
Digital UNIX33333333333333333
Developing Applications for the
Display PostScript System
Order Number: AA-Q15WB-TE

March 1996

Product Version: Digital UNIX Version 4.0 or higher

This manual introduces the Display PostScript system extension of
Digital’s Worksystem Software and describes how to develop
applications that use this extension.

33333333333333333
Digital Equipment Corporation
Maynard, Massachusetts

Digital Equipment Corporation makes no representations that the use of its products in the
manner described in this publication will not infringe on existing or future patent rights, nor
do the descriptions contained in this publication imply the granting of licenses to make, use,
or sell equipment or software in accordance with the description.

Possession, use, or copying of the software described in this publication is authorized only
pursuant to a valid written license from Digital or an authorized sublicensor.

 Digital Equipment Corporation 1989,1992,1993,1994,1996
All rights reserved.

The following are trademarks of Digital Equipment Corporation:

ALL–IN–1, Alpha AXP, AlphaGeneration, AlphaServer, AlphaStation, AXP, Bookreader,
CDA, DDIS, DEC, DEC Ada, DEC Fortran, DEC FUSE, DECnet, DECstation, DECsystem,
DECterm, DECUS, DECwindows, DTIF, MASSBUS, MicroVAX, OpenVMS,
POLYCENTER, Q–bus, StorageWorks, TruCluster, TURBOchannel, ULTRIX, ULTRIX Mail
Connection, ULTRIX Worksystem Software, UNIBUS, VAX, VAXstation, VMS, XUI, and
the DIGITAL logo.

Adobe, PostScript, and Display PostScript are registered trademarks of Adobe Systems, Inc.
UNIX is a registered trademark in the United States and other countries licensed exclusively
through X/Open Company Ltd.

All other trademarks and registered trademarks are the property of their respective holders.

Contents3333333333333333333333

About This Manual

Audience .. ix

Organization .. ix

Related Documents .. ix

Reader’s Comments ... x

Conventions .. xi

1 Introduction to the Display PostScript System

1.1 Overview of the Display PostScript System 1–1

1.2 PostScript Language Imaging Capabilities 1–1

1.3 Display PostScript System in WS .. 1–2

2 Components and Concepts

2.1 Components ... 2–1

2.1.1 PostScript Interpreter ... 2–1
2.1.2 Client Library ... 2–2
2.1.3 The Translation Program: pswrap 2–2

2.2 Concepts .. 2–2

2.2.1 Contexts .. 2–2

2.2.1.1 Execution Context .. 2–3
2.2.1.2 Text Context .. 2–3

2.2.2 Context Record and DPSContext Handle 2–3
2.2.3 Context Status .. 2–4
2.2.4 Current Context .. 2–4
2.2.5 Space .. 2–4
2.2.6 Identifiers .. 2–4
2.2.7 Coordinate Systems .. 2–5

3 Getting Started

3.1 Developing a Typical Application ... 3–1

3.2 Basic Application Requirements .. 3–4

3.3 Sample Application: examplemain .. 3–5

3.3.1 What the Sample Application Does 3–6
3.3.2 The Main Code .. 3–6
3.3.3 Source File for Wrap ... 3–9
3.3.4 Running examplemain ... 3–10

3.4 Building XDPS Applications .. 3–10

3.4.1 Including Header Files .. 3–10
3.4.2 Compiling ... 3–11
3.4.3 Linking ... 3–11
3.4.4 Invoking pswrap from a Makefile 3–11
3.4.5 Sample Makefile ... 3–12

3.5 More Sample Applications ... 3–13

3.5.1 Examples Contrasting Design Approaches 3–13
3.5.2 Running the Sample Applications 3–15

3.6 Summary of Basic Tasks .. 3–16

4 Advanced Concepts and Tasks

4.1 PostScript Language Encoding .. 4–1

4.2 Buffering and the Client Library .. 4–2

4.3 Accessing Files on the Server ... 4–2

iv Contents

4.4 Converting Coordinates .. 4–2

4.4.1 Preparing to Convert Coordinates 4–2
4.4.2 X Coordinates to User Space Coordinates 4–3
4.4.3 User Space Coordinates to X Coordinates 4–4

4.5 Resizing Windows .. 4–4

4.5.1 Window Resizing and the Clipping Path 4–4
4.5.2 Window Resizing and the User Space Origin 4–4

4.6 Synchronizing the Display PostScript System and X 4–6

4.7 Synchronizing Client and Context ... 4–7

4.8 Sharing Contexts and Spaces .. 4–7

4.9 Using Color .. 4–7

4.9.1 Converting Colors and Shades into Pixel Values 4–8
4.9.2 Defining a Color Cube and Gray Ramp 4–8

4.9.2.1 Using the Color Cube ... 4–9
4.9.2.2 Using the Gray Ramp ... 4–10

4.9.3 Rendering Colors Not in the Color Cube 4–11
4.9.4 The colorinfo Array and XStandardColormaps 4–11

5 Client Library Routines for WS

5.1 System-Specific Header File ... 5–1

5.2 X-Specific Singleops ... 5–2

5.3 Naming Conventions ... 5–4

5.4 Client Library Routine Descriptions ... 5–4

6 X-Specific Operators for WS

6.1 About the Operators .. 6–1

6.2 Operator Errors ... 6–2

6.3 Operator Descriptions .. 6–3

Contents v

Index

Examples

3-1: Sample Application: examplemain ... 3–6

3-2: Source File for Wrap Called by examplemain 3–9

3-3: Makefile for examplemain ... 3–12

4-1: Wrap Returning CTM, Its Inverse, and Current User Space Origin 4–3

5-1: Definitions of X-specific Singleops ... 5–2

Figures

1-1: Display PostScript System as Implemented in WS 1–2

2-1: X Coordinate System .. 2–5

2-2: User Space Coordinate System Used by the PostScript Language 2–6

2-3: Initial User Space Origin Offset from X Origin 2–7

3-1: Developing a Typical Application ... 3–2

3-2: Output of the examplemain Program ... 3–5

3-3: Output of the Sample Calculator Programs 3–14

4-1: Resizing a Window with NorthWest Bit Gravity 4–5

4-2: Resizing a Window with SouthWest Bit Gravity 4–6

Tables

3-1: Online Sample Programs ... 3–14

3-2: Summary of Basic Tasks ... 3–16

4-1: Default PostScript Language Encodings for XDPS 4–1

4-2: Mapping Between colorinfo Array and XStandardColormap Storing
Color Cube .. 4–12

4-3: Mapping Between colorinfo Array and XStandardColormap Storing
Gray Ramp .. 4–12

vi Contents

5-1: Arguments Used by X-Specific Singleops 5–3

5-2: Naming Conventions in the Client Library 5–4

6-1: Operands and Results for X-Specific Operators 6–2

6-2: Errors for X-Specific Operators .. 6–3

Contents vii

About This Manual3333333333333333333333
This manual introduces the Display PostScript system extension of Digital’s
Worksystem Software (WS). This manual describes the WS-specific
concepts, tasks, and facts that programmers must know to write Display
PostScript applications for WS.

This manual supplements Display PostScript system documentation written
by Adobe Systems, Inc.

Audience
This manual is intended for experienced Worksystem application
programmers who are familiar with C language programming; it assumes that
the reader is familiar with the PostScript language.

Organization
This manual comprises six chapters:

Chapter 1 Introduces the Display PostScript system and lists the capabilities it
adds to WS.

Chapter 2 Describes the main components that make up the Display PostScript
system and summarizes key concepts.

Chapter 3 Explains how to start writing applications for the Display PostScript
system and presents a simple example program.

Chapter 4 Presents advanced concepts and tasks.

Chapter 5 Describes the WS-specific header file of the Display PostScript system
Client Library and describes each WS-specific Client Library routine.

Chapter 6 Describes X-specific operators provided by WS.

Related Documents
The following books, published by Addison-Wesley Publishing Company,
Inc., help you understand the PostScript language:

• PostScript Language Reference Manual

• PostScript Language Tutorial and Cookbook

• PostScript Language Program Design

The printed version of the Digital UNIX documentation set is color coded to
help specific audiences quickly find the books that meet their needs. (You
can order the printed documentation from Digital.) This color coding is
reinforced with the use of an icon on the spines of books. The following list
describes this convention:
22
Audience Icon Color Code22
General users G Blue

System and network administrators S Red

Programmers P Purple

Device driver writers D Orange

Reference page users R Green22

Some books in the documentation set help meet the needs of several
audiences. For example, the information in some system books is also used
by programmers. Keep this in mind when searching for information on
specific topics.

The Documentation Overview, Glossary, and Master Index provides
information on all of the books in the Digital UNIX documentation set.

Reader’s Comments
Digital welcomes any comments and suggestions you have on this and other
Digital UNIX manuals.

You can send your comments in the following ways:

• Fax: 603-881-0120 Attn: UEG Publications, ZK03-3/Y32

• Internet electronic mail: readers_comment@zk3.dec.com

A Reader’s Comment form is located on line in the following location:
/usr/doc/readers_comment.txt

• Mail:

Digital Equipment Corporation
UEG Publications Manager
ZK03-3/Y32
110 Spit Brook Road

x About This Manual

Nashua, NH 03062-9987

A Reader’s Comment form is located in the back of each printed manual.
The form is postage paid if you mail it in the United States.

Please include the following information along with your comments:

• The full title of the book and the order number. (The order number is
printed on the title page of this book and on its back cover.)

• The section numbers and page numbers of the information on which you
are commenting.

• The version of Digital UNIX that you are using.

• If known, the type of processor that is running the Digital UNIX
software.

The Digital UNIX Publications group cannot respond to system problems or
technical support inquiries. Please address technical questions to your local
system vendor or to the appropriate Digital technical support office.
Information provided with the software media explains how to send problem
reports to Digital.

Conventions
The following typographical conventions are used in this manual:

. . . In syntax definitions, a horizontal ellipsis indicates that the
preceding item can be repeated one or more times.

cat(1) A cross-reference to a reference page includes the appropriate
section number in parentheses. For example, cat(1) indicates
that you can find information on the cat command in Section 1
of the reference pages.

symbol In text and examples, all directory names, file names, routine
names, PostScript operator names, and code samples appear in
this typeface.

About This Manual xi

1Introduction to the Display PostScript
System3333333333333333333333

To display or print graphics, an application must have an imaging model, a
set of rules for describing pictures and text. One of the most popular
imaging models is that of the PostScript page-description language, from
Adobe Systems, Inc. Originally developed for hardcopy output devices, such
as laser printers, the PostScript language imaging model has been adapted for
bitmap displays through Adobe’s Display PostScript system.

Digital’s implements the imaging models of the X Window System and the
Display PostScript system. WS applications can mix X and PostScript
language imaging calls, even within a single window, using a single network
connection to an X server. This manual introduces the Display PostScript
system and shows how to develop WS applications that use it.

1.1 Overview of the Display PostScript System
The Display PostScript system is software that extends the PostScript
imaging model to bitmap display systems. With the Display PostScript
system, you can design and write applications in a general-purpose language
like C, yet describe their images and text using the device-independent
PostScript imaging model.

1.2 PostScript Language Imaging Capabilities
You are probably familiar with the capabilities of X imaging. The following
capabilities are found in PostScript language imaging but not in X imaging:

• Coordinate system that can be moved, rotated, and scaled

• Bezier curves

• Device-independent color model with dithered (approximated) colors

• Text that can be scaled and rotated

• Image operators for scanned images
(scaling, rotating, transformations, gray-scale manipulation)

1.3 Display PostScript System in WS
The Display PostScript system is a system-independent client/server
architecture that can be implemented on a variety of windowing systems. In
this architecture, the server consists mainly of a PostScript interpreter, which
executes PostScript language code that displays images on a user’s screen.
The client is an application that communicates with the server through a set
of routines known as the Client Library.

