
Tru64 UNIX
Programmer’s Guide

Part Number: AA-RH9VA-TE

July 1999

Product Version: Tru64 UNIX Version 5.0 or higher

This manual describes the programming development environment of
the Tru64 UNIX operating system (formerly DIGITAL UNIX),
emphasizing the C programming language.

Compaq Computer Corporation
Houston, Texas

© 1999 Compaq Computer Corporation

COMPAQ, the Compaq logo, and the Digital logo are registered in the U.S. Patent and Trademark Office.

Microsoft and Windows NT are registered trademarks of Microsoft Corporation. Intel, Pentium, and Intel
Inside are registered trademarks of Intel Corporation. UNIX is a registered trademark and The Open
Group is a trademark of The Open Group in the US and other countries. Other product names mentioned
herein may be the trademarks of their respective companies.

Possession, use, or copying of the software described in this publication is authorized only pursuant to a
valid written license from Compaq Computer Corporation or an authorized sublicensor.

Compaq Computer Corporation shall not be liable for technical or editorial errors or omissions contained
herein. The information in this document is subject to change without notice.

Contents

About This Manual

1 Overview
1.1 Application Development Phases 1–1
1.2 Specification and Design Considerations 1–2
1.2.1 Standards 1–2
1.2.2 Internationalization 1–3
1.2.3 Window-Oriented Applications 1–3
1.2.4 Secure Applications 1–4
1.3 Major Software Development Tools 1–4
1.3.1 Languages Supported by the Tru64 UNIX Environment . 1–4
1.3.2 Linking Object Files 1–5
1.3.3 Debugging and Program Analysis Tools 1–5
1.4 Source File Control 1–5
1.5 Program Installation Tools 1–6
1.6 Overview of Interprocess Communication Facilities 1–7

2 The Compiler System
2.1 Compiler System Components 2–2
2.2 Data Types in the Tru64 UNIX Environment 2–4
2.2.1 Data Type Sizes 2–4
2.2.2 Floating-Point Range and Processing 2–4
2.2.3 Structure Alignment 2–5
2.2.4 Bit-Field Alignment 2–6
2.2.5 The _align Storage Class Modifier 2–7
2.3 Using the C Preprocessor 2–8
2.3.1 Predefined Macros 2–8
2.3.2 Header Files 2–9
2.3.3 Setting Up Multilanguage Include Files 2–10
2.3.4 Implementation-Specific Preprocessor Directives

(#pragma) 2–11
2.4 Compiling Source Programs 2–11
2.4.1 Default Compilation Behavior 2–11
2.4.2 Compiling Multilanguage Programs 2–15

Contents iii

2.4.3 Enabling Run-Time Checking of Array Bounds 2–15
2.5 Linking Object Files 2–18
2.5.1 Linking with Compiler Commands 2–18
2.5.2 Linking with the ld Command 2–19
2.5.3 Specifying Libraries 2–20
2.6 Running Programs 2–21
2.7 Object File Tools 2–22
2.7.1 Dumping Selected Parts of Files (odump) 2–22
2.7.2 Listing Symbol Table Information (nm) 2–23
2.7.3 Determining a File’s Type (file) 2–24
2.7.4 Determining a File’s Segment Sizes (size) 2–24
2.7.5 Disassembling an Object File (dis) 2–24
2.8 ANSI Name Space Pollution Cleanup in the Standard C

Library 2–25

3 Pragma Preprocessor Directives
3.1 The #pragma environment Directive 3–1
3.2 The #pragma extern_prefix Directive 3–3
3.3 The #pragma inline Directive 3–5
3.4 The #pragma intrinsic and #pragma function Directives 3–6
3.5 The #pragma linkage Directive 3–8
3.6 The #pragma member_alignment Directive 3–11
3.7 The #pragma message Directive 3–11
3.8 The #pragma pack Directive 3–12
3.9 The #pragma pointer_size Directive 3–13
3.10 The #pragma use_linkage Directive 3–14
3.11 The #pragma weak Directive 3–15

4 Shared Libraries
4.1 Shared Library Overview 4–1
4.2 Resolving Symbols 4–3
4.2.1 Search Path of the Linker 4–4
4.2.2 Search Path of the Loader 4–4
4.2.3 Name Resolution 4–5
4.2.4 Options to Determine Handling of Unresolved External

Symbols 4–6
4.3 Linking with Shared Libraries 4–7
4.4 Turning Off Shared Libraries 4–7
4.5 Creating Shared Libraries 4–8
4.5.1 Creating Shared Libraries from Object Files 4–8
4.5.2 Creating Shared Libraries from Archive Libraries 4–8

iv Contents

4.6 Working with Private Shared Libraries 4–9
4.7 Using Quickstart 4–9
4.7.1 Verifying that an Object Is Quickstarting 4–11
4.7.2 Manually Tracking Down Quickstart Problems 4–12
4.7.3 Tracking Down Quickstart Problems with the fixso

Utility 4–14
4.8 Debugging Programs Linked with Shared Libraries 4–15
4.9 Loading a Shared Library at Run Time 4–16
4.10 Protecting Shared Library Files 4–17
4.11 Shared Library Versioning 4–18
4.11.1 Binary Incompatible Modifications 4–18
4.11.2 Shared Library Versions 4–19
4.11.3 Major and Minor Versions Identifiers 4–21
4.11.4 Full and Partial Versions of Shared Libraries 4–22
4.11.5 Linking with Multiple Versions of Shared Libraries 4–23
4.11.6 Version Checking at Load Time 4–24
4.11.7 Multiple Version Checking at Load Time 4–25
4.12 Symbol Binding 4–30
4.13 Shared Library Restrictions 4–30

