
Digital UNIX33333333333333333
Programmer’s Guide

Order Number: AA-PS30D-TE

March 1996

Product Version: Digital UNIX Version 4.0 or higher

This manual describes the program development environment of the
Digital UNIX operating system, emphasizing the C programming
language.

33333333333333333
Digital Equipment Corporation
Maynard, Massachusetts

Digital Equipment Corporation makes no representations that the use of its products in the
manner described in this publication will not infringe on existing or future patent rights, nor
do the descriptions contained in this publication imply the granting of licenses to make, use,
or sell equipment or software in accordance with the description.

Possession, use, or copying of the software described in this publication is authorized only
pursuant to a valid written license from Digital or an authorized sublicensor.

 Digital Equipment Corporation 1996
All rights reserved.

The following are trademarks of Digital Equipment Corporation:

ALL–IN–1, Alpha AXP, AlphaGeneration, AlphaServer, AlphaStation, AXP, Bookreader,
CDA, DDIS, DEC, DEC Ada, DEC Fortran, DEC FUSE, DECnet, DECstation, DECsystem,
DECterm, DECUS, DECwindows, DTIF, MASSBUS, MicroVAX, OpenVMS,
POLYCENTER, Q–bus, StorageWorks, TruCluster, TURBOchannel, ULTRIX, ULTRIX Mail
Connection, ULTRIX Worksystem Software, UNIBUS, VAX, VAXstation, VMS, XUI, and
the DIGITAL logo.

Open Software Foundation, OSF, OSF/1, OSF/Motif, and Motif are trademarks of the Open
Software Foundation, Inc. UNIX is a registered trademark in the United States and other
countries licensed exclusively through X/Open Company Ltd.

All other trademarks and registered trademarks are the property of their respective holders.

Contents3333333333333333333333

About This Manual

Audience .. xix

New and Changed Features ... xix

Organization .. xix

Related Documents .. xxi

Reader’s Comments ... xxii

Conventions .. xxiii

1 Overview

1.1 Application Development Phases ... 1–1

1.2 Specification and Design Considerations 1–2

1.2.1 Standards ... 1–2
1.2.2 Internationalization ... 1–3
1.2.3 Window-Oriented Applications ... 1–3

1.3 Major Software Development Tools ... 1–4

1.3.1 Languages That Run in the Digital UNIX Environment 1–4
1.3.2 Linking Object Files ... 1–4
1.3.3 Debuggers ... 1–5

1.4 Source File Control ... 1–5

1.5 Program Installation Tools .. 1–5

1.6 Overview of Interprocess Communication Facilities 1–6

2 The Compiler System

2.1 Compiler System Components (Driver Programs) 2–2

2.2 Data Types in the Digital UNIX Environment 2–5

2.2.1 Data Type Sizes ... 2–5
2.2.2 Floating-Point Range and Processing 2–5
2.2.3 Structure Alignment .. 2–6
2.2.4 Bit-Field Alignment .. 2–7
2.2.5 The _align Storage Class Modifier 2–8

2.3 Using the C Preprocessor ... 2–9

2.3.1 Predefined Macros .. 2–9
2.3.2 Including Common Files ... 2–11
2.3.3 Setting Up Multilanguage Include Files 2–11
2.3.4 Implementation-Specific Preprocessor Directives (#pragma) . 2–12

2.4 Compiling Source Programs ... 2–12

2.4.1 Compilation Flags .. 2–13
2.4.2 Default Compilation Behavior .. 2–16
2.4.3 Compiling Multilanguage Programs 2–18

2.5 Linking Object Files .. 2–19

2.5.1 Linking Using Compiler Commands 2–19
2.5.2 Linking Using the ld Command .. 2–20
2.5.3 Specifying Libraries .. 2–20

2.6 Running Programs ... 2–22

2.7 Object File Tools .. 2–23

2.7.1 Dumping Selected Parts of Files (odump) 2–24
2.7.2 Listing Symbol Table Information (nm) 2–24
2.7.3 Determining a File’s Type (file) .. 2–25
2.7.4 Determining a File’s Segment Sizes (size) 2–25
2.7.5 Disassembling an Object File (dis) 2–26

2.8 ANSI Name Space Pollution Cleanup in the Standard C Library 2–26

iv Contents

3 Pragma Preprocessor Directives

3.1 The #pragma environment Directive .. 3–1

3.2 The #pragma inline Directive .. 3–3

3.3 The #pragma intrinsic and #pragma function Directives 3–4

3.4 The #pragma linkage Directive .. 3–6

3.5 The #pragma member_alignment Directive 3–9

3.6 The #pragma message Directive .. 3–10

3.7 The #pragma pack Directive ... 3–11

3.8 The #pragma pointer_size Directive ... 3–11

3.9 The #pragma use_linkage Directive ... 3–12

3.10 The #pragma weak Directive ... 3–13

4 Shared Libraries

4.1 Shared Library Overview ... 4–1

4.2 Resolving Symbols .. 4–3

4.2.1 Search Path of the Linker ... 4–4
4.2.2 Search Path of the Loader .. 4–4
4.2.3 Name Resolution .. 4–5
4.2.4 Options to Determine Handling of Unresolved External

Symbols .. 4–6

4.3 Linking with Shared Libraries ... 4–7

4.4 Turning Off Shared Libraries .. 4–7

4.5 Creating Shared Libraries ... 4–8

4.5.1 Creating Shared Libraries from Object Files 4–8
4.5.2 Creating Shared Libraries from Archive Libraries 4–8

4.6 Working with Private Shared Libraries ... 4–9

4.7 Using Quickstart ... 4–10

4.7.1 Verifying That an Object Is Quickstarting 4–12

Contents v

4.7.2 Tracking Down Quickstart Problems Manually 4–12
4.7.3 Tracking Down Quickstart Problems with the fixso Utility ... 4–14

4.8 Debugging Programs Linked with Shared Libraries 4–16

4.9 Loading a Shared Library at Run Time .. 4–16

4.10 Protecting Shared Library Files ... 4–17

4.11 Shared Library Versioning .. 4–18

4.11.1 Binary Incompatible Modifications 4–18
4.11.2 Shared Library Versions ... 4–19
4.11.3 Major and Minor Versions Identifiers 4–21
4.11.4 Full and Partial Versions of Shared Libraries 4–22
4.11.5 Linking with Multiple Versions of Shared Libraries 4–23
4.11.6 Version Checking at Load Time 4–25
4.11.7 Multiple Version Checking at Load Time 4–26

4.12 Symbol Binding .. 4–31

4.13 Shared Library Restrictions ... 4–32

5 Debugging Programs with dbx

5.1 General Debugging Considerations .. 5–3

5.1.1 Why Use a Source-Level Debugger? 5–3
5.1.2 What Are Activation Levels? .. 5–3
5.1.3 Isolating Program Execution Failures 5–4
5.1.4 Diagnosing Incorrect Output Results 5–4
5.1.5 Avoiding Pitfalls .. 5–5

5.2 Running dbx ... 5–6

5.2.1 Compiling a Program for Debugging 5–6
5.2.2 Creating a dbx Initialization File 5–7
5.2.3 Invoking and Terminating dbx .. 5–7

5.3 Using dbx Commands .. 5–9

5.3.1 Qualifying Variable Names .. 5–9
5.3.2 dbx Expressions and Their Precedence 5–9
5.3.3 dbx Data Types and Constants .. 5–10

vi Contents

5.4 Working with the dbx Monitor .. 5–11

5.4.1 Repeating dbx Commands ... 5–11
5.4.2 Editing the dbx Command Line .. 5–12
5.4.3 Entering Multiple Commands ... 5–14
5.4.4 Completing Symbol Names .. 5–14

5.5 Controlling dbx ... 5–15

5.5.1 Setting and Removing Variables 5–15
5.5.2 Predefined dbx Variables ... 5–16
5.5.3 Defining and Removing Aliases .. 5–21
5.5.4 Monitoring Debugging Session Status 5–22
5.5.5 Deleting and Disabling Breakpoints 5–23
5.5.6 Displaying the Names of Loaded Object Files 5–24
5.5.7 Invoking a Subshell from Within dbx 5–24

5.6 Examining Source Programs ... 5–24

5.6.1 Specifying the Locations of Source Files 5–24
5.6.2 Moving Up or Down in the Activation Stack 5–25

5.6.2.1 Using the where and tstack Commands 5–25
5.6.2.2 Using the up and down and func Commands 5–26

5.6.3 Changing the Current Source File 5–27
5.6.4 Listing Source Code .. 5–28
5.6.5 Searching for Text in Source Files 5–29
5.6.6 Editing Source Files from Within dbx 5–29
5.6.7 identifying Variables That Share the Same Name 5–30
5.6.8 Examining Variable and Procedure Types 5–30

5.7 Controlling the Program ... 5–30

5.7.1 Running and Rerunning the Program 5–31
5.7.2 Executing the Program Step by Step 5–32
5.7.3 Using the return Command .. 5–33
5.7.4 Going to a Specific Place in the Code 5–33
5.7.5 Resuming Execution After a Breakpoint 5–34
5.7.6 Changing the Values of Program Variables 5–35
5.7.7 Patching Executable Disk Files ... 5–35
5.7.8 Running a Specific Procedure ... 5–36
5.7.9 Setting Environment Variables ... 5–37

5.8 Setting Breakpoints ... 5–38

Contents vii

5.8.1 Overview ... 5–38
5.8.2 Setting Breakpoints ... 5–38
5.8.3 Tracing Variables During Execution 5–40
5.8.4 Writing Conditional Code in dbx 5–42
5.8.5 Catching and Ignoring Signals .. 5–43

5.9 Examining Program State ... 5–44

5.9.1 Printing the Values of Variables and Expressions 5–44
5.9.2 Displaying Activation-Level Information with the dump

Command .. 5–46
5.9.3 Displaying the Contents of Memory 5–47
5.9.4 Recording and Playing Back Portions of a dbx Session 5–48

5.9.4.1 Recording and Playing Back Input 5–49
5.9.4.2 Recording and Playing Back Output 5–50

5.10 Debugging a Running Process ... 5–51

5.11 Debugging Multithreaded Applications 5–52

5.12 Debugging Multiple Asynchronous Processes 5–56

5.13 Sample Program .. 5–57

6 Checking C Programs with lint

6.1 Overview of the lint Program .. 6–1

6.2 Program Flow Checking ... 6–3

6.3 Data Type Checking .. 6–4

6.3.1 Binary Operators and Implied Assignments 6–5
6.3.2 Structures and Unions ... 6–5
6.3.3 Function Definition and Uses ... 6–6
6.3.4 Enumerators ... 6–6
6.3.5 Type Casts ... 6–6

6.4 Variable and Function Checking .. 6–7

6.4.1 Inconsistent Function Return .. 6–7
6.4.2 Function Values That Are Not Used 6–8
6.4.3 Disabling Function-Related Checking 6–8

viii Contents

6.5 Using Variables Before They Are Initialized 6–10

6.6 Migration Checking ... 6–10

6.7 Increasing Table Size ... 6–11

6.8 Portability Checking .. 6–11

6.8.1 Character Uses ... 6–11
6.8.2 Bit Field Uses .. 6–12
6.8.3 External Name Size ... 6–12
6.8.4 Multiple Uses and Side Effects ... 6–13

6.9 Coding Errors and Coding Style Differences 6–13

6.9.1 Assignments of Long Variables to Integer Variables 6–13
6.9.2 Operator Precedence .. 6–14
6.9.3 Conflicting Declarations .. 6–14

6.10 Creating a lint Library .. 6–14

6.10.1 Creating the Input File ... 6–15
6.10.2 Creating the lint Library File .. 6–16
6.10.3 Checking a Program with a New Library 6–16

6.11 Understanding lint Error Messages ... 6–16

6.12 Using Warning Class Options to Suppress lint Messages 6–22

6.12.1 Generating Function Prototypes for Compile-Time Detection
of Syntax Errors ... 6–26

7 Debugging Programs with Third Degree

7.1 Running Third Degree on an Application 7–2

7.1.1 Using Third Degree with Shared Libraries 7–3
7.1.2 Using Third Degree with Threaded Applications 7–4

7.2 Step-by-Step Example .. 7–4

7.2.1 Customizing Third Degree ... 7–4
7.2.2 Modifying the Makefile ... 7–5
7.2.3 Examining the Third Degree Log File 7–5

7.2.3.1 Copy of the .third File .. 7–5

Contents ix

7.2.3.2 List of Runtime Memory Access Errors 7–5
7.2.3.3 Memory Leaks ... 7–7
7.2.3.4 Heap History ... 7–8
7.2.3.5 Memory Layout ... 7–9

7.3 Interpreting Third Degree Error Messages 7–9

7.3.1 Fixing Errors and Retrying an Application 7–11
7.3.2 Detecting Uninitialized Values ... 7–11
7.3.3 Locating Source Files .. 7–12

7.4 Examining an Application’s Heap Usage 7–12

7.4.1 Detecting Memory Leaks ... 7–13
7.4.2 Reading Heap and Leak Reports 7–14
7.4.3 Searching for Leaks .. 7–15
7.4.4 Interpreting the Heap History ... 7–15

7.5 Using Third Degree on Programs with Insufficient Symbolic
Information .. 7–18

7.6 Validating Third Degree Error Reports ... 7–18

7.7 Undetected Errors .. 7–19

8 Profiling Programs to Improve Performance

8.1 Profiling Methods .. 8–1

8.2 Profiling Tools Overview ... 8–3

8.2.1 PC-Sampling .. 8–4
8.2.2 gprof ... 8–4
8.2.3 uprofile and kprofile .. 8–5
8.2.4 Atom Toolkit ... 8–5
8.2.5 pixie Atom tool .. 8–5
8.2.6 hiprof Atom tool ... 8–6
8.2.7 Third Degree .. 8–6

8.3 Profiling Sample Program .. 8–6

8.4 Using prof to Produce Program Counter Sampling Data 8–7

8.5 Using gprof to Display Call Graph Information 8–10

x Contents

8.6 Using pixie for Basic Block Counting .. 8–13

8.7 Selecting Profiling Information to Display 8–14

8.7.1 Limiting Profiling Display to Specific Procedures 8–14
8.7.2 Including Shared Libraries in the Profiling Information 8–15
8.7.3 Using pixie to Display Profiling Information for Each Source

Line .. 8–15
8.7.4 Limiting Profiling Display by Line 8–18

8.8 Using pixie to Average prof Results .. 8–19

8.9 Analyzing Test Coverage ... 8–20

8.10 Merging Data Files .. 8–20

8.11 Using Feedback Files ... 8–21

8.11.1 Generating and Using Feedback Information 8–21
8.11.2 Using a Feedback File for Input to cord 8–22

8.12 Using Environment Variables to Control PC-Sample Profiling 8–22

8.12.1 PROFDIR Environment Variable 8–23
8.12.2 PROFFLAGS Environment Variable 8–24

8.13 Using monitor Routines to Control Profiling 8–25

8.14 Profiling Multithreaded Applications .. 8–29

9 Using and Developing Atom Tools

9.1 Using Prepackaged Atom Tools .. 9–2

9.2 Developing Atom Tools ... 9–3

9.2.1 The ATOM Command Line ... 9–4
9.2.2 Atom Instrumentation Routine .. 9–7
9.2.3 Atom Instrumentation Interfaces 9–8

9.2.3.1 Navigating Within a Program 9–8
9.2.3.2 Building Objects .. 9–9
9.2.3.3 Obtaining Information About an Application’s

Components ... 9–9
9.2.3.4 Resolving Procedure Names and Call Targets 9–13
9.2.3.5 Adding Calls to Analysis Routines to a Program 9–13

Contents xi

9.2.4 Atom Description File ... 9–14
9.2.5 Writing Analysis Procedures .. 9–15

9.2.5.1 Input/Output .. 9–15
9.2.5.2 Fork and Exec System Calls 9–15

9.2.6 Determining the Instrumented PC from an Analysis Routine . 9–16
9.2.7 Sample Tools ... 9–22

9.2.7.1 Procedure Tracing .. 9–22
9.2.7.2 Profile Tool ... 9–25
9.2.7.3 Data Cache Simulation Tool 9–28

10 Optimizing Techniques

10.1 Guidelines for Building an Application Program 10–2

10.1.1 Compilation Considerations .. 10–2
10.1.2 Linking and Loading Considerations 10–6

10.1.2.1 Using the Postlink Optimizer 10–7

10.1.3 Preprocessing and Postprocessing Considerations 10–8
10.1.4 Library Routine Selection ... 10–9

10.2 Application Coding Guidelines .. 10–10

10.2.1 Data Type Considerations .. 10–10
10.2.2 Cache Usage and Data Alignment Considerations 10–11
10.2.3 General Coding Considerations 10–12

11 Handling Exception Conditions

11.1 Exception Handling Overview ... 11–1

11.1.1 C Compiler Syntax .. 11–2
11.1.2 libexc Library Routines .. 11–2
11.1.3 Header Files That Support Exception Handling 11–3

11.2 Raising an Exception from a User Program 11–4

11.3 Writing a Structured Exception Handler 11–5

11.4 Writing a Termination Handler .. 11–13

xii Contents

12 Developing Thread-safe Libraries

12.1 Overview of Thread Support ... 12–1

12.2 Run-Time Library Changes for POSIX Conformance 12–2

12.3 Characteristics of Thread-Safe and Reentrant Routines 12–3

12.3.1 Examples of Nonthread-safe Coding Practices 12–3

12.4 Writing Thread-safe Code ... 12–5

12.4.1 Using Thread Independent Services (TIS) 12–6
12.4.2 Using Thread-Specific Data .. 12–6
12.4.3 Using Mutex Locks to Share Data Between Threads 12–7

12.5 Building Multithreaded Applications .. 12–9

12.5.1 Compiling Multithreaded C Applications 12–9
12.5.2 Linking Multithreaded C Applications 12–9
12.5.3 Building Multithreaded Applications in Other Languages ... 12–9

A Using 32-Bit Pointers on Digital UNIX Systems

A.1 Pointer Definitions .. A–1

A.2 Using 32-Bit Pointers .. A–1

A.3 Syntactic Considerations .. A–3

A.4 Requirements ... A–3

A.5 Interaction with Other Languages ... A–3

A.6 Conversion of Pointers and Other Issues A–4

A.6.1 Pointer Conversion ... A–4
A.6.2 System Header Files ... A–4

A.7 Restrictions .. A–5

Contents xiii

B Differences in the System V Habitat

B.1 Source Code Compatibility .. B–1

B.2 Summary of System Calls and Library Routines B–3

C Dynamically Configurable Kernel Subsystems

C.1 Overview of Dynamically Configurable Subsystems C–2

C.2 Overview of Attribute Tables ... C–4

C.2.1 Definition Attribute Table ... C–5
C.2.2 Example Definition Attribute Table C–8
C.2.3 Communication Attribute Table C–10
C.2.4 Example Communication Attribute Table C–12

C.3 Creating a Configuration Routine .. C–12

C.3.1 Performing Initial Configuration C–13
C.3.2 Responding to Query Requests .. C–15
C.3.3 Responding to Reconfigure Requests C–17
C.3.4 Performing Subsystem-Defined Operations C–20
C.3.5 Unconfiguring the Subsystem .. C–21
C.3.6 Returning from the Configuration Routine C–21

C.4 Allowing for Operating System Revisions in Loadable Subsystems . C–22

C.5 Building and Loading Loadable Subsystems C–23

C.6 Building a Static Configurable Subsystem Into the Kernel C–25

C.7 Testing Your Subsystem .. C–27

D Optimizing Techniques (MIPS-Based C Compiler)

D.1 Global Optimizer .. D–1

D.2 Optimizer Effects on Debugging ... D–1

D.3 Loop Optimization by the Optimizer ... D–1

D.4 Register Allocation by the Optimizer .. D–2

xiv Contents

D.5 Optimizing Separate Compilation Units D–2

D.6 Optimization Options .. D–2

D.7 Full Optimization (-O3) ... D–3

D.8 Optimizing Large Procedures ... D–4

D.9 Optimizing Frequently Used Modules ... D–4

D.10 Building a ucode Object Library ... D–6

D.11 Using ucode Object Libraries ... D–6

Index

Examples

5-1: Sample Program Used in dbx Examples .. 5–57

8-1: Profiling Sample Program .. 8–6

8-2: Profiler Listing for PC Sampling .. 8–9

8-3: Sample gprof Output ... 8–11

8-4: Prof Output by Source Line with -heavy Flag 8–16

8-5: Prof Output by Source Line with -lines Flag 8–17

8-6: Using monstartup() and monitor() ... 8–26

8-7: Allocating Profiling Buffers Within a Program 8–27

8-8: Using monitor_signal() to Profile Non-Terminating Programs 8–28

10-1: Pointers and Optimization .. 10–15

11-1: Handling a SIGSEGV Signal as a Structured Exception 11–8

11-2: Handling an IEEE Floating-Point SIGFPE as a Structured Exception . 11–9

11-3: Multiple Structured Exception Handlers 11–11

11-4: Abnormal Termination of a Try Block by an Exception 11–15

12-1: Threads Programming Example .. 12–6

C-1: Example Attribute Table ... C–8

Contents xv

Figures

2-1: Compiling a Program .. 2–3

2-2: Default Structure Alignment .. 2–6

2-3: Default Bit-Field Alignment .. 2–7

2-4: Padding to the Next Pack Boundary .. 2–8

4-1: Use of Archive and Shared Libraries ... 4–3

4-2: Linking with Multiple Versions of Shared Libraries 4–24

4-3: Invalid Multiple Version Dependencies Among Shared Objects:
Example 1 ... 4–27

4-4: Invalid Multiple Version Dependencies Among Shared Objects:
Example 2 ... 4–28

4-5: Invalid Multiple Version Dependencies Among Shared Objects:
Example 3 ... 4–29

4-6: Valid Uses of Multiple Versions of Shared Libraries: Example 1 4–30

4-7: Valid Uses of Multiple Versions of Shared Libraries: Example 2 4–31

B-1: System Call Resolution .. B–2

C-1: System Attribute Value Initialization .. C–3

Tables

1-1: Programming Phases and Digital UNIX .. 1–1

2-1: Compiler System Functions ... 2–2

2-2: File Suffixes and Associated Files ... 2–4

2-3: Predefined Macros .. 2–10

2-4: Comparison of Compiler Flags ... 2–13

3-1: Intrinsic Functions .. 3–4

4-1: Linker Flags that Control Shared Library Versioning 4–20

5-1: Keywords Used in Command Syntax Descriptions 5–2

5-2: dbx Command Flags ... 5–8

xvi Contents

5-3: The dbx Number-Sign Expression Operator 5–9

5-4: Expression Operator Precedence ... 5–10

5-5: Built-in Data Types .. 5–10

5-6: Input Constants .. 5–11

5-7: Command-Line Editing Commands in emacs mode 5–13

5-8: Predefined dbx Variables ... 5–17

5-9: Modes for Displaying Memory Addresses 5–47

6-1: lint Warning Classes ... 6–24

8-1: Profiling Tools ... 8–3

9-1: Supported Prepackaged Atom Tools .. 9–2

9-2: Example Prepackaged Atom Tools ... 9–2

9-3: Atom Object Query Routines ... 9–10

9-4: Atom Procedure Query Routines .. 9–11

9-5: Atom Basic Block Query Routines ... 9–12

9-6: Atom Instruction Query Routines ... 9–12

11-1: Header Files That Support Exception Handling 11–3

B-1: System Call Summary .. B–4

B-2: Library Function Summary ... B–5

C-1: Attribute Data Types .. C–6

C-2: Codes that Determine the Requests Allowed for an Attribute C–7

C-3: Attribute Status Codes .. C–11

D-1: Compiler Optimization Options ... D–3

Contents xvii

About This Manual3333333333333333333333
This manual describes the programming environment of the Digital UNIX
operating system, with an emphasis on the C programming language. The
availability of other programming languages on any system is determined by
the choices made at the time the system was configured or modified.

Audience
This manual addresses all programmers who use the Digital UNIX operating
system to create or maintain programs in any supported language.

New and Changed Features
The following major changes and additions have been made to this manual
for the Version 4.0 release of Digital UNIX:

• Chapter 2 – Removed information on pragmas from this chapter, creating
a new Chapter 3 on pragmas.

• Chapter 7 – Created a new chapter documenting Third Degree, an Atom
tool.

• Chapter 8 – Modified to include information on Atom tools used in
profiling.

• Chapter 9 – Created a new chapter on using and developing Atom tools.

• Chapter 10 – Merged the contents of Chapter 4 from System Tuning and
Performance Management into this chapter. Also, information on the
uopt global optimizer (used with the –oldc version of the C compiler)
has been moved to Appendix D.

• Chapter 12 – Modified to include information on TIS (Thread
Independent Services) and the changes to libc functions to make them
thread-safe.

Organization
This manual contains twelve chapters and four appendixes.

Chapter 1 Describes the phases of program development and which Digital
UNIX programming tools to use during those phases.

Chapter 2 Describes the tools that make up the compiler system and how to
use them. These tools include compiler commands, preprocessors,
compilation options, multilanguage programs, and the archiver.

Chapter 3 Describes the implementation-specific pragmas that are supported
on the C compiler using the –newc and –oldc flags.

Chapter 4 Describes the use, creation, and maintenance of shared libraries
and discusses how symbols are resolved.

Chapter 5 Describes how to use the dbx debugger. Includes information
about the dbx commands, working with the monitor, setting
breakpoints, and debuggging machine code.

Chapter 6 Describes how to use the lint command to produce clean code.

Chapter 7 Describes how to use the Third Degree Atom tool to perform
memory access checks and leak detection on an application
program.

Chapter 8 Describes how to use the prof and gprof tools to profile your
code, enabling you to find which portions of code are consuming
the most execution time.

Chapter 9 Discusses how to use prepackaged Atom tools to instrument an
application program for various purposes, such as to obtain
profiling data or to perform cache-use analysis. It also describes
how you can design and create custom Atom tools.

Chapter 10 Describes how to optimize your code using the optimizer and the
post-link optimizer.

Chapter 11 Describes how to use the features of the DEC C compiler for
Digital UNIX to write a structured exception handler or a
termination handler.

Chapter 12 Describes how to develop multithreaded programs.

Appendix A Describes how to use 32-bit pointers on 64-bit Digital UNIX
systems.

Appendix B Describes how to achieve source code compatibility for C
language programs in the System V habitat.

Appendix C Describes how to write dynamically configurable kernel
subsystems.

Appendix D Describes the global optimizer (uopt) used by the DEC OSF/1 C
compiler (–oldc).

xx About This Manual

Related Documents
In addition to this manual, the following manuals contain information
pertaining to program development:

Programming: General

Calling Standard for Alpha Systems

Assembly Language Programmer’s Guide

Programming Support Tools

Network Programmer’s Guide

Digital Portable Mathematics Library

Writing Software for the International Market

Kernel Debugging

Ladebug Debugger Manual

Programming: Compatibility, Migration, and Standards

ULTRIX to Digital UNIX Migration Guide

VAX System V to Digital UNIX Migration Guide

System V Compatibility User’s Guide

POSIX Conformance Document

XPG3 Questionnaire

Programming: Realtime

Guide to Realtime Programming

Programming: Streams

Programmer’s Guide: STREAMS

Programming: Multithreaded Applications

Guide to DECthreads

General User Information

Release Notes

Documentation Overview

The printed version of the Digital UNIX documentation set is color coded to
help specific audiences quickly find the books that meet their needs. (You
can order the printed documentation from Digital.) This color coding is
reinforced with the use of an icon on the spines of books. The following list

About This Manual xxi

describes this convention:
22
Audience Icon Color Code22
General users G Blue

System and network administrators S Red

Programmers P Purple

Device driver writers D Orange

Reference page users R Green22

Some books in the documentation set help meet the needs of several
audiences. For example, the information in some system books is also used
by programmers. Keep this in mind when searching for information on
specific topics.

The Documentation Overview, Glossary, and Master Index provides
information on all of the books in the Digital UNIX documentation set.

Reader’s Comments
Digital welcomes any comments and suggestions you have on this and other
Digital UNIX manuals.

You can send your comments in the following ways:

• Fax: 603-881-0120 Attn: UEG Publications, ZK03-3/Y32

• Internet electronic mail: readers_comment@zk3.dec.com

A Reader’s Comment form is located on line in the following location:
/usr/doc/readers_comment.txt

• Mail:

Digital Equipment Corporation
UEG Publications Manager
ZK03-3/Y32
110 Spit Brook Road
Nashua, NH 03062-9987

A Reader’s Comment form is located in the back of each printed manual.
The form is postage paid if you mail it in the United States.

Please include the following information along with your comments:

• The full title of the book and the order number. (The order number is
printed on the title page of this book and on its back cover.)

xxii About This Manual

• The section numbers and page numbers of the information on which you
are commenting.

• The version of Digital UNIX that you are using.

• If known, the type of processor that is running the Digital UNIX
software.

The Digital UNIX Publications group cannot respond to system problems or
technical support inquiries. Please address technical questions to your local
system vendor or to the appropriate Digital technical support office.
Information provided with the software media explains how to send problem
reports to Digital.

Conventions

%
$

A percent sign represents the C shell system prompt. A dollar
sign represents the system prompt for the Bourne and Korn shells.

A number sign represents the superuser prompt.

(dbx) In examples, this symbol represents the dbx debugger’s prompt.

% cat Boldface type in interactive examples indicates typed user input.

file Italic (slanted) type indicates variable values, placeholders, and
function argument names.

[|]
{ | }

In syntax definitions, brackets indicate items that are optional and
braces indicate items that are required. Vertical bars separating
items inside brackets or braces indicate that you choose one item
from among those listed.

. . . In syntax definitions, a horizontal ellipsis indicates that the
preceding item can be repeated one or more times.

cat(1) A cross-reference to a reference page includes the appropriate
section number in parentheses. For example, cat(1) indicates
that you can find information on the cat command in Section 1
of the reference pages.

1Return 122222227777777 In an example, a key name enclosed in a box indicates that you
press that key.

Ctrl/x This symbol indicates that you hold down the first named key
while pressing the key or mouse button that follows the slash. In
examples, this key combination is enclosed in a box (for example,
1Ctrl/C 1222222777777).

About This Manual xxiii

1Overview3333333333333333333333
This chapter describes phases in developing an application and which Digital
UNIX tools to use during those phases. Topics in this chapter include the
following:

• Specifications and design considerations

• Major software development tools

• Source file control

• Program installation tools

• Interprocess communications

1.1 Application Development Phases
There are five major phases in application development. Table 1-1 describes
these phases and the tools and features available for use in each phase.

Table 1-1: Programming Phases and Digital UNIX
22
Phase Tools/Features22
Requirements and specifications Standards

Internationalization
Security

Design Routines
Coding Considerations
Libraries
Common Files

Implementation vi, ex, ed, lint, grep, cxref, sed, time,
dbx, third, ld, make, compilers, threads

Testing diff, Shell scripts , pixie, prof

Maintaining setld, tar, sccs, rcs22

In many instances, the Digital UNIX system offers more than one tool to do
a job. The choices of tools and programming languages to use are left to
you.

1.2 Specification and Design Considerations
When you design an application, some of your decisions depend on the
nature of the application. Digital UNIX provides features and tools to help
you create applications that can be portable, internationalized, window-
oriented, or whatever is appropriate for the needs of the users of those
applications.

One of the primary design considerations concerns adhering to UNIX
environment standards and portability. If you want your application to run
both on Digital UNIX systems and on other UNIX operating systems,
consider limiting your design to features that adhere to X/Open Portability
guidelines and POSIX standards.

You might also need to design your application so that it can be used in a
variety of countries. The Digital UNIX operating system contains
internationalization tools and functions to help you write software to be used
by people working in different natural languages.

Another consideration is the terminal environment in which your application
will be used. If end users have workstations or window terminals, you might
want to design your application to use window displays.

1.2.1 Standards
Adherence to programming standards enhances the ability to port programs
and applications between hardware platforms or even operating systems.
Writing programs according to portability standards makes it easy for users
to move between systems without major retraining. As part of program
portability, some standards include internationalization concepts.

The following are the primary standards in the UNIX programming
environment:

• ANSI

• ISO

• POSIX

• X/Open

In addition to the standards in the preceding list, the OSF Application
Environment Specification (AES) specifies application-level interfaces that an
application must provide to support portable applications and the semantics
or protocols associated with these interfaces. For more information, see the
Application Environment Specification (AES) Operating System Programming
Interfaces Volume, ISBN 0-13-043522-8, published by Prentice-Hall, Inc.

Various ANSI standards apply to specific programming tools such as
languages, networks and communication protocols, character coding, and

1–2 Overview

database systems. Information on conformance and extensions to a particular
ANSI standard appears in the documentation set for the particular language,
network system, or database system. For information about compiling C
programs to adhere to ANSI standards, see Chapter 2.

The Digital UNIX system allows you to write programs that conform to
POSIX and X/Open standards. Information on the POSIX standard is
contained in POSIX — Part 1: System Application Program Interface (API)
[C Language] for IEEE Std. 1003.1c-1994. The Digital UNIX header files
contain POSIX- and X/Open-conformant information.

1.2.2 Internationalization
An internationalized application provides a run-time interface that allows
users to work in their own language with culturally appropriate
representations of data. The Digital UNIX operating system provides
interfaces and utilities for you to develop internationalized applications that
conform to Issue 4 of X/Open CAE specifications.

Considerations for developing internationalized applications include:

• Language

• Cultural data

• Character sets

• Localization

To meet these considerations, your applications must not make any
assumptions about language, local customs, or coded character sets. Data
specific to a culture is held separate from the application’s logic. You use
run-time facilities to bind your application to the appropriate language
message text.

For details about the Digital UNIX internationalization package, see the
manual Writing Software for the International Market.

1.2.3 Window-Oriented Applications
For information on developing window-oriented applications, see the
following manuals:

OSF/Motif Programmer’s Guide

DECwindows Motif Guide to Application Programming

DECwindows Extensions to Motif

DECwindows Companion to the OSF/Motif Style Guide

Developing Applications for the Display PostScript System

Common Desktop Environment: Programmer’s Guide

Overview 1–3

Common Desktop Environment: Programmer’s Overview

Common Desktop Environment: Application Builder User’s Guide

Common Desktop Environment: Internationalization Programmer’s Guide

Common Desktop Environment: Style Guide and Certification Checklist

Common Desktop Environment: Help System Author’s and Programmer’s
Guide

1.3 Major Software Development Tools
The Digital UNIX system is compatible with a number of higher-level
languages, and it includes tools for linking and debugging programs.

1.3.1 Languages That Run in the Digital UNIX Environment
The chief language that the Digital UNIX operating system supports is C.
The Digital UNIX operating system includes a C language compiler. Other
languages, such as Pascal and Fortran, are available separately. For a
complete list of layered products, contact your Digital representitive. The
Digital UNIX system also includes an assembler for working with assembly
language. For more information on the assembler, see the as(1) reference
page and the Assembly Language Programmer’s Guide.

1.3.2 Linking Object Files
In most instances, you can use the compiler driver command (cc) to link
separate program object files into a single executable program.

As part of the compilation process, most compilers call the linker (ld) to
combine one or more object files into a single program object file. In
addition, the linker resolves external references, searches libraries, and
performs all other processing required to create object files that are ready for
execution. The resulting object module can either be executed or serve as
input for a separate ld run. (You can invoke the linker separately from the
compiler by issuing the ld command.)

Digital UNIX allows you to create applications composed of source program
modules written in different languages. In these instances, you compile each
program module separately and then link the compiled modules together in a
separate step.

Digital UNIX provides the ability to create shared libraries by using the ld
command. In addition, you also can create archive (static) libraries by using
the ar command. For more information, see Chapter 4. See Chapter 2 and
Chapter 4, as well as the documentation sets for the individual languages, for
detailed information on compiling and linking programs. For more
information on the ld command, see the ld(1) reference page.

1–4 Overview

1.3.3 Debuggers
The following tools are the primary debugging tools on the Digital UNIX
operating system:

• The dbx debugger (see Chapter 5 or dbx(1) for details)

• The Third Degree tool (see Chapter 7 or third(5) for details)

• The lint utility (see Chapter 6 or lint(1) for details)

The ladebug debugger is also supported on the Digital UNIX operation
system. In addition to supporting the features provided by the dbx
debugger, it also supports features for debugging multithreaded programs.
For information on the ladebug debugger, which supports C, C++, and
Fortran, see the manual Ladebug Debugger Manual and the ladebug(1)
reference page.

The dbx debugger is the most comprehensive tool for debugging in a
nonwindow environment.

1.4 Source File Control
An integral part of creating a software application is managing the
development and maintenance processes. The Digital UNIX operating
system provides the Source Code Control System (SCCS) utility and the
RCS code management system to help you store application modules in a
directory, track changes made to those module files, and monitor user access
to the files.

SCCS and RCS on the Digital UNIX operating system provides support
similar to SCCS and RCS utilities on other UNIX systems. In addition,
Digital UNIX has an sccs preprocessor, which provides an interface to the
more traditional SCCS commands.

SCCS and RCS maintain a record of changes made to files stored using the
utility. The record can include information on why the changes were made,
who made them, and when they were made. You can use either SCCS or
RCS to recover previous versions of files as well as to maintain different
versions simultaneously. SCCS is useful for application project management
because it does not allow two people to modify the same file simultaneously.

For more information , see the sccs(1) and rcs(1) reference pages and the
manual Programming Support Tools.

1.5 Program Installation Tools
Once you have created your program or application, you might want to
package it as a kit for the setld installation utility so that it can be
distributed easily to other users. The Digital UNIX operating system has

Overview 1–5

several utilities that you can use to install, remove, combine, validate, and
configure programs and applications.

Software for Digital UNIX systems consists of a hierarchical group of files
and directories. If your application or program consists of more than one file
or directory, you need to determine how the files and directories are grouped
within the hierarchy. The setld installation process preserves the integrity
of each product’s hierarchy when it is transferred from the development
system to a production system (that is, when the product is installed). The
kitting process includes grouping the component files for the product into
subsets, allowing the system administrator to install some or all of them as
needed.

Using the setld utility and its related tools provides the following benefits:

• Installation security

The setld utility verifies each subset immediately after it is transferred
from one system to another to make sure that the transfer was successful.
Each subset is recoverable, so you can reinstall one that has been
damaged or deleted.

• Flexibility

System administrators can choose which optional subsets to install.
Administrators can also delete subsets and then reinstall them later, as
needed. You might use this feature to provide multiple language support
for your application or to allow users to select among optional features of
your application.

• Uniformity

The setld utility is an integral part of the Digital UNIX installation
implementation.

Using setld, you can load your application on any of the following
distribution media for installation on other systems:

• CD-ROM distribution media

• An arbitrary, mountable file system on any supported data disk; for
example, a third-party SCSI disk cartridge

For more information on using the setld command and creating and
managing software product kits, see the manual Programming Support Tools.

1.6 Overview of Interprocess Communication Facilities
Interprocess communication (IPC) is the exchange of information between
two or more processes. In single-process programming, modules within a
single process communicate with each other using global variables and
function calls, with data passing between the functions and the callers. When

1–6 Overview

programming using separate processes having images in separate address
spaces, you need to use additional communication mechanisms.

Digital UNIX provides the following facilities for interprocess
communication:

• System V IPC

System V IPC includes the following IPC facilities: messages, shared
memory, and semaphores.

• Pipes

For information about pipes, see the Guide to Realtime Programming.

• Signals

For information about signals, see the Guide to Realtime Programming.

• Sockets

For information about sockets, see the Network Programmer’s Guide.

• STREAMS

For information about STREAMS, see the Programmer’s Guide:
STREAMS.

• Threads

For information about programming using threads, see the Guide to
DECthreads and Chapter 12.

• X/Open Transport Interface (XTI)

For information about XTI, see the Network Programmer’s Guide.

Overview 1–7

2The Compiler System3333333333333333333333
This chapter contains information on the following topics:

• Data types in the Digital UNIX environment

• Using the C preprocessor

• Linking object files

• Running programs

• Object file tools

• ANSI name space pollution cleanup in the standard C library

The compiler system is responsible for converting source code into an
executable program. This can involve several steps:

• Preprocessing – The compiler system performs such operations as
expanding macro definitions or including header files in the source code.
The output of this operation is an intermediate file with the .i file suffix.

• Compiling – The compiler system converts a source file or preprocessed
file to an object file with the .o file suffix.

• Linking – The compiler system produces a binary image.

These steps can be performed by separate preprocessing, compiling, and
linking commands, or they can be performed in a single operation, with the
compiler system calling each tool at the appropriate time during the
compilation.

Other tools in the compiler system help debug the program after it has been
compiled and linked, examine the object files that are produced, create
libraries of routines, or analyze the run-time performance of the program.

Table 2-1 summarizes the tools in the compiler system and points to the
chapter or section where they are described in this and other documents.

Table 2-1: Compiler System Functions
22
Task Tools Where Documented22
Compile, link, and
load programs, build
shared libraries

Compiler drivers, link
editor, dynamic loader

This chapter, Chapter 4, cc(1),
c89(1), as(1), ld(1),
loader(5), Assembly Language
Programmer’s Guide, DEC C
Language Reference Manual

Debug programs Symbolic debugger (dbx
and ladebug) and Third
Degree

Chapter 5, Chapter 6, dbx(1),
third(5), ladebug(1),
Ladebug Debugger Manual

Profile programs Profiler, call graph profiler Chapter 8, prof(1), gprof(1),
pixie(5), atom(1),
hiprof(5), atomtools(5)

Optimize programs Optimizer, post-link
optimizer

This chapter, Chapter 10, cc(1),
third(1)

Examine object files nm, file, size, dis,
odump, and stdump
tools

This chapter, nm(1), file(1),
size(1), dis(1), odump(1),
stdump(1), Programming
Support Tools

Produce necessary
libraries

Archiver (ar), linker (ld)
command

This chapter, Chapter 4, ar(1),
ld(1)22

2.1 Compiler System Components (Driver Programs)
Figure 2-1 shows the relationship between the major components of the
compiler system and their primary inputs and outputs.

2–2 The Compiler System

Figure 2-1: Compiling a Program

 ZK−1079U−R

.c
.c
.i

.o

.a

.so

.i .o a.out

preprocessor compiler linker

Compiler system commands, sometimes called driver programs, invoke the
components of the compiler system. Each language has its own set of
compiler commands and flags. In addition, your system might include
layered products such as C++, or other languages such as Fortran or Pascal.
The languages supported by any one system are determined by the choices
made at the time the system is installed or modified. Thus, the configuration
of your particular system may not support languages other than C and
assembly.

The cc command invokes the C compiler. The –newc and –oldc flags
invoke different compiler implementations (where the implementation
invoked by –newc is upwardly compatible with that invoked by –oldc).
The –newc compiler offers improved optimization, additional features, and
greater compatibility with Digital compilers provided on other platforms.
The –newc compiler implementation is the default.

The –newc compiler was accessible in previous versions of the Digital
UNIX operating system by means of the –migrate flag. The –newc
compiler has been made more compatible with the –oldc compiler.

Note

This manual uses the phrase ‘‘the C compiler’’ to refer to both
versions of the DEC C compiler, –newc and –oldc. Features
supported by only one of the compilers are so marked.

The Compiler System 2–3

Each compiler implementation supports a slightly different set of compiler
flags. See Table 2-4 for a comparison.

In the Digital UNIX programming environment, a single compiler command
can perform multiple actions, including the following:

• Determine whether to call the appropriate preprocessor, compiler (or
assembler), or linker based on the file name suffix of each file. Table 2-2
lists the supported file suffixes, which identify the contents of the input
files.

• Compile and link a source file to create an executable program. If
multiple source files are specified, the files can be passed to other
compilers before linking.

• Unlike the compilers, the assembler (as) can assemble only a single file,
which is assumed to contain assembler code (any file suffix is ignored).
The as command does not automatically link the assembled object file.
Thus, if you directly invoke the assembler, you need to link the object in
a separate step.

• Prevent linking and the creation of the executable program, thereby
retaining the .o object file for a subsequent link operation.

• Pass the major flags associated with the link command (ld) to the linker.
For example, you can include the –L flag as part of the cc command to
specify the directory path to search for a library. Each language requires
different libraries at link time; the driver program for a language passes
the appropriate libraries to the linker. For more information on linking
with libraries, see Chapter 4 and Section 2.5.3.

• Create an executable program file with a default name of a.out or with
a name that you specify.

Table 2-2: File Suffixes and Associated Files
222
Suffix File222

Archive library.a

C source code.c

.i The driver assumes that the source code was processed by the C
preprocessor and that the source code is that of the processing driver,
for example, % cc -c source.i. The file, source.i, is assumed
to contain C source code.

Object file.o

Assembly source code.s

Shared object (shared library).so

2–4 The Compiler System

Table 2-2: (continued)
222
Suffix File222
.u ucode object file (supported only under –oldc)

.b ucode object library (supported only under –oldc)222

2.2 Data Types in the Digital UNIX Environment
The following sections describe how data is represented on the Digital UNIX
system.

2.2.1 Data Type Sizes
The Digital UNIX system is little endian; that is, the address of a multibyte
integer is the address of its least significant byte; the more significant bytes
are at higher addresses. The C compiler supports only little endian byte
ordering. The following table gives the sizes of supported data types.
222222222222222222222222222222
Data type Size in bits222222222222222222222222222222
char 8

short 16

int 32

long 64

long long 64

float 32 (IEEE Single)

double 64 (IEEE Double)

pointer 64222222222222222222222222222222

2.2.2 Floating-Point Range and Processing
The C compiler supports IEEE single-precision (32-bit float) and double-
precision (64-bit double) floating-point data, as defined by the IEEE
Standard for Binary Floating-Point Arithmetic (ANSI/IEEE Std 754-1985).

Floating-point numbers have the following ranges:

• float: 1.17549435e-38f to 3.40282347e+38f

• double: 2.2250738585072014e-308 to 1.79769313486231570e+308

The Compiler System 2–5

Digital UNIX provides the basic floating-point number formats, operations
(add, subtract, multiply, divide, square root, remainder, and compare), and
conversions defined in the standard. You can obtain full IEEE-compliant
trapping behavior (including nonnumbers [NaNs]) by specifying a
compilation flag, or by specifying a fast mode when IEEE-style traps are not
required. You can also select, at compile time, the rounding mode applied to
the results of IEEE operations. See cc(1) for information on the flags that
support IEEE floating-point processing.

A user program can control the delivery of floating-point traps to a thread by
calling ieee_set_fp_control(), or dynamically set the IEEE rounding
mode by calling write_rnd(). See ieee(3) for additional information on
how to handle IEEE floating-point exceptions.

2.2.3 Structure Alignment
The C compiler aligns structure members on natural boundaries by default.
That is, the components of a structure are laid out in memory in the order in
which they are declared. The first component has the same address as the
entire structure. Each additional component follows its predecessor on the
next natural boundary for the component type.

For example, the following structure is aligned as shown in Figure 2-2:
struct {char c1;

short s1;
float f;
char c2;
}

Figure 2-2: Default Structure Alignment

 ZK−1082U−R

31 15

32

0

char c1

char c2

short s1

64

63

16

71

float f

78

The first component of the structure, c1, starts at offset 0 and occupies the
first byte. The second component, s1, is a short; it must start on a word
boundary. Therefore, padding is added between c1 and s1. No padding is

2–6 The Compiler System

needed to make f and c2 fall on their natural boundaries. However, because
size is rounded up to a multiple alignment, three bytes of padding are added
after c2.

The following mechanisms can be used to override the default alignment of
structure members:

• The #pragma member_alignment and #pragma
nomember_alignment directives (–newc only)

• The #pragma pack directive (–newc or –oldc)

• The –Zpn flag

See Section 3.5 and Section 3.7 for information on these directives.

2.2.4 Bit-Field Alignment
In general, the alignment of a bit field is determined by the bit size and bit
offset of the previous field. For example, the following structure is aligned
as shown in Figure 2-3:
struct a {

char f0: 1;
short f1: 12;
char f2: 3;

} struct_a;

Figure 2-3: Default Bit-Field Alignment

 ZK−1080U−R

31 15 12 0

char f2 char f0

short f1

The first bit field, f0, starts on bit offset 0 and occupies 1 bit. The second,
f1, starts at offset 1 and occupies 12 bits. The third, f2, starts at offset 13
and occupies 3 bits. The size of the structure is two bytes.

Certain conditions can cause padding to occur prior to the alignment of the
bit field:

• Bit fields of size 0 cause padding to the next pack boundary. (The pack
boundary is determined by the #pragma pack directive (–newc or
–oldc) or the –Zpncompiler flag.) For bit fields of size 0, the bit field’s

The Compiler System 2–7

base type is ignored. For example, consider the following structure:
struct b {

char f0: 1;
int : 0;
char f1: 2;

} struct_b;

If the source file is compiled with the –Zp1 flag or if a
#pragma pack 1 directive is encountered in the compilation, f0 would
start at offset 0 and occupy 1 bit, the unnamed bit field would start at
offset 8 and occupy 0 bits, and f1 would start at offset 8 and occupy 2
bits.

Similarly, if the –Zp2 flag or the #pragma pack 2 directive were used,
the unnamed bit field would start at offset 16. With –Zp4 or
#pragma pack 4, it would start at offset 32.

• If the bit field does not fit in the current unit, padding occurs to either the
next pack boundary or the next unit boundary, whichever is closest. (The
unit boundary is determined by the bit field’s base type, for example, the
unit boundary associated with the declaration ‘‘char foo: 1’’ is a
byte.) The current unit is determined by the current offset, the bit field’s
base size, and the kind of packing specified, as shown in the following
example:
struct c {

char f0: 7;
short f1: 11;

} struct_c;

Assuming that you specify either the –Zp1 flag or the

Figure 2-4: Padding to the Next Pack Boundary

 ZK−1081U−R

31 20 19 0

short f1

8 7

char f0

2.2.5 The _align Storage Class Modifier
Data alignment is implied by data type. For example, the C compiler aligns
an int (32 bits) on a 4-byte boundary and a long (64 bits) on an 8-byte
boundary. The _align storage-class modifier, supported only by the C
compiler using the –std and –newc flags (the default), aligns objects of any
of the C data types on the specified storage boundary. It can be used in a data

2–8 The Compiler System

declaration or definition.

The _align modifier has the following format:

_align (keyword)
_align (n)

Where keyword is a predefined alignment constant and n is an integer
power of 2. The predefined constant or power of 2 tells the compiler the
number of bytes to pad in order to align the data.

For example, to align an integer on the next quadword boundary, use any of
the following declarations:

int _align(QUADWORD) data;
int _align(quadword) data;
int _align(3) data;

In this example, int _align (3) specifies an alignment of 2x2x2 bytes,
which is 8 bytes, or a quadword of memory.

The following table shows the predefined alignment constants, their
equivalent power of 2, and equivalent number of bytes.
222
Constant Power Number

of 2 of Bytes222
BYTE or byte 0 1

WORD or word 1 2

LONGWORD or longword 2 4

QUADWORD or quadword 3 8222

2.3 Using the C Preprocessor
The C preprocessor performs macro expansion, includes header files, and
executes preprocessor directives prior to compiling the source file. The
following sections describe the Digital UNIX -specific operations performed
by the C preprocessor. For more information on the C preprocessor, see the
cc(1) and cpp(1) reference pages and the DEC C Language Reference
Manual.

2.3.1 Predefined Macros

When the compiler is invoked, it defines C preprocessor macros that identify
the language of the input files and the environments on which the code may
run. You can reference these macros in #ifdef statements to isolate code

The Compiler System 2–9

that applies to a particular language or environment. The preprocessor
macros are listed in Table 2-3.

The type of source file and the type of standards you apply determine the
macros that are defined. The C compiler supports several levels of
standardization:

• The –std flag enforces the ANSI C standard, but allows some common
programming practices disallowed by the standard, and passes the macro
__STDC__=0 to the preprocessor.

• The –std0 flag enforces the K & R programming style, with certain
ANSI extensions in areas where the K & R behavior is undefined or
ambiguous. In general, –std0 compiles most pre-ANSI C programs and
produces expected results. It causes the __STDC__ macro to be
undefined.

• The –std1 flag strictly enforces the ANSI C standard and all its
prohibitions (such as those that apply to handling a void, the definition
of an lvalue in expressions, the mixing of integrals and pointers, and
the modification of an rvalue). It passes the macro __STDC__=1 to
the preprocessor.

Table 2-3: Predefined Macros
22
Macro Source File Type –std Flag22
_ _DECC (–newc only) .c –std0, –std, –std1

LANGUAGE_C .c –std0

_ _LANGUAGE_C_ _ .c –std0, –std, –std1

unix .c, .s –std0

_ _unix_ _ .c, .s –std0, –std, –std1

_ _osf_ _ .c, .s –std0, –std, –std1

_ _alpha .c, .s –std0, –std, –std1

SYSTYPE_BSD .c, .s –std0

_SYSTYPE_BSD .c, .s –std0, –std, –std1

LANGUAGE_ASSEMBLY .s –std0, –std, –std1

_ _LANGUAGE_ASSEMBLY_ _ .s –std0, –std, –std122

2–10 The Compiler System

2.3.2 Including Common Files
When writing programs, you often use header files that are common among a
program’s modules. These files define constants, the parameters for system
calls, and so on.

C header files, sometimes known as include files, have a .h suffix.
Typically, the reference page for a library routine or system call indicates the
required header files. Header files can be used in programs written in
different languages.

Note

If you intend to debug your program using dbx or ladebug, do
not place executable code in a header file. The debugger
interprets a header file as one line of source code; none of the
source lines in the file appears during the debugging session. For
more information on the dbx debugger, see Chapter 5. For
details on ladebug, see the Ladebug Debugger Manual.

You can include header files in a program source file in one of two ways:

#include "filename"

Enter this line in column 1 of a source file to indicate that the C macro
preprocessor should first search for the include file filename in the
directory in which it found the file that contains the directive, then in the
search path indicated by the –I flag, and finally in /usr/include.

#include <filename >

Enter this line in column 1 of a source file to indicate that the C macro
preprocessor should search for the include file filename only in the
search path indicated by the –I flag and in /usr/include, but not in
the current directory.

You can also use the –Idir compiler flag to specify additional pathnames
(directories) to be searched by the C preprocessor for #include files. The
C preprocessor searches first in the directory where the source file resides,
followed by the specified pathname, dir, then the default directory,
/usr/include. If dir is omitted, the default directory,
/usr/include, is not searched.

2.3.3 Setting Up Multilanguage Include Files

C, Fortran, and assembly code can reside in the same include files, then
conditionally included in programs as required. To set up a shareable include
file, you must create a .h file and enter the respective code, as shown in the

The Compiler System 2–11

following example:
#ifdef __LANGUAGE_C__
.
. (C code)
.

#endif
#ifdef __LANGUAGE_ASSEMBLY__
.
. (assembly code)
.

#endif

When the compiler includes this file in a C source file, the
__LANGUAGE_C__ macro is defined, and the C code is compiled. When
the compiler includes this file in an assembly language source file, the
__LANGUAGE_ASSEMBLY__ macro is defined, and the assembly language
code is compiled.

2.3.4 Implementation-Specific Preprocessor Directives (#pragma)
The #pragma directive is a standard method of implementing features that
vary from one compiler to the next. The C compiler supports the following
implementation-specific pragmas:

• #pragma environment

• #pragma function

• #pragma inline

• #pragma intrinsic

• #pragma linkage

• #pragma member

• #pragma message

• #pragma pack

• #pragma pointer_size

• #pragma use_linkage

• #pragma weak

The pragmas are described in detail in Chapter 3.

2.4 Compiling Source Programs

The cc command provides more than one compilation environment: The
–newc and –oldc flags invoke different compiler implementations (where

2–12 The Compiler System

the implementation invoked by –newc is upwardly compatible with that
invoked by –oldc). The –newc compiler offers improved optimization,
additional features, and greater compatibility with Digital compilers provided
on other platforms. The –newc compiler implementation is the default.

The –newc compiler has been accessible in previous versions of the Digital
UNIX operating system by means of the –migrate flag. The –newc
compiler has been made more compatible with the –oldc compiler.

All compilation environments produce object files that comply with the
common object file format (COFF), and their objects files can be freely
intermixed. The C compiler invoked by the –oldc flag employs ucode-
based optimizations; the C compiler invoked by the –newc flag employs
other optimizations.

The following sections describe the flags that are available in all compilation
environments, the default compiler behavior, and how to compile
multilanguage programs.

2.4.1 Compilation Flags
Compiler flags select a variety of program development functions, including
debugging, optimizing, and profiling facilities, and the names assigned to
output files.

Table 2-4 compares the flags that are available with the three compilation
environments. An asterisk (*) indicates that the flag is accepted, but ignored,
by the compiler. See the cc(1) reference page for more information on these
flags.

Table 2-4: Comparison of Compiler Flags
22
Flag -newc -oldc -migrate
22

–ansi_alias yes no yes

–[no_]ansi_args yes no yes

–assume [no]accuracy_sensitive yes yes yes

–assume [no]aligned_object yes no yes

–assume [no]trusted_short_alignment yes no yes

–B yes yes yes

–c yes yes yes

–C yes yes yes

–call_shared yes yes yes

–check yes no yes

The Compiler System 2–13

Table 2-4: (continued)
22
Flag -newc -oldc -migrate
22
–compress yes yes yes

–cord yes yes yes

–[no_]cpp yes yes yes

–D yes yes yes

–double yes yes yes

–edit yes yes yes

–exact_version yes yes yes

–E yes yes yes

–fast yes yes yes

–feedback yes yes yes

–float yes yes yes

–float_const yes yes yes

–[no_]fp_reorder yes yes yes

–fprm {c | d | n | m} yes yes yes

–fptm {n | su | sui | u} yes yes yes

–framepointer yes yes yes

–g yes yes yes

–G yes* yes yes*

–gen_feedback yes no yes

–h yes yes yes

–H yes yes yes

–I yes yes yes

–ieee yes yes yes

–ifo yes yes* yes

–inline yes no yes

–j no yes no

–k yes yes yes

–K yes yes yes

–ko yes yes yes

–M yes yes yes

–machine_code yes no yes

–MD yes yes yes

2–14 The Compiler System

Table 2-4: (continued)
22
Flag -newc -oldc -migrate
22
–[no_]misalign yes yes yes

–no_archive yes yes yes

–no_inline yes yes yes

–nomember_alignment yes no yes

–non_shared yes yes yes

–noobject yes no yes

–o yes yes yes

–O yes yes yes

–oldcomment yes yes yes

–Olimit yes* yes yes*

–p yes yes yes

–P yes yes yes

–[no_]pg yes yes yes

–portable yes no yes

–preempt_module yes no yes

–preempt_symbol yes no yes

–proto[is] yes yes yes

–pthread yes yes yes

–Q yes yes yes

–readonly_strings yes yes yes

–resumption_safe yes yes yes

–S yes yes yes

–scope_safe yes yes yes

–show yes no yes

–signed yes yes yes

–source_listing yes no yes

–speculate yes no yes

–std[n] yes yes yes

–t yes yes yes

–taso yes yes yes

–threads yes yes yes

–tune yes yes yes

The Compiler System 2–15

Table 2-4: (continued)
22
Flag -newc -oldc -migrate
22
–traditional yes yes yes

–trapuv yes yes yes

–U yes yes yes

–unroll yes no yes

–unsigned yes yes yes

–v yes yes yes

–V yes yes yes

–varargs yes yes yes

–vaxc yes no yes

–verbose yes yes yes

–volatile yes yes yes

–w yes yesa yes

–W yes yes yes

–warnprotos yes yes yes

–writable_strings yes yes yes

–xtaso yes yes yes

–xtaso_short yes yes yes

–Zp yes yes yes22

Table note:

a. The –w0 flag is not accepted by the –oldc flag.

2.4.2 Default Compilation Behavior
Some flags have default values that are used if the flag is not specified on the
command line. For example, the default name for an output file is
filename.o for object files, where filename is the base name of the
source file. The default name for an executable program object is a.out.
The following example uses the defaults in compiling two source files named

2–16 The Compiler System

prog1.c and prog2.c:
% cc prog1.c prog2.c

This command runs the C compiler, creating object modules prog1.o and
prog2.o and the executable program a.out.

Whether you are new to Digital UNIX, porting applications from other
systems, or concerned with compatibility issues, knowing the default
behavior of the compiler is useful. When you enter the cc compiler
command with no other flags, the following flags are in effect:

–newc
The default compiler flag; invoked when the compiler flag is not
specified.

–assume aligned_objects
Allows the compiler to make such an assumption, and thereby generate
more efficient code for pointer dereferences of aligned pointer types.

–call_shared
Produces a dynamic executable file that uses shareable objects at run
time.

–double
Promotes expressions of type float to double.

–fprm n
Performs normal rounding (unbiased round to nearest) of floating-point
numbers.

–g0
Does not produce symbol information for symbolic debugging.

–I/usr/include
Specifies that #include files whose names do not begin with / are
always sought first in the directory /usr/include.

–inline manual
Inlines only those function calls explicitly requested for inlining by a
#pragma inline directive.

–member_alignment
Directs the compiler to naturally align data structure members (with the
exception of bit-field members).

–no_fp_reorder
Directs the compiler to use only certain scalar rules for calculations.

–no_misalign
Generates alignment faults for arbitrarily aligned addresses.

–O1

The Compiler System 2–17

Enables global optimizations.

–oldcomment
Allows traditional token concatenation.

–p0
Disables profiling.

–no_pg
Turns off gprof profiling.

–preempt_symbol
Allows symbol preemption on a symbol-by-symbol basis.

–signed
Causes all char declarations to be signed char.

–std0
Enforces the K&R standard with some ANSI extensions.

–tune generic
Selects instruction tuning that is appropriate for all implementations of
the Alpha architecture.

–unroll 0
Directs the optimizer to use its own default loop unrolling amount.

–writeable_strings
Makes string literals writable.

The following list includes miscellaneous aspects of the default cc compiler
behavior:

• The output file is named a.out unless another name is specified by
using the –o flag.

• Source files are linked automatically if compilation (or assembly) is
successful.

• Floating-point computations are fast floating point, not full IEEE.

• Pointers are 64 bits. For information on using 32-bit pointers, see
Appendix A.

• Temporary files are placed in the /tmp directory.

2.4.3 Compiling Multilanguage Programs
When the source language of the main program differs from that of a
subprogram, compile each program separately with the appropriate driver and
link the object files in a separate step. You can create objects suitable for
linking by specifying the –c flag, which stops a driver immediately after the

2–18 The Compiler System

object file has been created. For example:
% cc -c main.c

This command produces the object file main.o, not the executable file
a.out.

Most language driver programs pass information to cc, which, after
processing, passes information to ld. When one of the modules to be
compiled is a C program, you can usually use the driver command of the
other language to compile and link both modules.

2.5 Linking Object Files
The cc driver command can link object files to produce an executable
program. In some cases, you may want to use the ld linker directly.
Depending on the nature of the application, you must decide whether to
compile and link separately or to compile and link with one compiler
command. Factors to consider include:

• Whether all source files are in the same language

• Whether any files are in source form

2.5.1 Linking Using Compiler Commands
You can use a compiler command instead of the linker command to link
separate objects into one executable program. Each compiler (except the
assembler) recognizes the .o suffix as the name of a file that contains object
code suitable for linking and immediately invokes the linker.

Because the compiler driver programs pass the libraries associated with that
language to the linker, using the compiler command is usually recommended.
For example, the cc driver uses the C library (libc.so) by default. For
information about the default libraries used by each compiler command, see
the appropriate command in the reference pages, such as cc(1).

You can also use the -l flag to specify additional libraries to be searched for
unresolved references. The following example shows how to use the cc
driver to pass the names of two libraries to the linker with the –l flag:
% cc -o all main.o more.o rest.o -lm -lexc

The –lm flag specifies the math library; the –lexc flag specifies the
exception library.

You should compile and link modules with a single command when you
want to optimize your program. Most compilers support increasing levels of
optimization with the use of certain flags. For example:

The Compiler System 2–19

• The –O0 flag requests no optimization (usually for debugging purposes).

• The –O1 flag requests certain local (module-specific) optimizations.

• Cross-module optimizations can be requested with the –O3 flag to the C
compiler using the –oldc flag, or with the –ifo flag to the C compiler
using the –newc flag. In this case, compiling multiple files in one
operation allows the compiler to perform the maximum possible
optimizations.

• Certain compilers may provide a combination of flags (such as –c and
–o) that compile multiple source files into a single object module. This
combination allows interprocedural optimizations to occur, yet retains the
object file.

2.5.2 Linking Using the ld Command

Normally, users do not need to run the linker directly, but use the cc
command to indirectly invoke the linker. Executables that need to be built
solely from assembler objects can be built with the ld command.

The linker (ld) combines one or more object files (in the order specified)
into one executable program file, performing relocation, external symbol
resolutions, and all other processing required to make object files ready for
execution. Unless you specify otherwise, the linker names the executable
program file a.out. You can execute the program file or use it as input for
another linker operation.

The as assembler does not automatically invoke the linker. To link a
program written in assembly language, do either of the following:

• Assemble and link with one of the other compiler commands. The .s
suffix of the assembly language source file automatically causes the
compiler command to invoke the assembler.

• Assemble with the as command and then link the resulting object file
with the ld command.

For information about the flags and libraries that affect the linking process,
see the ld(1) reference page.

2.5.3 Specifying Libraries
When you compile your program on the Digital UNIX system, it is
automatically linked with the C library, libc.so. If you call routines that
are not in libc.so or one of the archive libraries associated with your
compiler command, you must explicitly link your program with the library.
Otherwise, your program will not be linked correctly.

2–20 The Compiler System

You need to explicitly specify libraries in the following situations:

• When compiling multilanguage programs

If you compile multilanguage programs, be sure to explicitly request any
required run-time libraries to handle unresolved references. Link the
libraries by specifying -lstring, where string is an abbreviation of
the library name.

For example, if you write a main program in C and some procedures in
another language, you must explicitly specify the library for that language
and the math library. When you use these flags, the linker replaces the -l
with lib and appends the specified characters (for the language library
and for the math library) and the .a or .so suffix, depending upon
whether it is a static (non-shared archive library) or dynamic (call-shared
object or shared library) library. Then, it searches the following
directories for the resulting library name:

/usr/shlib
/usr/ccs/lib
/usr/lib/cmplrs/cc
/usr/lib
/usr/local/lib
/var/shlib

For a list of the libraries that each language uses, see the reference pages
for the appropriate language compiler driver.

• When storing object files in an archive library

You must include the pathname of the library on the compiler or linker
command line. For example, the following command specifies that the
libfft.a archive library in the /usr/jones directory is to be linked
along with the math library:
% cc main.o more.o rest.o /usr/jones/libfft.a -lm

The linker searches libraries in the order you specify. Therefore, if any
file in your archive library uses data or procedures from the math library,
you must specify the archive library before you specify the math library.

• When storing ucode object libraries

To link from a ucode library, specify the –klx compiler flag.

Note

Only the –oldc flag to the C compiler can be used to
produce ucode files.

The Compiler System 2–21

The following example links a file from a ucode library:
% cc -klucode_lib -o output main.u more.u rest.u

Because the libraries are searched as they are encountered on the
command line, the order in which you specify them is important.
Although a library might be made from both assembly and high-level
language routines, the ucode object library contains code only for the
high-level language routines.