WS implements the Display PostScript system as an extension to the X
Window System, on which WS is based. The Display PostScript system
server is an extension to the X server; the Client Library is an extension to
Xlib. The Display PostScript system extension of WS lets a C language
application display images in an X window by calling functions that send
PostScript language code.

Figure 1-1 shows the WS implementation of the Display PostScript system.
(For brevity, this manual often refers to this implementation as XDPS.) For
more information about how WS implements the Display PostScript system,
see Chapter 2.

Figure 1-1: Display PostScript System as Implemented in WS

PostScript
Interpreter

Client
Library

X Protocol
with
Extension
for Display
PostScript
System

X Client
Application
Written
in C

Xlib

X Drawable

X Server

ZK−0840U−R

1–2 Introduction to the Display PostScript System

To understand and use the Display PostScript system in WS, you must be
familiar with these subjects:

• The operating system

• The C programming language

• WS programming

• The PostScript language

• The system-independent aspects of the Display PostScript system

• The WS-specific aspects of the Display PostScript system

This manual describes mainly the WS-specific aspects of the Display
PostScript system.

Introduction to the Display PostScript System 1–3

2Components and Concepts3333333333333333333333
Even for WS programmers who are familiar with the PostScript language, the
Display PostScript system for WS introduces new concepts. For instance,
some familiar terms such as ‘‘client,’’ ‘‘context,’’ and ‘‘state’’ take on new
meanings.

This chapter summarizes components and concepts of the Display PostScript
system. Some of these topics are system-independent; others are system-
specific. In this manual, the term system-independent refers to components
and concepts found in all implementations of the Display PostScript system.
System-specific refers to components found in only some implementations of
the Display PostScript system and whose exact names and capabilities vary
among implementations.

The Display PostScript system for WS is the systembeing described in this
manual, so WS-specific and system-specific mean the same thing here. Note
that some WS-specific components are also X-specific: they exist only in
X-based implementations of the Display PostScript system.

This chapter emphasizes mainly WS-specific concepts and components.

2.1 Components
The Display PostScript system consists of three main components:

• PostScript interpreter

• Client Library

• The pswrap translation program

In WS, the PostScript interpreter resides on the X server; the Client Library
is linked with the X client. The client and server can reside on the same
workstation or on different workstations connected by a network.

2.1.1 PostScript Interpreter
In WS, the PostScript interpreter is an X server extension that executes
PostScript language code sent from applications. The interpreter implements
the full PostScript language, including operators for color and display. You
can imagine the PostScript interpreter as a PostScript printer. Unlike a
printer, however, the interpreter can concurrently execute several jobs.

2.1.2 Client Library
The Client Library is the set of C language routines through which
applications communicate with the PostScript interpreter. The Client Library
routines communicate with the PostScript interpreter by calling Xlib routines
and low-level Display PostScript system routines implemented as extensions
to Xlib. Note that, although there is currently no toolkit interface to Display
PostScript system itself, applications that use the system can use toolkit
interfaces to X as usual.

Note

Except where noted, the term application means a WS
application program that uses the Display PostScript system.

The Client Library routines and data structures that make up the application
programming interface to the Display PostScript system are defined in six
header files. Only one of these six files is X-specific: dpsXclient.h.
(For more information about dpsXclient.h, see Chapter 5.)

2.1.3 The Translation Program: pswrap
The pswrap translator is a program that converts procedures written in the
PostScript language into routines that can be called from applications written
in C. The converted routines are called wrapped procedures, or wraps. In
WS, pswrap is installed in the directory /usr/bin.

A special set of ready-to-call wraps is included in the Client Library; most of
these wraps send a single PostScript operator. These single-operator wrapped
procedures are called singleops. (For more information on singleops, see
Chapter 5.

2.2 Concepts
Before you can write an application that uses the Display PostScript system,
you should understand a few essential concepts. The following section
introduces those concepts.

2.2.1 Contexts
The term context is familiar to X programmers. In the Display PostScript
system, however, a context is not an X Graphic Context (GC). Instead, a
context is a destination to which an application sends PostScript language
code. A PostScript context is either an execution context or a text context.
Except where noted otherwise, the term context refers to a PostScript
context; the X Graphic Context is referred to as the GC or as the X Graphic

2–2 Components and Concepts

Context. Also, except where noted, the term context includes both execution
contexts and text contexts.

2.2.1.1 Execution Context

An execution context is a destination that executes PostScript language code
sent from an application. In WS, that destination is the PostScript interpreter
of the X server. Just as the interpreter is like a PostScript printer, an
execution context is like a print job.

In WS, a PostScript execution context is usually associated with an X
display, an X drawable, and a GC. The PostScript execution context uses
only the following fields of the GC:

clip_mask
clip_x_origin
clip_y_origin
plane_mask
subwindow_mode

The Display PostScript system in WS treats the X drawable and GC as part
of the PostScript graphics state, a data structure that defines how PostScript
operators execute.

2.2.1.2 Text Context

A text context is a destination that does not execute the PostScript language
input it receives from an application. For example, the destination might be a
text file or a WS stream, such as stdout. The destination is specified in the
text-handling routine that the application assigns when creating the text
context.

Sending PostScript language input to a text context provides a way to get a
printable copy of input that would otherwise be sent to an execution context.
This capability is particularly useful in debugging applications.

Note

In this manual, except where noted otherwise, the term input
means input to a context on the server, not to an application on
the client. Conversely, output means output from a context.

2.2.2 Context Record and DPSContext Handle
All contexts reside on the server. However, on the client, each context is
represented by a context record, whose data type is DPSContextRec.
The DPSContextRec stores the attributes of the context, for instance, the
pointer to its error-handling routine.

Components and Concepts 2–3

Applications do not access the DPSContextRec directly. Instead, when
calling Client Library routines, applications explicitly or implicitly pass a
pointer to the DPSContextRec. This pointer, or handle, is of type
DPSContext and is known as the DPSContext handle.

2.2.3 Context Status
An execution context can be in any of several states. For example, a context
might be ready to execute, or it might be waiting for PostScript language
code from the application. An application can monitor the execution state of
a context by requesting context status events from the server. A context
status event is an X event whose integer value represents the execution state
of the context: its context status. Each time the context status changes, the
server generates a context status event.

Although the server generates context status events, it does not automatically
send them. To receive context status events, an application must explicitly set
the context status mask, a data structure associated with each execution
context. (For more information about the context status mask, see the
description of the Client Library routine XDPSSetStatusMask in Chapter
5.)

2.2.4 Current Context
A typical application creates only one context. For this reason, the Display
PostScript system lets an application specify one context as the current
context. The current context is the default context for Client Library routines
that take an implicit context argument.

2.2.5 Space
On the server, each execution context has virtual memory (VM) known as a
space. In addition to the space of each execution context, there is shared
VM, which is shared among all execution contexts of a server.

If an application creates multiple contexts, it can make them share a single
space, thereby simplifying communication among them.

2.2.6 Identifiers
In WS, execution contexts and spaces are associated with X resources on the
server. For this reason, execution contexts and spaces have, in addition to
their PostScript language ID, an X resource ID (XID). Application
programmers, however, seldom need to reference these XIDs.

2–4 Components and Concepts

2.2.7 Coordinate Systems
The Display PostScript system and X both use a coordinate system for
imaging, but the coordinate system used by the Display PostScript system
differs from that used by X. This section briefly explains both coordinate
systems and explains how they interact in WS.

Each X window has a coordinate system whose origin is always the upper
left corner. From this X origin, x increases from left to right; y increases
from top to bottom, as shown in Figure 2-1.

Figure 2-1: X Coordinate System

x increasing

y increasing

[0,0] X origin

ZK−0841U−R

The origin used by the Display PostScript system is called the user space
origin. Unlike the X origin, the user space origin can be specified.

From the initial user space origin, x increases from left to right (as in X), but
y increases from bottom to top, as shown in Figure 2-2.

Components and Concepts 2–5

Figure 2-2: User Space Coordinate System Used by the
PostScript Language

[0,0]
Initial user space origin

ZK−0842U−R

y increasing

x increasing

In WS, the initial user space origin is offset from the X origin. That is,
applications specify the initial user space origin as a point in the X
coordinate system, as shown in Figure 2-3.

In this figure, an application has created a window measuring 300 x 300
pixels. The application has specified the X coordinates [0,300] (the
window’s lower left corner) as the initial user space origin. Thus, the
window’s lower left corner becomes the origin [0,0] of the user space
coordinate system.

2–6 Components and Concepts

Figure 2-3: Initial User Space Origin Offset from X Origin

x increasing

y increasing

[0,0] X origin

300 pixels

[0,300]
X coordinate=[0,0]
Initial user space origin

ZK−0843U−R

When an X window is resized, its user space origin moves according to the
bit gravity of the window. (For more information on how resizing a window
affects its user space origin, see Section 4.5.)

Components and Concepts 2–7

3Getting Started3333333333333333333333
This chapter describes the steps you follow to develop a typical application
for the Display Postscript system and explains the steps that such an
application performs. The chapter then presents a sample application.

Before reading this chapter, be sure you understand the following
components and concepts, covered in Chapter 2; if you understand these, you
are ready to start:

• PostScript interpreter

• Client Library

• The pswrap translation program

• PostScript context

3.1 Developing a Typical Application
To develop a typical application, you follow six main steps, as shown in
Figure 3-1. (Steps 3 through 5 take much less time than the others.)

1. Design the application.

2. Write the main C-language module and any custom PostScript language
procedures that the application calls.

3. Convert the custom PostScript language procedures into C-callable
routines by running the pswrap translation program.

4. Compile the C-language code with:

• The output files from pswrap

• The X header files

• The header file dpsXclient.h and any optional XDPS header
files, like dpsops.h

5. Link the resulting object file with the X libraries and with the Client
Library.

6. Run and debug the executable application.

Figure 3-1: Developing a Typical Application

LinkerXlib

DESIGN PHASE

examplewraps.pswexamplemain.c

Xlib.hdpsops.hdpsXclient.hexamplewraps.hexamplewraps.cexamplemain.c

Executable
Application

Program

 Client Library

1

2

3

4

5

6

C Compiler

pswrap
translator

ZK−0844U−R

Step 1: Design the Application

In WS, Display PostScript system applications are written in C and send
PostScript language code to a context, usually an X server. To design an
application you must make several decisions; For example, you must decide:

• Whether to code mostly in C or mostly in the PostScript language

• Whether to create one PostScript context or several

• Whether to send PostScript language code by custom wraps, by
singleops, as text, or by a combination of these methods

For a typical simple application, the following design decisions are usually
best:

3–2 Getting Started

• Code mostly in C; use the PostScript language for imaging-related tasks
only.

• Create only one PostScript context.

• Send lengthy PostScript language segments as custom wraps; send single
PostScript language statements as singleops.

A complete discussion of application design is beyond the scope of this
book. To help you see and understand how design decisions affect XDPS
applications, the WS distribution kit includes source files for several sample
applications. (For more information about these sample applications, see
Section 3.5.)

Step 2: Write Your C Code and PostScript Language Code

After you have designed your application, you write the C-language code and
the PostScript language procedures that your application sends.

