with -nn.

Chapter 4: Using the os9make Utility

Utilities Reference 441

Makefile Entries
The os9make utility executes commands from a special type of
procedure file called a makefile. The makefile describes the dependent
relationships between files used to create the target file(s).

A makefile may describe the commands to create many files. If the
os9make utility is called without a target file on the command line, the
os9make utility attempts to make the first target file described in the
makefile.

If one or more target file’s are entered on the command line, the
os9make utility reads and processes the entire makefile and only
attempts to make the appropriate file(s).

A makefile contains the following types of entries:

• Dependencies
• Commands
• Comments
• Includes
• Macros
• Conditionals
• Looping

-o Do not assume object files need ROF files.
-p Do not change slash to backslash in makefile

lines.
-r Show built-in rules for current mode.
-s Silent mode: execute commands without

echoing them.
-t Update the dates without executing the

commands.
-u Perform the make whether or not it is needed.
-w Print the reason for executing the command.
-x Use the cross compiler.
-z[=<path>] Get list of files to make from stdin or path.

Table 4-5. os9make Comand Line Options

Option Description

Chapter 4: Using the os9make Utility

442 Utilities Reference

Dependencies
This entry specifies the relationship of a target file and its
dependencies. The entry has the following syntax:

<target>: [<dependent>] {[<dependent>]}

The list of files following the target file is known as the dependency list.

The following rules are used to determine if a target file must be rebuilt:

• Not found - If any <dependent> is not found, execute the
command entry.

• Found - If any <dependent> is newer than the <target>, execute
the command entry.

• Period/Dot rule - If a period (.) is specified, always execute the
command entry.

• Blank rule and file <target> - If the dependency list is blank and the
<target> is a file, execute the command entry.

• Blank rule and directory <target> - If the dependency list is blank
and the <target> is a directory, execute the command entry if and
only if the directory does not exist.

Commands
This entry specifies the command to execute when updating a
particular target file.

If instructions for update are not provided, the os9make utility attempts
to create a command entry to perform the operation (unless -b or -bo
is specified).

The os9make utility recognizes a command entry by a line beginning
with one or more spaces or tabs. Any legal command line is acceptable.

You can list more than one command entry for any dependency. Each
command is forked separately unless continued from the previous
command with a backslash (\).

For example:

<target>:[[<file>],<file>]
 [<command prefix>]<OS command line>
 [<command prefix>]<OS command line> \
 <extended command>

Chapter 4: Using the os9make Utility

Utilities Reference 443

Command lines can be prefixed with the following modifiers:

@ Silent operation. Do not echo this command
line to the screen.

- Ignore errors. Do not exit if this command gets
an error.

Comments
This entry consists of any line beginning with an asterisk (*) or pound
sign (#).

In addition, in a Command entry, all characters following a pound sign
(#) are treated as comments. The one exception to this is a digit
following a pound sign, which is considered part of a command entry.
This is because the OS-9 resident shell uses #<num> to increase stack
space.

An asterisk (*) in a Command entry is treated as a wildcard character,
not a comment.

All blank lines are ignored.

Following is an example:

-b
comment example
* comment line
all:
 # example command
 echo hello # first command

 echo world # second command
Outputs:
echo hello
hello
echo world
world

Includes
A makefile include entry tells the os9make utility to use a file that has
entries common to more than one makefile. The os9make utility
processes the lines of the “included” file as if they were in the current
makefile. This makes it easier to change information because you can

Chapter 4: Using the os9make Utility

444 Utilities Reference

change it in one common file rather than each individual makefile. For
example:

include <pathname>

include opens the specified file <pathname> and processes the lines
from that file as if they appeared in the current makefile. You can nest
included makefiles up to seven times. For example:

include ../../../makesub.com

Macros

Syntax
The os9make utility recognizes a macro by the dollar sign ($) character
in front of the name. If a macro name is longer than a single character,
the entire name must be surrounded by parentheses. For example:

• R refers to the macro R.
• $(PFLAGS) refers to the macro PFLAGS.
• $(B) and $B refer to the macro B.
• $BR is interpreted as the value for the macro B followed by the

character R.

You can place macros in the makefile for convenience or on the
command line for flexibility. Everywhere the macro name appears, the
expansion is substituted for it.

If a macro is defined in your makefile and then redefined on the
command line, the command line definition overrides the definition in
the makefile. This feature is useful for compiling with special options.

Macro assignments take one of the following forms:

<name> = Define but don’t assign a value.
<name> = <value> Assign a value if not already specified.

In -l mode reassign.
<name> += <value> Append another value.
<name> ?= <value> Reassign a value. In -l mode assign if

not previously assigned.
<name> @= <value] Set an environment variable for

commands.

Chapter 4: Using the os9make Utility

Utilities Reference 445

<value> can contain references to other previously defined macros.

User defined macro names can contain any combination of normal
characters (A-Z, a-z) and numbers (0-9).

Other special characters that work in the current version of os9make
could change in future versions.

A macro does not require a value specified in the makefile. For
example:

LOPTS =

is a valid line for a makefile. This type of macro is often used when a
command line definition of a macro is expected.

The fundamental difference (in terms of compatibility) between
os9make and most other make programs, is that by default os9make
uses the first assignment of a macro, not the last.

Use the -l option to force os9make to use the last assignment of a
macro instead of the first.

os9make -l creates macro assignments in UNIX style.

A macro definition can be appended with the following syntax:

<name> += <value>

This appends <value> to the existing macro value, separated by a
single space. If <name> is not yet defined, it is defined with <value>.

Unless the append syntax is used, the redefinition of a macro name
already used has no effect. This allows a macro definition from the
os9make command line to override macro definitions within the
makefile.

The following macro override syntax:

<name> ?= <value>

forces the assignment of a macro even when previously defined. In -l
mode, this assigns the macro only when not previously assigned.
Therefore, in the following example,

MACRO = first
MACRO ?= second

Chapter 4: Using the os9make Utility

446 Utilities Reference

If MACRO were later expanded by os9make, it would provide a string of
second. If os9make were in -l mode, it would provide a string of
first.

Sometimes environment variables must be set directly from a makefile.
To set environment variables use the following syntax:

<name> @= <value>

Do not confuse environment variable assignments with traditional
macro assignment. For example, in the following makefile both a MWOS
macro and a MWOS environment variable are defined as follows:

-b
MWOS = foo # set the MWOS macro
MWOS @= bar # set the MWOS environment variable
all:

echo $(MWOS)
set MWOS

outputs:

echo foo
foo
set MWOS
MWOS=bar

The -l mode has no effect on @= assignments.

Line Continuation
To continue entries on the next line, insert a space followed by a
backslash (\) at the end of each line. If a command line is continued, a
space or tab must be the first character in the continued line. With non-
command lines, leading spaces and tabs are ignored on continuation
lines.

Entries longer than 256 characters must be continued on the next line.
For example:

FILES = aaa.r bbb.r ccc.r ddd.r eee.r fff.r ggg.r \
 hhh.r iii.r jjj.r

Chapter 4: Using the os9make Utility

Utilities Reference 447

Macro Substitution
Macro substitution syntax can greatly simplify makefiles. In general,
macro substitution takes the form:

$(<name>:<op>%<os>=<np>%<ns>)

where <op> is the old prefix and <os> is the old suffix, <np> and <ns>
are the new prefix and new suffix, respectively, and the pattern matched
by % (a string of zero or more characters), is carried forward from the
value being replaced. For example, before os9make supported macro
substitution, makefiles required that both a RELS line and an IRELS line
(if both types of object are being generated) be specified. Now it is
possible to specify a single SRCS line and let generic make rules handle
the redundant lines.

For example, the macros can be rewritten as shown in Figure 4-1 using
macro substitution.

Figure 4-1. Using Macro Substitution

Combining macro substitution with the for loop eliminates almost all
redundant lines of a makefile. This results in a smaller, easier to read,
and easier to maintain makefile.

In addition to the % = % modifier, there are other new substitution
functions for performing useful operations on the source macro.

No Macro Substitution

RFILES = $(RDIR)/dodate.r $(RDIR)/doname.r
$(RDIR)/domake.r \
 $(RDIR)/domac.r $(RDIR)/data.r
$(RDIR)/misc.r \
 $(RDIR)/rule.r
IFILES = $(IDIR)/dodate.i $(IDIR)/doname.i
$(IDIR)/domake.i \
 $(IDIR)/domac.i $(IDIR)/data.i
$(IDIR)/misc.i \
 $(IDIR)/rule.i
Macro Substitution
CFILES = dodate.c doname.c domake.c domac.c data.c \
 misc.c rule.c
RFILES = $(CFILES:%.c=$(RDIR)/%.r)
IFILES = $(CFILES:%.c=$(IDIR)/%.i)

Chapter 4: Using the os9make Utility

448 Utilities Reference

For example, to select just the last component of a file path, use the T
function as follows:

$(CFILES:T)

The result is as follows:

dodate.r doname.r domake.r domac.r data.r misc.r rule.r

Multiple modifiers can be specified and are processed in order.

Macros can be used anywhere within the modifier format strings. For
instance:

RFILES = $(IFILES:$(IDIR)/%.i=$(RDIR)/%.r)

Table 4-6 shows the list of macro modifiers.

Table 4-6. Macro Modifiers

Macro Description/Example
E Replace each word with its suffix

TEST/test.c :E c
H Replace each word with everything but the last component

TEST/test.c :H TEST
L Lowercase each word

ARMv4 Mc68000 :L armv4 mc68000
M Select words matching a pattern

t1.c t1.h t2.c :M*.c t1.c t2.c
N Select words not matching a pattern

t1.c t1.h t2.c :N*.c t1.h
R Remove suffix from all words

TEST/test.c t1 t2.c :R TEST/test t2
S Substitute old string for new string (UNIX-like sed syntax)

testing the rest :S/t/T/g TesTing The resT
testing the rest :S/t/T/1 Testing The resT
testing the rest :S/t/T/ Testing The resT
testing the rest :S/est$/EST/ testing the
rEST
testing the rest :S/^est/EST/ testing the
rest
testing the rest :S/^t/T/ Testing The rest

T Select just the last component of each file path
DIR/t1.c t2.c :T t1.c t2.c

Chapter 4: Using the os9make Utility

Utilities Reference 449

for Loop
Combining macro substitution with for loop processing results in a very
efficient makefile.

In the generic case, only the CFILES line must be modified. Standard
rules apply to the rest of the makefile.

For example, the example in Figure 4-1can be rewritten using a for loop
as shown in Figure 4-2.

Figure 4-2. Macro Substitution with for Loop

This example demonstrates how a bulky makefile is reduced to a few
lines. To add or delete files from the makefile requires only that the
CFILES declaration to be modified.

U Uppercase each word
armv4 Mc6800 :u ARMV4 MC68000

%=% UNIX prefix/suffix syntax (percent is the wildcard pattern
character which is left intact on the rewrite)
t1.c t1.h t2.c :%.c=%.r t1.r t2.h t3.r
DIR1/t1.c t2.c :DIR1/%.c=%.r t1.r t2.c
t1.c t2.c :%.c=RDIR/%.r RDIR/t1.r
RDIR/t2.r

Table 4-6. Macro Modifiers (Continued)

Macro Description/Example

CFILES = dodate.c doname.c domake.c domac.c data.c \
 misc.c rule.c
RFILES = $(CFILES:%.c=$(RDIR)/%.r)
IFILES = $(CFILES:%.c=$(IDIR)/%.i)

for SRC in $(CFILES)
$(SRC:%.c=$(RDIR)/%.r): $(SRC)
 $(RCOMPILE) $(SRC)
$(SRC:%.c=$(IDIR)/%.i): $(SRC)
 $(ICOMPILE) $(SRC)
endfor

Chapter 4: Using the os9make Utility

450 Utilities Reference

Target Dependent Macros
os9make supports several target dependent macros whose value
depends on the context of their use.

The operation shown in Figure 4-1 can be made easier by using the $*
macro. $* takes the current object being built and strips off the
directory path and suffix. Any characters following the asterisk are then
appended to the new string.

Therefore, $*.c on RDIR/test.r results in test.c. The $@ macro
represents the current object being built, and $< expands to what $@
depends on.

For example, the macros can be rewritten as shown in Figure 4-3.

Table 4-7. Target Dependent Macros
Macro Description/Example

$@ The current target, including its full path and any suffix.

RDIR/test.r: new.c old.c $@ = RDIR/test.r

$* The base name of the target. That is, the target name
minus any pathlist or extension.

RDIR/test.r: new.c old.c $* = test

$? The list of files that were found to be newer than the target
on a given dependency line.

RDIR/test.r: new.c old.c $? = new.c

$< Enumerate all the files upon which an object depends

RDIR/test.r: new.c old.c $< = new.c old.c

Chapter 4: Using the os9make Utility

Utilities Reference 451

Figure 4-3. Using $* Macro Substitution

No Macro Substitution

$(RDIR)/dodate.r: dodate.c
 $(RCOMPILE) dodate.c -fd=$(RDIR)/dodate.r
$(IDIR)/dodate.i: dodate.c
 $(ICOMPILE) dodate.c -fd=$(IDIR)/dodate.i
$(RDIR)/doname.r: doname.c
 $(RCOMPILE) doname.c -fd=$(RDIR)/doname.r
$(IDIR)/doname.i: doname.c
 $(ICOMPILE) doname.c -fd=$(IDIR)/doname.i
$(RDIR)/domake.r: domake.c
 $(RCOMPILE) domake.c -fd=$(RDIR)/domake.r
$(IDIR)/domake.i: domake.c
 $(ICOMPILE) domake.c -fd=$(IDIR)/domake.i
$(RDIR)/domac.r: domac.c
 $(RCOMPILE) domac.c -fd=$(RDIR)/domac.r
$(IDIR)/domac.i: domac.c
 $(ICOMPILE) domac.c -fd=$(IDIR)/domac.i
$(RDIR)/data.r: data.c
 $(RCOMPILE) data.c -fd=$(RDIR)/data.r
$(IDIR)/data.i: data.c
 $(ICOMPILE) data.c -fd=$(IDIR)/data.i
$(RDIR)/misc.r: misc.c
 $(RCOMPILE) misc.c -fd=$(RDIR)/misc.r
$(IDIR)/misc.i: misc.c
 $(ICOMPILE) misc.c -fd=$(IDIR)/misc.i
$(RDIR)/rule.r: rule.c
 $(RCOMPILE) rule.c -fd=$(RDIR)/rule.r
$(IDIR)/rule.i: rule.c
 $(ICOMPILE) rule.c -fd=$(IDIR)/rule.i

Macro Substitution

FILES = dodate doname domake domac data \
 misc rule
$(FILES:%=$(RDIR)/%.r): $*.c
 $(RCOMPILE) $< -fd=$@
$(FILES:%=$(IDIR)/%.i): $*.c
 $(ICOMPILE) $< -fd=$@

Chapter 4: Using the os9make Utility

452 Utilities Reference

Conditionals
Conditional entries enable the conditional parsing of the makefile.

Syntax
Conditionals always start in the first column and have the following
syntax:

if <boolean expression>
{lines}
endif

Entries may be extended using elif and/or else as follows:

if <boolean expression>
{line(s)}
elif <boolean expression> #Note: not “else if”
{line(s)}
else
{line(s)}
endif

Do not indent the contents of if statements because they must appear
in the first column. For this reason, else if does not work. elif is
the correct syntax. Standard make indentation rules still apply for the
body of the conditionals.

Conditionals can be nested to a maximum depth of 30 and can occur
anywhere (excluding within a comment).

Boolean Expressions
The following boolean expressions are valid:

• make

The syntax for a make boolean expression is make(<target>), and
is TRUE if <target> has been specified. For example, assume make
is invoked from the command line, specifying ppc as the target as
follows:

 $ os9make ppc

The result is that the following make expression is TRUE:
 if make(ppc)
 {line(s)}
 endif

Chapter 4: Using the os9make Utility

Utilities Reference 453

You can also test for not make as follows:
 if !make(ppc)
 {line(s)}
 endif

The following variations are also supported:
 ifmake ppc
 ifnmake ppc
 elif make(ppc)
 elif !make(ppc)
 elifmake ppc
 elifnmake ppc
• defined

The syntax for a defined boolean expression is
defined(<macro>), and is TRUE if <macro> is defined. For
example, if TRGTS is defined, then the following defined expression
is TRUE:

 TRGTS = SunOS
 if defined(TRGTS)
 {line(s)}
 endif

Test for undefined macros use as follows:
 if !defined(TRGTS)
 {line(s)}
 endif

The following variations are also supported:
 ifdef TRGTS
 ifndef TRGTS
 elif defined(TRGTS)
 elif !defined(TRGTS)
 elifdef TRGTS
 elifndef TRGTS

Chapter 4: Using the os9make Utility

454 Utilities Reference

• exists

The syntax for an exists boolean expression is
exists(<filename>), and is TRUE if <filename> exists. If no
path is specified, the current directory is assumed. For example, if
the following file exists at the specified path, then the exists
expression is TRUE:

 MWOS = ../../../../../..
 if exists($MWOS/target.lst)
 {line(s)}
 endif

Test for non existent files use as follows:
 if !exists($MWOS/target.lst)
 {line(s)}
 endif

The following variations are also supported:
 ifexists $MWOS/target.lst
 ifnexists $MWOS/target.lst
 elif exists($MWOS/target.lst)
 elif !exists($MWOS/target.lst)
 elifexists $MWOS/target.lst
 elifnexists $MWOS/target.lst

Operators
Boolean expressions can take advantage of the standard C boolean
operators &&, ||, and !, and the standard relational operators ==, !=,
>, >=, < and <=. The relational operators == and != are overloaded,
allowing string comparison capability. These operators are defined as
follows:

Table 4-8. os9make Utility Operators

Operator Description
! Logical Not
== Equal
!= Not Equal
< Less Than
<= Less Than or Equal
> Greater Than
>= Greater Than or Equal

Chapter 4: Using the os9make Utility

Utilities Reference 455

Arithmetic and string operators can only be used to test the value of a
variable. The left-hand side must contain the variable expansion, while
the right-hand side can contain either a string enclosed in double
quotes or a numeric value. Standard C numeric conventions (except for
specifying an octal number) apply to both sides. Examples include the
following:

if $(REVISION) == 87

if $(TARGET) == "403GAEVB"

if defined(LOAD_ADDR) && $(LOAD_ADDR) >= 0x10

Precedence
Arithmetic and string operators take precedence over &&, || and !.
The ! operator takes precedence over &&, which has precedence over
||. Parentheses may be used for further prioritization.

Abbreviations
Abbreviations combining if with defined, exists, or make are
described in <Bold><links>Table 4-9.

&& Logical AND
|| Logical OR

Table 4-8. os9make Utility Operators (Continued)

Operator Description

Table 4-9. Abbreviations

Abbreviations Equivalent
ifdef if defined
elifdef else

if defined
ifndef if !defined
elifndef else

if !defined
ifexists if exists
elifexists else

if exists
ifnexists if !exists

Chapter 4: Using the os9make Utility

456 Utilities Reference

Looping
Looping entries enable iteration to reduce the size of makefiles.
Currently the only looping entry supported is the for command.

for Syntax
The for command iterates on the members of a macro. It defines a
new macro and generates the lines between the for and endfor
commands for each member of an existing macro.

for <new macro> in $(existing macro)
{line(s)}
endfor

For example:

TRGTS = gfx1 gfx2 gfx3
_purge: .
for NAME in $(TRGTS)
 -$(CODO) $(NAME)
 -$(DEL) $(NAME)
 -$(CODO) $(NAME).stb
 -$(DEL) $(NAME).stb
 -$(CODO) $(NAME).dbg
 -$(DEL) $(NAME).dbg
endfor

elifnexists else
if !exists

ifmake if make
elifmake else

if make
ifnmake if !make
elifnmake else

if !make

Table 4-9. Abbreviations (Continued)

Abbreviations Equivalent

Chapter 4: Using the os9make Utility

Utilities Reference 457

The for command can also be nested. For example:

TRGTS = gfx1 gfx2 gfx3
_purge: .
for NAME in $(TRGTS)
for SUBNAME in $(NAME) $(NAME).stb $(NAME).dbg
 -$(CODO) $(SUBNAME)
 -$(DEL) $(SUBNAME)
endfor
endfor

Do not indent the contents of if statements. Standard make
indentation rules still apply.

Chapter 4: Using the os9make Utility

458 Utilities Reference

Utilities Reference 459

5 Using the mshell Utility Chapter 5

The mshell utility is a command interpreter that helps you become as
productive as possible when working with the OS-9/OS-9 for 68K
operating systems. It accomplishes this by providing keyboard shortcuts
and a means to automate menial tasks. It is compatible with the
current OS-9/OS-9000 shell.

The mshell utility started as a port of OS-9's standard shell to OS-9 for
68K. From that point, enhancements replaced some built-in features of
OS-9 and features unique to the mshell utility were added. Now, the
mshell utility contains many of the same features as UNIX shells, as
well as some OS-9/OS-9 for 68K specific options.

The mshell utility has many features that do not exist in the standard
OS-9/OS-9 for 68K shell. These features fall into three basic categories:

• Command line interface
• Procedure files
• Built-In Commands and Command Line Options

The mshell utility is a superset of the shell utility; the shell
utility’s command line options, syntax, built-in commands, and
behavior are not documented here.

Chapter 5: Using the mshell Utility

460 Utilities Reference

Automatic mshell Login
To automatically execute the mshell utility when you log in, you must
change your password file to include mshell as the initial program to
execute. Also, you should load the mshell utility when the system starts
so that it is in memory when the login utility runs. login requires that
the initial process be in memory or in the user’s personal execution
directory. Place a line like the following in your start-up file to load
mshell from the disk into memory:

load mshell

Command Line Editing
The mshell utility’s command line interface is similar to the standard
shell’s. Therefore, it is easy to learn and use. Please learn to use the
features in the order in which they are presented. Each feature
mastered will increase your productivity.

Command line interface options include:

• Command line editing, including an option to change the default
command line editing keys

• History buffer options and history buffer compression
• Command and pathlist completion options
• Command line aliases (assigns)
• Enhanced piping facilities
• Command line batchfiles

In addition to the standard OS-9/OS-9 for 68K control keys, mshell
provides control keys which allow you to modify the text on the current
command line. You can press the <control> key (^) and the
appropriate letter key before you press <return> to add, delete, or
modify characters in the command line. The following are mshell’s
default editing control characters. Most of these are self explanatory.

Refer to the Using OS-9 or Using OS-9 for 68K manual for
information about the login utility and system start-up file.

Table 5-1. mshell Editing Control Characters

Key Description
^p Previous line (see the History Buffer section)*
^n Next line (see the History Buffer section)*

Chapter 5: Using the mshell Utility

Utilities Reference 461

** The first time you press ^z, the cursor goes to the beginning of the line, the next time it
goes to the end of the visible line, in effect toggling back and forth between the
beginning and end of the line.

* When you use ^p or ^n, insert mode returns to its default value. Refer to the -m
command line option for information about the insert mode.

You can press <return> when the cursor is at any point in the
command line. mshell processes the entire command.

 Insert mode remains in its current state until a new command line is
displayed. The command line editing keys that work on the current
command line (for example, ^b) do not reset the insert mode to its
default. Keys that replace the entire command line (^p or ^n) cause
the insert mode flag to return to its default.

When changing text in the middle of a command line, use ^z instead of
^a. ^a displays and goes to the end of the previous command line. ^z
allows you to edit the current command line.

Change Default Command Line Editing Keys
If you want to change the default command line editing keys, set the
_EDKEYS environment variable. _EDKEYS contains one character for
each of the control characters listed above. _EDKEYS has the following
form:

<PrevLine><NextLine><PrevChar><NextChar><Insert><Ends> <Kill>

^b Cursor back (non-destructive)
^f Cursor forward
^d Delete character under the cursor
^z Go to visible ends of line**
^k Kill to end of line
^i Toggle insert mode

Table 5-1. mshell Editing Control Characters (Continued)

Key Description

Chapter 5: Using the mshell Utility

462 Utilities Reference

For example, the following command sets the editing control keys to
their defaults listed above.

$ setenv _EDKEYS pnBFIDZK

The string which sets _EDKEYS:

• Must be exactly eight characters long (extra characters are ignored).
• Is not case sensitive.
• May not contain any characters that cannot be translated to control

characters.

Setting more than one key to the same value causes undefined
behavior. Remove the _EDKEYS environment variable to return mshell
to the default editing control characters.

The control characters from the path descriptor take precedence over
your command line editing keys. Use the tmode utility to check your
path descriptor. If any of the SCF control characters clash with mshell's
editing characters, you should either choose a new character for the
mshell editing key or change your path descriptor. For example, to
override the reprint line (^d) character in your path descriptor, put a
tmode reprint=0 command in your .login file. Then, you can use
^d to delete characters.

History Buffer
mshell maintains a variable sized history buffer for each of its shells.
The history buffer contains a record of each command line that you
enter. You can use this buffer to duplicate and/or edit previously entered
commands. By default, mshell preserves as many as 40 command
lines in the history buffer.

