
Digital UNIX33333333333333333
Technical Overview

Order Number: AA-QTLLA-TE

March 1996

Product Version: Digital UNIX Version 4.0 or higher

This document describes the functionality in Digital UNIX Version 4.0
or higher. Digital UNIX was formerly called DEC OSF/1.

33333333333333333
Digital Equipment Corporation
Maynard, Massachusetts

Digital Equipment Corporation makes no representations that the use of its products in the
manner described in this publication will not infringe on existing or future patent rights, nor
do the descriptions contained in this publication imply the granting of licenses to make, use,
or sell equipment or software in accordance with the description.

Possession, use, or copying of the software described in this publication is authorized only
pursuant to a valid written license from Digital or an authorized sublicensor.

 Digital Equipment Corporation 1996
All rights reserved.

The following are trademarks of Digital Equipment Corporation:

ALL–IN–1, Alpha AXP, AlphaGeneration, AlphaServer, AlphaStation, AXP, Bookreader,
CDA, DDIS, DEC, DEC Ada, DEC Fortran, DEC FUSE, DECnet, DECstation, DECsystem,
DECterm, DECUS, DECwindows, DTIF, MASSBUS, MicroVAX, OpenVMS,
POLYCENTER, Q–bus, TURBOchannel, RRD42, StorageWorks, TruCluster, ULTRIX,
ULTRIX Mail Connection, ULTRIX Worksystem Software, UNIBUS, VAX, VAXstation,
VMS, VR160, XUI, and the DIGITAL logo.

BSD is a trademark of Uunet Technologies. Prestoserve is a trademark of Legato Systems,
Inc.; the trademark and software are licensed to Digital Equipment Corporation by Legato
Systems, Inc. Legato NetWorker is a trademark of Legato Systems, Inc. NFS is a registered
trademark of Sun Microsystems, Inc. ONC is a trademark of Sun Microsystems, Inc. Open
Software Foundation, OSF, OSF/1, OSF/Motif, and Motif are trademarks of the Open
Software Foundation, Inc. Sun is a registered trademark of Sun Microsystems, Inc. UNIX is
a registered trademark in the United States and other countries licensed exclusively through
X/Open Company Ltd. X/Open is a trademark of X/Open Company Ltd.

All other trademarks and registered trademarks are the property of their respective holders.

Contents3333333333333333333333

About This Manual

Audience .. xiii

Organization .. xiii

Related Documents .. xiv

Reader’s Comments ... xiv

Conventions .. xv

1 Introduction

1.1 Overview of Digital UNIX Version 4.0 .. 1–1

1.2 Packaging .. 1–2

2 Symmetrical Multiprocessing

2.1 Overview ... 2–1

2.2 Implementation ... 2–1

3 Networking

3.1 Overview ... 3–1

3.2 The Internet Protocol Suite ... 3–3

3.2.1 Application-Level Protocols ... 3–5

3.2.1.1 Domain Name Protocol ... 3–5

3.2.1.2 Routing Protocols ... 3–5

3.2.1.2.1 Exterior Gateway Protocol (EGP) 3–6
3.2.1.2.2 Border Gateway Protocol 3–6
3.2.1.2.3 Routing Information Protocol (RIP) 3–7
3.2.1.2.4 Open Shortest Path First (OSPF) 3–8

3.2.1.3 File Transfer Protocol ... 3–9
3.2.1.4 Network File System Protocol over UDP transport ... 3–9
3.2.1.5 Network File System Protocol over TCP transport 3–9
3.2.1.6 Telnet Protocol .. 3–10
3.2.1.7 Trivial File Transfer Protocol 3–10
3.2.1.8 Finger Protocol .. 3–10
3.2.1.9 Simple Mail Transfer Protocol 3–10
3.2.1.10 Simple Network Management Protocol 3–11

3.2.2 Transport-Level Protocols .. 3–11

3.2.2.1 User Datagram Protocol .. 3–11
3.2.2.2 Transmission Control Protocol 3–11

3.2.3 Network-Level Protocols ... 3–13

3.2.3.1 Internet Protocol .. 3–13

3.2.3.1.1 IP Multicasting .. 3–13
3.2.3.1.2 Serial Line IP (SLIP) and Compressed Serial

Line IP (CSLIP) ... 3–14
3.2.3.1.3 Point-to-Point Protocol (PPP) 3–14

3.2.3.2 Address Resolution Protocol 3–15
3.2.3.3 Internet Control Message Protocol 3–15

3.3 Supported Networks .. 3–16

3.3.1 ATM ... 3–16
3.3.2 Ethernet ... 3–17
3.3.3 Fast Ethernet .. 3–17
3.3.4 FDDI .. 3–17
3.3.5 Token Ring .. 3–17

3.4 Application Programming Interfaces .. 3–18

3.4.1 X/Open Transport Interface .. 3–18
3.4.2 Sockets .. 3–20
3.4.3 STREAMS .. 3–20

iv Contents

3.4.4 Sockets and STREAMS Interaction 3–20
3.4.5 Data Link Interface (DLI) .. 3–21
3.4.6 Data Link Provider Interface (DLPI) 3–21
3.4.7 Extensible SNMP Interface (eSNMP) 3–21

3.5 Network Administration Software ... 3–21

3.5.1 Networking Commands and Utilities 3–21
3.5.2 Ethernet Packet Filter and Packet Filter Applications 3–22
3.5.3 Dynamic Host Configuration Protocol 3–23
3.5.4 The Internet Boot Protocol Daemon (bootpd) 3–24
3.5.5 SNMP Agent ... 3–24
3.5.6 The gated Daemon .. 3–24
3.5.7 The screend Daemon ... 3–26
3.5.8 UNIX-to-UNIX Copy Program ... 3–26
3.5.9 Local Area Transport .. 3–26

3.6 Naming Services ... 3–27

3.6.1 The BIND Service .. 3–27
3.6.2 Network Information Service .. 3–28

3.7 Time Services ... 3–28

3.7.1 Network Time Protocol ... 3–28
3.7.2 Time Synchronization Protocol ... 3–29

4 File System

4.1 Overview ... 4–1

4.2 Virtual File System ... 4–1

Information for File System Developers .. 4–2

4.3 UNIX File System ... 4–3

4.4 Network File System ... 4–3

4.4.1 NFS Version 3 Functionality .. 4–4
4.4.2 Digital Enhancements to NFS ... 4–5

4.5 CD-ROM File System ... 4–7

Contents v

4.6 Memory File System ... 4–7

4.7 /proc File System .. 4–7

4.8 File-on-File Mounting File System .. 4–8

4.9 File Descriptor File System .. 4–8

4.10 POLYCENTER Advanced File System 4–8

4.11 Logical Storage Manager .. 4–9

4.12 Overlap Partition Checking ... 4–10

4.12.1 Partition Overlap Checks Added to Utilities 4–10
4.12.2 Library Functions for Partition Overlap Checking 4–11

4.13 Prestoserve File System Accelerator ... 4–11

5 Virtual Memory

5.1 Overview ... 5–1

5.2 Lazy Allocation Policy ... 5–1

5.3 Eager Reservation Policy .. 5–2

5.4 Unified Buffer Cache ... 5–2

5.5 Round-Robin Swapping ... 5–3

5.6 Page In and Page Out Clustering ... 5–3

5.7 Memory-Mapped Device Interface ... 5–3

5.8 Mach mmap MAP_PRIVATE Semantics and System V Release 4.0 . 5–3

5.9 Secure Shared Memory Segments .. 5–3

5.10 Shared Text Segments .. 5–4

5.11 Page Coloring ... 5–4

5.12 Caches ... 5–4

5.13 Kernel Memory Allocator ... 5–4

5.14 External Pager ... 5–4

5.15 Improved Memory Reclamation Policy 5–5

vi Contents

5.16 Rewrote Swap Allocation Mechanism .. 5–5

6 I/O Subsystem

6.1 Overview ... 6–1

6.2 Supported Buses ... 6–3

6.2.1 PCI Bus .. 6–3

6.2.1.1 Redundant Array of Independent Disks (RAID) 6–4

6.2.2 ISA Bus .. 6–4
6.2.3 EISA Bus .. 6–5

6.2.3.1 Redundant Array of Independent Disks 6–7

6.2.4 Futurebus+ ... 6–7
6.2.5 SCSI Bus ... 6–8

6.2.5.1 Command Tagged Queueing 6–10
6.2.5.2 Redundant Array of Independent Disks 6–11

6.2.6 TURBOchannel Bus .. 6–11
6.2.7 XMI Bus ... 6–13

6.2.7.1 CI and KDM Controllers 6–14

6.2.8 VME Bus .. 6–14

7 Development Environment

7.1 Overview ... 7–1

7.2 Compiler .. 7–1

7.3 Debuggers .. 7–2

7.3.1 The dbx Debugger .. 7–3
7.3.2 The ladebug Debugger ... 7–3

7.4 Profiling Tools .. 7–4

7.5 Shared Libraries .. 7–5

7.5.1 Quickstart .. 7–10

Contents vii

7.5.2 Dynamic Loader ... 7–10
7.5.3 Versioning ... 7–10

7.6 Run-Time Libraries ... 7–11

7.7 Development Commands .. 7–12

7.8 DECthreads .. 7–12

7.9 Thread Independent Services .. 7–12

7.10 Memory-Mapped File Support (mmap) 7–13

7.11 Realtime ... 7–13

8 Windowing Environment

8.1 Overview ... 8–1

8.2 Common Desktop Environment .. 8–1

8.3 X Window System .. 8–4

8.3.1 X Client Libraries ... 8–4
8.3.2 X Server .. 8–4

8.3.2.1 Multihead Graphic Support 8–5
8.3.2.2 X Server Extensions ... 8–5

8.3.3 Display Manager .. 8–7

8.3.3.1 xmodmap Keymap Format 8–7
8.3.3.2 XDM-AUTHORIZATION-1 8–8

8.3.4 Font Server .. 8–8

8.3.4.1 Loadable Font Renderers 8–8

8.3.5 X Clients ... 8–9

8.4 Motif ... 8–9

8.4.1 Digital Extended Widget Set .. 8–10
8.4.2 Digital X Clients .. 8–10

viii Contents

9 System V Functionality

9.1 Overview ... 9–1

9.1.1 System V Compatibility Habitat 9–1
9.1.2 The System V Environment ... 9–2

10 Internationalization

10.1 Overview .. 10–1

10.2 Supported Languages ... 10–2

10.3 Code Conversion and the iconv Utility 10–4

10.4 Unicode Support ... 10–4

10.5 ISO-C .. 10–6

10.6 Internationalized Curses ... 10–6

10.7 Printing .. 10–7

10.8 Creating Locales and the localedef Utility 10–7

10.9 I18N Configuration Tool .. 10–7

10.10 Special Support for Ideogrammatic Languages 10–7

10.10.1 Sorting and the asort Utility .. 10–7
10.10.2 Multilingual EMACS ... 10–8
10.10.3 Mail and 8-Bit Support .. 10–8
10.10.4 User-Defined Characters ... 10–8

10.11 Internationalization and Motif .. 10–8

10.11.1 Internationalized Motif Widgets 10–9
10.11.2 Internationalized Common Desktop Environment (CDE) .. 10–9
10.11.3 Internationalized DECwindows X Clients 10–10

11 Security

11.1 Overview .. 11–1

11.2 C2 Functionality and TCSEC .. 11–1

Contents ix

11.2.1 Audit ... 11–1
11.2.2 Identification and Authentication 11–2
11.2.3 Object Reuse .. 11–3
11.2.4 Discretionary Access Controls .. 11–3
11.2.5 System Architecture .. 11–4
11.2.6 Integrity ... 11–4
11.2.7 Enhanced Security Administration 11–5

11.2.7.1 Configuring System Security 11–5
11.2.7.2 Windows-Based Administration Utilities 11–5

11.3 Other Security Features .. 11–6

11.3.1 Security Integration Architecture 11–6
11.3.2 Toggling Between Security Mechanisms 11–6
11.3.3 Network Information Service (NIS) Compatibility 11–6
11.3.4 DECnet Interoperability ... 11–7
11.3.5 Distributed Computing Environment (DCE) Interoperability . 11–7
11.3.6 Configuration and Setup Scripts 11–7
11.3.7 Graphical User Interfaces ... 11–7

11.4 Performance .. 11–7

12 Installation and System Setup

12.1 Overview .. 12–1

12.2 Installation .. 12–1

12.3 System Setup .. 12–3

13 System Administration

13.1 Overview .. 13–1

13.2 SysMan Tools ... 13–2

13.2.1 SysMan Utilities ... 13–2
13.2.2 Text-Based Interfaces .. 13–4

13.3 The setld Utility .. 13–5

13.4 DECevent Event Management Utility ... 13–6

x Contents

13.5 Analysis Tools with Object Modification 13–6

13.6 Enhanced Kernel Debugging ... 13–6

13.7 Dynamically Loadable Subsystems .. 13–7

13.8 Dynamic System Configuration ... 13–7

13.9 Dynamic Device Recognition .. 13–8

13.10 Dataless Management Services .. 13–8

13.11 Monitoring Performance History .. 13–8

13.12 Bootable tape .. 13–8

A Conformance to Internet Host Requirements

A.1 Background ... A–1

A.2 The Host Requirements RFCs (RFC 1122 and RFC 1123) A–3

A.3 Configuring Digital UNIX to Conditionally Comply to the Host
Requirements RFCs .. A–10

B.3.1 Internet Layer (RFC 1122) ... A–11

A.3.1.1 Configuration Information A–12

A.3.2 Transmission Control Protocol (RFC 1122) A–12

A.3.2.1 Configuration Information A–13

Index

Figures

3-1: TCP/IP Protocols ... 3–4

3-2: XTI, STREAMS and Sockets Interactions 3–19

9-1: SVID Compliance in the System V Environment 9–3

Contents xi

Tables

6-1: Supported Processors and Buses ... 6–1

6-2: PCI Bus Adapters and Interconnects ... 6–4

6-3: ISA Bus Frequency and Transfer Rates ... 6–5

6-4: ISA Bus Adapters and Interconnects ... 6–5

6-5: EISA Bus Adapters and Interconnects ... 6–6

6-6: Futurebus+ Adapters and Interconnects ... 6–8

6-7: Baseboard SCSI Frequency and Transfer Rates 6–9

6-8: SCSI Adapter Frequency and Transfer Rates 6–10

6-9: TURBOchannel Frequency and Transfer Rates 6–12

6-10: TURBOchannel Adapters and Interconnects 6–12

6-11: XMI Adapters and Interconnects ... 6–13

7-1: Digital UNIX Version 4.0 Shared Libraries 7–5

7-2: Digital UNIX Version 4.0 Shared /usr/shlibi/X11 Libraries 7–8

8-1: Front Panel Tools ... 8–2

10-1: Languages and Locales .. 10–2

10-2: Languages and Locales .. 10–5

A-1: Referenced RFCs for the Link Layer .. A–3

A-2: Referenced RFCs for the Internet Layer .. A–4

A-3: Referenced RFCs for the Transport Layer A–5

A-4: Referenced RFCs for the TELNET Protocol A–5

A-5: Referenced RFCs for the File Transfer Protocols A–7

A-6: Referenced RFCs for the SMTP Protocol A–8

A-7: Referenced RFCs for the Support Services A–9

A-8: Total must/must not Requirements in RFC 1122 A–10

A-9: Total must/must not Requirements in RFC 1123 A–10

xii Contents

About This Manual3333333333333333333333
This document provides a brief technical overview of the functionality in
Digital UNIX  Version 4.0.

Note

This book is in no way intended to supersede the Software
Product Description (SPD), which is the definitive legal
document describing the functionality in Digital UNIX Version
4.0 that Digital supports.

Audience
This manual is for anyone who is interested in the functionality in Digital
UNIX Version 4.0.

Organization
This document contains the following chapters and appendixes:

Chapter 1 Introduction to Digital UNIX Version 4.0

Chapter 2 Symmetrical Multiprocessing

Chapter 3 Networking

Chapter 4 The File System Subsystem

Chapter 5 The Virtual Memory Subsystem

Chapter 6 The I/O Subsystem

Chapter 7 The Development Environment

Chapter 8 The Windowing Environment

Chapter 9 System V Functionality

Chapter 10 Internationalization

Chapter 11 Security

Chapter 12 Installation and System Setup

Chapter 13 System Administration

Appendix A Conformance to Internet Host Requirements

Related Documents
You should have access to the Software Product Description (SPD), the
Systems and Options Catalog, and the entire Digital UNIX Version 4.0
documentation suite.

The printed version of the Digital UNIX documentation set is color coded to
help specific audiences quickly find the books that meet their needs. (You
can order the printed documentation from Digital.) This color coding is
reinforced with the use of an icon on the spines of books. The following list
describes this convention:
22
Audience Icon Color Code22
General users G Blue

System and network administrators S Red

Programmers P Purple

Device driver writers D Orange

Reference page users R Green22

Some books in the documentation set help meet the needs of several
audiences. For example, the information in some system books is also used
by programmers. Keep this in mind when searching for information on
specific topics.

The Documentation Overview, Glossary, and Master Index provides
information on all of the books in the Digital UNIX documentation set.

Reader’s Comments
Digital welcomes any comments and suggestions you have on this and other
Digital UNIX manuals.

You can send your comments in the following ways:

• Fax: 603-881-0120 Attn: UEG Publications, ZK03-3/Y32

• Internet electronic mail: readers_comment@zk3.dec.com

A Reader’s Comment form is located on your system in the following
location:
/usr/doc/readers_comment.txt

• Mail:

Digital Equipment Corporation
UEG Publications Manager

xiv About This Manual

ZK03-3/Y32
110 Spit Brook Road
Nashua, NH 03062-9987

A Reader’s Comment form is located in the back of each printed manual.
The form is postage paid if you mail it in the United States.

Please include the following information along with your comments:

• The full title of the book and the order number. (The order number is
printed on the title page of this book and on its back cover.)

• The section numbers and page numbers of the information on which you
are commenting.

• The version of Digital UNIX that you are using.

• If known, the type of processor that is running the Digital UNIX
software.

The Digital UNIX Publications group cannot respond to system problems or
technical support inquiries. Please address technical questions to your local
system vendor or to the appropriate Digital technical support office.
Information provided with the software media explains how to send problem
reports to Digital.

Conventions
The following conventions are used in this guide:

%
$

A percent sign represents the C shell system prompt. A dollar
sign represents the system prompt for the Bourne and Korn shells.

A number sign represents the superuser prompt.

% cat Boldface type in interactive examples indicates typed user input.

file Italic (slanted) type indicates variable values, placeholders, and
function argument names.

[|]
{ | }

In syntax definitions, brackets indicate items that are optional and
braces indicate items that are required. Vertical bars separating
items inside brackets or braces indicate that you choose one item
from among those listed.

. . . In syntax definitions, a horizontal ellipsis indicates that the
preceding item can be repeated one or more times.

cat(1) A cross-reference to a reference page includes the appropriate
section number in parentheses. For example, cat(1) indicates
that you can find information on the cat command in Section 1
of the reference pages.

About This Manual xv

Mb/s This symbol indicates megabits per second.

MB/s This symbol indicates megabytes per second.

Ctrl/x This symbol indicates that you hold down the first named key
while pressing the key or mouse button that follows the slash. In
examples, this key combination is enclosed in a box (for example,
1Ctrl/C 1222222777777).

xvi About This Manual

1Introduction3333333333333333333333

1.1 Overview of Digital UNIX Version 4.0
Digital UNIX Version 4.0 is Digital Equipment Corporation’s
implementation of the Open Software Foundation Version 1.0 and Version
1.2 technology, and the Motif Version 1.2.3 graphical user interface and
programming environment. Digital UNIX Version 4.0 also ships with Motif
Version 1.1.3 to ensure backward compatibility with applications that link to
those libraries. In addition, Digital UNIX Version 4.0 supports the full
features of the X Window System, Version 11, Release 6 (X11R6) from
MIT.

The Digital UNIX Version 4.0 operating system is a multiuser/multitasking,
64-bit, advanced kernel architecture based on Carnegie Mellon University’s
Mach Version 2.5 kernel design with components from Berkeley Software
Distribution (BSD) Versions 4.3 and 4.4, UNIX System Laboratories System
V Release 4.0, other software sources, the public domain, and from Digital
Equipment Corporation.

Digital UNIX Version 4.0 incorporates several performance enhancements
either developed or extended by Digital, including the Virtual Memory
Unified Buffer Cache and eager swap policy; UFS file block clustering and
cached writes over NFS; IP Multicasting, path MTU discovery, and
optimized TCP/IP; and quickstarted shared libraries.

Digital UNIX Version 4.0 is also supported on selected workstations with 24
MB of memory and 535 MB of disk space.

In addition, Digital UNIX Version 4.0 provides a clear and concise system
administration environment (both graphics and character-cell) to greatly
simplify system administration tasks; supports an update installation that
does not overwrite system files and a new and improved full installation that
allows you to get up and running almost immediately while files are being
copied from the CD-ROM onto your system disk; supports loadable drivers
and other kernel subsystems, including loadable boot-path support for third-
party disks and graphics cards; and provides support for dynamic system
configuration and dynamic system recognition of disks and tapes.

Digital UNIX Version 4.0 also supports the Common Desktop Environment
(CDE) as the default user interface. CDE provides a uniformed graphical
user interface –– portable across multiple platforms –– to greatly facilitate

common end-user and system administration tasks. The CDE uniformed
graphical interface makes Digital UNIX appear more like a PC or Macintosh
environment, a feature that makes Digital UNIX more accessible to the many
end-users familiar with those systems.

Digital UNIX Version 4.0 also provides realtime support and symmetrical
multiprocessing (SMP), dataless servers and clients, and numerous features
intended to assist application programmers in developing applications that
use shared libraries, threads, and memory mapped files. It is fully compliant
to the Single UNIX Specification, to the X/Open UNIX brand, to POSIX
1003.1B (Realtime) and to POSIX 1003.1C (with DECthreads).

To ensure a high level of compatibility with Digital’s ULTRIX operating
system, the Digital UNIX Version 4.0 operating system is compatible with
the Berkeley 4.3 and System V programming interfaces and, by complying
with the System V Interface Definition (SVID3 Base and Kernel Extensions),
Digital UNIX Version 4.0 supports System V applications as well.

Since part of the charter of the Open Software Foundation is to provide an
interface for developing portable applications that will run on a variety of
hardware platforms, Digital UNIX Version 4.0 is compliant with the OSF
Application Environment Specification (AES) that specifies the interface to
support these portable applications. In addition, the Digital UNIX Version
4.0 operating system complies with standards and industry specifications,
including FIPS, POSIX, X/Open, XTI, and AT&T System V Interface
Definition (SVID).

For a complete list of the standards that Digital UNIX Version 4.0 supports,
see the Software Product Description (SPD).

1.2 Packaging
Digital UNIX Version 4.0 is available as a base system kit, containing the
operating system, windowing environment, and documentation all integrated
on CD-ROM, as well as the following three extensions, also included on the
CD-ROM, that provide additional functionality and that require separate
licenses and Product Authorization Keys (PAK) to access:

• Server Extensions

The Server Extensions kit contains the Remote Installation Service (RIS)
software, which allows a server system using the bootp protocol to
install Digital UNIX Version 4.0 to client systems over a Local Area
Network (LAN). For more information on RIS, see the guide Sharing
Software on a Local Area Network.

• Developers’ Toolkit

The Developers’ Toolkit is designed for programmers using languages
other than C, like Fortran, C++, Ada, or Pascal, who require the complete

1–2 Introduction

software development environment but who do not require the C
compiler, which is not available in this kit.

In addition, the Developers’ Toolkit contains a fully operational dbx
debugger that allows the debugging of source code. The dbx debugger
that ships on the base system kit only supports debugging a kernel.

• C Developers’ Extensions

The C Developers’ Extensions is designed for C programmers and
includes the C compiler, assembler, and the complete software
development environment for both the base and worksystem environment.

In addition, the C Developers’ Extensions kit contains a fully operational
dbx debugger that allows the debugging of source code. The dbx
debugger that ships on the base system kit only supports debugging a
kernel.

Note

All Digital UNIX Version 4.0 documentation produced by
Digital ships as Bookreader files on the Digital UNIX Version
4.0 CD-ROM and as ASCII reference pages accessible from the
man command.

The following hardcopy documentation ships with the Digital
UNIX Version 4.0 CD-ROM:

• Release Notes

• Installation Guide

• Update Installation Quick Reference Card

• Technical Overview

• Quick Reference Card

• Documentation Map

Complete hardcopy documentation and several third-party books are
also available. For more information on the makeup of the
documentation set, including optionally available documentation, see
the Documentation Overview, Glossary, and Master Index.

Introduction 1–3

The remaining chapters and appendices discuss the following components of
Digital UNIX Version 4.0:

• Symmetrical Multiprocessing

• Networking

• The File System Subsystem

• The Virtual Memory Subsystem

• The I/O Subsystem

• The Development Environment

• The Windowing Environment

• System V Functionality

• Internationalization

• Security

• Installation and System Setup

• System Administration

• Maximum System Limits

• Conformance to Internet Host Requirements

1–4 Introduction

2Symmetrical Multiprocessing3333333333333333333333

2.1 Overview
Symmetrical multiprocessing (SMP) is the ability of two or more processes
(or multiple threads of a threaded application) to execute simultaneously on
two or more CPUs. This concurrency of execution greatly improves
performance. Additionally, it affords customers the opportunity to extend the
life and increase the cost-effectiveness of their multiprocessor systems by
adding CPU cards (and their compute power) to their multiprocessors rather
than buying more systems.

Digital UNIX supports an implementation of SMP that is designed to
optimize the performance of compute servers (systems dedicated to
compute-bound, multithreaded applications) and data servers (file servers,
DBMS servers, TP systems, and mail routers that serve a large number of
network clients). In addition, Digital UNIX supports multithreaded
application development in an SMP environment. Note that SMP does not
adversely affect using a multiprocessor as a timesharing system.

2.2 Implementation
The Digital UNIX SMP implementation makes use of simple locks (also
called spin locks, since they "spin" for a specified period of time waiting for
held locks to be freed before timing out), complex locks (read/write locks
that can block waiting for a lock to be freed), and in very rare cases where
locks would not be of benefit, funneling, whereby a process is forced to
execute on a specified CPU.

The Digital UNIX SMP implementation also endeavors to achieve as much
concurrency as possible by reducing the size of the system state that must be
protected by locks, thereby reducing the necessity for locks and their
attendant overhead.

Thus, both the kernel, and for the most part, the operating system as a whole,
are fully parallelized so that multiple processes or multiple threads can run
simultaneously on multiple CPUs. As these multiple processes or multiple
threads execute, the operating system ensures––either through concurrency or
through its locking strategy––that processes that access the same kernel data
structures do so in a logical order so that the integrity of these data structures

is maintained and that processes do not hold and request each other’s locks,
thereby deadlocking the system. There are no architectural limits on the
number of CPUs supported.

Digital UNIX SMP also supports processor affinity, the ability to bind a
particular process to a specified CPU, and load balancing, whereby the
scheduler attempts to distribute all runable processes across all available
CPUs. (Note that load balancing will not override processor affinity).

To improve performance, the scheduler also attempts to execute each process
on the last CPU where it ran to take advantage of any state that may be left
in that CPU’s cache.

SMP is configurable and any of the following five modes can be configured
at system boot time:

• Uniprocessing

• Optimized realtime preemption

• Optimized SMP

• Optimized realtime preemption and SMP

• Lock debug mode

When uniprocessing is set, only those locks necessary to support multiple
threads are compiled into the kernel at system boot time.

When lock debug mode is set, the system checks the lock hierarchy and
minimum system priority level (SPL); stores debugging information by
classes and maintains lock statistics; records the simple locks that are held by
each CPU in CPU-specific arrays; and records all of the complex locks that a
thread is holding in the thread structure. All of this debugging information
can be accessed through the dbx debugger.

In addition, the development environment has been enhanced to support
multithreaded application development. Specifically the dbx, profile,
and pixie utilities have had been extended to include support for multiple
threads, and more thread-safe libraries have been added to the system.

For information on the Digital UNIX development environment and the
threads package that Digital UNIX supports, see the Programmer’s Guide
and the Guide to DECthreads. For information on configuring SMP, see the
System Administration guide and the System Tuning and Performance
Management guide.

2–2 Symmetrical Multiprocessing

3Networking3333333333333333333333

3.1 Overview
The networking functionality in Digital UNIX Version 4.0 comes primarily
from OSF Version 1.0, although certain modules, like System V Release 4.0
STREAMS which were not available in OSF Version 1.0, have been taken
from the OSF Version 1.2 code base. Some functionality, like IP
Multicasting and the packet filter applications, has been taken from the public
domain, enhanced, and integrated into the operating system as a service to
our customers. The Network File System (NFS) code, as well as the Remote
Procedure Calling (RPC) code, Network Information Service (NIS), and
remote daemons and their corresponding commands came from Sun
Microsystem’s Open Network Computing (ONC) Version 4.2. And finally,
functionality that Digital has licensed and enhanced, like Yellow
Pages/Network Information Service which was licensed from SUN, was
ported to Digital UNIX Version 4.0 from ULTRIX, since, although
conforming to the OSF Version 1.2 standards, it was determined to be more
robust than the corresponding code from the OSF.

Like all subsystems in Digital UNIX Version 4.0, the networking subsystem
is designed to provide a standardized programming interface to enable third-
party vendors to develop and port their networking applications to OSF with
a minimum of difficulty. To this end Digital UNIX Version 4.0 supports the
following:

• Internet Protocol Suite

– Application Protocols

* Domain Name Protocol (DOMAIN)

* Routing Protocols (RIP, OSPF, EGP, and BGP)

* File Transfer Protocol (FTP)

* Network File System Protocol (NFS)

* Telnet Protocol (TELNET)

* Trivial File Transfer Protocol (TFTP)

* Finger Protocol (FINGER)

* Simple Mail Transfer Protocol (SMTP)

* Simple Network Manager Protocol (SNMP)

– Transport Protocols

* User Datagram Protocol (UDP)

* Transmission Control Protocol (TCP)

– Network Level Protocols

* Internet Protocol (IP)

* Address Resolution Protocol (ARP)

* Internet Control Message Protocol (ICMP)

* Internet Group Management Protocol (IGMP)

• Supported Networks

– ATM

– Ethernet

– Fast Ethernet

– FDDI

– Token Ring

• Application Programming Interfaces

– X/Open Transport Interface (XTI/TLI)

– BSD 4.3 Sockets

– System V Release 4.0 STREAMS

– Data Link Interface (DLI)

– Data Link Provider Interface (DLPI)

– Extensible SNMP (eSNMP)

• Network Administration Software

– The entire suite of network commands and utilities from
OSF Version 1.2

– Ethernet, FDDI and loopback, packet filtering

– Several popular packet filter applications in the public domain
(rarpd, tcpdump, tcpslice, nfswatch, nfslogsum)

– The screend security policy daemon (developed at Digital)

– UUCP from HoneyDanBer

– Local Area Transport (LAT)

– Dynamic Host Configuration Protocol (DHCP)

3–2 Networking

• Naming Services

– Berkeley Internet Name Domain (BIND)

– Yellow Pages/Network Information Services (YP/NIS)

• Time Services

– Network Time Protocol (NTP)

– Time Synchronization Protocol (TSP)

The following sections briefly discuss the networking functionality in Digital
UNIX Version 4.0.