5 Debugging Programs with dbx
5.1 General Debugging Considerations 5–3
5.1.1 Reasons for Using a Source-Level Debugger 5–3
5.1.2 Explanation of Activation Levels 5–3
5.1.3 Isolating Program Execution Failures 5–4
5.1.4 Diagnosing Incorrect Output Results 5–5
5.1.5 Avoiding Pitfalls 5–5
5.2 Running dbx 5–6
5.2.1 Compiling a Program for Debugging 5–6
5.2.2 Creating a dbx Initialization File 5–7
5.2.3 Invoking and Terminating dbx 5–7
5.3 Using dbx Commands 5–9
5.3.1 Qualifying Variable Names 5–9
5.3.2 dbx Expressions and Their Precedence 5–10
5.3.3 dbx Data Types and Constants 5–10
5.4 Working with the dbx Monitor 5–12
5.4.1 Repeating dbx Commands 5–12
5.4.2 Editing the dbx Command Line 5–13
5.4.3 Entering Multiple Commands 5–15
5.4.4 Completing Symbol Names 5–15
5.5 Controlling dbx 5–16

Contents v

5.5.1 Setting and Removing Variables 5–16
5.5.2 Predefined dbx Variables 5–17
5.5.3 Defining and Removing Aliases 5–24
5.5.4 Monitoring Debugging Session Status 5–25
5.5.5 Deleting and Disabling Breakpoints 5–26
5.5.6 Displaying the Names of Loaded Object Files 5–26
5.5.7 Specifying the Location of Shared Libraries for Core

Dumps 5–27
5.5.8 Invoking a Subshell from Within dbx 5–27
5.6 Examining Source Programs 5–28
5.6.1 Specifying the Locations of Source Files 5–28
5.6.2 Moving Up or Down in the Activation Stack 5–29
5.6.2.1 Using the where and tstack Commands 5–29
5.6.2.2 Using the up, down, and func Commands 5–30
5.6.3 Changing the Current Source File 5–31
5.6.4 Listing Source Code 5–31
5.6.5 Searching for Text in Source Files 5–32
5.6.6 Editing Source Files from Within dbx 5–33
5.6.7 Identifying Variables that Share the Same Name 5–33
5.6.8 Examining Variable and Procedure Types 5–34
5.7 Controlling the Program 5–34
5.7.1 Running and Rerunning the Program 5–34
5.7.2 Executing the Program Step by Step 5–36
5.7.3 Using the return Command 5–37
5.7.4 Going to a Specific Place in the Code 5–37
5.7.5 Resuming Execution After a Breakpoint 5–38
5.7.6 Changing the Values of Program Variables 5–39
5.7.7 Patching Executable Disk Files 5–39
5.7.8 Running a Specific Procedure 5–40
5.7.9 Setting Environment Variables 5–41
5.8 Setting Breakpoints 5–42
5.8.1 Overview 5–42
5.8.2 Setting Breakpoints with stop and stopi 5–43
5.8.3 Tracing Variables During Execution 5–45
5.8.4 Writing Conditional Code in dbx 5–46
5.8.5 Catching and Ignoring Signals 5–47
5.9 Examining Program State 5–48
5.9.1 Printing the Values of Variables and Expressions 5–48
5.9.2 Displaying Activation-Level Information with the dump

Command 5–50
5.9.3 Displaying the Contents of Memory 5–51

vi Contents

5.9.4 Recording and Playing Back Portions of a dbx Session .. . 5–53
5.9.4.1 Recording and Playing Back Input 5–53
5.9.4.2 Recording and Playing Back Output 5–54
5.10 Enabling Core-Dump-File Naming 5–55
5.10.1 Enabling Core-File Naming at the System Level 5–56
5.10.2 Enabling Core-File Naming at the Application Level 5–57
5.11 Debugging a Running Process 5–57
5.12 Debugging Multithreaded Applications 5–58
5.13 Debugging Multiple Asynchronous Processes 5–62
5.14 Sample Program 5–63

6 Checking C Programs with lint
6.1 Syntax of the lint Command 6–1
6.2 Program Flow Checking 6–3
6.3 Data Type Checking 6–4
6.3.1 Binary Operators and Implied Assignments 6–4
6.3.2 Structures and Unions 6–5
6.3.3 Function Definition and Uses 6–6
6.3.4 Enumerators 6–6
6.3.5 Type Casts 6–6
6.4 Variable and Function Checking 6–7
6.4.1 Inconsistent Function Return 6–7
6.4.2 Function Values that Are Not Used 6–8
6.4.3 Disabling Function-Related Checking 6–8
6.5 Checking on the Use of Variables Before They Are Initialized 6–9
6.6 Migration Checking 6–10
6.7 Portability Checking 6–11
6.7.1 Character Uses 6–11
6.7.2 Bit Field Uses 6–11
6.7.3 External Name Size 6–11
6.7.4 Multiple Uses and Side Effects 6–12
6.8 Checking for Coding Errors and Coding Style Differences 6–13
6.8.1 Assignments of Long Variables to Integer Variables 6–13
6.8.2 Operator Precedence 6–13
6.8.3 Conflicting Declarations 6–13
6.9 Increasing Table Size 6–14
6.10 Creating a lint Library 6–14
6.10.1 Creating the Input File 6–14
6.10.2 Creating the lint Library File 6–16
6.10.3 Checking a Program with a New Library 6–16
6.11 Understanding lint Error Messages 6–16