The built-in hist command allows you to view your history buffer. Key
in hist to display the history of commands and corresponding buffer
index numbers.

Refer to the Built-in Commands section, and the mshell
Command Line Options section to learn how to change the size
of the history buffer.

Chapter 5: Using the mshell Utility

Utilities Reference 463

To duplicate and immediately execute a command from your history,
use ~<num>, where <num> is the index number of the corresponding
command in the history buffer. If you want to duplicate and edit a
command before executing it, use ~~<num> to bring the history entry
into your ^a buffer. Press ^a to display the history entry and use the
mshell control keys to make changes to the line as needed. Press
<return> to execute the command.

The ~<num> and ~<word> syntaxes are forms of history substitution
that you can do anywhere on the command line. If your eighth history
entry was procs, your ninth entry was dir, and you entered ~8 -e;
~di -e mshell would execute procs -e ; dir -e.

For instance, to re-execute a command in a slightly different form, you
might enter ~~8, type ^a, then use the editing control keys to edit it.

By default, you can use ^p to scroll backward and ^n to scroll forward
through the history buffer from anywhere on the command line. For
example:

$ * line 1<cr>
$ * line 2<cr>
$ ^p At this point, the command line is replaced

with * line 2
$ ^p At this point, the command line is replaced

with * line 1

You may also use ~<word> or ~~<word> to access the most recent
command in your history that begins with <word>, where <word> is a
sequence of characters in the range 0-9, a-z, or A-Z.

History Substitution
To re-execute a command from history:

~<num> or <word>

To place history entry into the ^A buffer for editing:

~~<num> or ~~<word>

Chapter 5: Using the mshell Utility

464 Utilities Reference

View History
To display the history buffer:

hist

Use the -r option to pass your history from mshell to mshell. That is,
you could accumulate some history, use µmacs, fork a shell out, and
still retain your history. Of course, upon exit any history created in the
child shell of µmacs would not be available to the parent of µmacs.

Use the -s option to save your history across login sessions. The -s
option saves your history into a temporary file when you log out, and
reads from that same file when you log in the next time.

If you enter the same command line twice in succession, mshell does
not increment your history counter. This keeps the history buffer from
filling up with duplicate commands, and allows as many unique
command lines as possible.

History Compression
The -h option enables history compression. -h causes the mshell
utility to search the entire current history for a matching command
before adding a new history entry. When the -h option is in effect, the
history index numbers can be misleading.

The following example illustrates the effect of history compression:

[1]$ -h
[2]$ sleep 100
[3]$ sleep 200
[4]$ sleep 100
[4]$ hist
 -h
 sleep 200
 sleep 100
 hist
[5]$ logout

Refer to the Built-in Commands section, and the mshell
Command Line Options section for details about the -r and -s
command line options.

Refer to the Built-in Commands section, and the mshell
Command Line Options section for details about the -h
command line option.

Chapter 5: Using the mshell Utility

Utilities Reference 465

Notice that the current history index number did not increase when the
second sleep 100 was entered, and that it appears only once in the
command line history.

Command Completion
The mshell utility’s command completion feature allows you to
complete an entire command line with a single keystroke. Enter the first
few characters of a command line from your history and press the
escape key (<esc>). mshell replaces the current command line with
the most recent command line that begins with the typed characters.
Press <esc> again before entering any other characters. mshell
replaces the command with the second most recent command which
begins with the same few characters, and so on. When there are no
more matching command lines a bell sounds. This is a convenient way
to access your history without needing to know the number of a
particular command.

Press <esc> after entering a few characters and mshell searches your
history buffer for a matching replacement command. If the command
line contains spaces or tabs before the cursor, press <esc> to use
mshell's pathlist completion feature.

Assume that your history buffer contains the following commands:

make
make -f=make.debug iopt.386
srcdbg iopt -d test.i
umacs dfa.c Most recent command

If you enter ma on the command line and press <esc>, mshell
replaces the command line with the most recent occurrence of ma:

make -f=make.debug iopt.386

Now, if you press <esc>, mshell finds the next most recent
occurrence of ma and replaces the command line with:

make

Chapter 5: Using the mshell Utility

466 Utilities Reference

As an environment variable, CMDC also controls mshell’s behaviors as
mshell performs command completion. There are twelve different
possible values for command completion. These values are shown
below:

<not set> or histbell
when the history commands that match the pattern are
exhausted, the terminal bell rings and the last
matching entry remains

histloop
when <esc> is hit after the last matching entry, the list of matching
entries starts over from the beginning

histbounce
when <esc> is hit after the last matching entry, mshell begins
moving backward through the list

histpartial
when all of the history entries that match the pattern on the
command line are examined, the command line is replaced with
the longest common substring of all entries. More characters can
be typed to disambiguate the entries and <esc> used again to
finish command completion.

pathbell
the characters on the command line are used as a way in which to
find all executable commands and each <esc> advances
alphabetically through the list of commands. When the list is
exhausted, the terminal bell rings and the last matching entry
remains.

pathloop
when <esc> is hit after the last matching executable, the list of
matching executables starts over from the beginning

pathbounc
when <esc> is hit after the last matching executable, mshell
begins to move backward through the list of executables

Chapter 5: Using the mshell Utility

Utilities Reference 467

histpartial
when all of the executables that match the pattern on the
command line are examined, the command line is replaced with
the longest common substring of all the entries. More characters
can be typed to disambiguate the executables and <esc> used
again to finish command completion.

bothbell
the characters on the command line are used as a way in which to
find all of the matching history entries and executable commands
and each <esc> advances through the list. When the list is
exhausted, the terminal bell rings and the last matching entry
remains.

bothloop
when <esc> is hit after the last matching history entry or
executable, the list of matches starts over from the beginning

bothbounce
when <esc> is hit after the last matching history entry or
executable, mshell begins to move backward through the list

bothpartial
when all of the history entries and executables that match the
pattern on the command line are examined, the command line is
replaced with the longest common substring of all the items. More
characters may be typed to disambiguate the item and <esc> may
be used again to finish the command completion.

In any of these modes, ^\ (control backslash) can be used examining
the complete list of matches. This can be especially useful when
disambiguating partial completions.

Pathlist Completion
You enter a partial file name in the command line and mshell
completes it. mshell does a wildcard match on the partial pathlist and
displays the matching file name on the command line.

For example, in a directory with the files test1.c, file, file2, and
file3, if you enter:

del fi<esc>

Chapter 5: Using the mshell Utility

468 Utilities Reference

mshell replaces your command line with the matching file name and
places the cursor at the end of the line:

$ del file

You are free to backspace over the file name if it is not the one you are
looking for. Press <esc> again before typing any other characters;
mshell displays the next file (in alphabetical order) in the directory that
begins with fi (file2), and so forth. A bell sounds when there are no
more files that match the pattern.

mshell’s file name completion feature is intelligent; it knows the
structure of file names. When you enter make -f=make and press
<esc>, mshell knows that you are looking for a file that begins with
make, not -f=make.

As an environment variable, FILEC is also available to control how
mshell behaves when performing command completion. There are four
different possible values for command completion. These values are
shown below:

<not set> or histbell
when the pathlists that match the pattern are exhausted, the
terminal bell rings and the last matching entry remains

loop
when <esc> is hit after the last matching entry, the list of
matching entries starts over again from the beginning

bounce
when <esc> is hit after the last matching entry, mshell moves
backward through the list

partial
when all of the pathlists that match the pattern on the command
line are examined, the pathlist is replaced with the longest
common substring of all the entries. More characters may be typed
to disambiguate the entries and <esc> used again to finish the
pathlist completion.

In any of these modes, ^\ (control backslash) can be used to examine
the complete list of matches. This can be especially useful when
disambiguating partial completions or examining the contents of a
directory.

Chapter 5: Using the mshell Utility

Utilities Reference 469

Command Name Aliases (Assigns)
Command name aliases make it simple to enter commonly used or
repetitive commands. Use the assign command to assign an alias to
a word which acts as a substitute for a specified string. For example, if
you prefer to use the UNIX cd command (change directories) rather
than the OS-9/OS-9000 chd command, you could create an assign as
follows:

assign cd chd

From that point forward, every cd command you issue automatically
changes to chd. Characteristics of assign include:

• mshell only performs the substitution on the command itself, it
does not affect the rest of the command line.

• Assigns are case sensitive. Cd is not the same as cd.
• If there are spaces in the string, you must place quotation marks at

the beginning and end of the string. For example:

$ assign pd "print("%s\n", $(PWD:q))"create a quicker pd
• Assigns are always passed to procedure files, so be cautious when

executing other people’s procedure files with your own assigns set.
• You can keep assigns in the environment to follow you from mshell

to mshell. For example, if you have a number of assigns, fork
µmacs, and shell out, your assigns travel with you.

mshell has a built-in command, noassign you can use to prevent
access to the assign list for a given command. For example:

$ assign pd "print("%s\n", $(PWD:q))"create a quicker pd
$ pd execute the "assigned" pd
/h0/usr/ric/c/mshell
$ noassign pd execute the "real" pd
/h0/USR/RIC/C/MSHELL

Assign
To view all of your current aliases, enter assign with no arguments.

Refer to the Built-in Commands section, and the mshell
Command Line Options section for the mshell command line
options (-q), details about changing the default.

Chapter 5: Using the mshell Utility

470 Utilities Reference

Unassign
Use the unassign command to remove assigns. unassign takes any
number of arguments and does not report errors when unassigning
words that are not assigned.

Enhanced Piping Facilities
mshell allows you to pipe standard output and/or standard error from
one process to another. You may use this to capture all output and error
messages of a process. Use the following command separators:

For example, to pipe both the normal and error output of cc to pr:

cc -g -td=/r0 testprog.c !!! pr

Command Line Batchfiles
With mshell, you can create temporary batchfiles directly from the
command line. With this facility, you can use interpreter characteristics
without an editor. mshell writes your sequence of command lines into
a file and by default executes it as a profiled procedure file.

You may choose to have your batchfiles run as normal (non-profile)
procedure files by using the -np option.

To start the batchfile process, enter the first line of the batchfile on the
command line, but put a backslash (\) character at the end. This tells
mshell that you want to create a batchfile. mshell then begins
prompting with a question mark (?). Carriage return (<cr>) on a blank
line terminates the batchfile creation and starts the execution. Press
<esc> as the first character on any line to terminate the creation of the
batchfile and return to the normal shell prompt.

Table 5-2. mshell Command Separators

Separator Description
! Standard output
!! Standard error
!!! Both standard output and standard error

Refer to the Built-in Commands section, and the mshell
Command Line Options section for information on -np.

Chapter 5: Using the mshell Utility

Utilities Reference 471

The question mark (?) prompt is treated like any other prompt. mshell
provides file name completion and history access via <esc>.

The following is an example batchfile creation session to copy all *.c
files to BACKUP/*.bak:

$ while (next_file(fn,"*.c")) \
? copy -rb=32 %fn BACKUP/%(fn:r).bak
? endwhile
? <cr>

You can set the environment variable _BATCHDEV to the device that you
want mshell to use for the temporary batchfile. For example, the
following line causes the command line batchfile facility to use the RAM
disk for its temporary file:

$ setenv _BATCHDEV /r0

Set Matching Wildcards
In addition to the standard * and? wildcards support by OS-9, mshell
also supports character set matching. Character sets are specified
within square brackets ([]). Within the brackets, sets of characters are
specified that match a single character in a file name. The set is
specified by either individual characters or ranges of characters (two
characters separated by a dash). The sense of the match is inverted if
the first character of the set is dash. That is, the wildcard will match
anything but the specified set of characters.

For example, assume you are in a directory containing the following
files:

file_a.c file_a.h file_b.c file_b.h file_c.c file_c.h
file_d.c file_d.h

You would see the following if you executed these command lines:

$ echo file_*.?
file_a.c file_a.h file_b.c file_b.h file_c.c file_c.h file_d.c
file_d.h
$ echo file_[ac].h
file_a.h file_c.h
$ echo file_[b-d].c
file_b.c file_c.c file_d.c
$ echo file_[-abd].h
file_c.h

Chapter 5: Using the mshell Utility

472 Utilities Reference

Procedure File Programming Language
mshell procedure files are handled quite differently than OS-9/OS-9
for 68K procedure files. To perform some tasks in OS-9/OS-9 for 68K,
the only choice is a quick BASIC or C program. With mshell you can
use procedure files. The following describes the mshell procedure file
features:

• Parameter Passing to Procedure Files
• Environment Variable Substitution
• Programming Variable Substitution
• Command Output Substitution
• Variable Substitution Modifiers
• Procedure File Line Concatenation
• Procedure File Debugging Facilities

To ensure that you write effective procedure files, master the basics,
then progress to their more complex aspects.

mshell includes a full programming language interpreter. The
language represents a hybrid of both C and BASIC. The features
presented here are related to procedure files. You can use them along
with the programming language.

Parameter Passing to Procedure Files
A procedure file may take any number of parameters. To pass
parameters to a procedure file, enter them as if you were passing
parameters to a program. They are accessed from within the procedure
file via environment variables in the form P<num>, where num ranges
from 0 to 1 less than the number of parameters passed.

There are two additional variables passed to procedure files; P* and PN.
P* is the concatenation of all the parameters separated with a space.
P* is useful for procedure files that take a variable number of
arguments. PN is set to be the number of arguments passed to the
procedure file. PN is useful when processing the arguments one-by-one
in an interpreted procedure file.

Refer to the mshell Command Line Options section for more
information about the PN argument.

Chapter 5: Using the mshell Utility

Utilities Reference 473

For example:

$ procfile param0 param1 param2

The line above calls a procedure file with the following environment
variables set:

P0=param0
P1=param1
P2=param2
P*=param0 param1 param2
PN=3

Environment Variable Substitution
mshell provides a facility to perform environment variable substitution
on the command line. mshell replaces the specified environment
variable with its actual value. This feature is useful for using the
parameters passed to a procedure file or to reduce the amount of
typing required.

The following syntax brings environment variables into the command
line, where <name> is the name of the environment variable desired.

$(<name>)

For example, the following command line causes mshell to substitute
the actual name of the terminal type (kt7) for the specified
environment variable (TERM). This command:

$ echo "My terminal type is" $(TERM)

Yields:

My terminal type is kt7

Parameter passing makes procedure files more portable in that you can
use environment variables within procedure files.

For instance, use the following line to fork mmacs from within a
procedure file:

umacs $(HOME)/tempfile <>>>$(PORT)

This allows you access to any terminal that contains a HOME directory.

Refer to the sections Command Output Substitution and Variable
Substitution Modifiers for information on those topics.

Chapter 5: Using the mshell Utility

474 Utilities Reference

Programming Variable Substitution
mshell has shell variables that you can place into the command line,
similar to environment variable substitution. The syntax is %<name> or
%(<name>), where <name> is the name of the variable that is desired.

For example:

$ let a = "hello there"
$ echo %a or echo %(a)
hello there

Programming variable substitution is performed after environment
variable substitution.

Command Output Substitution
mshell’s command output substitution feature allows you to place the
output of a command within that same command line. In other words,
the output which is the result of executing the specified command
becomes an argument in the command line.

Use the following syntax (within a command line) to paste the output of
a command directly into that same command line:

$("command"{:modifiers})

mshell executes the specified command and substitutes the output for
the above syntax. If the output of command contains more than one
line, each line is separated by a space and added to the command line.

For example, to make up for the shell’s lack of wildcards for the module
directory, you could use mdir -u to execute unlink on all modules
containing ric:

unlink $("mdir -u "*ric*"")

This facility can also be very useful in interpreted procedure files. The
following command line assigns the output of the date utility to the
variable d:

let d = $("date":q)

Refer to the Variable Substitution Modifiers section of this chapter
for more information about variables.

Chapter 5: Using the mshell Utility

Utilities Reference 475

Variable Substitution Modifiers
Programming variable, environment variable, and command output
substitution specifiers may also have modifiers. Most of the modifiers
accomplish frequent file name type manipulations on the replacement
value. These modifiers do not actually change the variable’s value.
They simply alter its appearance. You may use this option to temporarily
mask certain characteristics of a variable. The variable, however, retains
its actual value.

You must specify modifiers after the variable name and separate them
from the variable name by a colon (for example, $(HOME:q) or
%(filename:rq). The modifiers are applied in the order in which they
appear and may be separated by any number of colons (:).

The following is a list of variable substitution modifiers and a description
of the operation that they perform:

Table 5-3. mshell Variable Substitution Modifiers

Modifier Description
h Strip the file name and slash (/) (if applicable) from the

variable, leaving the directory that contains the file name.
r Remove the suffix (all characters from the last period (.)

forward) from the variable.
e Remove the entire pathlist and file name, leaving only the

suffix portion of the variable.
t Remove any pathlist components, resulting in a file name

only.
q Surround the replacement variable with double quotes (").

q is very useful to ensure that the replacement of a
variable is interpreted as one argument. For instance, if
you want to do a setenv with the value of a variable, you
might use the following command to ensure that setenv
received only two parameters.

setenv PATH %(pathvar:q)

Chapter 5: Using the mshell Utility

476 Utilities Reference

The following examples show the modifier applied and the resulting
value if the variable has the value at the top of the column:

The h modifier returns a period when there is no pathlist because the
pathlist ./ is implied. This enables you to write generic code,
regardless of the existence of a pathlist. The following example
procedure file makes a backup copy of all .c files:

*** For each file in the directory matching "*.c"
while (next_file(fn,"*.c"))

*** make a copy with a different extension
copy -rb=32 %(fn) %(fn:r).bak

endwhile

Procedure File Line Concatenation
For the convenience of the procedure file programmer, logical lines may
span many physical lines. During procedure file execution, if mshell
encounters a line that ends with a backslash (\) character, the next line
is read and added to the current line. This process continues until
mshell finds a line that does not end with a backslash.

The line following a backslash line is inserted starting at the position of
the backslash. The current implementation of this feature allows the
break to occur anywhere (within quoted strings, between items that
would normally be considered a single token). For example:

if (strcmp(%answer,"yes") == 0) || \
 strcmp(%answer,"YES") == 0) || \
 strcmp(%answer,"Yes") == 0))
print("This is a \
very strange place to break a line into two\n");
echo I \
just \
can't \
get \
"enough!"

Table 5-4. mshell Modifier Examples

Modifier test.c /h0/USR/RIC/test.c TESTDIR
h . /h0/USR/RIC .

r test /h0/USR/RIC/test TESTDIR

e c c (empty
string)

t test.c test.c TESTDIR

q "test.c" "/h0/USR/RIC/test.c" "TESTDIR"

Chapter 5: Using the mshell Utility

Utilities Reference 477

Procedure File Debugging Facilities
mshell provides two simple mechanisms for debugging procedure
files:

• Command monitoring
• Debugging message logging

The mshell -d option turns on command monitoring. When -d is
enabled, before mshell forks a process it prompts you for permission.
This allows you to skip or monitor the “dangerous” or time consuming
parts of your procedure file (del, deldir, cc, make). This option is
most useful while debugging a procedure file, but you could use it when
experimenting with variable replacement modifiers or history
replacement escapes.

The following is a sample of command monitoring:

$ -d
$ umacs $(HOME)/.login
Execute: "umacs /h0/USR/RIC/.login"? (y, n, a, or q)

At this point, you can enter one of the following:

• y to execute the command
• n or <Return> to skip the command
• a to execute the command and turn off the debugging option
• q to exit the mshell (q is not useful here, but is very useful when

debugging a real procedure file)

The -u option turns on the debugging message log. This feature prints
useful information about interpreter variables, functions, and directives.

Messages appear for a variety of reasons. Using -t in conjunction with
-u is very helpful. Put a -ut before an area where a bug is suspected
and a -ntnu after the area. This limits the debugging messages to the
area in question.

Refer to the Built-in Commands and mshell Command Line
Options sections for a complete description of -d.

Chapter 5: Using the mshell Utility

478 Utilities Reference

Built-in Commands
mshell has a number of built-in commands and command line
options. The built-in commands include:

• profile Command
• UNIX-like Data Directory Commands
• prenv Built-in Command
• set Command
• which Command

Command line options include:

• Options that control various mshell features
• Customized prompt string
• Parameter passing among mshells
• An alert message compatible command line

To change a command line option:

profile Command
The built-in profile command allows you to execute a procedure file
without forking a child shell. This can be useful for changing directories
and setting the environment from within a procedure file. A profile
procedure file can take arguments just like a normal procedure file. The
syntax is:

profile <procfile> [<param> ...]

procfile is the name of the procedure file to execute.

param is any number of parameters that are to be passed to the
procedure file. For example, if you had a procedure file (newuser)
containing:

setenv USER $(P0)
setenv HOME /h0/usr/$(P0)
chd $(HOME)

You can change a command line option at any time with the
dash (-) or set command.

Chapter 5: Using the mshell Utility

Utilities Reference 479

You could execute it with:

$ profile newuser robb

USER would be set to robb, HOME would be /h0/usr/robb, and your
current data directory would be /h0/usr/robb.

During the execution of a profile procedure file, stdin is not redirected
from that file to mshell, so mmacs on a line by itself works without any
additional redirection.

UNIX-like Data Directory Commands
mshell has three built-in commands that you can use to maintain a
stack of working directories. They behave exactly like the UNIX built-ins
dirs, pushd, and popd. If you are unfamiliar with the UNIX
commands, here is a brief explanation of each command and its
parameters (each command prints the stack after the operation is
complete).

Table 5-5. mshell Data Directory Commands

Command Description
dirs Print the current directory stack.
pushd Reverse the order of the top two items on the stack

and chd to the top item. This is very useful when
you need to work in two directories at once.

pushd <dir> Push the current working directory and do a chd to
the directory (dir)

pushd -<num> Take stack item number num, put it on the top of
the stack, and chd you to that directory.

pushd -h Push the HOME directory onto the directory stack.
pushd -x Push the current execution directory onto the stack.
popd Pop the top off the stack and chd to the new top

item.
popd -<num> Discard item number num from your directory

stack.

Chapter 5: Using the mshell Utility

480 Utilities Reference

Below is an example of using pushd with the -h and -x options.

$ dirs
0. /h0/MWOS/SRC/DEFS
$ pushd -h
0. /h0/USR/RIC
1. /h0/MWOS/SRC/DEFS
$ pushd -x
0. /h0/CMDS/RIC
1. /h0/USR/RIC
2. /h0/MWOS/SRC/DEFS

In addition to these commands, the current data directory is
maintained in the environment variable PWD. These commands use PWD
to determine the current data directory. PWD may not be changed
manually.

prenv Built-in Command
prenv is a built-in mshell command. Its function is much like that of
printenv in that it displays the environment variables. prenv, however,
provides a condensed version of printenv, omitting environment
variables which mshell uses to pass history and assign information to
other mshells. The list is much shorter and displays only the
environment variables that are of the most interest. Specify a dash (-) as
an argument to prenv to display all environment variables.

You can also use prenv to display specific environment variables. For
example, to examine the variables HOME and frog you use:

$ prenv HOME frog

Resulting in the following output:
HOME=/h0/USR/RIC
frog is undefined

Chapter 5: Using the mshell Utility

Utilities Reference 481

set Command
Use the built-in set command to examine the current mshell options.
Enter set on the command line to display all of the current options and
any strings associated with them. You can also use set to examine the
current command line editing keys. The following is sample output of
the set command:

Current Shell Options
Prompt = ON (@%(nBugg_$)

Error Messages = OFF
Invocation Initialization = OFF

 Echo = OFF
 Verbose = OFF
 Debug Mode = OFF
 Debug Message Log = OFF
 Profile Batchfiles = ON
 Auto Logout = ON
 Abort on Error = OFF
 Fancy ReadLn = ON
 Default Insert Mode = OFF
 Alter-Echo = ON
 History = OFF
 History Save/Load = OFF
 History Passing = ON
 History Compression = ON
 Alias Passing = ON
Shell Line Editing Chars:
PvLine=^P NxLine=^N PvChar=^B NxChar=^F Ins=^I
Del=^D Ends=^Z Kill=^K

Chapter 5: Using the mshell Utility

482 Utilities Reference

which Command
The which built-in command displays where to find a module or file of
the given name and the nature of the files (module or procedure file).
For example:

$ which procs
procs - in-memory module
/h0/CMDS/procs - module - on PATH
$ which procfile
procfile - procedure file - current data directory
relative
$ which cd
cd - aliased to 'chd'
$ which chd
chd - built-in mshell command

mshell Command Line Options
mshell features include a number of options that control them. All of
these options follow the basic form of a shell option.

Table 5-6. Enabling mshell Command Line Options

Enable Option Disable Option
-<char> -n<char>

Chapter 5: Using the mshell Utility

Utilities Reference 483

The following is a list of options and their effect on mshell.

Table 5-7. mshell Command Line Options

Option Description
-a Alter-echo

When this option is enabled, all lines that are changed
between the time they are entered and when the process is
ready to be forked are echoed. Changes might include
environment variable, interpreter variable, or history
substitution. Command name alias substitution does not
cause the line to be echoed. The default is -a.

