
Tru64 UNIX
Asynchronous Transfer Mode

Part Number: AA-RH9KA-TE

July 1999

Product Version: Tru64 UNIX Version 5.0 or higher

This manual is for experienced UNIX kernel programmers responsible
for writing Asynchronous Transfer Mode (ATM) device drivers and
kernel modules. It describes the Compaq Tru64TM UNIX® ATM
subsystem, how to configure the subsystem, and how to use the ATM
kernel interfaces.

Compaq Computer Corporation
Houston, Texas

© 1995, 1997, 1998, 1999 Compaq Computer Corporation

COMPAQ, the Compaq logo, and the Digital logo are registered in the U.S. Patent and Trademark Office.

Microsoft and Windows NT are registered trademarks of Microsoft Corporation. Intel, Pentium, and Intel
Inside are registered trademarks of Intel Corporation. UNIX is a registered trademark and The Open
Group is a trademark of The Open Group in the US and other countries. Other product names mentioned
herein may be the trademarks of their respective companies.

Possession, use, or copying of the software described in this publication is authorized only pursuant to a
valid written license from Compaq Computer Corporation or an authorized sublicensor.

Compaq Computer Corporation shall not be liable for technical or editorial errors or omissions contained
herein. The information in this document is subject to change without notice.

Contents

About This Manual

1 Overview of ATM Architecture
1.1 ATM Subsystem 1–1
1.1.1 Connection Management Module 1–3
1.1.2 CMM Interfaces 1–3
1.2 ATM Subsystem Configuration 1–4

2 ATM Subsystem General Features
2.1 Header Files 2–1
2.2 ATM Module Configuration 2–2
2.3 Error Codes 2–2
2.4 Data Formats 2–3
2.4.1 Raw ATM Cells 2–3
2.4.2 Cooked Data 2–3
2.4.3 How the Data Is Carried 2–4
2.4.4 Time-Stamping 2–4
2.5 Physical Point of Attachment 2–5
2.5.1 Permanent Virtual Circuit PPAs 2–7
2.5.2 Switched Virtual Circuit PPAs 2–7
2.6 Memory Allocation 2–9
2.7 ATM Locking Macros 2–10
2.7.1 Locking Guidelines 2–10
2.7.2 Types of Locking Methods 2–11
2.7.3 Order of Locking Macros 2–12
2.7.4 Creation of ATM Threads 2–13
2.8 Types of Circuits 2–14
2.9 Global Data Structures 2–14
2.9.1 The atm_vc Structure 2–15
2.9.1.1 The conv_pp1 and conv_pp2 Members 2–16
2.9.1.2 The sig_pp1, sig_pp2, drv_pp1, and drv_pp2

Members 2–17
2.9.1.3 The vcs Member 2–17
2.9.1.4 The call_reference Member 2–17

Contents iii

2.9.1.5 The errno Member 2–17
2.9.1.6 The vci and vpi Members 2–17
2.9.1.7 The ppa Member 2–17
2.9.1.8 The selector Member 2–17
2.9.1.9 The direction Member 2–18
2.9.2 The atm_addr Structure 2–18
2.9.2.1 The vc Member 2–19
2.9.2.2 The address Member 2–19
2.9.2.3 The ton Member 2–20
2.9.2.4 The anpi Member 2–20
2.9.2.5 The subaddress Member 2–20
2.9.2.6 The subaddress_type Member 2–20
2.9.2.7 The eprtype Member 2–20
2.9.2.8 The endpoint Member 2–20
2.9.2.9 The state Member 2–20
2.9.2.10 The atm_error Member 2–20
2.9.2.11 The setup Member 2–21
2.9.2.12 The connect Member 2–21
2.9.2.13 The location, cause, diag_length, and diagnostic

Members 2–21
2.9.2.14 The endstate Member 2–21
2.9.2.15 The conv_p1 and conv_p2 Members 2–22
2.9.2.16 The sig_p1 and sig_p2 Members 2–22
2.9.2.17 Allocating the atm_addr Structure 2–22
2.9.3 The atm_vc_services Structure 2–22
2.9.3.1 The vc Member 2–24
2.9.3.2 The fqos and bqos Members 2–24
2.9.3.3 The fmtu and bmtu Members 2–25
2.9.3.4 The valid_rates Member 2–25
2.9.3.5 The fpeakcr, bpeakcr, fsustcr, bsustcr, fburstcr, and

bburstcr Members 2–26
2.9.3.6 The flags Member 2–26
2.9.3.7 The aal Member 2–28
2.9.3.8 The queue Member 2–28
2.9.3.9 The bearer_class Member 2–28
2.9.3.10 The lerrstat Member 2–28
2.9.3.11 The nerrstat Member 2–30
2.9.3.12 The cmm_drv_handle Member 2–30
2.9.3.13 The drv_resource Member 2–30
2.9.3.14 The converge_handle Member 2–31
2.9.3.15 Allocating the atm_vc_services Structure 2–31

iv Contents

2.9.4 The atm_uni_call_ie Structure 2–31
2.9.4.1 The ie_type Member 2–33
2.9.4.2 The last Member 2–33
2.9.4.3 The aal_params Member 2–34
2.9.4.4 The bb_high_layer and bb_low_layer Members 2–34
2.9.4.5 Allocating the atm_uni_call_ie Structure 2–34
2.9.4.6 Setting Fields in the atm__uni_call_ie Structure 2–36
2.9.5 The atm_ppa Structure 2–37
2.9.5.1 The driver Member 2–38
2.9.5.2 The sig Member 2–38
2.9.5.3 The ppas_id Member 2–38
2.9.5.4 The ton Member 2–38
2.9.5.5 The anpi Member 2–38
2.9.5.6 The addrlen Member 2–38
2.9.5.7 The address Member 2–39
2.9.5.8 The uni Member 2–39
2.9.5.9 The type Member 2–39
2.9.5.10 The esi_arg Member 2–39
2.9.6 The atm_esi Structure 2–39
2.9.6.1 The esi and esilen Members 2–40
2.9.6.2 The driver Member 2–40
2.9.6.3 The sigp1 and sigp2 Members 2–40
2.9.7 The atm_cause_info Structure 2–40
2.9.7.1 The cause Member 2–41
2.9.7.2 The location Member 2–42
2.9.7.3 The module_name Member 2–42
2.9.7.4 The reason Member 2–42
2.9.7.5 The diag_length Member 2–42
2.9.7.6 The diag Member 2–42

3 Device Driver Interface
3.1 Registering the Device Driver 3–1
3.2 Receiving Data Packets and Cells 3–2
3.3 Reporting Errors 3–2
3.4 Using ATM Device Driver Interface Structures 3–2
3.4.1 The atm_drv_params Structure 3–3
3.4.1.1 The name member 3–4
3.4.1.2 The unit Member 3–4
3.4.1.3 The type Member 3–4
3.4.1.4 The num_vc Member 3–4
3.4.1.5 The max_vcib and max_vpib Members 3–4

Contents v

3.4.1.6 The max_vci and max_vpi Members 3–4
3.4.1.7 The sent Member 3–4
3.4.1.8 The received Member 3–5
3.4.1.9 The dropped Member 3–5
3.4.1.10 The num_vci and num_vpi Members 3–5
3.4.1.11 The hard_mtu Member 3–5
3.4.1.12 The nqueue Member 3–5
3.4.1.13 The flowcontrol Member 3–5
3.4.1.14 The rates Member 3–5
3.4.1.15 The capabilities Member 3–6
3.4.1.16 The numid Member 3–7
3.4.1.17 The ids Member 3–7
3.4.2 The atm_queue_param Structure 3–7
3.4.2.1 The vc Member 3–8
3.4.2.2 The qlength Member 3–8
3.4.2.3 The qtime Member 3–8
3.4.2.4 The flags Member 3–8

4 Signaling Module Interface
4.1 Registering the Signaling Module 4–2
4.2 Receiving a New Call 4–2
4.3 Reporting a VC Activation 4–2
4.4 Activating a Connection 4–2
4.5 Reporting a Connection Failure 4–3
4.6 Releasing a Connection 4–3
4.7 Dropping an Endpoint 4–3
4.8 Deleting a Connection 4–3
4.9 Restarting a Virtual Circuit 4–3
4.10 Reporting a Completed Restart 4–4
4.11 Reporting a Completed Status Enquiry 4–4
4.12 Requesting Endpoint Information 4–4
4.13 Adding a PPA 4–4
4.14 Deleting a PPA 4–5
4.15 Requesting VC Status 4–5
4.16 Using the atm_sig_params Structure 4–5
4.16.1 The sig_setup Member 4–6
4.16.2 The sig_release Member 4–6
4.16.3 The sig_add Member 4–6
4.16.4 The sig_drop Member 4–7
4.16.5 The sig_enquery Member 4–7
4.16.6 The sig_restart Member 4–7

vi Contents

4.16.7 The sig_exception Member 4–7
4.16.8 The sig_mmi Member 4–7
4.16.9 The sig_mib Member 4–7
4.16.10 The reserved1, reserved2, and reserved3 Members 4–7

5 Convergence Module Interface
5.1 Registering a Convergence Module 5–1
5.2 Receiving Data 5–2
5.2.1 Receiving Exception Notifications 5–2
5.2.2 Connecting to the ATM Module Management Interface . . 5–3
5.3 Unregistering a Convergence Module 5–3
5.4 Requesting Interface Parameters 5–3
5.5 Reserving Resources for CBR Circuits 5–4
5.6 Releasing Reserved Resources 5–4
5.7 Requesting a Connection to a Remote System 5–5
5.8 Adding an Endpoint to a Connection 5–5
5.9 Requesting a Connection Be Torn Down 5–5
5.10 Dropping an Endpoint from a Connection 5–5
5.11 Transmitting Data on an Established VC 5–6
5.12 Modifying VC Parameters 5–6
5.13 Requesting Endpoint Connection State Information 5–6
5.14 Binding to a PPA 5–6
5.15 Receiving a Connection Notification 5–7
5.16 Unbinding from a PPA 5–8
5.17 Accepting an Incoming Call 5–8
5.18 Rejecting an Incoming Call 5–8
5.19 Adding a New ATM Address 5–8
5.20 Deleting an ATM Address 5–9
5.21 Requesting VC Statistics 5–9
5.22 Using ATM Convergence Module Interface Structures 5–9
5.22.1 The atm_vc_stats Structure 5–9
5.22.2 The atm_cmi_addr Union 5–10
5.22.2.1 The addr Member 5–11
5.22.2.2 The vcn Member 5–11
5.22.3 The atm_cvg_params Structure 5–11
5.22.3.1 The receive Member 5–12
5.22.3.2 The exception Member 5–12
5.22.3.3 The mmi_manage Member 5–12
5.22.3.4 The endpt_receive Member 5–12

Contents vii

5.22.3.5 The reserved1, reserved2, and reserved3 Members .. . 5–12

6 Connections
6.1 Making Outgoing Connections 6–1
6.1.1 Making the Call 6–1
6.1.2 Adding Parties to an Existing Connection 6–4
6.2 Accepting Connections 6–4
6.3 Controlling the Aging of Connections 6–6
6.4 Releasing a Connection 6–8
6.4.1 Release by a Convergence Module 6–8
6.4.2 Release by Network or Endpoint 6–8
6.5 Creating Permanent Virtual Circuits 6–9
6.6 Creating Signaling Virtual Circuits 6–10

7 Module Management Interface
7.1 Creating an MMI Path 7–2
7.2 Verifying the ioctl Version 7–3
7.3 Defining New MMI ioctl Commands 7–4
7.4 Using MMI Calling Conventions 7–6
7.5 Using the Device Driver MMI 7–6
7.6 Using the Signaling Module MMI 7–7
7.7 Using the Convergence Module MMI 7–7

8 Queuing Guidelines
8.1 Queuing in Device Drivers 8–1
8.1.1 Device Driver Transmit Queuing 8–1
8.1.2 Device Driver Receive Queuing 8–3
8.2 Queuing in Convergence Modules 8–3
8.2.1 Convergence Module Transmit Queuing 8–3
8.2.2 Convergence Module Receive Queuing 8–4

9 Flow Control
9.1 Hardware Flow Control 9–1
9.2 Software Flow Control 9–2
9.2.1 High-Water Mark 9–2
9.2.2 Low-Water Mark 9–3
9.3 Convergence Module Flow Control 9–3

A CMM Routines
atm_cmm_accept A–2

viii Contents

atm_cmm_activate_con A–4
atm_cmm_add A–6
atm_cmm_adi_set_cause A–8
atm_cmm_adi_set_log A–10
atm_cmm_alloc_addr A–12
atm_cmm_alloc_ie A–13
atm_cmm_alloc_services A–15
atm_cmm_bind_info A–16
atm_cmm_con_deleted A–21
atm_cmm_con_failed A–23
atm_cmm_con_release A–25
atm_cmm_connect A–27
atm_cmm_cr2grain A–31
atm_cmm_del_esi A–33
atm_cmm_del_ppa A–34
atm_cmm_drop A–36
atm_cmm_enquery A–37
atm_cmm_ep_add A–38
atm_cmm_ep_dropped A–40
atm_cmm_error A–42
atm_cmm_findaddr A–44
atm_cmm_find_driver A–46
atm_cmm_free_addr A–47
atm_cmm_free_ie A–48
atm_cmm_free_services A–49
atm_cmm_grain2cr A–51
atm_cmm_new_call A–53
atm_cmm_new_esi A–56
atm_cmm_new_ppa A–58
atm_cmm_new_thread A–61
atm_cmm_next_cause A–63
atm_cmm_oam_receive A–65
atm_cmm_ppa_bind A–66
atm_cmm_ppa_info A–69
atm_cmm_ppa_unbind A–73
atm_cmm_receive A–74
atm_cmm_register_cvg A–77
atm_cmm_register_dd A–80
atm_cmm_register_sig A–82
atm_cmm_reject A–85
atm_cmm_release A–86
atm_cmm_reply A–88
atm_cmm_reserve_resources A–90

Contents ix

atm_cmm_restart A–92
atm_cmm_restart_ack A–94
atm_cmm_send A–96
atm_cmm_set_cause A–98
atm_cmm_set_log A–100
atm_cmm_smi_set_cause A–102
atm_cmm_smi_set_log A–104
atm_cmm_status_done A–106
atm_cmm_unregister_cvg A–107
atm_cmm_vc_control A–109
atm_cmm_vc_get A–111
atm_cmm_vc_stats A–112
xxx_add A–113
xxx_connect A–114
xxx_drop A–119
xxx_endpt_receive A–120
xxx_enquery A–123
xxx_except A–124
xxx_manage A–130
xxx_mmi A–133
xxx_receive A–135
xxx_release A–138
xxx_restart A–139
xxx_setup A–141
xxx_xmit A–143

B Connection Programming Examples
B.1 Making a Call B–1
B.2 Adding More Parties to a Point-to-Multipoint Connection B–3
B.3 Processing an Incoming Call B–5

C ATM Cause Codes

Index

Examples
2–1 The atm_uni_call_ie Structure Definition 2–32
4–1 The atm_sig_params Structure Definition 4–6
5–1 The atm_cvg_params Structure Definition 5–11
B–1 Making a Call Code Fragment B–1

x Contents

B–2 Adding Parties to a Point-to-Multipoint Connection Code
Fragment B–3

B–3 Incoming Call Processing Code Fragment B–5

Figures
1–1 ATM Subsystem 1–2

Tables
2–1 The atm_vc Structure Members 2–16
2–2 The atm_addr Structure Members 2–19
2–3 The atm_vc_services Structure Members 2–24
2–4 Information Element Macros 2–36
2–5 The atm_ppa Structure Members 2–37
2–6 The atm_esi Structure Members 2–40
2–7 The atm_cause_info Structure Members 2–41
3–1 The atm_drv_params Structure Members 3–3
3–2 The atm_queue_param Structure Members 3–8
5–1 The atm_vc_stats Structure Members 5–10
6–1 Aging Parameter Values 6–7
7–1 The atm_mmi_path Structure Members 7–3

Contents xi

About This Manual

This manual describes the Tru64 UNIX Asynchronous Transfer Mode
(ATM) subsystem and how to use the ATM kernel interfaces. This
document does not describe the application programming interface (API)
that user-level applications would use to access the ATM subsystem. Also,
this manual is not an ATM networking tutorial.

After reading this manual, you should be able to:

• Understand the ATM subsystem architecture

• Understand how the different kernel interfaces operate

• Write a kernel module

Audience
This manual is for experienced UNIX kernel programmers responsible for
writing device drivers and kernel modules. These programmers should be
familiar with the following:

• ATM technology

• ATM Forum User-Network Interface (UNI) Version 3.0 specification

• C language programming

The secondary audience is system administrators responsible for
configuring network software. These system administrators should be
familiar with the following:

• ATM technology

• C language

• Programming interfaces for UNIX operating systems

New and Changed Features
This manual has been revised, and includes the following changes:

• Configuration and problem solving information has been relocated to
the Network Administration manual.

• ATM subsystem tuning information has been relocated to the
sys_attrs_atm(5) reference page.

About This Manual xiii

• Appendix A has been revised to include new and updated routines.

• Appendix B has been revised to include point-to-multipoint connection
information.

Organization

This manual is organized into nine chapters and three appendixes.

Chapter 1 Provides an overview of the Tru64 UNIX Asynchronous
Transfer Mode (ATM) architecture and its kernel interfaces.

Chapter 2 Describes the ATM header files, generic data structures,
macros, and return codes that ATM modules use.

Chapter 3 Describes the ATM device driver interface, its tasks and
routines, and associated data structures.

Chapter 4 Describes the ATM signaling module interface, its tasks and
routines, and associated data structures.

Chapter 5 Describes the ATM convergence module interface, its tasks and
routines, and associated data structures.

Chapter 6 Describes how ATM connections are initiated and terminated,
and includes some code fragments that show how these tasks
are implemented in software.

Chapter 7 Describes the ATM Module Management Interface (MMI).

Chapter 8 Describes queuing information that kernel module writers
require.

Chapter 9 Describes the flow control in the ATM subsystem.

Appendix A Describes the ATM CMM routines in reference-page format.

Appendix B Contains programming code fragments that show certain
connection-related tasks.

Appendix C Contains ATM cause and diagnostic codes, their message
strings, and brief descriptions.

Related Documents

For information about Tru64 UNIX device driver programming, refer to the
following manuals that are part of the Device Driver Documentation kit:

• Writing Device Drivers

• Reference Pages, Section 9r, Device Drivers (Volume 1)

• Reference Pages, Section 9s, 9u, and 9v, Device Drivers (Volume 2)

• Writing Network Device Drivers

xiv About This Manual

• Writing TURBOchannel Device Drivers

• Writing EISA and ISA Bus Device Drivers

• Writing VMEbus Device Drivers

• Writing PCI Bus Device Drivers

• Writing Device Drivers for the SCSI/CAM Architecture Interfaces

For information on kernel module programming, refer to the Writing Kernel
Modules manual.

For additional information about ATM, refer to the ATM User-Network
Interface Specification, Version 3.0 ISBN 0-13-225863-3 and the ATM
User-Network Interface Specification, Version 3.1 ISBN 0-13-393828-X, both
published by Prentice-Hall.

For information on installing a Compaq ATM adapter and its device driver,
see the documentation that comes with the adapter.

For information about administering networking interfaces, refer to the
System Administration manual and the Network Administration manual.
For information on configuring the ATM subsystem, see the Network
Administration manual.

The printed version of the Tru64 UNIX documentation uses letter icons on
the spines of the books to help specific audiences quickly find the books
that meet their needs. (You can order the printed documentation from
Compaq.) The following list describes this convention:

G Books for general users

S Books for system and network administrators

P Books for programmers

D Books for device driver writers

R Books for reference page users

Some books in the documentation help meet the needs of several audiences.
For example, the information in some system books is also used by
programmers. Keep this in mind when searching for information on specific
topics.

The Documentation Overview provides information on all of the books in
the Tru64 UNIX documentation set.

About This Manual xv

Reader’s Comments

Compaq welcomes any comments and suggestions you have on this and
other Tru64 UNIX manuals.

You can send your comments in the following ways:

• Fax: 603-884-0120 Attn: UBPG Publications, ZKO3-3/Y32

• Internet electronic mail: readers_comment@zk3.dec.com

A Reader’s Comment form is located on your system in the following
location:

/usr/doc/readers_comment.txt

• Mail:

Compaq Computer Corporation
UBPG Publications Manager
ZKO3-3/Y32
110 Spit Brook Road
Nashua, NH 03062-9987

A Reader’s Comment form is located in the back of each printed
manual. The form is postage paid if you mail it in the United States.

Please include the following information along with your comments:

• The full title of the book and the order number. (The order number is
printed on the title page of this book and on its back cover.)

• The section numbers and page numbers of the information on which
you are commenting.

• The version of Tru64 UNIX that you are using.

• If known, the type of processor that is running the Tru64 UNIX
software.

The Tru64 UNIX Publications group cannot respond to system problems or
technical support inquiries. Please address technical questions to your local
system vendor or to the appropriate Compaq technical support office.
Information provided with the software media explains how to send
problem reports to Compaq.

Conventions

This document uses the following typographic conventions:

%
$ A percent sign represents the C shell system

prompt. A dollar sign represents the system prompt
for the Bourne, Korn, and POSIX shells.

xvi About This Manual

A number sign represents the superuser prompt.

% cat Boldface type in interactive examples indicates
typed user input.

file Italic (slanted) type indicates variable values,
placeholders, and function argument names.

[|]
{ | } In syntax definitions, brackets indicate items that

are optional and braces indicate items that are
required. Vertical bars separating items inside
brackets or braces indicate that you choose one item
from among those listed.

. . .
In syntax definitions, a horizontal ellipsis indicates
that the preceding item can be repeated one or
more times.

cat(1) A cross-reference to a reference page includes the
appropriate section number in parentheses. For
example, cat(1) indicates that you can find
information on the cat command in Section 1 of the
reference pages.

Return In an example, a key name enclosed in a box
indicates that you press that key.

Ctrl/x This symbol indicates that you hold down the first
named key while pressing the key or mouse button
that follows the slash. In examples, this key
combination is enclosed in a box (for example,
Ctrl/C).

About This Manual xvii

1
Overview of ATM Architecture

Asynchronous Transfer Mode (ATM) networks promise to become the
dominant network interconnect because they provide the following
capabilities:

• Speeds from 25 M/bps to up to 622 M/bps or greater through
cell-switching.

• Multiple qualities of service.

• Connection-oriented interconnection with resource reservation for
individual connections. These connections might be for conversations
between two applications or for a connection over which many
conversations between many applications and protocols are multiplexed.

Presently, interest in implementing ATM networks, particularly in the local
area, comes from applications that need the high speed and the low latency
(switched, full duplex network infrastructure) that ATM networks provide.

1.1 ATM Subsystem

The ATM subsystem is a separately configurable kernel subsystem with the
following characteristics:

• Provides a set of ATM-related services to kernel and user applications.
These applications, in turn, must provide their own interface to ATM.

• Provides a well-defined set of interfaces for using these services.
Chapter 2 through Chapter 9 describe the interfaces and services.

• Is optimized for ATM functions; does not provide support for a specific
set of user protocols.

• Is flexible and easy to expand and adapt to changing requirements.

• Provides an open interface for ATM hardware designers and for
software developers to interface new or existing protocols to ATM.

The ATM subsystem consists of the following parts:

• Connection Management Module (CMM)

This module handles all communications between the various elements
of the ATM subsystem as well as managing all virtual circuits (VCs)
and communications with protocol stacks that use ATM.

Overview of ATM Architecture 1–1

• One or more ATM hardware adapter device drivers

These device drivers handle the hardware-specific details for controlling
specific adapters.

• One or more signaling protocol modules

These modules implement specific protocols for communicating
connection management information between the end system and the
switch. In this implementation, UNI 3.0/3.1 is the default signaling
protocol module that the ATM subsystem uses.

Figure 1–1 illustrates the ATM subsystem.

Figure 1–1: ATM Subsystem

Protocol
Convergence
Module 1

Protocol
Convergence
Module n

ZK-1022U-AI

ATM Signaling
Module Interface

ATM Convergence
Module Interface

ATM Device
Driver Interface

. . .

. . .

Signaling
Module 1

Device
Driver 1

Device
Driver n

Signaling
Module n

...

Connection Management Module
(CMM)

The ATM subsystem supports any number of ATM device drivers and
signaling protocol modules as long as the actions of these modules do not
interfere with each other. ATM modules should communicate only with the
CMM as the CMM coordinates all communications between ATM modules.
ATM modules should never bypass the CMM and communicate with each
other directly.

1–2 Overview of ATM Architecture

The three elements of the ATM subsystem provide only raw ATM services.
They do not implement any specific protocol for carrying data over the ATM
network. That is, the ATM subsystem is entirely protocol independent. If a
specific protocol wants to use the ATM network to transport data, the
protocol must provide an interface into the ATM subsystem.

The programs that provide the interface between the ATM subsystem and
specific protocols are called convergence modules. These modules, using the
ATM subsystem interface Kernel Programming Interface (KPI), control the
creation and use of ATM virtual circuits (VCs) in a manner appropriate for
the protocol. Since different protocols have different requirements, the ATM
subsystem leaves the adaptation of the protocol to use ATM entirely up to
the protocol implementor. The ATM subsystem does not provide any
protocol-specific services.

1.1.1 Connection Management Module

The CMM is the central module in the ATM subsystem and has the
following duties:

• Manages all activities of the ATM subsystem, including subsystem
configuration. All data to and from the ATM networks must pass
through the CMM to get properly routed to the correct destination.

• Handles all circuit connection requests from protocol modules
(convergence modules) and manages all VCs from the time they are
created until they are torn down.

• Provides interface points for other elements of the ATM subsystem, as
well as the interfaces for accessing the ATM subsystem from kernel
protocol stacks. These interfaces permit the modular addition of drivers,
signaling modules, management modules, and protocol stack interfaces
without having to make changes to the CMM.

• Provides the only interface into the ATM subsystem from the kernel.
ATM modules are accessed only through the CMM.

1.1.2 CMM Interfaces

The CMM provides the following interfaces:

• ATM device driver interface

ATM adapter device drivers use this interface to access the ATM
subsystem. See Chapter 3 for more information.

• Signaling module interface

Modules that implement ATM signaling protocols use this interface.
This interface allows multiple signaling modules to provide services to

Overview of ATM Architecture 1–3

protocol stacks on a per-VC basis, as long the signaling modules do not
conflict on the ATM network. See Chapter 4 for more information.

• Convergence module interface

Kernel protocol stacks use this external interface to the ATM subsystem
to gain access to the ATM subsystem services. See Chapter 5 for more
information.

These interfaces are registration-type interfaces. Each makes calls to the
CMM to inform the CMM of its presence. The CMM places no limit on the
number of each type of module that may register, the total number being
limited only by system resources.

1.2 ATM Subsystem Configuration

Before you communicate on the ATM network, you must install a Compaq
ATM adapter and configure the ATM software. See the installation and
service documentation shipped with the adapter for information on
installing the ATM adapter, and the Network Administration manual for
information on configuring the ATM software.

1–4 Overview of ATM Architecture

2
ATM Subsystem General Features

This chapter describes the following ATM features that writers of ATM
device drivers, signaling modules, and protocol convergence modules can
use:

• Header files

• Module configuration management

• Error codes

• Data formats

• Physical point of attachment

• Memory allocation

• ATM locking macros

• Types of circuits

• Global data structures

2.1 Header Files

When building kernel modules to interface with the ATM subsystem, your
application must include the following header files (located in the
/usr/include/io/atm/sys directory):

• atm.h — Common ATM subsystem structures, function prototypes, and
ATM error codes (required by all ATM kernel modules)

• atm_adi.h — Device driver interface function prototypes and
structures (required by all ATM device drivers)

• atm_smi.h — Signaling protocol module interface function prototypes
and structure definitions (required by all signaling protocol modules)

• atm_cmi.h — Protocol convergence module interface function
prototypes and structure definitions (required by all protocol
convergence modules)

• atm_osf.h — Macros and constants for services that ATM subsystem
modules use

ATM Subsystem General Features 2–1

In addition, the protocol convergence module code must include any
signaling protocol-specific module header files that define structures used
by protocol convergence modules.

The atm.h header file defines all the global data structures as well as the
revision level of these structures. The ATM_REVISION constant, which is
defined in this file, is passed to the CMM by device drivers, signaling
modules, and convergence modules during their registration process. The
CMM uses this constant to determine which version of global structures
the modules use; it should not be changed.

2.2 ATM Module Configuration

All ATM modules should use the standard configuration management
routine for initializing and configuring modules. This routine also provides
the sysconfig utility, which allows you to tune ATM modules without
having to use a data file or recompile code. See the Writing Kernel Modules
and sysconfig(8) for information on the configuration routine and
sysconfig utility, respectively. See sys_attrs_atm(5) for information on
tuning the ATM subsystem.

2.3 Error Codes

The /usr/sys/include/io/atm/sys/atm.h header file contains
ATM-specific error codes that are returned by all modules within the ATM
subsystem to indicate the result of an operation. These codes consist of
standard User-Network Interface (UNI) 3.0/3.1 error numbers and error
numbers specific to this operating system.

When a function call is completed with no errors, the function must return
the value ATM_CAUSE_GOOD. Unsuccessful completion is indicated by the
return of some other value. Only the values listed in the atm.h header file
can be returned. Routines returning error codes to system calls or
management routines must return standard error codes as defined in the
sys/errno.h file.

All ATM subsystem routines use type atm_error_t to indicate the
outcome of an operation and all ATM subsystem modules must also do so.
An atm_error_t can take on one of the values listed in atm.h. The ATM
signaling modules are responsible for translating values to external
network representations when necessary.

2–2 ATM Subsystem General Features

2.4 Data Formats

The type of data transmitted and received on a virtual circuit (VC) depends
on the type of ATM Adaption Layer (AAL) protocol the convergence module
specifies when setting up the VC.

The type of data a convergence module and the CMM exchange depends on
the Segmentation and Reassembly (SAR) capabilities of the underlying
device driver and hardware adapter. Convergence modules must be
prepared either to handle drivers of differing capabilities or to recognize a
driver that does not support the capabilities required by the convergence
module. The convergence module interfaces provide a mechanism for
convergence modules to obtain a driver’s capabilities for making this
determination.

Some device drivers or adapters implement some SAR functions in
hardware or in a combination of hardware and software. This makes
sending and receiving specific types of data more efficient. For example,
TURBOchannel and Peripheral Component Interconnect (PCI) ATM
adapters implement AAL5 in hardware. Other hardware may implement
AAL3/4 or may be able to handle only raw ATM cells. Since the ATM
subsystem is designed to accommodate a wide variety of drivers, it provides
mechanisms for dealing with drivers of varying capabilities. It is the
convergence module’s responsibility to use the capabilities of a driver or an
ATM interface in the best way possible for the protocol it is implementing.

The ATM subsystem can handle the following types of ATM data:

• Raw ATM cells (full ATM cells, including cell headers)

• Cooked packet Protocol Data Units (PDUs)

2.4.1 Raw ATM Cells

If a convergence module needs to transmit raw ATM cells, it should first
determine if the underlying driver supports this service (some drivers may
support only cooked data). If the driver cannot handle raw cells, the
convergence module should not make or accept connections over the
interface controlled by the driver. The convergence module should use the
driver only if the driver provides compatible capabilities.

2.4.2 Cooked Data

If a convergence module needs to transmit cooked data (data packets, such
as AAL5, rather than individual cells), it should first determine if the
underlying driver supports this service (some drivers may support only raw
data or may not cook the data in the needed AAL format). The convergence

ATM Subsystem General Features 2–3

module should use the driver if the driver provides compatible capabilities.
If a driver does not support the required capabilities, but does support raw
cells, the convergence module can perform the SAR functions internally and
then send and receive raw cells. Otherwise, the convergence module should
not accept or make connections over the interface controlled by the driver.

2.4.3 How the Data Is Carried

Both cell and packet data in the ATM subsystem are carried in a chain of
mbufs. The routines for allocating and manipulating the mbufs are the
same as those the networking subsystem uses. The data representation
within the mbuf chain depends on the type of data (raw or cooked) being
carried by the mbufs. When an mbuf chain contains raw cells, each mbuf in
the chain contains exactly one ATM cell, a full 53-byte cell with Generic
Flow Control (GFC) and Payload Type Indicator (PTI) bits set.

An mbuf chain can contain one or more ATM cells, each in its own mbuf.
When an mbuf chain is carrying packet Protocol Data Units (PDUs)
(AAL3/4 or AAL5 PDUs), the mbuf chain will contain exactly one packet
PDU. On outgoing packets, the number of bytes in the packet must be less
than or equal to the maximum transmission unit (MTU) of the VC on
which the packet is transmitted. The mbuf chain must contain the
appropriate headers and trailers (the AAL3/4 or AAL5 Convergence
Sublayer Protocol Data Unit (CS-PDU) headers and trailers). If the device
driver or adapter adds headers and trailers, the driver must strip off this
extra information on outgoing packets. The drivers must include the
CS-PDU headers and trailers on received packets.

2.4.4 Time-Stamping

When a driver receives raw ATM cells, the driver must be capable of
optionally time-stamping the incoming cells to assist convergence modules
or other protocol modules in determining intercell intervals; this might be
required when processing constant bit rate (CBR) or variable bit rate (VBR)
traffic. If a convergence module enables time-stamping of incoming data,
the device driver must add an 8-byte time-stamp immediately after the cell
bytes in the mbuf, increasing the mbuf length to 61 bytes.

On Tru64 UNIX systems, the time-stamp is the value read from the
free-running system clock at the time the packet was received by the
driver. This value has a 10-nanosecond resolution, but the value is accurate
to only a few microseconds. This is because the time-stamp is not generated
by the hardware when the packet arrives, but by the driver during its
receive interrupt processing.

2–4 ATM Subsystem General Features

The driver can also optionally indicate lost or corrupted cells in the data
stream. Cell loss can be due to hardware errors, the failure of cyclical
redundancy checks (CRC), or insufficient resources to hold the incoming
cell. The actual cause of local cell loss can vary between drivers. To indicate
a lost cell in the data stream, the driver should insert a 0 length mbuf in
the data stream where the cell was lost. Only one of these needs to be
inserted if multiple sequential cells are lost. If time-stamping is enabled,
the lost cell indicator will be an 8-byte mbuf with the time-stamp
indicating the temporal position of the lost cell. The protocol convergence
module can use this information for clock recovery, if necessary.

2.5 Physical Point of Attachment

The physical point of attachment (PPA) is a network services endpoint. It is
the point at which the network services are provided and to which network
services users attach to the network services. Each PPA represents a
unique addressable entity on the network, identifying a provider of
network services on both the local system and the network. When a call is
placed on an ATM network, only the PPA is addressed; the PPA’s address is
registered with the ATM switch.

Although the network can address the PPA through the PPA address, the
network cannot use the same address to address individual network
services users attached to the PPA. For this, the ATM network uses ATM
End System Addresses (AESAs). An AESA uniquely identifies both the
network services endpoint and a specific network services user attached to
that endpoint.

UNI 3.0/3.1 AESA-format ATM addresses consist of the following parts:

• A prefix — Assigned by the switch

• End system identifier (ESI) — Assigned by the local host

• A selector byte — Used by the network services provider on the end
system to route a call to a specific network services user attached to a
PPA

The first two parts together are registered with the ATM switch and
network, and uniquely identify a PPA to which network services users may
attach. Both the host and the switch must combine these two pieces of
information to form complete addresses. This is done through the
Integrated Local Management Interface (ILMI) protocol when new
addresses are added or deleted. The CMM, in cooperation with signaling
modules, keeps track of these two parts so that all addresses associated
with either a prefix or an ESI are properly managed. Since the prefix is
assigned by the switch, the CMM leaves the management of the prefixes up

ATM Subsystem General Features 2–5

to the address registration and management portion of the signaling
module.

ESI values have the following sources:

• The ESIs configured in the ATM adapter’s read-only memory (ROM)

• ESIs configured by the system or network administrator, who uses the
atmconfig command

• ESIs configured by convergence modules that need to create their own
ATM addresses

The first two ESIs are considered global or public ESIs. All PPAs created
from global ESIs are available to all convergence modules. Only the system
or network administrator can delete global ESIs. ESIs that convergence
modules create are considered private. All PPAs created from private ESIs
are available only to the convergence module that configured the ESI on
the system. These ESIs can be deleted by either the system or network
administrator or by the creating convergence module. The CMM keeps
track of ESI sources (in the atm_esi structure) to assure that only the
correct entity can remove an ESI (and all associated PPAs and the VCs
associated with those PPAs).

Since ATM permits an arbitrary number of ESIs and prefixes to be
registered for a specific connection to the network, an end system can have
an arbitrary number of PPAs. Users of the ATM network services
(convergence modules) can attach their service to any combination of PPAs
to make their service available on the network. The process of attaching a
service to a PPA is called binding, and creates a full AESA that uniquely
identifies a specific instance of a service on the network. In the Tru64
UNIX ATM architecture, all calls must be placed and received through bind
points that represent valid AESAs.

In the ATM subsystem, PPAs are created whenever an address is
successfully registered with the local network switch. When a PPA comes
into existence, convergence modules are notified and may bind their
services to the PPAs. Each PPA contains three pieces of information that
uniquely identify it among the different networks to which the host may be
attached. Associated with each PPA is a device driver (representing the
physical connection to a network), a signaling module (representing the
protocol that controls the administration of the PPA), and the PPA’s
address on the network to which it is attached. This permits PPAs on
separate, disjoint networks to have the same logical address, but to still be
unique on the local system.

The ATM subsystem has two types of PPAs:

• Permanent virtual circuit (PVC) PPAs, which manage PVCs

2–6 ATM Subsystem General Features

• Switched virtual circuit (SVC) PPAs, which manage SVCs

You can specify as many services for PVC connections as for SVC
connections.

2.5.1 Permanent Virtual Circuit PPAs

When an interface becomes active on a network, the CMM automatically
creates a special PPA for use in connecting PVCs to network services users.
A PVC PPA is a special PPA that has no network address and no associated
signaling module. It represents a path between the network and a network
services user. There is exactly one PVC PPA for each interface that is
operational. PVC PPAs are destroyed only when a driver is taken down or
unregistered with the CMM. PVC PPAs remain in place throughout
network disruptions.

Since PVC PPAs have no associated address, you must decide how to bind a
specific network services user to a PPA and how to uniquely identify the
user on that PPA. Since PVCs are created locally either with the
atmconfig administration command or by convergence modules, and do
not have any identifying characteristic that is unique on the network, you
can assign an arbitrary addressing scheme to PPA bindings. The only
requirements are that each network services user be uniquely identifiable
and that there be a large enough address space to accommodate as many
services as all the SVC PPAs can bind. See atmconfig(8) for more
information.

In the ATM subsystem, a PVC bind point is identified not by an AESA, but
by values unique to each network services user (convergence module) that
binds to a PVC PPA. These values are the convergence module’s name
(provided when the convergence module registers with the CMM) and a
selector value used to specify a specific instance of a service on the
convergence module. Thus, a PVC network services user is identified by a
driver/convergence/selector tuple that identifies a specific instance of a
specific service on a specific network. The selector space for PVC bind
points is 31-bits wide and is local to each convergence module; each
convergence module has complete control over the selector values used to
access instances of its service. This provides a large enough bind space to
enable convergence modules to create a PVC binding for every SVC binding
and to accommodate both PVC and SVC access to its services.

2.5.2 Switched Virtual Circuit PPAs

When an ATM network interface is brought up, the signaling protocol that
uses the interface must contact the local switch to register the end system
with the network. For UNI 3.0/3.1, this involves exchanging addressing

ATM Subsystem General Features 2–7

information with the switch to create full ATM addresses, minus the
selector values. Each ATM address comprises a prefix value, which is
assigned by the network, and an ESI, which identifies the end system.
ATM permits the switch to assign an arbitrary number of prefixes and the
end system to provide an arbitrary number of ESIs, within reason and
subject to implementation-specific limitation. Each combination of prefix
and ESI forms an ATM address, or a network services endpoint (PPA).

When an address is registered with a switch, the registering signaling
module informs the CMM that a new network services endpoint exists. The
CMM then creates a PPA for the new address and notifies each
convergence module or the network services users of the new PPA so that
they can create AESA bindings, if necessary. Calls to remote systems are
given the calling party number of the bind point and PPA through which
the call is placed. Incoming calls are routed to bind points based on the
called party’s AESA address. Therefore, all SVC activity must use a bind
point as the local endpoint object. Calls received for an unbound AESA are
rejected, and no calls can be placed without first creating a bind point and
calling party’s AESA.

The bind space for SVC PPAs is 8 bits long, the size of an AESA selector. If
a convergence module needs a larger binding space, it can create more
PPAs to which it can bind additional instances of its services. A
convergence module can create an SVC PPA for its private use by defining
a new ESI to the system. By defining a new ESI, one or more new PPAs are
created with the new ESI and the current prefixes provided by the switch.
The ATM subsystem recognizes PPAs made with ESIs created by a
convergence module and makes the new PPAs available only to the module
that created the ESI. This allows convergence modules to create their own
address space on the ATM network.

ESIs taken from an adapter’s ROM and ESIs created by using the
atmconfig command are considered global. All resulting PPAs are not
restricted to specific convergence modules. All other ESIs and their
resulting PPAs are considered private.

When a driver is taken down or a connection to the network is lost, the
CMM destroys all SVC PPAs, along with any bind points and VCs
associated with the PPAs. If the connection to the network is reestablished,
the signaling module must reregister all the ESIs; only the creator of the
ESI or the system administrator, using the atmconfig command, can
remove ESIs. The PPAs are then recreated. The convergence modules must
bind to the new PPAs.

2–8 ATM Subsystem General Features

2.6 Memory Allocation

All modules that allocate memory for use in the ATM subsystems should
use the same allocation mechanism. This enables the system to keep track
of memory allocated for use by ATM and provides a consistent
programming model. The following macros for allocating and freeing
memory can be safely called in any context:

ATM_MALLOC(pointer,cast,size)
ATM_MALLOCW(pointer,cast,size)
ATM_MALLOC_VAR(pointer,cast,size)
ATM_MALLOCW_VAR(pointer,cast,size)
ATM_FREE(pointer)

The ATM_MALLOC and ATM_MALLOCW macros allocate memory of at least
size bytes. They place the address of the allocated memory into pointer,
casting it with the type of cast. The allocated memory is correctly aligned
for any operation. You should use these macros if the size of the allocation
is determined at compile time, as they are optimized for that purpose.

The ATM_MALLOC_VAR and ATM_MALLOCW_VAR macros perform the same
function as ATM_MALLOC and ATM_MALLOCW. You should use these macros
when the allocation size is computed at run time.

The ATM_MALLOC and ATM_MALLOC_VAR macros do not block if the
requested memory is not available, but return NULL. You should use these
macros in the majority of cases since any routine called by the ATM
Subsystem is not allowed to block (except Module Management Interface
(MMI) calls).

The ATM_MALLOCW and ATM_MALLOCW_VAR macros block until the
requested memory is available. However, they can still return NULL if an
error occurs during the allocation processing. Use these macros only in
contexts that can block (system calls and private kernel threads). All
memory allocated by these macros is mapped in kernel virtual memory and
can be passed to any kernel function.

The ATM_FREE macro frees memory allocated previously by any
ATM_MALLOC macro. The value of pointer must be identical to that
returned from the ATM_MALLOC macro. Once memory is freed, do not
reference it again.

The macros return NULL if no memory is available. All modules must
check the return value before dereferencing them to assure that memory
was successfully allocated. Modules should also be prepared to handle
situations where memory is not available; this should not be a fatal error.

The following code fragment shows how to use these macros:

ATM Subsystem General Features 2–9

struct my_struct *msp;

ATM_MALLOC(msp,struct my_struct *,sizeof(struct my_struct));
if(msp == NULL)
{

/* allocation failed */
return ATM_CAUSE_NOMEM;

}
/* use memory referenced by msp */
ATM_FREE(msp);

2.7 ATM Locking Macros

The base ATM subsystem is symmetric multiprocessing (SMP) and
realtime (RT) safe. The CMM is highly parallelized and supports fine-grain
concurrency in all attached modules. ATM modules that are included with
the base ATM subsystem are either parallelized or funnel to the master
processor. Therefore, any user-created ATM module must be both SMP and
RT safe. The module must at least use funneling to force the module to run
on the master processor. The module can also use fine-grain concurrency
and locking.

The following section provides a brief overview of locking as it applies to
ATM modules. See the Writing Kernel Modules manual for a complete
description of locking within the kernel.

2.7.1 Locking Guidelines

Because of the way in which the ATM subsystem operates, you should
write all routines of any ATM module that is called by the CMM to execute
on an interrupt stack. Many ATM functions execute either off a device
interrupt, the system soft clock, or an internal ATM thread. This means
that no ATM routine that the CMM calls can block (with the exception of
the xxx_mmi routine described in Appendix A). Therefore, all locks must be
nonblocking simple locks. You can use blocking locks only from within a
module’s private thread, or when in a system call context.

No ATM module should hold a simple lock when calling outside the module
(in general, simple locks should be held the minimum amount of time).
Thus, when calling any CMM routine or any other kernel routine, no locks
should be held. When the CMM calls any module’s routine, no CMM locks
are held across the call.

Finally, before taking a simple lock, raise the processor priority to splimp
so that interrupts are blocked if the locking thread happens to be running
on the master processor.

2–10 ATM Subsystem General Features

2.7.2 Types of Locking Methods

Modules that do not implement high levels of parallelism can implement
one of the following locking methods (in increasing order of preference):

• Coarse-grain locking

• Funneling

• Using threads

Coarse-grain locking uses one lock (or perhaps a few) to lock a large code
path or an entire module. Avoid this type of locking because it requires that
a simple lock be held for long periods of time, possibly causing all other
processors to block while waiting on the lock. Also, if the lock is held
through function calls outside the module, locking hierarchy violations or
deadlocks could result.