It is also possible to write applications that read PostScript language code
from the user’s keyboard or from a file. For a sample program of this type,
see the program DPStest. By default, the source files for DPStest are
installed in the directory /usr/examples/dps/dpstest. (For
instructions on running the program, see Section 3.5.)

Step 3: Convert Your PostScript Language Procedures

If you have written any PostScript language procedures for your application,
you should convert them to wraps, that is, to routines that can be called from
your C-language code. To convert the PostScript language procedures, you
process them with the pswrap translation program.

For each PostScript language input file, pswrap can produce two output
files: a C-callable procedure and an associated header file.

Steps 4 and 5: Compile and Link

After you have converted your PostScript language procedures to C-callable
routines, you compile and link your source files. That is, you compile your
main C-language file with:

• The output files from pswrap

• The X header files

• The dpsXclient.h header file and, optionally, other Client Library
header files

You link your application with the Client Library and with the X libraries.
(For instructions on compiling and linking XDPS applications, see Section
3.4.)

Getting Started 3–3

Step 6: Run and Debug Your Application

You are now ready to run and debug your application.

3.2 Basic Application Requirements
All applications send PostScript language statements to a context. Typically,
the context is an execution context – in XDPS, the PostScript interpreter of
an X server. Most XDPS applications perform three main steps:

1. Initialization

2. Communication

3. Termination

Step 1: Initialization

Typically, to initialize an XDPS application, you perform three steps:

1. Establish communication with an X server, create a window, and create a
GC.

2. Create a PostScript execution context by calling an X-specific Client
Library routine such as XDPSCreateSimpleContext. (For more
information on creating contexts, see the descriptions of
XDPSCreateSimpleContext and XDPSCreateContext in
Chapter 5.)

3. Perform any additional X-specific initialization, such as mapping the
window.

Step 2: Communication

After initializing, most XDPS applications call custom wraps, singleops, or
other Client Library routines to send text and PostScript language statements
to a context. For example, to send information to a context, an application
might either call a custom wrap or call one of two Client Library routines:
DPSWritePostScript (for PostScript language statements) or
DPSWriteData (for data).

To process text or errors from a context, the Client Library calls the text-
handling routine or error-handling routine that the application assigned when
creating the context. The Client Library defines a default text-handling
routine (DPSDefaultTextBackstop) and a default error-handling
routine (DPSDefaultErrorProc). Although these routines are called
default routines, to use them you must specify them explicitly when creating
a context. (For more information on the default routines, see their
descriptions in Chapter 5.)

3–4 Getting Started

Step 3: Termination

Terminating a typical XDPS application is like terminating any other typical
X application. When you terminate an application, the X Window System
destroys the application’s contexts, their spaces, and any other X resources
belonging to the application.

3.3 Sample Application: examplemain
This section presents examplemain, a simple program that shows the
fundamentals of XDPS programming. The program uses the Display
PostScript system to paint a shaded square in a window of the user’s screen,
as shown in Figure 3-2.

Figure 3-2: Output of the examplemain Program

ZK−0839U−R

The examplemain program uses the Xlib interface to X, calls a custom
wrap to pick the shade of gray for painting, and calls a Client Library single-
operator procedure to do the actual painting.

Getting Started 3–5

3.3.1 What the Sample Application Does
The sample application examplemain performs the following operations:

1. Connects the client to an X server with XOpenDisplay.

2. Creates a window with XCreateSimpleWindow.

3. Selects X event types Expose and ButtonPress with XSelectInput.

4. Creates a Display PostScript execution context with
XDPSCreateSimpleContext, using the default text handler, the
default error handler, and the default GC.

5. Displays the window with XMapWindow.

6. Chooses the shade of gray for painting, with a custom wrapped PostScript
language procedure named ChooseGray.

7. Sets the shade of gray with DPSsetgray, a singleop from the Client
Library.

8. Paints a gray square with the singleop DPSrectfill each time an
Expose event is received, and exits when a ButtonPress event is received.

9. Destroys the context and space with DPSDestroySpace, then closes
the display connection and exits.

Unlike a more complete application, examplemain does not handle
resizing of the X window. (For information about window resizing in XDPS
applications, see Section 4.5.)

3.3.2 The Main Code
Example 3-1 is a complete listing of examplemain.c, the main C
language file of the sample application.

Example 3-1: Sample Application: examplemain

/*
* examplemain.c -- Simple X application that uses the DPS
* system to draw a shaded square in a window, then exits
* when the user clicks the mouse.
*/

#include <stdio.h>

#include <Xlib.h> /* Standard X Window C-lang library */
#include <dpsXclient.h> /* X interface to DPS Client Library */
#include <dpsops.h> /* Declarations of singleops */

#include "examplewraps.h" /* Interface to wrapped PS lang code*/

main ()

3–6 Getting Started

Example 3-1: (continued)
{

Display *dpy; /* An X display */
Window window; /* A window of the X display */
DPSContext context; /* A single PostScript context */
float grayLevel; /* The shade of gray for the square */
XEvent event; /* An X event */
void TextOut(); /* Forward declaration */
void FatalError(); /* Forward declaration */
/*
* Open a connection to the X display specified in the arg
* to the XOpenDisplay routine. The NULL argument causes
* XOpenDisplay to open a connection to the display specified
* by the DISPLAY variable of the user’s environment.
*/
dpy = XOpenDisplay(NULL);
/*
* If unable to open the display, return an error message and
* exit immediately.
*/
if (dpy == NULL)

FatalError("Can’t open display.0);
/*
* Create a window on the X display. When mapped, the
* window will be 10 pixels from the left edge and 20 pixels
* from the upper edge. The window will be 800 pixels high
* by 800 pixels wide, with a black border 1 pixel wide
* and a white background.
*/
window = XCreateSimpleWindow(dpy, DefaultRootWindow(dpy),

10, 20, 800, 800, 1,
BlackPixel(dpy, DefaultScreen(dpy)),
WhitePixel(dpy, DefaultScreen(dpy)));

/*
* Select the X event types that the window accepts from
* the X server. The window accepts Expose events and
* ButtonPress events.
*/
XSelectInput(dpy, window, ExposureMask | ButtonPressMask);
/*
* Create a PostScript execution context to draw in the window.
* The origin of the context’s coordinate grid is the point
* (0, 800) of the window. The origin is therefore the bottom
* left corner of the window (the typical origin for a
* PostScript context).
*/
context = XDPSCreateSimpleContext(dpy, window,

DefaultGC(dpy, DefaultScreen(dpy)),
0, 800,
TextOut, DPSDefaultErrorProc, NULL);

/*
* If unable to create the context, return an error message
* and exit immediately.
*/

Getting Started 3–7

Example 3-1: (continued)
if (context == NULL)

FatalError("DPS refused to create a context.0);
/*
* Map the window--that is, make it appear on the display.
* The window will appear only after the window manager of
* the X server is free to process the mapping request.
* When the window appears, the context receives an Expose
* event as notification.
*/
XMapWindow(dpy, window);
/*
* Generate a random number that corresponds to the shade
* of gray (the graylevel) to be used when painting.
* To generate this number, call the ChooseGray routine,
* which is exported from the examplewraps.c file.
* ChooseGray sends wrapped PostScript language code to
* the context, which then executes the code.
*/
ChooseGray(context, &grayLevel);
/*
* Set the current graylevel to the shade of gray chosen by
* ChooseGray. Setting the graylevel does not cause any
* painting; so you can set the graylevel even if the window
* has not yet appeared.
*/
DPSsetgray(context, grayLevel);
/*
* Wait for events from the X server; process each one
* received. For each Expose event, paint the same gray square
* in the same place on the display. To do this, call the
* DPSrectfill routine, a single-operator wrapped procedure
* declared in dpsops.h, a DPS Client Library header file.
* The bottom left corner of the square is 100 points above
* the origin and 100 points to the right of it. Each side of
* the square is 300 points.
*
* When a ButtonPress event is received, exit the
* event-processing loop.
*/
for (;;) {

XNextEvent(dpy, &event);
if (event.type == Expose) {

DPSrectfill(context, 100.0, 100.0, 300.0, 300.0);
} else if (event.type == ButtonPress) {

break;
}

}
/*
* Exit in an orderly manner. First, destroy the context by
* destroying its space (its memory). Next, destroy
* the window. Finally, close the connection to the X display.
*/
DPSDestroySpace(DPSSpaceFromContext(context));

3–8 Getting Started

Example 3-1: (continued)
XDestroyWindow(dpy, window);
XCloseDisplay(dpy);

}
/*
* Output procedure for plain text messages from the context.
* Output is sent directly to standard error.
*/

void TextOut(context, buffer, count)
DPSContext context;
char *buffer;
unsigned count;

{
fwrite(buffer, 1, count, stderr);
fflush(stderr);

}
/*
* Error procedure. The application has encountered an error
* from which it cannot recover, so exit immediately.
*/

void FatalError(msg)
char *msg;

{
fprintf(stderr, msg);
exit(1);

}

3.3.3 Source File for Wrap
Example 3-2 is a complete listing of examplewraps.psw, the PostScript
language source file for the wrapped procedure called by the sample
application examplemain.

Processing examplewraps.psw with the pswrap translator produces two
output files: examplewraps.c and examplewraps.h. These output
files must then be compiled with examplemain.c.

Example 3-2: Source File for Wrap Called by examplemain

/*
* examplewraps.psw -- source file for wrapped PostScript
* language procedure
*
* This is an example of PostScript language code to be converted
* to Client Library calls by pswrap.
*
* This PostScript language routine, ChooseGray, generates a random
* number that corresponds to the graylevel (shade of gray) to be
* used when the Display PostScript system paints. Note that the
* PostScript operator rand always generates the same sequence of
* random numbers. So each time the program examplemain runs,
* ChooseGray chooses the same graylevel.

Getting Started 3–9

Example 3-2: (continued)
*/

defineps ChooseGray (DPSContext ctx| float *result)
rand % Pick a random number between 0 and 2^31 - 1.
2 31 exp % 2^31
div % Random number between 0.0 and 1.0
result % Return result.

endps

3.3.4 Running examplemain
By default, all the program-specific files needed to compile, link, and run
examplemain are installed in the /usr/examples/dps/gray-
square directory of your system. For instructions on compiling and linking,
see Section 3.4.

3.4 Building XDPS Applications
After you code an application, you build it by compiling and linking it. The
following sections describe how to build an application, assuming that you
are using the WS make utility. (For more information, see the make(1)
reference page.)

Section 3.4.5 includes a complete makefile for the examplemain program
presented in Section 3.3.2.

3.4.1 Including Header Files
Before building an XDPS application, make sure that the main source
module includes the appropriate X header files and the WS-specific Client
Library header file, dpsXclient.h.

The dpsXclient.h file is the only Client Library header file that all
XDPS applications must include. It, in turn, includes all other Client Library
header files, except psops.h, dpsops.h, and dpsexcept.h.

If your application calls singleops, you should also include psops.h or
dpsops.h, or both, depending on which defines the singleops that your
application calls. If your application uses the exception handling capability of
the Display PostScript system, you must also include dpsexcept.h. (Not
to be confused with error handling; exception handling is an advanced
capability that few applications require.)

3–10 Getting Started

3.4.2 Compiling
You compile the main C-language module of your XDPS application with:

• The X header files—for example, Xlib.h

• The dpsXclient.h header file

• The psops.h and dpsops.h header files (if application calls
singleops)

• The output files from pswrap (if application calls custom wraps)

The Display PostScript system header files (among them, dpsXclient.h,
psops.h, and dpsops.h) are installed in the directory
/usr/include/DPS. To automatically include these files at compilation,
add the following statement to your makefile:
CFLAGS = -I/usr/include/DPS

The option -I/usr/include/DPS causes the Workstation Software C
compiler to search for include files in /usr/include/DPS.