-b Profile batchfiles

This option determines the execution method of batchfiles
created from the command line. If you use -b, batchfiles
are executed as profiled procedure files. Otherwise,
batchfiles are executed as procedure files under a different
mshell. The default is -b.

-c History buffer

This option sets the size of the history buffer, turns on the
default history buffer, or turns the history buffer off. It may
take a size argument: the number of command lines
saved. For example:

-c: Turns on the default 40 command line history buffer.

-c=10: Turns on a ten command line history buffer.

-nc: turns off the command line history buffer.

The default is -c=40.
-d Debug mode

This option enables/disables the debugging mode built
into mshell. When -d is enabled, processes are forked
under user control. The default is -nd.

-e Print error explanations. The default is to not print.

Chapter 5: Using the mshell Utility

484 Utilities Reference

-f Fancy readln

Fancy-readln controls the routine mshell uses to read
from the user on an SCF device. -f enables command
and pathlist completion, editing control characters, and a
non-blocking readln command line. This mode has two
drawbacks:

• I/O can be done to the device between characters.
• When running mshell over the network, it can cause

excessive traffic.

-nf causes mshell to use the standard SCF readln. The
default is -f.

-h History compression

-h, when enabled, causes mshell to search the current
command line history after each command is entered. If a
matching command line is found, no new history entry is
created. This prevents repetition of matching command
lines. The default is -nh.

-i Invoke initialization script

This option controls whether or not the file
$(HOME)/.shellrc is executed each time an mshell
begins execution. (Refer to the “Invoking the Initialization
File” section.) The default is -ni.

-l Require “logout” to logout.

Table 5-7. mshell Command Line Options

Option Description

Chapter 5: Using the mshell Utility

Utilities Reference 485

-m Insert mode

When you enable -m, the default editing mode is insert.
If you back into the command line’s text (with ^b) and
type, the characters are inserted into the command line
rather than overwriting existing characters. The default is -
nm, overwrite mode.

The insert mode remains in its current state until a new
command line is displayed. The command line editing
keys that work on the current command line (for example,
^b) do not reset the insert mode to its default. Keys that
replace the entire command line (for example, ^p) cause
the insert mode flag to return to its default.

-o Time-out

The -o option allows you to specify the number of minutes
to allow an mshell sit at an empty command line prompt
before timing out. The default is -nf (no time-out). The
syntax to enable -o is:

-o[[=]<n>]

n is the number of minutes to sit before timing out. The
default for n is 480 minutes (eight hours).

-q Alias passing

This option controls whether or not your assigns are kept
in the environment. Regardless of this option, assigns are
passed to all procedure files executed.

Refer to the Command Line Interface chapter for
information on assigns.) The default is -q.

-r History passing

This option controls whether or not your history is passed
from mshell to mshell. The default is -nr.

Table 5-7. mshell Command Line Options

Option Description

Chapter 5: Using the mshell Utility

486 Utilities Reference

Parameter Passing among mshells
mshell keeps the _SHELLPARAMS environment variable which
contains the current settings of some mshell options. This allows
mshell to pass its current options to all other mshells that are forked
below it. Some options are not passed because they are changed when
procedure files are executed, and would therefore affect any mshells
forked from procedure files.

_SHELLPARAMS is scanned before the initial command line is parsed, so
any option changes on a command line works properly.

You can remove _SHELLPARAMS from the environment, but you cannot
set it into the environment manually.

-s History saving

This option determines if your history is saved when you
log out and read when you log in. Without -s, you start
each login session with an empty command line history.
The default is -ns.

-t Echo input lines.
-u Procedure file debugging log

This option causes the shell to output debugging
messages. It is most effectively used by preceding code
where a problem is encountered with a -u, and using -nu
to disable the debugging output after the code. The
default is -nu.

-v Print attempts to execute command.
-x Exit on error.

Table 5-7. mshell Command Line Options

Option Description

Chapter 5: Using the mshell Utility

Utilities Reference 487

Invoking the Initialization File
Each time mshell starts, it searches for the .shellrc file in your HOME
directory. You can use the .shellrc file to set shell options which are
not passed in the _SHELLPARAMS environment variable. If the file is
found, it is executed in the same manner as the .login file is executed
when you log in. This feature is controlled by the -i option (see the
mshell Command Line Options section). In the case of the “login
shell” it is executed after the .login script file. Therefore, any options
set in the.login file can be changed in the .shellrc file. It is not
considered fatal if there is no .shellrc file, but if it does not, it is more
efficient to use the -ni option (default) to keep it from being checked
each time.

For example, the -c option is not passed in the _SHELLPARAMS
variable. You can create a one line procedure file named .shellrc in
your HOME directory containing the -c=50 command. Then, as long as
the -i option is in effect, each forked mshell automatically has a 50-
entry history buffer.

To use the -i option effectively, you must understand the order of
certain mshell operations. When you run mshell, it:

1. Processes the .login file (login shell only)
2. If the -i option is enabled, processes .shellrc
3. Processes the initial command line specified as arguments to

mshell

4. Prompts you for further command lines

Note that the .shellrc file processing is done before the initial
command line to mshell. This means that a password file line such as
the following does not behave as expected:

joe,user,1.0,128,/h0/CMDS/JOE,/h0/USR/JOE,
mshell -ip="Joe: "

mshell enables the -i option after the check to see if -i is enabled. It
is better to place the -i option in the .login file. Also, the following
command line does not behave as you might expect:

$ mshell -i

Chapter 5: Using the mshell Utility

488 Utilities Reference

Again, mshell checks to see if -i is enabled before the option is actually
enabled. The following might be a better sequence. If you are:

Running mshell:

$ -i; mshell

Not running mshell:

$ mshell -ip="MS: "
MS: profile $(HOME)/.shellrc ; * only necessary once

Prompt Format String
mshell allows the prompt text to contain printf-like format escapes.
You can customize your prompt format string with this feature. You may
want to include the shell level as part of the prompt, as well as other
items. The following are the escapes allowed (<d> is the optional
delimiter character):

Table 5-8. Allowed Escapes in mshell

Escape Replacement
@ Current shell level and a dot. @ must be the first character in

the prompt. (This is included for compatibility with the
standard OS-9/OS-9000 shell.)

%<d>s Current shell level (may appear anywhere in the prompt).

%s only displays a value if the environment value _sh is set to
a non-zero value.

%<d>h Current command number in the history buffer
%p Current data directory
%<d>n Number of directories currently on the stack
%u Current user ID of the shell
%g Current group number of the shell
%l Login name of the user (USER environment variable)

Chapter 5: Using the mshell Utility

Utilities Reference 489

%d Current date. The default format is yy/mm/dd. You can
change this by setting the environment variable _DATEFMT
with the following replace escapes permitted:

dd = day of month (1-31)
ddd = day of week (Sun-Sat)
mm = month of year (1-12)
mmm = name of month (Jan-Dec)
yy = two digit year number
yyyy = four digit year number

Any other character sequences are copied directly to the
prompt. For example: $ setenv _DATEFMT "mmm dd-mm-yyyy"
yields a date format such as: Aug 30-08-1993

%t Current time. The default format is hh:mm:ss am/pm. You
can change this by setting the environment variable
_TIMEFMT with the following replace escapes permitted:

tt Tick
ss Second
mm Minute
hh Hour
24 Military hour
ap a.m. or p.m.

Any other character sequences are copied directly to the
prompt. For example: $ setenv _TIMEFMT "24:mm:ss.tt ap"
yields a time format such as:

18:27:15.77 pm

For example: $ -p="@[%h]<%p>Vite_$ " causes a prompt
which might look like:

3.[216]</h0/usr/ric>Vite_$

Table 5-8. Allowed Escapes in mshell (Continued)

Escape Replacement

Chapter 5: Using the mshell Utility

490 Utilities Reference

%h, %n, and %s may have any of the following optional delimiter
characters specified:

These characters and their matching close characters delimit the value
if the value is non-zero. If the value is zero, no characters appear for the
format escape. For example:

$ -p="[%h]Test%(n: " set the prompt
[31]Test: pushd .. push a directory
0. /h0/usr the directory stack
1. /h0/usr/ric
[32]Test(2): -nc turn off the history buffer
[0]Test(2): notice the [0] is there because

no delimiter character was used
with the %h

Any unrecognized escapes are simply left in the prompt text. For
example:

-p="%xHello: "

yields a prompt of %xHello:. To include a percent sign (%) in a prompt
use %%.

Non-blocking Readln
mshell, when located at the prompt, allows output to the terminal.
Output is allowed when the cursor is sitting at the first position and
there are no characters on the command line (after ^x). When -f is
enabled, mshell uses a non-blocking readln routine to read from SCF
devices. When the command line is empty, other processes can do
output to the device. This allows you to see the output of background
processes if it arrives when you are sitting at an empty prompt.

This feature causes read errors for background processes that read
from the same port as an mshell.

Table 5-9. Optional Delimiter Characters in mshell

[Left bracket { Left brace
< Less than sign (Left parenthesis

Chapter 5: Using the mshell Utility

Utilities Reference 491

mshell Directives
mshell has a built-in procedure file interpreter which represents a
hybrid of both C and BASIC. It is implemented using built-in commands
called directives. The following sections describe the five basic elements
of the language:

• mshell Directives
• Operators
• Variables
• Function Calls
• Constants

Directives are built-in commands which control program flow, display
text, or assign variables new values. You use directives in the same way
that you might use list or dir. Directives, however, are handled as a
special case by mshell. Once it is determined that the command is a
directive, the remainder of the line is treated as the sole expression
argument to the directive. Therefore, apply the following rules when
writing shell scripts for mshell:

• Use only one directive per line.
• The directive must be the first item on the line:

if (%a == %b)

• Unconditional branch
• Conditional branch
• Procedure file function
• Variables
• Miscellaneous

The statement above is a conditional branch which starts an if
construct.

You may follow directive lines with an optional semi-colon (;) and any
other text. The following lines are valid:

do execute(strcat("del ", %fn))
do execute(strcat("del ", %fn));
do execute(strcat("del ", %fn)); This is a comment
do execute(strcat("del ", %fn)) ;* This is a comment

Refer to the Directive Descriptions section for information about
each directive.

Chapter 5: Using the mshell Utility

492 Utilities Reference

Directives take expressions as their argument. Expressions may contain
any of the following four elements:

• Operators
• Variables
• Function Calls
• Constants

Operators
Expressions are formed from operands separated by operators. The
operands may be any combination of variables, functions, and
constants. See the following table for a list of operators and their
precedence.

All operators associate left to right.

Variables
When you reference a variable in an mshell procedure file, you can
specify either the variable’s name or its value. To assign a new value to
a variable, refer to the name of the variable. To use the value of a
variable, precede the variable name with a percent character (%). For
example, the following command assigns a value to x (by referring to
the name x only), and refers to the value in var (by preceding the
name var with a percent character (%).

let x = %var

The name of a variable must follow the rules defined for an identifier
constant (see the Identifier Constants section). The case of the

Table 5-10. Valid Operators

Operators Class Precedence
(<expr>) Grouping High
~, -, + Unary
*, /, %, &, ^ Arithmetic/Bit
+, -, | Arithmetic/Bit
<<, >>, >>> Arithmetic/Bit
<, <=, >, >=, ==, != Relational
&&, || Logical Low

Chapter 5: Using the mshell Utility

Utilities Reference 493

letters is significant, that is, AbC is not the same as aBc. The name may
be any length.

mshell has both global and local variables.

Global variables are given values by the let directive and assign()
function. They may be assigned in or out of procedure file functions
(PFFs).

Local variables are assigned values inside of PFFs via the llet directive
or the lassign() function.

For each variable reference, the locals are searched first (if applicable),
then the globals are searched. This causes local variables to take
precedence over globals of the same name. See the function and
return directives for more information on PFFs.

%status Variable
%status is a global shell variable that is set to the error number of the
most recently completed command. A value of zero indicates success;
non-zero is an error number.

The built-in commands listed below set %status. The remainder do
not modify the value in any way:

chd chx

profile prenv

pushd popd

dirs assign

unassign set

chm (OS-9 only) kill

setenv unsetenv

which setpr

The following example script demonstrates the usage of %status:

-nx ;* don't terminate script on error
merge -z=filelist -o=bootfile
if (%status != 0)

print("merge terminated with error %s\n", %status);
endif

Chapter 5: Using the mshell Utility

494 Utilities Reference

Functions
mshell has a number of built-in subroutines (functions) which you can
call from within expressions. A function may take as many as three
expressions as parameters (which may, in turn, have functions in them).
The number of parameters for each function varies.

Example:

let a = len(%b)

The statement above places the length of the string held by %b into the
variable a.

Constants
There are four types of constants:

• Quoted String Constants

• Integer Constants

• Logical Constants

• Identifier Constants

Refer to the mshell functions and their parameters.

Chapter 5: Using the mshell Utility

Utilities Reference 495

Quoted String Constants
Quoted string constants begin and end with a double-quote character
("). The string is examined for escape characters. Quoted string
constants may contain C-like escape characters in the form \char,
where char is one of the following.

Integer Constants
Integer constants begin with a digit and continue until the first non-digit
character is reached. All integers are stored as signed 32-bit values and
may not have values that would require more storage.

Hex constants, a type of integer constant, have a 0x prefix and consist
of a sequence of upper or lower case hexadecimal characters. The
hex() function is available for use on hex constants that do not have
the 0x prefix.

Logical Constants
Logical constants are TRUE, FALSE, READ, WRITE, and UPDATE. They
appear in expressions as strings of characters without the double-quote
characters. As in C, TRUE is equal to 1 and FALSE is equal to 0. READ,
WRITE, and UPDATE are explained in more detail in the section on I/O
functions.

Table 5-11. Quoted String Constants in mshell

Escape
Character

Replacement

b Backspace (0x08)
e Escape character (0x1b)
l Line feed
n Carriage return
r Carriage return
t Tab
\ Backslash
" Double-quote character
other Any character other than those above

(for example, \h == h)

Chapter 5: Using the mshell Utility

496 Utilities Reference

Identifier Constants
An identifier consists of a string of characters beginning with an
alphabetic (A-Z, a-z) or underscore (_) character, followed by any
number of alphanumeric characters and underscores.

Examples
In the examples that follow, constants are shown in italics.

Quoted string:

let a = "This is a test."

if (strcmp(%a, "HELLO") == 0)
print("%s\n", "Something is very wrong here!")

endif

Integer:

let a = 127
if (%a >= 256)

print("Something is very wrong here! %s >= 256\n",
 %a)

endif

Logical:

let a = TRUE
if (%a == FALSE)

print("%s\n", "Something is very wrong here!")
endif

Identifier:

let a = 127
label infinite_loop

echo "Stop me!"
goto infinite_loop

The representation of items within the interpreter is strings of
characters. Conversion to integer is done when necessary, but only for
computations. The end result of all expressions is a string.

The following statement contains an error. The variable b would be
assigned the value backslash (/) and an error would occur; extra tokens
starting at h0. White space and punctuation breaks up unquoted strings
into separate tokens.

let b = /h0/usr/ric

Chapter 5: Using the mshell Utility

Utilities Reference 497

Both of the following statements are equivalent. Double-quoting strings
of digits does not make a difference, since the internal representation of
values is a string of characters.

let c = 912 or let c = "912"

Directive Descriptions
Directives tell mshell how to execute a particular procedure file. There
are directives which support unconditional and conditional branching,
looping, variable assignment, functions, and the printing of expressions.
This chapter contains the syntax and descriptions of all mshell
directives. Unless otherwise noted, directives may only appear in
procedure files; you may not enter them directly from the command line
(with the exception of batch file creation as described in the Command
Line Batchfiles section.)

Figure 5-1. mshell Directives

Syntax
Throughout the directive descriptions, certain conventions are used to
describe directive syntax:

Unconditional Branch

labelgoto
Conditional Branch

if else
elif endif
while endwhile
wbreak continue
repeat until
for endfor
switch case
default endswitch

Variables

let unlet
llet lunlet

Procedure File Function

function
endfunction
call return

Miscellaneous

data enddata
print end do

Table 5-12. Conventions

Convention Description
[] Optional
< > Description of an item

Chapter 5: Using the mshell Utility

498 Utilities Reference

The following tables lists the unconditional directives.

{ } May be repeated or omitted
... Previous <item> may be repeated

Table 5-12. Conventions

Convention Description

Table 5-13. Unconditional Branch Directives

Command Description
goto <expr> Transfer Control to a Label

goto allows the unconditional transfer of control in a
procedure file. Execution continues from the line just
after the specified label. expr is an expression and
may contain function calls. The expression, however,
must result in a string of identifier type.

Notes: The goto directive works without regard for
constructs. That is, if you use a goto to move into
the middle of a while loop, the endwhile causes an
error.

label <name> Declare a Label

label declares a label. name is the name of the
label, and refers to the next line in the procedure file.
Label names have the same construction as
identifiers. Control passes to a label name via the
goto directive.

Notes: Label and procedure file function names
may not clash.

Chapter 5: Using the mshell Utility

Utilities Reference 499

The following table lists the conditional directives.

Table 5-14. Conditional Branch Directives

Command Description
case (<expr>)
[:]

Specify a Test Value in a Switch Construct

case is used within a switch construct to specify
the different expressions that should be tested
against the switch expression. If the case
expression (expr) and the switch expression are
the same, execution resumes at the line after the
case.

You must put a wbreak at the end of the code to
force a break from the switch construct, otherwise
code from other cases could be executed. For an
example, see the endswitch directive.

continue Restart a Construct

continue transfers control back to the start of a
construct (while/endwhile, for/endfor,
repeat/until). Generally, the looping expression
is re-evaluated to determine if looping should
continue.

Note: continue causes an error if it is not
encountered inside one of the constructs listed
above.

default [:] Specify Code to Execute if a Matching Case is not
Found

default is used within a switch construct to
specify the code to execute if a case expression is
not found to match the switch expression. A
switch construct need not have a default
directive. The default directive can be placed
anywhere within the cases, but is not executed
until all the cases have been checked. A wbreak
must be used to break out of the switch construct.
See endswitch for an example.

Chapter 5: Using the mshell Utility

500 Utilities Reference

elif (<expr>) Conditional False Execution Point for an if or elif
Directive

elif, when used in conjunction with an if
directive, marks the place where execution should
be conditionally transferred if the expression on
the if evaluates to FALSE. If this is the case and
an elif is encountered, the expression (expr) on
the elif is evaluated. If this expression is TRUE,
execution begins on the line following the elif
directive. Otherwise, execution is transferred to
one of three possible locations:

• Conditionally to the next elif directive
• To the next else directive
• To the line following the endif (if no further

elif or else directives are found).
else False Execution Point for an if or elif Directive

else, when used in conjunction with the if
directive, marks the place where execution should
be transferred if the expression on the if directive
evaluates to FALSE. else is optional.

For a full example see the description of the endif
directive.

Table 5-14. Conditional Branch Directives (Continued)

Command Description

Chapter 5: Using the mshell Utility

Utilities Reference 501

endfor End of FOR Loop Construct

endfor causes execution to branch back to the
associated for directive. At that point, loop
termination is considered based on the index
variable value and loop limits.

Examples:

for i = 1 to 10 by 2
print("%s is an odd number\n",

 %i);
endfor
for j = 10 to 2 by -2
print("%s is an even number\n",

 %j);
endfor

endif Terminate an if Construct

endif marks the end of an if construct. Every if
directive must have a matching endif directive.

Example: The following code segment illustrates
how to use an if with elif's like a switch
statement in C:

if (assign(val, %a + %b * %c) == 8)
print("The value is 8!\n")

elif (%val == 4)
print("The value is 4!\n")

else
print("The value is neither 8 nor

4!\n")
endif

Table 5-14. Conditional Branch Directives (Continued)

Command Description

Chapter 5: Using the mshell Utility

502 Utilities Reference

endswitch Mark the End of a Switch Construct

endswitch marks the end of a switch construct.
When it is encountered and no case’s code has
been executed, the default code is executed (if a
default case was specified). If a wbreak is
encountered within a switch construct, execution
resumes at the line following the endswitch.

Example: The following is an example switch
construct:

1 print("Please type a character: ");
2 let c = input1(); read 1 char from the user
3 switch (%c); switch it over these
possibilities
4 case "\n":
5 print("You pressed return!\n");
6 wbreak ; leave switch construct
7 case " ": ; space?
8 case "\t": ; tab?
9 print("You entered some white-space\n");
10 wbreak;
11 default: ; some other character
12 print("You entered '%s'\n", %c);
13 wbreak;
14 case chr(27):
15 print("<esc> entered!\n");
16 case "\b":
17 print("<esc> or backspace entered!\n");
18 wbreak ;wbreak for both "\e" and "\b"
19 endswitch

Table 5-14. Conditional Branch Directives (Continued)

Command Description

Chapter 5: Using the mshell Utility

Utilities Reference 503

The above example demonstrates several features
of switch constructs:

Lines 4-6: Standard case, code, and wbreak
sequence

Lines 7-10: Two cases can apply to the same
code, if either one matches, the code is executed.

Lines 11-13: Default case to handle other non-
special characters, not executed until all other
cases are checked Line 14: case expression does
not have to be a string constant.

Lines 14-18: case code does not automatically
break out of the switch construct when another
case is encountered, it continues to execute
(skipping other cases) until it encounters a
wbreak.

endwhile Mark the End of a While Loop Construct

endwhile causes control to be transferred back to
its corresponding while directive. If the
expression on the while is still TRUE, the loop
executes again. Otherwise, execution continues
with the statement following the endwhile
directive.

See Also:

: endwhile

Example: The following example code segment
prints all file names in the current data directory
matching the pattern *.*:

while (next_file(fn,"*.*"))
print("%s\n", %fn)

endwhile

Table 5-14. Conditional Branch Directives (Continued)

Command Description

Chapter 5: Using the mshell Utility

504 Utilities Reference

for <var> =
<expr1> to
<expr2> [by
<expr3>]

Beginning of FOR Loop

for starts a traditional for loop.

var is the index variable name. var is assumed to
be local if it is within a procedure file function.
Otherwise, it is a global variable.

expr1 is the initial value for var.

expr2 is the boundary expression of the for loop.

The optional expr3 is the increment applied to
var each time around the loop. If the by syntax is
not used, mshell assumes the increment is +1.

expr1 and expr3 are evaluated only once. expr2
is evaluated each time around the loop. continue
and wbreak may be used within a for loop. See
endfor for an example.

if (<expr>) Beginning of Conditional Execution Construct

if starts the head of conditionally executed code.
expr is the expression to evaluate. If expr
evaluates to non-zero (TRUE), the code directly
following the if directive line executes. If it is zero
(FALSE), execution is transferred to one of three
possible locations:

• After the next else directive.
• Conditionally after the next elif directive.
• After the next endif directive (if there is no

else or elif present).

For a full example see the description of the endif
directive.

repeat Mark Beginning of Repeat/Until Construct

repeat marks the start of a repeat/until loop.
Execution continues with the next line.

Table 5-14. Conditional Branch Directives (Continued)

Command Description

Chapter 5: Using the mshell Utility

Utilities Reference 505

switch
(<expr>)

Beginning of Switch Construct

switch starts a switch construct. This construct
allows you to test the expression (expr) for several
values and execute code for each possibility. See
endswitch for an example.

until (<expr>) End of Repeat/Until Construct

until marks the end of a repeat/until loop. If
the expression (expr) evaluates to FALSE (0),
execution is transferred to the line after the
associated repeat directive. If the expression is
TRUE (non-zero), execution continues with the
next line.

wbreak Exit Construct

wbreak causes control to be transferred to the line
following the current construct (while/endwhile,
repeat/until, switch/endswitch,
for/endfor). For example, you can use it to exit a
for loop before the looping conditions have been
met.

Note: wbreak causes an error if it is not
encountered within one of the previously listed
constructs.

while (<expr>) Beginning of a While Loop Construct

while marks the start of a while loop. The loop
continues to execute until the expression (expr)
evaluates to FALSE. See endwhile for an
example.

Table 5-14. Conditional Branch Directives (Continued)

Command Description

Chapter 5: Using the mshell Utility

506 Utilities Reference

Table 5-15. Variable Directives

Command Description
let <id> =
<expr>

Assign a Value to a Global Variable

let evaluates the expression (expr) and
assigns the result to a global variable (id). id
may or may not have been defined earlier. expr,
though, may not involve any identifiers that are
undefined.

The let directive, without any argument, prints
all defined global variables and their values.

Examples: The following line assigns fn with the
first file in the current directory that matches the
pattern *.c.

$ let fn = filematch("*.c")

This line prints all the defined variables:

$ let
fn=dues.c

Note: You may use let directly on the
command line.

Chapter 5: Using the mshell Utility

Utilities Reference 507

llet [<id> =
<expr>]

Assign a Value to a Local Variable

llet evaluates an expression (expr) and
assigns the result to a local variable (id). id
may or may not have been defined earlier. expr,
however, may not involve any undefined
identifiers.