3.2 The Internet Protocol Suite
TCP/IP supports a suite of protocols, each of which provides a different
service. These protocols allow networking communications to be
independent of network hardware. The TCP/IP protocol suite is organized
into the following groups:

• Application-Level Protocols, such as DOMAIN, Gateway Protocols
(EGP, BGP, RIP, and OSPF), File Transfer Protocol (FTP), FINGER,
TELNET, Trivial File Transfer Protocol (TFTP), Simple Mail Transfer
Protocol (SMTP), and Simple Network Management Protocol (SNMP).

• Transport-Level Protocols, such as User Datagram Protocol (UDP) and
Transmission Control Protocol (TCP)

• Network-Level Protocols, such as Address Resolution Protocol (ARP),
Internet Control Message Protocol (ICMP), and Internet Protocol (IP)

Figure 3-1 illustrates the relationship of the major protocols in the TCP/IP
suite.

Networking 3–3

Figure 3-1: TCP/IP Protocols

ARP

FTP

SMTP

SNMP

TELNET

ZK−0819U−R

TFTP

Transmission
Control Protocol

(TCP)

Application
Layer

Transport
Layer

Internet
Layer

Ethernet FDDI X.25 Others

FINGER

Network
Interface
Layer

NFS

OSPF

ICMP

Token Ring

IGMP

Domain

User Datagram
Protocol
(UDP)

Internet Protocol
(IP)

Applications programs send messages (streams of data) to the Internet
Transport-Level Protocols, which are the UDP and the TCP. These protocols
receive the data from the application, divide it into packets, add a transport
header, and then pass the packets along to the next protocol layer, the
Internet layer.

The Internet layer encloses the packet in an IP datagram, adds the datagram
header, decides where to send the datagram (either directly to a destination or
else to a gateway), and passes the datagram on to the Network Interface
layer. The Network Interface layer accepts IP datagrams and transmits them
as frames over a specific network hardware.

3–4 Networking

Frames received by a network go through the protocol layers in reverse.
Each layer strips off the corresponding header information until the data is
back at the application level. Frames are received by the Network Interface
layer (for example, an Ethernet adapter), which strips off the physical layer
header and sends the datagram to the Internet layer. In the Internet layer, the
Internet Protocol strips off the IP header and sends the packet to the
Transport layer. The Transport layer strips off the TCP or UDP header and
sends the data up to the Application layer.

3.2.1 Application-Level Protocols
When an application needs to send data to an application on another host, the
application sends the information down to the transport level protocols to
prepare the information for transmission. These protocols include DOMAIN,
EGP, BGP RIP, OSPF, FTP, NFS, TELNET, TFTP, FINGER, SMTP, and
SNMP.

3.2.1.1 Domain Name Protocol

The Domain Name Protocol (DOMAIN) allows one or more hosts in a
domain to act as a name server for other hosts within the domain. DOMAIN
uses UDP or TCP as its underlying protocol and allows a local network to
assign host names within its domain independently from other domains.
UDP is the preferred protocol for use with DOMAIN; however, if the UDP
response is truncated, TCP can be used.

In the Digital UNIX environment, the Berkeley Internet Name Domain
(BIND) naming service uses the Domain Name Protocol. In this hierarchical
naming system, local resolver routines may resolve Internet names and
addresses using a local name resolution database maintained by the named
daemon. If the name requested by the host is not in the local database, the
resolver routine or the local named daemon queries the remote BIND name
server.

3.2.1.2 Routing Protocols

Routing Protocols allow systems on either internal or external LANs to share
routing information. In addition to the somewhat outmoded External
Gateway Protocol (EGP), Digital UNIX supports the Border Gateway
Protocol (BGP) and both the Routing Information Protocol (RIP) and Open
Shortest Path First Protocol (OSPF) as part of the GateD daemon from
Cornell University (for more information on the GateD, see Section 3.5.6).

Networking 3–5

3.2.1.2.1 Exterior Gateway Protocol (EGP) – The Exterior Gateway Protocol
(EGP) allows the exterior gateway of an autonomous system to share routing
information with exterior gateways on other autonomous systems.

An autonomous system is a group of networks and gateways for which one
administrative authority has responsibility. Gateways are interior neighbors
if they reside on the same autonomous system and exterior neighbors if they
reside on different autonomous systems. Gateways that exchange routing
information using EGP are said to be EGP peers (neighbors). Autonomous
system gateways use EGP to provide reachability information to their EGP
neighbors.

EGP allows an exterior gateway to provide remote communications among
systems as follows:

• Ask another exterior gateway to agree to exchange reachability
information

• Continually check to ensure that its EGP neighbors are responding

• Allow EGP neighbors to exchange reachability information by passing
routing update messages

EGP restricts exterior gateways by allowing them to advertise only those
destination networks reachable entirely within that gateway’s autonomous
system. Thus, an exterior gateway using EGP passes on information to its
EGP neighbors, but does not advertise reachability information about its EGP
neighbors.

EGP does not interpret the distance metrics that appear in routing update
messages from other protocols. EGP uses the distance field to specify
whether a path exists (a value of 255 means that the network is unreachable).
The value cannot be used to compute the shorter of two routes, unless those
routes are both contained within a single autonomous system. For this
reason, EGP cannot be used as a routing algorithm. As a result, there is only
one path from an exterior gateway to any network.

EGP routes are predetermined in the /etc/gated.conf file. This
contrasts with the Routing Information Protocol (RIP), which can be used
within (that is, interior to) an autonomous system of Internet networks that
dynamically reconfigure routes. EGP assumes that IP is the underlying
protocol. See the gated(8) reference page for further information.

3.2.1.2.2 Border Gateway Protocol – The Border Gateway Protocol (BGP) is
an exterior routing protocol used for exchanging routing information between
autonomous systems that are either multiple transit autonomous systems or
transit and stub autonomous systems. BGP is related to EGP but operates
with more capability, greater flexibility, and less required bandwidth. For
example, BGP uses path attributes to provide more information about each

3–6 Networking

route and, unlike EGP, maintains an Autonomous System (AS) path, which
provides enough information (such as the AS number of each autonomous
system the route has traversed) to prevent routing loops in an arbitrary
topology.

Like EGP, BGP supports both internal and external sessions. When sending
routes to an external peer, BGP prepends the local AS number to the AS path
so that routes received from an external peer are guaranteed to have the AS
number of that peer at the start of the path. Routes received from an internal
neighbor will not in general have the local AS number prepended to the AS
path, and in general have the same AS path that the route had when the
originating internal neighbor received the route from an external peer.
Routes with no AS numbers in the path may be legitimately received from
internal neighbors; these indicate that the received route should be considered
internal to your own AS.

The Digital UNIX implementation of BGP supports three versions of the
BGP protocol (versions 2, 3 and 4). BGP versions 2 and 3 are quite similar
in capability and function. They will only propagate classed network routes,
and the AS path is a simple array of AS numbers. BGP 4 will propagate fully
general address-and-mask routes, and the AS path has some structure to
represent the results of aggregating dissimilar routes.

3.2.1.2.3 Routing Information Protocol (RIP) – The Routing Information
Protocol (RIP) is an implementation of a distance-vector, or Bellman-Ford
routing protocol for local networks and in Digital UNIX is contained in the
GateD daemon from Cornell University. RIP classifies routers as active and
passive: active routers advertise their routes to other routers; passive routers
listen and update their routes based on the advertisements they receive, but
do not advertise themselves. Typically, routers run RIP in active mode,
while hosts use passive mode.

A router running RIP in active mode broadcasts updates at set intervals.
Each update contains paired values where each pair consists of an IP network
address and an integer distance to that network. RIP uses a hop count metric
to measure the distance to a destination. The number of hops along a path
from a given source to a given destination refers to the number of gateways
that a datagram would encounter along that path.

For example, a router advertises directly connected networks as having a hop
count of one. Networks that are reachable through another gateway are two
hops away, networks that are reachable through two gateways are three hops
away, and so forth. Then RIP chooses the path with the shortest hop count.

Of course, using hop counts to calculate shortest paths between networks
may not always produce optimal results. For example, a path with a hop
count of three that crosses three Ethernets may be substantially faster than a
path with a hop count of 2 that crosses two slow-speed serial lines. To

Networking 3–7

compensate for differences in network and serial line rates of transfer,
administrators can configure RIP routers to advertise artificially high hop
counts for slow links.

3.2.1.2.4 Open Shortest Path First (OSPF) – Open Shortest Path Routing
(OSPF) is a shortest path first (SPF) or link-state interior gateway protocol
that distributes routing information between routers in a single autonomous
system. Suitable for complex networks with a large number of routers,
OSPF provides equal cost multipath routing whereby packets to a single
destination can be sent by more than one network interface simultaneously.

A link-state protocol dictates that each router maintains a database describing
the entire AS topology, which it builds out of the collected link state
advertisements of all routers. Each participating router distributes its local
state (that is the router’s usable interfaces and reachable neighbors)
throughout the AS by flooding. Each multiaccess network that has at least
two attached routers has a designated router and a backup designated router.
The designated router floods a link state advertisement for the multiaccess
network and has other special responsibilities. The designated router concept
reduces the number of adjacencies required on a multiaccess network.

OSPF allows networks to be grouped into areas. Routing information passed
between areas is abstracted, potentially allowing a significant reduction in
routing traffic. OSPF uses four different types of routes, listed in order of
preference: intra-area, inter-area, type 1 external and type 2 external. Intra-
area paths have destinations within the same area, inter-area paths have
destinations in other OSPF areas and Autonomous System External (ASE)
routes are routes to destinations external to the AS. Routes imported into
OSPF as type 1 routes are supposed to be from EGPs whose external metrics
are directly comparable to OSPF metrics. When a routing decision is being
made, OSPF will add the internal cost to the AS Border router to the external
metric. Type 2 ASEs are used for EGPs whose metrics are not comparable to
OSPF metrics. In this case, only the internal OSPF cost to the AS Border
router is used in the routing decision.

From the topology database, each router constructs a tree of the shortest paths
with itself as the root. This shortest-path tree gives the route to each
destination in the AS. Externally derived routing information appears on the
tree as leaves. The link-state advertisement format distinguishes between
information acquired from external sources and information acquired from
internal routers, so there is no ambiguity about the source or reliability of
routes. Externally derived routing information (for example, routes learned
from EGP or BGP) is passed transparently through the autonomous system
and is kept separate from OSPF’s internally derived data. Each external route
can also be tagged by the advertising router, enabling a passing of additional
information between routers on the borders of the autonomous system.

3–8 Networking

3.2.1.3 File Transfer Protocol

File Transfer Protocol (FTP) allows hosts to transfer files. FTP provides for
such tasks as listing remote directories, changing the current remote
directory, creating and removing remote directories, and transferring multiple
files in a single request. FTP maintains a secure transport by passing user
and account passwords to the foreign host. FTP allows interactive user-
oriented sessions.

FTP uses reliable stream transport (TCP/IP) to send the files and uses a
TELNET-like connection to transfer commands and replies. FTP also
understands several basic file formats, including ASCII, IMAGE, and
Local 8. TCP/IP implements FTP in the ftp user command and the ftpd
server command.

3.2.1.4 Network File System Protocol over UDP transport

The Network File System (NFS) provides access to files via standard UNIX
system calls. This allows any program to access files across the network.
NFS uses the UDP transport layer; therefore, it has to deal with lost
datagrams. NFS does this by retransmitting requests if a reply has not been
received within a reasonable amount of time. Some requests can be re-
executed on the server without problems, but others (such as file deletion)
cause an error if the first request reaches the server but the reply is lost. If
the second request is executed, the server finds that the file does not exist and
returns an error. NFS servers hold on to such replies and retransmit them if
they see a duplicate request.

On the other hand, the protocol is designed so that the servers need no other
state information. This allows server performance to be improved by running
multiple copies of the server daemon, and also means that server crashes are
tolerated with no special code on either client or server.

For more information on NFS, see Chapter 4.

3.2.1.5 Network File System Protocol over TCP transport

Digital UNIX Version 4.0 contains Digital’s first release of NFS support over
the TCP transport. Previously, only the UDP transport was available. UDP
may still be the preferred transport in local area networks, but for NFS access
over wide area, congested, or lossy networks, TCP may offer better
performance.

Separate threads are used to maintain some of the performance optimizations
made to the UDP code paths. The nfsiod daemon has been changed to
spawn kernel threads, instead of forking multiple processes as it did
previously. Each nfsiod thread can handle UDP or TCP mounts, so the
nfsiod command still accepts one argument.

Networking 3–9

For more information on NFS, see Chapter 4.

3.2.1.6 Telnet Protocol

The Telnet Protocol (TELNET) provides a standard method for terminal
devices and terminal-oriented processes to interface. TELNET is commonly
used by terminal emulation programs that allow you to log in to a remote
host. However, TELNET can also be used for terminal-to-terminal
communications and interprocess communications. TELNET is also used by
other protocols (for example, FTP) for establishing a protocol control
channel.

TCP/IP implements TELNET in the telnet user command and the
telnetd server command.

3.2.1.7 Trivial File Transfer Protocol

The Trivial File Transfer Protocol (TFTP) can read and write files to and
from a foreign host. Like FTP, TFTP can transfer files as either 8-bit
NETASCII characters or as 8-bit binary data. Unlike FTP, TFTP cannot be
used to list or change directories at a foreign host and it has no provisions for
security, such as password protection. Data normally can be written or
retrieved only in public directories.

TCP/IP implements TFTP in the tftp user command and in the tftpd
server command.

3.2.1.8 Finger Protocol

The Finger Protocol (FINGER) is an application-level Internet protocol that
provides an interface between the finger command and the fingerd
daemon. The fingerd daemon returns information about the users
currently logged in to a specified remote host. If you execute the finger
command specifying a user at a particular host, you obtain specific
information about that user. The Finger Protocol must be present at the
remote host and at the requesting host. FINGER uses TCP as its underlying
protocol.

3.2.1.9 Simple Mail Transfer Protocol

The Simple Mail Transfer Protocol (SMTP) is the standard for mail exchange
between machines attached to the Internet. It specifies the format of control
messages sent between two machines to exchange electronic mail.

As its name implies, SMTP is simple in design and purpose. Its objective is
to provide a reliable and efficient mail delivery system across the links
between machines. SMTP does not specify the mail interface.

3–10 Networking

3.2.1.10 Simple Network Management Protocol

The Simple Network Management Protocol (SNMP) is the Internet standard
protocol for exchanging network management information. The SNMP agent
provides a local or remote network manager with system information,
network interface data, address resolution information (ARP), information
about the routing layer (IP and ICMP), and information about the transport
layer (TCP and UDP). Digital UNIX SNMP agent also permits management
of basic host information, such as processes, file systems, memory, attached
devices, and so forth.

3.2.2 Transport-Level Protocols
The TCP/IP transport-level protocols (UDP and TCP) allow application
programs to communicate with other application programs. The User
Datagram Protocol (UDP) and the Transmission Control Protocol (TCP) are
the basic transport-level protocols for making connections between Internet
hosts. When an application sends a message to the transport layer, UDP and
TCP break the information into packets, add a packet header including the
destination address, and send the information to the network layer for further
processing.

Other protocols and applications use UDP to make datagram connections and
TCP to make stream connections. The socket interface implements these
protocols.

3.2.2.1 User Datagram Protocol

UDP provides a datagram means of communication between applications on
Internet hosts. UDP uses destination protocol ports (abstract destination
points within a machine), identified by positive integers, to send messages to
one of multiple destinations on a host. The protocol ports receive and hold
messages in queues until applications on the receiving host can retrieve them.

UDP relies on the underlying IP to send its datagrams and provides the same
connectionless message delivery as IP. It offers no assurance of datagram
delivery or duplication protection. However, UDP allows the sender to
specify source and destination port numbers for the message and also
calculates a checksum of both the data and header. These two features allow
the sending and receiving applications to ensure the correct delivery of a
message.

3.2.2.2 Transmission Control Protocol

TCP provides reliable stream delivery of data between Internet hosts. Like
UDP, TCP uses IP, the underlying protocol, to transport datagrams, and
supports the block transmission of a continuous stream of datagrams between
process ports. Unlike UDP, TCP provides reliable message delivery and

Networking 3–11

ensures that data is not damaged, lost, duplicated, or delivered out of order to
a receiving process. Because of this transport reliability, applications
programmers are not required to build communications safeguards into their
software.

Both TCP and UDP allow programs to send messages to and receive
messages from applications on other hosts, and both use protocol ports on the
host to identify the specific destination of the message. The TCP
retransmission time-out value is dynamically determined for each connection,
based on round-trip time.

TCP has the following operational characteristics:

• Basic Data Transfer

TCP transfers a continuous stream of 8-bit octets in each direction
between its users by packaging some number of bytes into segments for
transmission through the Internet system. In general, TCP determines the
best time to block and forward packets.

• Reliability

TCP recovers data that is damaged, lost, duplicated, or delivered out of
order by the Internet. To achieve this reliability, TCP assigns a sequence
number to each octet it transmits, and requires a positive acknowledgment
(ACK) from the receiving TCP. If the ACK is not received within the
time-out interval, the data is retransmitted. At the receiver, the sequence
numbers are used to correctly order segments that are received out of
order and to eliminate duplicates. To detect damage, TCP adds a
checksum to each segment transmitted, checks it at the receiver, and
discards damaged segments.

• Flow Control

To control how much data is sent, TCP returns the following information
with every acknowledgment:

– The sequence numbers it will accept next; these numbers are always
greater than the number of the last segment that was successfully
received.

– The number of octets that the sender is allowed to transmit before
receiving further permission.

• Multiplexing

Many processes within a single host can use TCP communications
facilities simultaneously. TCP maintains a set of addresses (ports) within
each host. TCP combines the port number with the network address and
the host address to uniquely identify each connection endpoint (socket).
A pair of sockets uniquely identifies each connection.

3–12 Networking

• Connections

TCP must initialize and maintain certain status information for each data
stream. The combination of this information, including sockets, sequence
numbers, and window sizes, is called a connection. Each connection is
unique.

3.2.3 Network-Level Protocols
The Internet network-level protocols (IP, ARP, ICMP) handle machine-to-
machine communications. These protocols provide for transmission and
reception of transport requests, and handle network-level control.

3.2.3.1 Internet Protocol

The Internet Protocol (IP) is the primary network-level protocol and provides
unreliable, connectionless packet delivery for the Internet. IP defines the
format of all the data sent over the Internet. IP also specifies packet
processing and error handling.

IP is connectionless because it treats each packet independently. It is
unreliable because it does not guarantee delivery or the order of arrival of
packets. However, underlying mechanisms guarantee data integrity,
assuming it arrives.

IP provides the interface to the network interface level protocols. The
physical connections of a network transfer information in a frame with a
header and data. IP uses an Internet datagram, which contains a source host
address, along with sequencing and control information.

IP automatically adds an IP header to outgoing packets and removes the IP
header from incoming packets before sending them to higher level protocols.
IP provides for the universal addressing of hosts in the Internet network.

IP is not a reliable communications facility because it does not require
acknowledgments from the sending host, the receiving host, or intermediate
hosts.

The total length of IP packets can be configured independently for each
interface. Packets are broken up into smaller chunks at gateways and
reassembled when they reach their destination.

3.2.3.1.1 IP Multicasting – Digital UNIX Version 4.0 supports IP Multicasting
on a Local Area Network (LAN), as described in RFC 1112. Digital UNIX
Version 4.0 also supports Version 3.5 of the IP Multicast Kernel support and
Version 3.6 of the mrouted implementation of the Distance Vector
Multicast Routing Protocol (DVMRP) which provides support for
"tunnelling" and "pruning."

Networking 3–13

Unlike IP Broadcasting, IP Multicasting allows packets to be taken off the
network only by those clients who have configured their systems to receive
the packets. Packets are accepted or rejected at the hardware level, thereby
greatly reducing processing overhead. In addition, IP Multicasting does not
consume a lot of network bandwidth, since applications do not have to send
separate packets with identical data to reach several destinations, as they do
with point-to-point connections. With IP Multicasting, one packet is sent to
all interested hosts.

As a result, IP Multicasting is very valuable to video conferencing
applications and applications that provide constant updates to ever-changing
information, like applications that provide stock market quotes.

The IP Multicasting code was taken from the public domain, integrated with
DECnet and LAT, and is supported on all Ethernet and FDDI adapters.

3.2.3.1.2 Serial Line IP (SLIP) and Compressed Serial Line IP (CSLIP) –
Digital UNIX Version 4.0 has complete IP support for a serial line, so that
users can transfer files or NFS-mount file systems across phone lines. Using
the CSLIP slattach option, headers can be compressed, thereby increasing
performance.

The SLIP/CSLIP code is from OSF Version 1.0. However, since the OSF
code did not provide a way to access the CSLIP feature, Digital modified the
slattach command to provide the necessary access to CSLIP.

3.2.3.1.3 Point-to-Point Protocol (PPP) – Digital UNIX Version 4.0 supports
the Point-to-Point (PPP) protocol (as defined in RFC 1144, 1171, 1172,
1331, 1332, 1334, 1548, 1549, 1661, and 1662) which provides a method for
transmitting datagrams over serial point to point links. Unlike SLIP, PPP
supports standard encapsulation, simultaneous multiplexing of different
network layer protocols, an HDLC Frame Check Sequence for error
detection, an HDLC escaping mechanism for use with miscellaneous non-8-
bit-transparent telephone and switching equipment, and the dynamic
negotiation of IP addresses.

In addition, while SLIP only supports clist tty drivers, PPP supports
both clist and STREAMS-based tty drivers, as well as remote logins
over LANs.

Note that the PPP code was taken from the public domain and includes
contributions identified by the footnoted copyright notices 1. Certain sections
of the PPP code was derived from the RSA Data Security, Inc., MD5
Message-Digest Algorithm.

3333333333333333333333
1 Copyright (c) 1993 The Australian National University. Copyright (c) 1989 Carnegie Mellon

University. Copyright (c) 1991 Gregory M. Christy. Copyright (c) 1989 Regents of the University of
California. Copyright (c) 1990 RSA Data Security, Inc.

3–14 Networking

For more information on PPP, see the System Administration guide and the
pppd(8), pppstats(8), and chat(8) reference pages.

3.2.3.2 Address Resolution Protocol

The Address Resolution Protocol (ARP) translates Internet addresses into
hardware addresses. ARP does not translate addresses for the Serial Line
Interface Protocol (SLIP) or Point-to-Point Protocol (PPP) because SLIP and
PPP have no hardware address.

ARP dynamically traces Internet addresses to hardware addresses on local
area networks. The result of this tracing is called a map. The mapped
information is stored in mapping tables. TCP/IP uses ARP to collect and
distribute the information for mapping tables.

The kernel maintains the mapping tables, and ARP is not directly available to
users or applications. When an application sends an Internet packet to an
interface driver, the driver requests the appropriate address mapping. If the
mapping is not in the table, an ARP broadcast packet is sent through the
requesting interface driver to the hosts on the local area network.

When a host that supports ARP receives an ARP request packet, the host
notes the IP and hardware addresses of the requesting system and updates its
mapping table, if necessary. If the receiving host’s IP address does not
match the requested address, the host ignores the request packet. If the IP
address does match, the receiving host sends a reply packet to the requesting
system. The requesting system stores the new mapping and uses it to
transmit future Internet packets.

Unlike most protocols, ARP packets do not have fixed-format headers.
Instead, the message is designed to be useful with a variety of network
technologies.

3.2.3.3 Internet Control Message Protocol

The Internet Control Message Protocol (ICMP) is a required part of every IP
implementation. ICMP handles error and control messages for IP.

ICMP does the following:

• Tests whether a destination is alive and reachable

• Reports parameter problems with a datagram header

• Performs clock synchronization and transit time estimations

• Obtains Internet addresses and subnet masks

• Provides transport-level reachability information

• Updates routing information

Networking 3–15

ICMP provides feedback about problems in the communications
environment, but does not make IP reliable. That is, ICMP does not
guarantee that an IP packet will be delivered reliably or that an ICMP
message will be returned to the source host when an IP packet is not
delivered or is incorrectly delivered.

ICMP messages are sent in varying situations, including the following:

• When a packet cannot reach its destination

• When a gateway host does not have the buffering capacity to forward a
packet

• When a gateway can direct a host to send traffic on a better route

3.3 Supported Networks
Digital UNIX Version 4.0 supports interfacing to the following networks:

• ATM

• Ethernet

• Fast Ethernet

• FDDI

• Token Ring

3.3.1 ATM
Digital UNIX Version 4.0 supports PCI and TURBOchannel machines on
155.5 MB per second Asynchronous Transfer Mode (ATM) networks. ATM
is a high-speed, connection-based, cell-switched network that––unlike
traditional packet switched networks––can carry different kinds of traffic
(voice, video, and data) simultaneously. In addition, ATM provides
predictable services to those classes of traffic that require bounded latencies
and dedicated bandwidths, and––because ATM separates the physical
interface from the datalink layer––the same cell and packet formats can be
used over a wide variety of physical interfaces from 1 MB per second to 10
GB per second.

Digital UNIX Version 4.0’s implementation of ATM consists of permanent
virtual circuit support; switched virtual circuit support through ATM Forum
UNI 3.0 and 3.1 signalling for point-to-point connections; Classic IP (as
defined by RFC 1577, RFC 1483, and RFC 1626) for a single Logical IP
Subnet (LIS); and ATM Forum Interim Local Management Interface (ILMI)
for dynamic network address registration. For more information on ATM,
see the Network Programmer’s Guide.

3–16 Networking

3.3.2 Ethernet

Digital UNIX Version 4.0 supports 10 MB per second Ethernet networks on
all Alpha platforms.

At the physical and IP levels, Digital UNIX Version 4.0 supports an Ethernet
network with a Maximum Transfer Unit (MTU) of 1500 bytes at a maximum
of 10 MB per second.

In conformance with Ethernet standards, Digital UNIX Version 4.0 always
ensures a minimum packet size of 60 bytes.

The default MTU at the IP level is 1500 bytes at a maximum of 10 MB per
second, although this value can be decreased using the ifconfig
command.

3.3.3 Fast Ethernet

Digital UNIX Version 4.0 supports 100 MB per second Fast Ethernet (IEEE
802.3 100Base-TX) networks on all PCI-based Alpha hardware platforms.

MTU sizes at the physical and IP levels are the same as those for regular 10
MB per second Ethernet.

3.3.4 FDDI

Digital UNIX Version 4.0 supports 100 MB per second FDDI networks in
conformance with RFC 1042 and RFC 1188 on all Alpha hardware
platforms.

At the physical level, Digital UNIX Version 4.0 supports an FDDI network
with a Maximum Transfer Unit (MTU) of 4500 bytes at a maximum of 100
MB per second. At the IP level, the MTU is 4352 bytes at a maximum of
100 MB per second.

The default MTU at the IP level is always 4352 bytes at a maximum of 100
MB per second, although this value can be decreased using the ifconfig
command.

3.3.5 Token Ring

Digital UNIX Version 4.0 supports 4 MB per second and 16 MB per second
Token Ring networks and source routing in conformance with RFC 1042 on
TURBOchannel, ISA, EISA, and PCI-based Alpha hardware platforms.

Support for Token Ring networks extends networking support to the PC
community, since most PC networks are Token Ring and most PCs do not
have Ethernet or FDDI adapters.

Networking 3–17

At the physical level, Digital UNIX Version 4.0 supports a Token Ring
network with a Maximum Transfer Unit (MTU) of 4472 bytes at a maximum
of 4 MB per second and 17800 bytes at a maximum of 16 MB per second.
At the IP level, the MTU is 4092 bytes at a maximum of 4 MB per second
and 8188 bytes at a maximum of 16 MB per second.

The default MTU at the IP level is always 4092 for both 4 and 16 MB per
second, although this value can be increased or decreased using the
ifconfig command.

3.4 Application Programming Interfaces
The network programming environment includes the programming interfaces
for application, kernel, and driver developers writing network applications
and implementing network protocols. Additionally, it includes the kernel
level resources that an application requires to process and transmit data, some
of which include libraries, data structures, header files, and transport
protocols.

This section briefly discusses the following application programming
interfaces that are supported in Digital UNIX Version 4.0:

• X/Open Transport Interface (XTI/TLI)

• BSD Sockets

• System V Release 4.0 STREAMS

• Data Link Interface (DLI)

• Data Link Provider Interface (DLPI)

• Extensible SNMP (eSNMP)

For more detailed information on the network programming environment, see
the Network Programmer’s Guide.

3.4.1 X/Open Transport Interface
The X/Open Transport Interface (XTI) defines a transport layer application
interface that is independent of any transport provider. This means that
programs written to XTI can be run over a variety of transport providers,
such as the Transmission Control Protocol (TCP) or the User Datagram
Protocol (UDP). The application specifies which transport provider to use.

Because XTI provides an interface that is independent of a transport provider,
application developers are encouraged to write programs to XTI instead of
STREAMS or sockets. Figure 3-2 illustrates the interaction between XTI
and the STREAMS and sockets frameworks.

3–18 Networking

Figure 3-2: XTI, STREAMS and Sockets Interactions

DLI

SLIP

socket
layer

STREAMS driver

user space

kernel space

XTI/TLI

ZK−0555U−R

timod

xtiso

Stream head

IP

Sockets
Application

Network

TCP

STREAMS

UDP

module ifnet layer
driver

BSD driver

Depending on the transport provider specified by the application, data can
flow along one of two paths:

1. If a STREAMS-based transport provider is specified, data follows the
same route that it did for an application written to run over STREAMS.
It passes first through the Stream head, then to any modules that the
application pushed onto the Stream, and finally to the STREAMS driver,
which puts it on to the network. Digital UNIX Version 4.0 does not
provide any STREAMS-based transport providers.

2. If a socket-based transport provider (TCP or UDP) is specified, data is
passed through timod and xtiso. The appropriate socket layer
routines are called and the data is passed through the Internet protocols
and ifnet layer to the BSD-based driver, which puts it on to the
network.

Networking 3–19

3.4.2 Sockets
Sockets are the industry standard programming interface. Digital UNIX
Version 4.0 implements the socket interface for both 4.3BSD and X/Open
CAE Specification, Networking Services, Issue 4 interfaces. Using the
_SOCKADDR_LEN option to the connect system call, however, you can
access the 4.4BSD interface. For more information, see the connect(2)
reference page.