3.4.3 Linking
You link your XDPS application with the following libraries, in the order
listed:
22
Library Linker Option22
Client Library -ldps

Xlib extensions for Display PostScript system -lXext

DECwindows toolkit library -ldwt

Xlib library -lX11

Workstation Station math library -lm22

3.4.4 Invoking pswrap from a Makefile
Your makefile can automatically convert PostScript language procedures to
C-callable routines by running the pswrap translation program. For
example, if the PostScript language procedures have file names ending in
.psw, the following make statements convert the procedures automatically:

Getting Started 3–11

.SUFFIXES: $(.SUFFIXES) .psw .h

.psw.o: $*.psw
${PSWRAP} -o $*.c $*.psw
$(CC) $(CFLAGS) -c $*.c
rm $*.c

.psw.h: $*.psw
${PSWRAP} -h $*.h $*.psw > /dev/null

3.4.5 Sample Makefile
Example 3-3 shows a complete Makefile that builds the examplemain
program presented earlier in this chapter.

Example 3-3: Makefile for examplemain

@(#)Makefile 1.5 9/2/88

DESTDIR=
EXAMPLETOPDIR=${DESTDIR}/usr/examples/dps
EXAMPLESUBDIR=${EXAMPLETOPDIR}/gray-square

INSTALLLIST = Makefile examplemain.c *.psw

OBJS = examplemain.o examplewraps.o

PSWRAP= ${DESTDIR}/usr/bin/pswrap

.SUFFIXES: $(.SUFFIXES) .psw .h

.psw.o: $*.psw
${PSWRAP} -o $*.c $*.psw
$(CC) $(CFLAGS) -c $*.c
rm $*.c

.psw.h: $*.psw
${PSWRAP} -h $*.h $*.psw > /dev/null

.SUFFIXES: .uil .uid

CFLAGS = -g -I${DESTDIR}/usr/include/X11 \
-I${DESTDIR}/usr/include/DPS \
-I${DESTDIR}/usr/include -I.

LIBS = ${DESTDIR}/usr/lib/libdps.a \
${DESTDIR}/usr/lib/libXext.a \
${DESTDIR}/usr/lib/libdwt.a \
${DDIFROOT}/usr/lib/libddif.a \
${DESTDIR}/usr/lib/libX11.a \
-lm

all: examplemain

examplemain: $(OBJS)

3–12 Getting Started

Example 3-3: (continued)
$(CC) -o examplemain $(OBJS) $(LIBS)

examplemain.o: examplemain.c examplewraps.h

clean:
rm -f *.o examplemain examplewraps.[ch] #* *~ core

clobber: clean
-rm -f *

relink::
rm -f examplemain

relink:: all

3.5 More Sample Applications
In addition to examplemain, the WS software includes source listings of
several other sample XDPS applications.

3.5.1 Examples Contrasting Design Approaches
WS includes source listings and makefiles for four related sample programs:
calc0, calc1, calc2, and calc3. Each of these sample programs is an
implementation of the same application: a desktop calculator. Although all
four programs present a similar user interface (shown in Figure 3-3), the
source code of each program shows a different approach to XDPS application
design.

Getting Started 3–13

Figure 3-3: Output of the Sample Calculator Programs

E

clr 7 8 9 /

4 5 6 X

1 2 3 −

0 +

calc0

ZK−0838U−R

For the location of the sample calculator programs, see Table 3-1, which lists
and describes the sample Display PostScript system applications included in
WS.

Table 3-1: Online Sample Programs
22
Program Name Description Location22
calc0 Calculator coded mainly

in C, with one window
and one context

/usr/examples/dps/calc0

calc1 Calculator coded mainly
in the PostScript
language, with one
window and one context

/usr/examples/dps/calc1

calc2 Calculator coded mainly
in C, with multiple
windows and one context

/usr/examples/dps/calc2

3–14 Getting Started

Table 3-1: (continued)
22
Program Name Description Location22
calc3 Calculator coded mainly

in C, with multiple
windows, multiple
contexts, and intercontext
communication

/usr/examples/dps/calc3

DPStest Executes PostScript
language statements
entered from the keyboard

/usr/examples/dps/dpstest

examplemain Displays a gray square
generated from a custom
wrap and a singleop

/usr/examples/dps/gray-
square

psclock An implementation of
xclock that uses the
Display PostScript system

/usr/examples/dps/psclock

psdraw A graphic editor that
paints PostScript language
images; a complex sample
application

/usr/examples/dps/psdraw

pyro Displays fireworks
generated from custom
wraps

/usr/examples/dps/pyro

22

3.5.2 Running the Sample Applications
To run a sample application, you must first build it by following these steps:

1. Log on to your system and find the subdirectory where the sample
application is stored.

2. Copy the entire contents of that subdirectory to a subdirectory in your
account. (Note that the sample programs calc0, calc1, calc2, and
calc3 must be copied to sibling directories, that is, to subdirectories at
the same level of the file system.)

3. Set your working directory to the subdirectory that received the copies in
Step 2.

4. Invoke the WS make utility by entering the command make at the
system prompt. The make utility compiles and links the program. (Note
that for the sample application psdraw, you must enter make
install instead of make. For information, see the make(1) reference
page.

Getting Started 3–15

You can then run the program by entering its name at the system prompt.
(For more information on building XDPS applications, see Section 3.4.)

3.6 Summary of Basic Tasks
Table 3-2 lists common XDPS programming tasks, shows the operators (in
bold type), and Client Library routines for performing each task.

Table 3-2: Summary of Basic Tasks
22
Task Associated Routines and Operators22
Create an execution context XDPSCreateSimpleContext or

XDPSCreateContext

Create a text context XDPSCreateTextContext

Use the default text handler DPSDefaultTextBackstop

Use the default error handler DPSDefaultErrorBackstop

Find the space of a context DPSSpaceFromContext

Find the default user space origin currentXoffset

Set the default user space origin setXoffset

Find the GC of a context currentXgcdrawable

Set the GC of a context setXgcdrawable

Restart a context DPSResetContext

Find the current drawable currentXgcdrawable

Set the current drawable setXgcdrawable

Convert between PostScript
language IDs and XIDs

XDPSXIDFromContext
XDPSXIDFromSpace
XDPSContextFromXID
XDPSSpaceFromXID

Destroy a space DPSDestroySpace

Destroy a context DPSDestroyContext22

3–16 Getting Started

4Advanced Concepts and Tasks3333333333333333333333
In Chapter 2 and Chapter 3 you learned the basic concepts and tasks you
need to write simple applications using XDPS. To write more complex
applications, however, you need the additional concepts and tasks described
in this chapter.

4.1 PostScript Language Encoding
In XDPS, PostScript language code can be sent to a context in three
encodings: as a binary object sequence, as binary-encoded tokens, or as
ASCII text. Each PostScript context has two encoding parameters:
DPSProgramEncoding and DPSNameEncoding.

XDPS uses default values for the encoding parameters, so application
programmers can usually ignore encoding. Table 4-1 shows the default
values for the encoding parameters.

Table 4-1: Default PostScript Language Encodings for XDPS
22
Context Type Encoding Parameter Default Value22
execution DPSProgramEncoding Binary object

sequence
(dps_binObjSeq)

execution DPSNameEncoding User name index
(dps_indexed)

text DPSProgramEncoding ASCII characters
(dps_ascii)

text DPSNameEncoding User name string
(dps_string)22

XDPS lets you change the encoding parameters of a context to any of the
three possible encodings. To change the encoding parameters, use the Client
Library routine DPSChangeEncoding, described in Chapter 5.

4.2 Buffering and the Client Library
In most implementations of the Display PostScript system, the Client Library
buffers its communications with the Display PostScript server. But in XDPS,
the Client Library communicates with the server by way of Xlib, which
buffers its own communication. To avoid duplicate buffering, the XDPS
Client Library performs no internal buffering. Instead, all buffering of Client
Library communication occurs in Xlib. As a result, the XDPS Client Library
routine DPSFlushContext performs the same tasks as the Xlib procedure
XFlush.

4.3 Accessing Files on the Server
To preserve security on servers, XDPS lets applications access only certain
files stored on the server. Specifically, XDPS lets applications access only
files stored in two directories referred to here as tempdir and permdir.

The tempdir directory is temporary: its contents are deleted each time the
XDPS server is started or reset, such as when the user logs out. In contrast,
permdir is a permanent directory: resetting and restarting does not affect
its contents. Applications can both read from tempdir and write to it.
Applications can only read from permdir; they cannot write to it.

To specify a file stored in tempdir, an application must prefix the filename
with %temp%. To specify a file in permdir, an application must use the
prefix %perm%. If a filename is preceded by neither %temp% nor %perm%,
XDPS searches for the file first in tempdir and then in permdir. XDPS
does not let applications access file names that include a slash (/), a bracket
([), or a colon (:).

By default, tempdir is the directory /usr/lib/DPS/tempdir;
permdir is /usr/lib/DPS/permdir. You can, however, assign other
directory names. To do so, specify those names in the XDPS server startup
command.

4.4 Converting Coordinates
The X Window System and the PostScript language use different coordinate
systems to specify points within the drawing area. As a result, XDPS
applications sometimes need to convert user space coordinates (used by the
PostScript language) into X coordinates, and vice versa.

4.4.1 Preparing to Convert Coordinates
Before converting coordinates, an application should create a context and
perform the following steps:

4–2 Advanced Concepts and Tasks

1. Perform any user space transformations.

2. Get the current transformational matrix (CTM), its inverse, and the X
coordinates of the current user space origin.

3. Store these values in the VM associated with the context.

The application can then perform coordinate conversions for the context.

To get the CTM, its inverse, and the X coordinates of the current user space
origin, an application can call a custom wrap such as PSWGetTransform,
whose pswrap source file is shown in Example 4-1.

Example 4-1: Wrap Returning CTM, Its Inverse, and Current User
Space Origin

defineps PSWGetTransform(DPSContext ctxt | float ctm[6], invctm[6];
int *xOffset, *yOffset)

matrix currentmatrix dup ctm
matrix invertmatrix invctm
currentXoffset exch xOffset yOffset

endps

The following C language code calls PSWGetTransform:
DPSContext ctxt;
float ctm[6], invctm[6];
int xOffset, yOffset;
PSWGetTransform(ctxt, ctm, invctm, &xOffset, &yOffset);

4.4.2 X Coordinates to User Space Coordinates
To convert an X coordinate into a user space coordinate, an application can
execute the following C language code:
#define A_COEFF 0
#define B_COEFF 1
#define C_COEFF 2
#define D_COEFF 3
#define TX_CONS 4
#define TY_CONS 5
int x,y; /* X coordinate */
float ux, uy; /* user space coordinate */

x -= xOffset;
y -= yOffset;
ux = invctm[A_COEFF] * x + invctm[C_COEFF] * y + invctm[TX_CONS];
uy = invctm[B_COEFF] * x + invctm[D_COEFF] * y + invctm[TY_CONS];

Advanced Concepts and Tasks 4–3

4.4.3 User Space Coordinates to X Coordinates
To convert a user space coordinate into an X coordinate, an application can
execute the following C language code:
x = ctm[A_COEFF] * ux + ctm[C_COEFF] * uy + ctm[TX_CONS] + xOffset;
y = ctm[B_COEFF] * ux + ctm[D_COEFF] * uy + ctm[TY_CONS] + yOffset;

4.5 Resizing Windows
An application or user can resize the window in which XDPS paints.
Resizing can affect two PostScript language settings, the clipping path and
the user space origin, as described in the following sections.