Contents vii

6.12 Using Warning Class Options to Suppress lint Messages 6–22
6.13 Generating Function Prototypes for Compile-Time Detection

of Syntax Errors 6–26

7 Debugging Programs with Third Degree
7.1 Running Third Degree on an Application 7–2
7.1.1 Using Third Degree with Shared Libraries 7–3
7.2 Debugging Example 7–4
7.2.1 Customizing Third Degree 7–5
7.2.2 Modifying the Makefile 7–6
7.2.3 Examining the Third Degree Log File 7–7
7.2.3.1 List of Run-Time Memory Access Errors 7–7
7.2.3.2 Memory Leaks 7–9
7.2.3.3 Heap History 7–10
7.2.3.4 Memory Layout 7–11
7.3 Interpreting Third Degree Error Messages 7–11
7.3.1 Fixing Errors and Retrying an Application 7–13
7.3.2 Detecting Uninitialized Values 7–13
7.3.3 Locating Source Files 7–14
7.4 Examining an Application’s Heap Usage 7–14
7.4.1 Detecting Memory Leaks 7–15
7.4.2 Reading Heap and Leak Reports 7–15
7.4.3 Searching for Leaks 7–17
7.4.4 Interpreting the Heap History 7–18
7.5 Using Third Degree on Programs with Insufficient Symbolic

Information 7–19
7.6 Validating Third Degree Error Reports 7–20
7.7 Undetected Errors 7–21

8 Profiling Programs to Improve Performance
8.1 Overview 8–1
8.2 Profiling Sample Program 8–2
8.3 Compilation Options for Profiling 8–3
8.4 Automatic and Profile-Directed Optimizations 8–4
8.4.1 Techniques 8–4
8.4.2 Tools and Examples 8–5
8.4.2.1 Automatic Optimization 8–5
8.4.2.2 Profile-Directed Optimization 8–5
8.4.2.3 Profile-Directed Reordering 8–8
8.5 Manual Design and Code Optimizations 8–9
8.5.1 Techniques 8–9

viii Contents

8.5.2 Tools and Examples 8–9
8.5.2.1 CPU-Time Profiling with Call Graph 8–9
8.5.2.2 CPU−Time/Event Profiles for

Sourcelines/Instructions 8–16
8.6 Minimizing System Resource Usage 8–25
8.6.1 Techniques 8–25
8.6.2 Tools and Examples 8–26
8.6.2.1 System Monitors 8–26
8.6.2.2 Heap Memory Analyzers 8–26
8.7 Verifying the Significance of Test Cases 8–28
8.7.1 Techniques 8–28
8.7.2 Tools and Examples 8–29
8.8 Selecting Profiling Information to Display 8–29
8.8.1 Limiting Profiling Display to Specific Procedures 8–30
8.8.2 Displaying Profiling Information for Each Source Line .. . 8–30
8.8.3 Limiting Profiling Display by Line 8–31
8.8.4 Including Shared Libraries in the Profiling Information . 8–31
8.8.4.1 Specifying the Location of Instrumented Shared

Libraries 8–32
8.9 Merging Profile Data Files 8–32
8.9.1 Data File-Naming Conventions 8–32
8.9.2 Data File-Merging Techniques 8–33
8.10 Profiling Multithreaded Applications 8–34
8.11 Using monitor Routines to Control Profiling 8–35

9 Using and Developing Atom Tools
9.1 Running Atom Tools 9–1
9.1.1 Using Installed Tools 9–1
9.1.2 Testing Tools Under Development 9–3
9.1.3 Atom Options 9–4
9.2 Developing Atom Tools 9–6
9.2.1 Atom’s View of an Application 9–6
9.2.2 Atom Instrumentation Routine 9–7
9.2.3 Atom Instrumentation Interfaces 9–8
9.2.3.1 Navigating Within a Program 9–8
9.2.3.2 Building Objects 9–9
9.2.3.3 Obtaining Information About an Application’s

Components 9–9
9.2.3.4 Resolving Procedure Names and Call Targets 9–12
9.2.3.5 Adding Calls to Analysis Routines to a Program 9–13
9.2.4 Atom Description File 9–14

Contents ix

9.2.5 Writing Analysis Procedures 9–14
9.2.5.1 Input/Output 9–15
9.2.5.2 Fork and Exec System Calls 9–15
9.2.6 Determining the Instrumented PC from an Analysis

Routine 9–16
9.2.7 Sample Tools 9–22
9.2.7.1 Procedure Tracing 9–22
9.2.7.2 Profile Tool 9–25
9.2.7.3 Data Cache Simulation Tool 9–28

10 Optimizing Techniques
10.1 Guidelines to Build an Application Program 10–2
10.1.1 Compilation Considerations 10–2
10.1.2 Linking and Loading Considerations 10–6
10.1.2.1 Using the Postlink Optimizer 10–6
10.1.3 Preprocessing and Postprocessing Considerations 10–7
10.1.4 Library Routine Selection 10–9
10.2 Application Coding Guidelines 10–10
10.2.1 Data-Type Considerations 10–10
10.2.2 Using Direct I/O on AdvFS Files 10–11
10.2.3 Cache Usage and Data Alignment Considerations 10–12
10.2.4 General Coding Considerations 10–14

11 Handling Exception Conditions
11.1 Exception-Handling Overview 11–1
11.1.1 C Compiler Syntax 11–2
11.1.2 libexc Library Routines 11–2
11.1.3 Header Files that Support Exception Handling 11–3
11.2 Raising an Exception from a User Program 11–4
11.3 Writing a Structured Exception Handler 11–5
11.4 Writing a Termination Handler 11–13

12 Developing Thread-Safe Libraries
12.1 Overview of Thread Support 12–1
12.2 Run-Time Library Changes for POSIX Conformance 12–2
12.3 Characteristics of Thread-Safe and Reentrant Routines 12–3
12.3.1 Examples of Nonthread-Safe Coding Practices 12–4
12.4 Writing Thread-Safe Code 12–5
12.4.1 Using TIS 12–6
12.4.2 Using Thread-Specific Data 12–6

x Contents

12.4.3 Using Mutex Locks to Share Data Between Threads 12–8
12.5 Building Multithreaded Applications 12–9
12.5.1 Compiling Multithreaded C Applications 12–9
12.5.2 Linking Multithreaded C Applications 12–9
12.5.3 Building Multithreaded Applications in Other Languages 12–10