The llet directive, without any arguments,
prints all defined local variables and their
values.

Examples: The following line assigns fn with the
name of the first file in the current directory
which matches the pattern *.c.

llet fn = filematch("*.c")

The following lines print all the defined local
variables.

llet
fn=dues.c

Note: llet is allowed only in procedure file
functions.

Table 5-15. Variable Directives (Continued)

Command Description

Chapter 5: Using the mshell Utility

508 Utilities Reference

unlet {<id>} Remove Global Variables from Memory

unlet removes global variable(s) (id) and their
values from memory. Since each reference to a
variable causes a tree search, it can be
beneficial to remove unnecessary variables from
the tree. You can specify any number of variable
names. If one of the identifiers specified is an
asterisk (*), then all variables are removed from
the tree.

Note: You may use unlet directly on the
command line.

lunlet {<id>} Remove a Local Variable from Memory

lunlet removes local variable(s) (id) and their
values from memory. Since each reference to a
variable causes a tree search, it can be
beneficial to remove unnecessary variables from
the tree. If one of the identifiers specified is an
asterisk (*), then all local variables are removed
from the tree.

Note: lunlet is allowed only in procedure file
functions.

Table 5-15. Variable Directives (Continued)

Command Description

Chapter 5: Using the mshell Utility

Utilities Reference 509

Table 5-16. Procedure File Functions

Command Description
call
<id>([<expr>]{
,<expr>}

Execute a Procedure File Function

call passes control to a procedure file function.
id is the name of the function.

Any number of parameters may be passed to the
function. Parameters are passed by putting the
expressions (expr) in the parenthesis following the
name. Each expression is separated by a comma
(,). A function may return a value. mshell stores
the return value of a function in a global variable
called %ret. Be sure to save its value if other
functions are called.

See return for an example of this directive.
endfunction End of Function

endfunction indicates the end of a procedure file
function. Every function directive must have a
matching endfunction directive. It is used
primarily to find the end of the function when
mshell encounters a function that was not
explicitly called.

Chapter 5: Using the mshell Utility

510 Utilities Reference

function
<id>([<pid>]{,
<pid>})

Declare the Location of a Function

function declares the location of a procedure file
function. id is the function name. The function
begins with the line following the function directive.
A number of parameters (pid) may be named as
well. These are the local names of the expressions
passed to the function by the call directive. If a
function is encountered that is not explicitly called,
mshell remembers its location and skips its code.

See return for an example of this directive.

Note: If the number of parameters passed varies,
leave the parameter name area blank and refer to
the parameters by their positional names, p0
through p<n>. That is, the first parameter is
named p0, the second is p1, and so on.

return
[<expr>]

Return from a Procedure File Function

return passes control back to the caller from
within procedure file functions. The global variable
%ret is set to the value of expr (if one was
specified, otherwise %ret is set to the empty string)
and execution continues with the line directly
following the call directive.

Example: The following is a simple use of a
procedure file function:

function func(param1)
print("Param #1 = %s\n", %param1)
return 0

endfunction
call func(8 + 2)

Executing this procedure file results in the following
output:

Param #1 = 10

Table 5-16. Procedure File Functions (Continued)

Command Description

Chapter 5: Using the mshell Utility

Utilities Reference 511

Table 5-17. Miscellaneous Directives

Command Description
data [reset]
enddata

Include BASIC-like Data Statement in Script
The data directive allows you to include BASIC-
like data statements in mshell scripts. It is ended
with the enddata directive.

The following is an example of its use:

data
file.c
file2.c
test.c
test2.c
enddata

The interpreter function get_data(<var_name>)
sequentially reads lines of data and puts their
contents into the variable named <var_name>.
get_data() returns TRUE if a data item was
read into the variable and FALSE if the data list is
exhausted (with the variable being set to an empty
string).

You can also use the data directive to restore the
“data pointer” to the beginning of the data by
passing the keyword reset to a data directive. The
following example uses the above data set:
while (get_data(fn))

print("I'm about to rename %s\n", %fn);
endwhile
**** restart at the beginning of the data
data reset
while (get_data(fn))

rename %fn %(fn:r).bak
endwhile

Any number of data/enddata sets may appear in a
procedure file. You can use a backslash (\) to
continue the data lines on the next physical line.

Chapter 5: Using the mshell Utility

512 Utilities Reference

mshell Functions
This section contains descriptions of mshell functions. Each function
takes from zero to three expressions as arguments. Each expression
may involve other functions. The function arguments start with an open
parenthesis, are separated by a comma, and end with a close
parenthesis. For example:

let dot = left(%filename, strchr(%filename, "."))

do <expr> Process an Expression

do evaluates the expression (expr) without regard
for the result. This is most useful when you use an
expression function that results in no useful return
value (for example, close()).

end Terminate Procedure File

end terminates a procedure file. If the procedure
file is being run via profile, it terminates and
mshell issues a prompt.

print
(<format> {,
<arg>})

Print a Format String with its Arguments

print allows printf-like statements to appear in
procedure files. The first argument is the format
string (format), which can contain up to eight
format escapes in the form %s. There must be
enough arguments (arg) to satisfy the number of
escapes in the format string.

Example: The print directive:

let a = 10
let b = "hello"
print("a is %s and b is '%s'.\n", %a,
%b)

Prints a line:

a is 10 and b is 'hello'.

Note: You may use print directly on the
command line.

Table 5-17. Miscellaneous Directives (Continued)

Command Description

Chapter 5: Using the mshell Utility

Utilities Reference 513

The functions are listed in alphabetical order. The following tables list
the functions by type.

Table 5-18. I/O Functions

Function Description
chdir() Change the Current Data Directory

Path
chmdir() Change the Current Module Directory
chxdir() Change the Current Module Directory
close() Close an Open Path
create() Create a File
dir() Check if Name is a Directory or File
dup() Increment Use Count on a Path
exist() Determine if a File Exists
filematch() Scan List of Files for Pattern Match
input() Read a Line of Input from the User
input1() Read One Character from User
modate() Return the File Modification Date
next_file() Scan Files Matching a Pattern
open() Open a Path
read() Read Data from a Path
readln() Read a Line from a Path
seek() Seek to a File Position
size() Determine the Size of a File
tell() Return the Current File Position
write() Write Data to a Path
writeln() Write a Line of Data to a Path

Table 5-19. String Functions

Function Description
asc() Return the ASCII Code for the First

Character in a String
chr() Return a One Character String of an

ASCII Code
cmpnam() Compare a String to a Pattern
findstr() Find a Substring Within a String
tohex() Convert Decimal Value to Hexadecimal

Chapter 5: Using the mshell Utility

514 Utilities Reference

index() Return the Position of a Character
within a String

left() Return the Left Substring
len() Return the Length of a String
lower() Change a String to Lower Case
mid() Return the Midsection Substring of a

String
right() Return the Right Substring
rindex() Return the Position of a Character

within a String
strcat() Return the Concatenation of Two

Strings
strchr() Return the Position of a Character

within a String
strcmp() Compare Two Strings for Equality
strlen() Return the Length of a String
strpbrk() Scan a String for Delimiters
strrchr() Return the Position of a Character

within a String
strstr() Find a substring within a string
upper() Change a String to Upper Case
var_rep() Perform Variable Replacement on a

String

Table 5-19. String Functions (Continued)

Function Description

Table 5-20. Miscellaneous Functions

Function Description
abs() Arithmetic Absolute Value
assign() Perform a Global Assignment
env() Return the Value of an Environment

Variable
execute() Execute a String
getdata() Read Data Item
getuid() Get the Current Group and User ID

Number

Chapter 5: Using the mshell Utility

Utilities Reference 515

hex() Convert Hexadecimal Constant String
to Decimal

lassign() Perform a Local Assignment
param() Return a Procedure Parameter
uns() Convert Decimal to Unsigned

Representation

Table 5-20. Miscellaneous Functions (Continued)

Function Description

Chapter 5: Using the mshell Utility

516 Utilities Reference

abs()
Arithmetic Absolute Value

Syntax
abs(<num>)

Description
abs() returns the absolute value of num.

Chapter 5: Using the mshell Utility

Utilities Reference 517

assign()
Perform a Global Assignment

Syntax
assign(<var>, <expr>)

Description

assign() assigns the result of expr to the global variable var. The
result of the function is the value that was assigned into the variable.
You can use assign() to reduce the number of let directives in your
code.

Example
let fn = filematch("*.c")
while (len(%fn))

echo %fn
let fn = filematch("*.c")

endwhile

You could replace the code above with:

while (len(assign(fn, filematch("*.c"))))
echo %fn

endwhile

Chapter 5: Using the mshell Utility

518 Utilities Reference

asc()
Return the ASCII Code for the First Character in a String

Syntax
asc(<string>)

Description

asc() returns the integer ASCII value for the first character in string.

See Also
chr()

Chapter 5: Using the mshell Utility

Utilities Reference 519

chdir()
Change the Current Data Directory Path

Syntax
chdir (<string>)

Description
Change the current data directory path.

If an error occurs, chdir returns the error number and sets the global
value errno. If no error occurs, it returns 0.

Example
if (chdir("/h0/foo") == 0)

echo path found

else

echo path not found

endif

Chapter 5: Using the mshell Utility

520 Utilities Reference

chmdir()
Change the Current Module Directory

Syntax
chmdir(<string>)

Description
Change the current module directory.

If an error occurs, chmdir returns the error number and sets the global
value errno. If no error occurs, it returns 0.

Example
if (chdir("/h0/foo") == 0)

echo path found

else

echo path not found

endif

Chapter 5: Using the mshell Utility

Utilities Reference 521

chr()
Return a One Character String of an ASCII Code

Syntax
chr(<val>)

Description

chr() returns a one character long string containing the character with
the given ASCII code (val).

Example
To make sure a character does not have its high bit set:

if (asc(%char) >= 128)
let char = chr(asc(%char) & 127);

endif

See Also
asc()

Chapter 5: Using the mshell Utility

522 Utilities Reference

chxdir()
Change the Current Module Directory

Syntax
chxdir (<string>)

Description
Change the current module directory.

If an error occurs, chxdir returns the error number and sets the global
value errno. If no error occurs, it returns 0.

Example
if (chdir("/h0/foo") == 0)

echo path found

else

echo path not found

endif

Chapter 5: Using the mshell Utility

Utilities Reference 523

close()
Close an Open Path

Syntax
close(<path>)

Description
close() closes the file open on path. The path may have been
returned from either open(), dup(), or create().

If an error occurs, close() returns -1 and fills the variable errno with
the error number that occurred. If there is no error, close() does not
return anything useful.

See Also
create()
dup()
open()

Chapter 5: Using the mshell Utility

524 Utilities Reference

cmpnam()
Compare a String to a Pattern

Syntax
cmpnam(<string>, <pattern>)

Description
The specified string is compared to the specified pattern. The pattern
can contain mshell wildcard characters (e.g. *, ?, [a-d]). cmpnam()
returns TRUE if the string and pattern match, otherwise it returns
FALSE.

Chapter 5: Using the mshell Utility

Utilities Reference 525

create()
Create a File

Syntax
create(<name>, <mode>)

Description

create() creates a file on a disk device. name specifies the pathlist of
the file. mode specifies the type of I/O to perform. The meaning of mode
is described in Table 5-21.

The file is created with owner read and owner write attributes regardless
of the mode specified. If different attributes are desired, use the attr
utility to change them.

create() returns a path number to be used by other functions. Generally,
a procedure file may not create or open more than 28 files at a time.

If an error occurs, create() returns -1 and fills the variable errno with the
error number that occurred.

See Also
open()

Table 5-21. mode

True Value Logical Constant Mode
1 READ Read Only
2 WRITE Write Only
3 UPDATE Read and Write

Chapter 5: Using the mshell Utility

526 Utilities Reference

dir()
Check if Name is a Directory or File

Syntax
dir(<name>)

Description
dir() determines if name is a directory or a simple file. It returns
logical TRUE (1) if it is a directory, otherwise it returns logical FALSE
(0).

dir() returns FALSE if called for a file or directory name that does not
exist.

See Also
exist()

Chapter 5: Using the mshell Utility

Utilities Reference 527

dup()
Increment Use Count on a Path

Syntax
dup(<path>)

Description
dup() increments the use count on the specified path. dup() returns a
new synonymous path number or -1 if the Operating System dup call
fails. The mshell variable errno will be set to the error number.

Chapter 5: Using the mshell Utility

528 Utilities Reference

env()
Return the Value of an Environment Variable

Syntax
env(<name>)

Description
env() returns the value of the environment variable name. This
method is provided as an alternative to the $(name:q) syntax. env()
has the advantage that if name is not defined, no error is generated. A
string of length 0 is returned from the function instead.

Chapter 5: Using the mshell Utility

Utilities Reference 529

execute()
Execute a String

Syntax
execute(<string>)

Description
execute() executes the command line string under a different mshell.
The result of execute() is the exit status of the spawned mshell.

See Also
var_rep()

Chapter 5: Using the mshell Utility

530 Utilities Reference

exist()
Determine if a File Exists

Syntax
exist(<name>)

Description
exist() returns TRUE if a file (name) exists. It returns FALSE if it does
not exist or is not accessible by the procedure file. exist() is valid on
both directories and files.

Chapter 5: Using the mshell Utility

Utilities Reference 531

findstr()
Find a Substring Within a String

Syntax
findstr(<string>, <substring>)

Description
findstr() returns the index of the first character in substring within
string. If substring does not appear in string, 0 is returned. If
substring is the empty string, 1 is returned.

See Also
strstr()

Chapter 5: Using the mshell Utility

532 Utilities Reference

filematch()
Scan List of Files for Pattern Match

Syntax
filematch(<pattern>)

Description
filematch() moves through a directory sequentially, returning all the
file names that match pattern. pattern may contain the asterisk (*)
and question mark (?) wildcard characters. When the list of matching
files has been exhausted, a string of length zero is returned.

filematch() keeps track of its position in the directory between calls.
It continues to move forward through the directory until the requested
pattern changes. Therefore, if you intend to scan through the same
directory twice for the same pattern, call filematch() with an empty
string between the scans. For example, filematch("").

See Also
modate()

Chapter 5: Using the mshell Utility

Utilities Reference 533

getdata()
Read Data Item

Syntax
getdata(<id>)

Description
get_data() reads the next item from the data section of a script file
into the variable <id>. get_data() returns TRUE if it finds data. <id>
is set to an empty string and get_data() returns FALSE when there is
no more data.

Refer to the mshell Directives section (data/enddata directive) for
more information and an example.

Chapter 5: Using the mshell Utility

534 Utilities Reference

getuid()
Get the Current Group and User ID Number

Syntax
getuid

Description
getuid() returns a string in the form gid.uid, where gid is the
current group ID of mshell and uid is the current user ID of mshell.
This is useful in a procedure file for determining the caller’s ID.

Example
The following code segment checks the user ID of the user executing
the script file, and prints a message and exits if they are not classified as
a super user:

if (strcmp(getuid(), "0.0") != 0)
print("Must be super user to use this script

file!\n")
end

endif

Chapter 5: Using the mshell Utility

Utilities Reference 535

hex()
Convert Hexadecimal Constant String to Decimal

Syntax
hex(<string>)

Description
hex() converts a hexadecimal constant string to its decimal
representation. The string should be a sequence of upper or lower case
hexadecimal digits. The optional 0x prefix is ignored. Any failure to
convert the digits results in a return value of 0.

See Also
tohex()

Chapter 5: Using the mshell Utility

536 Utilities Reference

index()
Return the Position of a Character within a String

Syntax
index(<string>, <char>)

Description
index() searches from the start of string for the character char. It
returns 0 if char is not present in string. Otherwise, it returns the
offset from the beginning of the string to char. The index() search is
case sensitive.

Since mshell has no “character” constants, the first character of the
second argument is assumed to be the character desired. For example
the following returns 11 (first t in test):

index (“This is a test”,”type”)

See Also
rindex()

Chapter 5: Using the mshell Utility

Utilities Reference 537

input()
Read a Line of Input from the User

Syntax
input()

Description
input() reads a line of input from the device specified by the
environment variable PORT. input() returns the line entered. mshell
eliminates the <cr> typed to terminate the line. <cr> alone results in a
string of length 0. <esc> as the first character results in the string "\e".

If the PORT environment variable is not defined or an error occurs, the
procedure file execution is aborted.

See Also
input1()

Chapter 5: Using the mshell Utility

538 Utilities Reference

input1()
Read One Character from User

Syntax
input1()

Description
input1() reads exactly one character of input from the device
specified by the environment variable PORT. It returns the character
read (in a string of length 1). <cr> results in the string "\n". <esc>
results in the string "\e". input1() is very useful for menu or yes/no
input.

If the PORT environment variable is not defined or an error occurs, the
procedure file is aborted.

See Also
input()

Chapter 5: Using the mshell Utility

Utilities Reference 539

lassign()
Perform a Local Assignment

Syntax
lassign(<var>, <expr>)

Description
lassign() assigns the result of expr to the local variable var. The
result of the function is the value that was assigned into the variable.
You can use lassign() to reduce the number of llet directives used.

Refer to assign() for an example.

Chapter 5: Using the mshell Utility

540 Utilities Reference

left()
Return the Left Substring

Syntax
left(<string>, <num>)

Description
left() returns the left-hand number of characters (num) in the
substring of string.

Example
The following function returns the string This.

left("This is a test", 4)

If there are not enough characters to satisfy the request, or the
requested number is less than or equal to 0, left() returns a string of
size 0.

See Also
mid()
right()

Chapter 5: Using the mshell Utility

Utilities Reference 541

len()
Return the Length of a String

Syntax
len(<string>)

Description
len() returns the string length, in characters.

Chapter 5: Using the mshell Utility

542 Utilities Reference

lower()
Change a String to Lower Case

Syntax
lower(<string>)

Description
lower() changes each alphabetic character in string to its lower-
case counterpart. It does not affect white space or punctuation.

See Also
upper()

Chapter 5: Using the mshell Utility

Utilities Reference 543

mid()
Return the Midsection Substring of a String

Syntax
mid(<string>, <start>, <end>)

Description
mid() allows you to extract middle parts of a string. It returns the
characters from position start to position end of string, where the
first character’s position is 1.

If the string does not have enough characters to satisfy the requested
start and end positions, mid() returns a string of length 0.

See Also
left()
right()

Chapter 5: Using the mshell Utility

544 Utilities Reference

modate()
Return the File Modification Date

Syntax
modate(<filename>)

Description

modate() returns a scalar value for the last modification date of a file
(filename). This number is only useful when compared with the return
value of modate() on a different file. If the specified file does not exist,
the return value is 0 (thus implying a very old file).

Using modate() on a directory results in 0.

Example
• Using filematch:
let fn = filematch("*.c")
while (len(%fn))

let rel = var_rep("RELS/%(fn:r).r")
if (modate(%fn) >= modate(%rel))

cc -gixt=/r0 %fn -r=RELS
endif
let fn = filematch("*.c")

endwhile

• Using next_file:
while (next_file(fn, "*.c"))

let rel = var_rep("RELS/%(fn:r).r")
if (modate(%fn) >= modate(%rel))

cc -gixt=/r0 %fn -r=RELS
endif

endwhile

See Also
dir()
exist()

Chapter 5: Using the mshell Utility

Utilities Reference 545

next_file()
Scan Files Matching a Pattern

Syntax
next_file(<variable>, <pattern>)

Description
next_file() scans sequentially through a directory, and returns files
that match pattern. pattern can contain the asterisk (*) and
question mark (?) wildcard characters. next_file() returns TRUE if it
finds a matching file, and places the file’s name in variable. If no
matching files are found, next_file() returns FALSE and sets
variable to an empty string. You can use next_file() with the while
directive to perform a function on each file matching a pattern.

next_file() uses filematch() to scan the directory. The result of
using filematch() and next_file() within the same construct is
undefined. next_file() maintains its position in the directory
between calls. It continues to move forward through a directory until
the requested pattern changes. Therefore, if you intend to scan the
same directory twice with the same pattern, call next_file() with an
empty string between the scans. That is, next_file(fn, "").

See Also
modate()

Refer to modate() for an example of next_file().

Chapter 5: Using the mshell Utility

546 Utilities Reference

open()
Open a Path

Syntax
open(<name>, <mode>)

Description
open() opens a path in the mode specified. The name of the device or
file is passed in the name parameter. The I/O mode to use for the path is
passed in the mode parameter. Values in mode have the following
meanings:

open() returns a path number to use in future I/O calls for the same
file or device.

If an error occurs, open() returns -1 and places the error number into
the variable errno.

See Also
create()
dir()
exist()

Table 5-22. mode Values

True Value Logical Constant Mode
1 READ Read Only
2 WRITE Write Only
3 UPDATE Read and Write

Chapter 5: Using the mshell Utility

Utilities Reference 547

param()
Return a Procedure Parameter

Syntax
param(<num>)

Description
param() allows quick access to the parameters passed into a
procedure file. param() builds a string in the form P<num> and gets the
environment variable associated with that name. If num is out of range
or the environment variable P<num> does not have a value, param()
returns a string of length 0.

Chapter 5: Using the mshell Utility

548 Utilities Reference

read()
Read Data from a Path

Syntax
read(<path>, <var>, <count>)

Description
read() reads data from the open path. The data is read into the
variable var. A buffer of size count bytes is allocated for the read()
operation. This buffer is then assigned to the variable var. Be sure that
the path was opened or created in either READ or UPDATE mode,
otherwise reading is not allowed.

read() returns the number of bytes actually read from the path.

If an error occurs, read() returns -1 and fills the variable errno with
the error number that occurred.

mshell variables hold NULL terminated strings. If the data read from
the file contains a byte with the value 0, the string is truncated at that
point. For this reason, the string that ends up in the variable may be
shorter than the requested number of bytes.

If this function is called from within a procedure file function, the
variable named is assumed to be local.

See Also
readln()
write()
writeln()

Chapter 5: Using the mshell Utility

Utilities Reference 549

readln()
Read a Line from a Path

Syntax
readln(<path>, <var>)

Description
readln() reads one line of data from the open path.

The data is read into the variable var. At most, 512 characters are
read. Be sure that the path was opened or created in either READ or
UPDATE mode, otherwise reading is not allowed.

readln() returns the number of bytes read. The <cr> that terminates
the line remains intact, but could easily be removed with the string
functions provided.

If an error occurs, readln() returns -1 and fills the variable errno with
the error number that occurred.

If this function is called from within a procedure file function, the
variable named is assumed to be local.

See Also
read()
write()
writeln()

Chapter 5: Using the mshell Utility

550 Utilities Reference

right()
Return the Right Substring

Syntax
right(<string>, <num>)

Description
right() returns the right-hand num character substring of string.

Example
The following function returns the string test.

right("This is a test", 4)

If there are not enough characters to satisfy the request, or the
requested number is less than or equal to 0, then right() returns
string of size 0.

\See Also
left()
mid()

Chapter 5: Using the mshell Utility

Utilities Reference 551

rindex()
Return the Position of a Character within a String

Syntax
rindex(<string>, <char>)

Description
rindex() searches backwards from the end of string for the character
char. 0 is returned if char is not present in string, otherwise the
position of the character is returned.

Since mshell has no “character” constants, the first character of the
second argument is assumed to be the character desired. For example,
the following function returns 14 (the last t in test).

rindex (“This is a test”, “type”)

See Also
index()

Chapter 5: Using the mshell Utility

552 Utilities Reference

seek()
Seek to a File Position

Syntax
seek(<path>, <pos>)

Description
seek() moves the file pointer to pos in the file open on path. The next
I/O operation starts at that position, relative to the beginning of the file.
seek() returns nothing useful if it successful.

If an error occurs, seek() returns -1 and fills the variable errno with
the error number that occurred.

See Also
tell()

Chapter 5: Using the mshell Utility

Utilities Reference 553

size()
Determine the Size of a File

Syntax
size(<filename>)

Description
size() returns the size of a file (filename) in bytes. size() is not
valid on directories. If the file specified in filename cannot be opened,
a size of 0 is returned.

Chapter 5: Using the mshell Utility

554 Utilities Reference

strcat()
Return the Concatenation of Two Strings

Syntax
strcat(<string1>, <string2>)

Description
strcat() returns the result of appending string2 to string1. Both
source strings are left intact.

Chapter 5: Using the mshell Utility

Utilities Reference 555

strchr()
Return the Position of a Character within a String

Syntax
strchr(<string>, <char>)

Description
strchr() searches from the start of string for the character char. It
returns 0 if char is not present in string. Otherwise, it returns the
offset from the beginning of the string to char. The strchr() search is
case sensitive.

Since mshell has no “character” constants, the first character of the
second argument is assumed to be the character desired. For example
the following returns 11 (first t in test):

strchr (“This is a test”,”type”)

See Also
index()
rindex()

Chapter 5: Using the mshell Utility

556 Utilities Reference

strcmp()
Compare Two Strings for Equality

Syntax
strcmp(<string1>, <string2>)

Description
strcmp() compares string1 to string2 and returns an integer less
than zero, zero, or greater than zero if string1 is less than, equal to, or
greater than string2, respectively.