4.5.1 Window Resizing and the Clipping Path
PostScript language painting occurs only within the area known as the
clipping path. When initializing a context, XDPS sets the clipping path
equal to the size of the window. If the window is resized, however, XDPS
does not reset the clipping path. Instead, each time the window is resized, the
application should execute the PostScript language operator initclip,
which reinitializes the clipping path to match the window’s new size. The
application can then reexecute any code that performs further clipping.

4.5.2 Window Resizing and the User Space Origin
When an application resizes the window of a context, the user space origin
moves according to the bit gravity of the window. Bit gravity is an X
window attribute that governs how partial window contents are preserved
when a window is resized. (Bit gravity is not to be confused with window
gravity, an X attribute that does not affect the user space origin.) In X,
specifying the bit gravity of a window is optional: the default value is
ForgetGravity. XDPS treats ForgetGravity as NorthWest
gravity.

Because a window’s user space origin moves according to the window’s bit
gravity, resizing does not change the distance between the user space origin
and any PostScript language images already displayed. Because this distance
is unchanged, future PostScript language images align with those already
displayed.

Compare Figure 4-1 and Figure 4-2. The left side of Figure 4-1 shows a
window displaying the text ‘‘NorthWest.’’ As shown, the user space origin
is the window’s lower left corner, and the bit gravity is NorthWest.

The right side of the figure shows the same window after resizing. Notice
that the user space origin (and hence the displayed text) remains a constant
distance from the window’s upper left corner: its ‘‘NorthWest’’ corner.

4–4 Advanced Concepts and Tasks

Figure 4-1: Resizing a Window with NorthWest Bit Gravity

User space origin

Resize To . . .

ZK−0845U−R

NorthWest NorthWest

User space origin

In Figure 4-2, the size of the window on the left and the position of its text
are the same as in Figure 4-1. Also the same is the user space origin: the
lower left corner. In Figure 4-2, however, the bit gravity is SouthWest.
Therefore, when the window is resized, the user space origin and displayed
text remain a constant distance from the window’s lower left corner: its
‘‘SouthWest’’ corner.

Advanced Concepts and Tasks 4–5

Figure 4-2: Resizing a Window with SouthWest Bit Gravity

User space origin

Resize To . . .

User space origin

SouthWest

SouthWest

ZK−0846U−R

The user space origin is typically the lower left corner of the drawing space.
For this reason, typical XDPS applications should explicitly set the bit
gravity of windows to SouthWest.

4.6 Synchronizing the Display PostScript System and X
X imaging calls complete atomically. Therefore, XDPS applications need not
take special precautions when issuing X imaging calls before PostScript
language imaging calls. PostScript contexts, however, complete
nonatomically and asynchronously within the X server. Thus, when an
application issues X imaging calls immediately after issuing PostScript
language calls, the X calls can sometimes execute before the PostScript
language calls. That is, it is possible for X and the Display PostScript system
to become unsynchronized.

Few applications need to synchronize the Display PostScript system and X
explicitly. To do so, an application can call the Client Library routine
DPSWaitContext before issuing the X imaging calls that follow
PostScript language calls. DPSWaitContext forces the PostScript
language calls to complete before the X calls. Note that DPSWaitContext
causes a round trip to the server. Such trips impair performance, so call
DPSWaitContext only when needed.

4–6 Advanced Concepts and Tasks

4.7 Synchronizing Client and Context
Applications, or clients, sometimes need to pause the execution of a context.
Pausing a context lets an application take control when the PostScript
interpreter reaches certain points within a PostScript language procedure.

To pause a context, an application sends the system-specific PostScript
language operator clientsync. The clientsync operator causes a
context to enter the FROZEN state. The context remains in that state until the
application calls the Client Library routine XDPSUnfreezeContext. (For
more information on clientsync, see its description in Chapter 6. For a
description of XDPSUnfreezeContext, see Chapter 5.)

4.8 Sharing Contexts and Spaces
Although the XDPS Client Library lets applications share contexts and
spaces, it does not coordinate the sharing. Instead, the applications
themselves must coordinate any sharing of resources.

The sharing applications must avoid race conditions and deadlocks. In
addition, if one application obtains the XID of a resource created by another,
the application that obtained the XID must create records and handles to
access the shared resource through the Client Library.

A context or space cannot be destroyed while shared. If such a resource is
shared, the routines DPSDestroyContext and DPSDestroySpace
destroy the client data structures created to access the shared resource but do
not destroy the resource itself. After a resource is no longer shared, an
application can destroy it by calling DPSDestroyContext or
DPSDestroySpace.

4.9 Using Color
In XDPS, the Display PostScript system paints colors and gray shades on an
X server. An X server can render only a finite number of exact colors and
shades simultaneously; it represents each as a pixel value. In contrast, the
PostScript language represents colors and shades not as pixel values but as
‘‘pure’’ colors and ‘‘pure’’ shades, without regard for whether the output
device can render them exactly. As a result, to paint on an X display, a
PostScript context must first find whether there is a pixel value that matches

Advanced Concepts and Tasks 4–7

the pure color or shade specified by the PostScript language.

4.9.1 Converting Colors and Shades into Pixel Values
To find the pixel value that matches a particular color or shade, a context
searches the color cube or gray ramp. The color cube and gray ramp
specify pixel values that correspond to a subset of all possible pure colors
and shades.

The color cube defines a set of colormap cells whose values form a series of
color ramps (progressive changes in color). Each axis of the color cube
represents one of three hues: red, green, or blue (r/g/b); all displayed colors
are composites of these hues. Values along the axes of the cube represent
intensity of hue and increase from 0% to 100% of the displayed color. Note
that the color cube is not a cube in the strict sense of the word: the axes
need not have the same ‘‘length,’’ that is, the same number of values.

The gray ramp defines a set of colormap cells whose values form a single
color ramp of gray shades. Values along the gray ramp represent comparative
intensities of black and white. Along the ramp, the intensity of white
increases from 0% to 100%.

If the color cube or gray ramp contains a pixel value that exactly matches the
specified pure color or shade, the context uses the pixel value to paint the
pure color or shade. Otherwise, the context approximates the color or shade
by dithering, by painting a pattern of colors or gray shades from its color
cube or gray ramp.

4.9.2 Defining a Color Cube and Gray Ramp
When creating a context, an application must allocate and define a color cube
and gray ramp. If the application defines no color cube, the context renders
colors by dithering from the gray ramp. If the application defines neither a
color cube nor a gray ramp, the context cannot paint.

Typically, applications create contexts by calling
XDPSCreateSimpleContext. This routine allocates and defines a color
cube and gray ramp using the XStandardColormap structures
RGB_DEFAULT_MAP and RGB_GRAY_MAP. If these structures do not exist,
XDPSCreateSimpleContext allocates them. To allocate and define a
different color cube and gray ramp, an application can use either of two
methods:

• Create the context by calling XDPSCreateContext.

• Create the context by calling either XDPSCreateSimpleContext or
XDPSCreateContext, then use the X-specific operator
setXgcdrawablecolor to redefine the color cube and gray ramp.

4–8 Advanced Concepts and Tasks

To allocate and define a color cube and gray ramp, an application performs
the following steps:

1. Call XCreateColormap to create a colormap. (This optional step is
needed only if the application does not use the default colormap.)

2. Call XAllocColorCells to allocate the colormap cells needed to
store the color cube and gray ramp.

3. Call XStoreColors to store a color for each pixel value in the color
cube and gray ramp.

4. Call XDPSCreateContext to create a context and pass the
XStandardColormap structures describing the color cube and gray
ramp.

The following sections describe how XDPS uses the color cube and gray
ramp, referring to the following elements of the color cube and gray ramp:

maxred redmult
maxgreen greenmult
maxblue bluemult
maxgrays graymult
firstgray firstcolor
colormapid

These names are the same as those used for elements of the colorinfo
array, which is accessed by the X-specific operators
setXgcdrawablecolor and currentXgcdrawablecolor. (For
more information, see the description of these operators in Chapter 6.)

4.9.2.1 Using the Color Cube

To render an exact color, XDPS searches the colormap for the pixel value
matching the r/g/b value specified in the color cube. Conceptually, the color
cube is three-dimensional; the colormap, however, is conceptually one-
dimensional. Thus, to find the pixel value that matches an r/g/b value, XDPS
uses the following formula:

PixelValue = r * redmult + g * greenmult + b * bluemult +
firstcolor

In this formula, r, b, and g are integers. The integer r is in the range [0;
maxred]; g is in the range [0; maxgreen]; and b is in the range [0;
maxblue].

Advanced Concepts and Tasks 4–9

A color cube must start at pixel firstcolor in the X colormap
colormapid. Along the red, green and blue axes of the cube, values
should increase from zero to the maximum values for each axis. For
example, one common color allocation is 3/3/2 (three reds, three greens, and
two blues). This allocation results in the following maximum value for each
hue:

maxred = 2
maxgreen = 2
maxblue = 1

In the colorinfo array, the elements redmult, greenmult, and
bluemult are the scale factors that determine the spacing of the cube in the
linear colormap. For the 3/3/2 color cube mentioned earlier, appropriate
values might be:

redmult = 32
greenmult = 4
bluemult = 1

Note

In an empty color cube, maxred, maxgreen, and maxblue
each equal -1, not zero.

4.9.2.2 Using the Gray Ramp

The gray ramp must start at pixel firstgray in XStandardColormap
colormapid. To find the pixel value that matches a gray value, XDPS
uses the following formula, where gray is an integer in the range [0;
maxgrays]:

PixelValue = gray * graymult + firstgray

For example, suppose you want to define a 5-cell gray ramp whose values
increase from 0% to 100% in steps of 20%. If the corresponding five
colormap entries are contiguous, you can describe the map by setting
maxgray to 4 and graymult to 1.

A gray ramp must consist of at least two cells: one for black, one for white.
If the colormap is associated with the default visual type, you can use the
following values to form a 2-cell gray ramp consisting of BlackPixel and
WhitePixel:

maxgrays = 1
graymult = WhitePixel– BlackPixel
firstgray = BlackPixel

4–10 Advanced Concepts and Tasks

4.9.3 Rendering Colors Not in the Color Cube
By default, XDPS dithers to render any color not in the color cube. To
render such an additional color exactly, an application must cause the X
server to allocate a colormap cell for the additional color.

To control whether additional colors are rendered exactly or by dithering, an
application can set the actual element of the colorinfo array. The
actual element specifies the maximum number of additional colormap cells
that the server attempts to allocate. Thus, it limits the number of additional
colors that the server attempts to render exactly.

If actual is nonzero, the server attempts to allocate a colormap cell for
each additional color until it has allocated actual cells. After actual
cells have been allocated, the server renders any future additional colors by
dithering. If actual equals zero, the server dithers to render all colors not
found in the color cube.

To override the maximum set by actual, an application can use the X-
specific operator setrgbXactual.

Note

XDPS does not limit the number of colormap cells that one
context or one application can allocate.

4.9.4 The colorinfo Array and XStandardColormaps
The color cube and gray ramp are passed to XDPSCreateContext as
XStandardColormap structures. Table 4-2 and Table 4-3 show how the
entries in these XStandardColormap structures correspond to elements in
the colorinfo array.

