
Digital UNIX
Guide to Preparing Product Kits

Part Number: AA-QYW7B-TE

December 1996

Product Version: Digital UNIX Version 4.0 or higher

This book describes the procedures for creating, maintaining, and
installing layered product kits.

Digital Equipment Corporation
Maynard, Massachusetts

© Digital Equipment Corporation 1996
All rights reserved.

All rights reserved.

The following are trademarks of Digital Equipment Corporation: ALL–IN–1, Alpha AXP,
AlphaGeneration, AXP, Bookreader, CDA, DDIS, DEC, DEC Ada, DEC Fortran, DEC FUSE, DECnet,
DECstation, DECsystem, DECterm, DECUS, DECwindows, DTIF, Massbus, MicroVAX, OpenVMS,
POLYCENTER, Q–bus, TruCluster, ULTRIX, ULTRIX Mail Connection, ULTRIX Worksystem Software,
UNIBUS, VAX, VAXstation, VMS, XUI, and the Digital logo.

NFS is a registered trademark of Sun Microsystems, Inc. UNIX is a registered trademark in the United
States and other countries, licensed exclusively through X/Open Company, Ltd.

Contents

About This Manual

1 Introduction
1.1 Product Types 1–1
1.2 Kit Formats 1–2
1.3 Kit-Building Process 1–3
1.4 Sample Products 1–6

2 Creating the Kit Directory Structure
2.1 Designing the Customer’s Directory Structure 2–1
2.2 Creating a Kit-Building Directory Structure 2–3
2.2.1 Directory Structure for a User Product Kit 2–5
2.2.2 Directory Structure for a Kernel Product Kit 2–7
2.2.3 Directory Structure for a Foreign Device Kit 2–10
2.2.3.1 The name.kit File 2–12
2.2.3.2 The kitname.kk File 2–13

3 Creating Subset Control Programs
3.1 Common Characteristics of a Subset Control Program 3–1
3.1.1 Creating Subset Control Program Source Files 3–2
3.1.2 Including Library Routines 3–2
3.1.3 Invoking Subset Control Programs 3–3
3.1.4 Aborting the Program 3–4
3.1.5 Setting Global Variables 3–4
3.1.6 Working in a Dataless Environment 3–5
3.2 Tasks Associated with Installation Phases 3–6
3.2.1 Displaying the Subset Menu (M Phase) 3–6
3.2.2 Before Loading the Subset (PRE_L Phase) 3–7
3.2.3 After Loading the Subset (POST_L Phase) 3–9
3.2.3.1 Creating Forward Links 3–10
3.2.3.2 Creating Backward Links 3–11
3.2.3.3 Locking Subsets 3–12
3.2.4 After Securing the Subset (C INSTALL Phase) 3–13

Contents iii

3.2.5 Verifying the Subset (V Phase) 3–14
3.2.6 Before Deleting a Subset (C DELETE Phase) 3–14
3.2.7 Before Deleting a Subset (PRE_D Phase) 3–14
3.2.8 After Deleting a Subset (POST_D Phase) 3–15
3.3 Subset Control File Flag Bits 3–15
3.4 User Product Subset Control Program 3–16
3.5 Kernel Product Subset Control Program 3–19
3.6 Foreign Device Subset Control Program 3–24

4 Building Subsets and Control Files
4.1 Creating the Master Inventory File 4–3
4.2 Creating the Key File 4–6
4.3 Running the kits Utility 4–8
4.3.1 Compression Flag File 4–10
4.3.2 Image Data File 4–10
4.3.3 Subset Control Files 4–11
4.3.4 Subset Inventory File 4–12

5 Producing Distribution Media
5.1 Editing the /etc/kitcap File 5–2
5.1.1 Tape Media kitcap Record Format 5–3
5.1.2 Disk Media kitcap Record Format 5–3
5.2 Building a Kit on Magnetic Tape Media in tar Format 5–4
5.3 Building a Kit on Disk Media 5–5
5.3.1 Preparing a Kit in tar Format 5–6
5.3.2 Preparing a Foreign Device Kit in DCD Format 5–6

6 Testing the Installation of a Kit
6.1 Installing a User Product 6–1
6.2 Installing a Kernel Product 6–3
6.3 Installing a Foreign Device Kit 6–5
6.4 Installing a User or Kernel Product into a RIS Area 6–8

iv Contents

6.5 Installing a Foreign Device Kit into a RIS Area 6–9

A Digital UNIX Standard Directory Structure

Glossary

Index

Examples
3–1 Example of Backward Link Creation 3–12
3–2 Subset Control Program for the ODB Product 3–16
3–3 Subset Control Program for the /dev/none Driver 3–19
3–4 Subset Control Program for the /dev/edgd Driver 3–25
4–1 Master Inventory File for the ODB Kit 4–5
4–2 Key File for the ODB Kit 4–6
4–3 Sample Subset Inventory File 4–12

Figures
1–1 Steps in the Kit-Building Process 1–4
2–1 Linking Product Files to Standard Digital UNIX Directories 2–3
2–2 Kit Directory Structure 2–3
2–3 Directory Hierarchy for the ODB Kit 2–7
2–4 Directory Structure for the /dev/none Driver Kit 2–8
2–5 Editing the files File Fragment 2–9
2–6 Editing the sysconfigtab File Fragment 2–10
2–7 Directory Structure for the /dev/edgd Foreign Device Kit 2–12
2–8 Using a name.kit File During System Installation 2–13
3–1 Time Line of the setld Utility 3–4
4–1 Grouping Files into Subsets 4–2
4–2 Contents of the ODB output Directory 4–3
5–1 File Formats for Layered Product Kits 5–2
6–1 Defining Links and Dependicies for the ODB User Product . . 6–2
6–2 Statically Configuring a Driver 6–4
6–3 Dynamically Configuring a Driver 6–4
6–4 Bootstrap Linking with a Foreign Device Kit 6–6
A–1 Base System Directory Structure A–2

Contents v

A–2 X Directory Structure A–6

Tables
3–1 STL_ScpInit Global Variables 3–5
4–1 Fields in Master Inventory Records 4–4
4–2 Key File Attributes Section 4–7
4–3 Key File Subset Descriptor Fields 4–8
4–4 Installation Control Files in the instctrl Directory 4–9
4–5 Image Data File Fields 4–10
4–6 Subset Inventory Field Descriptions 4–12
A–1 Contents and Purpose of Base System Directories A–3
A–2 Contents and Purpose of X Directories A–6

vi Contents

About This Manual

This manual describes the procedures for creating, installing, and
managing product kits to be installed on Digital UNIX® systems.

Audience

This manual is primarily for kit developers responsible for creating product
kits. This manual assumes you are a moderately experienced user of the
Digital UNIX system with knowledge of system administration.

Organization

This manual is organized as follows:

Chapter 1 Introduction

Presents an introduction to the kit-building process.

Chapter 2 Creating the Kit Directory Structure

Describes how to create the kit directory and build the
product kit.

Chapter 3 Creating and Managing Subset Control Programs

Describes how to write subset control programs (SCPs) to
install and manage software subsets.

Chapter 4 Creating Subsets

Describes how to create subsets and subset control files with
the newinv and kits utilities.

Chapter 5 Producing Distribution Media

Describes how to produce a product kit on the distribution
media.

Chapter 6 Installing the Kit

Describes how to install the product kit on the target system.

Appendix A Digital UNIX Standard Directory Structure

About This Manual vii

Describes the standard directory hierarchy of Digital UNIX
systems.

Glossary Defines terms used in this manual.

Related Documents

The printed version of the Digital UNIX documentation set is color coded to
help specific audiences quickly find the books that meet their needs. (You
can order the printed documentation from Digital.) This color coding is
reinforced with the use of an icon on the spines of books. The following list
describes this convention:

Audience Icon Color Code

General users G Blue

System and network administrators S Red

Programmers P Purple

Device driver writers D Orange

Reference page users R Green

Some books in the documentation set help meet the needs of several
audiences. For example, the information in some system books is also used
by programmers. Keep this in mind when searching for information on
specific topics.

The Documentation Overview, Glossary, and Master Index provides
information on all of the books in the Digital UNIX documentation set.

You may find the following documents helpful when preparing product kits:

• Installation Guide

This manual describes the procedures to perform an update
installation, a basic installation, or an advanced installation of the
Digital UNIX product on all supported processors. It explains how to
prepare your system for installation, boot the processor, and perform
the installation procedure. It also discusses system management
procedures in a standalone environment.

• System Administration

This manual describes how to configure, use, and maintain the Digital
UNIX operating system. It includes information on general day-to-day
activities and tasks, changing your system configuration, and locating
and eliminating sources of trouble. This manual is for the system

viii About This Manual

administrators responsible for managing the operating system. It
assumes a knowledge of operating system concepts, commands, and
configurations.

• Sharing Software on a Local Area Network

This manual describes Remote Installation Services (RIS) and Dataless
Management Services (DMS). The RIS utility is used for installing
software across a network, instead of using locally mounted media.
DMS allows a server system to maintain the root, /usr , and /var file
systems for client systems. Each client system has its own root file
system on the server, but shares the /usr and /var file systems.

This manual can be helpful if you are preparing a foreign device kit
that will be installed in a RIS environment.

• Writing Device Drivers: Tutorial

This manual provides information for systems engineers who write
device drivers for hardware that runs the Digital UNIX operating
system. Systems engineers can find information on driver concepts,
device driver interfaces, kernel interfaces used by device drivers, kernel
data structures, configuration of device drivers, and header files related
to device drivers.

This manual can be helpful if you are preparing product kits for a
device driver.

• Reference Pages Section 8 and 1m

This section describes commands for system operation and
maintenance. It is for system administrators. In printed format, this
section is divided into two volumes.

• Release Notes

The release notes describe problems you might encounter when working
with the Digital UNIX system and possible solutions for those problems.
The printed format also contains information about new and changed
features of the operating system, as well as plans to retire obsolete
features of the operating system. Obsolete features are features that
have been replaced by new technology or otherwise outdated and are no
longer needed. The release notes are for the person installing the
product and for anyone using the product following installation.

Reader’s Comments

Digital welcomes any comments and suggestions you have on this and
other Digital UNIX manuals.

You can send your comments in the following ways:

About This Manual ix

• Fax: 603-881-0120 Attn: UEG Publications, ZK03-3/Y32

• Internet electronic mail: readers_comment@zk3.dec.com

A Reader’s Comment form is located on your system in the following
location:

/usr/doc/readers_comment.txt

• Mail:

Digital Equipment Corporation
UEG Publications Manager
ZK03-3/Y32
110 Spit Brook Road
Nashua, NH 03062-9987

A Reader’s Comment form is located in the back of each printed
manual. The form is postage paid if you mail it in the United States.

Please include the following information along with your comments:

• The full title of the book and the order number. (The order number is
printed on the title page of this book and on its back cover.)

• The section numbers and page numbers of the information on which
you are commenting.

• The version of Digital UNIX that you are using.

• If known, the type of processor that is running the Digital UNIX
software.

The Digital UNIX Publications group cannot respond to system problems or
technical support inquiries. Please address technical questions to your local
system vendor or to the appropriate Digital technical support office.
Information provided with the software media explains how to send
problem reports to Digital.

Conventions

The following typographical conventions are used in this manual:

A number sign represents the superuser prompt.

% cat Boldface type in interactive examples indicates
typed user input.

file Italic (slanted) type indicates variable values,
placeholders, and function argument names.

[|]

x About This Manual

{ | } In syntax definitions, brackets indicate items that
are optional and braces indicate items that are
required. Vertical bars separating items inside
brackets or braces indicate that you choose one item
from among those listed.

. . .
In syntax definitions, a horizontal ellipsis indicates
that the preceding item can be repeated one or
more times.

cat (1) A cross-reference to a reference page includes the
appropriate section number in parentheses. For
example, cat (1) indicates that you can find
information on the cat command in Section 1 of the
reference pages.

About This Manual xi

1
Introduction

A kit is a collection of files and directories that represent one or more
layered products. It is the standard mechanism by which layered product
modifications are delivered and maintained on a Digital UNIX system. The
kit can be distributed on a CD−ROM, diskette, or tape for installation on
the customer’s system. Finally, a kit can be installed on the Digital UNIX
system at single-user time, multiuser time, installation time, or when
setting up a Remote Installation Services (RIS) environment.

Before building a kit, consider the kind of product the kit represents:

• Does it run in user space or kernel space?

• Is it used during the initial installation and bootstrap of the Digital
UNIX system?

• Will it be integrated into a RIS environment?

The answers to these questions determine the type of format you choose,
the type of medium you use to distribute the kit, and the installation
procedures that your users run when they install the kit on their systems.

This chapter helps you answer these questions. It describes the product
types supported by the kit-building process and the options for packaging
and installing the kit on the customer’s system. It leads you through the
steps involved in building kits for the various kinds of products, and it
describes the installation options that the Digital UNIX system supports.

After you determine the kind of kit your are building, you can go to
individual chapters of the book for detailed steps for building your
particular kit.

1.1 Product Types

The kitting process described in this book lets you deliver layered products
for the Digital UNIX system. A layered product is any software product
that is not part of the base operating system. Layered products can fall into
the following categories:

• User product

A user product runs in user space. Commands and utilities fall into
this category, as do applications such as text editors and database

Introduction 1–1

systems. Users interact directly with user products, for example,
through commands or window interfaces.

• Kernel product

A kernel product runs in kernel space. Users do not directly run
kernel products, but the operating system and utilities access them to
perform their work. For example, a device driver is one common type of
kernel product. A user runs an application or utility, which generates
system requests to perform operations such as opening a file or writing
data to a disk. The system determines which device driver should
service this request, then calls the appropriate driver interface.

• Foreign device

A foreign device is a peripheral device installed during the initial
system installation and bootstrap. Before a system manager can make
use of the foreign device, the associated device driver must be
configured into the kernel. The problem is that prior to the installation
of the operating system, there is no kernel and there are no device
drivers available to handle potential kernel and user requests of these
foreign devices.

To solve this problem, a kit for a foreign device contains a kernel
product — the device driver for the foreign device — and other files
needed for configuring the driver into a kernel at system installation
time.

The following are examples of hardware needed during the initial
installation and bootstrap of the operating system:

– Graphics controller

A graphics controller is the hardware interface between the
computer and a graphics terminal.

– Disk controller

A disk controller is the hardware interface between the computer
and a disk device. (Currently, disk devices are not supported as
foreign devices.)

– Network controller

A network controller (when bootstrapping from the network) is the
hardware interface between the computer and a network device.
(Currently, network controllers are not supported as foreign
devices.)

1.2 Kit Formats
Prior to being copied onto the distribution media (diskette, CD-ROM, or
tape), the product files are gathered into subsets. A subset groups together

1–2 Introduction

related files and specifies whether the group is required or optional for the
installation procedure. You can copy the product files onto the distribution
media in one of the following formats:

• tar format

In tar format, the product files belonging to the same subset are
dumped to the distribution media as a single file. During installation,
the setld utility uncompresses the files, then moves them onto the
customer’s system, preserving the files’ original directory structure. The
gentapes and gendisk utilities can create kits in tar format.

• Direct CD−ROM (DCD) format

In DCD format, the files are written to any disk media (CD−ROM, hard
disk, or diskette) as a UNIX file system. Subsets distributed in DCD
format cannot be compressed. The gendisk utility can create kits in
DCD format.

Kits for user and kernel products should be produced in tar format;
foreign device kits must be produced in DCD format.

1.3 Kit-Building Process

Figure 1–1 illustrates the process of creating and packaging a kit. In the
figure, dashed boxes represent optional steps; for example, you do not have
to create subset control programs if your kit requires no special handling
when it is installed. In the figure, the commands enclosed in ellipses
perform the indicated steps of the kit-building process.

Introduction 1–3

Figure 1–1: Steps in the Kit-Building Process

ZK-0460U-AI

Test the installation

Build subsets and
control files

Create subset control
programs

structure
Create kit directory

Produce distribution
media

 newinv kits

 gendisk gentapes

 setld RIS

The kit-building process is divided into the following steps:

1. Creating the kit directory structure that contains the source files

On the development system, you create the following directory
structure for the kit you want to build:

• A source hierarchy, which contains all the files that make up the
product.

• A data hierarchy, which contains files needed to build the kit. A
master inventory file lists all the product files and the subsets in
which they belong. A key file identifies the product that the kit
represents.

• An output hierarchy, which holds the result of the kit-building
process — one or more subsets that make up the product kit.

This directory structure is the same for user products, kernel products,
and foreign device kits. Only the contents of these directories differs
among the product types. For example, a foreign device kit needs
additional files that are unique to this specific kit type.

1–4 Introduction

2. Creating subset control programs

The setld utility can call a subset control program to perform
installation steps specific to your kit. This program is optional for user
products and kernel products. You supply it on your kit only if the
product requires special installation steps. The program is required for
RIS installations of foreign device kits. Most layered products supply a
subset control program, though the actions the programs perform
differ for each product type. For example, the subset control program
for a kernel product may call the kreg utility, while the subset control
program for a user product would not.

3. Building subsets and control files

Before transferring your kit onto distribution media, organize the
product files into subsets. Subsets group together related files. For
example, one subset could contain optional product files, while another
subset could contain the files required to run the product. The kits
utility creates subsets according to the specifications you define in the
master inventory file and key file. The newinv utility can help you
maintain the master inventory.

4. Producing the distribution media

When you have created the subsets for the product, you are ready to
package the kit. At this point, you must decide whether to create the
kit in DCD format or in tar format. You do this by selecting the
appropriate packaging utilities, such as gendisk or gentapes . If you
are creating a kit for a foreign device, you must also modify the kit and
add files for the osfboot utility’s bootstrap link support.

5. Testing the installation of the kit

After you have successfully created the kit, you should test the
installation. For user products and kernel products, you install the kit
by running the setld utility. For foreign devices, you use the
osfboot utility’s bootstrap link technology to install the kit and
bootstrap a custom kernel. You may also want to install the kit on a
RIS server so that RIS clients can install it across a network.

Introduction 1–5

1.4 Sample Products

This book uses the following fictitious products to demonstrate how to build
kits for each product type that Digital UNIX supports:

• Orpheus Document Builder (ODB)

This application is one of a set of applications that the fictitious
company, Orpheus Authoring Tools, Inc., produces. This example shows
how to build a kit for a user product.

• The /dev/none device driver

Writing Device Drivers: Tutorial introduces this peripheral device
driver, which the fictitious company, EasyDriver, Inc., produces. This
example shows how to build a kit for a kernel product.

• The /dev/edgd device driver

This graphics device driver, which EasyDriver, Inc. also produces,
shows how to build a kit for a foreign device.

1–6 Introduction

2
Creating the Kit Directory Structure

When engineers finish developing a product, they give the product files to
you for packaging and processing into a kit. Your first task is to organize
these files by function and use, then to place them in a kit-building
directory structure. When designing the kit-building directory structure,
you must consider where you want to place the product files on the
customer’s system. You then create a kit directory structure on the
development system that closely mirrors the customer’s directory structure.

This chapter describes the standard directory structure of Digital UNIX
systems and how to create a kit-building directory structure to fit within
the standard directory structure.

2.1 Designing the Customer’s Directory Structure

You can install the components of a kit in any directory on the customer’s
system. However, guidelines exist for deciding where to place kit files. The
standard Digital UNIX system directory structure is set up for efficient
organization. It separates files by function and use. You should install
product files in subdirectories of /usr/opt , /var/opt , and /opt , as
follows:

• Read-only files

Files that are nominally read-only, such as commands, startup files
(which can be modified, but not by individual users), or data files are
installed in a product-specific subdirectory of /usr/opt .