13 OpenMP Parallel Processing
13.1 cc Command-Line Options 13–1
13.2 Environment Variables 13–3
13.3 Tuning Run-Time Performance 13–4
13.3.1 Schedule Type and Chunksize Settings 13–4
13.3.2 Additional Controls 13–5
13.4 Common User Errors 13–6
13.4.1 Scoping 13–6
13.4.2 Deadlock 13–6
13.4.3 Threadprivate Storage 13–7
13.5 Using Locks 13–7
13.6 Implementation-Specific Behavior 13–7

14 Posting and Receiving EVM Events
14.1 Events and Event Management 14–1
14.2 Overview of How EVM Events Are Handled 14–3
14.3 Starting and Stopping EVM 14–4
14.4 Authorization to Post and Receive Events 14–5
14.5 Contents of an EVM Event 14–5
14.5.1 Standard Data Items 14–6
14.5.1.1 Event Name Data Item 14–7
14.5.1.1.1 Reserved Component Names 14–7
14.5.1.1.2 Comparing Event Names 14–9
14.5.1.2 Event Format Data Item 14–9
14.5.1.3 Event Priority Data Item 14–10
14.5.1.4 I18N Catalog Name, Message Set ID, and Message

ID Data Items 14–11
14.5.1.5 Reference Data Item 14–12
14.5.2 Variable Data Items 14–13
14.6 Designing a Set of Events 14–14
14.6.1 Deciding Which Status Changes Are Eventworthy 14–15
14.6.2 Writing Event Explanation Text 14–16
14.6.3 Designing Event Templates 14–17
14.6.3.1 Deciding what to Put in an Event Template 14–17

Contents xi

14.6.3.2 Matching the Names of Posted Events with Event
Template Names 14–19

14.6.3.3 Merging Data Items from Templates and Posted
Events 14–20

14.6.3.4 Installing Template Files — Location, Naming,
Ownership, and Permission Requirements 14–21

14.6.3.5 Checking Event Template Registration 14–21
14.6.4 Establishing Translations for Event Text (I18N) 14–21
14.7 The EVM Programming Interface 14–24
14.7.1 The EVM Header File 14–24
14.7.2 The EVM API Library 14–24
14.7.3 Return Status Codes 14–24
14.7.4 Signal Handling 14–24
14.7.5 EVM In Multithreaded Programs 14–25
14.7.6 Reassigning and Replicating EVM Events 14–26
14.7.7 Callback Functions 14–26
14.7.8 Handling Disconnections 14–27
14.7.9 Using Event Filters 14–28
14.7.10 Sample EVM Programming Operations 14–28
14.7.10.1 Performing Simple Event Manipulations 14–29
14.7.10.2 Using Variable-Length Argument Lists 14–30
14.7.10.3 Adding and Retrieving Variables 14–31
14.7.10.4 Posting Events 14–33
14.7.10.5 Reading and Writing Events 14–34
14.7.10.6 Subscribing for Event Notification 14–36
14.7.10.7 Handling Multiple I/O Sources 14–40
14.7.10.8 Using Filter Evaluators 14–42
14.7.10.9 Matching Event Names 14–46
14.7.10.10 Dealing with Missed Events 14–47
14.8 Adding an Event Channel to EVM 14–50
14.8.1 The Get Function 14–51
14.8.2 The Details Function 14–53
14.8.3 The Explain Function 14–53
14.8.4 The Monitor Function 14–54
14.8.5 The Cleanup Function 14–55
14.8.6 Channel Security 14–56

A Using 32-Bit Pointers on Tru64 UNIX Systems
A.1 Compiler-System and Language Support for 32-Bit Pointers . A–2
A.2 Using the –taso Option A–3
A.2.1 Use and Effects of the -taso Option A–4

xii Contents

A.2.2 Limits on the Effects of the -taso Option A–6
A.3 Using the –xtaso or –xtaso_short Option A–7
A.3.1 Coding Considerations Associated with Changing Pointer

Sizes A–8
A.3.2 Restrictions on the Use of 32-Bit Pointers A–9
A.3.3 Avoiding Problems with System Header Files A–9

B Differences in the System V Habitat
B.1 Source Code Compatibility B–1
B.2 Summary of System Calls and Library Routines B–3

C Creating Dynamically Configurable Kernel Subsystems
C.1 Overview of Dynamically Configurable Subsystems C–2
C.2 Overview of Attribute Tables C–4
C.2.1 Definition Attribute Table C–5
C.2.2 Example Definition Attribute Table C–8
C.2.3 Communication Attribute Table C–10
C.2.4 Example Communication Attribute Table C–12
C.3 Creating a Configuration Routine C–12
C.3.1 Performing Initial Configuration C–13
C.3.2 Responding to Query Requests C–15
C.3.3 Responding to Reconfigure Requests C–17
C.3.4 Performing Subsystem-Defined Operations C–20
C.3.5 Unconfiguring the Subsystem C–20
C.3.6 Returning from the Configuration Routine C–21
C.4 Allowing for Operating System Revisions in Loadable

Subsystems C–22
C.5 Building and Loading Loadable Subsystems C–23
C.6 Building a Static Configurable Subsystem Into the Kernel .. . C–25
C.7 Testing Your Subsystem C–27

D Parallel Processing — Old Style
D.1 Use of Parallel-Processing Pragmas D–2
D.1.1 General Coding Rules D–2
D.1.2 General Use D–2
D.1.3 Nesting Parallel Directives D–4
D.2 Parallel-Processing Pragma Syntax D–5
D.2.1 #pragma parallel D–6
D.2.2 #pragma pfor D–8
D.2.3 #pragma psection and #pragma section D–9
D.2.4 #pragma critical D–9