Funneling forces the module’s thread of execution onto a single CPU. Since
the module runs only on the master, it is effectively running in a
uniprocessor environment. Once funneled, all calls outside the module also
run on the master processor even though the called routine may be
parallelized. Funneling causes severe context switch overhead that
adversely affects module, ATM, and system performance. This is because
the module’s thread is suspended on the slave and then placed in the
master processor’s scheduling queue.

To funnel a thread, place the unix_master() function call at the start of
and the unix_release() function call at the end of the code block to be
funneled. There must be a corresponding unix_release() call for every
unix_master() call. You must account for this when designing error
paths through a code block.

Creating a thread for the module and then queuing work to the thread is
the preferred option. All the module’s work is performed in the thread that
can run on only one processor (any processor in a multiprocessor
environment). Thus, within the thread’s code path no locks are required.
Only the queuing mechanism, which enqueues and dequeues requests to
the thread, requires locking.

Using this strategy, all module routines that can be called from outside the
module would allocate some queue structure, take the arguments to the
routine along with some identifier to identify the routine that has been
called, place them in this structure, and then enqueue the structure to a
service queue (locking service queue access). Once the structure is
enqueued, the module’s thread would be scheduled through one of the
thread-management calls. Then, when the thread is run, it would dequeue
a request from the service queue (again, locking the service queue) and
process the request in the thread’s context. The thread would run until

ATM Subsystem General Features 2–11

there were no more requests on the service queue. This does incur the
overhead of a context switch on a uniprocessor system, but on a
multiprocessor system the enqueuing could take place on one processor at
the same time the thread is being run on another.

2.7.3 Order of Locking Macros

The ATM locking functions are actually macros that invoke other macros,
and are defined in the atm_osf.h file. The following sequence of steps lists
the locking macros and the order in which you call them in your module:

1. Declare and initialize the lock information structure.

atm_lock_info(, lock_info_name);

This declares the lock information structure and allocates storage for
it. Lock information structures are declared as globals, so this macro
should appear outside all functions. When creating a lock for structures
that are dynamically allocated, you need only a single lock information
structure that can be applied to all instances of the structure.

2. Declare a lock.

atm_lock_decl(lock_name)

_____________________ Note _____________________

Do not put a semicolon at the end of the declaration.

This declares the lock and allocates storage for it. You can use the
macro within a structure declaration or by itself in a global context.

3. Initialize the lock.

atm_lock_setup(& lock_name,& lock_info_name);

Be sure to pass the address of the lock and lock information structures
in this macro.

4. Take the lock.

atm_lock(& lock_name);

Be sure to raise the processor priority immediately before taking the
lock.

5. Release the lock.

atm_unlock(& lock_name);

Be sure to lower the processor priority immediately after releasing the
lock. Do not lower the processor priority while the lock is held.

2–12 ATM Subsystem General Features

6. If the lock is no longer needed, (for example, when storage for a
structure with an embedded lock is being released), terminate the lock.

atm_lock_terminate(& lock_name);

Once terminated, you can no longer use the lock unless you reinitialize
it.

The following code fragment shows the sequence of calls in creating and
using a lock:

atm_lock_decl(some_lock)
atm_lock_info(,some_lock_info);
int oldpri;

/* initialize the lock */
atm_lock_setup(&some_lock,&some_lock_info);

/* take the lock */
oldpri = splimp();
atm_lock(&some_lock);

/* release lock */
atm_lock(&some_lock);
splx(oldpri);

/* terminate the lock when it will no longer be used */
atm_lock_terminate(&some_lock);

2.7.4 Creation of ATM Threads

ATM modules can create kernel threads for the following reasons:

• To schedule work in the module to be performed in a context that is
private to that module. For example, a module may process incoming
data from a thread rather than on the interrupt stack (incoming data is
passed to convergence modules on the driver’s interrupt stack).

• To perform functions that have to occur at periodic intervals such as
protocol timeouts or garbage collection.

The operating system’s kernel provides many kernel thread primitives that
modules are free to call directly. These are described in greater detail in the
Writing Kernel Modules manual. However, to create a thread for use by an
ATM module, the ATM subsystem provides the atm_cmm_new_thread
function. This function combines many of the operating system’s thread
primitives to provide an easier interface for ATM modules. See Appendix A
for a description and format of this function.

ATM Subsystem General Features 2–13

2.8 Types of Circuits

The ATM subsystem supports the following circuits:

• Unspecified bit rate (UBR)

• Constant bit rate (CBR)

A circuit in which both end systems and the network dedicate the
resources necessary to handle transmission and reception of the
circuit’s traffic at the specified bit rate. CBR circuits requiring
end-to-end timing are not supported because the drivers and adapters
do not support the AAL1 capability.

• Pacing

A circuit that allows convergence modules to specify that the local
driver perform cell pacing on non-CBR circuits. The sending system
ensures that traffic is injected onto the network at a rate no greater
than the specified bit rate. A pacing circuit has local significance only.
To the network and target system, the pacing circuit is a best-effort
UBR connection. You can use pacing circuits, for example, to limit the
local host’s transmission rate without having both end systems and the
network treat the circuit as CBR.

The default best-effort UBR connections and pacing connections do not
require the end systems to dedicate resources (such as bandwidth) to the
connections. However, CBR connections require the end systems to dedicate
resources to those connections. These resources can either be allocated
transparently at the time the connection is made or received, or they can
be reserved in advance by the sending or receiving convergence module and
later applied to a connection setup or incoming call. See Section 6.1 and
Section 6.2 for information on reserving resources for connections.

2.9 Global Data Structures

The following data structures are visible to all modules of the ATM
subsystem and to the protocol convergence module:

• atm_vc

• atm_addr

• atm_vc_services

• atm_uni_call_ie

• atm_ppa

• atm_esi

• atm_cause_info

2–14 ATM Subsystem General Features

The ATM subsystem uses these structures to keep track of information for
each VC, such as VC service parameters, connection endpoint addresses,
VC numbers, and traffic statistics. When a module other than the CMM
must allocate memory for a structure, the CMM provides a function call or
macro to allocate structure memory in a consistent manner, to properly
initialize the structures, and to allocate the correct version of the structure.
Module writers must not use any routines other than those that the CMM
supplies to allocate structure memory. The following sections describe these
data structures.

2.9.1 The atm_vc Structure

The ATM subsystem uses the atm_vc structure to reference a VC. A VC is
the object on which data is sent and received. VCs are associated with one
or more local endpoints and one or more remote endpoints. An action
performed on a VC usually affects all the endpoints associated with the VC.
For example, transmitting data on a VC sends the data to all endpoints
currently connected to the VC.

The atm_vc structure has the following characteristics:

• Only the CMM allocates and frees the structure.

• The CMM and other ATM modules use the structure for keeping track
of an active VC. The CMM also uses it to maintain all per-VC state
information.

• Some structure members are reserved for use by the various modules in
the ATM subsystem. This enables all ATM modules to use a common
reference for a specific VC. All modules use the pointer to this structure
as the handle for a specific VC.

• Each module of the ATM subsystem can write only those members of
the structure that are assigned for its use. All other structure members
should be considered read-only.

• The structure’s size and members might change in the future, but the
arrangement of the per-module structure members should not change.

• No locking is required for access to this data structure. Since each
module is permitted to modify only those fields assigned to it, there is
no need to coordinate access to the entire structure with other modules.
Access within a module may be locked if necessary.

• You use a pointer of type atm_vc_p to reference the structure.

When a module is first informed of the presence of a new connection, it
receives a reference to an atm_addr structure for the connection endpoint.
The atm_addr structure references the atm_vc structure for the
connection. At this point, the module can use its private structure members

ATM Subsystem General Features 2–15

in the atm_vc structure to hold information necessary to keep track of the
VC and can use its private pointer structure members to store any
information it requires.

When the VC is torn down and local resources are deallocated, the CMM
calls each module to deallocate any resources associated with the VC. At
this time, the module must zero out its atm_vc structure private members
to signify that it no longer has any reference to the defunct VC.

Table 2–1 lists those member names of the atm_vc structure, with their
associated data types, that modules might reference.

Table 2–1: The atm_vc Structure Members

Member Name Data Type

conv_pp1 void *

conv_pp2 void *

sig_pp1 void *

sig_pp2 void *

drv_pp1 void *

drv_pp2 void *

vcs atm_vc_services_p

call_reference long

errno atm_error_t

vci int

vpi int

ppa atm_ppa_p

selector int

direction atm_direction_t

2.9.1.1 The conv_pp1 and conv_pp2 Members

The conv_pp1 and conv_pp2 members are pointers reserved for the use
by convergence modules only; no other ATM module is permitted to use
these structure members. Typically, a convergence module uses these
members to reference local structures and resources associated with the
connection that the atm_vc structure controls. However, convergence
modules may use these fields in other ways.

2–16 ATM Subsystem General Features

2.9.1.2 The sig_pp1, sig_pp2, drv_pp1, and drv_pp2 Members

The sig_pp1, sig_pp2, drv_pp1, and drv_pp2 members have
corresponding meanings for ATM signaling protocol modules and ATM
device drivers, respectively.

2.9.1.3 The vcs Member

The vcs member is a pointer to an atm_vc_services structure that
contains all the service parameters for the VC. The CMM sets this pointer.

_______________________ Note _______________________

This member and any member of the structure that it references
should never be written by any module other than the CMM.

2.9.1.4 The call_reference Member

The call_reference member is a unique call identifier assigned to the
VC. This value is assigned only by the CMM and signaling protocol
modules and must not be modified by any other module.

2.9.1.5 The errno Member

The errno member contains the last error number that was reported on
the VC.

2.9.1.6 The vci and vpi Members

The vci and vpi members contain the virtual circuit’s virtual path
identifier (VPI) and virtual channel identifier (VCI) values. These are
assigned by the CMM in cooperation with the signaling protocol module
that set up the connection.

2.9.1.7 The ppa Member

The ppa member indicates the PPA to which the VC belongs.

2.9.1.8 The selector Member

The selector member is the selector value assigned to the bind point to
which the VC is attached. This value combined with the address
information in the PPA form the full AESA address.

ATM Subsystem General Features 2–17

2.9.1.9 The direction Member

The direction member provides information about the direction of the
call. The CMM sets this member to one of the following:

• ATM_DIRECTION_PVC, if the VC structure references a PVC

• ATM_DIRECTION_CALLING, if the VC structure references a call
placed by the local system

• ATM_DIRECTION_CALLED, if the VC structure references a call
received by the local system.

This structure member is set only by the CMM and must not be modified
by any other module.

2.9.2 The atm_addr Structure

The ATM subsystem uses the atm_addr structure to reference a connection
endpoint. One atm_addr structure exists for every connection to every
endpoint. Multiple endpoints and multiple address structures can be
associated with a single VC (for example, point-to-multipoint connections).
A pointer to this structure is the handle that the ATM subsystem uses to
reference a specific connection endpoint.

The atm_addr structure has the following characteristics:

• The structure stores all address- and state-related information for a
connection endpoint. This structure contains only endpoint information,
not information about the connection to the endpoint. The connection
information is maintained in the atm_vc structure that is referenced in
the atm_addr structure. Except at structure initialization time, all
address structures are associated with a VC.

• All function calls that perform an action related to a specific endpoint
use a pointer to this structure.

• The structure maintains local address information since the local
address is also a connection endpoint.

The structure may contain additional members for the internal use of the
CMM. ATM modules should make no assumption about the actual length of
the structure. Table 2–2 lists those members of the atm_addr structure,
with their associated data types, that modules might reference.

2–18 ATM Subsystem General Features

Table 2–2: The atm_addr Structure Members

Member Name Data Type

vc atm_vc_p

address[20] unsigned char

ton unsigned char

anpi unsigned char

subaddress[20] unsigned char

subaddress_type unsigned char

eprtype unsigned char

endpoint unsigned short

state unsigned char

atm_error atm_error_t

setup void *

connect void *

location unsigned char

cause atm_err_t

diag_length unsigned char

diagnostic[27] unsigned char

endstate unsigned char

conv_p1 void *

conv_p2 void *

sig_p1 void *

sig_p2 void *

2.9.2.1 The vc Member

The vc member references the atm_vc structure of the VC to which this
endpoint belongs.

2.9.2.2 The address Member

The address member is an array that contains the 20-byte ATM address
of the endpoint.

ATM Subsystem General Features 2–19

2.9.2.3 The ton Member

The ton member is a value that specifies the endpoint’s address type.
These bits are identical to the type of number field in the Called Party
Number information element (IE) (right justified).

2.9.2.4 The anpi Member

The anpi member is the address or numbering plan identification
information for the address. These bits are identical to those in the
corresponding field of the Called Party Number IE.

2.9.2.5 The subaddress Member

The subaddress member is an array that contains the subaddress of the
endpoint. If the endpoint has no subaddress, the Authority and Format
Indicator (AFI) byte of the subaddress array must be 0.

2.9.2.6 The subaddress_type Member

The subaddress_type member is a numeric value that specifies the type
of subaddress that the endpoint uses. These bits are identical to those in the
Type of subaddress field of the Called Party Subaddress IE (right justified).

2.9.2.7 The eprtype Member

The eprtype member is the endpoint reference type of the endpoint
referenced by the structure. Signaling modules fill in this information,
indicating the type of endpoint contained in the endpoint structure member.

2.9.2.8 The endpoint Member

The endpoint member is the endpoint reference value that the ATM
subsystem uses to reference an endpoint in a point-to-multipoint
connection. The CMM assigns this value when processing
point-to-multipoint connection requests.

2.9.2.9 The state Member

The state member is the call state value or global interface state value
field from the last Call State IE received for the connection. Only the
signaling module fills in this member.

2.9.2.10 The atm_error Member

The atm_error member contains the error number for the last error
reported on the endpoint.

2–20 ATM Subsystem General Features

2.9.2.11 The setup Member

The setup member is a pointer to a signaling protocol-specific structure
that contains the parameters sent or received in the call setup phase of
connection creation. These parameters indicate the call parameters set by
the calling party of a connection. On incoming calls (the local host is the
called party), the signaling protocol module sets this member. On outgoing
calls (the local host is the calling party), the protocol convergence module
that initiates the call sets this member.

The protocol convergence module and the signaling module must agree on
the format of the object referenced by this member. The protocol
convergence module can free storage for the objects referenced only when
the associated connection is torn down.

2.9.2.12 The connect Member

The connect member is a pointer to a signaling protocol-specific structure
that contains the parameters sent or received in the connection phase of
connection creation. These parameters indicate the actual parameters the
ATM subsystem uses to establish the service between the endpoints. These
could differ from the setup parameters in cases where parameter
negotiation took place. Both sets of parameters are maintained so that any
differences between requested and negotiated parameters can be easily
determined.

The protocol convergence module and the signaling module must agree on
the format of the object referenced by this member. The protocol
convergence module can free storage for the objects referenced only when
the associated connection is torn down.

2.9.2.13 The location, cause, diag_length, and diagnostic Members

The location, cause, diag_length, and diagnostic members are filled
in by the CMM from the Cause IE received for the connection. Convergence
modules can use this information to determine the reason for a call failure.
The diagnostic array contains diag_length valid bytes taken from the
Cause IE length field.

2.9.2.14 The endstate Member

Only the signaling module fills in the endstate member as part of the
enquiry processing.

ATM Subsystem General Features 2–21

2.9.2.15 The conv_p1 and conv_p2 Members

The conv_p1 and conv_p2 members are reserved for use by convergence
modules only; no other module may access these members. Typically, these
members store state information associated with the endpoint.

2.9.2.16 The sig_p1 and sig_p2 Members

The sig_p1 and sig_p2 members are reserved for use by signaling
modules only; no other module may access these members. Typically, these
members store state information associated with the endpoint.

No locking is required for access to this data structure. Since each module
is permitted to modify only those fields assigned to it, there is no need to
coordinate access to the entire structure with other modules. Access within
a module may be locked if necessary.

2.9.2.17 Allocating the atm_addr Structure

One atm_addr structure is allocated by a protocol convergence module for
each endpoint it calls and by signaling modules for each endpoint that calls
the local host. Convergence and signaling modules use the
atm_cmm_alloc_addr function call to allocate memory for the structure.
The atm_cmm_alloc_addr call returns a valid pointer, if memory was
successfully allocated and initialized; a NULL, if an error occurred. This is
the only valid means to allocate memory for the structure.

Usually, the CMM frees all ATM address structures associated with a VC
when the VC is destroyed. However, under some error conditions (such as
when a convergence module is allocating a series of structures and one
allocation fails), it may be necessary for the allocating module to free
memory it has allocated. In these cases, modules can call the
atm_cmm_free_addr function call with the value returned from
atm_cmm_alloc_addr to free memory. Once the CMM accepts a connection
request (either incoming or outgoing), only the CMM can free storage for
this structure. See Appendix A for a description of the two routines.

2.9.3 The atm_vc_services Structure

Every connection on the system is allocated some amount of network
resources (a portion of the network bandwidth). When a new connection is
requested, the requester tells the ATM subsystem the type of physical
resources required by the connection. The CMM ensures those resources
are available and allocates them to the connection.

The CMM uses the atm_vc_services structure to keep track of
connection resources and to inform the device drivers of the resources that

2–22 ATM Subsystem General Features

must be allocated for a connection. The atm_vc_services structure has
the following characteristics:

• One structure must be allocated and the members set to valid values
for each new connection by the entity that creates the connection
(convergence protocol module on outgoing calls or signaling protocol
module on incoming calls). Once the connection service parameters are
set you cannot change them.

• The CMM keeps track of these structures on a per-VC basis and frees
them when the connection is torn down.

• The structure defines those services the CMM and driver manage.
Every signaling and convergence module must properly set up the
structure regardless of the signaling protocol used to actually set up the
connection.

• Signaling protocol modules may use the structure to obtain information
needed to create various signaling protocol messages used in call
management (available to all modules).

• The structure is also used to track resource reservations. A convergence
module can reserve resources for allocation to incoming or outgoing
calls at a later time. You use this structure to define what resources are
to be reserved and to track the reserved resources. See Section 6.1 for
more complete information on the use of this structure in resource
reservation.

• This structure defines parameters relative to the local system,
independent of the actual call direction. The term forward means the
sending side of the connection on the local system; the term backward
means the receiving side of the connection on the local system. This is
different from the ATM Forum UNI specification, which defines
parameters based on the call direction.

The signaling module must perform any conversions between the
atm_vc_services structure members and the appropriate information
elements (IEs) in the signaling message. This might require
interchanging forward and backward fields, depending on the direction
of the call.

• The structure is always referenced as a pointer of type
atm_vc_services_p.

Table 2–3 lists those member names of the atm_vc_services structure,
with their associated data types, that modules might reference.

ATM Subsystem General Features 2–23

Table 2–3: The atm_vc_services Structure Members

Member Name Data Type

vc atm_vc_p

fqos atmqos_t

bqos atmqos_t

fmtu unsigned int

bmtu unsigned int

valid_rates unsigned int

fpeakcr[2] unsigned int

bpeakcr[2] unsigned int

fsustcr[2] unsigned int

bsustcr[2] unsigned int

fburstcr[2] unsigned int

bburstcr[2] unsigned int

flags unsigned int

aal atmaal_t

queue unsigned int

bearer_class unsigned int

lerrstat enum atm_lerr_t

nerrstat unsigned int

cmm_drv_handle atm_drv_handle_t

drv_resource void *

converge_handle void *

2.9.3.1 The vc Member

The vc member is a pointer to the VC structure for the connection.

2.9.3.2 The fqos and bqos Members

The fqos and bqos members are the forward and backward quality of
services (QOS) types, respectively. These indicate the QOS the caller is
requesting for the connection. The following table lists the values and
meanings for fqos and bqos:

2–24 ATM Subsystem General Features

Value Meaning

ATM_QOS_CLASSA Connection-oriented, constant bit rate (CBR) traffic with
source or destination timing relationships.

ATM_QOS_CLASSB Connection-oriented, variable bit rate (VBR) traffic with
source or destination timing relationships.

ATM_QOS_CLASSC Connection-oriented, variable bit rate (VBR) traffic with
no timing relationships.

ATM_QOS_CLASSD Connectionless, variable bit rate (VBR) traffic with no
timing relationships.

ATM_QOS_CLASSX Undefined bit rate traffic.

ATM_QOS_CLASSY Unspecified bit rate (UBR) traffic.

ATM_QOS_NONE No specified quality of service.

2.9.3.3 The fmtu and bmtu Members

The fmtu and bmtu members are the forward and backward maximum
transmission unit (MTU) size (in bytes), respectively. These indicate the
maximum packet size that can be transmitted and received on the
connection when the connection carries AAL3/4 or AAL5 data.

Only device driver modules use the fmtu and bmtu members to allocate
resources for a connection; the signaling module does not use them to store
MTU-related information elements (IEs). If a protocol requires explicit
signaling of MTU information, the convergence module must use the
atm_uni_call_ie structure to supply the IEs. See Section 2.9.4 for more
information about the structure and its members. See Chapter 6 for
information on making outgoing connections and accepting connections.

2.9.3.4 The valid_rates Member

The valid_rates member is a bit mask that indicates which line rates
have been specified and which have been left unspecified. The following
table lists the values and meanings for valid_rates:

Value Meaning

ATM_VCRV_FPEAK0 Forward peak cell rate for CLP=0

ATM_VCRV_FPEAK1 Forward peak cell rate for CLP=1

ATM_VCRV_BPEAK0 Backward peak cell rate for CLP=0

ATM_VCRV_BPEAK1 Backward peak cell rate for CLP=1

ATM_VCRV_FSUST0 Forward sustainable cell rate for CLP=0

ATM Subsystem General Features 2–25

Value Meaning

ATM_VCRV_FSUST1 Forward sustainable cell rate for CLP=1

ATM_VCRV_BSUST0 Backward sustainable cell rate for CLP=0

ATM_VCRV_BSUST1 Backward sustainable cell rate for CLP=1

ATM_VCRV_FBURST0 Forward burst cell rate for CLP=0

ATM_VCRV_FBURST1 Forward burst cell rate for CLP=1

ATM_VCRV_BBURST0 Backward burst cell rate for CLP=0

ATM_VCRV_BBURST1 Backward burst cell rate for CLP=1

2.9.3.5 The fpeakcr, bpeakcr, fsustcr, bsustcr, fburstcr, and bburstcr Members

The fpeakcr, bpeakcr, fsustcr, bsustcr, fburstcr, and bburstcr
members are the arrays that contain the forward and backward peak,
forward and backward sustainable, and forward and backward burst cell
rates, respectively. These indicate the network bandwidth requested by the
caller. The first element of each array specifies the value for cells that have
the Cell Loss Priority (CLP) bit clear (CLP=0). The second element of each
array specifies the value for cells that have the CLP bit set (CLP=1). Only
certain combinations of these rates may be valid for a given signaling
protocol or for a specific QOS type. Those rates that are explicitly specified
are designated by setting the appropriate bit in the valid_rates member.

_______________________ Note _______________________

To set a cell rate of 0, set the appropriate cell rate and mark it
as valid; do not leave the cell rate unspecified.

2.9.3.6 The flags Member

The flags member contains a bit that specifies additional services
required for the connection. The following table lists the values and
meanings for flags:

Value Meaning

ATM_SERVICES_BEI Indicates that the connection should use the
best effort service.

ATM_SERVICES_BTAG Indicates that the network should enable
tagging in the backward direction.

2–26 ATM Subsystem General Features

Value Meaning

ATM_SERVICES_CBR Indicates that the local ATM interface should
pace cells out to the network and that the
circuit should be set up so that the requested
bandwidth is guaranteed for the VC. This flag
causes both local cell pacing to be enabled and
the circuit to be signaled as a CBR circuit. CBR
can be enabled only on hardware that supports
this feature.

ATM_SERVICES_CLIPPING Indicates that the network should enable
clipping of cells on this circuit.

ATM_SERVICES_FTAG Indicates that the network should enable
tagging in the forward direction.

ATM_SERVICES_NOTIMING Indicates that the circuit has no end-to-end
timing requirements. If neither this flag nor the
ATM_SERVICES_TIMING flag are set, the circuit
is signaled as having unspecified timing
requirements.

ATM_SERVICES_PACING Indicates that the local ATM interface should
pace cells out to the network as if the circuit
were a CBR circuit. This flag has local
significance only and does not affect any of the
signaling messages used in creating the
connection. This flag is used mainly when a
convergence module needs to limit the rate at
which cells can be transmitting on a specific
VC. Pacing can be enabled only on hardware
that supports this feature.

ATM_SERVICES_PTM Indicates that the connection is a
point-to-multipoint connection.

ATM Subsystem General Features 2–27

Value Meaning

ATM_SERVICES_TIMING Indicates that this circuit has some end-to-end
timing requirements. When set, the circuit is
signaled as having timing requirements. Also,
the local system may enable features to
facilitate the delivery of data with timing
constraints.

ATM_SERVICES_VBR Indicates that the local ATM interface and the
network should treat this circuit as a variable
bit rate circuit. This flag both enables VBR cell
processing on the local adapter and causes the
circuit to be signaled as a VBR circuit. VBR can
be enabled only on hardware that supports this
feature.

2.9.3.7 The aal Member

The aal member specifies the AAL type for the connection and can have
one of the following values: ATM_AAL1, ATM_AAL2, ATM_AAL3/4, or
ATM_AAL5.

2.9.3.8 The queue Member

The queue member specifies the driver send queue to use for the VC (for
drivers that support multiple send queues). The CMM sets this value; it
must not be set by any other module.

2.9.3.9 The bearer_class Member

The bearer_class member specifies the bearer class information to be
used when signaling the call or that was signaled by the caller. For UNI
signaling, this must be set to one of the following values:
ATM_BBEARER_BCOB_A, ATM_BBEARER_BCOB_C, or ATM_BBEARER_BCOB_X.

2.9.3.10 The lerrstat Member

The lerrstat member contains error indications that result from the
CMM checking the validity of the structure contents. The following table
lists the values and meanings for lerrstat:

2–28 ATM Subsystem General Features

Value Meaning

ATM_LERR_GOOD Indicates that no errors were found in the
structure contents.

ATM_LERR_PEAKMISSING Indicates that the peak cell rate for CLP0+1 has
not been specified. A peak cell rate must be
specified on all circuits (though the rates may
be specified as 0).

ATM_LERR_PEAKTOOBIG The specified CLP0+1 rate exceeds the rate that
is permitted by the hardware or the system
configuration.

ATM_LERR_NOBWAVAIL The specified peak CLP0+1 bandwidth exceeds
the available bandwidth on the interface.

ATM_LERR_BADPEAKCR0 The specified CLP0 peak cell rate exceeds the
specified CLP0+1 peak cell rate. The CLP0 cell
rate must be less than or equal to the CLP0+1
cell rate, depending on the connection type.

ATM_LERR_BADBURSTCR0 The CLP0 burst cell rate exceeds the CLP0+1
burst cell rate.

ATM_LERR_BURSTTOOBIG The specified CLP0 or CLP0+1 burst cell rate
exceeds the specified peak CLP0+1 cell rate.

ATM_LERR_BADSUSTCR0 The specified CLP0 sustained cell rate exceeds
the specified CLP0+1 sustained cell rate.

ATM_LERR_SUSTTOOBIG The specified CLP0 or CLP0+1 sustained cell
rate exceeds the specified CLP0+1 peak cell rate.

ATM_LERR_RATETOOSMALL The specified peak cell rate is smaller than the
minimum rate the local hardware can allocate.
A peak cell rate of 0 is always allowed.

ATM_LERR_BADTRAFFTYPE Invalid traffic flags specified. This error occurs
when neither the CBR or PACING flags are set,
but the circuit is being configured as a CBR
circuit. It can also occur when non-negotiable
traffic flags are modified through the
xxx_connect routine.

ATM_LERR_BADDRVHANDLE When applying a reserved resource, the driver
on which the resources were reserved does not
match the driver on which the VC is being
created.

ATM_LERR_RESNOTALLOC When applying a reserved resource, the
atm_vc_services structure is not backed by
allocated resources. This indicates that an
atm_vc_services structure that does not
reference previously reserved resources is being
applied in a context where reserved resources
are required.

ATM Subsystem General Features 2–29

Value Meaning

ATM_LERR_RESALREADY When reserving resources, the
atm_vc_services structure already references
reserved resources. This indicates that an
atm_vc_services structure that has already
been used to reserve resources is being reused
to reserve the same or different resources.

ATM_LERR_RATESCHANGED When applying reserved resources, the
information specified in the atm_vc_services
structure has been changed since the resources
referenced by the structure were originally
reserved. Once resources are reserved,
convergence modules are not allowed to change
any of the entries in the atm_vc_services
structure.

ATM_LERR_RATESINCOMPAT When applying a reserved resource, the rates
specified in the atm_vc_services structure
are incompatible with the rates requested in an
incoming call.

ATM_LERR_VCALREADY When applying a reserved resource, the VC to
which the resource is being applied already has
a previously applied resource. Resources can be
applied only once, and each VC can be assigned
resources only once.

2.9.3.11 The nerrstat Member

Signaling modules use the nerrstat member to report signaling
protocol-specific validity checking errors on the contents of the
atm_vc_services structure. The values of this member depend on the
signaling module. This structure is currently always set to zero (0).

2.9.3.12 The cmm_drv_handle Member

The cmm_drv_handle member contains the driver handle of the driver for
which resources have been reserved (CBR circuits only). This may be
compared to the driver handle information in the atm_ppa structure if a
convergence module needs to determine whether reserved resources can be
applied to a specific VC. This member is set by the CMM and must not be
modified by any other module.

2.9.3.13 The drv_resource Member

Device drivers use the drv_resource member to store private information
necessary to track reserved resources. The contents of this member have
meaning only to the specific device driver on which resources have been

2–30 ATM Subsystem General Features

reserved, and are not examined by the CMM. Only the driver on which the
resources have been reserved can modify this member.

2.9.3.14 The converge_handle Member

Convergence modules use the converge_handle member to help track
reserved resources. The contents of this member have meaning only to the
specific convergence module that requested the reservations of resources,
and are not examined by the CMM. Only the convergence module that
reserved resources can modify this member.

2.9.3.15 Allocating the atm_vc_services Structure

To allocate the atm_vc_services structure, use the
atm_cmm_alloc_services function call. This call allocates memory for
the structure and initializes its members to default values for best-effort
unspecified bit rate (UBR) service. Once allocated, other ATM modules can
change the members of this structure as needed.

Typically, the CMM frees the atm_vc_services structure associated with
a VC when the VC is destroyed. However, under some error conditions
(such as when a convergence module is allocating a series of structures and
one allocation fails), the allocating module might need to free memory it
has allocated. In these cases, modules call the atm_cmm_free_services
routine with the value returned from atm_cmm_alloc_services to free
memory.

See Appendix A for syntax and a description of the two routines.

2.9.4 The atm_uni_call_ie Structure

The CMM uses the atm_uni_call_ie structure to store optional
information elements (IEs) when the UNI 3.0/3.1 signaling protocol module
sets up a VC. Since UNI 3.0/3.1 is the default signaling protocol that the
ATM subsystem uses, the structure is described in this section. The
atm_uni_call_ie structure has the following characteristics:

• The structure communicates only connection setup information between
convergence protocol modules and the UNI 3.0/3.1 signaling protocol
module.

• The CMM does not access or modify this structure.

• The information specified in this structure is taken directly from the
various optional IEs used in the SETUP and CONNECT signaling
messages. Mandatory IEs necessary for connection setup are built by
the UNI 3.0/3.1 signaling protocol from information taken from the

ATM Subsystem General Features 2–31

atm_addr and the atm_vc_services structures. See Section 2.9.2 and
Section 2.9.3, respectively, for more information.

• The structure contains a union of all IEs that a convergence module can
specify.

• Each instance of this structure specifies exactly one IE. To specify
multiple IEs, you must define multiple instances of this structure.
Convergence modules can specify as many IEs as are needed to place
the call.

• The structure defines the terms forward and backward using the ATM
Forum UNI specification definitions. Forward is the direction from the
caller to the callee and backward is the direction from the callee to the
caller. This is in contrast to the definitions used in the
atm_vc_services struction. See Section 2.9.3 for more information.

Example 2–1 shows the atm_uni_call_ie structure definition.

Example 2–1: The atm_uni_call_ie Structure Definition

struct atm_uni_call_ie {
atm_ie_types_t ie_type;
char last;
union {

union {
struct {

unsigned short subtype;
unsigned short cbr_rate;
unsigned short multiplier;
unsigned short crt;
unsigned short err_corr;
unsigned short sdt;
unsigned short pfc;

} aal1;
struct {

unsigned int fsdu;
unsigned int bsdu;
unsigned int mid;
unsigned short mode;
unsigned short sscs;

} aal34;
struct {

unsigned int fsdu;
unsigned int bsdu;
unsigned short mode;
unsigned short sscs;

} aal5;
unsigned short user_aal[4];

} aal_params;

2–32 ATM Subsystem General Features

Example 2–1: The atm_uni_call_ie Structure Definition (cont.)

struct {
unsigned short hlit;
unsigned short hlisz;
unsigned short hli[8];

} bb_high_layer;
struct {

unsigned short layer2proto;
unsigned short mode2;
unsigned short q933;
unsigned short window_size;
unsigned short user2proto;
unsigned short layer3proto;
unsigned short mode3;
unsigned short dpsize;
unsigned short pktwindow;
unsigned short user3proto;
unsigned int ipi;
unsigned short snapid;
unsigned short oui[3];
unsigned short pid[2];

} bb_low_layer;
struct {

unsigned short bbri;
} bbrepeat;
unsigned short bytes[28];

} ie;
};

2.9.4.1 The ie_type Member

The ie_type member indicates the type of IE specified in the current
instance of the structure. You must specify exactly one IE type per
structure instance.

2.9.4.2 The last Member

The last member indicates the last element of the IE array. This member
must have a nonzero value for the last element of the array and a value of 0
for all other elements. The last element of the array does not need to be the
last physical element of the array. This indicates the last logical element so
that a module reading the array can determine where the last valid
element is located. To declare an element between the start of the array
and the last element as unused, set the element’s type to ATM_IET_NONE.

ATM Subsystem General Features 2–33

2.9.4.3 The aal_params Member

The aal_params member is a union that contains the data to be placed in
(or read from the SETUP message) the AAL Parameters IE in the SETUP
and CONNECT signaling messages. The way the system interprets this
union depends on the value of the ie_type member. The meaning of each
member of each structure in the aal_params union corresponds to a data
field in the AAL Parameters IE. See the UNI 3.0/3.1 specification for
details on the meaning and use of these IE fields.

2.9.4.4 The bb_high_layer and bb_low_layer Members

The bb_high_layer and bb_low_layer members are structures that
specify information from their corresponding IE. Data in these structures is
stored in machine native form, not just as a series of bytes from the
network. Information in each structure is set either as numeric values or
from constants as defined in the atm/sys/atm.h file. Also, the IE headers
(the first 5 bytes of each IE that identifies the IE type and length) are not
stored.

_______________________ Note _______________________

Do not use the bbbc structure any more.

2.9.4.5 Allocating the atm_uni_call_ie Structure

A convergence module can allocate as many instances of the structure as
are needed. The only valid way to allocate storage for and initialize the
atm_uni_call_ie structure from a convergence module is to use the
atm_cmm_alloc_ie function call.

IE structures are allocated in contiguous virtual memory so that
convergence and signaling modules can access them as an array of
structures. Each IE structure in the array can be accessed as an index from
the value returned from this call. For example, the following code fragment
shows how to access the nth structure in the array:

atm_uni_call_ie_p upp, pp;
register int i;

/* Allocate 3 IE’s */
upp = atm_cmm_alloc_ei(3);

/* Make the first IE a repeat indicator */
p = upp;
p->ie_type = ATM_IET_REPEAT;
ATM_IE_SETVAL(p->ie.bbrepeat.bbri,2);

2–34 ATM Subsystem General Features

/* make the next two BLLI */
p = upp+1;
p->ie_type = ATM_IET_BLLI;
ATM_IE_SETVAL(p->ie.bb_low_layer,layer2proto,...);

/* fill in structure */
p = upp+2;
p->ie_type = ATM_IET_BLLI;
ATM_IE_SETVAL(p->ie.bb_low_layer.layer2proto,...);

/* fill in structure */

If you are using non-UNI signaling protocols, the convergence modules that
use these protocols might not be able to use this structure directly, but
must still allocate memory for passing call setup information between the
signaling and convergence modules. To do this, use the atm_cmm_alloc_ie
routine to allocate memory and assist the CMM in properly freeing the
memory when the connection is destroyed. The allocating module is free to
use memory returned from this call, with the following restrictions:

• Memory is allocated in multiples of the structure size so the minimum
number of atm_uni_call_ie structures that provide enough storage
must be allocated.

• The only address that convergence and signaling modules are permitted
to use to reference this memory is the address returned from the
atm_cmm_alloc_ie call.

To allocate some arbitrary amount of memory for use in call setup, use the
following algorithm:

register char *p;
register int size;

size = (bytes_to_alloc + (sizeof(struct atm_uni_call_ie)-1)) /
sizeof(struct atm_uni_call_ie);

p = (char *)atm_cmm_alloc_ie(size);

Typically, the convergence protocol module frees all UNI signaling
structures associated with a VC when the VC is destroyed. However, under
some error conditions (such as when a convergence module is allocating a
series of structures and one allocation fails) the allocating module (either
the convergence or signaling module) might have to free memory it has
allocated. Convergence modules should not free memory for this structure
if the atm_cmm_connect or related call succeeds because the CMM will
free the memory.

If the connect or related call fails, the CMM does not free the memory for
structures passed in as arguments since it permits the calling routine to
retain the memory for future tries. In this case, the convergence module
must free the memory for these structures if they will not be retained for

ATM Subsystem General Features 2–35

future call attempts. Modules can call the atm_cmm_free_ie function call
with the value returned from atm_cmm_alloc_ie to free memory.

2.9.4.6 Setting Fields in the atm__uni_call_ie Structure

When a protocol convergence module needs to create a new connection, the
module allocates and fills in an atm_call_ie structure array and passes
this array to the CMM as part of the atm_cmm_connect function call. The
convergence module must completely set all information in each IE that it
creates; there are no default values. All IEs must be allocated using the
routines described in Section 2.9.4.5 and must be referenced as an array of
structures. Only the value returned from the atm_cmm_alloc_ie routine
can be used to pass references to the IE array to the CMM. Never pass a
pointer to an arbitrary element within the array to the CMM.

Since many of the IE fields are optional, each field explicitly set by a
convergence module or by an incoming SETUP message must be explicitly
flagged. Table 2–4 describes macros that provide the only valid means to
read and write values to and from the atm_uni_call_ie structure.

Table 2–4: Information Element Macros

Macro Meaning

ATM_IE_SETVAL(Field,Value) Sets a value in an IE field. This sets the
field to the specified value and marks the
field as valid; any previous field value in the
field is destroyed. The Field argument is a
C statement that references the field to be
written, and Value is the value to write to
the field.

ATM_IE_ISVALID(Field) Determines if the referenced field holds
valid data (was explicitly specified by the
entity that created the IE).

2–36 ATM Subsystem General Features

Table 2–4: Information Element Macros (cont.)

Macro Meaning

ATM_IE_GETVAL(Field) Reads values from an IE field. This returns
0 if the field does not contain valid data. To
distinguish between a valid value of 0 and
an unspecified field, use the
ATM_IE_ISVALID() macro to determine
the field’s state.

ATM_IE_CLRVAL(Field) Deletes valid information from an IE field.
This deletes the data in the field and marks
the field as invalid. This is the only way to
remove (unset) a value from a field.

2.9.5 The atm_ppa Structure

The ATM subsystem uses the atm_ppa structure to identify a unique
address/interface/signaling triple in the ATM subsystem. The PPA specifies
the calling party address on outgoing calls and specifies the called party
addresses to which the ATM subsystem will respond on incoming calls. The
atm_ppa structure has the following characteristics:

• The CMM maintains exactly one PPA structure for each address or
driver combination configured on the system.

• Only the CMM can change the contents of the PPA structure.

• Convergence modules can hold references to the PPA structures until
they receive a notification that the PPA has been deleted.

• The structure is always referenced as type atm_ppa_p.

Table 2–5 lists those members of the atm_ppa structure, with their
associated data types, that modules might reference.

Table 2–5: The atm_ppa Structure Members

Member Name Data Type

driver atm_drv_handle_t

sig atm_sig_handle_t

ppas_id void *

ton unsigned char

anpi unsigned char

addrlen unsigned char

address[ATM_PPA_MAX_ADDR] unsigned char

ATM Subsystem General Features 2–37

Table 2–5: The atm_ppa Structure Members (cont.)

Member Name Data Type

uni atm_uni_type_t

type atm_ppa_type_t

esi_arg void *

2.9.5.1 The driver Member

The driver member indicates the driver or physical interface to which this
PPA belongs. Since each interface can have any number of PPAs (one for
each registered address plus one PVC PPA), this member identifies the
underlying device. This value is significant only to the ATM subsystem, but
it can be used by convergence modules to determine if two PPAs are
associated with the same physical interface.

2.9.5.2 The sig Member

The sig member indicates the signaling module to which the PPA belongs;
the signaling module handles connection management for that PPA.

2.9.5.3 The ppas_id Member

The ppas_id member is a value provided by the signaling module that
created the PPA for it to use in identifying or managing the PPA. The
signaling module provides this value when registering the PPA with the
CMM. The CMM does not use or modify this value.

2.9.5.4 The ton Member

The ton member is a value that specifies the endpoint’s address type.
These bits are identical to the type of number field in the Called Party
Number IE (right justified).

2.9.5.5 The anpi Member

The anpi member is the address or numbering plan identification
information for the address. These bits are identical to those in the
corresponding field of the Called Party Number IE.

2.9.5.6 The addrlen Member

The addrlen member contains the length (in bytes) of the endpoint
address in the address array.

2–38 ATM Subsystem General Features

2.9.5.7 The address Member

The address member is an array that contains one complete ATM address
for the PPA. This is the fully registered address that contains either a valid
E.164 address or a valid AESA (with both network and ESI parts).

2.9.5.8 The uni Member

The uni member identifies the type of UNI interface to which this PPA
belongs. The types of UNI interface are as follows:

• ATM_UNI_PRIVATE — A private UNI interface

• ATM_UNI_PUBLIC — A public UNI interface

All ATM interfaces are private UNI interfaces.

2.9.5.9 The type Member

The type member identifies the PPA type. The PPA types are as follows:

• ATM_PPA_PUBLIC — Global PPAs that all convergence modules share.

• ATM_PPA_PRIVATE — PPAs that are private to a specific convergence
module. The PPA was created using an ESI provided by that
convergence module.

2.9.5.10 The esi_arg Member

The esi_arg member stores the convergence module private argument
passed to the CMM when a private ESI is registered. Convergence modules
use this information to track which PPAs are created from specific ESIs.
This member is valid only for private PPAs, but contains NULL in public
ESIs.

2.9.6 The atm_esi Structure

The atm_esi structure accommodates non-UNI ESI or equivalent address
information for signaling modules that have similar requirements in
forming full network addresses. Only the signaling module cares about the
actual structure of the address since it is the entity that interprets this
information for registration with the network. Of course, any entity that
creates an ESI must make the ESI conform to the format that the signaling
module uses. In addition, the atm_esi structure has the following
additional characteristics:

• The pointer to the structure is maintained as the system-wide reference
to the structure.

ATM Subsystem General Features 2–39

• Only the CMM allocates and frees the structure. Only the CMM may
modify the nonprivate structure members.

• Non-UNI signaling protocols are free to use the ESI data in any way
that is appropriate for the protocol, including setting full addresses
from the atm_esi structure.

Table 2–6 lists those members of the atm_esi structure, with their
associated data types, that modules might reference.

Table 2–6: The atm_esi Structure Members

Member Name Data Type

esi[ATM_MAX_ESI] unsigned char

esilen unsigned int

driver atm_drv_handle_t

sigp1 void *

sigp2 void *

2.9.6.1 The esi and esilen Members

The esi member is an array that holds esilen bytes of the ESI. The
length of the ESI must be less than ATM_MAX_ESI. For UNI signaling,
the ESI length must be 6 bytes.

2.9.6.2 The driver Member

The driver member is the driver handle for the interface on which the
ESI is configured. Each ESI is associated with exactly one interface.
However, different interfaces can have the same ESI values, but they must
be in separate ESI structures.

2.9.6.3 The sigp1 and sigp2 Members

The sigp1 and sigp2 members are for the private use of signaling
modules to keep internal information about the ESI. The CMM does not
modify these members.

2.9.7 The atm_cause_info Structure

The atm_cause_info structure enables the CMM to keep track of all
errors that occur on a VC or endpoint as well as record information that
may be used to log activity on a VC or endpoint. The structure stores the
following types of information:

2–40 ATM Subsystem General Features

• Cause information

This can be any VC and endpoint errors that are made visible to the
network and to the other end of the connection through a Cause IE.
Cause information also contains information of local significance only
(such as text describing the error), but must contain a valid ATM cause
code.

• Logging information

This can be any VC and endpoint activity information that is simply
logged on the local system and not converted to Cause IE. Logging
information provides information about VC or endpoint activity that a
system or network administrator can view on the local system by using
ATM administration tools.

The atm_cause_info structure has the following additional
characteristics:

• All ATM modules use this structure to read cause and logging
information from a VC or endpoint.

• Only the CMM allocates the structure.

• All cause and logging information retrieval functions return a pointer to
this structure.

• The structure is not used for setting cause and logging information.

• The CMM writes cause and logging information when logging routines
are called. The structure contents are not directly modified.

Table 2–7 lists those members of the atm_cause_info structure, with
their associated data types, that modules might reference.

Table 2–7: The atm_cause_info Structure Members

Member Name Data Type

cause atm_error_t

location atm_location_t

module_name char *

reason char *

diag_length unsigned char

diag[ATM_DIAGNOSTIC_LENGTH] unsigned char

2.9.7.1 The cause Member

The cause member specifies the type of ATM error that occurred.

ATM Subsystem General Features 2–41

2.9.7.2 The location Member

The location member specifies the ATM location code indicating where
the error occurred (that is, user and network).

2.9.7.3 The module_name Member

The module_name member specifies the ATM module in which the error
occurred.