• Read/write files

Files that users can read and write, such as lists of employee telephone
numbers, are installed in a product-specific subdirectory of /var/opt .

• Boot files

Files that are required at bootstrap time, such as device drivers, are
installed in a product-specific subdirectory of /opt .

The name of the product-specific subdirectory should consist of a
3-character product or company code and a 3-digit version code, as specified
in the key file (see Chapter 4). For example, the product-specific
subdirectory names for the ODB product kit are /opt/OAT100 ,
/usr/opt/OAT100 , and /usr/var/opt/OAT100 .

Creating the Kit Directory Structure 2–1

Using this standard directory structure has the following advantages:

• If disk partition restructuring or product maintenance becomes
necessary, it is easier to find all of your kit if its components are in the
/opt directories rather than scattered throughout the standard
directories.

• Exporting software to share across a network is simplified and more
secure; you need to export only the specific directories under /opt ,
/usr/opt , and /var/opt that contain the product you want, then
create links on the importing system. You can set up a server with
multiple versions of a given product, using the links created on the
client systems to determine which version a given client uses. In this
way, you can maintain software for multiple dissimilar hardware
platforms on the same server.

For users to make effective use of the file system after they install your
product, files should be in directories that are in the normal search path as
specified by the user’s .profile or .login files, as appropriate. Your
product directories would not ordinarily be in the user’s search path.
Therefore, the installation procedure must create links from the directory
where your product files reside and the directory where users will search
for them. The subset control programs create these links during product
installation.

Figure 2–1 shows how the Orpheus Document Builder (ODB) product is
installed in the standard directory structure, under /opt , /usr/opt , and
/var/opt . A symbolic link makes each file accessible through the standard
directories. For example, the ODB kit’s /usr/bin/attr command is a
symbolic link to /usr/opt/OAT100/bin/attr .

2–2 Creating the Kit Directory Structure

Figure 2–1: Linking Product Files to Standard Digital UNIX Directories

bin

usr var opt

attr

opt opt

bin

ZK-1201U-AI

attr

link

OAT100

/

2.2 Creating a Kit-Building Directory Structure

To create a kit, you need three separate directory hierarchies on the kit
development system, as shown in Figure 2–2.

Figure 2–2: Kit Directory Structure

ZK-0461U-AI

(product source
Source Hierarchy

files)
(built kit files)

Output Hierarchy(kit-building
Data Hierarchy

control files)

Creating the Kit Directory Structure 2–3

The following list describes each directory hierarchy:

• Source hierarchy

The source hierarchy is a directory structure that exactly mirrors the
directory structure into which customers install your finished kit. You
must place each file that is to become part of your kit into the
appropriate directory in the source hierarchy. You can create the source
hierarchy under any directory you choose.

• Data hierarchy

The data hierarchy is a directory structure that contains the following
files to specify the contents of the kit and how it is organized:

– A master inventory file lists each of the files in the kit and defines
which subset contains each file.

– A key file specifies the kit’s attributes, such as the product name
and version and whether the subsets are in compressed or
uncompressed format.

– A subdirectory named scps contains any subset control programs
that the product requires.

There is no specific requirement for the location of the data hierarchy,
but it is good practice to place it under the same directory as the source
hierarchy.

• Output hierarchy

The output hierarchy is a directory structure that contains the
subsets that are placed on the kit. The subset control files that are
needed during installation are stored in the instctrl subdirectory.
There is no specific requirement for the location of the output
hierarchy, but it is good practice to place it under the same directory as
the source and data hierarchies.

Create the kit-building directory structure as follows:

1. Issue the appropriate mkdir commands for each of the directories and
subdirectories that you need.

2. Populate the src directory with all the files that are to be part of the
finished kit. Section 2.2.1 describes the files you need for a user
product. Section 2.2.2 describes the files you need for a kernel product.
Section 2.2.3 describes the files you need for a foreign device kit. You
can choose any appropriate method for populating the source
hierarchy. For example, you could create a makefile for use with the
make command.

2–4 Creating the Kit Directory Structure

_____________________ Caution _____________________

File attributes, such as ownership and permissions, for all the
files and directories in the source hierarchy must be exactly as
they should be on the customer’s system. Usually, this
requirement means that you must be a superuser when
populating the source hierarchy so that you can change these file
attributes. Do not attempt to circumvent this requirement by
setting file attributes in your subset control programs. If a
superuser on the customer’s system runs the fverify command
on your subsets, attributes that the subset control programs
have modified are reset to the values they have in the kit’s
master inventory files.

Under most circumstances, your kit should not include any files
whose pathnames exactly match those of existing system files. If
you do, the kit’s files are installed in place of the existing files.

2.2.1 Directory Structure for a User Product Kit

A user product should be designed so that the user sees it as an integral
part of the system. This means that, as with base-system software, you
should place programs such as commands and utilities in directories that
are part of the normal search path, such as /usr/bin . Similarly, you
should place libraries in directories where users would expect to find them,
such as /usr/lib .

The example ODB kit places command files in the standard system
directory (/usr/bin), the product’s documentation in a directory created
by another user product (/usr/lib/br), and template files for users
employing the product in a directory unique to the ODB product
(/usr/share/doclib/templates).

The actual files for the ODB kit, however, are not physically located in any
of the directories listed in the preceding paragraph. The files are installed
in directories under /opt , /usr/opt , and /var/opt so that the files are
centrally located and easy to find. Then a symbolic link is created for each
file that makes the file accessible through the standard system directories.

The ODB kit contains files to be installed in the following directories:

• /usr/opt/OAT100/bin

• /usr/opt/OAT100/lib/br

• /usr/opt/OAT100/share/doclib/templates

Creating the Kit Directory Structure 2–5

Figure 2–3 illustrates the complete directory structure for the ODB kit. In
this figure, the dashed directory, dcb_tools , represents the existing
directory under which you would create the source hierarchy’s directories
as shown.

The src directory represents the root directory on the customer’s system;
the usr directory represents /usr on the customer’s system. All the other
directories in the source hierarchy are mapped to the customer’s system in
the same way.

The name of the top-level product-specific directory, under the source
hierarchy’s opt directory, is made up of the product code and a 3-digit
version number, where the first digit identifies the major version number,
the second digit identifies the minor version number, and the third digit
identifies the update level. For example, the product code for the ODB kit
is OATand its version number is 100 , indicating major version 1, minor
version 0, update 0.

File names in the standard directory structure, where users would usually
expect the files to appear, are linked symbolically to the actual files
installed on the customer’s system. For example, the command named
/usr/bin/attr exists as a link to /usr/opt/OAT100/bin/attr .

If the ODB kit included user-writable files, they would be placed under
/var , and there would also be a /var/opt/OAT100 directory to contain
those files. Digital recommends this convention for consistency among user
products.

2–6 Creating the Kit Directory Structure

Figure 2–3: Directory Hierarchy for the ODB Kit

ZK-0462U-AI

brdoclib

templates

libbin

dcb_tools

src outputdata

instctrlscpssrc

opt

OAT100

2.2.2 Directory Structure for a Kernel Product Kit

You set up a kit directory structure for a kernel product in the same way
as you would for a user product. You create three directory hierarchies —
source, data, and output — and populate the source hierarchy with the
product files. Under the src directory, create a directory structure similar
to the one on the customer’s system and place the product files in /opt ,
/usr/opt , and /var/opt , as appropriate. Unlike a user product, the kit
for a kernel product (such as a device driver) requires certain files to be
present in specific directory locations.

Figure 2–4 shows the directory structure of a device driver product as it
would appear in the kit development area. The driver shown here is the
/dev/none driver produced by the fictitious company called EasyDriver,
Inc. This driver is introduced in Writing Device Drivers: Tutorial.

Creating the Kit Directory Structure 2–7

Figure 2–4: Directory Structure for the /dev/none Driver Kit

instctrlscps

outputdata

opt

ESA100

easy

ZK-1198U-AI

src

usr

The top-level directory (easy) represents the working area for all kit
development at EasyDriver, Inc. The src directory corresponds to the
customer’s root directory (/). Directories under src have a one-to-one
relationship to directories on the customer’s system. The ESA100 directory
represents the top-level product directory for the /dev/none driver.

The files needed for building a kit depend on whether the driver product
will be statically or dynamically configured on the customer’s system. For
example:

• A statically configured driver is configured in the bootpath. It is built
into the kernel. The kit for a statically configured driver can contain
either driver source files, single binary modules, or both. For example, a
device driver for a foreign device is statically configured into the kernel.
However, it cannot be distributed in source form, only single binary
(.mod) form.

• A dynamically configured driver is configured at run time. It is added
into an existing kernel but is not a permanent part of the kernel.
Whenever the system restarts, the system manager must reconfigure
the driver. Kits for dynamically configured drivers contain only single
binary modules, not the source files for the driver.

The following list describes the files that go into a device driver kit, the
directories where they reside, and the types of drivers that use them:

2–8 Creating the Kit Directory Structure

• files file fragment

Contains information about the location of the source code and modules
associated with the driver, tags indicating when the driver is loaded
into the kernel, and whether the source or binary form of the driver is
supplied to the customer. For both statically and dynamically
configured drivers, place this file in the product directory, such as
ESA100. You need to edit this file if the kit development directory
structure differs from the driver development directory structure or if
you must change the driver name for any reason. Figure 2–5 shows
which fields within the files file fragment need to change.

Figure 2–5: Editing the files File Fragment

This is the files file fragment for the /dev/none driver
used to produce the single binary module.
#
MODULE/STATIC/none standard Binary

io/ESA100/none.c module none

file fragment

Edit this field to make it match
the kit development directory
structure

Edit these fields to change
the driver name

files

ZK-1199U-AI

• sysconfigtab file fragment

Contains device special file information, bus option data information,
and information on contiguous memory usage for statically and
dynamically configured drivers. When the user installs a kernel product
kit, the driver’s sysconfigtab file fragment gets appended to the
/etc/sysconfigtab database. You should place this file fragment in
the product directory, such as ESA100. You do not need to change the
sysconfigtab file fragment unless you change the driver (subsystem)
name. The driver name appears in three places within the file, as
shown in Figure 2–6. In the example, the driver runs on a
TURBOchannel bus (indicated by the TC_Option entry), but a similar
set of bus options would be specified for other bus types.

Creating the Kit Directory Structure 2–9

Figure 2–6: Editing the sysconfigtab File Fragment

sysconfigtab file fragment

none:

Device_Dir = /dev
Device_Char_Major = ANY
Device_Char_Minor = 0
Device_Char_Files = none
Device_User = root
Device_Group = 0
Device_Mode = 666
Device_Major_Req = Same

Type C, Adpt_Config N

ZK-1203U-AI

Edit these items to point to
the correct driver name

TC_Option = Modname ’None ’, Driver_Name none,

 Module_Config_Name = none

• driver .mod object module file

Contains the single binary module for both statically and dynamically
configured drivers. You should include this file in the product directory,
such as ESA100. The subset control program references or copies this
file into the customer’s BINARY and subsys directories when the driver
is installed.

• *.c (source) and *.h (header) files

Contain the source code for the device driver. You should include these
files in the product directory, such as ESA100, when the driver is
statically configured and distributed in source form.

• driver .mth method files

Contain driver methods that are called during autoconfiguration to
create device special files for dynamically configured drivers. These files
do not appear on the driver kit. The subset control program creates
links to these files in the customer’s subsys directory when the driver
is installed. The device driver writer can tell you which method files the
subset control program should link to, typically /subsys/device.mth .
You need to link the method in a device driver kernel kit only if the
driver needs to have device special files created for its devices.

2.2.3 Directory Structure for a Foreign Device Kit

A foreign device kit contains all the files for a kernel product, but it
requires the following additional files on the media to make the media
accessible during initial system installation and bootstrap:

• A name.kit file, where name is based on the device name. You provide
this file on the foreign device kit to control the actions of the osfboot

2–10 Creating the Kit Directory Structure

utility. The osfboot utility configures device drivers into a temporary
kernel so that system managers can use devices that would not
otherwise be available during the initial installation and bootstrap of
the operating system. You place this file on the foreign device kit media
after creating the kit media with the gendisk utility. Because this file
is not part of the product and not installed on the system, it does not
belong in the kit directory structure.

• Additional name.kit files for any other foreign device kits on the same
distribution media. A single media may contain several kits and several
name.kit files.

• An /etc/sysconfigtab database. This database defines attributes of
the modules that osfboot configures. Like the name.kit file, this file
does not belong in the kit directory structure.

• Links to modules in the kit directory structure. Remember that a
foreign device kit is shipped as a UNIX file system, so it contains the
entire kit-building directory structure, not only the subsets. By creating
links, you save space because you do not create duplicate copies of files.

• Possibly a kitname .kk file, where kitname is the product name. If the
foreign device kit will be installed on a RIS server, you must supply
this file in the instctrl subdirectory.

_______________________ Note _______________________

Foreign device kits require several files that are not part of the
kit directory structure. These files are not installed on the
customer’s system, but are used by the osfboot utility.

Neither the name.kit file, the kitname .kk file, the /etc/sysconfigtab
database, nor the links are placed on the customer’s system when setld
runs; the osfboot utility and the Remote Installation Services (RIS)
procedure use them at installation time.

Figure 2–7 shows the directory structure for the /dev/edgd graphics
device driver product.

Creating the Kit Directory Structure 2–11

Figure 2–7: Directory Structure for the /dev/edgd Foreign Device Kit

instctrlscps

foreigndata

usr

src

opt

EDG100

easy

ZK-1200U-AI

output

The following sections describe the contents of the name.kit and
kitname .kk files.

2.2.3.1 The name.kit File

Commands in the name.kit file describe how osfboot needs to modify the
bootstrap link process to build this kit. When bootstrap linking from a
foreign device kit, osfboot sets the default directory to the kit root
directory. (Ordinarily, the default is /sys/BINARY on the system disk.)
Commands in the name.kit file indicate which modules should be added,
removed, or replaced in the kernel. When you specify the modules for the
device driver, the directory path is relative to the kit directory by default.

Commands in the name.kit file have the following form:

+[device :] [/ path /] file .mod

Adds file .mod from the root or the specified device. You can specify a
full path or accept the default.

−file .mod

Deletes file .mod from the module list on the default path for
file .mod .

file .mod=[device :][/ path /] new.mod

Replaces file .mod on the default path with the module you specify.

2–12 Creating the Kit Directory Structure

The foreign device kit for the /dev/edgd driver supplies one name.kit
file, which adds the edgd.mod single binary module to the kernel. In the
following example, /sys/BINARY refers to the directory on the kit, not the
system disk:

+/sys/BINARY/edgd.mod

Figure 2–8 shows how the name.kit file works with the osfboot software
during installation of a foreign device kit.

In the figure, the driver kit contains a name.kit file called edgd.kit . The
edgd.kit file instructs the osfboot utility to build and configure a
temporary /vmunix kernel that includes the /dev/edgd driver. Upon
completion, this temporary /vmunix kernel makes the /dev/edgd driver
available to handle user and system requests of a specific hardware device
during the installation of Digital UNIX.

Figure 2–8: Using a name.kit File During System Installation

edgd.mod

+/sys/BINARY/edgd.mod
osfboot reads commands from
the edgd.kit file for building the
driver into the kernel

The driver is now available during
installation of the Digital UNIX
operating system

Driver kit

.

.

.

ZK-1202U-AI

.

.

.

edgd.kit

/vmunix

2.2.3.2 The kitname.kk File

The Remote Installation Services (RIS) utility provides the ability to install
foreign device kits into a RIS area for subsequent installation on a client.

Creating the Kit Directory Structure 2–13

For more information about this feature, see Sharing Software on a Local
Area Network.

If you want to allow the device driver product to use this feature, create a
kitname .kk file in the instctrl directory. The file may be empty, but it
must exist. It indicates to RIS that a foreign device kit exists.

2–14 Creating the Kit Directory Structure

3
Creating Subset Control Programs

A subset control program (SCP) performs special tasks beyond the basic
installation managed by setld . The following are some of the reasons why
you might need to write a subset control program:

• Some of your kit’s files must be customized before the product will work
properly.

• You want to offer the user the option of installing some of the files in a
nonstandard location.

• You want to register and statically or dynamically configure a device
driver.

• Your kit depends on the presence of other products.

• You need to establish nonstandard permissions or ownership for certain
files.

• Your kit requires changes in system files, such as /etc/passwd .

• You want to provide RIS support for a foreign device.

A subset control program can perform all of these tasks. Layered product
kits designed according to the guidelines in Chapter 2 must have subset
control programs to create the required links.

This chapter describes how to write subset control programs for layered
products.

3.1 Common Characteristics of a Subset Control Program

Regardless of the specific tasks that they perform, all subset control
programs share the following characteristics:

• They are named according to certain conventions and placed in the
kit-building directory structure so that the kits utility can find them.

• They include library routines that Digital UNIX supplies.

• They are invoked at various times by the setld utility.

• If errors occur, they must exit and return an error status to setld .

Creating Subset Control Programs 3–1

• They can call routines to return subset information to global variables.
By using these routines, you do not have to hard code subset
information into the subset control program.

• They can call routines to determine whether the subset control program
is running in a dataless environment.

The following sections describe the characteristics shared by all subset
control programs.

3.1.1 Creating Subset Control Program Source Files

You create one subset control program for each subset that requires special
handling during installation. You can write the program in any
programming language, but you must take care that your subset control
program is executable on all platforms on which the kit can be installed. If
your product works on more than one hardware platform, you cannot write
your subset control program in a compiled language. For this reason,
Digital recommends that you write your subset control program as a script
for /sbin/sh . All of the examples in this chapter are written in this way.

Usually subset control programs are short. If written as a shell script, a
subset control program should be under 100 lines in length. If your subset
control program is lengthy, it is likely that you are trying to make up for a
deficiency in the architecture or configuration of the product itself.

Place all subset control programs that you write in the scps directory, a
subdirectory of the data directory. The subset control program’s file name
must match the subset name to which it belongs, and it must end with the
scp suffix. For example, the ODB product defines two subsets, named
OATODB100and OATODBDOC100. If both subsets required a subset control
program, the source file names would be OATODB100.scp and
OATODBDOC100.scp.

When you create the subsets as described in Chapter 4, the kits utility
copies the subset control programs from the scps directory to the
instctrl directory. If a subset has no subset control program, the kits
utility creates an empty subset control program file for it in the instctrl
directory.

3.1.2 Including Library Routines

Digital UNIX provides a set of routines in the form of Bourne shell script
code. These routines are in the file /usr/share/lib/shell/libscp .

Do not copy these routines into your subset control program. Such a design
would prevent your kit from receiving the benefit of enhancements or bug

3–2 Creating Subset Control Programs

fixes made in future releases. Use the shell’s source command to call in the
routines, as follows:

. /usr/share/lib/shell/libscp

3.1.3 Invoking Subset Control Programs

Your kit does not need to do anything to invoke its subset control program.
The setld utility invokes it during various phases of the installation
procedure. The subset control program can perform any tasks that it needs
during a phase, such as creating or deleting a file or displaying messages.
Certain tasks, such as performing dependency checks or creating forward
and backward links, should be performed only during specific phases, if the
installation requires them.

Figure 3–1 shows time lines of the setld utility when invoked with the −l ,
−d, and −v options. The actions that setld takes are written above the
lines; the value of the ACT environment variable and the actions that the
subset control program takes at each phase are written below the lines.

When it enters a new phase, the setld utility sets the ACTenvironment
variable to a value that corresponds to the phase, then it invokes your
subset control program. The subset control program checks the value of the
environment variable to determine what action it needs to take. In some
cases, setld also passes arguments to the subset control program. The
subset control program uses the argument values to further determine the
actions it needs to take.