Contents xiii

D.2.5 #pragma one processor D–10
D.2.6 #pragma synchronize D–10
D.2.7 #pragma enter gate and #pragma exit gate D–10
D.3 Environment Variables D–11

E Handling Names of Device Special Files

Index

Examples
5–1 Sample Program Used in dbx Examples 5–63
8–1 Profiling Sample Program 8–2
8–2 Sample Profile-Directed Optimization Output 8–6
8–3 Sample hiprof Default Profile, Using gprof 8–11
8–4 Sample hiprof -cycles Profile, Using gprof 8–13
8–5 Sample cc -pg Profile, Using gprof 8–15
8–6 Sample uprofile CPU-Time Profile, Using prof 8–17
8–7 Sample uprofile Data-Cache-Misses Profile, Using prof 8–18
8–8 Sample hiprof -lines PC-Sampling Profile 8–20
8–9 Sample cc -p Profile, Using prof 8–22
8–10 Sample pixie Profile, Using prof 8–24
8–11 Sample third Log File 8–27
8–12 Using monstartup() and monitor() 8–36
8–13 Allocating Profiling Buffers Within a Program 8–38
8–14 Using monitor_signal() to Profile Nonterminating Programs . 8–39
10–1 Pointers and Optimization 10–17
11–1 Handling a SIGSEGV Signal as a Structured Exception 11–7
11–2 Handling an IEEE Floating-Point SIGFPE as a Structured

Exception 11–9
11–3 Multiple Structured Exception Handlers 11–11
11–4 Abnormal Termination of a Try Block by an Exception 11–15
12–1 Threads Programming Example 12–6
14–1 Sample Event Explanation Text 14–16
14–2 Performing Simple Event Manipulations 14–29
14–3 Using Variable-Length Argument Lists 14–31
14–4 Adding and Retrieving Variables 14–32
14–5 Posting Events 14–33
14–6 Reading and Writing Events 14–35
14–7 Subscribing for Event Notification 14–37
14–8 Handling Multiple I/O Sources 14–40

xiv Contents

14–9 Using Filter Evaluators 14–43
14–10 Matching Event Names 14–46
14–11 Dealing with Missed Events 14–48
C–1 Example Attribute Table C–8

Figures
2–1 Compiling a Program 2–2
2–2 Default Structure Alignment 2–5
2–3 Default Bit-Field Alignment 2–6
2–4 Padding to the Next Pack Boundary 2–7
4–1 Use of Archive and Shared Libraries 4–3
4–2 Linking with Multiple Versions of Shared Libraries 4–24
4–3 Invalid Multiple Version Dependencies Among Shared

Objects: Example 1 4–26
4–4 Invalid Multiple Version Dependencies Among Shared

Objects: Example 2 4–27
4–5 Invalid Multiple Version Dependencies Among Shared

Objects: Example 3 4–28
4–6 Valid Uses of Multiple Versions of Shared Libraries: Example

1 4–29
4–7 Valid Uses of Multiple Versions of Shared Libraries: Example

2 4–30
14–1 EVM Overview 14–3
14–2 Posted Event and Template Merging 14–20
A–1 Layout of Memory Under -taso Option A–5
B–1 System Call Resolution B–2
C–1 System Attribute Value Initialization C–3

Tables
1–1 Programming Phases and Tru64 UNIX 1–1
2–1 Compiler System Functions 2–2
2–2 File Suffixes and Associated Files 2–3
3–1 Intrinsic Functions 3–6
4–1 Linker Options that Control Shared Library Versioning 4–20
5–1 Keywords Used in Command Syntax Descriptions 5–2
5–2 dbx Command Options 5–8
5–3 The dbx Number-Sign Expression Operator 5–10
5–4 Expression Operator Precedence 5–10
5–5 Built-in Data Types 5–11
5–6 Input Constants 5–11
5–7 Command-Line Editing Commands in emacs mode 5–14

Contents xv

5–8 Predefined dbx Variables 5–17
5–9 Modes for Displaying Memory Addresses 5–52
6–1 lint Warning Classes 6–23
9–1 Example Prepackaged Atom Tools 9–2
9–2 Atom Object Query Routines 9–9
9–3 Atom Procedure Query Routines 9–11
9–4 Atom Basic Block Query Routines 9–12
9–5 Atom Instruction Query Routines 9–12
11–1 Header Files that Support Exception Handling 11–4
14–1 Standard Data Items 14–6
14–2 Substituting Variables into Event Text 14–10
14–3 EVM’s Variable Data Types 14–13
14–4 Name Matching Examples 14–20
14–5 Example Data Item Values for an Internationalized Event . . 14–22
B–1 System Call Summary B–4
B–2 Library Function Summary B–5
C–1 Attribute Data Types C–6
C–2 Codes that Determine the Requests Allowed for an Attribute C–7
C–3 Attribute Status Codes C–11

xvi Contents

About This Manual

This manual describes the programming environment of the
Tru64TM UNIX® (formerly DIGITAL UNIX) operating system, with an
emphasis on the C programming language. The availability of other
programming languages on any system is determined by the choices made
at the time the system was configured or modified.

Audience

This manual addresses all programmers who use the Tru64 UNIX operating
system to create or maintain programs in any supported language.

New and Changed Features

The following major changes and additions have been made to this manual
for the Version 5.0 release of Tru64 UNIX:

• Chapter 7 — This chapter has been revised with new information and
also to reflect the simpler command syntax and enhanced functionality
of the new third(1) command. The syntax of this command is not
based on the Atom command syntax.