The sockets framework consists of a series of system and library calls, header
files, and data structures. Applications can access kernel-resident networking
protocols, such as the Internet Protocol suite, through socket system calls.
Applications can also use socket library calls to manipulate network
information, for example, mapping service names to service numbers or
translating the byte order of incoming data to that appropriate for the local
system’s architecture. The Internet Protocol suite, for example, which
consists of TCP, UDP, IP, ARP, ICMP, and SLIP is implemented over
sockets.

With sockets, the application in user space passes data to the appropriate
socket system calls, which then pass it to the network layer. Finally, the
network layer passes it, via the ifnet layer, to the BSD driver, which puts
it on to the network. For more information, on sockets, see RFC 1200: IAB
Protocol Standards, the Network Programmer’s Guide, and the X/Open CAE
Specification, Networking Services, Issue 4.

3.4.3 STREAMS
The STREAMS framework provides an alternative to sockets. The
STREAMS interface was developed by AT&T and consists of system calls,
kernel routines, and kernel utilities that are used to implement everything
from networking protocol suites to device drivers. Applications in user space
access the kernel portions of the STREAMS framework using system calls
such as open, close, putmsg, getmsg and ioctl. Digital UNIX
Version 4.0 supports System V Release 4.0 STREAMS from the OSF
Version 1.2 code base, which provides support for the STREAMS tty
interface (although Digital UNIX Version 4.0 continues to support the
existing CLIST or Berkeley-based tty interface). For more information on
STREAMS, see the Network Programmer’s Guide.

3.4.4 Sockets and STREAMS Interaction
Digital UNIX Version 4.0 provides the ifnet STREAMS module to allow
programs using Digital UNIX Version 4.0’s BSD-based TCP/IP to access
STREAMS-based drivers. It provides the Data Link Bridge (DLB)
pseudodriver to allow programs using a STREAMS-based protocol stack to
access BSD-based drivers provided on Digital UNIX Version 4.0.

3–20 Networking

3.4.5 Data Link Interface (DLI)
DLI is provided on Digital UNIX Version 4.0 as a backward compatibility
feature to ULTRIX. DLI support on Digital UNIX Version 4.0 allows
programs written to DLI on the ULTRIX operating system to access the data
link layer. For more information on DLI, see the Network Programmer’s
Guide.

3.4.6 Data Link Provider Interface (DLPI)
DLPI is a kernel level interface that maps to the data link layer of the OSI
reference model. DLPI frees its users from specific knowledge of the
characteristics of the data link provider, allowing those characteristics to be
implemented independently of a specific communications medium. It is
primarily a kernel-level interface targeted for STREAMS protocol modules
that either use or provide data link services.

Only a partial subset of the DLPI interface is supported in Digital UNIX
Version 4.0. For more information, see the Network Programmer’s Guide.

3.4.7 Extensible SNMP Interface (eSNMP)
Digital UNIX supports extensible SNMP (eSNMP), an application-layer
Application Programming Interface (API) that permits user-written programs
to function as part of a distributed SNMP agent on a Digital UNIX host
system.

User programs can dynamically register SNMP MIB objects with the eSNMP
master agent (/usr/sbin/snmpd), and subsequently handle the SNMP
protocol operations for those objects.

The distribution of MIB objects between cooperating processes is transparent
to SNMP applications, which can access all MIB objects using the standard
transport endpoints specified in the SNMP RFCs.

For more information, see the Network Programmer’s Guide.

3.5 Network Administration Software
Digital UNIX Version 4.0 supports a variety of network administration
software which is briefly described in the following sections.

3.5.1 Networking Commands and Utilities
Digital UNIX Version 4.0 supports the entire suite of networking commands
from OSF Version 1.2, including: gated, finger, ftp, rdump, rdist,
routed and the complete suite of remote commands, snmp, smtp,
telnet, and tftp. The bootpd command has been folded into the

Networking 3–21

Digital-specific joind command which provides configurations to clients
using either the DHCP or BOOTP protocol. Additionally, Digital UNIX
Version 4.0 supports the following Open Network Computing (ONC)
Version 4.2 utility programs, which can be invoked by the inetd:

• rwall/rwalld

• rusers/rusersd

• spray/rsprayd

• rup/rstatd

• rquotad

• pcnfsd

3.5.2 Ethernet Packet Filter and Packet Filter Applications
The Ethernet packet filter is a software driver interface that provides
demultiplexing of networking packet headers, as well as reception and
transmission of packets containing user-defined network protocols. The
packet filter can also function as an Ethernet monitor when used to filter
specific network protocols.

Digital UNIX Version 4.0 supports the following packet filter applications:

• /usr/sbin/rarpd – Reverse ARP daemon

The reverse ARP daemon responds to RARP requests on a network by
sending an IP address to a host which only knows its Ethernet address. It
uses the /etc/ethers file to map the Ethernet address to an IP
address.

The reverse ARP daemon can serve IP addresses to remote PC clients.
Also, some customers are using ULTRIX on DECstations today and rely
on the Reverse ARP protocol to supply remote stations with their IP
address. If they want to serve these addresses using a Digital UNIX
Version 4.0 server, they can do so with the rarpd daemon.

• /usr/sbin/tcpdump – TCP/IP tracing and monitoring tool

Digital UNIX Version 4.0 supports Version 2.2.1 of the tcpdump utility.
This version of tcpdump uses the Berkeley Packet Filter (BPF)
language.

The tcpdump utility is used to debug and analyze TCP/IP network
activity, on both Ethernet and FDDI networks, and has some support for
other protocol suites (including NFS). This product includes software
developed by the University of California, Lawrence Berkeley Laboratory
and its contributors.

3–22 Networking

• /usr/sbin/tcpslice – Log file tool

The tcpslice utility manipulates tcpdump trace log files by either
extracting pieces of or glueing together tcpdump log files. It can select
portions of a large tcpdump log file and display selected traces without
having to dump the entire log file.

• /usr/sbin/nfswatch – NFS monitoring tool

Digital UNIX Version 4.0 supports Version 4.1 of nfswatch from
Purdue University. The nfswatch utility is curses-based and displays
the NFS traffic between any number of NFS servers and clients on a
LAN.

• /usr/sbin/nfslogsum – NFS log file summary tool

The nfslogsum utility condenses the log files produced by nfswatch
into a traffic analysis summary and is very helpful in troubleshooting
networks.

Note

Since the packet filter is an optional kernel subsystem,
application programs that make calls to the packet filter kernel
routines may fail if the packet filter is not configured in the
currently running kernel. For more information, see the
packetfilter(7) reference page.

3.5.3 Dynamic Host Configuration Protocol
Digital UNIX Version 4.0 supports the Dynamic Host Configuration Protocol
(DHCP), a client/server framework in which the DHCP server can
dynamically assign an IP address to a client as the client boots onto the
network. Additionally, a DHCP server can provide configuration information
to the client, such as the name of the BIND server or the name of the default
router for that client.

For example, when a new system is booted for the first time, the DHCP
server assigns that system a unique IP address; if that system is moved to
another location on the same LAN (perhaps on a different subnet), the DHCP
server ensures that a new IP address appropriate to that subnet is assigned to
the system, if necessary, when it boots up for the first time.

As a result, with DHCP, customers with hundreds of clients no longer have
to worry about the assignment of IP addresses; DHCP assigns IP addresses
automatically and requires no intervention by a system administrator.

For more information on DHCP, see the Network Administration and the
dhcp(7) reference page.

Networking 3–23

3.5.4 The Internet Boot Protocol Daemon (bootpd)
The bootpd daemon implements an Internet Boot Protocol server as defined
in RFC 951, RFC 1532, and RFC 1533.

BOOTP is an extensible UDP/IP-based protocol that allows a booting host to
configure itself dynamically without having to rely on user intervention. The
BOOTP protocol assigns IP addresses to hosts, makes available a file
containing a boot program that can be downloaded from a server, provides
the address of that server, and if present the address of an Internet gateway.

Like DHCP, the BOOTP protocol supports the centralized management of
network addresses.

3.5.5 SNMP Agent
The extensible SNMP agent in Digital UNIX Version 4.0 permits the
dynamic addition of supported Management Information Bases (MIBs) on
any Digital UNIX host. The MIB support that ships as part of the operating
system allows management operations on the objects described in the
following RFCs:

• Internet MIB (RFc 1213)

• FDDI MIB (RFC 1285)

• Token Ring MIB (RFC 1231)

• Host Resources MIB (RFC 1514)

• Various routing MIBs as described in Section 3.5.6.

The master agent, API, and base operating system MIB support are all
contained in the standard networking subset (CLINET).

The extensible SNMP development tools are contained in the optional
programming subset (PGMR).

3.5.6 The gated Daemon
The gated daemon allows any host with multiple network interfaces to
function as an IP router by participating in various IP routing protocols (for
example, RIP, OSPF, EGP, and BGP). Digital UNIX Version 4.0 supports
the GateD Release 3.5 gated daemon from the Gatedaemon Project at
Cornell University, which contains support for the following:

• RIP Version 1 (RFC 1058)

Stipulates the proper subsuming of host routes, split horizon without
poison reverse, and graceful shutdowns.

• RIP Version 2 (RFC 1388)

Stipulates using IP Multicast where available; supports classless routing;

3–24 Networking

uses next hop (if different).

• OSFP Version 2 (RFC 1247)

Uses local-wire IP Multicast support, MIB support (RFC 1253), and
reconfiguration.

• Support for Routing Table MIB (RFC 1354)

• EGP 2 (RFC 904)

A complete implementation of the specification, with optimizations for
MILNET.

• BGP Versions 2 and 3 (RFC 1163 and RFC 1267)

Complete implementations of specifications; BGP MIB (RFC 1269); AS
path pattern matching RFC 1164); and OSPF/BGP Interaction (RFC
1403).

• BGP Version 4 (RFC 1654)

• DCN HELLO

Proper subsuming of host routes; split horizon without poison reverse.

• Variable subnet masks through Routing Socket Support and improved
synchronization of the kernel routing table

• Routing Table Enhancements

Based on BSD 4.3 Reno radix tree, gated implements filtered routing
based on policy. This allows network administrators to control the
import and export of routing information by individual protocol, by
source and destination autonomous system, source and destination
interface, previous hop router, and specific destination address.

Network administrators can also specify a preference level for each
combination of routing information being imported by using a flexible
masking capability. Once the preference levels are assigned, gated
decides which route to use independent of the protocols involved.

• MIB Support for the Following Protocols ("Get Object" Support Only):

– OSPF V2 MIB (RFC 1253)

– EGP-MIB (RFC 1213)

– BGP V3 MIB (RFC 1269)

For more information on gated, see the gated(8) and gated.conf(8)
reference pages. Also, for a complete description of the gated.conf
options, see the EGate Daemon Configuration Guide, which is accessible
from the Digital UNIX Documentation Library page on the Digital UNIX
Documentation CD-ROM.

Networking 3–25

3.5.7 The screend Daemon
The screend daemon is used in conjunction with the gateway screen
facility to decide which IP packets should be forwarded when the system is
acting as an IP gateway.

The gateway packet screening facility, on a Digital UNIX system acting as a
gateway, allows the system manager to control which packets are forwarded
or rejected. As a result, the gateway packet screening facility can be used as
one part of a comprehensive network security policy. The facility consists of
a kernel-resident mechanism and a user-level daemon,
/usr/sbin/screend. When a packet is ready to be forwarded, the
kernel mechanism submits the packet’s headers to the daemon. The
screend daemon then examines the headers and tells the kernel to forward
or reject the packet, based on a set of rules defined in the configuration file,
/etc/screend.conf. Optionally, some or all decisions can be logged
allowing the network manager to detect improper configurations or potential
security problems.

3.5.8 UNIX-to-UNIX Copy Program
The UNIX-to-UNIX Copy Program (UUCP) program is actually a group of
programs that supports communications between two computers running
UNIX operating systems.

DEC OSF/1 supports the HoneyDanBer version of UUCP. The UUCP
system enables batched, error-free file transfer and remote command
execution between two UNIX systems. The UUCP system is most frequently
used to transfer electronic mail, network news, and public domain software
over low-speed, low-cost communications links.

A worldwide network that functions through the informal cooperation of the
user community has grown up around UUCP. The UUCP network is a series
of point-to-point links, with the majority of sites located in Europe and North
America.

The UUCP protocol supports only direct connections between two systems.
However, electronic news and mail delivery depend on third-party
forwarding. To facilitate mail and news delivery, most connected sites are
willing to relay files for other sites. The UUCP network depends on direct
distance dialing networks and off-peak long distance rates for its continued
functioning. For more information on UUCP, see uucp_setup(8).

3.5.9 Local Area Transport
Local Area Transport (LAT) is a Digital protocol that supports
communications between host computer systems and terminal servers with
terminals, PCs, printers, modems and other devices over local area networks

3–26 Networking

(LANs). LAT software has the features required for a host to function as a
service node, so requests for connections can be made by server users. The
software also permits host applications to initiate connections to server ports,
designated as application ports, to access remote devices. In Digital UNIX,
the LAT driver is STREAMS-based and supports up to 4000 incoming
connections, with a theoretical limit of 5000 users.

Note

In Digital UNIX, LAT supports both SVR4 and BSD-style tty
devices. Integral serial tty devices and serial tty options
share the same BSD tty namespace as LAT, which means that
if users allocate special files for serial lines, those special files
will reduce the number of BSD LAT devices that can be
configured.

For more information on LAT, see the lat_intro(7) reference page and
the System Administration guide.

3.6 Naming Services
Digital UNIX Version 4.0 supports the following distributed naming services:

• The Berkeley Internet Name Domain (BIND) service

• The Network Information Service (NIS), formerly named Yellow Pages

The library routines in /usr/lib/libc.a allow transparent access to
BIND, NIS, and local /etc files. The name services configuration file,
/etc/svc.conf, dictates which naming services are queried, and in what
order, for a particular database.

The Digital UNIX Version 4.0 software allows you to convert from an NIS-
distributed environment to a BIND-distributed environment, or to run both
services in the same environment. Because the source files for both BIND
and NIS can be /etc- style files, a distributed Berkeley Software
Distribution (BSD) source area can be shared between the two services by
means of symbolic links.

3.6.1 The BIND Service
The Berkeley Internet Name Domain (BIND) service is a host name and
address lookup service for the Internet network. The BIND service is based
on the client-server model. It allows client systems to obtain host names and
addresses from BIND servers. Digital UNIX Version 4.0 only supports the
hosts database.

Networking 3–27

Note

Depending on which naming services your LAN is running, the
hosts file can be located in /etc, /var/yp/src, or
/etc/namedb/src.

You can use the BIND service to replace or supplement the host table
mapping provided by the local /etc/hosts file or NIS.

Digital UNIX Version 4.0 supports BIND 4.9.3.

3.6.2 Network Information Service
The Network Information Service (NIS) is a distributed name service that
allows participating hosts to share access to a common set of system and
network files. NIS allows the system administrator to manage these shared
files on a single system.

NIS is intended for use in a secure environment only, where gateways do not
allow outside access from the Internet to the NIS protocol.

3.7 Time Services
Digital UNIX Version 4.0 supports the following time services:

• Network Time Protocol (NTP)

• Time Synchronization Protocol (TSP)

Because it can be traced to clocks of high absolute accuracy, NTP provides a
more accurate time service than TSP. By contrast, TSP synchronizes time to
the average of the network host times. TSP is an acceptable time service if
your system is not on the Internet and does not have access to a highly
accurate time server; otherwise, NTP is recommended.

3.7.1 Network Time Protocol
The Network Time Protocol (NTP) provides accurate, dependable, and
synchronized time for hosts on both wide area networks (like the Internet)
and local area networks. In particular, NTP provides synchronization
traceable to clocks of high absolute accuracy, and avoids synchronization to
clocks keeping bad time.

Digital UNIX Version 4.0 supports NTP Version 3, based on RFC 1305,
which contains the following enhancements to Version 2:

• New algorithms in several clock and peer routines to improve accuracy
and stability and reduce errors.

• An authentication mechanism that uses MD5 algorithms for encryption.

3–28 Networking

• The ntptrace utility, which traces a chain of NTP hosts back to their
master time source.

Hosts running NTP periodically exchange datagrams querying each other
about their current estimate of the time. Using the round-trip time of the
packet, a host can estimate the one-way delay to the other. (The assumption
is that the delay is roughly equal in both directions.) By measuring the one-
way delay and examining the timestamps that are returned with the NTP
packet, a host computes the difference between its clock time and that of the
host it queried.

A host queries a remote host several times over a period and feeds the results
from the multiple samples to a digital-filtering algorithm. The algorithm
provides a more accurate estimate of the delay, clock offset, and clock
stability than could be obtained with a single sample.

NTP messages also contain information about the accuracy and reliability of
the time sources. An NTP host connected directly to a highly accurate time
source, such as a radio receiver tuned to a time code signal broadcast by a
government agency, is called a stratum 1 server. Every other NTP host
adopts a stratum number that is one higher than the host from which it sets
its own time. For example, a host synchronized to a stratum 1 server
becomes a stratum 2 host. Stratum determination is done automatically, and
the stratum of a host can vary as its connectivity changes.

A host running NTP combines various information to decide which of the
hosts it queried provides the time it believes to be the most accurate. This
information includes the output of the digital-filtering algorithm and the
stratum numbers of the hosts it queried. By communicating with several
other hosts, an NTP host can usually detect those hosts that are keeping bad
time, and is able to stay synchronized even if some of the other hosts become
unavailable for long periods.

In practice, NTP is able to synchronize clocks to within a few tens of
milliseconds even over wide area networks spanning thousands of miles.

For detailed information on NTP, see RFC 1305: Internet Time
Synchronization: the Network Time Protocol.

3.7.2 Time Synchronization Protocol
The Time Synchronization Protocol (TSP) is the protocol used by the
/usr/sbin/timed daemon. In its simplest application, the TSP servers
on a broadcast network (for example, an Ethernet) periodically broadcast TSP
packets. The hosts on the network elect one of the hosts on the network
running TSP as a master. The master then controls the further operation of
the protocol until it fails and a new master is elected. The master collects
time values from the other hosts and computes the average of all the times
reported. It then sets its own clock to this average, and tells the other hosts

Networking 3–29

to synchronize their clocks with it.

TSP quickly synchronizes all participating hosts. However, because TSP
does not trace time back to sources of known accuracy, it is unable to correct
for systematic errors. If a clock drifts significantly, or if a mistake is made in
setting the time on a participating host, the average time calculated and
distributed by the master can be affected significantly.

3–30 Networking

4File System3333333333333333333333

4.1 Overview
Digital UNIX Version 4.0 supports the following file systems which are
accessed through the OSF/1 Version 1.0 Virtual File System (VFS):

• UNIX File System (UFS)

• Network File System (NFS)

• CD-ROM File System (CDFS)

• Memory File System (MFS)

• /proc File system (PROCFS)

• File-on-File Mounting File System (FFM)

• File Descriptor File System (FDFS)

• POLYCENTER Advanced File System (AdvFS)

Note that all of the file systems are integrated with the Virtual Memory
Unified Buffer Cache (UBC).

In addition, Digital UNIX Version 4.0 supports the Logical Storage Manager
(LSM) and the Prestoserve file system accelerator.

Note that the Logical Volume Manager is being retired in this release.

The following sections briefly discuss VFS, the file systems supported in
Digital UNIX Version 4.0, the Logical Storage Manager, and the Prestoserve
file system accelerator.

4.2 Virtual File System
The Virtual File System (VFS), which is based on the Berkeley 4.3 Reno
Virtual File System, provides a uniform interface abstracted from the file
system layer which allows common access to files, regardless of the file
system on which the files reside. A structure known as a vnode (analogous
to an inode) contains information about each file in a mounted file system
and is more or less a wrapper around file system-specific nodes. If, for
example, a read or write is requested on a file, the vnode points the system
call to the system call appropriate for that file system (a read request is

pointed to a ufs_read if the request is made on a file in a UFS file system
or to an nfs_read if the request is made on a file in an NFS-mounted file
system). As a result, file access across different file systems is transparent to
the user.

Digital’s VFS implementation also supports Extended File Attributes
(XFAs). Although originally intended to provide support for system security
(Access Control Lists) and the Pathworks PC server (so that a Pathworks PC
server could assign PC-specific attributes to a file, such as icon color, the
startup size of the application, its backup date, and so forth), the XFA
implementation was expanded to provide support for any application that
wants to assign an XFA to a file. Currently, both UFS and AdvFS support
XFAs, as well as the pax backup utility which has a tar and cpio front-
end. XFAs are also supported for remote UFS file systems, to a server which
supports a special protocol which currently only Digital supports. For more
information on XFAs, see setproplist(2). For more information on
pax, see pax(1).

Information for File System Developers
In Digital UNIX Version 4.0, the VOP_READDIR kernel vnode operation
interface has been changed to accommodate a new structure, kdirent, in
addition to the existing dirent structure.

The new kdirent structure was developed to make file systems other than
UFS work properly over NFS.

Note, however, that if you implement a file system under Digital UNIX, you
do not need to make any changes to your VOP_READDIR interface routine
for Digital UNIX Version 4.0, and applications see the same interface as
before the addition of the new kdirent structure.

Unlike the dirent structure, the kdirent structure has a kd_off field
that subordinate file systems can set to point to the on-disk offset of the next
directory entry. Arrays of struct kdirent must be padded to 8-byte
boundaries, using the KDIRSIZE macro, so that the off_t is properly
aligned; arrays of struct dirent are only padded to 4 bytes.

Each mounted file system has the option of setting the M_NEWRDDIR flag in
the mount structure m_flag field. If the M_NEWRDDIR flag is set, then the
routine calling VOP_READDER expects the readdir on that vnode to return
an array of struct kdirent; if the M_NEWRDDIR flag is clear (the
default), then the the readdir on that vnode returns an array of struct
dirent.

In terms of NFS, if the M_NEWRDDIR flag is not set, then the NFS server
uses the dirent structures and then calculates the necessary offset to pass
back to the server. Thus, to ensure proper operation over NFS, any file
system that does not have the M_NEWRDDIR flag set must be prepared to

4–2 File System

have VOP_READDIR called with offsets based on a packed array of struct
dirent, which may be in conflict with the offsets on the on-disk directory
structure. However, if the M_NEWRDDIR flag is set, then the NFS server
uses the kd_off fields of the kdirent structures to generate the necessary
offsets to pass back to the server.

A new vnode operation VOP_PATHCONF was added to the kernel in order
to return filesystem-specific information for the fpathconf() and
pathconf() system calls. This vnode operation takes as arguments the
pointer to struct vnode, the pathconf name int, return value pointer to
long and error int. It also sets the return value and ERRNO. Note that
each filesystem must implement the vnode operation by providing a function
in the vnodeops structure after the vn_delproplist component (at the
end of the structure). This function takes as arguments the pointer to
vnode, the pathconf name, and the return value pointer to long. The
function sets the return value and returns zero for succes or an error number.

4.3 UNIX File System
The UNIX File System (UFS) is compatible with the Berkeley 4.3 Tahoe
release. UFS allows a pathname component to be 255 bytes, with the fully
qualified pathname length restriction of 1023 bytes. The Digital UNIX
Version 4.0 implementation of UFS supports file sizes which exceed 2 GBs.

Digital added support for file block clustering which provides sequential read
and write access that is equivalent to the raw device speed of the disk and up
to a 300% performance increase over previous releases of the operating
system; file-on-file mounting (FFM) for STREAMS; and integrated UFS with
the Unified Buffer Cache. UFS also supports Extended File Attributes
(XFAs). For more information on XFAs, see Section 4.2.

4.4 Network File System
The Network File System (NFS) is a facility for sharing files in a
heterogeneous environment of processors, operating systems, and networks,
by mounting a remote file system or directory on a local system and then
reading or writing the files as though they were local.

Digital UNIX Version 4.0 supports NFS Version 3, in addition to NFS
Version 2. NFS Version 2 code is based on ONC Version 4.2, which Digital
licensed from Sun Microsystems. The NFS Version 3 code supersedes ONC
Version 4.2, although at the time that NFS Version 3 was ported to Digital
UNIX, Sun Microsystems had not yet released a newer, public version of
ONC with NFS Version 3 support.

File System 4–3

4.4.1 NFS Version 3 Functionality
NFS Version 3 supports all the features of NFS Version 2 as well as the
following:

• 64-bit remote access

Allows users to access files larger than 2 GBs over NFS

• Improved performance

– Support for reliable asynchronous writes which improves write
performance over NFS Version 2 by a factor of seven, thereby
reducing client response latency and server I/O loading

– Support for a READDIRPLUS procedure that returns file handles and
attributes with directory names to eliminate LOOKUP calls when
scanning a directory

– Support for servers to return metadata on all operations to reduce the
number of subsequent GETATTR procedure calls

– Support for weak cache consistency data to allow a client to manage
its caches more effectively

• Improved security

– Provides an ACCESS procedure that fixes the problems in NFS
Version 2 with superuser permission mapping, and allows access
checks at file-open time, so that the server can better support Access
Control Lists (ACLs)

– File names and pathnames specified as strings of variable length, with
the maximum length negotiated between the client and server using
the PATHCONF procedure

• Guaranteed exclusive creation of files

Since Digital UNIX supports both NFS Version 3 and Version 2, the NFS
client and server bind at mount time using the highest NFS version number
they both support. For example, a Digital UNIX Version 4.0 client will use
NFS Version 3 when it is served by a Digital UNIX Version 4.0 NFS server;
however, when it is served by an NFS server running an earlier version of
Digital UNIX, the Digital UNIX Version 4.0 NFS client will use
NFS Version 2.

For more detailed information on NFS Version 3, see the paper NFS Version
3: Design and Implementation (USENIX, 1994).

4–4 File System

4.4.2 Digital Enhancements to NFS
In addition to the NFS Version 3.0 functionality, Digital UNIX supports the
following Digital enhancements to NFS:

• NFS over TCP

NFS has been traditionally run over the UDP protocol. Digital Unix V4.0
now supports NFS over the TCP protocol. See mount(8) for additional
details.

• Write-gathering

On an NFS server, multiple write requests to the same file are combined
to reduce the number of actual writes as much as possible. The data
portions of successive writes are cached and a single metadata update is
done that applies to all the writes. Replies are not sent to the client until
all data and associated metadata are written to disk to ensure that write-
gathering does not violate the NFS crash recovery design.

As a result, write-gathering increases write throughput by up to 100 %
and the CPU overhead associated with writes is substantially reduced,
thereby further increasing server capacity.

• NFS-locking

Using the fcntl system call to control access to file regions, NFS-
locking allows you to place locks on file records over NFS, thereby
protecting, among other things, segments of a shared, NFS-served
database. The status daemon, rpc.statd, monitors the NFS-servers
and maintains the NFS lock if the server goes down. When the NFS
server comes back up, a reclaiming process allows the lock to be
reattached.

• Automounting

The automount daemon automatically and transparently mounts and
unmounts NFS file systems on an as-needed basis. It provides an
alternative to using the /etc/fstab file for NFS mounting file systems
on client machines.

The automount daemon can be started from the /etc/rc.config
file or from the command line. Once started, it sleeps until a user
attempts to access a directory that is associated with an automount map or
any directory or file in the directory structure. The daemon awakes and
consults the appropriate map and mounts the NFS file system. After a
specified period of inactivity on a file system, 5 minutes by default, the
automount daemon unmounts that file system.

The maps indicate where to find the file system to be mounted and the
mount options to use. An individual automount map is either local or
served by NIS. A system, however, can use both local and NIS
automount maps.

File System 4–5

Automounting NFS-mounted file systems provides the following
advantages over static mounts:

– If NIS maps are used and file systems are moved to other servers,
users do not need to do anything to access the moved files. Every
time the file systems need to be mounted, the daemon will mount
them from the correct locations.

– In the case of read-only files, if more than one NFS-server is serving
a given file system, automount will connect you to the fastest
server that responds. If at least one of the servers is available, the
mount will not hang.

– By unmounting NFS-mounted file systems that have not been
accessed for more than a certain interval (5 minutes by default), the
automount daemon conserves system resources, particularly
memory.

• PC-NFS

PC-NFS, a product for PC clients available from Sun Microsystems,
allows personal computers running DOS to access NFS servers as well as
providing a variety of other functionality.

Digital supports the PC-NFS server daemon, pcnfsd, which allows PC
clients with PC-NFS configured to do the following:

– Mount NFS file systems

The PC-NFS pcnfsd daemon, in compliance with Versions 1.0 and
2.0 of the pcnfsd protocol, assigns UIDs and GIDs to PC clients so
that they can talk to NFS.

The pcnfsd daemon performs UNIX login-like password and
username verification on the server for the PC client. If the
authentication succeeds, the pcnfsd daemon then grants the PC
client the same permissions accorded to that username. The PC client
can mount NFS file systems by talking to the mountd daemon as
long as the NFS file systems are exported to the PC client in the
/etc/exports file on the server. Since there is no mechanism in
DOS to perform file permission checking, the PC client calls the
authentication server to perform checking of the user’s credentials
against the file’s attributes. This happens when the PC client makes
NFS requests to the server for file-access that requires permission
checking, such as opening of a file.

– Access network printers

The pcnfsd daemon authenticates the PC client and then spools and
prints the file on behalf of the client.

4–6 File System

4.5 CD-ROM File System
Digital UNIX Version 4.0 supports the ISO-9660 CDFS standard for data
interchange between multiple vendors; High Sierra Group standard for
backward compatibility with earlier CD-ROM formats; and an
implementation of the Rock Ridge Interchange Protocol (RRIP), Version 1.0,
Revision 1.09. The RRIP extends ISO-9660 using the system use areas
defined by ISO-9660 to provide mixed-case and long filenames; symbolic
links; device nodes; deep directory structures (deeper than ISO-9660 allows);
UIDs, GIDs, and permissions on files; and POSIX time stamps.

This code was taken from the public domain and enhanced by Digital.

In addition, Digital UNIX Version 4.0 also supports X/Open Preliminary
Specification (1991) CD-ROM Support Component (XCDR). XCDR allows
users to examine selected ISO-9660 attributes through defined utilities and
shared libraries, and allows system administrators to substitute different file
protections, owners, and file names for the default CD-ROM files.

4.6 Memory File System

Digital UNIX Version 4.0 supports a Memory File System (MFS) which is
essentially a UNIX File System that resides in memory. No permanent file
structures or data are written to disk, so the contents of an MFS file system
are lost on reboots, unmounts, or power failures. Since it does not write data
to disk, the MFS is a very fast file system and is quite useful for storing
temporary files or read-only files that are loaded into it after it is created.

For example, if you are performing a software build which would have to be
restarted if it failed, the MFS is a very appropriate choice to use for storing
the temporary files that are created during the build, since by virtue of its
speed it would reduce the build time. For more information, see the
newfs(8) reference page.