Unlike an extended COFF object library, the ucode library does not
contain code for the routines. You must specify to the ucode linker both
the ucode object library and the extended COFF object library, in that
order, to ensure that all modules are linked with the proper library.

If the compiler driver is to perform both a ucode link step and a final link
step, the object file created after the ucode link step is placed in the
position of the first ucode file specified or created on the command line in
the final link step.

2.6 Running Programs
To run an executable program in your current working directory, in most
cases you enter its file name. For example, to run the program a.out
located in your current directory, enter:
% a.out

If the executable program is not in a directory in your path, enter the
directory path before the file name, or enter:
% ./a.out

When the program is invoked, the main function in a C program can accept
arguments from the command line if the main function is defined with one
or more of the following optional parameters:

int main(int argc, char *argv[], char *envp[]) [...]

The argc parameter is the number of arguments in the command line that
invoked the program. The argv parameter is an array of character strings
containing the arguments. The envp parameter is the environment array
containing process information, such as the user name and controlling
terminal. (The envp parameter has no bearing on passing command-line
arguments. Its primary use is during exec and getenv function calls.)

You can access only the parameters that you define. For example, the
following program defines the argc and argv parameters to echo the values

2–22 The Compiler System

of parameters passed to the program:
/*
* Filename: echo-args.c
* This program echoes command-line arguments.

*/

#include <stdio.h>

int main(int argc, char *argv[])
{
int i;

printf("program: %s\n", argv[0]); /* argv[0] is program name */

for (i=1; i < argc; i++)
printf("argument %d: %s\n", i, argv[i]);

return(0);
}

The program is compiled with the following command to produce a program
file called a.out:
$ cc echo-args.c

When the user invokes a.out and passes command-line arguments, the
program echoes those arguments on the terminal. For example:
$ a.out Long Day\’s "Journey into Night"

program: a.out
argument 1: Long
argument 2: Day’s
argument 3: Journey into Night

The shell parses all arguments before passing them to a.out. For this
reason, a single quote must be preceded by a backslash, alphabetic arguments
are delimited by spaces or tabs, and arguments with embedded spaces or
tables are enclosed in quotation marks.

2.7 Object File Tools
After a source file has been compiled, you can examine the object file or
executable file with following tools:

• odump – Displays the contents of an object file, including the symbol
table and header information.

• stdump – Displays symbol table information from an object file.

• nm – Displays only symbol table information.

• file – Provides descriptive information on the general properties of the
specified file, for example, the programming language used.

The Compiler System 2–23

• size – Displays the size of the text, data, and bss segments.

• dis – Disassembles object files into machine instructions.

The following sections describe these tools. In addition, see the strings(1)
reference page for information on using the strings command to find the
printable strings in an object file or other binary file.

2.7.1 Dumping Selected Parts of Files (odump)
The odump tool displays header tables and other selected parts of an object
or archive file. For example, odump displays the following information about
the file echo-args.o:
% odump -at echo-args.o

ARCHIVE SYMBOL TABLE

ARCHIVE HEADER
Member Name Date Uid Gid Mode Size

SYMBOL TABLE INFORMATION
[Index] Name ValueSclass Symtype Ref
echo-args.o:
[0] main0x0000000000000000 0x01 0x06 0xfffff
[1] printf 0x0000000000000000 0x06 0x06 0xfffff
[2] _fpdata 0x0000000000000000 0x06 0x01 0xfffff

For more information, see the odump(1) reference page.

2.7.2 Listing Symbol Table Information (nm)
The nm tool displays symbol table information for object files. For example,
nm would display the following information about the object file produced
for the executable file a.out:
% nm
nm: Warning: - using a.out

Name Value Type Size

.bss | 0000005368709568 | B | 0000000000000000

.data | 0000005368709120 | D | 0000000000000000

.lit4 | 0000005368709296 | G | 0000000000000000

.lit8 | 0000005368709296 | G | 0000000000000000

.rconst | 0000004831842144 | Q | 0000000000000000

.rdata | 0000005368709184 | R | 0000000000000000

2–24 The Compiler System

.

.

.

The Name column contains the symbol or external name; the Value column
shows the address of the symbol, or debugging information; the Type column
contains a letter showing the symbol type; and the Size column shows the
symbol’s size (accurate only when the source file is compiled with a
debugging flag, for example, –g). Some of the symbol type letters are:

• B – External zeroed data

• D – External initialized data

• G – External small initialized data

• Q – Read-only constants

• R – External read-only data

For more information, see nm(1).

2.7.3 Determining a File’s Type (file)
The file command reads input files, tests each file to classify it by type,
and writes the file’s type to standard output. The file command uses the
/etc/magic file to identify files that contain a magic number. (A magic
number is a numeric or string constant that indicates a file’s type.)

The following example shows the output of the file command on a
directory containing a C source file, object file, and executable file:
% file *.*
.: directory
..: directory
a.out: COFF format alpha dynamically linked, demand paged executable
or object module not stripped - version 3.11-8
echo-args.c: c program text
echo-args.o: COFF format alpha executable or object module not
stripped - version 3.12-6

For more information, see file(1).

2.7.4 Determining a File’s Segment Sizes (size)
The size tool displays information about the text, data, and bss segments of
the specified object or archive file or files in octal, hexadecimal, or decimal
format. For example, when it is called without any arguments, the size
command returns information on a.out. You can also specify the name of

The Compiler System 2–25

an object or executable file on the command line. For example:
% size
text data bss dec hex
8192 8192 0 16384 4000
% size echo-args.o
text data bss dec hex
176 96 0 272 110

For more information, see size(1).

2.7.5 Disassembling an Object File (dis)
The dis tool disassembles object file modules into machine language. For
example, the dis command produces the following output when it
disassembles the a.out program:
% dis a.out
.
.
.

__start:
0x120001080: 23defff0 lda sp, -16(sp)
0x120001084: b7fe0008 stq zero, 8(sp)
0x120001088: c0200000 br t0, 0x12000108c
0x12000108c: a21e0010 ldl a0, 16(sp)
0x120001090: 223e0018 lda a1, 24(sp)

.

.

.

2.8 ANSI Name Space Pollution Cleanup in the Standard
C Library
The ANSI C standard states that users whose programs link against libc are
guaranteed a certain range of global identifiers that can be used in their
programs without danger of conflict with, or preemption of, any global
identifiers in libc.

The ANSI C standard also reserves a range of global identifiers libc can
use in its internal implementation. These are called reserved identifiers and
consist of the following, as defined in ANSI document number X3.159-1989:

• Any external identifier beginning with an underscore

• Any external identifier beginning with an underscore followed by a
capital letter or an underscore

ANSI conformant programs are not permitted to define global identifiers that
either match the names of ANSI routines or fall into the reserved name space
specified earlier in this section. All other global identifier names are
available for use in user programs.

2–26 The Compiler System

Historical libc implementations contain large numbers of non-ANSI,
nonreserved global identifiers that are both documented and supported.
These routines are often called from within libc by other libc routines,
both ANSI and otherwise. A user’s program that defines its own version of
one of these non-ANSI, nonreserved items would preempt the routine of the
same name in libc. This could alter the behavior of supported libc
routines, both ANSI and otherwise, even though the user’s program may be
ANSI conformant. This potential conflict is known as ANSI name space
pollution.

The implementation of libc on Digital UNIX Version 4.0 includes a large
number of non-ANSI, nonreserved global identifiers that are both
documented and supported. To protect against preemption of these global
identifiers within libc and to avoid pollution of the user’s name space, the
vast majority of these identifiers have been renamed to the reserved name
space by prepending two underscores (_ _) to the identifier names. To
preserve external access to these items, weak identifiers have been added
using the original identifier names that correspond to their renamed reserved
counterparts. Weak identifiers work much like symbolic links between files.
When the weak identifier is referenced, the strong counterpart is used instead.

User programs linked statically against libc may have extra symbol table
entries for weak identifiers. Each of these identifiers will have the same
address as its reserved counterpart, which will also be included in the symbol
table. For example, if a statically linked program simply called the tzset()
function from libc, the symbol table would contain two entries for this call,
as follows:
stdump -b a.out | grep tzset
18. (file 9) (4831850384) tzset Proc Text symref 23 (weakext)
39. (file 9) (4831850384) __tzset Proc Text symref 23

In this example, tzset is the weak identifier and __tzset is its strong
counterpart. The __tzset identifier is the routine that will actually do the
work.

User programs linked as shared should not see such additions to the symbol
table because the weak/strong identifier pairs remain in the shared library.

Existing user programs that reference non-ANSI, nonreserved identifiers from
libc do not need to be recompiled because of these changes, with one
exception: user programs that depended on preemption of these identifiers in
libc will no longer be able to preempt them using the nonreserved names.
This kind of preemption is not ANSI compliant and is highly discouraged.
However, the ability to preempt these identifiers still exists by using the new
reserved names (those preceded by two underscores).

These changes apply to the dynamic and static versions of libc:

The Compiler System 2–27

• /usr/shlib/libc.so

• /usr/lib/libc.a

When debugging programs linked against libc, references to weak symbols
resolve to their strong counterparts, as in the following example:
% dbx a.out
dbx version 3.11.4

Type ’help’ for help.

main: 4 tzset

(dbx) stop in tzset
[2] stop in __tzset
(dbx)

When the weak symbol tzset in libc is referenced, the debugger
responds with the strong counterpart __tzset instead because the strong
counterpart actually does the work. The behavior of the dbx debugger is the
same as if __tzset were referenced directly.

2–28 The Compiler System

3Pragma Preprocessor Directives3333333333333333333333
This chapter describes the implementation-specific pragmas that are
supported on the C compiler:

• #pragma environment (Section 3.1)

• #pragma inline (Section 3.2)

• #pragma intrinsic and #pragma function (Section 3.3)

• #pragma linkage (Section 3.4)

• #pragma member_alignment (Section 3.5)

• #pragma message (Section 3.6)

• #pragma pack (Section 3.7)

• #pragma pointer_size (Section 3.8)

• #pragma use_linkage (Section 3.9)

• #pragma weak (Section 3.10)

All of these pragmas can be used with the –newc or –migrate flags. A
subset of these pragmas can be used with the –oldc flag:

#pragma function
#pragma intrinsic
#pragma pack
#pragma pointer_size
#pragma weak

3.1 The #pragma environment Directive
The C compiler (using the –newc flag) supports a
#pragma environment directive that allows you to set, save, and restore
the state of all context pragmas. The context pragmas are:

#pragma member_alignment
#pragma message
#pragma pack
#pragma pointer_size

A context pragma can save and restore previous states, usually before and
after including a header file that might also use the same type of pragma.

The #pragma environment directive protects include files from
compilation contexts set by encompassing programs, and protects
encompassing programs from contexts set in header files that they include.

This pragma has the following syntax:

#pragma environment[command_line|header_defaults|restore|save]

command_line
Sets the states of all of the context pragmas set on the command line.
You can use this pragma to protect header files from environment
pragmas that take effect before the header file is included.

header_defaults
Sets the states of all of the context pragmas to their default values. This
is equivalent to the situation in which a program with no command-line
options and no pragmas is compiled, except that this pragma sets the
pragma message state to #pragma nostandard, as is appropriate for
header files.

restore
Restores the current state of every context pragma.

save
Saves the current state of every context pragma.

Without requiring further changes to the source code, you can use
#pragma environment to protect header files from things like language
enhancements that might introduce additional compilation contexts.

A header file can selectively inherit the state of a pragma from the including
file and then use additional pragmas as needed to set the compilation to
nondefault states. For example:
#ifdef __pragma_environment
#pragma __environment save 11 12277
#pragma __environment header_defaults 12 12277
#pragma member_alignment restore 13 12277
#pragma member_alignment save 14 12277
#endif
.
. /*contents of header file*/
.
#ifdef __pragma_environment
#pragma __environment restore
#endif

In this example:

11 12277 Saves the state of all context pragmas.

12 12277 Sets the default compilation environment.

3–2 Pragma Preprocessor Directives

13 12277 Pops the member alignment context from the
#pragma member_alignment stack that was pushed by
#pragma __environment save and restoring the member
alignment context to its pre-existing state.

14 12277 Pushes the member alignment context back onto the stack so that the
#pragma __environment restore can pop the entry.

Therefore, the header file is protected from all pragmas, except for the
member alignment context that the header file was meant to inherit.

3.2 The #pragma inline Directive
Function inlining (supported by the C compiler using the –newc flag) is the
inline expansion of function calls, replacing the function call with the
function code itself. Inline expansion of functions reduces execution time by
eliminating function-call overhead and allowing the compiler’s general
optimization methods to apply across the expanded code. Compared with the
use of function-like macros, function inlining has the following advantages:

• Arguments are evaluated only once.

• Overuse of parentheses is not necessary to avoid problems with
precedence.

• Actual expansion can be controlled from the command line.

• The semantics are as if inline expansion had not occurred. You cannot get
this behavior using macros.

The C compiler (using the –newc flag) enables the following preprocessor
directives to control function inlining:

#pragma inline (id, . . .)
#pragma noinline (id, . . .)

Where id is a function identifier.

If a function is named in a #pragma inline directive, calls to that
function are expanded as inline code, if possible. If a function is named in a
#pragma noinline directive, calls to that function are not expanded as
inline code. If a function is named in both a #pragma inline and a
#pragma noinline directive, an error message is issued.

If a function is to be expanded inline, you must place the function definition
in the same module as the function call. The definition can appear either
before or after the function call.

The cc command flags –O4 (for –oldc), –O3 and –O4 (for –newc),
-inline size, -inline speed, or -inline all cause the compiler
to attempt to expand calls to functions named in neither a

Pragma Preprocessor Directives 3–3

#pragma inline nor a #pragma noinline directive as inline code
whenever appropriate, as determined by the following function
characteristics:

• Size

• Number of times the function is called

• Conformance to the following restrictions:

– The function does not take a parameter’s address.

– A field of a struct argument. An argument that is a pointer to a
struct is not restricted.

– The function does not use the varargs or stdarg package to
access the function’s arguments because they require arguments to be
in adjacent memory locations, and inline expansion may violate that
requirement.

For optimization level –O2, the C compiler (using the –newc flag) inlines
small static routines only.

The use of the #pragma inline directive causes inline expansion
regardless of the size or number of times the specified functions are called.

3.3 The #pragma intrinsic and #pragma function
Directives
Certain functions can be declared to be intrinsic. Intrinsic functions are
functions for which the C compiler generates optimized code in certain
situations, possibly avoiding a function call.

Table 3-1 shows the functions that can be declared to be intrinsic.

Table 3-1: Intrinsic Functions
22
abs fabs labs

printf fprintf sprintf

strcpy memcpy memmove

memset alloca bcopy

bzero22

To control whether a function is treated as an intrinsic, use one of the
following pragmas (where func_name_list is a comma-separated list of
function names optionally enclosed in parentheses):

3–4 Pragma Preprocessor Directives

#pragma intrinsic [(] func_name_list [)]
#pragma function [(] func_name_list [)]
#pragma function ()

The intrinsic pragma enables intrinsic treatment of a function. When
the intrinsic pragma is turned on, the compiler understands how the
functions work, thereby generating more efficient code. A declaration for the
function must be in effect at the time the pragma is processed.

The function pragma disables the intrinsic treatment of a function. A
function pragma with an empty func_name_list disables intrinsic
processing for all functions.

Some standard library functions also have built-in counterparts in the
compiler. A built-in is a synonym name for the function and is equivalent to
declaring the function to be intrinsic. The following built-ins (and their
built-in names) are provided:

2222222222222222222222222222222
Function Synonym2222222222222222222222222222222
abs __builtin_abs

labs __builtin_labs

fabs __builtin_fabs

alloca __builtin_alloca

strcpy __builtin_strcpy2222222222222222222222222222222

Several methods are available for using intrinsics and built-ins. The header
files containing the declarations of the functions contain the intrinsic
pragma for the functions shown in Table 3-1. To enable the pragma, you
must define the preprocessor macro _INTRINSICS. For alloca, all that
is necessary is to include alloca.h.

For example, to get the intrinsic version of abs, a program should include
stdlib.h and compile with –D_INTRINSICS, or define _INTRINSICS
with a #define directive before including stdlib.h.

To enable built-in processing, use the –D switch. For example, to enable the
fabs built-in, the proc.c program is compiled with one of the following:
% cc -Dfabs=__builtin_fabs prog.c

Pragma Preprocessor Directives 3–5

% cc -Dabs=__builtin_abs prog.c

Optimization of the preceding functions varies according to the function and
how it is used:

• The following functions are inlined:

abs
fabs
labs
alloca

The function call overhead is removed.

• In certain instances, the printf and fprintf functions are converted
to call puts, putc, fputs, or fputc or their equivalents, depending
on the format string and the number and types of arguments.

• In certain instances, the sprintf function is inlined or converted to a
call to strcpy.

• The strcpy function is inlined if the source string (the second
argument) is a string literal.

3.4 The #pragma linkage Directive
The C compiler (using the –newc flag) supports a #pragma linkage
directive that allows you to specify linkage types. A linkage type specifies
how a function uses a set of registers. It allows you to specify the registers
that a function uses. It also allows you to specify the characteristics of a
function (for example, the registers in which it passes parameters or returns
values) and the registers that it can modify. The #pragma use_linkage
directive associates a previously defined linkage with a function (see Section
3.9).

The #pragma linkage directive affects both the call site and function
compilation (if the function is written in C). If the function is written in
assembler, you can use ‘‘linkage pragma’’ to describe how the assembler
uses registers.

The #pragma linkage directive has the following format:

#pragma linkage linkage-name = (characteristics)

linkage-name
Identifies the linkage type being defined. It has the form of a C
identifier. Linkage types have their own name space, so their names
will not conflict with other identifiers or keywords in the compilation
unit.

3–6 Pragma Preprocessor Directives

characteristics
Specifies information about where parameters will be passed, where the
results of the function are to be received, and what registers are modified
by the function call.

You must specify a register-list. A register-list is a
comma-separated list of register names, either Rn or Fn. A
register-list can also contain parenthesized sublists. Use the
register-list to describe arguments and function result types that
are structures, where each member of the structure is passed in a single
register. For example:
parameters (r0, (f0, f1))

The preceding example is a function with two parameters. The first
parameter is passed in R0. The second parameter is a structure type
with two floating-point members, which are passed in F0 and F1.

The following list of characteristics can be specified as a
parenthesized list of comma-separated items. Note, these keywords can
be supplied in any order.

• parameters(register-list)

The parameters characteristic passes arguments to a routine in
specific registers.

Each item in the register-list describes one parameter that is
passed to the routine.

You can pass structure arguments by value, with the restriction that
each member of the structure is passed in a separate parameter
location. Doing so, however, may produce code that is slower
because of the large number of registers used. The compiler does not
diagnose this condition.

Valid registers for the parameters option include integer registers
R0 through R25 and floating-point registers F0 through F30.

Structure types require at least one register for each field. The
compiler verifies that the number of registers required for a structure
type is the same as the number provided in the pragma.

• result(register-list)

The compiler needs to know which registers will be used to return
the value from the function. Use the result characteristic to pass
this information.

If a function does not return a value (that is, the function has a return
type of void), do not specify result as part of the linkage.

Valid registers for the register option include general-purpose
registers R0 through R25 and floating-point registers F0 through

Pragma Preprocessor Directives 3–7

F30.

• preserved(register-list)
nopreserve(register-list)
notused(register-list)
notneeded((lp))

The compiler needs to know which registers are used by the function
and which are not, and of those used, whether they are preserved
across the function call. To specify this information, use the
preserved, nopreserve, notused, and notneeded options:

– A preserved register contains the same value after a call to
the function as it did before the call.

– A nopreserve register does not necessarily contain the same
value after a call to the function as it did before the call.

– A notused register is not used in any way by the called
function.

– The notneeded characteristic indicates that certain items are
not needed by the routines using this linkage. The lp keyword
specifies that the Linkage Pointer register (R27) does not need to
be set up when calling the specified functions. The linkage
pointer is required when the called function accesses global or
static data. You must determine whether it is valid to specify
that the register is not needed.

Valid registers for the preserved, nopreserve, and notused
options include general-purpose registers R0 through R30, and
floating-point registers F0 through F30.

The #pragma linkage directive does not support structures containing
nested substructures as parameters or function return types with special
linkages. Functions that have a special linkage associated with them do not
support parameters or return types that have a union type.

The following characteristics specify a simple-register-list
containing two elements (registers F3 and F4); and a register-list
containing two elements (the register R0 and a sublist containing the registers
F0 and F1):
nopreserve(f3, f4)
parameters(r0, (f0, f1))

3–8 Pragma Preprocessor Directives

The following example shows a linkage using such characteristics:
#pragma linkage my_link=(nopreserve(f3,f4),

parameters(r0,(f0,f1)),
notneeded (lp))

The parenthesized notation in a register-list describes arguments and
function return values of type struct, where each member of the struct
is passed in a single register. In the following example, sample_linkage
specifies two parameters – the first is passed in registers R0, R1, and R2 and
the second is passed in F1:
struct sample_struct_t {

int A, B;
short C;
} sample_struct;

#pragma linkage sample_linkage = (parameters ((r0, r1, r2), f1))
void sub (struct sample_struct_t p1, double p2) { }

main()
{

double d;

sub (sample_struct, d);
}

3.5 The #pragma member_alignment Directive
By default, the compiler aligns structure members on natural boundaries.
Use the #pragma [no]member_alignment {specifier}
preprocessor directive (supported by the C compiler using the –newc flag) to
determine the byte alignment of structure members.

This pragma has the following formats:

#pragma member_alignment[save|restore]
#pragma nomember_alignment

Use #pragma member_alignment to specify natural-boundary
alignment of structure members. When #pragma member_alignment is
used, the compiler aligns structure members on the next boundary appropriate
to the type of the member, rather than on the next byte. For instance, an int
variable is aligned on the next longword boundary; a short variable is
aligned on the next word boundary.

Where the #pragma [no]member_alignment directives allow you to
choose between natural and byte alignment, the pragma pack directive
allows you to specify structure member alignment on byte, word, longword,
or quadword boundaries. See Section 3.7 for more information on
#pragma pack.

Pragma Preprocessor Directives 3–9

With any combination of #pragma member_alignment,
#pragma nomember_alignment, and #pragma pack, each pragma
remains in effect until the next one is encountered.

The #pragma member_alignment save and
#pragma member_alignment restore directives can be used to save
the current state of the member_alignment (including pack alignment) and to
restore the previous state, respectively. The ability to control the state is
necessary for writing header files that require member_alignment or
nomember_alignment, or that require inclusion in a
member_alignment that is already set.

3.6 The #pragma message Directive
The #pragma message directive (supported by the C compiler using the
–newc flag) controls the issuance of individual diagnostic messages or
groups of diagnostic messages. The use of this pragma overrides any
command-line flags that may affect the issuance of messages.

The #pragma message directive has the following formats:

#pragma message[enable|disable] (message-list)
#pragma message[save|restore]

enable | disable message-list

• enable – Enables issuance of the messages specified in the
message list.

• disable – Disables issuance of the messages specified in the
message list.

• message-list

The message-list can be one of the following:

– A single message identifier. Use the -verbose flag on the cc
command to obtain the message identifier.

– The name of a message group:

• ALL – Messages in the compiler

• CHECK – Messages about potentially poor coding practices

• PORTABLE – Messages about portability

– A single message identifier enclosed in parentheses.

– A message group name enclosed in parentheses.

– A comma-separated list of message identifiers or group names,
freely mixed, enclosed in parentheses.

Only messages of severity Warning or Information can be

3–10 Pragma Preprocessor Directives

disabled. If the message has severity of Error or Fatal, it is
issued regardless of any attempt to disable it.

The default is to issue all diagnostic messages for the selected
compiler mode except those in the CHECK group, which must be
explicitly enabled to display its messages.

save | restore

• save – Saves the current state of which messages are enabled and
disabled.

• restore – Restores the previous state of which messages are
enabled and disabled.

The save and restore flags are useful primarily within header
files.

3.7 The #pragma pack Directive
The C compiler uses the pack pragma to change the alignment restrictions
on all members of the structure. The pack pragma must come prior to the
entire structure definition because it acts on the whole structure. The syntax
of this pragma is as follows:

#pragma pack (n)

The n is a number (such as 1, 2, or 4) that specifies that subsequent structure
members be aligned on n-byte boundaries. If you supply a value of 0 (zero)
for n, the alignment reverts to the default, which may have been set by the
–Zpn flag to the cc command.

3.8 The #pragma pointer_size Directive
This directive controls pointer size allocation for the following:

• References

• Pointer declarations

• Function declarations

• Array declarations

This pragma has the following syntax:

#pragma pointer_size{long|short|64|32 } |{restore|save }

The keywords long and 64 set all pointer sizes as 64-bits in all declarations
that follow this directive, until the compiler encounters another

Pragma Preprocessor Directives 3–11

#pragma pointer_size directive.

The keywords short and 32 set all pointer sizes as 32-bits in declarations
that follow this directive, until the compiler encounters another
#pragma pointer_size directive.

The save keyword saves the current pointer size and the restore keyword
restores the saved pointer size. The save and restore options are
particularly useful for specifying mixed pointer support and for protecting
header files that interface to older objects. Objects compiled with multiple
pointer size pragmas will not be compatible with old objects, and the
compiler cannot discern that incompatible objects are being mixed.

The use of short pointers is restricted to DEC C++ and the C compilers
resident on Digital UNIX. Programs should not attempt to pass short
pointers from C++ routines to routines written in any language other than the
C programming language. Also, DEC C++ may require explicit conversion
of short pointers to long pointers in applications that use short pointers. You
should first port those applications in which you are considering using short
pointers, and then analyze them to determine if short pointers would be
beneficial. A difference in the size of a pointer in a function declaration is
not sufficient to overload a function.

The C compiler (using the –newc flag) issues an error level diagnostic if it
encounters any of the following conditions:

• Two functions defined differ only with respect to pointer sizes.

• Two functions differ in return type only with respect to pointer size.

3.9 The #pragma use_linkage Directive
After defining a special linkage with the #pragma linkage directive, as
described in Section 3.4, use the #pragma use_linkage directive
(supported by the C compiler using the –newc flag) to associate the linkage
with a function.

This pragma has the following format:

#pragma use_linkage linkage-name (routine1, routine2, ...)

linkage-name
This is the name of a linkage previously defined by the
#pragma linkage directive.

routine1, routine2, ...
These are the names of functions that you want associated with the
specified linkage.

The #pragma use_linkage directive must appear in the source file
before any use or definition of the specified routines. Otherwise, the results

3–12 Pragma Preprocessor Directives

are unpredictable.

The following example defines a special linkage and associates it with a
routine that takes three integer parameters and returns a single integer result
in the same location where the first parameter was passed:
#pragma linkage example_linkage (parameters(r16, r17, r19), result(r16))
#pragma use_linkage example_linkage (sub)
int sub (int p1, int p2, short p3);

main()
{

int result;

result = sub (1, 2, 3);
}

In this example, the result (r16) option indicates that the function
result will be returned in R16 instead of the usual location (R0). The
parameters option indicates that the three parameters passed to sub
should be passed in R16, R17, and R19.

3.10 The #pragma weak Directive
The C compiler uses the weak pragma to define a new weak external symbol
and associates this new symbol with an external symbol. The syntax for this
pragma is as follows:

#pragma weak (secondary-name, primary-name)

See Section 2.8 for information on strong and weak symbols.

Pragma Preprocessor Directives 3–13

4Shared Libraries3333333333333333333333
Shared libraries are the default system libraries. The default behavior of the
C compiler is to use shared libraries when performing compile and link
operations.

This chapter discusses the following topics:

• Overview of shared libraries

• Resolving symbols

• Linking with shared libraries

• Turning off shared libraries

• Creating shared libraries

• Working with private shared libraries

• Using quickstart

• Debugging programs linked with shared libraries

• Using shared libraries from programs

• Protecting shared library files

• Shared library versioning

• Shared library restrictions

4.1 Shared Library Overview
Shared libraries consist of executable code that can be located at any
available address in memory. Only one copy of a shared library’s
instructions is loaded, and the system shares that one copy among multiple
programs instead of loading a copy for each program using the library, as is
the case with archive (static) libraries.

Programs that use shared libraries enjoy the following significant advantages
over programs that use archive libraries:

• Programs linked with shared libraries do not need to be recompiled and
relinked when changes are made to those libraries.

• Unlike programs linked with archive libraries, programs linked with
shared libraries do not include library routines in the executable program

file. Programs linked with shared libraries include information to load
the shared library and gain access to its routines and data at load time.

This means that use of shared libraries occupies less space in memory
and on disk. When multiple programs are linked to a single shared
library, the amount of physical memory used by each process can be
significantly reduced.

From a user perspective, the use of shared libraries is transparent. In
addition, you can build your own shared libraries and make them available to
other users. Most object files and archive libraries can be made into shared
libraries. See Section 4.5 for more information on which files can be made
into shared libraries.

Shared libraries differ from archive libraries in the following ways:

• You build shared libraries by using the ld command with the appropriate
options. You create archive libraries by using the ar command. For
more information on the ld command, see the ld(1) reference page.

• When shared libraries are linked into an executable program, they can be
positioned at any available address. At run time, the loader
(/sbin/loader) assigns a location in the process’s private virtual
address space. In contrast, when archive libraries are linked into an
executable program, they have a fixed location in the process’s private
virtual address space.

• Shared libraries reside in the /usr/shlib directory. Archive libraries
reside in the /usr/lib directory.

• Shared library naming convention specifies that a shared library name
begins with the prefix lib and ends with the suffix .so. For example,
the library containing common C language functions is libc.so.
Archive library names also begin with the prefix lib, but end with the
suffix .a.

Figure 4-1 illustrates the difference between the use of archive and shared
libraries.

4–2 Shared Libraries

Figure 4-1: Use of Archive and Shared Libraries

from libc from libc

process1 process2

process1 process2

information
to load libc

information
to load libc

Application using shared library:

ZK−0474U−R

kernel

Application using archive library:

scanf.oscanf.o

kernel

libc

4.2 Resolving Symbols
Symbol resolution is the process of mapping an unresolved symbol imported
by a program or shared library to the pathname of the shared library that
exports that symbol. Symbols are resolved in much the same way for shared
and archive libraries, except that the final resolution of symbols in shared
objects does not occur until a program is invoked.

The following sections describe:

• Search path of the linker (ld)

• Search path of the run-time loader (/sbin/loader)

• Name resolution

Shared Libraries 4–3

• Options to the ld command to determine behavior regarding unresolved
external symbols

4.2.1 Search Path of the Linker
When the linker (ld) searches for files that have been specified by using the
–l option on the command line, it searches each directory in the order shown
in the following list, looking first in each directory for a shared library (.so)
file.

1. /usr/shlib

2. /usr/ccs/lib

3. /usr/lib/cmplrs/cc

4. /usr/lib

5. /usr/local/lib

6. /var/shlib

If the linker does not find a shared library, it searches through the same
directories again, looking for an archive (.a) library. You can prevent the
search for archive libraries by using the –no_archive option to the ld
command.

4.2.2 Search Path of the Loader
Unless otherwise directed, the run-time loader (/sbin/loader) follows
the same search path as the linker (ld). You can use one of the following
methods to direct the run-time loader to look in directories other than those
specified by the default search path:

• Specify a directory path by using the –rpath string option to the ld
command and setting string to the list of directories to be searched.

• Set the environment variable LD_LIBRARY_PATH to point to the
directory in which you keep your private shared libraries before executing
your programs. The run-time loader examines this variable when the
program is executed; if it is set, the loader searches the paths it defines
before searching the list of directories discussed in Section 4.2.1.

4–4 Shared Libraries

You can set the LD_LIBRARY_PATH variable by using either of the
following methods:

– Set it as an environment variable at the shell prompt.

For the C shell, use the setenv command followed by a colon-
separated path. For example:
% setenv LD_LIBRARY_PATH .:$HOME/testdir

For the Bourne and Korn shells, set the variable and then export it.
For example:
$ LD_LIBRARY_PATH=.:$HOME/testdir
$ export LD_LIBRARY_PATH

These examples set the path so that the loader looks first in the
current directory and then in your $HOME/testdir directory.

– Add the definition of the variable to your login or shell startup files.
For example, you could add this line to your .login or .cshrc
file if you work in the C shell:
setenv LD_LIBRARY_PATH .:$HOME/testdir:/usr/shlib

If the loader cannot find the library it needs in the paths defined by any of the
preceding steps, it looks through the directories specified in the default path
described in the previous section. In addition, you can use the _RLD_ROOT
environment variable to alter the search path of the run-time loader. For
more information, see the loader(5) reference page.

4.2.3 Name Resolution
The semantics of symbol name resolution are based on the order in which the
object file or shared object containing a given symbol appears on the link
command line. The linker (ld) normally takes the leftmost definition for any
symbol that must be resolved.

The sequence in which names are resolved proceeds as if the link command
line were stored in the executable program. When the program runs, all
symbols that are accessed during execution must be resolved. The loader
aborts execution of the program if an unresolved text symbol is accessed.

For information on how to determine the behavior of the system regarding
unresolved symbols, see Section 4.2.4. The following sequence is followed
to resolve references to any symbol from the main program or from a library:

1. If a symbol is defined in an object or in an archive library from which
you build the main executable program file, that symbol is used by the
main program file and all of the shared libraries that it uses.

2. If the symbol is not defined by the preceding step and is defined by one
or more of the shared objects linked with the executable program, then

Shared Libraries 4–5

the leftmost library on the link command line containing a definition is
used.

3. If the libraries on the link command line were linked to be dependent on
other libraries, then the dependencies of libraries are searched in a
breadth-first fashion instead of being searched in a depth-first fashion.
For example, executable program A is linked against shared library B and
shared library D. Library B is linked against library C as shown in the
following diagram:

A
/ \
B D
/
C

The search order is A-B-D-C. In a breadth-first search, the grandchildren
of a node are searched after all the children have been searched.

4. If the symbol is not resolved in any of the previous steps, the symbol
remains unresolved.

Note that because symbol resolution always prefers the main object, shared
libraries can be set up to call back into a defined symbol in the main object.
Likewise, the main object can define a symbol that will override (preempt or
hook) a definition in a shared library.

4.2.4 Options to Determine Handling of Unresolved External
Symbols

The default behavior of the linker when building executable programs differs
from its default behavior when building shared libraries:

• When building executable programs, an unresolved symbol produces an
error by default. The link fails and the output file is not marked
executable.

• When building shared libraries, an unresolved symbol produces only a
warning message by default.

You can control the behavior of the linker by using the following flags to the
ld command:

–expect_unresolved pattern
This flag specifies that any unresolved symbols matching pattern are
neither displayed nor treated as warnings or errors. This flag can occur
multiple times on a link command line. The patterns use shell wildcards

4–6 Shared Libraries

(?, *, [,]) and must be quoted properly to prevent expansion by the
shell. See sh(1), csh(1), and ksh(1) for more information.

–warning_unresolved
This flag specifies that all unresolved symbols except those matching the
–expect_unresolved pattern produce warning messages. This
mode is the default for linking shared libraries.

–error_unresolved
This flag causes the linker to print an error message and return a
nonzero error status when a link is completed with unresolved symbols
other than those matching the –expect_unresolved pattern. This
mode is the default for linking executable images.

4.3 Linking with Shared Libraries
When compiling and linking a program, using shared libraries is the same as
using static libraries. For example, the following command compiles
program hello.c and links it against the default system C shared library
libc.so:
% cc -o hello hello.c

You can pass certain ld command flags to the cc command to allow
flexibility in determining the search path for a shared library. For example,
you can use the –Ldir flag with the cc command to change the search path
by adding dir before the default directories, as in the following example:
% cc -o hello hello.c -L/usr/person -lmylib

To exclude the default directories from the search and limit the search to
specific directories and specific libraries, specify the –L flag first with no
arguments. Then, specify it again with the directory to search, followed by
the –l flag with the name of the library to search for. For example, to limit
the search path to /usr/person for use with the private library
libmylib.so, enter the following command:
% cc -o hello hello.c -L -L/usr/person -lmylib

Note that because the cc command always implicitly links in the C library,
the preceding example requires that a copy of libc.so or libc.a be in
the /usr/person directory.

4.4 Turning Off Shared Libraries
In application linking, the default behavior is to use shared libraries. To link
an application that does not use shared libraries, you must use the

Shared Libraries 4–7

–non_shared flag to the cc or ld commands when you link that
application.

For example,
% cc -non_shared -o hello hello.c

Although shared libraries are the default for most programming applications,
some applications cannot use shared libraries:

• Applications that need to run in single-user mode cannot be linked with
shared libraries because the /usr/shlib directory must be mounted to
provide access to shared libraries.

• Applications whose sole purpose is single-user benchmarks should not be
linked with shared libraries.

4.5 Creating Shared Libraries
You create shared libraries by using the ld command with the –shared
flag. You can create shared libraries from object files or from existing
archive libraries.

4.5.1 Creating Shared Libraries from Object Files
To create the shared library libbig.so from the object files bigmod1.o
and bigmod2.o, enter the following command:
% ld -shared -no_archive -o libbig.so bigmod1.o bigmod2.o -lc

The –no_archive flag tells the linker to resolve symbols using only
shared libraries. The –lc flag tells the linker to look in the system C shared
library for unresolved symbols.

To make a shared library available on a system level by copying it into the
/usr/shlib directory, you must have root privileges. System shared
libraries should be located in the /usr/shlib directory or in one of the
default directories so that the run-time loader (/sbin/loader) can locate
them without requiring every user to set the LD_LIBRARY_PATH variable
to directories other than those in the default path.

4.5.2 Creating Shared Libraries from Archive Libraries
You can also create a shared library from an existing archive library by using
the ld command. The following example shows how to convert the static
library old.a into the shared library libold.so:

4–8 Shared Libraries

% ld -shared -no_archive -o libold.so -all old.a -none -lc

In this example, the –all flag tells the linker to link all the objects from the
archive library old.a. The –none flag tells the linker to turn off the –all
flag. Note that the –no_archive flag applies to the resolution of the –lc
flag but not to old.a (because old.a is explicitly mentioned).

4.6 Working with Private Shared Libraries
In addition to system shared libraries, any user can create and use private
shared libraries. For example, you have three applications that share some
common code. These applications are named user, db, and admin. You
decide to build a common shared library, libcommon.so, containing all
the symbols defined in the shared files io_util.c, defines.c, and
network.c. To do this, take the following steps:

1. Compile each C file that will be part of the library:
% cc -c io_util.c
% cc -c defines.c
% cc -c network.c

2. Create the shared library libcommon.so by using the ld command:
% ld -shared -no_archive \
? -o libcommon.so io_util.o defines.o network.o -lc

3. Compile each C file that will be part of the application:
% cc -c user.c
% cc -o user user.o -L. -lcommon

Note that the second command in this step tells the linker to look in the
current directory and use the library libcommon.so.

Compile db.c and admin.c in the same manner:
% cc -c db.c
% cc -o db db.o -L. -lcommon

% cc -c admin.c
% cc -o admin admin.o -L. -lcommon

4. Copy libcommon.so into a directory pointed to by
LD_LIBRARY_PATH, if it is not already in that directory.

5. Run each compiled program (user, db, and admin).

Shared Libraries 4–9

4.7 Using Quickstart
One advantage of using shared libraries is the ability to change a library after
all executable images have been linked and to fix bugs in the library. This
ability is very useful during the development phase of an application.

During the production cycle, however, the shared libraries and applications
you develop are often fixed and will not change until the next release. If this
is the case, you can take advantage of quickstart, a method of using
predetermined addresses for all symbols in your program and libraries.

No special link options are required to prepare an application for
quickstarting; however, a certain set of conditions must be satisfied. If an
object cannot be quickstarted, it still runs, but startup time is slower.

When the linker creates a shared object (a shared library or a main executable
program that uses shared libraries), it assigns addresses to the text and data
portions of the object. These addresses are what might be called
‘‘quickstarted addresses.’’ The linker performs all dynamic relocations in
advance, as if the object will be loaded at its quickstarted address.

Any object depended upon is assumed to be at its quickstarted address.
References to that object from the original object have the address of the
depended-upon object set accordingly.

In order to use quickstart, an object must meet the following conditions:

• The object’s actual run-time memory location must match the quickstart
location. The run-time loader tries to use the quickstart location.
However, if another library is already occupying that spot, the object will
not be able to use it.

• All objects depended upon must be quickstarted.

• All objects depended upon must be unchanged since they were linked. If
objects have changed, addresses of functions within the library might
have moved or new symbols might have been introduced that can affect
the loading. (Note that you might still be able to quickstart objects that
have been modified since linking by running the fixso utility on the
changed objects. See the fixso(1) reference page for additional
information.)

The operating system detects these conditions by using checksums and
timestamps.

When you build libraries, they are given a quickstart address. Unless each
library used by an application chooses a unique quickstart address, the
quickstart constraints cannot be satisfied. Rather than worry about addresses
on an application basis, you should give each shared library you build a
unique quickstart address to ensure that all of your objects can be loaded at
their quickstart addresses.

4–10 Shared Libraries

The linker maintains the so_locations database to register each
quickstart address when you build a library. The linker avoids addresses
already in the file when choosing a quickstart address for a new library.

By default, ld runs as though the -update_registry
./so_locations flag has been selected, so the so_locations file in
the directory of the build is updated (or created) as necessary.

To ensure that your libraries do not collide with shared libraries on your
system, enter these commands:
% cd <directory_of_build>
% cp /usr/shlib/so_locations .
% chmod +w so_locations

You can now build your libraries. If your library builds occur in multiple
directories, use the –update_registry flag to the ld command to
explicitly specify the location of a common so_locations file. For
example:
% ld -shared -update_registry /common/directory/so_locations ...

If you install your shared libraries globally for all users of your system,
update the system-wide so_locations file. Enter the following
commands as root, with shared_library.so being the name of your
actual shared library:
cp shared_library.so /usr/shlib
mv /usr/shlib/so_locations /usr/shlib/so_locations.old
cp so_locations /usr/shlib

Of course, if several people are building shared libraries, the common
so_locations file must be administered as any shared database would be.
Each shared library used by any given process must be given a unique
quickstart address in the file. The range of default starting addresses that the
linker assigns to main executable files does not conflict with the quickstarted
addresses it creates for shared objects. Because only one main executable file
is loaded into a process, an address conflict never occurs between a main file
and its shared objects.

If you are building only against existing shared libraries (and not building
your own libraries), you do not need to do anything special. As long as the
libraries meet the previously described conditions, your program will be
quickstarted unless the libraries themselves are not quickstarted. Most shared
libraries shipped with the operating system are quickstarted.

If you are building shared libraries, you must first copy the so_locations
file as previously described. Next, you must build all shared libraries in
bottom-up dependency order, using the so_locations file. You should
mention all libraries that are depended upon on the link line. After all
libraries are built, you can then build your applications.

Shared Libraries 4–11

4.7.1 Verifying That an Object Is Quickstarting
To test whether an application’s executable program is quickstarting, set the
_RLD_ARGS environment variable to –quickstart_only and run the
program. For example:
% setenv _RLD_ARGS -quickstart_only
% foo
(non-quickstart output)
21887:foo: /sbin/loader: Fatal Error: NON-QUICKSTART detected \

-- QUICKSTART must be enforced

If the program runs successfully, it is quickstarting. If a load error message
is produced, the program is not quickstarting.

4.7.2 Tracking Down Quickstart Problems Manually
To determine why an executable program is not quickstarting, you can use
the fixso utility as described in Section 4.7.3 or you can manually test for
the conditions described in the following list of requirements. Using fixso
is easier, but it is helpful to understand the process involved:

1. The executable program must be quickstartable.

Test the quickstart flag in the dynamic header. The value of the
quickstart flag is (0x00000001). For example:
% odump -D foo | grep FLAGS

(non-quickstart output)
FLAGS: 0x00000000

(quickstart output)
FLAGS: 0x00000001

If the quickstart flag is not set, one or more of the following conditions
exists:

– The executable program was linked with unresolvable symbols.
Make sure that the ld flags -warning_unresolved and
-expect_unresolved are not used when the executable program
is linked. Fix any ‘‘unresolved symbol’’ errors that occur when the
executable program is linked.

– The executable program is not linked directly against all of the
libraries that it uses at run time. Add the flag –transitive_link
to the ld flags used when the executable program is built.

4–12 Shared Libraries

2. The executable program’s dependencies must be quickstartable.

Get a list of an executable program’s dependencies:
% odump -Dl foo

(quickstart output)
LIBRARY LIST SECTION

Name Time-Stamp CheckSum Flags Version
foo:

libX11.so Sep 17 00:51:19 1993 0x78c81c78 NONE
libc.so Sep 16 22:29:50 1993 0xba22309c NONE osf.1
libdnet_stub.so Sep 16 22:56:51 1993 0x1d568a0c NONE osf.1

Test the quickstart flag in the dynamic header of each of the
dependencies:
% cd /usr/shlib
% odump -D libX11.so libc.so libdnet_stub.so | grep FLAGS

(quickstart output)
FLAGS: 0x00000001
FLAGS: 0x00000001
FLAGS: 0x00000001

If any of these dependencies cannot be quickstarted, the same measures
suggested in step 1 can be applied here, provided that the shared library
can be rebuilt by the user.

3. The timestamp and checksum information must match for all
dependencies.

The dependencies list in step 2 shows the expected values of the
timestamp and checksum fields for each of foo’s dependencies. Match
these values against the current values for each of the libraries:
% cd /usr/shlib
% odump -D libX11.so libc.so libdnet_stub.so | \
grep TIME_STAMP

(quickstart output)
TIME_STAMP: (0x2c994247) Fri Sep 17 00:51:19 1993
TIME_STAMP: (0x2c99211e) Thu Sep 16 22:29:50 1993
TIME_STAMP: (0x2c992773) Thu Sep 16 22:56:51 1993

% odump -D libX11.so libc.so libdnet_stub.so | grep CHECKSUM

(quickstart output)
ICHECKSUM: 0x78c81c78
ICHECKSUM: 0xba22309c
ICHECKSUM: 0x1d568a0c

If any of the tests in these examples shows a timestamp or checksum
mismatch, relinking the program should fix the problem.

You can use the version field to verify that you have identified the correct

Shared Libraries 4–13

libraries to be loaded at run time. To test the dependency versions, use
the odump command as in the following example:
% odump -D libX11.so | grep IVERSION
% odump -D libc.so | grep IVERSION

IVERSION: osf.1
% odump -D libdnet_stub.so | grep IVERSION

IVERSION: osf.1

The lack of an IVERSION entry is equivalent to a blank entry in the
dependency information. It is also equivalent to the special version
_null.

If any version mismatches are identified, you can normally find the
correct matching version of the shared library by appending the version
identifier from the dependency list or _null to the path /usr/shlib.

4. Each of the executable program’s dependencies must also contain
dependency lists with matching timestamp and checksum information.

Repeat step 3 for each of the shared libraries in the executable program’s
list of dependencies:
% odump -Dl libX11.so

(quickstart output)
LIBRARY LIST SECTION

Name Time-Stamp CheckSum Flags Version
libX11.so:

libdnet_stub.so Sep 16 22:56:51 1993 0x1d568a0c NONE osf.1
libc.so Sep 16 22:29:50 1993 0xba22309c NONE osf.1

% odump -D libdnet_stub.so libc.so | grep TIME_STAMP
TIME_STAMP: (0x2c992773) Thu Sep 16 22:56:51 1993
TIME_STAMP: (0x2c99211e) Thu Sep 16 22:29:50 1993

% odump -D libdnet_stub.so libc.so | grep CHECKSUM
ICHECKSUM: 0x1d568a0c
ICHECKSUM: 0xba22309c

If the timestamp or checksum information does not match, the shared
library must be rebuilt to correct the problem. Rebuilding a shared
library will change its timestamp and, sometimes, its checksum. Rebuild
dependencies in bottom-up order so that an executable program or shared
library is rebuilt after its dependencies have been rebuilt.

4.7.3 Tracking Down Quickstart Problems with the fixso Utility
The fixso utility can identify and repair quickstart problems caused by
timestamp and checksum discrepancies. It can repair programs as well as the
shared libraries they depend on, but it might not be able to repair certain
programs, depending on the degree of symbolic changes required.

4–14 Shared Libraries

The fixso utility cannot repair a program or shared library if any of the
following restrictions apply:

• The program or shared library depends on other shared libraries that are
not quickstartable. This restriction can be avoided by using fixso to
repair shared libraries in bottom-up order.

• New name conflicts are introduced after a program or shared library is
created. Name conflicts result when the same global symbol name is
exported by two or more shared library dependencies or by the program
and one of its shared library dependencies.

• The program’s shared library dependencies are not all loaded at their
quickstart locations. A shared library cannot be loaded at its quickstart
locations if other shared libraries are loaded at that location and are
already in use. This rule applies system-wide, not just to individual
processes. To avoid this restriction, use a common so_locations file
for registering unique addresses for shared libraries.

• The program or shared library depends on an incompatible version of
another shared library. This restriction can be avoided by instructing
fixso where to find a compatible version of the offending shared
library.

The fixso utility can identify quickstart problems as shown in the
following example:
% fixso -n hello.so
fixso: Warning: found ’/usr/shlib/libc.so’ (0x2d93b353) which does

not match timestamp 0x2d6ae076 in liblist of hello.so, will fix
fixso: Warning: found ’/usr/shlib/libc.so’ (0xc777ff16) which does

not match checksum 0x70e62eeb in liblist of hello.so, will fix

The –n flag suppresses the generation of an output file. Discrepancies are
reported, but fixso does not attempt to repair the problems it finds. The
following example shows how fixso can be used to repair quickstart
problems:
% fixso -o ./fixed/main main
fixso: Warning: found ’/usr/shlib/libc.so’ (0x2d93b353) which does

not match timestamp 0x2d7149c9 in liblist of main, will fix
% chmod +x fixed/main

The –o flag specifies an output file. If no output file is specified, fixso
uses a.out. Note that fixso does not create the output file with execute
permission. The chmod command allows the output file to be executed.
This change is necessary only for executable programs and can be bypassed
when using fixso to repair shared libraries.

If a program or shared library does not require any modifications to repair
quickstart, fixso indicates this as shown in the following example:

Shared Libraries 4–15

% fixso -n /bin/ls
no fixup needed for /bin/ls

4.8 Debugging Programs Linked with Shared Libraries
Debugging a program that uses shared libraries is essentially the same as
debugging a program that uses archive libraries.

The dbx debugger’s listobj command displays the names of the
executable programs and all of the shared libraries that are known to the
debugger. Refer to Chapter 5 for more information about using dbx.

4.9 Loading a Shared Library at Run Time
In some situations, you might want to load a shared library from within a
program. This section includes two short C program examples and a
makefile to demonstrate how to load a shared library at run time.

The following example (pr.c) shows a C source file that prints out a simple
message:
printmsg()

{
printf("Hello world from printmsg!\n");

}

The next example (used1.c) defines symbols and demonstrates how to use
the dlopen function:
#include <stdio.h>
#include <dlfcn.h>

/* All errors from dl* routines are returned as NULL */
#define BAD(x) ((x) == NULL)

main(int argc, char *argv[])
{

void *handle;
void (*fp)();

/*
* Using "./" prefix forces dlopen to look only in the current
* current directory for pr.so. Otherwise, if pr.so were not
* found in the current directory, dlopen would use rpath,
* LD_LIBRARY_PATH and default directories for locating pr.so.
*/

handle = dlopen("./pr.so", RTLD_LAZY);
if (!BAD(handle)) {

fp = dlsym(handle, "printmsg");
if (!BAD(fp)) {

/*
* Here is where the function
* we just looked up is called.
*/

(*fp)();

4–16 Shared Libraries

}
else {

perror("dlsym");
fprintf(stderr, "%s\n", dlerror());

}
}
else {

perror("dlopen");
fprintf(stderr, "%s\n", dlerror());

}
dlclose(handle);

}

The following example shows the makefile that makes pr.o, pr.so,
so_locations, and usedl.o.
this is the makefile to test the examples

all: runit

runit: usedl pr.so
./usedl

usedl: usedl.c
$(CC) -o usedl usedl.c

pr.so: pr.o
$(LD) -o pr.so -shared pr.o -lc

4.10 Protecting Shared Library Files
Because of the sharing mechanism used for shared libraries, normal file
system protections do not protect libraries against unauthorized reading. For
example, when a shared library is used in a program, the text part of that
library can be read by other processes even when the following conditions
exist:

• The library’s permissions are set to 600.

• The other processes do not own the library or are not running with their
UID set to the owner of that library.

Only the text part of the library, not the data segment, is shared in this
manner.

To prevent unwanted sharing, link any shared libraries that need to be
protected by using the linker’s –T and –D flags to put the data section in the
same 8-megabyte segment as the text section. For example, enter a
command similar to the following:

Shared Libraries 4–17

% ld -shared -o libfoo.so -T 30000000000 \
-D 30000400000 object_files

In addition, segment sharing can occur with any file that uses the mmap
system call without the PROT_WRITE flag as long as the mapped address
falls in the same memory segment as other files using mmap.

Any program using mmap to examine files that might be highly protected can
ensure that no segment sharing takes place by introducing a writable page
into the segment before or during the mmap. The easiest way to provide
protection is to use the mmap system call on the file with PROT_WRITE
enabled in the protection, and use the mprotect system call to make the
mapped memory read-only. Alternatively, to disable all segmentation and
avoid any unauthorized sharing, enter the following in the configuration file:
segmentation 0

4.11 Shared Library Versioning
One of the advantages of using shared libraries is that a program linked with
a shared library does not need to be rebuilt when changes are made to that
library. When a changed shared library is installed, applications should work
as well with the newer library as they did with the older one.

Note

Because of the need for address fixing, it can take longer to load
an existing application that uses an older version of a shared
library when a new version of that shared library is installed.
You can avoid this kind of problem by relinking the application
with the new library.

4.11.1 Binary Incompatible Modifications
Infrequently, a shared library might be changed in a way that makes it
incompatible with applications that were linked with it before the change.
This type of change is referred to as a binary incompatibility. A binary
incompatibility introduced in a new version of a shared library does not
necessarily cause applications that rely on the old version to break (that is,
violate the backward compatibility of the library). The system provides
shared library versioning to allow you to take steps to maintain a shared
library’s backward compatibility when introducing a binary incompatibility in
the library.

4–18 Shared Libraries

Among the types of binarily incompatible changes that might occur in shared
libraries are the following:

• Removal of documented interfaces

For example, if the malloc() function in libc.so were replaced with
a function called (__malloc), programs that depend on the older
function would fail due to the missing malloc symbol.

• Modification of documented interfaces

For example, if a second argument to the malloc() function in
libc.so were added, the new malloc() would probably fail when
programs that depend on the older function pass in only one argument,
leaving undefined values in the second argument.

• Modification of global data definitions

For example, if the type of the errno symbol in libc.so were
changed from an int to a long, programs linked with the older library
might read and write 32-bit values to and from the newly expanded 64-bit
data item. This might yield invalid error codes and indeterminate
program behavior.

This is by no means an exhaustive list of the types of changes that result in
binary incompatibilities. Shared library developers should exercise common
sense to determine whether any change is likely to cause failures in
applications linked with the library prior to the change.

4.11.2 Shared Library Versions
You can maintain the backward compatibility of a shared library affected by
binarily incompatible changes by providing multiple versions of the library.
Each shared library is marked by a version identifier. You install the new
version of the library in the library’s default location, and the older, binary
compatible version of the library in a subdirectory whose name matches that
library’s version identifier.

For example, if a binarily incompatible change was made to libc.so, the
new library (/usr/shlib/libc.so) must be accompanied by an instance
of the library before the change (/usr/shlib/osf.1/libc.so).

In this example, the older, binary compatible version of libc.so is
‘‘osf.1’’. After the change is applied, the new libc.so is built with a new
version identifier. Because a shared library’s version identifier is listed in the
shared library dependency record of a program that uses the library, the
loader can identify which version of a shared library is required by an
application (see Section 4.11.6).

In the example, a program built with the older libc.so, before the binary
incompatible change, requires version ‘‘osf.1’’ of the library. Because the

Shared Libraries 4–19

version of /usr/shlib/libc.so does not match the one listed in the
program’s shared library dependency record, the loader will look for a
matching version in /usr/shlib/osf.1.

Applications built after the binarily incompatible change will use
/usr/shlib/libc.so and will depend on the new version of the library.
The loader will load these applications by using /usr/shlib/libc.so
until some further binary incompatibility is introduced.

Table 4-1 describes the linker flags used to effect version control of shared
libraries.

Table 4-1: Linker Flags that Control Shared Library Versioning
22
Flag Description22
–set_version version–string

Establishes the version identifiers associated with a
shared library. The string version-string is
either a single version identifier or a colon-separated
list of version identifiers. No restrictions are placed
on the names of version identifiers; however, it is
highly recommended that UNIX directory naming
conventions be followed.

If a shared library is built with this flag, any
program built against it will record a dependency on
the specified version or, if a list of version identifiers
is specified, the rightmost version specified in the
list. If a shared library is built with a list of version
identifiers, the run-time loader will allow any
program to run that has a shared library dependency
on any of the listed versions.

This flag is only useful when building a shared
library (with –shared).

–exact_version Sets a flag in the dynamic object produced by the
ld command that causes the run-time loader to
ensure that the shared libraries the object uses at run
time match the shared libraries used at link time.

This flag is used when building a dynamic
executable file (with –call_shared) or a shared
library (with –shared). Its use requires more
rigorous testing of shared library dependencies. In
addition to testing shared libraries for matching
versions, timestamps and checksums must also
match the timestamps and checksums recorded in
shared library dependency records at link time.22

4–20 Shared Libraries

You can use the odump command to examine a shared library’s versions
string, as set by using the –set_version "version-stringflag of the
ld command that created the library. For example:
% odump -D library-name

The value displayed for the IVERSION field is the version string specified
when the library was built. If a shared library is built without the
–set_version flag, no IVERSION field will be displayed. These shared
libraries are handled as if they had been built with the version identifier
_null.

When ld links a shared object, it records the version of each shared library
dependency. Only the rightmost version identifier in a colon-separated list is
recorded. To examine these dependencies for any shared executable file or
library, use the following command:
% odump -Dl shared-object-name

4.11.3 Major and Minor Versions Identifiers
Digital UNIX does not distinguish between major and minor versions of
shared libraries.

Major versions are used to distinguish incompatible versions of shared
libraries. Minor versions typically distinguish different but compatible
versions of a library. Minor versions are often used to provide revision-
specific identification or to restrict the use of backward-compatible shared
libraries.

Digital UNIX shared libraries use a colon-separated list of version identifiers
to provide the versioning features normally attained through minor versions.

The sequence of library revisions that follows illustrates how revision-
specific identification can be added to the version list of a shared library
without affecting shared library compatibility.
222222222222222222222222222222222222222
Shared Library Version222222222222222222222222222222222222222
libminor.so 3.0
libminor.so 3.1:3.0
libminor.so 3.2:3.1:3.0222222222222222222222222222222222222222

Each new release of libminor.so adds a new identifier at the beginning
of the version list. The new identifier distinguishes the latest revision from
its predecessors. Any executable files linked against any revision of
libminor.so will record ‘‘3.0’’ as the required version, so no distinction
is made between the compatible libraries. The additional version identifiers

Shared Libraries 4–21

are only informational.

The sequence of library revisions that follows illustrates how the use of
backward-compatible shared libraries can be restricted:
222222222222222222222222222222222222222
Shared Library Version222222222222222222222222222222222222222
libminor2.so 3.0
libminor2.so 3.0:3.1
libminor2.so 3.0:3.1:3.22

In this example, programs linked with old versions of libminor2.so can
be executed with newer versions of the library, but programs linked with
newer versions of libminor2.so cannot be executed with any of the
previous versions.

4.11.4 Full and Partial Versions of Shared Libraries
You can implement a binary compatible version of a shared library as a
complete, independent object or as a partial object that depends directly or
indirectly on a complete, independent object. A fully duplicated shared
library takes up more disk space than a partial one, but involves simpler
dependency processing and uses less swap space. The reduced disk space
requirements are the only advantage of a partial version of a shared library.

A partial shared library includes the minimum subset of modules required to
provide backward compatibility for applications linked prior to a binary
incompatible change in a newer version of the library. It is linked against
one or more earlier versions of the same library that provide the full set of
library modules. By this method, you can chain together multiple versions of
shared libraries so that any instance of the shared library will indirectly
provide the full complement of symbols normally exported by the library.

For example, version ‘‘osf.1’’ of libxyz.so includes modules x.o, y.o,
and z.o. It was built and installed using the following commands:
% ld -shared -o libxyz.so -set_version osf.1 \

x.o y.o z.o -lc

% mv libxyz.so /usr/shlib/libxyz.so

If, at some future date, libxyz.so requires a binarily incompatible change
that affects only module z.o, a new version, called ‘‘osf.2’’, and a partial
version, still called ‘‘osf.1’’, can be built as follows:

4–22 Shared Libraries

% ld -shared -o libxyz.so -set_version osf.2 x.o \
y.o new_z.o -lc

% mv libxyz.so /usr/shlib/libxyz.so

% ld -shared -o libxyz.so -set_version osf.1 z.o \
-lxyz -lc

% mv libxyz.so /usr/shlib/osf.1/libxyz.so

4.11.5 Linking with Multiple Versions of Shared Libraries
In general, applications are linked with the newest versions of shared
libraries. Occasionally, you might need to link an application or shared
library with an older, binary compatible version of a shared library. In such
a case, use the ld command’s –L flag to identify older versions of the shared
libraries used by the application.

The linker issues a warning when you link an application with more than one
version of the same shared library. In some cases, the multiple version
dependencies of an application or shared library will not be noticed until it is
loaded for execution.

By default, the ld command tests for multiple version dependencies only for
those libraries it is instructed to link against. To identify all possible
multiple version dependencies, use the ld command’s
–transitive_link flag to include indirect shared library dependencies
in the link step.

When an application is linked with partial shared libraries, the linker must
carefully distinguish dependencies on multiple versions resulting from partial
shared library implementations. The linker reports multiple version warnings
when it cannot differentiate between acceptable and unacceptable multiple
version dependencies.

In some instances, multiple version dependencies might be reported at link
time for applications that do not use multiple versions of shared libraries at
run time. Consider the libraries and dependencies illustrated in Figure 4-2
and described in the following table.

Shared Libraries 4–23

Figure 4-2: Linking with Multiple Versions of Shared Libraries

libB.so

libcommon.so

ZK−0882U−R

a.out

libA.so

22
Library Version Dependency Dependent Version22
libA.so v1 libcommon.so v1

libB.so v2 libcommon.so v2

libcommon.so v1:v2 ——22

Presumably libA.so has been linked against a previous version of
libcommon.so. At that time the rightmost version identifier of
libcommon.so was ‘‘v1’’. libB.so has been linked against the
libcommon.so shown here. Because libcommon.so includes both
‘‘v1’’ and ‘‘v2’’ in its version string, the dependencies of both libA.so
and libB.so are satisfied by the one instance of libcommon.so.

When a.out is linked, only libA.so and libB.so are mentioned on the
link line. However, the linker examines the dependencies of libA.so and
libB.so, recognizes the possible multiple version dependency on
libcommon.so, and issues a warning. By linking a.out against
libcommon.so as well, you can avoid this false warning.

4–24 Shared Libraries

4.11.6 Version Checking at Load Time
The loader performs version-matching between the list of versions supported
by a shared library and the versions recorded in shared library dependency
records. If a shared object is linked with the ld flag –exact_match, the
loader also compares the timestamp and checksum of a shared library against
the timestamp and checksum values saved in the dependency record.

After mapping in a shared library that fails the version matching test, the
loader attempts to locate the correct version of the shared library by
continuing to search other directories in RPATH, LD_LIBRARY_PATH, or
the default search path.

If all of these directories are searched without finding a matching version, the
loader attempts to locate a matching version by appending the version string
recorded in the dependency to the directory path at which the first
nonmatching version of the library was located.

For example, a shared library libfoo.so is loaded in directory
/usr/local/lib with version ‘‘osf.2’’, but a dependency on this library
requires version ‘‘osf.1’’. The loader attempts to locate the correct version of
the library using a constructed path like the following:
/usr/local/lib/osf.1/libfoo.so

If this constructed path fails to locate the correct library or if no version of
the library is located at any of the default or user-specified search directories,
the loader makes one last attempt to locate the library by appending the
required version string to the standard system shared library directory
(/usr/shlib). This last attempt will therefore use a constructed path like
the following:
/usr/shlib/osf.1/libfoo.so

If the loader fails to find a matching version of a shared library, it aborts the
load and reports a detailed error message indicating the dependency and
shared library version that could not be located.

You can disable version checking for programs that are not installed with the
setuid function by setting the loader environment variable as shown in the
following C-shell example:
% setenv _RLD_ARGS -ignore_all_versions

You can also disable version checking for specific shared libraries as shown
in the following example:

Shared Libraries 4–25

% setenv _RLD_ARGS -ignore_version libDXm.so

4.11.7 Multiple Version Checking at Load Time
Like the linker, the loader must distinguish between valid and invalid uses of
multiple versions of shared libraries:

• Valid uses of multiple versions occur when partial shared libraries that
depend on other versions of the same libraries are loaded. In some cases,
these partial shared libraries depend on different partial shared libraries,
and the result can be complicated dependency relationships that the loader
must interpret carefully to avoid reporting false errors.

• Invalid uses of multiple versions occur when two different shared objects
depend on different versions of another shared object. Partial shared
library chains are an exception to this rule. For version checking
purposes, the first partial shared library in a chain defines a set of
dependencies that overide similar dependencies in other members of the
chain.

The following figures illustrate shared object dependencies that will result in
multiple dependency errors. Version identifiers are shown in parentheses.

4–26 Shared Libraries

In Figure 4-3, an application uses two layered products that are built with
incompatible versions of the base system.

Figure 4-3: Invalid Multiple Version Dependencies Among
Shared Objects: Example 1

 ZK−0884U−R

appl_1

layrd1.so layrd2.so

libc.so(osf.1) libc.so(osf.2)

Shared Libraries 4–27

In Figure 4-4, an application is linked with a layered product that was built
with an incompatible version of the base system.

Figure 4-4: Invalid Multiple Version Dependencies Among
Shared Objects: Example 2

 ZK−0885U−R

layrd1.so

libc.so(osf.1)

appl_2

libc.so(osf.2)

4–28 Shared Libraries

In Figure 4-5, an application is linked with an incomplete set of backward
compatible libraries that are implemented as partial shared libraries.

Figure 4-5: Invalid Multiple Version Dependencies Among
Shared Objects: Example 3

 ZK−0886U−R

appl_3

libc_r.so(osf.2) libc.so(osf.1)

libc.so(osf.2)

Shared Libraries 4–29

The following figures show valid uses of multiple versions of shared
libraries.

In Figure 4-6, an application uses a backward-compatibility library
implemented as a partial shared library.