2.9.7.4 The reason Member

The reason member is a string that describes the error.

2.9.7.5 The diag_length Member

The diag_length member specifies the length of the diagnostic
information.

2.9.7.6 The diag Member

The diag member contains diagnostic information from the diagnostic field
in the Cause IE.

2–42 ATM Subsystem General Features

3
Device Driver Interface

The ATM device driver interface enables ATM device drivers to
communicate with the ATM subsystem. It is a registration-based interface
that dynamically configures itself at system boot time. The ATM device
drivers resemble other operating system device drivers, with the following
exceptions:

• The interface to the ATM subsystem is different than the current
character, block, or networking device driver interfaces.

• ATM drivers must register with the ATM Connection Management
Module (CMM).

• ATM drivers provide no read, write, ioctl, or select routine since
all these functions are handled through the CMM.

• ATM drivers must provide a probe and attach routine for the operating
system to call to determine if the device is present and to attach the
device to the operating system.

Like networking drivers, ATM device drivers do not require an entry in the
system’s cdevsw table.

The ATM device driver interface enables device drivers to:

• Register the device driver

• Receive data packets and cells

• Report errors

This chapter describes each of these tasks, the function calls involved, and
the relevant data structures that device driver writers can use. Appendix A
contains a reference page for each device driver interface routine.

3.1 Registering the Device Driver

When the operating system is booted, it calls each device driver’s probe
routine to determine if the device that the device driver controls is present
on the system and is functional. If the probe routine finds a device, it uses
the return value to indicate this to the kernel. The kernel then calls the
device’s attach routine to attach itself to the system.

Device Driver Interface 3–1

When a device driver’s attach routine is called, it calls the
atm_cmm_register_dd routine before returning from the attach. This
registers the device driver with the CMM.

3.2 Receiving Data Packets and Cells

When an ATM device driver receives data packets and cells from the ATM
network, it calls the atm_cmm_receive routine to pass the data to the
CMM. When the CMM receives the data, it immediately passes the data to
the convergence module that owns the virtual circuit (VC). The CMM does
not queue the data. That way, the convergence modules receive the data at
their input functions in the interrupt context; the driver should do all
receive processing in interrupt context for efficiency.

After passing data to the CMM, the driver must not reference any mbufs in
the mbuf chain again. If the driver must allocate private storage for data
(rather than allocating from the system mbuf pool), the driver must provide
an appropriate free routine and set the m_ext structure in the mbuf
appropriately. The data mbuf chain is deallocated only when the protocol
stack has finished referencing the data.

When an ATM device driver receives operations and maintenance (OAM)
cells (nondata cells) from the ATM network, it calls the
atm_cmm_oam_receive routine to pass the cells to the CMM for
processing. Device drivers should pass all OAM cells to the CMM.

3.3 Reporting Errors

When an ATM device driver detects errors on VCs or other interface
failures, it calls the atm_cmm_error routine to report the error to the
CMM. When the CMM receives the error report, it recovers or shuts down
the VC in error. The driver does not need to perform any other actions. If
the VC must be destroyed, the CMM calls the driver through the driver
management interface to deactivate or destroy the VC. If the error
indicates an interface failure, the CMM tears down VCs on the interface.

3.4 Using ATM Device Driver Interface Structures

The ATM device driver interface uses the following structures exclusively:

• atm_drv_params — The device parameters and statistics structure

• atm_queue_param — The queue parameter structure

3–2 Device Driver Interface

3.4.1 The atm_drv_params Structure

The CMM and convergence modules need to know the capabilities of each
physical interface. Since this information is maintained by the driver for
each interface, the system uses the atm_drv_params structure to
communicate interface parameters and statistics between modules. The
CMM typically queries this information from device drivers and then
passes it to other ATM modules on request. The CMM and convergence
modules can request this information at any time, and there is no limit on
the number of times the information can be queried. To allow for future
expansion of the atm_drv_params structure, the device driver should call
the bzero command to insert nulls into the entire structure before filling
in the known fields.

Table 3–1 lists those members of the atm_drv_params structure, with
their associated data types, that device drivers might reference.

Table 3–1: The atm_drv_params Structure Members

Member Name Data Type

name char *

unit unsigned int

type atm_interface_t

num_vc unsigned int

max_vcib unsigned int

max_vpib unsigned int

max_vci unsigned int

max_vpi unsigned int

sent unsigned long

received unsigned long

dropped unsigned long

num_vci unsigned int

num_vpi unsigned int

hard_mtu unsigned int

nqueue unsigned int

flowcontrol unsigned int

rates atm_vc_services_t

capabilities unsigned int

Device Driver Interface 3–3

Table 3–1: The atm_drv_params Structure Members (cont.)

Member Name Data Type

numid unsigned char

ids[6][1] unsigned char

3.4.1.1 The name member

The name member specifies a character string that represents the name by
which the device is known to the system. Management programs use this
string when displaying information about the device. Do not include the
character representation of the unit number in this name (for example,
specify ATM rather than ATM0).

3.4.1.2 The unit Member

The unit member specifies a unit number for the device for those
instances where the driver controls more than one device. The unit
numbers start at 0.

3.4.1.3 The type Member

The type member specifies the type of interface that the device uses.

3.4.1.4 The num_vc Member

The num_vc member specifies the maximum number of VCs the driver can
have open simultaneously.

3.4.1.5 The max_vcib and max_vpib Members

The max_vcib and max_vpib members specify the largest value the driver
permits for VCI and VPI values, respectively.

3.4.1.6 The max_vci and max_vpi Members

The max_vci and max_vpi members specify the maximum number of
VCIs per VPI and the maximum number of VPIs, respectively, that the
driver can support.

3.4.1.7 The sent Member

The sent member is a counter of the total number of cells sent by the
driver since it was last brought on line.

3–4 Device Driver Interface

3.4.1.8 The received Member

The received member specifies the total number of cells received by the
driver since it was last brought on line.

3.4.1.9 The dropped Member

The dropped member specifies the total number of cells dropped by the
driver since it was last brought on line.

3.4.1.10 The num_vci and num_vpi Members

The num_vci member specifies the number of VCs currently available for
use. It is equivalent to the value of num_vc minus the number of VCs
currently in use.

The num_vpi member specifies the number of non-zero virtual paths (VPs)
available for use. It is equivalent to the value of max_vpi minus the
number of VPs currently in use.

3.4.1.11 The hard_mtu Member

The hard_mtu member specifies the maximum packet size (in bytes) the
driver can accommodate when processing cooked packets (for AAL3/4 and
AAL5 only).

3.4.1.12 The nqueue Member

The nqueue member specifies the total number of queues that the interface
supports. If the driver supports more than one queue, the CMM assumes
the driver is capable of permanently associating VCs to queues for the
lifetime of the VC.

3.4.1.13 The flowcontrol Member

The flowcontrol member specifies the types of flow control the driver
supports. Valid values are ATM_FLOW_NONE, ATM_FLOW_STD, and
ATM_FLOW_VENDOR. The CMM uses this information to assign VCs to
multiple queues based on connection service parameters to achieve the best
performance and fairness in cell transmission.

3.4.1.14 The rates Member

The rates member specifies an atm_vc_services structure that the
driver has set to indicate the maximum cell rates that the interface

Device Driver Interface 3–5

supports for each cell rate class. These values include any amount the
driver can overcommit for the interface. The CMM uses these values to
determine if a connection can be granted its requested bandwidth. The
other members of the atm_vc_services structure are unused in this
context.

3.4.1.15 The capabilities Member

The capabilities member specifies miscellaneous driver capabilities. It
is a bit mask that the driver uses to specify functions that the driver can or
cannot perform.

The CMM currently uses the following capabilities:

Capability Description

ATM_DC_DOESPTI Indicates whether the driver keeps track of the Payload
Type Indicator (PTI) bits across all cells of cooked
packets (when the driver or hardware reassembles the
packets from ATM cells). This capability keeps track of
the congestion indication bit in the PTI field of the ATM
cell header. If this bit is set, the CMM expects the PTI
information provided to the atm_cmm_receive call to be
valid. If this bit is clear, the CMM ignores the PTI
information on received packets.

ATM_DC_DOESGFC Indicates whether the device driver supports passing
Generic Flow Control (GFC) bits to the CMM and to
convergence layers through the CMM. The use of the
GFC bits is not finalized. Therefore, the CMM ignores
any GFC bits.

ATM_DC_DOES_AAL5 Indicates that the driver or adapter directly implements
AAL5. The driver or adapter adds the AAL5 trailer to
outgoing packets (including cyclical redundancy check
(CRC) generation) and splits the packets into cells. The
driver or adapter will reassemble incoming cells into an
AAL5 packet and check the AAL5 trailer CRC. If this bit
is set, convergence modules can send or receive packets
and do not have to implement the AAL5 SAR functions. If
this bit is not set, convergence modules must implement
all AAL5 SAR functions and send or receive full ATM
cells, if they want to send and receive AAL5 cells.

3–6 Device Driver Interface

Capability Description

ATM_DC_DOES_AAL3 Indicates that the driver or adapter directly supports
AAL3/4. The driver or adapter adds the AAL3/4 headers
and trailers (including CRC) and splits the packets into
cells. The driver or adapter reassembles incoming cells
into an AAL3/4 packet and checks the CRC. If this bit is
set, convergence modules can send or receive packets and
do not have to implement the AAL3/4 SAR functions. If
this bit is not set, convergence modules must implement
all AAL3/4 SAR functions and send or receive full ATM
cells, if they want to send and receive AAL3/4 cells.

ATM_DC_DOES_RAW Indicates that the driver or adapter is capable of sending
and receiving raw ATM cells. The driver or adapter
accepts raw ATM cells (full 53-byte cells) for
transmission and passes incoming cells to the CMM as
received. A driver can support both raw and AAL5 or
AAL3/4 handling simultaneously. If a driver does not
support raw cells, convergence modules cannot send
arbitrary cells through the interface controlled by the
driver. Since most drivers do not support AAL1, AAL2,
or AAL3/4 directly, these must be handled by
convergence modules as raw cells; the convergence
modules must perform any needed SAR functions.

3.4.1.16 The numid Member

The numid member specifies the number of 48-bit Media Access Control
(MAC) addresses configured on the device’s address read-only memory
(ROM). The driver must allocate an atm_drv_params structure large
enough to hold all the 48-bit MAC addresses by allocating space as follows:

sizeof(struct atm_drv_params) + numid*6 bytes

3.4.1.17 The ids Member

The ids member specifies an array that holds the 48-bit MAC addresses.
Each address appears in the array sequentially starting at ids[6*n],
where n is the address number. The CMM uses these addresses as the end
system identifiers (ESI) when registering with the switch.

3.4.2 The atm_queue_param Structure

The atm_queue_param structure is an argument to the
ATM_DRVMGMT_RAWPARAM ATM management command. See the description
for the atm_cmm_register_dd routine in Appendix A for more
information.

Device Driver Interface 3–7

Table 3–2 lists those members of the atm_queue_param structure, with
their associated data types, that device drivers might reference.

Table 3–2: The atm_queue_param Structure Members

Member Name Data Type

vc atm_vc_p

qlength unsigned int

qtime unsigned int

flags unsigned int

3.4.2.1 The vc Member

The vc member specifies the VC for which the parameters are being set.

3.4.2.2 The qlength Member

The qlength member specifies the number of cells to be queued for
passing in a single mbuf chain. The driver waits until this number of cells
has been received before passing the cells to the CMM. Larger values
reduce the per-cell overhead, but increase latency and the amount of
memory consumed to buffer the cells.

3.4.2.3 The qtime Member

The qtime member specifies the maximum interval between cells (in
10-millisecond intervals) before queued cells are passed to the CMM. This
value enables the driver to control latency. A value of 0 specifies an infinite
amount of time between cells. The interaction between the qlength and
qtime values is similar to that in the TTY subsystem. Basically, the driver
accumulates cells until qlength cells are received or until there has been
more than qtime ticks since the last cell was received.

3.4.2.4 The flags Member

The flags member specifies one of the following behaviors from the driver:

3–8 Device Driver Interface

Behavior Definition

ATM_QP_STAMP Instructs the driver to time-stamp all incoming cells and
place the time-stamp immediately after the cell data in the
mbuf. The time is a 64-bit value taken from the systems
free-running clock and has a resolution of 10 nanoseconds.
These values are useful only for determining the approximate
cell interarrival time, by subtracting the time-stamp of cell n
from the time-stamp of cell n+1. The time-stamp length is
included in the mbuf length (time-stamped cells have an
mbuf length of 61 rather than 53). See Section 2.4 for more
information on data formats.

ATM_QP_EFLAG Instructs the driver to insert 0-length mbufs to indicate that
a cell was dropped due to an error or insufficient resources. If
time-stamping is also enabled, the mbuf contains only a
64-bit time-stamp (the mbuf length is 8 bytes). Only cells lost
in a manner detectable by the driver are flagged. Cells lost on
the network are not tagged. Protocols using constant bit rate
(CBR) can determine if a cell was lost on the network or at
the sending station by a gap in the cell interarrival time. See
Section 2.4 for more information on data formats.

Device Driver Interface 3–9

4
Signaling Module Interface

The ATM subsystem signaling module interface enables signaling protocol
modules to communicate with the ATM subsystem for connection
management only. The primary signaling module provided with the base
system is the UNI 3.0/3.1-compliant signaling module. However, you can
add new signaling modules if the modules do not conflict with each other
(such as in the use of well-known virtual circuits (VCs)). Once configured,
any convergence module can use a signaling module on a per-call basis.

_______________________ Note _______________________

New signaling modules should make no assumptions about
which convergence modules use them, though the convergence
modules may need to know about specific signaling modules.

The signaling module interface does not provide functions that allow the
signaling module to exchange data with an ATM switch. To exchange data,
signaling modules must also register as convergence modules for purposes
of creating signaling VCs, usually permanent virtual circuits (PVCs), and of
exchanging signaling data with the network.

The ATM signaling module interface enables signaling modules to:

• Register the signaling module

• Receive, reply to, activate, release, and delete connections

• Restart a VC

• Drop endpoints

• Add and delete physical points of attachment (PPA)

• Report a connection failure, a completed restart, a completed status
enquiry, and Management Information Base (MIB) access

• Request VC and endpoint status

This chapter describes each task, the function calls involved, and the
relevant data structures that signaling module writers can use. Appendix A
contains a reference page for each signaling module interface routine.

Signaling Module Interface 4–1

4.1 Registering the Signaling Module

When a signaling module is initialized, the module must use the
atm_cmm_register_sig function call to register with the Connection
Management Module (CMM). Once registered, the CMM can use the
signaling module and make it available to convergence modules.

Signaling modules should register as both signaling and convergence
modules. When registering as a convergence module, a signaling module
must set up its signaling VCs to send and receive signaling messages. The
CMM does not provide special facilities for signaling VCs, but treats them
like any other VC. See Section 6.6 for a description of signaling VC
initialization.

4.2 Receiving a New Call

When a signaling module receives a new call, it uses the
atm_cmm_new_call function call to notify the CMM of the new call. The
CMM determines whether the call should be accepted. This CMM function
call is nonblocking and returns with an indication about the disposition of
the call.

4.3 Reporting a VC Activation

When a signaling module receives notification from the switch that a new
connection has been completed and a new VC activated, the signaling
protocol module uses the atm_cmm_reply function call to notify the CMM.
The CMM passes the notification to the device driver and protocol
convergence module.

This call notifies the CMM of both the activation of point-to-point
connections and of the addition of endpoints in point-to-multipoint
connections.

4.4 Activating a Connection

When a signaling module receives the necessary indication from the
network that the circuit is connected, the signaling module uses the
atm_cmm_activate_con function call to inform the CMM that the
connection is ready to carry data. The CMM enables the VC locally.

_______________________ Note _______________________

Do not make this call before circuit connection.

4–2 Signaling Module Interface

4.5 Reporting a Connection Failure

When the CMM makes a connection request to a signaling module, the call
to the remote system might fail for some reason. Since call creation is an
asynchronous operation, the signaling module might encounter errors
during call processing after the xxx_setup call has returned. In these
cases, the signaling module uses the atm_cmm_con_failed function call to
notify the CMM of the call failure and the reason for the failure.

4.6 Releasing a Connection

When a signaling module receives a request to tear down a connection from
the network or endpoint, the module uses the atm_cmm_con_release
function call to notify the CMM that the connection will be released. The
CMM makes the connection unavailable for transmission, initiates the
teardown of the referenced connection and all associated endpoints, and
awaits notification that the VC has been torn down.

4.7 Dropping an Endpoint

When a signaling module receives a request to drop an endpoint from a
connection, the module uses the atm_cmm_ep_dropped function call to
notify the CMM that the endpoint must be dropped. The CMM then notifies
the convergence module that owns the endpoint’s VC that the endpoint has
been dropped and deletes the endpoint. If the last endpoint associated with
a VC is dropped, the CMM initiates the release of the VC.

4.8 Deleting a Connection

When a signaling module receives confirmation of a connection’s release
from the switch, the module uses the atm_cmm_con_deleted function call
to notify the CMM that the connection no longer exists. The CMM holds
the resources associated with the connection for a brief period of time, then
releases them, giving all incoming queues time to clear. The CMM also
notifies convergence modules that the connection has been released.

4.9 Restarting a Virtual Circuit

When a signaling module receives a RESTART request, the module uses
the atm_cmm_restart function call to pass all the appropriate information
to the CMM. The CMM then initiates a restart of the indicated VC(s)
before returning to the signaling module.

Signaling Module Interface 4–3

4.10 Reporting a Completed Restart

After the CMM requests a restart, the signaling module uses the
atm_cmm_restart_ack function call to notify the CMM when the restart
has completed. Once notified, the CMM returns the indicated VCs to the
NULL state and frees their resources.

4.11 Reporting a Completed Status Enquiry

After the CMM requests a status enquiry of a VC, the signaling module
uses the atm_cmm_status_done function call to notify the CMM when the
enquiry has completed. Once notified, the CMM either examines the
enquiry data itself or passes it to the convergence module that requested
the enquiry.

4.12 Requesting Endpoint Information

Since signaling modules can receive messages for existing VCs at any time,
the modules use the atm_cmm_findaddr function call to request endpoint
and VC information from the CMM. The CMM maintains all state
information about each VC and calls (endpoints) associated with the VC.

Signaling modules can call this routine at any time to resolve a reference to
a connection endpoint. Once the reference is resolved, the signaling module
can access and modify structures as necessary as long as locking
conventions are followed.

4.13 Adding a PPA

Signaling protocols usually perform some protocol registration-specific
registration with the switch, including registering local addresses. When a
signaling module creates a new address (creating a new PPA), the module
uses the atm_cmm_new_ppa function call to inform the CMM that this new
PPA exists. A convergence module can use the PPA to make and receive
calls.

For example, when a UNI 3.0/3.1 signaling module is informed of a new
address prefix, through the Integrated Local Management Interface (ILMI),
that has been created on the switch, the module combines the new prefix
with existing end system identifiers (ESIs) to form a new set of addresses
for the new prefix. Then, the signaling module tells the CMM about each of
these new addresses.

4–4 Signaling Module Interface

4.14 Deleting a PPA

When a signaling protocol, in cooperation with a switch, deletes an address
from the list of recognized addresses on an interface, it uses the
atm_cmm_del_ppa function call to inform the CMM that the deleted PPA
associated with the address is no longer valid. The CMM then informs
convergence modules bound to the PPA that the address is no longer valid
and initiates a teardown of all VCs associated with the address.

All PPAs, except for the PVC PPAs, are owned by a signaling module. That
is, a signaling module is always responsible for the creation and deletion of
a PPA. This is required since the registration of addresses with a switch is
handled entirely by signaling protocols. Also, PPAs can be deleted because
of actions on the network that are completely unrelated to the local system.
Because of this, the CMM does not automatically delete PPAs when an
interface is taken down or loses its connection to the switch. The CMM
responds to an interface shutdown by deleting the PVC PPA. Signaling
modules will delete PPAs when it is appropriate for their protocols to do so
(such as when they lose communications with the switch).

See Section 2.5.1 for more information on PVC PPAs.

4.15 Requesting VC Status

When a signaling module needs to access status information about a VC
that is currently in service, based on the virtual path identifier (VPI) and
virtual channel identifier (VCI), it calls the atm_cmm_vc_get function call.
The call returns a reference to a VC.

4.16 Using the atm_sig_params Structure

The CMM needs to know the capabilities and entry points of each signaling
module. Signaling modules use the atm_sig_params structure to pass this
information to the CMM as part of the atm_cmm_register_sig function
call. To allow for future expansion of the atm_sig_params structure, the
signaling module should call the bzero command to insert nulls into the
entire structure before filling in the known fields.

Example 4–1 shows the atm_sig_params structure definition.

Signaling Module Interface 4–5

Example 4–1: The atm_sig_params Structure Definition

struct atm_sig_params {
atm_error_t (*sig_setup)(atm_addr_p addr,

unsigned long *refptr);
atm_error_t (*sig_release)(atm_addr_p addr);
atm_error_t (*sig_add)(atm_addr_p addr);
atm_error_t (*sig_drop)(atm_addr_p addr);
atm_error_t (*sig_enquery)(atm_addr_p addr);
atm_error_t (*sig_restart)(void *handle,

unsigned int class,
unsigned int vpi,
unsigned int vci);

atm_error_t (*sig_exception)(void *sig_handle,
unsigned int exception,
void *arg);

int (*sig_mmi)(void *sig_handle,
int command,
void *arg,
int *retval,
struct ucred *cred);

atm_error_t (*sig_mib)(void *sig_handle,
atm_ppa_p ppa,
atm_mib_request_t command,
atm_mib_var_p request);

void *reserved1;
void *reserved2;
void *reserved3;

};

4.16.1 The sig_setup Member

The sig_setup member specifies a pointer to a routine that the CMM
calls to request the creation of a new connection (make a call).

4.16.2 The sig_release Member

The sig_release member specifies a pointer to a routine that the CMM
calls to request the deletion of a connection (a hangup).

4.16.3 The sig_add Member

The sig_add member specifies a pointer to a routine that the CMM calls
to request the addition of an endpoint to a point-to-multipoint connection.

4–6 Signaling Module Interface

4.16.4 The sig_drop Member

The sig_drop member specifies a pointer to a routine that the CMM calls
to request the dropping of an endpoint to a point-to-multipoint connection.

4.16.5 The sig_enquery Member

The sig_enquery member specifies a pointer to a routine that the CMM
calls to request status for an endpoint.

4.16.6 The sig_restart Member

The sig_restart member specifies a pointer to a routine that the CMM
calls to request a RESTART message be sent.

4.16.7 The sig_exception Member

The sig_exception member specifies a pointer to a routine that CMM
uses to notify the signaling module of errors and exception conditions.

4.16.8 The sig_mmi Member

The sig_mmi member specifies a pointer to a routine that CMM uses to
manage the signaling module through the ATM Module Management
Interface (MMI). A signaling module must supply an xxx_mmi routine if it
is to be managed through the MMI.

4.16.9 The sig_mib Member

The sig_mib member is reserved, and must be initialized to zero.

4.16.10 The reserved1, reserved2, and reserved3 Members

The reserved1, reserved2, and reserved3members are reserved for
future use, and should be specified as NULL.

Signaling Module Interface 4–7

5
Convergence Module Interface

The ATM convergence module interface enables all kernel-level protocol
convergence modules (convergence modules, for short) to interface kernel
networking protocol stacks to the ATM subsystem. The ATM convergence
module interface is a registration-based interface that provides a set of
ATM primitives that convergence modules can use to manage virtual
circuits (VCs) and transfer data.

The ATM convergence module interface enables convergence modules to:

• Register and unregister the convergence module

• Receive connection, data, and exception notification from the CMM

• Connect to the ATM Module Management Interface (MMI)

• Request interface parameters, endpoint connection state information,
and VC statistics

• Add an endpoint to and drop an endpoint from a connection

• Transmit data on an established VC

• Modify VC parameters

• Request a connection to a remote system and a connection teardown

• Bind to and unbind from a PPA

• Accept and reject an incoming call

• Add and delete ATM addresses

This chapter describes each task, the function calls involved, and the
relevant data structures that convergence module writers can use.
Appendix A contains a reference page for each convergence module
interface routine.

5.1 Registering a Convergence Module
Before a protocol convergence module can interact with the ATM
subsystem, it must use the atm_cmm_register_cvg function call to
register itself with the Connection Management Module (CMM). The CMM
then passes interface configuration information (for example, currently
configured PPAs) to the convergence module, using the module’s
xxx_except routine, before the registration call returns.

Convergence Module Interface 5–1

Once a convergence module is registered, the CMM knows where to deliver
connection notifications and various exception notifications (for example,
changes in system configuration). Convergence modules can register at any
time.

5.2 Receiving Data

When the CMM receives data on a VC that the convergence module owns,
the CMM calls the xxx_receive routine to pass incoming data to the
convergence module. This routine is declared within the convergence
module.

If the convergence module uses point-to-multipoint VCs, the module can
declare either a xxx_receive or xxx_endpt_receive routine. If a
xxx_receive routine is declared, the CMM calls it once for each unit of
data received on the VC. The convergence module must duplicate the data,
if needed, for each endpoint. If a xxx_endpt_receive routine is declared,
for each unit of data received the CMM calls it once for each endpoint. An
atm_addr_t parameter to the routine identifies the endpoint. The CMM
provides a duplicate mbuf chain for each endpoint; the data might or might
not be physically duplicated.

When designing receive functions, you should remember that all data is
delivered to the convergence module in an interrupt context with the
processor running at the splimp level. The convergence module must
implement a queuing policy appropriate for the convergence module’s
protocol. In general, convergence modules for protocols that can tolerate
unspecified latency should queue the incoming data and return
immediately to the CMM. Convergence modules for protocols that require
bounded latencies (such as video or voice protocols) might want to perform
some processing before queuing the data and returning to the CMM. In
either case, the receive function must not block.

5.2.1 Receiving Exception Notifications

When an exception condition occurs on a VC, the CMM notifies the
convergence module through its exception interface, xxx_except. This
function is declared within the convergence module and is used to report
exceptions, errors, and system configuration changes to the convergence
modules.

Exception notifications have the following characteristics:

• Convergence modules can expect them at any time.

• They are delivered in an interrupt context.

5–2 Convergence Module Interface

• Exception processing must not block. If a convergence module needs to
defer processing an exception notification, it must arrange for a kernel
thread to be run at a later time and return immediately to the CMM.

5.2.2 Connecting to the ATM Module Management Interface

When the CMM connects a convergence module to the ATM Module
Management Interface (MMI), the CMM uses the xxx_mmi interface. This
function is declared within the convergence module. System management
programs use the CMM’s management interface to pass management and
configuration requests directly to convergence modules, without requiring a
new /dev entry or other kernel modifications normally associated with
creating new management and configuration interfaces. If a module does
not require any external management or configuration capabilities, it does
not have to register a management function with the CMM.

The MMI follows the standard ioctl call with the following exceptions:

• The device major and minor number argument is replaced by the
handle argument.

• No user credential information is passed. Only users with root access
can use the management interface.

5.3 Unregistering a Convergence Module

If a convergence module is finished receiving or making connections, it can
use the atm_cmm_unregister_cvg function call to unregister itself from
the CMM. This might be necessary in environments where protocol stacks
are dynamically configured and deconfigured from the system.

Before unregistering, a convergence module must close all existing
connections and unbind from all PPAs. If all connections are not closed or if
PPA bindings still exist, the CMM unregisters only the convergence
module’s xxx_connect routine. The CMM will continue to call the
convergence module with incoming data and exception notifications. Once
the convergence module is unregistered, the CMM will not call any of its
routines.

5.4 Requesting Interface Parameters

When a convergence module must access current information about an
interface’s physical capabilities (such as its bit rates) and the amount of
specific resources left available on an interface (the remaining nonreserved
sustainable bit rate), it uses the atm_cmm_ppa_info and
atm_cmm_bind_info function calls to query the CMM. The CMM and
device drivers keep track of this information.

Convergence Module Interface 5–3

Since convergence modules normally deal with either PPAs or AESA
bindings, the CMM allows convergence modules to query the information
from the underlying interface by specifying either the PPA or bind directly.
Thus, the convergence module requires no specific knowledge of any device
driver or device driver-related structures.

5.5 Reserving Resources for CBR Circuits

If a convergence module needs to reserve resources (such as bandwidth)
either prior to making an outgoing connection for a constant bit rate (CBR)
circuit or prior to receiving a CBR connection, it uses the
atm_cmm_reserve_resources function call to notify the CMM. The
convergence module must apply these reserved resources within the
system-specified amount of time either to an outgoing CBR connection by
using the atm_cmm_connect function call or to an incoming CBR call by
using the atm_cmm_accept function call.

_______________________ Note _______________________

Reserved resources can be applied to point-to-point connections
only.

If the resources are not applied in time, the CMM revokes the reservation
and sends an ATM_CME_RESV_EXPIRE exception notification to the
convergence module. The convergence module should remove knowledge of
the reserved resources atm_vc_services structure that is being revoked,
but should not free the atm_vc_services structure; the CMM frees the
structure and releases the underlying resources upon return from the
exception notification. In addition, the convergence module cannot apply
the resources to a connection as part of handling the exception notification.

Once a reserved resource is successfully applied to a connection, the CMM
transparently frees the underlying resources when the connection is torn
down. No special action by the convergence module is required.

5.6 Releasing Reserved Resources

When a convergence module no longer needs to apply reserved resources to
a VC and wants to release resources that it previously reserved, it uses the
atm_cmm_free_services function call with a pointer to the
atm_vc_services structure. This frees the atm_vc_services memory
and releases its underlying resources.

5–4 Convergence Module Interface

5.7 Requesting a Connection to a Remote System
When a convergence module needs a connection to a remote system, it uses
the atm_cmm_connect function call to make a connection request to the
CMM. This initiates the exchanges between the network and the remote
host to create a new connection. The convergence module must specify all
connection parameters to the CMM; these parameters are required to
create the new connection.

By requesting a connection to a remote host, the convergence module owns
the VC; the VC’s ownership cannot be changed. The convergence module is
notified of all incoming data and exceptions on the VC. Also, the
convergence module is the only module that can transmit data on the VC.

5.8 Adding an Endpoint to a Connection
When a convergence module must create a point-to-multipoint connection,
it first uses the atm_cmm_connect function call to establish a call to the
first party of the multipoint connection. This creates a VC and establishes
the connection to the first endpoint. Then you can use the atm_cmm_add
function call at any time to add new endpoints to the connection. You can
add endpoints only to connections that were created with the ATM_CT_PTM
flag set.

See Chapter 6 for more information on connections.

5.9 Requesting a Connection Be Torn Down
When a convergence module no longer requires a connection to a remote
host, it uses the atm_cmm_release function call to request that the CMM
tear down the connection. This initiates the release negotiation with the
remote host, and will eventually lead to the connection being torn down
and all resources released.

A convergence module can either request that a specific endpoint be
disconnected (referenced by an atm_addr structure) or that a VC be
disconnected. These operations are equivalent on point-to-point
connections; disconnecting only the endpoint results in the VC being torn
down. If a convergence module requests that a point-to-multipoint VC be
disconnected, the CMM first disconnects all endpoints associated with the
VC. This function simplifies the task of disconnecting multipoint VCs and
permanent virtual circuits (PVCs).

5.10 Dropping an Endpoint from a Connection
When a convergence module must drop a connection to an endpoint, the
module calls the atm_cmm_drop function. The endpoint can be associated

Convergence Module Interface 5–5

with either a point-to-point connection or a point-to-multipoint connection.
When the last endpoint associated with a VC is dropped, the VC is torn
down. You use this function to manage multipoint VCs, but you can also
use it to initiate the teardown of point-to-point VCs.

5.11 Transmitting Data on an Established VC

When a convergence module must transmit data on an established VC, the
module calls the atm_cmm_send function call. The CMM then passes the
data to the appropriate device driver. Although the CMM does not queue
outgoing data, the device driver might. Therefore, the successful return
from this function call does not imply that the data was actually
transmitted. In fact, the data could be discarded in the driver or on the
network. The convergence module is not notified if the data is dropped
locally.

5.12 Modifying VC Parameters

After VCs are created, convergence modules can use the
atm_cmm_vc_control function call to modify some VC parameters to
make the transfer of data more efficient or to control VC aging. You cannot
modify the quality of service (QOS) and circuit bandwidth parameters.

5.13 Requesting Endpoint Connection State Information

When a convergence module needs the connection state information for an
endpoint updated, the module calls the atm_cmm_enquery function call.
This initiates a connection enquiry to the endpoint that results in the ATM
address structure for the endpoint being updated with the latest status
information. This function may be called any time a connection is active.

5.14 Binding to a PPA

When a convergence module must make outgoing calls or receive incoming
calls being made to one of the configured local ATM addresses, the module
calls the atm_cmm_ppa_bind function. This call informs the CMM that it
will function as a network services user for a specific address and selector
value.

Convergence modules are notified when a PPA is configured on the system
(when an address is registered with a switch and is made known to the
ATM network). Convergence modules can then bind to the PPA to create a
network service user endpoint, which uniquely identifies the convergence
module on the network. Once bound, there is a unique ATM End System

5–6 Convergence Module Interface

Address (AESA) associated with the bound convergence module. The AESA
and the bind point identify the service on the network and local system.
Convergence modules will be informed only of incoming calls on PPAs to
which they have bound and can place calls only through a bind point. The
CMM handles calls only to AESAs. If the AESA specified by the called
party address of an incoming call does not exist, the CMM rejects the call.
See Section 2.5 for more information on PPAs and AESAs.

By binding to a PPA, a convergence module is creating an AESA and
uniquely identifying its service on the network. Once this is done, incoming
calls can be routed to the convergence module, and the convergence module
can make outgoing calls. All call activity is directed at a bind point and
thus to a specific convergence module.

When binding to a PPA, a convergence module can either specify a selector
value to use in creating the AESA address, or it may allow the CMM to
assign it a selector value. In both cases, the selector value must specify a
unique endpoint on the PPA.

Note that a convergence module can bind up to 256 times to a PPA (as long
as all its selector values are unique), and may bind to as many PPAs as is
necessary to provide its service.

5.15 Receiving a Connection Notification

When a connection request arrives on the system, a signaling protocol
module notifies the CMM. The CMM uses the xxx_connect interface to
call the convergence module that is bound to the selector specified in the
called party address. Only one convergence module can accept a connection.
The called convergence module then examines all the connection data (the
information in the atm_addr structure as well as any information
elements (IEs) or other signaling information passed in) to determine if it
is willing to accept the call.

If the convergence module accepts the call, the CMM and signaling module
proceed with call setup. The VC is not active at this point. The connection
and VC is owned by the accepting convergence module until the connection
is destroyed; you cannot change the VC’s ownership. The convergence
module VC is notified of all incoming data and exceptions on the VC. Also,
the convergence module is the only module that can transmit data on the
VC.

Connections are not shared between convergence modules at the bind
point. If convergence modules must share connections, one module must
own the connection and coordinate access to the connection with another
module. Alternatively, you can layer modules on top of a multiplexor that
assumes ownership of the connection.

Convergence Module Interface 5–7

If the convergence module rejects the call, the CMM and signaling module
release the VC and notify the calling party that the call was rejected. The
CMM never accepts a call without the explicit consent of a convergence
module.

5.16 Unbinding from a PPA

If a convergence module must not accept an incoming connection (while
awaiting a call from a specific caller) or make outgoing calls, it uses the
atm_cmm_ppa_unbind function call to unbind its service from the PPA.
Typically, convergence modules should unbind a PPA if their service is no
longer available, and must unbind before unregistering with the CMM.

5.17 Accepting an Incoming Call

When a convergence module defers action on an incoming call (by returning
ATM_CAUSE_DEFER from its xxx_connect routine), the module notifies the
CMM as soon as it determines the disposition of the call. Typically, this is
done within a set period of time, as defined by the signaling protocol, before
the calling party times out on the call request.

If the convergence module determines that the call should be accepted, the
module uses the atm_cmm_accept function call to inform the CMM that
the call should be accepted and set the circuit resource parameters.

5.18 Rejecting an Incoming Call

When a convergence module defers action on an incoming call (by returning
ATM_CAUSE_DEFER from its xxx_connect routine), the module notifies the
CMM as soon as it determines the disposition of the call. Typically, this is
done within a set period of time, as defined by the signaling protocol, before
the calling party times out on the call request.

If the convergence module determines that the call should be rejected, the
module uses the atm_cmm_reject function call to inform the CMM.

5.19 Adding a New ATM Address

When a convergence module must register a new address with the network,
the module uses the atm_cmm_new_esi function call to supply the ESI (or
other signaling protocol equivalent) portion of the address and a driver
reference to the CMM. The CMM then performs all the necessary functions
needed to register the address with the network and to activate it.

When a convergence module supplies a new ESI, the signaling modules
apply the ESI in a signaling protocol-specific way. Depending on the

5–8 Convergence Module Interface

signaling protocol, the addition of a single ESI to the system could create
many PPAs. All convergence modules are notified of every new PPA that is
created as the result of configuring a new ESI.

Once a convergence module creates an address, only the creating
convergence module, the CMM (through the system atmconfig program),
or the network can delete the address. Other convergence modules cannot
delete the address. The creating convergence module must issue the
atm_cmm_ppa_bind call once it receives notification that the PPA(s) have
been configured. If the convergence module unregisters with the CMM, all
its created addresses are destroyed.

5.20 Deleting an ATM Address

When a convergence module is finished using a new address it has created,
it can use the atm_cmm_del_esi function call to delete it. Deleting a PPA
causes all VCs associated with that PPA to be closed by the CMM (both
ends of the connection receive proper notification). Thus, convergence
modules should delete addresses only when there are no active VCs
associated with the address’ PPAs.

5.21 Requesting VC Statistics

When a convergence module must retrieve current VC information from
the CMM, it calls the atm_cmm_vc_stats function. The CMM returns the
information in the atm_vc_stats structure.

The CMM keeps track of VC usage on a per-VC basis. This is done as part
of the CMM’s VC management and cannot be disabled.

5.22 Using ATM Convergence Module Interface Structures

The ATM device driver interface uses the following structures exclusively:

• atm_vc_stats — The virtual circuit statistics structure

• atm_cmi_addr — The called party address union

• atm_cvg_params — The convergence parameters structure

5.22.1 The atm_vc_stats Structure

The atm_vc_stats structure contains information on successful return
from the atm_cmm_vc_stats function. Table 5–1 lists those members of
the atm_vc_stats structure, with their associated data types, that
convergence modules might reference.

Convergence Module Interface 5–9

Table 5–1: The atm_vc_stats Structure Members

Member Name Data Type

bytes_in unsigned long

bytes_out unsigned long

packets_in unsigned int

packets_out unsigned int

opened struct timeval

last_out struct timeval

last_in struct timeval

The bytes_in member contains a count of the number of bytes received on
the VC. This includes any ATM Adaptation Layer (AAL) protocol
headers/trailers passed back by the driver.

The bytes_out member contains a count of the number of bytes
transmitted on the VC. This does not include the AAL header/trailer bytes
unless these are supplied by the convergence module.

The packets_in and packets_out members contain counts of the
number of packets (or cells for raw cell VCs) received and sent, respectively.

The opened member contains the time-stamp of the time the VC was
established. If you subtract this from the current time, the result is the
time the VC has been in service.

The last_out and last_in members contain the time-stamps of the time
the last data was received and sent, respectively. If you subtract either of
these times from the current time, the result is the amount of time the VC
has been idle in either direction.

5.22.2 The atm_cmi_addr Union

Convergence modules use the atm_cmi_addr union to pass a called party
(destination) address to the CMM as part of the atm_cmm_connect
function call. The format of this union is as follows:

union atm_cmi_addr {
atm_addr_p addr;
struct {

unsigned int vci;
unsigned int vpi;

} vcn
};

5–10 Convergence Module Interface

5.22.2.1 The addr Member

The addr member contains a pointer to an atm_addr structure, which is
allocated by the convergence module (atm_cmm_alloc_addr), for creating
a new switched virtual circuit (SVC).

5.22.2.2 The vcn Member

The vcn member is a structure that specifies the virtual channel identifier
(VCI) and virtual path identifier (VPI) for creating a new PVC. See
Appendix A for a description of the atm_cmm_connect function call.

5.22.3 The atm_cvg_params Structure

The CMM needs to know the capabilities and entry points of each
convergence module. Convergence modules use the atm_cvg_params
structure to pass this information to the CMM as part of the
atm_cmm_register_cvg function call. To allow for future expansion of the
atm_cvg_params structure, the convergence module should call the bzero
command to insert nulls into the entire structure before filling in the
known fields.

Example 5–1 shows the atm_cvg_params structure definition.

Example 5–1: The atm_cvg_params Structure Definition

struct atm_cvg_params {
void (*receive)(atm_vc_p vc,

struct mbuf *mbp,
int length,
struct mbuf *trailer,
char pti,
char gfc);

atm_error_t (*exception)(void *cvg_handle,
int command,
void *arg);

int (*mmi_manage)(void *cvg_handle,
int cmd,
void *arg,
int *retval,
struct ucred *cred);

void (*endpt_receive)(atm_vc_p vc,
struct mbuf *mbp,
int length,
struct mbuf *trailer,
char pti,
char gfc,
atm_addr_p addr);

Convergence Module Interface 5–11

Example 5–1: The atm_cvg_params Structure Definition (cont.)

void *reserved1;
void *reserved2;
void *reserved3;

};

5.22.3.1 The receive Member

The receive member specifies a pointer to a routine that the CMM calls
to to notify the convergence module of incoming data. The receive routine
receives one copy of VC data, independent of how many local endpoints are
added to the VC.

A convergence module must supply either a xxx_receive routine or an
xxx_endpt_receive routine.

5.22.3.2 The exception Member

The exception member specifies a pointer to a routine that CMM uses to
notify the convergence module of new connections and exception conditions.
A convergence module must supply an exception routine.

5.22.3.3 The mmi_manage Member

The mmi_manage member specifies a pointer to a routine that CMM uses to
manage the convergence module through the ATM Module Management
Interface (MMI). A convergence module must supply an xxx_mmi routine if
it is to be managed through the MMI.

5.22.3.4 The endpt_receive Member

The endpt_receive member specifies a pointer to a routine that CMM
uses to notify the cnvergence module of incoming data. For a given unit of
incoming data, the CMM calls the xxx_endpt_receive routine once for
each local endpoint. The CMM provides a unique mbuf chain on each call,
which references the received data.

A convergence module must supply either a xxx_receive routine or an
xxx_endpt_receive routine.

5.22.3.5 The reserved1, reserved2, and reserved3 Members

The reserved1, reserved2, and reserved3members are reserved for
future use, and should be specified as NULL.

5–12 Convergence Module Interface

6
Connections

This chapter describes the following connection tasks and the procedures
for accomplishing these tasks:

• Making outgoing connections

• Accepting connections

• Controlling the aging of connections

• Releasing connections

• Creating permanent virtual circuits

• Creating signaling virtual circuits

These procedures illustrate the use of the ATM interfaces described in
previous chapters.

6.1 Making Outgoing Connections
Making outgoing connections consists of the following tasks:

• Making the call (for both point-to-point and point-to-multipoint
connections)

• Adding parties to an existing connection (point-to-multipoint
connections only)

6.1.1 Making the Call

Making the call for point-to-point and point-to-multipoint connections is
identical except for one argument. When writing convergence modules,
make sure the module performs the following tasks when making a call:

1. Chooses a bind point for the outgoing call.

2. Calls the atm_cmm_alloc_addr function to allocate an atm_addr
structure that identifies the called party.

3. Sets all the address information associated with the called endpoint in
the atm_addr structure.

4. Calls atm_cmm_alloc_ie to allocate the atm_uni_call_ie structure
that the module uses to make the call. If you use another signaling
protocol, allocate the structure needed by that protocol instead.

Connections 6–1

5. Sets all the needed information in the atm_uni_call_ie structure or
other signaling protocol call parameters structure. If the module is to
pass MTU values to the signaling module or to the other end of the
connection, the module sets the values in this structure.

6. Allocates an atm_vc_services_t structure by calling
atm_cmm_alloc_services.

7. Sets all the structure members in the atm_vc_services_t structure.
For constant bit rate (CBR) circuits, set the ATM_SERVICES_CBR flag.
For pacing circuits, set the ATM_SERVICES_PACING flag. For both CBR
and pacing circuits, you must set the peak bit rates.

Also, set the fmtu and bmtu structure members with the largest MTU
value that the module will use. The device driver uses this information
to allocate resources for the VC.

8. If you want to reserve resources for CBR circuits, call the
atm_cmm_reserve_resources routine, passing it a pointer to the
atm_vc_services_t structure.

_____________________ Note _____________________

You can apply reserved resources to point-to-point
connections only.

9. If the reserve resources call returns ATM_CAUSE_DEFER, the
atm_vc_services structure is considered a reserved resource
reservation. The convergence module must wait for an
ATM_CME_RESV_AVAIL exception notification before proceeding; this
exception indicates that the atm_vc_services structure is backed by
resources. If the convergence module does not wait for the reservation
to become available, it terminates the resource reservation request
(and frees the atm_vc_services_t memory) by calling
atm_cmm_free_services.

If the reserve resources call returns ATM_CAUSE_GOOD, the
atm_vc_services_t structure is considered to be backed by
resources, which can be applied to a call.

If the reserve resources call returns any other error code, the
convergence module should examine the lerrstat structure member
of the atm_vc_services_t structure for additional error information.
If the convergence module does not continue, it must free the memory
allocated in the previous steps.

10. Calls atm_cmm_connect with the appropriate arguments. For
point-to-point connections, uses the ATM_CT_PTP argument. For
point-to-multipoint connections, uses the ATM_CT_PTM argument.

6–2 Connections

Once the connect call is made, all subsequent activity on the VC is
reported through the exception interface (xxx_except). Receive data
can also begin to arrive.

_____________________ Note _____________________

If the module has reserved resources and they are not
applied in time, they are revoked by an
ATM_CME_RESV_EXPIRE exception notification.

11. If the connect call returns an error code, the convergence module frees
the memory allocated in the previous steps. An error might be caused
by the Connection Management Module (CMM) or other modules being
unable to initiate a call request.