Chapter 5: Using the mshell Utility

Utilities Reference 557

strlen()
Return the Length of a String

Syntax
strlen(<string>)

Description
strlen() returns the string length, in characters.

See Also
len()

Chapter 5: Using the mshell Utility

558 Utilities Reference

strpbrk()
Scan a String for Delimiters

Syntax
strpbrk(<string>, <delim>)

Description
strpbrk() locates the first occurrence in string of any character
from delim. string is a string in which to search for any character
from delim. delim is a string containing characters to locate in src.
strpbrk() returns the index of the first character from delim or 0 if
no characters from delim appear in string. If delim is the empty
string, 0 is returned.

Chapter 5: Using the mshell Utility

Utilities Reference 559

strrchr()
Return the Position of a Character within a String

Syntax
strrchr(<string>, <char>)

Description
strrchr() searches backwards from the end of string for the
character char. 0 is returned if char is not present in string,
otherwise the position of the character is returned.

Since mshell has no “character” constants, the first character of the
second argument is assumed to be the character desired. For example,
the following function returns 14 (the last t in test).

strrchr (“This is a test”, “type”)

See Also
index()
rindex()

Chapter 5: Using the mshell Utility

560 Utilities Reference

strstr()
Find a substring within a string

Syntax
strstr(<string>, <substring>)

Description
strstr() returns the index of the first character in substring within
string. If substring does not appear in string, 0 is returned. If
substring is the empty string, 1 is returned.

See Also
findstr()

Chapter 5: Using the mshell Utility

Utilities Reference 561

tell()
Return the Current File Position

Syntax
tell(<path>)

Description
tell() returns the current file position in the file open on path. The
next I/O operation starts at the file position returned by tell().

If an error occurs, tell() returns -1 and fills the variable errno with
the error number that occurred.

See Also
seek()

Chapter 5: Using the mshell Utility

562 Utilities Reference

tohex()
Convert Decimal Value to Hexadecimal

Syntax
tohex(<value>)

Description
tohex() converts the decimal value <value> to its hexadecimal
representation. The hex representation exists in the form 0xhhhhhhhh
(where “h” is a hexadecimal digit (lower-case)). The string is always 10
characters long: two for the “0” and the “x”, and eight for the lower-
case hexadecimal digits. If you do not want the 0x, use right() to
remove it from the result.

See Also
hex()

Chapter 5: Using the mshell Utility

Utilities Reference 563

uns()
Convert Decimal to Unsigned Representation

Syntax
uns(<value>)

Description
unx() converts the specified decimal value to its unsigned
representation.

Most operators return signed 32-bit values, regardless of the
representation of their arguments.

Example:

$ let x = uns(-1)
$ let y = 1
$ let z = %x * %y
$ let
x=4294967295
y=1
z=-1

Note that z is -1, not 4294967295. uns() must be used with z to
get the unsigned result of the multiplication.

Chapter 5: Using the mshell Utility

564 Utilities Reference

upper()
Change a String to Upper Case

Syntax
upper(<string>)

Description
upper() changes each alphabetic character in string to its upper-case
counterpart. It does not affect white space or punctuation.

See Also
lower()

Chapter 5: Using the mshell Utility

Utilities Reference 565

var_rep()
Perform Variable Replacement on a String

Syntax
var_rep(<string>)

Description
var_rep() passes string through the variable replacements:
environment, interpreter, and command output. var_rep() is very
useful in conjunction with execute.

Example
let rels = RELS
let cflags = "-gqt=/r0"
setenv NAME test.c
let line = var_rep("cc %cflags $(NAME) -r=%(rels)")
print("Executing: %s\n", %line)
%line

Chapter 5: Using the mshell Utility

566 Utilities Reference

write()
Write Data to a Path

Syntax
write(<path>, <data>, <count>)

Description
write() writes count bytes from data to the open path. If the length of
data is less than count bytes, garbage fills the remaining bytes (the
difference between the length of the data and count).

write() returns the number of bytes written.

If an error occurs, write() returns -1 and fills the variable errno with
the error number that occurred.

See Also
read()
readln()
writeln()

Chapter 5: Using the mshell Utility

Utilities Reference 567

writeln()
Write a Line of Data to a Path

Syntax
writeln(<path>, <data>)

Description

writeln() writes a line of data to a file open on path. It passes the
data to be written in the parameter data. data can be any length. That
is, a writeln system call is performed with a length equal to the length
of the data.

writeln() returns the number of bytes written.

If an error occurs, writeln() returns -1 and fills the variable errno
with the error number that occurred.

See Also
read()
readln()
write()

Chapter 5: Using the mshell Utility

568 Utilities Reference

Example Programs
This example script file plays a “guess a number” game (rand =
program that outputs a random number between 1 and 1000):

let num = $("rand"); get the random number
let done = FALSE; user's not done yet
let guesses = 0; they haven't guessed yet
while (!%done)

print("\nGuess a number: ");
let guess = input(); get the guess from the user
let guesses = %guesses + 1;
if (%guess == %num)

print("Correct in %s guesses!\n", %guesses);
let done = TRUE;

elif (%guess < %num); too low?
print("Higher!\n"); must be too high?

else
print("Lower!\n");

endif
endwhile

This program segment asks the user for a new TERM environment
variable, allowing <cr> or <esc> to accept default:

setenv TERM kt7
print("TERM = (%s) ", env("TERM")); print the prompt
let ans = input(); get some input
* if they typed something and it wasn't escape
if (len(%ans) && asc(%ans) != 27)

setenv TERM %(ans:q); * set a new TERM
endif

Utilities Reference 569

6 Using the shell Utility Chapter 6

The shell utility is the operating system’s command interpreter
program. This chapter describes how to use the shell utility.

Chapter 6: Using the shell Utility

570 Utilities Reference

Overview of shell Utility
The shell utility reads data from its standard input which is usually the
keyboard or a file and interprets the data as a sequence of commands.
The basic function of the shell utility is to initiate and control execution
of other programs.

Usually you enter the shell utility automatically when you log into the
system. The shell utility displays a dollar sign ($) prompt to show that it
is ready and waiting for a command line. You can create a new shell by
typing shell optionally followed by a command line.

The shell utility reads and interprets one text line at a time from
standard input. After interpreting each line, the shell utility reads
another line until an end-of-file condition occurs, at which time it
terminates itself.

The shell utility may also be given a command in its argument list. In
this case, the shell utility processes the specified command as if it was
typed on a shell command line. Control returns to the calling program
after the single command line is processed. If a command is not
specified (shell<cr>) or the command is a shell utility option or built-
in command (such as chd and chx), more lines are read from standard
input and processed as normal. This continues until an end-of-file
condition or the logout command is executed.

The shell’s ex command does not recognize utility options unless they
are separated from the utility name with a space. For example,
ex procs -e works properly, but ex procs-e does not.

The shell utility uses special characters for various purposes. Special
characters consist of the following:

Table 6-1. Special Characters in shell Utility

Type Character Purpose
Modifiers # Memory allocation

^ Process priority modification
> Standard output redirection
< Standard input redirection
>> Standard error output redirection

Separators ; Sequential execution
& Concurrent execution
! Pipe: interprocess communication

Chapter 6: Using the shell Utility

Utilities Reference 571

To send one of these characters to a utility program, you must use a
method called quoting to prevent the shell utility from interpreting the
special character. Quoting consists of enclosing the sequence of
characters to be passed to a routine in single or double quotes. For
example, ‘<char>’ or "<char>".

The following command line prints the indicated string:

$ echo "Hello; goodbye"
Hello; goodbye

However, the following command displays the string Hello on your
terminal screen and then attempts to execute a program called
goodbye.

$ echo Hello; goodbye

The shell expands the two wildcards to build pathlists. The question
mark (?) wildcard matches any single character. The asterisk (*)
wildcard matches any string of characters.

dir ???? displays the names of files in the current directory that are
four characters long. dir s* displays all names of files in the current
directory that begin with s.

Any command that uses a pathlist on the command line accepts a
pathlist specified with wildcards. When the shell utility expands the
wildcards, if an explicit directory is not given, the files in the current
data directory are searched for the matched expansion. If an explicit
directory name is given in the pathlist, the specified directory is
searched. If a command uses an option to search for a file in the
current execution directory, wildcards may produce unexpected results.

The shell utility reads the current data directory or the given relative
pathlist containing a wildcard and passes these file names to the
command. If the command then tries to find the files relative to the
execution directory, the search fails.

+ OS-9: concurrent execution
Wildcards * Stands for any string of characters

? Stands for any single character

Table 6-1. Special Characters in shell Utility

Type Character Purpose

Chapter 6: Using the shell Utility

572 Utilities Reference

Setting shell Options
There are two methods of setting shell utility options:

1. Type the option on the command line or after the command, shell.
For example:
$ -np Turn off the shell prompt.
$ shell -np Create a new shell that does not prompt.

2. Use the special shell command, set. To set shell options, type set,
followed by the options desired. When using set, a hyphen (-) is
unnecessary before the letter option. For example:
$ set np Turn off the shell prompt.
$ shell set np Create a new shell that does not prompt.

The two methods accomplish the same function.

The Shell Environment
For each user on a system, the shell utility maintains a unique list of
environment variables. These variables affect the operation of the shell
utility or other programs subsequently executed. They are
programmable defaults that you can set to meet your individual needs.

All environment variables can be accessed by any process called by the
environment shell or descendent shells. This allows you to use the
environment variables as global variables.

If a subsequent shell redefines an environment variable, the variable is
only redefined for that sub-shell and its descendents.

Environment variables are case-sensitive.

Chapter 6: Using the shell Utility

Utilities Reference 573

Several special environment variables are automatically set up when
you log on a time-sharing system:

Several other important environment variables are available:

Table 6-2. shell Special Environment Variables

Name Specification
PORT This specifies the name of the terminal. This is

automatically set up by tsmon. /t1 is an example of a legal
PORT name.

HOME This specifies your home directory. The home directory is
the directory specified in your password file entry. This is
also the directory used when the command chd with no
parameters is executed.

SHELL This is the process that is first executed upon logging on to
the system.

USER This is the user name you type when prompted by login.

Table 6-3. shell Environment Variables

Name Specification
PATH This specifies any number of directories. Each directory

must be separated by a colon (:). The shell utility uses this
as a list of commands directories to search when
executing a command.

If the default commands directory does not include the
file/module to execute, each directory specified by PATH is
searched until the file/module is found or until the list is
exhausted.

PROMPT This specifies the current prompt. By specifying an “at”
sign (@) as the first character of your prompt, you may
easily keep track of how many shells you personally have
running under each other.

The @ is used as a replaceable macro for the shell level
number. The environment variable _sh sets the base
level.

Chapter 6: Using the shell Utility

574 Utilities Reference

The Environment Utilities
Three utilities are available to manipulate environment variables:

• setenv declares the variable, sets its value. The variable is placed in
an environment storage area accessed by the shell. For example:
$ setenv PATH ..:/h0/cmds:/d0/cmds:/dd/cmds
$ setenv _sh 0

• unsetenv clears the value of the variable and removes it from
storage. For example:
$ unsetenv PATH
$ unsetenv _sh

• printenv prints the variables and their values to standard output.
For example:
$ printenv
PATH=..:/h0/cmds:/d0/cmds:/dd/cmds
PROMPT=howdy
_sh=0

_sh This specifies the base level for counting the number of
shell levels. For example, set the shell prompt to
"@howdy: " and _sh to 0:

$ setenv _sh 0
$ -p="@howdy: "
howdy: shell
1.howdy: shell
2.howdy: eof
1.howdy: eof
howdy:

TERM This specifies the specific terminal being used. This allows
word processors, screen editors, and other screen
dependent programs to know what type of terminal
configuration to use.

MDHOME
(OS-9000)

This specifies your home module directory. This is the
module directory used when the command chm with no
parameters is executed.

MDPATH
(OS-9000)

This specifies any number of module directories to
search. Module directory paths must be separated by a
colon (:). The shell uses MDPATH as a list of module
directories to search when executing a command.

Table 6-3. shell Environment Variables (Continued)

Name Specification

Chapter 6: Using the shell Utility

Utilities Reference 575

Using Environment Variables as Command Line Parameters
The following section applies to OS-9 systems only (does not apply to
OS-9 for 68K systems).

When the following syntax is used, the shell utility replaces the
environment variable with the value of the environment variable:

$(<env var>)

For example, if HOME is set to /h0/USR/ROB and the command
dir $(HOME) is entered, the shell utility executes the command
dir /h0/USR/ROB.

This substitution is useful for entire command lines. By using setenv, a
command line can be assigned to an environment variable:

setenv PR "procs -ea"

The shell utility automatically substitutes procs -ea any time $(PR)
appears in the command line.

Using Parameters with Procedure Files
The following section applies to OS-9 systems only (does not apply to
OS-9 for 68K systems).

The shell utility allows parameters to be passed to procedure files.
These parameters are entered on the command line and take the place
of variables located within the procedure file.

For example, if you have the following procedure file, files, you can
list the first parameter and delete the second parameter:

$ list files
list $(P0)
del $(P1)

When you enter files and two filenames, the first filename replaces
$(P0) and the second replaces $(P1):

files starter update

This command lists the file starter to your terminal screen and
deletes update.

Chapter 6: Using the shell Utility

576 Utilities Reference

If you add a third filename to the command line, it is ignored unless the
variable $(P2) is added to the procedure file. If there is a variable
$(P2), the third parameter is recognized and used.

The $(P*) variable is a concatenation of all the parameters given to
the procedure file. The following example shows a procedure file that
uses the $(P*) variable and prints out the environment within the
shell.

[7]POS: build listfil
? list $(P*)
? printenv
?
[8]POS: listfil data1 data2 data3
This is the first file Contents of data1
This is the second file Contents of data2
This is the third file Contents of data3
PORT=/pks01
HOME=/h0/USR/ROBB
SHELL=shell
USER=robb
PATH=/h0/cmds
TERM=kt7
_sh=1
PROMPT=@POS:
P0=data1 First parameter
P1=data2 Second parameter
P2=data3 Third parameter
P*=data1 data2 data3 Value of variable P*
PN=3 Number of parameters passed to listfil

The shell utility keeps track of the number of parameters passed to
any given procedure file with the PN variable.

When the procedure file has finished executing, the shell utility
environment returns to its previous state. The variables P0, P1, etc. are
not passed from the procedure file back to the shell utility.

Microware suggests that you not use setenv to set variables such as
P0, P1, etc. as they are not passed between the shell and the procedure
file.

Chapter 6: Using the shell Utility

Utilities Reference 577

The profile Command
Usually when a procedure file is executed, a new shell is forked to
process the procedure file. Any changes affecting the shell (such as
changing any of the current directories or changing the shell
environment) made from within a procedure file will not affect the
environment of the shell from which the procedure file was called.

The profile built-in shell command executes a procedure file without
forking a child shell. This makes it possible to change current directories
and environment variables from within a procedure file.

For example, if you frequently work on a project located in directory
/h0/usr/proj/myproj and you want the environment variable
FRAME to equal pickone whenever you work on your project, you could
create a procedure file similar to the following:

$ list myproject
chd /h0/usr/proj/myproj
setenv FRAME pickone

When you want to work on your project, type:

profile myproject

Your current data directory is /h0/usr/proj/myproj and FRAME is set
to pickone. Parameters may still be passed to procedure files when
profile is used.

The profile utility’s commands may be nested. That is, the file itself
may contain a profile command for another file. When the latter
profile command completes, the first one resumes.

A particularly useful application for profile files is within a user’s
.login and .logout files. For example, if each user includes the
following line in the .login file, system-wide commands (such as
common environments and news bulletins) can be included in the file
/dd/SYS/login_sys.

profile /dd/SYS/login_sys

You can use a similar technique for .logout files.

Chapter 6: Using the shell Utility

578 Utilities Reference

The login shell, .login, and .logout
The login shell is the initial shell created by the login program to
process the user input commands after logging in.

Two special procedure files are extremely useful for personalizing the
shell environment:

• .login

• .logout

To use these files, they must be located in your home directory. The
.login and .logout files provide a way to execute desired commands
when logging on to and leaving the system.

The login shell processes .login as a command file immediately after
successful login. This allows you to run a number of initializing
commands without remembering each and every command. After
processing all commands in the .login file, the shell prompts you for
more commands.

The main difference in handling the .login file is that the login shell
itself actually executes the commands rather than creating another
shell to execute the commands.

You can issue such commands as set and setenv within the.login
file and have them affect the login shell. This is especially useful for
setting up the environment variables PATH, PROMPT, TERM, _sh, and for
OS-9 (non-68K), MDHOME and MDPATH.

The following is an example .login file:

setenv PATH ..:/h0/cmds:/d0/cmds:/dd/cmds:/h0/doc/
spex

setenv PROMPT "@what next: "
setenv _sh 0
setenv TERM abm85h
querymail
date
dir

Chapter 6: Using the shell Utility

Utilities Reference 579

.logout is executed when logout is executed to exit the login shell
and leave the system. The .logout file is executed before the login
shell terminates. Use this to execute any cleaning up procedures that
are done on a regular schedule. This might be anything from
instigating a backup procedure of some sort to printing a reminder of
things to do.

The following is an example .logout file:

procs
wait
echo "all processes terminated"
* basic program to instigate backup if necessary *
disk_backup
echo "backup complete"

shell Command Line Syntax
The shell command line consists of a keyword and any of the parts
listed below. The keyword appears first on a command line. The order

Chapter 6: Using the shell Utility

580 Utilities Reference

of the optional parts depends on the nature of the command and the
desired effect. The command line consists of:

Table 6-4. shell Command Line

Command
Line Unit

Description

Keyword A name of a program or procedure file, a pathlist, or
built-in shell command. The built-in commands are:

assign OS-9 for 68K: Assigns commands and strings to
a word for command line substitutions.
chd Changes your data directory.
chm OS-9: Changes your module directory.
chx Changes your execution directory.
ex Executes a process as overlay.
hist OS-9: Displays your command history.
kill Aborts a specified process.
logout Terminates current shell and executes the
.logout procedure file if the login shell is terminated.
profile Executes a procedure file without forking a
child shell.
set Sets shell options.
setenv Sets environment variables.
setpr Sets process priority.
unassign OS-9 for 68K: Unassigns assignments made
with assign.
unsetenv Clears environment variables.
w, wait Waits for process to finish/ Waits for all
immediate child processes to finish.

Parameter File or directory names, values, variables, constants,
options, etc. to pass to the program. Wildcards may be
used to identify parameter names. The recognized
wildcards are:

* Match any character.

? Match any single character.

Chapter 6: Using the shell Utility

Utilities Reference 581

Execution
Modifiers

These modify a program’s execution by redirecting I/O
or changing the priority or memory allocation of a
process:

#<mem size> Allocate specified additional memory to a
process.

^<priority> Set the priority of the process.

< Redirect standard input.

>[- or +] Redirect standard output.

>>[- or +] Redirect standard error output.

The hyphen (-) following the modifiers signify to write
over a specified file. The plus (+) appends the file with
the redirected output.

Separators Separators connect command lines together in the same
command line. They specify to the shell how they are to
be executed. The separators are:

; Indicate sequential execution.

& Indicate concurrent execution.

! Create a communication pipe between processes.
Pipes connect the standard output of one process to the
standard input of another.

+ OS-9000: Indicates the concurrent execution of a
process to be orphaned.

Table 6-4. shell Command Line (Continued)

Command
Line Unit

Description

Chapter 6: Using the shell Utility

582 Utilities Reference

Command Line Execution
The shell command line syntax indicates that a keyword may be a
program name, procedure file name, a pathlist, or built-in shell
command. Built-in commands are executed immediately by the shell;
no directory searching is required, nor is a process created to execute
the command. If the specified command is not a built-in command, the
shell must locate the program to execute from a number of possible
locations.

The following procedure describes the actions of the shell when
processing a command:

Step 1. Get command line.

Step 2. Prepare command:

• OS-9 only (non-68K): Insert into history buffer

• OS-9 only (non-68K): Replace variables

• Validate syntax.

• Isolate keyword, parameters, and execution modifiers.

• Expand wildcard names if given.

Step 3. If the keyword is a built-in command, execute the command.
Otherwise, search the following directories until the command is found
or the directory search is exhausted:

• The module directory.

• OS-9 only (non-68K): Search alternate module directory and
module directories in MDPATH.

• The execution directory.

• Each directory specified by the PATH environment variable.

Step 4. If the command could not be found in the above directories, return
error: can’t find command.

Step 5. If the command is found, load the command into the module directory.

Step 6. If the load fails, execute shell command (command is assumed to be a
procedure file for the shell)

Step 7. If the load succeeds and the module is executable object code, execute
command.

Chapter 6: Using the shell Utility

Utilities Reference 583

Step 8. If the load succeeds and the module is BASIC I-code, execute Runb
command. Command is an argument for RunB.

Step 9. If either of the above command execution fails, return error: can’t
execute command.

Commands and procedure files in the current execution directory must
have the execute, group execute (OS-9 only—non68K), and/or
public execute file attribute set or the file will not be found.

If the PATH environment variable is set, its value is interpreted as a list of
directories to search if the initial search of the execution directory fails.
If an absolute pathlist, a path beginning with a slash (/) is given as the
command, the shell does not perform the PATH directory search. The
following are examples of setting up the PATH variable:

setenv PATH /d0
setenv PATH /h0/cmds:/n0/jack/h0/cmds:/n0/jill/h0/cmds
setenv PATH kim:../kim:.../cmds

Each directory name is separated by a colon (:). The shell utility
isolates the directory name and appends the command name and uses
this pathlist to load the command. If the load fails, the next directory
given is used until the command is successfully loaded or all directories
are tried.

Regardless of the error encountered, the shell utility continues with the
next directory. If a directory given is a relative pathlist, the pathlist is
relative to the execution directory. To assist in determining the directory
from which a command was loaded or not loaded, turn on the -v
option to display the shell’s progress while searching the directories.

The login program automatically sets the PATH variable to the
execution directory from which login itself was loaded if the password
entry gives an execution directory other than “.”. The period (.) tells
the shell to use the login’s execution directory.

Chapter 6: Using the shell Utility

584 Utilities Reference

Example Command Lines
The following example displays a numbered listing of the data directory.
dir is a keyword indicating the dir utility. -u is a parameter for dir.

The exclamation point (!) is a pipe that redirects the unformatted
output of dir to the standard input of pr.

pr is a keyword indicating the pr utility. -n is a parameter for pr.

dir -u ! pr -n

The following command line lists all files in the current data directory
that have names beginning with s. list is the keyword. s* identifies
the parameters.

list s*

update uses master as standard input in this next example. The
output from update is used as input for sort. The output from sort is
redirected to the printer.

update <master ! sort >/p1

Utilities Reference 585

7 Using the uMacs Utility Chapter 7

The µMACS utility is a screen-oriented text editor you can use to create
and modify text files. The µMACS utility maintains multiple buffers so you
can work with several files and/or portions of the same file at once.

The following sections are included in this chapter:

• uMACS Overview
• Command Basics
• Introduction to Windows and Buffers
• Start uMACS
• Input/Output Command
• uMACS Editing Modes
• Exit uMACS
• The uMACS Command Set
• Cursor Positioning Commands
• Insert Text
• Delete Text
• Search and Replace
• Region Commands
• Format Commands
• Buffer Commands
• Window Commands
• The Termcap File
• uMACS Command Summary

Chapter 7: Using the uMacs Utility

586 Utilities Reference

uMACS Overview
The µMACS utility features an extensive command set. You can bind a
command name to a key or key combination. When a command is
bound to a key or key combination, instead of typing the command
name, you can press the key(s) to execute it. By binding and unbinding
keys to commands, you can personalize µMACS to your own
configuration.

All key sequences have one or two characters. All two character key
sequences begin with a <control>x or an <escape> character.

To simplify personalizing commands, use µMACS to build macros. The
macro command can consist of any sequence of commands that are
bound to keys.

Terminal Capabilities
The termcap file contains information about terminal capabilities.
µMACS looks for the termcap file in the /dd/SYS directory (/dd is the
default device for your system). If it is not found, µMACS looks in
/h0/SYS and then /d0/SYS.

Cursor Positioning
You can move the cursor to any place in any buffer and change buffers
at will.

Use µMACS cursor positioning commands to move:

• To the right or left by characters or words.
• To the beginning or end of a line.
• Forward or backward through the text by line, paragraph, or screen.

For an alphabetized list of commands, refer to uMACS
Command Summary section.

Refer to the section titled: The Termcap File, for information
about the termcap file and basic terminal capabilities required
by µMACS.

Chapter 7: Using the uMacs Utility

Utilities Reference 587

Search and Replace
µMACS can search forward or backward for any pattern of characters,
including newline and control sequences. Two “replace string”
commands facilitate the search commands.