Figure 4-6: Valid Uses of Multiple Versions of Shared Libraries:
Example 1

 ZK−0887U−R

libc.so(osf.1)

libc.so(osf.2)

appl_4

libc.so(osf.3)

4–30 Shared Libraries

In Figure 4-7, an application uses two backward compatibile libraries, one of
which depends on the other.

Figure 4-7: Valid Uses of Multiple Versions of Shared Libraries:
Example 2

libc.so(osf.2)

ZK−0888U−R

libc_r.so(osf.2)

libc.so(osf.1)

appl_5

libc_r.so(osf.1)

4.12 Symbol Binding
The loader can resolve symbols using either deferred or immediate binding.
Immediate binding requires that all symbols be resolved when an executable
program or shared library is loaded. Deferred (‘‘lazy’’) binding allows text
symbols to be resolved at run time. A lazy text symbol is resolved the first
time that a reference is made to it in a program.

By default, programs are loaded with deferred binding. Setting the
LD_BIND_NOW environment variable to a non-null value selects immediate
binding for subsequent program invocations.

Immediate binding can be useful to identify unresolvable symbols. With
deferred binding in effect, unresolvable symbols might not be detected until a
particular code path is executed.

Immediate binding can also reduce symbol-resolution overhead. Run-time
symbol resolution is more expensive per symbol than load-time symbol
resolution.

Shared Libraries 4–31

4.13 Shared Library Restrictions

The use of shared libraries is subject to the following restrictions:

• Shared libraries should not have any undefined symbols.

Shared libraries should be explicitly linked with other shared libraries that
define the symbols they refer to.

In certain cases, such as a shared library that refers to symbols in an
executable file, it is difficult to avoid references to undefined symbols.
See Section 4.2.4 for a discussion on how to handle unresolved external
symbols in a shared library.

• Certain files (such as assembler files, older object files, and C files) that
were optimized at level O3 might not work with shared libraries.

C modules compiled with the Digital UNIX C compiler at optimization
level O2 or less will work with shared libraries. Executable programs
linked with shared libraries can be compiled at optimization level O3 or
less.

• Programs that are installed using the setuid or setgid subroutines do
not use the settings of the various environment variables that govern
library searches (such as LD_LIBRARY_PATH, _RLD_ARGS,
_RLD_LIST, and _RLD_ROOT); they use only system-installed libraries
(that is, those in /usr/shlib). This restriction prevents potential
threats to the security of these programs, and it is enforced by the run-
time loader (/sbin/loader).

4–32 Shared Libraries

5Debugging Programs with dbx3333333333333333333333
The dbx debugger is a tool for source level debugging. The debugger can be
used with C, Fortran, Pascal, assembly language, and machine code. After
invoking dbx, you can issue dbx commands that control and trace
execution, display variable and expression values, and display and edit source
files. The dbx debugger is a command-line program.

The ladebug debugger, an alternate debugger, provides both command-line
and graphical user interfaces. In addition to supporting some languages that
are not supported by dbx, the ladebug debugger also supports features for
debugging multithreaded programs. For more information about ladebug,
see the Ladebug Debugger Manual.

This chapter provides information on the following topics:

• General debugging considerations

• How to run the dbx debugger

• What you can specify in dbx commands

• How to control dbx and enter dbx commands using options provided by
the dbx monitor

• How to examine source code and machine code

• How to control the execution of the program you are debugging

• How to set breakpoints

• How to examine the state of a program

• How to debug a running process

• How to debug multithreaded processes and multiple asynchronous
processes

Examples in this chapter refer to a sample program called sam. The C
language source program (sam.c) is listed in Example 5-1.

In addition to the conventions outlined in the preface of this manual, an
additional convention is used in the command descriptions in this chapter;
certain words in uppercase indicate variables for which specific rules apply.
These words are described in Table 5-1.

Table 5-1: Keywords Used in Command Syntax Descriptions
222
Keyword Value222

Any expression specifying a machine address.ADDRESS

COMMAND_LIST One or more commands, each separated by semicolons.

Directory name.DIR

EXP Any expression including program variable names for the
command. Expressions can contain dbx variables, for example,
($listwindow + 2). If you want to use the variable names
in, to, or at in an expression, you must surround them with
parentheses; otherwise, dbx assumes that these words are
debugger keywords.

File name.FILE

Integer value.INT

Source code line number.LINE

NAME Name of a dbx command.

PROCEDURE Procedure name or an activation level on the stack.

REGEXP Regular expression string. See ed(1).

SIGNAL System signal. See signal(2).

Any ASCII string.STRING

VAR Valid program variable or dbx predefined variable (see Table 5-9).
For machine-level debugging, VAR can also be an address. You
must qualify program variables with duplicate names as described
in Section 5.3.2.222

The following example illustrates the use of the uppercase words in
commands:
(dbx) stop VAR in PROCEDURE if EXP

Enter stop, in, and if as shown. Enter the values for VAR, PROCEDURE,
and EXP as defined in Table 5-1.

Note

Information on debugging multiple asynchronous processes,
including extensions to the syntax of certain dbx commands to
provide control of the asynchronous session, is contained in
Section 5.12.

5–2 Debugging Programs with dbx

5.1 General Debugging Considerations
The following sections introduce the debugger and some debugging concepts.
They also give suggestions about how to approach a debugging session,
including where to start, how to isolate errors, and how to avoid common
pitfalls. If you are an experienced programmer, you might not need to read
these sections.

5.1.1 Why Use a Source-Level Debugger?
The dbx debugger enables you to trace problems in a program object at the
source code level or at the machine code level. With dbx, you control a
program’s execution, monitoring program control flow, variables, and
memory locations. You can also use dbx to trace the logic and flow of
control to become familiar with a program written by someone else.

5.1.2 What Are Activation Levels?
Activation levels define the currently active scopes (usually procedures) on
the stack. An activation stack is a list of calls that starts with the initial
program, usually main(). The most recently called procedure or block is
number 0. The next procedure called is number 1. The last activation level
is always the main procedure (the procedure that controls the whole
program). Activation levels can also consist of blocks that define local
variables within procedures. You see activation levels in stack traces (see the
where and tstack debugger commands) and when moving around the
activation stack (see the up, down, and func debugger commands). The
following example shows a stack trace produced by a where command:
> 0 prnt(pline = 0x11ffffcb8) ["sam.c":52, 0x120000c04] 11 12277

1 main(argc = 2, argv = 0x11ffffe08) ["sam.c":45, 0x120000bac] 12 12277
| | | | | |
13 12277 14 12277 15 12277 16 12277 17 12277 18 12277

11 12277 The most recently called procedure is prnt. The activation level of
prnt is 0; this function is at the top of the stack.

12 12277 The main program is main.

13 12277 Activation level number. The angle bracket (>) indicates the activation
level that is currently under examination.

14 12277 Procedure name.

15 12277 Procedure’s arguments.

16 12277 Source file name.

17 12277 Current line number.

Debugging Programs with dbx 5–3

18 12277 Current program counter.

5.1.3 Isolating Program Execution Failures
Because the dbx debugger finds only run-time errors, you should fix
compiler errors before starting a debugging session. Run-time errors can
cause a program to fail during execution (resulting in the creation of a core
dump file) or to produce incorrect results. The approach for debugging a
program that fails during execution differs from the approach for debugging a
program that executes to completion but produces incorrect results. (See
Section 5.1.4 for information on how to debug programs that produce
incorrect results.)

If a program fails during execution, you can usually save time by using the
following approach to start a debugging session instead of blindly debugging
line by line:

1. Invoke the program under dbx, specifying any appropriate flags and the
names of the executable file and the core dump file on the dbx command
line.

2. Get a stack trace using the where command to locate the point of
failure.

Note

If you have not stripped symbol table information from the
object file, you can get a stack trace even if the program was
not compiled with the –g debug flag.

3. Set breakpoints to isolate the error using the stop or stopi commands.

4. Display the values of variables using the print command to see where a
variable might have been assigned an incorrect value.

If you still cannot find the error, other dbx commands described in this
chapter might be useful.

5.1.4 Diagnosing Incorrect Output Results
If a program executes to completion but produces incorrect values or output,
take the following steps:

1. Set a breakpoint where you think the problem is happening — for
example, the code that generates the value or output.

2. Run the program.

3. Get a stack trace using the where command.

5–4 Debugging Programs with dbx

4. Display the values for the variables that might be causing the problem
using the print command.

5. Repeat this procedure until the problem is found.

5.1.5 Avoiding Pitfalls
The debugger cannot solve all problems. For example, if your program’s
logic is incorrect, the debugger can only help you find the problem, not solve
it. When information displayed by the debugger appears confusing or
incorrect, taking the following actions might correct the situation:

• Separate lines of source code into logical units wherever possible (for
example, after if conditions). The debugger might not recognize a
source statement written with several others on the same line.

• If executable code appears to be missing, it might have been contained in
an included file. The debugger treats an included file as a single line of
code. If you want to debug this code, remove it from the included file
and compile it as part of the program.

• Make sure you recompile the source code after changing it. If you do not
do this, the source code displayed by the debugger will not match the
executable code. The debugger warns you if the source file is more
recent than the executable file.

• If you stop the debugger by pressing Ctrl/Z and then resume the same
debugging session, the debugger continues with the same object module
specified at the start of the session. This means that if you stop the
debugger to fix a problem in the code, recompile, and resume the session,
the debugger will not reflect the change. You must start a new session.

Similarly, dbx will not reflect changes you make if you edit and
recompile your program in one window on a workstation while running
the debugger in another window. You must stop and restart dbx each
time you want it to recognize changes you have made.

• When entering a command to display an expression that has the same
name as a dbx keyword, you must enclose the expression within
parentheses. For example, in order to display the value of output (a
keyword in the playback and record commands, discussed in
Section 5.9.4), you must specify the following command:
(dbx) print (output)

• If the debugger does not display any variables or executable code, make
sure you compiled the program with the –g flag.

Debugging Programs with dbx 5–5

5.2 Running dbx
Before invoking dbx, you need to compile the program for debugging. You
might also want to create a dbx initialization file that will execute commands
when the debugger is started.

5.2.1 Compiling a Program for Debugging
To use the debugger, specify the –g flag at compilation time. With this flag
set, the compiler inserts into the program symbol table information that the
debugger uses to locate variables. With the –g flag set, the compiler also
sets its optimization level to –O0. When you use different levels of
optimizing, for example –O2, the optimizer does not alter the flow of control
within a program, but it might move operations around so that the object
code and source code do not correspond. These changed sequences of code
can create confusion when you use the debugger.

You can do limited debugging on code compiled without the –g flag. For
example, the following commands work properly without recompiling for
debugging:

• stop in PROCEDURE

• stepi

• cont

• conti

• (ADDRESS)/<COUNT><MODE>

• tracei

Although you can do limited debugging, it is usually more useful to
recompile the program with –g. Note that the debugger does not warn you if
an object file was compiled without the –g flag.

Complete symbol table information is available only for programs in which
all modules have been compiled with the –g flag. Other programs will have
symbol table information only for symbols that are either referenced by or
defined in modules compiled with the –g flag.

Note

Any routines in shared library applications in which breakpoints
are to be set must be compiled with the –g flag. If the –g flag is
not specified, the symbol table information that dbx needs to set
breakpoints is not generated and dbx will not be able to stop the
application.

5–6 Debugging Programs with dbx

5.2.2 Creating a dbx Initialization File
You can create a dbx initialization file that contains commands you normally
issue at the beginning of each dbx session. For example, the file could
contain the following commands:
set $page = 5
set $lines = 20
set $prompt = "DBX> "
alias du dump

The initialization file must have the name .dbxinit. Each time you
invoke the debugger, dbx executes the commands in .dbxinit. The
debugger looks first for .dbxinit in the current directory and then in your
home directory (the directory assigned to the $HOME environment variable).

5.2.3 Invoking and Terminating dbx
You invoke dbx from the shell command line by entering dbx and the
optional parameters.

After invocation, dbx sets the current function to the first procedure of the
program.

The dbx command has the following syntax:

dbx [flags] [objfile [corefile]]

flags
Several of the most important flags supported by the dbx command line
are shown in Table 5-2.

objfile
The name of the executable file of the program that you want to debug.
If objfile is not specified, dbx uses a.out by default.

corefile
Name of a core dump file. If you specify corefile, dbx lists the
point of program failure. The dump file holds an image of memory at
the time the program failed. Use dbx commands to get a stack trace
and look at the core file code. The debugger displays information from
the core file, not from memory as it usually does.

The maximum number of arguments accepted by dbx is 1000; however,
system limits on your machine might reduce this number.

Debugging Programs with dbx 5–7

Table 5-2: dbx Command Flags
22
Flag Function22
-cfilename Selects an initialization command file other than your

.dbxinit file.

-Idirname Tells dbx to look in the specified directory for source
files. To specify multiple directories, use a separate –I
for each. Unless you specify this flag when you invoke
dbx, the debugger looks for source files in the current
directory and in the object file’s directory. You can
change directories with the use command (see Section
4.6.1).

–i Invokes dbx in interactive mode. With this flag set,
dbx does not treat source lines beginning with number
signs (#) as comments.

–k Maps memory addresses. This flag is useful for kernel
debugging. (For information on kernel debugging, see
krash(8) and the manual Kernel Debugging.)

-pid process-id Attaches dbx to a currently running process.

–r Immediately executes the object file that you specify on
the command line. If program execution terminates with
an error, dbx displays the message that describes the
error. You can then either invoke the debugger or allow
the program to continue exiting. The dbx debugger
reads from /dev/tty when you specify the –r flag
and standard input is not a terminal. If the program
executes successfully, dbx prompts you for input.22

The following example invokes dbx with no flags. Because an object file
name is not specified, dbx prompts for one. In this case, the user responds
with sam. The default debugger prompt is (dbx).
% dbx
enter object file name (default is ’a.out’): sam
dbx version 3.12
Type ’help’ for help.

main: 23 if (argc < 2) {
(dbx)

Use the quit or q command to end a debugging session. The quit
command accepts no arguments.

5–8 Debugging Programs with dbx

5.3 Using dbx Commands
You can enter up to 10,240 characters on an input line. Long lines can be
continued with a backslash (\). If a line exceeds 10,240 characters, dbx
displays an error message. The maximum string length is also 10,240.

The following sections describe scoping and the use of qualified variable
names, dbx expressions and precedence, and dbx data types and constants.

5.3.1 Qualifying Variable Names
Variables in dbx are qualified by file, procedure, block, or structure. When
using commands like print to display a variable’s value, dbx indicates the
scope of the variable when the scope could be ambiguous (for example, you
have a variable by the same name in two or more procedures). If the scope is
wrong, you can specify the full scope of the variable by separating scopes
with periods. For example:
sam.main.i
| | |
11 12277 12 12277 13 12277

11 12277 Current file

12 12277 Procedure name

13 12277 Variable name

5.3.2 dbx Expressions and Their Precedence
The dbx debugger recognizes expression operators from C; these operators
can also be used for debugging any other supported language. (Note that
dbx uses brackets ([]) for array subscripts even in Fortran, whose natural
subscript delimiters are parentheses.) In addition to the standard C operators,
dbx uses the number sign (#) as shown in Table 5-3.

Table 5-3: The dbx Number-Sign Expression Operator
22
Syntax Description22
("FILE" #EXP) Uses the line number specified by #EXP in the file

named by FILE.

(PROCEDURE #EXP) Uses the relative line number specified by #EXP in the
procedure named by PROCEDURE.

(#EXP) Returns the address for the line specified by (#EXP).22

Debugging Programs with dbx 5–9

Operators follow the C language precedence. Table 5-4 shows the language
operators recognized by dbx in order of precedence from top to bottom and
from left to right, with the dbx-specific number-sign operator included
among the unary operators to show its place in the precedence hierarchy.

Table 5-4: Expression Operator Precedence
22
Unary: &, +, –, * (pointer), #, sizeof()a, ~, /, (type), (type *)

Binary: <<, >>, ", !, ==, !=, <=, >=, <, >, &, &&, |, ||, +, –, *, /b, %,
[], –>22

Table Notes:

a. The sizeof operator specifies the number of bytes retrieved to get an
element, not (number-of-bits+7)/8.

b. For backward compatibility, dbx also accepts two slashes (//) as a
division operator.

5.3.3 dbx Data Types and Constants
Table 5-5 lists the built-in data types that dbx commands can use.

Table 5-5: Built-in Data Types
22
Data Type Description Data Type Description22
$address Pointer $real Double precision real

$boolean Boolean $short 16-bit integer

$char Character $signed Signed integer

$double Double precision real $uchar Unsigned character

$float Single precision real $unsigned Unsigned integer

$integer Signed integer $void Empty22

You can use the built-in data types for type coercion — for example, to
display the value of a variable in a type other than the type specified in the
variable’s declaration. The dbx debugger understands C language data
types, so that you can refer to data types without the $. The types of
constants that are acceptable as input to dbx are shown in Table 5-6.
Constants that are output from dbx are displayed by default as decimal
values.

5–10 Debugging Programs with dbx

Table 5-6: Input Constants
22
Constant Description22

0false

Nonzerotrue

0nil

Hexadecimal0xnumber

Decimal0tnumber

Octal0number

Decimalnumber

Floatnumber.[number][e|E][+|-]EXP22

Notes:

• Overflow on nonfloat uses the rightmost digits. Overflow on float uses
the leftmost digits of the mantissa and the highest or lowest exponent
possible.

• The $octin variable changes the default input expected to octal. The
$hexin variable changes the default input expected to hexadecimal (see
Section 5.5.2).

• The $octints variable changes the default output to octal. The
$hexints variable changes the default output to hexadecimal (see
Section 5.5.2).

5.4 Working with the dbx Monitor
The dbx debugger provides a command history, command-line editing, and
symbol name completion. The dbx debugger also allows multiple commands
on an input line. These features can reduce the amount of input required or
allow you to repeat previously executed commands.

5.4.1 Repeating dbx Commands
The debugger keeps a command history that allows you to repeat debugger
commands without retyping them. You can display these commands by
using the history command. The $lines variable controls the number
of history lines saved. The default is 20 commands. You can use the set
command to modify the $lines variable (see Section 5.5.1).

To repeat a command, use the Return key or one of the exclamation point (!)
commands.

Debugging Programs with dbx 5–11

The history command has the following forms:

history
Displays the commands in the history list.

Return key
Repeats the last command that you entered. You can disable this feature
by setting the $repeatmode variable to 0 (see Section 5.5.1).

!string
Repeats the most recent command that starts with the specified string.

!integer
Repeats the command associated with the specified integer.

!–integer
Repeats the command that occurred the specified number of commands
(integer) before the most recent command.

The following example displays the history list and then repeats execution of
the twelfth command in the list:
(dbx) history
10 print x
11 print y
12 print z

(dbx) !12
(!12 = print z)
123
(dbx)

5.4.2 Editing the dbx Command Line
The dbx debugger provides support for command line editing. You can edit
a command line to correct mistakes without reentering the entire command.
To enable command-line editing, set the EDITOR, EDITMODE, or
LINEEDIT environment variable before you invoke dbx. For example, to
set LINEEDIT from the C shell, you would enter the following command:
% setenv LINEEDIT

From the Bourne or Korn shells, you would enter this command:
$ export LINEEDIT

The debugger offers the following modes of command line editing:

• If the environment variable LINEEDIT is not set and either of the
environment variables EDITMODE or EDITOR contains a path ending in
vi, the debugger uses a command line editing mode that resembles the
Korn shell’s vi mode, in which the following editing keys are

5–12 Debugging Programs with dbx

recognized:
$ + - 0 A B C D E F I R S W X ^
a b c d e f h i j k l r s w x ~
Ctrl/D
Ctrl/H
Ctrl/J
Ctrl/L
Ctrl/M
Ctrl/V

See ksh(1) for more information.

• If the environment variable LINEEDIT is set to any value, even the null
string, or if LINEEDIT is not set and either of the environment variables
EDITMODE or EDITOR contains a path ending in emacs, the debugger
uses a command line editing mode that resembles the Korn shell’s
emacs mode. This mode behaves slightly differently depending on
whether it is enabled by LINEEDIT or by EDITOR or EDITMODE.

Table 5-7 lists the emacs-mode command line editing commands.

Table 5-7: Command-Line Editing Commands in emacs mode
22
Command Function22
Ctrl/A Moves the cursor to the beginning of the command line.

Ctrl/B Moves the cursor back one character.

Ctrl/C Clears the line.

Ctrl/D Deletes the character at the cursor.

Ctrl/E Moves the cursor to the end of the line.

Ctrl/F Moves the cursor ahead one character.

Ctrl/H Deletes the character immediately preceding the cursor.

Ctrl/J Executes the line.

Ctrl/K (When enabled by EDITOR or EDITMODE) Deletes from the
cursor to the end of the line. If preceded by a numerical
parameter whose value is less than the current cursor position,
deletes from given position up to the cursor. If preceded by a
numerical parameter whose value is greater than the current
cursor position, deletes from cursor up to given position.

Ctrl/K char (When enabled by LINEEDIT) Deletes characters until the
cursor rests on the next occurrence of char.

Ctrl/L Redisplays the current line.

Ctrl/M Executes the line.

Ctrl/N Moves to the next line in the history list.

Ctrl/P Moves to the previous line in the history list.

Debugging Programs with dbx 5–13

Table 5-7: (continued)
22
Command Function22
Ctrl/R char Searches back in the current line for the specified character.

Ctrl/T Interchanges the two characters immediately preceding the cursor.

Ctrl/U Repeats the next character four times.

Ctrl/W Deletes the entire line.

Ctrl/Y Inserts immediately before the cursor any text cut with Ctrl/K.

Ctrl/Z Tries to complete a file or symbol name.

Escape Tries to complete a file or symbol name.

Down Arrow Moves to the next line in the history list.

Up Arrow Moves to the previous line in the history list.

Left Arrow Moves the cursor back one character.

Right Arrow Moves the cursor ahead one character.22

5.4.3 Entering Multiple Commands
You can enter multiple commands on the command line by using a
semicolon (;) as a separator. This feature is useful when you are using the
when command (see Section 5.8.4).

The following example has two commands on one command line; the first
command stops the program and the second command reruns it:
(dbx) stop at 40; rerun
[2] stop at "sam.c":40
[2] stopped at [main:40 ,0x120000b40] i=strlen(line1.string);
(dbx)

5.4.4 Completing Symbol Names
The dbx debugger provides symbol name completion. When you enter a
partial symbol name and press Ctrl/Z, dbx attempts to complete the name.
If a unique completion is found, dbx redisplays the input with the unique
completion added; otherwise, all possible completions are shown, and you
can choose one.

To enable symbol name completion, you must enable command line editing
as described in Section 5.4.2. The following example displays all names
beginning with the letter ‘‘i’’:

5–14 Debugging Programs with dbx

(dbx) i 1Ctrl/Z 12222277777
ioctl.ioctl .ioctl isatty.isatty .isatty i int 11 12277
(dbx) i 12 12277

11 12277 The display might include data types and library symbols.

12 12277 After listing all names beginning with the partial name, dbx prompts
again with the previously specified string, giving you an opportunity to
specify additional characters and repeat the search.

The following example shows symbol name completion. In this case, the
entry supplied is unambiguous:
(dbx) print file 1Ctrl/Z 12222277777
(dbx) print file_header_ptr
0x124ac
(dbx)

5.5 Controlling dbx
The dbx debugger provides commands for setting and removing dbx
variables, creating and removing aliases, invoking a subshell, checking and
deleting items from the status list, displaying a list of object files associated
with an application, and recording and playing back input.

5.5.1 Setting and Removing Variables
The set command defines a dbx variable, sets an existing dbx variable to a
different value, or displays a list of existing dbx predefined variables. The
unset command removes a dbx variable. Use the print command to
display the values of program and debugger variables. The dbx predefined
variables are listed in Table 5-8. You cannot define a debugger variable with
the same name as a program variable.

The set and unset commands have the following forms:

set
Displays a list of dbx predefined variables.

set VAR = EXP
Assigns a new value to a variable or defines a new variable.

unset VAR
Unsets the value of a dbx variable.

The following example illustrates the set and unset commands:

Debugging Programs with dbx 5–15

(dbx) set 11 12277
$listwindow 10
$datacache 1
$main "main"
$pagewindow 22
test 5
$page 1
$maxstrlen 128
$cursrcline 24
more (n if no)? n
(dbx) set test = 12 12 12277
(dbx) set
$listwindow 10
$datacache 1
$main "main"
$pagewindow 22
test 12
$page 1
$maxstrlen 128
$cursrcline 24
more (n if no)? n
(dbx) unset test 13 12277
(dbx) set
$listwindow 10
$datacache 1
$main "main"
$pagewindow 22
$page 1
$maxstrlen 128
$cursrcline 24
more (n if no)? n
(dbx)

11 12277 Display a list of dbx predefined variables.

12 12277 Assign a new value to a variable.

13 12277 Remove a variable.

5.5.2 Predefined dbx Variables
The predefined dbx variables are shown in Table 5-8. Each variable is
labeled I for integer, B for boolean, or S for string. Variables that you can
examine but cannot modify are indicated by an R.

5–16 Debugging Programs with dbx

Table 5-8: Predefined dbx Variables
22
Type Name Default Description22
S $addrfmt ‘‘0x%lx’’ Specifies the format for addresses.

Can be set to anything you can
format with a C language printf
statement.

B $assignverify 1 Specifies whether new values are
displayed when assigning a value
to a variable.

B $asynch_interface 0 Controls whether dbx is, or can
be, configured to control multiple
asynchronous processes.
Incremented by 1 when a process
is attached; decremented by 1
when a process terminates or is
detached. Can also be set by user.
If 0 or negative, asynchronous
debugging is disabled.

B $break_during_step 0 Controls whether breakpoints are
checked while processing
step/stepi, next/nexti,
call, return, and so on.

B $casesense 0 Specifies whether source searching
and variables are case sensitive. A
nonzero value means case
sensitive; a 0 means not case
sensitive.

I R $curevent 0 Shows the last event number as
reported by the status
command.

I R $curline 0 Shows the current line in the
source code.

I R $curpc – Shows the current address. Used
with the wi and li aliases.

I R $cursrcline 1 Shows the last line listed plus 1.

B $datacache 1 Caches information from the data
space so that dbx only has to
check the data space once. If you
are debugging the operating
system, set this variable to 0;
otherwise, set it to a nonzero
value.

S R $defaultin Null string Shows the name of the file that
dbx uses to store information
when using the record input
command.

Debugging Programs with dbx 5–17

Table 5-8: (continued)
22
Type Name Default Description22
S R $defaultout Null string Shows the name of the file that

dbx uses to store information
when using the record output
command.

B $dispix 0 When set to 1, specifies display of
only real instructions when
debugging in pixie mode.

B $hexchars Not defined A nonzero value indicates that
character values are shown in
hexadecimal.

B $hexin Not defined A nonzero value indicates that
input constants are hexadecimal.

B $hexints Not defined A nonzero value indicates that
output constants are shown in
hexadecimal; a nonzero value
overrides octal.

B $hexstrings Not defined A nonzero value indicates that
strings are displayed in
hexadecimal; otherwise, strings are
shown as characters.

I R $historyevent None Shows the current history number.

I $lines 20 Specifies the size of the dbx
history list.

I $listwindow $pagewindow/2 Specifies the number of lines
shown by the list command.

S $main ‘‘main’’ Specifies the name of the
procedure where execution begins.
The debugger starts the program at
main() unless otherwise
specified.

I $maxstrlen 128 Specifies the maximum number of
characters in strings that dbx
prints for pointers to strings.

B $octin Not defined Changes the default input
constants to octal when set to a
nonzero value. Hexadecimal
overrides octal.

B $octints Not defined Changes the default output
constants to octal when set to a
nonzero value. Hexadecimal
overrides octal.

B $page 1 Specifies whether to page long
information. A nonzero value
enables paging; a zero disables it.

5–18 Debugging Programs with dbx

Table 5-8: (continued)
22
Type Name Default Description22
I $pagewindow Various Specifies the number of lines

displayed when viewing
information that is longer than one
screen. This variable should be set
to the number of lines on the
terminal. A value of 0 indicates a
minimum of 1 line. The default
value depends on the terminal
type; for a standard video display,
the default is 24.

B $pimode 0 Displays input when using the
playback input command.

I $printdata 0 A nonzero value indicates that the
values of registers are displayed
when instructions are
disassembled; otherwise, register
values are not displayed.

B $printtargets 1 If set to 1, specifies that displayed
disassembly listings are to include
the labels of targets for jump
instructions. If set to 0, disables
this label display.

B $printwhilestep 0 For use with the step [n] and
stepi [n] instructions. A
nonzero value specifies that all n
lines or instructions should be
displayed. A zero value specifies
that only the last line or instruction
should be displayed.

B $printwide 0 Specifies wide (useful for
structures or arrays) or vertical
format for displaying variables. A
nonzero value indicates wide
format; zero indicates vertical
format.

S $prompt ‘‘dbx)’’ Sets the prompt for dbx.

B $readtextfile 1 When set to a value of 1, dbx tries
to read instructions from the object
file instead of from the process.
This variable should always be set
to 0 when the process being
debugged copies in code during
the debugging process. However,
performance is better when
$readtextfile is set to 1.

Debugging Programs with dbx 5–19

Table 5-8: (continued)
22
Type Name Default Description22
B $regstyle 1 Specifies the type of register

names to be used. A value of 1
specifies hardware names. A zero
specifies software names as
defined by the file regdefs.h.

B $repeatmode 1 Specifies whether dbx should
repeat the last command when the
Return key is pressed. A nonzero
value indicates that the command
is repeated; otherwise, it is not
repeated.

B $rimode 0 Records input when using the
record output command.

S $sigvec ‘‘sigaction’’ Tells dbx the name of the code
called by the system to set signal
handlers.

S $sigtramp ‘‘_sigtramp’’ Tells dbx the name of the code
called by the system to invoke user
signal handlers.

B $stop_all_forks 0 Specifies whether dbx should stop
every child process that is forked
(1), or ignore many of the forks
generated by various system and
library calls (0). If
$stop_all_forks is not set,
the value of $stop_on_fork
determines dbx’s behavior with
forks. $stop_all_forks traps
forks in libraries and system calls
that are usually ignored by
$stop_on_fork.

B $stop_in_main N/A Not used. This variable is
displayed by the set command,
but it presently has no effect on
dbx operation.

B $stop_on_exec 1 Specifies whether dbx should
detect calls to execl() and
execv(), and stop the newly
activated images at the first line of
executable code.

5–20 Debugging Programs with dbx

Table 5-8: (continued)
22
Type Name Default Description22
B $stop_on_fork 1 Specifies whether dbx should

advance a new image activated by
a fork() or vfork() call to its
main activation point and then stop
(1) or continue until stopped by a
breakpoint or event (0). The dbx
program tries to avoid stopping on
forks from system or library calls
unless $stop_all_forks is
set.

S $tagfile ‘‘tags’’ Contains a file name indicating the
file in which the tag command
and the tagvalue macro are to
search for tags.

I $traploops 3 Specifies the number of
consecutive calls to a SIGTRAP
handler that will be made before
dbx assumes that the program has
fallen into a trap-handling loop.22

5.5.3 Defining and Removing Aliases
The alias command defines a new alias or displays a list of all current
aliases.

The alias command allows you to rename any debugger command.
Enclose commands containing spaces within double or single quotation
marks. You can also define a macro as part of an alias.

The dbx debugger has a group of predefined aliases. You can modify these
aliases or add new aliases. You can also include aliases in your .dbxinit
file for use in future debugging sessions. The unalias command removes
an alias from a command. You must specify the alias to remove. The alias
is removed only for the current debugging session.

The alias and unalias commands have the following forms:

alias
Displays a list of all aliases.

alias NAME1[(ARG1,...,ARGN)] "NAME2"
Defines a new alias. NAME1 is the new name. NAME2 is the command
to string to rename. ARG1,...,ARGN are the command arguments.

unalias NAME
Removes an alias from a command, where NAME is the alias name.

Debugging Programs with dbx 5–21

The following example illustrates the alias and unalias commands:
(dbx) alias 11 12277
h history
si stepi
Si nexti
.
.
.

g goto
s step
More (n if no) ?n
(dbx) alias ok(x) "stop at x" 12 12277
(dbx) ok(52) 13 12277
[2] Stop at "sam.c":52 14 12277
(dbx)
(dbx) unalias h 15 12277
(dbx) alias
si stepi
Si nexti
.
.
.

g goto
s step
More (n if no)? n
(dbx)

11 12277 Display aliases.

12 12277 Define an alias for setting a breakpoint.

13 12277 Set a breakpoint at line 52.

14 12277 Debugger acknowledges breakpoint set at line 52.

15 12277 Remove the h alias. (Notice that it disappears from the alias list.)

5.5.4 Monitoring Debugging Session Status
Use the status command to check which, if any, of the following
commands are currently set:

• stop or stopi commands for breakpoints

• trace or tracei commands for line-by-line variable tracing

• when command

• record input and record output commands for saving
information in a file

5–22 Debugging Programs with dbx

The status command accepts no arguments. For example:
(dbx) status
[2] trace i in main
[3] stop in prnt
[4] record output /tmp/dbxt0018898 (0 lines)
(dbx)

The numbers in brackets (for example, [2]) indicate status item numbers.

5.5.5 Deleting and Disabling Breakpoints
To delete breakpoints and stop the recording of input and output, use the
delete command. Deleting a breakpoint or stopping recording removes the
pertinent items from the status list produced by the status command. To
disable breakpoints without deleting them, use the disable command. The
enable command reenables disabled events.

The delete command has the following forms:

delete EXP1[,...,EXPN]
Deletes the specified status items.

delete all
delete *

Deletes all status items.

The following example illustrates the use of the delete command:
(dbx) status
[2] record output /tmp/dbxt0018898 (0 lines)
[3] trace i in main
[4] print pline at "sam.c":
[5] stop in prnt
(dbx) delete 4
(dbx) status
[2] record output /tmp/dbxt0018898 (0 lines)
[3] trace i in main
[5] stop in prnt
(dbx)

The disable and enable commands have the following forms:

disable EVENT1[,EVENT2,...]
enable EVENT1[,EVENT2,...]

Disables or enables the specified events.

disable all
enable all

Disables or enables all events.

Debugging Programs with dbx 5–23

5.5.6 Displaying the Names of Loaded Object Files
The listobj command displays the names of all the object files that have
been loaded by dbx, together with their sizes and the address at which they
were loaded. These objects include the main program and all of the shared
libraries that are used in an application. The listobj command accepts no
arguments. For example:
(dbx) listobj
sam addr: 0x120000000 size: 0x2000
/usr/shlib/libc.so addr: 0x3ff80080000 size: 0xbc000
(dbx)

5.5.7 Invoking a Subshell from Within dbx
To invoke an interactive subshell at the dbx prompt, enter sh. To return to
dbx from a subshell, enter exit or press Ctrl/D. To invoke a subshell that
performs a single command and returns to dbx, enter sh and the desired
shell command. For example:
(dbx) sh
% date
Tue Aug 9 17:25:15 EDT 1994
% exit
.
.
.

(dbx) sh date
Tue Aug 9 17:29:34 EDT 1994
(dbx)

5.6 Examining Source Programs
The following sections describe how to list and edit source code, change
directories, change source files, search for strings in source code, display
qualified symbol names, and display type declarations.

5.6.1 Specifying the Locations of Source Files
If you did not specify the –I flag when invoking dbx, (see Section 5.2.3),
the debugger looks for source files in the current directory or the object file’s
directory. The use command has two functions:

• Change the directory or list of directories in which the debugger looks

• List the directory or directories currently in use

The command recognizes absolute and relative pathnames (for example, ./),
but it does not recognize the C-shell tilde (~).

5–24 Debugging Programs with dbx

The use command has the following forms:

use
Lists the current directories.

use DIR1 ... DIRN
Replaces the current list of directories with a new set.

For example:
(dbx) use
. 11 12277
(dbx) use /usr/local/lib
(dbx) use
/usr/local/lib 12 12277
(dbx)

11 12277 Current directory

12 12277 New directory

5.6.2 Moving Up or Down in the Activation Stack
As described in Section 5.1.2, the debugger maintains a stack of activation
levels. To find the name or activation number for a specific procedure, get a
stack trace with the where or tstack command. You can move through
the activation stack by using the up, down, and func commands.

5.6.2.1 Using the where and tstack Commands

The where command displays a stack trace showing the current activation
levels (active procedures) of the program being debugged. The tstack
command displays a stack trace for all threads. See Section 5.11 for more
information about debugging threads.

The where and tstack commands have the following form:

where [EXP]
tstack [EXP]

Displays a stack trace.

If EXP is specified, dbx displays only the top EXP levels of the stack;
otherwise, the entire stack is displayed.

If a breakpoint is set in prnt in the sample program sam.c, the program
runs and stops in the procedure prnt(). If you enter where, the
debugger’s stack trace provides the information shown in the following
example:

Debugging Programs with dbx 5–25

(dbx) stop in prnt
[1] stop in prnt
(dbx) run
.
.
.

(dbx) where 1
> 0 prnt(pline = 0x11ffffcb8) ["sam.c":52, 0x120000c04]

| | | | | |
11 12277 12 12277 13 12277 14 12277 15 12277 16 12277

(dbx)

11 12277 Activation level

12 12277 Procedure name

13 12277 Current value of the argument pline

14 12277 Source file name

15 12277 Line number

16 12277 Program counter

5.6.2.2 Using the up and down and func Commands

The up and down commands move you directly up or down in the stack;
they are useful when tracking a call from one level to another. The func
command can move you up or down incrementally or to a specific activation
level or procedure. The func command changes the current line, the current
file, and the current procedure, thus changing the scope of the variables you
can access. You can also use the func command to examine source code
when a program is not executing.

The up, down, and func commands have the following forms:

up [EXP]
Moves up the specified number of activation levels in the stack. The
default is one level.

down [EXP]
Moves down the specified number of activation levels in the stack. The
default is one level.

func
Displays the current activation levels.

func PROCEDURE
Moves to the activation level specified by PROCEDURE.

func EXP
Moves to the activation level specified by the expression.

The following example illustrates these commands:

5–26 Debugging Programs with dbx

(dbx) where
> 0 prnt(pline = 0x11ffffcb8) ["sam.c":52, 0x120000c04]

1 main(argc = 2, argv = 0x11ffffe08) ["sam.c":45, 0x120000bac]
(dbx) up
main: 45 prnt(&line1); 11 12277
(dbx) where

0 prnt(pline = 0x11ffffcb8) ["sam.c":52, 0x120000c04]
> 1 main(argc = 2, argv = 0x11ffffe08) ["sam.c":45, 0x120000bac]
(dbx) down
prnt: 52 fprintf(stdout,"%3d. (%3d) %s", 12 12277
(dbx) where
> 0 prnt(pline = 0x11ffffcb8) ["sam.c":52, 0x120000c04]

1 main(argc = 2, argv = 0x11ffffe08) ["sam.c":45, 0x120000bac]
(dbx) func 1
main 47 prnt(&line1) 13 12277
(dbx)

11 12277 Move up one level.

12 12277 Move down one level.

13 12277 Move directly to main.

5.6.3 Changing the Current Source File
The file command displays the current source file name or changes the
current source file.

Note

Before setting a breakpoint or trace on a line number, use the
func command to get the correct procedure. The file
command cannot be specific enough for the debugger to access
the information necessary to set a breakpoint.

The file command has the following forms:

file
Displays the name of the file currently in use.

file FILE
Changes the current file to the specified file.

For example:
(dbx) file
sam.c 11 12277
(dbx) file data.c
(dbx) file
data.c 12 12277
(dbx)

Debugging Programs with dbx 5–27

11 12277 Current file

12 12277 New file

5.6.4 Listing Source Code
The list command displays lines of source code. The dbx variable
$listwindow defines the number of lines that dbx lists by default. The
list command uses the current file, procedure, and line unless otherwise
specified.

The list command has the following forms:

list
Lists the number of lines specified by $listwindow, starting at the
current line.

list EXP
Lists the number of lines specified by EXP, starting at the current line.

list EXP1,EXP2
List lines from EXP1 to EXP2.

list EXP:INT
Starting at the specified line (EXP), lists the specified number of lines
(INT), overriding $listwindow.

list PROCEDURE
Lists the specified procedure for $listwindow lines.

The following example specifies a 2-line list starting at line 49:
(dbx) list 49:2

49 void prnt(pline)
50 LINETYPE *pline;

If you use the list command’s predefined alias w, the output is as follows:
(dbx) w

45 prnt(&line1);
46 }
47 }
48
49 void prnt(pline)

> 50 LINETYPE *pline;
51 {

* 52 fprintf(stdout,"%3d. (%3d) %s",pline->linenumber,
53 pline->length, pline->string);
54 fflush(stdout);

The right angle bracket in column 1 (>) indicates the current line, and the
asterisk in column 2 (*) indicates the location of the program counter (pc) at
this activation level.

5–28 Debugging Programs with dbx

5.6.5 Searching for Text in Source Files
The slash (/) and question mark (?) commands search for regular
expressions in source code. The slash searches forward from the current line,
and the question mark searches backward. Both commands wrap around at
the end of the file if necessary, searching the entire file from the point of
invocation back to the same point. By default, dbx does not distinguish
uppercase letters from lowercase when searching. If you set the dbx variable
$casesense to any nonzero value, the search is case sensitive.

The / and ? commands have the following form:

/[REGEXP]
Searches forward for the specified regular expression or, if no expression
is specified, for the regular expression associated with the last previous
search command.

?[REGEXP]
Searches backward in the same manner as the slash command’s forward
search.

(dbx) /lines
no match
(dbx) /line1
16 LINETYPE line1;

(dbx) /
39 while(fgets(line1.string, sizeof(line1.string), fd) != NULL){

(dbx)

5.6.6 Editing Source Files from Within dbx
The edit command enables you to change source files from within dbx.
To make the changes effective, you must quit from dbx, recompile the
program, and restart dbx.

The edit command has the following forms:

edit
Invokes an editor on the current file.

edit FILE
Invokes an editor on the specified file.

The edit command loads the editor indicated by the environment variable
EDITOR or, if EDITOR is not set, the vi editor. To return to dbx, exit
normally from the editor.

Debugging Programs with dbx 5–29

5.6.7 identifying Variables That Share the Same Name
The which and whereis commands display program variables. These
commands are useful for debugging programs that have multiple variables
with the same name occurring in different scopes. The commands follow the
rules described in Section 5.3.1.

The which and whereis commands have the following forms:

which VAR
Displays the default version of the specified variable.

whereis VAR
Displays all versions of the specified variable.

In the following example, the user checks to see where the default variable
named i is and then verifies that this is the only instance of i in the program
by observing that whereis shows only the one occurrence.
(dbx) which i
sam.main.i
(dbx) whereis i
sam.main.i

5.6.8 Examining Variable and Procedure Types
The whatis command lists the type declaration for variables and procedures
in a program.

The whatis command has the following form:

whatis VAR
Displays the type declaration for the specified variable or procedure.

For example:
(dbx) whatis main
int main(argc,argv)
int argc;
unsigned char **argv;
(dbx) whatis i
int i;
(dbx)

5.7 Controlling the Program
The following sections describe the dbx commands used to run a program,
step through source code, return from a procedure call, start at a specified
line, continue after stopping at a breakpoint, assign values to program
variables, patch an executable disk file, execute a particular routine, set an
environment variable, and load shared libraries.

5–30 Debugging Programs with dbx

5.7.1 Running and Rerunning the Program
The run and rerun commands start program execution. Each command
accepts program arguments and passes those arguments to the program. If no
arguments are specified for a run command, dbx runs the program with no
arguments. If no arguments are specified for a rerun command, dbx
defaults to the arguments used with the previous run or rerun command.
You can specify arguments in advance of issuing a rerun command by
using the args command. Arguments set by the args command are
ignored by a subsequent run command.

You can also use these commands to redirect program input and output in a
manner similar to redirection in the C shell:

• The optional parameter <FILE1 redirects input to the program from the
specified file.

• The optional parameter >FILE2 redirects output from the program to the
specified file.

• The optional parameter >&FILE2 redirects both stderr and stdout
to the specified file.

Note

The redirected output differs from the output saved with the
record output command (see Section 5.9.4.2), which saves
debugger output, not program output.

The run, args, and rerun commands have the following forms:

run [ARG1 ... ARGN] [<FILE1] [>FILE2]
run [ARG1 ... ARGN] [<FILE1] [>&FILE2]

Runs the program with the specified arguments and redirections.

args [ARG1 ... ARGN] [<FILE1] [>FILE2]
args [ARG1 ... ARGN] [<FILE1] [>&FILE2]

Sets the specified arguments and redirections for use by subsequent
commands; the specified values remain in effect until explicitly altered
by new values given with a run or rerun command.

rerun [ARG1 ... ARGN] [<FILE1] [>FILE2]
rerun [ARG1 ... ARGN] [<FILE1] [>&FILE2]

Reruns the program with the specified arguments and redirections.

Debugging Programs with dbx 5–31

For example:
(dbx) run sam.c 11 12277
0. (19)#include <stdio.h>
1. (14) struct line {
2. (19) char string[256];
.
.
.

Program terminated normally
(dbx) rerun 12 12277
0. (19)#include <stdio.h>
1. (14) struct line {
2. (19) char string[256];
.
.
.

Program terminated normally
(dbx)

11 12277 The argument is sam.c.

12 12277 Reruns the program with the previously specified arguments.

5.7.2 Executing the Program Step by Step
For debugging programs written in high-level languages, the step and
next commands execute a fixed number of source code lines as specified by
EXP. For debugging programs written in assembly language, the stepi and
nexti commands work the same as step and next except that they step
by machine instructions instead of by program lines. If EXP is not specified,
dbx executes one source code line or machine instruction; otherwise, dbx
executes the source code lines or machine instructions as follows:

• The dbx debugger does not take comment lines into consideration in
interpreting EXP. The program executes EXP source code lines,
regardless of the number of comment lines interspersed among them.

• For step and stepi, dbx considers EXP to apply both to the current
procedure and to called procedures. Program execution stops after EXP
source lines in the current procedure and any called procedures.

• For next and nexti, dbx considers EXP to apply only to the current
procedure. Program execution stops after executing EXP source lines in
the current procedure, regardless of the number of source lines executed
in any called procedures.

The step/stepi and next/nexti commands have the following forms:

step [EXP]
stepi [EXP]

Executes the specified number of lines or instructions in both the current
procedure and any called procedures. The default is 1.

5–32 Debugging Programs with dbx

next [EXP]
nexti [EXP]

Executes the specified number of source code lines or machine
instructions in only the current procedure, regardless of the number of
lines executed in any called procedures. The default is 1.

For example:
(dbx) rerun
[7] stopped at [prnt:52,0x120000c04] fprintf(stdout,"%3d.(%3d)
%s", (dbx) step 2
0. (19) #include <stdio.h>
[prnt:55 ,0x120000c48] }

(dbx) step
[main:40 ,0x120000b40] i=strlen(line1.string);

(dbx)

The $break_during_step and $printwhilestep variables affect
stepping. See Table 5-8 for more information.

5.7.3 Using the return Command
The return command is used in a called procedure to execute the
remaining instructions in the procedure and return to the calling procedure.

The return command has the following forms:

return
Executes the rest of the current procedure and stops ready to execute the
next sequential line in the calling procedure.

return PROCEDURE
Executes the rest of the current procedure and any calling procedures
intervening between the current procedure and the procedure named by
PROCEDURE. Stops ready to execute the next sequential line in the
named procedure.

For example:
(dbx) rerun
[7] stopped at [prnt:52,0x120000c04] fprintf(stdout,"%3d.(%3d)
%s", (dbx) return
0. (19) #include <stdio.h>

stopped at [main:45 +0xc,0x120000bb0] prnt(&line1);
(dbx)

5.7.4 Going to a Specific Place in the Code
The goto command shifts to the specified line and continues execution.
This command is useful in a when statement — for example, to skip a line
known to cause problems. The goto command has the following form:

Debugging Programs with dbx 5–33

goto LINE
Goes to the specified source line when you continue execution.

For example:
(dbx) when at 40 {goto 43}
[8] start ""sam.c"":43 at "sam.c":40
(dbx)

5.7.5 Resuming Execution After a Breakpoint
For debugging programs written in high-level languages, the cont command
resumes program execution after a breakpoint. For debugging programs
written in assembly language, the conti command works the same as
cont. The cont and conti commands have the following forms:

cont
conti

Continues from the current source code line or machine address.

cont to LINE
conti to ADDRESS

Continues until the specified source code line or machine address.

cont in PROCEDURE
conti in PROCEDURE

Continues until the specified procedure.

cont SIGNAL
conti SIGNAL

Continues from the current line or machine instruction after receiving
the specified signal.

cont SIGNAL to LINE
conti SIGNAL to ADDRESS

Continues until the specified line or address after receiving the specified
signal.

cont SIGNAL in PROCEDURE
conti SIGNAL in PROCEDURE

Continues until the specified procedure and sends the specified signal.

The following example shows the cont command in a C program:
(dbx) stop in prnt
[9] stop in prnt
(dbx) rerun
[9] stopped at [prnt:52,0x120000c04] fprintf(stdout,"%3d.(%3d) %s",
(dbx) cont
0. (19) #include <stdio.h>

[9] stopped at [prnt:52,0x120000c04] fprintf(stdout,"%3d.(%3d) %s",
(dbx)

5–34 Debugging Programs with dbx

The following example shows the conti command in an assembly-language
program:
(dbx) conti
0. (19) #include <stdio.h>

[4] stopped at >*[prnt:52 ,0x120000c04] ldq r16,-32640(gp)
(dbx)

5.7.6 Changing the Values of Program Variables
The assign command changes the value of a program variable. The
assign command has the following form:

assign VAR = EXP
assign EXP1 = EXP2

Assigns a new value to the program variable named by VAR or the
address represented by the resolution of EXP1.

For example:
(dbx) print i
19 11 12277
(dbx) assign i = 10
10 12 12277
(dbx) assign *(int *)0x444 = 1 13 12277
1

(dbx)

11 12277 The value of i.

12 12277 The new value of i.

13 12277 Coerce the address to be an integer and assign a value of 1 to it.

5.7.7 Patching Executable Disk Files
The patch command patches an executable disk file to correct bad data or
instructions. Only text, initialized data, or read-only data areas can be
patched. The bss segment cannot be patched because it does not exist in
disk files. The patch command fails if it is issued against a program that is
executing.

The patch command has the following form:

patch VAR = EXP
patch EXP1 = EXP2

Assigns a new value to the program variable named by VAR or the
address represented by the resolution of EXP1.

Debugging Programs with dbx 5–35

The patch is applied to the default disk file; you can use qualified variable
names to specify a patch to a file other than the default. Applying a patch in
this way also patches the in-memory image of the file being patched.

For example:
(dbx) patch &main = 0
(dbx) patch var = 20
(dbx) patch &var = 20
(dbx) patch 0xnnnnn = 0xnnnnn

5.7.8 Running a Specific Procedure
Although it is possible for you to set the current line pointer to the beginning
of a procedure, place a breakpoint at the end of the procedure, and run the
procedure, it is usually easier to use the call or print command to
execute a procedure in your program. The call or print command
executes the procedure you name on the command line. You can pass
parameters to the procedure by specifying them as arguments to the call or
print command.

The call or print command does not alter the flow of your program.
When the procedure returns, the program remains stopped at the point where
you issued the call or print command. The print command displays
values returned by called procedures; the call command does not.

The call and print commands have the following forms:

call PROCEDURE([parameters])
print PROCEDURE([parameters])

Executes the object code associated with the named procedure or
function. Specified parameters are passed to the procedure or function.

For example:
(dbx) stop in prnt 11 12277
[11] stop in prnt
(dbx) call prnt(&line1) 12 12277
[11] stopped at [prnt:52,0x120000c] fprintf(stdout,"%3d.(%3d) %s",
(dbx) status 13 12277
[11] stop in prnt
[12] stop at "sam.c":40
[2] record output example2 (126 lines)
(dbx) delete 11,12 14 12277
(dbx)

11 12277 The stop command sets a breakpoint in the prnt() function.

12 12277 The call command begins executing the object code associated with
prnt(). The line1 argument passes a string by reference to prnt.

5–36 Debugging Programs with dbx

13 12277 The status command displays the currently active breakpoints.

14 12277 The delete command deletes the breakpoints at lines 52 and 40.

The print command allows you to include a procedure as part of an
expression to be printed. For example:
(dbx) print sqrt(2.)+sqrt(3.)

5.7.9 Setting Environment Variables
Use the setenv command to set an environment variable. You can use this
command to set the value of an existing environment variable or create a new
environment variable. The environment variable is visible to both dbx and
the program you are running under dbx control, but it is not visible after you
exit the dbx environment; however, if you start a shell with the sh
command within dbx, that shell can see dbx environment variables. To
change an environment variable for a process, you must issue the setenv
command before starting up the process within dbx with the run command.

The setenv command has the following form:

setenv VAR "STRING"
Changes the value of an existing environment variable or create a new
one. To reset an environment variable, specify a null string.

For example:
(dbx) setenv TEXT "sam.c" 11 12277
(dbx) run 12 12277
[4] stopped at [prnt:52,0x120000e34] fprintf(stdout,"%3d.(%3d) %s",
(dbx) setenv TEXT "" 13 12277
(dbx) run 14 12277
Usage: sam filename

Program exited with code 1

11 12277 The setenv command sets the environment variable TEXT to the value
sam.c.

12 12277 The run command executes the program from the beginning. The
program reads input from the file named in the the environment variable
TEXT. Program execution stops at the breakpoint at line 52.

13 12277 The setenv command sets the environment variable TEXT to null.

14 12277 The run command executes the program. Because the TEXT
environment variable contains a null value, the program must get input.

Debugging Programs with dbx 5–37

5.8 Setting Breakpoints
A breakpoint stops program execution and lets you examine the program’s
state at that point. The following sections describe the dbx commands to set
a breakpoint at a specific line or in a procedure and to stop for signals.

5.8.1 Overview
When a program stops at a breakpoint, the debugger displays an
informational message. For example, if a breakpoint is set in the sample
program sam.c at line 23 in the main() procedure, the following message
is displayed:
[4] stopped at [main:40 ,0x120000b18] i=strlen(line1.string);
| | | | |
11 12277 12 12277 13 12277 14 12277 15 12277

11 12277 Breakpoint status number.

12 12277 Procedure name.

13 12277 Line number.

14 12277 Current program counter. Use this number to display the assembly
language instructions from this point. (See Section 5.7.5 for more
information.)

15 12277 Source line.

Before setting a breakpoint in a program with multiple source files, be sure
that you are setting the breakpoint in the right file. To select the right
procedure, take the following steps:

1. Use the file command to select the source file.

2. Use the func command to specify a procedure name.

3. List the lines of the file or procedure using the list command (see
Section 5.6.4).

4. Use a stop at command to set a breakpoint at the desired line.

5.8.2 Setting Breakpoints
For debugging programs written in high-level languages, the stop command
sets breakpoints to stop at a line, when a variable changes or a specified
condition is true, or in a procedure. For debugging programs written in
assembly language, the stopi command works the same as stop, except
that it traces by machine instructions instead of by program lines. You can
also instruct dbx to stop when it enters a new image invoked by an exec()
call by setting the $stop_on_exec predefined variable (see Table 5-8).

5–38 Debugging Programs with dbx

• The stop at and stopi at commands set a breakpoint at a specific
source code line or address, as applicable. The dbx debugger stops only
at lines or addresses that have executable code. If you specify a
nonexecutable stopping point, dbx sets the breakpoint at the next
executable point. If you specify the VAR parameter, the debugger
displays the variable and stops only when VAR changes; if you specify
if EXP, the debugger stops only when EXP is true.

• The stop in and stopi in commands set a breakpoint at the
beginning or, conditionally, for the duration of a procedure.

• The stop if and stopi if commands cause dbx to stop program
execution under specified conditions. Because dbx must check the
condition after the execution of each line, this command slows program
execution markedly. Whenever possible, use stop/stopi at or
stop/stopi in instead of stop/stopi if.

• If the $stop_on_exec predefined variable is set to 1, an exec() call
causes dbx to stop and read in the new image’s symbol table, then
advance to the image’s main activation point and stop for user input.

Use the delete command to remove breakpoints established by the stop
or stopi command.

The stop and stopi commands have the following forms:

stop VAR
stopi VAR

Stops when VAR changes.

stop VAR at LINE
stopi VAR at ADDRESS

Stops when VAR changes at a specified source code line or address.

stop VAR at LINE if EXP
stopi VAR at ADDRESS if EXP

Stops when VAR changes at a specified line or address only if the
expression is true.

stop if EXP
stopi if EXP

Stops if EXP is true.

stop VAR if EXP
stopi VAR if EXP

Stops when VAR changes if EXP is true.

Debugging Programs with dbx 5–39

stop in PROCEDURE
stopi in PROCEDURE

Stops at the beginning of the procedure.

stop VAR in PROCEDURE
Stops in the specified procedure when VAR changes.

stop VAR in PROCEDURE if EXP
stopi VAR in PROCEDURE if EXP

Stops when VAR changes in the specified procedure if EXP is true.

Note

Specifying both VAR and EXP causes stops anywhere in the
procedure, not just at the beginning. Using this feature is time
consuming because the debugger must check the condition before
and after each source line is executed. (When both arguments
are specified, EXP is always checked before VAR.)

The following example shows the use of stop in a C program:
(dbx) stop at 52
[3] stop at "sam.c":52
(dbx) rerun
[3] stopped at [prnt:52,0x120000fb0] fprintf(stdout,"%3d.(%3d) %s",
(dbx) stop in prnt
[15] stop in prnt
(dbx)

The following example shows the use of stopi in an assembly-language
program:
(dbx) stopi at 0x120000c04
[4] stop at 0x120000c04
(dbx) rerun
[7] stopped at >*[prnt:52 ,0x120000c04] ldq r16, -32640(gp)

5.8.3 Tracing Variables During Execution
For debugging programs written in high-level languages, the trace
command lists the value of a variable while the program is executing and
determines the scope of the variable being traced. For debugging programs
written in assembly language, the tracei command works the same as
trace, except that it traces by machine instructions instead of by program
lines.

5–40 Debugging Programs with dbx

The trace and tracei commands have the following forms:

trace LINE
Lists the specified source line each time it is executed.

trace VAR
tracei VAR

Lists the specified variable after each source line or machine instruction
is executed.

trace [VAR] at LINE
tracei [VAR] at ADDRESS

Lists the specified variable at the specified line or instruction.

trace [VAR] in PROCEDURE
tracei [VAR] in PROCEDURE

Lists the specified variable in the specified procedure.

trace [VAR] at LINE if EXP
tracei [VAR] at ADDRESS if EXP

Lists the variable at the specified source code line or machine address
when the expression is true and the value of the variable has changed.
(EXP is checked before VAR.)

trace [VAR] in PROCEDURE if EXP
tracei [VAR] in PROCEDURE if EXP

Lists the variable in the specified procedure when the expression is true
and the value of the variable has changed. (EXP is checked before
VAR.)

For example:
(dbx) trace i
[5] trace i in main
(dbx) rerun sam.c
[4] [main:25 ,0x400a50] if (argc < 2) {
(dbx) c
[5] i changed before [main: line 41]:

new value = 19;
[5] i changed before [main: line 41]:

old value = 19;
new value = 14;

[5] i changed before [main: line 41]:
old value = 14;
new value = 19;

[5] i changed before [main: line 41]:
old value = 19;
new value = 13;

[5] i changed before [main: line 41]:
old value = 13;
new value = 17;

[5] i changed before [main: line 41]:
old value = 17;

Debugging Programs with dbx 5–41

new value = 3;
[5] i changed before [main: line 41]:

old value = 3;
new value = 1;

[5] i changed before [main: line 41]:
old value = 1;
new value = 30;

5.8.4 Writing Conditional Code in dbx
Use the when command to control the conditions under which certain dbx
commands that you specify will be executed.

The when command has the following forms:

when VAR [if EXP] {COMMAND_LIST}
Executes the command list when EXP is true and VAR changes.

when [VAR] at LINE [if EXP] {COMMAND_LIST}
Executes the command list when EXP is true, VAR changes, and the
debugger encounters LINE.

when in PROCEDURE {COMMAND_LIST}
Executes the command list upon entering PROCEDURE.

when [VAR] in PROCEDURE [if EXP] {COMMAND_LIST}
Executes the specified commands on each line of PROCEDURE when
EXP is true and VAR changes. (EXP is checked before VAR.)

For example:
(dbx) when in prnt {print line1.length}
[6] print line1.length in prnt
(dbx) rerun
19 11 12277
14
19
.
.
.

17
59
45
12
More (n if no)?
(dbx) delete 6
(dbx) when in prnt {stop}
[7] stop in prnt
(dbx) rerun
[7] stopped at [prnt:52,0x12000fb0] fprintf(stdout,"%3d.(%3d) %s",

|
12 12277

5–42 Debugging Programs with dbx

11 12277 Value of line1.length.

12 12277 Stops in the procedure prnt.

5.8.5 Catching and Ignoring Signals
The catch command either lists the signals that dbx catches or specifies a
signal for dbx to catch. If the process encounters a specified signal, dbx
stops the process.

The ignore command either lists the signals that dbx does not catch or
specifies a signal for dbx to add to the ignore list.

The catch and ignore commands have the following forms:

catch
Displays a list of all signals that dbx catches.

catch SIGNAL
Adds a signal to the catch list.

ignore
Displays a list of all signals that dbx does not catch.

ignore SIGNAL
Removes a signal from the catch list and adds it to the ignore list.

For example:
(dbx) catch 11 12277
INT QUIT ILL TRAP ABRT EMT FPE BUS SEGV SYS PIPE TERM URG \
STOP TTIN TTOU IO XCPU XFSZ VTALRM PROF WINCH INFO USR1 USR2
(dbx) ignore 12 12277
HUP KILL ALRM TSTP CONT CHLD
(dbx) catch kill 13 12277
(dbx) catch
INT QUIT ILL TRAP ABRT EMT FPE KILL BUS SEGV SYS PIPE TERM URG \
STOP TTIN TTOU IO XCPU XFSZ VTALRM PROF WINCH INFO USR1 USR2
(dbx) ignore
HUP ALRM TSTP CONT CHLD
(dbx)

The backslashes in this example represent line continuation. The actual
output from catch and ignore is a single line.

11 12277 Displays the catch list.

12 12277 Displays the ignore list.

13 12277 Adds KILL to the catch list and removes KILL from the ignore list.

Debugging Programs with dbx 5–43

5.9 Examining Program State
When dbx is stopped at a breakpoint, the program state can be examined to
determine what might have gone wrong. The debugger provides commands
for displaying stack traces, variable values, and register values. The
debugger also provides commands to display information about the activation
levels shown in the stack trace and to move up and down the activation
levels (see Section 5.6.2).

5.9.1 Printing the Values of Variables and Expressions
The print command displays the values of one or more expressions.

The printf command lists information in a specified format and supports
all formats of the printf() function except strings (%s). For a list of
formats, see printf(3). You can use the printf command to see a
variable’s value in a different number base.

The default command alias list (see Section 5.5.3) provides some useful
aliases for displaying the value of variables in different bases — octal (po),
decimal (pd), and hexadecimal (px). The default number base is decimal.

You can specify either the real machine register names or the software names
from the include file regdef.h. A prefix before the register number
specifies the type of register; the prefix can be either $f or $r, as shown in
the following listing of registers:
22
Register Name(s) Register Type22

Floating point register (1 of 32)$f00–$f31

Machine register (1 of 32)$r00–$r31

$fpcr Floating-point control register

$pc Program counter value

$ps Program status registera
22

Table Note:

a. The program status register is useful only for kernel debugging. For
user-level programs, its value is always 8.

You can also specify prefixed registers in the print command to display a
register value or the program counter. The following commands display the
values of machine register 3 and the program counter:

5–44 Debugging Programs with dbx

(dbx) print $r3

(dbx) print $pc

The print command has the following forms:

print EXP1,...,EXPN
Displays the value of the specified expressions.

printf "STRING", EXP1,...,EXPN
Displays the value of the specified expressions in the format specified by
the string.

Note

If the expression contains a name that is the same as a dbx
keyword, you must enclose the name within parentheses. For
example, to print output, a keyword in the playback and
record commands, specify the name as follows:
(dbx) print (output)

For example:
(dbx) print i
14 11 12277
(dbx) po i
016 12 12277
(dbx) px i
0xe 13 12277
(dbx) pd i
14 14 12277
(dbx)

11 12277 Decimal

12 12277 Octal

13 12277 Hexadecimal

14 12277 Decimal

The printregs command displays a complete list of register values; it
accepts no arguments. As with the print command, the default base for
display by printregs is decimal. To display values in hexadecimal with
the printregs command, set the dbx variable $hexints.

For example:

Debugging Programs with dbx 5–45

(dbx) printregs
$vfp= 4831837712 $r0_v0=0
$r1_t0=0 $r2_t1=0
$r3_t2=18446744069416926720 $r4_t3=18446744071613142936
$r5_t4=1 $r6_t5=0
.
.
.

$f25= 0.0 $f26= 0.0
$f27= 2.3873098155006918e-314 $f28= 2.6525639909000367e-314
$f29= 9.8813129168249309e-324 $f30= 2.3872988413145664e-314
$f31= 0.0 $pc= 4831840840

5.9.2 Displaying Activation-Level Information with the dump
Command

The dump command displays information about activation levels, including
values for all variables that are local to a specified activation level. To see
what activation levels are currently active in the program, use the where
command to get a stack trace.

The dump command has the following forms:

dump
Displays information about the current activation level.

dump .
Displays information about all activation levels.

dump PROCEDURE
Displays information about the specified procedure (activation level).

For example:
(dbx) where
> 0 prnt(pline = 0x11ffffcb8) ["sam.c":52, 0x120000c04]

1 main(argc = 2, argv = 0x11ffffe08) ["sam.c":45, 0x120000bac]
(dbx) dump
prnt(pline = 0x11ffffcb8) ["sam.c":52, 0x120000c04]
(dbx) dump .
> 0 prnt(pline = 0x11ffffcb8) ["sam.c":52, 0x120000c04]

1 main(argc = 2, argv = 0x11ffffe08) ["sam.c":45, 0x120000bac]
line1 = struct {

string = "#include <stdio.h>"
length = 19
linenumber = 0

}
fd = 0x140000158
fname = 0x11ffffe9c = "sam.c"
i = 19
curlinenumber = 1

(dbx) dump main

5–46 Debugging Programs with dbx

main(argc = 2, argv = 0x11ffffe08) ["sam.c":45, 0x120000bac]
line1 = struct {

string = "#include <stdio.h>"
length = 19
linenumber = 0

}
fd = 0x140000158
fname = 0x11ffffe9c = "sam.c"
i = 19
curlinenumber = 1
(dbx)

5.9.3 Displaying the Contents of Memory
You can display memory contents by specifying the address and the format
of the display. Use the following form, with no spaces between the three
parts of the command:

address /countmode

The address portion of the command is the address of the first item to be
displayed, count is the number of items to be shown, and mode indicates
the format in which the items are to be displayed. For example:
prnt/20i

This example displays the contents of 20 machine instructions, beginning at
the address of the prnt function.

The values for mode are shown in Table 5-9.