Do not include a wildcard in your subset control program’s option-parsing
routine; write code only for the cases the subset control program actually
handles. For example, the subset control programs in this chapter provide
no code for several conditions under which they can be invoked. The case
statements that choose an action simply exit with zero status in these
undetected cases, and setld continues.

Creating Subset Control Programs 3–3

Figure 3–1: Time Line of the setld Utility
Display subset menu Load subsets Secure subsetssetld -l

ZK-1220U-AI

M PRE_L POST_L C INSTALL

Delete subsets

Verify subsets

setld -d

C DELETE PRE_D POST_D

setld -v

V

Determine if
subset belongs
in the menu

Unconfigure
the product

Run installation
verification program

Check for
dependencies

Create links
Lock subsets

Configure
product

Remove links
Unlock subsets

Reverse PRE_L
actions

3.1.4 Aborting the Program

Depending on the tests it makes, your subset control program could decide
at some point to abort the installation or deletion of its subset. For
example, if it checks for the existence of subsets upon which your product
depends and fails to find one or more of them, the subset control program
can abort the process.

To abort the installation or deletion of the subset, the subset control
program must return a nonzero status to setld upon exiting from the
particular phase for which it was called. If the subset control program
returns a status of 0 (zero), setld assumes that the subset control
program is satisfied that the setld process should continue.

3.1.5 Setting Global Variables

The subset control program can use global variables to access information
about the current subset. Table 3–1 lists these variables.

3–4 Creating Subset Control Programs

Table 3–1: STL_ScpInit Global Variables

Variable Description

_SUB Subset identifier, for example, OATODB100

_DESC Subset description, for example, Document Building Tools

_PCODE Product code, for example, OAT

_VCODE Version code, for example, 100

_PVCODE Concatenation of product code and version code, for example,
OAT100

_PROD Product description, for example, Orpheus Authoring Tools

_ROOT The root directory of the installation

_SMDB The location of the subset control files, ./usr/.smdb.

_INV The inventory file, for example, OATODB100.inv

_CTRL The subset control file, for example, OATODB100.ctrl

_OPT The directory specifier /opt/

_ORGEXT File extension for files saved by the STL_LinkCreate routine, set
to pre$_PVCODE

_OOPS The NULL string, for dependency checking

You can call the STL_ScpInit routine to define these variables and
initialize them to their values for the current subset. This routine
eliminates the need to hard code subset information in your subset control
program. Use STL_ScpInit in all phases except the Mphase to initialize
global variables. All variable names begin with an underscore (_) for easy
identification.

3.1.6 Working in a Dataless Environment

In a dataless environment, one computer acts as a server by storing the
operating system software on its disk. Other computers, called clients,
access this software across the Local Area Network (LAN) rather than from
their local disks. Sharing software across the network saves disk space on
each of the computers in the network.

A subset control program may need to perform differently in a dataless
environment, or disallow installation of the subset on such a system. In
particular, you should be concerned with the following issues when writing
a subset control program for installing in a dataless environment:

• If the product will be installed onto a RIS server, the subset control
program should not specify absolute pathnames. Otherwise, the setld

Creating Subset Control Programs 3–5

utility will install the product into a dataless area of
/var/adm/dms/dmsx.alpha rather than / , as if it were installing onto
the system itself.

• When running on a dataless client, the /usr area is not writable.
Therefore, you should not let the subset control program or the product
itself attempt to write to the /usr area during the C INSTALL phase.

You can use the following routines to handle dataless environments:

STL_IsDataless

Checks to see if a subset is being installed into a dataless environment.

STL_NoDataless

Declines installation of a subset into a dataless environment.

3.2 Tasks Associated with Installation Phases

The setld utility calls the subset control program at the beginning of each
phase. Before calling the subset control program, setld sets the ACT
environment variable to a value that indicates the current phase. The
subset control program uses this variable to determine what action to take.
You can write the subset control program as a series of case statements,
where each statement handles one phase.

Some tasks must take place during specific phases. For example, checking
dependency relationships between subsets must take place during the
PRE_L phase; creating links between product files and the standard
directory structure must take place during the POST_Lphase.

The following sections describe the tasks that a subset control program
may take in each phase.

3.2.1 Displaying the Subset Menu (M Phase)

At the beginning of installation, the setld utility presents a menu of
subsets that it can install. Before displaying the menu, it sets the ACT
environment variable to Mand calls the subset control program for each
subset. At this time, the subset control program can determine whether to
include its subset in the menu. The subset control program should return a
value of 0 (zero) if the subset can be included in the menu.

When it calls the subset control program during this phase, the setld
utility passes one argument, which can have one of two values:

• −l indicates that the operation is a subset load.

3–6 Creating Subset Control Programs

• −x is reserved by Digital for extraction of the subset into a RIS server’s
product area.

For example, during this phase the subset control program can issue the
machine command to verify that the subset is being installed on the
correct hardware platform. If the command returns a nonzero status, the
subset control program exits with a nonzero status.

When setld extracts a subset into a RIS server’s product area, the server
also executes the subset control program to make use of the program’s code
for the Mphase of installation. You should code the Mphase to detect the
difference between extraction of the subset into a RIS area and loading of
the subset for use of its contents. To make this determination, check the
value of the $1 command argument (either −x for RIS extraction or −l for
loading). For RIS extraction, the subset control program should do nothing
during the Mphase. When loading subsets, it should make this machine
test.

The following Bourne shell example illustrates one way to code the M
phase. The subset control program checks to see if it is running on Digital’s
Alpha processor.

case $ACT in
M)

case $1 in
-l)

["‘/bin/machine‘" = alpha] || exit 1
;;

esac
;;

...
esac

Installation for a dataless client requires that the client’s local copy of the
machine command be used even though the installation is being performed
in the dataless area on a different platform. Because the machine
command is a shell script, it can be executed on any platform.

3.2.2 Before Loading the Subset (PRE_L Phase)

After presenting the menu and before loading the subset, the setld utility
sets the ACTenvironment variable to PRE_L and calls the subset control
program for each subset. At this time, the subset control program can take
any action required to protect existing files.

For example, the subset might contain files with the same names as
existing files. Duplicating existing file names is usually considered a poor
practice. However, you might do this when installing a kit that contains

Creating Subset Control Programs 3–7

binary files that would usually be installed by other kits but which must be
replaced when your kit is installed.

The subset control program should also check for subset dependencies at
this time. A subset dependency is a condition under which a subset
depends on the existence of one or more other subsets. Because setld can
both install and remove subsets, the system administrator could attempt to
remove one or more subsets on which your product depends. Because those
subsets do not in turn depend on your product’s subsets, setld usually
removes them without question, leaving your product disabled. You can
prevent this inadvertent destruction of your product’s environment by
locking the subsets on which your subset depends. Subset locking can
occur during the POST_Lphase (see Section 3.2.3.3).

To make dependency management easier to implement, Digital provides a
set of routines in the form of Bourne shell script code. These routines are in
the file /usr/share/lib/shell/libscp .

The dependency management routines use dependency expressions to
examine conditions on the system. A dependency expression is a postfix
logical expression that describes the conditions on which the subset
depends. Dependency expressions are recursive left to right and processed
using conventional postfix techniques. Dependency expressions are defined
in Backus-Naur form, as follows:

depexp ::= wc_subset_id
| depexp not
| depexp depexp and
| depexp depexp or

The elements of a dependency expression (depexp) are as follows:

wc_subset_id

Represents a subset identifier that can contain file name expansion
characters (asterisks, question marks, or bracketed sets of characters)
as in OAT[RV]DOA*2?? .

and operator

Requires two dependency expressions. The dependency is satisfied if
both expressions are satisfied.

or operator

Requires two dependency expressions. The dependency is satisfied if at
least one of the expressions is satisfied.

3–8 Creating Subset Control Programs

not operator

Requires one dependency expression. The dependency is satisfied if the
expression is not satisfied.

The following are valid dependency expressions:

SUBSETX??0
SUBSETY200 not
SUBSET[WX]100 SUBSETY200 and
SUBSETX100 SUBSETY200 or
SUBSETX100 SUBSETY200 and SUBSETZ300 or not

The last of these expressions evaluates as follows:

• The and operator is satisfied if both SUBSETX100and SUBSETY200are
present.

• The or operator is satisfied if the and operator was satisfied or if
SUBSETZ300is present.

• The not operator is satisfied only if the combination of SUBSETX100
and SUBSETY200is not present and SUBSETZ300is not present.

You can call the following routines to perform dependency checking:

STL_DepInit

Establishes objects that the STL_DepEval routine uses. Before you use
STL_DepEval to check your subset’s dependencies, you must execute
STL_DepInit once. This routine has no arguments and returns no
status.

STL_DepEval depexp

Evaluates the dependency expression that you specify as an argument.
You can use as many invocations of STL_DepEval as you need to verify
that all your subset dependencies are met.

3.2.3 After Loading the Subset (POST_L Phase)

After loading the subset, the setld utility sets the ACTenvironment
variable to POST_Land calls the subset control program for each subset. At
this time the subset control program can make any modifications required
to subset files that are usually protected from modification when the
installation is complete, such as moving them to a different location. The
subset control program should create links and perform subset dependency
locking at this time.

As indicated in Chapter 2, a layered product’s files should be installed in
the /usr/opt and /var/opt areas and accessed by means of symbolic

Creating Subset Control Programs 3–9

links in the standard UNIX directory structure, such as /usr/bin . These
symbolic links, referred to as forward links, must be created during the
POST_Lphase, after the referent files are in place. Do not try to create
these links during the C INSTALL phase because the /usr file system is not
guaranteed to be writeable at that time. If your product includes links in
/var , create these links also in POST_L. To maintain symmetry, you must
remove links during the PRE_Dphase, not during the C DELETEphase.

Symbolic links for layered products are usually created in the standard
UNIX directories to refer to files that are actually in the layered product
areas /usr/opt and /var/opt . These links are relatively straightforward.

Sometimes you may need to create links within your product’s directories
in the layered product areas that refer to files in the standard hierarchy.
Such backward links must be created carefully because the layered
product directories can themselves be symbolic links. This means that you
cannot rely on knowing in advance the correct number of directory levels
(../) to include in the ln commands for your backward links. For
example, /var is frequently a link to /usr/var .

When a kit is installed on an NFS server, all the backward links are made
in the server’s kit area. Then, when that area is exported to clients, the
links are already in place for the client. You do not need to create any
backward links in the client area.

_______________________ Note _______________________

NFS clients importing products with backward links must have
directory hierarchies that exactly match those on the server.
Otherwise, the backward links fail.

3.2.3.1 Creating Forward Links

To create a forward link, you must first call the STL_ScpInit routine to
initialize global variables, then call the STL_LinkCreate routine. The
STL_ScpInit routine looks in the master inventory file for any entries
flagged for linking. The entry in the master inventory indicates where the
file has been installed. The STL_LinkCreate routine creates a link to that
file from a directory within the standard directory structure, such as
/usr/bin . Thus, for the STL_LinkCreate routine to work correctly, you
must specify the files that require symbolic links by setting the link bit in
the master inventory file. (See Chapter 4 for more information on the
master inventory file.)

Any nonempty directories in the inventory should leave the link bit unset
(set to 0) to maximize the performance of STL_LinkCreate . See

3–10 Creating Subset Control Programs

Example 3–2 for a subset control program that creates and removes
symbolic links.

The following routines create forward links:

STL_LinkInit

Used in the POST_Lphase to establish internal variables for the
STL_LinkCreate routine. Before you use STL_LinkCreate to create a
link, you must execute STL_LinkInit once. This routine has no
arguments and returns no status.

STL_LinkCreate

Creates forward links from the installed system to the product areas,
such as the /opt areas. Call STL_ScpInit first to initialize required
global variables. A forward link from the system to the product areas
(under /usr/opt or /var/opt) is created for each file whose link flag
is set in the master inventory file. For example, the link bit of the
./usr/opt/OAT100/bin/attr file is set as follows in the master
inventory file:

4 ./usr/opt/OAT100/bin/attr OATODB100

After STL_LinkCreate runs, a symbolic link from ./usr/bin/attr
points to ../../usr/opt/OAT100/bin/attr . If a file already exists
in the same name space, setld saves it before the link takes its place.
In the previous example, if a ./usr/bin/attr file already exists, it is
saved to ./usr/bin/attr.preOAT100 before the link gets created. All
links are created relative to the install root and are dataless safe.

3.2.3.2 Creating Backward Links

The subset control program should create backward links so that
installation on an NFS client cannot overwrite any existing backward links
in the server’s kit areas. (You do not run the subset control program on an
NFS client.) Your subset control program should create and remove
backward links in the POST_Land PRE_Dphases, respectively.

Use the STL_LinkInit and STL_LinkBack routines to create backward
links as follows, and use the rm shell command to remove them:

STL_LinkInit

Used in the POST_Lphase to establish internal variables for the
STL_LinkBack routine. Before you use STL_LinkBack to create a link,
you must execute STL_LinkInit once. This routine has no arguments
and returns no status.

Creating Subset Control Programs 3–11

STL_LinkBack link_file file_path link_path

Creates a valid symbolic link from your product area (under /usr/opt
or /var/opt) to a directory within the standard UNIX directory
structure. You can use STL_LinkBack repeatedly to create as many
links as required. link_file is the name of the file to link; file_path
is the dot-relative path of the directory where the file actually resides;
and link_path is the dot-relative path of the directory where you
should place the link. This routine returns no status.

Example 3–1 uses STL_LinkInit and STL_LinkBack in the POST_Lphase
to create a link named /usr/opt/OAT100/lib/odb_users that refers to
the real file /etc/odb_users , and removes the link in the PRE_Dphase.

Example 3–1: Example of Backward Link Creation

#! /sbin/sh

case $ACT in
...

POST_L)
STL_LinkInit
STL_LinkBack odb_users ./etc ./usr/opt/OAT100/lib
;;

PRE_D)
rm -f ./usr/opt/OAT100/lib/odb_users
;;

esac

3.2.3.3 Locking Subsets

Every subset in the system’s inventory has two lock files:

• A lock file named subset-id .lk , indicating successful installation of a
subset

• A lock file named subset-id .dw , indicating failed corrupt installation
of a subset

When it installs a subset, setld creates one of these two lock files. At that
time, the lock file is empty. Assuming successful installation, that subset is
then available for dependency checks and locking performed on behalf of
subsets installed later. A subset’s lock file can contain any number of
records, each naming a single dependent subset.

For example, the ODB kit requires that some version of the Orpheus
Authoring Tools base product be installed for the ODB product to work

3–12 Creating Subset Control Programs

properly. Suppose that the OATBASE200subset is present. When setld
installs the OATODB100subset from the ODB kit, it inserts a record that
contains the subset identifier OATODB100into the OATBASE200.lk file.
When the system administrator uses setld to remove the OATBASE200
subset, setld checks OATBASE200.lk and finds a record that indicates
that OATODB100depends on OATBASE200. Then setld displays a warning
message with this information and requires confirmation that the user
really intends to remove the OATBASE200subset.

If the administrator removes the OATODB100subset, setld removes the
corresponding record from the OATBASE200.lk file. Thereafter, the
administrator can remove OATBASE200without causing a dependency
warning.

You can call the following routines to lock subsets:

STL_LockInit

Used in the POST_Land PRE_Dphases to establish objects for the
STL_DepLock and STL_DepUnLock routines. Before you use
STL_DepLock or STL_DepUnLock to manipulate subset locks, you
must execute STL_LockInit once. Because locking and unlocking are
managed by different invocations of your subset control program,
STL_LockInit must appear in both the POST_Land PRE_Dphases.
You should code two instances of STL_LockInit rather than calling it
once before you make a decision based on the value of the ACT
environment variable. This routine has no arguments and returns no
status.

STL_DepLock subset depexp ...

Used in the POST_Lphase to add the new subset’s name to the lock
lists for each of the subsets named as arguments. (You can use
dependency expressions as arguments.) The name of the new subset is
the first argument to STL_DepLock . For example, the following call to
STL_DepLock places OATODB100in the OATTOOLS100.lk and
OATBASE2??.lk files:

STL_DepLock OATODB100 OATTOOLS100 OATBASE2??

3.2.4 After Securing the Subset (C INSTALL Phase)

After securing the subset, the setld utility sets the ACT environment
variable to C and calls the subset control program for each subset, passing
INSTALL as an argument. At this time, the subset control program can
perform any configuration operations required for product-specific tailoring.
For example, a kernel kit would statically or dynamically configure a device

Creating Subset Control Programs 3–13

driver at this point. The subset control program cannot create a layered
product’s symbolic links at this time.

The setld utility enters this phase at the following times:

• When the user invokes it with the −c option

• When the user invokes it with the −l option and without the −D flag to
specify an alternate root directory

The utility does not pass through this phase if the user loads the subset
and specifies an alternate root directory with the −D flag.

3.2.5 Verifying the Subset (V Phase)

When the user invokes the setld utility with the −v option, the utility sets
the ACTenvironment variable to V and calls the subset control program for
each subset. At this time the subset control program can perform tests to
verify that the subset is installed correctly.

The setld utility verifies the size and checksum information for each file
in the subset during loading (when the user invokes setld with the −l
option). Therefore, the setld utility does not call the subset control
program for verification during the installation process. However, in a kit
that contains multiple subsets, the last subset control program to be called
could execute an installation verification program (IVP) or a suite of IVPs
to ensure that the product works properly.

3.2.6 Before Deleting a Subset (C DELETE Phase)

When the user invokes the setld utility with the −d option, the utility sets
the ACTenvironment variable to C and calls the subset control program for
each subset, passing DELETEas an argument. At this time, the subset
control program can make configuration modifications to remove evidence
of the subset’s existence from the system. For example, a kernel kit would
unconfigure a statically or dynamically configured driver during this phase.
The subset control program cannot remove a layered product’s links at this
time.

3.2.7 Before Deleting a Subset (PRE_D Phase)

When the user invokes the setld utility with the −d option, the utility sets
the ACTenvironment variable to PRE_Dand calls the subset control
program for each subset. At this time, the subset control program can
reverse modifications made during the POST_Lphase of installation, such
as removing links and dependency locks, or restoring moved files to their

3–14 Creating Subset Control Programs

default installation locations so that setld can delete them properly. A
return status of 0 (zero) allows the delete operation to continue.

You can call the following routines to remove links and unlock subsets:

STL_LinkRemove

Removes links created by STL_LinkCreate and restores any original
files that STL_LinkCreate saved. Call STL_ScpInit first to initialize
required global variables. The STL_LinkRemove routine cannot remove
modified links.

STL_DepUnLock subset depexp ...

Removes the new subset’s name from the lock lists for each of the
subsets named as arguments.

3.2.8 After Deleting a Subset (POST_D Phase)

During the POST_Dphase, after deleting a subset, the setld utility sets
the ACTenvironment variable to POST_Dand calls the subset control
program for each subset. At this time the subset control program can
reverse any modifications made during the PRE_L phase of installation.

3.3 Subset Control File Flag Bits

As explained in Table 4–3, you can use bits 8 to 15 of the subset control
file’s flags field to specify special subset-related information. The subset
control program can read these bits from the subset control file into which
this information was placed when the kit was built. During installation,
the setld utility moves the subset control file to the ./usr/.smdb.
directory, where the subset control program can read the file as needed.

Not all subset control programs need to use the subset control file. It can be
a convenient way to pass information between subsets, if such
communication is necessary.