Cut and Paste
µMACS provides features to cut any region of text from a file and paste it
elsewhere. You can duplicate the “cut buffer” repeatedly or delete it
when you no longer need it. Other commands change all text to upper
or lower case within the marked region.

Format Commands
Extensive formatting commands allow you to reformat paragraphs with
new user-defined margins, transpose characters, capitalize words, and
change words or sections into upper or lower case. Tab handling
features allow µMACS to work with most existing text files.

Buffers
µMACS holds as many buffers as memory permits. If buffers contain
µMACS commands, you can execute them like procedure files. At all
times, µMACS keeps a precise account of where you are in each buffer.
This allows easy access and easy editing between buffers.

Command Basics
Before exploring the µMACS features, it is important to understand
some details about the command set. You can execute µMACS
commands in either of two ways:

• By name.
• By keystroke sequence.

Each command has a name. For example, the command to move the
cursor one character to the right is named forward-character. This
name is bound to a keystroke sequence. The default key binding is ^f.

All keystroke sequences begin with one of the following:

• <escape> key.
• A control character.

Chapter 7: Using the uMacs Utility

588 Utilities Reference

To enter a control character, press the <control> key and the
character key simultaneously. The <esc> key must be pressed and
released, then press the character key.

In this manual, references to control characters use the circumflex (^)
notation unless specifically referring to the <control> key or a
command that uses the circumflex.

Execute Commands
To execute any command by name, type <esc> x. This is the execute-
named-command command. It moves the cursor to the bottom of the
terminal screen. Type the name of the command and press <return>.
µMACS tries to execute a command by that name. If the specified
command does not exist or is incorrectly spelled, µMACS returns the
error message [No such function].

Some commands prompt for another command (for example, execute-
named-command). When you are prompted for a command, you can
type a partial command followed by a space; µMACS tries to complete
the command for you.

For example, when prompted for a command:

Step 1. Type se<space>. µMACS completes the command as far as it can:
search-.

Step 2. If you type f<space>, µMACS finishes the command: search-
forward.

This is useful as a short cut or when you are uncertain of the spelling or
full name of the command.

Refer to uMACS Command Summary for an alphabetized list of
µMACS commands and key sequences. Refer to The uMACS
Command Set for command details.

Chapter 7: Using the uMacs Utility

Utilities Reference 589

Key Bindings
Most commands are bound to keys. All key bindings consist of one or
two characters. All two character bindings begin with the <escape>
character or ^x. Use the following commands to change the default key
bindings.

Do not bind commands to either of the following keystroke
combinations:

These commands allow you to personalize the keystroke commands.

• ^q
• ^s

These are used for serial control on most Microware systems.The
bind-to-key command prompts with:

: bind-to-key

At the prompt, type:

1. The name of the command.
2. A space.
3. A keystroke combination.

Remember, two stroke commands must begin with <escape> or ^x.
You can bind more than one key combination to the same command.
For example, the set-mark command is, by default, bound to both
<esc>. and <esc> <space>.

Change Key Bindings
To change the binding on a key, use the unbind-key command. The
unbind-key command prompts for the keystroke combination to
unbind. This unbinds that keystroke combination regardless of the
named command.

Table 7-1. Keystroke Bindings

Command Name Binding
bind-to-key <esc> k

unbind-key <esc> ^k

Chapter 7: Using the uMacs Utility

590 Utilities Reference

Find Current Key Bindings
To view a list of the current key bindings, use the execute-named-
command command (<esc> x) with the describe-bindings
command. The describe-bindings command is by default
unbound. It opens a buffer on the screen and displays an alphabetical
list of the command names and their associated key bindings.

To assure that a specific key has no binding, or to find out which
command is bound to that key, use the describe-key command
(^x ?). This prompts for the key or key sequence. The name of the
command bound to that key or key sequence is displayed. If a
command is not bound to the key(s), it returns the message Not
bound.

The Help Command
The help display is another method of receiving information about
commands.

Step 1. Type the help command (<esc> ?).

Step 2. A window is opened on the top half of the screen and a text file is
displayed in VIEW mode. The cursor is placed in this buffer and all
cursor movement commands, including search commands, are
available.

Step 3. To return to the previously edited buffer, use the previous-buffer
command (^xp).

Step 4. To close the help window, use the delete-other-windows (^x1).

Refer to Start uMACS and Exit uMACS for mode descriptions.

Chapter 7: Using the uMacs Utility

Utilities Reference 591

Repeat Commands
You can use an argument buffer to execute a command a specified
number of times. To specify an argument buffer, press <esc> and type
<n>, where <n> is the number of times to execute the command. You
can use a positive or negative number. If you use a negative number,
the normal direction of the command is reversed.

For example:

• <esc>-10^f
Move the cursor back ten characters.

• <esc>10^f
Move the cursor forward ten characters.

Abort Command
You can abort commands that have not begun moving the cursor or
formatting or editing text. This is useful when aborting commands that
require input.

Macro Commands
µMACS allows you to create macro commands. To do this, use the
following commands:

Step 1. Start the macro command with the name begin-macro or the begin-
macro key sequence:
^x(

Step 2. Enter commands and text.

Step 3. End the macro with the end-macro command or the end-macro key
sequence: ^x)

All commands and text entered between the execution of these two
commands make up the macro command.

To execute the macro, use the execute-macro command or the key
sequence ^x e. This executes all commands and enters all text that
makes up the macro. The commands are executed in entry order.

To abort a command, press ^g.

Chapter 7: Using the uMacs Utility

592 Utilities Reference

For example, the following series of commands or key sequences would
move the cursor to the beginning of the line, insert a tab and move the
cursor to the beginning of the next line..

The Execute-File Command
After you are familiar with the µMACS command set and decide on the
key bindings and macros that you want to use, use files and the
execute-file command to automatically change key bindings and
build macros.

The execute-file command prompts for the name of the file to
execute. µMACS tries to execute the file as a series of µMACS
commands; one command per line.

Each line in the executed file must consist of the name of the command
to execute. If the command name is misspelled or the file is not
executable for any other reason, µMACS returns an error message. If
only part of the file is non-executable, µMACS executes each line until it
encounters a non-executable line and returns an error message.

If a command requires user input, you must anticipate it and supply
quotation marks after the command. For example:

search-forward "begin"

The .umacsrc File
Each time you execute µMACS, it looks for the .umacsrc file in your
home directory. The home directory is the directory specified by the
HOME environment variable. µMACS opens .umacsrc and executes
each line as a µMACS command. You can use the .umacsrc file to set
up your own key-bindings. These key bindings are used each time you
enter µMACS.

Table 7-2. Macro Commands and Key Sequences

Example MacroCommands Key sequences
begin-macro ^x(

begining-of-line ^a

handle-tab ^i

next-line ^n

begining-of-line ^a

end-macro ^x)

Chapter 7: Using the uMacs Utility

Utilities Reference 593

To bind a key to a command, use the bind-to-key command. For
example, a .umacsrc file might look like this (M- = <esc>):

bind-to-key describe-bindings ^X?
bind-to-key execute-named-command M-!

If a binding specified in .umacsrc is bound by default to a different
command, the .umacsrc binding takes precedence and the previously
bound command is unbound. The .umacsrc file binds the specified
commands to the given bindings before loading any files into µMACS.
Any other µMACS commands in this file are also executed at this time
(for example, macro definitions).

Command Summary: key and help
The following table summarizes the key and help commands.

Refer to The uMACS Command Set for command details.

Table 7-3. Key and Help Commands

Command Name Binding Description
bind-to-key <esc> k Bind a named command to a key

sequence.
unbind-key <esc> ^k Unbind a key sequence from all

commands.
execute-named-
command

<esc> x Execute a specified named
command.

describe-bindings unbound Display key binding help file in
window.

describe-key ^x? Display named command (if any)
bound to key.

help <esc> ? Display full help file in window.
abort ^g Abort any incomplete command.
execute-file unbound Execute a specified file.

Chapter 7: Using the uMacs Utility

594 Utilities Reference

Introduction to Windows and Buffers
This section acquaints you with µMACS window and buffer handling.
This will help you understand many of the related commands and how
µMACS is organized.

µMACS can display multiple buffers on the screen through split screen
windows. A window may be as small as one line of text and a status line
or it may fill the entire screen. At the bottom of each window is a status
line. At the bottom of the entire screen is a single blank line that µMACS
uses to display prompts and error messages for the current window.

The Status Line
Each window is associated with a named buffer. The status line for each
window specifies:

• The µMACS edition.
• The editing mode(s) for that window.
• The buffer’s name and the name of the file (if any) in the buffer.

Figure 7-1. Window Status Line

Refer to The uMACS Command Set for command details.

Refer to Start uMACS and Exit uMACS for mode descriptions.

µMACS version

Current modes

Buffer name
File name

== uMacs 1.1 (CMODE EXACT) == junk == File: temp.c ============

Chapter 7: Using the uMacs Utility

Utilities Reference 595

Switching Windows
µMACS supports many commands that allow you to move the cursor
between windows. To move to another window, do one of the following:

• Specify a buffer by name.
• Specify the next or previous buffer.
• Specify the next or previous window.

µMACS uses a global buffer to copy text, thus allowing you to move text
from one buffer to another.

Start uMACS
To start µMACS, do one of the following:

• Specify µMACS and one or more files to be edited.
• Type umacs to edit a new file.

The syntax is as follows:

umacs [<opt>] {<filename>}

µMACS has two options:

Opening a file in VIEW mode allows you to look at the file; you cannot
edit it. To edit the file, you must change the mode.

When you execute the umacs command, if the file(s) are found, µMACS:

• Reads and displays the first file specified on the command line.
• Tells you how many lines the first file contains.

Table 7-4. µMACS Options

Option Description
-e All files following the -e option are opened in EDIT

mode. This is the default.
-v All files on the command line following the -v option are

opened in VIEW mode.

Refer to the uMACS Editing Modes section of this chapter for
information about changing modes.

Refer to the Input/Output Command or Exit uMACS section of
this chapter for information about saving files.

Chapter 7: Using the uMacs Utility

596 Utilities Reference

• Names empty buffers for all other files specified on the command
line. The files are read and loaded into the corresponding buffer
when that buffer is entered.
If a file does not exist, µMACS assumes that it is new and opens an
empty buffer for editing.
If you do not specify a file name, µMACS opens an unnamed buffer.
You can name and save this buffer.

Input/Output Command
µMACS allows you to load files into existing or new buffers. With two
exceptions, all files are read into buffers unchanged.

• All unprintable characters, with the exception of tabs and carriage
returns, are displayed as control characters. For example, a form
feed is displayed as ^L.

• All lines with more than 255 characters have a carriage return
inserted after the 255th character, regardless of word breaks.
µMACS alerts you to this with a message at the bottom of the screen.
This limitation only affects loading files. Once loaded, a file may
have lines of any length.

The following summarizes the commands used to access files and the
shell.

Table 7-5. File Access and Shell Commands

Command Name Binding Description
insert-file ^x ^i Inserts a file at the current cursor

position.
read-file ^x ^r Reads a file into the current buffer

(overwrites current text).
find-file ^x ^f Reads a file into a new buffer.
change-file-name ^x n Names or renames as file in the

current buffer.
save-file ^x s Saves a changed file.
write-file ^x ^w Writes a file to the specified name.
i-shell ^x c Forks a shell. Control remains in the

shell until you press <escape>.
shell-command ^x ! Forks a shell and execute the specified

command. Control returns to µMACS.
view-file ^x^v Opens a file in view mode.

Chapter 7: Using the uMacs Utility

Utilities Reference 597

Insert File
The insert-file command (^x ^i) prompts you for a file to insert. If
the file is found, it is inserted directly before the cursor.

Read File
The read-file command (^x ^r) prompts you for a file to read into
the current buffer. If the file is found and you have edited any portion of
the file currently in the buffer, µMACS asks if you wish to save the
changes in the file. If you do, the new file is not read.

If you do not wish to save the existing file, the new file is read into the
active buffer. In this case, saving the file removes the currently existing
file from the µMACS work space, not from your directory. It also changes
the filename associated with the buffer.

Find File
The find-file command (^x ^f) prompts you for the name of a file
to read into a new buffer. The new buffer is given the name of the file,
unless a buffer with that name already exists. In this case, µMACS
prompts for a new buffer name.

View File
The view-file command (^x ^v) is similar to the find-file
command. It also prompts you for the name of a file to display. Unlike
find-file, in which the buffer is opened in EDIT mode, view-file
opens the file in VIEW mode. If a new buffer is opened, it is given the
name of the specified file, unless there is an existing buffer with that
name. In this case, µMACS prompts for a new buffer name.

In all cases, if you specify a file that exists in the µMACS buffer list, that
file is used instead of reading a file from your directory. If this is done,
µMACS displays a message at the bottom of the screen.

Chapter 7: Using the uMacs Utility

598 Utilities Reference

Change File Name
The change-file-name command (^x n) either names a new file or
renames an existing file. This name exists only in µMACS until you save
the file. This does not affect the name of the corresponding file in your
directory. There can be multiple files of the same name in different
buffers. However, each buffer must have a unique name.

Saving Files
There are two ways to save files.

• Use the save-file command (^x s) to save the file in the current
window. µMACS only saves files that were changed in µMACS. If
changes were not made to a file, the save-file command has no
effect. If the file is changed, µMACS looks for a file in your directory
with the same name. If the file is found, µMACS rewrites it.

• Use the write-file command (^x ^w). This command prompts
for a file name. It writes the current buffer to the specified file name.
If the file name already exists, the file is rewritten. If the file name
does not exist, µMACS creates a new file with the specified name.

When saving or writing files, µMACS rewrites any file with the same
name. It does not create a backup file, as do some editors.

Execute Operating System Commands
To execute operating system commands while in µMACS:

• Use the i-shell command (^x c). This command forks a shell
from µMACS. Control remains in this shell until you press the <esc>
key.

• Use the shell-command command (^x !). This prompts you for a
shell command line. µMACS:

• Forks a shell.
• Executes the command line.
• Returns control to µMACS.

You might use shell-command to check the files in your directory.

Chapter 7: Using the uMacs Utility

Utilities Reference 599

uMACS Editing Modes
All files read into µMACS are by default in EDIT mode, unless you specify
the VIEW mode. µMACS has six modes of operation.

You can run any of these modes simultaneously, although some
combinations do not make sense. For example, EXACT mode is often
used in combination with any other mode. The VIEW mode, however,
takes precedence when any other mode is on and does not allow you to
overwrite or insert any character. Unless you specify VIEW mode, all
modes are by default EDIT modes. This means that all unbound
characters are inserted into the text at the cursor position.

Table 7-6. µMACS Modes

Mode Description
EDIT All unbound characters are inserted into the text as

entered from the keyboard.
OVER The overwrite mode allows characters entered from the

keyboard to replace the text, instead of being inserted.
EXACT All searching is done with exact case matching. The

default searching method is not case sensitive.
WRAP When a line exceeds the right-hand margin, the line is

wrapped to the following line and a carriage return is
inserted.

CMODE Lines ending with a left bracket ({) cause the next line to
be indented an extra tab.

Lines beginning with a right bracket (}) are indented one
less tab than the previous line.

A pound sign (#) with only preceding tabs or blanks
causes all tabs and blanks to be deleted on that line. This
causes all lines beginning with a # to be formatted at the
left margin. This is used to identify preprocessor
commands.

Adding tabs, brackets, or pound signs does not change
the rest of the file.

CMODE is automatically turned on for any buffer-name
ending in .c or .h.

VIEW Viewing mode allows you to look at a file or buffer; you
cannot edit it.

Chapter 7: Using the uMacs Utility

600 Utilities Reference

The following is a summary of the commands you can use to add and
delete modes.

Add or Delete a Mode
To turn on a mode of operation, use the add-mode command (^x m).
You are prompted for the name of the mode to add.

To delete a mode, use the delete-mode command (^x ^m). This also
prompts you for the name of the mode.

The add-global-mode command (<esc> m) turns on the specified
modes for any newly read buffers. Use this when you know that every
file you are going to edit will have the same modes of operation.

For example, if you are editing a number of C programs and searching
for specific variable names, you may wish all buffers to have both
CMODE and EXACT modes specified. To avoid adding these modes every
time you enter a new buffer, use the add-global-buffer command.
It prompts you for the mode to add. The prompt only adds one mode at
a time. If you type more than one mode, no modes are added. add-
global-mode does not affect any previously opened buffer.

The delete-global-mode command (<esc> ^m) deletes any mode
specified as global. This will not affect any previously opened buffer. For
example, if you open a buffer in CMODE and EXACT modes, and use the
delete-global-mode command to delete the EXACT mode, the
buffer is still in EXACT mode.

Table 7-7. Add and Delete Modes

Command Name Binding Description
add-mode ^x m Add the specified mode to the

current buffer.
delete-mode ^x ^m Delete the specified mode from

the buffer.
add-global-mode <esc> m Add the specified mode to all new

buffers.
delete-global-mode <esc> ^m Do not add the specified mode to

all new buffers.

Refer to the Buffer Commands, Display Current Buffers section
for information about determining what mode(s) are active for a
buffer.

Chapter 7: Using the uMacs Utility

Utilities Reference 601

Exit uMACS
There are two ways to exit µMACS.

Save or write your files, one at a time, using the save-file command
(^x s) or the write-file command (^x ^w). Then, use the exit-
emacs command (^x ^c). This alerts you if there are any unsaved files
that have been changed. If there are no changed, unsaved files, you
exit µMACS. If there are changed, unsaved files, you must answer a y/n
(yes/no) prompt to stay in µMACS or exit without saving the files.

The quick-exit command (<esc> z) automatically saves all files that
you changed in µMACS and exits.

The uMACS Command Set
This chapter contains details about µMACS commands. The commands
are grouped as follows:

• Cursor Positioning
Use cursor positioning commands to move the cursor forward,
backward, up, and down.

• Insert
Use insert commands to insert a space, non-printable characters,
new lines, tabs, and files.

• Delete
Use delete commands to delete a character, a word, lines, regions,
and blank lines. You can place text in a kill buffer and insert text
from the kill buffer to the position before the cursor.

• Search and Replace
Use search and replace commands to find and replace strings.

Table 7-8. µMACS Exit Commands

Command Binding Description
exit-emacs ^x ^c Before exiting, µMACS asks if you want

to exit even though you changed files.
Choose y to exit, n to stay in µMACS.

quick-exit <esc> z Save all changed files and exit.

Refer to uMACS Command Summary for an alphabetized list of
µMACS commands and default key bindings.

Chapter 7: Using the uMacs Utility

602 Utilities Reference

• Region Commands
Use region commands to mark region boundaries, copy and delete
a region, change all letters within a region to upper or lower case,
and paste the kill buffer at the cursor position.

• Format
Use format commands to format text. For example, you can change
a word’s character case, reformat paragraph margins, and
transpose characters.

• Buffer Commands
Use buffer commands to list information about buffers and change
file and buffer names.

• Window Commands
Use window commands to open new windows, duplicate a window,
scroll to another window, and delete, move, shrink, or enlarge
windows.

Cursor Positioning Commands
This section discusses µMACS cursor positioning commands.

Table 7-9. µMACS Cursor Positioning Commands

Command Name Binding Moves the cursor:
backward-character ^b One character to the left.
forward-character ^f One character to the right.
next-word <esc> f One word to the right.
previous-word <esc> b One word to the left.
next-line ^n Down the window one line.
previous-line ^p Up the window one line.
next-paragraph <esc> n Ahead to the next paragraph.
previous-paragraph <esc> p Back to the last paragraph.
next-page ^v Ahead one window.
previous-page ^z Back one window.
beginning-of-line ^a To the beginning of the line.
end-of-line ^e To the end of the line.
beginning-of-file <esc> < To the beginning of the file.

Chapter 7: Using the uMacs Utility

Utilities Reference 603

The commands above use the eight-character substring beginning
rather than the nine-character substring beginning.

Next or Previous Word, Line, or Paragraph
The next-word command (<esc> f) moves the cursor to the first
character of the next word. The previous-word command (<esc> b)
moves the cursor to the last character of the previous word.

A word is defined by any character(s) enclosed by either space, tab,
and/or newline characters.

The beginning of a paragraph is defined as text that follows any of the
character combinations listed below. The end of a paragraph is defined
as text that ends with any of these combinations:

• <newline><newline>
• <newline><tab>

• <newline><space>

The next-line command (^n) positions the cursor on the next line in
the text. If possible, µMACS keeps the same cursor position in the next
line.

The previous-line command (^p) positions the cursor on the line
before the current line. All cursor movement wraps to the previous or
next line.

If you are at the top of the window and use the previous-line
command (^p), the window is redrawn and the cursor is placed on the
desired line. That line is positioned in the middle of the window.

The next-paragraph command (<esc> n) places the cursor at the
end of the paragraph. The previous-paragraph command (<esc>
p) places the cursor at the beginning of a paragraph.

end-of-file <esc> > To the end of the file.
goto-line <esc>

<line#>
<esc> g

To the specified line.

Table 7-9. µMACS Cursor Positioning Commands (Continued)

Command Name Binding Moves the cursor:

Chapter 7: Using the uMacs Utility

604 Utilities Reference

Next or Previous Page
The next-page command redraws the window with the bottom two
lines on the present page becoming the top two lines on the next page.
This allows for some continuity when editing.

The previous-page command redraws the window with the top two
lines of the present page becoming the bottom two lines on the
previous page.

Go To Beginning or End of Line/File
Use the beginning-of-line (^a) and end-of-line (^e) commands
to move the cursor to the beginning or end of the current line.

The end-of-file command (<esc> >) moves the cursor to the last
character of the file. The beginning-of-file command (<esc> <)
moves the cursor to the first character of the file.

Go to a Specified Line
The go-to-line command (<esc> g) moves the cursor to the first
character of the specified line. The <esc> g command needs a line
number argument before the command.

To find the current line number, use the buffer-position command
(^x =). The correct syntax is thus changed to <esc> <line#><esc> g

Insert Text
This section discusses how to insert text into a buffer.

Table 7-10. Insert Text

Command Name Binding Description
insert-space ^c Insert a space character before the

cursor.
quote-character <esc> q Allow a control character to be

inserted.
newline ^m The same as a carriage return.
open-line ^o Insert a newline character after the

cursor.

Chapter 7: Using the uMacs Utility

Utilities Reference 605

When you enter µMACS, you are placed in a buffer.

• If you specified a file on the command line, you are in a buffer by
that name.

• If you specified more than one file, you are in a buffer with the name
of the first file on the command line.

• If you did not specify a file, you are in an unnamed, empty buffer.

To enter text into this buffer:

Step 1. Use any of the cursor positioning commands to move the cursor and
type any unbound key.

Step 2. The character is inserted into the text at the cursor position. Any
unbound key always inserts text unless you have specified VIEW mode
for that buffer.

In OVER mode, the character replaces any character under the cursor. In
all other modes, with the exception of VIEW, the character is inserted
before the character under the cursor.

Insert a Non-Printable Character
The quote-character command (<esc> q) tells µMACS to insert the
next character regardless of whether it is a non-printable character. This
allows you to insert control characters into the text. The only exception
to this is the carriage return character. It is always entered as a carriage
return.

new-line-and-indent ^j
or
<lf>

Insert a newline character and
indent the line equal to the
previous line.

handle-tab ^i Redefine and/or insert a tab
character.

insert-file ^x ^i Insert a file from the directory
before the cursor.

Table 7-10. Insert Text (Continued)

Command Name Binding Description

Refer to the Cursor Positioning section of this chapter for
information about moving the cursor.

Chapter 7: Using the uMacs Utility

606 Utilities Reference

New Lines
The newline command has exactly the same effect as entering a
carriage return.

The open-line command (^o) inserts a newline character to create a
blank line directly after the cursor.

The newline-and-indent command (^j or <linefeed>) inserts a
newline character, then inserts the same number of tabs or spaces as
the previous line. This indents the character under the cursor on a new
line. This could be useful when splitting lines or indenting text.

Insert a Tab
The handle-tab command (^i) inserts a tab before the cursor
position. If you specify a numeric argument (<esc> <num> ^i), the tab
character is redefined to the specified number of spaces.

Insert a File
The insert-file command (^x ^i) prompts for a file name. If the
file is found in your directory, it is loaded into the buffer at the cursor
position.

Delete Text
This section discusses deleting text, placing it in the kill buffer, and
inserting text from the kill buffer to another location.

Table 7-11. Delete Text

Command Name Binding Description
delete-next-character ^d Delete the character

under the cursor.
delete-previous-character ^h

or <bs>

Delete the character
before the cursor.

delete-next-word <esc> ^d Delete from the cursor to
the end of word.

delete-previous-word <esc> ^h
<esc> <bs>

Delete the word up to the
cursor.

delete-blank-lines ^x^o Delete the blank lines
between text.

Chapter 7: Using the uMacs Utility

Utilities Reference 607

The Kill Buffer
With two exceptions, all deleted or killed text is put in a buffer called the
kill buffer. The delete-next-character (^d) and the delete-
previous-character (^h) command do not place the deleted
character in the kill buffer.