Table 5-9: Modes for Displaying Memory Addresses
22
Mode Display Format22
b Displays a byte in octal.

c Displays a byte as a character.

D Displays a long word (64 bits) in decimal.

d Displays a short word (16 bits) in decimal.

dd Displays a word (32 bits) in decimal.

f Displays a single-precision real number.

g Displays a double-precision real number.

i Displays machine instructions.

O Displays a long word in octal.

o Displays a short word in octal.

oo Displays a word (32 bits) in octal.

Debugging Programs with dbx 5–47

Table 5-9: (continued)
22
Mode Display Format22
s Displays a string of characters that ends in a null byte.

X Displays a long word in hexadecimal.

x Displays a short word in hexadecimal.

xx Displays a word (32 bits) in hexadecimal.22

The following example shows the output when displaying memory addresses
as instructions:
(dbx) &prnt/20i
[prnt:51, 0x120000bf0] ldah gp, 8193(r27)
[prnt:51, 0x120000bf4] lda gp, -25616(gp)
[prnt:51, 0x120000bf8] lda sp, -64(sp)
[prnt:51, 0x120000bfc] stq r26, 8(sp)
[prnt:51, 0x120000c00] stq r16, 16(sp)
[prnt:52, 0x120000c04] ldq r16, -32640(gp)

>*[prnt:52, 0x120000c08] addq r16, 0x38, r16
[prnt:52, 0x120000c0c] ldq r17, -32552(gp)
[prnt:52, 0x120000c10] ldq r1, 16(sp)
[prnt:52, 0x120000c14] ldl r18, 260(r1)
[prnt:52, 0x120000c18] ldl r19, 256(r1)
[prnt:52, 0x120000c1c] bis r1, r1, r20
[prnt:52, 0x120000c20] ldq r27, -32624(gp)
[prnt:52, 0x120000c24] jsr r26, (r27), 0x4800030a0
[prnt:52, 0x120000c28] ldah gp, 8193(r26)
[prnt:52, 0x120000c2c] lda gp, -25672(gp)
[prnt:54, 0x120000c30] ldq r16, -32640(gp)
[prnt:54, 0x120000c34] addq r16, 0x38, r16
[prnt:54, 0x120000c38] ldq r27, -32544(gp)
[prnt:54, 0x120000c3c] jsr r26, (r27), 0x480003100

5.9.4 Recording and Playing Back Portions of a dbx Session
The dbx debugger allows you to capture and replay portions of your input to
the program and also portions of its output. Recorded information is written
to a file so that you can reuse or reexamine it.

Recording input can be useful for creating command files containing
sequences that you want to repeat many times; you can even use recorded
input to control dbx for such purposes as regression testing. Recording
output is useful for capturing large volumes of information that are
inconvenient to deal with on the screen, so that you can analyze them later.
To look at recorded output later, you can read the saved file directly or you
can play it back with dbx.

5–48 Debugging Programs with dbx

5.9.4.1 Recording and Playing Back Input

Use the record input command to record debugger input. Use the
playback input command to repeat a recorded sequence. The record
input and playback input commands have the following forms:

record input [FILE]
Begins recording dbx commands in the specified file or, if no file is
specified, in a file placed in /tmp and given a generated name.

playback input [FILE]
source [FILE]

Executes the commands from the specified file or, if no file is specified,
from the temporary file. The two forms are identical in function.

The name given to the temporary file, if used, is contained in the debugger
variable $defaultin. To display the temporary file name, use the print
command:
(dbx) print $defaultin

Use a temporary file when you need to refer to the saved output only during
the current debugging session; specify a file name to save information for
reuse after you end the current debugging session. Use the status
command to see whether recording is active. Use the delete command to
stop recording. Note that these commands will appear in the recording; if
you are creating a file for future use, you will probably want to edit the file to
remove commands of this type.

Use the playback input command to replay the commands recorded with
the record input command. By default, playback is silent; you do not
see the commands as they are played. If the dbx variable $pimode is set to
1, dbx displays commands as they are played back.

The following example records input and displays the resulting file:
(dbx) record input 11 12277
[2] record input /tmp/dbxtX026963 (0 lines)
(dbx) status
[2] record input /tmp/dbxtX026963 (1 lines)
(dbx) stop in prnt
[3] stop in prnt
(dbx) when i = 19 {stop}
[4] stop ifchanged i = 19
(dbx) delete 2 12 12277
(dbx) playback input 13 12277
[3] stop in prnt
[4] stop ifchanged i = 19
[5] stop in prnt
[6] stop ifchanged i = 19
/tmp/dbxtX026963: 4: unknown event 2 14 12277
(dbx)

Debugging Programs with dbx 5–49

11 12277 Start recording.

12 12277 Stop recording.

13 12277 Play back the recorded input. As events 3 and 4 are played, they create
duplicates of themselves, numbered 5 and 6, respectively.

14 12277 The debugger displays this error message because event 2, the command
to begin recording, was deleted when recording was stopped.

The temporary file resulting from the preceding dbx commands contains the
following text:
status
stop in prnt
when i = 19 {stop}
delete 2

5.9.4.2 Recording and Playing Back Output

Use the record output command to record dbx output during a
debugging session. To produce a complete record of activity by recording
input along with the output, set the dbx variable $rimode. You can use
the debugger’s playback output command to look at the recorded
information, or you can use any text editor.

The record output and playback output commands have the
following forms:

record output [FILE]
Begins recording dbx output in the specified file or, if no file is
specified, in a file placed in /tmp and given a generated name.

playback output [FILE]
Displays recorded output from the specified file or, if no file is specified,
from the temporary file.

The name given to the temporary file, if used, is contained in the debugger
variable $defaultout. To display the temporary file name, use the
print command:
(dbx) print $defaultout

The playback output command works the same as the cat command; a
display from the record output command is identical to the contents of
the recording file.

Use a temporary file when you need to refer to the saved output only during
the current debugging session; specify a file name to save information for
reuse after you end the current debugging session. Use the status
command to see whether recording is active. Use the delete command to
stop recording.

5–50 Debugging Programs with dbx

The following example shows a sample dbx interaction and the output
recorded for this interaction in a file named code:
(dbx) record output code
[3] record output code (0 lines)
(dbx) stop at 25
[4] stop at "sam.c":25
(dbx) run sam.c
[4] stopped at [main:25 ,0x120000a48] if (argc < 2) {
(dbx) delete 3
(dbx) playback output code
[3] record output code (0 lines)
(dbx) [4] stop at "sam.c":25
(dbx) [4] stopped at [main:25 ,0x120000a48] if (argc < 2) {
(dbx)

5.10 Debugging a Running Process
The dbx debugger can be used to debug running processes that are started
outside the dbx environment. It supports the debugging of such processes,
both parent and child, by using the /proc file system. The debugger can
debug running processes only if the /proc file system is mounted. If
/proc is not already mounted, the superuser can mount it with the
following command:
mount -t procfs /proc /proc

You can add the following entry to the /etc/fstab file to mount /proc
upon booting:
/proc /proc procfs rw 0 0

The dbx debugger checks first to see if /proc is mounted, but it will still
function if this is not the case.

To attach to a running process, use the dbx command attach, which has
the following form:

attach process-id
The process-id argument is the process ID of the process you want
to attach to.

You can also attach to a process for debugging by using the command line
flag –pid process id.

To detach from a running process, use the dbx command detach, which
has the following form:

detach [process-id]
The optional process-id argument is the process ID of the process
you want to detach from. If no argument is given, dbx detaches from
the current process.

Debugging Programs with dbx 5–51

To change from one process to another, use the dbx command switch,
which has the following form:

switch process-id
The process-id argument is the process ID of the process you want
to switch to. You must already have attached to a process before you
can switch to it. You can use the alias sw for the switch command.

The attach command first checks to see whether /proc is mounted; dbx
gives a warning that tells you what to do if it is not mounted. If /proc is
mounted, dbx looks for the process ID in /proc. If the process ID is in
/proc, dbx attempts to open the process and issues a stop command. If
the process is not there or if the permissions do not allow attaching to it, dbx
reports this failure.

When the stop command takes effect, dbx reports the current position,
issues a prompt, and waits for user commands. The program probably will
not be stopped directly in the user code but will more likely be in a library or
system call that was called by user code.

The detach command deletes all current breakpoints, sets up a ‘‘run on last
close’’ flag, and closes (‘‘releases’’) the process. The program then
continues running if it has not been explicitly terminated inside dbx.

To see a summary of all the active processes under control of dbx, use the
plist command, which has the following form:

plist
Displays a list of active processes and their status. Indicates the current
process with a marker: -->

5.11 Debugging Multithreaded Applications
The dbx debugger provides four basic commands to assist in the debugging
of applications that use threads.

The tlist command displays a quick list of all threads and where they are
currently positioned in the program. This command accepts no arguments.

The tset command sets the current thread. The debugger maintains one
thread as the ‘‘current’’ thread; this thread is the one that hits a breakpoint or
receives a signal that causes it to stop and relinquish control to dbx.

Using the tlist command, you can see all the threads, with their IDs, that
are currently in your program. Use tset to choose a different thread as the
current thread so that you can examine its state with the usual dbx
commands.

Note that the selected thread remains the current thread until you enter
another tset command. Note also that the continue, step, or next

5–52 Debugging Programs with dbx

commands might be inappropriate for a given thread if it is blocked or
waiting to join with another thread.

The tset command has the following form:

tset [EXP]
Choose a thread to be the current thread. The EXP argument is the
hexadecimal ID of the desired thread.

The tstack command lists the stacks of all the threads in your application.
It is similar to the where command and, like where, takes an optional
numeric argument to limit the number of stack levels displayed:

tstack [EXP]
Display stack traces for all threads.

If EXP is specified, dbx displays only the top EXP levels of the stacks;
otherwise, the entire stacks are displayed.

If the DECthreads product is installed on your system, you can gain access to
the DECthreads pthread debugger by issuing a call cma_debug()
command within your dbx session. The pthread debugger can provide a
great deal of useful information about the threads in your program. For
information on using the pthread debugger, enter a help command at its
debug> prompt.

A sample threaded program, twait.c, is shown in Example 12-1. The
following example shows a dbx session using that program. Long lines in
this example have all been folded at 72 characters to represent display on a
narrow terminal.
% dbx twait
dbx version 3.11.6
Type ’help’ for help.

main: 50 pthread_t me = pthread_self(), timer_thread;
(dbx) stop in do_tick
[2] stop in do_tick
(dbx) stop at 85
[3] stop at "twait.c":85
(dbx) stop at 35
[4] stop at "twait.c":35
(dbx) run
1: main thread starting up
1: exit lock initialized
1: exit lock obtained
1: exit cv initialized
1: timer_thread 2 created
1: exit lock released
[2] thread 0x81c62e80 stopped at [do_tick:21 ,0x12000730c] pthread_
t me = pthread_self();
(dbx) tlist
thread 0x81c623a0 stopped at [msg_receive_trap:74 +0x8,0x3ff808edf04]
Source not available

thread 0x81c62e80 stopped at [do_tick:21 ,0x12000730c] pthread_

Debugging Programs with dbx 5–53

t me = pthread_self();
(dbx) where
> 0 do_tick(argP = (nil)) ["twait.c":21, 0x12000730c]

1 cma__thread_base(0x0, 0x0, 0x0, 0x0, 0x0) ["../../../../../src/usr/
ccs/lib/DECthreads/COMMON/cma_thread.c":1441, 0x3ff80931410]
(dbx) tset 0x81c623a0
thread 0x81c623a0 stopped at [msg_receive_trap:74 +0x8,0x3ff808edf04]
Source not available

(dbx) where
> 0 msg_receive_trap(0x3ff8087b8dc, 0x3ffc00a2480, 0x3ff8087b928, 0x181
57f0d0d, 0x3ff8087b68c) ["/usr/build/osf1/goldos.bld/export/alpha/usr/in
clude/mach/syscall_sw.h":74, 0x3ff808edf00]

1 msg_receive(0x61746164782e, 0x3ffc009a420, 0x3ffc009a420, 0x3c20, 0
xe0420) ["../../../../../src/usr/ccs/lib/libmach/msg.c":95, 0x3ff808e474
4]

2 cma__vp_sleep(0x280187f578, 0x3990, 0x7, 0x3ffc1032848, 0x0) ["../.
./../../../src/usr/ccs/lib/DECthreads/COMMON/cma_vp.c":1471, 0x3ff809375
cc]

3 cma__dispatch(0x7, 0x3ffc1032848, 0x0, 0x3ffc100ee08, 0x3ff80917e3c
) ["../../../../../src/usr/ccs/lib/DECthreads/COMMON/cma_dispatch.c":967
, 0x3ff80920e48]

4 cma__int_wait(0x11ffff228, 0x140009850, 0x3ffc040cdb0, 0x5, 0x3ffc0
014c00) ["../../../../../src/usr/ccs/lib/DECthreads/COMMON/cma_condition
.c":2202, 0x3ff80917e38]

5 cma_thread_join(0x11ffff648, 0x11ffff9f0, 0x11ffff9e8, 0x60aaec4, 0
x3ff8000cf38) ["../../../../../src/usr/ccs/lib/DECthreads/COMMON/cma_thr
ead.c":825, 0x3ff80930a58]

6 pthread_join(0x140003110, 0x40002, 0x11ffffa68, 0x3ffc040cdb0, 0x0)
["../../../../../src/usr/ccs/lib/DECthreads/COMMON/cma_pthread.c":2193,
0x3ff809286c8]
7 main() ["twait.c":81, 0x12000788c]

(dbx) tlist
thread 0x81c623a0 stopped at [msg_receive_trap:74 +0x8,0x3ff808edf04]
Source not available

thread 0x81c62e80 stopped at [do_tick:21 ,0x12000730c] pthread_
t me = pthread_self();
(dbx) tset 0x81c62e80
thread 0x81c62e80 stopped at [do_tick:21 ,0x12000730c] pthread_
t me = pthread_self();
(dbx) cont
2: timer thread starting up, argP=0x0
[4] thread 0x81c62e80 stopped at [do_tick:35 ,0x120007430] printf("
%d: wait for next tick\n", THRID(&me));
(dbx) cont
2: wait for next tick
2: TICK #1
[4] thread 0x81c62e80 stopped at [do_tick:35 ,0x120007430] printf("
%d: wait for next tick\n", THRID(&me));
(dbx) tstack
Thread 0x81c623a0:
> 0 msg_receive_trap(0x3ff8087b8dc, 0x3ffc00a2480, 0x3ff8087b928, 0x181
57f0d0d, 0x3ff8087b68c) ["/usr/build/osf1/goldos.bld/export/alpha/usr/in
clude/mach/syscall_sw.h":74, 0x3ff808edf00]

1 msg_receive(0x61746164782e, 0x3ffc009a420, 0x3ffc009a420, 0x3c20, 0
xe0420) ["../../../../../src/usr/ccs/lib/libmach/msg.c":95, 0x3ff808e474
4]

2 cma__vp_sleep(0x280187f578, 0x3990, 0x7, 0x3ffc1032848, 0x0) ["../.
./../../../src/usr/ccs/lib/DECthreads/COMMON/cma_vp.c":1471, 0x3ff809375
cc]

3 cma__dispatch(0x7, 0x3ffc1032848, 0x0, 0x3ffc100ee08, 0x3ff80917e3c

5–54 Debugging Programs with dbx

) ["../../../../../src/usr/ccs/lib/DECthreads/COMMON/cma_dispatch.c":967
, 0x3ff80920e48]

4 cma__int_wait(0x11ffff228, 0x140009850, 0x3ffc040cdb0, 0x5, 0x3ffc0
014c00) ["../../../../../src/usr/ccs/lib/DECthreads/COMMON/cma_condition
.c":2202, 0x3ff80917e38]

5 cma_thread_join(0x11ffff648, 0x11ffff9f0, 0x11ffff9e8, 0x60aaec4, 0
x3ff8000cf38) ["../../../../../src/usr/ccs/lib/DECthreads/COMMON/cma_thr
ead.c":825, 0x3ff80930a58]

6 pthread_join(0x140003110, 0x40002, 0x11ffffa68, 0x3ffc040cdb0, 0x0)
["../../../../../src/usr/ccs/lib/DECthreads/COMMON/cma_pthread.c":2193,
0x3ff809286c8]
7 main() ["twait.c":81, 0x12000788c]

Thread 0x81c62e80:
> 0 do_tick(argP = (nil)) ["twait.c":35, 0x120007430]

1 cma__thread_base(0x0, 0x0, 0x0, 0x0, 0x0) ["../../../../../src/usr/
ccs/lib/DECthreads/COMMON/cma_thread.c":1441, 0x3ff80931410]
More (n if no)?
(dbx) tstack 3
Thread 0x81c623a0:
> 0 msg_receive_trap(0x3ff8087b8dc, 0x3ffc00a2480, 0x3ff8087b928, 0x181
57f0d0d, 0x3ff8087b68c) ["/usr/build/osf1/goldos.bld/export/alpha/usr/in
clude/mach/syscall_sw.h":74, 0x3ff808edf00]

1 msg_receive(0x61746164782e, 0x3ffc009a420, 0x3ffc009a420, 0x3c20, 0
xe0420) ["../../../../../src/usr/ccs/lib/libmach/msg.c":95, 0x3ff808e474
4]

2 cma__vp_sleep(0x280187f578, 0x3990, 0x7, 0x3ffc1032848, 0x0) ["../.
./../../../src/usr/ccs/lib/DECthreads/COMMON/cma_vp.c":1471, 0x3ff809375
cc]
Thread 0x81c62e80:
> 0 do_tick(argP = (nil)) ["twait.c":35, 0x120007430]

1 cma__thread_base(0x0, 0x0, 0x0, 0x0, 0x0) ["../../../../../src/usr/
ccs/lib/DECthreads/COMMON/cma_thread.c":1441, 0x3ff80931410]
(dbx) cont
2: wait for next tick
2: TICK #2
[4] thread 0x81c62e80 stopped at [do_tick:35 ,0x120007430] printf("
%d: wait for next tick0, THRID(&me));
(dbx) assign ticks = 29
29
(dbx) cont
2: wait for next tick
2: TICK #29
[4] thread 0x81c62e80 stopped at [do_tick:35 ,0x120007430] printf("
%d: wait for next tick\n", THRID(&me));
(dbx) cont
2: wait for next tick
2: TICK #30
2: exiting after #31 ticks
1: joined with timer_thread 2
[3] thread 0x81c623a0 stopped at [main:85 ,0x1200078ec] if (errn
o != 0) printf("errno 7 = %d\n",errno);
(dbx) tlist
thread 0x81c623a0 stopped at [main:85 ,0x1200078ec] if (errno != 0)
printf("errno 7 = %d0,errno);
thread 0x81c62e80 stopped at [msg_rpc_trap:75 +0x8,0x3ff808edf10]
Source not available

(dbx) cont

Program terminated normally

Debugging Programs with dbx 5–55

(dbx) tlist
(dbx) quit

5.12 Debugging Multiple Asynchronous Processes
The dbx debugger can debug multiple simultaneous asynchronous processes.
While debugging asynchronous processes, dbx can display status and accept
commands asynchronously. When running asynchronously, the debugger
might exhibit confusing behavior because a running process can display
output on the screen while you are entering commands to examine a different
process that is stopped.

The debugger automatically enters asynchronous mode in either of the
following circumstances:

• You command it to attach to a new process while a previous process is
still attached.

• The process to which dbx is attached forks off a child process, and the
debugger automatically attaches to the child process without detaching
from the parent.

The debugger uses several predefined variables to define the behavior of
asynchronous debugging. (See also Table 5-8.) The variable
$asynch_interface can be viewed as a counter that is incremented by 1
when a new process is attached and decremented by 1 when a process
terminates or is detached. The default value is 0.

When $asynch_interface has a positive nonzero value, asynchronous
debugging is enabled; when the variable is 0 (zero) or negative, asynchronous
debugging is disabled. To prevent dbx from entering asynchronous mode, set
the $asynch_interface variable to a negative value. (Note that
disabling asynchronous mode might make debugging more difficult if a
parent is waiting on a child that is stopped.)

When a process executes a fork() or vfork() call, dbx attaches to the
child process and automatically enters asynchronous mode (if permitted by
$asynch_interface). The default behavior is to stop the child process
right after the fork. You can change this default by setting the variable
$stop_on_fork to 0; in this case, dbx will attach to the child process but
not stop it.

The dbx debugger attempts to apply a degree of intelligence to the handling
of forks by filtering out many of the fork calls made by various system and
library calls. If you want to stop the process on these forks also, you can set
the predefined variable $stop_all_forks to 1. This variable’s default
value is 0. Stopping on all forks can be particularly useful when you are
debugging a library routine.

5–56 Debugging Programs with dbx

You can use the debugger’s plist and switch commands to monitor and
switch between processes.

5.13 Sample Program
Example 5-1 is the sample C program (sam.c) that is referred to in
examples throughout this chapter.

Example 5-1: Sample Program Used in dbx Examples

#include <stdio.h>
struct line {

char string[256];
int length;
int linenumber;

};

typedef struct line LINETYPE;

void prnt();

main(argc,argv)
int argc;
char **argv;

{
LINETYPE line1;
FILE *fd;
extern FILE *fopen();
extern char *fgets();
extern char *getenv();
char *fname;
int i;
static curlinenumber=0;

if (argc < 2) {
if((fname = getenv("TEXT")) == NULL || *fname == ’ ’) {

fprintf(stderr, "Usage: sam filename\n");
exit(1);

}
} else

fname = argv[1];

fd = fopen(fname,"r");
if (fd == NULL) {

fprintf(stderr, "cannot open %s\n",fname);
exit(1);

}

while(fgets(line1.string, sizeof(line1.string), fd) != NULL){
i=strlen(line1.string);
if (i==1 && line1.string[0] == ’\n’)

continue;

Debugging Programs with dbx 5–57

Example 5-1: (continued)
line1.length = i;
line1.linenumber = curlinenumber++;
prnt(&line1);

}
}

void prnt(pline)
LINETYPE *pline;
{

fprintf(stdout,"%3d. (%3d) %s",
pline->linenumber, pline->length, pline->string);

fflush(stdout);
}

5–58 Debugging Programs with dbx

6Checking C Programs with lint3333333333333333333333
You can use the lint program to ensure that C programs do not contain
syntax errors and to verify that the programs do not contain data type errors.
This chapter describes most of the checking operations performed by lint,
including the following:

• Program flow checking

• Data type checking

• Variable and function checking

• Migration checking

• Portability checking

• Creating a lint library

• Understanding lint error messages

See lint(1) for a complete list of lint options.

6.1 Overview of the lint Program
The lint program checks a program more carefully than some C compilers
and displays messages that point out possible problems. Some of the
messages require corrections to the source code; others are only informational
messages and do not require corrections.

The lint command has the following syntax:

lint [options] [file ...]

options
Options to control lint checking operations.

The cc driver flags, –std, –std0, and –std1 are available as options to
lint. These flags affect the parsing of the source as well as the selection of
the lint library to use. Selecting either the –std or –std1 flags turns on
ANSI parsing rules in lint.

When you use the –MA lint flag, –std1 is used for the C preprocessing
phase and 2ANSI_C_SOURCES is defined using the –D preprocessor flag.
The following table describes the action lint takes for each flag:

22
Lint Pre-processor Lint Lint Library
Option Switch Parsing22
–MA –std1 and

–D_ANSI_C_SOURCE
ANSI llib-lansi.ln

–std –std ANSI llib-lcstd.ln

–std1 –std1 ANSI llib-lcstd.ln

–std0 –std0 EXTD llib-lc.ln22

Table Note: EXTD is Extended C language, also known as K&R C.

file
The name of the C language source file for lint to check. The name
must have one of the following suffixes:
22
Suffix Description22
.c C source file

.i File produced by the C preprocessor (cpp)

.ln lint library file22

Note that lint library files are the result of a previous invocation of
the lint program with either the -c or -o option. They are analogous
to the .o files produced by the cc command when given a .c file as
input. The ability to specify lint libraries as input to the lint
program facilitates intermodule interface checking in large applications.
Adding rules that specify the construction of lint libraries to their
makefiles can make building such applications more efficient. See
Section 6.10 for a discussion on how to create a lint library.

You can also specify as input a lint library that resides in one of the
system’s default library search directories by using the -lx option. The
library name must have the following form:

llib-llibname.ln

By default, the lint program appends the extended C (K&R C) lint
library (llib-lc.ln) to the list of files specified on the command line. If
the –std or –std1 flag is used, it appends the standard C lint library
(llib-lcstd.ln) instead.

6–2 Checking C Programs with lint

The following additional libraries are included with the system:
22
Library Description Specify As22
crses Checks curses library call syntax –lcrses

m Checks math library call syntax –lm

port Checks for portability with other systems –p (not –lport)

ansi Enforces ANSI C standard rules –MA (not –lansi)22

If you specify no flags on the command line, the lint program checks the
specified C source files and writes messages about any of the following
coding problems that it finds:

• Loops that are not entered and exited normally

• Data types that are not used correctly

• Functions that are not used correctly

• Variables that are not used correctly

• Coding techniques that could cause problems if a program is moved to
another system

• Nonstandard coding practices and style differences that could cause
problems

The lint program also checks for syntax errors in statements in the source
programs. Syntax checking is always done and is not influenced by option
flags.

If lint does not report any errors, the program has correct syntax and will
compile without errors. Passing that test, however, does not mean that the
program will operate correctly or that the logic design of the program is
accurate.

See Section 6.10 for information on how to create your own lint library.

6.2 Program Flow Checking
The lint program checks for dead code, that is, parts of a program that are
never executed because they cannot be reached. It writes messages about
statements that do not have a label but immediately follow statements that
change the program flow, such as goto, break, continue, and return.

Checking C Programs with lint 6–3

The lint program also detects and writes messages for the following
conditions:

• A loop that cannot be exited at the bottom

• A loop that cannot be entered at the top

• Infinite loops such as:
while(1)
for (;;)

Some programs that include these types of loops may produce correct results.
These types of loops can cause problems, however.

The lint program does not recognize functions that are called but can never
return to the calling program. For example, a call to exit may result in
code that cannot be reached, but lint does not detect it.

Programs generated by yacc and lex may have hundreds of break
statements that cannot be reached. The lint program normally writes an
error message for each of these break statements. Use the -O flag to the
cc command when compiling the program to eliminate the resulting object
code inefficiency, so that these extra statements are not important. Use the
–b flag with the lint program to prevent it from writing these messages
when checking yacc and lex output code. (For information on yacc and
lex, see Programming Support Tools.)

6.3 Data Type Checking
The lint program enforces the type checking rules of the C language more
strictly than the compiler does. In addition to the checks that the compiler
makes, lint checks for potential data type errors in the following areas:

• Binary operators and implied assignments

• Structures and unions

• Function definition and uses

• Enumerators

• Type checking control

• Type casts

Details on each of these potential problem areas are provided in the sections
that follow.

6–4 Checking C Programs with lint

6.3.1 Binary Operators and Implied Assignments
The C language allows the following data types to be mixed in statements,
and the compiler does not indicate an error when they are mixed:

char
short
int
long
unsigned
float
double

The C language converts data types within this group automatically to
provide the programmer with more flexibility in programming. This
flexibility, however, means that the programmer, not the language, must
ensure that the data type mixing produces the desired result.

You can mix these data types when using them in the following ways (in the
examples, alpha is type char and num is type int):

• Operands on both sides of an assignment operator, for example:
alpha = num; /* alpha converts to int */

• Operands in a conditional expression, for example:
value=(alpha < num) ? alpha : num;
/* alpha converts to int */

• Operands on both sides of a relational operator, for example:
if(alpha != num) /* alpha converts to int */

• The type of an argument in a return statement is converted to the type
of the value that the function returns, for example:
funct(x) /* returns an integer */
{

return(alpha);
}

The data types of pointers must agree exactly, except that you can mix arrays
of x’s with pointers to x’s.

6.3.2 Structures and Unions
The lint program checks structure operations for the following
requirements:

• The left operand of the structure pointer operator (->) must be a pointer
to a structure.

Checking C Programs with lint 6–5

• The left operand of the structure member operator (.) must be a
structure.

• The right operand of these operators must be a member of the same
structure.

The lint program makes similar checks for references to unions.

6.3.3 Function Definition and Uses
The lint program applies strict rules to function argument and return value
matching. Arguments and return values must agree in type, with the
following exceptions:

• You can match arguments of type float with arguments of type
double.

• You can match arguments within the following types:

char
short
int
unsigned

• You can match pointers with the associated arrays.

6.3.4 Enumerators
The lint program checks enumerated data type variables to ensure that they
meet the following requirements:

• Enumerator variables or members of an enumerated type are not mixed
with other types or other enumerator variables.

• The enumerated data type variables are only used in the following areas:

Assignment (=)

Initialization

Equivalence (==)

Not equivalence (!=)

Function arguments

Return values

6.3.5 Type Casts
Type casts in the C language allow the program to treat data of one type as if
it were data of another type. The lint program can check for type casts
and write a message if it finds one.

6–6 Checking C Programs with lint

The –wp and the –h options for the lint command line control the writing
of warning messages about casts. If neither of these flags are used, lint
produces warning messages about casts that may cause portability problems.

In migration checking mode, –Qc suppresses cast warning messages (see
Section 6.6).

6.4 Variable and Function Checking
The lint program checks for variables and functions that are declared in a
program, but not used. The lint program checks for the following errors in
the use of variables and functions:

• Functions that return values inconsistently

• Functions that are defined, but not used

• Arguments to a function call that are not used

• Functions that can return either with or without values

• Functions that return values that are never used

• Programs that use the value of a function when the function does not
return a value

Details on each of these potential problem areas are provided in the sections
that follow.

6.4.1 Inconsistent Function Return
If a function returns a value under one set of conditions but not under
another, you cannot predict the results of the program. The lint program
checks functions for this type of behavior. For example, if both of the
following statements are in a function definition, a program calling the
function may or may not receive a return value:
return(expr);
.
.
.

return;

These statements cause the lint program to write the following message to
point out the potential problem:
function name has return(e); and return

The lint program also checks functions for returns that are caused by
reaching the end of the function code (an implied return). For example, in
the following part of a function, if a tests false, checkout calls fix2it

Checking C Programs with lint 6–7

and then returns with no defined return value:
checkout (a)
{

if (a) return (3);
fix2it ();

}

These statements cause the lint program to write the following message:
function checkout has return(e); and return

If fix2it, like exit, never returns, lint still writes the message even
though nothing is wrong.

6.4.2 Function Values That Are Not Used
The lint program checks for cases in which a function returns a value and
the calling program may not use the value. If the value is never used, the
function definition may be inefficient and should be examined to determine
whether it should be modified or eliminated. If the value is sometimes used,
the function may be returning an error code that the calling program does not
check.

6.4.3 Disabling Function-Related Checking
To prevent lint from checking for problems with functions, specify one or
more of the following flags to the lint command:

-x Do not check for variables that are declared in an extern statement but never
used.

-v Do not check for arguments to functions that are not used, except for those that are
also declared as register arguments.

-u Do not check for functions and external variables that are either used and not
defined, or defined and not used. Use this flag to eliminate useless messages when
you are running lint on a subset of files of a larger program. (When using lint
with some, but not all, files that operate together, many of the functions and
variables defined in those files may not be used. Also, many functions and
variables defined elsewhere may be used.)

You can also place directives in the program to control checking:

• To prevent lint from warning about unused function arguments, add the
following directive to the program before the function definition:

/*ARGSUSED*/

6–8 Checking C Programs with lint

• To prevent lint from writing messages about variable numbers of
arguments in calls to a function, add the following directive before the
function definition:

/*VARARGSn*/

To check the first several arguments and leave the later arguments
unchecked, add a digit (n) to the end of the VARARGS directive to give
the number of arguments that should be checked, such as:

/*VARARGS2*/

When lint reads this directive, it checks only the first two arguments.

• To suppress complaints about unused functions and function arguments in
an entire file, place the following directive at the beginning of the file:

/*LINTLIBRARY*/

This is equivalent to using the –v and –x flags.

• To permit a standard prototype checking library to be formed from header
files by making function prototype declarations appear as function
definitions, use the following directive:

/*LINTSTDLIB [_filename]*/

The /*LINTSTDLIB*/ directive implicitly activates the functions of
the /*NOTUSED*/ and /*LINTLIBRARY*/ directives to reduce
warning noise levels. When a file is referenced (filename), only
prototypes in that file are expanded. Multiple
/*LINTSTDLIB_filename*/ statements are allowed. (See Section
6.10.1 for more details on the use of /*LINTSTDLIB*/ directives.)

• To suppress warnings about all used but undefined external symbols and
functions that are subsequently encountered in the file, use the following
directive:

/*NOTDEFINED*/

• To suppress comments about unreachable code, use the following
directive:

/*NOTREACHED*/

When placed at appropriate points in a program (typically immediately
following a return, break, or continue statement), the
/*NOTREACHED*/ directive stops comments about unreachable code.
Note that lint does not recognize the exit function and other
functions that may not return.

• To suppress warnings about all unused external symbols, functions, and
function parameters that are subsequently encountered in the file, use the
following directive:

/*NOTUSED*/

Checking C Programs with lint 6–9

The /*NOTUSED*/ directive is similar to the /*LINTLIBRARY*/
directive, although /*NOTUSED*/ also applies to external symbols.

6.5 Using Variables Before They Are Initialized
The lint program checks for the use of a local variable (auto and
register storage classes) before a value has been assigned to it. Using a
variable with an auto (automatic) or register storage class also includes
taking the address of the variable. This is necessary because the program can
use the variable (through its address) any time after it knows the address of
the variable. Therefore, if the program does not assign a value to the variable
before it finds the address of the variable, lint reports an error.

Because lint only checks the physical order of the variables and their usage
in the file, it may write messages about variables that are initialized properly
(in execution sequence).

The lint program recognizes and writes messages about:

• Initialized automatic variables

• Variables that are used in the expression that first sets them

• Variables that are set and never used

Note

The operating system initializes static and extern variables
to zero. Therefore, lint assumes that these variables are set to
zero at the start of the program and does not check to see if they
have been assigned a value when they are used. When
developing a program for a system that does not do this
initialization, ensure that the program sets static and extern
variables to an initial value.

6.6 Migration Checking
Use lint to check for all common programming techniques that might
cause problems when migrating programs from 32-bit operating systems to
the 64-bit Digital UNIX operating system. The –Q option provides support
for checking programs written for ULTRIX and DEC OSF/1 Version 1.0 that
you are migrating to 64-bit systems.

Because the –Q option disables checking for most other programming
problems, you should use this option only for migration checking.
Suboptions are available to suppress specific categories of checking. For
example, entering –Qa suppresses the checking of pointer alignment
problems. You can enter more than one suboption with the –Q option, for

6–10 Checking C Programs with lint

example, –QacP to suppress checking for pointer alignment problems,
problematic type casts, and function prototype checks, respectively. For
more information about migration checking, see lint(1).

6.7 Increasing Table Size
The lint command provides the –N option and related suboptions to allow
you to increase the size of various internal tables at run time if the default
values are not enough for your program. These tables include:

• Symbol table

• Dimension table

• Local type table

• Parse tree

These tables are dynamically allocated by the lint program. The –N option
may be used on large source files to improve performance.

6.8 Portability Checking
Use lint to help ensure that you can compile and run C programs using
different C language compilers and other systems.

The following sections indicate areas to check before compiling the program
on another system. Checking only these areas, however, does not guarantee
that the program will run on any system.

Note

The llib-port.ln library is brought in by using the –p flag,
not by using the –lport flag.

6.8.1 Character Uses
Some systems define characters in a C language program as signed quantities
with a range from –128 to 127; other systems define characters as positive
values. The lint program checks for character comparisons or assignments
that may not be portable to other systems. For example, the following
fragment may work on one system but fail on systems where characters

Checking C Programs with lint 6–11

always take on positive values:
char c;
.
.
.

if((c = getchar()) <0)...

This statement causes the lint program to write the following message:
nonportable character comparison

To make the program work on systems that use positive values for characters,
declare c as an integer because getchar returns integer values.

6.8.2 Bit Field Uses
Bit fields may also produce problems when a program is transferred to
another system. Bit fields may be signed quantities on the new system.
Therefore, when constant values are assigned to a bit field, the field may be
too small to hold the value. To make this assignment work on all systems,
declare the bit field to be of type unsigned before assigning values to it.

6.8.3 External Name Size
When changing from one type of system to another, be aware of differences
in the information retained about external names during the loading process:

• The number of characters allowed for external names can vary.

• Some programs that the compiler command calls and some of the
functions that your programs call can further limit the number of
significant characters in identifiers. (In addition, the compiler adds a
leading underscore to all names and keeps uppercase and lowercase
characters separate.)

• On some systems, uppercase or lowercase may not be important or may
not be allowed.

When transferring from one system to another, you should always take the
following steps to avoid problems with loading a program:

1. Review the requirements of each system.

2. Run lint with the -p flag.

The -p flag tells lint to change all external symbols to lowercase and limit
them to six characters while checking the input files. The messages produced
indicate the terms that may need to be changed.

6–12 Checking C Programs with lint

6.8.4 Multiple Uses and Side Effects
Be careful when using complicated expressions because of the following
considerations:

• The order in which complex expressions are evaluated differs in many C
compilers.

• Function calls that are arguments of other functions may not be treated
the same as ordinary arguments.

• Operators such as assignment, increment, and decrement may cause
problems when used on different systems.

The following situations illustrate the types of problems that can result from
these differences:

• If any variable is changed by a side effect of one of the operators and is
also used elsewhere in the same expression, the result is undefined.

• The evaluation of the variable years in the following printf
statement is confusing because on some machines years is incremented
before the function call and on other machines it is incremented after the
function call:
printf("%d %d\n", ++years, amort(interest, years));

• The lint program checks for simple scalar variables that may be
affected by evaluation order problems, such as in the following statement:
a[i]=b[i++];

This statement causes the lint program to write the following message:
warning: i evaluation order undefined

6.9 Coding Errors and Coding Style Differences
Use lint to detect possible coding errors and to detect differences from the
coding style that lint expects. Although coding style is mainly a matter of
individual taste, examine each difference to ensure that the difference is both
needed and accurate. The following sections indicate the types of coding and
style problems that lint can find.

6.9.1 Assignments of Long Variables to Integer Variables
If you assign variables of type long to variables of type int, the program
may not work properly. The long variable is truncated to fit in the integer
space and data may be lost.

An error of this type occurs frequently when a program that uses more than
one typedef is converted to run on a different system.

Checking C Programs with lint 6–13

To prevent lint from writing messages when it detects assignments of
long variables to int variables, use the -a flag.

6.9.2 Operator Precedence
The lint program detects possible or potential errors in operator
precedence. Without parentheses to show order in complex sequences, these
errors can be hard to find. For example, the following statements are not
clear:
if(x&077==0). . . /* evaluated as: if(x & (077 == 0)) */

/* should be: if((x & 077) == 0) */

x<<2+40 /* evaluated as: x <<(2+40) */
/* should be: (x<<2) + 40 */
/* shift x left 42 positions */

Use parentheses to make the operation more clearly understood. If you do
not, lint writes a message.

6.9.3 Conflicting Declarations
The lint program writes messages about variables that are declared in inner
blocks in ways that conflict with their use in outer blocks. This practice is
allowed, but may cause problems in the program.

Use the -h flag with the lint program to prevent lint from checking for
conflicting declarations.

6.10 Creating a lint Library
For programming projects that define additional library routines, you can
create an additional lint library to check the syntax of the programs. Using
this library, the lint program can check the new functions in addition to the
standard C language functions. Perform the following steps to create a new
lint library:

1. Create an input file that defines the new functions.

2. Process the input file to create the lint library file.

3. Run lint using the new library.

The following sections describe these steps.

6–14 Checking C Programs with lint

6.10.1 Creating the Input File
The following example shows an input file that defines three additional
functions for lint to check.
/*LINTLIBRARY*/

#include <dms.h>

int dmsadd(rmsdes, recbuf, reclen)
int rmsdes;
char *recbuf;
unsigned reclen;

{ return 0; }
int dmsclos(rmsdes)

int rmsdes;
{ return 0; }

int dmscrea(path, mode, recfm, reclen)
char *path;
int mode;
int recfm;
unsigned reclen;

{ return 0; }

The input file is a text file that you create with an editor. It consists of:

• A directive to tell the cpp program that the following information is to
be made into a library of lint definitions:
/*LINTLIBRARY*/

• A series of function definitions that define:

– The type of the function (int in the example)

– The name of the function

– The parameters that the function expects

– The types of the parameters

– The value that the function returns

Alternatively, you can create a lint library file from function prototypes.
For example, assume that the dms.h file includes the following prototypes:
int dmsadd(int,

char*,
unsigned);

int dmsclose(int);
int dmscrea(char*,

int,
int,
unsigned);

Checking C Programs with lint 6–15

In this case, the input file contains the following:
/*LINTSTDLIB*/
#include <dms.h>

In the case where a header file may include other headers, the LINTSTDLIB
command can be restricted to specific files:
/*LINTSTDLIB_dms.h*/

In this case, only prototypes declared in dms.h will be expanded. Multiple
LINTSTDLIB commands can be included.

In all cases, the name of the input file must have the prefix: llib-l. For
example, the name of the sample input file created in this section could be
llib-ldms. When choosing the name of the file, ensure that it is not the
same as any of the existing files in the /usr/ccs/lib directory.

6.10.2 Creating the lint Library File
The following command creates a lint library file from the input file
described in the previous section:
% lint [options] -c llib_ldms.c

This command tells lint to create a lint library file, llib-ldms.ln,
using the file llib-ldms.c as input. To use llib-ldms.ln as a system
lint library (that is, a library specified in the -lx option of the lint
command), move it to /usr/ccs/lib. Use the –std or –std1 flag to
use ANSI preprocessing rules to build the library.

6.10.3 Checking a Program with a New Library
To check a program using a new library, use the lint command with the
following format:

lint -lpgm filename.c

The variable pgm represents the identifier for the library, and the variable
filename.c represents the name of the file containing the C language
source code that is to be checked. If no other flags are specified, the lint
program checks the C language source code against the standard lint
library in addition to checking it against the indicated special lint library.

6.11 Understanding lint Error Messages
Although most error messages produced by lint are self-explanatory,
certain messages may be misleading without additional explanation. Usually,
once you understand what a message means, correcting the error is
straightforward. The following is a list of the more ambiguous lint

6–16 Checking C Programs with lint

messages:

constant argument to NOT

A constant is used with the NOT operator (!).

This is a common coding pratice and the message does not usually
indicate a problem. The following program illustrates the type of code
that can generate this message:
% cat x.c

#include <stdio.h>
#define SUCCESS 0

main()
{

int value = !SUCCESS;

printf("value = %d\n", value);
return 0;

}
% lint -u x.c

"x.c", line 7: warning: constant argument to NOT

% ./x

value = 1

%

The program runs as expected, even though lint complains.

Recommended Action: Suppress these lint warning messages by
using the -wC option.

constant in conditional context

A constant is used where a conditional is expected. This problem
occurs often in source code, due to the way in which macros are
encoded. For example:
typedef struct _dummy_q {

int lock;
struct _dummy_q *head, *tail;

} DUMMY_Q;

#define QWAIT 1
#define QNOWAIT 0
#define DEQUEUE(q, elt, wait) 11 12277 \

for (;;) { \
simple_lock(&(q)->lock); \

if (queue_empty(&(q)->head)) \
if (wait) { 11 12277 \

assert(q); \
simple_unlock(&(q)->lock); \
continue; \

Checking C Programs with lint 6–17

} else \
*(elt) = 0; \

else \
dequeue_head(&(q)->head); \
simple_unlock(&(q)->lock); \

break; \
}

int doit(DUMMY_Q *q, int *elt)
{

DEQUEUE(q, elt, QNOWAIT);
}

11 12277 The flag QWAIT or QNOWAIT is passed as the third argument
(wait), and is later used in the if statement. The code is correct,
but lint issues the warning because constants used in this way are
normally unnecessary and often generate wasteful or unnecessary
instructions.

Recommended Action: Suppress these lint warning messages by
using the -wC option.

conversion from long may lose accuracy

A signed long is copied to a smaller entity (for example, an int). This
message is not necessarily misleading, but if it occurs frequently, it may
or may not indicate a coding problem, as shown in the following
example.

long BuffLim = 512; 11 12277

void foo (buffer, size)
char *buffer;
int size;
{
register int count;
register int limit = size < (int)BufLimit ? size : (int)BufLim; 11 12277

11 12277 The lint program reports the conversion error, even though the
appropriate (int) cast exists.

Recommended Action: Review code sections for which lint reports
this message, or suppress the message by using the -wl option.

declaration is missing declarator

A line in the declaration section of the program contains just a
semicolon (;).

Although you would not deliberately write code like this, it is easy to
inadvertantly generate such code by using a macro, followed by a

6–18 Checking C Programs with lint

semicolon. If, due to conditionalization, the macro is defined as empty,
this message can result.

Recommended Action: Remove the trailing semicolon.

degenerate unsigned comparison

An unsigned comparison is being performed against a signed value
when the result is expected to be less than zero.

The following program illustrates this situation:
% cat x.c

#include <stdio.h>
unsigned long offset = -1;

main()
{

if (offset < 0) { 11 12277
puts ("code is Ok...");
return 0;

} else {
puts ("unsigned comparison failed...");
return 1;

}
}
% cc -g -o x x.c

% lint x.c

"x.c" line 7: warning: degenerate unsigned comparison

% ./x

unsigned comparison failed...

%

11 12277 Unsigned comparisons such as this will fail if the unsigned variable
contains a negative value. The resulting code may be correct,
depending upon whether the programmer intended a signed
comparison.

Recommended Action: You can fix the previous example in two ways:

• Add a (long) cast before offset in the if comparison.

• Change the declaration of offset from unsigned long to
long.

In certain cases, it might be necessary to cast the signed value to
unsigned.

Checking C Programs with lint 6–19

function prototype not in scope

This error is not strictly related to function prototypes, as the message
implies. Actually, this error occurs from invoking any function that has
not been previously declared or defined.

Recommended Action: Add the function prototype declaration.

null effect

The lint program detected a cast or statement that does nothing. The
following code segments illustrate various coding practices that cause
lint to generate this message:

scsi_slot = device->ctlr_hd->slot,unit_str; 11 12277

#define MCLUNREF(p) \
(MCLMAPPED(p) && --mclrefcnt[mtocl(p)] == 0)

(void) MCLUNREF(m); 12 12277

11 12277 Reason: unit_str does nothing.

12 12277 Reason: (void) is unnecessary; MCLUNREF is a macro.

Recommended Action: Remove unnecessary casts or statements or
update macros.

possible pointer alignment problem

A pointer is used in a way that may cause an alignment problem. The
following code segment illustrates the type of code that produces this
message:
read(p, args, retval)

struct proc *p;
void *args;
long *retval;

{
register struct args {

long fdes;
char *cbuf;
unsigned long count;

} *uap = (struct args *) args; 11 12277
struct uio auio;
struct iovec aiov;

11 12277 The line *uap = (struct args *) args causes the error to
be reported. Because this construct is valid and occurs throughout
the kernel source, this message is filtered out.

6–20 Checking C Programs with lint

precision lost in field assignment

An attempt was made to assign a constant value to a bit field when the
field is too small to hold the value.

The following code segment illustrates this problem:
% cat x.c

struct bitfield {
unsigned int block_len : 4;

} bt;

void
test()
{

bt.block_len = 0xff;
}
% lint -u x.c

"x.c", line 8: warning: precision lost in field assignment

% cc -c -o x x.c

%

As you can see, this code compiles without error. However, because the
bit field may be too small to hold the constant, the results may not be
what the programmer intended and a run-time error may occur.

Recommended Action: Change the bit field size or assign a different
constant value.

unsigned comparison with 0

An unsigned comparison is being performed against zero when the result
is expected to be equal to or greater than zero.

The following program illustrates this situation:
% cat z.c

#include <stdio.h>
unsigned offset = -1;

main()
{

if (offset > 0) { 11 12277
puts("unsigned comparison with 0 Failed");
return 1;

} else {
puts("unsigned comparison with 0 is Ok");
return 0;

}
}
% cc -o z z.c

% lint z.c

Checking C Programs with lint 6–21

"z.c", line 7: warning: unsigned comparison with 0?

% ./z

unsigned comparison with 0 Failed

%

11 12277 Unsigned comparisons such as this will fail if the unsigned variable
contains a negative value. The resulting code may not be correct,
depending on whether the programmer intended a signed
comparison.

Recommended Action: You can fix the previous example in two ways:

• Add an (int) cast before offset in the if comparison.

• Change the declaration of offset from unsigned to int.

6.12 Using Warning Class Options to Suppress lint
Messages

Several lint warning classes have been added to the lint program to
allow the suppression of messages associated with constants used in
conditionals, portability, and prototype checks. By using the warning class
option to the lint command, you can suppress messages in any of the
warning classes.

The warning class option has the following format:

-wclass[class...]

All warning classes are active by default, but may be individually deactivated
by including the appropriate option as part of the class argument. Table
6-1 lists the individual options.

Note

Several lint messages are dependent on more than one warning
class. Therefore, you may need to specify several warning
classes for the message to be suppressed. Notes in Table 6-1
indicate which messages can only be suppressed by specifying
multiple warning classes.

For example, because lint messages related to constants in conditional
expressions do not necessarily indicate a coding problem (as described in
Section 6.11), you may decide to use the -wC option to suppress them.

6–22 Checking C Programs with lint

The -wC option suppresses the following messages:

• constant argument to NOT

• constant in conditional context

Because many of the messages associated with portability checks are related
to non-ANSI compilers and limit restrictions that do not exist in the C
compiler for Digital UNIX, you can use the -wp option to suppress them.
The -wp option suppresses the following messages:

• ambiguous assignment for non-ansi compilers

• illegal cast in a constant expression

• long in case or switch statement may be truncated
in non-ansi compilers

• nonportable character comparison

• possible pointer alignment problem, op %s

• precision lost in assignment to (sign-extended?)
field

• precision lost in field assignment

• too many characters in character constant

Although the use of function prototypes is a recommended coding practice
(as described in Section 6.12.1), many programs do not include them. You
can use the -wP option to suppress prototype checks. The -wP option
suppresses the following messages:

• function prototype not in scope

• mismatched type in function argument

• mix of old and new style function declaration

• old style argument declaration

• use of old-style function definition in presence
of prototype

Checking C Programs with lint 6–23

Table 6-1: lint Warning Classes
22
Warning Class Description of Class22

a Non-ANSI features. Suppresses:
• Partially elided initialization a

• Static function %s not defined or used a

c Comparisons with unsigned values. Suppresses:

• Comparison of unsigned with negative constant
• Degenerate unsigned comparison
• Unsigned comparison with 0?

d Declaration consistency. Suppresses:

• External symbol type clash for %s
• Illegal member use: perhaps %s.%s b

• Incomplete type for %s has already been completed
• Redeclaration of %s
• Struct/union %s never defined b

• %s redefinition hides earlier one a b

h Heuristic complaints. Suppresses:

• Constant argument to NOT d

• Constant in conditional context d

• Enumeration type clash, op %s
• Illegal member use: perhaps %s.%s c

• Null effect f

• Possible pointer alignment problem, op %s e

• Precedence confusion possible: parenthesize! g

• Struct/union %s never defined c

• %s redefinition hides earlier one c

k K&R type code expected. Suppresses:

• Argument %s is unused in function %s h

• Function prototype not in scope h

• Partially elided initialization h

• Static function %s is not defined or used h

• %s may be used before set b c

• %s redefinition hides earlier one b c

• %s set but not used in function %s h

l Assign long values to non-long variables. Suppresses:

• Conversion from long may lose accuracy
• Conversion to long may sign-extend incorrectly

n Null-effect code. Suppresses:

• Null effect b

o Unknown order of evaluation. Suppresses:

6–24 Checking C Programs with lint

Table 6-1: (continued)
22
Warning Class Description of Class22

• Precedence confusion possible: parenthesize! b

• %s evaluation order undefined

p Various portability concerns. Suppresses:

• Ambiguous assignment for non-ansi compilers
• Illegal cast in a constant expression
• Long in case or switch statement may be truncated in

non-ansi compilers
• Nonportable character comparison
• Possible pointer alignment problem, op %s b

• Precision lost in assignment to (sign-extended?) field
• Precision lost in field assignment
• Too many characters in character constant

r Return statement consistency. Suppresses:

• Function %s has return(e); and return;
• Function %s must return a value
• main() returns random value to invocation environment

S Storage capacity checks. Suppresses:

• Array not large enough to store terminating null
• Constant value (0x%x) exceeds (0x%x)

u Proper usage of variables and functions. Suppresses:

• Argument %s unused in function %s a

• Static function %s not defined or used a

• %s set but not used in function %s a

• %s unused in function %s h

A Activate all warnings. Default option in lint script.

Specifying another A class toggles the setting of all classes.

C Constants occurring in conditionals. Suppresses:

• Constant argument to NOT b

• Constant in conditional context b

D External declarations are never used. Suppresses:

• Static %s %s unused

O Obsolescent features. Suppresses:

• Storage class not the first type specifier

P Prototype checks. Suppresses:

• Function prototype not in scope a

• Mismatched type in function argument
• Mix of old and new style function declaration

Checking C Programs with lint 6–25

Table 6-1: (continued)
22
Warning Class Description of Class22

• Old style argument declaration a

• Use of old-style function definition in presence of prototype

R Detection of unreachable code. Suppresses:

• Statement not reached22

Table notes:

a. You can also suppress this message by deactivating the k warning class.

b. You must also deactivate the h warning class to suppress this message.

c. You must also deactivate the d warning class to suppress this message.

d. You must also deactivate the C warning class to suppress this message.

e. You must also deactivate the p warning class to suppress this message.

f. You must also deactivate the n warning class to suppress this message.

g. You must also deactivate the o warning class to suppress this message.

h. Other flags may also suppress these messages.

6.12.1 Generating Function Prototypes for Compile-Time
Detection of Syntax Errors

In addition to correcting the various errors reported by the lint program,
Digital recommends adding function prototypes to your program for both
external and static functions. These declarations provide the compiler with
information it needs to check arguments and return values.

The cc compiler provides an option that automatically generates prototype
declarations. By specifying the -proto[is] option for a compilation, you
create an output file (with the same name as the input file but with a .H
extension) that contains the function prototypes. The i option includes
identifiers in the prototype, and the s option generates prototypes for static
functions as well.

You can copy the function prototypes from a .H file and place them in the
appropriate locations in the source and include files.

6–26 Checking C Programs with lint

7Debugging Programs with Third
Degree3333333333333333333333

Third Degree is an Atom tool. It performs memory access checks and
memory leak detection of C and C++ programs at run time. It accomplishes
this by using Atom to instrument executable objects. Instrumentation is the
process of inserting instructions into existing executable objects to perform
program analysis. See Chapter 9 or atom(1) for details on Atom.

Third Degree instruments the entire program, adding code to perform run-
time checks for all of its data references. The instrumented program locates
many occurrences of the worst types of bugs in C and C++ programs: array
overflows, memory smashing, and errors in the use of the malloc and
free functions. It also helps you determine the allocation habits of your
application by listing the heap and finding memory leaks.

Except for being larger and running slower than the original application and
having its uninitialized data filled with a special pattern, the instrumented
program runs like the original. The Atom instrumentation code logs all
specified errors and generates the requested reports.

You can use Third Degree for the following types of applications:

• Applications that allocate memory by using the malloc, calloc,
realloc, valloc, alloca, and sbrk functions and the C++ new
function. You can use Third Degree to instrument programs using other
memory allocators, such as the mmap function, but it will not check
accesses to the memory thus obtained.

Third Degree detects and forbids calls to the brk function. Furthermore,
if your program allocates memory by partitioning large blocks it obtained
by using the sbrk function, Third Degree may not be able to precisely
identify memory blocks in which errors occur.

• Applications using POSIX threads (pthread) interfaces and applications
using a supported coroutine package. Most coroutine packages are
supported. If your application uses a custom threads or coroutine
package, you may not be able to use Third Degree. See Section 7.1.2 for
details.

7.1 Running Third Degree on an Application
You invoke the Third Degree tool by using the atom command, as follows:
% atom app -tool third

In this example, app is the name of an application. When it is run, the
instrumented version of the application (app.third) behaves exactly like
the original application (app), with the following exceptions:

• The code is larger and runs more slowly because of the additional
instrumentation code that is inserted.

• Each allocated heap memory object is larger because Third Degree pads it
to allow boundary checking. You can adjust the amount of padding by
specifying the object_padding option in the .third file. (See
Section 7.2.1 for a description of the .third customization file.)

• To detect errant use of uninitialized data, Third Degree initializes all
otherwise uninitialized data to a special pattern. This can cause the
instrumented program to behave differently, behave incorrectly, or crash
(particularly if this special pattern is used as a pointer). All of these
behaviors indicate a bug in the program.

You can disable Third Degree’s initialization with the –uninit_heap
and –uninit_stack option in the .third customization file.

The instrumented version of the application generates a log file (app.3log)
containing information about allocated objects and potential leaks.

Note

Third Degree writes .3log messages in a format similar to that
used by the C compiler. If you use emacs or a similar editor
that automatically points, in sequence, to each compilation error,
you can use the same editor to follow Third Degree errors. In
emacs, compile with a command such as cat app.3log, and
step through the Third Degree errors as if they were compilation
errors.

You can control the name used for the output log file by specifying one of
the following flags to the –toolargs flag on the atom command line that
invokes the Third Degree tool:

–pids
Appends the process identification number to the log file name.

–nopids
Does not append the process identification number to the log file name.
This is the default.

7–2 Debugging Programs with Third Degree

–dirnamefname
Specifies the directory path in which Third Degree creates its log file.

Depending upon the flag supplied to Third Degree in the atom command’s
–toolargs flag, the log file’s name will be as follows:
22
Flag Filename Use22

Default–nopids app.3log

–pids app.12345.3log Include pid

–dirname /tmp /tmp/app.3log Set directory

–dirname /tmp –pids /tmp/app.12345.3log Set directory and pid22

7.1.1 Using Third Degree with Shared Libraries
Errors in an application, such as passing too small a buffer to the strcpy
function, are often caught in library routines. Third Degree supports the
instrumentation of shared libraries; it instruments programs linked with the
–non_shared or –call_shared flags.

The atom command provides the following flags to allow you to determine
which shared libraries are instrumented by Third Degree:

–all
Instruments all statically loaded shared libraries in the shared executable.

–excobj objname
Excludes the named shared library from instrumentation. You can use
the –excobj flag more than once to specify several shared libraries.

–incobj objname
Instruments the named shared library. You can use the –incobj flag
more than once to specify several shared libraries.

When Atom finishes instrumenting the application, the current directory
contains an instrumented version of each specified shared library. The
instrumented application uses these versions of the libraries. Define the
LD_LIBRARY_PATH environment variable to tell the instrumented
application where the instrumented shared libraries reside.

By default, Third Degree does not instrument any of the shared libraries used
by the application; this makes the instrumentation operation much faster and
causes the instrumented application to run faster as well. Third Degree
detects and reports errors in the instrumented portion normally, but
terminates stack traces at the first uninstrumented procedure. It does not
detect errors in the uninstrumented libraries. If your partially instrumented

Debugging Programs with Third Degree 7–3

application crashes or malfunctions and you have fixed all of the errors
reported by Third Degree, reinstrument the application with all of its shared
libraries and run the new instrumented version.

7.1.2 Using Third Degree with Threaded Applications
Third Degree supports applications that use threads. To instrument a
threaded application, add the –env threads flag to the atom command
line that invokes the Third Degree tool.

7.2 Step-by-Step Example
Assume that you must debug the small application represented by the
following source code (ex.c):

1 /* ex.c */
2 #include <assert.h>;
3
4 int Bug() {
5 int q;
6 return q; /* q is uninitialized */
7 }
8
9 long* Booboo(int n) {
10 long* t = (long*) malloc(n * sizeof(long));
11 t[0] = Bug();
12 t[0] = t[1]+1; /* t[1] is uninitialized */
13 t[1] = -1;
14 t[n] = n; /* array bounds error*/
15 if (n<10) free(t); /* may be a leak */
16 return t;
17 }
18
19 main() {
20 long* t = Booboo(20);
21 t = Booboo(4);
22 free(t); /* already freed */
23 exit(0);
24 }

7.2.1 Customizing Third Degree
An optional customization file named .third is used to turn on and off
various capabilities of the Third Degree tool and to set the tool’s internal
parameters. Third Degree looks for a .third file first in the local directory,
then in your home directory. The .third customization file is further
discussed throughout this chapter and its syntax is described in the third(5)
reference page.

7–4 Debugging Programs with Third Degree

If you do not specify a .third customization file, Third Degree uses its
default settings:

• List memory errors

• Detect leaks at program exit

• No heap history

7.2.2 Modifying the Makefile
Add the following entry to the application’s Makefile:
ex.third: ex

atom ex -tool third -o ex.third

Build ex.third as follows:
> make ex.third
atom ex -tool third -o ex.third
> ex.third

Now run the instrumented application ex.third and check the log
ex.3log.

7.2.3 Examining the Third Degree Log File
The ex.3log file contains several sections, described in the following
sections.

7.2.3.1 Copy of the .third File

If you supplied a .third customization file, Third Degree copies it to the
log file. The short customization file used in this example requests a
summary of the contents of heap-allocated memory blocks when the program
finishes:
////////////// begin .3rd ///////////////////

heap_history yes

////////////// end .3rd ///////////////////

7.2.3.2 List of Runtime Memory Access Errors

The types of errors that Third Degree can detect at runtime include such
conditions as reading uninitialized memory, reading or writing unallocated
memory, freeing invalid memory, and certain serious errors likely to cause an
exception. For each error, an error entry is generated with the following
items:

Debugging Programs with Third Degree 7–5

• A banner line with the type of error and number – The error banner line
contains a three-letter abbreviation of each error (see Section 7.3 for a list
of the abbreviations). If the process that caused the error is not the root
process (for instance, because the application forks one or more child
processes), the process id of the process that caused the error also appears
in the banner line.

• An error message line formatted to look like a compiler error message –
Third Degree lists the file name and line number nearest to the location
where the error occurred. Usually this is the precise location where the
error occurred, but if the error occurs in a library routine, it may well
point to the place where the library call occurred.

• One or more stack traces – The last part of an error entry is a stack trace.
The first procedure listed in the stack trace is the procedure in which the
error occurred.

The following examples show entries from the log file:

• The following log entry indicates that a local variable of procedure Bug
was read before being initialized. The line number confirms that q was
never given a value.
-- rus -- 0 --
ex.c: 6: reading uninitialized local variable q of Bug

Bug ex.c, line 6
Booboo ex.c, line 11
main ex.c, line 20
__start crt0.s, line 370

• The following log entry indicates that an error occurred at line 12:
t[0] = t[1]+1

Because the array was not initialized, the program is using the
uninitialized value of t[1] in the addition. The memory block
containing array t is identified by the call stack that allocated it.
-- ruh -- 1 --
ex.c: 12: reading uninitialized heap at byte 8 of 160-byte block

Booboo ex.c, line 12
main ex.c, line 20
__start crt0.s, line 370

This block at address 0x38000000f10 was allocated at:
malloc malloc.c, line 585
Booboo ex.c, line 10
main ex.c, line 20
__start crt0.s, line 370

• The following log entry indicates that the program has written to the
memory location one position past the end of the array, potentially

7–6 Debugging Programs with Third Degree

overwriting important data or even Third Degree internal data structures.
Keep in mind that certain errors reported later could be a consequence of
this error.
-- wih -- 2 --
ex.c: 14: writing invalid heap 1 byte beyond 160-byte block

Booboo ex.c, line 14
main ex.c, line 20
__start crt0.s, line 370

This block at address 0x38000000f10 was allocated at:
malloc malloc.c, line 585
Booboo ex.c, line 10
main ex.c, line 20
__start crt0.s, line 370

• The following log entry indicates that an error occurred while freeing
memory that was previously freed. For errors involving calls to the
free function, Third Degree usually gives three call stacks:

– The call stack where the error occurred

– The call stack where the object was allocated.

– The call stack where the object was freed.

Upon examining the program, it is clear that the second call to Booboo
(line 20) frees the object (line 14), and that another attempt to free the
same object occurs at line 21.
-- fof -- 3 --
ex.c: 22: freeing already freed heap at byte 0 of 32-byte block

free malloc.c, line 833
main ex.c, line 22
__start crt0.s, line 370

This block at address 0x380000011a0 was allocated at:
malloc malloc.c, line 585
Booboo ex.c, line 10
main ex.c, line 21
__start crt0.s, line 370

This block was freed at:
free malloc.c, line 833
Booboo ex.c, line 15
main ex.c, line 21
__start crt0.s, line 370

7.2.3.3 Memory Leaks

The following excerpt shows the report generated when leak detection on
program exit, the default, is selected. The report shows a list of memory

Debugging Programs with Third Degree 7–7

leaks sorted by importance and by call stack.

Searching for new leaks in heap after program exit

160 bytes in 1 object were found:

160 bytes in 1 leak (including 1 super leak) created at:
malloc malloc.c, line 585
Booboo ex.c, line 10
main ex.c, line 20
__start crt0.s, line 370

Upon examining the source, it is clear that the first call of Booboo did not
free the memory object, nor was it freed anywhere else in the program.
Moreover, no pointer to this object exists anywhere in the program, so it
qualifies as a super leak. The distinction is often useful to find the real culprit
for large memory leaks.

Consider a large tree structure and assume that the pointer to the root has
been erased. Every object in the structure is a leak, but losing the pointer to
the root is the real cause of the leak. Because all objects but the root still
have pointers to them, albeit only from other leaks, only the root will be
identified as a super leak, and therefore the likely cause of the memory loss.

7.2.3.4 Heap History

When heap history is enabled, Third Degree collects information about
dynamically allocated memory. It collects this information for every object
that is freed by the application and for every object that still exists (including
memory leaks) at the end of the program’s execution. The following excerpt
shows a heap allocation history report:
--
--

Heap Allocation History for parent process

Legend for object contents:
There is one character for each 32-bit word of contents.
There are 64 characters, representing 256 bytes of memory
per line.
’.’ : word never written in any object.
’z’ : zero in every object.
’i’ : a non-zero non-pointer value in at least one object.
’pp’: a valid pointer or zero in every object.
’ss’: a valid pointer or zero in some but not all objects.

192 bytes in 2 objects were allocated during program execution:

--
160 bytes allocated (5% written) in 1 objects created at:

7–8 Debugging Programs with Third Degree

malloc malloc.c, line 585
Booboo ex.c, line 10
main ex.c, line 20
__start crt0.s, line 370

Contents:
0: ..ii....................................

--
32 bytes allocated (25% written) in 1 objects created at:

malloc malloc.c, line 585
Booboo ex.c, line 10
main ex.c, line 21
__start crt0.s, line 370

Contents:
0: ..ii....

The sample program allocated two objects, for a total of 192 bytes
(8*(20+4)). Because each object was allocated from a different call stack,
there are two entries in the history. Only one long (8 bytes) in each array
was set to a valid value, resulting in the written ratios of 8/160 = 5% and
8/32=25% shown. The character map, with one character for each 32-bit
word in the object, shows that the initialized value was the second long in
each of the arrays.