_____________________ Caution _____________________

If you must use the subset control file, do so with extreme care.
Bits 0 through 7 of the flags field are reserved by the setld
utility, and you should not use or modify these bits in any way.

To find the current settings of the flags field, the subset control program
should read the subset control file, looking for a line that lists the settings.
For example, the OATODBDOC100.ctrl file contains the following line:

Creating Subset Control Programs 3–15

FLAGS=34816

The value of the flags field is expressed as a decimal integer. You can use
the BitTest shell routine, contained in the file
/usr/share/lib/shell/BitTest , to test an individual bit. The following
example tests bit 11 of the flags field for the OATODBDOC100subset:

#! /sbin/sh

. /usr/share/lib/shell/BitTest

flags=‘sed -n ’/FLAGS=/s///p’ usr/.smdb./OATODBDOC100.ctrl‘
BitTest $flags 11 && {
...
}

3.4 User Product Subset Control Program

Example 3–2 shows a subset control program for the ODB product. This
program illustrates one correct method for obtaining the value of the ACT
environment variable. It uses the value of the variable to determine what
actions to perform, as follows:

• During the PRE_L phase, performs dependency checking to make sure
the base tools are already installed.

• During the POST_Lphase, creates symbolic links and locks subsets on
which it depends.

• During the C INSTALL phase, notifies the user that installation is
complete.

• During the PRE_Dphase, removes symbolic links.

• During the POST_Dphase, unlocks subsets.

The program does not handle the V phase or the C DELETEphase. When
setld invokes the program at these times, the program simply exits with a
success status.

Example 3–2: Subset Control Program for the ODB Product

#!/sbin/sh
#
Subset Control Program for OATODB??? subset

INCLUDE SCP LIBRARY FUNCTIONS

[‘/bin/machine‘ = alpha] &&
. /usr/share/lib/shell/libscp 1

BEGIN EXECUTION HERE

3–16 Creating Subset Control Programs

Example 3–2: Subset Control Program for the ODB Product (cont.)

case $ACT in 2

M) 3
case $1 in
-l)

hardware platform check
["‘./bin/machine‘" = alpha] || exit 1
;;

esac
;;

PRE_L) 4
dependency checking
STL_ScpInit
STL_DepInit

STL_DepEval ${_PCODE}TOOLS??? ||
{

_OOPS="$_OOPS
Orpheus Authoring Tools (${_PCODE}TOOLS)"
}

STL_DepEval ${_PCODE}BASE[2-9]?? ||
{

_OOPS="$_OOPS
Orpheus Authoring Base Tools, Version 2.0 or later (${_PCODE}TOOLS)"
}

["$_OOPS] &&
{

echo "
The $_DESC requires the existence of
the following uninstalled subset(s):
$_OOPS

Please install these subsets before retrying the installation.
" >&2

exit 1
}
;;

POST_L) 5
create symbolic links
STL_ScpInit
STL_LinkCreate

dependency locking
STL_LockInit
STL_DepLock $_SUB ${_PCODE}TOOLS??? ${_PCODE}BASE[2-9]?? and
;;

C) 6
STL_ScpInit
case $1 in
INSTALL)

echo "
Installation of the $_DESC ($_SUB)
subset is complete.

Before using the tools in this subset, please read the README.odb
file located in the /usr/lib/br directory for information on the
kit’s contents and for release information.

Creating Subset Control Programs 3–17

Example 3–2: Subset Control Program for the ODB Product (cont.)

"
;;

esac
;;

PRE_D) 7
remove symbolic links
STL_ScpInit
STL_LinkRemove

dependency unlocking 8
STL_LockInit
STL_DepUnLock $_SUB ${_PCODE}TOOLS??? ${_PCODE}BASE[2-9]?? and
;;

esac

exit 0 9

1 Reads in the subset control program library routines if the installation
is running on an Alpha platform.

2 Examines the ACT environment variable to select the action the subset
control program takes when called by setld .

3 For the Mphase, if the installation is running on an Alpha platform,
allows setld to continue. If not, the subset control program returns a
nonzero status and exits. As a result, setld does not present this
subset in its menu of subsets to be installed.

4 During the PRE_L phase, ensures that subsets on which the
OATODB100subset depends are installed. If they are not installed, the
subset control program describes the missing subsets and returns a
nonzero status to setld , which aborts the installation of this subset. If
multiple subsets are being installed, each is treated individually. The
$_PCODE, $_OOPS, and $_DESCvariables are defined by the
STL_ScpInit routine.

5 During the POST_Lphase, creates symbolic links from the subset by
invoking the STL_ScpInit and STL_LinkCreate routines. After
creating the links, the subset control program secures the subset by
locking the subsets on which it depends to ensure that they are not
deleted without warning the user of potential problems. The subset
control program uses the $_SUB and $_PCODEglobal variables to
define the subsets in the dependency relationship.

6 During the C phase, checks to see if the argument passed in by setld
has the value of INSTALL . If so, the program displays a message
indicating that the installation is complete. It uses STL_ScpInit and
global variables to substitute the product description ($_DESC) and
subset ID ($_SUB) within the message text.

3–18 Creating Subset Control Programs

7 During the PRE_Dphase, calls the STL_ScpInit and
STL_LinkRemove routines to remove the symbolic links that
STL_LinkCreate created during the POST_Lphase.

8 Calls the STL_LockInit and STL_DepUnLock routines to unlock the
subsets on which OATODB100depends. The $_SUB variable is defined
by the STL_ScpInit routine.

9 Ensures that the subset control program returns a success status to
setld for each successful action and for all of the possible cases that
the subset control program does not handle. Do not code exit 0
statements elsewhere in your subset control program.

3.5 Kernel Product Subset Control Program

In addition to the optional processing described in Section 3.4, a subset
control program for a kernel product such as a device driver must also
configure the driver into the kernel. When building subset control programs
for a kernel product, such as a device driver, you can choose one of the
following configuration strategies:

• Write one subset control program for a kit that contains the software
subset associated with the single binary module for a statically
configured driver.

• Write one subset control program for a kit that contains the software
subset associated with the single binary module for a dynamically
configured driver.

• Write one subset control program for a kit that contains the software
subsets associated with the device driver that can be statically or
dynamically configured.

Example 3–3 shows the subset control program for the single binary
module associated with the /dev/none driver. The user can choose to
configure this single binary module into the kernel either statically or
dynamically. The subset control program runs the doconfig utility to
configure the driver into the kernel.

Example 3–3: Subset Control Program for the /dev/none Driver

#!/sbin/sh
#
#
NONE.scp - Install the files associated with the /dev/none
device driver. This driver, implemented as a single binary
module (.mod file), can be statically or dynamically configured
into the kernel.
#

case "$ACT" in 1
C)

Creating Subset Control Programs 3–19

Example 3–3: Subset Control Program for the /dev/none Driver (cont.)

case $1 in
INSTALL) 2

echo "***** /dev/none Product Installation Menu *****"
echo "***** *****"
echo "1. Install the static device driver subset."
echo "2. Install the dynamic device driver subset."

echo" Type the number for your choice [] "

read answer
case ${answer} in

1) 3
Register the files associated with the static
/dev/none device driver product.
kreg -l EasyDriverInc ESANONESTATIC100 /usr/opt/ESA100 4

Add the files associated with the statically configured
/dev/none device driver product to the customer’s
/etc/sysconfigtab database
sysconfigdb -a -f /usr/opt/ESA100/sysconfigtab none 5

echo "The rest of the procedure will take 5-15 minutes"
echo "to rebuild your kernel, depending on the processor"
echo "type."
echo ""
echo "Starting kernel rebuild... "
if doconfig -c $HOSTNAME 6

then
echo "Kernel built successfully"

else
1>&2 echo "Error building kernel."
return 1

fi
;;

2) 7
Add the files associated with the dynamically configured
/dev/none device driver product to the customer’s
/etc/sysconfigtab database
sysconfigdb -a -f /usr/opt/ESA100/sysconfigtab none 8

Copy the none.mod file to the /subsys directory. Create
the none.mth driver method by linking to device.mth
/subsys/none.mth -> /subsys/device.mth
cp /usr/opt/ESA100/none.mod /subsys/none.mod 9
ln -s /subsys/device.mth /subsys/none.mth 10

Load the /dev/none device driver and create the device
special files
sysconfig -c none 11

echo "The /dev/none device driver was added to your
echo "/etc/sysconfigtab database." 12
;;

esac
;;

DELETE) 13
echo "***** /dev/none Product Installation Menu *****"

echo "***** *****"

3–20 Creating Subset Control Programs

Example 3–3: Subset Control Program for the /dev/none Driver (cont.)

echo "1. Delete the static /dev/none device driver subset."
echo "2. Delete the dynamic /dev/none device driver subset."

echo" Type the number for your choice [] "

read answer
case ${answer} in

1)
kreg -d ESANONESTATIC100 14

Delete the /dev/none device driver’s entry from the
/etc/sysconfigtab database

sysconfigdb -d none 15
echo "The rest of the procedure will take 5-15 minutes"
echo "to rebuild your kernel, depending on the processor"
echo "type."
echo ""
echo "Starting kernel rebuild... "
if doconfig -c $HOSTNAME 16

then
echo "Kernel built successfully"

else
1>&2 echo "Error building kernel."
return 1

fi
;;

2)
Make sure the /dev/none device driver is not currently
loaded
sysconfig -u none 17

Delete the /dev/none device driver’s entry from the
/etc/sysconfigtab database
sysconfigdb -d none 18

;;
esac
;;

esac
;;

esac
exit 0

1 Examines the ACT environment variable to select the action the subset
control program should take.

2 During the C INSTALL phase, displays a menu of installation options.
The user can choose to install the driver for static configuration or
dynamic configuration.

3 If the user chooses menu item 1, performs a static configuration.

4 Invokes the kreg utility to register the driver files with the kernel.
The kreg utility registers a device driver product by creating the
/usr/sys/conf/.product.list file on the customer’s system. This
file contains registration information associated with the static device

Creating Subset Control Programs 3–21

driver product. The subset control program calls kreg with the
following arguments:

• The −l flag

This flag indicates that the subset was loaded, and it directs kreg
to register the device driver product as a new kernel extension.

• Company name

The company name is EasyDriverInc . The kreg utility places
this name in the company name field of the customer’s
/usr/sys/conf/.product.list file.

• Software subset name

The software subset name for this device driver product is
ESANONESTATIC100. The subset name consists of the product code,
subset mnemonic, and 3-digit version code. The kreg utility
extracts information from the specified subset data and loads it
into the customer’s /usr/sys/conf/.product.list file.

• Directory name

The directory on the customer’s system where kreg copies the files
associated with this driver product is /usr/opt/ESA100 . The
kreg utility places this directory in the driver files path field of the
customer’s /usr/sys/conf/.product.list file.

5 Adds the sysconfigtab file fragment for the statically configured
driver to the system’s /etc/sysconfigtab database by calling the
sysconfigdb utility with the following arguments:

• The −a flag

This flag causes sysconfigdb to add the device driver entry to the
customer’s /etc/sysconfigtab database.

• The −f flag

This flag precedes the name of the sysconfigtab file fragment
whose device driver entry is to be added to the
/etc/sysconfigtab database. This flag is used with the −a flag.

• The sysconfigtab file fragment

The kit developer at EasyDriver, Inc. specifies the path
/usr/opt/ESA100/sysconfigtab to indicate the location of the
sysconfigtab file fragment for the /dev/none device driver.

3–22 Creating Subset Control Programs

• Device driver name

The kit developer at EasyDriver, Inc. specifies none as the name of
the driver whose associated information is added to the
/etc/sysconfigtab database. This name is obtained from the
entry_name item of the sysconfigtab file fragment, as described
in Writing Device Drivers: Tutorial.

6 Runs the doconfig utility to configure the driver into the kernel. The
subset control program returns an error if doconfig fails for any
reason.

7 If the user chooses menu item 2, performs a dynamic configuration.
8 Calls sysconfigdb to add the driver’s sysconfigtab file fragment to

the system’s /etc/sysconfigtab database.
9 Copies the dynamically configured driver’s single binary module (.mod

file) to the /subsys directory.
10 Creates a symbolic link from the /subsys/device.mth file to the

driver’s /subsys/none.mth file.
11 Calls the sysconfig utility with the −c option to reconfigure the

system and include the /dev/none driver. The −c option causes the
sysconfig utility to dynamically configure the driver into the running
system and to create device special files. The name of the driver as
specified in the sysconfigtab file fragment follows the option.

12 Displays a message notifying the user that the driver has been added
to the system.

13 During the C DELETEphase, displays a menu of options for deleting
subsets. The user must tell the setld utility whether the subset to be
deleted represents a statically configured driver or a dynamically
configured driver. The way the driver was configured determines how
the driver is deleted.

14 If the user chooses menu option 1 (delete a statically configured
driver), calls the kreg utility to deregister the driver with the kernel.
When the kreg utility is called with the -d flag, it deletes the entry
for the specified layered product from the customer’s
/usr/sys/conf/.product.list file. In this case, the layered
product is the /dev/none driver, represented by the
ESANONESTATIC100subset identifier.

15 Calls the sysconfigdb utility with the -d flag, which deletes the
static /dev/none device driver from the customer’s
/etc/sysconfigtab database.

16 Runs the doconfig utility to reconfigure the kernel. The subset
control program returns an error if doconfig fails for any reason.

17 If the user chooses menu item 2 (delete a dynamically configured
driver), calls the sysconfig utility with the -u flag to unconfigure the

Creating Subset Control Programs 3–23

dynamically configured /dev/none device driver from the running
system.

18 Calls the sysconfigdb utility with the -d flag to delete the
dynamically configured /dev/none device driver from the customer’s
/etc/sysconfigtab database.

3.6 Foreign Device Subset Control Program

Because a driver for a foreign device is installed during UNIX installation,
it must be statically configured. In addition, its subset control program
must support installation of the kit into a Remote Installation Services
(RIS) area for use by network installation clients.

The RIS utility provides the ability to install kits into a RIS area for
subsequent installation on a client system. When installing the kit into a
RIS area, the RIS installation procedure calls the subset control program,
passing EXTRACTas an argument. The RIS utility, not the setld utility,
defines this phase. The subset control program must set the ACT
environment variable to EXTRACTin this situation.

The RIS utility invokes the subset control program at the end of the extract
procedure when installing the kit on a RIS server. During this phase, the
subset control program needs to invoke the kreg utility to register the new
product with the kernel so that the driver is properly installed when the
RIS server builds a new install kernel. In addition, the subset control
program invokes the sysconfigdb utility to modify the
/etc/sysconfigtab database. The modifications to the server by kreg
and sysconfigdb occur only in the RIS area, as opposed to the server’s
root directory.

The /etc/sysconfigtab database created during this phase of the subset
control program is copied onto the client system as part of the installation.
This copy replaces the /etc/sysconfigtab database installed as part of
the base operating system subset load. This ensures that the proper
support for the driver exists on the system.

The setld utility calls the subset control program during the C INSTALL
phase when performing a network installation of RIS clients. At this time,
the subset control program calls the kreg utility to register the driver with
the new system. This adds the driver into the kernel that is built as part of
the installation process. No modification to the /etc/sysconfigtab
database is required at this point because the installation process takes
care of the required modification during the EXTRACTphase.

A kit for a foreign device may be installed by osfboot or by the RIS utility
during bootstrap linking of the kernel. The subset control program in

3–24 Creating Subset Control Programs

Example 3–4 supports both types of installation. The subset control
program does not provide a menu of configuration options because a driver
for a foreign device must be statically configured.

Example 3–4: Subset Control Program for the /dev/edgd Driver

#!/sbin/sh
#
#
EDGD.scp - Install files associated with the statically
configured /dev/edgd device driver product.
#
#

#
RIS server installation of a foreign kit
#
In the case of RIS extract, the variable ACT is NULL, and
the first parameter passed to the subset control program
specifies the phase.
#
["$ACT"] || 1

ACT=$1

case "$ACT" in

#
Configuration INSTALL phase takes place after the subsets
are loaded. This phase configures the device driver into
the system. It is invoked on all installations of the kit
during CD-ROM or RIS-client Digital UNIX installation, and
setld -l on an installed system.
#
C)

case $1 in
INSTALL) 2

echo "INSTALL phase "

Register the files associated with the static
/dev/edgd device driver product.
kreg -l EasyDriverInc EDGSTATIC100 /usr/opt/EDG100 3

Add the sysconfigtab file fragment associated with the
static /dev/edgd device driver product to the customer’s
/etc/sysconfigtab database.
sysconfigdb -a -f /usr/opt/EDG100/sysconfigtab edgd 4
;;

esac
;;

#
RIS server kit installation phase
#
EXTRACT) 5

echo "EXTRACT phase "

#
The RIS server does this with ROOT set to the RIS area,
and the RIS area must be extracted, not linked to a CD-ROM.
#

Creating Subset Control Programs 3–25

Example 3–4: Subset Control Program for the /dev/edgd Driver (cont.)

Register the files associated with the static /dev/edgd
device driver product.
kreg -l EasyDriverInc EDGSTATIC100 /usr/opt/EDG100 6

Break link between /etc/sysconfigtab and /etc/.new..sysconfigtab
so the subset control program can run sysconfigdb for the RIS
installation.
rm /etc/sysconfigtab 7

Copy the /etc/sysconfigtab database to client system.
cp /etc/.new..sysconfigtab /etc/sysconfigtab 8

Add the files associated with the static /dev/edgd device
driver product to the customer’s /etc/sysconfigtab database.
sysconfigdb -a -f /usr/opt/EDG100/sysconfigtab edgd 9
;;

#
This phase is executed on a setld -d command, which removes
the subset from the system.
#
POST_D) 10

kreg -d EDGSTATIC100 11
rm -rf /usr/opt/EDG100 12
sysconfigdb -d edgd 13

echo "The /dev/edgd device driver is no longer on the system." 14
echo "Remember to build a new kernel by running doconfig to"
echo "remove the /dev/edgd driver functionality."
;;

esac
exit 0

1 If ACT is null, sets the environment variable to the value of the first
argument. The ACT environment variable is null during the RIS
extract phase, when the RIS utility calls the subset control program
with an argument of EXTRACT.

2 Handles the C INSTALL phase when the device driver is configured
into the system.

3 Invokes the kreg utility to register the driver files with the kernel.
The kreg utility registers a device driver product by creating the
/usr/sys/conf/.product.list file on the customer’s system. This
file contains registration information associated with the static device
driver product. The subset control program calls kreg with the
following arguments:

• The −l flag

This flag indicates that the subset was loaded, and it directs kreg
to register the device driver product as a new kernel extension.

• Company name

3–26 Creating Subset Control Programs

The company name is EasyDriverInc . The kreg utility places
this name in the company name field of the customer’s
/usr/sys/conf/.product.list file.

• Software subset name

The software subset name for this device driver product is
EDGSTATIC100. The subset name consists of the product code,
subset mnemonic, and 3-digit version code. The kreg utility
extracts information from the specified subset data and loads it
into the customer’s /usr/sys/conf/.product.list file.

• Directory name

The directory on the customer’s system where kreg copies the files
associated with this driver product is /usr/opt/EDG100 . The
kreg utility places this directory in the driver files path field of the
customer’s /usr/sys/conf/.product.list file.

4 Adds the sysconfigtab file fragment for the statically configured
driver to the system’s /etc/sysconfigtab database by calling the
sysconfigdb utility with the following arguments:

• The −a flag

This flag causes sysconfigdb to add the device driver entry to the
customer’s /etc/sysconfigtab database.

• The −f flag

This flag precedes the name of the sysconfigtab file fragment
whose device driver entry is to be added to the
/etc/sysconfigtab database. This flag is used with the −a flag.