Advanced Concepts and Tasks 4–11

Table 4-2: Mapping Between colorinfo Array and
XStandardColormap Storing Color Cube

222
colorinfo Element XStandardColormap Element222
maxred red_max

redmult red_mult

maxgreen green_max

greenmult green_mult

maxblue blue_max

bluemult blue_mult

firstcolor base_pixel222

Table 4-3: Mapping Between colorinfo Array and
XStandardColormap Storing Gray Ramp

222
colorinfo Element XStandardColormap Element222
maxgrays red_max

graymult red_mult

firstgray base_pixel

colormapid colormap222

4–12 Advanced Concepts and Tasks

5Client Library Routines for WS3333333333333333333333
The Client Library is the set of C language routines by which XDPS
applications access a server, that is, the PostScript interpreter of an X server.
The Client Library includes routines that create, communicate with, and
destroy PostScript contexts on the server.

Most Client Library routines are common to all windowing systems that
implement the Display PostScript system. But for any particular windowing
system, such as X, additional routines and data structures must be added to
the Client Library.

This chapter describes WS-specific routines and data structures that have
been added to the Client Library.

For the rest of this chapter, except where noted, the term ‘‘Client Library’’
refers to the Display PostScript system Client Library as implemented in WS.

The Client Library routines are defined in six C-language header files:

• dpsclient.h

• dpsfriends.h

• dpsexcept.h

• dpsops.h

• psops.h

• dpsXclient.h

The first five of these files are common to all implementations of the Display
PostScript system. The sixth file, dpsXclient.h, is specific to XDPS and
is described in the following section.

5.1 System-Specific Header File
The header file dpsXclient.h defines the system-specific Client Library
routines and data structures of XDPS. Like the other Display PostScript
system header files, dpsXclient.h is located in the directory
/usr/include/DPS. The dpsXclient.h file is the only Client
Library header file that all XDPS applications must include.

5.2 X-Specific Singleops
The Client Library includes a set of routines called singleops (single-operator
wrapped procedures). Each singleop sends one or more operators to a
context. For instance, the singelop PSshowpage sends operator
showpage.

For each operator, the Client Library defines two singleops: one takes an
implicit context argument (always the current context); the other takes an
explicit context argument. For example, the Client Library contains the
singleops PSshowpage and DPSshowpage. Although both singleops
execute the operator showpage, PSshowpage takes an implicit context
argument; DPSshowpage takes an explicit one.

Implicit-context singleops are defined in the header file psops.h; explicit-
context singleops are defined in dpsops.h. If your application creates only
one context, using implicit-context singleops can make coding easier.

The Client Library includes X-specific singleops. Each of these singleops
sends an X-specific operator, for example, setXgcdrawable. Like other
singleops, X-specific singleops are of two types: implicit-context and
explicit-context. X-specific singleops that take an implicit context argument
are defined in the file pscustomops.h, which is included by psops.h.
X-specific singleops that take an explicit context are defined in
dpscustomops.h, which is included by dpsops.h.

Example 5-1 shows the definitions of the X-specific singleops. Table 5-1
describes the arguments used in the definitions. For descriptions of the
operators that the X-specific singleops send, see Chapter 6.

Example 5-1: Definitions of X-specific Singleops

extern void DPSclientsync(/* DPSContext ctxt; */);

extern void DPScurrentXgcdrawable(/* DPSContext ctxt; int *gc, *d,
*x, *y; */);

extern void DPScurrentXgcdrawablecolor(/* DPSContext ctxt;
int *gc, *d, *x, *y,
colorInfo[12]; */);

extern void DPScurrentXoffset(/* DPSContext ctxt; int *xOffset,
*yOffset; */);

extern void DPSsetXgcdrawable(/* DPSContext ctxt; int gc, d, x, y; */);

extern void DPSsetXgcdrawablecolor(/* DPSContext ctxt;
int gc, d, x, y, colorInfo[12]; */);

extern void DPSsetXoffset(/* DPSContext ctxt; short int x, y; */);

extern void DPSsetXrgbactual(/* DPSContext ctxt; int r, g, b;
Boolean *success; */);

5–2 Client Library Routines for WS

Example 5-1: (continued)
extern void PSclientsync();

extern void PScurrentXgcdrawable(/* int *gc, *d, *x, *y; */);

extern void PScurrentXgcdrawablecolor(/* int *gc, *d, *x, *y,
colorInfo[12]; */);

extern void PScurrentXoffset(/* int *xOffset, *yOffset; */);

extern void PSsetXgcdrawable(/* int gc, d, x, y; */);

extern void PSsetXgcdrawablecolor(/* int gc, d, x, y,
colorInfo[12]; */);

extern void PSsetXoffset(/* int x, y; */);

extern void PSsetXrgbactual(/* int r, g, b; Boolean *success; */);

Table 5-1: Arguments Used by X-Specific Singleops
22
Name Type Description22
colorInfo[12] integer array Stores color attributes of the context. The

elements of this array are graymax,
graymult, firstgray, redmax,
redmult, greenmax, greenmult,
bluemax, bluemult, firstcolor,
colormapid, and numactual.

d integer The X resource ID of an X drawable. If d
equals zero, all drawing operations are ignored.

gc integer The GContext resource ID for the X Graphic
Context of drawable. If gc equals zero, all
drawing operations are ignored. To obtain a
value for gc, call the Xlib routine
(XGContextFromGC), passing the Xlib data
type GC of the current X Graphic Context as the
argument.

r, g, b integer Levels for red, green, and blue, in the X color
space [0..65535].

success Boolean When nonzero, shows that the singleop
completed without a PostScript language error.
When zero, shows that the singleop produced a
PostScript language error on the server.

Client Library Routines for WS 5–3

Table 5-1: (continued)
22
Name Type Description22
x and y integer The horizontal and vertical coordinates (in X

units) for the default user space origin of the
current drawable. If x equals zero, and y equals
the height of the drawable (in pixels), the
default user space origin is at the lower left
corner of the drawable. In the PostScript
language, this is the typical location for the
default user space origin.

xOffset and
yOffset

integer Same as x y ; see descriptions in this table.

22

5.3 Naming Conventions
Table 5-2 shows conventions used to name the WS-specific Client Library
routines.

Table 5-2: Naming Conventions in the Client Library
22
Type of Routine Naming Convention22
System-specific Routine DPSMnemonic_name

X-specific Client Library
routine

XDPSMnemonic_name

Singleop with implicit
context argument

PSoperator_name

Singleop with explicit
context argument

DPSoperator_name

22

5.4 Client Library Routine Descriptions
This section describes the following system-specific Client Library routines:
DPSChangeEncoding
DPSContextFromContextID
DPSCreateTextContext
DPSDefaultTextBackstop
DPSNewUserObjectIndex
XDPSContextFromSharedID
XDPSContextFromXID

5–4 Client Library Routines for WS

XDPSCreateContext
XDPSCreateSimpleContext
XDPSFindContext
XDPSRegisterStatusProc
XDPSSetStatusMask
XDPSSpaceFromSharedID
XDPSSpaceFromXID
XDPSUnfreezeContext
XDPSXIDFromContext
XDPSXIDFromSpace

In the following list, the routines are arranged alphabetically by name. Each
description provides the C-language defintion of the routine, followed by text
describing what the routine does and what its arguments represent.

DPSChangeEncoding

void DPSChangeEncoding
(/* DPSContext ctxt;

DPSProgramEncoding newProgEncoding;
DPSNameEncoding newNameEncoding */);

The DPSChangeEncoding routine sets the value of one or both
encoding parameters of the context specified by ctxt. If the encoding
parameters are set to values other than the default values,
DPSWritePostScript, singleops, and custom wraps convert
PostScript language code to the specified encoding before sending it to
context ctxt.

For a list of the default encodings, see Section 4.1.

DPSContextFromContextID

DPSContext
DPSContextFromContextID(/*

DPSContext ctxt;
long int cid;
DPSTextProc textProc;
DPSErrorProc errorProc */);

The DPSContextFromContextID routine returns the
DPSContext handle of the context whose PostScript language ID is
cid. Context cid is one created when a preexistent context, ctxt,
executed the PostScript operator fork. The arguments textProc and
errorProc specify the two routines with which the calling client
handles text and errors from the context cid.

If the calling client has no context record for context cid,
DPSContextFromContextID creates one. The new context record
uses the text handler and error handler passed in textProc and
errorProc. If textProc or errorProc is NULL, the new context
record uses the text handler and error handler of ctxt.

Except for the text handler, error handler, and chaining pointers, the

Client Library Routines for WS 5–5

created context record inherits all its characteristics from ctxt.

DPSCreateTextContext

DPSContext
DPSCreateTextContext(/*

DPSTextProc textProc;
DPSErrorProc errorProc */);

The DPSCreateTextContext routine creates a context record and a
DPSContext handle not associated with an execution context. When
this DPSContext handle is passed as the argument to a Client Library
routine, that routine converts all context input into ASCII text, then
passes that text to the text-handling routine textProc. The routine
specified by errorProc handles errors that result from improper
context usage. (For example, one such error occurs if the context is
invalid.)

Do not use the errorProc routine to handle errors that result from
executing textProc. For example, if your textProc routine writes
text to a file, do not use errorProc to handle file-related errors, such
as those that occur when a file is write-protected.

DPSDefaultTextBackstop

void DPSDefaultTextBackstop
(/* DPSContext ctxt;

char *buf;
unsigned count */);

The DPSDefaultTextBackstop routine is a text-handling routine;
it is the default text backstop installed by the Client Library. Because
DPSDefaultTextBackstop is of type DPSTextProc, it can be
specified as the text-handling routine (textProc) in context-creation
routines, such as XDPSCreateSimpleContext.
DPSDefaultTextBackstop writes text to WS stdout and flushes
stdout.

DPSNewUserObjectIndex

long int DPSNewUserObjectIndex();

The DPSNewUserObjectIndex routine returns a new user object
index. All new user object indexes are allocated by the Client Library.

User object indexes are dynamic; do not compute with them or store
them in long-term storage, such as in a file.

5–6 Client Library Routines for WS

XDPSContextFromSharedID

DPSContext
XDPSContextFromSharedID(/*

Display *dpy;
PSContextID cid;
DPSTextProc textProc;
DPSErrorProc errorProc */);

The XDPSContextFromSharedID routine returns the
DPSContext handle of an existing context, specified by PostScript
language ID (cid) and X display (dpy). If the calling client has no
such DPSContext, XDPSContextFromSharedID creates a
DPSContext and the associated DPSContextRec.

The arguments textProc and errorProc specify the two routines
with which the calling client handles text and errors from the specified
context.

XDPSContextFromSharedID lets one client access a context
created by another client, thereby letting multiple clients share a single
context. When sending names to shared contexts,
XDPSContextFromSharedID uses name string encoding.

XDPSContextFromXID

DPSContext
XDPSContextFromXID(/*

Display *dpy;
XID xid */);

The XDPSContextFromXID routine returns the DPSContext handle
of an existing context, specified by X resource ID (xid) and X display
(dpy).

XDPSCreateContext

DPSContext
XDPSCreateContext(/*

Display *dpy;
Drawable drawable;
GC gc;
int x,y;
unsigned int eventmask;
XStandardColormap *grayramp;
XStandardColormap *ccube;
int actual;
DPSTextProc textProc;
DPSErrorProc errorProc;
DPSSpace space */);

The XDPSCreateContext routine creates an execution context and
the associated DPSContextRec data structure. It returns a
DPSContext handle.

Unlike XDPSCreateSimpleContext, XDPSCreateContext lets

Client Library Routines for WS 5–7

you explicitly specify all characteristics of the context, including its
colormap entries. But, unless your application uses color in an unusual
way, you need not use XDPSCreateContext; use
XDPSCreateSimpleContext instead.