4.7 /proc File System
The /proc file system enables running processes to be accessed and
manipulated as files by the system calls open, close, read, write,
lseek, and ioctl. While the /proc file system is most useful for
debuggers, it enables any process with the correct permissions to control
another running process. Thus, a parent/child relationship does not have to
exist between a debugger and the process being debugged. The dbx
debugger that ships in Digital UNIX Version 4.0 supports attaching to
running processes through /proc. For more information, see the proc(4)
and dbx(1) reference pages.

File System 4–7

4.8 File-on-File Mounting File System
The File-on-File Mounting (FFM) file system allows regular, character, or
block-special files to be mounted over regular files, and, for the most part, is
only used by the SVR4-compatible system calls fattach and fdetach of
a STREAMS-based pipe (or FIFO). With FFM, a FIFO, which normally has
no file system object associated with it, is given a name in the file system
space. As a result, a process that is unrelated to the process that created the
FIFO can then access the FIFO.

In addition to programs using FFM through the fattach system call, users
can mount one regular file on top of another using the mount command.
Mounting a file on top of another file does not destroy the contents of the
covered file; it simply associates the name of the covered file with the
mounted file, making the contents of the covered file temporarily unavailable.
The covered file can be accessed after the file mounted on top of it is
unmounted, either by a reboot or by a call to fdetach, or by entering the
umount command. Note that the contents of the covered file are still
available to any process which had the file open at the time of the call to
fattach or when a user issued a mount command that covered the file.

4.9 File Descriptor File System
The File Descriptor File System (FDFS) allows applications to reference a
process’s open file descriptors (0, 1, 2, 3, and so forth) as if they were files in
the UNIX File System (for example, /dev/fd/0, /dev/fd/1,
/dev/fd/2) by aliasing a process’s open file descriptors to file objects.
When the FDFS is mounted, opening or creating a file descriptor file has the
same effect as calling the dup(2) system call.

The FDFS allows applications that were not written with support for UNIX
I/O to avail themselves of pipes, named pipes, and I/O redirection.

The FDFS is not mounted by default and must either be mounted by hand or
by an entry placed in the /etc/fstab file.

For more information on the FDFS, see the fd(4) reference page.

4.10 POLYCENTER Advanced File System
The POLYCENTER Advanced File System (AdvFS), which consists of a file
system that ships with the base system and a set of file system utilities that
are available as a separate, layered product, is a log-based (journaled) file
system that is especially valuable on systems with large amounts of storage.
Because it maintains a log of active file-system transactions, AdvFS avoids
lengthy file system checks on reboot and can therefore recover from a system
failure in seconds. AdvFS ensures that log records are written to disk before
data records, ensuring that file domains (file systems) are recovered to a

4–8 File System

consistent state. AdvFS uses extent-based allocation for optimal
performance.

To users and applications, AdvFS looks like any other UNIX file system. It
is compliant with POSIX and SPEC 1170 file-system specifications. AdvFS
file domains and other Digital UNIX file systems, like UFS, can exist on the
same system and are integrated with the Virtual File System (VFS) and the
Unified Buffer Cache (UBC). AdvFS file domains can also be remote-
mounted with NFS and support extended file attributes (XFAs). For more
information on XFAs, see Section 4.2.

In addition to providing rapid restart and increased file-system integrity,
AdvFS supports files and file systems much larger than 2 GBs and, by
separating the file system directory layer from the logical storage layer,
provides increased file-system flexibility and manageability.

In addition to the Advanced File System that ships as part of the base
operating system, the POLYCENTER Advanced File System Utilities are
available as a layered product. The AdvFS Utilities enable a system
administrator to create multivolume file domains, add and remove volumes
online, clone filesets for online backup, unfragment and balance file domains
online, stripe individual files, and establish trashcans so that users can restore
their deleted files. The AdvFS Utilities also provide a Graphical User
Interface for configuring and managing AdvFS file domains. The AdvFS
Utilities require a separate license Product Authorization Key (PAK).
Contact your Digital representative for additional information on the AdvFS
Utilities product. For more information on AdvFS, see the System
Administration guide and the POLYCENTER Advanced File System Utilities
Technical Summary.

4.11 Logical Storage Manager
Digital UNIX Version 4.0 supports the Logical Storage Manager (LSM), a
more robust logical storage manager than Logical Volume Manager (LVM),
which it has replaced. LSM supports all of the following:

• Disk spanning

Disk spanning allows you to concatenate entire disks or parts (regions) of
multiple disks together to use as one, logical volume. So, for example,
you could "combine" two RZ26s and have them contain the /usr file
system.

• Mirroring

Mirroring allows you to write simultaneously to two or more disk drives
to protect against data loss in the event of disk failure.

• Striping

Striping improves performance by breaking data into segments that are

File System 4–9

written to several different physical disks in a "stripe set."

• Comprehensive disk management capabilities

LSM supports disk management utilities that, among other things, change
the disk configuration without disrupting users while the system is up and
running.

Mirroring, striping and the graphical interface require a separate license PAK.
The LSM code came from VERITAS (the VERITAS Volume Manager) and
was enhanced by Digital.

For each logical volume defined in the system, the LSM volume device
driver maps logical volume I/O to physical disk I/O. In addition, LSM uses
a user-level volume configuration daemon (vold) that controls changes to
the configuration of logical volumes. Users can administer LSM either
through a series of command-line utilities or by availing themselves of an
intuitive Motif-based graphical interface.

To ensure a smooth migration from LVM to LSM, Digital has developed a
migration utility that maps existing LVM volumes into nonstriped,
nonmirrored LSM volumes that preserves all of the LVM data. After the
migration is complete, administrators can mirror the volumes if they so
desire.

Similarly, to help users transform their existing UFS or AdvFS partitions
into LSM logical volumes, Digital has developed a utility that will transform
each partition in use by UFS or AdvFS into a nonstriped, nonmirrored LSM
volume. After the transformation is complete, administrators can mirror the
volumes if they so desire.

Note that LSM volumes can be used in conjunction with AdvFS, as part of
an AdvFS domain; with RAID disks; and with the Available Server
Environment (ASE), since LSM supports logical volume failover. For more
information on LSM, see the Logical Storage Manager.

4.12 Overlap Partition Checking
The enhancements related to Overlap Partition Checking are described next.

4.12.1 Partition Overlap Checks Added to Utilities
Partion overlap checks were added to a number of commands in Digital
UNIX Version 4.0. Some of the commands which use these checks are:
newfs, fsck, mount, mkfdnm, swapon, voldisksetup, and
voldisk. The enhanced checks require a disk label to be installed on the
disk. Refer to the disklabel(8) reference page for further information.

The checks ensure that if a partition or an overlapping partition is already in
use (for example, mounted or used as a swap device), the partition will not

4–10 File System

be overwritten. Additionally, the checks ensure that partitions will not be
overwritten if the specific partition or an overlapping partition is marked in
use in the fstype field on the disk label.

If a partition or an overlapping partition has an in-use fstype field in the
disklabel, some commands inquire interactively if a partition can be
overwritten.

4.12.2 Library Functions for Partition Overlap Checking
Two new functions, check_usage(3) and set_usage(3) are available for
use by applications. These functions check whether a disk partition is marked
for use and set the fstype of the partition in the disk label. See the
appropriate reference pages for these functions for more information.

4.13 Prestoserve File System Accelerator
The Prestoserve file system accelerator is a hardware option that speeds up
synchronous disk writes, including NFS server access, by reducing the
amount of disk I/O. Frequently-written data blocks are cached in nonvolatile
memory and then written to disk asynchronously.

The software required to drive the board ships as an optional subset in
Digital UNIX Version 4.0 and once it is installed can be accessed with a
PAK that comes with the board.

Prestoserve uses a write cache for synchronous disk I/O. Prestoserve works
in a way that is similar to the way the system buffer cache speeds up
asynchronous disk I/O requests. Prestoserve is interposed between the
operating system and the device drivers for the disks on a server. Mounted
file systems and unmounted block devices selected by the administrator are
accelerated.

When a synchronous write request is issued to a disk with accelerated file
systems or block devices, it is intercepted by the Prestoserve pseudodevice
driver, which stores the data in nonvolatile memory instead of on the disk.
Thus, synchronous writes occur at memory speeds, not at disk speeds.

As the nonvolatile memory in the Prestoserve cache fills up, it
asynchronously flushes the cached data to the disk in portions that are large
enough to allow the disk drivers to optimize the order of the writes. A
modified form of Least Recently Used (LRU) replacement is used to
determine the order. Reads that hit (match blocks) in the Prestoserve cache
also benefit.

Nonvolatile memory is required because data must not be lost if the power
fails or if the system crashes. As a result, the hardware board contains a
battery that protects data in case the system crashes. From the point of view
of the operating system, Prestoserve appears to be a very fast disk.

File System 4–11

Note that there is a substantial performance gain when Prestoserve is used on
an NFSV2 server.

The dxpresto command allows you to monitor Prestoserve activity and to
enable or disable Prestoserve on machines that allow that operation. For
more information on Prestoserve see the Guide to Prestoserve and the
dxpresto(8X) reference page.

4–12 File System

5Virtual Memory3333333333333333333333

5.1 Overview
The virtual memory (VM) subsystem was completely rewritten by Digital in
V2.0 in order to improve upon the Mach design adopted by the OSF.
Specifically, Digital added the following functionality to improve
performance and maintainability (V4.0 added several enhancements to these
areas):

• Improved upon the lazy allocation policy

• Improved upon the eager reservation policy

• Unified Buffer Cache

• Round-robin swapping algorithm

• Page in and page out clustering

• Memory-mapped device interface

• Mach mmap MAP_PRIVATE semantics to make them compatible with
Sun Microsystems and System V Release 4.0

• Ensured that processes cannot read or write other processes’ shared
memory segments

• Support for shared text segments

• Support for page coloring

• New kernel memory allocator

• Improved memory reclamation policy

• Restructured swap allocation mechanism

The following sections discuss these improvements to VM.

5.2 Lazy Allocation Policy
In lazy allocation, swap space is reserved dynamically as the system needs to
reclaim physical memory instead of having to allocate it in advance for every
page of anonymous memory (that is, memory devoted to the stack and heap
of a process, and to data that is not file-backed).

However, when the list of active pages falls below the preconfigured limit
and the OSF memory manager attempts to reclaim pages for the free list by
paging out virtual pages, if the available swap space has already been
exhausted, the OSF memory manager does not back off of the page-out and
instead simply discards the page. Thus, when the process whose page has
been discarded takes a page fault and attempts to reactivate the missing page,
unpredictable behavior results, including system hangs, panics, and at times
data corruption.

To correct this problem, Digital reworked the page-out algorithm to ensure
that pages are not lost if the memory manager is unable to allocate swap
space for a virtual page.

As swap space decreases, the Digital UNIX Version 4.0 memory manager
logs warning messages at the console until finally, if the memory manager is
unable to allocate swap space for a page-out, it selects the oldest idle process
and kills it, thereby freeing up swap space and returning virtual pages to the
free list.

5.3 Eager Reservation Policy
Unlike lazy allocation, the eager reservation policy reserves a page of swap
space for every page of anonymous memory that is allocated. Although this
policy is expensive in terms of reserved disk space, it eliminates the chance
that the memory manager will have to kill a process to reclaim virtual pages
and free up swap space.

The eager reservation policy is set by default, although either the lazy or
eager policy can be configured. For more information, see the System Tuning
and Performance Management guide

5.4 Unified Buffer Cache
To increase file system performance, Digital implemented a Unified Buffer
Cache (UBC) fully integrated with the file system that caches file system data
and can grow or shrink upon demand. Unlike the conventional Buffer Cache
which is configured and allocated at boot-time and which relies on bcopy
routines to move data in and out of memory, the UBC references the same
physical pages as virtual memory and can use map operations rather than
bcopy routines to access data, thereby increasing system performance. In
addition, since the UBC contains only file system data, the Buffer Cache only
needs to cache metadata, requiring only 3% of physical memory rather than
the 25% required by previous versions of the operating system.

By default, the UBC can grow to consume all of physical memory so that the
system can determine dynamically the percent of memory that should be
allocated to the UBC. However, the maximum percent of memory that the

5–2 Virtual Memory

UBC can grow to is configurable and can be set in the system configuration
file by defining the ubc-maxpercent variable.

5.5 Round-Robin Swapping
In an effort to improve performance, Digital changed the OSF paging
algorithm to support simultaneous paging to multiple swap partitions. By
contrast, OSF paging is to one swap partition at a time, waiting until the first
swap partition is filled before moving to the next. As a result, since disk
transfer rates are several thousand times slower than the speed of memory
and the Alpha CPU, system administrators can greatly reduce this disparity in
speed by spreading swap partitions among different disks and different
controllers. In fact, by supporting simultaneous paging to multiple swap
partitions, Digital UNIX Version 4.0 allows multiple tasks to take
simultaneous page faults, thereby further increasing performance.

5.6 Page In and Page Out Clustering
Whereas OSF/1 supports a paging algorithm that moves pages in and out one
at a time, to improve performance, Digital UNIX adds support for page in
and page out clustering. Although in most cases, it is more efficient to do
multiple multipage DMA operations rather than multiple single page DMA
operations, this is a configurable option.

5.7 Memory-Mapped Device Interface
Rather than mapping the I/O space into memory, the memory-mapped device
interface points to a data structure that defines the I/O space. As a result,
large quantities of kernel virtual address space are saved as well as physical
memory in general.

5.8 Mach mmap MAP_PRIVATE Semantics and System
V Release 4.0
Since the OSF departed from the Sun Microsystems and System V Release
4.0 mmap semantics, Digital rewrote mmap so that Sun and System V
applications could compile and run on Digital UNIX Version 4.0.

5.9 Secure Shared Memory Segments
Using the same kind of permission bits that the file system employs, shared
memory segments can be read and write protected to prevent unwanted
access.

Virtual Memory 5–3

5.10 Shared Text Segments
Shared text segments allow multiple processes to share the same page tables
that map shared text. All processes that share the same text segment benefit
from one process taking a page fault, because less memory is needed and the
performance of fork is improved.

5.11 Page Coloring
The Alpha EV4 CPU contains a direct mapped physical OFF chip secondary
cache, which is organized so that if the secondary cache size is N pages, then
every Nth page of the physical pages of memory hashes into the same page.
Digital UNIX VM manages the physical pages of memory in such a way
that, if an entire resident working set of a process can fit into the secondary
cache, VM places it there. As a result, because VM strives to ensure that a
process’s entire working set is always in the secondary cache, the number of
physical memory accesses is greatly reduced as a process executes.

5.12 Caches
The Alpha EV5 CPU optionally contains 3 levels of caches: internal,
secondary, and tertiary caches. Digital UNIX manages physical memory in
such a way that the most active subset of a process working set will remain
in the fastest cache.

5.13 Kernel Memory Allocator
A new kernel memory allocator (kernel malloc) was added to Digital
UNIX to use kernel-wired memory more efficiently. All calls to the mbuf
allocator are now mapped to the new kernel memory allocator. In addition,
several components of the I/O subsystems can use the kernel memory
allocator directly, rather than having to manage memory on their own. As a
result, we save the amount of memory these allocators were reserving. In
addition, the new allocator handles allocation under interrupt context better
than the kalloc allocator and has a garbage collection thread to free
memory.

5.14 External Pager
Although the OSF provides guidelines for writing an external pager, these
guidelines are (at best) provisional. Digital believes that the complexity and
efficiency of the Digital UNIX Version 4.0 memory management system
makes it impractical at this time to provide a sensible interface for an
external pager.

5–4 Virtual Memory

5.15 Improved Memory Reclamation Policy
The memory reclamation policy was enhanced in Digital UNIX Version 4.0
to improve system performance. In previous releases of the operating
system, once the system began running out of physical memory, global
paging would begin to reclaim memory, attempting to select pages fairly
between the Unified Buffer Cache (UBC) and VM. However, as the system
runs and files are opened and closed, a large percentage of memory in the
UBC is always referencing old, closed files––owing to its file caching
algorithms. As a result, attempting to select some pages from VM and some
pages from the UBC is actually unnecessary initially, since theoretically only
10% of the pages in the UBC are dirty, whereas almost all the pages in VM
are dirty (in actual practice, however, the amount of dirty pages in the UBC
is much smaller than 10% since most of the pages in the UBC are not in
use). Because the UBC, unlike VM, contains so few dirty pages, it is much
more efficient to reclaim pages from the UBC first, down to some
configurable level, than it is to begin global paging immediately.

In Digital UNIX Version 4.0, the page reclamation policy was further
enhanced to take advantage of the many unreferenced pages that are in both
VM and UBC. When a system begins to exhaust its physical memory,
memory is first reclaimed from the UBC down to a threshold defined by the
parameter ubc-borrowpercent. This parameter is set by default to be
10% of the memory in the UBC and is configurable. If, after all unused
memory is reclaimed from the UBC and the system still requires more
physical memory, global paging is then invoked.

In effect, this policy can double the load that can be placed on a system
before demands for memory begin to noticeably degrade performance.

5.16 Rewrote Swap Allocation Mechanism
In Digital UNIX Version 4.0, the swap allocation mechanism was
restructured to further reduce the fragmentation of swap space which could
occur over time. Swap space is now allocated and deallocated in contiguous
units, so that seek time is greatly reduced, thereby greatly improving
performance.

For information on how to tune and configure the virtual memory subsystem,
see the System Tuning and Performance Management guide and the System
Administration guide.

Virtual Memory 5–5

6I/O Subsystem3333333333333333333333

6.1 Overview
The Digital UNIX Version 4.0 I/O subsystem supports a variety of buses and
devices depending upon the particular machine and its configuration. Table
6-1 lists the most common configurations.

Table 6-1: Supported Processors and Buses

22
Processors Buses22
AlphaStation 200, 250, and 255 series processors PCI Bus

ISA Bus
SCSI Bus

AlphaStation/Server 400 series processors PCI Bus
ISA Bus
SCSI Bus

AlphaStation 600 series processors PCI Bus
EISA Bus
SCSI Bus

AlphaServer 1000 series processors PCI Bus
EISA Bus
SCSI Bus

Alpha VME 2100 series processors VME Bus
EISA Bus

AlphaServer 2000 series processors PCI Bus
EISA Bus
SCSI Bus

AlphaServer 2100 series processors PCI Bus
EISA Bus
SCSI Bus

Table 6-1: (continued)
22
Processors Buses22
AlphaServer 8000 series processors PCI Bus

Futurebus+
XMI Bus
EISA Bus
SCSI Bus

DEC 2000 series processors EISA Bus
SCSI Bus

DEC 2100 series processors PCI Bus
EISA Bus
SCSI Bus

DEC 3000 series processors TURBOchannel Bus
SCSI Bus

DEC 4000 series processors Futurebus+
SCSI Bus

DEC 7000/10000 series processors Futurebus+
XMI Bus

SCSI Bus
CI to HSC to RA/TA devices
KDM to RA/TA devices

Single Board Computer (SBC) EB66+ PCI Bus
EISA Bus

Single Board Computer (SBC) EB64+ PCI Bus
EISA Bus

Single Board Computer (SBC) EB164 PCI Bus
EISA Bus

Single Board Computer (SBC) AlphaPC64 PCI Bus
EISA Bus22

All of the device driver code is written by Digital and is written to published,
industry standards.

In addition, Digital’s UNIX Publications Group publishes a device driver
tutorial and a series of bus books that are designed to assist third-party
vendors in writing device drivers that are compatible with Digital UNIX
Version 4.0.

For more information on how to write device drivers for Digital UNIX
Version 4.0, see the following books:

Writing Device Drivers: Tutorial
Writing Device Drivers: Reference
Writing EISA and ISA Bus Device Drivers
Writing PCI Bus Device Drivers

6–2 I/O Subsystem

Writing Device Drivers for the SCSI/CAM Architecture Interfaces
Writing TURBOchannel Device Drivers
Writing VMEbus Device Drivers

For information on the various peripheral devices that Digital UNIX Version
4.0 supports, refer to the Alpha Systems Handbook, the Software Product
Description (SPD), and the Systems and Options Catalog.

The following sections briefly discuss the buses supported in Digital UNIX
Version 4.0 as well as I/O enhancements such as RAID and tagged queueing,
and the XMI CI and KDM controllers.

6.2 Supported Buses
Depending on the particular processor, Digital UNIX Version 4.0 supports
the following buses:

• PCI

• ISA

• EISA

• Futurebus+

• SCSI

• TURBOchannel

• XMI

• VME

6.2.1 PCI Bus
The Peripheral Component Interconnect Local Bus (PCI) is an open, high-
performance 32-bit or 64-bit synchronous bus with multiplexed address and
data lines, and numerous compatible hardware implementations. Table 6-1
lists the Digital processors that support the PCI Bus.

Most Digital processors that support the PCI bus support a PCI frequency of
33 MHz and a transfer rate of 132 MB per second. However, the
AlphaStation 600 has 2 different types of PCI slots:

• 32-bit slots with a PCI frequency of 33Mhz and a transfer rate of 132 MB
per second.

• 64-bit slots with a PCI frequency of 33Mhz and a transfer rate of 264 MB
per second. [64-bit slots can also hold 32-bit option cards, but will only
run at 132 MB per second.]

Digital does not yet supply any 64-bit option cards, but as PCI is an industry
open bus, other vendors may offer 64 bit options.

I/O Subsystem 6–3

Table 6-2 provides a list of some of the PCI bus adapters and interconnects
that are available both from Digital and third-party vendors. For more
specific information on supported PCI bus adapters and interconnects in
Digital UNIX Version 4.0, see the SPD. Note that because of the open
nature of the PCI bus, Digital does not control the development and
availability of adapters.

Table 6-2: PCI Bus Adapters and Interconnects

22
Interconnect Adapters22

FDDI DEFPA-AA (single)
DEFPA-DA (dual)
DEFPA-UA (UTP)

NI DE435-AA, DE434, DE436 (Quad), DE450,
DE500 (Fast Ethernet)

SCSI KZPSM, KZPAA, KZPBA-BB (FWD),
KZPDA KZPSA (FWD),

RAID SWXCR-Px

Graphics PBXGA (TGA), PB2GA-FA (ATI MACH 64
CX), PB2GA-BA (Compaq Qvision 1280/p),
PB2GA-JA (S3TR1064)

NVRAM Digital Option22

For more information on the PCI bus, see the PCI Local Bus Specification
Revision 2.0 and the PCI to PCI Bridge Architecture Specification.

6.2.1.1 Redundant Array of Independent Disks (RAID)

See Section 6.2.3.1 for information on PCI support for RAID, which is
supported by PCI and EISA buses.

6.2.2 ISA Bus

The Industry Standard Architecture (ISA) bus is an open, 8-bit (PC and XT)
or 16-bit (AT) asymmetrical I/O channel with numerous compatible hardware
implementations and, as Table 6-1 indicates, is supported on the
AlphaStation 200 and 400 series processors and on the AlphaServer 400
series processors. Digital UNIX Version 4.0 supports the high-speed ISA
bus implementation that is completely separate from the system bus and
allows data transfer rates at a bandwidth of up to 33 MB per second, supports
a 16 MB address space and 8 DMA channels.

6–4 I/O Subsystem

Table 6-3 illustrates the frequency and transfer rate for various Digital
processors that support the ISA bus.

Table 6-3: ISA Bus Frequency and Transfer Rates

222
Processor ISA Frequency ISA Transfer Rate222
AlphaStation 200
series

8.33 MHz 33 MB/s

AlphaStation/Server
400 series

@8.33 MHz 33 MB/s

222

Table 6-4 provides a list of the ISA bus adapters and interconnects that are
available both from Digital and third-party vendors. For more specific
information on supported ISA bus adapters and interconnects in Digital
UNIX Version 4.0, see the SPD.

Table 6-4: ISA Bus Adapters and Interconnects

22
Interconnect Adapters22
NI/Ethernet DE205, DE204, DE203

ISA, Dual serial line PC4XD-AB
ISA, Serial line and Parallel
Line

PC4XD-AA

ISA, 2400 baud modem PCXBF-AA
ISA, 9600-baud modem PCXCF-AA
ISA 14400 PCXDF-AA

Token Ring Digital DW110

Graphics PB2GA-FB (ATI MACH 64)22

For more specific information on supported ISA adapters and interconnects in
Digital UNIX Version 4.0, see the Software Product Description.

6.2.3 EISA Bus
The Extended Industry Standard Architecture (EISA) bus is an open, 32-bit,
asymmetrical I/O channel with numerous compatible hardware
implementations and, as Table 6-1 indicates, is supported on variety of
Digital processors. Digital UNIX Version 4.0 supports the high-speed EISA
bus implementation that is completely separate from the system bus and

I/O Subsystem 6–5

allows data transfer rates at a bandwidth of up to 33 MB per second, supports
a 4 GB address space, 8 DMA channels, and is backward compatible with the
Industry Standard Architecture (ISA) bus.

The Digital processors that support the EISA bus support an EISA frequency
of 8.33 MHz and a transfer rate of 33 MB per second.

Table 6-5 provides a list of the EISA bus adapters and interconnects that are
available both from Digital and third-party vendors. For more specific
information on supported EISA bus adapters and interconnects in Digital
UNIX Version 4.0, see the SPD.

Table 6-5: EISA Bus Adapters and Interconnects

22
Interconnect Adapters22
FDDI Digital DEFEA-AA

Ethernet Digital Equipment Corporation DE422 and
DE425

SCSI-2 Adaptec AHA-1740A (High Performance)
SCSI-2 with FDI controller Adaptec AHA-1742A (High Performance)

ISA, Dual serial line PC4XD-AB
ISA, Serial line and Parallel
Line

PC4XD-AA

ISA, 2400 baud modem PCXBF-AA
ISA, 9600 baud modem PCXCF-AA
ISA 14400 PCXDF-AA

Token Ring DW300

Prestoserve-NVRAM Digital Equipment Corporation PB2SX-AA

RAID SWXCR-Ex

Graphics PB2GA-AA (Compaq Qvision 1024/E),
PB2GA-FA (ATI Mach 64 ISA)22

Note that in general, all ISA options can be used on an EISA bus system.

For more specific information on supported EISA adapters and interconnects
in Digital UNIX Version 4.0, see the SPD. See Section 6.2.3.1 for
information on the redundant array of independent disks (RAID) feature,
which is supported by both PCI and EISA buses.

6–6 I/O Subsystem

6.2.3.1 Redundant Array of Independent Disks

The Redundant Array of Independent Disks (RAID) enhances I/O
performance and reliability by supporting such features as disk shadowing
and the breaking up of data between several disks (called striping). Digital
UNIX Version 4.0 supports an EISA RAID controller, SWXCR-E, and a PCI
RAID controller, SWXCR-P. On these controllers, devices represent
themselves to the operating system as standard re disks. For more
information on re devices, see the re(7) reference page.

All RAID controllers support various levels of shadowing and striping,
ranging from 0 to 7. The EISA and PCI RAID controllers support RAID
levels 0, 1, 5, and 6, with level 6 being vendor-specific.

Support consists of the following:

• Level 0

Striping without redundancy

• Level 1

Shadowing

• Level 5

Striping and parity

• Level 6

Striping without redundancy and shadowing (level 0 + level 1)

• JBOD – Just a Bunch of Disks

The SWXCR series controller works like a regular disk controller; no
RAID functionality is enabled.

6.2.4 Futurebus+
Futurebus+ is an open bus, designed by the IEEE 896 committee, whose
architecture and interfaces are publicly documented, and that is independent
of any underlying architecture. It has broad-base, cross-industry support;
very high throughput (the maximum rate for 64-bit bandwidth is 160 MB
per second; for the 128-bit bandwidth, 180 MB per second); and, as Table 6-
1 indicates, it is supported on the DEC 4000, 7000, and 10000 series
processors. In addition, Futurebus+ supports a 64-bit address space and a set
of control and status registers (CSRs) that provides all the necessary ability
to enable or disable features; thus supporting multivendor interoperablity.

Table 6-6 provides a list of Futurebus+ adapters and interconnects that are
available from both Digital and third-party vendors. For more specific
information on supported Futurebus+ adapters and interconnects in Digital
UNIX Version 4.0, see the SPD.

I/O Subsystem 6–7

Table 6-6: Futurebus+ Adapters and Interconnects

222
Interconnect Adapters222
FDDI Digital Equipment Corporation (DEFZA-AA)

HiPPI From Aeon System, Inc and
Myriad Logic

IPI From GENROCO, Inc.222

For more information on the Futurebus+ adapters and interconnects in Table
6-6, see the Alpha Systems Handbook and the SPD.

6.2.5 SCSI Bus
The Small Computer Systems Interface (SCSI) bus is an ANSI standard for
the interconnection of computers with each other and with disks, floppies,
tapes, printers, optical disks, and scanners. The SCSI standard includes all
the mechanical, electrical, and functional requirements needed for these
devices to interconnect.

Digital UNIX Version 4.0 supports the SCSI CAM (Common Access
Method) architecture, which defines a software model that provides a
standard, hardware-independent interface for SCSI devices. The hardware
independence is achieved by using the Transport (XPT) and SCSI Interface
Module (SIM) components of CAM. Thus, because the XPT/SIM interface
is defined and standardized, users can write SCSI/CAM peripheral device
drivers for a variety of devices and use the existing Digital UNIX Version
4.0 support for SCSI. For more information on SCSI/CAM, see Writing
Device Drivers for the SCSI/CAM Architecture Interfaces.

Digital UNIX Version 4.0 supports fast SCSI buses (maximum transfer rate
of 10 megatransfers per second) and slow SCSI buses (maximum transfer rate
of 5 megatransfers per second) which can be either wide (16 bits per data
unit) or narrow (8 bits per data unit).

Data transfer rates are individually negotiated with each device attached to a
given SCSI bus. For example, a 4 MB per second device and a 10 MB per
second device may share a fast narrow bus. When the 4 MB per second
device is using the bus, the transfer rate is 4 MB per second. When the 10
MB per second device is using the bus, the transfer rate is 10 MB per second.
However, when faster devices are placed on a slower bus, their transfer rate
is reduced to allow for proper operation in that slower environment.

Note that the speed of the SCSI bus is a function of cable length, with slow,
single-ended SCSI buses supporting a maximum cable length of 6 meters,
and fast, single-ended SCSI buses supporting a maximum cable length of 3

6–8 I/O Subsystem

meters. In addition, there are differential adapters (such as the DWZZA,
KZTSA, or KZPSA) to increase the maximum cable length to 25 meters.