• The sysconfigtab file fragment

The kit developer at EasyDriver, Inc. specifies the path
/usr/opt/EDG100/sysconfigtab to indicate the location of the
sysconfigtab file fragment for the /dev/edgd device driver.

• Device driver name

The kit developer at EasyDriver, Inc. specifies edgd as the name of
the driver whose associated information is added to the
/etc/sysconfigtab database. This name is obtained from the
entry_name item of the sysconfigtab file fragment, as described
in Writing Device Drivers: Tutorial.

5 During the EXTRACTphase, handles installation of the kit on the RIS
server.

6 Invokes the kreg utility to register the driver files with the kernel.
The kreg utility registers a device driver product by creating the
/usr/sys/conf/.product.list file on the customer’s system. This

Creating Subset Control Programs 3–27

file contains registration information associated with the static device
driver product.

7 Breaks the link to the /etc/sysconfigtab database on the client’s
system.

8 Copies the /etc/sysconfigtab database from the RIS area on the
server to the client system.

9 Adds the sysconfigtab file fragment for the statically configured
driver to the system’s /etc/sysconfigtab database by calling the
sysconfigdb utility with the −a and −f flags.

10 Handles the POST_Dphase, when setld deletes the product subsets
from the system.

11 Calls the kreg utility with the −d flag to deregister the driver with the
kernel.

12 Removes the files from the product directory, EDG100, and any of its
subdirectories, making the product unavailable on the system.

13 Calls the sysconfigdb utility with the −d flag to delete the device
driver from the client’s /etc/sysconfigtab database.

14 Displays a message on the console terminal informing the user that
the device driver that controls the foreign device is no longer available
on the system.

3–28 Creating Subset Control Programs

4
Building Subsets and Control Files

In a kit, a subset is the smallest installable entity that is compatible with
the setld utility. It is up to you, the kit developer, to specify how many
subsets your kit has and what files each contains. A good practice is to
group files by related function or interdependence. For example, the ODB
product defines two subsets. The subset named OATODB100contains the
files needed to run the product. The subset named OATODBDOC100contains
documentation and online help files. By placing the documentation in a
separate subset, the system administrator can choose not to install that
subset if space is limited on the system.

Figure 4–1 shows how the files that make up the ODB product are grouped
into subsets. As the figure shows, the physical location of a file is not
necessarily a factor in determining the subset to which it belongs.

You specify the subsets and the files that each subset contains in a master
inventory file. In a key file, you specify the product attributes, such as the
product name and version, and the subset definitions. With these two files
in place — the master inventory and key file — you can run the kits
utility to create the subsets and control files in the output directory.

Figure 4–2 shows the contents of the output directory after the kits utility
has run.

You perform the same steps when creating subsets for user products,
kernel products, and foreign device kits. This chapter describes how to
create the master inventory and key files, and how to use the kits utility
to create subsets and subset control files. This chapter uses the ODB
product to illustrate these tasks.

Building Subsets and Control Files 4–1

Figure 4–1: Grouping Files into Subsets

ZK-1216U-AI

OADODBDOC.Links

usr

opt

OAT100

lib

br doclib

templates

bin

OATODB100 OATDBDOC100

attr

dcb.spr

dcb_diag.sed

conv_braces
docbld

unstamp

READMEdcb

attr.1

dcp.ps

docbld.1

unstamp.1

4–2 Building Subsets and Control Files

Figure 4–2: Contents of the ODB output Directory

instctrl

output

ZK-1218U-AI

OATODB100

OATODBOC100

INSTCTRL

OAT100.comp

OAT100.image

OAT100.ctrl

OAT100.inv

OATODB100.scp

OATODBDOC100.scp

4.1 Creating the Master Inventory File

You can create a master inventory file with any text editor you like, or
create the file with the touch command. The master inventory file name
must consist of the product code and version, with the letters mi as a
suffix. For example:

% touch OAT100.mi

The first time you process a kit, the master inventory file is empty. You
must enter one record for each file that belongs on the kit. To get an initial
list of these files, you can use the newinv command. Specify the file name
of the empty master inventory file and the pathname of the source
hierarchy’s top-level directory. For example:

% newinv OAT100.mi ../src

This command invokes newinv on the master inventory file for the ODB
product. It specifies the pathname to the source hierarchy as a relative
path from the current directory (data).

Building Subsets and Control Files 4–3

The newinv utility produces a list of files that are present in the source
hierarchy and places you in the vi editor, or the editor specified by your
EDITOR environment variable, so that you can make the required changes.
Remove the entries for any files that should not appear on the kit, and add
the flags, pathname, and subset identifier for each entry that should
appear on the kit.

_____________________ Caution _____________________

• Use extreme care when editing the master inventory file;
fields in this file must be separated by single tab characters,
not by spaces.

• The files listed in the master inventory file are given
dot-relative pathnames. The setld utility usually works
from the system’s root directory, but the user can specify an
alternate root directory with the −D option. For this reason,
you should not use absolute pathnames in the master
inventory file.

The master inventory file contains one record for each file in the kit. Each
record in the master inventory file consists of three fields, described in
Table 4–1.

Table 4–1: Fields in Master Inventory Records

Field Description

Flags A 16-bit unsigned integer.

Bit 1 is the v (volatility) bit. When set, changes to the existing
copy of the file can occur during kit installation. It is usually set
for files such as usr/spool/mqueue/syslog .

Bit 2 is the 1 (link) bit. When set, the STL_LinkCreate routine
invoked in the subset control program (.scp) creates a forward
link from the standard system directories to the layered product
opt areas. The remaining bits are reserved; possible values for
this field are therefore 0, 2, 4, or 6.

Pathname The dot-relative (./) pathname of the file.

Subset
identifier

The name of the subset that contains the file. Subset names
consist of the product code, subset mnemonic, and version
number. You must not include standard system directories in
your subsets. In the ODB master inventory file, several records
specify directories that are part of the standard system hierarchy.
Instead of a subset identifier, these records specify RESERVED; this
keyword prevents setld from overwriting existing directories.

4–4 Building Subsets and Control Files

Example 4–1 shows that the ODB kit has two subsets. The OATODB100
subset contains utilities and libraries and must be installed if the product
is to be used. The OATODBDOC100subset contains the product’s
documentation and is not required to make the product work.

Example 4–1: Master Inventory File for the ODB Kit

0 . RESERVED
0 ./usr/opt RESERVED
0 ./usr/opt/OAT100/OATODBDOC.Links OATODBDOC100
0 ./usr/opt/OAT100/bin OATODB100
4 ./usr/opt/OAT100/bin/attr OATODB100
4 ./usr/opt/OAT100/bin/dcb.spr OATODB100
4 ./usr/opt/OAT100/bin/dcb_defaults OATODB100
4 ./usr/opt/OAT100/bin/dcb_diag.sed OATODB100
4 ./usr/opt/OAT100/bin/docbld OATODB100
4 ./usr/opt/OAT100/bin/unstamp OATODB100
0 ./usr/opt/OAT100/lib OATODB100
0 ./usr/opt/OAT100/lib/br OATODB100
4 ./usr/opt/OAT100/lib/br/README.dcb OATODB100
4 ./usr/opt/OAT100/lib/br/attr.1 OATODBDOC100
4 ./usr/opt/OAT100/lib/br/dcb.ps OATODBDOC100
4 ./usr/opt/OAT100/lib/br/docbld.1 OATODBDOC100
4 ./usr/opt/OAT100/lib/br/unstamp.1 OATODBDOC100
0 ./usr/opt/OAT100/lib/doclib OATODB100
0 ./usr/opt/OAT100/lib/doclib/templates OATODB100
4 ./usr/opt/OAT100/lib/doclib/templates/conv.braces OATODB100
.
.
.

In the example, the ./usr/opt directory has the RESERVEDsubset
identifier, indicating that setld should not allow the directory to be
overwritten if it exists on the customer’s system. The Flags field is set to 0
(zero), indicating that this directory cannot change and that it is not linked
to another directory on the customer’s system. On the other hand, the
/usr/opt/OAT100/bin/attr file has the OATODB100subset identifier,
indicating that the file belongs in the specified subset. The Flags field is set
to 4, indicating that the file may change and that it has a link to another
file on the customer’s system.

For subsequent updates to the kit, use the existing version of the master
inventory file for the input file. The newinv utility performs the following
additional steps:

• Creates a backup file, inventory-file .bkp .

• Finds all the file and directory names in the source hierarchy.

• Produces the following sorted groups of records:

– Records that contain pathnames only, representing files now
present that were not in the previous inventory

Building Subsets and Control Files 4–5

– Records that represent files now present that were also present in
the previous inventory (this list is empty the first time you create
the inventory)

– Records that were in the previous inventory but are no longer
present (also empty the first time you create the inventory)

• Lets you edit the third of these groups, deleting records for files that no
longer belong in the kit.

• Lets you edit the group of new records by adding the flags and subset
identification fields (see Table 4–1).

• Merges the three groups of records and sorts the result to produce a
finished master inventory file that matches the source hierarchy.

4.2 Creating the Key File

The key file identifies the product that the kit represents, such as its name,
version number, and the name of the master inventory file for the kit. You
create this file in the data directory with any text editor that you like. Its
name must consist of the product code and version, with the letter k as a
suffix. For example, OAT100.k is the key file for the ODB kit. Example 4–2
illustrates this key file.

Example 4–2: Key File for the ODB Kit

Product-level attributes
#
NAME=’Orpheus Authoring Tools’
CODE=OAT
VERS=100
MI=OAT100.mi
COMPRESS=1
#
Subset definitions
#
%%
OATODB100 . 0 ’Document-Building Tools’
OATODBDOC100 . 2 ’Document Tools Documentation’

As shown in the example, the key file is divided into two sections separated
by a line that contains two percent signs (%%), as follows:

• The product attributes section describes the naming conventions for the
kit and provides kit-level instructions for the kits command. This
section of the key file consists of several lines of attribute-value pairs.
Table 4–2 describes the possible attribute-value pairs. Each attribute

4–6 Building Subsets and Control Files

name is separated from its value by an equal sign (=). You can include
comment lines, which begin with a number sign (#).

• The subset descriptor section describes each of the subsets in the kit
and provides subset-level instructions for the kits command. This
section contains one line for each subset in the kit. Each line consists of
four fields separated by tab characters. You cannot include comments in
this section of the key file. Table 4–3 describes the subset descriptor
fields. In Example 4–2, the OATODB100subset is mandatory; its Flags
field is set to 0 (zero). The OATODBDOC100subset, which contains the
documentation, is optional; its Flags field is set to 2.

Table 4–2: Key File Attributes Section

Attribute Description

NAME The product name; for example, Orpheus Authoring Tools.

Enclose the product name in single quotation marks (’) if it
contains spaces.

CODE A unique product code that consists of three numbers or uppercase
letters, for example, OAT; the first character must be a letter.
Note: The first three letters of the subset name must be the same
as the product code. Otherwise, any shell routines that the subset
control program calls to create links and STL_LinkBack will not
work.

Digital has reserved the following codes: DNP, DNU, EPI, FOR,
LSP, ORT, OSF, SNA, UDT, UDW, UDX, ULC, ULT, ULX, UWS.

Internal Digital product developers should contact the Software
New Products Committee (SNPC) through product management
to register a unique code.

Third-party developers should contact their Digital
representatives to register a unique product code.

VERS A 3-digit version code; for example, 100. The setld utility
interprets this version code as 1.0.0. The first digit should reflect
the product’s major release number, the second the minor release
number, and the third the upgrade level, if any.

MI The name of the product’s master inventory file, which consists of
the product name, code, and version plus the mi extension. You
create and maintain the master inventory file with the newinv
utility.

Building Subsets and Control Files 4–7

Table 4–2: Key File Attributes Section (cont.)

Attribute Description

ROOT Not illustrated in the example, Digital has reserved this optional
attribute for the base operating system. ROOThas a string value
that names the root image file. Do not assign this attribute for a
layered product.

COMPRESS An optional flag that is set to 1 if you want to create compressed
subset files. For kits in Direct CD−ROM (DCD) format, you must
set this flag to 0 (zero). Compressed files require less space on the
distribution media (sometimes as little as 40% of the space
required by uncompressed files), but they take longer to install
than uncompressed files. If missing, this flag defaults to 0 (zero).

Table 4–3: Key File Subset Descriptor Fields

Field Description

Subset identifier A character string up to 80 characters in length, composed of
the product code (for example, OAT), a mnemonic identifying
the subset (for example, ODB), and the 3-digit version code
(for example, 100). All letters in the subset identifier must be
uppercase.

Reserved Must be a single period (.).

Flags A 16-bit unsigned integer. Digital defines the use of the lower
8 bits. Set bit 0, the sticky bit, to indicate that the subset
cannot be removed. Set bit 1 to indicate that the subset is
optional. You can use bits 8 − 15 to relay special
subset-related information to your subset control program.

Subset description A short description of the subset, delimited by single
quotation marks (’); for example, ’Document-Building
Tools’ .
Note: The percent sign character (%) is reserved in this field
and must not be used for layered products.

4.3 Running the kits Utility

After you create the master inventory and key files, you create subsets by
running the kits utility. This command requires three arguments:

4–8 Building Subsets and Control Files

• Key file name

• Pathname for the source hierarchy

• Pathname for the output hierarchy

_______________________ Note _______________________

When you run the kits utility, make sure you are in the data
directory. If you are not in the data directory, the utility cannot
find your subset control files.

For example, the following command builds the subsets for the ODB
product kit:

% cd /dcb_tools/data
% kits OAT100.k ../src ../output

The kits utility performs the following steps and reports its progress:

1. Creates the subsets.

2. Compresses each subset, if you specify the COMPRESSattribute in the
key file.

3. Creates the installation control files listed in Table 4–4 and places
them in the instctrl directory.

4. Creates the INSTCTRL file, which contains a tar image of all the
installation control files. This file is placed in the output directory.

The subset files and the INSTCTRL file are constituents of the final kit.

Table 4–4: Installation Control Files in the instctrl Directory

File Description

product-id .comp Compression flag file. This empty file is created only if
you specified the COMPRESS attribute in the key file.
Its presence signals to setld that the subset files are
compressed. The ODB kit’s compression flag file is
named OAT100.comp .

product-code .image Image data file. This file contains size and checksum
information for the subsets.

subset-id .ctrl Subset control file. This file contains setld control
information. There is one subset control file for each
subset.

Building Subsets and Control Files 4–9

Table 4–4: Installation Control Files in the instctrl Directory (cont.)

File Description

subset-id .inv Subset inventory file. This file contains an inventory of
the files in the subset. Each record describes one file.
There is one subset inventory file for each subset.

subset-id .scp Subset control program. If you created subset control
programs for your kit, these files are copied from the
scps directory to the instctrl directory. There is one
subset control program for each subset; if you have not
created a subset control program for a subset, kits
creates a blank file.

The following sections describe the contents of the installation control files
in detail.

4.3.1 Compression Flag File

The setld utility uses the presence of the compression flag file
(product-id .comp) to determine whether the subset files are compressed.
The compression flag is an empty file whose name consists of the product
code and the version number with the string comp as a suffix; for example,
OAT100.comp .

4.3.2 Image Data File

The setld utility uses the image data file to verify that the subset images
it loads from the installation media are uncorrupted before the actual
installation process begins. The image data file name consists of the
product’s unique three-letter name with the string image for a suffix. The
image data file contains one record for each subset in the kit. The following
example illustrates OAT.image , the image data file for the ODB kit:

15923 70 OATODB100
24305 400 OATODBDOC100

Table 4–5 describes the three fields in each record.

Table 4–5: Image Data File Fields

Field Description

Checksum The modulo-65536 (16-bit) checksum of the subset file (after
compression, if the file is compressed)

Size The size of the subset file in kilobytes (after compression, if the
file is compressed)

Subset
identifier

The product code, subset mnemonic, and version number

4–10 Building Subsets and Control Files

4.3.3 Subset Control Files

The setld utility uses the subset control files as a source of descriptive
information about subsets. A control file for each subset contains the
following fields:

• NAME

Specifies a descriptive product name and subset identifier.

• DESC

Specifies a descriptive subset identifier.

• ROOTSIZE

Specifies (in bytes) the space the subset requires in the root file system.

• USRSIZE

Specifies (in bytes) the amount of the usr file system the subset
requires.

• VARSIZE

Specifies (in bytes) the amount of the var file system the subset
requires.

• NVOLS

Specifies disk volume identification information as two colon-separated
integers (the volume number of the disk that contains the subset
archive and the number of disks required to contain the subset archive).

• MTLOC

Specifies the tape volume number and subset’s location on the tape as
two colon-separated integers (the volume number of the tape that
contains the subset archive and the file offset at which the subset
archive begins). On tape volumes, the first three files are reserved for a
bootable operating system image and are not used by setld . An offset
of 0 (zero) indicates the fourth file on the tape. The fourth file is a tar
archive named INSTCTRL, which contains the kit’s installation control
files (listed in Table 4–4).

• DEPS

Specifies a dependency list (reserved — see Table 4–3).

• FLAGS

Specifies subset control flag bits.

The following example illustrates OATODBDOC100.ctrl , the control file for
the ODB kit’s OATODBDOC100subset:

NAME=’Orpheus Authoring Tools OATODBDOC100’
DESC=’Document Tools Documentation’

Building Subsets and Control Files 4–11

ROOTSIZE=0
USRSIZE=522090
VARSIZE=0
NVOLS=1:2
MTLOC=1:1
DEPS="."
FLAGS=34816

4.3.4 Subset Inventory File

The subset inventory file describes each file in the subset, listing its size,
checksum, permissions, and other information. The kits command
generates this information, which reflects the exact state of the files in the
source hierarchy from which the kit was built. The setld utility uses the
information to duplicate that state, thus transferring an exact copy of the
source hierarchy to the customer’s system. Example 4–3 shows the
inventory file, OATODBDOC100.inv, for the ODB kit’s OATODBDOC100
subset. The backslashes (\) in this example indicate line continuation and
are not present in the actual file.

Example 4–3: Sample Subset Inventory File

4 983 01851 1065 0 100644 3/21/91 100 f\
./usr/opt/OAT100/lib/br/attr.1 none OATODBDOC100

4 424997 63356 1065 10 100644 4/15/91 100 f\
./usr/opt/OAT100/lib/br/dcb.ps none OATODBDOC100

4 7283 03448 1065 10 100644 4/15/91 100 f\
./usr/opt/OAT100/lib/br/docbld.1 none OATODBDOC100

4 6911 37501 1065 0 100644 3/21/91 100 f\
./usr/opt/OAT100/lib/br/docbld.5 none OATODBDOC100

4 985 41926 1065 0 100644 3/21/91 100 f\
./usr/opt/OAT100/lib/br/unstamp.1 none OATODBDOC100

Each record of the inventory is composed of 12 fields separated by tab
characters. Table 4–6 describes the contents of these fields.

Table 4–6: Subset Inventory Field Descriptions

Field Name Description

1 Flags A 16-bit unsigned integer.

Bit 1 is the v (volatility) bit. When set, changes to
the existing copy of the file can occur during kit
installation. It is usually set for files such as
usr/spool/mqueue/syslog .

4–12 Building Subsets and Control Files

Table 4–6: Subset Inventory Field Descriptions (cont.)

Field Name Description

Bit 2 is the l (link) bit. When set, the
STL_LinkCreate routine creates a forward link
from the standard system directories to the layered
product areas. The remaining bits are reserved;
possible values for this field are therefore 0 2, 4, or 6.