Use the yank command (^y) to insert the kill buffer into the text. This
allows you to reconsider deleting or killing an item in the text.

The kill-to-end-of-line command (^k) puts all characters after
the cursor into the kill buffer. The kill-paragraph command (<esc>
^w) puts all characters in the paragraph containing the cursor into the
kill buffer.

Both of these commands replace whatever was previously in the buffer
unless two conditions are met:

1. A previous command that puts text in the kill buffer occurred directly
before the current command.

2. The cursor has not changed positions between the previous
command and the current command.

This allows you to append to the kill buffer if you need to move more
than a single line or paragraph.

kill-paragraph <esc> ^w Delete the paragraph
under the cursor.

kill-region ^w Delete the marked
region.

kill-to-end-of-line ^k Delete the line starting at
the cursor position.

yank ^y Insert the kill buffer
contents at the cursor
position.

Table 7-11. Delete Text (Continued)

Command Name Binding Description

Chapter 7: Using the uMacs Utility

608 Utilities Reference

Delete Word/Blank Lines
There are no exceptions to the following three commands. This allows
you to pick and choose the text added to the kill buffer.

The delete-next-word command (<esc> d) appends all characters
from the cursor position to the end of the word, including the character
under the cursor, into the kill buffer. For example, if the cursor was on
the first f in buffer and the delete-next-word command was
executed, the letters ffer are appended to the kill buffer.

If the cursor is on a space, tab, or newline character, all spaces, tabs,
and newlines up to the beginning of the next word are appended to the
kill buffer.

The delete-previous-word command (<esc> ^h) appends all
characters from the beginning of the word to the cursor position into
the kill buffer. This does not include the character under the cursor.

For example, if the cursor is on the first f in buffer and the delete-
previous-word command is executed, the letters bu are appended to
the kill buffer. If the cursor is on a space, tab or newline character, all
spaces, tabs, newlines, and the previous word are appended to the kill
buffer.

A blank line is defined as a line consisting of a single newline character.

The delete-blank-lines command (^x ^o) deletes all blank lines
that exist between two non-blank lines. The cursor must be on a
newline character between the two non-blank lines to execute this
command. All newline characters deleted from the text are appended
to the kill buffer.

Place a Region of Text Into the Kill Buffer
The kill-region command (^w) replaces the contents of the kill
buffer with a region of text. You mark a region with the set-mark
command (<esc> <space> or <esc> .). You then move the cursor to
another position. The text between the mark and the cursor is the
region. This includes the character under the mark but not the cursor.

Chapter 7: Using the uMacs Utility

Utilities Reference 609

Insert Kill Buffer Contents
Use the yank command (^y) to insert the kill buffer directly before the
cursor position. For example, if you use the kill-paragraph
command (<esc> ^w) and decide that you still need the paragraph,
use the yank command to insert the paragraph directly before the
cursor position.

Search and Replace
There are six commands you can use to search for and replace strings.
Each of these commands requires a search string. Once set, this string
is used by any search or replace command, until you replace it with
another search string.

Table 7-12. Search and Replace Commands

Command Binding Description
search-forward <esc> s Move the cursor forward to the

first occurrence of the
specified search string.

search-reverse <esc> r Move the cursor backward to
the first occurrence of the
specified search string before
the original cursor position.

hunt-forward <no binding> Move the cursor forward to the
first occurrence of the current
search string.

hunt-backward <no binding> Move the cursor backward to
the first occurrence of the
current search string before
the original cursor position.

replace-string ^r Substitute all occurrences of
the specified search string with
the specified replacement
string.

query-replace-
string

<esc> ^r Prompt to substitute each
occurrence of the specified
search string with the specified
replacement string.

Chapter 7: Using the uMacs Utility

610 Utilities Reference

Search Forward and Backward
The search-forward command (<esc> s) and the search-
reverse command (<esc> r) display the current search string and
prompt for a new search string. For example, if the current search string
is delete, µMACS displays the following prompt:

Search [delete]<ESC>:

If you want a new search string, type the string and press the <esc> key.
If you want to use the current search string, press the <esc> key. The
<esc> key denotes the end of the search string. You can include
newlines and tabs in search strings.

For example, if the current search string is a period (.) followed by a
newline, followed by a tab, the prompt is:

Search [. <NL>^I]<ESC>:

Both search-forward and search-reverse look for the next
occurrence of the search string. The case of the search string is not
significant unless you are in EXACT mode. If a match is found, the
cursor is moved to the first character after the matching string. If a
match is not found, a Not found message is displayed.

When you want to continue searching for the next occurrence of the
search string, use the hunt-forward and hunt-backward
commands. By default, these commands are not bound.

To execute the hunt-forward and hunt-backward commands, use
the execute-named-command or bind the command(s) to a user-
defined binding. They work in the same manner as the search
commands, except that they do not prompt for a search string. If a
search string is not set at the beginning of an editing session, µMACS
displays the No pattern set message.

Refer to the uMACS Editing Modes section for information
about changing modes.

Chapter 7: Using the uMacs Utility

Utilities Reference 611

Replace
The replace-string command (^r) prompts for the search string
and a replacement string. The prompt is given in the same format as
the search commands: the current search string is displayed. You have
the option of accepting the current string (press the <esc> key) or
changing the string (type the new string):

Replace [delete]<esc>:

After you press <esc> or type the new string, you are prompted for the
replacement string:

With [kill]<esc>:

The replacement string is also saved between execution of replace
commands. The example above used kill as the current replacement
string.

All matching strings that occur after the cursor are replaced by the
replacement string. The cursor is positioned one character after the last
occurrence of a matching string. The number of substitutions made is
displayed after the final substitution. If substitutions are not made,
0 substitutions is displayed and the cursor is not moved.

The query-replace-string command (<esc> ^r) allows you to
control which occurrences of the search string to replace. After the
search and replacement strings are determined, for every matching
occurrence, you are prompted:

Replace ’delete’ with ’kill’?

Use one of the following one-character responses:

Table 7-13. Responses

Response Description
y Yes.
n No.
! Continue to substitute all matches without prompting.
^g Abort the command and leave the cursor at its present

position.

Chapter 7: Using the uMacs Utility

612 Utilities Reference

Region Commands
A region is the text between the cursor and a previously specified point
in the buffer. Regions are used in µMACS to cut, paste, delete, or format
sections of text.

. The period (.) response aborts the command and returns
the cursor to its original position before the command
began executing.

? The help (?) response displays the acceptable responses
for the command.

Table 7-13. Responses (Continued)

Response Description

Table 7-14. Region Commands

Command Name Binding Description
set-mark <esc> .

or
<esc>
<space>

Set a region’s marked
boundary.

exchange-point-and-mark ^x ^x Exchange the region’s
marked boundary with the
cursor position.

copy-region <esc> w Copy the marked region to
the kill buffer.

kill-region ^w Delete the marked region.
case-region-upper ^x ^u Change all letters in the

region to upper case.
case-region-lower ^x ^l Change all letters in the

region to lower case.
yank ^y Paste the kill buffer at the

cursor position.

Chapter 7: Using the uMacs Utility

Utilities Reference 613

Mark Region Boundaries
Regions are bound on one side by a mark in the buffer. To set this mark,
use the set-mark command (<esc> <space> or <esc> .). This
mark remains in place until you set a new mark. All region commands
are relative to this mark.

The mark includes the character on which the mark is set. The other
boundary of the region is the cursor. You may interchange the two
bounds of the region with the exchange-point-and-mark commands
(^x ^x). This places your cursor where the mark was and places the
mark where your cursor was.

Copy or Move a Region
After you set a mark, you can use the copy-region command (<esc>
w) to place a copy of the region in the kill buffer. This leaves the region
in its original place in the text. The copy-region command writes over
the kill buffer, deleting anything that was previously there.

To move a region to another section of text, use the kill-region
command (^w). This deletes the region from the text and places it in the
kill buffer. Use the yank command to paste it elsewhere. The kill-
region command writes over the current kill buffer.

Paste
To paste the kill buffer contents elsewhere in the file, use the yank
command (^y).

When pasting the kill buffer into a file, place the cursor at the end of the
pasted section. Often, when editing a program or text file, you need to
move some code or a section of text to another area of the file and then
return to the original point to continue editing. Use the exchange-
point-and-mark command to do this.

We recommend that you update your mark after executing this
command to avoid creating a large region and accidentally editing it.

Chapter 7: Using the uMacs Utility

614 Utilities Reference

Change a Region’s Character Case
Two commands change the character case of an entire region:

• case-region-upper (^x ^u)
• case-region-lower (^x ^l)

These change the entire region to upper or lower case, respectively.

Format Commands
Several text formatting commands are supported by µMACS. These are
quite helpful to both programmers and text editors.

Table 7-15. Format Commands

Command Name Binding Description
case-word-upper <esc> u Change all letters from the cursor

to the end of the word to upper
case.

case-word-lower <esc> l Change all letters from the cursor
to the end of the word to lower
case.

case-word-capitalize <esc> c Change the letter under the cursor
to upper case.

set-fill-column ^x f Set right margin using <esc>
<number>^x f.

fill-paragraph <esc> o Reformat paragraph using the fill-
column.

transpose-characters ^t Transpose the character under the
cursor with the character before
the cursor.

Chapter 7: Using the uMacs Utility

Utilities Reference 615

Change Character Case
Like the region commands, there are format commands you can use to
change the character case. Each of these commands moves the cursor
to the space, tab, or newline that ends the word.

• case-word-upper (<esc> u) changes all letters from the cursor
to the end of a word to upper case. This includes the letter under the
cursor.

• case-word-lower (<esc> l) changes all letters from the cursor
to the end of a word to lower case. This includes the letter under the
cursor.

• case-word-capitalize (<esc> c) capitalizes the letter under
the cursor.
If the word begins with a character that cannot be changed to upper
case, the cursor is still moved to the end of the word. For example, if
the cursor is on the space before the word, #include, and the
<esc> c command is executed, the word remains the same and the
cursor is moved to the end of the word.

Reformat Paragraph Margins
Two commands reformat the margins of paragraphs. These commands
must be used together.

• set-fill-column (^x f) sets the new margin for the paragraph.
^x f requires an argument to specify the fill column. Once set, the
fill column number remains in effect until it is set to a new margin.
To set the fill column, the syntax becomes: <esc> <number>^x f.
The new margin has no effect on newly entered text unless in WRAP
mode. In WRAP mode, newline characters are automatically inserted
at the end of lines exceeding the fill column (right margin).

• fill-paragraph (<esc> o) reformats the paragraph to the new
margins specified by the fill column. This replaces all newlines within
the paragraph with spaces, and replaces spaces at the end of the
new line breaks with newlines.
<esc> o also makes sure that all periods that end words are
followed by two spaces. This ensures that previous line endings
conform to standard sentence formatting.

Chapter 7: Using the uMacs Utility

616 Utilities Reference

A paragraph is defined as any text that begins and ends with a
newline-newline, newline-space, or newline-tab.
fill-paragraph affects only the paragraph that includes the
cursor.

Transpose Characters
You can use µMACS to transpose characters. The transpose-
characters command (^t) transposes the character under the cursor
with the character before the cursor. This is an easy way to handle some
typographical errors.

Buffer Commands
µΜACS sets up a separate buffer for each file specified by the command
line. Each of these buffers has the name of the file it contains.

fill-paragraph (<esc> o) has one or two drawbacks. For
example, two spaces are inserted after initials in names. If a
real number is indicated in the text by a number followed by a
period with no decimal, two spaces are also inserted.

Table 7-16. Buffer Commands

Command Name Binding Description
list-buffers ^x ^b List the buffers to be used by µMACS.
select-buffer ^x b Select the buffer to edit.
next-buffer ^x x Select the next buffer in the buffer

list to edit.
name-buffer <esc> ^n Change the name of the buffer

currently being edited.
buffer-position ^x = Display status line giving the current

buffer position in relation to the
entire file.

delete buffer ^x k Delete the specified buffer.
execute-buffer <unbound> Execute the buffer as a µMACS

procedure file.

Chapter 7: Using the uMacs Utility

Utilities Reference 617

Display Current Buffers
The list-buffer (^x ^b) command displays a formatted list of the
buffers currently present in µMACS. Press the space bar to remove the
list from your display.

Figure 7-2. Buffer List

Change Buffer or File Name
A buffer always has a name. The file within the buffer may be
unnamed, however, you must name the file if you want to save it. The
buffer name and the file name do not necessarily have to be the same.

The following are commands you can use to change buffer and file
names.

AC MODES Sizes Buffer File
-- ----- ----- ------ ----
 Global Modes
@*V. 64 file1 file1
@ ...E O 536 file2 file2
 0 file3 file3

Active buffer

@ = Buffer has been entered at least once.

@* = Buffer is currently being edited.

Current mode

Bytes in buffer (decimal) Buffer Name

File Name

Table 7-17. Change Buffer and File Names

Command Name Binding Description
name-buffer <esc> ^n Prompts for a new buffer name.
change-file-name ^x n Prompts for a new file name.

Chapter 7: Using the uMacs Utility

618 Utilities Reference

Edit a Buffer
Once you are aware of the buffers currently available (see the list-
buffer Display Current Buffers command), you can use the select-
buffer command (^x b) to edit a buffer.

select-buffer prompts for the name of the buffer you wish to edit. If
you name an existing buffer that has not yet been edited, µMACS:

• Reads the file.
• Displays the number of lines in the file.
• Places the cursor at the beginning of the file.

Open a New Buffer
To open a new buffer, type a name that is not listed in the buffer list. An
empty buffer with that name is opened and the cursor is placed at its
beginning.

Figure 7-3. Buffer List

Switch Buffers
Use the next-buffer (^x x) command to switch between buffers.
This places you in the next buffer in the buffer list (see the list-
buffer command). When you are editing the last buffer in the list, the
next-buffer command wraps around and places you in the first
buffer.

AC MODES Sizes Buffer File
-- ----- ----- ------ ----
 Global Modes
@*V. 64 file1 file1
@ ...E O 536 file2 file2
 0 file3 file3

Buffer List

Chapter 7: Using the uMacs Utility

Utilities Reference 619

Buffer Position
The buffer-position command (^x =) displays a status line with
information concerning your current position in the buffer. The
following is an example status line:

Figure 7-4. Buffer Position Status Line

Delete Buffer
Use the delete-buffer command (^x k) to delete a specified buffer.
delete-buffer prompts for the name of the buffer to delete. You
cannot delete the currently displayed buffer.

When you delete a buffer, it is removed only from your µMACS
workspace. This does not affect any file in your directory.

Execute Buffer
Use execute-buffer to execute commands in the buffer. execute-
buffer prompts for the name of the buffer to execute. µMACS tries to
execute the buffer as a procedure file consisting of a series of µMACS
commands. If the buffer is not executable, µMACS returns an error
message. If only a part of the buffer is non-executable, µMACS executes
the buffer until it reaches the non-executable portion, then returns an
error message.

The execute-buffer command is by default unbound to any
character sequence. Unless you bind it, you must implement execute-
buffer with execute-named-command (<esc> x).

X and Y are the current screen coordinates.

The current line number.

Hexadecimal value for the
character under the cursor.

Percentage of all
characters in the file.

Total number of
characters in file.

Number of characters up to
and including the cursor.

X=29 Y=1 Line=23 CH=0xd .=612 (21% of 2795)

Chapter 7: Using the uMacs Utility

620 Utilities Reference

If your buffer contains a command requiring input, you must anticipate
the reply and supply quotation marks. Each command in the buffer
must be correctly named and on a line by itself. For example, if you use
a buffer to search for the string "begin", the buffer looks like this:

search-forward "begin"

Window Commands
Buffers are displayed in windows. µMACS can display multiple windows
simultaneously. A window may consist of the entire screen or as little as
one line. Each window has a status line under it to distinguish it from
any other windows on the screen. There are several commands you can
use to manipulate windows.

Table 7-18. Window Commands

Command Name Binding Description
split-current-
window

^x 2 Duplicate the current window in
a new window.

next-window ^x n Move the cursor to the next
window.

previous-window ^x p Move the cursor to the previous
window.

move-window-up ^x ^p Scroll the current window up one
line.

move-window-down ^x ^n Scroll the current window down
one line.

scroll-next-up <esc> ^z Scroll the next window up one
page.

scroll-next-down <esc> ^v Scroll the next window down one
page.

shrink-window ^x ^z Decrease the size of the current
window.

grow-window ^x z
^x^

Increase the current window’s
size.

delete-other-
windows

^x 1 Display only the current window.

Chapter 7: Using the uMacs Utility

Utilities Reference 621

Open Additional Windows
There are two ways to open a second window on the screen.

• Use the list-buffer command (^x ^b). This opens a second
window and displays the buffer list in the new window. The cursor
remains in the original window. Use the next-window command
(^x o) to move the cursor to the new window. Now this window is
available for use.
To read a new buffer into this window, use the select-buffer
command or the read-file command (^x ^r). Now you have two
windows on the screen with a different buffer in each.

• Use the split-current-window command (^x 2). This creates a
new window on the screen containing a duplicate copy of the buffer
that you were editing. This allows you to view the same file in two
different areas.

You can manipulate each window with the cursor and scroll commands.
Both windows contain the same file. Any text inserted or deleted in
either window is inserted or deleted in the other.

You can also use the split-current-window command to read a
new buffer or file into the new window. You can use the split-
current-window command until each window on the screen has only
one line. At this point, it is impossible to split the screen further; an error
message is displayed.

Move to the Next or Previous Window
When more than one window is on the screen, a number of commands
are available. The next-window command (^x o) moves the cursor to
the first line displayed in the window below the current window. If the
cursor is currently in the bottom window on the screen, the cursor
moves to the top window.

The previous-window command (^x p) works in the same fashion.
The cursor is moved to the window directly above the current window.

Chapter 7: Using the uMacs Utility

622 Utilities Reference

Scroll Text
Use the cursor commands to scroll the text of the current window.
There are two additional commands to scroll the window one line at a
time:

• move-window-down (^x ^n).
• move-window-up (^x ^p).

These commands affect the current window. To scroll the text of the
other displayed window, use:

• scroll-next-up (<esc> ^v).
• scroll-next-down (<esc> ^z).

These commands scroll the next window one page forward or
backward, respectively.

Change Window Size
Use the shrink-window command (^x ^z) or the grow-window
command (<control>x^ or ^x z) to alter the size of the current
window. These commands shrink or enlarge your current window,
respectively. This also enlarges or shrinks the other windows displayed.

You can enlarge a window until all other windows display only one line.
You can shrink a window until it only displays one line.

Delete All But Current Window
To delete all windows except the current window, use the delete-
other-windows command (^x1). This displays the current window on
the full screen. All other windows are saved in their respective buffers.

Termcap File Format
For µMACS to work properly, it must know the properties of the terminal
on which it operates. µMACS uses the termcap database to determine
the control codes your terminal uses for line delete, cursor positioning,
etc.

µMACS looks for the termcap file in the /dd/SYS directory. /dd is the
default device for your system. If it is not found, µMACS looks in
/h0/SYS and then /d0/SYS.

Chapter 7: Using the uMacs Utility

Utilities Reference 623

The Termcap File
termcap is a text file containing control code definitions for one or
more types of terminals. Each entry is a complete description list for a
particular kind of terminal.

Each part of a termcap entry is separated by a vertical bar (|) and is
another way of naming the terminal.

The first section of a termcap entry is divided into three parts.

1. The first part is a two character entry. This is a holdover from early
UNIX editions.

2. The second part is the most common name for the terminal. This
name cannot contain blanks.

3. The final part is a long name that fully describes the terminal. This
name can contain blanks for readability. For example:

kh|abm85h|kimtron abm85h:

To check the values stored in TERM, use the printenv utility:

$ printenv
TERM=abm85h

The TERM environment variable must be set to the name used in the
second part of the name section. In the following example, TERM is set
to abm85h:

$ setenv TERM abm85h

The rest of the entry consists of a sequence of control code
specifications for each control function. Each item in the list is
separated by a colon (:) character. An entry may continue onto the next
line by using a backslash (\) character as the last character of the line.
It must appear after the ending colon of the previous item. The next line
must begin with a colon.

For example:

ka|amb85|kimtron abm85:\
:ct=\E3: ...

Chapter 7: Using the uMacs Utility

624 Utilities Reference

Terminal Capabilities
Each item begins with a terminal capability. Each capability is a two
character abbreviation. Each capability is either a boolean itself or it is
followed by a string or a number. If a boolean capability is present in the
termcap entry, then the capability exists on that terminal.

All numeric capabilities are followed by a pound sign (#) and a number.
For example, the number of columns capability for an 80 column
terminal could be described as follows:

co#80:

All string capabilities are followed by an equal sign (=) and a character
string. You can enter a time delay in milliseconds directly after the equal
sign (=) if padding is allowed in that capability. The padding characters
are supplied by the editor after the remainder of the string is transmitted
to provide the time delay. The time delay may be either an integer or an
integer followed by an asterisk (*). The asterisk (*) specifies that the
padding is proportional to the number of lines affected.

When you use an asterisk (*), it may be useful to specify the time delay
in tenths of milliseconds. For example, use the following entry to specify
the clear screen capability as ^z with a time delay of 3.5 milliseconds:

cl=3.5*^z:

Special Characters
Use \E to indicate an escape sequence.

A control character is indicated by a circumflex (^) preceding the
character.

The following special character constants are also supported:

Table 7-19. Special Characters

Character Definition Character Definition
\b backspace \f formfeed
\n newline \r return
\t tab \\ backslash
\^ circumflex

Chapter 7: Using the uMacs Utility

Utilities Reference 625

You can also specify characters as three Octal digits after a backslash
(\). For example:

• If you must use a colon in a capability definition, it must be specified
by \072.

• If you need to place a null character in a capability definition, use
\200.

C routines using termcap strip the high bits of the output, therefore
\200 is interpreted as \000.

Termcap Capabilities
You must define a number of basic capabilities for µMACS to work
properly. The required capabilities are shown below.

Cursor Addressing
Of the above capabilities, the most complex and important capability is
cm (cursor addressing). The string specifying the cursor addressing is
formatted similar to the C printf() command. It uses % notation to
identify addressing encodings of the current line or column position.
The line and the column to address could be considered the arguments
to the cm string. All other characters are passed through unchanged.

The following are the notations used for cm strings:

Table 7-20. Termcap Capabilities

Name Type Padding Description
ce string (P) Clear to end of line.
cl string (P*) Clear the screen.
cm string (P) Cursor addressing.
se string End stand out mode
so string Begin stand out mode
sg numeric Number of blank characters left by

so or se.
up string Up line (cursor up).

Table 7-21. cm String Notations

Notation Description
%d A decimal number (origin 0).
%2 Same as %2d.

Chapter 7: Using the uMacs Utility

626 Utilities Reference

Example Notations
The following examples illustrate the use of the above notations:

cm=6\E&%r%2c%2Y:

This terminal (HP2645) needs:

• A six millisecond delay.
• Rows and columns reversed.
• Rows and columns printed as two digits.

The <escape>& and Y are sent unchanged.
cm=5\E[%i%d;%dH:

This terminal (VT100) needs:

• A five millisecond delay.
• Rows and columns separated by a semicolon (;)
• Because of its origin of 1, rows and columns are incremented.

The <escape>[; and H are transmitted unchanged. (VT100)
cm=\E=%+ %+ :

This terminal (ABM85H) uses:

• Rows and columns offset by a blank character.

%3 Same as %3d.
%. ASCII equivalent of value.
%+x Add x to value, then %.
%>xy if value > x adds y, no output.
%r Reverse the order of row and column, no output.
%i Increment line/column (for 1 origin).
%% Give a single %.
%n Exclusive or row and column with 0140.
%B BCD (16*(x/10) + (x%10), no output.
%D Reverse coding (x-2*(x%16)), no output.

Table 7-21. cm String Notations (Continued)

Notation Description

Chapter 7: Using the uMacs Utility

Utilities Reference 627

Example Termcap Entries
ka|abm85|kimtron abm85:\

:ce=\ET:cm=\E=%+ %+ :cl=^Z:\
:se=\Ek:so\Ej:up=^K:sg#1

If two entries in the same termcap file are very similar, with certain
exceptions, one can be defined as identical to the other. To do this, the
tc capability is used with the name of the similar terminal. This must be
the last capability in the entry. All exceptions to the other terminal must
appear before the tc listing.

To cancel a capability, use <cap>@. For example, a complete entry
might be:

kh|abm85h|kimtron abm85h:\
:ce@:cm=\E=%+ %+ :cl=^Z:\
:se=\EG0:so\EG4:tc=abm85:

The ce capability is removed from abm85h.

uMACS Command Summary
This table contains a summary of the µMACS commands.