When called, XDPSCreateContext checks whether the X server
dpy supports a Display PostScript system extension. If not, the routine
returns NULL; if so, it checks that the specified drawable and GC exist
on the same screen. If they do not, the X server returns a BadMatch
error. If they do, XDPSCreateContext creates a PostScript context
having the characteristics specified in the arguments passed.

If the argument drawable or GC is NULL, the created context can
receive and execute PostScript language input, but cannot paint images
until the calling application specifies an X drawable and GC. (To specify
these values, the application must send an X-specific operator, such as
setXgcdrawable, described in Chapter 6.)

The following table describes the arguments of
XDPSCreateContext:

dpy An X display.

drawable An X drawable on display.

GC The X Graphic Context associated with drawable.

x and y The horizontal and vertical coordinates (in X units) for
the default user space origin of drawable. If x
equals zero and y equals the height of drawable (in
pixels), the default user space origin is at the lower left
corner of drawable. In the PostScript language, this
is the typical location for the default user space origin.

eventmask Ignored; reserved for future use. Use zero as the value
of this argument.

grayramp (See ccube.)

ccube and graymap ccube identifies a set of color cells defined as a series
of color ramps; grayramp identifies a set of color
cells defined as a gray ramp. The context uses ccube
and grayramp to produce actual colors and dithered
colors.

If ccube equals NULL, colors are rendered in shades
of gray only. If grayramp equals NULL, the context
does not paint. The gray ramp must have at least two
elements: one for black and one for white.

5–8 Client Library Routines for WS

The X client must allocate and define ccube and
grayramp and must install the associated colormap.
In general, if the client specifies a plane mask, ccube
and grayramp should be within the planes selected
by the plane mask, to ensure that the Display
PostScript system interacts properly with the plane
Section 4.9.)
mask. (For more information, see

actual Specifies whether the application prefers to paint with
actual (not dithered) colors and, if so, specifies how
many actual colors it needs. The actual argument is
a hint to the X server: dithering and actual color
allotment are governed by the X server, not by the
application

If actual equals zero, the application paints by
dithering colors from grayramp and ccube. If
actual is not zero, the application paints using a
maximum of actual actual colors; all additional
colors are dithered.

textProc The routine that this context calls to handle text output.

errorProc The routine that this context calls if it encounters an
error condition.

space The private VM in which this context executes. If
space is NULL, a new space is created for the
context; otherwise, the context shares the specified
space.

XDPSCreateSimpleContext

DPSContext
XDPSCreateSimpleContext(/*

Display *dpy;
Drawable drawable;
GC gc;
int x,y;
DPSTextProc textProc;
DPSErrorProc errorProc;
DPSSpace space */);

The XDPSCreateSimpleContext routine creates an execution
context and the associated DPSContextRec data structure. It returns a
DPSContext handle.

When called, XDPSCreateSimpleContext checks whether the X
server dpy supports a Display PostScript system extension. If not, the
routine returns NULL; if so, it checks that the specified drawable and GC
exist on the same screen. If they do not, the X server returns a
BadMatch error. If they do, XDPSCreateSimpleContext creates

Client Library Routines for WS 5–9

a PostScript context having the characteristics specified in the arguments
passed.

If the argument drawable or GC is NULL, the created context can
receive and execute PostScript language input, but cannot paint images
until the calling application specifies an X drawable and GC. (To specify
these values, the application must send an X-specific operator, such as
setXgcdrawable, described in Chapter 6.)

The following table describes the arguments of
XDPSCreateSimpleContext:

dpy An X display.

drawabl An X drawable on display.

GC The X Graphic Context associated with drawable.

x and y The horizontal and vertical coordinates (in X units) for
the default user space origin of drawable. If x
equals zero and y equals the height of drawable, the
default user space origin is at the lower left corner of
drawable. In the PostScript language, this is the
typical location for the default user space origin.

textProc The routine that this context calls to handle text output.
errorProc The routine that this context calls if it encounters an

error condition.

space The private VM in which this context executes. If
space is NULL, a new space is created for the
context; otherwise, the context shares the specified
space.

Unlike the XDPSCreateContext routine,
XDPSCreateSimpleContext does not let you explicitly specify the
colormap of the created context, nor does it let you set characteristics of
the colormap. Instead, the routine uses standard colormaps as described
in the following paragraph.

XDPSCreateSimpleContext accesses the X server dpy, and finds
out whether the standard colormaps RGB_DEFAULT_MAP and
RGB_GRAY_MAP are defined. If they are defined,
XDPSCreateSimpleContext uses them; otherwise, the routine
defines them.

After these values are defined, any context that the application creates
by calling XDPSCreateSimpleContext uses RGB_DEFAULT_MAP
and RGB_GRAY_MAP. Note, however, that contexts created by calling
XDPSCreateContext use the color cube and gray ramp specified in
the call to that routine. For information on explicitly specifying the
color characteristics of a context, see the description of

5–10 Client Library Routines for WS

XDPSCreateContext in this chapter.)

XDPSFindContext

DPSContext
XDPSFindContext(/*

Display *dpy;
long int cid */);

The XDPSFindContext routine returns the DPSContext handle of
the context whose ID is specified in cid.

The argument cid is the result returned by an operator such as
currentcontext; dpy specifies the X display where the context is
running.

XDPSRegisterStatusProc

typedef void (*XDPSStatusProc)(/*
DPSContext ctxt;
int code */);

void
XDPSRegisterStatusProc (/*

DPSContext ctxt;
XDPSStatusProc proc */);

The XDPSRegisterStatusProc routine specifies the routine that an
application calls to handle status events (XDPSStatusEvent) from
the context ctxt. That is, XDPSRegisterStatusProc registers, or
associates, the XDPSStatusProc event-handling routine proc with
the context ctxt.

The routine proc has two arguments: ctxt and code. The argument
ctxt specifies the context with which proc is registered; code shows
the status code of the event for which proc was called. The client can
call proc at any time to process status events.

If an XDPSStatusProc routine is already registered with the context
ctxt, XDPSRegisterStatusProc supersedes the existing
registration with the value of proc.

XDPSSetStatusMask

void
XDPSSetStatusMask(/*

DPSContext ctxt;
unsigned long enableMask;
unsigned long disableMask;
unsigned long nextMask */);

The XDPSSetStatusMask routine sets the context status mask of the
context specified in the argument ctxt. (For an explanation of context
status and the context status mask, see Section 2.2.3.)

The argument enableMask specifies which kinds of context status

Client Library Routines for WS 5–11

events the XDPS server sends to the calling application;
disableMask specifies the kinds of context status events the server
does not send. The argument nextMask causes the server to send only
the next instance of each specified kind of context status event. The
enableMask, disableMask, and nextMask arguments each
represent one or more of the values listed in the following code extract:
#define PSRUNNINGMASK 0x0001
#define PSNEEDSINPUTMASK 0x0002
#define PSZOMBIEMASK 0x0004
#define PSFROZENMASK 0x0008

To assign more than one value to a single argument, perform a bitwise
inclusive OR operation (|) on the values you wish to assign, as in the
following example:
XDPSSetStatusMask(PSRUNNINGMASK | PSNEEDSINPUTMASK,0,0);

The following table describes the valid values for enableMask,
disableMask, and nextMask:

PSFROZENMASK Events that show the context is frozen

PSNEEDSINPUTMASK Events that show the context needs input

PSRUNNINGMASK Events that show the context is in the runnable state

PSZOMBIEMASK Events that show the context is in the zombie state

Note that, if an application sends input to a context that is in the zombie
state, the application receives a zombie status event, regardless of how
the status mask is set.

XDPSSpaceFromSharedID

DPSSpace
XDPSSpaceFromSharedID(/*

Display *dpy;
SpaceXID sid */);

XDPSSpaceFromSharedID returns the DPSSpace handle of an
existing private context space, specified by X resource ID (sid) and
display (dpy). If the calling client has no such DPSSpace,
XDPSSpaceFromSharedID creates the DPSSpace and associated
DPSSpaceRec data structure.

XDPSSpaceFromSharedID lets a context created by one X client
share the private space of a context created by another X client. When
sending names to shared context whose private space is shared,
XDPSSpaceFromSharedID uses ASCII encoding.

5–12 Client Library Routines for WS

XDPSSpaceFromXID

DPSSpace
XDPSSpaceFromXID(/*

Display *dpy;
XID xid */);

XDPSSpaceFromXID returns the DPSSpace pointer of an existing
private context space, specified by X resource ID (sid) and display
(dpy).

XDPSUnfreezeContext

void
XDPSUnfreezeContext (/*

DPSContext ctxt */);

XDPSUnfreezeContext causes the specified frozen context to
resume executing. The argument ctxt is the ID of a context whose
status is PSFROZEN.

XDPSXIDFromContext

XID
XDPSXIDFromContext(/*

Display **Pdpy;
DPSContext ctxt */);

XDPSXIDFromContext returns the X resource ID of the context
whose DPSContext handle is ctxt. In addition, the routine returns
the argument Pdpy, which points to the X Display structure
associated with ctxt.

XDPSXIDFromSpace

XID
XDPSXIDFromSpace(/*

Display **Pdpy;
DPSSpace spc */);

XDPSXIDFromSpace returns the X resource ID of the context
associated with the DPSSpace pointer spc. In addition, the routine
returns the argument Pdpy, which points to the X Display structure
associated with spc.

Client Library Routines for WS 5–13

6X-Specific Operators for WS3333333333333333333333
The Display PostScript system extends the PostScript language to include
operators for generic window-related tasks; but for tasks that relate
specifically to X, the window system of UWS, additional operators are
needed. To fill this need, UWS extends the PostScript language to include
X-specific operators.

This chapter describes the X-specific operators for UWS.

The Client Library defines single-operator procedures that execute the X-
specific operators. For information on these procedures, see Chapter 5.

6.1 About the Operators
The operators described in the rest of this chapter are arranged alphabetically
by operator name. Each description follows this format:

operand1 operandN operator result1 ... resultM

Text describing what the operator does

EXAMPLE: (Optional)
Sample PostScript language code showing how to use the
operator

ERRORS:

comma-separated list of errors this operator might execute

Each operator description begins with a syntax summary. In it, operand1
through operandN are the operands that the operator requires; operand1
is the top element on the operand stack. A dash (—) in the operand position
means the operator accepts no operands.

The operator pops the operands from the stack, and processes them. After
executing, the operator pushes result1 through resultM on the stack;
resultM is the top element. A dash (—) in the result position means the
operator returns no results.

Table 6-1 describes the values used as operands and results by the X-specific
operators for WS. All operands are required.

Table 6-1: Operands and Results for X-Specific Operators
22
Name Type Description22
colorinfo integer array Stores color attributes of the context. The 12

elements of colorinfo are graymax,
graymult, firstgray, redmax,
redmult, greenmax, greenmult,
bluemax, bluemult, firstcolor,
colormapid, and numactual. (For more
information, see Section 4.9.4.)

drawable integer The X window ID or pixmap ID of an X
drawable. If drawable equals zero, all
drawing operations are ignored.

gc integer The GContext resource ID for the X Graphic
Context of drawable. If gc equals zero, all
drawing operations are ignored. To obtain a
value for gc, call the Xlib routine
XGContextFromGC, passing the Xlib data
type GC of the current Graphic Context as the
argument.

floatred,
green, and
blue

Three real numbers in the range 0.0 to 1.0 that,
together, specify a color (as in the operator
setrgbcolor).

success integer When nonzero, indicates that the operator
completed without error.

integerx and y The horizontal and vertical coordinates (in X
units) for the default user space origin of the
current drawable. If x equals zero and y equals
the height of the drawable, the default user
space origin is at the lower left corner of the
drawable. In the PostScript language, this is the
typical location for the default origin.22

Note that drawable, gc, x, and y are part of the PostScript graphics state,
which can be saved and restored using the PostScript language operators
gsave and grestore.