Table 6-7 illustrates the frequency and transfer rate for baseboard SCSI
buses:

Table 6-7: Baseboard SCSI Frequency and Transfer Rates

22
Processor Bus Size SCSI Transfer Rate22
AlphaStation 200 series Slow/Narrow

Fast/Narrow
5 MB/s

10 MB/s

AlphaStation/Server
400 series

Slow/Narrow
Fast/Narrow

5 MB/s
10 MB/s

AlphaStation 600 series Fast/Wide 20 MB/s
AlphaServer 1000
series

Fast/Narrow 10 MB/s

AlphaServer 8000
series

Fast/Wide 10 MB/s
20 MB/s

DEC 2000 series Fast/Narrow 10 MB/s

DEC 3000 Model 300
DEC 3000 Model 400
DEC 3000 Model 500
DEC 3000 Model 700

Slow/Narrow 5 MB/s

Fast/Narrow 10 MB/sDEC 3000 Model 600
DEC 3000 Model 800
DEC 3000 Model 900

DEC 4000 series Slow/Narrow
Fast/Narrow

3.5 MB/s
5 MB/s (with an external connector)

10 MB/s (with no external connector)

DEC 2100 Model 500 Fast/Narrow 10 MB/s22

Table 6-8 illustrates the frequency and transfer rate for SCSI adapters:

I/O Subsystem 6–9

Table 6-8: SCSI Adapter Frequency and Transfer Rates

222
Adapter Host Bus SCSI BUS Size SCSI Transfer

Rate222

KZPAA PCI 10 MB/sFast/Narrow

KZPBA-BB (Differential) PCI 10/20 MB/sFast/Wide

KZPSA (Differential) PCI 10/20MB/sFast/Wide

Adaptec AHA1740 EISA 10 MB/sFast/Narrow

KZPSM PCI 10/20 MB/sFast/Wide

KZPDA PCI 10/20 MB/sFast/Wide

KZTSA(Differential) TC 10/20 MB/sFast/Wide

KZMSA XMI 10 MB/sFast/Narrow

PMAZB TC 5 MB/sSlow/Narrow
PMAZC TC 10 MB/sFast/Narrow222

Note that all adapters are single-ended, except for KZPSA and KZPBA-BB.

For more specific information on supported SCSI buses in Digital UNIX
Version 4.0, see the SPD.

Digital UNIX Version 4.0 also supports the following functionality on SCSI
buses:

• Command Tagged Queueing

• Redundant Array of Independent Disks (RAID)

6.2.5.1 Command Tagged Queueing

Command Tagged Queueing, is supported on these processors and adapters:

• DEC 3000 series processors

• DEC 4000 series processors

• KZPAA, KZPBA, KZPSA, KZPSM, KZPDA, KZTSA

• Adaptec 174X

• PMAZB, PMAZC

This feature allows a device to accept multiple concurrent commands. Since
multiple commands can be accepted by the device before earlier commands
are completed, the device can optimize its operation for improved
performance. This allows for improved "pipelining" of requests into the
device.

6–10 I/O Subsystem

6.2.5.2 Redundant Array of Independent Disks

The Redundant Array of Independent Disks (RAID) enhances I/O
performance and reliability by supporting such things as disk shadowing and
the breaking up of data between several disks (called striping). Digital UNIX
Version 4.0 supports two SCSI RAID controllers (HSZ10 and HSZ40) whose
devices present themselves to the operating system as standard SCSI disks.

All RAID controllers support various levels of shadowing and striping,
ranging from 0 to 5. The SCSI RAID controllers support RAID levels 0, 1,
and 5, with level 3 supported on controllers that can support disk access to
logical block sectors of 512 bytes.

Support consists of the following:

• Level 0

Striping without redundancy

• Level 1

Shadowing

• Level 3

Striping with dedicated parity drive

• Level 5

Striping and parity

6.2.6 TURBOchannel Bus
The TURBOchannel bus is a synchronous, 32-bit, asymmetrical I/O channel
that can be operated at any fixed frequency in the range 12.5 MHz to 25
MHz and, as Table 6-1 indicates, is supported on DEC 3000 series
processors. It is also an open bus, developed by Digital, whose architecture
and interfaces are publicly documented.

At 12.5 MHz, the peak data rate is 50 MB per second. At 25 MHz, the peak
data rate is 100 MB per second.

Table 6-9 illustrates the frequency and transfer rate for various DEC 3000
series processors that support the TURBOchannel bus.

I/O Subsystem 6–11

Table 6-9: TURBOchannel Frequency and Transfer Rates

22
Processor TURBOchannel

Frequency
TURBOchannel
Transfer Rate22

25.0 MHz 100 MB/sDEC 3000 Model 900
DEC 3000 Model 800
DEC 3000 Model 600
DEC 3000 Model 500

DEC 3000 Model 400 22.2 MHz 88.8 MB/s

12.5 MHz 50 MB/sDEC 3000 Model 300
DEC 3000 Model 70022

The TURBOchannel is asymmetrical in that the base system processor and
system memory are defined separately from the TURBOchannel architecture.
The I/O operations do not directly address each other. All data is entered
into system memory before being transferred to another I/O option. The
design facilitates a concise and compact protocol with very high performance.

Table 6-10 provides a list of some of the TURBOchannel adapters and
interconnects that are available from both Digital and third-party vendors.

Table 6-10: TURBOchannel Adapters and Interconnects

222
Interconnect Adapter222
SCSI PMAZB-AA Slow

Narrow Single-ended
(SNS)
PMAZC-AA Fast Narrow
Single-ended (FNS)
KZTSA Fast Wide
Differential (FWD)

FDDI DEFTA-AA
DEFZA-AA

Token Ring DETRA

ATM Digital DGLTA

IPI IPI-240T

Ethernet PMAD-AA

6–12 I/O Subsystem

Table 6-10: (continued)
222
Interconnect Adapter222
Graphics PMAGB-BE

PMAGB-FE
PMAGB-JA
PMAG-FA

Prestoserve NVRAM PMTNV-AA222

For more specific information on supported TURBOchannel adapters and
interconnects in Digital UNIX Version 4.0, see the SPD.

6.2.7 XMI Bus
The XMI bus is a 64-bit wide parallel bus that can sustain a 100 MB per
second bandwidth in a single processor configuration, and, as Table 6-1
indicates, is supported on the DEC 7000, 8000, and 10000 series processors.
The bandwidth is exclusive of addressing overhead; the XMI bus can
transmit 100 MB per second of data.

The XMI bus implements a "pended protocol" design so that the bus does not
stall between requests and transmissions of data. Several transactions can be
in progress at a given time. Bus cycles not used by the requesting device are
available to other devices on the bus. Arbitration and data transfers occur
simultaneously, with multiplexed data and address lines. These design
features are particularly significant when a combination of multiple devices
has a wider bandwidth than the bus itself.

Table 6-11 provides a list of XMI adapters and interconnects. For more
specific information on supported XMI adapters and interconnects in Digital
UNIX Version 4.0, see the SPD.

Table 6-11: XMI Adapters and Interconnects

22
Interconnect Adapter22
CI CIXCD-AX

FDDI DEMFA

SCSI KZMSA

KDM70SDI/STI
UQPORT
DSA (Digital Storage Architecture)

NI DEMNA22

I/O Subsystem 6–13

6.2.7.1 CI and KDM Controllers

The Computer Interconnect (CI) and KDM controllers, supported on the XMI
bus of the DEC 7000, 8000, and 10000 series processors, interconnect
multiple CPUs with various RA disks and TA tapes. The CI, through the
CIXCD-AX adapter, allows DEC 7000, 8000, and 10000 series processors to
connect to Hierarchical Storage Controllers (HSCs), which in turn are
attached to various RA disks and TA tapes.

The maximum transfer rate for the CI is 70 MB per second per channel and
Digital UNIX supports two channels. The CI driver will automatically detect
the presence of multiple channels and alternate between them to improve
maximum throughput.

The KDM controller allows DEC 7000, 8000, and 10000 series processors to
connect directly to RA or TA devices without having to use a CI or HSCs.

In both CI and KDM environments, the RA devices are capable of operating
on a large number of requests at the same time. This allows for improved
performance due to increased "pipelining," and the overlapping of operations.

6.2.8 VME Bus
Digital UNIX includes a generic VME interface layer that provides customers
with a consistent interface to VME devices across Alpha AXP workstation
and server platforms. Currently, VME adapters are only supported on the
TURBOchannel bus. To use the VME interface layer to write VMEbus
device drivers, you must have the Digital UNIX TURBOchannel/VME
Adapter Driver Version 2.0 software (Software Product Description 48.50.00)
and its required processor and/or hardware configurations (Software Support
Addendum 48.50.00-A).

For more information on VME Bus characteristics, consult the release notes.

6–14 I/O Subsystem

7Development Environment3333333333333333333333

7.1 Overview
The development environment in Digital UNIX Version 4.0 is fully ANSI
C/ISO C compliant; offers the programming features of both BSD and
System V UNIX and is compliant with most current standards, including
POSIX, XPG4, and XPG4-UNIX; features debuggers that support C,
Assembler, FORTRAN (F77 and F90), C++, Ada, and connecting to /proc;
supports shared libraries, threads, versioning; and has a fully optimized C
compiler that produces extremely efficient code to exploit fully the 64-bit
address space of the Alpha architecture.

In addition, Digital UNIX Version 4.0 supports internationalization, standard
UNIX development tools such as awk, lint, make, and prof, and
provides various run-time libraries such as C++ and FORTRAN.

The following sections highlight the major functionality in the development
environment. For more detailed information on the development
environment, see the Programmer’s Guide, the guide Programming Support
Tools, Assembly Language Programmer’s Guide, and Writing Software for
the International Market.

7.2 Compiler
The Digital UNIX Version 4.0 C compiler was designed to support 64-bit
data types and is NIST-validated for compliance with the ANSI Standard for
C. The C front end supports both 64-bit addressing and the interfaces to the
System V shared libraries.

The GEM-based DEC C compiler, accessed optionally in previous releases
through the -migrate switch, is now the default compiler; access to the
older MIPS-based compiler is still available through the -oldc switch on
the cc and c89 command lines.

DEC C uses Digital’s backend compiler technology (GEM), which has been
specifically developed and optimized for use with Alpha systems. Both
compilers have full binary compatibility with each other.

In addition, the compiler:

• Compiles C dialects of user choice including:

– K&R C (-std0 mode)

– Strict ANSI C (-std1 mode)

– ANSI C with extensions (-std mode)

• Supports the XPG4-UNIX standard

– By default, under the c89 command

– With the -D_XOPEN_SOURCE_EXTENDED option to cc.

For more information on the various standards supported by Digital
UNIX, see the standards(5) manpage.

• Supports floating point/double precision operations in the following two
modes:

– IEEE support (including proper handling for exceptional conditions
like NaN, INF, and so forth)

– Fast Math mode (INF, NaN, and so forth, translated to avoid
exception handling)

• Supports the following language extensions:

– C++ style structured exception handling by using try...except
and termination handling using try...finally

– User-defined assembly language sequences using asm sequences

– 32-bit pointers to help reduce the amount of memory used by
dynamically allocated pointers, and to facilitate the porting of 64-bit
hostile programs

– Linking programs in 32-bit address space to facilitate the porting of
64-bit hostile programs

– Pragmas for controlling alignment of structures

For more information on the Digital UNIX C compiler, see the cc(1)
reference page.

7.3 Debuggers
Digital UNIX Version 4.0 supports the following two source code debuggers:

• dbx

• ladebug

7–2 Development Environment

7.3.1 The dbx Debugger
The dbx debugger supports debugging programs written in C, FORTRAN,
Assembler, Cobol, and Pascal. It supports debugging active kernels, either
locally or remotely; analyzing kernel crash dumps; debugging program core
dumps; shared libraries; and, through /proc, attachment to running
processes and programs using multiple threads. It can also patch the on-disk
copy of either user programs or the kernel. The dbx debugger also supports
multiprocess debugging and allows debugging through fork and exec
calls.

7.3.2 The ladebug Debugger
The ladebug debugger is a source level, object-oriented symbolic debugger
that has both a graphical user interface (GUI) and a command-line interface
similar to the dbx command-line interface, Note that the GUI is also
integrated with FUSE and can be accessed from the Common Desktop
Environment (CDE).

The ladebug debugger supports the following functionality:

• Attaching to and detaching from running processes.

• Loading programs to the debugger.

• Detecting and debugging across fork and exec.

• Debugging multiple processes

• Debugging multithreaded programs; either DECthreads applications or
kernel modules that make use of kernel threads.

• Debugging programs written in C++, C, Fortran 77, Fortran 90, Ada,
Cobol, and Assembler

Note that ladebug is a full C++ debugger which demangles C++
names, understands C++ expressions, provides support for inline
functions, templates, and C++ exceptions.

Also note that the support for F77/F90 includes case insensitivity,
common blocks, alternate entry points, language-dependent type printing,
and assume shape arrays.

• Debugging machine level code

• Debugging running programs or core dumps

• Debugging Shared Objects

• Catching unaligned access problems

• Debugging active kernels, either locally or remotely, and analyzing kernel
crash dumps

Development Environment 7–3

• Evaluating expressions using the syntax of the source programming
language

• Remote debugging of programs running on different target machines
(such as EB64, EB64+, and EB66 evaluation boards from Digital’s
Semiconductor Engineering Group) by way of the remote debugging
server.

Note that the ladebug remote debugging protocol is also available
along with the C source code for a sample remote debugging server that
adheres to the protocol.

• Internationalization

Note that internationalization support is available in a separate kit. The
internationalized ladebug debugger accepts multibyte characters as
input, and outputs local language characters according to the current
global locale set in the debugger. It also supports the wchar_t datatype
in C/C++.

7.4 Profiling Tools
Digital UNIX Version 4.0 supports the following profiling toolkit:

• ATOM

Provides a flexible code instrumentation interface that is capable of
building a wide variety of user-defined program analysis tools and
comprises an instrumentation control tool and a library whose procedural
interface enables programmers to easily develop special-purpose
instrumentation/analysis tools.

ATOM provides the following built-in instrumentation/analysis tools:

– hiprof

A call-graph profiling tool with output that can be post-processed by
gprof.

– third (Third degree)

Finds memory leaks and checks for incorrect memory accesses.

– pixie

A superset of the existing pixie basic block profiler which can
profile a program’s executables and its shared libraries. The output of
pixie can be analyzed by prof.

Digital Unix V4.0 supports the following profiling tools:

• gprof

For programs compiled with the -pg option, displays how many calls

7–4 Development Environment

named procedures made to each other and how much CPU time each
procedure consumed, using PC-sampling statistics. Also analyzes the
output of programs instrumented with hiprof.

• prof

For programs compiled with the -p option, displays how much CPU
time was consumed by each procedure in a program and its shared
libraries, using PC-sampling statistics. Also analyzes the output of
programs instrumented with pixie or monitored with
uprofile/kprofile.

• uprofile/kprofile

Sample a variety of events in the CPU using the Alpha chip’s built-in
performance counters during the execution of an application program or
the kernel itself. Can report on CPU cycles, memory/cache effects, and
so forth, which prof can then analyze.

For more information on profiling tools, see the Programmer’s Guide and the
appropriate reference pages.

7.5 Shared Libraries
Digital UNIX Version 4.0 provides a full complement of dynamic shared
libraries, compatible with System V semantics for shared library loading and
symbol resolution as well as the System V API for dynamic loading
(dlopen, dlclose, dlsym, and dlerror). Because they allow
programs to include only information about how to load and access routines
rather than the routines themselves, shared libraries increase system
performance, reduce disk and memory requirements, and simplify system
management.

Digital UNIX Version 4.0 supports the shared libraries described in the
following two tables.

Table 7-1: Digital UNIX Version 4.0 Shared Libraries

222
Library /usr/shlib Description222
libDXm.so Digital Motif Extensions library

libDXterm.so DECterm widget library, used by dxterm

libDtHelp.so CDE online help routines

libDtMail.so Shared library support for the dtmail CDE mail utility

libDtSvc.so CDE service routines for desktop management

Development Environment 7–5

Table 7-1: (continued)
222
Library /usr/shlib Description222
libDtTerm.so Shared library support for the CDE ddterm terminal

emulator utility

libDtWidget.so shared library of CDE widgets to supplement Motif widget

libICE.so Inter-Client Exchange library, which enables the building
of protocols

libMrm.so Motif Resource Manager library

libSM.so The X Session Management Protocol (XSMP) provides a
uniform mechanism for users to save and restore their
sessions using the services of a network- based session
manager. It is built on ICE and is the C interface to the
protocol.

libUil.so The callable Motif UIL (User Interface Language)
compiler used by applications that want to compile UIL at
run time.

libX11.so Xlib library
libXETrap.so X Extension Library

libXaw.so X Athena Widgets run-time library

libXext.so X Client-side Extension library

libXi.so X Input Extension client-side library

libXIE.so X Imaging Extension client-side run-time library (V5)

libXie.so X Imaging Extension client-side run-time library (V3)

libXm.so Motif Widgets library

libXmu.so X Miscellaneous utilities run-time library

libXt.so X Intrinsics library

libXtst.so A library of routines for X clients to make use of the
XTEST Extension.

libXv.so X video Extension client-side run-time library

libaio.so POSIX realtime asynchronous I/O functions

libaio_raw.so POSIX realtime asynchronous I/O functions (raw disk and
tape only)

libaud.so C2 security auditing library

libbkr.so Motif Help System library

libc.so C library

libc_r.so Threadsafe libc (link to libc.so)

libcda.so CDA run-time library

libcdrom.so Rock Ridge Extensions to CDFS library

7–6 Development Environment

Table 7-1: (continued)
222
Library /usr/shlib Description222
libchf.so CDA/Imaging signal handling routines

libcmalib.so CMA threads library

libcsa.so Shared library portion of the CDE dtcm calendar manager
utility

libcurses.so Curses screen control library

libcxx.so NEW

libdb.so NEW

libdnet_stub.so DECnet library

libdps.so Adobe Display PostScript client-side run-time libraries

libdpstk.so Adobe Display PostScript toolkit

libdvr.so CDA run-time viewer library

libdvs.so CDA run-time layout library

libesnmp.so NEW

libexc.so Library that provides support for exception handling.

libiconv.so Internationalization codeset conversion routines

libids.so Image display services library

libids_nox.so Image display services not dependent on X

libimg.so Image processing routines

libips.so Image processing routines

libm.so Digital Portable Mathmatics Library (DPML)

libmach.so Mach library

libmxr.so Library used by mxr, the ULTRIX binary interpreter for
OSF/1

libndb.so NEW

libots.so Compiler run-time support

libpacl.so NEW

libproplist.so VFS Extended File Attributes library

libpset.so NEW

libpsres.so Adobe Display PostScript resource utilities

libpthread.so Application Programming Interface for Digital UNIX’s
threads

libpthreads.so DECthreads library

libsecurity.so C2 security library

Development Environment 7–7

Table 7-1: (continued)
222
Library /usr/shlib Description222
libsm_x.so Systems Management Graphical support library; no user-

level interfaces available.

libtcl.so Base Tool Command Language (TCL) support library

libtclx.so Extended TCL support library

libtk.so Graphical TCL (TK) Extensions library

libtkx.so Graphical Extended TCL support library

libtli.so XTI library

libtt.so SunSoft Tooltalk routines

libvxvm.so LSM utility library

libmsfs.so AdvFS system call interface library

libfilsys.so File system utility library

libxnet.so NEW

libxti.so XTI library
222

Table 7-2: Digital UNIX Version 4.0 Shared /usr/shlibi/X11
Libraries

222
Library /usr/shlib/X11 Description222
libXau.so X Authorization library

libXdmDecGreet.so Motif loadable greeter library

libXdmGreet.so Athena-style loadable greeter library

libXdmcp.so X Display Manager control program library

lib_adobe_dps.so Adobe Display PostScript Extension library

lib_dec_cirrus.so Device support for the Cirrus VGA graphics card

lib_dec_ffb.so Supports the sfb+ graphics accelerator for 2D and
3D drawing operations

lib_dec_sfb.so Device support for the smart frame buffer (HX)

lib_dec_smt.so Shared memory transport library

lib_dec_tx.so Device support for the TX graphic adapter

lib_dec_ws.so Low-layer operating system interface for the X
server

7–8 Development Environment

Table 7-2: (continued)
222
Library /usr/shlib/X11 Description222
lib_dec_xi_pcm.so Dynamically-loadable X Input Extension library that

supports the dial and box

lib_dec_xi
_serial_mouse.so Support library for the serial mouse

lib_dec_xv_tx.so X Video Extension support for the TX graphic
option

libcfb.so Color frame buffer library

libcfb16.so 16-bit visual support for the color frame buffer

libcfb32.so 32-bit visual support for the color frame buffer

libdbe.so DOUBLE-BUFFER Extension library

libdix.so Device-independent portion of the X Server

libdixie.so With libmixie.so, supports the X Image
Extensions (XIE) Extension library

libextMITMisc.so MIT-SUNDRY-NONSTANDARD Extension library

libextMultibuf.so Multi-Buffering Extension library

libextScrnSvr.so MIT-SCREEN-SAVER Extension library

libextSync.so SYNC Extension library

libextXCMisc.so XC-MISC Extension library

libextbigreq.so BIG-REQUESTS Extension library

libextkme.so Keyboard-Management-Extension

libextshape.so SHAPE Extension library

libextshm.so MIT-SHM Extension library

libextxtest.so XTEST Extension library

libextxtrap.so DEC-XTRAP Extension library

libfont.so Font access library

libfr_Speedo.so Loadable font renderer library

libfr_Type1.so Loadable font renderer library

libfr_fs.so Loadable X Server font renderer for using a font
server

libmfb.so Monochrome frame buffer support

libmi.so Machine-independent portion of the X Server

libmixie.so With libdixie.so, supports the X Image
Extensions (XIE)

libos.so Operating-system dependent portion of the X Server

libxinput.so X Input Extension server-side library

Development Environment 7–9

Table 7-2: (continued)
222
Library /usr/shlib/X11 Description222
libxkb.so XKEYBOARD Extension library222

Note

Digital UNIX Version 4.0 also provides static versions of these
libraries.

7.5.1 Quickstart
Digital UNIX Version 4.0 supports quickstart which allows shared libraries
with unique addresses to start faster than if their addresses were in conflict.
Essentially, each shared library must have a unique address placed in the
/usr/shlib/so_locations file which allows applications that link
against these shared libraries to start execution faster since the shared objects
do not have to be relocated at run time. The ld utility can read and write an
so_locations file when it creates a shared library.

7.5.2 Dynamic Loader
Digital UNIX Version 4.0 uses a System V Release 4.0 compatible loader to
load shared libraries dynamically. This loader provides the following
enhanced features:

• Calling into dynamically loaded shared libraries

• System V Release 4.0 symbol resolution semantics, including symbol
preemption

• Prelinking of libraries for fast program loading

7.5.3 Versioning
Digital UNIX Version 4.0 supports full and partial duplication of shared
libraries. The loader looks for backward compatible versions of shared
libraries using a path constructed by appending the version string as a
subdirectory of the normal search path. As a result, any changes to kernel
interfaces or to global data definitions that would ordinarily break binary
compatibility will not affect your applications, since you can maintain
multiple versions of any shared library and link your application against the
appropriate version of that shared library.

In Motif Version 1.2, for example, the OSF changed several of the interfaces,
thereby breaking binary compatibility with applications built against Motif
1.1.3 libraries. To preserve binary compatibility, Digital UNIX Version 4.0

7–10 Development Environment

supports both Motif 1.1.3 and Motif 1.2.3 shared libraries in Digital UNIX
Version 4.0 with our versioning functionality, so that applications that need
to can access the Motif 1.1.3 shared libraries. For more information on
versioning, see the Programmer’s Guide.

7.6 Run-Time Libraries
Digital UNIX Version 4.0 supports the following run-time libraries

• DEC Ada Run-Time Libraries (RTL)

The DEC Ada run-time library libada enables users to run previously
compiled DEC Ada programs without having to install DEC Ada on their
system. These libraries support such DEC Ada run-time functionality as
tasking, exceptions, timer services, and miscellaneous computations.

• DEC C++ Run-Time Libraries (RTL)

The DEC C++ run-time libraries (libcxx, libcomplex, and
libtask) enable users to run previously compiled DEC C++ programs
without having to install DEC C++ on their system. These libraries
support such DEC C++ run-time functionality as I/O, complex arithmetic,
and multitasking.

• DEC COBOL Run-Time Libraries (RTL)

The DEC COBOL run-time libraries (libcob, libots2, and
libisamstub) enable users to run previously compiled DEC COBOL
programs without having to install DEC COBOL on their system. These
libraries support such COBOL run-time functionality as I/O, decimal
arithmetic, COBOL ACCEPT/DISPLAY statements,
STRING/UNSTRING operations, and CALL and CANCEL.

• DEC FORTRAN Run-Time Libraries (RTL)

The DEC FORTRAN run-time libraries (libfor, libfutil, and
libUfor) enable users to run previously compiled DEC FORTRAN
programs without having to install DEC FORTRAN on their system.
These libraries support such FORTRAN run-time functionality as I/O,
intrinsic functions, data formatting, data conversion, miscellaneous math
functions, and FORTRAN bindings to common operating system
services.

• DEC Pascal Run-Time Libraries (RTL)

The DEC Pascal run-time library libpas enables users to run previously
compiled DEC Pascal programs without having to install DEC Pascal on
their system. These libraries support such Pascal run-time functionality
as I/O, miscellaneous math functions, time and date services, and
miscellaneous file services.

Development Environment 7–11

7.7 Development Commands
Digital UNIX Version 4.0 supports the full array of development tools,
including ar, as, btou, cb, cc, cflow, cpp, ctags, cxref, dbx, dis
error, file, indent, ld, lex, lint, loader, m4, make, mig,
mkstr, nm, odump, pixie, ppu, prof, ranlib, size, stdump,
strings, strip, tsort, uopt, uld, utob, xstr, and yacc, as well
as the source code control systems rcs and sccs.

Note that many of the development commands are specified by the System
V, POSIX, XPG4 and XPG4-UNIX standards to which Digital UNIX is fully
complaint. Also note that Digital UNIX supports both the OSF make
command and the ULTRIX version of make, since the ULTRIX make
command is POSIX 1003.2 compliant and more robust.

7.8 DECthreads

DECthreads is a library of routines built on the basic Mach threads
capabilities in the OSF code that support the development of multithreaded
applications on Digital UNIX. DECthreads is an implementation the POSIX
1003.1c-1995 standard API and also provides a proprietary API to aid in
porting applications from other Digital platforms such as OpenVMS. Note
that DECthreads also provides an implementation of draft 4 of the POSIX
1003.1c (formerly known as 1003.4a) specification which will be retired in
the next release. This implementation is being provided only to allow
applications extra time to convert their draft standard implementation to the
finalized POSIX standard interface.

DECthreads is compatible with DCE requirements for threads and is the
threads library used by Digital’s DCE product. In addition, DECthreads is
integrated with the Digital UNIX kernel, providing SMP capabilities for
multithreaded applications and realtime scheduling policies and priorities for
multithreaded realtime applications.

7.9 Thread Independent Services
Digital UNIX supports Thread Independent Services (TIS) routines, which
are provided to enable application writers to write thread-safe code for non-
threaded libraries and applications. In the presence of threads, these routines
provide the indicated thread-safe functionality. In the absence of threads,
these routines impose the minimum possible overhead on their caller. Note
that the TIS routines are used by the C runtime library to provide support for
both single and multithreaded applications.

7–12 Development Environment

7.10 Memory-Mapped File Support (mmap)
Digital UNIX Version 4.0 supports the Berkeley mmap function and therefore
allows an application to access data files with memory operations rather than
file I/O operations.

7.11 Realtime
Digital UNIX Version 4.0 supports a realtime user and programming
environment, developed by Digital and shipped as an optional realtime
subset. The Digital UNIX Version 4.0 realtime programming environment
conforms to the POSIX 1003.1b-1993 standard for realtime which allows you
to develop and run portable realtime applications in a POSIX environment.
The realtime interfaces are collected in the static and shared libraries
/usr/ccs/lib/librt.a and /usr/shlib/librt.so, respectively.

If you enable kernel preemption, a higher-priority process can preempt a
lower-priority process regardless of whether it is running in kernel mode or
user mode. With this fully preemptive kernel, the Process Preemption
Latency (the amount of time it takes to preempt a lower-priority process) is
minimized.

In addition to a preemptive kernel, the Digital UNIX Version 4.0 realtime
programming environment supports the following POSIX 1003.1b features:

• Realtime clocks and timers

• Realtime Queued Signals

• Fixed priority scheduling policies

• Realtime scheduler priority levels

• Counting Semaphores

• Shared memory

• Process memory locking

• Asynchronous I/O

• Synchronized I/O

• Message-passing interfaces

• Thread-safe implementation of realtime libraries

For more information on the realtime programming environment, see the
Guide to Realtime Programming. For information on configuring the
realtime kernel, see the System Administration guide.

Development Environment 7–13

8Windowing Environment3333333333333333333333

8.1 Overview
Digital UNIX Version 4.0 supports a full-featured implementation of the X
Consortium’s X Window System, Version 11, Release 6 (X11R6) up to and
including public patch 12, as well as the complete Motif Toolkit from
CDE/Motif Version 1.0. Aside from Digital extensions to the X server to
add graphics support, and the addition of several Motif-based Digital X
clients, the windowing code is essentially passed through untouched from the
X and CDE consortiums.

The Digital UNIX Version 4.0 implementation of X11R6 and Motif makes
use of both static and shared libraries, allowing client programs that link
shared to make use of the latest library code without recompiling, as well as
saving memory and disk space.

For more information on shared libraries, see The following sections briefly
discuss the Common Desktop Environment (CDE), which is the default
graphical user-interface now supported in Digital UNIX, and the X11R6 and
Motif components of the Digital UNIX Version 4.0 windowing environment.

8.2 Common Desktop Environment
The Common Desktop Environment is the new default user interface under
Digital UNIX Version 4.0.

The Common Desktop Environment (CDE) provides an easy method of
interacting with the Digital UNIX operating system. It is a jointly developed
graphical user interface based on industry standards which include the X
Consortium’s X Window System and the Open Software Foundation’s Motif
user interface. CDE is an X/Open standard which provides a consistent look
and feel as well as common APIs across multivendor platforms.

CDE presents a visual desktop that you can customize. Using the CDE
interface, you can use the mouse or keyboard to navigate and interact with
applications. The desktop itself offers a Front Panel, which is a graphical
display at the bottom of the screen area that provides access to applications,
printers, and frequently used objects, including online help.

In addition to user services, CDE provides everything needed to implement
fully integrated applications. Because CDE is standards based, such
integration work is transportable to other platforms that comply with this
standard. For example, the help files and the means to access them apply
across all compliant platforms. For more information, see the Common
Desktop Environment: Programmer’s Overview.

The CDE Front Panel displays the tools that you use to start applications,
manage tasks in a desktop session, or change workspaces. Each tool is
represented by an icon that indicates its purpose. A workspace is the screen
itself, which includes the Front Panel. A tool on the Front Panel is provided
to switch between different workspaces.

The tools available on the Front Panel are described in Table 8-1. For
detailed information on the use of each tool, see the Common Desktop
Environment: User’s Guide.

Table 8-1: Front Panel Tools
22
Application Use of Application22
Clock Displays the time of day in analog format. Clicking

on this tool does not perform an action.

Calendar Displays the current month and day. Use this
application to schedule appointments and To Do
Items, set reminders, browse other calendars, and
schedule group appointments. Dropping an
appointment file on the Calendar tool adds the
appointment to your calendar database.