2 Size The actual number of bytes in the file.

3 Checksum The modulo-65536 (16-bit) checksum of the file.

4 uid The user ID of the file’s owner.

5 gid The group ID of the file’s owner.

6 Mode The 6-digit octal representation of the file’s mode.

7 Date The file’s last modification date.

8 Revision The version code of the product that includes the file.

9 Type A letter that describes the file:

b − Block device.

c − Character device.

d − Directory containing one or more files.

f − Regular file. For regular files with a link count
greater than one, see file type l .

l − Hard link. Other files in the inventory have the
same inode number. The first (in ASCII collating
sequence) is listed in the referent field.

p − Named pipe (FIFO).

s − Symbolic link.

10 Pathname The dot-relative (./) pathname of the file.

11 Referent For file types l and s , the path to which the file is
linked; for types b and c , the major and minor
numbers of the device; for all other types, none.

12 Subset
identifier

The name of the subset that contains the file.

Building Subsets and Control Files 4–13

5
Producing Distribution Media

After you have gathered product files into subsets, you can move the
subsets onto the distribution media in one of the following formats:

• tar format

In tar format, the product files belonging to the same subset are
dumped to the distribution media as a single file. During installation,
the setld utility uncompresses the files, then moves them onto the
target system, preserving the files’ original directory structure. Kits for
user and kernel products should be in tar format.

• Direct CD−ROM (DCD) format

In DCD format, the files are written to the distribution media as a
UNIX file system. Subsets distributed in DCD format cannot be
compressed. Foreign device kits must be in DCD format.

You can distribute kits on tape, diskette, or CD−ROM, as follows:

• Magnetic tape

You can distribute kits for user and kernel products on magnetic tape.
You cannot distribute foreign device kits on magnetic tape because this
media does not support DCD format. Use the gentapes utility to
produce kits for magnetic tape media.

• Diskette

Diskettes are a good media for testing purposes or for small products,
such as device drivers. However, the product must fit on a single
diskette; it cannot span multiple diskettes. Use the gendisk utility to
produce kits for diskette media.

• CD−ROM

CD−ROM media can support large kits or multiple kits on a single
media. However, you must dedicate an entire hard disk on the kit
development system to creating a kit master. The kit is first produced
on the hard disk, then burned onto the CD−ROM. Use the gendisk
utility to produce the master kit on hard disk. Follow the CD−ROM
manufacturer’s instructions for burning the kit onto the CD−ROM
media.

Producing Distribution Media 5–1

Figure 5–1 shows the types of file formats and distribution media that are
available for layered product kits.

Figure 5–1: File Formats for Layered Product Kits

4MM Tape

ZK-1215U-AI

 User product Kernel product Foreign device
kit

tar format

Diskette

DCD format

CD-ROM Disk

The gentapes and gendisk utilities refer to a file called /etc/kitcap , a
database of kit descriptors. This database contains information about the
kits to be built on the system. Each record contains a product code and the
names of the directories, files, and subsets that make up the product kit.

This chapter describes how to edit the /etc/kitcap file and how to use
the gentapes and gendisk utilities to produce kits for each type of media.

5.1 Editing the /etc/kitcap File
Before you can build your kit, you must add a record to the /etc/kitcap
database to describe your kit. When you add a record to the file, use the
following conventions:

• Separate fields with colons (:).

• Indicate a continuation line with a backslash (\) at the end of the line.

• Begin a comment line with a number sign (#). The comment ends at the
end of the line.

• Delimit comments within a kitcap record with an opening number sign
(#) and a closing colon (:).

5–2 Producing Distribution Media

The contents of a kitcap record differ depending on whether you are going
to produce tape or disk media. Therefore, you must add one record for each
media type on which you plan to distribute your kit.

5.1.1 Tape Media kitcap Record Format

The kitcap record for tape media contains the following elements:

• Name of the product, which consists of the product code and version
number specified in the CODEand VERSfields of the key file.

• A code that indicates the media type, either TK for TK50 tapes or MTfor
9-track magnetic tapes.

• Product description. This entry is usually taken from the NAMEfield of
the key file.

• Name of the kit’s output directory, where the gentapes utility can find
the subsets.

• Three SPACEfiles, which are empty files used to ensure compatibility
with operating system kits. To create the SPACEfile in the output area
of the kit directory structure, issue the following commands:

touch space
tar -cf SPACE space

• The instctrl directory, relative to the output directory specification.

• The names of the subsets that make up the kit.

For example, the following record would be added to the /etc/kitcap file
to produce the ODB kit on TK50 tapes:

OAT100TK | Orpheus Authoring Tools: \
/dcb_tools/output:SPACE:SPACE:SPACE: \
instctrl:OATODB100:OATODBDOC100

The product name, OAT100, is the same name that appears in the key file.
The product description, (Orpheus Authoring Tools) also appears in the
key file. The name of the output directory is specified as
/dcb_tools/output , and three SPACEfiles are included for compatibility
with operating system kits. The last line of the record contains the
instctrl directory and the names of the two subsets that make up the kit
— OATODB100and OATODBDOC100.

5.1.2 Disk Media kitcap Record Format

You create a disk media kitcap record when producing kits for
distribution on diskette or CD-ROM. The kitcap record for disk media
contains the following elements:

Producing Distribution Media 5–3

• Name of the product, which consists of the product code and version
number specified in the CODEand VERSfields of the key file.

• The code HD, which indicates disk media.

• The partition on the disk media where the product should be placed.
The partition is a letter between a and h. Partition c is used most
often, as it spans the entire disk.

• Product description, which must use underscores (_) in place of spaces.
This entry is usually taken from the NAMEfield of the key file.

• Name of the kit’s output directory, where the gendisk utility can find
the product subsets.

• The instctrl directory, relative to the output directory specification.

• The names of the subsets that make up the kit.

The following example shows the kitcap record for the /dev/none driver:

ESA100HD:c:/: \
EasyDriver_none_driver: \
/easy/output:instctrl:ESANONESTATIC100

Based on the information supplied in this record, the gendisk utility
places the kit on the c partition, in the / (root) directory of the disk
media. The product description is "EasyDriver none driver" , the kit
output directory is named /easy/output , and subset control information
is in the instctrl directory. The kit consists of one subset, named
ESANONESTATIC100.

5.2 Building a Kit on Magnetic Tape Media in tar Format

With the product subsets in the output area of the kit directory structure,
use the gentapes utility to create the kit on magnetic tape. The syntax of
the gentapes command is as follows:

gentapes [-w -v] [hostname:] product-code special

The −w option specifies that gentapes writes to the tape without verifying
it; the −v option specifies that the command verifies a tape without writing
to it first. If you specify neither option, gentapes writes the tape, rewinds
it, and verifies its contents.

The optional hostname argument is the name of a remote TCP/IP network
machine that contains the /etc/kitcap file. The gentapes utility
searches /etc/kitcap on the remote machine for the product-code and
uses it for creating the media. The colon (:) is a required delimiter for
TCP/IP networks, and space is permitted between the colon and the
product-code . If you do not specify a hostname , gentapes looks on your

5–4 Producing Distribution Media

own system. You can use NFS file sharing to mount the kit files remotely
on a system with the required tape drive.

The product-code is a user-defined code that describes the product. It
should match the product name specified in the kitcap record, which is
usually a concatenation of the NAMEand VERSfields of the key file.

The special argument is the name of the device special file for the tape
device, such as /dev/nrmt0h .

The following command produces a kit for the ODB product on a magnetic
tape:

% gentapes OAT100 /dev/nrmt0h

5.3 Building a Kit on Disk Media
With the product subsets in the output area of the kit directory structure,
use the gendisk utility to create the kit on a disk.

_______________________ Note _______________________

The gendisk utility supports diskettes but does not support
creation of a chained diskette kit. A kit written to diskette must
fit on a single diskette or be packaged as a set of kits on
separate diskettes.

The syntax of the gendisk command is as follows:

gendisk [-w -v] [-d] [hostname:] product-code special

The −w option specifies that gendisk writes to the disk without verifying
it; the −v option specifies that the command verifies a disk without writing
to it first. If you specify neither option, gendisk writes the disk and
verifies its contents.

The optional hostname argument is the name of a remote TCP/IP network
machine that contains the /etc/kitcap file. The gendisk utility searches
/etc/kitcap on the remote machine for the product-code and uses it
for creating the media. The colon (:) is a required delimiter for TCP/IP
networks, and space is permitted between the colon and the
product-code . If you do not specify a hostname , gendisk looks on your
own system. You can use NFS file sharing to mount the kit files remotely
on a system with the required disk drive.

The product-code is a user-defined code that describes the product. It
should match the product name specified in the kitcap record, which is
usually a concatenation of the NAMEand VERSfields of the key file.

Producing Distribution Media 5–5

The special argument is the name of the device special file for the disk
device, such as /dev/rrz1a .

You can use gendisk to produce kits in either tar or DCD format,
depending on whether you use the −d option.

5.3.1 Preparing a Kit in tar Format

To prepare a kit on disk for a user or kernel product, you use the gendisk
utility without the −d option. You specify the product name and the device
special file name. For example, the following command creates a kit in tar
format for the /dev/none driver on the c partition of the disk named rz0 :

% gendisk ESA100 /dev/rz0c

5.3.2 Preparing a Foreign Device Kit in DCD Format

To prepare a foreign device kit, you run gendisk with the −d option. The
utility creates a kit in DCD format on diskette or hard disk, as specified in
the /etc/kitcap entry. In addition to running gendisk , you need to
include the following files to support foreign device installation and RIS:

• The name.kit file that the osfboot utility uses to interpret the kit.

• Links for modules that the osfboot utility’s bootstrap link support
references.

• The /etc/sysconfigtab database that contains configuration
information for the devices on the kit. The osfboot utility reads this
information and passes it to the bootstrap-linked /vmunix image when
it starts up.

• A kitname .kk file in the instctrl directory of the kit. The RIS utility
uses this file when installing the kit into a RIS area.

_______________________ Note _______________________

When testing a DCD kit, be sure to reference the kit media at its
mount point. For instance, if you decide to use a spare disk
partition for creating a media master area, you must reference
your kit to the mount point of the device.

To create a kit on diskette for the /dev/edgd product, you would perform
the following steps:

1. Place the diskette in the drive and format it, as follows:

5–6 Producing Distribution Media

fddisk -fmt /dev/rfd0c
Disk type: 3.50 inch, HD (1.44MB)
Number of sectors pertrack: 18
Number of surfaces: 2
Number of cylinders: 80
Sector size: 512
Interleave factor: 2:4
Formatting disk...

Percentage complete: Format complete, checking...
Quick check of disk passes OK.

2. Write a disk label to the diskette:

disklabel -wr fd0 rx23

3. Run the gendisk utility to move the kit onto the diskette. In this
example, the system name is visier .

___________________ Warning ___________________

Always answer n when the utility asks if you want to clean
the diskette. Otherwise, gendisk replaces the current disk
label with a default label.

gendisk -d EDG100 /dev/rfd0c
Generating EDG100 Kit from visier on /dev/rfd0c

WARNING: this will remove any information stored in
/dev/rfd0c
Are you sure you want to do this? (y/n): y
Do you want to clean the entire disk first? (y/n): n
Preparing /dev/rfd0c (floppy)
done.

Checking /dev/rfd0c
/sbin/usf_fdck /dev/rfd0c
** /dev/rfd0c
File system unmounted cleanly - no fsck needed

Mounting /dev/rfd0c on /usr/tmp/cd_mdt8344

Writing Images (dd=/).

Image instctrl...done.
Image EDGSTATIC100...done.

Verifying Images (dd=/).

Producing Distribution Media 5–7

Image instctrl...done.
Image EDGSTATIC100...done.

Kit EDG100 done.

Cleaning up working directories.
Unmounting /dev/rfd0c

4. Mount the diskette in preparation for making foreign device kit
modifications:

mount /dev/fd0c /mnt
cd /mnt

5. Create the kitname .kk file:

touch ./instctrl/EDGSTATIC100.kk

6. Create the /sys/BINARY and /etc directories on the diskette:

mkdir -p ./sys/BINARY
mkdir ./etc

7. Copy the name.kit file from the kit-building area to the diskette:

cp /kit_area/edgd.kit ./

8. Create a link from the driver’s module file in the kit area to the
/sys/BINARY directory:

cd ./sys/BINARY
ln -s ../../usr/opt/EDG100/edgd.mod ./edgd.mod

9. Create a link from the sysconfigtab database file in the product
area to /etc/sysconfigtab :

cd ../../etc
ln -s ../usr/opt/EDG100/sysconfigtab ./sysconfigtab
cd /

10. Move the instctrl directory to an empty directory. (The gendisk
utility places the instctrl directory in the top-level directory, by
default. To support RIS installation, you must move the instctrl
directory to an empty directory. Otherwise, the RIS utility cannot
recognize the kit.) For example:

mkdir -p /mnt/ALPHA/EDGSTATIC100
mv /mnt/instctrl /mnt/ALPHA/EDGSTATIC100

11. Unmount the diskette:

umount /mnt

To create the /dev/edgd kit on CD−ROM media, perform steps 3 through
11 and use a hard disk as the target instead of a diskette. The hard disk

5–8 Producing Distribution Media

serves as the master for the kit. You can then burn the kit onto the
CD−ROM, following the instructions that come with your CD−ROM device.

Producing Distribution Media 5–9

6
Testing the Installation of a Kit

Digital UNIX provides several options for installing layered product kits:

• The setld utility can install a kit either during system installation or
after the system is running.

• The osfboot utility installs foreign device kits before the initial
bootstrap of a system. During system installation, the setld utility
installs the kit so that it is available for subsequent reboots of the
system.

• The RIS utility integrates a foreign device kit into a RIS environment.
Client systems can then install the kit from the RIS area by calling the
setld utility.

Before shipping a product to customers, you should test the installation of
the kit by using the same procedures that your customers will use. You
should run these tests on hardware configurations that resemble your
customers’ systems. When you know that the installation procedure works
correctly, you should document it and ship it as part of the product kit.

This chapter describes how to test the installation of a user product, kernel
product, and foreign device kit, and how to install a kit in a RIS
environment.

6.1 Installing a User Product

To install a user product, log onto the system as superuser or root and run
the setld utility. For example, the ODB product could be installed as
follows. In this example, the kit is distributed on CD−ROM.

1. Place the CD−ROM in the drive.

2. Create a directory to be the mount point for the CD−ROM, such as
/cdrom :

mkdir /cdrom

3. Mount the CD−ROM on /cdrom . For example, if the CD−ROM device
were located on the c partition of rz4 , you would enter the following
command:

mount -r /dev/rz4c /cdrom

Testing the Installation of a Kit 6–1

After mounting the CD−ROM, you can change to the /cdrom directory
and view the directories on the CD−ROM.

4. Install the user product subsets:

setld -l /cdrom/ALPHA/OAT100

The setld utility displays prompts and messages to guide you
through the process of selecting the subsets you want to install. After
it loads the subsets, setld calls the subset control program for each
subset. Figure 6–1 shows the links and dependencies that the ODB
subset control program creates.

Figure 6–1: Defining Links and Dependicies for the ODB User Product

attr

Create links
from product files

to /usr/bin
Create dependency between
ODB product and base tools

usr

/

optopt

attr

opt

OAT100 BAS100

ZK-1221U-AI

...

5. When the installation is complete, unmount the CD−ROM:

umount /cdrom

See the Installation Guide for more information on using the setld utility
to install layered products.

6–2 Testing the Installation of a Kit

6.2 Installing a Kernel Product

To install a kernel product, log onto the system as superuser or root and
run the setld utility. If the driver is statically configured, you must also
reconfigure the kernel to incorporate the driver into the system.

For example, the /dev/none driver would be installed as follows, if the kit
were distributed on CD−ROM:

1. Insert the CD−ROM in the drive.

2. Create a directory to be the mount point for the CD−ROM, such as
/cdrom :

mkdir /cdrom

3. Mount the CD−ROM on /cdrom . For example, if the CD−ROM device
were located on the c partition of rz4 , you would enter the following
command:

mount -r /dev/rz4c /cdrom

4. Install the device driver subsets:

setld -l /cdrom/ALPHA/ESA100

The setld utility displays prompts and messages to guide you
through the process of selecting the subsets you want to install. After
it loads the subsets onto the system, setld invokes the subset control
program to statically or dynamically configure the driver. Figure 6–2
shows the steps the subset control program takes to statically
configure the driver; Figure 6–3 shows the steps the subset control
program takes to dynamically configure the driver.

5. When the installation is complete, unmount the CD−ROM:

umount /cdrom

6. Restart the system with the new kernel:

/usr/sbin/shutdown −r now

When the system starts up, the /dev/none driver is available on the
system.

Testing the Installation of a Kit 6–3

Figure 6–2: Statically Configuring a Driver

ZK-1213U-AI

 /

usr

ESA100

opt

.product. l ist

sysconfigtab

sysconfigtab

none.mod

fi les

sysconfigdb adds the
sysconfigtab file fragment
to the /etc/sysconfigtab
databasekreg adds the dr iver to

/usr/sys/conf/ .products. l ist

 sys

usr

Figure 6–3: Dynamically Configuring a Driver

ZK-1214U-AI

 /

usr

ESA100

opt sysconfigtab device.mth

sysconfigtab

none.mod

fi les

none.mod

none.mth

Create a link to
the driver's
method
(.mth) file

Copy module (.mod) file
to /subsys

sysconfigdb adds the
sysconfigtab f i le fragment
to /etc/sysconfigtab

etc usr

6–4 Testing the Installation of a Kit

See the Installation Guide for more information on using the setld utility
to install layered products. See doconfig (8) for more information on the
doconfig utility.

6.3 Installing a Foreign Device Kit

You install a foreign device kit with the osfboot utility, which runs from
the console prompt. To follow this procedure, you need two kits: the
CD−ROM that contains the Digital UNIX base system and the diskette or
CD−ROM that contains the foreign device kit. You specify the kit for the
foreign device during the initial installation and bootstrap of the system.
The osfboot utility runs the device driver from the foreign device kit
during installation, then builds it into the kernel during the bootstrap
operation.

Figure 6–4 shows the steps that osfboot takes to build a kernel that
includes the foreign device.

Testing the Installation of a Kit 6–5

Figure 6–4: Bootstrap Linking with a Foreign Device Kit

ZK-1219U-AI

osfboot brings base system
files into memory.

For each module on the kit,
osfboot makes an entry in
cfgmgr_subsys_list and
reads the module into memory.

osfboot merges the /etc/sysconfigtab
databases from the base system and
layered product kits.

Base system

Configuration
subsystem list

.

.

.

Base System
CD-ROM Kit

Base System
CD-ROM Kit

Layered Product
Kit

name1.kit:
module1.mod
module2.mod

name2.kit
module3.mod
module4.mod

/etc/sysconfigtab

module1.mod
module2.mod
module3.mod
module4.mod

module1.mod
module2.mod
module3.mod
module4.mod

sysconfigtab
database

The following steps show how to install the /dev/edgd driver as a foreign
device:

1. Insert the Digital UNIX kit in the CD−ROM drive.

2. From the console prompt, invoke the osfboot utility with the −fl
option and the fg flags, as follows:

6–6 Testing the Installation of a Kit

>>> boot −fl "fg" dka400

The utility reads bootstrap code from the CD−ROM.