• Chapter 8 — This chapter has been completely revised. The
presentation is more task-oriented and the examples more detailed,
showing the simpler command syntax and enhanced functionality of
three new commands — hiprof(1), pixie(1), and third(1). The syntax
of these three commands is not based on the Atom command syntax.

• Chapter 13 — This is a new chapter. It describes some programming
considerations associated with using the OpenMP parallel processing
interface. (The parallel processing pragmas defined by OpenMP are
described in the OpenMP C Application Programming Interface.)

• Chapter 14 — This is a new chapter. It introduces the programming
interface to the Event Manager, a utility that allows any program or
system component to post and receive event status information.

• Appendix D — This appendix now describes the old-style parallel
processing pragmas that were implemented prior to the OpenMP
parallel processing pragmas. (This appendix previously described the
uopt global optimizer, which is no longer supported.)

About This Manual xvii

• Appendix E — This is a new appendix. It describes routines for
handling new- and old-style names of device special files.

Organization

This manual contains fourteen chapters and five appendixes.

Chapter 1 Describes the phases of program development and which
programming tools to use during those phases.

Chapter 2 Describes the tools that make up the compiler system and how
to use them. Topics covered include compiler commands,
preprocessors, compilation options, multilanguage programs,
and the archiver.

Chapter 3 Describes the implementation-specific pragmas that are
supported by the C compiler.

Chapter 4 Describes the use, creation, and maintenance of shared
libraries and discusses how symbols are resolved.

Chapter 5 Describes how to use the dbx debugger. It includes information
about the dbx commands, working with the monitor, setting
breakpoints, and debugging machine code.

Chapter 6 Describes how to use the lint command to produce clean code.

Chapter 7 Describes how to use the Third Degree tool to perform memory
access checks and leak detection on an application program.

Chapter 8 Describes how to use various tools and techniques to profile
your code, enabling you to find which portions of code are
consuming the most execution time. It also describes how to
feed profiling data back to the C compiler to provide some
automatic optimization of the code.

Chapter 9 Describes how to use prepackaged Atom tools to instrument an
application program for various purposes, such as to obtain
profiling data or to perform cache-use analysis. It also describes
how you can design and create custom Atom tools.

Chapter 10 Describes how to optimize your code using the optimizer and
the postlink optimizer.

Chapter 11 Describes how to use the features of the C compiler to write a
structured exception handler or a termination handler.

Chapter 12 Describes how to develop multithreaded programs.

Chapter 13 Describes some programming considerations associated with
using the OpenMP parallel-processing interface.

Chapter 14 Describes how to use the Event Manager utility to post and
receive event notifications.

Appendix A Describes how to use 32-bit pointers on a Tru64 UNIX system.

xviii About This Manual

Appendix B Describes how to achieve source code compatibility for C
language programs in the System V habitat.

Appendix C Describes how to write dynamically configurable kernel
subsystems.

Appendix D Describes the old-style parallel processing pragmas
implemented before OpenMP.

Appendix E Describes the routines that handle conversions between the old-
and new-style names of device special files.

Related Documents

In addition to this manual, the following manuals contain information
pertaining to program development:

Programming: General

Calling Standard for Alpha Systems

Assembly Language Programmer’s Guide

Programming Support Tools

Network Programmer’s Guide

Compaq Portable Mathematics Library

Writing Software for the International Market

Kernel Debugging

Ladebug Debugger Manual

Writing Kernel Modules

Programming: Realtime

Guide to Realtime Programming

Programming: Streams

Programmer’s Guide: STREAMS

Programming: Multithreaded Applications

Guide to DECthreads

OpenMP C Application Programming Interface Specification

General User Information

Release Notes

About This Manual xix

The printed version of the Tru64 UNIX documentation uses letter icons on
the spines of the books to help specific audiences quickly find the books
that meet their needs. (You can order the printed documentation from
Compaq.) The following list describes this convention:

G Books for general users

S Books for system and network administrators

P Books for programmers

D Books for device driver writers

R Books for reference page users

Some books in the documentation help meet the needs of several audiences.
For example, the information in some system books is also used by
programmers. Keep this in mind when searching for information on specific
topics.

The Documentation Overview provides information on all of the books in
the Tru64 UNIX documentation set.

Reader’s Comments

Compaq welcomes any comments and suggestions you have on this and
other Tru64 UNIX manuals.

You can send your comments in the following ways:

• Fax: 603-884-0120 Attn: UBPG Publications, ZKO3-3/Y32

• Internet electronic mail: readers_comment@zk3.dec.com

A Reader’s Comment form is located on your system in the following
location:

/usr/doc/readers_comment.txt

• Mail:

Compaq Computer Corporation
UBPG Publications Manager
ZKO3-3/Y32
110 Spit Brook Road
Nashua, NH 03062-9987

A Reader’s Comment form is located in the back of each printed
manual. The form is postage paid if you mail it in the United States.

Please include the following information along with your comments:

• The full title of the book and the order number. (The order number is
printed on the title page of this book and on its back cover.)

xx About This Manual

• The section numbers and page numbers of the information on which
you are commenting.

• The version of Tru64 UNIX that you are using.

• If known, the type of processor that is running the Tru64 UNIX
software.

The Tru64 UNIX Publications group cannot respond to system problems or
technical support inquiries. Please address technical questions to your local
system vendor or to the appropriate Compaq technical support office.
Information provided with the software media explains how to send
problem reports to Compaq.

Conventions

%
$ A percent sign represents the C shell system

prompt. A dollar sign represents the system prompt
for the Bourne, Korn, and POSIX shells.

A number sign represents the superuser prompt.

% cat Boldface type in interactive examples indicates
typed user input.

file Italic (slanted) type indicates variable values,
placeholders, and function argument names.