File Manager Provides a view of directories (folders) and files.
Dropping a directory on the File Manager tool opens
a view of that directory.

Text Editor Opens a Text Editor window where you can create
letters or notes. Dropping a file on the Text Editor
icon opens that file in a Text Editor window.

Mailer Starts the desktop Mailer application. Use this
application to send, receive, save, and forward mail
messages. Dropping a file on this tool displays the
contents of the file in a New Message window.

Lock Pauses a session indefinitely. Pausing a session locks
the workstation display, but applications continue to
run. To resume a session, enter your password.

Workspace Switches Changes workspaces. Use this switch to move to
different work areas. There are four workspaces by
default.

8–2 Windowing Environment

Table 8-1: (continued)
22
Application Use of Application22
Busy Light Indicates that an action is being performed. For

example, when you start an application, the light
blinks. Once the call to the application is complete,
the busy light stops blinking. Clicking on this icon
does not produce an action.

Printer Displays the status of the default printer. Dropping a
file on the Printer icon prints that file on the default
printer.

Exit Starts the logout process for a session.

Style Manager Opens the Style Manager application. Use this
application to change the characteristics of your
environment.

Application Manager Starts the Application Manager, which is a container
for applications and other tools available on your
system.

Help Manager Displays the top level of available online help
information. Dropping a master help volume file
(*.sdl) onto the Help Manager opens a help
viewer window and displays the contents of that
volume.

Trash Can Opens the Trash Can application. Use this
application to delete files. Dropping a file on the
Trash Can tool moves the file to a discard directory.22

For more information, see the CDE documentation set, which consists of:

• CDE Companion Guide

• CDE User’s Guide

• CDE Advanced User’s and System Administrator’s Guide

• CDE Help System Author’s and Programmer’s Guide

• CDE Programmer’s Overview

• CDE Programmer’s Guide

• CDE Style Guide and Certification Checklist

• CDE Desktop Korn Shell User’s Guide

• CDE Internationalization Programmer’s Guide

• CDE Application Builder User’s Guide

Windowing Environment 8–3

• CDE ToolTalk Messaging Overview

• CDE Glossary

8.3 X Window System
The X11R6 windowing software consists of the following components:

• X Client Libraries

• X Server

• Display Manager

• X Protocol Extensions

• Font Server

• X Clients

8.3.1 X Client Libraries
Digital UNIX Version 4.0 supports the complete set of X11R6 X client
libraries:

• Athena Widget Set (libXaw)

A high-level library of user-interface components (scroll bars, labels,
buttons)

• X Intrinsics Library (Xt)

Middle-level routines that call into Xlib

• X library (Xlib)

Low-level routines that interface with the X server

For more information on individual X client libraries, see the guides X
Window System and X Window System Toolkit.

8.3.2 X Server
Through the extensive use of shared libraries, Digital UNIX Version 4.0
supports a single X11R6 X server image for all graphic options. The Digital
UNIX Version 4.0 X server dynamically configures itself at init-time, loading
only those server components required by a specific system configuration,
and rarely requires any intervention by a system administrator.

For a list of the shared libraries that make up the X server, see Chapter 7.

8–4 Windowing Environment

8.3.2.1 Multihead Graphic Support

Multihead graphic support is transparent in Digital UNIX Version 4.0,
provided the proper option cards are installed and the additional graphic
adapters are built into the kernel.

For more information on the graphic options supported in Digital UNIX
Version 4.0, see the Systems and Options Catalog.

8.3.2.2 X Server Extensions

Digital UNIX Version 4.0 supports the following X server extensions. Note
that to conserve memory, the X server, by default, defers loading most server
extensions until it receives a request from a client for that specific extension.

• XKB

The X Keyboard Management extension. Provides support for the ISO
9995 standard and includes the AccessX keyboard extension. Included
with the XKB extension are XKB keymaps for all the keyboards/locales
we support as well as many supporting applications.

The XKB is turned on by default, and the X server automatically
compiles and loads a keymap based upon the console language and
keyboard.

• The Keyboard Extension for X11R6 (XKB)

The XKB server extension is new for X11R6 and for Digital Unix V4.0.
XKB enhances control and customization of the keyboard under the X
Window system by providing:

- Support for the ISO 9996 standard for keyboard layouts

- Compatibility with the core X keyboard handling; no client
modifications needed

- Standard methods for handling keyboard LEDs and locking modifiers
such as CapsLock and NumLock

- Support for keyboard geometry

Additionally, the X11R5 (for versions of Digital Unix earlier than V4.0)
AccessX server extension for people with physical impairments has been
incorporated into the XKB server extension. These accessibility features
include StickyKeys, SlowKeys, BounceKeys, MouseKeys, and
ToggleKeys, as well as complete control over the autorepeat delay and
rate.

• DPS (Adobe Display PostScript Extension –– DPS Level II)

Supports realtime PostScript display, including color, motion, and
advanced text display to the screen.

Windowing Environment 8–5

• MIT-SHM (MIT Shared Memory)

Enhances performance for local image-intensive applications.

• MIT-SUNDRY-NONSTANDARD

Miscellaneous extension from the X Consortium, which currently controls
bug-compatibility modes for the X Server.

• Multibuffering

Supports smooth animations by drawing to multiple buffers.

• SHAPE

Supports nonrectangular windows used for round, oval, and nonregular
shaped windows.

• SMT (Shared Memory Transport)

Allows for the use of shared memory as an X transport for local clients,
giving a significant performance boost. Transport specified by
local:0.0.

• XIE (X Imaging Extension, Version 3 and 5)

Provides advanced control over imaging, as well as device-independent
image display.

Digital UNIX Version 4.0 ships both Version 3 (/usr/lib/Xie.a and
/usr/shlib/libXie.so) and the de facto industry standard, Version
5 (/usr/lib/libXIE.a and /usr/shlib/libXIE.so).

• X Input

Allows users to write their own drivers for third-party input devices, and
then load them dynamically into the X server by making entries in the X
server configuration file (/usr/var/X11/Xserver.conf). The new
input devices are then recognized the next time the X server is reset.

In traditional, statically-linked X Servers, each time a new extension
device is added the X Server must be rebuilt. Digital UNIX’s loadable X
server implementation has overcome this limitation by permitting system
administrators to add new new input device support as external shareables
that are loaded by the X server at init-time.

Sample code showing how such a driver should be written is included in
the /usr/examples directory.

• XKME (X Keyboard Management Extension)

Internal extension for better support of international X clients. Note that
the XKME functionality has been made obsolete by the XKB extension,
but has been provided for backwards compatibility.

• X Screen Saver

8–6 Windowing Environment

Enables a client to receive notification when the screen has been inactive
for a specified amount of time or whenever it cycles. This extension is
useful to developers writing screensaver applications.

• XSync

The XSync function, in conjunction with the XFlush,
XEventsQueued, and XPending functions, allows synchronization
between X clients to take place entirely within the X server, thereby
eliminating any errors introduced by the network and enabling different
hosts running different operating systems to synchronize X clients. This
extension is particularly useful for multimedia applications that require
the synchronization of audio, video, and graphics; and for animation
applications, which can have their requests synchronized to internal, X
server timers.

• XTest

Allows applications to simulate X events for testing purposes.

• XTrap

Supports the recording and playback of X events for the purpose of X
client testing.

• XV (X Video)

Allows clients to control video options, such as the live video PIP option
for the TX graphic device.

For more information on the X server, see the X Window System
Environment and the X(1X) and the Xdec(1X) reference pages.

8.3.3 Display Manager
Digital UNIX Version 4.0 supports the standard Xdm terminal manager
software. The Xdm terminal manager starts up the X server locally and
allows for network-transparent login prompting, so that users can log in to
any system on their network that is supported by xdm as if the remote
system’s graphic console were in front of them. This functionality provides
for the seamless integration of X terminals into the Digital UNIX Version 4.0
environment. For more information on using Xdm, see the System
Administration guide and the xdm(1X) reference page.

8.3.3.1 xmodmap Keymap Format

The keymaps supplied with Digital UNIX Version 4.0 use the xmodmap
keymap format, the de facto industry standard. Unlike the format of the
keymaps supplied in earlier versions of Digital UNIX, which was difficult to
read and edit because it was written using hexadecimal numbers, the
xmodmap format is written using symbolic key names and can be easily

Windowing Environment 8–7

customized.

Also, the xmodmap format supports the ability to specify modifier keys
(Compose, Alt, Shift, and so forth), which the old format did not
support.

Now, instead of the X server itself loading the keymap when it starts or
resets, xdm (the X Display Manager) causes the appropriate xmodmap-
format keymap to be loaded by using the xmodmap command.

The xmodmap keymap format is compatible whether the X server is running
the XKB extension or not. The xmodmap keymaps, however, are being
shipped for backward compatibility reasons. Digital suggests using the
newer XKB standard keymap format instead of the xmodmap keymap
format.

8.3.3.2 XDM-AUTHORIZATION-1

Whenever an X client application establishes a connection to the X server, it
passes an authorization code, called a key, to the X server. If the X server
recognizes this key, the connection is allowed. When the user’s X session is
started, xdm (the X Display Manager) writes one or more keys into the
.Xauthority file in a user’s home directory. The X Display Manager
(xdm) also writes these keys into a file readable by the X server.

In previous releases of the Digital UNIX, the keys were in the MIT-
MAGIC-COOKIE-1 format and were not encrypted.

Now, however, to improve security, Digital UNIX supports both the MIT-
MAGIC-COOKIE-1 key format as well as the XDM-AUTHORIZATION-1
encrypted key format, which is the default.

8.3.4 Font Server
Digital UNIX Version 4.0 supports a standard scalable font server that
supplies a network of systems with access to fonts resident on any Digital
UNIX system. The font server maintains a repository of fonts and responds
to requests from other X servers on the network for fonts that they may not
have locally. In addition to providing network-transparent access to fonts,
the font server unloads the compute burden of font scaling from local X
servers, since it scales fonts appropriately before supplying them to the
requesting X server.

8.3.4.1 Loadable Font Renderers

Before a font can be displayed by an X server, its glyphs must be converted
from their on-disk formats into bitmaps. This conversion is done by font
renderer code in the X server or in a font server which may be supplying
fonts to the X server.

8–8 Windowing Environment

Digital UNIX Version 4.0 supports loadable font renderers, so that users who
adhere to the X11R6 standard can write their own font renderer for their own
set of fonts and install them on a Digital UNIX system. After the fonts and
the font renderer are installed, the necessary entries for them are placed in the
X server configuration file (/usr/var/X11/Xserver.conf), the font
server configuration file (/usr/var/X11/fs/config), or in both
configuration files. The new font renderer is then recognized the next time
the X server or font server (whichever has the font renderer configured) is
reset.

8.3.5 X Clients
Digital UNIX Version 4.0 supports the entire suite of X clients that ships
with X11R6, including appres, atobm, bdftopcf, bitmap, bmtoa,
editres, fs, fsinfo, fslsfonts, fstobdf, getcons, ico,
imake, listres, lndir, mkfontdir, oclock, optacon, pswrap,
puff, puzzle, resize, showfont, showrgb, twm, uil, viewres,
x11perf, x11perfcomp, xauth, xbiff, xcalc, xcd, xclipboard,
xclock, xcmsdb, xcmstest, xconsole, xcutsel, xdm, xdpr,
xdpyinfo, xedit, xemacs, xev, xeyes, xfd, xfontsel, xgc,
xhost, xkbcomp, xkbprint, xkbdfltmap, xkill, xload, xlogo,
xlsatoms, xlsclients, xlsfonts, xmag, xman, xmbind, xmh,
xmkmf, xmodmap, xon, xpr, xprop, xrdb, xrefresh, xset,
xsetroot, xsoundsentry, xstdcmap, xterm, xwd, xwininfo, and
xwud.

For more information on individual X clients, see the appropriate reference
page.

8.4 Motif

Digital UNIX Version 4.0 supports the entire suite of CDE Motif Version 1.0
components, including the widget library (Xm), the resource manager (Mrm),
the widget metalanguage (wml), the User Interface Language (UIL), the
Motif window manager (mwm), the key binding utility (xmbind), and the
Motif Demonstration programs (examples).

In Motif Version 1.2 the OSF has added support for ANSI C,
Internationalization, Drag and Drop, and TearOff Menus. Unfortunately,
however, much of this support required breaking binary compatibility with
Motif Version 1.1.3.

To mitigate this problem, Digital UNIX Version 4.0 provides the Motif
Version 1.1.3 libraries through its versioning functionality to allow
applications that are linked against Motif 1.1.3 to continue to run. These
libraries are available in an optional subset. For more information on
versioning, see the Programmer’s Guide and Chapter 7.

Windowing Environment 8–9

The following sections briefly discuss these Digital extensions to Motif:

• Digital Extended Widget Set

• Digital X Clients

For more information on Motif, see the OSF/Motif Programmer’s Guide,
DECwindows User’s Guide, and the appropriate reference pages. For
information on Motif support for internationalization, see Chapter 10.

8.4.1 Digital Extended Widget Set
In addition to the Xm widget library, Digital UNIX Version 4.0 supports the
Digital Extended Widget Set (DXm), which contains the following widgets:

• DXmColorMix

Supports editing and the selection of colors

• DXmPrintWidget

Presents graphical print options

• DXmCSText

Supports the editing of compound strings in a user interface similar to
XmText

• DXmHelpWidget

Displays help topics

• DXmSvn

Supports structured navigation through lists of data

8.4.2 Digital X Clients
In addition to the entire suite of X clients that ships with X11R6, Digital
UNIX Version 4.0 supports a variety of Digital X clients including
accessx, dxbook, dxcalc, dxcalendar, dxcardfiler, dxclock,
dxconsole, dxdiff, dxkbledpabel, dxkeyboard, dxkeycaps,
dxmail, dxnotepad, dxpaint, dxpause, dxpresto, dxprint,
dxsession, dxterm, and dxvdoc.

For more information on individual Digital X clients, see the DECwindows
User’s Guide and the appropriate reference pages.

8–10 Windowing Environment

9System V Functionality3333333333333333333333

9.1 Overview
Digital UNIX Version 4.0 supports the following two System V packages in
an effort to provide users, programmers, and administrators with complete
System V Release 4 functionality:

• The System V Compatibility habitat

• The System V Environment

9.1.1 System V Compatibility Habitat
The System V Compatibility habitat ships with the base system and, in
conjunction with the work done to extend the Digital UNIX Version 4.0
libraries to contain System V functionality, allows Digital UNIX Version 4.0
to conform to the following two volumes from the four volumes listed in the
System V Interface Definition 3 (SVID 3):

• Volume 1: Base System and Kernel

• Volume 4: X11 Windows

Note that NeWS Windows is not supported.

The System V Compatibility habitat consists of several commands in the
/usr/opt/s5 directory (commands that are commonly used in shell scripts
and that format their data differently from the corresponding Digital UNIX
commands) as well as a separate System V shared and static library
(libsys5.a and libsys5.so) that contains functions that are different
from those already in the standard libc. For the most part, however,
Digital has attempted to extend the functions and system calls in libc to
include the necessary System V functionality and behavior so that many
programs written for System V can compile and run on Digital UNIX
Version 4.0 without the need to link against libsys5.

Also, Digital has added the swapctl and memcntl System V system calls
to libc as well as support for the System V pseudodevice, /dev/zero,
the /proc file system, the FDFS file system, SVR4 signals, and SVR4
STREAMS.

Users and programmers can access the Digital UNIX Version 4.0 System V
Compatibility habitat either by placing the /usr/opt/s5 path in their
.profile file or by using the absolute pathname for this directory. The cc
and ld commands in the /usr/opt/s5 directory for example, are in fact
shell wrappers which, when called, search the libsys5.a and
libsys5.so libraries before looking in libc, so that programmers can
access these libraries transparently.

For more information on the System V Compatibility habitat, see the System
Administration guide, Programmer’s Guide, and the Command and Shell
User’s Guide.

9.1.2 The System V Environment
The System V Environment extends the functionality provided by the System
V Compatibility habitat by supporting a more complete System V Release 4
(SVR4) environment for general users, application programmers, and system
administrators. The System V Environment is an extension to the operating
system that contains a separate System V Release 4.0 binary license from
UNIX Software Laboratories and requires a special license and a Product
Authorization Key (PAK) to access.

The System V Environment extends the base system SVID 3 compliance to
provide complete compliance to the SVID 3 standard, by supporting the
following two additional SVID 3 volumes:

• Volume 2: Utilities and Administration

• Volume 3: Software Development, Terminal Interface, Realtime and
Memory Management, Remote Services

See Figure 9-1 for a summary of SVID support in both Digital UNIX and the
System V Environment.

9–2 System V Functionality

Figure 9-1: SVID Compliance in the System V Environment

�����������		
������������		
�

	

OPEN LOOK, NeWs

X11

RFS

RPC

Realtime and memory extension
Terminal interface extension
Software development extension
Programming extensions

Administered system extension
Advanced utilities extension
Basic utilities extension

Kernel extension
Base system

SVID3
Volume 4

SVID3
Volume 3

SVID3
Volume 2

SVID3
Volume 1

Digital
UNIX

System V
Environment

Not provided

ZK-1132U-AI

Windowing Extension

Remote Services Extension

In addition, the System V Environment meets operating system requirements
critical to the telecommunications industry, as defined in the Bellcore
Standard Operating Environment (SOE), Issue 2.

The System V Environment supports the following functionality:

• Development tools and libraries

• Extended Terminal Interface

• Software management utilities (pkg* commands)

• System administration commands and utilities, including backup and
restore services

• User account management

• System activity reporting (sar)

System V Functionality 9–3

• SVR4 Bourne Shell

• SVR4 printing subsystem

• Service access facility

• Realtime extensions

The System V Environment delivers the complete suite of SVR4 commands
as well as the libsvr4 library, which contains all the SVR4 routines for the
base system. Essentially, the System V Environment extends the
functionality of the System V Compatibility habitat, allowing users,
programmers, and administrators to work in a completely native System V
environment, without the Digital UNIX "look and feel." However, through
manipulating each user’s .profile file, each environment,
System V and Digital UNIX, can be accessed without difficulty and, with the
exception of the Printing Subsystem, without reconfiguring the system. Note
that programmers can develop and run both Digital UNIX and SVR4
applications simultaneously, no matter which environment they choose to
adopt. For more information on the System V Environment, see the System
V Environment for Digital UNIX Version 4.0 User’s Guide and the SVR4 to
SVE for Digital UNIX Version 4.0 Migration Guide.

9–4 System V Functionality

10Internationalization3333333333333333333333

10.1 Overview
The term "internationalization" is formally defined by X/Open as a "provision
within a computer program of the capability of making itself adaptable to the
requirements of different native languages, local customs, and coded
character sets," which means, essentially, that internationalized programs can
run in any supported locale without having to be modified. A locale is a
software environment that correctly handles the cultural conventions of a
particular geographic area, such as China or France, and a language as it is
used in that area. So by selecting a Chinese locale, for example, all
commands, system messages, and keystrokes can be in Chinese characters
and displayed in a way idiomatic to Chinese dialects.

Digital UNIX Version 4.0 is an internationalized operating system that not
only allows users to interact with Digital UNIX Version 4.0 in their native
language, but also supports a full set of application interfaces, referred to as
the X/Open Worldwide Portability Interfaces (WPI), to enable software
developers to write internationalized applications. The code came from the
OSF and was enhanced by Digital.

The internationalization subsystem in Digital UNIX Version 4.0 is based on
POSIX 1003.2 and Single UNIX specifications. Commands, utilities, and
libraries (including the curses library) have been internationalized, and a set
of enhanced US English message catalogs and message catalogs that supports
Asian languages have been included in the base system. In addition, Digital
UNIX Version 4.0 supports the X Input Method (XIM) and X Output
Method(XOM) to facilitate input of local language characters, text drawing,
measurement, and inter-client communication which is implemented
according to the X11R6 specification.

Note that Digital UNIX Version 4.0 also supports a 32 bit wchar_t
datatype which in turn enables support for a wide array of codesets, including
the full ISO 10646 standard.

10.2 Supported Languages
Table 10-1 lists the languages supported in Digital UNIX Version 4.0 and
their corresponding locales. The locales are built using new
internationalization utilities and are more robust than those offered on
previous versions of the operating system. Note that in Digital UNIX
Version 4.0, the content of the locale definitions has changed to align with
new national profiles and registered locale definitions. Those marked with an
asterisk are available as part of language-variant subsets which can be
optionally installed.

Table 10-1: Languages and Locales

222
Language Locale Name222
Catalan * ca_ES.ISO8859-1
Simplified Chinese/PRC * zh_CN.dechanzi

zh_CN.dechanzi@pinyin
zh_CN.dechanzi@radical
zh_CN.dechanzi@stroke

Chinese/Hong Kong * zh_HK.big5
zh_HK.dechanyu
zh_HK.dechanzi
zh_HK.eucTW

Traditional Chinese/Taiwan * zh_TW.big5
zh_TW.big5@chuyin
zh_TW.big5@radical
zh_TW.big5@stroke
zh_TW.dechanyu
zh_TW.dechanyu@chuyin
zh_TW.dechanyu@radical
zh_TW.dechanyu@stroke
zh_TW.eucTW
zh_TW.eucTW@chuyin
zh_TW.eucTW@radical
zh_TW.eucTW@stroke

Czech * cs_CZ.ISO8859-2

Danish da_DK.ISO8859-1

Dutch nl_NL.ISO8859-1

Belgian Dutch nl_BE.ISO8859-1

US English/ASCII en_US.8859-1 (C/POSIX)

US English/ISO8859-1 en_US.ISO8859-1

GB English en_GB.ISO8859-1

10–2 Internationalization

Table 10-1: (continued)
222
Language Locale Name222
Finnish fi_FI.ISO8859-1

German de_DE.ISO8859-1

Swiss German de_CH.ISO8859-1

Greek el_GR.ISO8859-7

French fr_FR.ISO8859-1

Belgian French fr_BE.ISO8859-1

Canadian French fr_CA.ISO8859-1

Swiss French fr_CH.ISO8859-1

Hebrew * iw_IL.ISO8859-8

Hungarian hu_HU.ISO8859-2

Icelandic is_IS.ISO8859-1

Italian it_IT.ISO8859-1

Japanese * ja_JP.eucJP
ja_JP.SJIS
ja_JP.deckanji
ja_JP.sdeckanji

Korean * ko_KR.deckorean
ko_KR.eucKR

Lithuanian * ko_KR.eucKR

Norwegian no_NO.ISO8859-1

Polish pl_PL.ISO8859-2

Portuguese pt_PT.ISO8859-1

Russian ru_RU.ISO8859-5

Slovak sk_SK.ISO8859-2

Slovene * sl_SIISO8859-2

Spanish es_ES.ISO8859-1

Swedish sv_SE.ISO8859-1

Thai * th_TH.TACTIS

Turkish tr_TR.ISO8859-9222

Note that you can switch languages or character sets as necessary and can
even operate multiple processes in different languages or codesets in the same
system at the same time.

Internationalization 10–3

For information on supported character sets, see the guide Writing Software
for the International Market and reference pages for individual languages and
codesets.

10.3 Code Conversion and the iconv Utility
Digital UNIX Version 4.0 extends the base tty terminal driver subsystem to
include additional BSD line disciplines and STREAMS tty modules for
processing data in all languages. The line discipline or STREAMS modules
sed to process Japanese, Chinese, and Korean, for example, provides the
following support:

• Japanese Kana-Kanji conversion input method

• Character-based line processing in cooked mode

• Input line history and editing (BSD line discipline only)

• Input line history and editing

• Software on-demand-loading for user-defined characters

• Code conversion between terminal codeset and application codeset

Digital UNIX Version 4.0 supports the iconv utility, which converts text
from one locale’s codeset to another, thereby assisting programmers in the
writing of international applications.

Code conversion is also implemented in the terminal driver and printing
subsystem to allow the use of terminals and printers with different codesets.
Additionally, code conversion is implemented in mail utilities for mail
interchange with systems using different codesets (see the man command for
reference page displays) and in the X Window Toolkit for text input,
drawing, and interclient communication. For more information on the
iconv utility, see iconv_intro(5).

For information on all the languages supported by the international terminal
subsystem, see the guide, Writing Software for the International Market.

The following sections briefly discuss additional internationalization
functionality.

10.4 Unicode Support
Digital UNIX provides a set of locales and and codeset convertors that
supports the Unicode and ISO 10646 standards.The codeset convertor
modules enable an application to convert between other supported codesets
and UCS-4. The following UCS-4 locales are supported:

10–4 Internationalization

Table 10-2: Languages and Locales

22
Language Locale Name22
Simplified Chinese/PRC * zh_CN.dechanzi@pinyin@ucs4

zh_CN.dechanzi@radical@ucs4
zh_CN.dechanzi@stroke@ucs4

Chinese/Hong Kong * zh_HK.dechanyu@ucs4
zh_HK.dechanzi@ucs4
zh_HK.eucTW@ucs4

Traditional Chinese * zh_TW.dechanyu@ucs4
zh_TW.dechanyu@chuyin@ucs4
zh_TW.dechanyu@radical@ucs4
zh_TW.dechanyu@stroke@ucs4
zh_TW.eucTW@ucs4
zh_TW.eucTW@chuyin@ucs4
zh_TW.eucTW@radical@ucs4
zh_TW.eucTW@stroke@ucs4

Czech * cs_CZ.ISO8859-2@ucs4

Danish da_DK.ISO8859-1@ucs4

Dutch nl_NL.ISO8859-1@ucs4

Belgian Dutch nl_BE.ISO8859-1@ucs4

US English/ASCII en_US.8859-1@ucs4i@ucs4

US English/ISO8859-1 en_US.ISO8859-1@ucs4

GB English en_GB.ISO8859-1@ucs4

Finnish fi_FI.ISO8859-1@ucs4

German de_DE.ISO8859-1@ucs4

Swiss German de_CH.ISO8859-1@ucs4

Greek el_GR.ISO8859-7@ucs4

French fr_FR.ISO8859-1@ucs4

Belgian French fr_BE.ISO8859-1@ucs4

Canadian French fr_CA.ISO8859-1@ucs4

Swiss French fr_CH.ISO8859-1@ucs4

Hebrew * iw_IL.ISO8859-8@ucs4

Hungarian hu_HU.ISO8859-2@ucs4

Icelandic is_IS.ISO8859-1@ucs4

Italian it_IT.ISO8859-1@ucs4

Japanese * ja_JP.SJIS@ucs4
ja_JP.deckanji@ucs4

Internationalization 10–5

Table 10-2: (continued)
22
Language Locale Name22
Korean * ko_KR.deckorean@ucs4

Norwegian no_NO.ISO8859-1@ucs4

Polish pl_PL.ISO8859-2@ucs4

Portuguese pt_PT.ISO8859-1@ucs4

Russian ru_RU.ISO8859-5@ucs4

Slovak sk_SK.ISO8859-2@ucs4

Slovene * sl_SIISO8859-2@ucs4

Spanish es_ES.ISO8859-1@ucs4

Swedish sv_SE.ISO8859-1@ucs4

Turkish tr_TR.ISO8859-9a@ucs4

Universal universal.utf8@ucs422

Digital UNIX also provides a function called fold_string_w(), which
maps one Unicode string to another performing the specified Unicode
transformations. For more information on the fold_string_w() function,
see fold_string_w(3). For more information on Unicode support, see
Unicode(5).

10.5 ISO-C
Digital UNIX provides support for the new ISO-C 1944 standard. This
includes support for several new interfaces within libc as well as support
within the new DEC C compiler.

The addition of these new routines provides a more complete coverage of
routines that are wchar_t aware, which in turn allows Unicode to be more
easily supported on the platform.

10.6 Internationalized Curses
Digital UNIX supplies an internationalized Curses library in conformance
with X/Open Curses, Issue 4. This provides functions for processing single-
byte and multibyte characters. Multibyte characters may be in either wide-
character (wchar_t) or complex-character (cchar_t) formats. The
complex-character format provides for a single logical character made up of
multiple wide characters. Some of the components of the complex character
may be nonspacing characters.

10–6 Internationalization

For information on the syntax and effect of all Curses interfaces, see
curses(3). For a description of the enhancements provided by the
internationalized Curses routines, and their relationship to previous Curses
routines, see the guide, Writing Software for the International Market.

10.7 Printing
Digital UNIX Version 4.0 supports the printing of plain text and PostScript
files for a variety of languages and provides outline fonts for high quality
printing on PostScript printers. For the printing of Asian languages whose
font files are typically too large to fit in printer memory, Digital UNIX
Version 4.0 makes use of a unique font-faulting technology which
substantially reduces memory requirements on the supported PostScript
printers. For more information, on printing, see i18n_printing(5) and
Writing Software for the International Market.

10.8 Creating Locales and the localedef Utility
The localedef utility allows programmers to create their own locales,
compile their source, and generate a unique name for their new locale.

For more information on localedef, see the localedef(1) reference
page.

10.9 I18N Configuration Tool
The I18N Configuration Tool, available via the CDE Application Manager, is
one of the System Administration Configuration tools. It provides a graphical
interface for the system administrator to configure I18N-specific settings. It
also provides a convenient way to see what countries, locales, fonts, and
keymaps are supported on the host. I18nconfig can be used to remove unused
fonts and country support installed on the system.

10.10 Special Support for Ideogrammatic Languages
The following sections discuss special support in Digital UNIX Version 4.0
for ideogrammatic languages, like Chinese and Japanese.

10.10.1 Sorting and the asort Utility
Digital UNIX Version 4.0 supports the asort utility, an extension of the
sort command, which allows characters of ideogrammatic languages, like
Chinese and Japanese, to be sorted according to multiple collation sequences.
For more information on the asort utility, see asort(1).

Internationalization 10–7

10.10.2 Multilingual EMACS
Digital UNIX Version 4.0 supports the Multilingual EMACS editor (MULE)
for Asian languages. See MULE(1) for more information.

10.10.3 Mail and 8-Bit Support
Digital UNIX Version 4.0 provides support for ideogrammatic languages in
mailx, dtmail, MH, and comsat.

For more information on these mail utilities, see the corresponding reference
pages.

10.10.4 User-Defined Characters
Digital UNIX Version 4.0 provides support for creating user-defined
characters (UDCs) for ideogrammatic languages, so that users can create and
define character fonts and their attributes, including DECwindows fonts, with
the cgen and cedit utilities. For more information on these utilities, see
the appropriate reference pages.

Digital UNIX Version 4.0 also provides font rendering facilities so that X
clients can use UDC databases through the X Server or font server to obtain
bitmap fonts for user-defined characters.

For more information on user-defined characters, see Writing Software for the
International Market.

10.11 Internationalization and Motif
Motif Version 1.2.3 takes advantage of many of the internationalization
features of X11R6 and the C library to support locales. Motif Version 1.2.3
also supports the use of alternate input methods, which allows input of non-
ISO Latin-1 keystrokes, and delivers an extensively rewritten XmText
widget which supports multibyte and wide characters and on-the-spot input
style.