For CBR connections that do not use resource reservation, there might
be a failure to allocate the necessary resources. If the failure is due to
an incorrectly set atm_vc_services_t structure, the lerrstat
structure member contains local error information.

12. If the connect call returns ATM_CAUSE_GOOD, the call is proceeding and
the convergence module can make a reference to the new atm_vc
structure for the connection.

Section B.1 contains a sample routine that shows how to make a call for
point-to-point connections and how to make the first call for
point-to-multipoint connections.

After the call is initiated, the convergence module can receive the following
notifications:

ATM_CME_CALL_FAILED

An error occurred in processing the call or the called party rejected
the call.

The convergence module should extract the cause information from
the endpoint’s atm_addr structure and decide how to handle the
error based on this information. The module should then delete all
references to the atm_addr structure and the VC, but should not
deallocate the structure memory. The CMM does this after removing
all references to the call. Once the convergence module returns from
the exception notification routine, it can no longer access any
nonprivate structures associated with the call.

ATM_CME_EP_ACTIVE

The call is successful; the circuit to the endpoint is complete and it
could receive incoming data at any time (incoming data could arrive

Connections 6–3

ahead of the connection activation notification because of race
conditions). The convergence module should not send any data until it
receives the connection activation notification.

The call recipient could signal new MTU values. Therefore, the
convergence module should examine the atm_uni_call_ie structure
for the MTU sizes. The convergence module, however, does not have to
change the fmtu or bmtu values in the atm_vc_services structure.

When a connection is activated, the convergence module may check the
atm_vc_services structure referenced in the atm_vc structure to
determine if any of its connection service parameters were changed by the
called party through negotiation.

6.1.2 Adding Parties to an Existing Connection

For point-to-multipoint connections, after the call to the first party is
successful, you can add parties to the VC associated with the first call and
drop parties at any time. Note that since call placement is multithreaded,
you can initiate calls to multiple endpoints sequentially. Convergence
modules receive individual notifications for each endpoint that is connected.
Thus, multiple connections can be in progress at any given time without
the convergence module needing to handle synchronization issues.

The convergence module can receive exception notifications for exceptions
affecting all parties on the VC or for single endpoints (an exception with a
single party in the multipoint call). When writing a convergence module,
you must ensure that the module can handle these exceptions properly so
that it does not associate an endpoint exception affecting a specific party
with all parties on a VC.

Section B.2 contains a code fragment that shows one method of adding
parties to a point-to-multipoint connection.

6.2 Accepting Connections

When a remote host places a call to the local host, the following events
occur on the local host:

1. The signaling protocol module on the local host receives a call request
(a UNI 3.0/3.1 SETUP message or its equivalent).

2. The signaling protocol module uses the information in the signaling
protocol message to construct an atm_addr structure and an
atm_vc_services structure. These structures contain information
about the calling endpoint and the services requested by the endpoint,
respectively.

6–4 Connections

3. The signaling module uses the atm_cmm_new_call function call to
pass the structures, the handle of the device driver on which the new
VC will be attached, and a unique call reference value to the CMM.

4. The CMM examines the atm_vc_services structure parameters to
determine if the available system resources can meet the level of
service requested by the calling party. If so, the resources are reserved.
If not, only available resources are reserved. The CMM calls the
convergence module (using the xxx_connect routine) that has bound
to the called party’s ATM End System Address (AESA).

5. When called, the convergence module should inspect the ATM address
information and the signaling protocol information (referenced by the
setup member of the atm_addr structure) to determine if the call is
for the convergence module’s protocol. If the call does not belong to the
convergence module, it should return an error indication to the CMM.
If the call belongs to the convergence module, it continues with step 6.

6. The convergence module must set the fmtu and bmtu fields in the
atm_vc_services structure. This is how the convergence module
notifies the device driver of the MTU to use for the call.

7. The convergence module should check the service parameters
arguments to determine if the service parameters are acceptable. For
all calls, if the service parameters are insufficient for the type of service
the module is providing, it can reject the call with the appropriate
cause. The convergence module cannot modify the service parameters.

For Constant Bit Rate (CBR) calls, the following should occur:

• If the CMM has allocated the resources needed to meet the
requested level of service, the convergence module should return
ATM_CAUSE_GOOD to the CMM to accept the call.

• If the CMM indicates that it cannot allocate the bandwidth and the
convergence module does not have a reserved resource to apply to
the incoming call, the convergence module should return an error
indication to the CMM to reject the call.

• If the CMM indicates that it cannot allocate the bandwidth and the
convergence module has a reserved resource to apply to the
incoming call, the convergence module should replace the
atm_vc_services structure argument with the address of the
reserved resource to apply to the call. If the reserved resource
cannot be applied to the call, The CMM tears the new VC down,
frees the supplied atm_vc_services structure and its underlying
resources, and sends an ATM_CME_EP_DEAD exception notification
to the convergence module. The VC’s cause log contains the reason
why the connection was torn down.

Connections 6–5

For Unspecified Bit Rate (UBR) calls, if the CMM indicates that it
cannot allocate the bandwidth and the convergence module has a
reserved resource to apply to the incoming call, the convergence
module should replace the atm_vc_services structure argument with
the address of with the address of an atm_vc_services structure
that has the flags member set to ATM_SERVICES_PACING.

Section B.3 contains a sample code fragment that shows how a
convergence module processes an incoming call.

8. If a convergence module accepts a call, the following should occur:

• The convergence module should use the convergence module
private fields in the atm_addr and atm_vc structures to create its
internal references to the new VC and endpoint.

• Once the connection notification call (xxx_connect) returns with
ATM_CAUSE_GOOD, the convergence module owns the call and owns
and controls the VC. From this point, all notifications associated
with the VC go to the accepting convergence module.

• The convergence module should consider the VC valid but not
active. However, data can start arriving at any time since the path
the activation notification takes could be longer than the data path.

• The convergence module should not attempt to transmit data until
it receives a notification that the VC is active.

• The CMM returns ATM_CAUSE_GOOD to the signaling module,
indicating that the signaling module should reply to the calling
party in whatever way is appropriate to accept the call.

• The signaling module must not deallocate any memory used for
structures passed to the CMM.

9. If the call is not accepted, the signaling module replies to the caller in
an appropriate way to reject the call. In this case, the signaling module
must deallocate all memory use for structures passed to the CMM.

6.3 Controlling the Aging of Connections
This section applies to switched virtual circuits (SVCs) only; permanent
virtual circuits (PVCs) do not age. The ATM subsystem provides for
automatic detection and elimination of unused VCs when available
resources are low. This prevents a hung protocol from continuing to hold
resources and ensures that system resources are allocated fairly.

When a circuit is created, convergence modules specify an initial aging
algorithm in an argument to the atm_cmm_connect routine. The CMM
then performs all connection aging based on usage statistics it collects
during the lifetime of a connection. If necessary, convergence modules can

6–6 Connections

use the atm_cmm_vc_control routine to change the aging algorithm
applied by the CMM at any time. When a connection has aged, the CMM
uses the convergence module’s xxx_except routine to notify the
convergence module that a connection has aged and is about to be removed
from the system. This gives the convergence module a chance to prevent
the connection’s removal.

If the convergence module does not prevent the connection’s removal, the
CMM uses the normal connection release mechanism to remove the
connection; the signaling module sees the release request as coming from
the convergence module and the convergence module sees the request as
coming from the remote endpoint. See Section 6.4 for information on
releasing a connection.

Table 6–1 contains values you can use for the aging parameters in the
atm_cmm_connect and atm_cmm_vc_control routines.

Table 6–1: Aging Parameter Values

Value Meaning

ATM_AGE_DEFAULT Uses the system’s default aging algorithm. The
default is to remove all VCs that have been
inactive for the longest period of time, that have
the lowest utilization (compared to the expected
utilization), and whose reconnection time is
expected to be less than 5 percent of the idle time.

ATM_AGE_LOW Removes this VC when the system is low on free
circuit identifiers and ignores its idle time and
utilization.

ATM_AGE_FOREVER Specifies that the circuit is not eligible for aging.

28-bit unsigned value Specifies how long (in minutes) the circuit should
be allowed to live. After the circuit is active for
the specified number of minutes, it is aged from
the system.

28-bit unsigned value
bitwise ORed with
ATM_AGE_IDLE

Ages the circuit when it has been inactive the
specified number of minutes.

These circuit-aging algorithms provide sufficient flexibility so that
individual convergence modules should not have to perform their own
circuit aging. Also, centralizing circuit aging in the CMM allows aging
algorithms to take affect only when the CMM detects that an interface is
low on free VCs.

Connections 6–7

6.4 Releasing a Connection
Either convergence modules or the network or an endpoint can release
connections. The following sections describe what happens in either case.

6.4.1 Release by a Convergence Module

When a convergence module no longer requires a connection to an
endpoint, it should release the connection to free system resources. To
release a connection, a convergence module calls either the
atm_cmm_release or atm_cmm_drop function. The former releases a VC
and all associated endpoints; the latter disconnects only a single endpoint,
releasing the VC only if all endpoints have been dropped.

The convergence module can provide a cause value and diagnostic
information for the release by calling atm_cmm_set_cause before calling
atm_cmm_release or atm_cmm_drop. For UNI-based signaling, this
information is supplied to the network in a Cause IE.

When a convergence module calls atm_cmm_release, the CMM initiates a
disconnect of all endpoints associated with the VC.

For point-to-point VCs, this initiates a release operation on the VC. The
convergence module receives an ATM_CME_EP_DEAD notification. This
informs the convergence module that the release operation is in progress on
the network and that no more data will be sent on the VC.

For multipoint VCs, this initiates the dropping of all endpoints and the
release of the VC. As each endpoint is dropped, the convergence module
receives an ATM_CME_EP_DEAD notification. The convergence module must
delete all references to the endpoint. Once all endpoints associated with a
VC have been dropped, the VC is released. The CMM handles conditions
where endpoints are in various stages of set or release when it receives this
request.

When the ATM_CME_EP_DEAD notification is received for the last endpoint
on the VC, convergence modules should delete all references to the VC. To
accomplish this, the module should maintain a use count for any VC
references it maintains.

When a VC is released, the CMM notifies the device driver to which the VC
is attached so that the device driver can free any resources it has allocated
to the VC.

6.4.2 Release by Network or Endpoint

When the network or an endpoint initiates a connection release, the
signaling protocol module receives either a release or a drop message. At

6–8 Connections

that point, the signaling module calls either the atm_cmm_con_release or
atm_cmm_ep_dropped function.

When a signaling module calls the atm_cmm_con_release function, the
CMM does the following:

1. Initiates connection releases to all endpoints associated with the VC, if
the VC being released is a multipoint VC.

2. Calls the device driver to which the VC is attached and passes an
ATM_DRVMGMT_DELVC notification. The driver should delete all
references to the VC and release all resources associated with the VC.

3. Calls the convergence module that owns the VC and passes an
ATM_CME_EP_DEAD notification for each endpoint associated with the
VC.

4. Frees all structures associated with the VC and returns to the
signaling module.

When the signaling module calls the atm_cmm_ep_dropped function, the
CMM calls the convergence module that owns the endpoint’s VC and
passes an ATM_CME_EP_DEAD notification. If this is the last endpoint
associated with the VC, it initiates a release of the VC.

6.5 Creating Permanent Virtual Circuits

Although the ATM subsystem is designed primarily to use SVCs, you can
also use PVCs. Before you create PVCs locally, the PVCs must already be
set up on the network. You can use either of the following methods for
setting up PVCs:

• The atmconfig program (see atmconfig(8) for more information)

• Allow convergence modules to directly create PVCs just as they create
SVCs

Either method creates a local reference to the PVC and allocates the
resources necessary for the VC to function on the system. In either case,
the convergence module’s connection routine for the bind point to which the
PVC is attached is called.

_______________________ Note _______________________

You can create PVCs only on the PVC PPA. You cannot create a
PVC on an SVC PPA.

When a convergence module sets up a PVC, the following events occur:

Connections 6–9

• A local reference to the VC is set up in the CMM.

• The ownership of the PVC is given to the convergence module.

• The VC is created and enabled in the device driver.

Once set up, the PVC remains in existence until explicitly torn down by the
convergence module.

The ATM subsystem treats a PVC like an SVC, except that there is no
signaling protocol associated with the PVC, and PVCs do not age. When a
convergence module requests a PVC, it must specify all the VC service
parameters as it does for an SVC. If the PVC is created successfully, this
does not necessarily mean that the PVC exists. Even though a local
reference for the PVC has been created, modules cannot check (due to the
nature of PVCs) to determine if the PVC exists on the network.

_______________________ Note _______________________

If you create a PVC before it is configured on the network, no
invalid VCI errors are reported to the convergence module.

To release PVCs, use the atm_cmm_release function call. However, since
PVCs require no signaling protocol exchange with the network, PVC
release is synchronous. The return value from the release function call
indicates success or failure of the teardown. The convergence module
receives no other notifications.

6.6 Creating Signaling Virtual Circuits

Signaling VCs are well-known PVCs that signaling protocols use to
communicate with the switches on the network. The switches and the end
systems on an ATM network automatically set up signaling VCs. The ATM
subsystem treats signaling VCs as ordinary PVCs and does not provide any
special mechanisms for them. The signaling protocol module is responsible
for managing the signaling VCs.

When signaling modules are initialized, they register with the CMM as
both a signaling module and as a convergence module. The signaling
modules use the signaling module interface to field connection management
requests from the CMM; they use the convergence module interface to send
and receive signaling protocol packets on the network. Once registered as a
convergence module, signaling modules must create all VCs required by
their signaling protocol.

Once the signaling VCs are created, the CMM treats them like any other
PVC. Like other convergence modules, the signaling module receives no

6–10 Connections

notification whether a PVC exists on the network. Signaling modules
receive notification of interfaces being brought up and interfaces going
down. When an interface goes down, all signaling VCs on that interface are
destroyed.

Connections 6–11

7
Module Management Interface

The Connection Management Module (CMM) provides an interface that
allows any ATM module to exchange configuration and management
information with application processes without the usual need for kernel
modifications and new /dev nodes. The Module Management Interface
(MMI) is the standard operating system ioctl interface, but it allows
applications to communicate with specific ATM modules directly through
the CMM. See ioctl(2) for more information.

To exchange information with any ATM module, applications must open the
/dev/atm_cmm device and issue ioctl system calls. The ioctl commands
are executed either by the CMM directly or passed to a selected ATM
module. The ATM module transfers all data associated with the ioctl
commands to and from user space; the MMI always has a user context
since it is executed as part of a system call.

New ATM modules can define their own ioctl commands independently
since commands are routed only to a module selected by using an ioctl
call. Modules can also define their own structures and protocols for
exchanging data with applications since interpretation of the ioctl data
argument is done by agreement between the module and its application,
not by the CMM.

Applications cannot send the CMM any commands other than those
commands for establishing MMI paths. Only applications that Compaq has
written to manage the ATM subsystem can select the CMM as the target
for commands. Also, a module can restrict the establishment of an MMI
path through the use of key values that are known only to the module and
applications that are allowed to communicate with it. This prevents
applications from illegally communicating with ATM modules.

This chapter describes the following:

• How to create an MMI command path

• How to verify the version of the ioctl commands

• How to define new MMI ioctl commands

• The MMI calling conventions

• Device driver, signaling, and convergence module interfaces

Module Management Interface 7–1

7.1 Creating an MMI Path

To send ioctl commands to an ATM module, you must create a path
through the CMM to the module. The following code fragment shows a
routine that creates an MMI path:

#include <sys/atm.h>

make_mmi_path(char *name)
{

int atm_fd;
struct atm_mmi_path path; 1

atm_fd = open("/dev/atm_cmm",O_RDWR); 2
if(atm_fd == -1)
{

perror("open of /dev/atm_cmm");
exit(errno);

}
path.name = name;
path.length = strlen(name);
path.key = 0x123456789abcdef;
if(ioctl(atm_fd,GIOC_MMI_PATH,&path) == -1) 3
{

perror("GIOC_MMI_PATH");
exit(errno);

}

return atm_fd;
}

1 Declares the atm_mmi_path structure.

2 Opens the /dev/atm_cmm device.

3 Issues the ioctl call with the GIOC_MMI_PATH command. The
argument to the GIOC_MMI_PATH command is the name of the module
to which the path is to be established; each module must register with
a unique name.

After the path is created, all subsequent ioctl commands not understood
by the CMM are sent to the selected module.

The /dev/atm_cmm device has the following restrictions:

• You can use this device only for the management and administration of
ATM modules, not for transferring data across the network.

• Only one application can have the device opened at any time. Multiple
accesses to this interface are not permitted.

• Only applications with root permissions can open the device.

7–2 Module Management Interface

Since all ATM modules, including the CMM, share a common interface, an
application can inadvertently or deliberately issue an incorrect or
damaging ioctl call. To prevent this from occurring, applications can
identify themselves to ATM modules when the MMI path is created so their
privilege to contact the module can be confirmed. You are not required to
implement this in your module, but you should for added safety.

The application performs extra validation by passing a 64-bit key to the
ATM module when the MMI path is created. The ATM module checks this
key to verify that it is valid. Since only applications written specifically to
communicate with certain modules know the key the module expects, it is
more difficult for another module to create the MMI path to the ATM
module.

Table 7–1 lists member names of the atm_mmi_path structure, with their
associated data types, that modules might reference.

Table 7–1: The atm_mmi_path Structure Members

Member Name Data Type

*name char

length int

key long

The name member is a pointer to the name of the ATM module to which
the MMI path is to be established. This name is a standard
NULL-terminated ASCII string that must exactly match the string the
module used when it registered with the CMM.

The length member is the length (in bytes) of the string pointed to by the
name member. This length does not include the NULL termination.

The key member is a value that the application and the target ATM
module agree to use to identify the application to the ATM module. Only
target ATM modules use this member.

7.2 Verifying the ioctl Version

To verify that the application and the ATM module agree on the ioctl
definitions in use, you can use the global GIOC_MMI_GETVERSION
command in the application. This allows the application to provide
backward compatibility when changes in its ioctl interface are needed.
The following code fragment shows how to query a module for its version.

#define VERSION_1 1
#define VERSION_CURRENT 2

Module Management Interface 7–3

get_mmi_version(int atm_fd)
{

struct atm_mmi_version v; 1

if(ioctl(atm_fd, GIOC_MMI_GETVERSION, &v) == -1) { 2
perror("GIOC_MMI_GETVERSION);
return;

}

switch(v.version) {

case VERSION_1:
/* Talk to module using old ioctls */
...
break;

case VERSION_CURRENT:
/* Talk to module using current ioctls */
...
break;

}
}

1 Declares an atm_mmi_version structure. The structure contains only
a version member of the data type int. The values used for MMI
versions are agreed upon between the module and its application. The
CMM does not look at the values passed in this structure.

2 Queries the module for its version. atm_fd is associated with an open
MMI path that was created in Section 7.1.

7.3 Defining New MMI ioctl Commands

All MMI ioctl commands are in the “g” ioctl group and are named
GIOC_command_name. Each ioctl command group can contain up to 256
commands; each ioctl command encodes the group, the command within
the group, the data transfer direction, and the size of the data to transfer.
The GIOC group is divided into CMM-specific commands (with a range of 0
to 127, inclusive) and module commands (with a range of 128 to 255,
inclusive). The CMM does not interpret commands in the module command
range. Also, modules are not passed commands in the CMM command
range.

As a rule, the module and application program must agree on the command
number and the format of the command data passed as the third argument
to the ATM ioctl system calls for a module. You do this with a
module-specific header file in which the commands and structures are

7–4 Module Management Interface

defined. This header file should include sys/ioctl.h, which contains the
macros used to define ioctl commands.

To define a new ioctl command, you need the following pieces of
information:

• The direction of any data transfer between the application and the ATM
module (input from the application, output to the application, or both).
This determines which macro to use for command definition (_IOR,
_IOW, or _IORW).

• The definition of the data structures to be passed between the
application and the ATM module as the argument to the command.
This, along with the transfer direction information, controls how much
data the kernel will move between user space and the kernel when the
ioctl is processed.

• The number of the command (between 128 and 255).

Once you know this information, you can define a new ioctl command.
For example, suppose an application needs to pass information contained in
a single longword and receive information from the ATM module in the
same word. You would define the command as follows:

#define GIOC_NEW_CMD _IOWR(’g’,128,sizeof(long))

Note that the “g” must be in lowercase.

Using this example, the application executes the following call to send the
new command to the ATM module:

long arg = some_value;
int atm_fd;

atm_fd = make_mmi_path("module name");
if(ioctl(atm_fd, GIOC_NEW_CMD, &arg) == -1)
{

perror("GIOC_NEW_CMD");
exit(errno);

}

printf("GIOC_NEW_CMD returned %ld0", arg);

An ioctl system call can copy only fixed-size data directly addressed by
the argument. If a command requires the exchange of variable size data,
the argument to the ioctl system call must be a fixed size structure that
contains pointers to and lengths of variable size data in the application’s
memory space. The ATM module is responsible for copying data from or to
this memory when processing the command; the kernel ioctl call copies
the contents of the structure.

Module Management Interface 7–5

7.4 Using MMI Calling Conventions

All modules that provide an MMI routine must adhere to the following
rules when handling arguments from the CMM:

• All MMI routines are called while in a system call context with no
external locks held. This means that the MMI routines can block, if
necessary, provided they do not hold simple locks while blocking.

• All MMI routines must return ESUCCESS to indicate successful
completion of the operation or a error number to indicate the type of
error that occurred.

• MMI modules can use the retval pointer to provide a nonzero return
value to the calling program. This value is the return value from the
ioctl when the MMI function returns ESUCCESS to the CMM. This
follows the normal Tru64 UNIX ioctl processing conventions.

• MMI routines are required to process only their own commands and one
global command: the GIOC_MMI_PATH command. This command
instructs the MMI function to verify that it is willing to accept the
establishment of an MMI path from the CMM as requested by an
application program. The argument to this command is a pointer to an
atm_mmi_path structure that the MMI function will evaluate.

Convergence modules can optionally process the
GIOC_MMI_GETVERSION global command. This enables the application
to verify that it and the ATM module implement the same ioctl
interface.

• The MMI routine should verify that the key provided in the
atm_mmi_path structure is correct, but might also verify the specified
module name. This is redundant since the CMM already verifies the
module name. If the key or module name provided is acceptable, the
MMI function returns ESUCCESS, otherwise, it returns ENXIO.

• The MMI function is informed only when MMI paths are established,
not when they are destroyed.

See Appendix A for information on the xxx_mmi function.

7.5 Using the Device Driver MMI

When an ATM device driver registers with the CMM, it provides the CMM
with the address of the following management functions:

• The internal management function that the CMM uses to manage driver
resources and VCs. Only the CMM uses this interface; it is not available
through the MMI. This function is not allowed to block at any time.

7–6 Module Management Interface

• The xxx_mmi function. This function receives only MMI commands
through the ioctl system call from an application that has been
written specifically to manage the device driver.

The standard ATM interface defines no generic driver management
through the MMI. If a device driver does not need to process MMI
commands, it should set this argument in the atm_cmm_register_dd
routine to NULL.

The device driver’s MMI function is passed the following arguments when
called:

• The device driver’s module handle, which the device driver module
provided the CMM at registration time

• The ioctl command and data value

The MMI function is permitted to block, if necessary, at any time and has
access to the user context of the calling application.

7.6 Using the Signaling Module MMI

The signaling module MMI is similar to the convergence module and device
driver MMIs. The signaling module is passed the following arguments
when called:

• The signaling module handle, which the signaling module provided the
CMM at registration time. The signaling module can use this value in
any way it chooses. The CMM does not modify this value.

• The ioctl command and data value.

7.7 Using the Convergence Module MMI

When a convergence module registers with the CMM, it can supply the
address of an MMI function to be called when an application creates an
MMI path to the convergence module. If a convergence module does not
provide an MMI management function, the module writer should register
an address of NULL for the MMI management function when the
convergence module registers with the CMM.

The convergence module MMI function is passed the following arguments
when called:

• The convergence module’s internal handle, which the convergence
module provided to the CMM at registration time. This value is internal
to the convergence module; the CMM does not modify this value.

• The ioctl command and data value.

Module Management Interface 7–7

8
Queuing Guidelines

The Connection Management Module (CMM) is essentially a switch that
connects the various components of the ATM subsystem. The CMM
provides no queuing mechanisms in either the transmit or receive data
paths. This means that each component is free to implement a queuing
policy that is appropriate for its protocol or hardware. This chapter
discusses guidelines for ATM component developers to consider when
designing queuing policies for a component.

8.1 Queuing in Device Drivers

Device driver writers must implement a queuing policy on the transmit
path and might implement a queuing policy on the receive path. The
following sections describe the characteristics of each.

8.1.1 Device Driver Transmit Queuing

Device drivers must do all queuing of outgoing data. Under normal
conditions, convergence modules pass data to the device drivers as the data
comes down from the protocol stacks. The device driver must either queue
the data or reject it, but should not drop it unless an error occurs after the
driver has accepted the data for transmission. There is no mechanism other
than the flow-control mechanism for a driver to request more data from a
convergence module.

Most ATM devices provide at least one hardware queue or ring in which a
small number of packets or raw cells can be queued to the hardware. The
size of this queue is usually limited by the hardware. Some adapters might
be able to schedule the processing of cells from these queues based on
quality of service (QOS) parameters associated with each queue to provide
QOS-based servicing of virtual circuits (VCs). Simpler hardware generally
implements only a single first-in, first-out (FIFO) queue. Because of the
limited size of these queues, the drivers should provide a software queue
that provides some buffering of data from the CMM to the hardware
queues. The software queues permit the driver to better handle bursts of
data without having to use flow-control techniques on the sender.

Queuing Guidelines 8–1

Device drivers can completely hide their queuing mechanisms and policies
or advertise some or all of them to the CMM. For example, a device driver
could implement the following queuing policies:

• A device driver with multiple hardware queues advertises only a single
software queue to the CMM and decides how to queue each packet it
receives from the CMM.

• A driver advertises all its hardware queues to the CMM and lets the
CMM make the decisions about what VC is associated with each queue.

• A combination of the first two policies.

Regardless of the method implemented, device drivers should always
provide a software queuing mechanism to handle conditions when the
hardware queue is full in order to delay using flow-control techniques on
the sender.

The driver advertises virtual queues, which can be implemented in any
number of ways internally, to the CMM. The CMM handles only the virtual
queues, viewing each queue as being able to support a single QOS and being
serviced by the driver based on the QOS parameters that the CMM set.

In addition to its no-queuing policy, the CMM does not enqueue data to the
driver. When the CMM has data to transmit, it calls the driver’s transmit
routine. This routine must place the data passed to it on the correct queue.
Thus, the transmit queuing policy is contained entirely within the device
driver. This applies to both drivers that advertise single queues and those
that advertise multiple queues.

The CMM assists drivers with multiple queues by assigning the VCs to the
queues. In this case, the queue to which the CMM has assigned the VC is
contained in the atm_vc_services structure referenced by the atm_vc
structure. The driver uses this information to determine how to queue each
packet of data.

If a device driver advertises only a single queue when it registers with the
CMM, the CMM expects the device driver to provide its own internal
scheduling of packet transmission.

If a device driver advertises more than one queue, the CMM tries to assign
VCs to each queue in an effort to achieve the QOS requested for each VC.
The CMM informs the driver of its intention to send data to a specific queue
so the driver need not schedule the queue for servicing until notified by the
CMM that the queue will be used. The CMM selects one queue for queuing
best-effort available bit rate (ABR) traffic as VCs with this QOS are created.
All ABR traffic is assigned to this queue. Queues for VCs that require other
than an ABR QOS are chosen by the CMM as the VCs are created.

8–2 Queuing Guidelines

When the CMM needs to use a previously unused queue, it sends the
driver an ATM_DRVMGMT_SETQ command through the driver’s management
interface. The argument to this command is a pointer to an
atm_vc_services structure that contains all the information about the
various QOS parameters for the queue. The driver might maintain a
reference to this structure as long as the queue is in use by the CMM. The
driver uses the information in this structure to schedule its servicing of its
active queues. The driver must schedule the services of the queues so that
the QOSs specified for all queues are met. The CMM also uses this
command to change a queue’s parameters; for example, when another VC
is attached to the queue and the aggregate reserved bandwidth for the
queue must be increased.

When the CMM closes the last VC associated with a queue, it notifies the
device driver that the queue is no longer in use by sending it the
ATM_DRVMGMT_CLEARQ command through the driver’s management
interface. The argument to this command is the number of the queue to
clear; queues are numbered from 0 to the maximum number the driver
supports minus 1. When the driver receives this command, it can stop
servicing the queue because the CMM will not send any more data to that
queue.

8.1.2 Device Driver Receive Queuing

Device drivers might supply a small amount of queuing on the receive path
to reduce interrupt overhead, batching up several receive packets for
processing on a single interrupt. However, driver writers should be careful
not to introduce significant latency on incoming data unless they are
capable of scheduling receive processing in a way that gives priority to
constant bit rate (CBR) types of traffic.

8.2 Queuing in Convergence Modules

Like device drivers, convergence modules can implement any queuing
mechanism on both the transmit and receive data paths. You can tailor the
queuing mechanism implemented to the protocol’s needs and the QOS
requirements of the convergence module. Convergence modules are not
required to queue in any direction, but doing so might improve performance
by reducing data losses when there is congestion on the outgoing line.

8.2.1 Convergence Module Transmit Queuing

Since device driver writers must implement some sort of queuing on the
transmit path, you can write convergence modules to leave all queuing of
transmit data to device drivers. However, if a device driver queue becomes

Queuing Guidelines 8–3

full, convergence modules are responsible for deciding the disposition of
any data that cannot be queued to the driver. If a driver cannot accept
more data for transmission because of a full queue, the transmitting
convergence module can simply elect to discard the data and try again
later. However, this approach is not appropriate for all protocols, and may
even cause performance problems for protocols that permit the arbitrary
dropping of data. In such cases, the convergence modules must provide
some queuing mechanism to hold the outgoing data until the driver is
ready to accept more data for transmission (see Chapter 9 for an
explanation of flow control in the ATM subsystem).

Since device driver queues are not visible to convergence modules,
convergence modules must queue on a per-VC basis. At the convergence
module interface, all flow control takes place on a per-VC basis, so
convergence modules have to handle queuing for each VC (and can even
elect to provide queuing on only certain connections and discard data on
others). When a convergence module receives an ATM_CAUSE_QWARN or
ATM_CAUSE_QFULL return from the atm_cmm_send call, this means that
the driver’s queue is almost full or full, respectively, and it cannot accept
the data. At this point, the VC is considered flow controlled. The
convergence module must either queue subsequent transmit data or
discard the data until it receives a flow-control notification from the CMM.

The convergence module’s implementation must determine the size of the
module’s per-VC queues. This implementation depends on the amount of
data expected to flow on the VC and the ability of the protocol to
retransmit data. When the device driver is ready to accept more data for
transmission, it notifies the CMM, which in turn notifies the convergence
module. When the convergence module receives the notification, it can start
sending queued data until its queue is either drained or until it receives
another indication from the CMM that the driver’s queue is full. Once the
queue has been cleared, all further data can be sent directly to the CMM
for transmission, avoiding the overhead of queuing and dequeuing.

8.2.2 Convergence Module Receive Queuing

Convergence modules are generally passed incoming data while the
processor is still running off the device driver’s interrupt stack (from the
receive interrupt). This means the convergence module receive routines are
running at a high priority and should process the data and return to the
CMM as quickly as possible. Processing of receive data in this fashion is
allowed so that the CMM receive path introduces no additional latency that
may be unacceptable for CBR traffic.

The ATM subsystem attempts to deliver the data from the adapter to the
convergence module as quickly as possible, with a minimum of extra

8–4 Queuing Guidelines

processing and no additional latency. That way, convergence modules that
handle CBR traffic are passed the incoming data as quickly as possible
without interference from the ATM infrastructure or from the scheduling
latencies of the operating system. Therefore, convergence modules must
implement a receive queuing mechanism that is both appropriate to their
protocol and QOS needs and that makes the modules cooperate in a
multiprotocol, multi-QOS environment. For example, a convergence module
that handles ABR traffic should not hold the processor for longer than
necessary just because it can and the module writer might want that
module to perform well at the expense of other protocols.

In general, convergence modules should queue incoming data as soon as
they can and schedule a kernel thread to process the data at a later time.
Of course, modules that process CBR traffic should not queue data, but
should do as much processing as is appropriate. Too much processing on the
interrupt stack, however, could lead to live lock conditions on the processor.

Convergence modules cannot use flow control on device drivers. The only
methods available to enforce flow control on the sender is either
protocol-specific flow control or ATM flow control. Device drivers will use
ATM flow control when they start running out of receive buffer space.

Queuing Guidelines 8–5

9
Flow Control

The ATM subsystem uses the following types of flow control:

• Hardware flow control — The ATM network uses this to manage
congestion.

• Software flow control — The ATM subsystem uses this to control the
movement of data between modules.

Although these methods of flow control are different, they do interact,
especially in the transmission of data on the network. You must design and
implement each device driver and convergence module to use flow control
properly, thus ensuring the proper operation of the entire subsystem.

9.1 Hardware Flow Control
The ATM network and adapter use hardware flow control to control
congestion within the network. This allows the network to prevent the
sender from transmitting more data than the network can handle. In the
UNI 3.0/3.1 environment, there is no standard for ATM flow control,
although many vendors implement their own methods of flow control. Since
these flow-control methods are confined to the ATM adapter and since the
ATM subsystem accommodates as many types of adapters as possible, all
methods of flow control are accommodated as long as they are isolated to
the adapter and its device driver. The ATM subsystem also supports the
use of both proprietary and standard methods of hardware flow control.

To enable hardware flow control, you must send a device driver the
ATM_DRVMGMT_FC command through the driver’s management function.
The argument to this command indicates whether to enable flow control
(and the type to enable) or to disable all flow control. Drivers must be
initialized with flow control disabled. Currently, the CMM recognizes the
following types of hardware flow control:

• Vendor-specific flow control

Requires that the adapter and the switch implement the same type of
hardware flow control. This command is sent as the result of the
atmconfig +vfc command being issued by an operator (the system is
unable to determine which types of vendor-specific protocols are usable
since this requires knowledge of the protocols that both the adapter and
the switch implement).

Flow Control 9–1

• ATM Forum standard flow control

Currently not supported. Generally, the CMM uses the fields in the
switch and driver Management Information Bases (MIBs) to detect flow
control, and turns on this flow control without any user interaction.
However, system administrators can also enable this form of flow
control by running the atmconfig +sfc command.

To disable flow control, a system administrator uses either the atmconfig
-sfc or atmconfig -vfc command, depending on the type of flow control
currently enabled.

9.2 Software Flow Control

If you do not use hardware flow control, the driver might be passed data
from convergence modules faster than it can transmit the data on the
interface. In this case, the driver must be able to inform the sending
convergence modules that its queues are full and that no data should be
sent until further notification. Rather than having the driver perform an
explicit notification (which involves extra function call overhead) to do this,
the driver must return a value from its transmit function indicating that
its queue is full (or is filling). The driver should then consider the queue
flow controlled and must send a notification to the CMM when the queue is
ready to accept more data.

In its implementation, the CMM records most information associated with
flow control. Since the driver does all software flow control on a per-queue
basis, the CMM must translate this into information that can be used on a
per-VC basis. The CMM maintains a list of which VCs are assigned to
which driver queues; the CMM converts driver queue enable notifications
to per-VC enable notifications for convergence modules.

Drivers must maintain the following values on their queues: a high-water
mark and a low-water mark. Drivers use these marks to control the value
returned by the transmit function and the sending of flow-control
notifications to the CMM.

9.2.1 High-Water Mark

The high-water mark controls when the driver starts returning warnings
(ATM_CAUSE_QWARN) from the transmit call. These warnings are used by
convergence modules that might try to start queuing before the driver can
no longer accept data. The use of warnings also allows convergence
modules the chance to use flow control on the upper-layer protocol modules,
if possible, before the driver actually starts rejecting data. The driver
should start returning the queue warning when the number of queued

9–2 Flow Control

messages passes its high-water mark. The driver writer must choose a
high-water mark that is appropriate for the driver’s queuing policy and
adapter characteristics.

When a driver returns a queue warning, it must have accepted the data for
transmission and queued the data. The warning returned does not indicate
that the driver cannot accept the data, only that the queue is close to being
full.

When a driver’s queue is full, the driver must not discard data passed in
the transmit function. Instead, the driver must return ATM_CAUSE_QFULL
from the transmit function so the convergence module can decide if the
data is to be dropped or queued within the convergence module. The queue
full return indicates that the driver cannot accept the data for transmission
because its queue is full, not for any other reason, such as insufficient
memory. Drivers can continue to receive and reject packets for transmission
even after the queue fill return, since more than one convergence module
could be queuing to the queue.

9.2.2 Low-Water Mark

When the number of messages on a driver’s transmit queue drops below
the low-water mark, the driver sends an ATM_DE_STARTQ notification to
the CMM. The driver must send this notice if it has returned any queue
warning or full conditions from its transmit function since the last restart
notification was sent. This implies that drivers maintain state information
about previous returns and notifications. Driver writers can provide extra
restart notifications (the CMM properly handles redundant notification),
but should not provide too few notifications. The driver notifies restarts per
queue only. The CMM converts these to per-VC restarts and sends those
notifications to convergence modules. Therefore, drivers need to maintain
only the per-queue state, not the per-VC state, for flow control.

9.3 Convergence Module Flow Control

Convergence modules are not required to maintain any type of transmit
queue since ATM device drivers must provide some amount of output
queuing. However, convergence modules should provide transmit queues if
data not accepted for transmission by a driver is to be saved for
retransmission. If it is acceptable to discard data, convergence modules can
ignore queuing and flow-control features all together.

Device drivers generate flow control on a per-queue basis; convergence
modules handle flow control on a per-VC basis. The reasons for this are as
follows:

Flow Control 9–3

• Information concerning driver queuing policies and CMM assignment of
VCs to driver queues is not available to convergence modules.

• The CMM uses flow control on the sender synchronously so that only
those VCs trying to send data to a flow-controlled queue actually receive
flow-control indications. Those VCs that do not send any data to the
affected queue while the flow-control condition exists never receive a
flow-control indication and are unaffected by the flow-control condition.

• Only those VCs that have been flow controlled are notified when they
can resume transmission of data.

If a convergence module implements transmit queuing, it must be prepared
to handle software flow control from the CMM. Convergence modules are
given flow-control information in the return from the CMM send routine
and by an exception notification. The convergence module should use this
information to control its queuing and sending of data.

Convergence modules can bypass internal queues for efficiency as long as
data is flowing freely to the CMM. A convergence module needs to use
transmit queues only when it is informed that the device driver’s queue is
filling up or is full. Once the queues have drained, the queues can be
bypassed again. This type of implementation requires some extra state to
be maintained in the convergence module. However, this implementation
could increase the speed of the nonqueued transmit path.

When a convergence module calls atm_cmm_send, it receives an
atm_err_t return value, indicating the disposition of the data by the
CMM and device driver. If the device driver accepts the data for
transmission, atm_cmm_send returns ATM_CAUSE_GOOD. In this case, the
driver has queued the data for transmission and the convergence module
must destroy any references to the data; the driver frees the mbufs
associated with the data.

When a device driver’s transmit queue fills up beyond the high-water
mark, the driver starts returning ATM_CAUSE_QWARN to the CMM, which
returns this value to the convergence module. When a convergence module
gets an ATM_CAUSE_QWARN back from atm_cmm_send, this means that the
data was accepted and queued by the driver, but that the convergence
module should not send any more data. The driver’s queue could fill up and
it would have to start rejecting data. In this case, the convergence module
should either start queuing outgoing data or start dropping subsequent
packets until it receives notification that the driver can accept data again.

The convergence module might also notify the upper-layer protocols (if the
flow can be controlled) and continue to send data to the driver until the
upper layers stop sending. A queue warning might not be returned before a
queue is completely full and the driver can no longer accept data. This is

9–4 Flow Control

true in cases in which multiple VCs are feeding a single queue. The queue
warning is intended to give the convergence module warning of an
impending queue full condition so that it can take any appropriate action
before the driver stops accepting data.

If a device driver’s queue becomes completely full and the driver is unable
to queue any additional data, ATM_CAUSE_QFULL is returned from
atm_cmm_send. In this case, the driver did not accept and queue the data
and the convergence module must consider the VC blocked and unable to
transmit any more data. The module must either queue the data internally
or discard it. Any further attempts to transmit will probably return a
queue full condition.

For those cases where multiple VCs feed a single queue and the
convergence module can control the upper-layer protocols, the convergence
module should implement a small transmit queue to handle any data that
is sent by the upper layers between the flow-control notification and the
actual cessation of data transmission. A small transmit queue ensures
sufficient storage space to prevent data loss if a driver queue suddenly
becomes full due to the accumulation of data from another VC.

When a queue warning or a queue full condition is reported to a
convergence module, the VC that received the condition is considered flow
controlled; no more data should be sent on the VC. When the driver queue
drains below its low-water mark, the driver notifies the CMM that it is
ready to start accepting data on that queue. The CMM then sends an
ATM_CME_START_VC notification to each convergence module, specifying
that the affected VCs can resume data transmission. One notification is
sent for every VC that receives a flow-control indication from one or more
atm_cmm_send calls.

When a convergence module receives the ATM_CME_START_VC exception, it
should arrange to start sending data from its queues down to the driver
and to remove flow control from the upper-layer protocols, if necessary.
Note that convergence modules should not drain their queues as part of the
exception function call on which the ATM_CME_START_VC exception is
received as this could be on an interrupt stack. Instead, convergence
modules should schedule a kernel thread or timeout to run and process the
queued data.

Flow Control 9–5

A
CMM Routines

This appendix contains a description of each of the routines described in
this guide, in reference-page format. The routines are in alphabetical order.

CMM Routines A–1

atm_cmm_accept

NAME

atm_cmm_accept – Accepts a previously deferred call and informs the
CMM that the call should be accepted

SYNOPSIS
atm_error_t atm_cmm_accept(

atm_addr_p addr,
atm_vc_services_t give);

ARGUMENTS

addr Specifies a pointer to the atm_addr structure for the call being
accepted. This is the same pointer passed into the convergence
module’s xxx_connect routine when the call first came in.

give This argument is not currently used.

DESCRIPTION

The atm_cmm_accept routine is a convergence module interface that
accepts a previously deferred incoming call, notifies the CMM, and sets the
circuit resource parameters. The incoming call was deferred when a
convergence module returned ATM_CAUSE_DEFER from its xxx_connect
routine.

Typically, the determination is done within a set period of time, as defined
by the signaling protocol, before the calling party times out on the call
request.

The connection is not established and ready for use until the convergence
module receives the appropriate exception notifications.

RETURN VALUES

If connection setup is proceeding, atm_cmm_accept returns
ATM_CAUSE_GOOD; otherwise, it returns an ATM error number that
indicates the reason the call failed. If the call fails, the convergence module
should remove any reference to the call.

A–2 CMM Routines

atm_cmm_accept

RELATED INFORMATION

xxx_connect

Section 6.2 for information on accepting connections

CMM Routines A–3

atm_cmm_activate_con

NAME

atm_cmm_activate_con – Informs the CMM that a connection is ready to
carry data

SYNOPSIS
atm_error_t atm_cmm_activate_con(

atm_sig_handle_t sm,
atm_addr_t *addr);

ARGUMENTS

sm Specifies the signaling module handle that the CMM returned
in the registration call.

addr Specifies a pointer to an atm_addr structure that contains all
the parameters of the call. This pointer must point to the
same atm_addr structure that was passed in either the
atm_cmm_new_call function call or in the xxx_setup and
xxx_add function calls since this pointer is the handle that
refers to the specific connection.

DESCRIPTION

The atm_cmm_activate_con routine is a signaling module interface.
Signaling modules call this routine when they receive an indication from
the network that the circuit is connected. The routine notifies the CMM
that the connection is ready to carry data. The CMM enables the VC
locally, and passes the notification to the device driver and protocol
convergence modules.

_______________________ Note _______________________

Do not make this call before circuit connection.

RETURN VALUES

If the indicated connection is found on the system no matter what the
result of the operation, atm_cmm_activate_con returns

A–4 CMM Routines

atm_cmm_activate_con

ATM_CAUSE_GOOD. If the indicated connection is not found, an error value
is returned indicating that the signaling module should release the
connection since the CMM has no reference to it.

RELATED INFORMATION

atm_cmm_con_release, xxx_setup, xxx_add

Section 6.4 for information on releasing connections

CMM Routines A–5

atm_cmm_add

NAME
atm_cmm_add – Adds an endpoint to an existing point-to-multipoint
connection

SYNOPSIS
atm_err_t atm_cmm_add(

atm_cvg_handle_t cm,
atm_addr_t *addr,
atm_uni_call_ie_p ei,
atm_vc_t *vc);

ARGUMENTS
cm Specifies a value returned to the convergence module by the

registration function call. This uniquely identifies the
convergence module making the request.

addr Specifies a pointer to a properly set atm_addr structure that
specifies the address of the endpoint to be added to the
connection.

ei Specifies a pointer to an array of atm_uni_call_ie
structures that has been initialized with information to be
used in placing the additional call. This argument must be
NULL if no optional IEs are specified.

vc Specifies a pointer to the atm_vc structure of the VC to which
the endpoint is to be added. The VC must have been created
with the ATM_CT_PTM flag set.

DESCRIPTION
The atm_cmm_add routine is a convergence module interface that adds
endpoints to an existing point-to-multipoint connection. You can add
endpoints at any time only to connections that were created with the
ATM_CT_PTM flag set.

EXAMPLE
See Example B–2 for a code example of the atm_cmm_add routine.

A–6 CMM Routines

atm_cmm_add

RETURN VALUES

If the endpoint add is proceeding, atm_cmm_add returns ATM_CAUSE_GOOD.
The convergence module receives the ATM_CME_CALL_FAILED or the
ATM_CME_EP_ACTIVE exception indications to report the progress of the
call. ATM_CME_EP_ACTIVE indicates that the call completed and the
connection to the endpoint is active and can transport data. These
indications do not reflect the state of any other endpoint associated with the
VC. If the endpoint add cannot proceed, an ATM error number is returned.