Table 7-22. µMACS Command Summary

Command Name Binding Description
abort ^g Abort the current command.
add-mode ^x m Add the specified mode to

the current buffer.
add-global-mode <esc> m Add the specified mode to

all new buffers.
backward-character ^b Move the cursor one

character backwards.
begin-macro ^x (Begin the macro-command.
beginning-of-file <esc> < Move the cursor to the

beginning of the file.
beginning-of-line ^a Move the cursor to the

beginning of the line.
bind-to-key <esc> k Bind the specified command

to the specified key
sequence.

Chapter 7: Using the uMacs Utility

628 Utilities Reference

buffer-position ^x = Display the cursor position in
the buffer.

case-region-lower ^x ^l Change all letters in the
region to lower case.

case-region-upper ^x ^u Change all letters in the
region to upper case.

case-word-capitalize <esc> c Change the letter under the
cursor to upper case.

case-word-lower <esc> l Change all letters to the end
of the word to lowercase.

case-word-upper <esc> u Change all letters to the end
of the word to uppercase.

change-file-name ^x n Change the name of current
file to the specified name.

clear-and-redraw ^l Redraw the screen.
copy-region <esc> w Copy a region to the kill

buffer.
delete-blank-lines ^x ^o Delete blank lines between

text.
delete-buffer ^x k Delete the specified buffer.
delete-mode ^x ^m Delete the specified editing

mode.
delete-global-mode <esc> ^m Delete the specified global

mode.
delete-next-character ^d Delete the character under

the cursor.
delete-next-word <esc> d Delete from the cursor to the

end of the word.
delete-other-windows ^x 1 Display only the current

window.
delete-previous-character ^h Delete the character before

the cursor <bspace>.
delete-previous-word <esc> ^h Delete the word up to the

cursor <esc> <bspace>.
describe-bindings <unbound> Display the key binding list.

Table 7-22. µMACS Command Summary (Continued)

Command Name Binding Description

Chapter 7: Using the uMacs Utility

Utilities Reference 629

describe-key ^x ? Display the bound command
(if any) for the specified key
sequence.

end-macro ^x) End the macro-command.
end-of-file <esc> > Move the cursor to end of

file.
end-of-line ^e Move the cursor to the end

of the line.
exchange-point-and-mark ^x ^x Exchange the marked bound

of the region with the cursor
position.

execute-buffer <unbound> Execute the specified buffer
as a procedure file.

execute-command-line <unbound> Execute the command line.
execute-file <unbound> Execute the file as a

procedure file.
execute-macro ^x e Execute the macro-

command.
execute-named-command <esc> x Execute the command by

name.
exit-umacs ^x ^c Exit after saving changed

files.
fill-paragraph <esc> o Reformat the paragraph to

new margins.
find-file ^x ^f Read the file into new buffer.
forward-character ^f Move the cursor forward one

character.
goto-line <esc> g Move the cursor to the

specified line.
grow-window ^x ^ Enlarge the current window.
handle-tab ^i Insert/Redefine the tab

character.
help <esc> ? Display the help file.
hunt-backward <unbound> Move the cursor backward to

the last occurrence of a
search string.

Table 7-22. µMACS Command Summary (Continued)

Command Name Binding Description

Chapter 7: Using the uMacs Utility

630 Utilities Reference

hunt-forward <unbound> Move the cursor forward to
the next occurrence of a
search string.

i-shell ^x c Fork a shell; control remains
in the shell until <esc>.

insert-file ^x ^i Insert file into the current
buffer.

insert-space ^c Insert a space character
before the cursor.

kill-paragraph <esc> ^w Delete the current
paragraph.

kill-region ^w Delete the marked region.
kill-to-end-of-line ^k Delete text from the cursor

to the end of the line.
list-buffer ^x ^b Display the buffer list.
move-window-down ^x ^n Scroll the window down one

line.
move-window-up ^x ^p Scroll the window up one

line.
name-buffer <esc> ^n Rename the current buffer.
newline ^m Insert a newline before the

cursor.
newline-and-indent ^j Insert a newline and indent

the new line equal to twice
that of the previous line.

next-buffer ^x x Move the cursor to next
buffer in the buffer list.

next-line ^n Move the cursor to the next
line.

next-page ^v Scroll the file one page
forward.

next-paragraph <esc> n Move the cursor to the next
paragraph.

next-window ^x o Move the cursor to the next
window.

next-word <esc> f Move the cursor to the next
word.

Table 7-22. µMACS Command Summary (Continued)

Command Name Binding Description

Chapter 7: Using the uMacs Utility

Utilities Reference 631

open-line ^o Insert two newlines before
the cursor.

previous-line ^p Move the cursor up one line.
previous-page ^z Move the cursor back one

screen. <esc> v
previous-paragraph <esc> p Move the cursor back to the

last paragraph.
previous-window ^x p Move the cursor to the last

previous window.
previous-word <esc> b Move the cursor backward

one word.
query-replace-string <esc> ^r Prompt at each occurrence

of the search string with the
replacement string.

quick-exit <esc> z Exit after saving all changed
files.

quote-character <esc> q Allow control characters to
be printed.

read-file ^x ^r Read file into current buffer
(overwrite the current text).

redraw-display <esc> ^l Redraw the screen. <esc> !
replace-string ^r Substitute all occurrences of

the search string with the
replacement string.

save-file ^x s Save changed file.
scroll-next-down <esc> ^v Scroll the next window down

one page.
scroll-next-up <esc> ^z Scroll the next window up

one page.
search-forward <esc> s Move the cursor forward to

the first occurrence of the
specified search string.

search-reverse <esc> r Move the cursor back to the
first occurrence of the search
string previous to the original
cursor position.

Table 7-22. µMACS Command Summary (Continued)

Command Name Binding Description

Chapter 7: Using the uMacs Utility

632 Utilities Reference

select-buffer ^x b Select the buffer to be
edited.

set-fill-column ^x f Set the right margin using
<esc> <int>^XF.

set-mark <esc>
<space>

Set the marked bound of the
region. <esc> .

shell-command ^x ! Fork a shell; execute
command; control is then
returned to µMACS.

shrink-window ^x ^z Decrease the size of the
current window.

split-current-window ^x 2 Duplicate the current
window in new window.

transpose-characters ^t Transpose the character
under the cursor with the
character before the cursor.

unbind-key <esc> ^k Unbind the specified key
sequence from all
commands.

view-file ^x ^v Display the specified file in
VIEW mode.

write-file ^x ^w Write the specifically named
file to disk.

yank ^y Paste the kill buffer at the
cursor position.

Table 7-22. µMACS Command Summary (Continued)

Command Name Binding Description

Utilities Reference 633

8 Using the mar Utility Chapter 8

This chapter discusses the mar utility. The following sections are
included:

• Overview
• Pathlists

Chapter 8: Using the mar Utility

634 Utilities Reference

Overview
The mar utility is a resident and cross-hosted utility that generates a
modman archive from a set of disk files.

Code Overview
The syntax for the mar utility is shown below:

mar {<dirs>|<files>} {-n[=]<name>} -o=<path> -tp=<proc>
{-z[[=]<file>])

Parameter Definitions
The following list explains each of the utility’s parameters in detail:

-n[=]<name> is an optional parameter used to specify the
name of the directory structure module within
the archive

It names the module that modman uses to
create the file structure for the modules. It
allows the user to have multiple file structures
in the same bootfile. The default name is
mm_tree.

-o[=]<file> is a required parameter specifying the name
of the output file

-tp[=]<proc> is a required parameter specifying the target
processor to pass through to mkdatmod

-z[[=]<file>] is an optional parameter allowing additional
command line options or parameters to be
read from a file, or stdin if a file is not
specified

Chapter 8: Using the mar Utility

Utilities Reference 635

Pathlists
The archive generated by mar can be merged with other boot modules,
the modman file manager, and modman device descriptor to simulate a
diskless hierarchical file structure.

Each pathlist specified is merged into the archive. The nature of the
pathlist determines the placement of the files in the simulated file
structure.

There are four types of pathlists. They are listed below:

Pathlist Examples
The following examples run on a Windows host machine.

Example 1
To create a modman archive of every file in a given directory, initiate
the following:

mar *.* -tp=<proc> -o=outfile.mar

Table 8-1. Pathlists

Pathlist Type Description
absolute directory contents of the directory are placed at the root of

the simulated file structure

Any subdirectories become module directories in
the root module directory of the system.

relative directory contents of the directory are placed at the same
relative pathlist from the root of the simulated file
structure

absolute file file appears in the root directory of the simulated
file structure

relative file file appears at the same relative pathlist from the
root of the simulated file structure

Chapter 8: Using the mar Utility

636 Utilities Reference

Example 2
Below is the Initial Directory Data Structure:

Figure 8-1. Initial Directory Structure

If the current directory is E:\USR\RIC, the following code generates
the simulated file system shown in Figure 8-2.

mar E:\MAR_EXAMPLE\SYS\errmsg E:\ETC
ROM RES\RESDIR\resfile -tp=<port_proc>

 -o=outfile.mar

After running the mar utility, use the OS-9 utility ident to examine the
generated outfile.mar file.

$ ident -q outfile.mar
mm_tree size #224 owner 0.0 ed #1 good crc - 956F09
mm_tree4 size #128 owner 0.0 ed #1 good crc - C3043C
mm_tree3 size #128 owner 0.0 ed #1 good crc - E1E367
mm_tree2 size #128 owner 0.0 ed #1 good crc - B7C26F
etc2 size #112 owner 0.0 ed #1 good crc - 1A6395
etc1 size #112 owner 0.0 ed #1 good crc - C1A593
mm_tree1 size #128 owner 0.0 ed #1 good crc - 4DA177

E:\

Chapter 8: Using the mar Utility

Utilities Reference 637

When modules are to appear deep in a file structure, the module
names do not necessarily match the original file names. mar changes
the names to ensure that they are unique with respect to the root
module directory. Modules such as mm_tree1 are actually the
destinations of symbolic links with the original file names. These
symbolic links will get created when the modman file manager is
initialized.

Figure 8-2. Directory Structure Before and After Initializing modman

The following list shows each file that exists in the simulated file system
and the reason it exists:

errmsg
exists because an absolute file pathlist translates to the file being
placed at the root

etc1
exists because an absolute directory pathlist gets copied to the root
of the simulated file system

etc2
exists because an absolute directory pathlist gets copied to the root
of the simulated file system

Chapter 8: Using the mar Utility

638 Utilities Reference

ROM/testfile
exists because relative directory pathlists are copied in their
entirety at the same relative location in the simulated file system

ROM/DATDIR/datafile
exists because relative directory pathlists are copied in their
entirety at the same relative location in the simulated file system

RES/RESDIR/resfile
exists because relative file pathlists are copied to the same location
in the simulated file system

Utilities Reference 639

A ASCII Conversion Chart Appendix A

ASCII is an acronym for American Standard Code for Information
Interchange. It consists of 96 printable and 32 unprintable characters.
The following conversion table includes Binary, Decimal, Octal,
Hexadecimal, and ASCII.

Appendix A: ASCII Conversion Chart

640 Utilities Reference

The unprintable characters are defined below:

Below is the conversion table.

Table 0-1. ASCII Symbol Definitions

Symbol Definition Symbol Definition
ACK acknowledge FS file separator
BEL bell GS group separator
BS backspace HT horizontal tabulation
CAN cancel LF line feed
CR carriage return NAK negative

acknowledgement
DC device control NUL null
DEL delete RS record shipment
DLE data link escape SI shift in
EM end of medium SO shift out
ENQ enquiry SOH start of heading
EOT end of transmission SP space
ESC escape STX start of text
ETB end of transmission SUB substitute
ETX end of text SYN synchronous idle
FF form feed US unit separator

VT vertical tabulation

Table 0-2. Conversion Table

Binary Decimal Octal Hex ASCII
0000000 0 0 0 NUL
0000001 1 1 1 SOH
0000010 2 2 2 STX
0000011 3 3 3 ETX
0000100 4 4 4 EOT
0000101 5 5 5 ENQ
0000110 6 6 6 ACK
0000111 7 7 7 BEL
0001000 8 10 8 BS
0001001 9 11 9 HT
0001010 10 12 A LF
0001011 11 13 B VT

Appendix A: ASCII Conversion Chart

Utilities Reference 641

0001100 12 14 C FF
0001101 13 15 D CR
0001110 14 16 E SO
0001111 15 17 F SI
0010000 16 20 10 DLE
0010001 17 21 11 DC1
0010010 18 22 12 DC2
0010011 19 23 13 DC3
0010100 20 24 14 DC4
0010101 21 25 15 NAK
0010110 22 26 16 SYN
0010111 23 27 17 ETB
0011000 24 30 18 CAN
0011001 25 31 19 EM
0011010 26 32 1A SUB
0011011 27 33 1B ESC
0011100 28 34 1C FS
0011101 29 35 1D GS
0011110 30 36 1E RS
0011111 31 37 1F US
0100000 32 40 20 SP
0100001 33 41 21 !
0100010 34 42 22 "
0100011 35 43 23 #
0100100 36 44 24 $
0100101 37 45 25 %
0100110 38 46 26 &
0100111 39 47 27 ’
0101000 40 50 28 (
0101001 41 51 29)
0101010 42 52 2A *
0101011 43 53 2B +
0101100 44 54 2C ,
0101101 45 55 2D -
0101110 46 56 2E .

Table 0-2. Conversion Table (Continued)

Binary Decimal Octal Hex ASCII

Appendix A: ASCII Conversion Chart

642 Utilities Reference

0101111 47 57 2F /
0110000 48 60 30 0
0110001 49 61 31 1
0110010 50 62 32 2
0110011 51 63 33 3
0110100 52 64 34 4
0110101 53 65 35 5
0110110 54 66 36 6
0110111 55 67 37 7
0111000 56 70 38 8
0111001 57 71 39 9
0111010 58 72 3A :
0111011 59 73 3B ;
0111100 60 74 3C <
0111101 61 75 3D =
0111110 62 76 3E >
0111111 63 77 3F ?
1000000 64 100 40 @
1000001 65 101 41 A
1000010 66 102 42 B
1000011 67 103 43 C
1000100 68 104 44 D
1000101 69 105 45 E
1000110 70 106 46 F
1000111 71 107 47 G
1001000 72 110 48 H
1001001 73 111 49 I
1001010 74 112 4A J
1001011 75 113 4B K
1001100 76 114 4C L
1001101 77 115 4D M
1001110 78 116 4E N
1001111 79 117 4F O
1010000 80 120 50 P
1010001 81 121 51 Q

Table 0-2. Conversion Table (Continued)

Binary Decimal Octal Hex ASCII

Appendix A: ASCII Conversion Chart

Utilities Reference 643

1010010 82 122 52 R
1010011 83 123 53 S
1010100 84 124 54 T
1010101 85 125 55 U
1010110 86 126 56 V
1010111 87 127 57 W
1011000 88 130 58 X
1011001 89 131 59 Y
1011010 90 132 5A Z
1011011 91 133 5B [
1011100 92 134 5C \
1011101 93 135 5D]
1011110 94 136 5E ^
1011111 95 137 5F _
1100000 96 140 60 ‘
1100001 97 141 61 a
1100010 98 142 62 b
1100011 99 143 63 c
1100100 100 144 64 d
1100101 101 145 65 e
1100110 102 146 66 f
1100111 103 147 67 g
1101000 104 150 68 h
1101001 105 151 69 i
1101010 106 152 6A j
1101011 107 153 6B k
1101100 108 154 6C l
1101101 109 155 6D m
1101110 110 156 6E n
1101111 111 157 6F o
1110000 112 160 70 p
1110001 113 161 71 q
1110010 114 162 72 r
1110011 115 163 73 s
1110100 116 164 74 t

Table 0-2. Conversion Table (Continued)

Binary Decimal Octal Hex ASCII

Appendix A: ASCII Conversion Chart

644 Utilities Reference

1110101 117 165 75 u
1110110 118 166 76 v
1110111 119 167 77 w
1111000 120 170 78 x
1111001 121 171 79 y
1111010 122 172 7A z
1111011 123 173 7B {
1111100 124 174 7C |
1111101 125 175 7D }
1111110 126 176 7E ~
1111111 127 177 7F DEL

Table 0-2. Conversion Table (Continued)

Binary Decimal Octal Hex ASCII

	HOME
	Utilities Reference
	Contents
	Utilities
	Standard Utility Documentation
	Command Syntax
	Operating System (OS)
	Command Options
	Description of the Utility
	Examples
	See Also

	Formal Syntax Notation
	List of OS-9 Utilities
	activ
	alias
	assign
	attr
	backup
	Single Drive Backup
	Two Drive Backup

	bfed
	binex
	bootgen
	Method 1:
	Method 2:
	Method 3:

	break
	build
	cfp
	chd
	chm
	chx
	chown
	cmp, os9cmp
	code
	com
	compress
	copy
	count
	cudo
	date
	dcheck
	Repairing the Bitmap
	Restrictions

	debug
	deiniz
	del, os9del
	deldir
	delmdir
	devs
	dir
	diskcache
	dosfile
	dpsplit
	dsave
	dump, os9dump
	echo
	editmod
	edt
	events
	ex
	exbin
	expand
	fdisk
	Partition Information

	fixmod
	format
	Format on Non-Autosize Devices
	Format on Autosize Devices
	Continuing the Format Procedure

	free
	frestore
	fsave
	grep
	Expressions
	Example Expressions

	help
	hist
	ident
	iniz
	irqs
	kermit
	kill
	link
	list
	lmm
	ln
	load
	login
	The Password File

	logout
	makdir
	makmdir
	maps
	mbc
	mdattr
	mdir
	merge, os9merge
	mfree
	mkdatmod
	moded
	Selecting the Current Module
	Edit Mode
	Listing Module Fields
	The Moded.fields File
	Example Module Description in Moded.fields:
	The Provided Moded.fields File:

	mshell
	MShell Features

	mv
	os9cmp
	os9del
	os9deldir
	os9dump
	os9gen
	Method 1
	Method 2
	Method 3

	os9make
	os9merge
	p2init
	padrom
	park
	paths
	partition
	pcdcheck
	pcformat
	pd
	pinfo
	Creating New Descriptors

	pr
	printenv
	procs
	profile
	qsort
	rename
	romsplit
	save
	set
	setenv
	setime
	Systems with Battery Backed Up Clocks

	setpr
	shell
	sleep
	su
	suspend
	sysid
	tape
	tapegen
	tapestart
	tar
	tee
	tmode
	touch, os9touch
	tr
	tsmon
	umacs
	unassign
	undel
	undel
	unlink
	unsetenv
	w, wait
	what
	xmode
	OS-9 Examples

	Using the debug Utility
	Symbolic Debugging
	Starting debug
	Exiting the Debugger

	Relocation Registers
	Breakpoints
	debug Commands
	Execution Commands
	Stack Traceback Command
	Memory Change Commands
	Memory Commands
	Hex/ASCII Dump Memory Display
	Instruction Disassembly Memory Display
	Floating Point Memory Displays
	Display/Change Machine Registers
	Memory Fill
	Memory Search
	Linking to a Module

	Symbolic Debugging
	Creating a Process to Debug

	Starting the Debugger from the Shell Command Line
	Setting and Displaying debug Options
	Expressions and the V Command
	Binary Operations (operate on the left and right operand)
	Unary Operators (operate on the right operand)
	Indirect Operators

	Command Summary

	Using the editmod Utility
	Use Instructions
	Creating Modules
	Listing Modules
	Editing Modules
	Editing an Array
	Editing a String
	Editing a Variable Length List
	Expressions
	$ prefix
	@ prefix
	Internet address
	Ethernet address
	DPIO Descriptors

	Programming Guide
	Features
	Pre-Processor
	Exclusions
	Additions

	Macro Definitions
	Expressions
	Search Directories
	Configuration File
	Help Text
	Module Creation

	Description Files
	Definition Blocks
	Structures
	Numerical Member
	Pointer to Another Definition Block
	Sub-Structure
	Repeat Structures
	Arrays
	Pointer Arrays
	Strings

	Initialization Block
	Module Block
	Header Generation
	Type Aliases
	Comments
	emit <string>;
	_editmod_HM macro

	General Rules
	Example
	Design the Data Module
	Create the Description File
	Create the Module with editmod
	Display the Contents of the Module with editmod
	Edit the Module

	Using the os9make Utility
	Overview
	os9make Operation

	Implicit Rules, Definitions, and Assumptions
	UCC Rule Modes
	Modes
	Special Macros
	os9make Generated Command Lines

	os9make Command Line Options
	Makefile Entries
	Dependencies
	Commands
	Comments
	Includes
	Macros
	Syntax
	Line Continuation
	Macro Substitution
	for Loop
	Target Dependent Macros

	Conditionals
	Syntax
	Boolean Expressions
	Operators
	Precedence
	Abbreviations

	Looping
	for Syntax

	Using the mshell Utility
	Automatic mshell Login
	Command Line Editing
	Change Default Command Line Editing Keys

	History Buffer
	History Substitution
	View History
	History Compression

	Command Completion
	Pathlist Completion
	Command Name Aliases (Assigns)
	Assign
	Unassign

	Enhanced Piping Facilities
	Command Line Batchfiles
	Set Matching Wildcards
	Procedure File Programming Language
	Parameter Passing to Procedure Files
	Environment Variable Substitution
	Programming Variable Substitution
	Command Output Substitution
	Variable Substitution Modifiers
	Procedure File Line Concatenation
	Procedure File Debugging Facilities

	Built-in Commands
	profile Command
	UNIX-like Data Directory Commands
	prenv Built-in Command
	set Command
	which Command

	mshell Command Line Options
	Parameter Passing among mshells
	Invoking the Initialization File
	Prompt Format String
	Non-blocking Readln
	mshell Directives
	Operators
	Variables
	%status Variable

	Functions
	Constants
	Quoted String Constants
	Integer Constants
	Logical Constants
	Identifier Constants

	Directive Descriptions

	mshell Functions
	abs()
	assign()
	asc()
	chdir()
	chmdir()
	chr()
	chxdir()
	close()
	cmpnam()
	create()
	dir()
	dup()
	env()
	execute()
	exist()
	findstr()
	filematch()
	getdata()
	getuid()
	hex()
	index()
	input()
	input1()
	lassign()
	left()
	len()
	lower()
	mid()
	modate()
	next_file()
	open()
	param()
	read()
	readln()
	right()
	rindex()
	seek()
	size()
	strcat()
	strchr()
	strcmp()
	strlen()
	strpbrk()
	strrchr()
	strstr()
	tell()
	tohex()
	uns()
	upper()
	var_rep()
	write()
	writeln()
	Example Programs

	Using the shell Utility
	Overview of shell Utility
	Setting shell Options
	The Shell Environment
	The Environment Utilities
	Using Environment Variables as Command Line Parameters
	Using Parameters with Procedure Files

	The profile Command
	The login shell, .login, and .logout
	shell Command Line Syntax
	Command Line Execution
	Example Command Lines

	Using the uMacs Utility
	uMACS Overview
	Terminal Capabilities
	Cursor Positioning
	Search and Replace
	Cut and Paste
	Format Commands
	Buffers

	Command Basics
	Execute Commands
	Key Bindings
	Change Key Bindings
	Find Current Key Bindings
	The Help Command
	Repeat Commands
	Abort Command
	Macro Commands
	The Execute-File Command
	The .umacsrc File
	Command Summary: key and help

	Introduction to Windows and Buffers
	The Status Line
	Switching Windows

	Start uMACS
	Input/Output Command
	Insert File
	Read File
	Find File
	View File
	Change File Name
	Saving Files
	Execute Operating System Commands

	uMACS Editing Modes
	Add or Delete a Mode

	Exit uMACS
	The uMACS Command Set
	Cursor Positioning Commands
	Next or Previous Word, Line, or Paragraph
	Next or Previous Page
	Go To Beginning or End of Line/File
	Go to a Specified Line

	Insert Text
	Insert a Non-Printable Character
	New Lines
	Insert a Tab
	Insert a File

	Delete Text
	The Kill Buffer
	Delete Word/Blank Lines
	Place a Region of Text Into the Kill Buffer
	Insert Kill Buffer Contents

	Search and Replace
	Search Forward and Backward
	Replace

	Region Commands
	Mark Region Boundaries
	Copy or Move a Region
	Paste
	Change a Region’s Character Case

	Format Commands
	Change Character Case
	Reformat Paragraph Margins
	Transpose Characters

	Buffer Commands
	Display Current Buffers
	Change Buffer or File Name
	Edit a Buffer
	Open a New Buffer
	Switch Buffers
	Buffer Position
	Delete Buffer
	Execute Buffer

	Window Commands
	Open Additional Windows
	Move to the Next or Previous Window
	Scroll Text
	Change Window Size
	Delete All But Current Window
	Termcap File Format

	The Termcap File
	Terminal Capabilities
	Special Characters
	Termcap Capabilities
	Cursor Addressing
	Example Notations
	Example Termcap Entries

	uMACS Command Summary

	Using the mar Utility
	Overview
	Code Overview
	Parameter Definitions

	Pathlists
	Pathlist Examples
	Example 1
	Example 2

	ASCII Conversion Chart