If the sample program was a real application, the fact that so little of the
dynamic memory was ever initialized is a warning that it was probably using
memory ineffectively.

7.2.3.5 Memory Layout

The memory layout section of the report summarizes the memory used by the
program by size and address range. The following excerpt shows a memory
layout section. The first two entries give the final (maximum) sizes of the
heap and stack at the end of the program. The last two entries give the text
and static data areas for the program and any shared libraries.

memory layout at program exit
heap 81920 bytes [0x38000000000-0x38000014000]
stack 2224 bytes [0x11ffff750-0x120000000]

ex data 23168 bytes [0x140000000-0x140005a80]
ex text 262144 bytes [0x120000000-0x120040000]

7.3 Interpreting Third Degree Error Messages
Third Degree reports both fatal errors and memory access errors.

Debugging Programs with Third Degree 7–9

Fatal errors include the following:

• Bad parameter

For example, malloc(-10).

• Failed allocator

For example, malloc returned a zero, indicating that no memory is
available.

• Call to the brk function with a nonzero argument

Third Degree does not allow you to call brk with a nonzero argument.

A fatal error causes the instrumented application to crash after flushing the
log file. If the application crashes, first check the log file and then rerun it
under a debugger.

Memory errors include the following (as represented by a three-letter
abbreviation):
22
Name Error22
ror Reading out of range: neither in heap, stack, or static area

ris Reading invalid data in stack: probably an array bound error

rus Reading an uninitialized (but valid) location in stack

rih Reading invalid data in heap: probably an array bound error

ruh Reading an uninitialized (but valid) location in heap

wor Writing out of range: neither in heap, stack, or static area

wis Writing invalid data in stack: probably an array bound error

wih Writing invalid data in heap: probably an array bound error

for Freeing out of range: neither in heap or stack

fis Freeing an address in the stack

fih Freeing an invalid address in the heap: no valid object there

fof Freeing an already freed object

fon Freeing a null pointer (really just a warning)

mrn malloc returned null22

You can suppress the reporting of specific memory errors by providing a
.third customization file containing the ignore option. This is often
useful when the errors occur within library functions for which you do not
have the source. Third Degree allows you to suppress specific memory errors
in individual procedures and files, and at particular line numbers. See
third(5) for more details.

7–10 Debugging Programs with Third Degree

7.3.1 Fixing Errors and Retrying an Application
If Third Degree reports many write errors from your instrumented program,
you should fix the first few errors and reinstrument the program. Not only
can write errors compound, but they can also corrupt Third Degree’s internal
data structures.

7.3.2 Detecting Uninitialized Values
Third Degree’s technique for detecting the use of uninitialized values can
cause programs that have worked to fail when instrumented. For example, if
a program depends on the fact that the first call to the malloc function
returns a block initialized to zero, the instrumented version of the program
will fail because Third Degree initializes all blocks to a nonzero value.

When it detects a signal, perhaps caused by dereferencing or otherwise using
this uninitialized value, Third Degree displays a message of the following
form:
*** Fatal signal SIGSEGV detected.
*** This can be caused by the use of uninitialized data.
*** Please check all errors reported in app.3log.

Using uninitialized data is the most likely reason for an instrumented
program to crash. To determine the cause of the problem, first examine the
log file for reading-uninitialized-stack and reading-uninitialized heap errors.
Very often, one of the last errors in the log file reports the cause of the
problem.

If you have trouble pinpointing the source of the error, you can confirm that
it is indeed due to reading uninitialized data by supplying a .third
customization file containing the uninit_heap no and
uninit_stack no options. Using the uninit_stack no option
disables the initialization of newly allocated stack memory that Third Degree
normally performs on each procedure entry. Similarly, the
uninit_heap no option disables the initialization of heap memory
performed on each dynamic memory allocation. By using one or both
options, you can alter the behavior of the instrumented program and may
likely get it to complete successfully. This will help you determine which
type of error is causing the instrumented program to crash and, as a result,
help you focus on specific messages in the log file.

Debugging Programs with Third Degree 7–11

Notes

Do not use the uninit_heap no and uninit_stack no
options under normal operation. They hamper Third Degree’s
ability to detect a program’s use of uninitialized data.

If your program establishes signal handlers, there is a small chance that Third
Degree’s changing of the default signal handler may interfere with it. Third
Degree defines signal handlers only for those signals that normally cause
program crashes (including SIGILL, SIGTRAP, SIGABRT, SIGEMT,
SIGFPE, SIGBUS, SIGSEGV, SIGSYS, SIGXCPU, and SIGXFSZ). You
can disable Third Degree’s signal handling by supplying a .third
customization file including the signals no option.

7.3.3 Locating Source Files
Third Degree prefixes each error message with a file and line number in the
style used by compilers. For example:
--- fof -- 3 --
ex.c: 21: freeing already freed heap at byte 0 of 32-byte block

free malloc.c
main ex.c, line 21
__start crt0.s

Third Degree tries to point as closely as possible to the source of the error,
and it usually gives the file and line number of a procedure near the top of
the call stack when the error occurred, as in this example. However, Third
Degree may not be able to find this source file, either because it is in a
library or because it is not in the current directory. In this case, Third Degree
moves down the call stack until it finds a source file to which it can point.
Usually, this is the point of call of the library routine.

In order to tag these error messages, Third Degree must determine the
location of the program’s source files. If you are running Third Degree in the
directory containing the source files, Third Degree will locate the source files
there. If not, to add directories to Third Degree’s search path, supply a
.third customization file including a use option. This allows Third
Degree to find the source files contained in other directories. Specifying the
use option with no arguments clears the search path. The location of each
source file is the first directory on the search path in which it is found.

7.4 Examining an Application’s Heap Usage
In addition to run-time checks that ensure that only properly allocated
memory is accessed and freed, Third Degree provides two ways to
understand an application’s heap usage:

7–12 Debugging Programs with Third Degree

• It can find and report memory leaks.

• It can list the contents of the heap.

By default, Third Degree checks for leaks when the program exits.

This section discusses how to use the information provided by Third Degree
to analyze an application’s heap usage.

7.4.1 Detecting Memory Leaks
A memory leak is an object in the heap to which no pointer exists. The
object can no longer be accessed and can no longer be used or freed. It is
useless and will never go away.

Third Degree finds memory leaks by using a simple trace-and-sweep
algorithm. Starting from a set of roots (the currently active stack and static
area), Third Degree finds pointers to objects in the heap and marks these
objects as visited. It then recursively finds all potential pointers inside these
objects and, finally, sweeps the heap and reports all unmarked objects. These
unmarked objects are leaks.

The trace-and-sweep algorithm finds all leaks, including circular structures.
This algorithm is conservative: in the absence of type information, any 64-bit
pattern that is properly aligned and pointing inside a valid object in the heap
is treated as a pointer. This assumption can infrequently lead to the
following problems:

• Third Degree considers pointers either to the beginning or interior of an
object as true pointers. Only objects with no pointers to any address they
contain are considered leaks.

• If an instrumented application hides true pointers by storing them in the
address space of some other process or by encoding them, Third Degree
will report spurious leaks. When instrumenting such an application with
Third Degree, create a .third configuration file that specifies the
pointer_mask option. The pointer_mask option lets you specify
a mask that is applied as an AND operator against every potential pointer.
For example, if you use the top 3 bits of pointers as flags, specify a mask
of 0x1fffffffffffffff. See third(5) for additional information on .third
configuration files.

• Third Degree can confuse any bit pattern (such as string, integer,
floating-point number, and packed struct) that looks like a heap pointer
with a true pointer, thereby missing a true leak.

• Third Degree does not notice pointers that optimized code stores only in
registers, not in memory. As a result, it may produce false leak reports.

Debugging Programs with Third Degree 7–13

7.4.2 Reading Heap and Leak Reports
You can supply .third configuration file options that tell Third Degree to
generate heap and leak reports incrementally, listing only new heap objects or
leaks since the last report or listing all heap objects or leaks. You can
request these reports when the program terminates, or before or after every
nth call to a user-specified function (see third(5) for details).

Third Degree lists memory objects and leaks in the report by decreasing
importance, based on the number of bytes involved. It groups together
objects allocated with identical call stacks. For example, if the same call
sequence allocates a million one-byte objects, Third Degree reports them as a
one-megabyte group containing a million allocations.

To tell Third Degree when objects or leaks are the same and should be
grouped in the report (or when objects or leaks are different and should not
be thus grouped), specify a .third configuration file containing the
object_stack_depth or leak_stack_depth option. (See
third(5) for further description of the .third configuration file.) These
options set the depth of the call stack that Third Degree uses to differentiate
leaks or objects. For example, if you specify a depth of 1 for objects, Third
Degree groups valid objects in the heap by the function and line number that
allocated them, no matter what function was the caller. Conversely, if you
specify a very large depth for leaks, Third Degree groups only leaks allocated
at points with identical call stacks from main upwards.

In most heap reports, the first few entries account for most of the storage, but
there is a very long list of small entries. To limit the length of the report,
you can use the .third configuration file object_min_percent or
leak_min_percent option. (See third(5) for further description of the
.third configuration file.) These options define a percentage of the total
memory leaked or in use by an object as a threshold. When all smaller
remaining leaks or objects amount to less than this threshold, Third Degree
groups them together under a single final entry.

Notes

Because the realloc function always allocates a new object
(by involving calls to malloc, copy, and free), its use can
make interpretation of a Third Degree report counterintuitive.
When an object is allocated, listed, or shrunk through a call to
the realloc function, it can be listed twice under different
identities.

Leaks and objects are mutually exclusive: an object must be reachable
from the roots.

7–14 Debugging Programs with Third Degree

7.4.3 Searching for Leaks
It may not always be obvious when to search for memory leaks. By default,
Third Degree checks for leaks after program exit, but this may not always be
what you want.

Leak detection is best done as near as possible to the end of the program
while all used data structures are still in scope. Remember, though, that the
roots for leak detection are the contents of the stack and static areas. If your
program terminates by returning from main and the only pointer to one of
its data structures was kept on the stack, this pointer will not be seen as a
root during the leak search, leading to false reporting of leaked memory. For
example:

1 main (int argc, char* argv[]) {
2 char* bytes = (char*) malloc(100);
3 exit(0);
4 }

When you instrument a program, providing a .third configuration file
specifying the all leaks before exit every 1 option line will
result in Third Degree not finding any leaks. When the program calls the
exit function, all of main’s variables are still in scope.

However, consider the following example:
1 main (int argc, char* argv[]) {
2 char* bytes = (char*) malloc(100);
3 }

When you instrument this program, providing the same (or no) .third
configuration file, Third Degree’s leak check may report a storage leak
because main has returned by the time the check happens. Either of these
two behaviors may be correct, depending on whether bytes was a true leak
or simply a data structure still in use when main returned.

Rather than reading the program carefully to understand when leak detection
should be performed, you can check for new leaks after a specified number of
memory allocations. The number of allocations depends on the
characteristics of the application being instrumented. Use a .third
configuration file specifying the following options:
no leaks at_exit
new leaks before proc_name every 10000

See third(5) for further description of the .third configuration file.

7.4.4 Interpreting the Heap History
When you instrument this program, providing a .third configuration file
specifying the heap_history yes option line allows Third Degree to
generate a heap history for the program. A heap history allows you to see

Debugging Programs with Third Degree 7–15

how the program used dynamic memory during its execution. You can use
this feature, for instance, to eliminate unused fields in data structures or to
pack active fields to use memory more efficiently. The heap history also
shows memory blocks that are allocated but never used by the application.

When heap history is enabled, Third Degree collects information about each
dynamically allocated object at the time it is freed by the application. When
program execution completes, Third Degree assembles this information for
every object that is still alive (including memory leaks). For each object,
Third Degree looks at the contents of the object and categorizes each word as
never written by the application, zero, a valid pointer, or some other value.

Third Degree next merges the information for each object with what it has
gathered for all other objects allocated at the same call stack in the program.
The result provides you with a cumulative picture of the use of all objects of
a given type.

Third Degree provides a summary of all objects allocated during the life of
the program and the purposes for which their contents were used. The report
shows one entry per allocation point (for example, a call stack where an
allocator function such as malloc or new was called). Entries are sorted by
decreasing volume of allocation.

Each entry provides the following:

• Information about all objects that have been allocated at any point up to
this point of the program’s execution

• Total number of bytes allocated at this point of the program’s execution

• Total number of objects that have been allocated up to this point of the
program’s execution

• Percentage of bytes of the allocated objects that have been written

• The call stack and a cumulative map of the contents of all objects
allocated by that call stack

The contents part of each entry describes how the objects allocated at this
point were used. If all allocated objects are not the same size, Third Degree
considers only the minimum size common to all objects. For very large
allocations, it summarizes the contents of only the beginning of the objects,
by default, the first kilobyte. You can adjust the maximum size value by
specifying the history_size option in the third configuration file.

7–16 Debugging Programs with Third Degree

In the contents portion of an entry, Third Degree uses one of the following
characters to represent each 32-bit longword that it examines:
22
Character Description22
Dot (.) Indicates a longword that was never written in any of the objects, a

definite sign of wasted memory. Further analysis is generally
required to see if it is simply a deficiency of a test that never used
this field; if it is a padding problem solved by swapping fields or
choosing better types; or if this field is obsolete.

z Indicates a field whose value was always 0 (zero) in every object.

pp Indicates a pointer: that is, a 64-bit quantity that was a valid pointer
into the stack, the static data area, or the heap; or was zero in every
object.

ss Indicates a sometime pointer. This longword looked like a pointer
in at least one of the objects, but not in all objects. It could be a
pointer that is not initialized in some instances, or a union.
However, it could also be the sign of a serious programming error.

i Indicates a longword that was written with some nonzero value in at
least one object and that never contained a pointer value in any
object.22

Even if an entry is listed as allocating 100MB, it does not mean that at any
point in time 100MB of heap storage were used by the allocated objects. It
is a cumulative figure; it indicates that this point has allocated 100MB over
the lifetime of the program. This 100MB may have been freed, may have
leaked, or may still be in the heap. The figure simply indicates that this
allocator has been quite active.

Ideally, the fraction of the bytes actually written should always be close to
100%. If it is much lower, some of what is allocated is never used. The
common reasons why a low percentage is given include the following:

• A large buffer was allocated, but only a small fraction was ever used.

• Parts of every object of a given type are never used. They may be
forgotten fields or padding between real fields resulting from alignment
rules in C structures.

• Some objects have been allocated, but never used at all. Sometimes leak
detection will find these objects if their pointers are discarded. If they are
kept on a free list, however, they will only be found in the heap history.

Debugging Programs with Third Degree 7–17

7.5 Using Third Degree on Programs with Insufficient
Symbolic Information
If the executable you instrumented contains too little symbolic information
for Third Degree to pinpoint some program locations, Third Degree prints
messages in which procedure names or file names or line numbers are
unknown. For example:
-- rus -- 0 --
reading uninitialized stack at byte 40 of 176 in frame of main

proc_at_0x1200286f0 libc.so
pc = 0x12004a268 libc.so
main app
__start app

Third Degree tries to print the procedure name in the stack trace, but if the
procedure name is missing (because this is a static procedure), Third Degree
prints the program counter in the instrumented program. This information
enables you to find the location with a debugger. If the program counter is
unavailable, Third Degree prints the address of the unnamed procedure.

More frequently, the file name or line number is unavailable because the
program’s symbol table is incomplete. In this case, Third Degree prints the
name of the object in which the procedure was found. This object may be
either the main application or a shared library.

If the lack of symbolic information is hampering your debugging, consider
recompiling the program with more symbolic information. For C and C++
programs, recompile with the –g flag and link without the –x flag.

7.6 Validating Third Degree Error Reports
The following spurious errors may occur in rare instances:

• Modifications to bit fields in optimized code are occasionally reported as
uses of uninitialized data. This situation usually occurs in initializations
of arrays of items smaller than 32 bits or in initializations of packed
structures, as in the following example:
void Packed() {

char c[4];
struct { int a:6; int b:9; int c:4} x;
c[0] = c[1] = 1; /* rus errors here ... */
x.a = x.c = x.e = 3; /* ... maybe here */

}

• Third Degree initializes newly allocated memory with a special value to
detect references to uninitialized variables (see Section 7.3.2). Programs
that explicitly store this special value into memory and subsequently read
it may cause spurious "reading uninitialized memory" errors.

7–18 Debugging Programs with Third Degree

• Storing the special uninitialized value into memory and subsequently
reading it (though the value is neither a valid pointer, a floating-point
number, a remarkable integer, nor ASCII characters).

If you think that you have found a false positive, you can verify it by using
the disassembler (dis) on the procedure in which the error was reported.
All errors reported by Third Degree are detected at loads and stores in the
application, and the line numbers shown in the error report match those
shown in the disassembly output.

7.7 Undetected Errors
Third Degree can fail to detect real errors, such as the following:

• Errors in logical operations on quantities smaller than 32 bits can go
undetected, for example:
short Small() {

short x;
x &= 1;
return x;

}

This programming practice may be considered an error if the program
depends on the least significant bit of x. It may not be considered an
error if the program depends only on the most significant bits.

• Third Degree cannot detect a chance access of the wrong object in the
heap. It can only detect memory accesses from objects. For example,
Third Degree cannot determine that a[last+100] is the same address
as b[0]. You can reduce the chances of this happening by altering the
amount of padding added to objects. To do this, supply a third
customization file that includes the object_padding option.

• Third Degree may not be able to detect if the application walks past the
end of an array by fewer than 8 bytes. Because Third Degree brackets
objects in the heap by "guard words," it will miss small array bounds
errors. In the stack, adjacent memory is likely to contain local variables,
and Third Degree may fail to detect larger bounds errors. For example,
issuing a sprintf operation to a local buffer that is much too small
may be detected, but if the array bounds are only exceeded by a few
words and enough local variables surround the array, the error can go
undetected.

• Hiding pointers by encoding them or by keeping pointers only to the
inside of a heap object will degrade the effectiveness of Third Degree’s
leak detection.

Debugging Programs with Third Degree 7–19

8Profiling Programs to Improve
Performance3333333333333333333333

Profiling is a method of identifying sections of code that consume large
portions of execution time. In a typical program, most execution time is spent
in relatively few sections of code. To improve performance, the greatest
gains result from improving coding efficiency in time-intensive sections.

This chapter discusses the following topics:

• Using the prof program

• Using the gprof program

• Using the pixie and hiprof Atom tools

• Using the uprofile and kprofile tools

• Selecting profiling information to display

• Using feedback files

• Using profiling environment variables

• Using monitor routines

• Profiling multithreaded applications

8.1 Profiling Methods
Profiling methods include:

• Program counter (PC) sampling, a technique that periodically interrupts
your program and logs the value of the PC. The prof and gprof tools
use PC sampling to produce a statistical sample showing which portions
of code consume the most time. The gprof tool also produces call
graphs, which show the relationship of calling and called routines.

• Basic block counting, a technique that inserts profiling code at key points
in your program. It produces a count of the number of times each
instruction executes.

To select an appropriate profiling method for an application, you must take
into consideration the following factors:

• The statistics that you want to collect and examine (for example, CPU
usage, call counts, call cost, memory usage, and I/O operations)

• The level at which you need to collect these statistics (for example, at a
procedure level or at an instruction level).

• Whether you must profile the shared libraries used by the application as
well as its executable.

• The method that you use to collect the profiling data. Certain collection
methods require that you compile and/or link the application’s sources in
a special way. Others allow you to run a utility that inserts
instrumentation code into an existing program. Still others retrieve
information from the CPU’s performance counters while the
uninstrumented program is running.

• The tool that you use to display the profiling data. Depending on the
information that you need, you can choose from three tools that display
previously collected profiling information. Each tool supports multiple
data collection methods.

The profiling data display tools, and their respective data collection methods,
include the following:

prof
Prints a profile of statistics per procedure.

The prof tool supports the following data collection methods:

• Compiling or linking with the –p flag

The –p flag supports the profiling of shared libraries, but requires
you to at least relink the program. It collects only CPU statistics
using PC sampling

• Using the uprofile tool

The uprofile tool profiles user code. It does not support the
profiling of shared libraries. It does not require you to relink the
program and collects either CPU statistics or other information.

• Using the kprofile tool

The kprofile tool profiles the running operating system kernel. It
does not require you to relink the program and collects either CPU
statistics or other information.

prof –pixie
Prints a profile showing the number of times each procedure, source
line, or instruction is executed. The prof –pixie tool supports the
following basic block counting profiling data collection method:

• Using the pixie Atom tool (that is, the atom –tool pixie
command) to instrument the program’s basic blocks.

The pixie Atom tool supports the profiling of shared libraries and
does not require you to relink the program. It supports the prof

8–2 Profiling Programs to Improve Performance

tool’s instruction-level profiling and true cycle-count estimation.

gprof
Produces call-graph profile data showing the effects of calling routines
on called routines as well as other information.

The gprof tool supports the following data collection methods:

• Compiling with the –pg flag

The –pg flag does not allow the profiling of shared libraries. It
requires that you recompile the program’s sources and uses an
apportioned call cost method to determine a given procedure’s cost
to its callers.

• Using the hiprof Atom tool (that is, the atom –tool hiprof
command) to instrument the program

The hiprof Atom tool supports the profiling of shared libraries
and does not require you to recompile or relink. To determine a
given procedure’s cost to its callers, it supports both the apportioned
call cost method and the measured call cost method.

You can also use the monitor routines to perform PC-sampling on a
specified address range in a program. For more information on using
monitor routines, see Section 8.13 and monitor(3).

8.2 Profiling Tools Overview
Table 8-1 provides a concise overview of the profiling tools available in the
Digital UNIX operating system.

Table 8-1: Profiling Tools
22
Tool Use22
PC-sampling/ prof Link application with –p; analyze results with

prof; see prof(1) and monitor(3).

Call-arcs/ gprof Compile and link with –pg; analyze results with
gprof; see gprof(1) and monitor(3).

pixstats Additional postprocessor for pixified program
output; see pixstats(1).

uprofile/ kprofile Run application under uprofile or kprofile;
requires pfm driver to be installed; analyze results
with prof; see uprofile(1), kprofile(1), and
pfm(7).

Profiling Programs to Improve Performance 8–3

Table 8-1: (continued)
22
Tool Use22
Atom toolkit Programmable debug/performance analysis tool.

Example tools are contained in
/usr/lib/cmplrs/atom/examples; see
atom(1) and other Atom reference pages for
programming interface.

pixie Atom-based basic block profiler; analyze results with
prof; see pixie(5).

hiprof Atom-based call-arc analyzer; analyze results with
gprof; see hiprof(5).

third Atom-based memory error/leak detection tool, Third
Degree; generates text output. See third(5).22

All profiling tools work on call-shared and nonshared applications.

8.2.1 PC-Sampling
Statistical PC-sampling for the program is useful for diagnosing high CPU-
usage procedures in the program and it supports both threads and shared
libraries.

Interface summary:
% cc -p *.o -o program # Link with libprof1.a

% program # Run program to collect data

% prof program # Process the mon.out file

8.2.2 gprof
The gprof tool provides procedure call information coupled with statistical
PC-sampling. This is useful for determining which routines are called most
frequently and from where. The gprof tool also gives a flat profile for
CPU-usage on the routines. It supports threads and call-shared programs, but
does not support shared libraries.

Using the gprof tool, you can retrieve information from libc.a and
libm.a because these two libraries are compiled with the –pg flag. Other
Digital-supplied libraries are not compiled with –pg, so calling information
on these other system libraries is not available.

8–4 Profiling Programs to Improve Performance

Interface summary:
% cc -pg *.c -o program # Compile and link with -pg

% program # Run program to collect data

% gprof program # Process the gmon.out file

8.2.3 uprofile and kprofile
The uprofile and kprofile tools use the performance counters on the
Alpha chip. They do not collect information on shared libraries. By default,
both tools collect cycles for the program. The performance data produced by
these tools is processed with the prof command. See uprofile(1) and
kprofile(1) for more information.

8.2.4 Atom Toolkit
The Atom toolkit consists of a programmable instrumentation tool and
several packaged tools. Examples are included in the
/usr/lib/cmplrs/atom/examples directory that demonstrate how to
develop instrumentation and analysis code. The instrumentation part of the
tool instructs Atom on where to insert calls to analysis routines in the
program. When the program is run, the analysis routines are entered and data
collection is performed as prescribed by the Atom tool specified on the atom
command.

Atom does not work on programs built with the –om flag.

Interface summary:
% atom -tool toolname program

% program.tool

Postprocessing is tool-dependent. See Chapter 9 for details on Atom.

8.2.5 pixie Atom tool
The Atom-based pixie is a basic block profiler that supports shared libraries
and threaded applications.

Interface summary:
% atom -tool pixie [-env threads] program

% program.pixie[.threads]

% prof -pixie program

Profiling Programs to Improve Performance 8–5

8.2.6 hiprof Atom tool
The hiprof Atom tool collects call-arc information on a program. By
default, it operates like the gprof support provided by the –pg flag, but has
flag-selectable options that are more powerful. The hiprof Atom tool
supports shared libraries and threaded applications.

Interface summary:
% atom -tool hiprof [-env threads] program

% program.hiprof[.threads]

% gprof program program.hiout

8.2.7 Third Degree
Third Degree is a memory-leak and memory-overwrite detection tool, also
based on Atom. Third Degree generates text output to a file called
program.3log. The log contains the diagnostics that Third Degree
detected (for example, reads of uninitialized heap or stack, memory
overwrites, and memory leaks).

Interface summary:
% atom -tool third [-env threads] program

% program.third[.threads]

% cat program.3log

8.3 Profiling Sample Program
The examples in the remainder of this chapter refer to the sample program,
profsample.c, shown in Example 8-1.

Example 8-1: Profiling Sample Program

#include <math.h>
#include <stdio.h>

#define LEN 100

void mult_by_scalar(double ary[], int len, double num);
void add_vector(double arya[], double aryb[], int len);
double value;
void printit(double value);

main()
{

double ary1[LEN];
double ary2[LEN];
int i;

8–6 Profiling Programs to Improve Performance

Example 8-1: (continued)
for (i=0; i<LEN; i++) {

ary1[i] = 0.0;
ary2[i] = sqrt((double)i);

}
mult_by_scalar(ary1, LEN, 3.14159);
mult_by_scalar(ary2, LEN, 2.71828);
for (i=0; i<20; i++)

add_vector(ary1, ary2, LEN);
}

void mult_by_scalar(double ary[], int len, double num)
{

int i;

for (i=0; i<len; i++)
{

ary[i] *= num;
value = ary[i];
printit(value);

}
}

void add_vector(double arya[], double aryb[], int len)
{

int i;

for (i=0; i<len; i++)
{

arya[i] += aryb[i];
value = arya[i];
printit(value);

}
}

void printit(double value)
{

printf("Value = %f\n", value);
}

8.4 Using prof to Produce Program Counter Sampling
Data
To use prof to obtain PC sampling data on a program, follow these steps:

Profiling Programs to Improve Performance 8–7

1. Compile and link (or just link) using the –p option, as follows:
% cc -c profsample.c
% cc -p -o profsample profsample.o -lm

You must specify the –p profiling option during the link step to obtain
PC sampling information. If you have an existing application, you will
not need to recompile to profile the executable program; simply relink the
program using the –p option with the cc command.

If you are building an application for the first time, you can compile and
link in the same step. In the preceding example, the –lm option ensures
that libm.{a,so} is used to resolve symbols that refer to math library
functions.

You might also consider compiling with one of the optimization flags to
help improve the efficiency of your code, compiling with a debug flag to
provide more symbolic information for the profile report, or compiling
with both types of flags.

If you are profiling a multithreaded application, use the –threads flag
with the cc command. For more information on profiling multithreaded
applications, see Section 8.14.

2. Execute the profiled program:
% profsample

You can run the program several times, altering the input data (if any) to
create multiple profile data files.

During execution, profiling data is saved in a profile data file. The
default name for the profile data file is mon.out, unless you have set the
environment variable PROFDIR. For more information on using
PROFDIR, see Section 8.12.1

3. Run the profile formatting program prof, which extracts information
from one or more profile data files and produces a tabular report:
% prof profsample mon.out

Example 8-2 shows output produced by the prof command on the
profsample.c program.

8–8 Profiling Programs to Improve Performance

Example 8-2: Profiler Listing for PC Sampling

Profile listing generated Thu May 26 13:36:14 1994 with:
prof profsample mon.out

--
* -p[rocedures] using pc-sampling; sorted in descending *
* order by total time spent in each procedure; *
* unexecuted procedures excluded *
--

Each sample covers 4.00 byte(s) for 14% of 0.0068 seconds

%time seconds cum % cum sec procedure (file)

42.9 0.0029 42.9 0.00 printit (profsample.c)
42.9 0.0029 85.7 0.01 add_vector (profsample.c) 11 12277
14.3 0.0010 100.0 0.01 mult_by_scalar (profsample.c)

11 12277 This sample line of output presents the following information:

– 42.9 percent of execution time was spent in add_vector.

– 85.7 percent of total execution time was spent cumulatively in the
printit and add_vector routines.

– The name of the source file for mult_by_scalar is
profsample.c

Because the prof program works by periodic sampling of the program
counter, you might see different output when you profile the same program
multiple times. A different profiling run than the preceding example of the
sample program produced the following output:
Profile listing generated Thu May 26 13:34:00 1994 with:

prof -procedures profsample mon.out

--
* -p[rocedures] using pc-sampling; sorted in descending *
* order by total time spent in each procedure; *
* unexecuted procedures excluded *
--

Each sample covers 4.00 byte(s) for 17% of 0.0059 seconds

%time seconds cum % cum sec procedure (file)

66.7 0.0039 66.7 0.00 add_vector (profsample.c)
33.3 0.0020 100.0 0.01 printit (profsample.c)

Profiling Programs to Improve Performance 8–9

8.5 Using gprof to Display Call Graph Information
To determine the manner in which routines call, or are called by, other
routines, use the gprof profiling tool.

The gprof tool postprocesses both hiprof output and –pg output.

To use this tool, follow these steps:

1. Use the hiprof Atom tool to produce an instrumented version of the
program:
% atom -tool hiprof profsample

2. Execute the instrumented version of profsample:
% profsample.hiprof

3. Examine the profiling data as follows:
% gprof profsample profsample.hiout

During execution, profiling data is saved in the data file
profsample.hiout, unless you have set the –dirname flag in the
HIPROF_ARGS environment variable or on the command line.

Alternatively, you can use the following procedure to collect profiling data
for the gprof tool:

1. Compile and link using the –pg option, as follows:
% cc -pg -c profsample.c
% cc -pg -o profsample profsample.o -lm

You must specify the –pg flag with the cc command during both the
compile and link steps to obtain call graph information.

2. Execute the program:
% profsample

When this method is used, profiling data is saved during execution in the
data file gmon.out, unless you have set the PROFDIR environment
variable. For more information on using this variable, see Section 8.12.1.

3. Run the formatting program gprof, which extracts information from the
data file:
% gprof profsample gmon.out

8–10 Profiling Programs to Improve Performance

The output produced by the gprof utility comprises three sections:

• Call graph profile

• Timing profile, similar to the profile produced by prof

• Index

You can control gprof profiling by file by using the –no_pg flag to the cc
command. When you use this flag, you disable gprof profiling for all
objects that follow the flag on the command line. You cannot use the
–no_pg flag with the –r and –shared flags to the ld command.

Example 8-3 shows output for gprof profiling of the sample program. The
–b flag was used with gprof to suppress printing of the description of each
output field. The descriptions are valuable, but they are lengthy and were left
out due to space considerations. To see these descriptions, follow the steps to
produce gprof output and write the output to a file or pipe the output
through the more utility.

In the call graph profile section, each routine in the program has its own
subsection that is contained within dashed lines and identified by the index
number in the first column. Note that for the purpose of this example output,
the three sections have been separated by rows of asterisks that do not appear
in the output produced by gprof. Each row of asterisks includes the name
of the section. For more information on gprof flags, see the gprof(1)
reference page.

Example 8-3: Sample gprof Output

*********************** call graph profile *******************

granularity: each sample hit covers 4 byte(s) for 10.00%
of 0.01 seconds

called/total parents
index %time self descendents called+self name index

called/total children

<spontaneous>
[1] 100.0 0.00 0.01 main [1]

0.00 0.00 20/20 add_vector [2]
0.00 0.00 2/2 mult_by_scalar [4]

0.00 0.00 20/20 main [1] 11 12277
[2] 75.5 0.00 0.00 20 add_vector [2] 12 12277

0.00 0.00 2000/2200 printit [3] 13 12277

Profiling Programs to Improve Performance 8–11

Example 8-3: (continued)
0.00 0.00 200/2200 mult_by_scalar [4]
0.00 0.00 2000/2200 add_vector [2]

[3] 50.0 0.00 0.00 2200 printit [3]

0.00 0.00 2/2 main [1]
[4] 4.5 0.00 0.00 2 mult_by_scalar [4]

0.00 0.00 200/2200 printit [3]

*********************** timing profile section ***************

granularity: each sample hit covers 4 byte(s) for 10.00%
of 0.01 seconds

% cumulative self self total
time seconds seconds calls ms/call ms/call name
50.0 0.00 0.00 2200 0.00 0.00 printit [3]
30.0 0.01 0.00 20 0.15 0.37 add_vector [2]
20.0 0.01 0.00 main [1]
0.0 0.01 0.00 2 0.00 0.22 mult_by_scalar[4]

*********************** index section ************************
Index by function name

[2] add_vector [4] mult_by_scalar
[1] main [3] printit

11 12277 This line describes the relationship of the main routine to the
add_vector routine. Because main is listed above the add_vector
routine in the final column of this section, main is identified as the
parent of add_vector. The fraction 20/20 indicates that of the 20
times that add_vector (the denominator of the fraction) was called, it
was called 20 times by main (the numerator of this fraction).

12 12277 This line describes the add_vector routine, which is the subject of this
portion of the call graph profile because it is the leftmost routine in the
rightmost column of this section. The index number [2] in the first
column corresponds to the index number [2] in the index section at the
end of the output. The 75.5% in the second column reports the total
amount of time in the sample that is accounted for by the add_vector
routine and its descendent, in this case the printit routine. The 20 in
the called column indicates the total number of times that the
add_vector routine is called.

13 12277 This line describes the relationship of the printit routine to the
add_vector routine. Because the printit routine is below the
add_vector routine in this section, printit is identified as the child

8–12 Profiling Programs to Improve Performance

of add_vector. The fraction 2000/2200 indicates that of the total of
2200 calls to printit, 2000 of these calls came from add_vector.

8.6 Using pixie for Basic Block Counting
A basic block is a set of instructions with one entry and one exit. The
pixie Atom tool provides execution counts for the basic blocks of a
program. With prof, the execution counts can be viewed at the instruction
level.

To obtain data for basic block counting, follow these steps:

1. Compile and link. For example:
% cc -c profsample.c
% cc -o profsample profsample.o -lm

2. Run the pixie Atom tool. You do not have to specify a name for the
output because pixie produces an output file by default with the same
name as the original C source file, but with pixie appended after a
period. For example, the following command causes pixie to create two
files, profsample.pixie and profsample.Addrs:
% atom -tool pixie profsample

The profsample.pixie file is equivalent to profsample but
contains additional code that counts the execution of each basic block. To
create an output file with a name other than pname.pixie, use the –o
flag followed by the name you assign to the output file.

The profsample.Addrs file contains the address of each of the basic
blocks. For more information, see pixie(5).

3. Execute the profsample.pixie file:
% profsample.pixie

This command generates the file profsample.Counts, which
contains the basic block counts. Each time you execute the
profsample.pixie file, you create a new profsample.Counts
file.

4. Run the profile formatting program prof, with the –pixie flag over the
profsample executable file:
% prof -pixie profsample

This command extracts information from profsample.Addrs and
profsample.Counts and displays information in an easily readable
format. Note that you do not need to specify the .Addrs and .Counts
file suffixes because pixie searches by default for files containing them.

Profiling Programs to Improve Performance 8–13

You can also run the pixstats program on the executable file
profsample to generate a detailed report on opcode frequencies,
interlocks, a miniprofile, and more. For more information, see
pixstats(1).

Note

The pixie profiling tool provided in the current version of the
Digital UNIX operating system is the pixie Atom tool. If you
use the syntax provided in earlier versions of the operating
system to invoke pixie, a script transforms the call into a call
to the pixie Atom tool. The previous version of the pixie
tool can be found at
/usr/opt/obsolete/usr/bin/pixie.

8.7 Selecting Profiling Information to Display
Depending on the size of the application and the type of profiling you
request, prof may generate a very large amount of output. However, you
are often only interested in profiling data about a particular portion of your
application.

8.7.1 Limiting Profiling Display to Specific Procedures
The prof program provides the following flags to display information
selectively by procedure:

–only
–exclude
–Only
–Exclude
–totals

The –only option tells prof to print only profiling information for a
particular procedure. You can specify the –only option multiple times on
the command line. For example, the following command displays profiling
information for procedures mult_by_scalar and add_vector from the
sample program:
% prof -only mult_by_scalar -only add_vector profsample

The –exclude option tells prof to print profiling information for all
procedures except the specified procedure. You can use multiple –exclude
flags on the command line.

8–14 Profiling Programs to Improve Performance

The following command displays profiling information for all procedures
except add_vector:
% prof -exclude add_vector profsample

Do not use the –only and –exclude flags on the same command line.

Many of the prof utility’s profiling flags print output as percentages, for
example, the percentage of total execution time attributed to a particular
procedure.

By default, the –only and –exclude flags cause prof to calculate
percentages based on all of the procedures in the application even if they
were omitted from the listing. You can change this behavior with the
–Only and –Exclude flags. These flags work the same as –only and
–exclude, but cause prof to calculate percentages based only on those
procedures that appear in the listing. For example, the following command
omits the add_vector procedure from both the listing and from percentage
calculations:
% prof -Exclude add_vector profsample

The –totals flag, used with the –procedures and –invocations
listings, prints cumulative statistics for the entire object file instead of for
each procedure in the object.

8.7.2 Including Shared Libraries in the Profiling Information
The –all, –incobj, and –excobj flags allows you to display profiling
information for shared libraries used by the program:

• The –all flag causes the profiles for all shared libraries (if any)
described in the data file(s) to be displayed, in addition to the profile for
the executable.

• The –incobj flag causes the profile for the named shared library to be
printed, in addition to the profile for the executable.

• The –excobj flag causes the profile for the named executable or shared
library not to be printed.

8.7.3 Using pixie to Display Profiling Information for Each Source
Line

The –heavy and –lines flags cause prof to display the total number of
machine cycles executed by each source line in your application. Both of
these flags require you to use basic block counting (the –pixie option);
they do not work in PC-sampling mode.

Profiling Programs to Improve Performance 8–15

The –heavy option prints an entry for every source line that was executed
by your application. Each entry shows the total number of machine cycles
executed by that line. Entries are sorted from the line with the most machine
cycles to the line with the least machine cycles. Because this option often
prints a huge number of entries, you might want to use one of the –quit,
–only, or –exclude flags to reduce output to a manageable size.

Example 8-4 shows output generated by the following command:
% prof -pixie -heavy -only add_vector -only mult_by_scalar \

-only main profsample

For example, you can see in Example 8-4 that line 47 of profsample.c in
the procedure add_vector() accounts for over 12 percent of the
application’s total execution time. The listing also shows the size in bytes of
each source line.

Example 8-4: Prof Output by Source Line with -heavy Flag

Profile listing generated Fri May 27 14:09:10 1994 with:
prof -pixie -heavy -only add_vector -only mult_by_scalar
-only main profsample

--
* -h[eavy] using basic-block counts; *
* sorted in descending order by the number of cycles executed *
* in each *
* line; unexecuted lines are excluded *
--

procedure (file) line bytes cycles % cum %

add_vector (profsample.c) 48 44 22000 23.26 23.26
add_vector (profsample.c) 46 40 20000 21.15 44.41
add_vector (profsample.c) 47 24 12000 12.69 57.10
mult_by_scalar (profsample.c) 36 44 2200 2.33 59.43
main (profsample.c) 20 60 1500 1.59 61.02
mult_by_scalar (profsample.c) 34 28 1400 1.48 62.50
mult_by_scalar (profsample.c) 35 24 1200 1.27 63.77
main (profsample.c) 19 12 300 0.32 64.08
main (profsample.c) 25 48 240 0.25 64.34
add_vector (profsample.c) 41 28 140 0.15 64.48
add_vector (profsample.c) 44 12 60 0.06 64.55
add_vector (profsample.c) 50 12 60 0.06 64.61
mult_by_scalar (profsample.c) 29 28 14 0.01 64.63
main (profsample.c) 23 32 8 0.01 64.63
main (profsample.c) 22 32 8 0.01 64.64
mult_by_scalar (profsample.c) 38 12 6 0.01 64.65
mult_by_scalar (profsample.c) 32 12 6 0.01 64.66
main (profsample.c) 26 16 4 0.00 64.66

8–16 Profiling Programs to Improve Performance

Example 8-4: (continued)
main (profsample.c) 13 16 4 0.00 64.66
main (profsample.c) 18 8 2 0.00 64.67
main (profsample.c) 24 8 2 0.00 64.67

The –lines option is similar to –heavy, but it sorts the output differently.
This option prints the lines for each procedure in the order that they occur in
the source file. Even lines that never executed are printed. The procedures
themselves are sorted from those procedures that execute the most machine
cycles to those that execute the least.

Example 8-5 shows the same information as Example 8-4, but in a different
format as generated by the following command:
% prof -pixie -lines -only add_vector -only mult_by_scalar \
-only main profsample

Example 8-5: Prof Output by Source Line with -lines Flag

Profile listing generated Fri May 27 14:07:28 1994 with:
prof -pixie -lines -only add_vector -only mult_by_scalar
-only main profsample

--
* -l[ines] using basic-block counts; *
* grouped by procedure, sorted by cycles executed per procedure;*
* ’?’ means that line number information is not available. *
--

procedure (file) line bytes cycles % cum %

add_vector (profsample.c) 41 28 140 0.15 0.15
44 12 60 0.06 0.21
46 40 20000 21.15 21.36
47 24 12000 12.69 34.05
48 44 22000 23.26 57.32
50 12 60 0.06 57.38

mult_by_scalar (profsample.c) 29 28 14 0.01 57.39
32 12 6 0.01 57.40
34 28 1400 1.48 58.88
35 24 1200 1.27 60.15
36 44 2200 2.33 62.48
38 12 6 0.01 62.48

main (profsample.c) 13 16 4 0.00 62.49
18 8 2 0.00 62.49
19 12 300 0.32 62.81
20 60 1500 1.59 64.39
22 32 8 0.01 64.40
23 32 8 0.01 64.41

Profiling Programs to Improve Performance 8–17

Example 8-5: (continued)
24 8 2 0.00 64.41
25 48 240 0.25 64.66
26 16 4 0.00 64.67

8.7.4 Limiting Profiling Display by Line
The –quit option reduces the amount of profiling output displayed. The
–quit option affects the output from the –procedures, –heavy, and
–lines profiling modes.

The –quit option provides three versions:

• –quit n

The n refers to an integer. All lines after the n line are truncated.

• –quit n%

The n is an integer followed by a percent sign (%). All lines after the line
containing n% calls in the %calls column of the display are truncated.

• –quit ncum%

The ncum% refers to an integer n followed by the characters cum (for
cumulative) and a percent sign (%). All lines after the line containing
ncum% calls in the cum% column of the display are truncated.

If you specify several modes on the same command line, the –quit option
affects the output from each mode. For example, the –quit option in the
following command reduces the output from both the –procedures and
–heavy modes:
% prof -pixie -procedures -heavy -quit 20 profsample

This command prints only the 20 most time-consuming procedures and the
20 most time-consuming source lines. The –quit n option has no affect on
the –lines profiling mode.

The –quit n% option restricts the output to those entries that account for at
least n% of the total. Depending on the profiling mode, the total can refer to
the total amount of time, the total number of machine cycles, or the total
number of invocation counts. For example, the following command prints
only those source lines that account for at least 2 percent of the application’s
total number of machine cycles:
% prof -pixie -lines -quit 2% profsample

The –quit ncum% option truncates the output after n% of the total has been
accounted for. The definition of total depends on the profiling mode, as
described in the preceding paragraph. For example, the following command

8–18 Profiling Programs to Improve Performance

prints the most heavily used source line and stops after 30 percent of the
application’s total number of machine cycles have been accounted for:
% prof -pixie -heavy -quit 30cum% sample

8.8 Using pixie to Average prof Results
A single run of a program may not produce the desired results. You can
repeatedly run the version of the program created by pixie, varying the
input with each run, and then use the resulting .Counts files to produce a
consolidated report. For example:

1. Compile and link. Do not use the –p option when linking to produce an
executable file for pixie:
% cc -c profsample.c
% cc -o profsample profsample.o -lm

2. Run the profiling utility pixie, as follows:
% atom -tool pixie -toolargs=-pids profsample

This command produces the profsample.Addrs file to be used in
step 4, as well as the modified program profsample.pixie.

3. Delete any existing .Counts files, set the PIXIE_ARGS environment
variable to "-pids", and run the executable program produced by
pixie. For example:
% profsample.pixie

The –pids option specified with the atom -tool pixie command in
step 2 appends the process ID of the process running the executable
program to the name of the profsample.Counts file, for example,
profsample.Counts.1753.

4. Run the profiled program as many times as desired. Each time the
program is run, a profsample.Counts.<pid> file is created.

5. Run prof to create the report as follows:
% prof -pixie profsample profsample.Addrs profsample.Counts.*

If you had run profsample.pixie three times, the prof utility
would have averaged the basic block data in the three files generated by
the executable (profsample.Counts.<pid1>,
profsample.Counts.<pid2>, and
profsample.Counts.<pid3>) to produce the profile report.

Profiling Programs to Improve Performance 8–19

8.9 Analyzing Test Coverage
When you are writing a test suite for an application, you might want to know
how effectively your suite tests the application. The prof utility provides
two flags that can help you determine this. The –zero option prints the
names of procedures that were never executed by your application. The
–testcoverage option lists all of the source lines that were never
executed by your application. Both of these flags require basic block
counting.

Typically, you would perform the following steps to make use of these flags.

1. Run the pixie Atom tool on your application.

2. Run the results of step 1 through your test suite saving any .Counts
files.

3. Profile your application with the –zero or –testcoverage flags and
specify all of the .Counts files produced when you ran the test suite.

8.10 Merging Data Files
If the application you are profiling is fairly complicated, you may want to run
it several times with different inputs to get an accurate picture of its profile.
If you are using PC sampling, each run of your application produces a new
mon.out file, or a program.pid file if you have set the PROFDIR
environment variable. If you are using basic block counting, each run
produces a new .Counts file.

You have two ways of displaying profiling information that is based on an
average of all of these output files.

The first way is to specify the names of each profiling data file explicitly on
the command line. For example, the following command prints profiling
information from two profile data files:
% prof -procedures profsample 1510.profsample 1522.profsample

Keeping track of many different profiling data files, however, can be difficult.
Therefore, prof provides the –merge option to combine several data files
into a single merged file. When prof operates in –pixie mode, the
–merge flag combines the .Counts files. When prof operates in PC-
sampling mode, this switch combines the mon.out or other profile data
files.

The following example combines two profile data files into a single data file

8–20 Profiling Programs to Improve Performance

named total.out:
% prof -merge total.out profsample 1773.profsample \

1777.profsample

At a later time, you can then display profiling data using the combined file,
just as you would use a normal mon.out file. For example:
% prof -procedures profsample total.out

The merge process is similar for –pixie mode. You must specify the
executable file’s name, the .Addrs file, and each .Counts file:
% prof -pixie -merge total.Counts a.out a.out.Addrs \

a.out.Counts.1866 a.out.Counts.1868

8.11 Using Feedback Files
Feedback files are useful in identifying portions of a large executable
program in which significant percentages of the execution occur. Without
feedback, the compiler must make assumptions about call frequency based on
nesting levels. These assumptions are almost never as good as actual data
from a sample run. The following sections describes how to use feedback
files by using the cc command and the atom -tool pixie and prof
commands.

8.11.1 Generating and Using Feedback Information
Follow these steps to generate feedback information that can be used to
optimize subsequent compilations:

1. Compile the source code:
% cc -O2 -o profsample profsample.c -lm

2. Run the pixie Atom tool on the executable file:
% atom -tool pixie -toolargs=-o profsample.pixie profsample

This step creates an output executable file named profsample.pixie
and a prof input file named profsample.Addrs.

3. Execute the program you just created:
% profsample.pixie

This step creates a file named profsample.Counts, which contains
execution statistics.

Profiling Programs to Improve Performance 8–21

4. Use prof to create a feedback file from the execution statistics:
% prof -pixie -feedback profsample.feedback profsample

5. You can use a feedback file as input to a compilation at –O2 or –O3
optimization levels when you use the –feedback option with the cc
command, as shown in the following example:
% cc -O3 -feedback profsample.feedback -o \

profsample profsample.c -lm

The feedback file provides the compiler with actual execution information
that can be used to improve certain optimizations, such as inlining
function calls. Use a feedback file generated from a –O2 compilation for
any subsequent compilations with –O2 or –O3 flags.

8.11.2 Using a Feedback File for Input to cord
You can also use a feedback file as input to the cord utility. The cord
utility orders the procedures in an executable program to improve execution
time. The following example shows how to use the –cord option as part of
a compilation command with a feedback file as input:
% cc -O2 -cord -feedback profsample.feedback \

-o profsample profsample.c -lm

Use a feedback file generated with the same optimization level as the level
you use in subsequent compilations.

You can also use cord with the runcord utility. For more information, see
runcord(1).

8.12 Using Environment Variables to Control PC-Sample
Profiling

By default, the –p and –pg flags to the cc command provide the following:

• A single profile covering the whole text segment and all threads. To
profile specific portions of the program, use the monitor utilities, as
described in Section 8.13 and monitor(3).

• A single data file called mon.out (for –p) or gmon.out (for –pg)
placed in the current directory.

The –p flag supports the profiling of shared libraries. The –pg flag and
uprofile tool support the profiling of only the part of a program that is in
the executable. When using these tools to generate profiling information for
library routines, link your object file with the –non_shared flag to the cc
command.

8–22 Profiling Programs to Improve Performance

You can use one of the following environment variables to control profiling
behavior:

• PROFDIR

• PROFFLAGS

By using these variables, you can disable aspects of default profiling
behavior, including:

• Changing the name and path of profiling data files

• Controlling when profiling begins

• Controlling profiling of multithreaded applications

You can use the PROFFLAGS and PROFDIR environment variables together.

Note that these environment variables have no effect on the prof and
gprof post-processors; they affect the profiling behavior of a program
during its execution. These environment variables have no effect when you
use the pixie Atom tool.

8.12.1 PROFDIR Environment Variable

By default, profiling data is collected in a data file named [g]mon.out.
When you do multiple profiling runs, each run overwrites the existing
[g]mon.out file. Use the PROFDIR environment variable when you want
to collect PC sampling data in files with unique names. Set this environment
variable as follows:

• C Shell:

setenv PROFDIR path

• Bourne Shell:

PROFDIR = path ; export PROFDIR

The results are saved in the file path/pid.progname, which resolves as
follows:

path
The directory path, specified with PROFDIR, identifying an existing
directory.

pid
The process ID of the executing program.

progname
The program name.

Profiling Programs to Improve Performance 8–23

When you set PROFDIR to a null string, no profiling occurs.

8.12.2 PROFFLAGS Environment Variable
By default, the profiling library libprof1.a (or libprof1_r.a, for
multithreaded programs) allocates one buffer per process to record your
profiling data, as well as placing the data output file in your current directory.

To disable this default behavior, set the PROFFLAGS environment variable
as follows:

• C Shell:

setenv PROFFLAGS "-disable_default"

• Bourne Shell:

PROFFLAGS = "-disable_default"; export PROFFLAGS

When you have set PROFFLAGS to –disable_default, the default
profiling support is disabled, allowing you to use the monitor calls to
profile specific sections of your program for both nonthreaded and
multithreaded programs. See monitor(3) and Section 8.13 for more
information on using the monitor, monstartup, and moncontrol
routines.

For multithreaded programs, you can allocate one buffer per thread by setting
the PROFFLAGS environment variable as follows:

• C Shell:

setenv PROFFLAGS "-threads"

• Bourne Shell:

PROFFLAGS = "-threads"; export PROFFLAGS

When you have set PROFFLAGS to –threads, a separate file is produced
for each thread and is named pid.sid.progname, which is resolved as
follows:

pid
The process identification of the program.

sid
The sequence number of the thread, which depends on the order in
which the threads were created.

progname
The name of the program being profiled.

You can use the –threads and –disable_default flags together to
control profiling of your program when you use the monitor routines.

8–24 Profiling Programs to Improve Performance

You can also set the PROFFLAGS environment variable to include or exclude
profiling information:

setenv PROFFLAGS "-all"
Causes the profiles for all shared libraries (if any) described in the data
file(s) to be displayed, in addition to the profile for the executable.

setenv PROFFLAGS "-incobj lib_name"
Causes the profile for the named shared library to be printed, in addition
to the profile for the executable.

setenv PROFFLAGS "-excobj lib_name"
Causes the profile for the named executable or shared library not to be
printed.

8.13 Using monitor Routines to Control Profiling
The default profiling behavior on Digital UNIX systems is to profile the
entire text segment of your program and place the profiling data in mon.out
for prof profiling or in gmon.out for gprof profiling. For large
programs, you might not need to profile the entire text segment. The
monitor routines provide the ability to profile portions of your program
specified by the lower and upper address boundaries of a function address
range.

The monitor routines are:

monitor()
Use this routine to gain control of explicit profiling by turning profiling
on and off for a specific text range. This routine is not supported for
gprof profiling.

monstartup()
Similar to monitor, except it specifies address range only and is
supported for gprof profiling.

moncontrol()
Use this routine with monitor and monstartup to turn PC sampling
on or off during program execution for a specific process or thread.

monitor_signal()
Use this routine to profile nonterminating programs, such as daemons.

You can use monitor and monstartup to profile an address range in
each shared library as well as in the static executable.

For more information on these functions, see monitor(3).

By default, profiling begins as soon your program starts to execute. You can
set the PROFFLAGS environment variable to –disable_default to

Profiling Programs to Improve Performance 8–25

prevent profiling from beginning when your program executes. Then, you
can use the monitor routines to begin profiling after the first call to
monitor or monstartup.

You can disable the default naming of the profiling data file by using the
PROFDIR environment variable. For more information on using this
environment variable, see Section 8.12.1.

Example 8-6 demonstrates how to use the monstartup and monitor
routines within a program to begin and end profiling.

Example 8-6: Using monstartup() and monitor()

/* Profile the domath() routine using monstartup.
* This example allocates a buffer for the entire program.
* Compile command: cc -p foo.c -o foo -lm
* Before running the executable, enter the following
* from the command line to disable default profiling support:
* setenv PROFFLAGS -disable_default
*/

#include <stdio.h>
#include <sys/syslimits.h>

char dir[PATH_MAX];

extern void __start();
extern unsigned long _etext;

main()
{

int i;
int a = 1;

/* Start profiling between __start (beginning of text
* and _etext (end of text). The profiling library
* routines will allocate the buffer.
*/

monstartup(__start,&_etext);

for(i=0;i<10;i++)
domath();

/* Stop profiling and write the profiling output file. */

monitor(0);

}
domath()

{
int i;

8–26 Profiling Programs to Improve Performance

Example 8-6: (continued)
double d1, d2;

d2 = 3.1415;
for (i=0; i<1000000; i++)

d1 = sqrt(d2)*sqrt(d2);
}

The external name _etext lies just above all the program text. See end(3)
for more information.

When you set the PROFFLAGS environment variable to
–disable_default, you disable default profiling buffer support. You
can allocate buffers within your program, as shown in Example 8-7.

Example 8-7: Allocating Profiling Buffers Within a Program

/* Profile the domath routine using monitor().
* Compile command: cc -p foo.c -o foo -lm
* Before running the executable, enter the following
* from the command line to disable default profiling support:
* setenv PROFFLAGS -disable_default
*/

#include <sys/types.h>
#include <sys/syslimits.h>

extern char *calloc();

void domath(void);
void nextproc(void);

#define INST_SIZE 4 /* Instruction size on Alpha */
char dir[PATH_MAX];

main()
{

int i;
char *buffer;
size_t bufsize;

/* Allocate one counter for each instruction to
* be sampled. Each counter is an unsigned short.
*/

bufsize = (((char *)nextproc - (char *)domath)/INST_SIZE)
* sizeof(unsigned short);

/* Use calloc() to ensure that the buffer is clean
* before sampling begins.
*/

Profiling Programs to Improve Performance 8–27

Example 8-7: (continued)
buffer = calloc(bufsize,1);

/* Start sampling. */
monitor(domath,nextproc,buffer,bufsize,0);
for(i=0;i<10;i++)

domath();

/* Stop sampling and write out profiling buffer. */
monitor(0);

}
void domath(void)

{
int i;
double d1, d2;

d2 = 3.1415;
for (i=0; i<1000000; i++)

d1 = sqrt(d2)*sqrt(d2);
}

void nextproc(void)
{}

You use the monitor_signal() routine to profile programs that do not
terminate. Declare this routine as a signal handler in your program and build
the program for prof or gprof profiling. While the program is executing,
send a signal from the shell by using the kill command.

When the signal is received, monitor_signal is invoked and writes
profiling data to the data file. If the program receives another signal, the data
file is overwritten.

Example 8-8 illustrates how to use the monitor_signal routine.

Example 8-8: Using monitor_signal() to Profile Non-Terminating
Programs

/* From the shell, start up the program in background.
* Send a signal to the process, for example: kill -30 <pid>
* Process the [g]mon.out file normally using gprof or prof
*/

#include <signal.h>

extern int monitor_signal();

main()
{

int i;
double d1, d2;

8–28 Profiling Programs to Improve Performance

Example 8-8: (continued)
/*
* Declare monitor_signal() as signal handler for SIGUSR1
*/
signal(SIGUSR1,monitor_signal);
d2 = 3.1415;
/*
* Loop infinitely (absurd example of non-terminating process)
*/
for (;;)

d1 = sqrt(d2)*sqrt(d2);
}

8.14 Profiling Multithreaded Applications
Profiling multithreaded applications is essentially the same as profiling non-
threaded applications. However, to profile multithreaded applications, you
must compile your program with the –pthread or –threads flag to the
cc command. Specifying one of these flags and either the –p or –pg flag
enables the thread profiling library, libprof1_r.a.

The default case for profiling multithreaded applications is to provide one
sampling buffer for all threads. In this case, you get sampling across the
entire process and you get one output file comprising sampling data from all
threads. Depending on whether you use the –p or –pg flag, your output file
will be named mon.out or gmon.out, respectively.

To get a separate buffer and a separate output file for each thread in your
program, use the environment variable PROFFLAGS. Set PROFFLAGS to
–threads, as shown in the following example:
setenv PROFFLAGS "-threads"

The profiling data file will be named according to the following convention:
pid.sid.progname

In the preceding example, pid is the process id of the program, sid
corresponds to the order in which the thread was created, progname is your
program name.

If the application controls profiling by using the monitor routines, sid
corresponds to the order in which profiling was started for the thread.

If you use the monitor() or monstartup() calls in a threaded
program, you must first set PROFFLAGS to "-disable_default -
threads", giving you complete control of profiling the application.

If the application uses monitor() and allocates separate buffers for each
thread profiled, you must first set PROFFLAGS to "disable_default -
threads" because this setting affects the file naming conventions that are
used. Without the –threads flag, the buffer and address range used as a

Profiling Programs to Improve Performance 8–29

result of the first monitor or monstartup call would be applied to every
thread that subsequently requests profiling. In this case, a single data file that
covers all threads being profiled would be created.

Each thread in a process must call the monitor() or monstartup()
routines to initiate profiling for itself.

8–30 Profiling Programs to Improve Performance

9Using and Developing Atom Tools3333333333333333333333
Program analysis tools are extremely important for computer architects and
software engineers. Computer architects use them to test and measure new
architectural designs, and software engineers use them to identify critical
pieces of code in programs or to examine how well a branch prediction or
instruction scheduling algorithm is performing. Program analysis tools are
needed for problems ranging from basic block counting to instruction and
data cache simulation. Although the tools that accomplish these tasks may
appear quite different, each can be implemented simply and efficiently
through code instrumentation.

Atom provides a flexible code instrumentation interface that is capable of
building a wide variety of tools. Atom separates the common part in all
problems from the problem-specific part by providing machinery for
instrumentation and object-code manipulation, and allowing the tool designer
to specify what points in the program are to be instrumented. Atom is
independent of any compiler and language as it operates on object modules
that make up the complete program.

Atom, as provided in the Digital UNIX operating system, provides the
following:

• A set of prepackaged tools that may be used to instrument applications
for profiling or debugging purposes. Use the following command to
apply one of these tools to a given application:

atom application_program –tool toolname –env environment

• A command interface and a collection of instrumentation routines that
may be used to create custom Atom tools. Use the following command
to create a custom-designed Atom tool:

atom application_program instrumentation_file analysis_file

The atom(1) reference page describes both forms of the atom command.

This chapter contains the following sections:

• Section 9.1 describes the prepackaged Atom tools and how to use them.

• Section 9.2 discusses how you can develop specialized Atom tools.

9.1 Using Prepackaged Atom Tools
The Digital UNIX operating system provides and supports the Atom tools
listed in Table 9-1.

Table 9-1: Supported Prepackaged Atom Tools
222
Tool Description222
Third Degree (third) Performs memory access checks and detects memory

leaks in an application. The Third Degree Atom tool
is described in Chapter 7 and in the third(5)
reference page.

hiprof Produces a flat profile of an application that shows
the execution time spent in a given procedure and a
hierarchical profile that shows the execution time
spent in a given procedure and all its descendants.
The hiprof Atom tool is described in Chapter 8
and hiprof(5).

pixie Partitions an application into basic blocks and counts
the number of times each basic block is executed.
The pixie Atom tool is described in Chapter 8 and
pixie(5).222

The Digital UNIX operating system provides the unsupported Atom tools
listed in Table 9-2 as examples for programmers developing custom-designed
Atom tools. These tools are distributed in source form to illustrate Atom’s
programming interfaces. Some of the tools are further described in Section
9.2.

Table 9-2: Example Prepackaged Atom Tools
22
Tool Description22
branch Instruments all conditional branches to determine how many

are predicted correctly.

cache Determines cache miss rate if application runs in 8K direct-
mapped cache.

dtb Determines the number of dtb (data translation buffer) misses
if the application uses 8KB pages and a fully associative
translation buffer.

dyninst Provides fundamental dynamic counts of instructions, loads,
stores, blocks, and procedures.

9–2 Using and Developing Atom Tools

Table 9-2: (continued)
22
Tool Description22
inline Identifies potential candidates for inlining.

iprof Prints the number of times each procedure is called as well as
the number of instructions executed (dynamic count) by each
procedure.

malloc Records each call to the malloc function and prints a
summary of the application’s allocated memory.

prof Prints the number of instructions executed (dynamic count)
by each procedure.

ptrace Prints the name of each procedure as it is called.

trace Generates an address trace, logs the effective address of every
load and store operation, and logs the address of the start of
every basic block as it is executed.22

9.2 Developing Atom Tools
An Atom tool consists of the following:

• An instrumentation file – Modifies the application to which it is applied
by adding calls at well-defined locations to tool-specific analysis
procedures.

• An analysis file – Defines the procedures and data structures required to
implement the tool’s functionality.

Atom views an application as a hierarchy of components:

1. The program, including the executable and all shared libraries.

2. A collection of objects. An object can be either the main executable or
any shared library. An object has its own set of attributes (such as its
name) and consists of a collection of procedures.

3. A collection of procedures, each of which consists of a collection of basic
blocks.

4. A collection of basic blocks, each of which consists of a collection of
instructions.

5. A collection of instructions.

Atom tools insert instrumentation points in an application program at
procedure, basic block, or instruction boundaries. For example, basic block
counting tools instrument the beginning of each basic block, data cache

Using and Developing Atom Tools 9–3

simulators instrument each load and store instruction, and branch prediction
analyzers instrument each conditional branch instruction.

At any instrumentation point, Atom allows a tool to insert a procedure call to
an analysis routine. The tool can specify that the procedure call be made
before or after an object, procedure, basic block, or instruction.

9.2.1 The ATOM Command Line
The command line used to apply Atom tools to an application is described
completely in the atom(1) reference page. This section describes the
command line and its most commonly used arguments and flags.

The atom command line has two forms:

atom application_program –tool toolname[–env environment] [flags...]

This form of the atom command is used to build an instrumented
version of an application program using a prepackaged Atom tool.

This form requires the –tool flag and accepts the –env flag. It does
not allow either the instrumentation_file or the
analysis_file parameter.

The –tool flag identifies the prepackaged Atom tool to be used. By
default, Atom searches for prepackaged tools in the
/usr/lib/cmplrs/atom/tools and
/usr/lib/cmplrs/atom/examples directories. You can add
directories to the search path by supplying a colon-separated list of
additional directories to the ATOMTOOLPATH environment variable.

The –env flag identifies any special environment (for instance,
threads) in which the tool is to operate. The set of environments
supported by a given tool is defined by the tool’s creator and listed in
the tool’s documentation. Atom displays an error if you specify an
environment that is undefined for the tool. The prepackaged tools allow
you to omit the –env flag to obtain a general-purpose environment.

atom application_program instrumentation_file[analysis_file] [flags...]

This form of the atom command is used to apply a tool that
instruments an application program. This form requires the
instrumentation_file parameter and accepts the
analysis_file parameter.

The instrumentation_file parameter specifies the name of a C
source file or an object module that contains the Atom tool’s
instrumentation procedures. By convention, most instrumentation files
have the suffix .inst.c or .inst.o.

9–4 Using and Developing Atom Tools

The analysis_file parameter specifies the name of a C source file
or an object module that contains the Atom tool’s analysis procedures.
Note that you do not need to specify an analysis file if the
instrumentation file does not call analysis procedures. By convention,
most analysis files have the suffix .anal.c or .anal.o.

You can have multiple instrumentation and analysis source files. The
following example creates composite instrumentation and analysis objects
from several source files:
% cc -c file1.c file2.c

% cc -c file7.c file8

% ld -r -o tool.inst.o file1.o file2.o

% ld -r -o tool.anal.o file7.o file8.o

% atom hello tool.inst.o tool.anal.o -o hello.tool

Note

You can also write analysis procedures in C++. You must assign
a type of ‘‘extern "C"’’ to each procedure to allow it to be
called from the application. You must also compile and link the
analysis files before issuing the atom command. For example:
% cxx -c tool.a.C

% ld -r -o tool.anal.o tool.a.o -lcxx -lexc

% atom hello tool.inst.c tool.anal.o -o hello.tool

With the exception of the –tool and –env flags, both forms of the atom
command accept any of the remaining flags described in the atom(1)
reference page. The following are some flags that deserve special
mentioning:

–A1
Causes Atom to optimize calls to analysis routines by reducing the
number of registers that need to be saved and restored. For some tools,
specifying this flag increases the performance of the instrumented
application by a factor of 2 (at the expense of some increase in
application size). The default behavior is for Atom not to apply these
optimizations.