Motif supports multibyte and wide characters through the use of the X
multibyte functions, and the localized C run-time functions (such as
strlen). In addition, the compound string routines have been modified to
include the X11R6 XFontSet functionality to allow for the creation of
localized strings.

The User Interface Language (UIL) supports the creation of localized UID
files through the -s compile-time switch on the UIL compiler, which causes
the compiler to construct localized strings.

Alternate input methods can be specified by a resource on the
VendorShell widget. Widgets that are parented by a Shell class widget

10–8 Internationalization

can take advantage of this resource and register themselves as using a specific
method for input.

The following sections discuss additional Motif internationalization
functionality.

10.11.1 Internationalized Motif Widgets
The following lists contain the widgets in the Motif Toolkit and in the
DECwindows Extensions to the Motif Toolkit that support local language
characters I/O capabilities and local language message displays.

Note that the Motif UIL compiler has been extended to support local
language characters in UIL files.

• Motif Toolkit

– Command

– FileSelectionBox

– Label

– MessageBox

– SelectionBox

– Text

– TextField

• DECwindows Extensions

– ColorMix

– CSText

– Help

– Print

– Structured Visual Navigation (SVN)

10.11.2 Internationalized Common Desktop Environment (CDE)
CDE becomes the default desktop for Digital UNIX V4.0. Digital UNIX
provides internationalization support for the following CDE clients:

• Application Manager

• Calculator

• Calendar

• Create Action

• File Manager

Internationalization 10–9

• Front Panel

• Help Viewer

• Icon Editor

• Login Screen

• Message

• Mailer

• Print Manager

• Style Manager

• Terminal Emulator

• Trash Can

10.11.3 Internationalized DECwindows X Clients
Digital UNIX Version 4.0 provides internationalization support for the
following DECwindows X clients:

• Console Log

• Bookreader

• Calendar

• Cardfiler

• CDA Viewer

• Differences

• Keycap

• LinkWorks Manager

• Mail

• Motif Window Manager

• Notepad

• Paint

• Pause Screen

• Print Screen

• Session Manager

• X Display Manager

10–10 Internationalization

11Security3333333333333333333333

11.1 Overview
Digital UNIX Version 4.0, running enhanced security, is designed to meet or
exceed the requirements of the C2 evaluation class of DoD 5200.28-STD
Trusted Computer System Evaluation Criteria (TCSEC), also known as the
Orange Book. The enhanced security features ship as optional subsets. After
the security subsets are installed, you can configure an enhanced security
kernel and access secure commands and utilities.

11.2 C2 Functionality and TCSEC
The following C2 requirements specified in the Orange Book are supported
by Digital UNIX Version 4.0 running enhanced security:

• Audit

• Identification and authentication

• Object reuse

• Discretionary access controls

• System architecture

• Integrity

• Security testing

• Security guide

11.2.1 Audit
The following audit features are provided in Digital UNIX Version 4.0:

• A new dxaudit GUI (graphical user interface)

• Command line interfaces compatible with those provided in ULTRIX
Version 4.0 and higher releases

• The ability to send audit logs to a remote host

• Fine-grained preselection of system events, application events, and site-
definable events

• Fine-grained post-analysis of system events, application events, and site-
definable events

• Link-time configurability of audit subsystem

• Per-user audit characteristics profile with enhanced Identification and
Authorization (I&A)

The audit system is set up from the command line. Maintenance for the
audit subsystem is done from the command line or with the dxaudit GUI.

Digital UNIX Version 4.0 intends to support the POSIX 1003.6 standard for
audit when it is approved. The Digital implementation will also provide
backward compatibility with the current audit interfaces. For more
information, see the guide Security.

11.2.2 Identification and Authentication
Digital’s Security Interface Architecture (SIA) allows a single set of
identification and authentication (I&A) utilities to work in either the
nontrusted system or the trusted (enhanced security) system. By using the
secsetup command, you can configure your system to use either
nontrusted or enhanced security commands.

The following I&A features are provided in Digital UNIX Version 4.0
running enhanced security:

• Password control

– Configurable maximum password length is up to 80 characters.

– Configurable password lifetimes. This includes an optional minimum
interval between password changes.

– A floating value of the minimum password length, based directly on
the Department of Defense Password Management Guideline (Green
Book) guidelines and the password lifetime.

– Per user password generation flags, which include the ability to
require a user to have a generated password.

– Recording of who (besides the user) last changed the user’s password.

• Login control

– Recording of last terminal and time of the last successful login, and of
the last unsuccessful login attempt.

– Automatic account lockout after a specified number of consecutive
bad access attempts. This feature can be overridden by root in case of
system database corruption.

11–2 Security

– A per-terminal setting for delay between consecutive login attempts,
and the maximum amount of time each attempt is allowed before
being declared a failed attempt.

– A per-terminal setting for maximum consecutive failed login attempts
before locking any new accesses from that terminal.

• A notion of ownership for pseudoaccounts.

• A notion of whether the account is "retired" or "locked."

• Code for handling a remote host like a terminal, without confusing the
issue of a pty versus a host. This is only set up to handle Internet hosts,
and has no support for similar concepts that would be useful for Local
Area Transport (LAT) and DECnet.

• A notion of system default values for the various I&A fields.

• A CDE-based GUI (dxaccounts) to perform many of the I&A
administration tasks.

• New edauth, convauth, and convuser utilities to make the
migration of accounts to the enhanced security level easier.

For more information, see the guide Security.

11.2.3 Object Reuse
Object reuse is a standard feature of Digital UNIX Version 4.0. Object reuse
ensures that the physical storage (memory or disk space) assigned to shared
objects or physical storage that is released prior to reassignment to another
user, is cleared or scrubbed. Examples of object reuse are disk space that is
released after a file is truncated or physical memory that is released prior to
reassignment to another user to read.

11.2.4 Discretionary Access Controls
Discretionary access controls (DACs) are a standard feature of Digital UNIX
Version 4.0. Discretionary access control provides the capability for users to
define how the resources they create can be shared. The traditional UNIX
permission bits provide this capability.

The Digital UNIX Version 4.0 system also provides optional access control
lists (ACLs) to provide object protection at the individual user level.

Setting permissions, including ACLs, is discussed in the Security manual.

Security 11–3

11.2.5 System Architecture
Digital UNIX Version 4.0 maintains a separate execution domain for the
trusted computing base (TCB) components using hardware memory
management to protect the TCB while it is executing. It maintains a kernel
address space for the operating system, and maintains separate address spaces
for each instance of an executing trusted (or untrusted) application process.
Writable address space sharing between processes is controlled by
discretionary access controls (DAC), with the default being to disallow
sharing. Sharing of read-only address space sections (for example, shared
libraries) can be disabled.

Digital UNIX Version 4.0 also protects the on-disk TCB components using
discretionary access control. Attempted violations of the DAC protections
can be audited so that remedial action can be taken by the system security
officer.

In addition, the TCB is structured into well defined, largely independent
modules.

Digital UNIX Version 4.0 is designed, developed, and maintained under a
configuration management system that controls changes to the specifications,
documentation, source code, object code, hardware, firmware, and test suites.
Tools, which are also maintained under configuration control, are provided to
control and automate the generation of new versions of the TCB from source
code and to verify that the correct versions of the source have been
incorporated into the new TCB version. The master copies of all material
used to generate the TCB are protected from unauthorized modification or
destruction.

11.2.6 Integrity
Digital UNIX Version 4.0 provides the capability to validate the correct
operation of hardware, firmware, and software components of the TCB. The
firmware includes power-on diagnostics and more extensive diagnostics that
can optionally be enabled. The firmware itself resides in EEPROM and can
be physically write-protected. It can also be compared against, or reloaded
from, an off-line master copy. Digital’s service engineers can run additional
hardware diagnostics as well.

The firmware can require authorization to load any operating software other
than the default or to execute privileged console monitor commands that
examine or modify memory.

Once the operating system is loaded, system diagnostics can be run to
validate the correct operation of the hardware and software. In addition, test
suites are available to ensure the correct operation of the operating system
software.

11–4 Security

The following two tools can be run automatically to detect inconsistencies in
the TCB software and databases:

• fverify

The fverify command reads subset inventory records from standard
input and verifies that the attributes for the files on the system match the
attributes listed in the corresponding records. Missing files and
inconsistencies in file size, checksum, user ID, group ID, permissions,
and file type are reported.

• authck

The authck program checks both the overall structure and internal field
consistency of all components of the authentication database and reports
all problems that it finds.

11.2.7 Enhanced Security Administration
The Digital UNIX Version 4.0 operating system provides system
administrators with tools to improve the ease of use of administering system
security.

11.2.7.1 Configuring System Security

System administrators can select the security level associated with their
system. The default security level consists of object reuse and DAC; by
running the secsetup command, system administrators can select enhanced
security features. The audit subsystem and ACL subsystem are configurable
at kernel link time, regardless of the security level of the system.

11.2.7.2 Windows-Based Administration Utilities

Three GUIs are provided to deal with the day-to-day security administration
on the local machine. Based on OSF/Motif, the enhanced security version
dxaccounts (Account Manager under the CDE-based system
administration utilities) utility is used to create and enhanced user accounts,
modify of system defaults, and the audit mask for users.

The dxaudit GUI controls the administration of the audit system and the
generation of audit reports. Administrators have the flexibility to configure
the audit subsystem without the requirement of installing additional enhanced
security features.

The dxdevices GUI is used to configure secure devices.

The old XSysAdmin and XIsso interfaces are provided for compatibility
and will be retired in a future release.

Security 11–5

For more information, see the dxaccounts(8X), dxaudit(8X), and
dxdevices(8X) reference pages.

11.3 Other Security Features
Digital UNIX Version 4.0 supports the some features not available in other
OSF-based UNIX operating systems.

11.3.1 Security Integration Architecture
All security mechanisms that run on the Digital UNIX Version 4.0 operating
system run under the Security Integration Architecture (SIA) layer. The SIA
allows you to layer various local and distributed security authentication
mechanisms onto Digital UNIX Version 4.0 with no modification to the
security-sensitive Digital UNIX Version 4.0 commands, such as login, su,
and passwd. The SIA isolates the security-sensitive commands from the
specific security mechanisms, thus eliminating the need to modify them for
each new security mechanism.

See the Security manual for further details.

11.3.2 Toggling Between Security Mechanisms
Through the use of a middle-layer interface, the Security Integration
Architecture (SIA), Digital UNIX Version 4.0 allows use of the secsetup
command to toggle back and forth between the secure and the nonsecure
commands and utilities.

11.3.3 Network Information Service (NIS) Compatibility
Digital provides support for accessing NIS distributed databases while
running enhanced security.

Users on a Digital UNIX Version 4.0 enhanced security system can, for
example, use the ypcat passwd command to gather information about
users on the network; however, the user’s encrypted password in the NIS
distributed password database is not the same as the encrypted password on
the secure system which cannot be viewed by unprivileged users.

In addition, on a Digital UNIX Version 4.0 system running enhanced
security, NIS can be used to distribute the enhanced security protected
password database as well.

11–6 Security

11.3.4 DECnet Interoperability
The SIA interface provides support for Digital’s networking software,
DECnet.

11.3.5 Distributed Computing Environment (DCE) Interoperability
Through the SIA, Digital UNIX Version 4.0, when configured for enhanced
security, allows you to enter both your system password and your DCE
password at login time. You do not have to log in to the Digital UNIX
Version 4.0 secure system and then log in again to DCE.

11.3.6 Configuration and Setup Scripts
Digital UNIX Version 4.0 supports the secsetup configuration and setup
script which allows you to select the security level you wish to run, permits
you to toggle back and forth between secure and nonsecure commands and
utilities, and configures security at boot time depending upon the value of the
SECURITY variable in the /etc/rc.config file.

11.3.7 Graphical User Interfaces
Digital UNIX Version 4.0 provides the dxaccounts, dxaudit, and
dxdevices utilities that permit the creation and modification of user
accounts, modification of system defaults, and all of the audit interfaces and
devices.

11.4 Performance
With all security options configured and running (including auditing), Digital
UNIX Version 4.0 shows a performance degradation of only 3%. With
auditing turned off, there is no measurable performance degradation. With
enhanced security configured but not turned on, there is no performance
degradation whatsoever.

Under normal usage, ACLs do not significantly degrade performance.

For more information on security, see the Security manual.

Security 11–7

12Installation and System Setup3333333333333333333333

12.1 Overview
Digital UNIX Version 4.0 supports full, custom, and cloned installations for
new systems and an update installation that allows users who already have
Version 3.2C, 3.2D-1, or 3.2D-2 of the operating system installed to update
to Digital UNIX Version 4.0 without overwriting system files. Also, Digital
UNIX Version 4.0 supports a variety of setup utilities that allow users to
configure their systems quickly and with relative ease.

Both the installation and setup utilities use a graphical user interface (GUI)
on systems that support graphics and a text-based interface on systems that
do not.

Additionally, the CD-ROM used to install Digital UNIX Version 4.0 contains
file systems that are laid out just as the software would be installed on the
system. It has directly accessible root, /usr, and /var areas. This
format makes almost every operating system command and utility available
to the installation process because your system actually mounts the
installation media and runs off of it during the installation. You therefore
have access to a complete, albeit generic, Digital UNIX operating system
during the installation itself. This means that the UNIX commands required
for recovery procedures, such as restoring corrupt file systems, are readily
available even if your operating system is not yet fully functional. Also, if
you inadvertently delete a system file, you have easy access to the file on the
CD-ROM. The RIS area from which you invoke an installation is laid out in
the same format as the CD-ROM and provides the same advantages.

12.2 Installation
Digital UNIX Version 4.0 supports full, cloned, and update installations
either from a CD-ROM or across the network from a Remote Installation
Services (RIS) server. For more information on RIS, see the guide Sharing
Software on a Local Area Network.

Note

The RIS software is available in the Server Extensions kit and
requires a separate license and PAK to access. For more
information, see Chapter 1 and the Software Product Description
for Digital UNIX Version 4.0.

• Full Installation

A full installation allows users to install Digital UNIX Version 4.0 on
new systems and is divided into the following three procedures:

– Default Installation

A default installation installs all mandatory software subsets onto a
single disk chosen by the user. Additional optional subsets can be
installed later (if there is room on the disk) by using the setld
command.

The default installation is intended for those users who do not want to
customize their disk partitions, install across multiple disks, and who
want to get the operating system up and running quickly and easily.

– Custom Installation

A custom installation is thoroughly configurable, allowing users to
select disks and partitions for the root, usr, and var file systems
and for primary and secondary swap. In addition, the custom
installation allows users to select from a list of optional software
subsets, rather than automatically installing only the mandatory
subsets.

The Custom Installation is intended for users who install across
different disks and who know which optional subsets they need to
install.

– Cloned Installation

A cloned installation lets you duplicate the file system layout, file
system type, and software subset selections from a similar type
system that has already been installed with Digital UNIX Version 4.0.
A cloned installation can only be performed using RIS. If your
system is registered to a RIS environment and a configuration
description file (CDF) is specified, the installation procedure retrieves
the CDF and uses the system configuration information stored in the
CDF to configure and install your system.

For more information on full installations, see the Installation Guide.

• Update Installation

The Update Installation allows users to update their systems to a new
version of the operating system without overwriting customized system

12–2 Installation and System Setup

files, user files, altering file systems, or destroying existing disk
partitions.

Note

Your system must be running Digital UNIX Version 3.2C,
3.2D-1, or 3.2D-2 in order to update install to Digital UNIX
Version 4.0.

The installupdate utility invokes the update installation and does
the following:

– Updates existing software subsets to Digital UNIX Version 4.0 and
installs new mandatory software subsets.

– Does not overwrite customized system files, like /etc/passwd and
/etc/fstab.

– Merges files that have changed with the old files on your system

If something new is delivered in a system file that you have
customized, or if a system file has changed, the update installation
attempts to merge your file with the new file. Although the update
installation attempts to merge files automatically, it writes a log of
those files that must be merged manually.

– Provides an array of log files documenting what it has done.

Once the update installation is complete, you can load additional subsets
using the setld command.

For more information on the update installation, see the Installation
Guide and the Update Installation Quick Reference Card.

12.3 System Setup
Once the Digital UNIX Version 4.0 software is installed, if you have
graphics capabilities, you can use the SysMan Configuration
Checklist to set up your system. The first time you log in as root after
a system installation or the first time you log in to a factory installed
software (FIS) system, the SysMan Configuration Checklist
displays the SysMan applications that are available to set up your system for
general use.

Installation and System Setup 12–3

Note

When you are logged in as superuser or root, you can invoke
the SysMan Configuration Checklist at any time by
clicking on the Configuration Checklist icon in the
System_Administration folder, or entering the following
command on the UNIX command line:
/usr/sbin/checklist

The following utilities are available from the SysMan Configuration
Checklist:

• Network Configuration Application

• BIND Configuration Application

• NIS - Network Information Service

• NFS Configuration Application

• License Manager

• Account Manager

• Mail Configuration Application

• Disk Configuration Application

• LAT - Local Area Transport

• UUCP - UNIX-to-UNIX Copy System

• NTP - Network Time Protocol

• Printer Configuration Application

• Security (BSD/2)

• Security Auditing

• Prestoserver I/O Acceleration

• Update Administration Utility

• Graphical UI Selection Utility

Many of the SysMan Configuration Checklist utilities are also
available in text-based interfaces that can be displayed on systems that only
have character-cell displays. See Section 13.2.2 for more information.

For more information about system setup in general, see the Installation
Guide, the System Administration guide , the Network Configuration guide ,
the Software License Management guide, and the setup(8) reference page.

12–4 Installation and System Setup

13System Administration3333333333333333333333

13.1 Overview
Digital UNIX Version 4.0 supports all the customary UNIX system
administration utilities from OSF/1 Version 2.0, including tar,
dump/restore, and dd for performing backups and restores; df, du,
scu, radisk, and disklabel for managing disks and disk usage;
tunefs, newfs, and fsck for managing file systems; dbx for performing
kernel debugging; and adduser for creating user accounts. For more
information on these utilities, see the System Administration guide and the
appropriate reference page for each utility.

In addition to providing system administration utilities from the OSF, Digital
UNIX adds a number of other useful Digital-specific utilities, such as the
following:

• SysMan Tools

• Software Subset Management Utility setld

• Event Management Utility (DECevent)

• Analysis Tools with Object Modification

• Enhanced Kernel Debugging

• Dynamically Loadable Subsystems

• Dynamic System Configuration

• Dynamic Device Recognition

• Dataless Management Services

• Monitoring Performance History

• Bootable Tape

The following sections describe the Digital-specific utilities.

13.2 SysMan Tools
With the release of Digital UNIX Version 4.0, the SysMan Tools become the
preferred system administration utilities for the operating system.

SysMan makes your job as a system administrator easier by providing you
with a graphical user interface for each of your adminstration tasks, such as
installation, configuration, daily administration, monitoring, kernel/process
tuning, storage management, and more. These utilities can be accessed
through the System_Admin folder in the CDE Application Manager.

While the SysMan Tools were designed to take advantage of the Common
Desktop Environment (CDE), most of the utilities will work outside of CDE
with other window or display managers. Users who are not running CDE
can access the utilities individually by invoking them from the command
line, provided the DISPLAY environment variable is properly set on their
systems. For instance:
netconfig

It should be noted that many of the SysMan Tools are also available in text-
based interfaces that can be displayed on systems that only have character-
cell displays. See Section 13.2.2 for more information.

13.2.1 SysMan Utilities
SysMan offers the following system administration utilities:

Note

The contents of each folder in SysMan can vary depending on
which subsets you have installed.

• Configuration Checklist

You can use these applications to set up your system for general use after
Digital UNIX has been installed. See Section 12.3 for more information.

• Configuration Applications

You can use these applications to perform:

– Network Configuration with netconfig

– BIND Configuration with bindconfig

– NFS Configuration with nfsconfig

– Mail Configuration with mailconfig

– Print Configuration with printconfig

– Disk Configuration with diskconfig

13–2 System Administration

– LAT Configuration with latsetup

– NIS Configuration with nissetup

• Daily Administration Applications

After a system has been configured, you can use these applications to
perform routine administrative tasks:

– Account Manager with dxaccounts

– Archiver with dxarchiver

– File Sharing with dxfileshare

– Host Manager with dxhosts

– License Manager with dxlicenses

– Shutdown Manager with dxshutdown

– System Information with dxsysinfo

– Audit Manager with dxaudit

– Power Management with dxpower

– DHCP Configuration with dhcpconf

– Display Window with dxdw

• Monitoring and Tuning Applications

While a system is running, you can use these applications to monitor and
tune its resources:

– Kernel Tuner with dxkerneltuner

– Process Tuner with dxproctuner

• Storage Management Applications

While a system is running, you can use these applications to configure its
file systems:

– Bootable Tape with btcreate

– Prestoserve with dxpresto

– Logical Storage Manager with dxlsm

• Tools

Use these applications to check the status of the system:

– Network Statistics with netstat

– Virtual Memory Statistics with vmstat

– I/O Statistics with iostat

– Who? with who

System Administration 13–3

For more information on the SysMan Tools, please click on the Welcome
to SysMan icon in the System_Admin folder.

13.2.2 Text-Based Interfaces
Text-based interfaces are provided for those users who prefer to use a non-
graphical interface or cannot display a graphical interface because they do not
have the necessary hardware.

For instance, a set of text-based, menu-driven interfaces can be accessed
through the setup utility:
/usr/sbin/setup

Use this menu to set up your system and network. When you
select an item, you will be asked a series of questions.

For more information about the items on the menu and the
questions you must answer, see the System Administration
and Network Administration guides.

1) Network Configuration Application
2) BIND Configuration Application
3) NIS - Network Information Service
4) NFS Configuration Application
5) License Manager
6) Mail Configuration Application
7) LAT - Local Area Transport
8) UUCP - UNIX-to-UNIX Copy System
9) NTP - Network Time Protocol
10) Printer Configuration Application
11) Security (BSD/C2)
12) Security Auditing
13) Prestoserve I/O Acceleration
14) Update Administration Utility
15) Graphical UI Selection Facility
16) Exit

Enter the menu item number that you want:

The same menu-driven utilities can be accessed individually by invoking the
necessary application from the command line with a -ui menu switch. For
example:
netconfig -ui menu

Main Menu

1 Network Interfaces

2 Daemons

3 Configuration Files

13–4 System Administration

4 Static Routes

5 IP Router

0 Exit

Enter the number of your choice:

The text-based command line interfaces for each command can be accessed
by invoking the necessary application from the command line with a -ui
cli switch. The ns in the following example would be numbers indicating
the hosts’ IP addresses:
netconfig -ui cli -host list

host1:
name localhost
address nnn.n.n.n

host2:
name elmo
address nn.nnn.nn.nnn

host3:
alias presto
comment Bind Nameserver
name presto.federation.com
address nn.nnn.nnn.n

host4:
alias voyager
comment System name
name voyager.federation.com
address nn.nnn.nnn.nnn

#

More information about these interfaces can be found in the reference pages
for each utility that supports them.

13.3 The setld Utility
The setld utility allows system administrators to install, inventory, and
delete software subsets that are formatted according to the guidelines set forth
in the Guide to Preparing Product Kits. For example, a system administrator
might use the setld utility to install optional subsets that were not installed
during the full or update installation of the operating system.

Digital requires application programmers to use the Digital kitting process
when packaging software subsets designed to be installed on Digital UNIX

System Administration 13–5

systems and explains, in the Guide to Preparing Product Kits how to create
kits that are compatible with the setld utility.

For more information on the setld utility, see the Guide to Preparing
Product Kits the Installation Guide and the setld(8) reference page.

13.4 DECevent Event Management Utility
DECevent is an event-management utility for Digital UNIX that translates
system event log files into formatted ASCII reports. DECevent supports both
a command-line and a graphical user interface (GUI). Event report
information can be filtered by event types, date, time, and event entry
numbers. Event report formats can be selected from full disclosure to very
brief information messages. The -i (include) and the -x (exclude) options
provide a wide range of selection criteria to narrow down the focus of event
searches.

The DECevent utility also offers an interactive command shell interface,
accessible with the command --int, that recognizes the same commands
used at the command line. From the interactive command shell users can
customize, change, or save system settings.

DECevent uses the system event log file /usr/adm/binary.errlog as
the default input file for event reporting, unless another file is specified

Unless the event log file privileges have been changed to allow all users to
read the event log file, which is a rare practice, Digital UNIX users need
superuser privileges to use DECevent.

For more information on DECevent, see the DECevent Translation and
Reporting Utility.

13.5 Analysis Tools with Object Modification
The Analysis Tools with Object Modification (ATOM) Advanced
Developer’s Kit, an optional subset that ships with Digital UNIX, enables
programmers to perform standard program and performance analysis
(procedure tracing, instruction profiling, data address tracing). For more
information on ATOM, see the PostScript documentation that ships in the
/usr/lib/atom/doc directory and the atom(1) and atomtools(5)
reference pages.

13.6 Enhanced Kernel Debugging
The dbx debugger, as it comes from the OSF, supports a read-only
examination of a locally running kernel, as well as the debugging of kernel
core files through the use of the -k switch.

13–6 System Administration

Digital added the following two features to dbx:

• A -remote switch to enable the remote, breakpoint debugging of a
running kernel across a serial line

The protocol is multibyte, and cashing as well as a multithread extension
are supported.

• A front-end to dbx, called kdbx, which supports not only the entire
suite of dbx commands, but a C library API that allows programmers to
write C programs to extract and format kernel data more easily than they
can with just dbx -k or dbx -remote.

The kdbx front-end ships with several ready-made extensions in the file
/usr/var/kdbx.

For more information on kernel debugging, see the guide Kernel Debugging.

13.7 Dynamically Loadable Subsystems
Digital UNIX Version 4.0 introduces the ability to package, load, and
manage kernel subsystems on Digital UNIX systems.

Instructions on how to write and package loadable device drivers so that they
will install and execute on Digital UNIX Version 4.0 systems are discussed
in the guide Writing Device Drivers: Tutorial. The Programmer’s Guide
explains how to write and package loadable kernel subsystems so that they
too will install and execute on Digital UNIX Version 4.0 systems. The
Programmer’s Guide also discusses in some detail the framework that
supports the dynamic configuration and tuning of kernel attributes.

You should refer to those guides for more specific information on how to
write and package loadable drivers and kernel subsystems, as well as how to
construct an attribute table.

13.8 Dynamic System Configuration
In an effort to simplify system tuning, Digital UNIX Version 4.0 allows you
to change certain kernel attributes without having to edit the the system
configuration file or the file param.c, and without having to rebuild and
reboot a target kernel for the changes to take affect. Through the use of
attribute tables, each kernel subsystem––whether a Digital UNIX kernel
subsystem or one developed by a third-party vendor––can define kernel
attributes that can be changed at run-time by using the /sbin/sysconfig
command with the -r option (if the kernel attribute supports run-time
reconfiguration), or at boot-time by adding or modifying entries in the kernel
attribute database, /etc/sysconfigtab and rebooting.

System Administration 13–7

For more information, see the System Administration guide and the System
Tuning and Performance Management guide.

13.9 Dynamic Device Recognition
Dynamic Device Recognition is a framework for describing the operating
parameters and characteristics of SCSI devices to the SCSI CAM I/O
subsystem. You can use DDR to include new and changed SCSI devices
into your environment without having to reboot the operating system.

Beginning with Digital UNIX Version 4.0, DDR is preferred over the current
static method for recognizing SCSI devices, because DDR will not disrupt
user services and processes as happens with static methods of device
recognition.

13.10 Dataless Management Services
Digital UNIX Version 4.0 supports dataless management services (DMS)
which allows the root, /usr, and /var partitions of a system to live on a
DMS server and be served over the network to a DMS client. The root and
/var partitions are unique to each DMS client, while /usr is shared. The
DMS client swaps and dumps locally, and can mount staff areas locally using
NFS.

DMS reduces disk needs and simplifies system administration, since
administrators can administer and backup their DMS clients on the DMS
server. The code was developed by Digital.

13.11 Monitoring Performance History
The Monitoring Performance History (MPH) utility gathers timely and
accurate inofrmation on the reliability and availability of the Digital UNIX
operating system and associated platforms.

The MPH utility was previously included on the Complementary Products
CD-ROM. This utility is now included on the Digital UNIX Operating
System CD-ROM.

For more information, see the Installation Guide.

13.12 Bootable tape
Digital UNIX Version 4.0 introduces the ability to create a standalone
bootable tape of the operating system. You can boot from the bootable tape
as easily as you can boot from a CD-ROM or a RIS area, but without the
overhead of selecting or installing subsets. When you restore your system
from the bootable tape, you must reconfigure your system using the System

13–8 System Administration

Management applications.

See the btcreate(8) and btextract(8) reference pages for more
information.

System Administration 13–9

AConformance to Internet Host
Requirements3333333333333333333333

This appendix addresses the conformance of Digital UNIX to Internet host
requirements as specified by Request for Comments (RFC) 1122:
Requirements for Internet Hosts – Communication Layers and RFC 1123:
Requirements for Internet Hosts – Applications and Support, and the RFCs
that they reference. (RFCs 1122 and 1123 are referred to as Host
Requirements RFCs throughout this appendix.)

Note

Although there are RFCs that specify internetworking protocols
not referenced in the Host Requirements RFCs, the conformance
of Digital UNIX to the requirements specified in those RFCs is
beyond the scope of this appendix.

The Digital UNIX Software Product Description (SPD) contains
additional technical information about the networking component
of Digital UNIX and a complete list of RFCs implemented in
Digital UNIX.

This appendix contains the following information:

• Background information that briefly describes what RFCs are and, in
particular, describes the Host Requirements RFCs.

• Tables that list the RFCs that the Host Requirements RFCs reference and
against which Digital UNIX was validated.

Associated with each table is a pointer to information in the Host
Requirements RFCs that discusses requirements for each Internet layer or
protocol.

• A discussion of how Digital UNIX systems can be configured
conditionally to comply to Internet Host Requirements when acting as a
host.

A.1 Background
The Internet Architecture Board (IAB) issues specifications, and updates to
the specifications, in the form of RFCs. RFCs describe protocols (as well as
other information) of interest to the Internet community.

The Host Requirements RFCs are a statement of requirements for host
system implementations of the Internet protocol suite, when these host
systems are connected to the Internet. They do the following:

• Reference other RFCs and documents describing the current specifications
for the Internet protocols

• State a set of requirements for each referenced protocol

• Clarify issues where the source document may be confusing

• Correct errors in the referenced documents

• Describe specific provisions overriding the original documents

The Host Requirements RFCs also indicate whether the requirements they
discuss are must, must not, should, should not, or may level requirements.
If an implementation complies with all must and should level requirements,
it is considered unconditionally compliant. If an implementation complies
with all must level requirements, but not necessarily all should requirements,
it is considered conditionally compliant.