RELATED INFORMATION

atm_cmm_drop

Chapter 6 for information on connections

CMM Routines A–7

atm_cmm_adi_set_cause

NAME

atm_cmm_adi_set_cause – Logs a network-visible VC or endpoint
condition

SYNOPSIS
atm_err_t atm_cmm_adi_set_cause(

atm_drv_handle_t driver,
atm_vc_p vp,
atm_addr_p addr,
char *reason,
atm_error_t cause,
atm_location_t location,
unsigned char diag_length,
unsigned char *diag);

ARGUMENTS

driver Specifies the interface on which the condition
occurred. This is the driver handle that the CMM
assigned at driver registration time.

vp Specifies a pointer to the VC on which the condition
occurred. If the error applies to one endpoint, set
the value to NULL and set the addr value to
non-NULL.

addr Specifies a pointer to the atm_addr structure for
the endpoint on which the error occurred. If the
error applies to all endpoints on the VC (global), set
the value to NULL and set the vp value to
non-NULL.

reason Specifies a NULL-terminated character string that
contains descriptive text for the error.

cause Specifies the atm_error_t value that describes the
condition.

A–8 CMM Routines

atm_cmm_adi_set_cause

location Specifies an atm_location_t value that indicates
the location in the network where the error
occurred.

diag_length Specifies the length (in bytes) of the data in the
diag argument.

diag Specifies a string of bytes that contains diagnostic
information about the error. This data might be
passed to the network in the diag field of a Cause
IE.

DESCRIPTION

The atm_cmm_adi_set_cause routine is a device driver interface that
records an error or normal condition associated with a VC or endpoint. The
condition is stored as an atm_cause_info structure together with the VC.
Convergence and signaling modules can retrieve this information by using
the atm_cmm_next_cause routine. Users can display this information by
using the atmconfig utility.

Errors or events stored with the atm_cmm_adi_set_cause routine are
visible to the network and to the other end of the connection. When a
signaling module releases a connection or drops an endpoint, the module
extracts the most recent cause from a VC or endpoint and creates a Cause
IE.

RETURN VALUES

If the cause is recorded successfully, atm_cmm_adi_set_cause returns
ATM_CAUSE_GOOD. If the driver handle, vp argument, or addr argument is
invalid, atm_cmm_adi_set_cause returns ATM_CAUSE_BARG.

RELATED INFORMATION

atm_cmm_adi_set_log, atm_cmm_next_cause, atm_cmm_set_cause,
atm_cmm_smi_set_cause

Section 2.9.7 for information on cause information

CMM Routines A–9

atm_cmm_adi_set_log

NAME

atm_cmm_adi_set_log – Logs a VC or endpoint condition

SYNOPSIS
atm_err_t atm_cmm_adi_set_log(

atm_drv_handle_t driver,
atm_vc_p vp,
atm_addr_p addr,
char *reason,
atm_error_t cause,
atm_location_t location,
unsigned char diag_length,
unsigned char *diag);

ARGUMENTS

driver Specifies the interface on which the condition
occurred. This is the driver handle that the CMM
assigned at driver registration time.

vp Specifies a pointer to the VC on which the condition
occurred. If the error applies to one endpoint, set
the value to NULL and set the addr value to
non-NULL.

addr Specifies a pointer to the atm_addr structure for
the endpoint on which the error occurred. If the
error applies to all endpoints on the VC (global), set
the value to NULL and set the vp value to
non-NULL.

reason Specifies a NULL-terminated character string that
contains descriptive text for the error.

cause Specifies the atm_error_t value that describes the
condition.

location Specifies the location in the network where the
error occurred.

A–10 CMM Routines

atm_cmm_adi_set_log

diag_length Specifies the length (in bytes) of the data in the
diag argument.

diag Specifies a string of bytes that contains diagnostic
information about the error. This data might be
passed to the network in the diag field of a Cause
IE.

DESCRIPTION

The atm_cmm_adi_set_log routine is a device driver interface that
records an error or normal condition associated with a VC or endpoint. The
condition is stored as an atm_cause_info structure together with the VC.
Users can display this information by using the atmconfig utility.

Errors or events stored with the atm_cmm_adi_set_log routine are logged
on the local system only, and are not available when a signaling module
generates a Cause IE. Logging provides information about VC or endpoint
activity for a system or network administrator to view on the local system.

RETURN VALUES

If the cause is recorded successfully, atm_cmm_adi_set_log returns
ATM_CAUSE_GOOD. If the driver handle, vp argument, or addr argument is
invalid, the routine returns ATM_CAUSE_BARG.

RELATED INFORMATION

atm_cmm_adi_set_cause, atm_cmm_next_cause, atm_cmm_set_log,
atm_cmm_smi_set_log

Section 2.9.7 for information on cause information

CMM Routines A–11

atm_cmm_alloc_addr

NAME

atm_cmm_alloc_addr – Allocates memory for and initializes the
atm_addr structure

SYNOPSIS
atm_addr_p atm_cmm_alloc_addr(void);

DESCRIPTION

The atm_cmm_alloc_addr routine is a signaling and convergence module
interface that allocates memory for the atm_addr structure and initializes
the structure members. One atm_addr structure is allocated by a
convergence module for each endpoint it calls and by a signaling module for
each endpoint that calls the local host.

Usually, the CMM frees all ATM address structures associated with a VC
when the VC is destroyed. However, under some error conditions (such as
when a convergence module is allocating a series of structures and one
allocation fails), it may be necessary for the allocating module to free
memory it has allocated. In these cases, modules can call the
atm_cmm_free_addr routine with the value returned from
atm_cmm_alloc_addr to free memory.

EXAMPLE

See Section B.1 for a code example of the atm_cmm_alloc_addr routine.

RETURN VALUES

If storage cannot be allocated, a NULL is returned; otherwise, a pointer to
the allocated memory is returned.

RELATED INFORMATION

atm_cmm_free_addr

Section B.1 for information on connections

A–12 CMM Routines

atm_cmm_alloc_ie

NAME

atm_cmm_alloc_ie – Allocates memory for and initializes the
atm_uni_call_ie structure

SYNOPSIS
atm_uni_call_ie_p atm_cmm_alloc_ie(

int num_ie);

ARGUMENTS

num_ie Specifies the number of IE structures to allocate.

DESCRIPTION

The atm_cmm_alloc_ie routine is a convergence module interface that
allocates memory for the atm_uni_call_ie structure and initializes the
structure members.

Typically, the convergence protocol module frees all UNI signaling
structures associated with a VC when the VC is destroyed. However, under
some error conditions (such as when a convergence module is allocating a
series of structures and one allocation fails) the allocating module (either
the convergence or signaling module) might have to free memory it has
allocated. Convergence modules should not free memory for this structure
if the atm_cmm_connect or related call succeeds because the CMM will
free the memory.

EXAMPLE

See Section B.1, Section B.2, and Section B.3 for code examples of the
atm_cmm_alloc_ie routine.

RETURN VALUES

If storage cannot be allocated, a NULL is returned; otherwise, a pointer to
the allocated memory is returned.

CMM Routines A–13

atm_cmm_alloc_ie

RELATED INFORMATION

atm_cmm_free_ie

Chapter 6 for information on connections

A–14 CMM Routines

atm_cmm_alloc_services

NAME

atm_cmm_alloc_services – Allocates memory for and initializes an
atm_vc_services structure

SYNOPSIS
atm_vc_services_p atm_cmm_alloc_services(void);

DESCRIPTION

The atm_cmm_alloc_services routine is a signaling and convergence
module interface that allocates memory for the atm_vc_services
structure and initializes the structure members to default values for
best-effort unspecified bit rate (UBR) service. Once allocated, other ATM
modules can change the atm_vc_services structure as needed.

Typically, the CMM frees the atm_vc_services structure associated with
a VC when the VC is destroyed. However, under some error conditions
(such as when a convergence module is allocating a series of structures and
one allocation fails), the allocating module might need to free memory it
has allocated. In these cases, modules call the atm_cmm_free_services
routine with the value returned from atm_cmm_alloc_services to free
memory.

EXAMPLE

See Section B.1 for a code example of the atm_cmm_alloc_services
routine.

RETURN VALUES

If storage cannot be allocated, a NULL is returned; otherwise, a pointer to
the allocated memory is returned.

RELATED INFORMATION

atm_cmm_free_services

Chapter 6 for information on connections

CMM Routines A–15

atm_cmm_bind_info

NAME
atm_cmm_bind_info – Queries parameters from a bind

SYNOPSIS
unsigned long atm_cmm_bind_info(

atm_bind_handle_t handle,
atm_bind_info_t it);

ARGUMENTS
handle Specifies a pointer to a CMM bind handle of a currently active

AESA binding. Information is retrieved from the PPA
associated with the bind point.

it Specifies the type of information that is being queried. The
value returned depends on the object type of the queried
information. The following values may be used to query the
indicated information:

Value Meaning

ATM_BIND_INFO_HANDLE Returns the convergence module’s bind handle, which the
convergence module supplied at the time it created the AESA
bind point.

ATM_BIND_INFO_ID Returns a unique global value for referencing the bind point.
Each bind point gets assigned a unique ID (which is different
from the bind handle). An application program can use this
value when specifying a bind point (atmconfig uses these
values to reference bind points). The returned value is 32-bits
wide.

ATM_BIND_INFO_PPA Returns a pointer to the PPA associated with the AESA bind
point.

ATM_BIND_INFO_SELECTOR Returns the selector value assigned to the bind point.
Primarily, a convergence module uses this to request that the
CMM assign an unused selector value to a bind point. The
value returned is between 0 and 255 for SVC bindings, and is
31-bits wide for PVC bindings.

ATM_PPA_ALLOCGRANE Returns a type of atm_bw_granularity_p, which reflects
the underlying interface’s units of bandwidth allocation, or its
allocation granularity.

ATM_PPA_ALLOCLIMIT Returns a type of atm_bw_granularity_p, which reflects
the underlying interface’s per-VC bit rate limits, expressed in
allocation granularity units.

A–16 CMM Routines

atm_cmm_bind_info

Value Meaning

ATM_PPA_AVAILRES Returns a type of atm_services_granes_p, which reflects
the amount of bandwidth (in granularity units) currently
available for new CBR circuits over the underlying interface.

ATM_PPA_BRESVLIM Returns the user-configurable limit, expressed as a
percentage of backward bandwidth, on CBR circuits.

ATM_PPA_ESI Returns the ESI that the signaling module supplied when the
PPA was created.

ATM_PPA_ESIID Returns the unique ESI identifier associated with the PPA’s
ESI.

ATM_PPA_ESILEN Returns the length of the ESI that the signaling module
supplied when the PPA was created.

ATM_PPA_ESIPID Returns the ESI identifier of the PPA’s parent ESI.

ATM_PPA_FRESVLIM Returns the user-configurable limit, expressed as a
percentage of forward bandwidth, for CBR circuits.

ATM_PPA_INFO_BURST_AVAIL Returns the available burst cell rate in cells-per-second. This
is the amount of burst cell rate that is available to be
reserved by a convergence module.

ATM_PPA_INFO_BURST_MAX Returns the maximum burst cell rate supported by the
interface in cells-per-second.

ATM_PPA_INFO_CAPABILITIES Returns the driver’s capabilities for that interface.

ATM_PPA_INFO_DID Returns a unique global value that can be used to reference
the driver for the underlying interface.

ATM_PPA_INFO_DNAME Returns the name of the driver for the underlying interface.

ATM_PPA_INFO_DUNIT Returns the driver’s unit number for the underlying interface.

ATM_PPA_INFO_FC Returns a nonzero value if hardware flow control is currently
enabled on the interface.

ATM_PPA_INFO_HARD_MTU Returns the largest PDU (in bytes) that the interface
supports. This is valid only for interfaces that support AAL5
or AAL3/4 SAR functions in hardware.

ATM_PPA_INFO_HI_VCI Returns the highest value that may be used for a VCI on the
interface.

ATM_PPA_INFO_HI_VPI Returns the highest value that may be used for a VPI on the
interface.

ATM_PPA_INFO_ID Returns a unique global value for referencing the PPA. Each
PPA gets assigned a unique ID when it is created. An
application program can use this value to specify a bind point
(atmconfig uses these values to reference bind points). The
returned value is 32-bits wide.

CMM Routines A–17

atm_cmm_bind_info

Value Meaning

ATM_PPA_INFO_MAX_VCI Returns the maximum number of VCIs that the interface
supports.

ATM_PPA_INFO_MAX_VPI Returns the maximum number of VPIs that the interface
supports.

ATM_PPA_INFO_MEDIA Returns a value that indicates the type of physical media to
which the interface is connected. The return value is of the
type atm_media_type_t.

ATM_PPA_INFO_PEAK_AVAIL Returns the available peak cell rate (in cells-per-second). This
is the amount of peak cell rate that is available to be reserved
by a convergence module.

ATM_PPA_INFO_PEAK_MAX Returns the maximum peak cell rate (in cells-per-second) that
the interface supports.

ATM_PPA_INFO_QUEUES Returns the number of scheduling queues that the driver has
made visible to the CMM.

ATM_PPA_INFO_SNAME Returns the name of the signaling module that created the
PPA.

ATM_PPA_INFO_SUST_AVAIL Returns the available sustainable cell rate (in
cells-per-second). This is the amount of sustainable cell rate
that is available for a convergence module to reserve.

ATM_PPA_INFO_SUST_MAX Returns the maximum sustainable cell rate (in
cells-per-second) that the interface supports.

ATM_PPA_INFO_TOTAL_VC Returns the maximum number of VCs that can be opened on
the interface at any given time.

ATM_PPA_INFO_TYPE Returns a value that indicates the underlying interface type.
The returned value is of the type atm_interface_t.

ATM_PPA_INFO_UNI Returns the UNI type associated with the PPA, which the
signaling module supplied at the time the PPA was created.
The return value is of the type atm_uni_type_t.

ATM_PPA_INFO_VC_LEFT Returns the number of unopened VCs on the interface at the
time of the call. This is the total number of VCs (the value
returned by ATM_PPA_INFO_TOTAL_VC) minus the number of
VCs currently opened.

ATM_PPA_MAX_VC_BBW Returns the user-configurable maximum per-VC backward
(incoming) bit rate (in allocation granularity units) permitted
over the underlying interface for CBR circuits.

ATM_PPA_MAX_VC_FBW Returns the user-configurable maximum per-VC forward
(outgoing) bit rate (in allocation granularity units) permitted
over the underlying interface for CBR and pacing circuits.

A–18 CMM Routines

atm_cmm_bind_info

Value Meaning

ATM_PPA_MAXRES Returns a type of atm_services_granes_p, which reflects
the maximum bandwidths available for CBR circuits over the
underlying interface. These bandwidths (expressed in
granularity units) are a function of the interface limits and
the user-configurable limits on the percentage of bandwidth
available to CBR and pacing circuits.

ATM_PPA_NUM_VCI Returns the current number of VCIs configured on the
underlying interface.

ATM_PPA_NUM_VPI Returns the current number of VPIs configured on the
underlying interface.

ATM_PPA_PEAK_CELLRATE Returns the peak PDU bit rate (in cells-per-second) for the
underlying interface.

ATM_PPA_UNUSEDRES_BACK Returns the amount of backward (incoming) bandwidth (in
cells-per-second) currently reserved for, but not yet applied to,
CBR circuits.

ATM_PPA_UNUSEDRES_FWD Returns the amount of forward (outgoing) bandwidth (in
cells-per-second) currently reserved for, but not yet applied to,
CBR circuits.

DESCRIPTION

The atm_cmm_bind_info interface is a convergence module interface that
queries the CMM for current information about an interface’s physical
capabilities (such as its bit rates) and the amount of specific resources left
available on an interface (the remaining nonreserved sustainable bit rate).
The CMM and device drivers keep track of this information.

Since convergence modules normally deal with either PPAs or AESA
bindings, the CMM allows convergence modules to query the information
from the underlying interface by specifying the bind directly. Thus, the
convergence module requires no specific knowledge of any device driver or
device driver-related structures.

RETURN VALUES

If an invalid query is made for an ATM_BIND_* object type,
atm_cmm_bind_info returns a value of –1. If an invalid query is made for
any other object type, the function returns a value of 0.

CMM Routines A–19

atm_cmm_bind_info

RELATED INFORMATION

atm_cmm_del_ppa, atm_cmm_new_ppa, atm_cmm_ppa_bind,
atm_cmm_ppa_info

Section 3.4.1.15 for information on driver capabilities

A–20 CMM Routines

atm_cmm_con_deleted

NAME
atm_cmm_con_deleted – Notifies the CMM that a connection does not
exist

SYNOPSIS
atm_err_t atm_cmm_con_deleted(

atm_sig_handle_t sm,
atm_addr_p addr);

ARGUMENTS
sm Specifies the signaling module handle that the CMM returned

in the registration call.

addr Specifies a pointer to an atm_addr structure that contains all
the parameters of the call. This pointer must point to the
same atm_addr structure that was passed in either the
atm_cmm_new_call function call or in the xxx_setup and
xxx_add function calls since this pointer is the handle that
refers to the specific connection.

DESCRIPTION
The atm_cmm_con_deleted interface is a signaling module interface. A
signaling module calls this routine when the module receives confirmation
of a connection’s release from the switch. The routine notifies the CMM
that the connection no longer exists.

The CMM holds the resources associated with the connection for a brief
period of time, then releases them, giving all incoming queues time to clear.
The CMM also notifies convergence modules that the connection has been
released.

This routine notifies the CMM of both the deletion of point-to-point
connections and of the deletion of parties in point-to-multipoint connections.

RETURN VALUES
If the endpoint referenced is invalid, the atm_cmm_con_deleted routine
returns ATM_CAUSE_EIR to indicate that it has no previous entry for the
connection; otherwise, it returns ATM_CAUSE_GOOD.

CMM Routines A–21

atm_cmm_con_deleted

RELATED INFORMATION

atm_cmm_activate_con, atm_cmm_con_release, xxx_add, xxx_setup

Section 6.4.2 for information on releasing connections

A–22 CMM Routines

atm_cmm_con_failed

NAME

atm_cmm_con_failed – Notifies the CMM of a call failure

SYNOPSIS
atm_error_t atm_cmm_con_failed(

atm_sig_handle_t sm,
atm_addr_t *addr);

ARGUMENTS

sm Specifies the signaling module handle that the CMM returned
in the registration call.

addr Specifies a pointer to an atm_addr structure that contains all
the parameters of the call. This pointer must point to the
same atm_addr structure that was passed in either the
atm_cmm_new_call function call or in the xxx_setup and
xxx_add function calls since this pointer is the handle that
refers to the specific connection.

DESCRIPTION

The atm_cmm_con_failed routine is a signaling module interface. When
the CMM makes a connection request to a signaling module, the call to the
remote system might fail for some reason. Since call creation is an
asynchronous operation, the signaling module might encounter errors
during call processing after the xxx_setup call has returned. In these
cases, the signaling module notifies the CMM of failures both of
point-to-point connections and of additional endpoints in
point-to-multipoint connections. In the case of the failure of endpoints in a
point-to-multipoint connection, the addr pointer points to the atm_addr
structure of the added endpoint.

RETURN VALUES

If the endpoint referenced is invalid, the atm_cmm_con_failed routine
returns ATM_CAUSE_EIR to indicate that it has no previous entry for the
connection; otherwise, it returns ATM_CAUSE_GOOD.

CMM Routines A–23

atm_cmm_con_failed

RELATED INFORMATION

Section 6.1 for information on setting up connections

A–24 CMM Routines

atm_cmm_con_release

NAME

atm_cmm_con_release – Notifies the CMM that a connection will be
released

SYNOPSIS
atm_error_t atm_cmm_con_release(

atm_sig_handle_t sm,
unsigned long reference,
atm_ppa_p ppa);

ARGUMENTS

sm Specifies the signaling module handle that the
CMM returned in the registration call.

reference Specifies the unique call reference value that
identifies the connection to be released.

ppa Specifies a pointer to the PPA to which the VC
being released belongs.

DESCRIPTION

The atm_cmm_con_release routine is a signaling module interface. The
signaling module calls this routine when the module receives a request to
tear down a connection from the network or endpoint. This notifies the
CMM to release a connection or virtual circuit, and not to drop a single
endpoint from a connection. When this routine is called, the CMM makes
the connection unavailable for transmission, initiates the teardown of the
referenced connection and all associated endpoints, and awaits notification
that the VC has been torn down.

RETURN VALUES

If the endpoint referenced is invalid, the atm_cmm_con_release routine
returns ATM_CAUSE_EIR to indicate that it has no previous entry for the
connection; otherwise, it returns ATM_CAUSE_GOOD.

CMM Routines A–25

atm_cmm_con_release

RELATED INFORMATION

atm_cmm_activate_con, atm_cmm_con_deleted

Section 6.4 for information on releasing connections

A–26 CMM Routines

atm_cmm_connect

NAME

atm_cmm_connect – Requests a connection to a remote system

SYNOPSIS
atm_error_t atm_cmm_connect(

atm_cvg_handle_t cm,
enum atm_ctype type,
atm_bind_handle_t calling,
union atm_cmi_addr called,
atm_uni_call_ie_p ei,
int aging,
atm_vc_service_p params);

ARGUMENTS

cm Specifies a value returned to the convergence module by the
registration function call. This uniquely identifies the
convergence module making the request.

type Specifies the type of connection being requested. The following
types are defined:

Connection Meaning

ATM_CT_PTM Specifies that the connection is the first
connection in a point-to-multipoint
connection. This sets the
ATM_SERVICES_PTM flag in the
atm_vc_services structure.

ATM_CT_PTP Specifies that the connection is a
point-to-point connection only.

ATM_CT_PVC Specifies that the connection is a
permanent virtual circuit.

calling Specifies the calling party address information to be used
when placing the call. This is the identifier returned from the
bind operation when the convergence module is bound to a
PPA. This specifies the fully qualified AESA that will be used
as the calling party address, and is used to direct the call to
the proper signaling module and device driver.

CMM Routines A–27

atm_cmm_connect

called Specifies the called party (destination) address for the
connection. When requesting the creation of a new SVC, the
atm_cmi_addr union contains a pointer to an atm_addr
structure that the convergence module allocates (using the
proper CMM routine) with all necessary structure members set
to specify the intended destination of the call. The convergence
module must not free the storage for this structure; the CMM
performs the deallocation when the connection closes (the
caller is responsible for deallocating this structure if this
routine returns an error indication). When requesting the
creation of a new PVC, this argument contains the VCI and
VPI for the new VC. Interpretation of the information in this
argument is based on the value of the type argument. See
Section 5.22.2 for information on the atm_cmi_addr union.

ie Specifies a pointer to an array of atm_uni_call_ie
structures that has been initialized with information to be
used in placing the call. This argument must be NULL if no
optional IEs are specified.

aging Specifies how the CMM is to age the connection. The CMM
provides connection aging services to detect connections that
are unused and to delete the resources associated with the
connections. The CMM provides several aging algorithms. The
convergence modules must specify an initial aging algorithm
at the time the circuit is created, but can modify this setting
at any time through the atm_cmm_vc_control routine.

params Specifies an atm_vc_services_p pointing to a properly set
atm_vc_services structure that defines the circuit
parameters. For CBR circuits, the params argument can be a
resource reservation; that is, a services structure that is
backed by reserved resources.

DESCRIPTION

The atm_cmm_connect routine is a convergence module interface that
requests the CMM to create a connection to a remote system. This initiates
the exchanges between the network and the remote host to create a new

A–28 CMM Routines

atm_cmm_connect

connection. The convergence module must specify all connection parameters
to the CMM; these parameters are required to create the new connection.

By requesting a connection to a remote host, the convergence module owns
the VC; the VC’s ownership cannot be changed. The convergence module is
notified of all incoming data and exceptions on the VC. Also, the
convergence module is the only module that can transmit data on the VC.

NOTES

To create a PVC, set the type argument to ATM_CT_PVC, set the calling
argument to the bind handle returned by the CMM for a binding on the
PVC PPA, set the params argument to the circuit parameters for the new
PVC, and set the called argument to an atm_cmi_addr union that
contains valid vci and vpi data; the aging arguments are ignored.

If the system cannot provide the level of service specified in the params
argument, the appropriate error is returned. No parameter negotiation is
done for PVCs.

EXAMPLE

See Section B.1 for a code example of the atm_cmm_connect routine.

RETURN VALUES

If the call is proceeding, the atm_cmm_connect routine returns
ATM_CAUSE_GOOD; otherwise, it returns an ATM error number that
indicates the reason the call cannot proceed.

If the call proceeds, the atm_vc_p information in the atm_addr structure
is valid on return. However, this does not mean the VC is ready to carry
data. It means only that the CMM has allocated an atm_vc structure with
which it can keep track of the connection. The convergence module is
notified through the xxx_except routine when the call has completed and
when the VC can carry data.

RELATED INFORMATION

atm_cmm_vc_control

Section 5.22.2 for information on the atm_cmi_addr union

CMM Routines A–29

atm_cmm_connect

Section 6.3 for information on connection aging

Section 6.5 for information on PVC creation

A–30 CMM Routines

atm_cmm_cr2grain

NAME

atm_cmm_cr2grain – Converts a cell rate to allocation granularity

SYNOPSIS
unsigned longatm_cmm_cr2grain(

atm_ppa_p ppa,
unsigned long cr,
atm_direction_t direction);

ARGUMENTS

ppa Specifies a pointer to the PPA for which the conversion is to be
performed. This can be any valid PPA configured in the system.

cr Specifies the cell rate, in cells per second, to be converted.

direction Specifies the direction of the cell rate. A driver might have
different allocation granularities for the forward and
backward directions.

DESCRIPTION

The atm_cmm_cr2grain routine is a convergence module interface that
converts a cell rate to an allocation granularity unit. Some ATM drivers do
not support setting a virtual circuit’s (VC) cell rate in 1 cell per second
increments. You can also use the atmconfig command to set a driver’s
allocation granularity. Therefore, this routine enables a convergence
module to determine the nearest actual cell rate that can be achived on the
VC, allowing for the allocation granularity.

The atm_cmm_cr2grain routine converts a cell rate to the nearest number
of allocation granularity units, rounding as necessary. In the forward
direction, the return value is the number of allocation granularity units
that comes closest to, but does not exceed, the cell rate, to avoid violating
the network contract. In the backward direction, the return value is the
number of allocation granularity units that are needed to handle the entire
incoming cell rate to avoid violating the network contract.

CMM Routines A–31

atm_cmm_cr2grain

RETURN VALUES

Returns the number of granularity units. Returns zero if the driver
associated with the PPA does not support traffic shaping (for example, CBR
and VBR).

RELATED INFORMATION

atm_cmm_grain2cr, atm_cmm_ppa_info

A–32 CMM Routines

atm_cmm_del_esi

NAME

atm_cmm_del_esi – Deletes an ATM address

SYNOPSIS
atm_err_t atm_cmm_del_esi(

atm_cvg_handle_t cvg_handle,
atm_esi_handle_t esi);

ARGUMENTS

cvg_handle Specifies the value returned to the convergence
module by the registration request routine. This
uniquely identifies the convergence module making
the request.

esi Specifies the value returned to the convergence
module when the ESI was created.

DESCRIPTION

The atm_cmm_del_esi routine is a convergence module interface that
deletes an ATM address. A convergence module uses this routine when it
no longer needs a new address it has created. Only the convergence module
that registered the address can unregister the address.

Deleting an ESI causes the signaling module to delete all PPAs created
from the ESI.

Deleting a PPA causes all VCs associated with that PPA to be closed by the
CMM (both ends of the connection receive proper notification). Thus,
convergence modules should delete addresses only when there are no active
VCs associated with the address’s PPAs.

RETURN VALUES

None

RELATED INFORMATION

atm_cmm_new_esi

CMM Routines A–33

atm_cmm_del_ppa

NAME

atm_cmm_del_ppa – Notifies the CMM that a deleted PPA is invalid

SYNOPSIS
atm_error_t atm_cmm_del_ppa(

atm_sig_handle_t sm,
atm_ppa_p ppa);

ARGUMENTS

sm Specifies the signaling module handle that the CMM returned
in the registration call.

ppa Specifies the PPA pointer that was returned when the PPA
was added to the system.

DESCRIPTION

The atm_cmm_del_ppa routine is a signaling module interface. When a
signaling protocol, in cooperation with a switch, deletes an address from
the list of recognized addresses on an interface, the signaling module calls
this routine to notify the CMM that the deleted PPA associated with the
address is no longer valid. The CMM then informs convergence modules
bound to the PPA that the address is no longer valid and initiates a
teardown of all VCs associated with the address.

All PPAs, except for the PVC PPAs, are owned by a signaling module. That
is, a signaling module is always responsible for the creation and deletion of
a PPA. This is required since the registration of addresses with a switch is
handled entirely by signaling protocols. Also, PPAs may be deleted because
of actions on the network that are completely unrelated to the local system.
Because of this, the CMM does not automatically delete PPAs when an
interface is taken down or loses its connection to the switch. The CMM
responds to an interface shutdown by deleting the PVC PPA. Signaling
modules will delete PPAs when it is appropriate for their protocols to do so
(such as when they lose communications with the switch).

A–34 CMM Routines

atm_cmm_del_ppa

RETURN VALUES

Upon successful completion, the atm_cmm_del_ppa routine returns
ATM_CAUSE_GOOD; otherwise, it returns an ATM error number.

RELATED INFORMATION

atm_cmm_new_ppa, atm_cmm_ppa_bind, atm_cmm_ppa_info

CMM Routines A–35

atm_cmm_drop

NAME

atm_cmm_drop – Drops a connection to an endpoint

SYNOPSIS
atm_err_t atm_cmm_drop(

atm_cvg_handle_t cm,
atm_addr_t *addr);

ARGUMENTS

cm Specifies a value that the registration function call returns to
the convergence module. This uniquely identifies the
convergence module making the request.

addr Specifies a pointer to the atm_addr structure of the endpoint
to be dropped.

DESCRIPTION

The atm_cmm_drop routine is a convergence module interface that drops a
connection to an endpoint. The endpoint can be associated with either a
point-to-point connection or a point-to-multipoint connection. When the last
endpoint associated with a VC is dropped, the VC is torn down. You use
this routine to manage multipoint VCs; you can also use it to initiate the
teardown of point-to-point VCs.

RETURN VALUES

If the endpoint teardown is proceeding, the atm_cmm_drop routine returns
ATM_CAUSE_GOOD; otherwise, it returns an ATM error number. After the
endpoint is torn down, the convergence module receives an
ATM_CME_EP_DEAD exception notification. When the last endpoint
associated with a VC has been disconnected, the VC is torn down.

RELATED INFORMATION

atm_cmm_add

A–36 CMM Routines

atm_cmm_enquery

NAME

atm_cmm_enquery – Requests that connection state information for an
endpoint be updated

SYNOPSIS
atm_err_t atm_cmm_enquery(

atm_cvg_handle_t cm,
atm_addr_t *ep);

ARGUMENTS

cm Specifies a value that the registration function call returns to
the convergence module. This uniquely identifies the
convergence module making the request.

ep Specifies the endpoint to be queried.

DESCRIPTION

The atm_cmm_enquery routine is a convergence module interface that
requests that the connection state information for an endpoint be updated.
This initiates a connection enquiry to the endpoint that results in the
atm_addr structure for the endpoint being updated with the latest status
information. This routine may be called any time a connection is active.

RETURN VALUES

If the enquiry is initiated, the atm_cmm_enquery routine returns
ATM_CAUSE_GOOD; otherwise, it returns an ATM error number, indicating
the reason the enquiry was not initiated. When the enquiry reply is
received by the system, the convergence module is informed by an
ATM_CME_ENQUERY_DONE exception notification. When the convergence
module gets this notification, it may then examine the updated endpoint
status information in the atm_addr structure.

RELATED INFORMATION

atm_cmm_add

CMM Routines A–37

atm_cmm_ep_add

NAME

atm_cmm_ep_add – Notifies the CMM to add an endpoint

SYNOPSIS
atm_err_t atm_cmm_ep_add(

atm_sig_handle_t sm,
atm_addr_t *addr,
atm_uni_call_ie_p ie,
atm_ppa_p ppap,
unsigned long call_reference,
unsigned long epreference);

ARGUMENTS

sm Specifies the signaling module handle that the
CMM returned in the registration call.

addr Specifies a pointer to an atm_addr structure that
contains all the information about the incoming
endpoint. The signaling module writes the
information into this structure.

ie Specifies a pointer to an array of optional
information elements received from the adding
party. The signaling module converts data from the
incoming signaling messages and fills in an array of
information element structures.

ppap Specifies the PPA on which the incoming add
request was received.

call_reference Specifies the unique call reference value associated
with this call. The signaling module should have
already delivered a call with this reference when
the initial connection was received.

epreference Specifies the unique endpoint reference value
associated with the endpoint. This value identifies
the endpoint during its entire lifetime on the

A–38 CMM Routines

atm_cmm_ep_add

system. The value is unique with respect to
call_reference, but might be duplicated across
different calls. The value is opaque to the CMM, and
can have special meaning to the signaling module.

DESCRIPTION

The atm_cmm_ep_add routine is a signaling module interface. A signaling
module calls this routine when the module receives a request to add an
endpoint to an existing call. This notifies the CMM of the new endpoint.
The CMM determines whether to accept the endpoint.

This routine is nonblocking, and returns an indication about the disposition
of the endpoint.

RETURN VALUES

If the CMM and the convergence module that owns the call agree to accept
the endpoint, the atm_cmm_ep_add routine returns ATM_CAUSE_GOOD.

If the call is rejected, the routine returns an ATM error value that indicates
the reason. The convergence module might supply additional information in
the cause fields in the atm_addr structure. If the endpoint is rejected, the
signaling module must deallocate the storage for the atm_addr structure
and the information elements.

RELATED INFORMATION

xxx_except, atm_cmm_new_call

Section 6.1.2 for information on adding endpoints

CMM Routines A–39

atm_cmm_ep_dropped

NAME

atm_cmm_ep_dropped – Notifies the CMM to drop an endpoint

SYNOPSIS
atm_err_t atm_cmm_ep_dropped(

atm_sig_handle_t sm,
unsigned long reference,
long epreference,
atm_ppa_p ppa);

ARGUMENTS

sm Specifies the signaling module handle that the
CMM returned in the registration call.

reference Specifies the unique call reference value that
identifies the connection to be released.

epreference Specifies the unique endpoint reference value that
identifies the endpoint to be dropped.

ppa Specifies a pointer to the PPA to which the VC
being released belongs.

DESCRIPTION

The atm_cmm_ep_dropped routine is a signaling module interface. A
signaling module calls this routine when the module receives a request to
drop an endpoint from a connection. This notifies the CMM to drop
endpoints in a multipoint connection. The endpoint must already exist on
the system.

The CMM notifies the convergence module that owns the endpoint’s VC
that the endpoint has been dropped and deletes the endpoint. If the last
endpoint associated with a VC is dropped, the CMM initiates the release of
the VC.

A–40 CMM Routines

atm_cmm_ep_dropped

RETURN VALUES

If the endpoint referenced is invalid, the atm_cmm_ep_dropped routine
returns ATM_CAUSE_EIR to indicate that it has no previous entry for the
connection; otherwise, it returns ATM_CAUSE_GOOD.

RELATED INFORMATION

atm_cmm_add, atm_cmm_drop

CMM Routines A–41

atm_cmm_error

NAME

atm_cmm_error – Reports errors to the CMM

SYNOPSIS
void atm_cmm_error(

atm_drv_handle_t driver,
int error,
atm_vc_t *vc);

ARGUMENTS

driver Specifies the interface on which the error has occurred. This is
the handle assigned to the driver when the driver registers
with the CMM.

error Specifies a numeric value that indicates one of the following
error types:

Error Meaning

ATM_DE_DOWN The driver detected a fatal medium error. In
response, the CMM initiates the destruction of
all VCs belonging to the failed interface.
Further, the CMM considers the interface
unavailable and rejects any requests for new
connections on the interface. The driver must
inform the CMM when the media is functional
again. The vc argument is ignored for this
notification.

ATM_DE_UP The driver detected that the medium is up and
ready to transfer data. When the CMM
receives this indication, it allows the
processing of connection requests. The vc
argument is ignored for this notification.

A–42 CMM Routines

atm_cmm_error

Error Meaning

ATM_DE_STARTQ A driver output queue whose flow was
controlled is now able to accept additional data
for transmission. The vc argument is the
number of the queue that is being enabled
(0<= vc < atm_drv_params.nqueue).

ATM_DE_VC_FATAL A local, fatal error has occurred to the interface
that causes one or more VCs to become
inoperative. An example of this type of error
might be an adapter memory error that
destroys any information about the VC on the
adapter. This indication reports errors from
which the driver is unable to recover. The vc
argument is a pointer to the failed VC.

vc Specifies a pointer to the VC on which the error occurred. If
the error is not associated with a VC, this is NULL.

DESCRIPTION

The atm_cmm_error routine is a device driver interface. When an ATM
device driver detects errors on VCs or other interface failures, the module
calls this routine to report the error to the CMM.

When the CMM receives the error report, it recovers or shuts down the VC
with the errors. The driver does not need to perform any other actions. If
the VC must be destroyed, the CMM calls the driver through the driver
management interface to deactivate or destroy the VC. If the error
indicates an interface failure, the CMM tears down VCs on the interface.

RETURN VALUES

None

RELATED INFORMATION

Chapter 9 for information on flow control in the ATM subsystem

CMM Routines A–43

atm_cmm_findaddr

NAME

atm_cmm_findaddr – Requests endpoint and VC information from the
CMM

SYNOPSIS
atm_addr_p atm_cmm_findaddr(

long call_reference,
long endpoint,
atm_ppa_p ppa);

ARGUMENTS

call_reference Specifies the unique call reference value assigned to
the VC.

endpoint Specifies the endpoint reference value for an
endpoint in a point-to-multipoint connection. This
argument is set to 0 for the root of
point-to-multipoint connections and for
point-to-point connections.

ppa Specifies the interface associated with the endpoint
to look up. Since call reference values are usually
unique only per interface, you must specify this
argument to differentiate between VCs with the
same reference value but belonging to different
interfaces.

DESCRIPTION

The atm_cmm_findaddr routine is a signaling module interface that
signaling modules use to request endpoint and VC information from the
CMM. The CMM maintains all state information about each VC and calls
(endpoints) associated with the VC.

Signaling modules can call this routine at any time to resolve a reference to
a connection endpoint. Once the reference is resolved, the signaling module
can access and modify structures as necessary as long as you follow locking
conventions. For example, if the signaling module needs to process a

A–44 CMM Routines

atm_cmm_findaddr

STATUS ENQUIRY request, all the information necessary to format the
STATUS reply is in the atm_addr structure. This routine returns a
reference to the structure, enabling the signaling module to extract the
data needed to format the reply.

RETURN VALUES

Upon successful completion, the atm_cmm_findaddr call returns a pointer
to the atm_addr structure for the specified endpoint. Signaling modules
can use this information to find the atm_vc structure, if necessary. If the
specified endpoint is not found, the CMM returns NULL.

RELATED INFORMATION

atm_cmm_add

CMM Routines A–45

atm_cmm_find_driver

NAME

atm_cmm_find_driver – Determines whether a driver is registered with
the CMM

SYNOPSIS
atm_drv_handle_t atm_cmm_find_driver(

char *name);

ARGUMENTS

name Specifies a NULL-terminated character string that identifies
the driver.

DESCRIPTION

The atm_cmm_find_driver routine is a convergence and signaling
module interface that enables the module to determine whether a specified
driver is registered with the CMM.

If a convergence or signaling module provides MMI services, the module
can use this routine to determine whether the driver over which it is
requested to operate actually exists.

RETURN VALUES

Upon successful completion, the atm_cmm_find_driver call returns the
handle (atm_drv_handle_p) that identifies the driver to the CMM. If the
driver is not registered, the call returns NULL.

RELATED INFORMATION

atm_cmm_register_dd

A–46 CMM Routines

atm_cmm_free_addr

NAME

atm_cmm_free_addr – Frees memory allocated to atm_addr structures

SYNOPSIS
void atm_cmm_free_addr(

atm_addr_p addr);

ARGUMENTS

addr Specifies a pointer to the atm_addr structure to free. This is
the same pointer passed into the atm_alloc_addr routine.

DESCRIPTION

The atm_cmm_free_addr routine is a convergence module interface that
convergence modules use to free memory that they have allocated.

Usually, the CMM frees all ATM address structures associated with a VC
when the VC is destroyed. However, under some error conditions (such as
when a convergence module is allocating a series of structures and one
allocation fails), it may be necessary for the allocating module to free
memory it has allocated. In these cases, modules can call the
atm_cmm_free_addr routine with the value returned from
atm_cmm_alloc_addr to free memory.

RETURN VALUES

None

RELATED INFORMATION

atm_cmm_alloc_addr

CMM Routines A–47

atm_cmm_free_ie

NAME

atm_cmm_free_ie – Frees memory allocated to IE structures

SYNOPSIS
void atm_cmm_free_ie(

atm_uni_call_ie_p u);

ARGUMENTS

u Specifies a pointer to the atm_call_ie structure to free. This
is the same pointer returned from the atm_cmm_alloc_ie
routine as a result of a successful storage allocation.

DESCRIPTION

The atm_cmm_free_ie routine is a convergence module interface that
convergence modules use to free IE structure memory that they have
allocated.

EXAMPLE

See Section B.1 for a code example of the atm_cmm_free_ie routine.

RETURN VALUES

None

RELATED INFORMATION

atm_cmm_alloc_ie

A–48 CMM Routines

atm_cmm_free_services

NAME

atm_cmm_free_services – Frees memory allocated to
atm_vc_services structures and releases reserved resources

SYNOPSIS
atm_error_t atm_cmm_free_services (

atm_vc_services_p s);

ARGUMENTS

s Specifies a pointer to the atm_vc_services structure to free.
This is the same pointer passed into the
atm_alloc_services routine.

DESCRIPTION

The atm_cmm_free_services routine is a convergence module interface
that convergence modules use to free memory that they have allocated.
Typically, the CMM frees the atm_vc_services structure associated with
a VC when the VC is destroyed. However, under some error conditions
(such as when a convergence module is allocating a series of structures and
one allocation fails), the allocating module might need to free memory it
has allocated. In these cases, modules call the atm_cmm_free_services
routine with the value returned from atm_cmm_alloc_services to free
memory.

A convergence module can also use the atm_cmm_free_services call to
free a resource reservation or to terminate a resource reservation request.
(See Section 6.1 for more information.) The atm_cmm_free_services call
frees the atm_vc_services_t memory and releases its reserved
resources, if any.

RETURN VALUES

If the CMM is able to free the memory and any reserved resources, the
atm_cmm_free_services call returns ATM_CAUSE_GOOD. If the services
structure is associated with a resource that is in the process of being
released, the call returns ATM_CAUSE_BUSY. If the convergence module
inadvertently attempts to free an atm_vc_services_t that is attached to
an active connection, ATM_CAUSE_BUSY is also returned.

CMM Routines A–49

atm_cmm_free_services

RELATED INFORMATION

atm_cmm_alloc_services, atm_cmm_reserve_resources, xxx_except

Section 5.2.1 for information on convergence module exception handling

Section 6.1 for information on making outgoing connections and resource
reservations

A–50 CMM Routines

atm_cmm_grain2cr

NAME

atm_cmm_grain2cr – Converts an allocation granularity to a cell rate

SYNOPSIS
unsigned long atm_cmm_grain2cr(

atm_ppa_p ppa,
unsigned long nm,
atm_direction_t direction);

ARGUMENTS

ppa Specifies a pointer to the PPA for which the conversion is to be
performed. This can be any valid PPA configured in the system.

hm Specifies the granularity units to be converted.

direction Specifies the direction of the cell rate. A driver might have
different allocation granularities for the forward and
backward directions.

DESCRIPTION

The atm_cmm_grain2cr routine is a convergence module interface that
converts allocation granularity units to a cell rate. Some ATM drivers do
not support setting a virtual circuit’s (VC) cell rate in increments of 1 cell
per second. You can also use the atmconfig command to set a driver’s
allocation granularity. Therefore, this routine enables a convergence
module to determine the nearest actual cell rate that can be achived on the
VC, allowing for the allocation granularity.

The atm_cmm_grain2cr routine converts number of allocation granularity
units, for the given adapter and direction, to a cell rate (in cells per second).

RETURN VALUES

Returns the number of cells per second. Returns zero if the driver
associated with the PPA does not support traffic shaping (for example, CBR
and VBR).

CMM Routines A–51

atm_cmm_grain2cr

RELATED INFORMATION

atm_cmm_cr2grain, atm_cmm_ppa_info

A–52 CMM Routines

atm_cmm_new_call

NAME

atm_cmm_new_call – Notifies CMM of a connection request

SYNOPSIS
atm_error_t atm_cmm_new_call(

atm_sig_handle_t sm,
atm_addr_t *addr,
atm_uni_call_ie_p ie,
atm_vc_services services,
atm_ppa_p ppap,
int selector,
unsigned int vpi,
unsigned int vci,
long call_reference);

ARGUMENTS

sm Specifies the signaling protocol module handle that
was returned by the registration function.

addr Specifies a pointer to an atm_addr structure that
contains all the information about the incoming
call. The signaling module writes the information
into the structure.

ie Specifies a pointer to an array of optional
information elements received from the calling
party. The signaling module converts data from the
call setup message and fills in an array of
information element structures.

services Specifies a pointer to a properly set
atm_vc_services structure. This indicates the
type of service the calling party is requesting. The
signaling protocol module must extract the required
information from its signaling protocol messages.
All members of this structure must be set. If a
signaling protocol does not provide means by which
some of the needed values can be specified, the
signaling protocol module must supply some
reasonable defaults. The CMM and driver require

CMM Routines A–53

atm_cmm_new_call

this information to determine if there are sufficient
local resources to handle the services the caller is
requesting. The CMM modifies values in this
structure to indicate that the value should be
negotiated with the calling party. (This usually
means that the signaling module simply returns the
modified values in the reply to the calling party.)

ppap Specifies the PPA on which the incoming call
arrived.

selector Specifies the selector value taken from the called
party address information sent by the caller. This
indicates the service on the PPA that is being called.

vpi Specifies the VPI value for the new VC that the
network has created for this call.

vci Specifies the VCI value for the new VC that the
network has created for this call.

call_reference Specifies a unique value that the signaling module
has assigned to this call. This is the value used to
reference this call during the call’s entire lifetime
on the system. This value is opaque to the CMM
and can have special meaning to the signaling
protocol module.