3. The osfboot utility prompts you for the name of the device from
which to install the foreign device kit. Enter the appropriate console
firmware device name, for example (for a diskette device):

Enter Device Name: dva0

For a list of device names, enter the following command:

>>> sho dev

4. The osfboot utility prompts you for the name of the foreign device
kit. With the information you supply here, the utility builds a list of
the modules that will go into the kernel. To install the /dev/edgd
driver, enter the following:

Enter Kit Name: edgd.kit

5. Insert the media and press the return key:

Insert media for kit ’dva0:edgd.kit’, press Return
when ready: Return

6. You may want to install more than one foreign device kit. The osfboot
utility prompts you to enter more kit names. These names are also
added to the list of modules that will go into building the kernel. Each
time you enter a kit name, you must also insert the media that
contains the kit. Press the return key (without entering a kit name) in
response to this prompt to indicate that there are no more kits:

Enter Kit Name: Return

7. When all the kit names have been entered, osfboot prompts you to
reinsert the media that contains the Digital UNIX base system. This is
to ensure that you have not replaced the base system kit with a
foreign device kit during the previous steps:

Insert boot media, press Return
when ready: Return

8. At this point, osfboot prompts you to reenter the kits that you want
included in the kernel. This time, osfboot reads the modules from the
kits and links them into the kernel.

9. When the link operation has completed, osfboot prompts you to
reboot the system. As the system boots up, you must reinsert the
foreign device kit one more time to load the subsets and install them
on the system.

Insert media for kit ’dva0:edgd.kit’, press Return
when ready: Return

Testing the Installation of a Kit 6–7

Insert boot media, press Return when ready: Return

This step repeats once for each kit you named. Later in the installation
procedure, the setld utility installs the kits and builds a kernel
configuration that includes them.

6.4 Installing a User or Kernel Product into a RIS Area

You can use the RIS utility to install a kernel product kit onto a RIS server
for use by RIS client installations.

To install the product in the RIS area on the server, run the ris utility as
follows:

1. Log onto the server as root and invoke the ris utility:

/usr/sbin/ris

2. From the RIS Utility Main Menu, choose INSTALL software
products by entering i at the prompt:

*** RIS Utility Main Menu ***

Choices without key letters are not available.

a) ADD a client
d) DELETE software products
i) INSTALL software products

) LIST registered clients
) MODIFY a client
) REMOVE a client

s) SHOW software products in remote installation
environments

x) EXIT
Enter your choice: i

3. The RIS Software Installation Menu appears. At the prompt, enter
option 1, Install software into a new area or option 2, Add
software into an existing area :

RIS Software Installation Menu:

1) Install software into a new area
2) Add software into an existing area
3) Return to previous menu

Enter your choice:

See Sharing Software on a Local Area Network for more information
on installing software in the RIS area.

6–8 Testing the Installation of a Kit

To install the product kit from the RIS server onto the client system,
register the client system with the RIS server, then use the setld utility,
as follows:

1. Run the RIS utility on the server, and choose ADD a client from the
main menu:

/usr/sbin/ris
#
*** RIS Utility Main Menu ***

Choices without key letters are not available.

a) ADD a client
d) DELETE software products
i) INSTALL software products

) LIST registered clients
) MODIFY a client
) REMOVE a client

s) SHOW software products in remote installation
environments

x) EXIT
Enter your choice: a

Enter the client information requested by the prompts, as described in
Sharing Software on a Local Area Network.

2. As superuser or root on the client system, install the product subsets
from the RIS area. For example, if the RIS area were on node visier ,
you would enter the following command:

setld −l visier:

The setld utility displays prompts and messages to guide you
through the installation process. See the Installation Guide for more
information on using the setld utility to install layered products.

6.5 Installing a Foreign Device Kit into a RIS Area

To install a foreign device kit into a RIS area, you must first install Digital
UNIX Version 4.0 into an extracted RIS area.

1. On the RIS server, choose INSTALL software products from the
RIS Utility Main Menu.

*** RIS Utility Main Menu ***

Choices without key letters are not available.

a) ADD a client
d) DELETE software products
i) INSTALL software products

Testing the Installation of a Kit 6–9

) LIST registered clients
) MODIFY a client
) REMOVE a client

s) SHOW software products in remote installation
environments

x) EXIT

Enter your choice: i

2. From the RIS Software Installation Menu, choose Add software
into an existing area . The RIS utility displays the name of the
existing environment. In this example, the name is
/usr/var/adm/ris/ris0.alpha .

RIS Software Installation Menu:

1) Install software into a new area
2) Add software into an existing area
3) Return to previous menu

Enter your choice: 2
You have chosen to add a product to an existing
environment.

The existing environment is /usr/var/adm/ris/ris0.alpha.

3. The RIS utility prompts you to enter the location of the software that
you want to install. In this example, the name is
/floppy/ALPHA/EDGSTATIC100 . The path you enter is the name of
the top-level directory on the distribution media for the product kit.

Enter the device special file name or the path of the
directory where the software is located (for example,
/mnt/ALPHA/BASE): /floppy/ALPHA/EDGSTATIC100

4. The RIS utility displays a list of the base products that are installed in
the RIS area. You must choose one; this is the base product to which
the foreign device kit will be added. In this example, there is only one
base product to choose from.

Please select one of the following products to
base against or add the kit to.

1 ’Digital UNIX V4.0 Operating System (Rev 375)’

Enter your selection or (return) to quit : 1

5. The RIS utility loads the product from the distribution media into the
RIS area in preparation for the installation. No user interaction is
required at this time.

Preparing new product area...
Working....Mon Apr 29 15:06:33 EDT 1996
Working....Mon Apr 29 15:08:34 EDT 1996
Working....Mon Apr 29 15:10:35 EDT 1996

.

.

.

6–10 Testing the Installation of a Kit

6. When all the subsets have been loaded, the RIS utility lets you choose
which subsets you want to install. In this example, the /dev/edgd kit
contains only one subset.

The subsets listed below are optional:

There may be more optional subsets than can be presented
on a single screen. If this is the case, you can choose
subsets screen by screen or all at once on the last
screen. All of the choices you make will be collected
for your confirmation before any subsets are extracted.

1) EDGD kit subset

Or you may choose one of the following options:

2) ALL of the above
3) CANCEL selections and redisplay menus
4) EXIT without extracting any subsets

Enter your choices or press RETURN to redisplay menus.

Choices (for example, 1 2 4-6): 1

7. The RIS utility gives you the chance to confirm your choice.

You are installing the following optional subsets:

EDGD kit subset

Is this correct? (y/n): y

8. The RIS utility extracts the foreign device kit into the RIS area. No
user interaction is needed at this time.

Checking file system space required to extract selected
subsets:

File system space checked OK.
Extracting EDGSTATIC100...
Media extraction complete.
.
.
.
EXTRACT phase for EDGD kit installation into RIS area

9. The foreign device has been extracted into the RIS area and installed
into a new version of the base system. If you choose SHOW software
products in remote installation environments from the RIS
Utility Main Menu, you can see that there are now two base products
— Digital UNIX Version 4.0 without the /dev/edgd foreign device kit
and Digital UNIX Version 4.0 with the /dev/edgd foreign device kit.

*** RIS Utility Main Menu ***

Choices without key letters are not available.

a) ADD a client
d) DELETE software products
i) INSTALL software products

) LIST registered clients

Testing the Installation of a Kit 6–11

) MODIFY a client
) REMOVE a client

s) SHOW software products in remote installation
environments

x) EXIT

Enter your choice: s

1 /usr/var/adm/ris/ris0.alpha
’Digital UNIX V4.0 Operating System (Rev 375)’
’Digital UNIX V4.0 Operating System (Rev 375)’ w/

’EDGSTATIC software version 1’

The foreign device subsets are now available in the RIS area. However,
before a client can perform an installation from this RIS area, you must
reigister the client, as follows:

1. On the RIS server, choose Add a client from the RIS Utility Main
Menu.

*** RIS Utility Main Menu ***

Choices without key letters are not available.

a) ADD a client
d) DELETE software products
i) INSTALL software products

) LIST registered clients
) MODIFY a client
) REMOVE a client

s) SHOW software products in remote installation
environments

x) EXIT

Enter your choice: a

2. Through a series of prompts, the RIS utility lets you know what
information you need to enter and gives you the opportunity to exit
from the procedure.

You have chosen to add a client for remote installation
services.

The following conditions must be met to add a client:

1. You must know the client processor’s hostname
2. The client’s hostname must be in your system’s

host database(s).
3. You must know whether the client is on an

Ethernet, FDDI, or Token Ring network.
4. You must know the client’s hardware Ethernet,

FDDI, or Token Ring address if the client is
registering to install operating system software.

5. If the client and the server reside on different
subnets, you will need the address of the
gateway(s) that the client can use to
communicate with the server.

Do you want to continue? (y/n) [y]: y

6–12 Testing the Installation of a Kit

3. The RIS utility prompts you for the client processor’s host name. In
this example, the name is xnite .

Enter the client processor’s hostname or press RETURN
to quit: xnite

The existing environment is /usr/var/adm/ris/ris0.alpha

4. The RIS utility prompts you to choose the products for the client to
install. In this example, the user chooses the base system that includes
the /dev/edgd foreign device.

Select one or more products for the client to install
from /usr/var/adm/ris/ris0.alpha:

Product Description
1 ’Digital UNIX V4.0 Operating System (Rev 375)’
2 ’Digital UNIX V4.0 Operating System (Rev 375)’ w/

’EDGSTATIC software version 1’

The following products: 1 2, are Operating System Base
products. Please select only one of these products when
making your selections.

Enter one or more choices as a space-separated list
(for example, 1 2 3): 2

5. The RIS utility displays the product you have chosen and gives you the
opportunity to confirm your choice.

You chose the following products:

2 ’Digital UNIX V4.0 Operating System (Rev 375)’ w/
’EDGSTATIC software version 1’

Is that correct? (y/n) [y]: y

6. The RIS utility prompts you to enter the network type and the client
processor’s hardware network address.

Network type:
1) Ethernet or FDDI
2) Token Ring

Enter your choice: 1

Enter the client processor’s hardware network address.
For example, 08-00-2b-02-67-e1: 08-00-2b-e2-3a-43

7. If this is the first client added for this product, RIS builds the kernel
at this time. No user interaction is required.

A new generic install kernel for the client systems will
now be built which includes support for the 3rd party
device(s).

*** PERFORMING KERNEL BUILD ***
Working....Mon Apr 29 14:37:39 EST 1996
Working....Mon Apr 29 14:39:40 EST 1996

.

.

Testing the Installation of a Kit 6–13

.

8. Preparation of the kit in the RIS area is complete. You may exit from
the RIS utility.

The client system can now boot over the network from the RIS area, using
the kernel that contains the foreign device subsets. For example:

>>> boot ewa0

The bootup procedure installs the kernel from the RIS area, then performs
a normal installation — loading the subsets that make up the system and
including the subsets from the foreign device kit.

6–14 Testing the Installation of a Kit

A
Digital UNIX Standard Directory

Structure

Digital recommends that you install products in the /opt , /usr/opt , and
/var/opt directories. As part of installation, the subset control program
that you provide creates links from these directories to directories that
would typically be in the users’ search paths. Most Digital UNIX systems
use the standard directory structure shown in this appendix. Placing your
product within this standard directory structure can help to ensure that
your product installs successfully on most customer systems.

Figure A–1 and Figure A–2 show the directories in the Digital UNIX
standard directory structure. These are the directories that you should use
to ensure that your product is portable to other systems. (Some of the
illustrated directories are actually symbolic links.)

Digital UNIX Standard Directory Structure A–1

Figure A–1: Base System Directory Structure
/ dev

 etc nls
 lost+found
 opt
 sbin

 init.d
 rc0.d
 rc2.d
 rc3.d

 BINARY

 usr bin
 lib

 bin
 ccs
 include

 lbin
 lib

 sbin
 share
 shlib

 examples

 machine
 net
 netinet
 netns
 nfs
 protocols
 rpc
 servers
 sys
 tli
 ufs

 spell
 uucp

 dict
 lib
 man

 tmac
 terminfo
 tabset
 ms
 me

 man1

 man8
.
.
.

 cat1

 cat8
.
.
.

 opt

 mach

ZK-0473U-AI

 tmp

 adm var

 sys
 conf

 tmp

 include

 vmunix

 subsys

 crash

 sys

 cron
 sendmail

 spool

 BINARY

 syslog

 opt

 lpd
 mail
 mqueue
 uucp subsys

 run

Table A–1 describes the contents and purpose of the directories shown in
Figure A–1.

A–2 Digital UNIX Standard Directory Structure

Table A–1: Contents and Purpose of Base System Directories

Directory Description

/ The root directory of the file system

/dev/ Block and character device special files

/etc/ System configuration files and databases; nonexecutable files

nls/ National language support databases

/lost+found/ Files located by fsck

/opt/ Optional for layered products, such as applications and device
drivers

/sbin/ Commands essential to boot the system (most of these
commands depend on shared libraries or the loader and have
other versions in /usr/bin or /usr/sbin)

init.d/ System state rc files

rc0.d/ The rc files executed for system-state 0

rc2.d/ The rc files executed for system-state 2

rc3.d/ The rc files executed for system-state 3

/subsys/ Dynamically configured kernel modules required in
single-user mode

/tmp/ System-generated temporary files, usually not preserved
across a system reboot.

/usr/ Most user utilities and applications

bin/ Common utilities and applications

ccs/ C compilation system; tools and libraries used to generate C
programs

bin/ Development binaries such as cc , ld , and make

lib/ Development libraries and back ends

include/ Program header (include) files; not all subdirectories are
listed in this appendix

mach/ Mach-specific C include files

machine/ Machine-specific C include files

net/ Miscellaneous network C include files

netinet/ C include files for Internet standard protocols

netns/ C include files for XNS standard protocols

nfs/ C include files for Network File System

protocols/ C include files for Berkeley service protocols

Digital UNIX Standard Directory Structure A–3

Table A–1: Contents and Purpose of Base System Directories (cont.)

Directory Description

rpc/ C include files for remote procedure calls

servers/ C include files for servers

sys/ System C include files (kernel data structures)

tli/ C include files for Transport Layer Interface

ufs/ C include files for UNIX File System

examples/ Subdirectories of programming examples

lbin/ Back-end executable files

spell/ Spell back-end

uucp/ UNIX-to-UNIX Copy (UUCP) programs

lib/ Links to libraries located elsewhere (/usr/ccs/lib),
(/usr/libin), (/usr/share/lib), (/X11/lib); included for
compatibility

opt/ Optional layered products, such as applications and device
drivers

sbin/ System administration utilities and system utilities

share/ Architecture-independent ASCII text files

dict/ Word lists

lib/ Various libraries

me/ Macros for use with the me macro package

ms/ Macros for use with the ms macro package

tabset/ Tab description files for a variety of terminals; used in
/etc/termcap

terminfo/ Terminal information database

tmac/ Text-processing macros

man/ Online reference pages

man1/ Source for user command reference pages

man2/ Source for system call reference pages

man3/ Source for library routine reference pages

man4/ Source for file format reference pages

man5/ Source for miscellaneous reference pages

man7/ Source for device reference pages

A–4 Digital UNIX Standard Directory Structure

Table A–1: Contents and Purpose of Base System Directories (cont.)

Directory Description

man8/ Source for administrator command reference pages

cat1-cat8 Formatted versions of files in man1 − man8

shlib/ Binary-loadable shared libraries; shared versions of libraries
in /usr/ccs/lib

sys/ System configuration files

BINARY Object files

conf/ Kernel configuration control files

include/ Header files

/var/ Multipurpose log, temporary, varying, and spool files

adm/ Common administrative files and databases

crash/ For saving kernel crash dumps

cron/ Files used by cron

sendmail/ Configuration and database files for sendmail

syslog/ Files generated by syslog

opt/ Optional layered products, such as applications and device
drivers

run/ Files created when daemons are running

spool/ Miscellaneous printer and mail-system spooling directories

lpd/ Line printer spooling directories

mail/ Incoming mail messages

mqueue/ Undelivered mail queue

uucp/ UUCP spool directory

subsys/ Loadable kernel modules required in multiuser mode

tmp/ Application-generated temporary files that are kept between
system reboots

/vmunix Pure kernel executable (the operating system loaded into
memory at boot time)

Digital UNIX Standard Directory Structure A–5

Figure A–2: X Directory Structure
/ usr X11 bin

ZK-0915U-AI

 dxpaint

 include
 DXm
 Mrm
 uil
 X11
 Xm

 bitmaps
 extensions
 Xaw

 DPS

 examples

 Xserver

 motif

 shlib X11

 lib
 dxbook
 cda

 emacs

 xdm

 X11

 config
 DPS
 fonts
 fs
 help ...

 app-defaults

 keymaps
 twm
 uid
 x11perfcomp

 user ...

 100dpi
 75dpi
 decwin ...

 Speedo
 Type1
 Type1Adobe ...

 misc

 bitmaps
 appdata

 bin
 etc
 info
 lisp
 lock

 null

Table A–2 describes the contents and purpose of the directories shown in
Figure A–2.

Table A–2: Contents and Purpose of X Directories

Directory Description

/usr/ Most user utilities and applications

bin/ Common utilities and applications

X11/ X applications

A–6 Digital UNIX Standard Directory Structure

Table A–2: Contents and Purpose of X Directories (cont.)

Directory Description

demos/ Miscellaneous demo programs

examples/ Example programs

dxpaint/ Sample Paint image

motif/ Motif example programs

include/ Header files

DPS/ Files for DPS

DXm/ Files for libDXm

Mrm/ Files for libMrm

uil/ UIL header files

X11/ X C header files

bitmaps/ X bitmaps

extensions/ Header files for use with X extensions

Xaw/ Files for libXaw

Xserver/ Header files used for loadable X server libraries

Xm/ Header files for libXm

lib/ Static archive X libraries

cda/ CDA style guides

dxbook/ Default Bookreader bookshelf

emacs/ Emacs directory base

X11

app-defaults/ System-wide resource files for X client applications

bitmaps/ Program-specific bitmaps

appdata/ Generic program-specific data

config/ Imake configuration files

DPS/ Display Postscript files

fonts/ Font files

100dpi/ 100 dpi fonts from X Consortium

75dpi/ 75 dpi fonts from X Consortium

decwin/ DECwindows fonts

100dpi/ 100 dpi fonts

Digital UNIX Standard Directory Structure A–7

Table A–2: Contents and Purpose of X Directories (cont.)

Directory Description

75dpi/ 75 dpi fonts

misc/ Fonts from X Consortium

Speedo/ Speedo scalable fonts

Type1/ Type1 scalable fonts

Type1Adobe/ Adobe Type1 scalable fonts

afm/ Adobe font metrics

user Fonts from layered products and local installations

100dpi/ 100 dpi fonts

75dpi/ 75 dpi fonts

misc/ Other fonts

fs/ Fontserver config and error log files

help/ Help files for X client applications; subdirectories as
applicable

keymaps/ Keymaps for various keyboards

twm/ Default configuration for twm window manager

uid/ User Interface Definitions for X client applications

x11perfcomp/ Scripts for analyzing x11perf output

xdm/ X Display Manager configuration and resource files, and
error log

shlib/ Shareable libraries

X11/ Shareable libraries loaded by X server

A–8 Digital UNIX Standard Directory Structure

Glossary

This glossary defines terms used in this manual.

attribute-value pair
In a product kit’s key file, attribute-value pairs specify the names and
values of the attributes of the kit, such as the name and version of the
product. Attribute-value pairs control how the kits utility builds the kit
and how the setld utility installs it.

backward link
A backward link is a symbolic link from the directories in a layered product
area to files in the standard hierarchy. The subset control program for a
product creates backward links during installation.

control files
The collection of files that the kits utility places in the instctrl
directory are referred to as control files. These files include the compression
flag file, image data file, subset control file, subset inventory file, and
subset control programs.

data hierarchy
In the kit-building directory structure, the data heirarchy contains the files
that direct the setld utility in making subsets for the kit, such as the
master inventory and key files. An scps subdirectory contains subset
control programs written by the kit developer.

dependency expression
A dependency expression is a postfix logical expression consisting of subset
identifiers and relational operators to describe the current subset’s
relationship to the named subsets. Subset control programs evaluate
dependency expressions under control of the setld utility. See also
locking and subset dependency.

distribution media
The distribution media for a product kit may be diskette, CD-ROM, or tape.
A hard disk is sometimes referred to as a distribution media because it is
used as the master copy for a CD-ROM kit.