Note

This appendix describes Digital UNIX’s conformance to must
and must not level requirements only. Although Digital UNIX
complies with the vast majority of should, should not, and may
level requirements described in the Host Requirements RFCs,
compliance with should, should not, and may level
requirements is beyond the scope of this appendix.

RFCs are frequently issued or updated. When updates are issued, earlier
versions of the RFC are rendered obsolete. The Host Requirements RFCs
were issued in October 1989. Where RFCs referenced by the Host
Requirements RFCs have been updated since October 1989, the RFC number
of the updated version, as well as the number of the version it rendered
obsolete, are noted.

The following two RFCs are of general importance to the Internet community
because they contain information that has an impact on all implementations
of all protocols:

• RFC 1780: Internet Official Protocol Standards

Describes the state of standardization of protocols used in the Internet. It
lists recent changes in protocols, and also indicates a status of required,
recommended, elective, limited use, or not recommended for each
protocol described.

A–2 Conformance to Internet Host Requirements

Digital UNIX was validated against RFC 1600. RFC 1600 renders RFCs
1540, 1500, 1410, 1360, 1280, 1250, 1200, 1140, 1130, 1100, and 1083
obsolete.

• RFC 1780: Assigned Numbers

Lists the assigned values of the parameters used in the various protocols,
for example, IP codes, TCP port numbers, TELNET option codes, ARP
hardware types, and terminal type names.

The Host Requirements RFCs reference RFC 1010, an earlier version of
this RFC. Digital UNIX was validated against RFC 1340. RFC 1340
renders RFC 1060, 1010, as well as many earlier RFCs, obsolete.

A.2 The Host Requirements RFCs (RFC 1122 and RFC
1123)
RFC 1122 covers requirements for communication protocols for the data link,
internetworking, and transport layers of host Internet software. RFC 1123
covers requirements for the application and support protocols for Internet
host software.

This section contains tables that list and briefly describe the RFCs that
Digital UNIX was validated against and that are referenced in the Host
Requirement RFCs. Additionally, Table A-8 and Table A-9 list the total
must/must not level requirements explicitly stated by the Host Requirements
RFCs.

Table A-1 lists the RFCs that RFC 1122 references for the link layer. For a
discussion of link layer requirements, see Chapter 2 of RFC 1122.

Table A-1: Referenced RFCs for the Link Layer
222
Referenced RFCa Description222
RFC 1042: Internet Protocol on
IEEE 802 (IP-IEEE)

Specifies a standard method of
encapsulating the IP datagrams and
ARP requests and replies on IEEE 802
Networks.

RFC 894: Internet Protocol on
Ethernet Networks (IP-E)

Specifies a standard method of
encapsulating IP datagrams on an
Ethernet.

RFC 826: Address Resolution
Protocol (ARP)

Presents a method for converting
protocol addresses (IP addresses) to
local network addresses (Ethernet
addresses).222

Conformance to Internet Host Requirements A–3

Table A-1: (continued)

Table Notes:

a. Digital UNIX is also validated against the following RFCs that are not
referenced in RFC 1122:

– RFC 1103: Transmission of IP over FDDI (IP-FDDI)

– RFC 1055: A Nonstandard for Transmission of IP Datagrams Over
Serial Lines: SLIP

Table A-2 lists the RFCs that RFC 1122 references for the Internet layer.
For a discussion of Internet layer requirements, see Chapter 3 of RFC 1122.

Table A-2: Referenced RFCs for the Internet Layer
222
Referenced RFC Description222
RFC 1112: Host Extensions for IP
Multicasting (IGMP)

Specifies the extensions required of a
host implementation of the IP to
support multicasting.

RFC 1009a: Requirements for
Internet Gateways

Documents the requirements for IP
routers connected to the Internet.

RFC 950: Internet Standard
Subnetting Procedures

Discusses standards for subnet
addressing within internet networks.

RFC 792: Internet Control
Message Protocol (ICMP)

Describes a protocol for exchanging
informational and error messages
between hosts, or between gateways
and hosts.

RFC 791: Internet Protocol (IP) Specifies an unreliable connectionless
protocol for the delivery of datagrams
between systems.222

Table Notes:

a. RFC 1009: Requirements for Internet Gateways references the Exterior
Gateway Protocol (EGP) and the Routing Information Protocol (RIP).
The EGP is described in RFC 904 and the RIP is described in RFC 1058.

Table A-3 lists the RFCs that RFC 1122 references for the transport layer.
For a discussion of transport layer requirements for UDP and TCP, see
Chapter 4 of RFC 1122.

A–4 Conformance to Internet Host Requirements

Table A-3: Referenced RFCs for the Transport Layer
222
Referenced RFC Description222
RFC 793: Transmission
Control Protocol (TCP)

Specifies a connection-oriented reliable
protocol for the delivery of stream data
between ports.

RFC 768: User Datagram
Protocol (UDP)

Defines an unreliable connectionless
protocol for the delivery of data between
ports.222

Table A-4 lists the RFCs that RFC 1123 references for the TELNET
protocol. For a discussion of TELNET protocol requirements, see Chapter 3
of RFC 1123.

Table A-4: Referenced RFCs for the TELNET Protocol
222
Referenced RFC Description222
RFC 1184a: Telnet Linemode
Option

Describes terminal character processing
on the client side of a Telnet
connection.

RFC 1091: Telnet Terminal Type
Option

Specifies a standard for hosts on the
Internet that exchange terminal type
information within the Telnet protocol.

RFC 1080: Telnet Remote Flow
Control Option

Specifies a standard for hosts on the
Internet that use remote flow control
within the Telnet protocol.

RFC 1079: Telnet Terminal
Speed Option

Specifies a standard for hosts on the
Internet that exchange terminal speed
information within the Telnet protocol.

RFC 1073: Telnet Window Size
Option

Describes Telnet options that allow a
client to convey window size to a Telnet
server.

RFC 861: Telnet Extended
Options List

Describes an extended Telnet option
that allows an additional 256 Telnet
options.

Conformance to Internet Host Requirements A–5

Table A-4: (continued)
222
Referenced RFC Description222
RFC 860: Telnet Timing Mark
Option

Provides a mechanism for a user or
process at one end of a Telnet
connection to be sure that previously
transmitted data has been completely
processed, printed, discarded, or
otherwise disposed of.

RFC 859: Telnet Status Option Allows one end of a Telnet connection
to verify the current status of Telnet
options (for example, echoing) as
viewed by the other end of the
connection.

RFC 858: Telnet Suppress Go
Ahead (SGA) Option

Allows a full duplex connection
between a full duplex terminal and a
host optimized to handle full duplex
terminals to suppress the transmission of
GO AHEADS.

RFC 857: Telnet Echo Option Allows the two ends of a Telnet
connection to agree on NVT keyboard
characters.

RFC 856: Telnet Binary Option Provides the option of binary
transmission in a natural way for Telnet
connections to INTERPRET the
characters transmitted over a Telnet
connection as binary data.

RFC 855: Telnet Option
Specification

Specifies a method of option code
assignment and standards for
documenting options for the Telnet
protocol.

RFC 854: Telnet Protocol
Specification

Provides a general, bidirectional, 8-bit
byte-oriented communications facility
whose primary goal is to allow a
standard method of interfacing terminal
devices and terminal-oriented processes
to each other.

RFC 736: Telnet SUPDUP Option Allows a host to provide SUPDUP
service on the normal Telnet socket (27
octal) instead of 137 (octal) which is the
normal SUPDUP ICP socket.

RFC 734: SUPDUP Protocol Describes a highly efficient display
Telnet protocol.

A–6 Conformance to Internet Host Requirements

Table A-4: (continued)
222
Referenced RFC Description222
RFC 732: Data Entry Terminal
Option

Describes the DET option to Telnet.
The DET option uses five classes of
subcommands: 1) to establish the
requirements and capabilities of the
application and the terminal, 2) to
format the screen, and to control the 3)
edit, 4) erasure, and 5) transmission
functions.222

Table Notes:

a. RFC 1184: Telnet Linemode Option renders RFC 1116: Telnet
Linemode Option obsolete, and it references RFC 885: TELNET End of
Record Option.

Table A-5 lists the RFCs that RFC 1123 references for the file transfer
protocols FTP and TFTP. For a discussion of file transfer protocol
requirements, see Chapter 4 of RFC 1123.

Table A-5: Referenced RFCs for the File Transfer Protocols
222
Protocol Referenced RFC Description222
FTP RFC 959: File Transfer

Protocol (FTP)
Specifies a protocol whose
objectives are: 1) to promote
sharing of files (computer
programs and/or data), 2) to
encourage indirect or implicit (via
programs) use of remote
computers, 3) to shield a user from
variations in file storage systems
among hosts, and 4) to transfer
data reliably and efficiently.

RFC 678: Standard File
Formats

Specifies standard formats for files
and describes the expected final
form for printed copies of such
files.

TFTP RFC 1350a: The TFTP
Protocol

Describes a very simple protocol
used to transfer files in which each
nonterminal packet is
acknowledged separately.222

Conformance to Internet Host Requirements A–7

Table Notes:

a. RFC 1350: The TFTP Protocol renders RFC 783: The TFTP Protocol
obsolete.

Table A-6 lists the RFCs that RFC 1123 references for the SMTP protocol.
For a discussion of SMTP protocol requirements, see Chapter 5 of RFC
1123.

Table A-6: Referenced RFCs for the SMTP Protocol
22
Referenced RFC Description22
RFC 1049: A Content-Type Field
for Internet Messages

Specifies additions to the Internet Mail
Protocol, RFC-822, for the Internet
community.

RFC 1047: Duplicate Messages
and SMTP

Examines a synchronization problem in the
SMTP that can cause a message to be
delivered multiple times.

RFC 974: Mail Routing and the
Domain System

Describes how mail systems on the Internet
are expected to route messages based on
information from the domain system
described in RFCs 882, 883, and 973.

RFC 822: Standard for the
Format of ARPA Internet Text
Messages

Specifies a syntax for text messages that are
sent among computer users within the
framework of electronic mail.

RFC 821: Simple Mail Transfer
Protocol (SMTP)

Describes a protocol designed to be
independent of the particular transmission
subsystem and that requires only a reliable
ordered data stream channel to transfer mail
reliably and efficiently.22

Table A-7 lists the RFCs that RFC 1123 references for the Domain Name
System, Host Initialization, and Remote Management support services. For a
discussion of Domain Name System, Host Initialization, and Remote
Management requirements, see Chapter 6 of RFC 1123.

A–8 Conformance to Internet Host Requirements

Table A-7: Referenced RFCs for the Support Services
222
Service Referenced RFC Description222
Domain Name
System

RFC 1035: Domain
Names -
Implementation and
Specification

Describes the details of the domain
system and protocol. Assumes
that the reader is familiar with the
concepts discussed in a companion
RFC, Domain Names - Concepts
and Facilities.

RFC 1034: Domain
Names - Concepts
and Facilities

Introduces the Domain Name
System (DNS).

RFC 974: Mail
Routing and the
Domain System

Describes how mail systems on the
Internet are expected to route
messages based on information
from the domain system described
in RFCs 882, 883, and 973.

Host
Initialization

RFC 903: A Reverse
Address Resolution
Protocol

Describes a link-layer protocol that
allows a host to find its IP address.

Network
Management

RFC 1213a:
Management
Information Base for
Network
Management of
TCP/IP-based
internets: MIB II

Defines the second version of the
Management Information Base
(MIB-II) for use with network
management protocols in TCP/IP-
based Internets.

RFC 1157b: A
Simple Network
Management
Protocol (SNMP)

Defines a simple protocol by
which management information for
a network element can be
inspected or altered by logically
remote users.222

Table Notes:

a. Digital UNIX is validated against RFC 1213: Management Information
Base for Network Management of TCP/IP-based Internets: MIB-II.

RFC 1123 references RFC 1066: Management Information Base for
Network Management of TCP/IP-based Internets. RFC 1158 renders
both RFC 1066 and RFC 1156: Management Information Base for
Network Management of TCP/IP-based Internets obsolete. RFC 1213, in
turn, renders RFC 1158 obsolete.

Conformance to Internet Host Requirements A–9

b. RFC 1157: A Simple Network Management Protocol (SNMP) supercedes
RFC 1098: A Simple Network Management Protocol (SNMP), which is
referenced in RFC 1123.

Table A-8 summarizes the must/must not level requirements, per layer,
explicitly stated by RFC 1122.

Table A-8: Total must/must not Requirements in RFC 1122
222

Link Internet Transport
Layer Layer Layer222

10 92 79

(7 must, 3 must not) (80 must, 12 must not) (74 must, 5 must not)222

Table A-9 summarizes the must/must not level requirements explicitly stated
by RFC 1123.

Table A-9: Total must/must not Requirements in RFC 1123
222
General
Requirements

TELNET
Protocol

File
Transfer
Protocols

SMTP
Protocol

DNS
Protocol

222
9 24 50 41 33

(9 must) (22 must, 2
must not)

(46 must, 4
must not)

(32 must, 9
must not)

(29 must, 4
must not)222

A.3 Configuring Digital UNIX to Conditionally Comply to
the Host Requirements RFCs
The following sections describe how to configure your system to
conditionally comply to the specifications described in the Host
Requirements RFCs when your system is acting as an Internet host. Under
each heading is a description of a must level item with which Digital UNIX
does not comply by default. Along with each item is a discussion about why
Digital UNIX does not comply, and information about how to configure your
system to comply with that item.

A–10 Conformance to Internet Host Requirements

A.3.1 Internet Layer1 (RFC 1122)

When the IP datagram reassembly timeout expires, the partially reassembled
datagram must be discarded and an ICMP Time Exceeded message sent to
the source host, if fragment zero has been received (RFC 1122, Section
3.3.2).

Digital UNIX discards the partially reassembled datagram when the
reassembly timeout expires. However, by default, Digital UNIX does not
generate an ICMP Time Exceeded message.

At the time this host requirement was written, it was believed that a form of
path MTU discovery procedure might find this message useful (RFC 1122,
Section 3.2.2.4). RFC 1191: Path MTU Discovery, however, does not use
this mechanism.

Receiving an ICMP Time Exceeded message may be useful for TCP
connections, because TCP is required to act on receipt of ICMP error
messages. UDP has no such requirement. While fragmentation is now
generally prevented with TCP, this is not the case with UDP. Large UDP
messages, for example those generated by NFS, can cause storms of ICMP
Time Exceeded messages, if these messages were generated by default.

For these reasons, Digital does not recommend that Digital UNIX be
configured to generate ICMP Time Exceeded messages. Digital UNIX
records the number of fragments dropped due to reassembly timeout; you can
run the netstat –p command to display this number. The following
example shows the display for IP of the netstat –p command. Ten
fragments were dropped due to reassembly timeout:
% /usr/sbin/netstat -p ip

ip:
1831450 total packets received
0 bad header checksums
0 with size smaller than minimum
0 with data size < data length
0 with header length < data size
0 with data length < header length
3542 fragments received
0 fragments dropped (dup or out of space)
10 fragment dropped after timeout
0 packets forwarded
0 packets not forwardable

3333333333333333333333
1 Digital UNIX can be configured to comply with all must/must not level requirements for systems

acting as Internet hosts.

The Internet Engineering Steering Group (IESG) recommended to the IAB (in September, 1991) that the
"Requirements for Internet IP Routers" specify the routing protocol Open Shortest Path First (OSPF) as
"MUST IMPLEMENT". Digital UNIX contains latent support for OSPF as part of Cornell University’s
gated daemon.

Conformance to Internet Host Requirements A–11

0 redirects sent

A.3.1.1 Configuration Information

To configure the system to send ICMP Time Exceeded on Reassembly
messages, set the kernel variable ipsendreastimo to 1. The default for
this variable is zero (0).

To set the ipsendreastimo variable, become superuser and patch the
kernel disk image using the dbx patch command as follows:
dbx –k /vmunix
dbx version 11.0.1
Type ’help’ for help.

stopped at [thread_block:1403 ,0xfffffc000032d860] \
Source not available

(dbx) patch ipsendreastimo = 1
1
(dbx) quit

Reboot your system with the shutdown -r command to have the change
take effect. For more information, see the shutdown(8) reference page.

A.3.2 Transmission Control Protocol (RFC 1122)
The Urgent Data pointer must point to the last octet of the sequence of urgent
data (RFC 1122, Section 4.2.2.4).

RFC 793: Transmission Control Protocol contains conflicting statements
about the octet that is referenced by the urgent pointer in a sequence of
urgent TCP data. The first of these statements indicates that the urgent
pointer "points to the sequence number of the octet following the urgent
data."

RFC 1122, Section 4.2.2.4, however, indicates that the "urgent pointer points
to the sequence number of the LAST octet (not LAST + 1) in a sequence of
urgent data." This requirement reflects the second, and conflicting, definition
of the urgent pointer as described in RFC 793.

BSD has traditionally applied the first definition of the urgent pointer that
appears in RFC 793. To maximize interoperability, Digital UNIX uses the
BSD default which means that the urgent pointer points to the sequence
number of the LAST octet plus one in a sequence of urgent data. This
behavior is controlled by the tcp_urgent_42 kernel variable which
applies system-wide and therefore affects all TCP connections.

A–12 Conformance to Internet Host Requirements

A.3.2.1 Configuration Information

To configure the system to point to the last octet in a sequence of urgent
data, set the kernel variable tcp_urgent_42 to zero (0). The default for
this variable is 1.

To set the tcp_urgent_42 variable, become superuser and patch the
kernel disk image using the dbx patch command as follows:
dbx –k /vmunix
dbx version 11.0.1
Type ’help’ for help.

stopped at [thread_block:1403 ,0xfffffc000032d860] \
Source not available

(dbx) patch tcp_urgent_42 = 0
0
(dbx) quit

Reboot your system with the shutdown -r command to have the change
take effect. For more information, see the shutdown(8) reference page.

Conformance to Internet Host Requirements A–13

Index3333333333333333333333

A
address

mapping, 3–15

Address Resolution Protocol

See ARP

AdvFS, 4–8

Application Manager, 8–2

application programming interfaces

DLI, 3–18

DLPI, 3–18

sockets, 3–18

STREAMS, 3–18

XTI, 3–18

application-level protocols, 3–5

ARP, 3–15

ATM, 3–16

ATOM, 13–6

automount

NFS, 4–6

B
Berkeley Internet Name Domain

See BIND naming service

BGP, 3–6

BIND naming service

defined, 3–27

introduction, 3–27

BIND naming service (cont.)

list of distributed databases, 3–27

bootable tape, 13–8

bootp, 1–2

bootpd, 3–24

Border Gateway Protocol

See BGP

buses, supported, 6–3

EISA, 6–3

Futurebus+, 6–3

ISA, 6–3

PCI, 6–3

SCSI, 6–3

TURBOchannel, 6–3

VME, 6–3

XMI, 6–3

busy indicator, 8–2

busy light, 8–2

C
C compiler, 7–1

Calendar application, 8–2

CD-ROM File System

See CDFS

CDFS, 4–7

CI, 6–14

Clock application, 8–2

command tagged queueing, 6–10

Common Desktop Environment, 8–1

communication bridge

DLPI STREAMS pseudodriver, 3–20

ifnet STREAMS module, 3–20

Compressed Serial Line IP

See CSLIP

Computer Interconnect

See CI

configuration checklist, 12–3

configuration description file, 12–2

conformance

to RFC 1122 and 1123, A–1 to A–12

Conformance to Internet Host Requirements,

A–1

connectionless message, 3–13

CSLIP, 3–14

D
data flow

XTI and a sockets-based transport provider,

3–19

XTI and a STREAMS-based transport

provider, 3–19

Data Link Interface

See DLI

Data Link Provider Interface

See DLPI

Dataless Management Services, 13–8

dbx, 7–3

debuggers

dbx, 7–3

ladebug, 7–2

development environment, 7–1

Display Manager, 8–7

distributed naming services, 3–27

See also BIND naming service

See also NIS

distributed system services

naming services, 3–27 to 3–28

time services, 3–28 to 3–30

DLI, 3–21

DLPI, 3–21

DOMAIN, 3–5

Domain Name Protocol

See DOMAIN

Dynamic Device Recognition, 13–8

dynamic loader

See shared libraries

E
EGP, 3–6

EISA bus, 6–5

error handling, 3–15

ethernet, 3–17

exiting a session, 8–2

Extended Industry Standard Architecture

See EISA bus

See ISA bus

Exterior Gateway Protocol

See EGP

F
Fast Ethernet, 3–17

FDDI, 3–17

FDFS, 4–8

FFM, 4–8

File Descriptor File System

See FDFS

Index–2

File Manager, 8–2

file system, 4–1

CD-ROM File System, 4–7

File Descriptor File System, 4–8

File-on-File Mounting File System, 4–8

Memory File System, 4–7

Network File System, 4–3

POLYCENTER Advanced File System, 4–8

/proc File System, 4–7

UNIX File System, 4–3

Virtual File System, 4–1

File Transfer Protocol

See FTP

File-on-File Mounting File System

See FFM

FINGER, 3–10

font renderers

Font Server, 8–8

Font Server, 8–8

Front Panel

accessing Application Manager, 8–2

accessing Calendar, 8–2

accessing clock, 8–2

accessing File Manager, 8–2

accessing Help Manager, 8–2

accessing lock, 8–2

accessing Mail, 8–2

accessing Print Manager, 8–2

accessing Style Manager, 8–2

accessing Text Editor, 8–2

accessing Trash Can, 8–2

accessing workspaces, 8–2

busy light, 8–2

exiting a session, 8–2

locking a session, 8–2

pausing a session, 8–2

FTP, 3–9

Futurebus+, 6–7

G
gated daemon, 3–24

gateway, 3–6

H
HoneyDanBer, 3–26

hosts database

location of, 3–28n

I
I/O subsystem, 6–1

ICMP, 3–15

installation

cloned installation, 12–2

full installation, 12–2

update installation, 12–2

internationalization, 10–1

asort, 10–7

creating locales, 10–7

DECwindows X clients, 10–10

mail, 10–8

Motif widgets, 10–9

printing, 10–7

supported languages, 10–2

user-defined characters, 10–8

Internet

host requirements, A–1

Internet Control Message Protocol

See ICMP

Internet Protocol, 3–13

See IP

 Index–3

Internet Protocol suite

requirements for protocols, A–2, A–3

IP, 3–3

IP Multicasting, 3–13

ISA bus, 6–4

K
KDM controller, 6–14

L
ladebug, 7–2

lock mechanism, 8–2

locking a session, 8–2

Logical Storage Manager

See LSM

LSM, 4–9

M
mail

electronic, 3–26

Mail application, 8–2

Mailer application

See Mail application

mapping tables, 3–15

Memory File System

See MFS

memory mapped file support

See mmap

MFS, 4–7

mmap, 7–13

Monitoring Performance History, 13–8

Motif, 8–9

Multihead graphic support, 8–5

multiplexing, 3–12

N
name services configuration file

See svc.conf file

Name/Finger Protocol

See FINGER

naming services, 3–27

network adapters, 3–16

Network File System

See NFS

Network Information Service, 3–28

network programming environment, 3–18t

application programming interfaces, 3–18t

communication bridges, 3–18t

components, 3–18t

data link interface, 3–18t, 3–21

Network Time Protocol

See NTP

network-level protocols, 3–13

networking, 3–1

NFS, 4–3

TCP, 3–9

UDP, 3–9

NTP, 3–28

O
Open Shortest Path Routing

See OSPF

OSPF, 3–8

P
packaging, 1–2

pausing a session, 8–2

PCI bus, 6–3

PFS, 4–7

Index–4

POLYCENTER Advanced File System

See AdvFS

PPP, 3–14

Prestoserve, 4–11

dxpresto command, 4–12

Print Manager application, 8–2

/proc File System, 7–1

See PFS

/proc file system

See PFS

Q
quickstart

See shared libraries

R
RAID, 6–11, 6–7

Redundant Array of Independent Disks

See RAID

Request for Comments

See RFC

RFC

1122 and 1123

configuring to comply with, A–10 to

A–12

Digital UNIX conformance, A–1 to A–12

defined, A–1

RIP, 3–7

Routing Infomration Protocol

See RIP

Routing Protocols, 3–5

run-time libraries, 7–11

S
screend, 3–2

SCSI bus, 6–8

security, 11–1

audit, 11–1

authck, 11–5

C2 functionality and TCSEC, 11–1

discretionary access controls, 11–3

dxaccounts, 11–5, 11–6, 11–7

dxaudit, 11–7

dxdevices, 11–6, 11–7

fverify, 11–5

identification and authentication, 11–2

object reuse, 11–3

passwords, 11–2

performance, 11–7

secsetup, 11–6, 11–7

security enhancements, 11–6

system architecture, 11–4

ypcat passwd, 11–6

Serial Line IP

See PPP

See SLIP

setup utilities, 12–3

shared libraries, 7–5, 7–8

description, 7–5

dynamic loader, 7–10

quickstart, 7–10

versioning, 7–10

Simple Mail Transfer Protocol

See SMTP

Simple Network Management Protocol

See SNMP

slattach option, 3–14

SLIP, 3–14, 3–15

 Index–5

Small Computer Systems Interface

See SCSI bus

SMP, 2–1

SMTP, 3–10

SNMP, 3–11

sockets, 3–20

sockets and STREAMS frameworks

communication between, 3–20

sockets and STREAMS interaction, 3–20

sockets framework

relationship to XTI, 3–18f

STREAMS, 3–20

STREAMS framework

relationship to XTI, 3–18f

Style Manager, 8–2

svc.conf file

defined, 3–27

symmetrical multiprocessing

See SMP

SysMan Tools, 13–2

system administration, 13–1

graphical-user interface, 13–2

text-based interface, 13–4

System V Compatibility habitat, 9–1

System V Environment, 9–2

SVID compliance, 9–2f

System V functionality, 9–1

T
TCP, 3–11, 3–4

TELNET, 3–10

Telnet Protocol

See TELNET

Text Editor application, 8–2

TFTP, 3–10

Thread Independent Services, 7–12

threads, 7–12

time services

NTP, 3–28

TSP, 3–29

Time Synchronization Protocol

See TSP

token ring, 3–17

transmission control protocol

See TCP

transport-level protocols, 3–11

Trash Can application, 8–2

Trivial File Transfer Protocol

See TFTP

TSP, 3–29

TURBOchannel bus, 6–11

U
UBC, 5–2

UDP, 3–11, 3–4

UFS, 4–3

unified buffer cache

See UBC

UNIX File System

See UFS

User Datagram Protocol

See UDP

UUCP

HoneyDanBer, 3–26

system, 3–26

V
versioning

See shared libraries

Index–6

VFS, 4–1

Virtual File System

See VFS

virtual memory

See VM

VM

eager reservation policy, 5–2

external pager, 5–4

kernel memory allocator, 5–4

lazy allocation policy, 5–1

Mach mmap, 5–3

memory reclamation policy, 5–5

memory-mapped device interface, 5–3

page coloring, 5–4

page in and page out clustering, 5–3

round-robin swapping, 5–3

shared memory segments, secure, 5–3

shared text segments, 5–4

unified buffer cache, 5–2

W
windowing environment, 8–1

workspace switches, 8–2

workspaces, 8–2

X
X client libraries, 8–4

X clients, 8–9

X server, 8–4

X server extensions, 8–5

X Window System, 8–4

X11 shared libraries

description, 7–8

X/Open Transport Interface

See XTI

XDM-AUTHORIZATION-1

Display Manager, 8–8

XMI bus, 6–13

xmodmap keymap format

Display Manager, 8–7

XTI

data flow with a sockets-based transport

provider, 3–19

data flow with a STREAMS-based transport

provider, 3–19

defined, 3–18

relationship to STREAMS and sockets

frameworks, 3–18f

 Index–7

How to Order Additional Documentation3333333333333333333333
Technical Support
If you need help deciding which documentation best meets your needs, call 800-DIGITAL
(800-344-4825) before placing your electronic, telephone, or direct mail order.

Electronic Orders
To place an order at the Electronic Store, dial 800-234-1998 using a 1200- or 2400-bps
modem from anywhere in the USA, Canada, or Puerto Rico. If you need assistance using the
Electronic Store, call 800-DIGITAL (800-344-4825).

Telephone and Direct Mail Orders

Your Location Call Contact

800-DIGITALContinental USA,
Alaska, or Hawaii

Digital Equipment Corporation
P.O. Box CS2008
Nashua, New Hampshire 03061

Puerto Rico 809-754-7575 Local Digital subsidiary

Canada 800-267-6215 Digital Equipment of Canada
Attn: DECdirect Operations KAO2/2
P.O. Box 13000
100 Herzberg Road
Kanata, Ontario, Canada K2K 2A6

International ————— Local Digital subsidiary or
approved distributor

Internala ————— SSB Order Processing – NQO/V19
or
U. S. Software Supply Business
Digital Equipment Corporation
10 Cotton Road
Nashua, NH 03063-12603333333333333333333333

a For internal orders, you must submit an Internal Software Order Form (EN-01740-07).

Reader’s Comments Digital UNIX
Technical Overview

AA-QTLLA-TE3333333333333333333333
Digital welcomes your comments and suggestions on this manual. Your input will help us to
write documentation that meets your needs. Please send your suggestions using one of the
following methods:

• This postage-paid form

• Internet electronic mail: readers_comment@zk3.dec.com

• Fax: (603) 881-0120, Attn: UEG Publications, ZKO3-3/Y32

If you are not using this form, please be sure you include the name of the document, the page
number, and the product name and version.

Please rate this manual: Excellent Good Fair Poor
Accuracy (software works as manual says) 5 5 5 5
Completeness (enough information) 5 5 5 5
Clarity (easy to understand) 5 5 5 5
Organization (structure of subject matter) 5 5 5 5
Figures (useful) 5 5 5 5
Examples (useful) 5 5 5 5
Index (ability to find topic) 5 5 5 5
Usability (ability to access information quickly) 5 5 5 5
Please list errors you have found in this manual:
Page Description
33333333 33
33333333 33
33333333 33
33333333 33
33333333 33
Additional comments or suggestions to improve this manual:
333
333
333
333
333
What version of the software described by this manual are you using? 3333333333333333
Name/Title 333 Dept. 33333333333333333333
Company 33 Date 33333333333
Mailing Address 333
333333333333333333333333 Email 3333333333333333333333 Phone 33333333333333333

UEG PUBLICATIONS MANAGER

BUSINESS REPLY MAIL

 Do Not Cut or Tear − Fold Here

 Do Not Cut or Tear − Fold Here and Tape

NO POSTAGE
NECESSARY IF
MAILED IN THE
UNITED STATES

FIRST−CLASS MAIL PERMIT NO. 33 MAYNARD MA

POSTAGE WILL BE PAID BY ADDRESSEE

ZKO3−3/Y32
110 SPIT BROOK RD

TM

DIGITAL EQUIPMENT CORPORATION

NASHUA NH 03062−9987

Cut on
Dotted

Line