DESCRIPTION

The atm_cmm_new_call routine is a signaling module interface that a
signaling module calls when it receives a new call. This notifies the CMM
of the new call. The CMM determines whether the call should be accepted.
This CMM routine is nonblocking and returns with an indication about the
disposition of the call.

A–54 CMM Routines

atm_cmm_new_call

RETURN VALUES

The CMM evaluates the call parameters and determines if the call should
be accepted. If the call is accepted, the atm_cmm_new_call routine returns
ATM_CAUSE_GOOD. If the CMM and convergence module cannot
immediately decide on the disposition of the call, ATM_CAUSE_DEFER is
returned; the signaling module’s exception routine is called when the
disposition of the call is determined.

If the call is rejected, this routine returns an ATM error number indicating
the reason. The convergence module may supply additional information in
the cause fields in the atm_addr structure. If the call is rejected (a value
other than ATM_CAUSE_GOOD or ATM_CAUSE_DEFER is returned), the
signaling module must deallocate the storage for the atm_addr structure,
the information elements, and the atm_vc_services structure.

RELATED INFORMATION

xxx_except

Section 6.2 for information on receiving connections

CMM Routines A–55

atm_cmm_new_esi

NAME

atm_cmm_new_esi – Registers an ATM address with the network

SYNOPSIS
atm_esi_handle_t atm_cmm_new_esi(

atm_cvg_handle_t cvg_handle,
unsigned char *esi,
int esilen,
atm_drv_handle_t driver,
void *arg);

ARGUMENTS

cvg_handle Specifies the convergence module handle returned
to the convergence module when it registered with
the CMM.

esi Specifies a pointer to an array of the 6 bytes of ESI
to be registered with the network.

esilen Specifies the size (in bytes) of the ESI being added.
This must be less than ATM_MAX_ESI. For UNI
signaling, this is always 6.

driver Specifies the driver handle of the interface on which
the address is to be registered. This value is
obtained from the PVC PPA for the driver on which
the ESI is being registered.

arg Specifies a value that the convergence module
creating the ESI uses to identify any PPAs created
from the ESI. The CMM does not modify the value
of this argument.

DESCRIPTION

The atm_cmm_new_esi routine is a convergence module interface that
registers an ATM address with the network. The module supplies the ESI
(or other signaling protocol equivalent) portion of the address and a driver

A–56 CMM Routines

atm_cmm_new_esi

reference to the CMM. The CMM then performs all the necessary functions
needed to register the address with the network and to activate it.

When a convergence module supplies a new ESI, the signaling modules
apply the ESI in a signaling protocol-specific way. Depending on the
signaling protocol, the addition of a single ESI to the system could create
many PPAs.

The calling convergence module is notified of the new PPA(s) when the
registration is complete. Note that the addition of a new ESI does not cause
the immediate creation of a new PPA in cases where there is no signaling
protocol that accepts the ESI, or if the link to the switch is down. In these
cases, new PPAs are created when new signaling modules are registered
and accept the ESIs, or when links to the switch become functional.

Once a convergence module creates an address, only the creating
convergence module, the CMM (through the system atmconfig program),
or the network can delete the addresses; other convergence modules cannot
delete the address. The creating convergence module must issue the
atm_cmm_ppa_bind call once it receives notification that the PPA(s) have
been configured. If the convergence module unregisters, all its created
addresses are destroyed.

If an ESI is deleted, the calling convergence module receives an
ATM_CME_ESI_DEL exception notification.

RETURN VALUES

If the registration process is proceeding, the atm_cmm_new_esi routine
returns a handle for the new ESI; otherwise, it returns a NULL. If the
requested ESI is already registered, the routine also returns NULL.

RELATED INFORMATION

atm_cmm_del_esi, atm_cmm_ppa_bind

CMM Routines A–57

atm_cmm_new_ppa

NAME

atm_cmm_new_ppa – Notifies the CMM that a new PPA exists

SYNOPSIS
atm_ppa_p atm_cmm_new_ppa(

atm_sig_handle_t sm,
unsigned char *addr,
unsigned int addrlen,
unsigned char ton,
unsigned char anpi,
atm_drv_handle_t driver,
atm_esi_p esi,
void *ppas_id,
atm_uni_type_t uni,
void *sig_info);

ARGUMENTS

sm Specifies the signaling module handle that the registration
function call returned.

addr Specifies a pointer to a series of bytes in memory that is the
fully formed new address. The CMM copies this information
and the signaling module can free these bytes on return if
they are not needed for internal use.

addrlen Specifies the exact number of bytes in the address. This must
be less than ATM_PPA_MAX_ADDR. For UNI signaling, the
value of this argument is always 20.

ton Specifies the endpoint’s address type. These bits are the same
as the type of number field in the Called Party Number IE
(right justified).

anpi Specifies the address or numbering plan identification
information for the address. These bits are the same as those
in the corresponding field of the Called Party Number IE.

driver Specifies the device driver handle for the interface on which
the new address has been created. This value is taken from

A–58 CMM Routines

atm_cmm_new_ppa

the PVC PPA over which the signaling module has created the
new address.

esi Specifies which ESI was used in the creation of this address.
This is the atm_esi structure pointer that gets passed in to
the signaling module on the ATM_SIGE_NEWESI exception.

ppas_id Specifies an internal value that the signaling module can use
to keep track of the PPA. The CMM does not use or modify the
value of this argument, which gets placed in the atm_ppa
structure for use by the signaling module.

uni Identifies the type of UNI (public or private) associated with
the PPA.

sig_info Identifies a piece of data that the signaling module needs to
associate with the PPA. For UNI signaling, set this value to
the UNI version that is in use on the PPA. The version is
specified as an atm_uni_vers_t constant.

DESCRIPTION

The atm_cmm_new_ppa routine is a signaling module interface. When a
signaling module creates a new address (new PPA), the module calls this
routine. This notifies the CMM that the new PPA exists. A convergence
module can use the PPA to make and receive calls.

For example, when a UNI 3.0/3.1 signaling module is informed of a new
address prefix, through the Interim Local Management Interface (ILMI),
that has been created on the switch, the module combines the new prefix
with existing end system identifiers (ESIs) to form a new set of addresses
for the new prefix. Then, the signaling module tells the CMM about each of
these new addresses.

RETURN VALUES

Upon successful completion, the atm_cmm_new_ppa routine returns a valid
PPA pointer for the new PPA; otherwise, it returns NULL.

CMM Routines A–59

atm_cmm_new_ppa

RELATED INFORMATION

atm_cmm_del_ppa, atm_cmm_ppa_bind, atm_cmm_ppa_info

A–60 CMM Routines

atm_cmm_new_thread

NAME
atm_cmm_new_thread – Creates a kernel thread for use by an ATM
module

SYNOPSIS
thread_t atm_cmm_new_thread(

task_t task,
void(*)(void * arg) *first,
void *arg,
int pri,
int maxpri);

ARGUMENTS
task Specifies a pointer to a task structure used to uniquely

identify the thread. The contents of this structure are filled in
by this routine and should never be modified. This argument
must reference a structure that will be valid for the life of the
thread (generally a global structure).

first Specifies the address of the routine that serves as the thread’s
entry point. This is the first routine called in the new thread’s
context. Returning from this routine terminates the thread.
This routine is passed a single argument whose use is entirely
thread specific.

arg Specifies the argument that is passed as the only argument to
the thread’s entry point. The use and interpretation of this
argument is entirely up to the module creating and using the
thread.

pri Specifies the priority at which the thread runs when its entry
point is called. This is also the priority at which the thread
always runs unless you change the priority by using one of the
kernel thread management functions.

maxpri Specifies the maximum priority at which the thread is allowed
to run. You cannot set the thread priority higher than this
value. Note that thread priorities range from 1 (the highest) to
63 (the lowest). Set the thread priority as follows:

CMM Routines A–61

atm_cmm_new_thread

maxpri <= newpri <= 63

DESCRIPTION

The atm_cmm_new_thread routine is a signaling, convergence, and device
driver module interface. When an ATM module creates a new thread for
use by any ATM module, the module calls this routine. This routine
combines many of the operating system’s thread primitives to provide an
easier interface for ATM modules.

RETURN VALUES

Upon successful completion, the atm_cmm_new_thread routine returns a
pointer to a thread structure that is used to reference the thread in all
subsequent calls to kernel thread routines. If a thread could not be created,
it returns NULL.

RELATED INFORMATION

Section 2.7.4 for a description of ATM thread creation

A–62 CMM Routines

atm_cmm_next_cause

NAME

atm_cmm_next_cause – Retrieves logged VC or endpoint cause
information

SYNOPSIS
atm_cause_info_p atm_cmm_next_cause(

atm_vc_p vp,
atm_addr_p addr,
atm_cause_info_p cip);

ARGUMENTS

vp Specifies a pointer to the VC from which to retrieve cause
information. If you want information for only one endpoint, set
the value to NULL and set the addr value to non-NULL.

addr Specifies a pointer to the atm_addr structure for the endpoint
from which to retrieve cause information. If the error applies
to all endpoints on the VC (global), set the value to NULL and
set the vp value to non-NULL.

cip Specifies the atm_cause_info_p value returned by the
previous call to atm_cmm_next_cause. To retrieve the first
cause entry for a VC or endpoint, set the value to NULL.

DESCRIPTION

The atm_cmm_next_cause routine is a convergence and signaling module
interface that retrieves error or normal condition information logged by
previous calls to atm_cmm_set_cause, atm_cmm_adi_set_cause, or
atm_cmm_smi_set_cause.

To retrieve the first logged cause for a VC or endpoint, set the value of the
cip parameter to NULL. To retrieve subsequent causes, set the value of
the cip parameter to the value returned from the previous call to
atm_cmm_next_cause.

CMM Routines A–63

atm_cmm_next_cause

RETURN VALUES

Upon successful completion, the atm_cmm_next_cause routine returns a
pointer to the next atm_cmm_next_cause structure for the specified VC or
endpoint. If both the VC (vp) and endpoint (addr) arguments are NULL, or
if there are no more causes for the specified VC or endpoint, the routine
returns NULL.

RELATED INFORMATION

atm_cmm_adi_set_cause, atm_cmm_set_cause,
atm_cmm_smi_set_cause

Section 2.9.7 for information on cause information

A–64 CMM Routines

atm_cmm_oam_receive

NAME

atm_cmm_oam_receive – Passes OAM cells to the CMM

SYNOPSIS
void atm_cmm_oam_receive(

atm_drv_handle_t driver,
struct mbuf *mbp,
atm_vc_t *vc);

ARGUMENTS

driver Specifies the interface on which the operations and
maintenance (OAM) cell was received. This is the driver
handle that the CMM assigned at driver registration time.

mbp Specifies a pointer to a single mbuf that contains the complete
OAM cell (including the cell header). You can pass only one
OAM cell to the CMM in a single call.

vc Specifies a pointer to the VC to which the OAM cell belongs.
The CMM creates PVCs for VCs 3 and 4 for the receipt of F4
OAM flows.

DESCRIPTION

The atm_cmm_oam_receive routine is a device driver interface. When an
ATM device driver receives data packets and cells from the ATM network,
the driver calls this routine to pass the data to the CMM. Device drivers
should pass all OAM cells to the CMM.

RETURN VALUES

None

RELATED INFORMATION

atm_cmm_receive

Section 2.4.3 for information on how data are carried

CMM Routines A–65

atm_cmm_ppa_bind

NAME

atm_cmm_ppa_bind – Binds a convergence module to a PPA

SYNOPSIS
atm_bind_handle_t atm_cmm_ppa_bind(

atm_ppa_p ppa,
atm_cvg_handle_t cvg_handle,
int selector,
void *const bind_handle,
atm_error_t (*const xxx_connect)(void bind_handle,

atm_addr_p addr,
atm_bind_handle_t myaddr,
atm_vc_p vc,
atm_uni_call_ie_p *reply,
atm_vc_services_p requested,
atm_vc_services_p *avail));

ARGUMENTS

ppa Specifies a pointer to the atm_ppa structure of the
PPA to which the convergence module is binding.
This is the same pointer passed into the
convergence module when it is notified of the
existence of the new PPA.

cvg_handle Specifies the convergence module handle returned
to the convergence module when it registered with
the CMM. This argument must be valid for the bind
to proceed.

selector Specifies the selector byte that the convergence
module will use as its bind point. This value must
not already be bound to an AESA. If this value is
ATM_CMM_BIND_PICK, the CMM assigns the
selector value. If the caller specifies the selector
value to use, it must be in the range of 0 to 255 (for
binding to SVC PPAs) and the high-order bit must
be clear (for binding to PVC PPAs).

bind_handle Specifies a value that the CMM will pass back to
the convergence module when it informs the

A–66 CMM Routines

atm_cmm_ppa_bind

convergence module of a new call. The convergence
module can use this value to identify any internal
references to the bound PPA. This value has no
meaning to the CMM and is not modified by the
CMM.

xxx_connect Specifies a pointer to a routine that the CMM is to
call when a new connection is being processed. If a
convergence module should not receive a connection
through a bind point, the value of this argument
must be NULL.

DESCRIPTION

The atm_cmm_ppa_bind routine is a convergence module interface that
binds a convergence module to a PPA. A convergence module must call this
routine if it wants to make outgoing calls or to receive incoming calls being
made to one of the configured local ATM addresses. The routine informs the
CMM that the convergence module will function as a network service user
for a specific address and selector value.

Convergence modules are notified when a PPA is configured on the system
(when an address is registered with a switch and is made known to the
ATM network). Convergence modules can then bind to the PPA to create a
network service user endpoint, which uniquely identifies the convergence
module on the network. Once bound, there is a unique AESA associated
with the bound convergence module. The AESA and the bind point identify
the service on the network and local system. Convergence modules will be
informed only of incoming calls on PPAs to which they have bound and can
place calls only through a bind point. The CMM handles calls only to
AESAs. If the AESA specified by the called party address of an incoming
call does not exist, the CMM rejects the call.

By binding to a PPA, a convergence module is creating an AESA and
uniquely identifying its service on the network. Once this is done, incoming
calls can be routed to the convergence module, and the convergence module
can make outgoing calls. All call activity is directed at a bind point, and
thus, a specific convergence module.

When binding to a PPA, a convergence module can either specify a specific
selector value it wants to use in creating the AESA address, or it may

CMM Routines A–67

atm_cmm_ppa_bind

allow the CMM to assign it a selector value. In both cases, the selector
value must specify a unique endpoint on the PPA.

Note that a convergence module can bind to up to 256 times to a PPA (as
long as all its selector values are unique), and may bind to as many PPAs
as is necessary to provide its service.

RETURN VALUES

Upon successful completion, the atm_cmm_ppa_bind routine returns a
value that the convergence module uses to reference the bind point;
otherwise, it returns a NULL. Typically, bind failure occurs for the
following reasons: insufficient memory, the PPA is no longer valid, the
selector value specified is in use, or there are no free selectors available.

RELATED INFORMATION

atm_cmm_bind_info, atm_cmm_del_ppa, atm_cmm_new_ppa,
atm_cmm_ppa_info, atm_cmm_ppa_unbind, xxx_connect

Section 2.5 for information on PPAs and AESAs

A–68 CMM Routines

atm_cmm_ppa_info

NAME

atm_cmm_ppa_info – Queries parameters from a PPA

SYNOPSIS
unsigned long atm_cmm_ppa_info(

atm_ppa_p ppa,
atm_bind_info_t it);

ARGUMENTS

ppa Specifies a pointer to the PPA for which information is to be
retrieved. This can be any valid PPA currently configured on
the system.

it Specifies the type of information that is being queried. The
value returned depends on the object type of the queried
information. You may use the following values to query the
indicated information:

Value Meaning

ATM_PPA_ALLOCGRANE Returns a type of atm_bw_granularity_p, which
reflects the underlying interface’s units of bandwidth
allocation or its allocation granularity.

ATM_PPA_ALLOCLIMIT Returns a type of atm_bw_granularity_p, which
reflects the underlying interface’s per-VC bit rate limits,
expressed in allocation granularity units.

ATM_PPA_AVAILRES Returns a type of atm_services_granes_p, which
reflects the amount of bandwidth (in granularity units)
currently available for new CBR circuits over the
underlying interface.

ATM_PPA_BRESVLIM Returns the user-configurable limit, expressed as a
percentage of backward bandwidth, on CBR circuits.

ATM_PPA_ESI Returns the ESI that the signaling module supplied
when the PPA was created.

ATM_PPA_ESIID Returns the unique ESI identifier associated with the
PPA’s ESI.

ATM_PPA_ESILEN Returns the length of the ESI that the signaling module
supplied when the PPA was created.

ATM_PPA_ESIPID Returns the ESI identifier of the PPA’s parent ESI.

CMM Routines A–69

atm_cmm_ppa_info

Value Meaning

ATM_PPA_FRESVLIM Returns the user-configurable limit, expressed as a
percentage of forward bandwidth, on CBR circuits.

ATM_PPA_INFO_BURST_AVAIL Returns the available burst cell rate (in
cells-per-second). This is the amount of burst cell rate
that is available for a convergence module to reserve.

ATM_PPA_INFO_BURST_MAX Returns the maximum burst cell rate (in
cells-per-second) that the interface supports.

ATM_PPA_INFO_CAPABILITIES Returns the driver’s capabilities for that interface.

ATM_PPA_INFO_DID Returns a unique global value that can be used to
reference the driver for the underlying interface.

ATM_PPA_INFO_DNAME Returns a pointer to a character string that is the name
of the driver for the underlying interface.

ATM_PPA_INFO_DUNIT Returns the unit number of the driver for the
underlying interface.

ATM_PPA_INFO_FC Returns a nonzero value if hardware flow control is
currently enabled on the interface.

ATM_PPA_INFO_HARD_MTU Returns the largest PDU (in bytes) that the interface
supports. This is valid only for interfaces that support
AAL5 or AAL3/4 SAR functions in hardware.

ATM_PPA_INFO_HI_VCI Returns the highest value that may be used for a VCI
on the interface.

ATM_PPA_INFO_HI_VPI Returns the highest value that may be used for a VPI
on the interface.

ATM_PPA_INFO_ID Returns a unique global value for referencing the PPA.
Each PPA is assigned a unique ID when it is created. An
application program can use this value when specifying
a bind point (atmconfig uses these values to reference
bind points). The returned value is 32-bits wide.

ATM_PPA_INFO_MAX_VCI Returns the maximum number of VCIs that the
interface supports.

ATM_PPA_INFO_MAX_VPI Returns the maximum number of VPIs that the
interface supports.

ATM_PPA_INFO_MEDIA Returns a value that indicates the type of physical
media to which the interface is connected. The return
value is of the type atm_media_type_t.

ATM_PPA_INFO_PEAK_AVAIL Returns the available peak cell rate (in
cells-per-second). This is the amount of the interface’s
peak cell rate that is available to a convergence module.

A–70 CMM Routines

atm_cmm_ppa_info

Value Meaning

ATM_PPA_INFO_PEAK_MAX Returns the maximum peak cell rate (in
cells-per-second) that the interface supports.

ATM_PPA_INFO_QUEUES Returns the number of scheduling queues that the
driver has made visible to the CMM.

ATM_PPA_INFO_SNAME Returns a pointer to a character string that contains
the name of the signaling module that controls all SVCs
created on the PPA. If the PPA is a PVC PPA, the
returned value is NULL.

ATM_PPA_INFO_SUST_AVAIL Returns the available sustainable cell rate (in
cells-per-second). This is the amount of sustainable cell
rate that is available for a convergence module to
reserve.

ATM_PPA_INFO_SUST_MAX Returns the maximum sustainable cell rate (in
cells-per-second) that the interface supports.

ATM_PPA_INFO_TOTAL_VC Returns the maximum number of VCs that can be
opened on the interface at any given time.

ATM_PPA_INFO_TYPE Returns a value that indicates the underlying interface
type. The returned value is of the type
atm_interface_t.

ATM_PPA_INFO_UNI Returns the UNI type associated with the PPA, which
the signaling module supplied at the time the PPA was
created. The return value is of the type
atm_uni_type_t.

ATM_PPA_INFO_VC_LEFT Returns the number of unopened VCs on the interface
at the time of the call. This is the total number of VCs
(the value returned by ATM_PPA_INFO_TOTAL_VC)
minus the number of VCs currently opened.

ATM_PPA_MAX_VC_BBW Returns the user-configurable maximum per-VC
backward (incoming) bit rate (in allocation granularity
units) permitted over the underlying interface.

ATM_PPA_MAX_VC_FBW Returns the user-configurable maximum per-VC
forward (outgoing) bit rate (in allocation granularity
units) permitted over the underlying interface for CBR
and pacing circuits.

ATM_PPA_MAXRES Returns a type of atm_services_granes_p, which
reflects the maximum bandwidths available for CBR
circuits over the underlying interface. These bandwidths
(expressed in granularity units) are a function of the
interface limits and the user-configurable limits on the
percentage of bandwidth available to CBR circuits.

ATM_PPA_NUM_VCI Returns the current number of VCIs configured on the
underlying interface.

CMM Routines A–71

atm_cmm_ppa_info

Value Meaning

ATM_PPA_NUM_VPI Returns the current number of VPIs configured on the
underlying interface.

ATM_PPA_PEAK_CELLRATE Returns the peak PDU bit rate (in cells-per-second) for
the underlying interface.

ATM_PPA_UNUSEDRES_BACK Returns the amount of backward (incoming) bandwidth
(in cells-per-second) currently reserved for, but not yet
applied to, CBR circuits.

ATM_PPA_UNUSEDRES_FWD Returns the amount of forward (outgoing) bandwidth
(in cells-per-second) currently reserved for, but not yet
applied to, CBR circuits.

DESCRIPTION

The atm_cmm_ppa_info routine is a convergence module interface that
queries the CMM for current information about an interface’s physical
capabilities (such as its bit rates) and the amount of specific resources left
available on an interface (the remaining nonreserved sustainable bit rate).
The CMM and device drivers keep track of this information.

Since convergence modules normally deal with either PPAs or AESA
bindings, the CMM allows convergence modules to query the information
from the underlying interface by specifying the PPA directly. Thus, the
convergence module requires no specific knowledge of any device driver or
device driver-related structures.

RETURN VALUES

None

RELATED INFORMATION

atm_cmm_bind_info, atm_cmm_del_ppa, atm_cmm_new_ppa,
atm_cmm_ppa_bind, atm_cmm_ppa_unbind

Section 3.4.1.15 for a description of the capabilities member of the
atm_drv_params structure

A–72 CMM Routines

atm_cmm_ppa_unbind

NAME

atm_cmm_ppa_unbind – Unbinds convergence module service from a PPA

SYNOPSIS
atm_error_t atm_cmm_ppa_unbind(

atm_bind_handle_t bind_handle);

ARGUMENTS

bind_handle Specifies the binding to be removed. This is the
handle that the atm_cmm_ppa_bind routine
returns to the convergence module.

DESCRIPTION

The atm_cmm_ppa_unbind routine is a convergence module interface that
unbinds a convergence module’s service from a PPA. A convergence module
uses this routine when it does not want to accept an incoming connection or
to make outgoing calls, for example, a module awaiting a call from a
specific caller. Typically, convergence modules should unbind a PPA if their
service is no longer available, and must unbind before unregistering with
the CMM.

Removing a binding releases all VCs associated with the bind point.

RETURN VALUES

Upon successful completion, the atm_cmm_ppa_unbind routine returns
ATM_CAUSE_GOOD; otherwise, it returns an ATM error number.

RELATED INFORMATION

atm_cmm_bind_info, atm_cmm_del_ppa, atm_cmm_new_ppa,
atm_cmm_ppa_bind, atm_cmm_ppa_info

CMM Routines A–73

atm_cmm_receive

NAME

atm_cmm_receive – Presents received data to the CMM

SYNOPSIS
void atm_cmm_receive(

atm_drv_handle_t driver,
const struct mbuf *const mbp,
const int length,
const struct mbuf *const trailer,
atm_vc_t *vc,
char pti,
char gfc);

ARGUMENTS

driver Specifies the interface on which the data arrived. This is the
driver handle that is given to the driver when it registers with
the CMM.

mbp Specifies a pointer to a chain of mbufs that contain the data
received.

length Specifies the total number of bytes received. For cooked data,
this is the number of cells received multiplied by 48. For raw
cells, this is the total number of data bytes in the mbuf chain,
including the ATM cell headers but not including any
time-stamps.

trailer Specifies a pointer to the last mbuf in the mbuf chain. This
enables the CMM to quickly locate the cooked packet trailer in
the incoming packet without having to traverse the mbuf
chain (the driver already knows the address of this mbuf
because it must fill in the mbuf length after the data is copied
by the adapter using DMA). For raw data, this pointer simply
references the last mbuf in the chain.

vc Specifies a pointer to the atm_vc structure of the VC on which
the data was received.

A–74 CMM Routines

atm_cmm_receive

pti Specifies the PTI field of the incoming cells. This is driver
dependent since it is up to the hardware how it keeps track of
the PTI fields of all the cells in a packet. The driver indicates
its ability to keep track of these bits to the CMM in the
atm_drv_params structure during the driver registration
process. This field is valid only for cooked connections since
complete cells are passed up when raw cells are received.

gfc Specifies flow-control information the driver passes up to the
CMM. The use of this field is not currently defined. This
argument is provided for future use when GFC bits are
standardized.

DESCRIPTION

The atm_cmm_receive routine is a device driver interface. When an ATM
device driver receives data packets and cells from the ATM network, the
driver calls this routine to pass the data to the CMM.

When the CMM receives the data, it immediately passes the data to the
convergence module that owns the VC. The CMM does not queue the data.
That way, the convergence modules receive the data at their input
functions in the interrupt context; the driver should do all receive
processing in interrupt context for efficiency.

After passing data to the CMM, the driver must not reference any mbufs in
the mbuf chain again. If the driver must allocate private storage for data
(rather than allocating from the system mbuf pool), the driver must provide
an appropriate free routine and set the m_ext structure in the mbuf
appropriately. The data mbuf chain is deallocated only when the protocol
stack has finished referencing the data.

Device drivers use this call to pass up only data packets and cells. Device
drivers must use the atm_cmm_oam_receive routine to pass operations
and maintenance (OAM) cells (nondata cells) to the CMM.

RETURN VALUES

None

CMM Routines A–75

atm_cmm_receive

RELATED INFORMATION

xxx_xmit

Section 2.4.3 for information on the mbuf chain

Section 3.2 for information on receiving cells

A–76 CMM Routines

atm_cmm_register_cvg

NAME

atm_cmm_register_cvg – Registers a convergence module with the CMM

SYNOPSIS
void * atm_cmm_register_cvg(

long version,
char *const name,
void *cvg_handle,
atm_cvg_params_t *params,
atm_cvg_handle_t *return_handle,
void *reserved);

ARGUMENTS

version Specifies the version of the include files that were
used when the convergence module driver was
compiled. The value of this argument must match
ATM_REVISION in the
/usr/include/io/atm/sys/atm.h file when the
convergence module was compiled. This tells the
CMM which version of the global data structures
the convergence module is using.

name Specifies a unique character string by which the
convergence module is known to the system.
Management programs use this string to display
the name of the convergence module. This string
must be unique; if the convergence module registers
itself multiple times, it must use a different name
for each registration.

cvg_handle Specifies a value that the convergence module can
use to identify a specific registration to the CMM.
This value is passed back to the convergence
module for exception and management processing.
The CMM does not modify this value, which is
always passed back unchanged.

params Specifies a pointer to a atm_cvg_params structure
that defines the entry points and capabilities of the

CMM Routines A–77

atm_cmm_register_cvg

convergence module. To allow for future expansion
of the structure, the convergence module should call
the bzero command to insert nulls into the entire
structure before filling in the fields. For the
registration call, this pointer can reference private
memory because the CMM copies the information
into its local memory before returning.

return_handle Specifies a pointer to a atm_cvg_handle_t
variable that CMM fills in with a unique value to
identify this instance of the convergence module.
The convergence module must use this value on all
subsequent calls to the CMM. This value is set
before the CMM calls any of the convergence
module’s entry points, which can happen before the
atm_cmm_register_cvg call returns.

reserved This parameter is reserved for future use, and must
be specified as NULL.

DESCRIPTION

The atm_cmm_register_cvg routine is a convergence module routine that
registers a convergence module with the CMM. A protocol convergence
module must register with the CMM before it can interact with the ATM
subsystem. The CMM passes interface configuration information (for
example, currently configured PPAs) to the convergence module, using the
module’s exception routine, before the registration call returns.

Once a convergence module is registered, the CMM knows where to deliver
connection notifications and various exception notifications (for example,
changes in system configuration). Convergence modules can register at any
time.

RETURN VALUES

Upon successful registration, the atm_cmm_register_cvg routine returns
a non-NULL value; otherwise, it returns NULL.

A–78 CMM Routines

atm_cmm_register_cvg

RELATED INFORMATION

atm_cmm_unregister_cvg, xxx_except, xxx_mmi, xxx_receive

Section 5.22.3 for the atm_cvg_params structure definition

Chapter 7 for information on the MMI

CMM Routines A–79

atm_cmm_register_dd

NAME

atm_cmm_register_dd – Registers a device driver with the CMM

SYNOPSIS
atm_drv_handle_p atm_cmm_register_dd(

long version,
atm_drv_params_p params,
atm_error_t (*const xxx_xmit)(int unit,

struct mbuf *data,
long length,
atm_vc_p vc,
unsigned char clp,
unsigned char gfc),

atm_error_t (*const xxx_manage)(int unit,
unsigned int command,
void *arg),

int (*const xxx_mmi)(int handle,
unsigned int command,
void *arg,
int *retval,
struct ucred *cred));

ARGUMENTS

version Specifies the version of the include files that are
used when the device driver is compiled. The value
of this argument must match ATM_REVISION in the
/usr/include/io/atm/sys/atm.h file when the
device driver is compiled. This tells the CMM which
version of the global data structures the driver is
using.

params Specifies a pointer to an atm_drv_params
structure, which defines the basic capabilities of the
interface. This structure must be completely
initialized. To allow for future expansion of the
structure, the convergence module should call the
bzero command to insert nulls into the entire
structure before filling in the fields. For the
registration call, this pointer can reference private
memory because the CMM copies the information
into its local memory before returning.

A–80 CMM Routines

atm_cmm_register_dd

xxx_xmit Specifies the address of the routine for the CMM to
call when it has data to transmit on the interface.

xxx_manage Specifies the address of a routine that the CMM
calls to perform various driver management
functions. The management function definitions are
in the atm_adi.h file in the
/usr/include/io/atm/sys directory.

xxx_mmi Specifies a pointer to a routine that the CMM calls
to pass MMI commands from an application
program. This routine is optional; you provide it
only if the driver implements any MMI services.

DESCRIPTION

The atm_cmm_register_dd routine is a device driver interface that
registers the device driver with the CMM. This is done during driver
initialization, when a device driver’s attach routine is called. The
atm_cmm_register_dd routine is called before returning from the attach.

RETURN VALUES

Upon successful completion, atm_cmm_register_dd returns
atm_drv_handle_t. The driver uses this handle in all subsequent calls to
the CMM; otherwise, it returns NULL.

RELATED INFORMATION

xxx_manage, xxx_mmi, xxx_xmit

Section 2.4.3 for information on the mbuf chain

Chapter 3 for more information on the device driver interface and the
atm_queue_param structure

Chapter 7 for more information on the MMI

CMM Routines A–81

atm_cmm_register_sig

NAME

atm_cmm_register_sig – Registers the signaling module with the CMM

SYNOPSIS
void * atm_cmm_register_sig(

long version,
char *const id,
void *sig_handle,
atm_sig_params_t *params,
atm_sig_handle_t *return_handle,
void * reserved1,
void * reserved2,
void * reserved3,
void * reserved4,
void * reserved5,
void * reserved6,
void * reserved7);

ARGUMENTS

version Specifies the version of the include files that were
used when the signaling module was compiled. The
value of this argument must match ATM_REVISION
in the /usr/include/io/atm/sys/atm.h file
when the signaling module was compiled. This tells
the CMM which version of the global data
structures the signaling module is using.

id Specifies a unique character string by which the
protocol is known to the system. This string is used
both by management programs to display the name
of the switching module and by protocol
convergence modules needing to use a specific
protocol. For example, the UNI 3.0 switching
protocol could use an ID of UNI 3.0 to identify
itself. Each ID must be unique. The CMM performs
signaling module lookup with case-insensitive
searches, so the IDs cannot use case to differentiate
themselves. Management programs display the ID
strings as supplied by the signaling modules.
Signaling modules that implement more than one
protocol (or more than one version of the same

A–82 CMM Routines

atm_cmm_register_sig

protocol) must use multiple registration calls to
register each protocol.

sig_handle Specifies a value that the signaling module can use
to identify a specific registration to the CMM. This
value is passed back to the signaling module for
exception and management processing. The CMM
does not modify this value, which is always passed
back unchanged.

params Specifies a pointer to a atm_sig_params structure
that defines the entry points and capabilities of the
signaling module. To allow for future expansion of
the structure, the convergence module should call
the bzero command to insert nulls into the entire
structure before filling in the fields. For the
registration call, this pointer can reference private
memory because the CMM copies the information
into its local memory before returning.

return_handle Specifies a pointer to a atm_sig_handle_t
variable that CMM fills in with a unique value to
identify this instance of the signaling module. The
signaling module must use this value on all
subsequent calls to the CMM. This value is set
before the CMM calls any of the signaling module’s
entry points, which can happen before the
atm_cmm_register_sig call returns.

reserved1 This parameter is reserved for future use, and must
be specified as NULL.

reserved2 This parameter is reserved for future use, and must
be specified as NULL.

reserved3 This parameter is reserved for future use, and must
be specified as NULL.

CMM Routines A–83

atm_cmm_register_sig

reserved4 This parameter is reserved for future use, and must
be specified as NULL.

reserved5 This parameter is reserved for future use, and must
be specified as NULL.

reserved6 This parameter is reserved for future use, and must
be specified as NULL.

reserved7 This parameter is reserved for future use, and must
be specified as NULL.

DESCRIPTION

The atm_cmm_register_sig routine is a signaling module interface that
registers a signaling module with the CMM. Registration must occur when
the signaling module is initialized. Once registered, the CMM can use the
signaling module and make it available to convergence modules.

Signaling modules should register as both signaling and convergence
modules. When registering as a convergence module, a signaling module
must set up its signaling VCs to send and receive signaling messages. The
CMM does not provide special facilities for signaling VCs, but treats them
like any other VC.

RETURN VALUES

Upon successful registration, the atm_cmm_register_sig routine returns
a non-NULL value; otherwise, it returns NULL.

RELATED INFORMATION

xxx_add, xxx_drop, xxx_enquery, xxx_except, xxx_mmi,
xxx_release, xxx_restart, xxx_setup

Section 4.16 for the atm_sig_params structure definition

Section 6.6 for a description of signaling VC initialization

Chapter 7 for a discussion of the MMI

A–84 CMM Routines

atm_cmm_reject

NAME

atm_cmm_reject – Rejects an incoming call and notifies the CMM

SYNOPSIS
void atm_cmm_reject(

atm_addr_p addr);

ARGUMENTS

addr Specifies a pointer to the atm_addr structure for the call being
rejected. This is the same pointer passed into the convergence
module’s xxx_connect routine when the call first came in.

DESCRIPTION

The atm_cmm_reject routine is a convergence module interface that
rejects a previously deferred incoming call and notifies the CMM. The
incoming call was deferred when a convergence module returned
ATM_CAUSE_DEFER from its xxx_connect routine.

When this call returns, the convergence module must destroy all references
to the rejected call.

RETURN VALUES

None

RELATED INFORMATION

atm_cmm_accept, atm_cmm_new_call

CMM Routines A–85

atm_cmm_release

NAME
atm_cmm_release – Requests that a VC be disconnected

SYNOPSIS
atm_err_t atm_cmm_release(

atm_cvg_handle_t cm,
atm_vc_t *vc);

ARGUMENTS
cm Specifies the value that the registration routine returns to the

convergence module. This uniquely identifies the convergence
module making the request.

vc Specifies a pointer to the VC to be torn down. This can be a
point-to-point or a point-to-multipoint VC. In the case of a
point-to-multipoint VC, connections to all endpoints in the
multipoint connection are torn down.

DESCRIPTION
The atm_cmm_release routine is a convergence module routine that
requests the CMM to delete a virtual circuit. A convergence module uses
this routine when it no longer requires a connection to a remote host. After
the routine is called, release negotiation with the remote host is initiated,
which will eventually lead to the connection being torn down and all
resources released.

A convergence module can either request that a specific endpoint be
dropped using atm_cmm_drop or that a VC be disconnected. These
operations are equivalent on point-to-point connections; disconnecting only
the endpoint results in the VC being torn down. If a convergence module
requests that a point-to-multipoint VC be disconnected, the CMM first
disconnects all endpoints associated with the VC. This task simplifies the
task of disconnecting multipoint VCs and for disconnecting PVCs.

RETURN VALUES
For an SVC, if the connection teardown is proceeding, the
atm_cmm_release routine returns ATM_CAUSE_GOOD; otherwise, it returns

A–86 CMM Routines

atm_cmm_release

an ATM error number. As each endpoint is torn down, the convergence
module receives an ATM_CME_EP_DEAD exception notification for that
endpoint. When the last endpoint associated with a VC has been
disconnected, the VC is torn down.

For a PVC, if the PVC has been destroyed on the local system, the
atm_cmm_release routine returns ATM_CAUSE_GOOD and the PVC can
still exist on the network; otherwise, it returns an ATM error number. No
notifications are provided on the PVC release.

RELATED INFORMATION

atm_cmm_con_release

CMM Routines A–87

atm_cmm_reply

NAME

atm_cmm_reply – Notifies the CMM that an outgoing connection has been
acknowledged

SYNOPSIS
atm_err_t atm_cmm_reply(

atm_sig_handle_t sm,
atm_addr_t *addr,
atm_uni_call_ie_p ies,
unsigned int vpi,
unsigned int vci,
unsigned long call_reference);

ARGUMENTS

sm Specifies the signaling module’s handle assigned to
it when it registered with the CMM.

addr Specifies a pointer to an atm_addr structure that
contains all the parameters of the call. This pointer
must point to the same atm_addr structure that
was passed in the xxx_setup and xxx_add
routines since this pointer is the handle used to
refer to the specific connection.

ies Specifies a pointer to an array of UNI signaling
information elements (or any memory array in the
case of non-UNI signaling protocols). The signaling
module stores the contents of the information
elements sent in the connection reply received from
the called party in the array. The information
element array contains only those elements that do
not translate to values in the atm_vc_services
structure.

vpi Specifies the VPI value for the connection. The
network should assign this before the routine is
called.

A–88 CMM Routines

atm_cmm_reply

vci Specifies the VCI value for the connection. The
network should assign this before the routine is
called.

call_reference Specifies the call reference value that the signaling
module will use when referring to this call. This is
placed in the atm_vc structure for future use in
referencing the call.

DESCRIPTION

The atm_cmm_reply routine is a signaling module interface. Signaling
modules use this routine to notify the CMM when they receive notification
from the switch that an outgoing connection has been completed. The CMM
receives signaling information elements returned by the called party in the
connection reply. You use this call to notify the CMM of both the completion
of point-to-point connections and of the addition of endpoints in
point-to-multipoint connections.

If you are adding endpoints to a point-to-multipoint connection, the addr
pointer will point to the atm_addr structure of the added endpoint.

The call to atm_cmm_reply is always followed by a call to
atm_cmm_activate_con, which notifies the CMM that the connection is
ready to carry data.

RETURN VALUES

Since the atm_cmm_reply routine is notifying the CMM that a previously
created connection has completed, it can fail only if the connection
referenced is invalid. In this case, it returns ATM_CAUSE_EIR to indicate it
has no previous entry for the connection; otherwise, it returns
ATM_CAUSE_GOOD. If the CMM or a convergence module needs to destroy
the connection at this point it must follow the normal teardown procedure.
If ATM_CAUSE_EIR is returned, the signaling module is expected to tear
down the connection.

RELATED INFORMATION

atm_cmm_activate_con

CMM Routines A–89

atm_cmm_reserve_resources

NAME
atm_cmm_reserve_resources – Reserves resources for CBR services

SYNOPSIS
atm_err_t atm_cmm_reserve_resources(

atm_ppa_p ppa,
atm_cvg_handle_t cm,
atm_vc_services_p s);

ARGUMENTS
ppa Specifies the underlying driver or adapter bandwidth pool

from which to allocate the resources. The underlying driver or
adapter must support CBR. These resources can be applied
only to point-to-point connections set up over bind points
associated with the same PPA.

cm Specifies the value returned to the convergence module by the
registration request routine. This uniquely identifies the
convergence module reserving the resources.

s Specifies an atm_vc_services_p pointing to a properly set
atm_vc_services structure that defines the CBR circuit
parameters.

DESCRIPTION
The atm_cmm_reserve_resources routine is a convergence module
interface. Convergence modules use this routine to reserve bandwidth
resources and to notify the CMM before making a call or accepting a
connection. The CMM passes the notification to the device driver and
protocol convergence module.

RETURN VALUES
The atm_cmm_reserve_resources routine returns ATM_CAUSE_GOOD, if
the CMM was able to allocate and reserve the necessary resources.

This routine returns ATM_CAUSE_DEFER if the CMM was not able to
allocate and reserve the necessary resources. In this case, the convergence

A–90 CMM Routines

atm_cmm_reserve_resources

module must wait for the ATM_CME_RESV_AVAIL notification exception
before making a call or accepting a connection. Until the convergence
module receives an ATM_CME_RESV_AVAIL notification exception, the
atm_vc_services structure is considered to be a resource reservation
request.

If the resource reservation fails, the atm_cmm_reserve_resources
routine returns an ATM error number that indicates the reason for the
resource reservation failure. If the failure is due to an incorrectly set
atm_vc_services structure, the lerrstat structure member contains
local error information.

RELATED INFORMATION

atm_cmm_free_services

CMM Routines A–91

atm_cmm_restart

NAME

atm_cmm_restart – Notifies the CMM that a RESTART request was
received

SYNOPSIS
atm_err_t atm_cmm_restart(

atm_sig_handle_t sm,
unsigned int class,
unsigned int vpi,
unsigned int vci);

ARGUMENTS

sm Specifies the signaling module’s handle returned by the CMM
when the signaling module registers.

class Specifies the type of restart that is being performed. The caller
can set the value of this argument to either ATM_RESTART_VP
(to restart all VCs on a VP) or ATM_RESTART_VC (to restart a
specific VC).

vpi Specifies the VC(s) to be restarted. If class is set to
ATM_RESTART_VP, vpi specifies the VP on which all VCs are
to be restarted; the vci argument is ignored. If class is set to
ATM_RESTART_VC, the vpi and vci arguments specify which
VC is to be restarted.

vci Specifies the VC(s) to be restarted. If class is set to
ATM_RESTART_VC, the vpi and vci arguments specify which
VC is to be restarted.

DESCRIPTION

The atm_cmm_restart routine is a signaling module interface. When a
signaling module receives a RESTART request, the module calls this
routine to pass all of the appropriate information to the CMM. The CMM
then initiates a restart of the indicated VC(s) before returning to the
signaling module.

A–92 CMM Routines

atm_cmm_restart

RETURN VALUES

If the restart is successfully initiated, the atm_cmm_restart routine
returns ATM_CAUSE_GOOD; otherwise, it returns an appropriate ATM error
number.

RELATED INFORMATION

atm_cmm_new_call, atm_cmm_restart_ack

CMM Routines A–93

atm_cmm_restart_ack

NAME

atm_cmm_restart_ack – Notifies the CMM that a restart has completed

SYNOPSIS
void atm_cmm_restart_ack(

void *handle,
unsigned int class,
unsigned int vpi,
unsigned int vci);

ARGUMENTS

handle Specifies the handle that the CMM uses to identify the restart.
This value has significance only to the CMM. This is the value
that the CMM passed to the restart function call.

class Specifies the type of restart that is being performed. The caller
can set the value of this argument to either ATM_RESTART_VP
(to restart all VCs on a VP) or ATM_RESTART_VC (to restart a
specific VC).

vpi Specifies the VC(s) to be restarted. If class is set to
ATM_RESTART_VP, vpi specifies the VP on which all VCs are
to be restarted; the vci argument is ignored. If class is set to
ATM_RESTART_VC, the vpi and vci arguments specify which
VC is to be restarted.

vci Specifies the VC(s) to be restarted. If class is set to
ATM_RESTART_VC, the vpi and vci arguments specify which
VC is to be restarted.

DESCRIPTION

The atm_cmm_restart_ack routine is a signaling module interface that
signaling modules call to notify the CMM when a restart has been
completed. Once notified, the CMM returns the indicated VCs to the NULL
state and frees their resources.

A–94 CMM Routines

atm_cmm_restart_ack

RETURN VALUES

None

RELATED INFORMATION

atm_cmm_restart

CMM Routines A–95

atm_cmm_send

NAME

atm_cmm_send – Transmits data on an established VC

SYNOPSIS
atm_err_t atm_cmm_send(

atm_cvg_handle_t cm,
atm_vc_t *vc,
const struct mbuf *const data,
const long length,
unsigned char clp,
unsigned char gfc);

ARGUMENTS

cm Specifies the value returned to the convergence module by the
registration function call. This uniquely identifies the
convergence module making the request.

vc Specifies a pointer to the atm_vc structure of the VC on which
the data is to be sent.

data Specifies a pointer to a chain of mbufs that contain the data to
be transmitted.

length Specifies the total length of the data to be sent. For raw ATM
cell transmission, this value must be a multiple of the ATM
cell size. For cooked transmission, this value indicates the size
of the PDU to be encapsulated and sent.

clp Specifies the congestion loss priority bits to be used when
transmitting cooked data. When transmitting raw data, the
convergence module sets these bits in each ATM cell.

gfc Specifies the value of the generic flow-control bits to be used
when transmitting the cooked data. When transmitting raw
data, the convergence module sets these bits in each ATM cell.