–debug
Allows you to debug instrumentation routines by causing Atom to
transfer control to the symbolic debugger at the start of the
instrumentation routine. In the following example, the ptrace sample
tool is run under the dbx debugger. The instrumentation is stopped at

Using and Developing Atom Tools 9–5

line 12, and the procedure name is printed.
% atom hello ptrace.inst.c ptrace.anal.c -o hello.ptrace -debug
dbx version 3.11.8
Type ’help’ for help.
Stopped in InstrumentAll
(dbx) stop at 12
[4] stop at "/udir/test/scribe/atom.user/tools/ptrace.inst.c":12
(dbx) c
[3] [InstrumentAll:12 ,0x12004dea8] if (name == NULL) name = "UNKNOWN";
(dbx) p name
0x2a391 = "__start"

–g
Causes Atom to build the analysis procedures with debugging symbol
table information, allowing you to run instrumented applications under a
symbolic debugger. Atom assumes that the application itself runs
correctly, allowing debugger commands to be used only on analysis
procedures. For example:
% atom hello ptrace.inst.c ptrace.anal.c -o hello.ptrace -g

% dbx hello.ptrace
dbx version 3.11.8
Type ’help’ for help.
(dbx) stop in ProcTrace
[2] stop in ProcTrace
(dbx) r
[2] stopped at [ProcTrace:5 ,0x120005574] fprintf (stderr,"%s\n",name);
(dbx) n
__start

[ProcTrace:6 ,0x120005598] }

–toolargs
Passes arguments to the Atom tool’s instrumentation routine. Atom
passes the arguments in the same way that they are passed to C
programs, using the argc and argv arguments to the main program.
For example:
#include <stdio.h>
unsigned InstrumentAll(int argc, char **argv) {

int i;
for (i = 0; i < argc; i++) {

printf(stderr,"argv[%d]: %s\n",argv[i]);
}

}

The following example shows how Atom passes the –toolargs
arguments:
% atom hello args.inst.c -toolargs="8192 4"
argv[0]: hello
argv[1]: 8192
argv[2]: 4

9–6 Using and Developing Atom Tools

9.2.2 Atom Instrumentation Routine
Atom invokes a tool’s instrumentation routine on a given application
program when that program is specified as the application_program
parameter to the atom command, and either of the following is true:

• The tool is a prepackaged tool specified as an argument to the –tool
flag of an atom command. By default, Atom looks for prepackaged
tools in the /usr/lib/cmplrs/atom/tools and
/usr/lib/cmplrs/atom/examples directories.

• The file containing the instrumentation routine is specified as the
instrumentation_file parameter of an atom command.

The instrumentation routine contains the code that traverses the objects,
procedures, basic blocks, and instructions to locate instrumentation points;
adds calls to analysis procedures; and builds the instrumented version of an
application.

As described in the atom_instrumentation_routines(5) reference
page, an instrumentation routine can employ one of the following interfaces
based on the needs of the tool:

Instrument (int iargc, char **iargv, Obj *obj)

Atom calls the Instrument routine for each object in the application
program. As a result, an Instrument routine does not need to use the
object navigation routines (such as GetFirstObj). Because Atom
automatically writes each object before passing the next to the
Instrument routine, the Instrument routine should never call the
BuildObj, WriteObj, or ReleaseObj routine. When using the
Instrument interface, you can define an InstrumentInit routine
to perform tasks required before Atom calls Instrument for the first
object (such as defining analysis routine prototypes, adding program
level instrumentation calls, and performing global initializations). You
can also define an InstrumentFini routine to perform tasks required
after Atom calls Instrument for the last object (such as global
cleanup).

InstrumentAll (int iargc, char **iargv)

Atom calls the InstrumentAll routine once for the entire application
program, thus allowing a tool’s instrumentation code itself to determine
how to traverse the application’s objects. With this method, there are no
InstrumentInit or InstrumentFini routines. An
InstrumentAll routine must call the Atom object navigation
routines and use the BuildObj, WriteObj, or ReleaseObj routine
to manage the application’s objects.

Using and Developing Atom Tools 9–7

Regardless of the instrumentation routine interface, Atom passes the
arguments specified in the -toolargs flag to the routine. In the case of
the Instrument interface, Atom also passes a pointer to the current object.

9.2.3 Atom Instrumentation Interfaces
Atom provides a comprehensive interface for instrumenting applications.
The interface supports the following types of activities:

• Navigating among a program’s objects, procedures, basic blocks, and
instructions. See Section 9.2.3.1.

• Building, releasing, and writing objects. See Section 9.2.3.2.

• Obtaining information about the different components of an application.
See Section 9.2.3.3.

• Resolving procedure names and call targets. See Section 9.2.3.4.

• Adding calls to analysis routines at desired locations in the program. See
Section 9.2.3.5.

9.2.3.1 Navigating Within a Program

The Atom application navigation routines, described in the
atom_application_navigation(5) reference page, allow an Atom
tool’s instrumentation routine to find locations in an application at which to
add calls to analysis procedures.

• The GetFirstObj, GetLastObj, GetNextObj, and GetPrevObj
routines navigate among the objects of a program. For nonshared
programs, there is only one object. For call-shared programs, the first
object corresponds to the main program. The remaining objects are each
of its dynamically linked shared libraries.

• The GetFirstObjProc and GetLastObjProc routines return a
pointer to the first or last procedure, respectively, in the specified object.
The GetNextProc and GetPrevProc routines navigate among the
procedures of an object.

• The GetFirstBlock, GetLastBlock, GetNextBlock, and
GetPrevBlock routines navigate among the basic blocks of a
procedure.

• The GetFirstInst, GetLastInst, GetNextInst, and
GetPrevInst routines navigate among the instructions of a basic
block.

• The GetInstBranchTarget routine returns a pointer to the
instruction that is the target of a specified branch instruction.

9–8 Using and Developing Atom Tools

• The GetProcObj routine returns a pointer to the object that contains
the specified procedure. Similarly, the GetBlockProc routine returns a
pointer to the procedure that contains the specified basic block, and the
GetInstBlock routine returns a pointer to the basic block that
contains the specified instruction.

9.2.3.2 Building Objects

The Atom object management routines, described in the
atom_object_management(5) reference page, allow an Atom tool’s
InstrumentAll routine to build, write, and release objects.

The BuildObj routine builds the internal data structures Atom requires to
manipulate the object. An InstrumentAll routine must call the
BuildObj routine before traversing the procedures in the object and adding
analysis routine calls to the object. The WriteObj routine writes the
instrumented version the specified object, deallocating the internal data
structures the BuildObj routine previously created. The ReleaseObj
routine deallocates the internal data structures for the given object, but does
not write out the instrumented version the object.

The IsObjBuilt routine returns a nonzero value if the specified object has
been built with the BuildObj routine but not yet written with the
WriteObj routine or unbuilt with the ReleaseObj routine.

9.2.3.3 Obtaining Information About an Application’s Components

The Atom application query routines, described in the
atom_application_query(5) reference page, allow an instrumentation
routine to obtain static information about a program and its objects,
procedures, basic blocks, and instructions.

The GetAnalName routine returns the name of the analysis file, as passed
to the atom command. This routine is useful for tools that have a single
instrumentation file and multiple analysis files. For example, multiple cache
simulators might share a single instrumentation file but each have a different
analysis file.

The GetProgInfo routine returns the number of objects in a program.

Table 9-3 lists the routines that provide information about a program’s
objects.

Using and Developing Atom Tools 9–9

Table 9-3: Atom Object Query Routines
22
Routine Description22
GetObjInfo Returns information about an object’s text, data, and

bss segments; the number of procedures, basic
blocks, or instructions it contains; its object ID; or a
Boolean hint as to whether the given object should
be excluded from instrumentation.

GetObjInstArray Returns an array consisting of the 32-bit instructions
included in the object.

GetObjInstCount Returns the number of instructions in the array
included in the array returned by the
GetObjInstArray routine.

GetObjName Returns the original filename of the specified object.

GetObjOutName Returns the name of the instrumented object.22

The following instrumentation routine, which prints statistics about the
program’s objects, demonstrates the use of Atom object query routines:

1 #include <stdio.h>
2 #include <cmplrs/atom.inst.h>
3 unsigned InstrumentAll(int argc, char **argv)
4 {
5 Obj *o; Proc *p;
6 const unsigned int *textSection;
7 long textStart;
8 for (o = GetFirstObj(); o != NULL; o = GetNextObj(o)) {
9 BuildObj(o);

10 textSection = GetObjInstArray(o);
11 textStart = GetObjInfo(o,ObjTextStartAddress);
12 printf("Object %d\n", GetObjInfo(o,ObjID));
13 printf(" Object name: %s\n", GetObjName(o));
14 printf(" Text segment start: 0x%lx\n", textStart);
15 printf(" Text size: %ld\n", GetObjInfo(o,ObjTextSize));
16 printf(" Second instruction: 0x%x\n", textSection[1]);
17 ReleaseObj(o);
18 }
19 return(0);
20 }

Because the instrumention routine adds no procedures to the executable, there
is no need for an analysis procedure. The following example demonstrates
the process of compiling and instrumenting a program with this tool. A
sample run of the instrumented program prints the object identifier, the
compile-time starting address of the text segment, the size of the text
segment, and the binary for the second instruction. The disassembler

9–10 Using and Developing Atom Tools

provides a convenient method for finding the corresponding instructions.
% cc hello.c -o hello

% atom hello info.inst.c -o hello.info
Object 0

Object Name: hello
Start Address: 0x120000000
Text Size: 8192
Second instruction: 0x239f001d

Object 1
Object Name: /usr/shlib/libc.so
Start Address: 0x3ff80080000
Text Size: 901120
Second instruction: 0x239f09cb

% dis hello | head -3
0x120000fe0: a77d8010 ldq t12, -32752(gp)
0x120000fe4: 239f001d lda at, 29(zero)
0x120000fe8: 279c0000 ldah at, 0(at)

% dis /ust/shlib/libc.so | head -3
0x3ff800bd9b0: a77d8010 ldq t12,-32752(gp)
0x3ff800bd9b4: 239f09cb lda at,2507(zero)
0x3ff800bd9b8: 279c0000 ldah at, 0(at)

Table 9-4 lists the routines that provide information about an object’s
procedures:

Table 9-4: Atom Procedure Query Routines
22
Routine Description22
GetProcInfo Returns information pertaining to the procedure’s

stack frame, register-saving, register-usage, and
prologue characteristics as defined in the Calling
Standard for Alpha Systems and the Assembly
Language Programmer’s Guide. Such values are
important to tools, like Third Degree, that monitor
the stack for access to uninitialized variables. It can
also return such information about the procedure as
the number of basic blocks or instructions it
contains, its procedure ID, its lowest or highest
source line number, or an indication if its address
has been taken.

ProcFileName Returns the name of the source file that contains the
procedure.

ProcName Returns the procedure’s name.

ProcPC Returns the compile-time program counter (PC) of
the first instruction in the procedure.22

Using and Developing Atom Tools 9–11

Table 9-5 lists the routines that provide information about a procedure’s basic
blocks:

Table 9-5: Atom Basic Block Query Routines
22
Routine Description22
BlockPC Returns the compile-time program counter (PC) of

the first instruction in the basic block.

GetBlockInfo Returns the number of instructions in the basic block
or the block ID. The block ID is unique to this
basic block within its containing object.

IsBranchTarget Indicates if the block is the target of a branch
instruction.22

Table 9-6 lists the routines that provide information about a basic block’s
instructions:

Table 9-6: Atom Instruction Query Routines
22
Routine Description22
GetInstBinary Returns a 32-bit binary representation of the

assembly language instruction.

GetInstClass Returns the instruction class (for instance, floating-
point load or integer store) as defined by the Alpha
Architecture Reference Manual. An Atom tool uses
this information to determine instruction scheduling
and dual issue rules.

GetInstInfo Parses the entire 32-bit instruction and obtains all or
a portion of that instruction.

GetInstRegEnum Returns the register type (floating-point or integer)
from an instruction field as returned by the
GetInstInfo routine.

GetInstRegUsage Returns a bit mask with one bit set for each possible
source register and one bit set for each possible
destination register.

InstPC Returns the compile-time program counter (PC) of
the instruction.

InstLineNo Returns the instruction’s source line number.

9–12 Using and Developing Atom Tools

Table 9-6: (continued)
22
Routine Description22
IsInstType Indicates whether the instruction is of the specified

type (load instruction, store instruction, conditional
branch, or unconditional branch).22

9.2.3.4 Resolving Procedure Names and Call Targets

Resolving procedure names and subroutine targets is trivial for nonshared
programs because all procedures are contained in the same object. However,
the target of a subroutine branch in a call-shared program could be in any
object.

The Atom application procedure name and call target resolution routines,
described in the atom_application_resolvers(5) reference page,
allow an Atom tool’s instrumentation routine to find a procedure by name
and to find a target procedure for a call site:

• The ResolveTargetProc routine attempts to resolve the target of a
procedure call.

• The ResolveNamedProc routine returns the procedure identified by
the specified name string.

• The ReResolveProc routine completes a procedure resolution if the
procedure initially resided in an unbuilt object.

9.2.3.5 Adding Calls to Analysis Routines to a Program

The Atom application instrumentation routines, described in the
atom_application_instrumentation(5) reference page, add
arbitrary procedure calls at various points in the application:

• You must use the AddCallProto routine to specify the prototype of
each analysis procedure to be added to the program. In other words, an
AddCallProto call must define the procedural interface for each
analysis procedure used in calls to AddCallProgram, AddCallObj,
AddCallProc, AddCallBlock, and AddCallInst. Atom provides
facilities for passing integers and floating-point numbers, arrays, branch
condition values, effective addresses, cycle counters, as well as procedure
arguments and return values.

• Use the AddCallProgram routine in an instrumentation routine to add
a call to an analysis procedure before a program starts execution or after
it completes execution. Typically, such an analysis procedure does

Using and Developing Atom Tools 9–13

something that applies to the whole program, such as opening an output
file or parsing command line options.

• Use the AddCallObj routine in an instrumentation routine to add a call
to an analysis procedure before an object starts execution or after it
completes execution. Typically such an analysis procedure does
something that applies to the single object, such as initializing some data
for its procedures.

• Use the AddCallProc routine in an instrumentation routine to add a
call to an analysis procedure before a procedure starts execution or after it
completes execution.

• Use the AddCallBlock routine in an instrumentation routine to add a
call to an analysis procedure before a basic block starts execution or after
it completes execution.

• Use the AddCallInst routine in an instrumentation routine to add a
call to an analysis procedure before a given instruction executes or after it
executes.

• Use the ReplaceProcedure routine to replace a procedure in the
instrumented program. For example, the Third Degree Atom tool
replaces memory allocation functions such as malloc and free with its
own versions to allow it to check for invalid memory accesses and
memory leaks.

9.2.4 Atom Description File
An Atom tool’s description file, as described in the
atom_description_file(5) reference page, identifies and describes the
tool’s instrumentation and analysis files. It can also specify the flags to be
used by the cc, ld, and atom commands when it is compiled, linked, and
invoked. Each Atom tool must supply at least one description file.

There are two types of Atom description file:

• A description file providing an environment for generalized use of the
tool. A tool can provide only one general-purpose environment. The
name of this type of description file has the format:

tool.desc

• A description file providing an environment for use of the tool in specific
contexts, such as in a multithreaded application or in kernel mode. A
tool can provide several special-purpose environments, each of which has
its own description file. The name of this type of description file has the
format:

tool.environment.desc

9–14 Using and Developing Atom Tools

The names supplied for the tool and environment portions of these
description file names correspond to values the user specifies to the –tool
and –env flags of an atom command when invoking the tool.

An Atom description file is a text file containing a series of tags and values.
See atom_description_file(5) for a complete description of the file’s
syntax.

9.2.5 Writing Analysis Procedures
An instrumented application calls analysis procedures to perform the specific
functions defined by an Atom tool. An analysis procedure can use any
system call or library function, even if the same call or function is
instrumented within the application. The routines used by the analysis
routine and the instrumented application are physically distinct.

9.2.5.1 Input/Output

An analysis procedure that uses the standard I/O library should take care to
explicitly close file descriptors before the instrumented application exits.
The standard I/O library buffers read and write requests to optimize disk
accesses. It flushes an output buffer to disk either when it is full or when a
procedure calls the fflush function. If the instrumented application exits
before an analysis procedure properly closes its output file descriptors, the
procedure’s output may not be completely written.

Some Atom tool analysis procedures may print results to stdout or
stderr. Because the file descriptors for these I/O streams are closed when
an instrumented application calls the exit function, an analysis routine that
is called from an instrumentation point set by a call to the ProgramAfter
routine can no longer send output to either. Analysis procedures written in
C++ must also take care when using the cout and cerr functions. Because
these streams are buffered by the class library, an analysis routine must call
cout.flush() or cerr.flush() before the instrumented application
exits.

9.2.5.2 Fork and Exec System Calls

If a process calls a fork function but does not call an exec function, the
process is cloned and the child inherits an exact copy of the parent’s state. In
many cases, this is exactly the behavior than an Atom tool expects. For
example, an instruction-address tracing tool sees references for both the
parent and the child, interleaved in the order in which the references
occurred.

In the case of an instruction-profiling tool (for example, the trace tool
referenced in Table 9-2), the file is opened at a ProgramBefore
instrumentation point and, as a result, the output file descriptor is shared

Using and Developing Atom Tools 9–15

between the parent and the child processes. If the results are printed at a
ProgramAfter instrumentation point, the output file contains the parent’s
data, followed by the child’s data (assuming that the parent process finishes
first).

For tools that count events, the data structures that hold the counts should be
returned to zero in the child process after the fork call because the events
occurred in the parent, not the child. This type of Atom tool can support
correct handling of fork calls by instrumenting the fork library procedure
and calling an analysis procedure with the return value of the fork routine
as an argument. If the analysis procedure is passed a return value of 0 (zero)
in the argument, it knows that it was called from a child process. It can then
reset the counts variable or other data structures so that they tally statistics
for only the child process.

9.2.6 Determining the Instrumented PC from an Analysis Routine
The Atom Xlate routines, described in Xlate(5), allow you to determine the
instrumented PC for selected instructions. You can use these functions to
build a table that translates an instruction’s PC in the instrumented
application to its PC in the uninstrumented application.

To enable analysis code to determine the instrumented PC of an instruction at
runtime, an Atom tool’s instrumentation routine must select the instruction
and place it into an address translation buffer (XLATE).

An Atom tool’s instrumentation routine creates and fills the address
translation buffer by calling the CreateXlate and AddXlateAddress
routines, respectively. An address translation buffer can only hold
instructions from a single object.

The AddXlateAddress routine adds the specified instruction to an
existing address translation buffer.

An Atom tool’s instrumentation passes an address translation buffer to an
analysis routine by passing it as a parameter of type XLATE *, as indicated
in the analysis routine’s prototype definition in an AddCallProto call.

Another way to determine an instrumented PC is to specify a formal
parameter type of REGV in an analysis routine’s prototype and pass the
REG_IPC value.

An Atom tool’s analysis routine uses the following interfaces to access an
address translation buffer passed to it:

• The XlateNum routine returns the number of addresses in the specified
address translation buffer.

• The XlateInstTextStart routine returns the starting address of the
text segment for the instrumented object corresponding to the specified
address translation buffer.

9–16 Using and Developing Atom Tools

• The XlateInstTextSize routine returns the size of the text segment.

• The XlateLoadShift routine returns the difference between the
runtime addresses in the object corresponding to the specified address
translation buffer and the compile-time addresses.

• The XlateAddr routine returns the instrumented runtime address for the
instruction in the specified position of the specified address translation
buffer. Note that the runtime address for an instruction in a shared library
is not necessarily the same as its compile-time address.

The following example demonstrates the use of the Xlate routines by the
instrumentation and analysis files of a tool that uses the Xlate routines. This
tool prints the target address of every jump instruction. To use it, issue the
following instruction:
% atom progname xlate.inst.c xlate.anal.c -all

The following source listing (xlate.inst.c) contains the instrumentation
for the xlate tool:

#include <stdlib.h>
#include <stdio.h>
#include <alpha/inst.h>
#include <cmplrs/atom.inst.h>

static void address_add(unsigned long);
static unsigned address_num(void);
static unsigned long * address_paddrs(void);
static void address_free(void);

void InstrumentInit(int iargc, char **iargv)
{

/* Create analysis prototypes. */
AddCallProto("RegisterNumObjs(int)");
AddCallProto("RegisterXlate(int, XLATE *, long[0])");
AddCallProto("JmpLog(long, REGV)");

/* Pass the number of objects to the analysis routines. */
AddCallProgram(ProgramBefore, "RegisterNumObjs",

GetProgInfo(ProgNumberObjects));
}

Instrument(int iargc, char **iargv, Obj *obj)
{

Proc * p;
Block * b;
Inst * i;
Xlate * pxlt;
union alpha_instruction bin;
ProcRes pres;
unsigned long pc;
char proto[128];

/*
* Create an XLATE structure for this Obj. We use this to translate
* instrumented jump target addresses to pure jump target addresses.

Using and Developing Atom Tools 9–17

*/
pxlt = CreateXlate(obj, XLATE_NOSIZE);

for (p = GetFirstObjProc(obj); p; p = GetNextProc(p)) {
for (b = GetFirstBlock(p); b; b = GetNextBlock(b)) {

/*
* If the first instruction in this basic block has had its
* address taken, it’s a potential jump target. Add the
* instruction to the XLATE and keep track of the pure address
* too.
*/

i = GetFirstInst(b);
if (GetInstInfo(i, InstAddrTaken)) {

AddXlateAddress(pxlt, i);
address_add(InstPC(i));

}

for (; i; i = GetNextInst(i)) {
bin.word = GetInstInfo(i, InstBinary);
if (bin.common.opcode == op_jsr &&

bin.j_format.function == jsr_jmp)
{

/*
* This is a jump instruction. Instrument it.
*/

AddCallInst(i, InstBefore, "JmpLog", InstPC(i),
GetInstInfo(i, InstRB));

}
}

}
}

/*
* Re-prototype the RegisterXlate() analysis routine now that we
* know the size of the pure address array.
*/

sprintf(proto, "RegisterXlate(int, XLATE *, long[%d])", address_num());
AddCallProto(proto);

/*
* Pass the XLATE and the pure address array to this object.
*/

AddCallObj(obj, ObjBefore, "RegisterXlate", GetObjInfo(obj, ObjID),
pxlt, address_paddrs());

/*
* Deallocate the pure address array.
*/

address_free();
}

/*
** Maintains a dynamic array of pure addresses.
*/
static unsigned long * pAddrs;
static unsigned maxAddrs = 0;
static unsigned nAddrs = 0;

/*
** Add an address to the array.

9–18 Using and Developing Atom Tools

*/
static void address_add(

unsigned long addr)
{

/*
* If there’s not enough room, expand the array.
*/

if (nAddrs >= maxAddrs) {
maxAddrs = (nAddrs + 100) * 2;
pAddrs = realloc(pAddrs, maxAddrs * sizeof(*pAddrs));
if (!pAddrs) {

fprintf(stderr, "Out of memory\n");
exit(1);

}
}

/*
* Add the address to the array.
*/

pAddrs[nAddrs++] = addr;
}

/*
** Return the number of elments in the address array.
*/
static unsigned address_num(void)
{

return(nAddrs);
}

/*
** Return the array of addresses.
*/
static unsigned long *address_paddrs(void)
{

return(pAddrs);
}

/*
** Deallocate the address array.
*/
static void address_free(void)
{

free(pAddrs);
pAddrs = 0;
maxAddrs = 0;
nAddrs = 0;

}

Using and Developing Atom Tools 9–19

The following source listing (xlate.anal.c) contains the analysis routine
for the xlate tool:
#include <stdlib.h>
#include <stdio.h>
#include <cmplrs/atom.anal.h>

/*
* Each object in the application gets one of the following data
* structures. The XLATE contains the instrumented addresses for
* all possible jump targets in the object. The array contains
* the matching pure addresses.
*/

typedef struct {
XLATE * pXlt;
unsigned long * pAddrsPure;

} ObjXlt_t;

/*
* An array with one ObjXlt_t structure for each object in the
* application.
*/

static ObjXlt_t * pAllXlts;
static unsigned nObj;
static int translate_addr(unsigned long, unsigned long *);
static int translate_addr_obj(ObjXlt_t *, unsigned long,

unsigned long *);

/*
** Called at ProgramBefore. Registers the number of objects in
** this application.
*/
void RegisterNumObjs(

unsigned nobj)
{

/*
* Allocate an array with one element for each object. The
* elements are initialized as each object is loaded.
*/

nObj = nobj;
pAllXlts = calloc(nobj, sizeof(pAllXlts));
if (!pAllXlts) {

fprintf(stderr, "Out of Memory\n");
exit(1);

}
}

/*
** Called at ObjBefore for each object. Registers an XLATE with
** instrumented addresses for all possible jump targets. Also
** passes an array of pure addresses for all possible jump targets.
*/
void RegisterXlate(

unsigned iobj,
XLATE * pxlt,
unsigned long * paddrs_pure)

{
/*
* Initialize this object’s element in the pAllXlts array.
*/

9–20 Using and Developing Atom Tools

pAllXlts[iobj].pXlt = pxlt;
pAllXlts[iobj].pAddrsPure = paddrs_pure;

}

/*
** Called at InstBefore for each jump instruction. Prints the pure
** target address of the jump.
*/
void JmpLog(

unsigned long pc,
REGV targ)

{
unsigned long addr;

printf("0x%lx jumps to - ", pc);
if (translate_addr(targ, &addr))

printf("0x%lx\n", addr);
else

printf("unknown\n");
}

/*
** Attempt to translate the given instrumented address to its pure
** equivalent. Set ’*paddr_pure’ to the pure address and return 1
** on success. Return 0 on failure.
**
** Will always succede for jump target addresses.
*/
static int translate_addr(

unsigned long addr_inst,
unsigned long * paddr_pure)

{
unsigned long start;
unsigned long size;
unsigned i;

/*
* Find out which object contains this instrumented address.
*/

for (i = 0; i < nObj; i++) {
start = XlateInstTextStart(pAllXlts[i].pXlt);
size = XlateInstTextSize(pAllXlts[i].pXlt);
if (addr_inst >= size && addr_inst < start + size) {

/*
* Found the object, translate the address using that
* object’s data.
*/

return(translate_addr_obj(&pAllXlts[i], addr_inst,
paddr_pure));

}
}

/*
* No object contains this address.
*/

return(0);
}

/*
** Attempt to translate the given instrumented address to its

Using and Developing Atom Tools 9–21

** pure equivalent using the given object’s translation data.
** Set ’*paddr_pure’ to the pure address and return 1 on success.
** Return 0 on failure.
*/
static int translate_addr_obj(

ObjXlt_t * pObjXlt,
unsigned long addr_inst,
unsigned long * paddr_pure)

{
unsigned num;
unsigned i;

/*
* See if the instrumented address matches any element in the XLATE.
*/

num = XlateNum(pObjXlt->pXlt);
for (i = 0; i < num; i++) {

if (XlateAddr(pObjXlt->pXlt, i) == addr_inst) {
/*
* Matches this XLATE element, return the matching pure
* address.
*/

*paddr_pure = pObjXlt->pAddrsPure[i];
return(1);

}
}

/*
* No match found, must not be a possible jump target.
*/

return(0);
}

9.2.7 Sample Tools
This section describes the basic tool building interface by using three simple
examples: procedure tracing, instruction profiling, and data cache simulation.

9.2.7.1 Procedure Tracing

The ptrace tool prints the names of procedures in the order in which they
are executed. The implementation adds a call to each procedure in the
application. By convention, the instrumentation for the ptrace tool is
placed in the file ptrace.inst.c.
1 #include <stdio.h>
2 #include <cmplrs/atom.inst.h> 11 12277
3
4 unsigned InstrumentAll(int argc, char **argv) 12 12277
5 {
6 Obj *o; Proc *p;
7 AddCallProto("ProTrace(char *)"); 13 12277
8 for (o = GetFirstObj(); o != NULL; o = GetNextObj(o)) { 14 12277
9 if (BuildObj(o) return 1; 15 12277

10 for (p = GetFirstObjProc(o); p != NULL; p = GetNextProc(p)) { 16 12277
11 const char *name = ProcName(p); 17 12277
12 if (name == NULL) name = "UNKNOWN"; 18 12277

9–22 Using and Developing Atom Tools

13 AddCallProc(p,ProcBefore,"ProcTrace",name); 19 12277
14 }
15 WriteObj(o); 110 1222777
16 }
17 return(0);
18 }

11 12277 Includes the definitions for Atom instrumentation routines and data
structures.

12 12277 Defines the InstrumentAll procedure. This instrumentation routine
defines the interface to each analysis procedure and inserts calls to those
procedures at the correct locations in the applications it instruments.

13 12277 Calls the AddCallProto routine to define the ProcTrace analysis
procedure. ProcTrace takes a single argument of type char *.

14 12277 Calls the GetFirstObj and GetNextObj routines to cycle through
each object in the application. If the program was linked nonshared,
there is only a single object. If the program was linked call-shared, it
contains multiple objects – one for the main executable and one for each
dynamically-linked shared library. The main program is always the first
object.

15 12277 Builds the first object. Objects must be built before they can be used. In
very rare circumstances, the object cannot be built. The
InstrumentAll routine reports this condition to Atom by returning a
nonzero value.

16 12277 Calls the GetFirstObjProc and GetNextProc routines to step
through each procedure in the application program.

17 12277 For each procedure, calls the ProcName procedure to find the procedure
name. Depending on the amount of symbol table information that is
available in the application, some procedure names, such as those defined
as static, may not be available. (Compiling applications with the –g1
flag provides this level of symbol information.) In these cases, Atom
returns NULL.

18 12277 Converts the NULL procedure name string to ‘‘UNKNOWN’’.

19 12277 Calls the AddCallProc routine to add a call to the procedure pointed
to by p. The ProcBefore argument indicates that the analysis
procedure is to be added before all other instructions in the procedure.
The name of the analysis procedure to be called at this instrumentation
point is ProcTrace. The final argument is to be passed to the analysis
procedure. In this case, it is the procedure named obtained on Line 11.

110 1222777 Writes the instrumented object file to disk.

The instrumentation file added calls to the ProcTrace analysis procedure.
This procedure is defined in the analysis file ptrace.anal.c as shown in

Using and Developing Atom Tools 9–23

the following example:
1 #include <stdio.h>
2
3 void ProcTrace(char *name)
4 {
5 fprintf(stderr, "%s\n",name);
6 }

The ProcTrace analysis procedure prints, to stderr, the character string
passed to it as an argument. Note that an analysis procedure cannot return a
value.

Once the instrumentation and analysis files are specified, the tool is complete.
To illustrate the application of this tool, we compile and link the following
application:

#include <stdio.h>
main()
{

printf("Hello world!\n");
}

The following example builds a nonshared executable, applies the ptrace
tool, and runs the instrumented executable. This simple program calls almost
30 procedures.
% cc -non_shared hello.c -o hello

% atom hello ptrace.inst.c ptrace.anal.c -o hello.ptrace

% hello.ptrace
__start
main
printf
_doprnt
__getmbcurmax
strchr
strlen
memcpy
.
.
.

The following example repeats this process with the application linked call-
shared. The major difference is that the LD_LIBRARY_PATH environment
variable must be set to the current directory because Atom creates an
instrumented version of the libc.so shared library in the local directory.
% cc hello.c -o hello

% atom hello ptrace.inst.c ptrace.anal.c -o hello.ptrace

% setenv LD_LIBRARY_PATH ‘pwd‘

% hello.ptrace
__start

9–24 Using and Developing Atom Tools

_call_add_gp_range
__exc_add_gp_range
malloc
cartesian_alloc
cartesian_growheap2
__getpagesize
__sbrk
.
.
.

The call-shared version of the application calls almost twice the number of
procedures that the nonshared version calls.

Note that only calls in the original application program are instrumented.
Because the call to the ProcTrace analysis procedure did not occur in the
original application, it does not appear in a trace of the instrumented
application procedures. Likewise, the standard library calls that print the
names of each procedure are also not included. If the application and the
analysis program both call the printf function, Atom would link into the
instrumented application two copies of the function. Only the copy in the
application program would be instrumented. Atom also correctly instruments
procedures that have multiple entry points.

9.2.7.2 Profile Tool

The prof example tool counts the number of instructions a program
executes. It is useful for finding critical sections of code. Each time the
application is executed, prof creates a file called prof.out that contains a
profile of the number of instructions that are executed in each procedure.

The most efficient place to compute instruction counts is inside each basic
block. Each time a basic block is executed, a fixed number of instructions
are executed. The following example shows how the prof tool’s
instrumentation procedure (prof.inst.c) performs these tasks:
1 #include <stdio.h>
2 #include <cmplrs/atom.inst.h>
3
4 unsigned InstrumentAll(int argc, char **argv)
5 {
6 Obj *o; Proc *p; Block *b; Inst *i;
7 int n = 0;
8 AddCallProto("OpenFile(int)"); 11 12277
9 AddCallProto("Count(int,int)");

10 AddCallProto("Print(int,char *)");
11 AddCallProto("CloseFile()");
12 for (o = GetFirstObj(); o != NULL; o = GetNextObj(o)) { 12 12277
13 if (BuildObj(o)) return (1); 13 12277
14 for (p = GetFirstObjProc(o); p != NULL; p = GetNextProc(p)) { 14 12277
15 const char *name = ProcName(p); 15 12277
16 if (name == NULL) name = "UNKNOWN";

Using and Developing Atom Tools 9–25

17 for (b = GetFirstBlock(p); b != NULL; b = GetNextBlock(b)) { 16 12277
18 AddCallBlock(b,BlockBefore,"Count",n, 17 12277

GetBlockInfo(b,BlockNumberInsts));
19 }
20 AddCallProgram(ProgramAfter,"Print",n,name); 18 12277
21 n++; 19 12277
22 }
23 WriteObj(o); 110 1222777
24 }
25 AddCallProgram(ProgramBefore,"OpenFile",n); 111 1222777
26 AddCallProgram(ProgramAfter,"CloseFile"); 112 1222777
27 return (0);
28 }

11 12277 Defines the interface to the analysis procedures.

12 12277 Loops through each object in the program.

13 12277 Builds an object.

14 12277 Loops through each procedure in the object.

15 12277 Determines the procedure name.

16 12277 Loops through each basic block in the procedure.

17 12277 Adds a call to the Count analysis procedure before any of the
instructions in this basic block are executed. The argument types of the
Count are defined in the prototype on Line 9. The first argument is a
procedure index of type int; the second argument, also an int, is the
number of instructions in the basic block. The Count analysis procedure
adds the number of instructions in the basic block to a per-procedure data
structure.

18 12277 Adds a call to the Print analysis procedure to the end of the program.
The Print analysis procedure prints a line summarizing this procedure’s
instruction use.

19 12277 Increments the procedure index.

110 1222777 Writes the object file.

111 1222777 Adds a call to the OpenFile analysis procedure to the beginning of the
program, passing it an int representing the number of procedures in the
application. The OpenFile procedure allocates the per-procedure data
structure that tallies instructions and opens the output file.

112 1222777 Adds a call to the CloseFile analysis procedure to the end of the
program.

The analysis procedures used by the prof tool are defined in the
prof.anal.c file as shown in the following example:

9–26 Using and Developing Atom Tools

1 #include <stdio.h>
2 #include <assert.h>
3
4 long *instrPerProc;
5 FILE *file;
6
7 void OpenFile(int n)
8 {
9 instrPerProc = (long *) calloc(sizeof(long),n); 11 12277

10 assert(instrPerProc != NULL);
11 file = fopen("prof.out","w");
12 assert(file != NULL);
13 fprintf(file,"%30s %15s %10s\n","Procedure","Instructions","Percentage");
14 }
15 void Count(int n, int instructions)
16 {
17 instrTotal += instructions;
18 instrPerProc[n] += instructions;
19 }
20 void Print(int n, char *name)
21 {
22 if (instrPerProc[n] > 0) { 12 12277
23 fprintf(file,"%30s %15ld %9.3f\n", name, instrPerProc[n],
24 ((float) instrPerProc[n] / instrTotal)*100.0);
25 }
26 }
27 void CloseFile() 13 12277
28 {
29 fprintf(file,"\n%30s %15ld %9.3f\n", "Total", instrTotal,100.0);
30 fclose(file);
31 }

11 12277 Allocates the counts data structure. The calloc function zero-fills the
counts data.

12 12277 Filters procedures that are never called.

13 12277 Closes the output file. Tools must explicitly close files that are opened in
the analysis procedures.

Once the instrumentation and analysis files are specified, the tool is complete.
To illustrate the application of this tool, we compile and link the "Hello"
application:

#include <stdio.h>
main()
{

printf("Hello world!\n");
}

The following example builds a call-shared executable, applies the prof
tool, and runs the instrumented executable. In contrast to the ptrace tool
described in Section 9.2.7.1, the prof tool sends its output to a file instead

Using and Developing Atom Tools 9–27

of stdout.
% cc hello.c -o hello

% atom hello prof.inst.c prof.anal.c -o hello.prof

% setenv LD_LIBRARY_PATH ‘pwd‘

% hello.prof

Hello world!

% more prof.out
Procedure Instructions Percentage

__start 159 4.941
main 14 0.435
.
.
.

_call_add_gp_range 41 1.274
_call_remove_gp_range 35 1.088

Total 3218 100.000
% unsetenv LD_LIBRARY_PATH

9.2.7.3 Data Cache Simulation Tool

Instruction and data address tracing has been used for many years as a
technique for capturing and analyzing cache behavior. Unfortunately, current
machine speeds make this increasingly difficult. For example, the Alvinn
SPEC92 benchmark executes 961,082,150 loads, 260,196,942 stores, and
73,687,356 basic blocks, for a total of 2,603,010,614 Alpha instructions.
Storing the address of each basic block and the effective address of all the
loads and stores would take in excess of 10GB and slow down the
application by a factor of over 100.

The cache tool uses on-the-fly simulation to determine the cache miss rates
of an application running in an 8KB direct mapped cache. The following
example shows its instrumentation routine:

1 #include <stdio.h>
2 #include <cmplrs/atom.inst.h>
3
4 unsigned InstrumentAll(int argc, char **argv)
5 {
6 Obj *o; Proc *p; Block *b; Inst *i;
7
8 AddCallProto("Reference(VALUE)");
9 AddCallProto("Print()");

10 for (o = GetFirstObj(); o != NULL; o = GetNextObj(o)) {
11 if (BuildObj(o)) return (1);
12 for (p=GetFirstProc(); p != NULL; p = GetNextProc(p)) {
13 for (b = GetFirstBlock(p); b != NULL; b = GetNextBlock(b)) {
14 for (i = GetFirstInst(b); i != NULL; i = GetNextInst(i)) { 11 12277
15 if (IsInstType(i,InstTypeLoad) || IsInstType(i,InstTypeStore)) {
16 AddCallInst(i,InstBefore,"Reference",EffAddrValue); 12 12277
17 }
18 }

9–28 Using and Developing Atom Tools

19 }
20 }
21 WriteObj(o);
22 }
23 AddCallProgram(ProgramAfter,"Print");
24 return (0);
25 }

11 12277 Examines each instruction in the current basic block.

12 12277 If the instruction is a load or a store, adds a call to the Reference
analysis procedure, passing the effective address of the data reference.

The analysis procedures used by the cache tool are defined in the
cache.anal.c file as shown in the following example:

1 #include <stdio.h>
2 #include <assert.h>
3 #define CACHE_SIZE 8192
4 #define BLOCK_SHIFT 5
5 long tags[CACHE_SIZE >> BLOCK_SHIFT];
6 long references, misses;
7
8 void Reference(long address) {
9 int index = (address & (CACHE_SIZE-1)) >> BLOCK_SHIFT;

10 long tag = address >> BLOCK_SHIFT;
11 if tags[index] != tag) {
12 misses++;
13 tags[index] = tag;
14 }
15 references++;
16 }
17 void Print() {
18 FILE *file = fopen("cache.out","w");
19 assert(file != NULL);
20 fprintf(file,"References: %ld\n", references);
21 fprintf(file,"Cache Misses: %ld\n", misses);
22 fprintf(file,"Cache Miss Rate: %f\n", (100.0 * misses) / references);
23 fclose(file);
24 }

Once the instrumentation and analysis files are specified, the tool is complete.
To illustrate the application of this tool, we compile and link the "Hello"
application:

#include <stdio.h>
main()
{

printf("Hello world!\n");
}

Using and Developing Atom Tools 9–29

The following example applies the cache tool to instrument both the
nonshared and call-shared versions of the application:
% cc hello.c -o hello

% atom hello cache.inst.c cache.anal.c -o hello.cache -all

% setenv LD_LIBRARY_PATH ‘pwd‘

% hello.cache

Hello world!

% more cache.out
References: 1091
Cache Misses: 225
Cache Miss Rate: 20.623281
% cc -non_shared hello.c -o hello

% atom hello cache.inst.c cache.anal.c -o hello.cache -all

% hello.cache

Hello world!

% more cache.out
References: 382
Cache Misses: 93
Cache Miss Rate: 24.345550

9–30 Using and Developing Atom Tools

10Optimizing Techniques3333333333333333333333
Optimizing an application program can involve modifying the build process,
modifying the source code, or both.

In many instances, optimizing an application program can result in major
improvements in run-time performance. Two preconditions should be met,
however, before you begin measuring the run-time performance of an
application program and analyzing how to improve the performance:

• Check the software on your system to ensure that you are using the latest
versions of the compiler and the operating system to build your
application program. Newer versions of a compiler often perform more
advanced optimizations and newer versions of the operating system often
operate more efficiently.

• Test your application program to ensure that it runs without errors.
Whether you are porting an application from a 32-bit system to Digital
UNIX or developing a new application, never attempt to optimize an
application until it has been thoroughly debugged and tested. (If you are
porting an application written in C, use the lint command with the –Q
flag or compile your program using the C compiler’s –check flag (in
combination with the –migrate or –newc flags) to identify possible
portability problems that you may need to resolve.)

After you verify that these conditions have been met, you can begin the
optimization process.

The process of optimizing an application can be divided into two separate,
but complementary, activities:

• Tuning your application’s build process so that you use, for example, an
optimal set of preprocessing and compilation optimizations

• Analyzing your application’s source code to ensure that it uses efficient
algorithms and that it does not use programming language constructs that
can degrade performance

The following sections provide details that relate to these two aspects of the
optimization process.

10.1 Guidelines for Building an Application Program
Opportunities for improving an application’s run-time performance exist in
all phases of the build process. The following sections identify some of the
major opportunities that exist in the areas of compiling, linking and loading,
preprocessing and postprocessing, and library selection.

See Appendix D for additional optimization information that pertains only to
the –oldc version of the C compiler. Appendix D contains information on
uopt, the global optimizer (which is not used by the –migrate or –newc
versions of the C compiler).

10.1.1 Compilation Considerations
Compile your application with the highest optimization level possible, that is,
the level that produces the best performance and the correct results. In
general, applications that conform to language-usage standards should
tolerate the highest optimization levels, and applications that do not conform
to such standards may have to be built at lower optimization levels. For
details, see cc(1) or Chapter 2.

If your application will tolerate it, compile all of the source files together in a
single compilation. Compiling multiple source files increases the amount of
code that the compiler can examine for possible optimizations. This can
have the following effects:

• More procedure inlining

• More complete data flow analysis

• A reduction in the number of external references to be resolved during
linking

To take advantage of these optimizations, use the following compilation
flags:

• For the –newc and –migrate versions of the C compiler, use –ifo
and one of the following optimization-level flags:

– When compiling with the –newc flag, use –O3 or –O4.

– When compiling with the –migrate flag, use –O4 (preferred) or
–O5.

(To determine whether the highest level of optimization benefits your
particular program, compare the results of two separate compilations of
the program, with one compilation at the highest level of optimization
and the other compilation at the next lower level of optimization.)

• For the –oldc version of the C compiler, use –O3.

10–2 Optimizing Techniques

See cc(1) or Chapter 2 for information on when to use which version of the
C compiler.

Note that some routines may not tolerate a high level of optimization; such
routines will have to be compiled separately.

Other compilation considerations that can have a significant impact on run-
time performance include the following:

• For C applications with numerous floating-point operations, consider
using the –fp_reorder flag if a small difference in the result is
acceptable.

• If your C application uses a lot of char, short, or int data items
within loops, you may be able to use the C compiler’s highest-level
optimization flag to improve performance. (The highest-level
optimization flag (–O4 with –newc and –O5 with –migrate)
implements byte vectorization, among other optimizations, for Alpha
systems.)

• For C applications that are thoroughly debugged and that do not generate
any exceptions, consider using the –speculate flag. When a program
compiled with this flag is executed, values associated with a variety of
execution paths are precomputed so that they are immediately available if
they are needed. This "work ahead" operation uses idle machine cycles,
so it has no negative effect on performance. Performance is usually
improved whenever a precomputed value is used.

The –speculate flag can be specified in two forms:

–speculate all
–speculate by_routine

Both options result in exceptions being dismissed: the
–speculate all flag dismisses exceptions generated in all
compilation units of the program and the –speculate by_routine
flag dismisses only the exceptions in the compilation unit to which it
applies. If speculative execution results in a significant number of
dismissed exceptions, performance will be degraded. The
–speculate all option is more aggressive and may result in greater
performance improvements than the other option, especially for programs
doing floating-point computations. The –speculate all flag cannot
be used if any routine in the program does exception handling; however,
the –speculate by_routine option can be used when exception
handling occurs outside the compilation unit on which it is used. Neither
–speculate option should be used if debugging is being done.

To print a count of the number of dismissed exceptions when the program

Optimizing Techniques 10–3

does a normal termination, specify the following environment variable:
% setenv _SPECULATE_ARGS -stats

The statistics feature is not currently available with the
–speculate all flag.

Use of the –speculate all and –speculate by_routine flags
disables all messages about alignment fixups. To generate alignment
messages for both speculative and nonspeculative alignment fixups,
specify the following environment variable:
% setenv _SPECULATE_ARGS -alignmsg

Both options can be specified as follows:
% setenv _SPECULATE_ARGS -stats -alignmsg

• You can use the following compilation flags together or individually with
the –newc, –migrate, and –oldc versions of the C compiler to
improve run-time performance:

22
Flag Description22
–ansi_alias Specifies whether source code observes ANSI C aliasing

rules. ANSI C aliasing rules allow for more aggressive
optimizations.

–ansi_args Specifies whether source code observes ANSI C rules
about arguments. If ANSI C rules are observed, special
argument-cleaning code does not have to be generated.

–fast Turns on the optimizations for the following flags for
increased performance.

For –newc, –migrate, and –oldc versions of the C
compiler:

–D_INTRINSICS
–D_INLINE_INTRINSICS
–D_FASTMATH
–float
–fp_reorder
–O3 (–O4 for –migrate)

For only –newc or –migrate versions of the C
compiler:

–ansi_alias
–ansi_args
–assume trusted_short_alignment
–ifo
–readonly_strings

10–4 Optimizing Techniques

22
Flag Description22
–feedback Specifies the name of a previously created feedback file.

Information in the file can be used by the compiler
when performing optimizations.

–fp_reorder Specifies whether certain code transformations that
affect floating-point operations are allowed.

–G Specifies the maximum byte size of data items in the
small data sections (sbss or sdata).

–inline Specifies whether to perform inline expansion of
functions.

–ifo Provides improved optimization (interfile optimization)
and code generation across file boundaries that would
not be possible if the files were compiled separately.

–O Specifies the level of optimization that is to be achieved
by the compilation.

–Olimit Specifies the maximum size, in basic blocks, of a
routine that will be optimized by the global optimizer
(uopt). (This flag can be used only with the –oldc
flag.)

–om Performs a variety of code optimizations for programs
compiled with the –non_shared flag.

–preempt_module Supports symbol preemption on a module-by-module
basis.

–speculate Enables work (for example, load or computation
operations) to be done in running programs on
execution paths before the paths are taken.

–tune Selects processor-specific instruction tuning for specific
implementations of the Alpha architecture.

–unroll Controls loop unrolling done by the optimizer at levels
–O2 and above. (This flag can be used only with the
–newc or –migrate flags.)22

Note that using the preceding flags may cause a reduction in accuracy and
adherence to standards. See cc(1) for details on these flags.

• For C applications, the compilation flag in effect for handling floating-
point exceptions can have a significant impact on execution time:

– Default exception handling (no special compilation flag)

With the default exception handling mode, overflow, divide-by-zero,
and invalid-operation exceptions always signal the SIGFPE exception
handler. Also, any use of an IEEE infinity, an IEEE NaN (not-a-

Optimizing Techniques 10–5

number), or an IEEE denormalized number will signal the SIGFPE
exception handler. By default, underflows silently produce a zero
result, although the compilers support a separate flag that allows
underflows to signal the SIGFPE handler.

The default exception handling mode is suitable for any portable
program that does not depend on the special characteristics of
particular floating-point formats. The default mode provides the best
exception handling performance.

– Portable IEEE exception handling (–ieee)

With the portable IEEE exception handling mode, floating-point
exceptions do not signal unless a special call is made to enable the
fault. This mode correctly produces and handles IEEE infinity, IEEE
NaNs, and IEEE denormalized numbers. This mode also provides
support for most of the nonportable aspects of IEEE floating point: all
status flags and trap enables are supported, except for the inexact
exception. (See ieee(3) for information on the inexact exception
feature (–ieee_with_inexact). Using this feature can slow
down floating-point calculations by a factor of 100 or more, and few,
if any, programs have a need for its use.)

The portable IEEE exception handling mode is suitable for any
program that depends on the portable aspects of the IEEE floating-
point standard. This mode is usually 10-20% slower than the default
mode, depending on the amount of floating-point computation in the
program. In some situations, this mode can increase execution time
by more than a factor of two.

10.1.2 Linking and Loading Considerations
If your application does not use many large libraries, consider linking it
nonshared. This allows the linker to optimize calls into the library, thus
decreasing your application’s startup time and improving run-time
performance (if calls are made frequently). Nonshared applications, however,
can use more system resources than call-shared applications. If you are
running a large number of applications simultaneously and the applications
have a set of libraries in common (for example, libX11 or libc), you may
increase total system performance by linking them as call-shared. See
Chapter 4 for details.

For applications that use shared libraries, ensure that those libraries can be
quickstarted. Quickstarting is a Digital UNIX capability that can greatly
reduce an application’s load time. For many applications, load time is a
significant percentage of the total time that it takes to start and run the
application. If an object cannot be quickstarted, it still runs, but startup time
is slower. See Section 4.7 for details.

10–6 Optimizing Techniques

10.1.2.1 Using the Postlink Optimizer

You perform postlink optimizations by using the –om flag on the cc
command line. This flag must be used with the –non_shared flag and
must be specified when performing the final link, for example:
% cc -om -non_shared prog.c

The postlink optimizer performs the following code optimizations:

• Removal of nop (no operation) instructions, that is, those instructions
that have no effect on machine state.

• Removal of .lita data, that is, that portion of the data section of an
executable image that holds address literals for 64-bit addressing. Using
available switches, you can remove unused .lita entries after
optimization and then compress the .lita section.

• Reallocation of common symbols according to a size you determine.

When you use the –om flag, you get the full range of postlink optimizations.
To specify a specific postlink optimization, use the –WL compiler flag,
followed by –om_option , where option can be one of the following:

compress_lita
This option removes unused .lita entries after optimization, then
compresses the .lita section.

dead_code
This option removes dead code (unreachable options) generated after
optimizations have been applied. The .lita section is not compressed
by this option.

ireorg_feedback,file
This option directs the compiler to use the pixie-produced information in
file.Counts and file.Addrs to reorganize the instructions to
reduce cache thrashing.

no_inst_sched
This option turns off instruction scheduling.

no_align_labels
This option turns off alignment of labels. Normally, the –om flag will
align the targets of all branches on quadword boundaries to improve
loop performance.

Gcommon,num
This option sets the size threshold of ‘‘common’’ symbols. Every
‘‘common’’ symbol whose size is less than or equal to num will be
allocated close together.

Optimizing Techniques 10–7

For more information, see the cc(1) reference page.

10.1.3 Preprocessing and Postprocessing Considerations
Preprocessing options and postprocessing (run-time) options that can affect
performance include the following:

• Use the Kuck & Associates Preprocessor (KAP) tool to gain extra
optimizations. The preprocessor uses final source code as input and
produces an optimized version of the source code as output.

KAP is especially useful for applications with the following
characteristics on both symmetric multiprocessing systems (SMP) and
uniprocessor systems:

– Programs with a large number of loops or loops with large loop
bounds

– Programs that act on large data sets

– Programs with significant reuse of data

– Programs with a large number of procedure calls

– Programs with a large number of floating-point operations

To take advantage of the parallel processing capabilities of SMP systems,
the KAP preprocessors support automatic and directed decomposition for
C programs. KAP’s automatic decomposition feature analyzes an
existing program to locate loops that are candidates for parallel execution.
Then, it decomposes the loops and inserts all necessary synchronization
points. If more control is desired, the programmer can manually insert
directives to control the parallelization of individual loops. On Digital
UNIX systems, KAP uses DECthreads to implement parallel processing.

For C programs, KAP is invoked with the kapc (which invokes separate
KAP processing) or kcc command (which invokes combined KAP
processing and DEC C compilation). For information on how to use
KAP on a C program, see the KAP for C for Digital UNIX User Guide.

KAP is available for Digital UNIX systems as a separately orderable
layered product.

• Use the cord utility (–cord option) to improve the instruction cache
behavior for C applications. This utility uses data from an actual run of
your application to improve your application’s use of the instruction
cache. To use the cord utility, you must first create a feedback file with
the pixie and gprof tools. See pixie(5), prof(1), cord(1), and
runcord(1) for details. Also, Chapter 8 describes how to use these
tools. (If you have produced a feedback file and you are are going to
compile your program with the –non_shared flag, it is better to use
the feedback file with the –om flag than with the –cord flag. See

10–8 Optimizing Techniques

Section 10.1.2.1 for details on the om utility.)

• To improve compiler optimizations, try recompiling your C programs
with a feedback file. The C compilers can make use of data from an
actual run of the program to fine tune their optimizations. For the
–newc and –migrate versions of the C compiler, the feedback
information is most useful at the highest two levels of optimization (–O3
or –O4 for –newc and –O4 or –O5 for –migrate). (The –oldc
version of the C compiler does not support the use of feedback files in its
processing.) If you are compiling a program with a feedback file and
with the –non_shared flag, it is better to use the
–prof_use_om_feedback flag than the –prof_use_feedback
or –feedback flags. (See Section 10.1.2.1 for details on the om
utility.)

See Section 8.11 for information on how to create and use feedback files.

10.1.4 Library Routine Selection
Library routine options that can affect performance include the following:

• Use the Digital Extended Math Library (DXML) for applications that
perform numerically intensive operations. DXML is a collection of
mathematical routines that are optimized for Alpha systems – both SMP
systems and uniprocessor systems. The routines in DXML are organized
in the following four libraries:

– BLAS – a library of basic linear algebra subroutines

– LAPACK – a linear algebra package of linear system and eigensystem
problem solvers

– Sparse Linear System Solvers – A library of direct and iterative
sparse solvers

– Signal Processing – A basic set of signal-processing functions,
including one-, two-, and three-dimensional fast Fourier transforms
(FFTs), group FFTs, sine/cosine transforms, convolution functions,
correlation functions, and digital filters.

By using DXML, applications that involve numerically intensive
operations may run significantly faster on Digital UNIX systems,
especially when used with KAP. DXML routines can be called explicitly
from your program or, in certain cases, from KAP (that is, when KAP
recognizes opportunities to use the DXML routines). You access DXML
by specifying the –ldxml flag on the compilation command line.

For details on DXML, see the Digital Extended Mathematical Library for
Digital UNIX Systems Reference Manual.

The DXML routines are written in Fortran. For information on calling

Optimizing Techniques 10–9

Fortran routines from a C program, see the Digital UNIX user manual for
the version of Fortran that you are using (DEC Fortran or DEC Fortran
90). (Information about calling DXML routines from C programs is also
provided in the TechAdvantage C/C++ Getting Started Guide.)

• If your application does not require extended-precision accuracy, you can
use math library routines that are faster but slightly less accurate.
Specifying the –D_FASTMATH flag on the compilation command causes
the compiler to use faster floating-point routines at the expense of three
bits of floating-point accuracy. See cc(1) for details.

• Consider compiling your C programs with the –D_INTRINSICS and
–D_INLINE_INTRINSICS flags; this causes the compiler to inline
calls to certain standard C library routines.

10.2 Application Coding Guidelines
If you are willing to modify your application, use the profiler tools to
determine where your application spends most of its time. Many applications
spend most of their time in a few routines. Concentrate your efforts on
improving the speed of those heavily used routines.

Digital provides several profiling tools that work for programs written in C
and other languages. See Chapter 8, atom(1), gprof(1), hiprof(5),
pixie(5), and prof(1) for more details.

After you identify the heavily used portions of your application, consider the
algorithms used by that code. Is it possible to replace a slow algorithm with
a more efficient one? Replacing a slow algorithm with a faster one often
produces a larger performance gain than tweaking an existing algorithm.

When you are satisfied with the efficiency of your algorithms, consider
making code changes to help the compiler optimize the object code that it
generates for your application. High Performance Computing by Kevin
Dowd (O’Reilly & Associates, Inc., ISBN 1-56592-032-5) is a good source
of general information on how to write source code that maximizes
optimization opportunities for compilers.

The following sections identify performance opportunities involving data
types, cache usage and data alignment, and general coding issues.

10.2.1 Data Type Considerations
Data type considerations that can affect performance include the following:

• The smallest unit of efficient access on Alpha systems is 32 bits.
Accessing an 8- or 16-bit scalar can result in a sequence of machine
instructions to access the data. A 32- or 64-bit data item can be accessed
with a single, efficient machine instruction.

10–10 Optimizing Techniques

If performance is a critical concern, avoid using integer and logical data
types that are less than 32 bits, especially for scalars that are used
frequently. In C programs, consider replacing char and short
declarations with int and long declarations.

• Division of integer quantities is slower than division of floating-point
quantities. If possible, consider replacing such integer operations with
equivalent floating-point operations.

Integer division operations are not native to the Alpha processor and must
be emulated in software, so they can be slow. Other non-native
operations include transcendental operations (for example, sine and
cosine) and square root.

10.2.2 Cache Usage and Data Alignment Considerations
Cache usage patterns can have a critical impact on performance:

• If your application has a few heavily used data structures, attempt to
allocate these data structures on cache line boundaries in the secondary
cache. Doing so can improve your application’s cache usage. See
Appendix A of the Alpha Architecture Reference Manual for additional
information.

• Look for potential data cache collisions between heavily used data
structures. Such collisions occur when the distance between two data
structures allocated in memory is equal to the size of the primary
(internal) data cache. If your data structures are small, you can avoid this
by allocating them contiguously in memory. You can use the
uprofile tool to determine the number of cache collisions and their
locations. See Appendix A of the Alpha Architecture Reference Manual
for additional information on data cache collisions.

Data alignment can also affect performance. By default, the C compiler
aligns each data item on its natural boundary; that is, it positions each data
item so that its starting address is an even multiple of the size of the data
type used to declare it. Data not aligned on natural boundaries is called
misaligned data. Misaligned data can slow performance because it forces
the software to make necessary adjustments at run time.

In C programs, misalignment can occur when you type cast a pointer variable
from one data type to a larger data type; for example, type casting a char
pointer (1-byte alignment) to an int pointer (4-byte alignment) and then
dereferencing the new pointer may cause unaligned access. Also in C,
creating packed structures using the #pragma pack directive can cause
unaligned access. (See Chapter 3 for details on the #pragma pack
directive.)

Optimizing Techniques 10–11

To correct alignment problems in C programs, you can use the –align flag
or you can make necessary modifications to the source code. If instances of
misalignment are required by your program for some reason, use the
__unaligned data-type qualifier in any pointer definitions that involve the
misaligned data. When data is accessed through the use of a pointer declared
__unaligned, the compiler generates the additional code necessary to
copy or store the data without generating alignment errors. (Alignment errors
have a much more costly impact on performance than the additional code that
is generated.)

Warning messages identifying misaligned data are not issued during the
compilation of C programs by any version of the C compiler (–newc,
–migrate, or –oldc).

During execution of any program, the kernel issues warning messages
(‘‘unaligned access’’) for most instances of misaligned data. The messages
include the program counter (pc) value for the address of the instruction that
caused the misalignment. You can use the machine code debugging
capabilities of the dbx or ladebug debugger to determine the source code
locations associated with pc values.

For additional information on data alignment, see Appendix A in the Alpha
Architecture Reference Manual. See cc(1) for details on alignment-control
flags that you can specify on compilation command lines.

10.2.3 General Coding Considerations
General coding considerations specific to C applications include the
following:

• Use libc functions (for example: strcpy, strlen, strcmp,
bcopy, bzero, memset, memcpy) instead of writing similar routines
or your own loops. These functions are hand-coded for efficiency.

• Use the unsigned data type for variables wherever possible because:

– The variable is always greater than or equal to zero, which enables the
compiler to perform optimizations that would not otherwise be
possible.

– The compiler generates fewer instructions for all unsigned divide
operations.

Consider the following example:
int long i;
unsigned long j;
.
.
.

return i/2 + j/2;

In the example, i/2 is an expensive expression; however, j/2 is

10–12 Optimizing Techniques

inexpensive.

The compiler generates three instructions for the signed i/2 operations:
addq $l, l, $28
cmovge $l, $l, $28
sra $28, l, $2

The compiler generates only one instruction for the unsigned j/2
operation:
srl $3, 1, $4

Also, consider using the –unsigned flag to treat all char declarations
as unsigned char.

• If your application uses large amounts of data for a short period of time,
consider allocating the data dynamically with the malloc function
instead of declaring it statically. When you have finished using the
memory, free it so it can be used for other data structures later in your
program. Using this technique to reduce the total memory usage of your
application can substantially increase the performance of applications
running in an environment in which physical memory is a scarce
resource.

If an application uses the malloc function extensively, you may be able
to improve the application’s performance (processing speed, memory
utilization, or both) by using malloc’s control variables to tune memory
allocation. See malloc(3) for details.

• If your application uses local arrays whose sizes are unknown at compile
time, you can gain a performance advantage by allocating them with the
alloca function, which uses very few instructions and is very efficient.
Storage allocated by the alloca function is automatically reclaimed
when an exit is made from the routine in which the allocation is made.

The alloca function allocates space on the stack, not the heap, so you
must make sure that the object being allocated does not exhaust all of the
free stack space. If the object does not fit in the stack, a core dump is
issued.

Programs that issue calls to the alloca function should include the
alloca.h header file. If the header file is not included, the program
will execute properly, but it will run much slower.

• Minimize type casting, especially type conversion from integer to floating
point and from a small data type to a larger data type.

• To avoid cache misses, make sure that multidimensional arrays are
traversed in natural storage order, that is, in row major order with the
rightmost subscript varying fastest and striding by 1. Avoid column
major order (which is used by Fortran).

Optimizing Techniques 10–13

• If your application fits in a 32-bit address space and allocates large
amounts of dynamic memory by allocating structures that contain many
pointers, you may be able to save significant amounts of memory by
using the –xtaso flag. The –xtaso flag is supported by all versions of
the C compiler (–newc, –migrate, and –oldc versions). To use the
flag, you must modify your source code with a C-language pragma that
controls pointer size allocations. See cc(1) and Chapter 2 for details.

• Do not use indirect calls in C programs (that is, calls that use routines or
pointers to functions as arguments). Indirect calls introduce the
possibility of changes to global variables. This effect reduces the amount
of optimization that can be safely performed by the optimizer.

• Use functions to return values instead of reference parameters.

• Use do while instead of while or for whenever possible. With do
while, the optimizer does not have to duplicate the loop condition in
order to move code from within the loop to outside the loop.

• Use local variables and avoid global variables. Declare any variable
outside of a function as static, unless that variable is referenced by
another source file. Minimizing the use of global variables increases
optimization opportunities for the compiler.

• Use value parameters instead of reference parameters or global variables.
Reference parameters have the same degrading effects as pointers.

• Write straightforward code. For example, do not use ++ and --
operators within an expression. When you use these operators for their
values instead of their side-effects, you often get bad code. For example,
the following coding is not recommended:
while (n--)

{
.
.
.
}

The following coding is recommended:
while (n != 0)

{
n--;
.
.
.
}

• Avoid taking and passing addresses (that is, & values). Using & values
can create aliases, make the optimizer store variables from registers to
their home storage locations, and significantly reduce optimization
opportunities.

10–14 Optimizing Techniques

• Avoid creating functions that take a variable number of arguments. A
function with a variable number of arguments causes the optimizer to
unnecessarily save all parameter registers on entry.

• Declare functions as static unless the function is referenced by another
source module. Use of static functions allows the optimizer to use
more efficient calling sequences.

You should also avoid aliases where possible by introducing local variables
to store dereferenced results. (A dereferenced result is the value obtained
from a specified address.) Dereferenced values are affected by indirect
operations and calls, whereas local variables are not; local variables can be
kept in registers. Example 10-1 shows how the proper placement of pointers
and the elimination of aliasing enable the compiler to produce better code.

Example 10-1: Pointers and Optimization

Source Code:
int len = 10;
char a[10];

void
zero()

{
char *p;
for (p = a; p != a + len;) *p++ = 0;
}

Consider the use of pointers in Example 10-1. Because the statement
*p++=0 might modify len, the compiler must load it from memory and add
it to the address of a on each pass through the loop, instead of computing a
+ len in a register once outside the loop.

Two different methods can be used to increase the efficiency of the code used
in Example 10-1:

• Use subscripts instead of pointers. As shown in the following example,
the use of subscripting in the azero procedure eliminates aliasing; the
compiler keeps the value of len in a register, saving two instructions,
and still uses a pointer to access a efficiently, even though a pointer is
not specified in the source code:

Source Code:
char a[10];
int len;
void
azero()

{
int i;
for (i = 0; i != len; i++) a[i] = 0;
}

Optimizing Techniques 10–15

• Use local variables. As shown in the following example, specifying len
as a local variable or formal argument ensures that aliasing cannot take
place and permits the compiler to place len in a register:

Source Code:
char a[10];
void
lpzero(len)

int len;
{
char *p;
for (p = a; p != a + len;) *p++ = 0;
}

10–16 Optimizing Techniques

11Handling Exception Conditions3333333333333333333333
An exception is a special condition that occurs during the currently executing
thread and requires the execution of code that acknowledges the condition
and performs some appropriate actions. This code is known as an exception
handler.

A termination handler consists of code that executes when the flow of control
leaves a specific body of code. Termination handlers are useful for cleaning
up the context established by the exiting body of code, performing such tasks
as freeing memory buffers or releasing locks.