6.2 Operator Errors
Table 6-2 describes the errors for the X-specific operators.

6–2 X-Specific Operators for WS

Table 6-2: Errors for X-Specific Operators
222
Error Probable Cause222
rangecheck Bad match: the drawable and GC do not have the

same depth, or their visual does not match the
colormap associated with the context.

Too few operands on the operand stack.stackunderflow

Invalid ID for drawable or for GC.typecheck

Context not associated with a display device.undefined222

6.3 Operator Descriptions
Following is an alphabetical list and description of the X-specific operators
for WS. The format for these descriptions is explained in Section 6.1.

— clientsync —

The clientsync operator pauses the current context, sets the status of
the context to FROZEN, and causes the X server to return a PSFROZEN
status event. The context stays frozen until the application calls the
Client Library routine XDPSUnfreezeContext(). Thus,
clientsync synchronizes the application with the current context.

One possible use of clientsync is to display PostScript language
output one page at a time by pausing the current context after each page,
as in the following example. This example redefines the operator
showpage, so that the operator first pauses the current context.

EXAMPLE:
/showpage {
clientsync
showpage
} bind def

ERRORS:

None

— currentXgcdrawable gc drawable x y

The currentXgcdrawable operator returns the X Graphic Context,
drawable, and default user space origin of the current context.

Note that the results returned by currentXgcdrawable can be used
as the operands of setXgcdrawable.

X-Specific Operators for WS 6–3

ERRORS:

undefined

— currentXgcdrawablecolor gc drawable x y colorinfo

The currentXgcdrawablecolor operator returns the GC,
drawable, default user space origin, and color attributes of the current
context.

Note that the results returned by currentXgcdrawablecolor can
be used as the operands of setXgcdrawablecolor.

ERRORS:

undefined

— currentXoffset x y

The currentXoffset operator returns the default user space origin
of the current context.

Note that the results returned by currentXoffset can be used as the
operands of setXoffset.

ERRORS:

undefined

red green blue setrgbXactual success

The setrgbXactual operator allocates a new colormap entry to
display the color specified by red, green, blue. If the allocation
succeeds (if success is nonzero), future painting of this color uses the
new colormap entry instead of dithering from the colorcube.

Note that setrgbXactual does not affect the graphics state. Thus, to
paint with the specified color, you must first execute the operator
setrgbcolor.

ERRORS:

stackunderflow, undefined, typecheck

gc drawable x y setXgcdrawable —

The setXgcdrawable operator sets the X Graphic Context, drawable,
and default user space origin of the current context. The values supplied
as operands supersede any existing values for these attributes. The
setXgcdrawable operator causes all subsequent operations of the
current context to occur in the specified X drawable, with the specified
Graphic Context and default user space origin.

6–4 X-Specific Operators for WS

To make the effects of setXgcdrawable temporary, use it between
the operators gsave and grestore.

ERRORS:

rangecheck, stackunderflow, typecheck, undefined

gc drawable x y colorinfo setXgcdrawablecolor —

The setXgcdrawablecolor operator sets the GC, drawable, default
user space origin, and color attributes of the current context.

ERRORS:

rangecheck, stackunderflow, typecheck, undefined

x y setXoffset —

The setXoffset operator sets the default user space origin for the
current context.

ERRORS:

stackunderflow, undefined

X-Specific Operators for WS 6–5

Index3333333333333333333333

A
Application

basic requirements, 3–4 to 3–5

building, 3–10 to 3–13

developing typical, 3–1 to 3–4

sample

See Sample applications

B
Basic tasks, summary, 3–16

Bit gravity, 4–4

Buffering, 4–2

C
Client Library

described, 2–2

header files, 5–1

naming conventions

See Naming conventions, Client Library

Client Library routines, 5–4 to 5–13

clientsync operator, 6–3

Clipping path, 4–4

Color cube

See Color, using

Color, using, 4–7 to 4–12

Colormap

See Color, using

Colormap (cont.)

See also setrgbXactual operator

allocating entries in, 4–8 to 4–10

Compiling

See Application, building

Context

color attributes

obtaining, 6–4

setting, 6–5

creating

execution context, 5–7, 5–9

text context, 5–6

defined, 2–2 to 2–3

finding

See DPSContext handle

pausing, 6–3

sharing, 4–7

unfreezing, 5–13

XID, 5–13

Context record, 2–3

Context status events, 2–4

See also XDPSRegisterStatusProc routine

and XDPSSetStatusMask routine

Context status mask, 2–4

See also XDPSSetStatusMask routine

Coordinate systems, 2–5 to 2–7

Coordinates, converting, 4–2 to 4–3

Current context, 2–4

See also Context

currentXgcdrawable operator, 6–3

currentXgcdrawablecolor operator, 6–4

currentXoffset operator, 6–4

D
Default text backstop

See DPSDefaultTextBackstop routine

Default user space origin

See User space origin

DPSChangeEncoding routine, 5–5

DPSContext handle

defined, 2–4

finding, 5–11, 5–5, 5–6, 5–7

DPSContextFromContextID routine, 5–5

DPSContextRec data type

See Context record

DPSCreateTextContext routine, 5–6

DPSDefaultTextBackstop routine, 5–6

DPSNewUserObjectIndex routine, 5–6

DPSSpace handle

finding, 5–12

dpsXclient.h file

See System-specific header file

Drawable

See also Window

setting

See setXgcdrawable operator

E
Encoding, PostScript language, 4–1, 5–5

Example applications

See Sample applications

examplemain sample application, 3–5 to 3–13

Execution context

See Context

F
Files, accessing, 4–2

G
GC

See X Graphic Context

Graphic Context

See X Graphic Context

Graphics state, 2–3, 6–2, 6–4

Gray ramp

See Color, using

H
Header files

See Client Library, header files

See also Application, building

I
Identifiers, 2–4

Imaging model, 1–1

Input, defined, 2–3

L
Linking

See Application, building

Index–2

M
Makefile, sample

See Application, building

N
Naming conventions, Client Library, 5–4

O
Operators, 6–1 to 6–5

See also individual operator names

Origin

See Coordinate systems

See also User space origin

Output, defined, 2–3

P
Pixel value

See Color, using

PostScript interpreter, 2–1

PostScript language encoding

See Encoding, PostScript language

Postscript language imaging, 1–1

pswrap translation program, 2–2

S
Sample applications

running, 3–15

summary of, 3–14

setrgbXactual operator, 6–4

setXgcdrawable operator, 6–4

setXgcdrawablecolor operator, 6–5

setXoffset operator, 6–5

Singleops, 5–2 to 5–4

Space

defined, 2–4

finding

See DPSSpace handle

sharing, 4–7

Synchronization

client and context, 4–7

Display PostScript System and X, 4–6

System-specific header file, 5–1

T
Text context

See Context

U
User object index, new

See DPSNewUserObjectIndex routine

User space coordinate system

See Coordinate systems

User space origin

defined, 2–5

obtaining, 6–3, 6–4

setting, 6–4, 6–5

V
Virtual memory

See VM

VM, 2–4

W
Window, resizing, 4–4 to 4–6

 Index–3

X
X coordinate system

See Coordinate systems

X Graphic Context

defined, 2–2

setting, 6–4, 6–5

X-specific operators

See Operators

XDPSContextFromSharedID routine, 5–7

XDPSContextFromXID routine, 5–7

XDPSCreateContext routine, 5–7

XDPSCreateSimpleContext routine, 5–9

XDPSFindContext routine, 5–11

XDPSRegisterStatusProc routine, 5–11

XDPSSetStatusMask routine, 5–11

XDPSSpaceFromSharedID routine, 5–12

XDPSSpaceFromXID routine, 5–13

XDPSUnfreezeContext routine, 5–13

XDPSXIDFromContext routine, 5–13

XDPSXIDFromSpace routine, 5–13

XStandardColormap

See Color, using

Index–4

How to Order Additional Documentation3333333333333333333333
Technical Support
If you need help deciding which documentation best meets your needs, call 800-DIGITAL
(800-344-4825) before placing your electronic, telephone, or direct mail order.

Electronic Orders
To place an order at the Electronic Store, dial 800-234-1998 using a 1200- or 2400-bps
modem from anywhere in the USA, Canada, or Puerto Rico. If you need assistance using the
Electronic Store, call 800-DIGITAL (800-344-4825).

Telephone and Direct Mail Orders

Your Location Call Contact

800-DIGITALContinental USA,
Alaska, or Hawaii

Digital Equipment Corporation
P.O. Box CS2008
Nashua, New Hampshire 03061

Puerto Rico 809-754-7575 Local Digital subsidiary

Canada 800-267-6215 Digital Equipment of Canada
Attn: DECdirect Operations KAO2/2
P.O. Box 13000
100 Herzberg Road
Kanata, Ontario, Canada K2K 2A6

International ————— Local Digital subsidiary or
approved distributor

Internala ————— SSB Order Processing – NQO/V19
or
U. S. Software Supply Business
Digital Equipment Corporation
10 Cotton Road
Nashua, NH 03063-12603333333333333333333333

a For internal orders, you must submit an Internal Software Order Form (EN-01740-07).

Reader’s Comments Digital UNIX
Developing Applications for the

Display PostScript System
AA-Q15WB-TE3333333333333333333333

Digital welcomes your comments and suggestions on this manual. Your input will help us to
write documentation that meets your needs. Please send your suggestions using one of the
following methods:

• This postage-paid form

• Internet electronic mail: readers_comment@zk3.dec.com

• Fax: (603) 881-0120, Attn: UEG Publications, ZKO3-3/Y32

If you are not using this form, please be sure you include the name of the document, the page
number, and the product name and version.

Please rate this manual: Excellent Good Fair Poor
Accuracy (software works as manual says) 5 5 5 5
Completeness (enough information) 5 5 5 5
Clarity (easy to understand) 5 5 5 5
Organization (structure of subject matter) 5 5 5 5
Figures (useful) 5 5 5 5
Examples (useful) 5 5 5 5
Index (ability to find topic) 5 5 5 5
Usability (ability to access information quickly) 5 5 5 5
Please list errors you have found in this manual:
Page Description
33333333 33
33333333 33
33333333 33
33333333 33
33333333 33
Additional comments or suggestions to improve this manual:
333
333
333
333
333
What version of the software described by this manual are you using? 3333333333333333
Name/Title 333 Dept. 33333333333333333333
Company 33 Date 33333333333
Mailing Address 333
333333333333333333333333 Email 3333333333333333333333 Phone 33333333333333333

UEG PUBLICATIONS MANAGER

BUSINESS REPLY MAIL

 Do Not Cut or Tear − Fold Here

 Do Not Cut or Tear − Fold Here and Tape

NO POSTAGE
NECESSARY IF
MAILED IN THE
UNITED STATES

FIRST−CLASS MAIL PERMIT NO. 33 MAYNARD MA

POSTAGE WILL BE PAID BY ADDRESSEE

ZKO3−3/Y32
110 SPIT BROOK RD

TM

DIGITAL EQUIPMENT CORPORATION

NASHUA NH 03062−9987

Cut on
Dotted

Line