A–96 CMM Routines

atm_cmm_send

DESCRIPTION

The atm_cmm_send routine is a convergence module interface that
transmits data on an established virtual circuit. The CMM then hands the
data to the appropriate device driver. Although the CMM does not queue
outgoing data, the device driver might. Therefore, the successful return
from this routine does not imply that the data was actually transmitted. In
fact, the data could be discarded in the driver or on the network. The
convergence module is not notified if the data is dropped locally.

RETURN VALUES

If the data is successfully passed to the driver and the driver accepts the
data, the atm_cmm_send routine returns ATM_CAUSE_GOOD. This does not
indicate that the data arrived at the destination or that it has even left the
system. If the driver does not accept the data, an ATM error number is
returned, indicating the reason the data was not accepted.

ATM_CAUSE_QFULL indicates that the driver cannot accept the data because
its queue is full or it is out of some other resource. The convergence module
can then decide if the data should be discarded or queued to send later.

RELATED INFORMATION

xxx_xmit

Section 2.4.3 for more information on the mbuf chain

Chapter 9 for information on flow control in the ATM subsystem

CMM Routines A–97

atm_cmm_set_cause

NAME

atm_cmm_set_cause – Logs a network-visible VC or endpoint condition

SYNOPSIS
atm_err_t atm_cmm_set_cause(

atm_cvg_handle_t cm,
atm_vc_p vp,
atm_addr_p addr,
char *reason,
atm_error_t cause,
atm_location_t location,
unsigned char diag_length,
unsigned char *diag);

ARGUMENTS

cm Specifies the value the registration request function
call returned to the convergence module. This
uniquely identifies the convergence module making
the request.

vp Specifies a pointer to the VC on which the condition
occurred. If the error applies to one endpoint, set
the value to NULL and set the addr value to
non-NULL.

addr Specifies a pointer to the atm_addr structure for
the endpoint on which the error occurred. If the
error applies to all endpoints on the VC (global), set
the value to NULL and set the vp value to
non-NULL.

reason Specifies a NULL-terminated character string that
contains descriptive text for the error.

cause Specifies the atm_error_t value that describes the
condition.

A–98 CMM Routines

atm_cmm_set_cause

location Specifies an atm_location_t value that identifies
the location in the network where the error
occurred.

diag_length Specifies the length (in bytes) of the data in the
diag argument.

diag Specifies a string of bytes that contains diagnostic
information about the error. This data might be
passed to the network in the diag field of a Cause
IE.

DESCRIPTION

The atm_cmm_set_cause routine is a convergence module interface that
records an error or normal condition associated with a VC or endpoint. The
condition is stored as an atm_cause_info structure together with the VC.
Convergence and signaling modules can retrieve this information by using
the atm_cmm_next_cause routine. Users can display this information by
using the atmconfig utility.

Errors or events stored with the atm_cmm_set_cause routine are visible
to the network and to the other end of the connection. When a signaling
module releases a connection or drops an endpoint, the module extracts the
most recent cause from a VC or endpoint and creates a Cause IE.

RETURN VALUES

If the cause is recorded successfully, the atm_cmm_set_cause routine
returns ATM_CAUSE_GOOD. If the driver handle, vp argument, or addr
argument is invalid, the routine returns ATM_CAUSE_BARG.

RELATED INFORMATION

atm_cmm_adi_set_cause, atm_cmm_next_cause, atm_cmm_set_log,
atm_cmm_smi_set_cause

Section 2.9.7 for information on cause information

CMM Routines A–99

atm_cmm_set_log

NAME

atm_cmm_set_log – Logs a VC or endpoint condition

SYNOPSIS
atm_err_t atm_cmm_set_log(

atm_cvg_handle_t cm,
atm_vc_p vp,
atm_addr_p addr,
char *reason,
atm_error_t cause,
atm_location_t location,
unsigned char diag_length,
unsigned char *diag);

ARGUMENTS

cm Specifies the value the registration request function
call returned to the convergence module. This
uniquely identifies the convergence module making
the request.

vp Specifies a pointer to the VC on which the condition
occurred. If the error applies to one endpoint, set
the value to NULL and set the addr value to
non-NULL.

addr Specifies a pointer to the atm_addr structure for
the endpoint on which the error occurred. If the
error applies to all endpoints on the VC (global), set
the value to NULL and set the vp value to
non-NULL.

reason Specifies a NULL-terminated character string that
contains descriptive text for the error.

cause Specifies the atm_error_t value that describes the
condition.

A–100 CMM Routines

atm_cmm_set_log

location Specifies an atm_location_t value that identifies
the location in the network where the error
occurred.

diag_length Specifies the length (in bytes) of the data in the
diag argument.

diag Specifies a string of bytes that contains diagnostic
information about the error. This data might be
passed to the network in the diag field of a Cause
IE.

DESCRIPTION

The atm_cmm_set_log routine is a convergence module interface that
records an error or normal condition associated with a VC or endpoint. The
condition is stored as an atm_cause_info structure together with the VC.
Users can display this information by using the atmconfig utility.

Errors or events stored with the atm_cmm_set_log routine are logged on
the local system only, and are not available when a signaling module
generates a Cause IE. Logging provides information about VC or endpoint
activity for a system or network administrator to view on the local system.

RETURN VALUES

If the cause is recorded successfully, the atm_cmm_set_log routine returns
ATM_CAUSE_GOOD. If the handle, vp argument, or addr argument is
invalid, the routine returns ATM_CAUSE_BARG.

RELATED INFORMATION

atm_cmm_adi_set_log, atm_cmm_next_cause, atm_cmm_set_cause,
atm_cmm_smi_set_log

Section 2.9.7 for information on cause information

CMM Routines A–101

atm_cmm_smi_set_cause

NAME
atm_cmm_smi_set_cause – Logs a network-visible VC or endpoint
condition

SYNOPSIS
atm_err_t atm_cmm_smi_set_cause(

atm_sig_handle_t sm,
atm_vc_p vp,
atm_addr_p addr,
char *reason,
atm_error_t cause,
atm_location_t location,
unsigned char diag_length,
unsigned char *diag);

ARGUMENTS
sm Specifies the signaling module handle that the

registration function call returned.

vp Specifies a pointer to the VC on which the condition
occurred. If the error applies to one endpoint, set
the value to NULL and set the addr value to
non-NULL.

addr Specifies a pointer to the atm_addr structure for
the endpoint on which the error occurred. If the
error applies to all endpoints on the VC (global), set
the value to NULL and set the vp value to
non-NULL.

reason Specifies a NULL-terminated character string that
contains descriptive text for the error.

cause Specifies the atm_error_t value that describes the
condition.

location Specifies an atm_location_t value that identifies
the location in the network where the error
occurred.

A–102 CMM Routines

atm_cmm_smi_set_cause

diag_length Specifies the length (in bytes) of the data in the
diag argument.

diag Specifies a string of bytes that contains diagnostic
information about the error. This data might be
passed to the network in the diag field of a Cause
IE.

DESCRIPTION

The atm_cmm_smi_set_cause routine is a signaling module interface that
records an error or normal condition associated with a VC or endpoint. The
condition is stored as an atm_cause_info structure together with the VC.
Convergence and signaling modules can retrieve this information by using
the atm_cmm_next_cause routine. Users can display this information by
using the atmconfig utility.

Errors or events stored with the atm_cmm_smi_set_cause routine are
visible to the network and to the other end of the connection. When a
signaling module releases a connection or drops an endpoint, the module
extracts the most recent cause from a VC or endpoint and creates a Cause
IE.

RETURN VALUES

If the cause is recorded successfully, the atm_cmm_smi_set_cause routine
returns ATM_CAUSE_GOOD. If the driver handle, vp argument, or addr
argument is invalid, the routine returns ATM_CAUSE_BARG.

RELATED INFORMATION

atm_cmm_adi_set_cause, atm_cmm_smi_set_log,
atm_cmm_next_cause, atm_cmm_set_cause

Section 2.9.7 for information on cause information

CMM Routines A–103

atm_cmm_smi_set_log

NAME

atm_cmm_smi_set_log – Logs a VC or endpoint condition

SYNOPSIS
atm_err_t atm_cmm_smi_set_log(

atm_sig_handle_t sm,
atm_vc_p vp,
atm_addr_p addr,
char *reason,
atm_error_t cause,
atm_location_t location,
unsigned char diag_length,
unsigned char *diag);

ARGUMENTS

sm Specifies the signaling module handle that the
registration function call returned.

vp Specifies a pointer to the VC on which the condition
occurred. If the error applies to one endpoint, set
the value to NULL and set the addr value to
non-NULL.

addr Specifies a pointer to the atm_addr structure for
the endpoint on which the error occurred. If the
error applies to all endpoints on the VC (global), set
the value to NULL and set the vp value to
non-NULL.

reason Specifies a NULL-terminated character string that
contains descriptive text for the error.

cause Specifies the atm_error_t value that describes the
condition.

location Specifies an atm_location_t value that identifies
the location in the network where the error
occurred.

A–104 CMM Routines

atm_cmm_smi_set_log

diag_length Specifies the length (in bytes) of the data in the
diag argument.

diag Specifies a string of bytes that contains diagnostic
information about the error. This data might be
passed to the network in the diag field of a Cause
IE.

DESCRIPTION

The atm_cmm_smi_set_log routine is a signaling module interface that
records an error or normal condition associated with a VC or endpoint. The
condition is stored as an atm_cause_info structure together with the VC.
Users can display this information by using the atmconfig utility.

Errors or events stored with the atm_cmm_smi_set_log routine are logged
on the local system only, and are not available when a signaling module
generates a Cause IE. Logging provides information about VC or endpoint
activity for a system or network administrator to view on the local system.

RETURN VALUES

If the cause is recorded successfully, the atm_cmm_smi_set_log routine
returns ATM_CAUSE_GOOD. If the handle, vp argument, or addr argument
is invalid, the routine returns ATM_CAUSE_BARG.

RELATED INFORMATION

atm_cmm_adi_set_log, atm_cmm_next_cause, atm_cmm_set_log,
atm_cmm_smi_set_cause

Section 2.9.7 for information on cause information

CMM Routines A–105

atm_cmm_status_done

NAME

atm_cmm_status_done – Notifies the CMM that a status enquiry has
completed

SYNOPSIS
void atm_cmm_status_done(

atm_addr_p addr);

ARGUMENTS

addr Specifies a pointer to the atm_addr structure, indicating the
endpoint from which the enquiry response was received. This
should correspond to the endpoint provided to the signaling
module’s enquiry function call.

DESCRIPTION

The atm_cmm_status_done routine is a signaling module interface that
signaling modules call to notify the CMM when a status enquiry has
completed. Once notified, the CMM either examines the enquiry data itself
or passes it to the convergence module that requested the enquiry.

RETURN VALUES

None

RELATED INFORMATION

atm_cmm_enquery

A–106 CMM Routines

atm_cmm_unregister_cvg

NAME

atm_cmm_unregister_cvg – Unregisters a convergence module from the
CMM

SYNOPSIS
atm_error_t atm_cmm_unregister_cvg(

atm_cvg_handle_t cm);

ARGUMENTS

cm Specifies a value that identifies the convergence module. The
atm_cmm_register_cvg call returns this value.

DESCRIPTION

The atm_cmm_unregister_cvg routine is a convergence module interface
that unregisters a convergence module with the CMM. A convergence
module unregisters with the CMM if it no longer needs to receive or make
connections. This might be necessary in environments when protocol stacks
are dynamically configured and unconfigured from the system.

Before unregistering, a convergence module must close all existing
connections, delete any ESIs it created, and unbind from all PPAs. If all
connections are not closed or if PPA bindings still exist, the CMM
unregisters only the convergence module’s connection routine. The CMM
will continue to call the convergence module with incoming data and
exception notifications. Once the convergence module is unregistered, the
CMM does not call any of its routines.

RETURN VALUES

If the convergence module is completely unregistered and the CMM will
make no more calls to its routines, the atm_cmm_unregister_cvg routine
returns ATM_CAUSE_GOOD. If there are still connections associated with the
convergence module, it returns ATM_CAUSE_BUSY. This means the module’s
xxx_connect routine is unregistered, but the CMM will continue to
deliver data and exception notifications. Once the convergence module
unregisters, the CMM will not accept any more connection requests from
the module until it reregisters. The convergence module must repeat the

CMM Routines A–107

atm_cmm_unregister_cvg

unregister call until the routine returns ATM_CAUSE_GOOD. It might take
up to several seconds for all connections to clear completely.

RELATED INFORMATION

atm_cmm_register_cvg

A–108 CMM Routines

atm_cmm_vc_control

NAME

atm_cmm_vc_control – Modifies VC parameters

SYNOPSIS
atm_err_t atm_cmm_vc_control(

atm_cvg_handle_t cm,
atm_vc_t *vc,
int operation,
void *arg);

ARGUMENTS

cm Specifies the value returned to the convergence
module by the registration function call. This
uniquely identifies the convergence module making
the request.

vc Specifies the VC to which the function call applies.

operation Specifies the type of operation to be performed on
the VC.

arg Specifies further data for the operations. The type
and use of this argument depend on the type of
operation being performed. The following are valid
operations:

CMM Routines A–109

atm_cmm_vc_control

Operation Meaning

ATM_VCC_AGING Changes the circuit-aging algorithm applied to the VC. For this
operation, arg is a pointer to an unsigned int whose value is the new
aging parameter (see Table 6–1 for a list of values).

ATM_VCC_QPARAM Sets the queuing parameters for queuing raw cells in the driver. The
argument to this operation is an atm_queue_param_p that points to a
properly set atm_queue_param structure. This structure is referenced
only within the context of the function call and may be a local variable
in the calling function.

DESCRIPTION

The atm_cmm_vc_control routine is a convergence module interface that
enables convergence modules to modify virtual circuit parameters, either to
make the transfer of data more efficient or to control the VC aging. The
QOS and circuit bandwidth parameters cannot be modified.

RETURN VALUES

Upon successful completion, the atm_cmm_vc_control routine returns
ATM_CAUSE_GOOD; otherwise, it returns an ATM error number.

RELATED INFORMATION

Section 3.4.2 for information on the atm_queue_param structure

Section 6.3 for information on connection aging

A–110 CMM Routines

atm_cmm_vc_get

NAME

atm_cmm_vc_get – Requests status information from a VC

SYNOPSIS
atm_vc_p atm_cmm_vc_get(

atm_drv_handle_t driver,
unsigned int vpi,
unsigned int vci);

ARGUMENTS

driver Specifies the device driver handle for the PPA to which the VC
being queried is attached.

vpi Specifies the VPI values for the VC.

vci Specifies the VCI values for the VC.

DESCRIPTION

The atm_cmm_vc_get routine is a signaling module interface. When a
signaling module needs to access status information about a VC that is
currently in service, based on the VPI and VCI, the module calls this
routine.

RETURN VALUES

If the VC is currently configured on the system, the atm_cmm_vc_get
routine returns a pointer to that atm_vc structure; otherwise, it returns
NULL.

RELATED INFORMATION

atm_cmm_status_done, atm_cmm_vc_stats

CMM Routines A–111

atm_cmm_vc_stats

NAME

atm_cmm_vc_stats – Retrieves current VC information from the CMM

SYNOPSIS
atm_error_t atm_cmm_vc_stats(

atm_vc_p vc,
atm_vc_stats_p stats);

ARGUMENTS

vc Specifies a pointer to the VC for which statistics are to be
reported.

stats Specifies a pointer to an atm_vc_stats structure allocated by
the caller into which the CMM can copy the statistics.

DESCRIPTION

The atm_cmm_vc_stats routine is a convergence module interface that
retrieves VC statistics from the CMM. The CMM returns the information
in the atm_vc_stats structure.

The CMM keeps track of VC usage on a per-VC basis. This is done as part
of the CMM’s VC management and cannot be disabled.

No entity can reset the VC counters. If a convergence module needs to
collect statistics between two events, it must query the statistics at the first
event and the second event and subtract the first event’s statistics from the
second event’s statistics.

RETURN VALUES

Upon successful completion, the atm_cmm_vc_stats routine returns
ATM_CAUSE_GOOD; otherwise, it returns an ATM error.

RELATED INFORMATION

atm_cmm_vc_control, atm_cmm_vc_get

A–112 CMM Routines

xxx_add

NAME

xxx_add – Requests a signaling module to add an endpoint to a
point-to-multipoint connection

SYNOPSIS
atm_error_t xxx_add(

atm_addr_p addr);

ARGUMENTS

addr Specifies a pointer to the atm_addr structure for the endpoint
to be added.

DESCRIPTION

The xxx_add routine is a routine declared within a signaling module that
the CMM calls when it needs to add an endpoint to a point-to-multipoint
connection. The name of the routine (xxx_add) can be any valid C language
function name. You pass the routine to the CMM by reference only.

The signaling module can obtain the information about the root’s VC by
following the addr->vc pointer. This routine is nonblocking. The CMM is
notified when the connection has been added.

RETURN VALUES

The xxx_add routine must return ATM_CAUSE_GOOD if the signaling
module is proceeding with the endpoint addition or an ATM error number
if the call cannot proceed.

RELATED INFORMATION

atm_cmm_register_sig

CMM Routines A–113

xxx_connect

NAME

xxx_connect – Notifies a convergence module of a connection request

SYNOPSIS
atm_error_t xxx_connect(

void *bind_handle,
atm_addr_p addr,
atm_bind_handle_t myaddr,
atm_vc_p vc,
atm_uni_call_ie_p *reply,
atm_vc_services_p requested,
atm_vc_services_p *avail);

ARGUMENTS

bind_handle Specifies the PPA binding being used. It is the
value passed to the CMM when the convergence
module requested a PPA bind on which the call is
being processed.

addr Specifies a pointer to the atm_addr structure,
indicating the endpoint that is initiating the
connection.

myaddr Specifies the bind identifier for the bind point on
which the call arrived. This is the value the CMM
returns when the convergence module calls
atm_cmm_ppa_bind.

vc Specifies a pointer to the VC of the new connection.

reply Specifies a pointer to an atm_uni_call_ie
structure in which the convergence module writes
the address of an information elements array to be
used in composing the reply to the calling party. If
no reply is necessary, the convergence module can
ignore this argument.

requested Specifies a pointer to an atm_vc_services
structure that contains information to pass to the

A–114 CMM Routines

xxx_connect

convergence module about the network resources
required to establish the new connection.

avail Specifies a pointer to an atm_vc_services
structure that contains information about the
network resources available to be committed to the
new connection.

If the avail argument is NULL, the convergence
module cannot negotiate service structure
parameters; it can only accept or reject the call. If
the avail argument is not NULL, the convergence
module must evaluate the structure’s contents to
obtain more information about the incoming call.

For non-CBR circuits, the avail argument is the
same as the requested argument. The
convergence module can change negotiable
parameters by modifying the appropriate fields in
the atm_vc_services structure referenced by
avail. In UNI 3.1, no circuit parameters can be
modified. Forward and backward MTU sizes may be
negotiable through the atm_uni_call_ie
structure. The convergence module can pace
outbound traffic on the new UBR connection by
setting avail to the address of an
atm_vc_services structure that has the
ATM_SERVICES_PACING flag set and the peak bit
rates set to the rates you want.

For CBR circuits, the value of avail depends on
whether or not the CMM was able to allocate the
bandwidth resources necessary to establish a new
CBR connection.

If avail is NULL, the CMM was not able to
allocate bandwidth resources. The convergence
module can use the information provided in the
requested argument to determine the resources
needed to establish the connection, and can apply
reserved resources to the call. You do this by setting
avail to the address of an atm_vc_services_t
structure that has been backed by the appropriate

CMM Routines A–115

xxx_connect

resources. The supplied reserved resource bit rates
need not match the requested resource bit rates
exactly. The forward (local system transmit) rate
can be less than or equal to the requested rate (so as
not to exceed the contract already established with
the network). The backward (local system receive)
rate can be greater than or equal to the requested
rate (to ensure that the local system can receive at
least as much as the sender contracted to send).

The convergence module can impose exact bit-rate
matching, if necessary. The convergence module can
change negotiable parameters by changing avail,
as for non-CBR circuits. If the supplied reserved
resource cannot be applied to the call, the
convergence module receives an ATM_CME_EP_DEAD
exception notification; the VC cause information
indicates the reason for the failure.

For CBR circuits, if the avail argument is not
NULL, the CMM was able to allocate the
bandwidth resources necessary to establish a CBR
connection. The convergence module can change
negotiable parameters, as with non-CBR circuits.
The convergence module also has the option of
replacing the CMM-allocated resources with
reserved resources held by the convergence module
by setting avail to the address of the reserved
resources services structure. Restrictions on bit-rate
matching still apply.

DESCRIPTION

The xxx_connect routine is a function declared within a convergence
module that the CMM calls to notify the convergence module of a
connection request. The CMM calls the convergence module that is bound
to the selector specified in the called party address.

The name of the routine (xxx_connect) can be any valid C language
function name. The routine is passed to the CMM by reference only. Only
one convergence module can accept a connection. The called convergence
module then examines all the connection data (the information in the

A–116 CMM Routines

xxx_connect

atm_addr structure as well as any IEs or other signaling information
passed in) to determine if it is willing to accept the call.

If the convergence module accepts the call, the CMM and signaling module
proceed with call setup. The VC is not active at this point. The connection
and VC is owned by the accepting convergence module until the connection
is destroyed; the VC’s ownership cannot be changed. The convergence
module VC is notified of all incoming data on the VC and exceptions on the
VC. Also, the convergence module is the only module that can transmit
data on the VC.

You use this routine for both point-to-point and point-to-multipoint
connections.

Connections are not shared between convergence modules at the bind
point. If convergence modules must share connections, one module must
own the connection and coordinate access to the connection with another
module. Alternatively, modules could be layered on top of a multiplexor
that assumes ownership of the connection.

If the convergence module rejects the call, the CMM and signaling module
release the VC and notify the calling party that the call was rejected. The
CMM never accepts a call without the explicit consent of a convergence
module.

NOTES

PVCs created by the atmconfig utility must have a convergence module
specified since it is not possible for convergence modules to determine if
they should accept a PVC call.

When the atmconfig utility creates a new PVC, the convergence module
to which it belongs receives the connection notification. For PVCs, the
myaddr argument points to the PVC PPA, the vc argument references the
new atm_vc structure, and the requested argument references the new
PVCs circuit parameters. The addr, reply, and avail arguments are
NULL. Convergence modules cannot change or reject PVC circuit
parameters; the system does not create the PVC unless it can provide the
requested level of service as specified by the creator of the PVC.

When a convergence module accepts a connection, it can assume that the
connection exists and that it will receive notifications if the connection is

CMM Routines A–117

xxx_connect

destroyed. It is free to use its private structure members in the atm_vc
structure referenced in the atm_addr structure.

When a connection is accepted, it is not yet ready to carry data. The
convergence module must not attempt to transmit data until it is notified
that the connection is active. However, it should be ready to receive data
since data can arrive ahead of the activation notification.

EXAMPLE

See Section B.3 for a code example of the xxx_connect routine. In the
example, new_connect is the name of the routine.

RETURN VALUES

If the convergence module accepts the connection, it should return
ATM_CAUSE_GOOD. If the convergence module cannot immediately accept
the connection (for example, if negotiation is needed with upper-level
protocols or a user-level process), it must not block; it should return
ATM_CAUSE_DEFER. Returning ATM_CAUSE_DEFER causes no immediate
action to be taken on the connection since the ATM protocols allow some
time for the called party to reply. When the convergence module makes a
determination about the disposition of the call, it must communicate this to
the CMM by using either the atm_cmm_accept or atm_cmm_reject calls.
If the convergence module rejects the call, it must return an ATM error
number other than ATM_CAUSE_GOOD or ATM_CAUSE_DEFER.

RELATED INFORMATION

atm_cmm_accept, atm_cmm_ppa_bind, atm_cmm_reject

A–118 CMM Routines

xxx_drop

NAME

xxx_drop – Requests a signaling module to drop an endpoint in a
point-to-multipoint connection

SYNOPSIS
atm_error_t xxx_drop(

atm_addr_p addr);

ARGUMENTS

addr Specifies a pointer to the atm_addr structure for the endpoint
to be dropped.

DESCRIPTION

The xxx_drop routine is a function declared within a signaling module
that the CMM calls when it needs to drop an endpoint on a
point-to-multipoint connection. The name of the routine (xxx_drop) can be
any valid C language function name. The routine is passed to the CMM by
reference only.

The signaling module can obtain the information about the root’s VC by
following the addr->vc pointer. This function call is nonblocking. The
CMM is notified when the connection has been dropped.

RETURN VALUES

The xxx_drop routine must return ATM_CAUSE_GOOD if the signaling
module is proceeding with the endpoint drop or an ATM error number if
the call cannot proceed.

RELATED INFORMATION

atm_cmm_register_sig

CMM Routines A–119

xxx_endpt_receive

NAME

xxx_endpt_receive – Passes incoming data to a convergence module for
each endpoint

SYNOPSIS
void xxx_endpt_receive(

atm_vc_t *vc,
struct mbuf *mbp,
int length,
struct mbuf *trailer,
char pti,
char gfc,
atm_addr_p addr);

ARGUMENTS

vc Specifies a pointer to the atm_vc structure on which the data
arrived. The module being called already owns the VC, so this
is used as a handle for the module to identify on which (of
many) VCs the data arrived. The convergence module may use
its two private structure members in the atm_vc structure to
place local information necessary for managing the connection.

mbp Specifies a pointer to a list of mbufs that contain the data
received. A unique mbuf chain is provided for each endpoint.
All chains might point a single physical copy of the data.

length Specifies a value that indicates the exact number of bytes
received. For cooked packets, this is the size of the received
packet or protocol data unit (PDU) plus the padding and AAL
trailer. It is always a multiple of 48. For raw data, this value
is a multiple of the number of cells received. It is a multiple of
53 bytes (time-stamp bytes are not included in the count).

trailer Specifies a pointer to the mbuf that contains the last byte of
the received data. This permits the convergence module to
easily and quickly locate the AAL trailer for obtaining the
PDU length and other information (such as user-to-user
indications). When receiving raw cells, this argument points to
the mbuf that contains the last cell in the chain.

A–120 CMM Routines

xxx_endpt_receive

pti Specifies the accumulated PTI information of a received
cooked packet. The availability of this information is
dependent on the driver’s ability to keep track of all the PTI
fields in all the cells that compose a cooked packet. The
convergence module can determine if this argument is valid by
examining the capabilities structure member in the device
driver’s atm_drv_params structure. This argument has no
meaning for raw data.

gfc Specifies the accumulated GFC information from the cells that
make up a cooked packet. The availability of this information
is dependent on the driver’s ability to keep track of all the
GFC fields in all the cells that compose a cooked packet. The
convergence module can determine if this argument is valid by
examining the capabilities structure member in the device
driver’s atm_drv_params structure. This argument has no
meaning for raw data.

addr Specifies the endpoint on the specified VC for which this data
is being delivered. The convergence module might use its two
private structure members in the atm_addr structure to hold
local information about the endpoint.

DESCRIPTION

The xxx_endpt_receive routine is a function declared within a
convergence module that the CMM calls to pass data to a convergence
module. The name of the routine (xxx_endpt_receive) can be any valid
C language function name. You pass the routine to the CMM by reference
only.

When designing receive routines, convergence module writers should
remember that all data is delivered to the convergence module in an
interrupt context with the processor running at the splimp level. The
convergence module must implement a queuing policy appropriate for the
convergence module’s protocol. In general, convergence modules for
protocols that can tolerate unspecified latency should queue the incoming
data and return immediately to the CMM. Convergence modules for
protocols that require bounded latencies (such as video or voice protocols)

CMM Routines A–121

xxx_endpt_receive

might need to do some processing before queuing the data and returning to
the CMM. In either case, the receive routine must not block.

RETURN VALUES

None

RELATED INFORMATION

atm_cmm_register_cvg, atm_cmm_receive

Section 2.4 for a description of ATM data formats

Chapter 3 and Chapter 5 for information on device drivers and convergence
modules, respectively

A–122 CMM Routines

xxx_enquery

NAME

xxx_enquery – Requests a signaling module to obtain status for an
endpoint

SYNOPSIS
atm_error_t xxx_enquery(

atm_addr_p addr);

ARGUMENTS

addr Specifies a pointer to the atm_addr structure for the endpoint
to be queried.

DESCRIPTION

The xxx_enquery routine is a function declared within a signaling module
that the CMM calls when it needs status for an endpoint. The name of the
routine (xxx_enquery) can be any valid C language function name. You
pass the routine to the CMM by reference only.

This routine is nonblocking. When the query response arrives, the
signaling module uses a function call to notify the CMM.

RETURN VALUES

The xxx_enquery routine must return ATM_CAUSE_GOOD if the signaling
module is proceeding with the enquiry or an ATM error number if the call
cannot proceed.

RELATED INFORMATION

atm_cmm_register_sig

CMM Routines A–123

xxx_except

NAME

xxx_except – Reports exceptions, errors, and system configuration
changes to convergence and signaling modules

SYNOPSIS
int xxx_except(

void *handle,
unsigned int exception,
void *arg);

ARGUMENTS

handle Specifies an identifier that the module passed to the
CMM when the module registered. For convergence
and signaling modules, this is the internal handle
the module registers with the CMM. This value is
meaningful only to the called module.

exception Specifies a value that identifies the type of
exception that occurred. The following table
contains a list of valid values:

Exception Meaning

ATM_CME_BIND_DEL Informs the convergence module that one of its bindings is being
destroyed. The usual reason for this is that a PPA is being
destroyed either because its address is no longer registered with
the network or because the interface to the network has gone
down. The argument to this exception is the value returned
from the atm_cmm_ppa_bind call (atm_bind_handle_t); the
convergence module uses this value to reference the bind point.
The return value from this call is ignored.

ATM_CME_CALL_FAILED Indicates that a call to an endpoint has failed. The argument is
an atm_addr_p that specifies the endpoint to which the CMM
was trying to connect. The cause information in the atm_addr
structure is set to indicate the reason for the call failure, which
can be the failure of both a point-to-point call and the failure of
adding a leaf to a point-to-multipoint call.
The convergence module must destroy all references to the
endpoint when processing this notification. The convergence
module receives one additional notification to destroy all its
references to the endpoint’s VC if this was the only endpoint
associated with a VC.

A–124 CMM Routines

xxx_except

Exception Meaning

ATM_CME_DELPVC Informs the convergence module that a PVC has been deleted
from the system. Convergence modules receive one of these
exceptions for each PVC that is deleted, even PVCs that they
delete. The argument for this command is an atm_vc_p to the
PVC being deleted. When this notification is received,
convergence modules must destroy all references to the PVC
and must not send any more data on it.

ATM_CME_DVR_DOWN Informs the convergence module that a driver is down, and any
unused reserved resource or outstanding reservation request is
revoked. The convergence module should remove knowledge of
the reserved resource or outstanding reservation request
services structure indicated by the atm_vc_services_p
argument. The convergence module should not free the
atm_vc_services structure; the CMM does this upon return
from the exception notification. If the convergence module
attempts to free the structure, ATM_CAUSE_BUSY is returned.

ATM_CME_ENQUERY_DONE Informs the convergence module that a requested connection
state enquiry function on an endpoint has completed. The
argument is an atm_addr_p for the endpoint that was queried.
The state information in the atm_addr structure indicates if
the enquiry succeeded and the current endpoint state.

ATM_CME_EP_ACTIVE Informs the convergence module that an endpoint is now active
and available for transferring data. This notification is usually
the result of receiving a connection complete from the signaling
module. When the convergence module requests a new
connection or receives notification of a new connection, the
connection is not yet ready to carry data. Only after the
connection setup is complete (requiring several message
exchanges between connection endpoints) will it be able to carry
data.
This command tells the convergence module that the connection
is complete and ready to carry data. Use this notification for
both point-to-point and point-to-multipoint notifications. The
command argument is an atm_addr_p to the atm_addr
structure of the endpoint that is now active.

CMM Routines A–125

xxx_except

Exception Meaning

ATM_CME_EP_DEAD Informs the convergence module that the connection to an
endpoint has been destroyed and that all resources allocated for
the endpoint should be freed. This is the only notification the
convergence module will receive. After receiving this
notification, it is illegal for the convergence module to reference
the endpoint.
The command argument is an atm_addr_p to the atm_addr
structure of the endpoint that is down. Use this notification for
both point-to-point and point-to-multipoint connections. The
convergence module receives exactly one of these notifications
for each endpoint associated with a VC (that is, one notification
for point-to-point VCs and one notification for each endpoint of
a point-to-multipoint connection).

ATM_CME_ESI_DEL Informs the convergence module that an ESI it had created has
been removed from the system. The CMM notifies the
convergence module separately to destroy any PPAs created
from the ESI. The argument is the value (arg) that the
convergence module passed in to the atm_cmm_new_esi call.
When this notification is received, convergence modules should
destroy all references to the deleted ESI.

ATM_CME_PPA_ADD Informs the convergence module that a new PPA has been
configured and is available for connections. The argument is a
pointer to the atm_ppa structure for the new PPA. If the
convergence module needs to receive calls on this new PPA it
must perform an atm_cmm_ppa_bind function call for the new
PPA.

ATM_CME_PPA_DEL Informs the convergence module that a PPA has been removed
from the system. The CMM notifies the convergence module
separately to destroy all VCs associated with the PPA. The
argument for this command is a pointer to the atm_ppa
structure for the PPA that is being deleted. When this
notification is received, convergence modules should destroy all
references to the deleted PPA.

ATM_CME_RESV_AVAIL Informs the convergence module that an outstanding request for
a reserved resource has been satisfied. The atm_vc_services
structure indicated by the atm_vc_services_p argument is
now a services structure that is backed by resources, or a
reserved resource. The convergence module must apply this
services structure to an outgoing or incoming call within the
system-specified amount of time to avoid having the resources
revoked by an ATM_CME_RESV_EXPIRE exception notification.

A–126 CMM Routines

xxx_except

Exception Meaning

ATM_CME_RESV_EXPIRE Informs the convergence module that a reserved resource has
not been used in the system-specified amount of time and is
revoked. The convergence module should remove knowledge of
the reserved resource services structure indicated by the
atm_vc_services_p argument. The convergence module
should not free the atm_vc_services structure; the CMM
does this upon return from the exception notification. If the
convergence module attempts to free the structure,
ATM_CAUSE_BUSY is returned.

ATM_CME_RESVREQ_REL Informs the convergence module that an outstanding request
for a reserved resource has been canceled. This exception is
generated by a change in configuration parameters that causes
the contents of the atm_vc_services structure (which were
valid at the time of the request) to no longer be valid. For
example, this event could occur if the system administrator
reduced the per-VC bandwidth limit to values below the rates
specified in the reservation request. The convergence module
should remove knowledge of the reservation request services
structure indicated by the atm_vc_services_p argument. The
convergence module should not free the services structure; the
CMM does this upon return from the exception notification. If
the convergence module attempts to free the structure,
ATM_CAUSE_BUSY is returned.

ATM_CME_START_VC Informs the convergence module that a VC on which flow was
previously controlled may now resume transmission of data.
The argument to this command is a pointer to the atm_vc
structure of the VC that can resume data transmission.

ATM_CME_VC_OLD Informs a convergence module that a VC has aged (been
inactive for a long period of time) and that the CMM is about to
delete it. In this situation, the convergence module is given the
chance to stop the CMM from destroying the VC. When the VC
is about to be destroyed because of inactivity, this notification is
made to the convergence module.
The argument is an atm_vc_p for the VC that has aged. The
convergence module may return either ATM_AGER_OK to allow
the CMM to delete the VC or ATM_AGER_RESET to restart the
aging timer and not to delete the VC.

ATM_SIGE_ACCEPT Specifies that an incoming call whose disposition was previously
deferred has been accepted. The signaling modules should take
appropriate action to accept the call and activate the
connection. The argument to this exception is an atm_addr_p
that references the call that is being accepted.

CMM Routines A–127

xxx_except

Exception Meaning

ATM_SIGE_DEL_ESI Informs the signaling module of a user- or convergence
module-initiated deletion of an ESI (or similar) part of an
address. The signaling module then performs the deletion of
every PPA associated with the ESI through protocol exchanges
with the switch. As each PPA is deleted, the signaling module
uses the atm_cmm_del_ppa function call to notify the CMM.
The arguments and returns are the same as for the
ATM_SIGE_NEW_ESI exception.

ATM_SIGE_DEL_PPA Informs the signaling module of a user-initiated deletion of a
PPA. The signaling module then performs the deletion of the
PPA through protocol exchanges with the switch. The argument
for this exception is a pointer to the atm_ppa structure of the
PPA being deleted. If the signaling module returns
ATM_CAUSE_GOOD, the CMM considers the PPA deleted (even
though the protocol exchange with the switch may not be
complete). It then initiates the deletion of all VCs and bind
points associated with the PPA.

ATM_SIGE_NEW_ESI Informs the signaling module that a user- or convergence
module-initiated creation of a new ESI (or similar address part)
has been configured on the system. The argument for this
exception is a pointer to an atm_esi structure for the new ESI.
When a signaling module receives this exception, it should
initiate creation of new PPAs based on the new ESI, notifying
the CMM of each new PPA created. This exception should
return ATM_CAUSE_GOOD if the new ESI is accepted by the
signaling module. The signaling module does not need to create
the new PPAs immediately (and probably cannot), so the CMM
will not expect to have any new PPAs on return from this call.
When a new driver is brought on line, the CMM notifies the
signaling module of every ESI that the driver reports from its
ROM. This enables the system to automatically configure
addresses based on adapter ROM values (if any). Note that
even though signaling modules have access to device driver’s
ROM ESI addresses from the driver’s atm_drv_params
structure, do not use those values. Use only an ESI set with
this exception value in the creation of new PPAs.

ATM_SIGE_REJECT Specifies that an incoming call whose disposition was previously
deferred has been rejected. The signaling modules should take
appropriate action to reject the call. The argument to this
exception is an atm_addr_p that references the call that is
being rejected.

arg Specifies an additional argument whose
interpretation depends on the exception value.

A–128 CMM Routines

xxx_except

DESCRIPTION

The xxx_except routine is a function declared within a convergence or
signaling module that the CMM calls to report exceptions, errors, and
system configuration changes on a VC.

The name of the routine (xxx_except) can be any valid C language
function name. You pass the routine to the CMM by reference only.

Exception notifications have the following characteristics:

• Convergence and signaling modules can expect them at any time.

• They are delivered in an interrupt context.

• Exception processing must not block. If a convergence or signaling
module needs to defer processing an exception notification, it must
arrange for a kernel thread to be run at a later time and to return
immediately to the CMM.

RETURN VALUES

If a command has no explicit return value specified, it always returns
ATM_CAUSE_GOOD; otherwise, it returns one of the specified values.

RELATED INFORMATION

atm_cmm_register_cvg, atm_cmm_register_sig

Section 6.3 for information on connection aging

Chapter 9 for more information on flow control in the ATM subsystem

CMM Routines A–129

xxx_manage

NAME

xxx_manage – Instructs a device driver to perform some driver
management functions

SYNOPSIS
atm_error_t xxx_manage(

int unit,
unsigned int command,
void *arg);

ARGUMENTS

unit Specifies the unit number to which the command applies.

command Specifies the type of management function to perform. The
following management functions are defined:

Function Definition

ATM_DRVMGMT_ADDVC Instructs the driver to create a new VC. The arg argument is a
pointer to the atm_vc structure for the new VC. This call cannot
block. The driver allocates resources for the VC, but does not make
the VC active. The driver uses the queue value to assign the VC to
the indicated queue (the driver should make no queue assignments
other than those indicated by the CMM). The value of the queue
member is in the range of 0<= queue <= maxqueue, where
maxqueue is the number of queues the driver told the CMM it
supports.
If the driver has insufficient resources to meet the QOS specified
for the VC, it must return a value other than ATM_CAUSE_GOOD.
Note that the VPI and VCI in the atm_vc_services structure are
not necessarily valid at this time. They become valid when the VC
is enabled. This call gives the driver a chance to allocate resources
for a VC before the VC is set up on the network. The connection
operation cannot proceed unless all the local resources needed for
the new VC are allocated.

ATM_DRVMGMT_CLEARQ Clears the QOS parameters from a driver queue. The CMM issues
this command after the last VC has been detached from a queue to
indicate to the driver that the queue no longer requires servicing.

ATM_DRVMGMT_DELVC Instructs the driver to reclaim all resources associated with a VC
and to destroy any references to the VC. This call cannot block. The
arg argument is a pointer to the atm_vc structure for the VC to be
deleted. The driver must free all local resources for the VC and set
vc->drv_pp1 and vc->drvpp2 to 0 prior to returning.

A–130 CMM Routines

xxx_manage

Function Definition

ATM_DRVMGMT_DOWN Instructs the interface to shut down and to stop exchanging data
with the switch. This call cannot block. This call need only start the
driver shutdown procedure. When the shutdown is complete, the
driver must notify the CMM by using the CMM driver error
interface. The CMM takes care of VC deallocation; the driver can
expect to be called to deallocate local resources for each open VC.
Do not use the arg argument.

ATM_DRVMGMT_ENBVC Instructs the driver to enable the VC for sending and receiving
data. This call cannot block. The arg argument is a pointer to the
atm_vc structure, which identifies the VPI and VCI values to be
activated. This call is made only after a VC is set up on the
network and becomes active and only after the
ATM_DRVMGMT_ADDVC command, never before it.

ATM_DRVMGMT_FC Enables the types of flow control that the driver uses. The following
values are supported: ATM_FLOW_NONE (disables all flow control);
ATM_FLOW_STD (enables ATM Forum standard flow control); and
ATM_FLOW_VENDOR (enables vendor-specific flow control).
ATM_FLOW_NONE is the default state for the driver. Flow control is
enabled or disabled globally rather than on a per-VC basis.

ATM_DRVMGMT_MAXVCI Specifies the maximum VCI value for any VC on the driver. The
arg argument is the maximum VCI value (0<= VCI <= maxvci).
This value must be less than the max_vci member of the
atm_drv_params structure. The CMM uses this when it detects
that the connect switch supports fewer VCIs than the driver.

ATM_DRVMGMT_MAXVPI Specifies the maximum VPI value for any VC on the driver. The
arg argument is the maximum VPI value (0<= VPI <= maxvpi).
This value must be less than the max_vpi member of the
atm_drv_params structure. The CMM uses this when it detects
that the connect switch supports fewer VPIs than the driver.

ATM_DRVMGMT_QUERY Queries the driver for its current available resources. This call
cannot block. The arg argument is a pointer to an
atm_drv_params structure in which to write the information. The
driver does not write the num_id member or the ids array. The
values written should be the maximum allowable values for each
resource minus the resources currently in use. The CMM uses this
call to synchronize its current driver state information with the
driver’s internal state. The driver’s internal state is always
assumed to be correct.

ATM_DRVMGMT_RAWPARAM Controls queuing of raw cells (not used for cooked connections).
This command sets parameters that the driver uses to queue
incoming raw cells into one mbuf chain rather than passing each
cell up to the CMM. This reduces the cell-processing overhead when
receiving raw cells. The argument is a pointer to the
atm_queue_param structure.

CMM Routines A–131

xxx_manage

Function Definition

ATM_DRVMGMT_SETQ Specifies QOS parameters of a driver’s transmit queue. Only
drivers that have informed the CMM that they implement multiple
queues can expect this command. The CMM issues this command
before any VCs are attached to a specific queue. The argument is a
pointer to an atm_vc_services structure that holds the queue
parameters. The CMM can issue this command at any time to
change the parameters of a queue.

ATM_DRVMGMT_UP Instructs the interface to initialize and come on line. This call
cannot block. This call need only start a driver initialization
function. When the initialization is complete and the driver is ready
to create VCs, it must use the atm_cmm_error routine to notify the
CMM.

arg Specifies any data needed to perform the function.

DESCRIPTION

The xxx_manage routine is a function declared within a device driver
module that the CMM calls when it needs to perform some driver
management task. The name of the routine (xxx_manage) can be any valid
C language function name. You pass the routine to the CMM by reference
only.

RETURN VALUES

If the xxx_manage routine is completed successfully, the driver returns
ATM_CAUSE_GOOD; otherwise, the driver returns an ATM error number
indicating the cause of the failure.

RELATED INFORMATION

atm_cmm_error, atm_cmm_register_dd

A–132 CMM Routines

xxx_mmi

NAME

xxx_mmi – Connects a convergence, device driver, or signaling module to
the MMI

SYNOPSIS
int xxx_mmi(

void *handle,
unsigned int command,
void *arg,
int *retval,
struct ucred *cred);

ARGUMENTS

handle Specifies an identifier that the module passed to the CMM
when the module registered. For device drivers, this is a unit
number. For convergence and signaling modules, this is the
internal handle that the module provides to the CMM. This
value is meaningful only to the called module.

command Specifies what action the MMI routine is to perform. The
format of the command is the same as that of ATM ioctl
commands as defined in the /usr/include/sys/atm.h file.
Commands for non-CMM ATM modules are defined using the
IOW (I/O write) or equivalent macros. All commands have a
type of “g” and a value of between 128 and 255 inclusive.

arg Specifies a command-specific argument that is interpreted by
the management function based on the value of cmd. The
format of the data referenced by this argument can be
anything that is valid for ioctl calls.

retval Specifies a pointer to an integer into which the MMI routine
writes a return value when returning ESUCCESS to the CMM.
This argument is optional.

cred Specifies the credentials or access information passed by the
system to the CMM in the ioctl call.

CMM Routines A–133

xxx_mmi

DESCRIPTION

The xxx_mmi routine is a function declared within a convergence, device
driver, or signaling module that the CMM calls to pass management and
configuration requests from applications through the CMM and the MMI
interface.