/etc/sysconfigtab database
The sysconfigtab database contains information about the attributes of
subsystems, such as device drivers. Device drivers supply attributes in

Glossary–1

sysconfigtab file fragments, which get appended to the
/etc/sysconfigtab database when the subset control program calls the
sysconfigdb utility during the installation of a kit. See also sysconfigdb
utility.

foreign device kit
A foreign device kit contains a kernel product that must be installed during
the initial installation and bootstrap linking of the Digital UNIX system.
See also kernel product and layered product.

forward link
A foward link is a symbolic link that connects a product file in the /opt ,
/usr/opt , or /var/opt directory to a standard UNIX directory, such as
/usr/bin . Forward links allow layered products to be installed in a
central location (the opt directories) and still be accessible to users
through the standard directory structure.

kernel
The kernel is a software entity that runs in supervisor mode and does not
communicate with a device except through calls to a device driver.

kernel product
A kernel product is a layered product that runs in kernel space. Users do
not directly run kernel products, but the operating system and utilities
access them to perform their work. See also layered product.

key file
A key file identifies the product that the kit represents. You create this file
in the data directory before running the kits utility.

kit
A kit is a collection of files and directories that represent one or more
layered products. It is the standard mechanism by which layered product
modifications are delivered and maintained on a Digital UNIX system. See
also layered product.

kits utility
The kits utility creates subsets according to the specifications you define
in the master inventory file and key file. See also key file, master
inventory file, and subset.

layered product
A layered product is an optional software product designed to be installed
as an added feature of the Digital UNIX system. See also foreign device
kit, kernel product, and user product.

Glossary–2

locking
In products installed by the setld utility, locking inserts a subset name in
the lock file of another subset. Any attempt to remove the latter subset
warns the user of the dependency. The user can choose whether to remove
the subset in spite of the dependency.

master inventory file
A master inventory file lists all the product files and the subsets in which
they belong. You create this file in the data directory by running the
newinv utility. The file must exist before you can create the product
subsets. See also data directory, newinv utility, and subset.

newinv utility
The newinv utility creates the master inventory file from the list of files in
the current working directory. The list does not contain all the information
needed in the master inventory file. You must edit this file to include
information about the subsets to which the files belong. See also master
inventory file.

output hierarchy
The output hierarchy contains the result of the kit-building process,
including the subsets that make up the kit and installation control files to
direct the setld utility during the installation of the product.

osfboot utility
The osfboot utility performs the initial installation and bootstrap of a
Digital UNIX system.

RIS
See Remote Installation Services.

Remote Installation Services
Remote Installation Services (RIS) is a utility that lets users install kits
into a RIS area for subsequent installation over a network onto client
systems. Using a RIS server makes installation of layered products faster
and easier for all the clients on the network.

SCP
See subset control program.

setld utility
The setld utility allows the transfer of the contents of a layered product
kit to a customer’s system.

source hierarchy
In the kit-building directory structure, the source hierarchy contains the
files that make up the product. These files are grouped into subsets by the
kits utility.

Glossary–3

subset
A subset is the smallest installable component of a product kit for the
setld utility. It contains files of any type, usually related in some way.

subset control program
A subset control program (SCP) is a program written by the kit developer
to perform installation operations that the setld utility would not
otherwise perform. The setld utility invokes the subset control program
several times during the installation of the kit.

subset dependency
A subset dependency is the condition under which a given subset requires
the presence (or absence) of other subsets in order to function properly. See
also dependency expression and locking.

sysconfigdb utility
The sysconfigdb utility is a system management tool that maintains the
sysconfigtab database. See also /etc/sysconfigtab database.

user product
A user product is a layered product that runs in user space. Commands,
utilities, and user applications fall into this category. See also layered
product.

Glossary–4

Index

A
ACT environment variable , 3–3,

3–6
/dev/edgd subset control

program, 3–26
/dev/none subset control

program, 3–21
ODB subset control program,

3–18
setting for RIS support, 3–24

and operator, 3–8

B
backup file

for master inventory file, 4–5
backward link, 3–11

(See also link)
BitTest shell routine, 3–16
master inventory backup file, 4–5
bootstrap files, 2–1
bootstrap link, 1–5

(See also osfboot utility)

C
.c (source) files , 2–10
C DELETE phase, 3–14

/dev/none subset control
program, 3–23

C INSTALL phase, 3–13
/dev/edgd subset control

program, 3–26
/dev/none subset control

program, 3–21
ODB subset control program,

3–18

CD–ROM media, 5–1
checksum field

image data file, 4–10
subset inventory file, 4–12

client
(See RIS)

CODE attribute
key file, 4–7

.comp installation control file , 4–9
COMPRESS attribute

key file, 4–8
compression flag file, 4–9, 4–10
configuration

device driver, 2–8
control flag bit, 3–15

subset control file, 4–11
.ctrl installation control file , 4–9
_CTRL global variable, 3–5

D
data hierarchy, 1–4, 2–4
dataless environment, 3–5
date field

subset inventory file, 4–12
DCD format, 1–3

layered product files, 5–1
preparing a kit in, 5–6

dependency expression, 3–8
dependency list, 4–11
dependency lock

creating, 3–8
removing, 3–15

_DESC global variable, 3–5
/dev/edgd device driver, 1–6,

2–11, 3–25, 6–6
/dev/none device driver, 1–6, 2–7,

3–19, 5–4, 5–6, 6–3

Index–1

device driver
(See also kernel product)
kit directory structure, 2–7

Direct CD-ROM format
(See DCD format)

directory structure, 1–4, 2–1
foreign device kit, 2–10
kernel product kit, 2–7
kit-building, 2–3
standard Digital UNIX, 2–1, A–1
user product kit, 2–5

disk controller, 1–2
disk media

building a kit on, 5–5
kitcap record, 5–3

disk partition
in kitcap record, 5–4

disk volume identification
in subset control files, 4–11

diskette media, 5–1
distribution media

(See media)
dynamic configuration, 2–8

E
/etc/kitcap file, 5–2
/etc/sysconfigtab database, 2–9,

2–11, 3–22, 3–23, 3–24, 3–28,
5–6

EXTRACT phase
/dev/edgd subset control

program, 3–27
RIS installation procedure, 3–24

F
file

attributes, 2–5n
formats, 5–1
lock, 3–12
name expansion in dependency

expressions, 3–8
file system

standard directory structure,
A–2, A–3

X directory structure, A–6
files file fragment, 2–9
flags field

key file, 4–8
master inventory file, 4–4
subset inventory file, 4–12

foreign device, 1–2
installing, 6–5
kit directory structure, 2–10
preparing a kit in DCD format,

5–6
subset control program, 3–24

forward link, 3–9
creating, 3–10

G
gendisk utility, 5–2

preparing a kit in DCD format,
5–6

preparing a kit in tar format,
5–6

syntax, 5–5
gentapes utility, 5–2

preparing a kit on magnetic
tape, 5–4

gid field
subset inventory file, 4–12

global variables
setting in subset control

program, 3–4
graphics controller, 1–2

H
.h (header) files, 2–10

I
.image installation control file , 4–9
image data file, 4–10

fields, 4–10

Index–2

installation, 1–5, 6–1
control files, 4–9
into a RIS area

kernel product, 6–8
of foreign device, 6–5
of kernel product, 6–3
of user product, 6–1

INSTCTRL file, 4–9
instctrl subdirectory, 2–4

for RIS support, 2–14
moving files into, 4–9
name in kitcap record

disk media, 5–4
tape media, 5–3

.inv installation control file , 4–9
_INV global variable, 3–5

K
kernel product, 1–2

installing, 6–3
into a RIS area, 6–8

kit directory structure, 2–7
subset control program, 3–19

key file, 4–6
attributes section, 4–7
in kit-building directory

structure, 2–4
ODB user product, 4–6
subset descriptor fields, 4–8

kitcap record
disk media, 5–3
tape media, 5–3

kitname.kk file, 2–11
contents of, 2–13
creating, 5–6

kits utility, 1–5, 4–8
kreg utility

/dev/edgd subset control
program

deregistering the driver, 3–28
registering the driver, 3–26
registering the driver on RIS

server, 3–27

/dev/none subset control
program

deregistering the statically
configured driver, 3–23

registering the statically
configured driver, 3–21

for RIS support, 3–24

L
LAN, 3–5
layered product, 1–1

(See also kernel product, user
product, foreign device)

physical location of files , 2–2
library routines, 3–2

ODB subset control program,
3–18

link, 2–2
creating, 3–9

backward, 3–11
forward, 3–10
on foreign device kit, 5–6

/dev/none driver
creating from

/subsys/device.mth to
/subsys/none.mth, 3–23

ODB user product, 2–6
referenced by osfboot utility, 2–11
removing, 3–15

Local Area Network
(See LAN)

lock file, 3–12
removing, 3–15

M
M phase, 3–6

ODB subset control program,
3–18

machine command
called by subset control

program, 3–7
magnetic tape

Index–3

(See tape media)
master inventory file, 4–3

fields, 4–4
in kit-building directory

structure, 2–4
name in key file, 4–8
ODB user product, 4–5
pathnames in, 4–4

media, 1–5, 5–1
disk

building a kit on, 5–5
kitcap record format, 5–3

tape
building a kit on, 5–4
kitcap record format, 5–3

media code
disk, 5–4
tape, 5–3

method file
kernel product, 2–10

MI attribute
key file, 4–8

mkdir utility, 2–4
.mod object module file, 2–10, 3–23
mode field

subset inventory file, 4–12
.mth method file, 2–10

N
NAME attribute

key file, 4–7
name.kit file, 2–10

contents, 2–12
copying onto foreign device kit,

5–6
network controller, 1–2
newinv utility, 1–5, 4–3
NFS file sharing, 5–4
not operator, 3–9

O
object module file

kernel product kit, 2–10
ODB user product, 1–6

installed in standard directory
structure, 2–2

installing, 6–1
key file, 4–6
kit directory structure, 2–5
kitcap record

tape media, 5–3
master inventory file, 4–5
producing a kit on tape, 5–5
subset control file, 4–11
subset control program, 3–16
subset inventory file, 4–12

_OOPS global variable, 3–5
/opt directory, 2–1
_OPT global variable, 3–5
or operator, 3–8
_ORGEXT global variable, 3–5
Orpheus Document Builder

(See ODB user product)
osfboot utility, 1–5, 2–11, 6–1

installing a foreign device
product, 6–5

name.kit file usage, 2–13
output hierarchy, 1–4, 2–4

name in kitcap record
disk media, 5–4
tape media, 5–3

P
partition

in kitcap record, 5–4
pathname field

master inventory file, 4–4
subset inventory file, 4–12

_PCODE global variable, 3–5
POST_D phase, 3–15

/dev/edgd subset control
program, 3–28

ODB subset control program,
3–19

POST_L phase, 3–9

Index–4

ODB subset control program,
3–18

PRE_D phase, 3–14
ODB subset control program,

3–19
PRE_L phase, 3–7

ODB subset control program,
3–18

_PROD global variable, 3–5
product attributes section

key file, 4–6
product code

key file, 4–7
product description

kitcap record
disk media, 5–4
tape media, 5–3

product name
key file, 4–7
kitcap record

disk media, 5–4
tape media, 5–3

subset control file, 4–11
_PVCODE global variable, 3–5

R
referent field

subset inventory file, 4–12
Remote Installation Service

(See RIS)
reserved field

key file, 4–8
revision field

subset inventory file, 4–12
RIS, 6–1

considerations in subset control
program, 3–7

/dev/edgd support, 3–27
installing a kernel product, 6–8
kitname.kk file usage, 2–13
support in subset control

program, 3–24
ROOT attribute

key file, 4–8

root image file
name in key file, 4–8

_ROOT global variable, 3–5

S
.scp installation control file , 4–9
scps subdirectory

in kit-building directory
structure, 2–4

location of subset control files,
3–2

server
(See RIS)

setld utility, 1–5, 6–1
ACT environment variable, 3–3
installing a kernel product, 6–3
installing a user product, 6–1
installing onto a RIS client, 6–9
invoking subset control

program, 3–3
lock files, 3–12
phase

C DELETE, 3–14
C INSTALL, 3–13
M, 3–6
POST_D, 3–15
POST_L, 3–9
PRE_D, 3–14
PRE_L, 3–7
V, 3–14

specifying an alternate root
directory, 4–4n

size field
image data file, 4–10
subset inventory file, 4–12

_SMDB global variable, 3–5
source file

kernel product, 2–10
subset control program, 3–2

source hierarchy, 1–4, 2–4
SPACE file, 5–3
standard directory structure, 2–1,

A–1
static configuration, 2–8

Index–5

STL_DepEval shell routine, 3–9
STL_DepInit shell routine, 3–9
STL_DepLock shell routine, 3–13
STL_DepUnLock shell routine, 3–15
STL_IsDataless shell routine, 3–6
STL_LinkBack shell routine, 3–11
STL_LinkCreate shell routine, 3–11
STL_LinkInit shell routine, 3–11
STL_LinkRemove shell routine,

3–15
STL_LockInit shell routine, 3–13
STL_NoDataless shell routine, 3–6
STL_ScpInit shell routine, 3–5
_SUB global variable, 3–5
subset, 1–2, 1–5, 4–1

compressing, 4–9
creating with kits utility, 4–8
dependency, 3–8
locking, 3–8, 3–12
moving onto distribution media,

5–1
names in kitcap record

disk media, 5–4
tape media, 5–3

subset control file, 1–5, 3–15, 4–11
using control flag bits, 3–15

subset control program, 1–5, 3–1,
4–9

checking machine architecture,
3–7

common characteristics, 3–1
common tasks

aborting, 3–4
creating source files, 3–2
including library routines,

3–2
invoking, 3–3
setting global variables, 3–4
working in a dataless

environment, 3–5
control flag bit usage, 3–15
/dev/edgd device driver, 3–25
/dev/none device driver, 3–19
foreign device, 3–24
kernel product, 3–19

managing subset dependencies,
3–8

ODB user product, 3–16
RIS support, 3–7
setld phase tasks, 3–6

C DELETE, 3–14
C INSTALL, 3–13
M phase, 3–6
POST_D, 3–15
POST_L, 3–9
PRE_D, 3–14
PRE_L, 3–7
V, 3–14

user product, 3–16
subset description field

key file, 4–8
subset descriptor section

key file, 4–7
subset identifier

in dependency expression, 3–8
subset identifier field

image data file, 4–10
key file, 4–8
master inventory file, 4–5
subset control file, 4–11
subset inventory file, 4–12

subset inventory file, 4–9, 4–12
fields, 4–12

subset menu
displaying during M

installation phase, 3–6
symbolic link, 3–9

(See link)
sysconfig utility

/dev/none driver
configuring dynamically, 3–23
deleting dynamically

configured, 3–23
sysconfigdb utility

/dev/edgd subset control
program

adding driver, 3–27
deleting the driver, 3–28

Index–6

/dev/none driver
adding dynamically

configured, 3–23
adding statically configured,

3–22
deleting dynamically

configured, 3–24
deleting statically

configured, 3–23
installing a foreign device, 3–24

sysconfigtab file fragment
/dev/edgd driver

adding, 3–27
adding, for RIS support, 3–28

/dev/none driver
adding, dynamically

configured, 3–23
adding, statically configured,

3–22
kernel product, 2–9

T
tape media, 5–1

building a kit on, 5–4
kitcap record, 5–3

tape volume number
in subset control files, 4–11

tar format, 1–3, 5–1
preparing a kit in, 5–6

type field

subset inventory file, 4–12

U
uid field

subset inventory file, 4–12
user product, 1–1

installing, 6–1
kit directory structure, 2–5
subset control program, 3–16

/usr/opt directory, 2–1
/usr/share/lib/shell/BitTest library,

3–16
/usr/share/lib/shell/libscp library,

3–2
/usr/.smdb. directory, 3–15
deleting /dev/none driver from,

3–23, 3–27

V
V phase, 3–14
/var/opt directory, 2–1
_VCODE global variable, 3–5
verification

subset installation, 3–14
VERS attribute

key file, 4–8
version code

key file, 4–8

Index–7

How to Order Additional Documentation

Technical Support

If you need help deciding which documentation best meets your needs, call 800-DIGITAL (800-344-4825)
before placing your electronic, telephone, or direct mail order.

Electronic Orders

To place an order at the Electronic Store, dial 800-234-1998 using a 1200- or 2400-bps modem from
anywhere in the USA, Canada, or Puerto Rico. If you need assistance using the Electronic Store, call
800-DIGITAL (800-344-4825).

Telephone and Direct Mail Orders

Your Location Call Contact

Continental USA,
Alaska, or Hawaii

800-DIGITAL Digital Equipment Corporation
P.O. Box CS2008
Nashua, New Hampshire 03061

Puerto Rico 809-754-7575 Local Digital subsidiary

Canada 800-267-6215 Digital Equipment of Canada
Attn: DECdirect Operations KAO2/2
P.O. Box 13000
100 Herzberg Road
Kanata, Ontario, Canada K2K 2A6

International — Local Digital subsidiary or approved distributor

Internal
(submit an
Internal Software
Order Form,
EN-01740-07)

— SSB Order Processing – NQO/V19
or
U.S. Software Supply Business
Digital Equipment Corporation
10 Cotton Road
Nashua, NH 03063-1260

Reader’s Comments

Digital UNIX
Guide to Preparing Product Kits
AA-QYW7B-TE

Digital welcomes your comments and suggestions on this manual. Your input will help us to write
documentation that meets your needs. Please send your suggestions using one of the following methods:

• This postage-paid form

• Internet electronic mail: readers_comment@zk3.dec.com

• Fax: (603) 881-0120, Attn: UEG Publications, ZK03-3/Y32

If you are not using this form, please be sure you include the name of the document, the page number,
and the product name and version.

Please rate this manual:
Excellent Good Fair Poor

Accuracy (software works as manual says) � � � �

Clarity (easy to understand) � � � �

Organization (structure of subject matter) � � � �

Figures (useful) � � � �

Examples (useful) � � � �

Index (ability to find topic) � � � �

Usability (ability to access information quickly) � � � �

Please list errors you have found in this manual:

Page Description
_________ ___
_________ ___
_________ ___
_________ ___

Additional comments or suggestions to improve this manual:

What version of the software described by this manual are you using? ______________________

Name, title, department __
Mailing address __
Electronic mail ___
Telephone ___
Date ___

UEG PUBLICATIONS MANAGER

BUSINESS REPLY MAIL

 Do Not Cut or Tear − Fold Here

 Do Not Cut or Tear − Fold Here and Tape

NO POSTAGE
NECESSARY IF
MAILED IN THE
UNITED STATES

FIRST−CLASS MAIL PERMIT NO. 33 MAYNARD MA

POSTAGE WILL BE PAID BY ADDRESSEE

ZKO3−3/Y32
110 SPIT BROOK RD

TM

DIGITAL EQUIPMENT CORPORATION

NASHUA NH 03062−9987

Cut on
Dotted

Line