[|]
{ | } In syntax definitions, brackets indicate items that

are optional and braces indicate items that are
required. Vertical bars separating items inside
brackets or braces indicate that you choose one item
from among those listed.

. . .
In syntax definitions, a horizontal ellipsis indicates
that the preceding item can be repeated one or
more times.

cat(1) A cross-reference to a reference page includes the
appropriate section number in parentheses. For
example, cat(1) indicates that you can find

About This Manual xxi

information on the cat command in Section 1 of the
reference pages.

Return In an example, a key name enclosed in a box
indicates that you press that key.

Ctrl/x This symbol indicates that you hold down the first
named key while pressing the key or mouse button
that follows the slash. In examples, this key
combination is enclosed in a box (for example,
Ctrl/C).

xxii About This Manual

1
Overview

This chapter describes the various phases in an application development
project and the Tru64 UNIX tools that you can use during each of the
phases.

This chapter addresses the following topics:

• Application development phases (Section 1.1)

• Specifications and design considerations (Section 1.2)

• Major software development tools (Section 1.3)

• Source file control (Section 1.4)

• Program installation tools (Section 1.5)

• Interprocess communications (Section 1.6)

1.1 Application Development Phases
There are five major phases in application development. Table 1–1 describes
these phases and the tools and features available for use in each phase.

Table 1–1: Programming Phases and Tru64 UNIX

Phase Tools/Features

Requirements and specifications Standards
Internationalization
Security

Design Routines
Coding Considerations
Libraries
Common Files

Implementation vi, ex, ed, lint, grep, cxref, sed,
time, dbx, third, ld, make,
compilers, threads

Testing diff, shell scripts, pixie, prof

Maintaining setld, tar, sccs, rcs

In many instances, the Tru64 UNIX system offers more than one tool to do
a job. The choices of tools and programming languages to use are left to you.

Overview 1–1

1.2 Specification and Design Considerations

When you design an application, some of your decisions depend on the
nature of the application. Tru64 UNIX provides features and tools to help
you create applications that can be portable, internationalized,
window-oriented, or whatever is appropriate for the needs of the users of
those applications.

One of the primary design considerations concerns adhering to UNIX
environment standards and portability. If you want your application to run
both on Tru64 UNIX systems and on other UNIX operating systems,
consider limiting your design to features that adhere to X/Open Portability
guidelines and POSIX standards.

You might also need to design your application so that it can be used in a
variety of countries. The Tru64 UNIX operating system contains
internationalization tools and functions to help you write software to be
used by people working in different natural languages.

Another consideration is the terminal environment in which your
application will be used. If end users have workstations or window
terminals, you might want to design your application to use window
displays.

1.2.1 Standards

Adhering to programming standards enhances the ability to port programs
and applications between hardware platforms or even operating systems.
Writing programs according to portability standards makes it easy for
users to move between systems without major retraining. As part of
program portability, some standards include internationalization concepts.

The following are the primary standards in the UNIX programming
environment:

• ANSI

• ISO

• POSIX

• X/Open

In addition to the standards in the preceding list, the OSF Application
Environment Specification (AES) specifies application-level interfaces that
an application must provide to support portable applications and the
semantics or protocols associated with these interfaces.

Various ANSI standards apply to specific programming tools such as
languages, networks and communication protocols, character coding, and

1–2 Overview

database systems. Information on conformance and extensions to a
particular ANSI standard appears in the documentation set for the
particular language, network system, or database system. For information
about compiling C programs to adhere to ANSI standards, see Chapter 2.

The Tru64 UNIX system allows you to write programs that conform to
POSIX and X/Open standards. Information on the POSIX standard is
contained in POSIX — Part 1: System Application Program Interface (API)
[C Language] for IEEE Std. 1003.1c-1994. The Tru64 UNIX header files
contain POSIX- and X/Open-conformant information.

1.2.2 Internationalization

An internationalized application provides a run-time interface that allows
users to work in their own language with culturally appropriate
representations of data. The Tru64 UNIX operating system provides
interfaces and utilities for you to develop internationalized applications
that conform to Issue 4 of X/Open CAE specifications. It also supports the
Multibyte Support Extension (MSE) of ISO C that is part of Issue 5 of the
X/Open CAE specification.

Considerations for developing internationalized applications include:

• Language

• Cultural data

• Character sets

• Localization

To meet these considerations, your applications must not make any
assumptions about language, local customs, or coded character sets. Data
specific to a culture is held separate from the application’s logic. You use
run-time facilities to bind your application to the appropriate language
message text.

For details about the Tru64 UNIX internationalization package, see
Writing Software for the International Market.

1.2.3 Window-Oriented Applications

For information on developing window-oriented applications, see the
following manuals:

OSF/Motif Programmer’s Guide

Common Desktop Environment: Programmer’s Guide

Common Desktop Environment: Programmer’s Overview

Overview 1–3

Common Desktop Environment: Application Builder User’s Guide

Common Desktop Environment: Internationalization Programmer’s Guide

Common Desktop Environment: Style Guide and Certification Checklist

Common Desktop Environment: Help System Author’s and Programmer’s
Guide

1.2.4 Secure Applications

Tru64 UNIX provides a Security Integration Architecture (SIA) that allows
the layering of local and distributed security authentication mechanisms
onto the operating system. The SIA configuration framework isolates
security-sensitive commands from the specific security mechanisms. See
the Security Integration Architecture chapter of the Security manual and
the sia*(3) reference pages for more information.

The Programmer’s Guide to Security portion of the Security manual also
provides detailed information on all aspects of creating trusted programs.

1.3 Major Software Development Tools

The Tru64 UNIX system is compatible with a number of higher-level
languages, and it includes tools for linking and debugging programs.