The name of the routine (xxx_mmi) can be any valid C language function
name. You pass the routine to the CMM by reference only.

The xxx_mmi routine is called from within a system call context with no
external locks held. It has access to the per-process data structures and
user address space of the calling process. If necessary, the xxx_mmi routine
can block as long as it does not hold simple locks while blocking.

If a module does not require any external management or configuration
capabilities, it does not have to register a management function with the
CMM.

This interface follows the standard operating system ioctl call with the
following exceptions:

• The device major and minor number argument is replaced by the
handle argument.

• No user credential information is passed. Only users with root access
can use the management interface.

RETURN VALUES

If the operation completes successfully, the xxx_mmi routine returns
ESUCCESS; otherwise, it returns an error number as defined in
sys/errno.h. In addition, for successful completions modules can use the
retval pointer to pass the return value from the ioctl system call to the
calling program.

RELATED INFORMATION

atm_cmm_register_cvg, atm_cmm_register_dd,
atm_cmm_register_sig

Chapter 7 for information on MMI and ioctl calls

A–134 CMM Routines

xxx_receive

NAME

xxx_receive – Passes incoming data to a convergence module

SYNOPSIS
void xxx_receive(

atm_vc_t *vc,
struct mbuf *mbp,
int length,
struct mbuf *trailer,
char pti,
char gfc);

ARGUMENTS

vc Specifies a pointer to the atm_vc structure on which the data
arrived. The module being called already owns the VC, so this
is used as a handle for the module to identify on which (of
many) VCs the data arrived. The convergence module may use
its two private structure members in the atm_vc structure to
place local information necessary for managing the connection.

mbp Specifies a pointer to a list of mbufs that contain the data
received.

length Specifies a value that indicates the exact number of bytes
received. For cooked packets, this is the size of the received
packet or protocol data unit (PDU) plus the padding and AAL
trailer. It is always a multiple of 48. For raw data, this value
is a multiple of the number of cells received. It is a multiple of
53 bytes (time-stamp bytes are not included in the count).

trailer Specifies a pointer to the mbuf that contains the last byte of
the received data. This permits the convergence module to
easily and quickly locate the AAL trailer for obtaining the
PDU length and other information (such as user-to-user
indications). When receiving raw cells, this argument points to
the mbuf that contains the last cell in the chain.

pti Specifies the accumulated PTI information of a received
cooked packet. The availability of this information is

CMM Routines A–135

xxx_receive

dependent on the driver’s ability to keep track of all the PTI
fields in all the cells that compose a cooked packet. The
convergence module can determine if this argument is valid by
examining the capabilities structure member in the device
driver’s atm_drv_params structure. This argument has no
meaning for raw data.

gfc Specifies the accumulated GFC information from the cells that
make up a cooked packet. The availability of this information
is dependent on the driver’s ability to keep track of all the
GFC fields in all the cells that compose a cooked packet. The
convergence module can determine if this argument is valid by
examining the capabilities structure member in the device
driver’s atm_drv_params structure. This argument has no
meaning for raw data.

DESCRIPTION
The xxx_receive routine is a function declared within a convergence
module that the CMM calls to pass data to a convergence module. The
name of the routine (xxx_receive) can be any valid C language function
name. You pass the routine to the CMM by reference only.

When designing receive routines, convergence module writers should
remember that all data is delivered to the convergence module in an
interrupt context with the processor running at the splimp level. The
convergence module must implement a queuing policy appropriate for the
convergence module’s protocol. In general, convergence modules for
protocols that can tolerate unspecified latency should queue the incoming
data and return immediately to the CMM. Convergence modules for
protocols that require bounded latencies (such as video or voice protocols)
might need to do some processing before queuing the data and returning to
the CMM. In either case, the receive routine must not block.

RETURN VALUES

None

RELATED INFORMATION
atm_cmm_register_cvg, xxx_endpt_receive

A–136 CMM Routines

xxx_receive

Section 2.4 for a description of ATM data formats

Chapter 3 and Chapter 5 for information on device drivers and convergence
modules, respectively

CMM Routines A–137

xxx_release

NAME

xxx_release – Requests a signaling module to tear down a connection

SYNOPSIS
atm_error_t xxx_release(

atm_addr_p addr);

ARGUMENTS

addr Specifies the pointer to the atm_addr structure.

DESCRIPTION

The xxx_release routine is a function declared within a signaling module
that the CMM calls when it needs a connection torn down (a hangup). The
name of the routine (xxx_release) can be any valid C language function
name. You pass the routine to the CMM by reference only.

When the CMM makes the call, the signaling protocol module should
initiate a release of the connection to the specified endpoint. This routine is
nonblocking, and is used only for releasing a point-to-point connection or
the root of a point-to-multipoint connection (when all leaf connections have
been released).

RETURN VALUES

The xxx_release routine must return ATM_CAUSE_GOOD if the circuit
deletion is completed or an ATM error number if the circuit deletion fails.

RELATED INFORMATION

atm_cmm_register_sig

A–138 CMM Routines

xxx_restart

NAME

xxx_restart – Requests a signaling module to send a restart message

SYNOPSIS
atm_error_t xxx_restart(

void *handle,
unsigned int class,
unsigned int vpi,
unsigned int vci);

ARGUMENTS

handle Specifies a unique identifier that the CMM uses to identify the
restart request. This has meaning only to the CMM and
should not be modified by the signaling module.

class Specifies the type of restart that is being performed.
Currently, only restarting of individual VCs or all VCs in a VP
are supported. The caller sets the value of this argument to
ATM_RESTART_VP to restart all VCs on a VP or
ATM_RESTART_VC to restart a specific VC. These are the only
two values permitted for this argument.

vpi Specifies which VC(s) are to be restarted. If class is set to
ATM_RESTART_VP, vpi specifies the VP on which all VCs are
to be restarted; the vci argument is ignored.

vci Specifies which VC(s) are to be restarted. If class is set to
ATM_RESTART_VC, the vpi and vci arguments specify which
VC is to be restarted.

DESCRIPTION

The xxx_restart routine is a function declared within a signaling module
that the CMM calls to request a RESTART message be sent. The name of
the routine (xxx_restart) can be any valid C language function name.
You pass the routine to the CMM by reference only.

CMM Routines A–139

xxx_restart

RETURN VALUES

The xxx_restart routine must return ATM_CAUSE_GOOD if the signaling
module is proceeding with the restart or an ATM error number if the call
cannot proceed.

RELATED INFORMATION

atm_cmm_register_sig, atm_cmm_restart_ack

A–140 CMM Routines

xxx_setup

NAME

xxx_setup – Requests a signaling module to set up a new connection

SYNOPSIS
atm_error_t xxx_setup(

atm_addr_p addr,
unsigned long *refptr);

ARGUMENTS

addr Specifies the pointer to the atm_addr structure. The CMM
will have initialized the atm_addr structure and will have set
up the atm_uni_call_ie structure with parameters that the
protocol convergence modules supplied.

refptr Specifies a unique call reference number for the call. If the
signaling module creates a unique call reference number for
the call, the module must assign this value.

DESCRIPTION

The xxx_setup routine is a function declared within a signaling module
that the CMM calls to request the creation of a new connection (make a
call). The name of the routine (xxx_setup) can be any valid C language
function name. You pass the routine to the CMM by reference only.

When the CMM calls this routine, the signaling protocol module should
initiate a call to the party specified in the atm_addr structure. This
routine is nonblocking, and is used only to set up point-to-point connections
or the first connection in a point-to-multipoint connection.

_______________________ Note _______________________

The CMM uses the value returned in refptr to release a
connection. The signaling module should set this up as soon as
possible, and before a call to atm_cmm_con_release.

CMM Routines A–141

xxx_setup

RETURN VALUES

The xxx_setup routine returns ATM_CAUSE_GOOD if the setup is
proceeding or an ATM error number if the call cannot proceed.

RELATED INFORMATION

atm_cmm_register_sig

A–142 CMM Routines

xxx_xmit

NAME

xxx_xmit – Notifies a device driver that the CMM has data to transmit

SYNOPSIS
atm_error_t xxx_xmit(

int unit,
struct mbuf *data,
long length,
atm_vc_p vc,
unsigned char clp,
unsigned char gfc);

ARGUMENTS

unit Specifies the unit number on which to send the data.

data Specifies the data to be transmitted. This data is passed to the
driver as a chain of mbufs. The driver determines the type of
data being sent by examining vc->vcs->aal.

length Specifies to the driver the total number of bytes in the AAL5
PDU or the total number of bytes being sent. The use of this
information depends on the driver implementation. The CMM
uses this information to gather VC and interface usage
statistics so the driver does not have to keep track of the total
number of bytes transmitted.

vc Specifies the VC on which to send the data.

clp Specifies the CLP value for AAL5 PDUs. When sending raw
cells, the convergence module must place this value in each
cell header along with the gfc argument.

gfc Specifies the GFC bits for congestion control when sending
AAL5 PDUs. When sending raw cells, the convergence module
must place this value in each cell header along with the clp
argument.

CMM Routines A–143

xxx_xmit

DESCRIPTION

The xxx_xmit routine is a function declared within a device driver module
that the CMM calls when it has data to transmit on the interface. The
name of the routine (xxx_xmit) can be any valid C language function
name. You pass the routine to the CMM by reference only.

The xxx_xmit routine cannot block. The driver must either queue the data
or, if the routine queue is full, return an error indication. If the data is
queued, the driver must return ATM_CAUSE_GOOD.

If the data is not queued, the driver must return an ATM error number
that indicates the reason the data was not queued (ATM_CAUSE_QFULL
indicates a queue full condition). In addition, the driver must not discard
the data. The CMM returns the error indication to the convergence module.
It is up to the convergence module to implement a discard or retry policy.

RETURN VALUES

None

RELATED INFORMATION

atm_cmm_register_dd

A–144 CMM Routines

B
Connection Programming Examples

This appendix contains programming code fragments for the following
connection-related tasks:

• Making a call

• Adding more parties to a point-to-multipoint connection

• Processing an incoming call

B.1 Making a Call

Example B–1 shows one way to make a call for point-to-point connections
and to make the first call for a point-to-multipoint connection.

Example B–1: Making a Call Code Fragment

make_call(unsigned char *called_party)
{

register atm_uni_call_ie_p iep, ie;
register union atm_cmi_addr ra;
register atm_vc_services_p vcs;
atm_error_t retval;
int rv = ESUCCESS;
extern atm_cvg_handle_t my_handle;
extern atm_bind_handle_t my_bind;

/* Get memory for setup IEs */
iep = ie = atm_cmm_alloc_ie(3);
if(ie == NULL)
{

rv = ENOMEM;
goto bad;

}

/* Get memory for services structure */
vcs = atm_cmm_alloc_services();
if(vcs == NULL)
{

atm_cmm_free_ie(iep);
rv = ENOMEM;
goto bad;

}

Connection Programming Examples B–1

Example B–1: Making a Call Code Fragment (cont.)

/* Get the storage for the endpoint address */
ra.addr = atm_cmm_alloc_addr();
if(ra.addr == NULL)
{

atm_cmm_free_ie(iep);
atm_cmm_free_services(vcs);
rv = ENOMEM;
goto bad;

}

/* Set cell rate information for ABR traffic.
* Cell rates - cells/sec. 1 cell = 53 bytes.
*/
vcs->fpeakcr[ATM_CLP_1] = 0x800;
vcs->bpeakcr[ATM_CLP_1] = 0x800;

vcs->valid_rates = ATM_VCRV_FPEAK1 |
ATM_VCRV_BPEAK1;

/* Best effort service class and enable tagging */
vcs->flags = ATM_SERVICES_BEI;

/* Set the Qos */
vcs->fqos = ATM_QOS_CLASSA;
vcs->bqos = ATM_QOS_CLASSA;

/* Set the MTU in the services structure */
vcs->fmtu = 1500;
vcs->bmtu = 1500;

/* Set the BB bearer class in the services structure */
vcs->bearer_class = ATM_BBEARER_BCOB_X;

/* Fill out the AAL 5 IE */
ie->ie_type = ATM_IET_AAL5;
ATM_IE_SETVAL(ie->ie.aal_params.aal5.fsdu,1500);
ATM_IE_SETVAL(ie->ie.aal_params.aal5.bsdu,1500); 1
ATM_IE_SETVAL(ie->ie.aal_params.aal5.mode,

ATM_AAL_MESG_MODE);
ATM_IE_SETVAL(ie->ie.aal_params.aal5.sscs,

ATM_AAL_SSCS_NULL);

/* Fill out the BLLI IE */
ie++;
ie->last = 1;
ie->ie_type = ATM_IET_BBLOW;

B–2 Connection Programming Examples

Example B–1: Making a Call Code Fragment (cont.)

ATM_IE_SETVAL(ie->ie.bb_low_layer.layer2proto,
ATM_BLLI_UIL2_LAN_LLC_8022);

bcopy(called_party,ra.addr->address,ATMADDR_LEN);
ra.addr->ton = 0;
ra.addr->anpi = 2;

if((retval = atm_cmm_connect(my_handle,ATM_CT_PTP, 2
my_bind,ra,iep,ATM_AGE_FOREVER,vcs)) !=
ATM_CAUSE_GOOD)

{
atm_cmm_free_ie(iep);
atm_cmm_free_services(vcs);
atm_cmm_free_addr(ra.addr);
ATM_FREE(ivc);
rv = EIO;
goto bad;

}

/* The VC is valid if the call is proceeding! */
ra.addr->vc->conv_pp1 =
ra.addr->conv_p1 =
ra.addr->conv_p2 =

return rv;
}

1 For point-to-multipoint connections, set this parameter to zero (0).
2 For point-to-multipoint connections, use the ATM_CT_PTM argument in

place of the ATM_CT_PTP argument.

B.2 Adding More Parties to a Point-to-Multipoint
Connection

Example B–2 shows one way to add more parties to the VC associated with
the first call in a point-to-multipoint connection.

Example B–2: Adding Parties to a Point-to-Multipoint Connection Code
Fragment

add_leaf(atm_vc_p vc, unsigned char *new_leaf)
{

Connection Programming Examples B–3

Example B–2: Adding Parties to a Point-to-Multipoint Connection Code
Fragment (cont.)

register atm_uni_call_ie_p iep, ie;
register struct atm_addr_p leaf;
atm_error_t retval;
int rv = ESUCCESS;
extern atm_cvg_handle_t my_handle;
extern atm_bind_handle_t my_bind;

/* Get memory for setup IEs */
iep = ie = atm_cmm_alloc_ie(3);
if(ie == NULL)
{

rv = ENOMEM;
goto bad;

}

/* Get the storage for the endpoint address */
leaf = atm_cmm_alloc_addr();
if(leaf == NULL)
{

atm_cmm_free_ie(iep);
atm_cmm_free_services(vcs);
rv = ENOMEM;
goto bad;

}

/* Fill out the AAL 5 IE */
ie->ie_type = ATM_IET_AAL5;
ATM_IE_SETVAL(ie->ie.aal_params.aal5.fsdu,1500);
ATM_IE_SETVAL(ie->ie.aal_params.aal5.bsdu,1500); 1
ATM_IE_SETVAL(ie->ie.aal_params.aal5.mode,

ATM_AAL_MESG_MODE);
ATM_IE_SETVAL(ie->ie.aal_params.aal5.sscs,

ATM_AAL_SSCS_NULL);

/* Fill out the BLLI IE */
ie++;
ie->last = 1;
ie->ie_type = ATM_IET_BBLOW;
ATM_IE_SETVAL(ie->ie.bb_low_layer.layer2proto,

ATM_BLLI_UIL2_LAN_LLC_8022);

bcopy(new_leaf,leaf->address,ATMADDR_LEN);
leaf->ton = 0;
leaf->anpi = 2;

B–4 Connection Programming Examples

Example B–2: Adding Parties to a Point-to-Multipoint Connection Code
Fragment (cont.)

if((retval = atm_cmm_add(my_handle,leaf,ie,vc)) !=
ATM_CAUSE_GOOD)

{
atm_cmm_free_ie(iep);
atm_cmm_free_addr(leaf);
ATM_FREE(ivc);
rv = EIO;
goto bad;

}

/* The VC is valid if the call is proceeding! */
ra.addr->conv_p1 =
ra.addr->conv_p2 =

return rv;
}

1 For point-to-multipoint connections, set this parameter to zero (0).

B.3 Processing an Incoming Call

Example B–3 shows how a convergence module processes an incoming call.

Example B–3: Incoming Call Processing Code Fragment

atm_error_t
new_connect(void *bind_handle,

atm_addr_p addr,
atm_bind_handle_t bind,
atm_vc_p vc,
atm_uni_call_ie_p *reply,
atm_vc_services_p requested,
atm_vc_services_p *avail)

{
register atm_uni_call_ie_p iep = NULL;
atm_uni_call_ie_p rblli = NULL, raal = NULL;
atm_uni_call_ie_p nblli;

/* Verify IEs to make sure they are valid for our service */
if(addr != NULL && (iep = addr->setup))
{

for(;; iep++)
{

switch(iep->ie_type)
{
/* Things we do not want to see */
case ATM_IET_AAL1:

Connection Programming Examples B–5

Example B–3: Incoming Call Processing Code Fragment (cont.)

case ATM_IET_AAL2:
case ATM_IET_AAL3:
case ATM_IET_AALU:

return ATM_CAUSE_APNS;

/* Do not need to look at these */
case ATM_IET_BBBC:
case ATM_IET_BBHI:

break;

case ATM_IET_REPEAT:
break;

case ATM_IET_AAL5:
/* Make sure the MTU is supported. Accept
* an MTU greater than 1500 and then
* negotiate it down until larger MTUs are
* supported.
*/
if(ATM_IE_ISVALID(iep->ie.aal_params.aal5.fsdu))
{

if(ATM_IE_GETVAL(iep->ie.aal_params.aal5.fsdu) < 1500)
return ATM_CAUSE_APNS;

}
if(ATM_IE_ISVALID(iep->ie.aal_params.aal5.bsdu))
{

if(ATM_IE_GETVAL(iep->ie.aal_params.aal5.bsdu) < 1500)
return ATM_CAUSE_APNS;

}
raal = iep;
break;

case ATM_IET_BBLOW:
/* Check for LLC encapsulation */
if(ATM_IE_ISVALID(iep->ie.bb_low_layer.layer2proto))
{

if(ATM_IE_GETVAL(iep->ie.bb_low_layer.layer2proto) != 0x0C)
return ATM_CAUSE_BCNI;

rblli = iep;
break;

}
break;

}
if(iep->last)

break;
}

/* Make sure the required info is present */
if(rblli == NULL) /* No required BLLI */
{

addr->diag_length = 2;
addr->diagnostic[0] = 0x5;
addr->diagnostic[1] = 0x5e;
return ATM_CAUSE_CR;

}
if(raal == NULL) /* No required AAL parameters */
{

addr->diag_length = 2;
addr->diagnostic[0] = 0x5;
addr->diagnostic[1] = 0x58;

B–6 Connection Programming Examples

Example B–3: Incoming Call Processing Code Fragment (cont.)

return ATM_CAUSE_CR;
}

/* Check if point-to-point */
if (addr->endpoint == 0) 1
{

/* Set up reply values */
iep = atm_cmm_alloc_ie(2);
if(!iep)

return ATM_CAUSE_RUU;
bcopy(raal,iep,sizeof(atm_uni_call_ie_t));
ATM_IE_SETVAL(iep->ie.aal_params.aal5.fsdu,1500);
ATM_IE_SETVAL(iep->ie.aal_params.aal5.bsdu,1500);
nblli = iep+1;
bcopy(rblli,nblli,sizeof(atm_uni_call_ie_t));
nblli->last = 1;
*reply = iep;

/* Now take care of the services stuff */
if ((avail) && (*avail)) {

(*avail)->fmtu = (*avail)->bmtu = 1500;
}

}
}

vc->conv_pp1 =
vc->conv_pp2 =

/* If there is no signalling protocol, then this is a PVC */
if(vc->ppa->sig != NULL)
{

addr->conv_p1 =
addr->conv_p2 =

}

return ATM_CAUSE_GOOD;
}

1 For point-to-multipoint connections, the addr->endpoint value will
be greater than zero. Therefore, you should not change the call’s
values. See the ATM User-Network Interface Specification, Version 3.1.

Connection Programming Examples B–7

C
ATM Cause Codes

This appendix lists ATM cause and diagnostic codes, their message strings,
and brief descriptions that are displayed by various parts of the ATM
subsystem. These codes are returned when an ATM request is rejected or
when a connection is released.

The User-Network Interface (UNI) cause codes are defined by ATM Forum
specifications, and represent error information provided by the ATM
network.

1: Unallocated number
The called party cannot be reached because the number (in valid format) is
not currently assigned.

2: No route to network
The equipment that sent this cause has received a request to route the call
through an unrecognized network. The equipment does not recognize the
network either because the network does not exist or because the network
exists, but does not serve the equipment that is sending this cause.

Support for this cause varies from network to network.

3: No route to destination
The called party cannot be reached because the network through which the
call has been routed does not serve the destination.

Support for this cause varies from network to network.

10: VCI/VPI unacceptable (UNI 3.0 only)
The virtual channel most recently identified is not acceptable to the
sending entity for use in this call.

16: Normal VC release
One of the users involved in the call has requested that the call be cleared.
In normal situations, the network is not the source of this cause.

17: User busy
The called party is unable to accept another call because the user busy
condition has been encountered. Either the called user or the network
might generate this cause.

ATM Cause Codes C–1

18: No user responding
The called party did not respond to a call establishment message with a
connect indication within the prescribed period of time.

21: Call rejected
The equipment that is sending this cause does not want to accept this call.
The equipment is neither busy or incompatible.

22: Number changed
The called party number indicated by the calling user is no longer
assigned. The new called party number might be included in the diagnostic
field. If a network does not support this capability, cause 1 (unallocated
number) is used. This cause is returned to a calling party.

23: User rejects all calls with line identification restriction
The call is offered without calling party number information, and the called
party requires this information.

27: Destination out of order
The destination by the user cannot be reached because the interface to the
destination is not functioning correctly. This indicates that a signaling
message could not be delivered to the remote user either because of a
physical layer or SAAL failure at the remote user or because user
equipment is off-line.

28: invalid number format
The called user cannot be reached because the called party number is not
in a valid format or is not complete.

30: Response to ENQUERY
An entity is sending STATUS message in response to a STATUS ENQUERY
message. The cause number is included in the STATUS message.

31: Normal release, unspecified cause
A normal event occurred for which no other cause applies.

35: Requested VC unavailable
The requested VPCI/VCI is not available.

36: VPCI/VCI assignment failure
The VPCI/VCI could not be assigned.

37: User cell rate unavail
The requested ATM Traffic Descriptor is unobtainable.

38: Network out of order
The network is not functioning properly. This condition might last a long
period of time; any immediate call attempt is likely to fail.

C–2 ATM Cause Codes

41: Temporary failure
The network is not functioning properly. This condition is temporary; you
can retry the call immediately.

43: Access info discarded
The network could not deliver access information (for example, ATM
adaptation layer parameters, broadband low layer information, broadband
high layer information, and sub-address) to the remote user as requested.

45: No VC available
There is no VC available to handle the call.

47: Resource unavailable
The requested resource is unavailable. No other cause is applicable.

49: QOS unavailable
The requested Quality of Service (QoS) cannot be provided.

51: User cell rate unavailable (UNI 3.0 only)
The requested ATM Traffic Descriptor is unobtainable.

57: Bearer capability not authorized
The user requested a bearer capability that is implemented in the
equipment, but the user is not authorized to use.

58: Bearer capability not presently available
The user requested a bearer capability that is implemented in the
equipment, but is unavailable at this time.

63: Option not available
The option is unavailable. No other cause applies.

65: Bearer capability not implemented
The equipment that sent this cause does not support the bearer capability
requested.

73: Unsupported combination of traffic parameters
The combination of traffic parameters contained in the ATM traffic
descriptor information element (IE) is not supported.

78: AAL parameters can not be supported
The equipment that sent this cause received a request to establish a call
with ATM adaptation layer parameters that cannot be accommodated.

81: Invalid call reference value
The equipment that sent this cause received a message with a call
reference that is not currently in use on the user-network interface (UNI).

ATM Cause Codes C–3

82: Identified channel does not exist
The equipment that sent this cause received a request to use a channel
that is not activated on the interface for a call.

88: Incompatible destination
The equipment that sent this cause received a request to establish a call
that it cannot accommodate. Possible incompatibility reasons include
broadband low layer information, broadband high layer information, or
compatibility attributes.

89: Invalid endpoint reference
The equipment that sent this cause received a message with an endpoint
reference that is not currently in use on the UNI.

91: Invalid transit network selection
A received transit network identification has an incorrect format.

92: Too many pending add party requests
The calling party sent an add party message, but the network is unable to
accept another add party message because the network’s queues are full.
This is a temporary condition.

93: AAL parameters can not be supported (UNI 3.0 only)
The equipment that sent this cause received a request to establish a call
that it cannot accommodate. The main reason is the ATM adaptation layer
parameters.

96: Mandatory information element missing
The equipment that sent this cause received a message that is missing a
required IE.

97: Message type non-existent or not implemented
The equipment that sent this cause received a message with an
unrecognized message type. Possible reasons include the message type is
undefined or the message is defined, but not implemented by the
equipment.

99: IE non-existent or not implemented
The equipment that sent this cause received a message that includes an
unrecognized IE or IEs. Possible reasons include the IE is undefined or the
IE is defined, but not implemented by the equipment. The IE or IEs were
discarded. However, the message was processed because the IE or IEs were
not required.

100: Invalid IE contents
The equipment that sent this cause received a valid IE, but the
implementation prevents it from understanding the format of one or more
fields in the IE.

C–4 ATM Cause Codes

101: Message not compatible with call state
A received message is incompatible with the call state.

102: Recovery timer expired
A timer expired and an error handling procedure is initiated.

104: incorrect message length
An inconsistent message length occurred.

111: Protocol error unspecified
A protocol error event occurred. No other cause applies.

ATM Cause Codes C–5

Index

A
aal member, 2–28
aal_params member, 2–34
adapter

installation, 1–4
addr member, 5–11
address member

in the atm_addr structure, 2–19
in the atm_ppa structure, 2–39

addrlen member, 2–38
AESA, 2–5
anpi member

in the atm_addr structure, 2–20
in the atm_ppa structure, 2–38

Asynchronous Transfer Mode
(See ATM)

ATM
adapter, 1–4
architecture, 1–1
cells, 2–3
CMM routines, A–1
convergence module interface,

5–1
device driver interface, 3–1
error codes, 2–2
flow control, 9–1
global data structures, 2–14
header files, 2–1
locking macros, 2–10
managing connections, 6–1
Module Management Interface,

7–1
programming examples, B–1
queuing guidelines, 8–1
signaling module interface, 4–1
subsystem, 1–1

ATM address
adding , 5–8

data structure, 2–18
deleting, 5–9

ATM address structure
(See atm_addr_structure)

ATM architecture
overview, 1–1

ATM End System Address
(See AESA)

ATM subsystem
adapter installation, 1–4
configuring, 1–4
features, 2–1
interfaces, 1–3
locking macros, 2–10
types of circuits, 2–14

atm.h file, 2–2
error codes, 2–2

atm_addr structure, 2–18
allocating memory for, 2–22

atm_adi.h header file, 2–1
atm_cause_info structure, 2–40
atm_cmi.h header file, 2–1
atm_cmi_addr union, 5–10
atm_cmm_accept kernel routine,

5–8
description, A–2
function definition, A–2

atm_cmm_activate_con kernel
routine, 4–2

description, A–4
function definition, A–4

atm_cmm_add kernel routine, 5–5
description, A–6
function definition, A–6
use in code fragment, B–3

atm_cmm_adi_set_cause kernel
routine

description, A–8

Index–1

function definition, A–8
atm_cmm_adi_set_log kernel

routine
description, A–10
function definition, A–10

atm_cmm_alloc_addr call, 2–22
atm_cmm_alloc_addr kernel

routine
description, A–12
function definition, A–12

atm_cmm_alloc_ie call, 2–34
atm_cmm_alloc_ie kernel routine

description, A–13
function definition, A–13

atm_cmm_alloc_services call, 2–31
atm_cmm_alloc_services kernel

routine
description, A–15
function definition, A–15

atm_cmm_bind_info kernel
routine, 5–3

description, A–16
function definition, A–16

atm_cmm_con_deleted kernel
routine, 4–3

description, A–21
function definition, A–21

atm_cmm_con_failed kernel
routine, 4–3

description, A–23
function definition, A–23

atm_cmm_con_release kernel
routine, 4–3

description, A–25
function definition, A–25

atm_cmm_connect kernel routine,
5–5

description, A–27
function definition, A–27
use in code fragment, B–1

atm_cmm_cr2grain kernel routine
description, A–31
function definition, A–31

atm_cmm_del_esi kernel routine,
5–9

description, A–33
function definition, A–33

atm_cmm_del_ppa kernel routine,
4–5

description, A–34
function definition, A–34

atm_cmm_drop kernel routine, 5–5
description, A–36
function definition, A–36

atm_cmm_enquery kernel routine,
5–6

description, A–37
function definition, A–37

atm_cmm_ep_add kernel routine
description, A–38
function definition, A–38

atm_cmm_ep_dropped kernel
routine, 4–3

description, A–40
function definition, A–40

atm_cmm_error kernel routine, 3–2
description, A–42
function definition, A–42

atm_cmm_find_driver kernel
routine

description, A–46
function definition, A–46

atm_cmm_findaddr kernel routine,
4–4

description, A–44
function definition, A–44

atm_cmm_free_addr call, 2–22
atm_cmm_free_addr kernel routine

description, A–47
function definition, A–47

atm_cmm_free_ie call, 2–36
atm_cmm_free_ie kernel routine

description, A–48
function definition, A–48

atm_cmm_free_services kernel
routine, 5–4

description, A–49
function definition, A–49

atm_cmm_grain2cr kernel routine
description, A–51

Index–2

function definition, A–51
atm_cmm_new_call kernel routine,

4–2
description, A–53
function definition, A–53
use in accepting connections, 6–5

atm_cmm_new_esi kernel routine,
5–8

description, A–56
function definition, A–56

atm_cmm_new_ppa kernel
routine, 4–4

description, A–58
function definition, A–58

atm_cmm_new_thread kernel
routine

description, A–61
function definition, A–61

atm_cmm_next_cause kernel
routine

description, A–63
function definition, A–63

atm_cmm_oam_receive kernel
routine, 3–2

description, A–65
function definition, A–65

atm_cmm_ppa_bind kernel
routine, 5–6

description, A–66
function definition, A–66

atm_cmm_ppa_info kernel routine,
5–3

description, A–69
function definition, A–69

atm_cmm_ppa_unbind kernel
routine, 5–8

description, A–73
function definition, A–73

atm_cmm_receive kernel routine,
3–2

description, A–74
function definition, A–74

atm_cmm_register_cvg kernel
routine, 5–1

description, A–77

function definition, A–77
atm_cmm_register_dd kernel

routine, 3–1
description, A–80
function definition, A–80

atm_cmm_register_sig kernel
routine, 4–2

description, A–82
function definition, A–82

atm_cmm_reject kernel routine,
5–8

description, A–85
function definition, A–85

atm_cmm_release kernel routine,
5–5

description, A–86
function definition, A–86

atm_cmm_reply kernel routine, 4–2
description, A–88
function definition, A–88

atm_cmm_reserve_resources
kernel routine, 5–4

description, A–90
function definition, A–90
use in making connections, 6–2

atm_cmm_restart kernel routine,
4–3

description, A–92
function definition, A–92

atm_cmm_restart_ack kernel
routine, 4–4

description, A–94
function definition, A–94

atm_cmm_send kernel routine, 5–6
description, A–96
function definition, A–96

atm_cmm_set_cause kernel routine
description, A–98
function definition, A–98

atm_cmm_set_log kernel routine
description, A–100
function definition, A–100

atm_cmm_smi_set_cause kernel
routine

description, A–102

Index–3

function definition, A–102
atm_cmm_smi_set_log kernel

routine
description, A–104
function definition, A–104

atm_cmm_status_done kernel
routine, 4–4

description, A–106
function definition, A–106

atm_cmm_unregister_cvg kernel
routine, 5–3

description, A–107
function definition, A–107

atm_cmm_vc_control kernel
routine, 5–6

description, A–109
function definition, A–109

atm_cmm_vc_get kernel routine,
4–5

description, A–111
function definition, A–111

atm_cmm_vc_stats kernel routine,
5–9

description, A–112
function definition, A–112

atm_cvg_params structure, 5–11
atm_drv_params structure, 3–3
atm_error member, 2–20
atm_esi structure, 2–39
ATM_FREE macro, 2–9
ATM_MALLOC macro, 2–9
atm_mmi_path structure, 7–3
atm_osf.h header file, 2–1
atm_ppa structure, 2–37
atm_queue_param structure, 3–7
ATM_REVISION constant, 2–2
atm_sig_params structure, 4–5
atm_smi.h header file, 2–1
atm_uni_call_ie structure, 2–31

accessing an element in the
array, 2–34

allocating memory for, 2–34
atm_vc structure, 2–15
atm_vc_services structure, 2–22

allocating memory for, 2–31

atm_vc_stats structure, 5–9
atmconfig command

and PVCs, 2–7
attach routine, 3–1

B
bb_high_layer member, 2–34
bb_low_layer member, 2–34
bbbc member, 2–34
bburstcr member, 2–26
bearer_class member, 2–28
bind

information types, A–16
bmtu member, 2–25
bpeakcr member, 2–26
bqos member, 2–24
bsustcr member, 2–26
bytes_in member, 5–10
bytes_out member, 5–10

C
call

(See incoming call)
call_reference member, 2–17
capabilities member, 3–6
cause codes, C–1
cause member, 2–21, 2–41
CBR, 2–14
CBR circuit

reserving resources, 5–4
cell

defined, 2–3
loss, 2–5
OAM, 3–2
raw, 2–3
receiving, 3–2
time-stamping of, 2–4

circuit
types of, 2–14

CMM
interfaces, 1–3
overview, 1–3

Index–4

cmm_drv_handle member, 2–30
connect member, 2–21
connection, 6–1

accepting, 6–4
activating, 4–2
controlling aging of, 6–6
deleting, 4–3
making in ATM, 6–1
outgoing, 6–1
point-to-multipoint, 6–1
point-to-point, 6–1
receiving notification of, 5–7
releasing, 4–3, 6–8
reporting a failure, 4–3
requesting endpoint

information, 5–6
reserving resources, 6–2
tearing down, 5–5
type of, A–27

Connection Management Module
(See CMM)

constant bit rate
(See CBR)

conv_p1 member, 2–22
conv_p2 member, 2–22
conv_pp1 member, 2–16
conv_pp2 member, 2–16
converge_handle member, 2–31
convergence module, 1–3

flow control, 9–3
MMI, 7–7
queuing guidelines, 8–3
receiving exception notification,

5–2
registering with CMM, 5–1
requesting interface

parameters, 5–3
reserving resources, 5–4
structures, 5–9
unregistering with CMM, 5–3

cooked data, 2–3

D
data

carrying, 2–4
cooked, 2–3
formats of, 2–3
receiving on a virtual circuit, 5–2

data packet
receiving, 3–2

data structure
ATM, 2–14
global, 2–14
logging, 2–40

device driver
and lost cells, 2–5
and QOS, 8–1
and time-stamping, 2–4
ATM structures, 3–2
interface, 3–1
management functions, A–130
MMI, 7–6
queuing guidelines, 8–1
registering with CMM, 3–1
structures, 3–2
types of errors, A–42

diag member, 2–42
diag_length member, 2–21, 2–42
diagnostic member, 2–21
direction member, 2–18
driver member

in the atm_esi structure, 2–40
in the atm_ppa structure, 2–38

dropped member, 3–5
drv_pp1 member, 2–17
drv_pp2 member, 2–17
drv_resource member, 2–30

E
end system identifier

(See ESI)
endpoint

adding, 6–4
creating, 5–5
dropping, 4–3, 5–5
requesting connection state

information, 5–6
requesting information, 4–4

Index–5

endpoint member, 2–20
endpt_receive member, 5–12
endstate member, 2–21
eprtype member, 2–20
errno member, 2–17
error

data structure, 2–40
reporting to CMM, 3–2

error codes, 2–2
errors

reported by device driver, A–42
ESI

data structure, 2–39
definition, 2–5

esi member, 2–40
esi_arg member, 2–39
esilen member, 2–40
exception

receiving, 5–2
types of, A–124

exception member, 5–12

F
fburstcr member, 2–26
flags member, 2–26, 3–8
flow control, 9–1

convergence module, 9–3
hardware, 9–1
software, 9–2

flowcontrol member, 3–5
fmtu member, 2–25
fpeakcr member, 2–26
fqos member, 2–24
fsustcr member, 2–26

G
GIOC_MMI_GETVERSION

command, 7–3
GIOC_MMI_PATH command, 7–6
global data structure, 2–14

H
hard_mtu member, 3–5
header file, 2–1

I
ids member, 3–7
IE

reading and writing, 2–36
ie_type member, 2–33
incoming call

accepting, 5–8
receiving, 4–2
rejecting, 5–8

information element
(See IE)

interface parameter
requesting, 5–3

ioctl command
(See MMI)

L
last member, 2–33
last_in member, 5–10
last_out member, 5–10
lerrstat member, 2–28
location member, 2–21, 2–42
locking macros, 2–10
lost cells, 2–5

M
management functions

device driver, A–130
max_vci member, 3–4
max_vcib member, 3–4
max_vpi member, 3–4
max_vpib member, 3–4
mbuf, 2–4
memory

allocating for ATM, 2–9
allocating for atm_addr

structure, 2–22

Index–6

allocating for atm_uni_call_ie
structure, 2–34

allocating for atm_vc_services
structure, 2–31

allocation of, 2–9
freeing, 2–22

MMI
calling conventions, 7–6
connecting convergence module

to, 5–3
convergence module, 7–7
creating path, 7–2
defining ioctl commands, 7–4
device driver, 7–6
signaling module, 7–7
verifying ioctl version, 7–3

mmi_manage member, 5–12
Module Management Interface

(See MMI)
module_name member, 2–42
MTU

in incoming calls, 6–5
in outgoing calls, 6–4

N
name member, 3–4
nerrstat member, 2–30
nqueue member, 3–5
num_vc member, 3–4
num_vci member, 3–5
num_vpi member, 3–5
numid member, 3–7

O
OAM cell, 3–2

passing to CMM, A–65, A–75
opened member, 5–10

P
packets_in member, 5–10
packets_out member, 5–10

permanent virtual circuit
(See PVC)

physical point of attachment
(See PPA)

point-to-multipoint
(See connection)

point-to-point
(See connection)

PPA, 2–5
adding, 4–4
binding to, 2–6, 5–6
data structure, 2–37
deleting, 4–5
information types, A–69
permanent virtual circuit, 2–7
switched virtual circuit, 2–7
unbinding, 5–8

ppa member, 2–17
ppas_id member, 2–38
probe routine, 3–1
PVC

creating, 6–9, A–29
PPAs, 2–7

Q
qlength member, 3–8
QOS

and convergence modules, 8–3
and device drivers, 8–1
clearing, A–130
definition, 2–24
modifying, 5–6
values, 2–24

qtime member, 3–8
quality of service

(See QOS)
queue

convergence module guidelines,
8–3

device driver guidelines, 8–1
queue member, 2–28

Index–7

R
rates member, 3–5
raw ATM cell, 2–3
reason member, 2–42
receive member, 5–12
received member, 3–5
remote system

requesting connection to, 5–5
reserved1 member, 4–7

in the atm_cvg_params
structure, 5–12

reserved2 member, 4–7
in the atm_cvg_params

structure, 5–12
reserved3 member, 4–7

in the atm_cvg_params
structure, 5–12

resource
releasing, 5–4
reserving, 5–4
reserving for outgoing call, 6–2

restart completion
reporting to CMM, 4–4

S
selector byte, 2–5
selector member, 2–17
sent member, 3–4
setup member, 2–21
sig member, 2–38
sig_add member, 4–6
sig_drop member, 4–7
sig_enquery member, 4–7
sig_exception member, 4–7
sig_mib member, 4–7
sig_mmi member, 4–7
sig_p1 member, 2–22
sig_p2 member, 2–22
sig_pp1 member, 2–17
sig_pp2 member, 2–17
sig_release member, 4–6
sig_restart member, 4–7
sig_setup member, 4–6

signaling module
interface, 4–1
MMI, 7–7
registering with CMM, 4–2
structure, 4–5

sigp1 member, 2–40
sigp2 member, 2–40
state member, 2–20
status enquiry

reporting to CMM, 4–4
structure, 5–9

(See also union)
atm_addr, 2–18
atm_cause_info, 2–40
atm_cvg_params, 5–11
atm_drv_params, 3–3
atm_esi, 2–39
atm_mmi_path, 7–3
atm_ppa, 2–37
atm_queue_param, 3–7
atm_sig_params, 4–5
atm_uni_call_ie, 2–31
atm_vc, 2–15
atm_vc_services, 2–22
atm_vc_stats, 5–9

subaddress member, 2–20
subaddress_type member, 2–20
SVC

PPAs, 2–7
system

requesting connection to
remote, 5–5

T
time-stamp, 2–4
ton member

in the atm_addr structure, 2–20
in the atm_ppa structure, 2–38

type member, 3–4
in the atm_ppa structure, 2–39

Index–8

U
UBR, 2–14
uni member, 2–39
union

atm_cmi_addr, 5–10
unit member, 3–4
unspecified bit rate

(See UBR)

V
valid_rates member, 2–25
VC, 2–7

(See also PVC)
(See also SVC)
activating, 4–2
controlling aging of, 5–6
creating permanent, 6–9
creating signaling, 6–10
data structure, 2–15
modifying parameters, 5–6
modifying QOS parameters, 5–6
ownership of , 5–5, 5–7, A–117
QOS values, 2–24
requesting statistics for, 5–9
requesting status for, 4–5
restarting, 4–3
transmitting data on, 5–6
types of operations on, A–109

vc member, 3–8
in the atm_addr structure, 2–19
in the atm_vc structure, 2–24

VC status
reporting to CMM, 4–4

vci member, 2–17
vcn member, 5–11
vcs member, 2–17
virtual circuit

(See VC)
ownership of, A–29

vpi member, 2–17

X
xxx_add kernel routine

description, A–113
function definition, A–113

xxx_connect kernel routine, 5–7
description, A–114
function definition, A–114
use in code fragment, B–5

xxx_drop kernel routine
description, A–119
function definition, A–119

xxx_endpt_receive kernel routine
description, A–120
function definition, A–120

xxx_enquery kernel routine
description, A–123
function definition, A–123

xxx_except kernel routine, 5–2
description, A–124
function definition, A–124

xxx_manage kernel routine
description, A–130
function definition, A–130

xxx_mmi kernel routine, 5–3
description, A–133
function definition, A–133

xxx_receive kernel routine, 5–2
description, A–135
function definition, A–135

xxx_release kernel routine
description, A–138
function definition, A–138

xxx_restart kernel routine
description, A–139
function definition, A–139

xxx_setup kernel routine
description, A–141
function definition, A–141

xxx_xmit kernel routine
description, A–143
function definition, A–143

Index–9

How to Order Tru64 UNIX Documentation

You can order documentation for the Tru64 UNIX operating system and related
products at the following Web site:

http://www.businesslink.digital.com/

If you need help deciding which documentation best meets your needs, see the Tru64
UNIX Documentation Overview or call 800-344-4825 in the United States and
Canada. In Puerto Rico, call 787-781-0505. In other countries, contact your local
Compaq subsidiary.

If you have access to Compaq’s intranet, you can place an order at the following Web
site:

http://asmorder.nqo.dec.com/

The following table provides the order numbers for the Tru64 UNIX operating
system documentation kits. For additional information about ordering this and
related documentation, see the Documentation Overview or contact Compaq.

Name Order Number

Tru64 UNIX Documentation CD-ROM QA-6ADAA-G8

Tru64 UNIX Documentation Kit QA-6ADAA-GZ

End User Documentation Kit QA-6ADAB-GZ

Startup Documentation Kit QA-6ADAC-GZ

General User Documentation Kit QA-6ADAD-GZ

System and Network Management Documentation Kit QA-6ADAE-GZ

Developer’s Documentation Kit QA-6ADAG-GZ

Reference Pages Documentation Kit QA-6ADAF-GZ

Reader’s Comments

Tru64 UNIX
Asynchronous Transfer Mode
AA-RH9KA-TE

Compaq welcomes your comments and suggestions on this manual. Your input will help us to write
documentation that meets your needs. Please send your suggestions using one of the following methods:

• This postage-paid form

• Internet electronic mail: readers_comment@zk3.dec.com

• Fax: (603) 884-0120, Attn: UBPG Publications, ZKO3-3/Y32

If you are not using this form, please be sure you include the name of the document, the page number,
and the product name and version.

Please rate this manual:
Excellent Good Fair Poor

Accuracy (software works as manual says) � � � �

Clarity (easy to understand) � � � �

Organization (structure of subject matter) � � � �

Figures (useful) � � � �

Examples (useful) � � � �

Index (ability to find topic) � � � �

Usability (ability to access information quickly) � � � �

Please list errors you have found in this manual:

Page Description
_________ ___
_________ ___
_________ ___
_________ ___

Additional comments or suggestions to improve this manual:

What version of the software described by this manual are you using? ______________________

Name, title, department __
Mailing address __
Electronic mail ___
Telephone __
Date ___

UBPG PUBLICATIONS MANAGER

 Do Not Cut or Tear - Fold Here

 Do Not Cut or Tear - Fold Here and Tape

NO POSTAGE
NECESSARY IF
MAILED IN THE
UNITED STATES

FIRST CLASS MAIL PERMIT NO. 33 MAYNARD MA

POSTAGE WILL BE PAID BY ADDRESSEE

ZKO3-3/Y32
110 SPIT BROOK RD

COMPAQ COMPUTER CORPORATION

NASHUA NH 03062-9987

C
ut on D

otted L
ine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