This chapter contains the following discussions:

• Overview of exception handling

• Raising an exception from a user program

• Writing a structured exception handler

• Writing a termination handler

11.1 Exception Handling Overview
On Digital UNIX systems, hardware traps exceptions, as described in the
Alpha Architecture Reference Manual, and delivers them to the operating
system kernel. The kernel converts certain hardware exceptions, such as bad
memory accesses and arithmetic traps, to signals. A process can enable the
delivery of any signal and establish a signal handler to deal with the
consequences of the signal processwide.

The Calling Standard for Alpha Systems defines special structures and
mechanisms that enable the processing of exceptional events on Digital
UNIX systems in a more precise and organized way. Among the activities
that the standard defines are the following:

• The manner in which exception handlers are established

• The way in which exceptions are raised

• How the exception system searches for and invokes a handler

• How a handler returns to the exception system

• The manner in which the exception system traverses the stack and
maintains procedure context

The run-time exception dispatcher that supports the structured exception
handling capabilities of the Digital UNIX C compiler is an example of the
type of frame-based exception handler described in the standard. (See
Section 11.3 for a discussion of structured exception handling.)

The following sections briefly describe the Digital UNIX components that
support the exception handling mechanism defined in the Calling Standard
for Alpha Systems.

11.1.1 C Compiler Syntax
Syntax provided by the Digital UNIX C compiler allows you to protect
regions of code against user- or system-defined exception conditions. This
mechanism, known as structured exception handling, allows you to define
exception handlers and termination handlers and to indicate the regions of
code that they protect.

The c_excpt.h header file defines the symbols and functions that user
exception processing code can use to obtain the current exception code and
other information describing the exception.

11.1.2 libexc Library Routines
Routines in the exception support library,
/usr/ccs/lib/cmplrs/cc/libexc.a, provide the following
capabilities:

• The ability to raise user-defined exceptions or convert UNIX signals to
exceptions. These routines include:

exc_raise_status_exception
exc_raise_signal_exception
exc_raise_exception
exc_exception_dispatcher
exc_dispatch_exception

These exception management routines also provide the mechanism to
dispatch exceptions to the appropriate handlers. In the case of C-language
structured exception handling, described in Section 11.3, the C-specific
handler invokes a routine containing user-supplied code to determine
what action to take. The user-supplied code can either handle the
exception or return for some other procedure activation to handle it.

• The ability to perform virtual and actual unwinding of levels of procedure
activations from the stack and continuing execution in a handler or other
user code. These routines include:

unwind
exc_virtual_unwind
RtlVirtualUnwind

11–2 Handling Exception Conditions

exc_resume
exc_longjmp
exc_continue
exc_unwind
RtlUnwindRfp

Some of the unwind routines also support invoking handlers as they
unwind so that the language or user can clean up items at particular
procedure activations.

• The ability to access procedure-specific information and map any address
within a routine to the corresponding procedure information. This
information includes enough data to cause an unwind or determine
whether a routine handles an exception. These routines include:

exc_add_pc_range_table
exc_remove_pc_range_table
exc_lookup_function_table_address
exc_lookup_function_entry
find_rpd
exc_add_gp_range
exc_remove_gp_range
exc_lookup_gp

The C-language structured exception handler calls routines in the last two
categories to allow user code to fix up an exception and resume execution,
and to locate and dispatch to a user-defined exception handler. Section 11.3
describes this process. For detailed information on any routine provided in
/usr/ccs/lib/cmplrs/cc/libexc.a, see the routine’s reference
page.

11.1.3 Header Files That Support Exception Handling
Various header files define the structures that support the exception handling
system and the manipulation of procedure context. Table 11-1 describes
these files.

Table 11-1: Header Files That Support Exception Handling
222
File Description222
excpt.h Defines the exception code structure and defines a number of

Digital UNIX exception codes; also defines the system
exception and context records and associated flags and
symbolic constants, the run-time procedure type, and
prototypes for the functions provided in libexc.a. See
excpt(4) for additional details.

Handling Exception Conditions 11–3

Table 11-1: (continued)
222
File Description222
c_excpt.h Defines symbols used by C-language structured exception

handlers and termination handlers; also defines the exception
information structure and functions that return the exception
code, other exception information, and information
concerning the state in which a termination handler is called.
See c_excpt(4) for additional details.

machine/fpu.h Defines prototypes for the ieee_set_fp_control and
ieee_get_fp_control routines, which enable the
delivery of IEEE floating-point exceptions and retrieve
information that records their occurrence; also defines
structures and constants that support these routines. See
ieee(3) for additional details.

pdsc.h Defines structures, such as the run-time procedure descriptor
and code range descriptor, that provide run-time contexts for
the procedure types and flow control mechanisms described
in the Calling Standard for Alpha Systems. See pdsc(4) for
additional details.222

11.2 Raising an Exception from a User Program
A user program typically raises an exception in either of two ways:

• A program can explicitly initiate an application-specific exception by
calling the exc_raise_exception or
exc_raise_status_exception function. These functions allow
the calling procedure to specify information that describes the exception.

• A program can install a special signal handler,
exc_raise_signal_exception, that converts a POSIX signal to
an exception. The exc_raise_signal_exception function
invokes the exception dispatcher to search the run-time stack for any
exception handlers that have been established in the current or previous
stack frames. In this case, the code reported to the handler has
EXC_SIGNAL in its facility field and the signal value in its code field.
(See excpt(4) and the excpt.h header file for a dissection of the code
data structure.)

11–4 Handling Exception Conditions

Note

The exact exception code for arithmetic and software-
generated exceptions, defined in the signal.h header file,
is passed to a signal handler in the code argument. The
special signal handler exc_raise_signal_exception
moves this code to
ExceptionRecord.ExceptionInfo[0] before
invoking the exception dispatcher.

Examples in Section 11.3 illustrate how to explicitly raise an exception and
convert a signal to an exception.

11.3 Writing a Structured Exception Handler
The structured exception handling capabilities provided by the Digital UNIX
C compiler allow you to deal with the possibility that a certain exception
condition may occur in a certain code sequence. The syntax establishing a
structured exception handler is as follows:

try{

try-body

}

except(exception-filter) {

exception-handler

}

The try-body is a statement or block of statements that the exception
handler protects. If an exception occurs while the try body is executing, the
C-specific run-time handler evaluates the exception-filter to
determine whether to transfer control to the associated exception-
handler, continue searching for a handler in outer-level try body, or
continue normal execution from the point at which the exception occurred.

The exception-filter is an expression associated with the exception
handler that guards a given try body. It can be a simple expression or can
invoke a function that evaluates the exception. An exception filter must
evaluate to one of the following integral values in order for the exception
dispatcher to complete its servicing of the exception:

• < 0

The exception dispatcher dismisses the exception and resumes the thread
of execution that was originally disrupted by the exception. If the

Handling Exception Conditions 11–5

exception is noncontinuable, the dispatcher raises a
STATUS_NONCONTINUABLE_EXCEPTION exception.

• 0

The exception dispatcher continues to search for a handler, first in any
try...except blocks in which the current handler might be nested
and then in the try...except blocks defined in the procedure frame
preceding the current frame on the run-time stack. If a filter chooses not
to handle an exception, it typically returns this value.

• > 0

The exception dispatcher transfers control to the exception handler, and
execution continues in the frame on the run-time stack in which the
handler is found. This process, known as ‘‘handling the exception,’’
unwinds all procedure frames below the current frame and causes any
termination handlers established within those frames to execute.

Two intrinsic functions are allowed within the exception filter to access
information about the exception being filtered:

long exception_code();

Exception_info_ptr exception_info();

The exception_code function returns the exception code. The
exception_info function returns a pointer to an
EXCEPTION_POINTERS structure. Using this pointer, you can access the
machine state (for instance, the system exception and context records) at the
time of the exception. See excpt(4) and c_excpt(4) for additional
details.

You can use the exception_code function within an exception filter or
exception handler. However, you can use the exception_info function
only within an exception filter. If you need to use the information returned
by the exception_info function within the exception handler, you
should invoke the function within the filter and store the information locally.
If you need to refer to exception structures outside of the filter, you must
copy them as well because their storage is valid only during the execution of
the filter.

When an exception occurs, the exception dispatcher virtually unwinds the
run-time stack until it reaches a frame for which a handler has been
established. The dispatcher initially searches for an exception handler in the
stack frame that was current when the exception occurred.

If the handler is not in this stack frame, the dispatcher virtually unwinds the
stack (in its own context), leaving the current stack frame and any
intervening stack frames intact until it reaches a frame that has established an

11–6 Handling Exception Conditions

exception handler. It then executes the exception filter associated with that
handler.

During this phase of exception dispatching, the dispatcher has only virtually
unwound the run-time stack; all call frames that may have existed on the
stack at the time of the exception are still there. If it cannot find an
exception handler or if all handlers reraise the exception, the exception
dispatcher invokes the system last-chance handler. (See
exc_set_last_chance_handler(3) for instructions on how to set up a
last-chance handler.)

By treating the exception filter as if it were a Pascal-style nested procedure,
exception handling code evaluates the filter expression within the scope of
the procedure that includes the try...except block. This allows the filter
expression to access the local variables of the procedure containing the filter,
even though the stack has not actually been unwound to the stack frame of
the procedure that contains the filter.

Prior to executing an exception handler (for instance, if an exception filter
returns EXCEPTION_EXECUTE_HANDLER), the exception dispatcher
performs a real unwind of the run-time stack, executing any termination
handlers established for try...finally blocks that terminated as a result
of the transfer of control to the exception handler. Only then does the
dispatcher call the exception handler.

The exception-handler is a compound statement that deals with the
exception condition. It executes within the scope of the procedure that
includes the try...except construct and can access its local variables. A
handler can respond to an exception in several different ways, depending on
the nature of the exception. For instance, it can log an error or correct the
circumstances that led to the exception being raised.

Either an exception filter or exception handler can take steps to modify or
augment the exception information it has obtained and ask the C-language
exception dispatcher to deliver the new information to exception code
established in some outer try body or prior call frame. This activity is more
straightforward from within the exception filter, which operates with the
frames of the latest executing procedures – and the exception context – still
intact on the run-time stack. The filter simply completes its processing by
returning a 0 to the dispatcher to request the dispatcher to continue its search
for the next handler.

For an exception handler to trigger a previously established handler, it must
raise another exception, from its own context, that the previously-established
handler is equipped to handle.

Example 11-1 shows a simple exception handler established to handle a
segmentation violation signal (SIGSEGV) that has been converted to an
exception by the exc_raise_signal_exception signal handler.

Handling Exception Conditions 11–7

Example 11-1: Handling a SIGSEGV Signal as a Structured
Exception

#include <signal.h>
#include <excpt.h>
#include <machine/fpu.h>
#include <errno.h>

main ()
{
Exception_info_ptr except_info;
PCONTEXT context_record;
system_exrec_type *exception_record;
long code;
sigset_t newmask, oldmask;
struct sigaction act, oldact;
char *x=0;
/*

Set up things so that SIGSEGV signals are delivered. Set
exc_raise_signal_exception as the SIGSEGV signal handler
in sigaction.

*/
act.sa_handler = exc_raise_signal_exception;
sigemptyset(&act.sa_mask);
act.sa_flags = 0;
if (sigaction(SIGSEGV, &act, &oldact) < 0)

perror("sigaction:");
/*

If a segmentation violation occurs within the following try
block, the run-time exception dispatcher calls the exception
filter associated with the except statement to determine
whether to call the exception handler to handle the SIGSEGV
signal exception.

*/
try {

*x=55;
}

*
The exception filter tests the exception code against
SIGSEGV. If it tests true, the filter returns 1 to the
dispatcher, which then executes the handler; if it tests
false, the filter returns -1 to the dispatcher, which
continues its search for a handler in the previous run-time
stack frames. Eventually the last-chance handler executes.
Note: Normally the printf in the filter would be replaced
with a call to a routine that logged the unexpected signal.

*/
except(exception_code() == EXC_VALUE(EXC_SIGNAL,SIGSEGV) ? 1 :
(printf("unexpected signal exception code 0x%lx\n",

exception_code()), 0))
{

printf("segmentation violation reported: handler\n");
exit(0);

}
printf("okay\n");

11–8 Handling Exception Conditions

Example 11-1: (continued)
exit(1);

}

The following is a sample run of this program:
% cc segfault_ex.c -lexc

% a.out

segmentation violation reported in handler

Example 11-2 is similar to Example 11-1 insofar as it also demonstrates a
way of handling a signal exception, in this case, a SIGFPE. This example
further shows how an IEEE floating-point exception, floating divide-by-zero,
must be enabled by a call to ieee_set_fp_control(), and how the
handler obtains more detailed information on the exception by reading the
system exception record.

Example 11-2: Handling an IEEE Floating-Point SIGFPE as a
Structured Exception

#include <signal.h>
#include <excpt.h>
#include <machine/fpu.h>
#include <errno.h>

main ()
{
Exception_info_ptr except_info;
PCONTEXT context_record;
system_exrec_type exception_record;
long code;
sigset_t newmask, oldmask;
struct sigaction act, oldact;
unsigned long float_traps=IEEE_TRAP_ENABLE_DZE, trap_mask;
int fpsigstate;
double temperature=75.2, divisor=0.0, quot, return_val;
/*

Set up things so that IEEE DZO traps are reported and that
SIGFPE signals are delivered. Set exc_raise_signal_exception
as the SIGFPE signal handler.

*/
act.sa_handler = exc_raise_signal_exception;
sigemptyset(&act.sa_mask);
act.sa_flags = 0;
if (sigaction(SIGFPE, &act, &oldact) < 0)

perror("sigaction:");
if (ieee_set_fp_control(float_traps) < 0)

{
printf("set_fp_control problem");
exit(1);

}
/*

Handling Exception Conditions 11–9

Example 11-2: (continued)
If a floating divide-by-zero FPE occurs within the following
try block, the run-time exception dispatcher calls the
exception filter associated with the except statement to
determine whether the SIGFPE signal exception is to be
handled by the exception handler.

*/
try {

printf("quot = IEEE %.2f / %.2f\n",temperature,divisor);
quot = temperature / divisor;

}
/*

The exception filter saves the exception code and tests it
against SIGFPE. If it tests true, the filter obtains the
exception information, copies the exception record structure,
and returns 1 to the dispatcher which then executes the hand-
ler. If the filter’s test of the code is false, the filter
returns -1 to the handler, which continues its search for a
handler in previous run-time frames. Eventually the last-chance
handler executes. Note: Normally the filter printf is replaced
with a call to a routine that logged the unexpected signal.

*/
except((code=exception_code()) == EXC_VALUE(EXC_SIGNAL,SIGFPE) ?

(except_info = exception_info(),
exception_record = *(except_info->ExceptionRecord), 1) :

(printf("unexpected signal exception code 0x%lx\n",
exception_code()), 0))

/*
The exception handler follows and prints out the signal code,
which has the following format:

0x 8 0ffe 0003
| | | |
hex SIGFPE EXC_OSF facility EXC_SIGNAL

*/
{ printf("Arithmetic error\n");

printf("exception_code() returns 0x%lx\n", code);
printf("EXC_VALUE macro in excpt.h generates 0x%lx\n",

EXC_VALUE(EXC_SIGNAL, SIGFPE));
printf("Signal code in the exception record is 0x%lx\n",

exception_record.ExceptionCode);
/*

To find out what type of SIGFPE this is, look at the first
optional parameter in the exception record. Verify that it is
FPE_FLTDIV_FAULT).

*/
printf("No. of parameters is %u\n",

exception_record.NumberParameters);
printf("SIGFPE type is 0x%lx\n",

exception_record.ExceptionInformation[0]);
/*

Set return value to IEEE_PLUS_INFINITY and return.
*/

if (exception_record.ExceptionInformation[0] ==
FPE_FLTDIV_FAULT)

11–10 Handling Exception Conditions

Example 11-2: (continued)
{

*((unsigned long *) &return_val=IEEE_PLUS_INFINITY;
printf("Returning 0x%f to caller\n", return_val);

return(0);
}

/*
If this is a different kind of SIGFPE, return gracelessly.

*/
else

return(-1);
}

/*
We get here only if no exception occurred in the try block.

*/
printf("okay");
exit(1);

}

The following is a sample run of this program:
% cc -ieee_with_no_inexact sigfpe_ex.c -lexc

% a.out

quot = IEEE 75.20 / 0.00
Arithmetic error
exception_code() returns 0x80ffe0003
The EXC_VALUE macro in excpt.h generates 0x80ffe0003
The signal code in the exception record is 0x80ffe0003
No. of parameters is 1
SIGFPE type is 0x10
Returning 0xINF to caller

A procedure (or group of interrelated procedures) can contain any number of
try...except constructs, and can nest these constructs. If an exception
occurs within the try...except block, the system invokes the exception
handler associated with that block.

Example 11-3 demonstrates the behavior of multiple try...except
blocks by defining two private exception codes and raising either of these
two exceptions within the innermost try block.

Example 11-3: Multiple Structured Exception Handlers

#include <excpt.h>
#include <strings.h>
#include <stdio.h>
#define EXC_NOTWIDGET EXC_VALUE(EXC_C_USER, 1)
#define EXC_NOTDECWIDGET EXC_VALUE(EXC_C_USER, 2)
void getwidgetbyname();
/*

main() sets up an exception handler to field the EXC_NOTWIDGET
exception and then calls getwidgetbyname().

Handling Exception Conditions 11–11

Example 11-3: (continued)
*/
main(argc, argv)

int argc;
char *argv[];

{
char *widget[20];
long code;

try {
if (argc > 1)

strcpy(widget, argv[1]);
else

{
printf("Enter widget name: ");
gets(widget);
}

getwidgetbyname(widget);
}

except((code=exception_code()) == EXC_NOTWIDGET)
{

printf("Exception 0x%lx: %s is not a widget\n",
code, widget);

exit(0);
}

}
/*

getwidgetbyname() sets up an exception handler to field the
EXC_NOTDECWIDGET exception. Depending upon the data it is
passed, its try body calls exc_raise_status_exception() to
generate either of the user-defined exceptions.

*/
void
getwidgetbyname(char* widgetname[20])
{
long code;

try {
if (strcmp(widgetname, "foo") == 0)

exc_raise_status_exception(EXC_NOTDECWIDGET);
if (strcmp(widgetname, "bar") == 0)
exc_raise_status_exception(EXC_NOTWIDGET);

}
/*

The exception filter tests the exception code against
EXC_NOTDECWIDGET. If it tests true, the filter returns
1 to the dispatcher; if it tests false, the filter returns
-1 to the dispatcher, which continues its search for a
handler in the previous run-time stack frames. When the
generated exception is EXC_NOTWIDGET, the dispatcher finds
its handler in main()’s frame.

*/
except((code=exception_code()) == EXC_NOTDECWIDGET)
{

printf("Exception 0x%lx: %s is not a DEC-supplied widget\n",
code, widget);

11–12 Handling Exception Conditions

Example 11-3: (continued)
exit(0);

}
printf("widget name okay\n");

}

The following is a sample run of this program:
% cc raise_ex.c -lexc

% a.out

Enter widget name: foo

Exception 0x20ffe009: foo is not a DEC-supplied widget

% a.out

Enter widget name: bar

Exception 0x10ffe009: bar is not a widget

11.4 Writing a Termination Handler
The cc compiler allows you to ensure that a specified block of termination
code is executed whenever control is passed from a guarded body of code.
The termination code is executed regardless of how the flow of control leaves
the guarded code. For example, a termination handler can guarantee that
clean-up tasks are performed even if an exception or some other error occurs
while the guarded body of code is executing.

The syntax for a termination handler is as follows:

try{

try-body

}

finally{

termination-handler

}

The try-body is the code, expressed as a compound statement, that the
termination handler protects. The try body can be a block of statements or a
set of nested blocks. It can include the following statement, which causes an
immediate exit from the block and execution of its termination handler:

leave;

Handling Exception Conditions 11–13

The termination-handler is a compound statement that executes when
the flow of control leaves the guarded try body, regardless of whether the try
body terminated normally or abnormally. The guarded body is considered to
have terminated normally when the last statement in the block is executed
(that is, when the body’s closing ‘‘}’’ is reached). Use of the leave
statement also causes a normal termination. The guarded body terminates
abnormally when the flow of control leaves it by any other means, for
example, due to an exception or due to a control statement such as return,
goto, break, or continue.

A termination handler can call the following intrinsic function to determine
whether the guarded body terminated normally or abnormally:

int abnormal_termination();

The abnormal_termination function returns 0 if the try body
completed sequentially; otherwise, it returns 1.

The termination handler itself may terminate either sequentially or by a
transfer of control out of the handler. If it terminates sequentially (by
reaching the closing ‘‘}’’), subsequent control flow depends on how the try
body terminated:

• If the try body terminated normally, execution continues with the
statement following the complete try...finally block.

• If the try body terminated abnormally with an explicit jump out of the
body, the jump is completed. However, if the jump exits the body of one
or more containing try...finally statements, their termination
handlers are invoked before control is finally transferred to the target of
the jump.

• If the try body terminated abnormally due to an unwind, a jump to an
exception handler, or an exc_longjmp call, control is returned to the C
run-time exception handler, which will continue invoking termination
handlers as required before jumping to the target of the unwind.

Like exception filters, termination handlers are treated as Pascal-style nested
procedures and are executed without the removal of frames from the run-time
stack. A termination handler can thus access the local variables of the
procedure in which it is declared.

Note that there is a performance cost in the servicing of abnormal
terminations, inasmuch as abnormal terminations (and exceptions) are
considered to be outside the normal flow of control for most programs. Keep
in mind that explicit jumps out of a try body are considered abnormal
termination. Normal termination is the simple case and costs less at run time.

In some instances, you can avoid this cost by replacing a jump out of a try
body with a leave statement (which transfers control to the end of the

11–14 Handling Exception Conditions

innermost try body) and testing a status variable after completion of the
entire try...finally block.

A termination handler itself may terminate nonsequentially (for instance, to
abort an unwind) by means of a transfer of control (for instance, a goto,
break, continue, return, exc_longjmp, or the occurrence of an
exception). If this transfer of control exits another try...finally block,
its termination handler will execute.

Example 11-4 illustrates the order in which termination handlers and
exception handlers execute when an exception causes the termination of the
innermost try body.

Example 11-4: Abnormal Termination of a Try Block by an
Exception

#include <signal.h>
#include <excpt.h>
#include <errno.h>

#define EXC_FOO EXC_VALUE(EXC_C_USER, 1)

signed
foo_except_filter()
{

printf("2. The exception causes the exception filter
to be evaluated.\n");

return(1);
}

main ()
{

try {
try {

printf("1. The main body executes.\n");
exc_raise_status_exception(EXC_FOO);

}
finally {

printf("3. The termination handler executes
because control will leave the
try...finally block to \n");

}
}

except(foo_except_filter()) {
printf("4. execute the exception handler.\n");
}

}

Handling Exception Conditions 11–15

The following is a sample run of this program:
% cc segfault_ex.c -lexc

% a.out

1. The main body executes.
2. The exception causes the exception filter to be evaluated.
3. The termination handler executes because control will leave the

try...finally block to
4. execute the exception handler.

11–16 Handling Exception Conditions

12Developing Thread-safe Libraries3333333333333333333333
To support the development of multithreaded applications, the Digital UNIX
operating system provides DECthreads, Digital’s Multithreading Run-Time
Library. The DECthreads interface is Digital UNIX’s implementation of
IEEE Standard 1003.1c-1995 threads (also referred to as POSIX 1003.1c
threads).

In addition to an actual threading interface, the operating system also
provides Thread-Independent Services (TIS). The TIS routines are an aid to
creating thread-safe libraries (see Section 12.4.1).

This chapter addresses the following topics:

• Overview of multithread support in Digital UNIX (Section 12.1)

• Run-time library changes for POSIX conformance (Section 12.2)

• Characteristics of thread-safe and thread-reentrant routines (Section 12.3)

• How to write thread-safe code (Section 12.4)

• How to build multithreaded applications (Section 12.5)

12.1 Overview of Thread Support
A thread is a single, sequential flow of control within a program. Multiple
threads execute concurrently and share most resources of the owning process,
including the address space. By default, a process initially has one thread.

The purposes for which multiple threads are useful include:

• Improving the performance of applications running on multiprocessor
systems

• Implementing certain programming models (for example, the client/server
model)

• Encapsulating and isolating the handling of slow devices

You can also use multiple threads as an alternative approach to managing
certain events. For example, you can use one thread per file descriptor in a
process that otherwise might use the select() or poll() system calls to
efficiently manage concurrent I/O operations on multiple file descriptors.

The components of the multithreaded development environment for the
Digital UNIX system include the following:

• Compiler support – Compile using the –pthread flag on the cc or c89
command.

• Threads package – The libpthread.so library provides interfaces for
threads control, buffers an application from lower-level threads
implementation, and is selected at application link time.

• Thread-safe support libraries – These libraries include libm.{a,so},
libsys5_r.a, and libmach.{a,so}.

• The ladebug debugger

• The prof and gprof profilers – Compile with the –p and –pthread
flags for prof and with the –pg and –pthread flags for gprof to use
the libprof1_r.a profiling library.

• The atom utility (pixie, third, and hiprof tools)

For information on profiling multithreaded applications, see Section 8.14.

12.2 Run-Time Library Changes for POSIX Conformance
For releases of the DEC OSF/1 operating system (that is, for releases prior to
Digital UNIX Version 4.0), a large number of separate reentrant routines
(*_r routines) were provided to solve the problem of static data in the C
run-time library (the first two problems listed in Section 12.3.1). The Digital
UNIX operating system fixes the problem of static data in the non-reentrant
versions of the routines by replacing the static data with thread-specific data.
Except for a few routines specified by POSIX 1003.1c, all of the alternate
routines are no longer required and are retained only for binary compatibility.

The following functions are the only alternate thread-safe routines that are
specified by POSIX 1003.1c and need to be used when writing thread-safe
code:

alctime_r* ctime_r* getgrgid_r*

getgrnam_r* getpwnam_r* getpwuid_r*

gmtime_r* localtime_r* rand_r*

readdir_r* strtok_r

Starting with Digital UNIX Version 4.0, the interfaces flagged with an
asterisk (*) in the preceding list have new definitions that conform to POSIX
1003.1c. The old versions of these routines can be obtained by defining the
preprocessor symbol _POSIX_C_SOURCE with the value 199309L (which
denotes POSIX 1003.1b conformance). The new versions of the routines are

12–2 Developing Thread-safe Libraries

the default when compiling code under Digital UNIX Version 4.0 or later,
but you must be certain to include the header files specified on the manpages
for the various routines.

For more information on programming with threads, see the Guide to
DECthreads and cc(1), monitor(3), prof(1), and gprof(1).

12.3 Characteristics of Thread-Safe and Reentrant
Routines

Routines within a library can be thread safe or not. A thread-safe routine is
one that can be called concurrently from multiple threads without undesirable
interactions between threads. A routine can be thread safe for either of the
following reasons:

• It is inherently reentrant.

• It uses thread-specific data or lock on mutexes. (A mutex is a
synchronization object that is used to allow multiple threads to serialize
their access to shared data.)

Reentrant routines do not share any state across concurrent invocations from
multiple threads. A reentrant routine is the ideal thread-safe routine, but not
all routines can be made to be reentrant.

Prior to Digital UNIX Version 4.0, many of the C run-time library (libc)
routines were not thread safe, and alternate versions of these routines were
provided in libc_r. Starting with Digital UNIX Version 4.0, all of the
alternate versions formerly found in libc_r were merged into libc. If a
thread-safe routine and its corresponding nonthread-safe routine had the same
name, the nonthread-safe version was replaced. The thread-safe versions are
modified to use Thread Independent Services (TIS) (see Section 12.4.1); this
enables them to work in both single- and multithreaded environments –
without extensive overhead in the single-threaded case.

12.3.1 Examples of Nonthread-safe Coding Practices
Some common practices that can prevent code from being thread safe can be
found by examining why some of the libc functions were not thread safe
prior to Digital UNIX Version 4.0:

Developing Thread-safe Libraries 12–3

• Returning a pointer to a single, statically allocated buffer

The ctime(3) interface provides an example of this problem:
char *ctime(const time_t *timer);

This function takes no arguments and returns a pointer to a statically
allocated buffer containing a string that is the ASCII representation of the
time specified in the single parameter to the function. Because a single,
statically allocated buffer is used for this purpose, any other thread that
calls this function will overwrite the string returned to the previously
calling thread.

To make the ctime() function thread safe, the POSIX 1003.1c standard
has defined an alternate version, ctime_r(), which accepts an
additional argument. The argument is a user-supplied buffer that is
allocated by the caller. The ctime_r() function writes the following
string into the buffer:

char *ctime_r(const time_t *timer, char *buf);

The users of this function must ensure that the buffer they supply as an
argument to this function is not used by another thread.

• Maintaining internal state

The rand() function provides an example of this problem:
void srand(unsigned int seed);
int rand(void);

This function is a simple pseudo-random number generator. For any
given starting ‘‘seed’’ value that is set with the srand() function, it
generates an identical sequence of pseudo-random numbers. To do this, it
maintains a state value that is updated on each call. If another thread is
calling this function, the sequence of numbers returned within any one
thread for a given starting seed is nondeterministic. This may be
undesirable.

To avoid this problem, a second interface, rand_r(), is specified in
POSIX 1003.1c. This function accepts an additional argument that is a
pointer to a user-supplied integer used by rand_r() to hold the state of
the random number generator:

int rand_r(unsigned int *seed);

The users of this function must ensure that the seed argument is not used
by another thread. Using thread-specific data or keys is one way of doing
this (see Section 12.4.2).

• Operating on read/write data items shared between threads

The problem of sharing read/write data can be solved by using mutexes.
In this case, the routine is not considered reentrant, but it is still thread
safe. Like thread-specific data, mutex locking is transparent to the user of

12–4 Developing Thread-safe Libraries

the routine except for the creation of a potential for blocking (where the
potential may not have existed previously).

Mutexes are used in several libc routines, most notably the stdio
routines, for example, printf(). Mutex locking in the stdio routines
is done by stream to prevent concurrent operations on a stream from
colliding, as in the case of two processes trying to fill a stream buffer at
the same time. Mutex locking is also done on certain internal data tables
in the C run-time library during operations such as fopen() and
fclose(). Because the alternate versions of these routines do not
require an application program interface (API) change, they have the
same name as the original versions.

See Section 12.4.3 for an example of how to use mutexes.

12.4 Writing Thread-safe Code
When writing code that can be used by both single-threaded and
multithreaded applications, it is necessary to code in a thread-safe manner.
The following coding practices must be observed:

• Static read/write data should be either eliminated, converted to thread-
specific data, or protected by mutexes. In the C language, it is good
practice to declare static read-only data with the const type modifier to
reduce the potential for misuse of the data.

• Global read/write data should be eliminated or protected by mutex locks.

• Per-process system resources such as file descriptors should be used with
care because they are accessible by all threads.

• References to the global ‘‘errno’’ cell should be replaced with calls to
geterrno() and seterrno(). This replacement is not necessary if
the source file includes <errno.h> and one of the following conditions
is true:

– The file is compiled with the -pthread flag (cc or c89 command).

– The <pthread.h> file is included at the top of the source file.

– The _REENTRANT preprocessor symbol is explicitly set before
including the <errno.h> file.

• Dependencies on any other nonthread-safe libraries or object files should
not exist in the code.

Developing Thread-safe Libraries 12–5

12.4.1 Using Thread Independent Services (TIS)
TIS is a package of routines provided by the C run-time library that can be
used to write efficient code for both single-threaded and multithreaded
applications. TIS routines can be used for handling mutexes, handling
thread-specific data, and a variety of other purposes.

When used by a single-threaded application, these routines use simplified
semantics to perform thread-safe operations for the single-threaded case.
When DECthreads is present, the bodies of the routines are replaced with
more complicated algorithms to optimize their behavior for the multithreaded
case.

TIS is used within libc itself to allow a single version of the C run-time
library to service both single-threaded and multithreaded applications. See
the Guide to DECthreads and tis(3) for information on how to use this
facility.

12.4.2 Using Thread-Specific Data
Example 12-1 shows how to use thread-specific data in a function that can be
used by both single-threaded and multithreaded applications. For clarity,
most error checking has been left out of the example.

Example 12-1: Threads Programming Example

#include <stdlib.h>
#include <string.h>
#include <tis.h>

static pthread_key_t key;

void __init_dirname()
{

tis_key_create(&key, free);
}

void __fini_dirname()
{

tis_key_delete(key);
}

char *dirname(char *path)
{

char *dir, *lastslash;
/*
* Assume key was set and get thread-specific variable.
*/

dir = tis_getspecific(key);
if(!dir) {/* First time this thread got here. */

dir = malloc(PATH_MAX);

12–6 Developing Thread-safe Libraries

Example 12-1: (continued)
tis_setspecific(key, dir);

}

/*
* Copy dirname component of path into buffer and return.
*/

lastslash = strrchr(path, ’/’);
if(lastslash) {

memcpy(dir, path, lastslash-path);
dir[lastslash-dir+1] = ’\0’;

} else
strcpy(dir, path);

return dir;
}

The following TIS routines are used in the preceding example:

tis_key_create
Generates a unique data key.

tis_key_delete
Deletes a data key.

tis_getspecific
Obtains the data associated with the specified key.

tis_setspecific
Sets the data value associated with the specified key.

The __init_ and __fini_ routines are used in the example to initialize
and destroy the thread-specific data key. This operation is done only once,
and these routines provide a convenient way of ensuring that this is the case,
even if the library is loaded with dlopen(). See ld(1) for an explanation
of how to use the __init_ and __fini_ routines.

Thread-specific data keys are a limited resource. A library that needs to create
a large number of data keys should instead be written to create just one and
to store all of the separate data items as a structure or an array of pointers
pointed to by a single key.

12.4.3 Using Mutex Locks to Share Data Between Threads
In some cases, using thread-specific data is not the correct way to convert
static data into thread-safe code, for example, when a data object is meant to
be shareable between threads (as in stdio streams within libc).
Manipulating per-process resources is another case in which thread-specific
data is inadequate. The following example shows how to manipulate per-

Developing Thread-safe Libraries 12–7

process resources in a thread-safe fashion:
#include <pthread.h>
#include <tis.h>

/*
* NOTE: The putenv() function would have to set and clear the
* same mutex lock before it accessed the environment.
*/

extern char **environ;
static pthread_mutex_t environ_mutex = PTHREAD_MUTEX_INITIALIZER;

char *getenv(const char *name)
{

char **s, *value;
int len;

tis_mutex_lock(&environ_mutex);
len = strlen(name);
for(s=environ; value=*s; s++)

if(strncmp(name, value, len) == 0 &&
value[len] == ’=’) {

tis_mutex_unlock(&environ_mutex);
return &(value[len+1]);

}
tis_mutex_unlock(&environ_mutex);
return (char *) 0L;

}

In the preceding example, note how the lock is set once
(tis_mutex_lock) before accessing the environment and is unlocked
exactly once (tis_mutex_unlock) before returning. In the multithreaded
case, any other thread attempting to access the environment while the first
thread holds the lock is blocked until the first thread performs the unlock
operation. In the single-threaded case, no contention occurs unless an error
exists in the coding of the locking and unlocking sequences.

If it is necessary for the lock state to remain valid across a fork() system
call in multithreaded applications, it may be useful to create and register
pthread_atfork() handler functions to lock the lock prior to any
fork() call, and to unlock it in both the child and parent after the fork()
call. This guarantees that a fork operation is not done by one thread while
another thread holds the lock. If the lock was held by another thread, it
would end up permanently locked in the child because the fork operation
produces a child with only one thread. In the case of an independent library,
the call to pthread_atfork() can be done in an __init_ routine in
the library. Unlike most pthread routines, the pthread_atfork routine
is available in libc and may be used by both single-threaded and
multithreaded applications.

12–8 Developing Thread-safe Libraries

12.5 Building Multithreaded Applications
The compilation and linking of multithreaded applications differs from that of
single threaded applications in a few minor but important ways.

12.5.1 Compiling Multithreaded C Applications
Many system include files behave differently when they are being
included into the compilation of a multithreaded application. Whether the
single-threaded or thread-safe include file behavior applies is determined
by whether the 2REENTRANT preprocessor symbol is defined. When the
–pthread flag is supplied to the cc or c89 command, the 2REENTRANT
symbol is defined automatically; it is also defined if the pthreads.h
system include file is included. This include file must be the first file
included in any application that uses the pthreads library, libpthread.so.

The –pthread flag has no other effect on the compilation of C programs.
The reentrancy of the actual code generated by the C compiler is determined
only by proper use of reentrant coding practices by the programmer, by use
of only thread-safe support libraries, and by use of only thread-safe support
libraries – not by any special options.

12.5.2 Linking Multithreaded C Applications
To link a multithreaded C application, use the cc or c89 command with the
–pthread flag. When linking, the –pthread flag has the effect of
modifying the library search path in the following ways:

• The pthreads library is included into the link.

• The exceptions and mach C libraries are included into the link.

• For each library mentioned in a –l flag, an attempt is made to locate and
presearch a library whose name is derived by appending an 2r to the
given name.

The –pthread flag does not modify the behavior of the linker in any other
way. The reentrancy of the linked code is determined by use of proper
programming practices in the orginal code, and by compiling and linking
with the proper include files and libraries, respectively.

12.5.3 Building Multithreaded Applications in Other Languages
Not all compilers necessarily generate reentrant code; the definition of the
language itself can make this difficult. It is also necessary for any run-time
libraries linked with the application to be thread safe. For details on such
matters, you should consult the manual for the compiler you are using.

Developing Thread-safe Libraries 12–9

AUsing 32-Bit Pointers on Digital UNIX
Systems3333333333333333333333

The Digital UNIX C compiler supports the use of 32-bit pointers on the 64-
bit Digital UNIX operating system. All system interfaces use 64-bit pointers.
The 32-bit pointer data type is provided to help developers reduce the amount
of memory used by dynamically allocated pointers and to assist with the
porting of applications that contain assumptions about the sizes of pointers.
The use of 32-bit pointers in applications requires source code modifications
and the use of compiler options.

A.1 Pointer Definitions
The following list defines pointers described in this appendix:

• Short pointer: A 32-bit pointer. When a short pointer is declared, 32 bits
are allocated.

• Long pointer: A 64-bit pointer. When a long pointer is declared, 64 bits
are allocated. This is the default pointer type on Digital UNIX systems.

• Simple pointer: A pointer to a nonpointer data type, for example,
int *num_val;.

• Compound pointer: A pointer to a pointer or a pointer to an indefinite
array, for example, char *argv[] or char **FontList.

A.2 Using 32-Bit Pointers
Two cc flags and a set of pragmas control the usage of 32-bit pointers. The
–xtaso compiler flag causes the compiler to respond to the #pragma
pointer_size directives. The –xtaso_short compiler flag causes the
compiler to allocate 32-bit pointers by default and is recognized only when
used with the –xtaso flag.

The cc flags for controlling pointer size are the following:

• –xtaso

Enables the use of short pointers. All pointer types default to long
pointers, but short pointers can be declared through the use of the
pointer_size pragmas.

• –xtaso_short

Enables the use of short pointers. All pointer types default to short
pointers. Long pointers can be declared through the use of the
pointer_size pragmas. Because all system routines continue to use
64-bit pointers, most applications require source changes when used in
this way.

Within a C program, the size of pointer types can be controlled by the use of
pragmas. These pragmas are only recognized by the compiler if the –xtaso
or –xtaso_short flags have been specified with the cc command; they
are silently ignored if neither of the flags are specified. Pointer sizes specified
by the following pragmas override the default pointer size.

The #pragma pointer_size specifier directive provides control
over pointer size allocation. This pragma has the following syntax:

#pragma pointer_size specifier

The specifier argument must be one of the following keywords:

long All pointer sizes following this pragma are long pointers (64 bits in length)
until an overriding pointer_size pragma is encountered.

short All pointer sizes following this pragma are short pointers (32 bits in
length) until an overriding pointer_size pragma is encountered.

save Save the current pointer size such that a corresponding #pragma
pointer_size restore will set the pointer size to the current value.
The model for pointer size preservation is a last-in, first-out stack such that
a save is analogous to a push, and a restore is analogous to a pop.

restore The opposite of save. Restore the uppermost saved pointer size and
delete it from the save/restore stack. For example:

#pragma pointer_size (long)
/* pointer sizes in here are 64-bits */

#pragma pointer_size (save)
#pragma pointer_size (short)

/* pointer sizes in here are 32-bits */
#pragma pointer_size (restore)

/* pointer sizes in here are again 64-bits */

The –xtaso flag causes the compiler to respond to the #pragma
pointer_size directives. The –xtaso_short compiler flag causes the
compiler to allocate 32-bit pointers by default.

A–2 Using 32-Bit Pointers on Digital UNIX Systems

The following example demonstrates the use of both short and long pointers:
#include <stdio.h> /* modified with #pragma pointer_size */
main ()

{
int *a_ptr;

printf ("A pointer is %ld bytes\n", sizeof (a_ptr));
}

When compiled either with default settings or with the –xtaso flag, the
sample program prints the following:
A pointer is 8 bytes

When compiled with the –xtaso_short flag, this sample program prints
the following:
A pointer is 4 bytes

A.3 Syntactic Considerations
The size of pointers within macros is governed by the context in which the
macro is expanded. There is no way to specify pointer size as part of a
macro.

The size of pointers used in a typedef that includes pointers as part of its
definition is determined when the typedef is declared, not when it is used.
Thus, if a short pointer is declared as part of a typedef definition, all
variables that are declared using that typedef will use a short pointer, even
if those variables are compiled in a context where long pointers are being
declared.

The alignment and padding rules for short pointers in structures are the same
as for long pointers; the only difference is in the sizes of the pointers.

A.4 Requirements
To use short pointers, the virtual address space in which the application runs
must be constrained such that all valid pointer values are representable in 31
bits. The –taso linker flag enforces this constraint. Applications that use the
–xtaso compiler flag must be linked with the –taso option.

A.5 Interaction with Other Languages
Only the C compiler supports the use of short pointers. Short pointers should
not be passed from C routines to routines written in other language.

Using 32-Bit Pointers on Digital UNIX Systems A–3

A.6 Conversion of Pointers and Other Issues
Because Digital UNIX is a 64-bit system, all applications must use 64-bit
pointers wherever pointer data is exchanged with the operating system or any
system-supplied libraries. Because normal applications use the standard
system data types, no conversion of pointers is needed. In an application that
uses short pointers, explicit conversion of the short pointers to long pointers
can be required.

A.6.1 Pointer Conversion
Conversion of pointers can be either explicit or implicit. An explicit
conversion occurs when the value of a short pointer is assigned to a long
pointer, or vice versa. An implicit conversion occurs when a short pointer is
passed as an argument to a function that expects long pointers, or vice versa.
Implicit conversions only work correctly on simple pointers; complex
pointers (pointers to pointers) require explicit conversions.

In general, the conversion of complex pointers requires source code changes.
Alignment and segmentation faults result if complex pointers are not
correctly converted.

For example, the argument vector, argv, is a compound long pointer, and
must be declared as such. Many X11 library functions return compound long
pointers; the return values for these functions must be declared correctly or
erroneous behavior will result.

The pointer_size short pragma has no effect on the size of the second
argument to main(), traditionally called argv. This pragma always has a
size of 8 bytes even if the pragma has been used to set other pointer sizes to
4 bytes.

A.6.2 System Header Files
All Digital UNIX system routines operate on 64-bit pointers, so all system
routine declarations must be made in the context of a #pragma
pointer_size long declaration.

You can avoid extensive modification of existing applications by modifying
all of the system header files on your Digital UNIX system by doing the
following:

• Add the following lines to beginning of the header files:
#pragma pointer_size (save)
#pragma pointer_size (long)

A–4 Using 32-Bit Pointers on Digital UNIX Systems

• Add the following line to the end of the header files:
#pragma pointer_size (restore)

The following example scripts modify the system header files to declare
correctly all system routines that use long pointers. Before using these
scripts, be sure to back up your system disk.

To use these scripts, create the following files in one directory and change
their permissions to execute. Then run the xtaso_header_edit script
with no arguments; it is automated and will modify all header files. You must
be superuser on the system on which you want to perform the modifications.
xtaso_header_edit:

#!/bin/csh
find /usr/include ! -type l -name ’*.h’ \

-exec short_pointer-sed.csh {} \;
find /sys/include ! -type l -name ’*.h’ \

-exec short_pointer-sed.csh {} \;

short_pointer-sed.csh:

#!/bin/csh
echo $1
sed -f short_ptr.sed $1 >/tmp/short_ptr.tmp
mv /tmp/short_ptr.tmp $1

short_ptr.sed:

1i \
#pragma pointer_size save
1i \
#pragma pointer_size long
$a \
#pragma pointer_size restore

A.7 Restrictions
Because most applications on Digital UNIX systems use addresses that are
not representable in 32 bits, the use of a short pointer in these applications
would cause these applications to fail. Thus, no library that might be called
by normal applications can contain short pointers. Vendors of software
libraries generally should not use short pointers.

Because the use of short pointers, in general, requires understanding and
knowledge of the application they are applied to, they are not recommended
as a porting aid. Applications for which you are considering the use of short
pointers should be ported to Digital UNIX first and then analyzed to see if
short pointers would be of benefit.

Using 32-Bit Pointers on Digital UNIX Systems A–5

The –taso linker option that is required to link programs that make use of
short pointers imposes additional restrictions on the run-time environment
and how libraries may be used. See cc(1) for more information on the
–taso option.

A–6 Using 32-Bit Pointers on Digital UNIX Systems

BDifferences in the System V Habitat3333333333333333333333
This appendix describes how to achieve source code compatibility for C
language programs in the System V habitat. In addition, it provides a
summary of system calls and library functions that differ from the default
operating system.

B.1 Source Code Compatibility
To achieve source code compatibility for the C language programs, alter your
shell’s PATH environment variable and then compile and link your
applications.

When you modify the PATH environment variable, access to the System V
habitat works on two levels:

• The first level results from the modified PATH environment variable
causing the System V versions of several user commands to execute
instead of the default system versions.

• The second level results from executing the System V cc or ld
commands.

Executing the System V versions of the cc and ld commands causes source
code references to system calls and subroutines to be resolved against the
libraries in the System V habitat. If a subroutine or system call is not found
in the System V habitat, the reference is resolved against the standard default
libraries and other libraries that you can specify with the commands. Also,
the include file search path is altered so that the System V versions of the
system header files (for example, /usr/include files) are used instead of
the standard versions.

The library functions that invoke system calls use the system call table to
locate the system primitives in the kernel. The base operating system
contains several system call tables, including one for System V. The system
calls that exhibit System V behavior have entries in the System V partition of
the system call table.

When you link your program and your PATH is set for the System V habitat,
libsys5 is searched to resolve references to system calls. As Figure B-1
illustrates, the unlink() system call invoked by libsys5 points to an
entry in the System V partition of the system call table. This maps to a

different area of the kernel than the mapping for the default system
unlink() system call.

Figure B-1: System Call Resolution

unlink()

default
system calls

system
calls

libsys5.a

system call
table

libc.a

kernel

unlink()

unlink()

...

ZK−0814U−R

SVID

User Process
Base System

System V
Habitat

User Process SVID
partition

partition

unlink()

default system

...

vector
table

The cc and ld commands that reside in the System V habitat are shell
scripts that, when specified, add several options to the default system cc and
ld commands before the commands are executed.

The cc command automatically inserts the -Ipath option on the command
line to specify the use of the SVID versions of system header files. For
example, the /usr/include file is used instead of the default version.
System header files that do not have SVID differences are obtained from the
default location.

The cc and ld commands automatically include the following options:

• The -Lpath option provides the path of the System V libraries.

• The -lsys5 option indicates that the libsys5.a library should be
searched before the standard C library to resolve system call and
subroutine references.

• The -D__SVID__ option selectively turns on SVID specific behavior
from the default system.

B–2 Differences in the System V Habitat

By default, cc dynamically links programs using shared libraries when they
exist. The System V habitat provides libsys5.so in addition to
libsys5.a to support this feature.

The System V version of the cc and ld commands pass all user-specified
command line options to the default system versions of the cc and ld
commands. This allows you to create library hierarchies. For example, if
your PATH environment variable is set to the System V habitat and your
program includes references to math library functions and libloc.a
functions located in the /local/lib directory, you can compile the
program as follows:
% cc –non_shared –L/local/lib src.c –lm –lloc

The System V cc command takes the preceding command line and adds the
necessary options to search the System V habitat libraries, which are
searched prior to the default libraries. It also includes any existing System V
header files instead of the standard header files for /usr/include. Hence,
if your environment is set to SVID 2, the preceding command line is
processed as follows:
/bin/cc -D__SVID__ -I$SVID2PATH/usr/include -L$SVID2PATH/usr/lib \
–non_shared –L/local/lib src.c –lm –lloc –lsys5

Using this command line, libraries are searched in the following order:

1. /usr/lib/libm.a

2. /local/lib/libloc.a

3. SVID2PATH/usr/lib/libsys5.a

4. /usr/lib/libc.a

The libraries that are searched and the order that they are searched in depends
on the function you are performing. For more information, see cc(1) and
ld(1).

B.2 Summary of System Calls and Library Routines
Table B-1 describes the behavior of the system calls in the System V habitat.
For a complete explanation of these system calls, refer to the reference pages
for each system call. Table B-2 describes the behavior of the library
functions in the System V habitat.

See the reference pages for complete descriptions of the system calls and
library routines.

Differences in the System V Habitat B–3

Table B-1: System Call Summary
22
System Call System V Behavior22
longjmp(2) and
setjmp(2)

Saves and restores the stack only.

mknod(2) Provides the ability to create a directory, regular file, or
special file.

mount(2sv) and
umount(2sv)

Takes different arguments than the default system version
and requires that the <sys/types.h> header file is
included.

Note

To access the reference page for the System V
version of mount, make sure that the 2sv
section specifier is included on the man
command line.

open(2) Specifies that the O_NOCTTY flag is not set by default as
it is in the base system. Thus, if the proper conditions
exist, an open call to a terminal device will allow the
device to become the controlling terminal for the process.

pipe(2) Supports a pipe operation on STREAMS-based file
descriptors.

sigaction(2) and
signal(2)

Specifies that the kernel pass additional information to the
signal handler. This includes passing the reason that the
signal was delivered (into the siginfo structure) and the
context of the calling process when the signal was
delivered into the ucontext structure.

sigpause(2) Unblocks the specified signal from the calling process’s
signal mask and suspends the calling process until a signal
is received. The SIGKILL and SIGSTOP signals cannot
be reset.

sigset(2) Specifies that if the disposition for SIGCHLD is set to
SIG_IGN, the calling process’s children cannot turn into
zombies when they terminate. If the parent subsequently
waits for its children, it blocks until all of its children
terminate. This operation then returns a value of -1 and
sets errno to [ECHILD].

unlink(2) Does not allow users (including superusers) to unlink
nonempty directories and sets errno to ENOTEMPTY.
It allows superusers to unlink a directory if it is empty.22

B–4 Differences in the System V Habitat

Table B-2: Library Function Summary
22
Library Functions System V Behavior22
getcwd(3) Gets the name of the current directory.

char *getcwd(char * buffer, int size);

mkfifo(3) Supports creation of STREAMS-based FIFO and uses
/dev/streams/pipe.

mktemp(3) Uses the getpid function to obtain the pid part of the
unique name.

ttyname(3) Returns a pointer to a string with the pathname that begins
with /dev/pts/ when the terminal is a pseudoterminal
device.22

Differences in the System V Habitat B–5

CDynamically Configurable Kernel
Subsystems3333333333333333333333

Before the Digital UNIX system supported dynamically configurable
subsystems, system administrators managed kernel subsystems by editing
their system’s configuration file. Each addition or removal of a subsystem or
each change in a subsystem parameter required rebuilding the kernel, an often
difficult and time-consuming process. System administrators responsible for
a number of systems had to make changes to each system’s configuration file
and rebuild each kernel.

Dynamically configurable subsystems allow system administrators to modify
system parameters, and load and unload subsystems without editing files and
rebuilding the kernel. System administrators use the sysconfig command
to configure the subsystems of their kernel. Using this command, system
administrators can load and configure, unload and unconfigure, reconfigure
(modify), and query subsystems on their local system and on remote systems.

When you create a new kernel subsystem or modify an existing kernel
subsystem, you can write the subsystem so that it is dynamically
configurable. This appendix explains how to make a subsystem dynamically
configurable by providing the following information:

• A conceptual description of a dynamically configurable subsystem

• A conceptual description of the attribute table, including example
attribute tables

• An explanation of creating a configuration routine, including an example
configuration routine

• A description of checking the operating system version number to ensure
that the subsystem is compatible with it

• Instructions for building a loadable subsystem into the kernel for testing
purposes

• Instructions for building a static subsystem that allows run-time attribute
modification into the kernel for testing purposes

• Information about debugging a dynamically configurable subsystem

Device driver writers should note device-driver specific issues when writing
loadable device drivers. For information about writing loadable device
drivers, see Writing Device Drivers: Tutorial.

C.1 Overview of Dynamically Configurable Subsystems
Many Digital UNIX kernel subsystems are static, meaning that they are
linked with the kernel at build time. After the kernel is built, these
subsystems cannot be loaded or unloaded. An example of a static subsystem
is the vm (virtual memory) subsystem. This subsystem must be present in
the kernel for the system to operate correctly.

Some kernel subsystems are or can be loadable. A loadable subsystem is one
that can be added to or removed from the kernel without rebuilding the
kernel. An example of a subsystem that is loadable is the presto
subsystem, which is loaded only when the Prestoserve software is in use.

Both static and loadable subsystems can be dynamically configurable.

• For a static subsystem, dynamically configurable means that selected
subsystem attributes can be modified without rebuilding the kernel. This
type of subsystem can also answer queries about the values of its
attributes and be unconfigured if it is not in use (however, it cannot be
unloaded).

• For a loadable subsystem, dynamically configurable means that the
subsystem is configured into the kernel at load time, can be modified
without rebuilding the kernel, and is unconfigured before it is unloaded.
This type of subsystem can also answer queries about its attributes.

Like traditional kernel subsystems, dynamically configurable subsystems
have parameters, called attributes. Examples of subsystem attributes are
timeout values, table sizes and locations in memory, and subsystem names.
You define the attributes for the subsystem in an attribute table. (Attribute
tables are described in Section C.2.)

Before initially configuring a loadable subsystem, system administrators can
store values for attributes in the sysconfigtab database. This database is
stored in the /etc/sysconfigtab file and is loaded into kernel memory
at boot time. The values stored in this database become the initial value for
the subsystem’s attributes, whether your subsystem has supplied an initial
value for the attribute. Figure C-1 demonstrates how initial attribute values
come from the sysconfigtab database.

C–2 Dynamically Configurable Kernel Subsystems

Figure C-1: System Attribute Value Initialization

 ZK−0973U−R

"Ten Item Tb1"

10

name
sysconfigtab

size

table

attribute receives value
from database

attribute receives value

attribute value is assigned
in subsystem code

sysconfigtabfrom database

Kernel Memory Space

name="Ten Item Tbl"

size= 10

*table=NULL

size=

name=

0

Subsystem Code Kernel

Notice in Figure C-1 that the size attribute receives its initial value from
the sysconfigtab database even though the subsystem initializes the
size attribute to zero.

Using an attribute table declared in the subsystem code, you control which of
the subsystem’s attribute values can be set at initial configuration. (For
information about how you control the attributes that can be set in the
sysconfigtab database, see Section C.2.)

In addition to being able to store attribute values for initial configuration,
system administrators can query and reconfigure attribute values at any time
when the subsystem is configured into the kernel. During a query request,
attribute values are returned to the system administrator. During a
reconfiguration request, attribute values are modified. How the return or
modification occurs depends upon how attributes are declared in the
subsystem code:

• If the subsystem’s attribute table supplies the kernel with the address of
an attribute, the kernel can modify or return the value of that attribute.
Supplying an address to the kernel and letting the kernel handle the
attribute value is the most efficient way to maintain an attribute value.

Dynamically Configurable Kernel Subsystems C–3

• If the kernel has no access to the attribute value, the subsystem must
modify or return the attribute value. Although it is most efficient to let the
kernel maintain attribute values, some cases require the subsystem to
maintain the value. For example, the kernel cannot calculate the value of
an attribute, so the subsystem must maintain values that need to be
calculated.

Again, you control which of the subsystem’s attribute values can be queried
or reconfigured, as described in Section C.2.

In addition to an attribute table, each dynamically configurable subsystem
contains a configuration routine. This routine performs tasks such as
calculating the values of attributes that are maintained in the subsystem. This
routine also performs subsystem-specific tasks, which might include, for
example, determining how large a table needs to be or storing memory
locations in local variables that can be used by the subsystem. (Section C.3
describes how you create the configuration routine.) The kernel calls the
subsystem configuration routine each time the subsystem is configured,
queried, reconfigured, or unconfigured.

Any subsystem that can be configured into the kernel can also be
unconfigured from the kernel. When a system administrator unconfigures a
subsystem from the kernel, the kernel memory occupied by that subsystem is
freed if the subsystem is loadable. The kernel calls the subsystem
configuration routine during an unconfigure request to allow the subsystem to
perform any subsystem specific unconfiguration tasks. An example of a
subsystem specific unconfiguration task is freeing memory allocated by the
subsystem code.

C.2 Overview of Attribute Tables
The key to creating a good dynamically configurable subsystem is declaring a
good attribute table. The attribute table defines the subsystem’s attributes,
which are similar to system parameters. (Examples of attributes are timeout
values, table sizes and locations in memory, and so on.) The attribute table
exists in two forms, the definition attribute table and the communication
attribute table:

• The definition attribute table is included in your subsystem code. It
defines the subsystem attributes. Each attribute definition is one element
of the attribute table structure. The definitions include the name of the
attribute, its data type, and a list of the requests that system
administrators are allowed to make for that attribute. The definition of
each attribute also includes its minimum and maximum values, and
optionally its storage location. The kernel uses the attribute definition as
it responds to configuration, reconfiguration, query, and unconfiguration
requests from the system administrator.

C–4 Dynamically Configurable Kernel Subsystems

• The communication attribute table is used for communication between the
kernel and your subsystem code. Each element of this attribute table
structure carries information about one attribute. The information
includes the following:

– The name and data type of the attribute

– The request that has been made for an operation on that attribute

– The status of the request

– The value of the attribute.

This attribute table passes from the kernel to your subsystem each time
the system administrator makes a configuration, reconfiguration, query, or
unconfiguration request.

The reason for having two types of attribute tables is to save kernel memory.
Some of the information in the definition attribute table and the
communication attribute table (such as the name and datatypes of the
attributes) is the same. However, much of the information differs. For
example, the definition attribute table need not store the status of a request
because no requests have been made at attribute definition time. Likewise,
the communication attribute table does not need to contain a list of the
supported requests for each attribute. To save kernel memory, each attribute
table contains only the needed information.

Note

Attribute names defined in a subsystem attribute table must not
begin with the string method. This string is reserved for
naming attributes used in loadable device driver methods. For
more information about device driver methods, see Writing
Device Drivers: Tutorial.

The sections that follow explain both types of attribute tables by showing and
explaining their declaration in /sys/include/sys/sysconfig.h.

C.2.1 Definition Attribute Table
The definition attribute table has the data type cfg_subsys_attr_t,
which is a structure of attributes declared as follows in the
/sys/include/sys/sysconfig.h file:
typedef struct cfg_attr {

char name[CFG_ATTR_NAME_SZ]; 11 12277
uint type; 12 12277
uint operation; 13 12277
whatever address; 14 12277
uint min; 15 12277
uint max;

Dynamically Configurable Kernel Subsystems C–5

uint binlength; 16 12277
}cfg_subsys_attr_t;

11 12277 The name of the attribute is stored in name field. You choose this name,
which can be any string of alphabetic characters, with a length of between
two characters and the value stored in the CFG_ATTR_NAME_SZ
constant. The CFG_ATTR_NAME_SZ constant is defined in the
/sys/include/sys/sysconfig.h file.

12 12277 You specify the attribute data type in this field, which can be one of the
data types listed in Table C-1.

Table C-1: Attribute Data Types
22
Data Type Name Description22
CFG_ATTR_STRTYPE Null terminated array of characters (char*)

CFG_ATTR_INTTYPE 32-bit signed number (int)

CFG_ATTR_UINTTYPE 32-bit unsigned number (unsigned)

CFG_ATTR_LONGTYPE 64-bit signed number (long)

CFG_ATTR_ULONGTYPE 64-bit unsigned number

CFG_ATTR_BINTYPE Array of bytes22

13 12277 The operation field specifies the requests that can be performed on the
attribute. You specify one or more of the request codes listed in Table
C-2 in this field.

The CFG_OP_UNCONFIGURE request code has no meaning for
individual attributes because you cannot allow the unconfiguration of a
single attribute.

C–6 Dynamically Configurable Kernel Subsystems

Therefore, you cannot specify CFG_OP_UNCONFIGURE in the
operation field.

Table C-2: Codes that Determine the Requests Allowed for an
Attribute

22
Request Code Meaning22
CFG_OP_CONFIGURE The value of the attribute can be set when the

subsystem is initially configured.

CFG_OP_QUERY The value of the attribute can be displayed at any
time while the subsystem is configured.

CFG_OP_RECONFIGURE The value of the attribute can be modified at any
time while the subsystem is configured.22

14 12277 The address field determines whether the kernel has access to the value
of the attribute.

If you specify an address in this field, the kernel can read and modify the
value of the attribute. When the kernel receives a query request from the
sysconfig command, it reads the value in the location you specify in
this field and returns that value. For a configure or reconfigure request,
the kernel checks that the data type of the new value is appropriate for the
attribute and that the value falls within the minimum and maximum
values for the attribute. If the value meets these requirements, the kernel
stores the new value for the attribute. (You specify minimum and
maximum values in the next two fields in the attribute definition.)

In some cases, you want or need to respond to query, configure, or
reconfigure requests for an attribute in the subsystem code. In this case,
specify a NULL in this field. For more information about how you
control attribute values, see Section C.3.

15 12277 The min and max fields define the minimum and maximum allowed
values for the attribute. You choose these values for the attribute.

The kernel interprets the contents of these two fields differently,
depending on the data type of the attribute. If the attribute is one of the
integer data types, these fields contain minimum and maximum integer
values. For attributes with the CFG_ATTR_STRTYPE data type, these
fields contain the minimum and maximum lengths of the string. For
attributes with the CFG_ATTR_BINTYPE data type, these fields contain
the minimum and maximum numbers of bytes you can modify.

16 12277 If you want the kernel to be able to read and modify the contents of a
binary attribute, you use the binlength field to specify the current size
of the binary data. If the kernel modifies the length of the binary data

Dynamically Configurable Kernel Subsystems C–7

stored in the attribute, it also modifies the contents of this field.

This field is not used if the attribute is an integer or string or if you
intend to respond to query and reconfigure request for a binary attribute
in the configuration routine.

C.2.2 Example Definition Attribute Table
Example C-1 provides an example definition attribute table to help you
understand its contents and use. The example attribute table is for a fictional
kernel subsystem named table_mgr. The configuration routine for the
fictional subsystem is shown and explained in Section C.3.

Example C-1: Example Attribute Table

#include <sys/sysconfig.h>
#include <sys/errno.h>

/*
* Initialize attributes
*/

static char name[] = "Default Table";
static int size = 0;
static long *table = NULL;

/*
* Declare attributes in an attribute table
*/

cfg_subsys_attr_t table_mgr_attrbutes[] = {
/*
* "name" is the name of the table
*/

{"name", 11 12277 CFG_ATTR_STRTYPE, 12 12277
CFG_OP_CONFIGURE | CFG_OP_QUERY | CFG_OP_RECONFIGURE, 13 12277
(caddr_t) name, 14 12277 2, sizeof(name), 15 12277 0 16 12277 },
/*
* "size" indicates how large the table should be
*/

{"size", CFG_ATTR_INTTYPE,
CFG_OP_CONFIGURE | CFG_OP_QUERY | CFG_OP_RECONFIGURE,
NULL, 1, 10, 0},

/*
* "table" is a binary representation of the table
*/

{"table", CFG_ATTR_BINTYPE,
CFG_OP_QUERY,
NULL, 0, 0, 0},

/*
* "element" is a cell in the table array

C–8 Dynamically Configurable Kernel Subsystems

Example C-1: (continued)
*/

{"element", CFG_ATTR_LONGTYPE,
CFG_OP_QUERY | CFG_OP_RECONFIGURE,
NULL, 0, 99, 0},

{"",0,0,0,0,0,0} /* required last element */
};

The final entry in the table, {"",0,0,0,0,0,0}, is an empty attribute.
This attribute signals the end of the attribute table and is required in all
attribute tables.

The first line in the attribute table defines the name of the table. This
attribute table is named table_mgr_attributes. The following list
explains the fields in the attribute name:

11 12277 The name of the attribute is stored in the name field, which is initialized
to Default Table by the data declaration that precedes the attribute
table.

12 12277 The attribute data type is CFG_ATTR_STRTYPE, which is a null
terminated array of characters.

13 12277 This field specifies the operations that can be performed on the attribute.
In this case, the attribute can be configured, queried, and reconfigured.

14 12277 This field determines whether the kernel has access to the value of the
attribute.

If you specify an address in this field, as shown in the example, the
kernel can read and modify the value of the attribute. When the kernel
receives a query request from the sysconfig command, it reads the
value in the location you specify in this field and returns that value. For
a configure or reconfigure request, the kernel checks that the data type of
the new value is appropriate for the attribute and that the value falls
within the minimum and maximum values for the attribute. If the value
meets these requirements, the kernel stores the new value for the attribute.
(You specify minimum and maximum values in the next two fields in the
attribute definition.)

15 12277 These two fields define the minimum allowed value for the attribute (in
this case, two), and the maximum allowed value for the attribute (in this
case, sizeof(name)).

If you want the minimum and maximum values of the attribute to be set
according to the system minimum and maximum values, you can use one
of the constants defined in the /usr/include/limits.h file.

16 12277 If you want the kernel to be able to read and modify the contents of a
binary attribute, use this field to specify the current size of the binary
data. If the kernel modifies the length of the binary data stored in the
attribute, it also modifies the contents of this field.

Dynamically Configurable Kernel Subsystems C–9

This field is not used if the attribute is an integer or string or if you
intend to respond to query and reconfigure request for a binary attribute
in the configuration routine.

C.2.3 Communication Attribute Table
The communication attribute table, which is declared in the
/sys/include/sys/sysconfig.h file, has the cfg_attr_t data
type. As the following example shows, this data type is a structure of
attributes:
typedef struct cfg_attr {

char name[CFG_ATTR_NAME_SZ]; 11 12277
uint type; 12 12277
uint status; 13 12277
uint operation; 14 12277
long index; 15 12277
union { 16 12277

struct {
caddr_t val;
ulong min_len;
ulong max_len;
void (*disposal)();

}str;
struct {

caddr_t val;
ulong min_size;
ulong max_size;
void (*disposal)();
ulong val_size;

}bin;
struct {

caddr_t val;
ulong min_len;
ulong max_len;

}num;
}attr;

}cfg_attr_t;

11 12277 The name field specifies the name of the attribute, following the same
attribute name rules as the name field in the definition attribute table.

12 12277 The type field specifies the data type of the attribute, as listed in Table
C-1.

13 12277 The status field contains a predefined status code. Table C-3 lists the
possible status values.

C–10 Dynamically Configurable Kernel Subsystems

Table C-3: Attribute Status Codes
22
Status Code Meaning22
CFG_ATTR_EEXISTS Attribute does not exist.

CFG_ATTR_EINDEX Invalid attribute index.

CFG_ATTR_ELARGE Attribute value or size is too large.

CFG_ATTR_EMEM No memory available for the attribute.

CFG_ATTR_EOP Attribute does not support the requested operation.

CFG_ATTR_ESMALL Attribute value or size is too small.

CFG_ATTR_ESUBSYS The kernel is disallowed from configuring,
responding to queries on, or reconfiguring the
subsystem. The subsystem code must perform the
operation.

CFG_ATTR_ETYPE Invalid attribute type or mismatched attribute type.

CFG_ATTR_SUCCESS Successful operation.22

14 12277 The operation field contains one of the operation codes listed in Table
C-2.

15 12277 The index field is an index into a structured attribute.

16 12277 The attr union contains the value of the attribute and its maximum and
minimum values.

For attributes with the CFG_ATTR_STRTYPE data type, the val
variable contains string data. The minimum and maximum values are the
minimum and maximum lengths of the string. The disposal routine is
a routine you write to free the kernel memory when your application is
finished with it.

For attributes with the CFG_ATTR_BINTYPE data type, the val field
contains a binary value. The minimum and maximum values are the
minimum and maximum numbers of bytes you can modify. The
disposal routine is a routine you write to free the kernel memory
when your application is finished with it. val_size variable contains
the current size of the binary data.

For numerical data types, the val variable contains an integer value and
the minimum and maximum values are also integer values.

Dynamically Configurable Kernel Subsystems C–11

C.2.4 Example Communication Attribute Table
This section describes an example communication attribute table to help you
understand its contents and use. The example attribute table is for a fictional
kernel subsystem named table_mgr. The configuration routine for the
fictional subsystem is shown and explained in Section C.3.
table_mgr_configure(
cfg_op_t op, /*Operation code*/ 11 12277
caddr_t indata, /*Data passed to the subsystem*/ 12 12277
ulong indata_size, /*Size of indata*/
caddr_t outdata, /*Data returned to kernel*/ 13 12277
ulong outdata_size) /*Count of return data items*/

{

The following list explains the fields in the table_mgr_configure
communication attribute table:

11 12277 The op variable contains the operation code, which can be one of the
following:

CFG_OP_CONFIGURE
CFG_OP_QUERY
CFG_OP_RECONFIGURE
CFG_OP_UNCONFIGURE

12 12277 The indata structure delivers data of indata_size to the
configuration routine. If the operation code is CFG_OP_CONFIGURE or
CFG_OP_QUERY the data is a list of attribute names that are to be
configured or queried. For the CFG_OP_RECONFIGURE operation code,
the data consists of attribute names and values. No data is passed to the
configuration routine when the operation code is
CFG_OP_UNCONFIGURE.

13 12277 The outdata structure and the outdata_size variables are
placeholders for possible future expansion of the configurable subsystem
capabilities.

C.3 Creating a Configuration Routine
To make the subsystem configurable, you must define a configuration routine.
This routine works with the definition attribute table to configure,
reconfigure, answer queries on, and unconfigure the subsystem.

Depending upon the needs of the subsystem, the configuration routine might
be simple or complicated. Its purpose is to perform tasks that the kernel
cannot perform for you. Because you can inform the kernel of the location
of the attributes in the definition attribute table, it is possible for the kernel to
handle all configure, reconfigure, and query requests for an attribute.
However, the amount of processing done during these requests is then
limited. For example, the kernel cannot calculate the value of an attribute for

C–12 Dynamically Configurable Kernel Subsystems

you, so attributes whose value must be calculated must be handled by a
configuration routine.

The sections that follow describe an example configuration routine. The
example routine is for a fictional table_mgr subsystem that manages a
table of binary values in the kernel. The configuration routine performs these
tasks:

• Allocates kernel memory for the table at initial configuration

• Handles queries about attributes of the table

• Modifies the size of the table when requested by the system administrator

• Frees kernel memory when unconfigured

• Returns to the kernel

Source code for this subsystem is included on the system in the
/usr/examples/cfgmgr directory. The definition attribute table for this
subsystem is shown in Section C.2.2. The communication attribute table for
this subsystem is shown in Section C.2.4.

C.3.1 Performing Initial Configuration
At initial configuration, the table_mgr subsystem creates a table that it
maintains. As shown in Example C-1, the system administrator can set the
name and size of the table at initial configuration. To set these values, the
system administrator stores the desired values in the sysconfigtab
database.

The default name of the table, defined in the subsystem code, is Default
Table. The default size of the table is zero elements.

The following example shows the code that is executed during the initial
configuration of the table_mgr subsystem:

.

.

.
switch(op){ 11 12277
case CFG_OP_CONFIGURE:

attributes = (cfg_attr_t*)indata; 12 12277

for (i=0; i<indata_size; i++){ 13 12277
if (attributes[i].status == CFG_ATTR_ESUBSYS) { 14 12277

if (!strcmp("size", attributes[i].name)){ 15 12277
/* Set the size of the table */
table = (long *) kalloc(attributes[i].attr.num.val*sizeof(long)); 16 12277

/*
* Make sure that memory is available
*/

if (table == NULL) { 17 12277

Dynamically Configurable Kernel Subsystems C–13

attributes[i].status = CFG_ATTR_EMEM;
continue;

}

/*
* Success, so update the new table size and attribute status
*/

size = attributes[i].attr.num.val; 18 12277
attributes[i].status = CFG_ATTR_SUCCESS;
continue;

}
}

}
break;
.
.
.

11 12277 The configuration routine contains a switch statement to allow the
subsystem to respond to the various possible operations. The subsystem
performs different tasks, depending on the value of the op variable.

12 12277 This statement initializes the pointer attributes. The configuration
routine can now manipulate the data it was passed in the indata
structure.

13 12277 The for loop examines the status of each attribute passed to the
configuration routine.

14 12277 If the status field for the attribute contains the CFG_ATTR_ESUBSYS
status, the configuration routine must configure that attribute.

15 12277 For the initial configuration, the only attribute that needs to be
manipulated is the size attribute. The code within the if statement is
executed only when the size attribute is the current attribute.

16 12277 When the status field contains CFG_ATTR_ESUBSYS and the attribute
name field contains size, the local variable table receives the address
of an area of kernel memory. The area of kernel memory must be large
enough to store a table of the size specified in
attributes[i].attr.num.val. The value specified in
attributes[i].attr.num.val is an integer that specifies the
number of longwords in the table. The kernel reads the integer value
from the sysconfigtab database and passes it to the configuration
routine in the attr union.

17 12277 The kalloc routine returns NULL if it is unable to allocate kernel
memory. If no memory has been allocated for the table, the configuration
routine returns CFG_ATTR_EMEM, indicating that no memory was
available. When this situation occurs, the kernel displays an error
message. The subsystem is configured into the kernel, but the system
administrator must use the sysconfig command to reset the size of the
table.

C–14 Dynamically Configurable Kernel Subsystems

18 12277 If kernel memory is successfully allocated, the table size from the
sysconfigtab file is stored in the static external variable size. The
subsystem can now use that value for any operations that require the size
of the table.

C.3.2 Responding to Query Requests
During a query request, a user of the table_mgr subsystem can request
that the following be displayed:

• The name of the table

• The table size

• The table itself

• A single element of the table

As shown in Example C-1, the name attribute declaration includes an
address ((caddr_t) name) that allows the kernel to access the name of
the table directly. As a result, no code is needed in the configuration routine
to respond to a query about the name of the table.

The following example shows the code that is executed as part of a query
request:

switch (op):
.
.
.
case CFG_OP_QUERY:

/*
* indata is a list of attributes to be queried, and
* indata_size is the count of attributes
*/

attributes = (cfg_attr_t *) indata; 11 12277

for (i = 0; i < indata_size; i++) { 12 12277
if (attributes[i].status == CFG_ATTR_ESUBSYS) { 13 12277

/*
* We need to handle the query for the following
* attributes.
*/

if (!strcmp(attributes[i].name, "size")) { 14 12277

/*
* Fetch the size of the table.
*/
attributes[i].attr.num.val = (long) size;
attributes[i].status = CFG_ATTR_SUCCESS;
continue;

}

Dynamically Configurable Kernel Subsystems C–15

if (!strcmp(attributes[i].name, "table")) { 15 12277

/*
* Fetch the address of the table, along with its size.
*/
attributes[i].attr.bin.val = (caddr_t) table;
attributes[i].attr.bin.val_size = size * sizeof(long);
attributes[i].status = CFG_ATTR_SUCCESS;
continue;

}

if (!strcmp(attributes[i].name, "element")) { 16 12277

/*
* Make sure that the index is in the right range.
*/
if (attributes[i].index < 1 || attributes[i].index > size) {

attributes[i].status = CFG_ATTR_EINDEX;
continue;

}

/*
* Fetch the element.
*/
attributes[i].attr.num.val = table[attributes[i].index - 1];
attributes[i].status = CFG_ATTR_SUCCESS;
continue;

}
}

}

break;
.
.
.

11 12277 This statement initializes the pointer attributes. The configuration
routine can now manipulate the data that was passed to it in the indata
structure.

12 12277 The for loop examines the status of each attribute passed to the
configuration routine.

13 12277 If the status field for the attribute contains the CFG_ATTR_ESUBSYS
status, the configuration routine must respond to the query request for that
attribute.

14 12277 When the current attribute is size, this routine copies the value stored in
the size variable into the val field of the attr union
(attributes[i].attr.num.val). Because the size variable is
an integer, the num portion of the union is used.

This routine then stores the status CFG_ATTR_SUCCESS in the status
field attributes[i].status.

C–16 Dynamically Configurable Kernel Subsystems

15 12277 When the current attribute is table, this routine stores the address of the
table in the val field of the attr union. Because this attribute is
binary, the bin portion of the union is used and the size of the table is
stored in the val_size field. The size of the table is calculated by
multiplying the current table size, size, and the size of a longword.

The status field is set to CFG_ATTR_SUCCESS, indicating that the
operation was successful.

16 12277 When the current attribute is element, this routine stores the value of
an element in the table into the val field of the attr union. Each
element is a longword, so the num portion of the attr union is used.

If the index specified on the sysconfig command line is out of range,
the routine stores CFG_ATTR_EINDEX into the status field. When this
situation occurs, the kernel displays an error message. The system
administrator must retry the operation with a different index.

When the index is in range, the status field is set to
CFG_ATTR_SUCCESS, indicating that the operation is successful.

C.3.3 Responding to Reconfigure Requests
A reconfiguration request modifies attributes of the table_mgr subsystem.
The definition attribute table shown in Example C-1 allows the system
administrator to reconfigure the following table_mgr attributes:

• The name of the table

• The size of the table

• The contents of one element of the table

As shown in Example C-1, the name attribute declaration includes an
address ((caddr_t) name) that allows the kernel to access the name of
the table directly. Thus, no code is needed in the configuration routine to
respond to a reconfiguration request about the name of the table.

The following example shows the code that is executed during a
reconfiguration request:

switch(op){
.
.
.
case CFG_OP_RECONFIGURE:

/*
* The indata parameter is a list of attributes to be
* reconfigured, and indata_size is the count of attributes.
*/

attributes = (cfg_attr_t *) indata; 11 12277

for (i = 0; i < indata_size; i++) { 12 12277

Dynamically Configurable Kernel Subsystems C–17

if (attributes[i].status == CFG_ATTR_ESUBSYS) { 13 12277

/*
* We need to handle the reconfigure for the following
* attributes.
*/

if (!strcmp(attributes[i].name, "size")) { 14 12277

long *new_table;
int new_size;

/*
* Change the size of the table.
*/
new_size = (int) attributes[i].attr.num.val; 15 12277
new_table = (long *) kalloc(new_size * sizeof(long));

/*
* Make sure that we were able to allocate memory.
*/
if (new_table == NULL) { 16 12277
attributes[i].status = CFG_ATTR_EMEM;

continue;
}

/*
* Update the new table with the contents of the old one,
* then free the memory for the old table.
*/
if (size) { 17 12277
bcopy(table, new_table, sizeof(long) *

((size < new_size) ? size : new_size));
kfree(table);

}

/*
* Success, so update the new table address and size.
*/
table = new_table; 18 12277
size = new_size;
attributes[i].status = CFG_ATTR_SUCCESS;
continue;

}

if (!strcmp(attributes[i].name, "element")) { 19 12277

/*
* Make sure that the index is in the right range.
*/
if (attributes[i].index < 1 || attributes[i].index > size) { 110 1222777

attributes[i].status = CFG_ATTR_EINDEX;
continue;

}

C–18 Dynamically Configurable Kernel Subsystems

/*
* Update the element.
*/
table[attributes[i].index - 1] = attributes[i].attr.num.val; 111 1222777
attributes[i].status = CFG_ATTR_SUCCESS;
continue;
}

}
}

break;

.

.

.

11 12277 This statement initializes the pointer attributes. The configuration
routine can now manipulate the data that was passed to it in the indata
structure.

12 12277 The for loop examines the status of each attribute passed to the
configuration routine.

13 12277 If the status field for the attribute contains the CFG_ATTR_ESUBSYS
status, the configuration routine must reconfigure that attribute.

14 12277 When the current attribute is size, the reconfiguration changes the size
of the table. Because the subsystem must ensure that kernel memory is
available and that no data in the existing table is lost, two new variables
are declared. The new_table and new_size variables store the
definition of the new table and new table size.

15 12277 The new_size variable receives the new size, which is passed in the
attributes[i].attr.num.val field. This value comes from the
sysconfig command line.

The new_table variable receives an address that points to an area of
memory that contains the appropriate number of bytes for the new table
size. The new table size is calculated by multiplying the value of the
new_size variable and the number of bytes in a longword (sizeof
(long))

16 12277 The kalloc routine returns NULL if it was unable to allocate kernel
memory. If no memory has been allocated for the table, the configuration
routine returns CFG_ATTR_EMEM, indicating that no memory was
available. When this situation occurs, the kernel displays an error
message. The system administrator must reissue the sysconfig
command with an appropriate value.

17 12277 This if statement determines whether a table exists. If one does, then
the subsystem copies data from the existing table into the new table. It
then frees the memory that is occupied by the existing table.

Dynamically Configurable Kernel Subsystems C–19

18 12277 Finally, after the subsystem is sure that kernel memory has been allocated
and data in the existing table has been saved, it moves the address stored
in new_table into table. It also moves the new table size from
new_size into size.

The status field is set to CFG_ATTR_SUCCESS, indicating that the
operation is successful.

19 12277 When the current attribute is element, the subsystem stores a new table
element into the table.

110 1222777 Before it stores the value, the routine checks to ensure that the index
specified is within a valid range. If the index is out of the range, the
routine stores CFG_ATTR_EINDEX in the status field. When this
situation occurs, the kernel displays an error message. The system
administrator must retry the operation with a different index.

111 1222777 When the index is in range, the subsystem stores the val field of the
attr union into an element of the table. Each element is a longword, so
the num portion of the attr union is used.

The status field is set to CFG_ATTR_SUCCESS indicating that the
operation is successful.

C.3.4 Performing Subsystem-Defined Operations
The table_mgr subsystem defines an application-specific operation that
doubles the value of all fields in the table.

When a subsystem defines its own operation, the operation code must be in
the range of CFG_OP_SUBSYS_MIN and CFG_OP_SUBSYS_MAX, as
defined in the <sys/sysconfig.h> file. When the kernel receives an
operation code in this range, it immediately transfers control to the subsystem
code. The kernel does no work for subsystem-defined operations.

When control transfers to the subsystem, it performs the operation, including
manipulating any data passed in the request.

The following example shows the code that is executed in response to a
request that has the CFG_OP_SUBSYS_MIN value:
switch (op) {
.
.
.
case CFG_OP_SUBSYS_MIN:

/*
* Double each element of the table.
*/
for (i=0; ((table != NULL) && (i < size)); i++)

table[i] *= 2;

C–20 Dynamically Configurable Kernel Subsystems

break;
.
.
.
}

The code doubles the value of each element in the table.

C.3.5 Unconfiguring the Subsystem
When the table_mgr subsystem is unconfigured, it frees kernel memory.
The following example shows the code that is executed in response to an
unconfiguration request:

switch(op){
.
.
.
case CFG_OP_UNCONFIGURE:

/*
* Free up the table if we allocated one.
*/
if (size)

kfree(table, size*sizeof(long));
size = 0;
break;

}

return ESUCCESS;
}

This portion of the configuration routine determines whether memory has
been allocated for a table. If it has, the routine frees the memory using
kfree function.

C.3.6 Returning from the Configuration Routine
The following example shows the return statement for the configuration
routine.

switch(op){
.
.
.

size = 0;
break;

}

return ESUCCESS;

The subsystem configuration routine returns ESUCCESS on completing a
configuration, query, reconfigure, or unconfigure request. The way this
subsystem is designed, no configuration, query, reconfiguration, or
unconfiguration request, as a whole, fails. As shown in the examples in

Dynamically Configurable Kernel Subsystems C–21

Section C.3.1 and Section C.3.3, operations on individual attributes might
fail.

In some cases, you might want the configuration, reconfiguration, or
unconfiguration of a subsystem to fail. For example, if one or more key
attributes failed to be configured, you might want the entire subsystem
configuration to fail. The following example shows a return that has an error
value:

switch(op){
.
.
.

if (table == NULL) {
attributes[i].status = CFG_ATTR_EMEM;
return ENOMEM; /*Return message from errno.h*/

}

The if statement in the example tests whether memory has been allocated
for the table. If no memory has been allocated for the table, the subsystem
returns with an error status and the configuration of the subsystem fails. The
following messages, as defined in the
/sys/include/sys/sysconfig.h and /usr/include/errno.h
files, are displayed:
No memory available for the attribute
Not enough core

The system administrator must then retry the subsystem configuration by
reissuing the sysconfig command.

Any nonzero return status is considered an error status on return from the
subsystem. The following list describes what occurs for each type of request
if the subsystem returns an error status:

• An error on return from initial configuration causes the subsystem to not
be configured into the kernel.

• An error on return from a query request causes no data to be displayed.

• An error on return from an unconfiguration request causes the subsystem
to remain configured into the kernel.

C.4 Allowing for Operating System Revisions in
Loadable Subsystems
When you create a loadable subsystem, you should add code to the
subsystem to check the operating system version number. This code ensures
that the subsystem is not loaded into an operating system whose version is
incompatible with the subsystem.

C–22 Dynamically Configurable Kernel Subsystems

Operating system versions that are different in major ways from the last
version are called major releases of the operating system. Changes made to
the system at a major release can cause the subsystem to operate incorrectly,
so you should test and update the subsystem at each major operating system
release. Also, you might want to take advantage of new features added to the
operating system at a major release.

Operating system versions that are different in minor ways from the last
version are called minor releases of the operating system. In general, the
subsystem should run unchanged on a new version of the operating system
that is a minor release. However, you should still test the subsystem on the
new version of the operating system. You might want to consider taking
advantage of any new features provided by the new version.

To allow you to check the operating system version number, the Digital
UNIX system provides the global kernel variables version_major and
version_minor. The following example shows the code you use to test
the operating system version:
.
.
.
extern int version_major;
extern int version_minor;

if (version_major != 3 && version_minor != 0)
return EVERSION;

The code in this example ensures that the subsystem is running on the
Version 3.0 release of the operating system.

C.5 Building and Loading Loadable Subsystems
After you have written a loadable subsystem, you must build it and configure
it into the kernel for testing purposes. This section describes how to build
and load a loadable subsystem. For information about how to build a static
subsystem that allows run-time attribute configuration, see Section C.6.

The following procedure for building dynamically loadable subsystems
assumes that you are building a subsystem named table_mgr, which is
contained in the files table_mgr.c and table_data.c. To build this
subsystem, follow these steps:

1. Move the subsystem source files into a directory in the /usr/sys area:
mkdir /usr/sys/mysubsys
cp table_mgr.c /usr/sys/mysubsys/table_mgr.c
cp table_data.c /usr/sys/mysubsys/table_data.c

You can replace the mysubsys directory name with the directory name
of your choice.

Dynamically Configurable Kernel Subsystems C–23

2. Edit the /usr/sys/conf/files file using the text editor of your
choice and insert the following lines:

#
table_mgr subsystem
#
MODULE/DYNAMIC/table_mgr optional table_mgr Binary
mysubsys/table_mgr.c module table_mgr
mysubsys/table_data.c module table_mgr

The entry in the files file describes the subsystem to the config
program. The first line of the entry contains the following information:

– The MODULE/DYNAMIC/table_mgr token indicates that the
subsystem is a dynamic kernel module (group of objects) named
table_mgr.

– The optional keyword indicates that the subsystem is not required
into the kernel.

– The table_mgr identifier is the token that identifies the subsystem
on the sysconfig and autosysconfig command lines. Use
caution when choosing this name to ensure that it is unique with
respect to other subsystem names. You can list more than one name
for the subsystem.

– The Binary keyword indicates that the subsystem has already been
compiled and object files can be linked into the target kernel.

Succeeding lines of the files file entry give the pathname to the source
files that compose each module.

3. Generate the Makefile and related header files by issuing the following
command:
/usr/sys/conf/sourceconfig BINARY

4. Change to the /usr/sys/BINARY directory and build the module as
follows:
cd /usr/sys/BINARY
make table_mgr.mod

5. When the module builds without errors, move it into the /subsys
directory so that the system can load it:
cp table_mgr.mod /subsys/

6. Load the subsystem by using either the /sbin/sysconfig command
or the /sbin/init.d/autosysconfig command.

The following shows the command line you would use to load and

C–24 Dynamically Configurable Kernel Subsystems

configure the table_mgr subsystem:
/sbin/sysconfig -c table_mgr

If you want the subsystem to be configured into the kernel each time the
system reboots, issue the following command:
/sbin/init.d/autosysconfig add table_mgr

The autosysconfig command adds the table_mgr subsystem to
the list of subsystems that are automatically configured into the kernel.

C.6 Building a Static Configurable Subsystem Into the
Kernel
After you have written a static subsystem that allows run-time attribute
configuration, you must build it into the kernel for testing purposes. This
section describes how to build a static subsystem that supports the dynamic
configuration of attributes.

The following procedure for building dynamically loadable subsystems
assumes that you are building a subsystem named table_mgr, which is
contained in the file table_mgr.c:

1. Move the subsystem source files into a directory in the /usr/sys area:
mkdir /usr/sys/mysubsys
cp table_mgr.c /usr/sys/mysubsys/table_mgr.c
cp table_data.c /usr/sys/mysubsys/table_data.c

You can replace the mysubsys directory name with the directory name
of your choice.

2. Edit the /usr/sys/conf/files file using the text editor of your
choice and insert the following lines:

#
table_mgr subsystem
#
MODULE/STATIC/table_mgr optional table_mgr Binary
mysubsys/table_mgr.c module table_mgr
mysubsys/table_data.c module table_mgr

The entry in the files file describes the subsystem to the config
program. The first line of the entry contains the following information:

– The MODULE/STATIC/table_mgr token indicates that the
subsystem is a static kernel module (group of objects) named
table_mgr.

– The optional keyword indicates that the subsystem is not required
in the kernel.

Dynamically Configurable Kernel Subsystems C–25

– The table_mgr identifier is the token that identifies the subsystem
in the system configuration file. Use caution when choosing this
name to ensure that it is unique with respect to other subsystem
names. You can list more than one name for the subsystem.

– The Binary keyword indicates that the subsystem has already been
compiled and object files can be linked into the target kernel.

Succeeding lines of the files file entry give the pathname to the source
files that compose each module.

3. Rebuild the kernel by running the /usr/sbin/doconfig program:
/usr/sbin/doconfig

4. Enter the name of the configuration file at the following prompt:
*** KERNEL CONFIGURATION AND BUILD PROCEDURE ***

Enter a name for the kernel configuration file. [MYSYS]:
MYSYS.TEST

For purposes of testing the kernel subsystem, enter a new name for
the configuration file, such as MYSYS.TEST. Giving the
doconfig program a new configuration file name allows the
existing configuration file to remain on the system. You can then
use the existing configuration file to configure a system that omits
the subsystem you are testing.

5. Select option 15 from the Kernel Option Selection menu. Option 15
indicates that you are adding no new kernel options.

6. Indicate that you want to edit the configuration file in response to the
following prompt:
Do you want to edit the configuration file? (y/n) [n] yes

The doconfig program then starts the editor. (To control which editor
is invoked by doconfig, define the EDITOR environment variable.)
Add the identifier for your subsystem, in this case table_mgr, to the
configuration file:
options TABLE_MGR

After you exit from the editor, the doconfig program builds a new
configuration file and a new kernel.

7. Copy the new kernel into the root (/) directory:
cp /usr/sys/MYSYS_TEST/vmunix /vmunix

C–26 Dynamically Configurable Kernel Subsystems

8. Shutdown and reboot the system:
shutdown -r now

Note

You can specify that the module is required in the kernel by
replacing the optional keyword with the standard
keyword. Using the standard keyword saves you from
editing the system configuration file. The following files file
entry is for a required kernel module, one that is built into the
kernel regardless of its inclusion in the system configuration file:

#
table_mgr subsystem
#
MODULE/STATIC/table_mgr standard Binary
mysubsys/table_mgr.c module table_mgr
mysubsys/table_data.c module table_mgr

When you make an entry such as the preceeding one in the
files file, you add the subsystem to the kernel by issuing the
following doconfig command, on a system named MYSYS:
/usr/sbin/doconfig -c MYSYS

Replace MYSYS with the name of the system configuration file in
the preceeding command.

This command builds a vmunix kernel that is described by the
existing system configuration file, with the addition of the subsystem
being tested, in this case, the table_mgr subsystem.

C.7 Testing Your Subsystem
You can use the sysconfig command to test configuration,
reconfiguration, query, and unconfiguration requests on the configurable
subsystem. When you are testing the subsystem, issue the sysconfig
command with the optional –v flag. This flag causes the sysconfig
command to display more information than it normally does. The command
displays, on the /dev/console screen, information from the cfgmgr
configuration management server and the kernel loading software (which is
called kloadsrv). Information from the kernel loading software is
especially useful in determining the names of unresolved symbols that caused
the load of a subsystem to fail.

In most cases, you can use dbx, kdebug, and kdbx to debug kernel
subsystems just as you use them to test other kernel programs. If you are
using the kdebug debugger through the dbx –remote command, the
subsystem’s .mod file must be in the same location on the system running

Dynamically Configurable Kernel Subsystems C–27

dbx and the remote test system. The source code for the subsystem should
be in that same location on the system running dbx. For more information
about the setup required to use the kdebug debugger, see the Kernel
Debugging manual.

If the subsystem is dynamically loadable and has not been loaded when you
start dbx, you must issue the dbx addobj command to allow the debugger
to determine the starting address of the subsystem. If the debugger does not
have access to the starting address of the subsystem, you cannot use it to
examine the subsystem data and set breakpoints in the subsystem code. The
following procedure shows how to invoke the dbx debugger, configure the
table_mgr.mod subsystem, and issue the addobj command:

1. Invoke the dbx debugger:
dbx -k /vmunix
dbx version 3.11.4
Type ’help’ for help.

stopped at [thread_block:1542 ,0xfffffc00002f5334]

(dbx)

2. Issue the sysconfig command to initially configure the subsystem:
sysconfig -c table_mgr

3. Issue the addobj command as shown:
(dbx) addobj /subsys/table_mgr.mod
(dbx) p &table_mgr_configure
0xffffffff895aa000

Be sure to specify the full pathname to the subsystem on the addobj
command line. (If the subsystem is loaded before you begin the dbx
session, you do not need to issue the addobj command.)

If you want to set a breakpoint in the portion of the subsystem code that
initially configures the subsystem, you must issue the addobj command
following the load of the subsystem, but before the kernel calls the
configuration routine. To stop execution between the load of the subsystem
and the call to its configuration routine, set a breakpoint in the special
routine, subsys_preconfigure. The following procedure shows how to
set this breakpoint:

1. Invoke the dbx debugger and set a breakpoint in the

C–28 Dynamically Configurable Kernel Subsystems

subsys_preconfigure routine, as follows:
dbx -remote /vmunix
dbx version 3.11.4
Type ’help’ for help.

stopped at [thread_block:1542 ,0xfffffc00002f5334]
(dbx) stop in subsys_preconfigure
(dbx) run

2. Issue the sysconfig command to initially configure the table_mgr
subsystem:
sysconfig -c table_mgr

3. Issue the addobj command and set a breakpoint in the configuration
routine:
[5] stopped at [subsys_preconfigure:1546
,0xfffffc0000273c58] (dbx) addobj /subsys/table_mgr.mod
(dbx) stop in table_mgr_configure
[6] stop in table_mgr_configure
(dbx) continue
[6] stopped at [table_mgr_configure:47 ,0xffffffff895aa028]
(dbx)

4. When execution stops in the subsys_preconfigure routine, you can
use the dbx stack trace command, trace, to ensure that the
configuration request is for the subsystem that you are testing. Then, set
the breakpoint in the subsystem configuration routine.

Dynamically Configurable Kernel Subsystems C–29

DOptimizing Techniques (MIPS-Based C
Compiler)3333333333333333333333

This appendix describes the optimization phases of the –oldc version of the
C compiler and their benefits.

D.1 Global Optimizer
The global optimizer (uopt) is a single program that improves the
performance of object programs by transforming existing code into more
efficient coding sequences. Although the same optimizer processes
optimizations for all languages, it does distinguish between the various
languages to take advantage of the different language semantics involved.

The primary benefits of optimization are faster running programs and smaller
object code size. However, the optimizer can also speed up development
time. For example, coding time can be reduced by leaving it up to the
optimizer to relate programming details to execution-time efficiency. This
allows you to focus on the more crucial global structure of your program.
Programs often yield optimizable code sequences regardless of how well a
program is written.

D.2 Optimizer Effects on Debugging
Optimize your programs only after they are fully developed and debugged.
Although the optimizer does not alter the flow of control within a program, it
may move operations so that the object code does not correspond to the
source code. These changed sequences of code may create confusion when
using the debugger.

D.3 Loop Optimization by the Optimizer
Optimizations are most useful in code that contains loops. The optimizer
moves loop-invariant code sequences outside loops so that they are
performed only once instead of multiple times. Apart from loop-invariant
code, loops often contain loop-induction expressions that can be replaced
with simple increments. In programs composed of many loops, global
optimization can often reduce the run time by half.

D.4 Register Allocation by the Optimizer
Register usage has a significant impact on program performance. For
example, fetching a value from a register is significantly faster than fetching
a value from storage. Thus, to perform its intended function, the optimizer
must make the best possible use of registers.

In allocating registers, the optimizer selects those data items that are most
suited for placement in registers, taking into account their frequency of use
and their location in the program structure. In addition, the optimizer assigns
values to registers so that their contents move minimally within loops and
during procedure invocations.

D.5 Optimizing Separate Compilation Units
The optimizer processes one procedure at a time. Large procedures offer
more opportunities for optimization because more interrelationships are
exposed in terms of constructs and regions.

The uld and umerge phases of the compiler permit global optimization
among separate units in the same compilation. Often, programs are divided
into separate files that are compiled separately and referred to as modules or
compilation units. Compiling them separately saves time during program
development because a change requires recompilation of only one module,
not the entire program.

Traditionally, program modularity restricted the optimization of code to a
single compilation unit at a time. For example, calls to procedures that
reside in other modules could not be fully optimized with the code that called
them. The uld and umerge phases of the compiler system overcome this
deficiency. The uld phase links multiple compilation units into a single
compilation unit. Then, umerge orders the procedures for optimal
processing by the global optimizer (uopt).

D.6 Optimization Options
Table D-1 summarizes the functions of each of the –O options to the cc -
oldc command.

D–2 Optimizing Techniques (MIPS-Based C Compiler)

Table D-1: Compiler Optimization Options
22
Option Result22
–O3 The uld and umerge phases process the output from the compilation

phase of the compiler, which produces symbol table information and
the program text in an internal format called ucode.

The uld phase combines all the ucode files and symbol tables, and
passes control to umerge. The umerge phase reorders the ucode for
optimal processing by uopt. Upon completion, umerge passes
control to uopt, which performs global optimizations on the program.

–O2 The uld and umerge phases are bypassed and only the global
optimizer (uopt) phase executes. It performs optimization only
within the bounds of individual compilation units.

–O1 The uld, umerge, and uopt phases are bypassed. However, the
code generator and the assembler perform basic optimizations in a
more limited scope.

–O0 The uld, umerge, and uopt phases are bypassed, and the assembler
bypasses certain optimizations that it normally performs.22

D.7 Full Optimization (-O3)
The following examples assume that the program prog1 consists of three
files: a.c, b.c, and c.c.

To perform procedure merging optimizations –O3 on all three files, enter the
following command:
% cc -oldc -O3 -o prog1 a.c b.c c.c

If you normally use the –c option to compile the object file (.o), follow
these steps:

1. Compile each file separately using the –j option by entering the
following commands:
% cc -oldc -j a.c
% cc -oldc -j b.c
% cc -oldc -j c.c

The –j option causes the compiler driver to produce a .u file. None of
the remaining compiler phases are executed.

The .u file contains the standard output of the first pass of the compiler
(which is referred to as the front end of the compiler). The file is written
in ucode, an internal language used by the compiler.

Optimizing Techniques (MIPS-Based C Compiler) D–3

2. Enter the following command to perform optimization and complete the
compilation process:
% cc -oldc -O3 -o prog1 a.u b.u c.u

D.8 Optimizing Large Procedures
To ensure that all procedures are optimized regardless of size, specify the
–Olimit option at compilation time.

Because compilation time increases by the square of the procedure size, the
compiler system enforces a top limit on the size of a procedure that can be
optimized. This limit was set for the convenience of users who place a
higher priority on the compilation turnaround time than on optimizing an
entire procedure. The –Olimit option removes the top limit and allows
those users who do not mind a long compilation to fully optimize their
procedures.

D.9 Optimizing Frequently Used Modules
You may want to optimize modules that are frequently called from other
programs to reduce the compilation and optimization time required for
programs calling these modules.

In the examples that follow, b.c and c.c represent two frequently used
modules to be optimized, retaining all information necessary to link them
with future programs; future.c represents one such program.

The following steps show how to optimize frequently called modules:

1. Compile b.c and c.c separately by entering the following commands:
% cc -oldc -j b.c
% cc -oldc -j c.c

The –j option causes the front end, or first pass, of the compiler to
produce two ucode files, b.u and c.u.

2. Use an editor to create a file containing the external symbols in b.c and
c.c to which future.c will refer. The symbolic names must be
separated by at least one space. Consider the following skeletal contents
of b.c and c.c:

b.c proc1() c.c x()
{ {
. .
. .
} }
proc2() help()

{ {

D–4 Optimizing Techniques (MIPS-Based C Compiler)

. .

. .
} }

proc3() struct
{ {
. .
. .
} } ddata;

struct y()
{ {
. .
. .
} work; }

In this example, future.c calls or references only proc1, proc2, x,
ddata, and y in the two procedures (b.c and c.c). Thus, a file
(named extern for this example) must be created containing the
following symbolic names:
proc1 proc2 x ddata y

The structure work and the procedures help and proc3 are used
internally only by b.c and c.c, and thus are not included in extern.

If you omit an external symbolic name, an error message is generated
(see step 4).

3. Optimize the b.u and c.u modules using the extern file as follows:
% cc -oldc -O3 -kp extern b.u c.u -o keep.o

The –kp option designates that the –p linker option is to be passed to the
ucode loader.

4. Create a ucode file and an optimized object code file (test_opt) for
future.c, as follows:
% cc -oldc -j future.c
% cc -oldc -O3 future.u keep.o -o test_opt

The following message may appear. It means that the code in future.c
is using a symbol from the code in b.c or c.c that was not specified in
the file extern.
proc3: multiply defined hidden external (should have been preserved)

If the preceding message appears, include proc3 in the file extern and
recompile as follows:
% cc -oldc -O3 -kp extern b.u c.u -o keep.o
% cc -oldc -O3 future.u keep.o -o test_opt

Optimizing Techniques (MIPS-Based C Compiler) D–5

D.10 Building a ucode Object Library
Building a ucode object library is similar to building a COFF object library.
First, compile the source files into ucode object files using the –j option:
% cc -oldc -j a.c
% cc -oldc -j b.c
% cc -oldc -j c.c

Then, enter the following commands to build a ucode library
(libtest_opt.b) containing object files for a.c, b.c, and c.c:
% ar -crs libtest_opt.b a.u b.u c.u

The names of ucode libraries should have the suffix .b.

D.11 Using ucode Object Libraries
Using ucode object libraries is similar to using COFF object files. To load
from a ucode library, specify the –klx option to the compiler driver or the
ucode loader. To load from the ucode library file created in the previous
example, enter the following command:
% cc -oldc -O3 file1.u file2.u -kltest_opt -o output

Libraries are searched as they are encountered on the command line, so the
order in which they are specified on the command line is important. If a
library is made from both assembly and high-level language routines, the
ucode object library contains code only for the high-level language routines,
not all of the routines as the COFF object library does. In this case, to
ensure that all modules are loaded from the proper library, you must specify
both the ucode object library and the COFF object library to the ucode
loader.

If the compiler driver is to perform both a ucode load step and a final load
step, the object file created after the ucode load step is placed in the position
of the first ucode file specified or created on the command line in the final
load step.

D–6 Optimizing Techniques (MIPS-Based C Compiler)

Index3333333333333333333333

Special Characters
/

See slash

?

See question mark

A
a.out

default executable file, 2–16, 2–4

disassembling, 2–26

displaying information about, 2–25

linking using ld, 2–20

passing command-line arguments to, 2–23

running, 2–22

abnormal_termination function, 11–14

activation levels

changing in dbx, 5–26

displaying information about in dbx, 5–46

displaying values of local variables within,

5–46

identifying with stack trace, 5–25, 5–3

.Addrs files, 8–13

AES, 1–2

alias command (dbx), 5–21

_align storage class modifier, 2–8

alignment, data

avoiding misalignment, 10–11 to 10–12

alloca function, 10–13

allocation, data

coding suggestions, 10–13

Alpha instruction set

using non-native instructions, 10–11

ANSI

name space cleanup, 2–27

standards and application development

considerations, 1–2

-ansi_alias flag (cc), 10–4t

-ansi_args flag (cc), 10–4t

application development

phases of, 1–1

Application Environment Specification

See AES

application programs

building guidelines, 10–2 to 10–10

coding guidelines, 10–10 to 10–16

compiling and linking in System V habitat,

B–1 to B–3

optimizing, 10–1 to 10–16

optimizing large programs (cc -oldc), D–4

porting, 1–2, 6–12

reducing memory usage with -xtaso, 10–14

archive files

determining section sizes, 2–25

dumping selected parts of, 2–24

array usage

allocation considerations, 10–11

optimizing in C, 10–13

as command, 2–4

linking files compiled with, 2–20

assign command (dbx), 5–35

-assume aligned_object flag (cc), 2–17

-assume noaccuracy_sensitive flag (cc)

See -fp_reorder flag (cc)

Atom tools, 9–1

developing, 9–3

examples of, 9–2

prepackaged tools, 9–2

attribute

defined, C–2

example of defining, C–9

initial value assignment, C–2

attribute data types, C–6t

attribute request codes, C–7t

attribute table

contents of, C–4

automatic decomposition

use in KAP, 10–8

B
backward compatibility

shared libraries, 4–18

binary incompatibility

shared libraries, 4–18

32-bit applications

reducing memory usage, 10–14

bit fields, 6–12

breakpoints

continuing from, 5–34

setting, 5–38

setting conditional breakpoints, 5–39

breakpoints (cont.)

setting in procedures, 5–39

built-in data types

use in dbx commands, 5–10

built-in functions

pragma counterparts, 3–5

byte ordering, 2–5

C
-c flag (cc)

compiling multilanguage programs, 2–18

–c flag (dbx), 5–8

C language, program checking

data type, 6–4

external names, 6–12

function definitions, 6–6

functions and variables, 6–7

initializing variables, 6–10

migration, 6–10

portability, 6–11

structure, union, 6–5

use of characters, 6–11

use of uninitialized variables, 6–10

C preprocessor

implementation-specific directives, 2–12

including common files, 2–11

multilanguage include files, 2–11

predefined macros, 2–9

C programs

optimization considerations, 10–1 to 10–16

c_excpt.h header file, 11–3

cache collisions, data

avoiding, 10–11

cache misses

avoiding, 10–13

Index–2

cache thrashing

preventing, 10–11

cache usage

coding suggestions, 10–11 to 10–12

improving with cord, 10–8

call command (dbx), 5–36

call graphs

gprof tool, 8–10

-call_shared flag (cc), 2–17

calls

See procedure calls

catch command (dbx), 5–43

cc command

compilation control flags, 2–13

debugging flag, 5–6

default behavior, 2–17

invoking the linker, 2–20

setting default alignment, 3–11

specifying additional libraries, 2–19

specifying function inlining, 3–3

specifying search path for libraries, 2–4

use by other compiler commands, 2–19

CFG_ATTR_BINTYPE data type, C–6t

CFG_ATTR_INTTYPE data type, C–6t

CFG_ATTR_LONGTYPE data type, C–6t

CFG_ATTR_STRTYPE data type, C–6t

CFG_ATTR_UINTTYPE data type, C–6t

CFG_ATTR_ULONGTYPE data type, C–6t

CFG_OP_CONFIGURE request code, C–7t

CFG_OP_QUERY request code, C–7t

CFG_OP_RECONFIGURE request code,

C–7t

cfg_subsys_attr_t datatype, C–5

characters

use in a C program, 6–11

cma_debug() command (dbx), 5–53

coding errors

checking performed by lint, 6–13

coding suggestions

C-specific considerations, 10–12

cache usage patterns, 10–11 to 10–12

data alignment, 10–11 to 10–12

data types, 10–10

library routine selection, 10–9

sign considerations, 10–13

command-line editing (dbx), 5–12

common files

See header files

compilation units (cc -oldc)

optimizing, D–2

compiler commands

invoking the linker, 1–4

compiler flags

–g flag, 5–6

compiler flags (cc), 2–13

compiler optimizations

improving with feedback file, 10–9

recommended optimization levels, 10–2

use of -O flag (DEC C), 10–3

compiler system, 2–1

ANSI name space cleanup, 2–26

C compiler environments, 2–12

C preprocessor, 2–9

driver programs, 2–2

linker, 2–19

object file tools, 2–23

running programs, 2–22

compiling applications

in System V habitat, B–1 to B–3

completion handling, 11–5

 Index–3

compound pointer, A–1

conditional code

writing in dbx, 5–42

cont command (dbx), 5–34

conti command (dbx), 5–34

cord utility, 10–8

core dump file

specifying for dbx, 5–4, 5–7

.Counts files, 8–13

Ctrl/Z

symbol name completion in dbx, 5–14

D
data alignment

coding suggestions, 10–11 to 10–12

data allocation

coding suggestions, 10–13

data cache collisions

avoiding, 10–11

data flow analysis

compilation optimizations, 10–2

data reuse

handling efficiently, 10–8

data sets, large

handling efficiently, 10–8

data structures

allocation suggestions, 10–11

data types, 2–5

alignment

bit field, 2–7, 2–8

structure, 2–6

array, 6–5

array pointer, 6–5

casts, 6–6

coding suggestions, 10–10

effect of -O flag (DEC C), 10–3

data types (cont.)

floating-point range and processing, 2–5

for attributes, C–6t

mixing, 6–5

sizes, 2–5

data types, built-in

use in dbx commands, 5–10

dbx commands

See also dbx debugger

args, 5–31

cma_debug(), 5–53

and ?, 5–29

alias, 5–21

assign, 5–35

call, 5–36

catch, 5–43

cont, 5–34

conti, 5–34

delete, 5–23

disable, 5–23

down, 5–26

dump, 5–46

edit, 5–29

enable, 5–23

file, 5–27

func, 5–26

goto, 5–33

ignore, 5–43

list, 5–28

listobj, 5–24

next, 5–32

nexti, 5–32

patch, 5–35

playback input, 5–49

playback output, 5–50

print, 5–44

Index–4

dbx commands (cont.)

printregs, 5–45

quit, 5–8

record input, 5–48, 5–49

record output, 5–50

rerun, 5–31

return, 5–33

run, 5–31

set, 5–15

setenv, 5–37

sh, 5–24

source, 5–49

status, 5–22

step, 5–32

stepi, 5–32

stop, 5–38

stopi, 5–38

tlist, 5–52

trace, 5–40

tracei, 5–40

tset, 5–52

tstack, 5–25, 5–53

unalias, 5–21

unset, 5–15

up, 5–26

use, 5–24

whatis, 5–30

when, 5–42

where, 5–25

whereis, 5–30

which, 5–30

dbx debugger, 1–5

See also dbx commands

built-in data types, 5–10

command-line editing, 5–12

command-line flags, 5–7

dbx debugger (cont.)

compile command flag (–g), 5–6

completing symbol name (Ctrl/Z), 5–14

debugging techniques, 5–4

EDITMODE option, 5–12

EDITOR option, 5–12

entering multiple commands, 5–14

–g flags (cc), 5–6

initialization file (dbxinit), 5–7

invoking a shell from dbx, 5–24

invoking an editor, 5–29

LINEEDIT option, 5–12, 5–14

operator precedence, 5–9

predefined variables, 5–16

repeating commands, 5–11

.dbxinit file, 5–7

debugger

See dbx debugger

debugging, 1–5

See also dbx debugger, ladebug debugger,

lint, Third Degree

before optimization (cc -oldc), D–1

general concepts, 5–3

kernel debugging (–k flag), 5–8

programs using shared libraries, 4–16

decomposition

use in KAP, 10–8

delete command (dbx), 5–23

development tools, software (Digital UNIX),

1–4

-D_FASTMATH flag (cc), 10–10

Digital Extended Math Library

how to access, 10–9

-D_INLINE_INTRINSICS flag (cc), 10–10

-D_INTRINSICS flag (cc), 10–10

 Index–5

directed decomposition

use in KAP, 10–8

directives

ifdef, 2–11

include, 2–11

pointer_size, 3–11

pragma environment, 3–1

pragma function, 3–4

pragma inline, 3–3

pragma intrinsic, 3–4

pragma linkage, 3–6

pragma member_alignment, 3–9

pragma message, 3–10

pragma pack, 3–11

pragma use_linkage, 3–12

pragma weak, 3–13

directories

linker search order, 2–21

directories, source

specifying in dbx, 5–24

dis command, 2–26

disable command (dbx), 5–23

disk files, executable

patching in dbx, 5–35

distribution media

loading applications on, 1–6

-double flag (cc), 2–17

down command (dbx), 5–26

driver programs, 2–3

dump command (dbx), 5–46

DXML

how to access, 10–9

dynamically configurable subsystem

creating, C–1 to C–29

defined, C–2

E
edit command (dbx), 5–29

editing

command-line editing in dbx, 5–12

EDITMODE variable

dbx command-line editing, 5–12

editor

invoking from dbx, 5–29

EDITOR variable

dbx command-line editing, 5–12

enable command (dbx), 5–23

enumerated data type, 6–6

environment directive

pragma environment directive, 3–1

environment variables

EDITMODE, 5–12

EDITOR, 5–12

LINEEDIT, 5–12

PROFDIR, 8–23

PROFFLAGS, 8–24

profiling, 8–22

setting in dbx, 5–37

exception code, 11–6

exception filter, 11–5

exception handler, 11–6

exception handling

application development considerations, 11–1

floating-point operations

performance considerations, 10–5

header files, 11–3

exception_code function, 11–6

exception_info function, 11–6

exceptions

defined, 11–1

frame-based, 11–5

structured, 11–5

Index–6

excpt.h header file, 11–3

executable disk files

patching in dbx, 5–35

executable image

creating, 2–20, 2–4

expressions

displaying values in dbx, 5–34, 5–44

operator precedence in dbx, 5–9

external names, 6–12

external references

reducing resolution during linking, 10–2

F
-fast flag (cc), 10–4t

feedback files, 8–21

how to create, 10–8

use to improve compiler optimizations, 10–9

-feedback flag (cc), 10–4t

file command, 2–25

file command (dbx), 5–27

file names

suffixes for programming language files, 2–4

file sharing

effects on performance, 10–6

files

See archive files; executable disk files;

header files; object files; source files

fixso utility, 4–14

flags, cc compiler, 2–13

floating-point operations

exception handling, 10–5

-fp_reorder flag (cc), 10–3

use of KAP, 10–8

floating-point operations (complicated)

use of DXML, 10–9

floating-point range and processing, 2–5

-fp_reorder flag (cc), 10–3, 10–4t

-fprm n flag (cc), 2–17

fpu.h header file, 11–3

frame-based exception handling, 11–5

func command (dbx), 5–26

function directive

pragma function directive, 3–4

functions

checking performed by lint, 6–7

G
–g flag (cc), 2–17

effect on debugging, 5–6

-G flag (cc), 10–4t

global optimizer (uopt), D–1

See also optimization

goto command (dbx), 5–33

gprof

profiling tool, 8–10

use to diagnose performance, 10–10

H
handling exceptions, 11–1

header files

c_excpt.h, 11–3

excpt.h, 11–3

fpu.h, 11–3

including, 2–11

modifying system, A–4

multilanguage, 2–11

pdsc.h, 11–3

standards conformance in, 1–3

hiprof (Atom tool), 8–6, 9–2

 Index–7

I
–I flag (dbx), 5–8

–i flag (dbx), 5–8

-I/usr/include flag (cc), 2–17

-ieee flag (cc), 10–6

IEEE floating-point

See floating-point range and processing

ifdef directive

for multilanguage include files, 2–11

-ifo flag (cc), 10–4t, 10–2

ignore command (dbx), 5–43

image activation in dbx, 5–39

include files

See header files

inline directive

pragma inline directive, 3–3

-inline manual flag (cc), 2–17

-inline flag (cc), 10–4t

inlining, procedure

compilation optimizations, 10–2

-D_INLINE_INTRINSICS flag (cc), 10–10

installation tools, 1–5

instruction set, Alpha

using non-native instructions, 10–11

integer division

substituting floating-point division, 10–11

integer multiplication

substituting floating-point multiplication,

10–11

internationalization

developing applications, 1–3

interprocess communications

pipes, 1–6

signals, 1–6

sockets, 1–6

STREAMS, 1–6

interprocess communications (cont.)

System V IPC, 1–6

threads, 1–6

X/Open Transport Interface (XTI), 1–6

intrinsic directive

pragma intrinsic directive, 3–4

IPC

See interprocess communications

ISO

standards and application development

considerations, 1–2

J
-j flag (cc -oldc), D–4, D–6

K
–k flag (cc -oldc), D–4, D–6

–k flag (dbx), 5–8

KAP

usage recommendation, 10–8

kernel debugging

–k flag, 5–8

krash

kernel debugging utility, 5–8

Kuck & Associates Preprocessor

See KAP

L
languages

supported by Digital UNIX, 1–4

large data sets

handling efficiently, 10–8

ld linker

linking object files, 1–4

linking with shared libraries, 4–7

Index–8

leave statement, 11–13

libc.so

default C library, 2–20

libexc

exception library, 11–1

libpthread.so, 12–2

libraries

shared, 4–1

specifying, 2–20

ucode, 2–21, D–6

library description files (lint), 6–14

library selection

effect on performance, 10–9

limiting search paths, 4–7

limits.h file, C–9

LINEEDIT variable

dbx command-line editing, 5–12

dbx symbol name completion, 5–14

linkage directive

pragma linkage directive, 3–6

linker

See ld linker

linking applications

by using compiler command, 2–19

by using ld command, 2–20

in System V habitat, B–1 to B–3

linking options

effects of file sharing, 10–6

linking programs

See linking applications

lint, 6–1

coding error checking, 6–13

command syntax, 6–1

creating a lint library, 6–14

data type checking, 6–4

error messages, 6–16

lint (cont.)

increasing table size, 6–11

migration checking, 6–10

options, 6–1

portability checking, 6–11

program flow checking, 6–3

variable and function checking, 6–7

warning classes, 6–22

list command (dbx), 5–28

listobj command (dbx), 5–24

load time

reducing shared library load time, 10–6

loadable subsystem

defined, C–2

loader

search path of, 4–4

long pointer, A–1

loops

effects of global optimization (cc -oldc), D–1

KAP optimizations, 10–8

lint analysis of, 6–4

M
macros

predefined, 2–9

magic number, 2–25

malloc function

tuning options, 10–13

member_alignment directive

pragma member_alignment directive, 3–9

-member_alignment flag (cc), 2–17

memory

detecting leaks, 7–1, 9–2

displaying contents in dbx, 5–47

tuning memory usage, 10–13

 Index–9

memory access

detecting uninitialized or invalid, 7–1

message directive

pragma message directive, 3–10

messages, IPC

See System V IPC

misaligned data

See unaligned data

misses, cache

avoiding, 10–13

mmap system call

shared libraries, 4–17

moncontrol routine, 8–25

sample code, 8–26

monitor routines

for controlling profiling, 8–25

monitor_signal routine, 8–25

sample code, 8–28

monitoring tools

gprof, 10–10

pixie, 10–10, 10–8

prof, 10–10, 10–8

monstartup routine, 8–25

sample code, 8–26

multilanguage programs

compiling, 2–18

include files for, 2–11

multiprocessing, symmetrical

See SMP

multithreaded applications

developing, 12–1

profiling, 8–29

N
name resolution

semantics, 4–5

name space

cleanup, 2–26

naming conventions

shared libraries, 4–2

-newc flag (cc), 2–17

next command (dbx), 5–32

nexti command (dbx), 5–32

nm command, 2–24

-no_fp_reorder flag (cc), 2–17

-no_misalign flag (cc), 2–17

-no_pg flag (cc), 2–18

-noaccuracy_sensitive flag (cc)

See -fp_reorder flag (cc)

O
-O compiler flag

shared library problems, 4–32

use to avoid lint messages, 6–4

-O1 flag (cc), 2–17

object file tools, 2–23

dis, 2–26

file, 2–25

nm, 2–24

odump, 2–24

size, 2–25

object files

determining section sizes, 2–25

disassembling into machine code, 2–26

dumping selected parts of, 2–24

odump (object file utility), 2–24

-O flag (cc), 10–4t

Index–10

-O* flags (cc -oldc), D–3

-O* flags (cc), 10–2, 10–3, 10–9

overview of optimization levels, 10–2

-oldcomment flag (cc), 2–18

-Olimit option (cc -oldc)

optimizing large programs, D–4

-Olimit flag (cc), 10–4t

-om

postlink optimizer, 10–7

-om flag (cc), 10–4t

operators

precedence in dbx expressions, 5–9

optimization, 2–19, D–1

compiler optimization options, 10–2

improving with feedback file, 10–9

post linking, 10–7

use of -O flag (DEC C), 10–3

optimization (cc -oldc)

benefits, D–1

compiler options for, D–2

debugging before, D–1

frequently used modules, D–4

full optimization (-O3 option), D–3

large programs (-Olimit option), D–4

loop optimization, D–1

-O* flags, D–3

register allocation, D–2

separate compilation units, D–2

optimizer, global

See global optimizer (uopt)

output errors

using dbx to isolate, 5–4

P
-p0 flag (cc), 2–18

pack directive

pragma pack directive, 3–11

parameter

See attribute

patch command (dbx), 5–35

PC sampling, 8–1, 8–7

pdsc.h header file, 11–3

performance

using the profiler (prof), 8–1

performance (cc -oldc)

improving, D–1

pipes, 1–6

pixie (Atom tool), 9–2

use to create feedback file, 10–8

use to diagnose performance, 10–10

using to profile, 8–13

pixstats, 8–14

playback input command (dbx), 5–49

playback output command (dbx), 5–50

pointer size

conversion, A–1

pointer_size directive

pragma pointer_size directive, 3–11

pointer_size pragma, A–2

pointers

32-bit, A–1

compound, A–1

conversion, A–4

long, A–1

reducing memory use for pointers (-xtaso),

10–14

short, A–1

simple, A–1

 Index–11

portability

bit fields, 6–12

external names, 6–12

standards, 1–2

POSIX

standards and application development

considerations, 1–2

pragma

environment, 3–1

function, 3–4

inline, 3–3

intrinsic, 3–4

linkage, 3–6

member_alignment, 3–9

message, 3–10

pack, 3–11

pointer_size, 3–11, A–2

use_linkage, 3–12

weak, 3–13

pragma preprocessor directives, 3–1

predefined variables

in dbx, 5–16

-preempt_symbol flag (cc), 2–18

-preempt_module flag (cc), 10–4t

-preempt_symbol flag (cc), 10–4t

preprocessor, C

See C preprocessor

print command (dbx), 5–44

printregs command (dbx), 5–45

procedure calls

handling efficiently, 10–8

procedure inlining

compilation optimizations, 10–2

-D_INLINE_INTRINSICS flag (cc), 10–10

prof

See also profiling

prof (cont.)

use to create feedback file, 10–8

use to diagnose performance, 10–10

PROFDIR

profiling environment variable, 8–23

PROFFLAGS

environment variable, 8–24

profiler tools

when to use, 10–10

profiling, 8–1

averaging results, 8–19

basic block counting, 8–1, 8–13

environment variables, 8–22

limiting display by line, 8–18

limiting display information, 8–14

moncontrol routine, 8–25

monitor_signal routine, 8–25

monstartup routine, 8–25

multithreaded applications, 8–29

overview, 8–1

PC sampling, 8–7

using Atom tools, 9–2

using monitor routines, 8–25

program checking

C programs, 6–1

program counter sampling, 8–1

program installation tools, 1–5

programs

See application programs

Q
question mark (?)

search command in dbx, 5–29

quickstart

reducing shared library load time, 10–6

troubleshooting

Index–12

quickstart (cont.)

troubleshooting (cont.)

fixso, 4–14

manually, 4–12

using, 4–10

quit command (dbx), 5–8

R
–r flag (dbx), 5–8

RCS code management system, 1–5

record input command (dbx), 5–48, 5–49

record output command (dbx), 5–50

registers

displaying values in dbx, 5–45

use of by optimizer (cc -oldc), D–2

rerun command (dbx), 5–31

resolution of symbols

shared libraries, 4–3

return command (dbx), 5–33

routines

calling under dbx control, 5–36

run command (dbx), 5–31

run time

build options that affect run time, 10–2 to

10–10

coding guidelines for improving, 10–10 to

10–16

run-time errors

using dbx to isolate, 5–4

S
SCCS (Source Code Control System), 1–5

scope

See also activation levels

determining activation levels, 5–3

scope (cont.)

determining scope of variables, 5–40

specifying scope of dbx variables, 5–9

search commands in dbx (/ and ?), 5–29

search order

linker libraries, 2–21

search path

limiting, 4–7

loader, 4–4

shared libraries, 4–4

semantics

name resolution, 4–5

semaphores

See System V IPC

set command (dbx), 5–15

setenv command (dbx), 5–37

effect on debugger, 5–12, 5–14

setld utility, 1–6

sh command (dbx), 5–24

shared libraries

advantages, 4–1

applications that cannot use, 4–8

backwards compatibility, 4–18

binary incompatibility, 4–18

creating, 4–8

debugging programs using, 4–16

displaying in dbx, 5–24

linking with a C program, 4–7

major version, 4–21

minor version, 4–21

mmap system call, 4–17

multiple version dependencies, 4–23

naming convention, 4–2

overview, 4–2

partial version, 4–22

performance considerations, 10–6

 Index–13

shared libraries (cont.)

search path, 4–4

symbol resolution, 4–3

turning off, 4–7

version identifier, 4–19

versioning, 4–18

shared library versioning

defined, 4–18

shared memory

See System V IPC

shared object, 4–10

short pointer, A–1

signals, 1–6

stopping at in dbx, 5–43

-signed flag (cc), 2–18

signed variables

effect on performance, 10–13

simple pointer, A–1

size command, 2–25

slash (/)

search command in dbx, 5–29

SMP

decomposition support in KAP, 10–8

sockets, 1–6

software development tools (Digital UNIX),

1–4

source code

checking with lint, 6–1

listing in dbx, 5–28

searching in dbx, 5–29

source code compatibility

in System V habitat, B–1 to B–3

Source Code Control System

SCCS, 1–5

source command (dbx), 5–49

source directories

specifying in dbx, 5–24

source files

controlling access to, 1–5

specifying in dbx, 5–27

-speculate flag (cc), 10–3, 10–4t

stack trace

obtaining in dbx, 5–25

using to identify activation level, 5–25, 5–3

standards

programming considerations, 1–2

startup time

decreasing, 10–6

static subsystem

defined, C–2

status command (dbx), 5–22

-std0 flag (cc), 2–18

step command (dbx), 5–32

stepi command (dbx), 5–32

stop command (dbx), 5–38

$stop_on_exec variable (dbx), 5–38, 5–39

stopi command (dbx), 5–38

storage class modifier

_align, 2–8

STREAMS, 1–6

strings command, 2–24

strong symbols, 2–27

structure alignment, 2–6

pragma member_alignment directive, 3–9

structured exception handling, 11–5

structures

checking performed by lint, 6–5

suffixes, file name

for programming language files, 2–4

symbol names

completing using Ctrl/Z in dbx, 5–14

Index–14

symbol table

ANSI name space cleanup, 2–27

listing, 2–24

symbols

binding, 4–31

name resolution semantics, 4–5

options for handling unresolved symbols,

4–6

resolution, 4–5

resolving in shared libraries, 4–3

search path, 4–4

symmetrical multiprocessing

See SMP

sysconfig command, C–1, C–27

sysconfigtab database, C–2

system libraries, 4–1

System V habitat, B–1

summary of system calls, B–4

System V IPC, 1–6

T
termination handler, 11–13

Third Degree (Atom tool), 7–1, 9–2

threads, 1–6

profiling multithreaded applications, 8–29

tlist command (dbx), 5–52

tools

major tools for software development, 1–4

trace command (dbx), 5–40

tracei command (dbx), 5–40

try body, 11–13, 11–5

try...except statement, 11–5

try...finally statement, 11–13

tset command (dbx), 5–52

tstack command (dbx), 5–25, 5–53

-tune generic flag (cc), 2–18

-tune flag (cc), 10–4t

type casts

checking performed by lint, 6–6

when to avoid, 10–13

type declarations

displaying in dbx, 5–30

U
ucode object libraries, 2–21

building, D–6

uld (ucode link compilation phase), D–3

umerge (procedure merge compilation phase),

D–3

unalias command (dbx), 5–21

unaligned data

avoiding, 10–11 to 10–12

unions

checking performed by lint, 6–5

unresolved symbols

options to ld command, 4–6

shared libraries, 4–3

-unroll flag (cc), 2–18, 10–4t

unset command (dbx), 5–15

unsigned variables

effect on performance, 10–13

uopt (global optimizer), D–1

up command (dbx), 5–26

use command (dbx), 5–24

use_linkage directive

pragma use_linkage directive, 3–12

/usr/shlib directory

shared libraries, 4–2

 Index–15

V
variables

See also environment variables

assigning values to, 5–35

determining scope of, 5–40

displaying names in dbx, 5–30

displaying type declarations, 5–30

obtaining values within activation levels,

5–46

predefined variables in dbx, 5–16

tracing, 5–40

variables, signed or unsigned

effect on performance, 10–13

versioning

shared libraries, 4–18

W
warning classes, 6–22

weak directive

pragma weak directive, 3–13

weak symbols, 2–27

whatis command (dbx), 5–30

when command (dbx), 5–42

where command (dbx), 5–25

whereis command (dbx), 5–30

which command (dbx), 5–30

-writeable_strings flag (cc), 2–18

X
X/Open

standards and application development

considerations, 1–2

X/Open Transport Interface (XTI), 1–6

-xtaso flag (cc), 10–14, A–1

-xtaso_short flag (cc), A–1

XTI (X/Open Transport Interface), 1–6

Index–16

How to Order Additional Documentation3333333333333333333333
Technical Support
If you need help deciding which documentation best meets your needs, call 800-DIGITAL
(800-344-4825) before placing your electronic, telephone, or direct mail order.

Electronic Orders
To place an order at the Electronic Store, dial 800-234-1998 using a 1200- or 2400-bps
modem from anywhere in the USA, Canada, or Puerto Rico. If you need assistance using the
Electronic Store, call 800-DIGITAL (800-344-4825).

Telephone and Direct Mail Orders

Your Location Call Contact

800-DIGITALContinental USA,
Alaska, or Hawaii

Digital Equipment Corporation
P.O. Box CS2008
Nashua, New Hampshire 03061

Puerto Rico 809-754-7575 Local Digital subsidiary

Canada 800-267-6215 Digital Equipment of Canada
Attn: DECdirect Operations KAO2/2
P.O. Box 13000
100 Herzberg Road
Kanata, Ontario, Canada K2K 2A6

International ————— Local Digital subsidiary or
approved distributor

Internala ————— SSB Order Processing – NQO/V19
or
U. S. Software Supply Business
Digital Equipment Corporation
10 Cotton Road
Nashua, NH 03063-12603333333333333333333333

a For internal orders, you must submit an Internal Software Order Form (EN-01740-07).

Reader’s Comments Digital UNIX
Programmer’s Guide

AA-PS30D-TE3333333333333333333333
Digital welcomes your comments and suggestions on this manual. Your input will help us to
write documentation that meets your needs. Please send your suggestions using one of the
following methods:

• This postage-paid form

• Internet electronic mail: readers_comment@zk3.dec.com

• Fax: (603) 881-0120, Attn: UEG Publications, ZKO3-3/Y32

If you are not using this form, please be sure you include the name of the document, the page
number, and the product name and version.

Please rate this manual: Excellent Good Fair Poor
Accuracy (software works as manual says) 5 5 5 5
Completeness (enough information) 5 5 5 5
Clarity (easy to understand) 5 5 5 5
Organization (structure of subject matter) 5 5 5 5
Figures (useful) 5 5 5 5
Examples (useful) 5 5 5 5
Index (ability to find topic) 5 5 5 5
Usability (ability to access information quickly) 5 5 5 5
Please list errors you have found in this manual:
Page Description
33333333 33
33333333 33
33333333 33
33333333 33
33333333 33
Additional comments or suggestions to improve this manual:
333
333
333
333
333
What version of the software described by this manual are you using? 3333333333333333
Name/Title 333 Dept. 33333333333333333333
Company 33 Date 33333333333
Mailing Address 333
333333333333333333333333 Email 3333333333333333333333 Phone 33333333333333333

UEG PUBLICATIONS MANAGER

BUSINESS REPLY MAIL

 Do Not Cut or Tear − Fold Here

 Do Not Cut or Tear − Fold Here and Tape

NO POSTAGE
NECESSARY IF
MAILED IN THE
UNITED STATES

FIRST−CLASS MAIL PERMIT NO. 33 MAYNARD MA

POSTAGE WILL BE PAID BY ADDRESSEE

ZKO3−3/Y32
110 SPIT BROOK RD

TM

DIGITAL EQUIPMENT CORPORATION

NASHUA NH 03062−9987

Cut on
Dotted

Line