1.3.1 Languages Supported by the Tru64 UNIX Environment

The Tru64 UNIX operating system includes an assembler (for assembly
language programs) and a Java development kit (JDK). Compilers for other
languages — such as C, C++, Fortran, Ada, and Pascal — are separately
orderable.

For a complete list of optional products, contact your Compaq
representative.

For more information on Java, see the Java documentation in the following
directory on the system where the JDK in installed:

/usr/share/doclib/java/index.html

For more information on the assembler, see as(1) and the Assembly
Language Programmer’s Guide.

Documentation for the other languages can be ordered when you order the
compilers for those languages.

1–4 Overview

1.3.2 Linking Object Files

In most instances, you can use the C compiler driver command (cc) to link
separate object files into a single executable object file.

As part of the compilation process, most compiler drivers call the linker
(ld) to combine one or more object files into a single executable object file.
In addition, the linker resolves external references, searches libraries, and
performs all other processing required to create an executable object file.

The development environment allows you to create applications composed
of source code files written in different languages. In these instances, you
compile each of the files separately and then link the compiled object files
together in a separate step. You invoke the linker separately from the
compiler by entering the ld command.

You can create shared libraries by using compiler driver commands or the
ld command. In addition, you can create archive (static) libraries by using
the ar command. For more information on how to create libraries, see
Chapter 4. For detailed information on compiling and linking programs, see
Chapter 2 and Chapter 4, as well as the documentation sets for the
individual languages.

1.3.3 Debugging and Program Analysis Tools

The following tools are the primary debugging and program analysis tools
on the Tru64 UNIX operating system:

• The dbx debugger (see Chapter 5 or dbx(1) for details)

• Program profiling tools (see Chapter 8 for details)

• The Third Degree tool (see Chapter 7 or third(1) for details)

• The lint utility (see Chapter 6 or lint(1) for details)

The ladebug debugger is also supported on the Tru64 UNIX operating
system. In addition to providing the features provided by the dbx debugger,
it supports features for debugging multithreaded programs. For
information on the ladebug debugger, which supports C, C++, and
Fortran, see the Ladebug Debugger Manual and ladebug(1).

1.4 Source File Control

An integral part of creating a software application is managing the
development and maintenance processes. The Tru64 UNIX operating
system provides the Source Code Control System (SCCS) utility and the
RCS code management system to help you store application modules in a

Overview 1–5

directory, track changes made to those module files, and monitor user
access to the files.

SCCS and RCS on the Tru64 UNIX operating system provide support
similar to SCCS and RCS utilities on other UNIX systems. In addition,
Tru64 UNIX has an sccs preprocessor, which provides an interface to the
more traditional SCCS commands.

SCCS and RCS maintain a record of changes made to files stored using the
utility. The record can include information on why the changes were made,
who made them, and when they were made. You can use either SCCS or
RCS to recover previous versions of files as well as to maintain different
versions simultaneously. SCCS is useful for application project management
because it does not allow two people to modify the same file simultaneously.

For more information , see sccs(1) and rcs(1) and the Programming
Support Tools manual.

1.5 Program Installation Tools

After you create your program or application, you might want to package it
as a kit for the setld installation utility so that it can be easily distributed
to other users. The Tru64 UNIX operating system has several utilities that
you can use to install, remove, combine, validate, and configure programs
and applications.

Software for Tru64 UNIX systems consists of a hierarchical group of files
and directories. If your application or program consists of more than one
file or directory, you need to determine how the files and directories are
grouped within the hierarchy. The setld installation process preserves the
integrity of each product’s hierarchy when it is transferred from the
development system to a production system (that is, when the product is
installed). The kitting process includes grouping the component files for the
product into subsets, allowing the system administrator to install some or
all of them as needed.

1–6 Overview

Using the setld utility and its related tools provides the following benefits:

• Installation security

The setld utility verifies each subset immediately after it is
transferred from one system to another to make sure that the transfer
was successful. Each subset is recoverable, so you can reinstall one that
has been damaged or deleted.

• Flexibility

System administrators can choose which optional subsets to install.
Administrators can also delete subsets and then reinstall them later, as
needed. You might use this feature to provide multiple language
support for your application or to allow users to select among optional
features of your application.

• Uniformity

The setld utility is an integral part of the Tru64 UNIX installation
implementation.

Using setld, you can load your application on any of the following
distribution media for installation on other systems:

• CD-ROM distribution media

• An arbitrary, mountable file system on any supported data disk; for
example, a third-party SCSI disk cartridge

For more information on using the setld command and creating and
managing software product kits, see the Programming Support Tools
manual.

1.6 Overview of Interprocess Communication Facilities

Interprocess communication (IPC) is the exchange of information between
two or more processes. In single-process programming, modules within a
single process communicate with each other using global variables and
function calls, with data passing between the functions and the callers.
When programming using separate processes having images in separate
address spaces, you need to use additional communication mechanisms.

Tru64 UNIX provides the following facilities for interprocess
communication:

• System V IPC

System V IPC includes the following IPC facilities: messages, shared
memory, and semaphores.

Overview 1–7

• Pipes

For information about pipes, see the Guide to Realtime Programming.

• Signals

For information about signals, see the Guide to Realtime Programming.

• Sockets

For information about sockets, see the Network Programmer’s Guide.

• STREAMS

For information about STREAMS, see the Programmer’s Guide:
STREAMS.

• Threads

For information about programming using threads, see the Guide to
DECthreads and Chapter 12.

• X/Open Transport Interface (XTI)

For information about XTI, see the Network Programmer’s Guide.

1–8 Overview

2
The Compiler System

This chapter contains information on the following topics:

• Compiler system components (Section 2.1)

• Data types in the Tru64 UNIX environment (Section 2.2)

• Using the C preprocessor (Section 2.3)

• Compiling source programs (Section 2.4)

• Linking object files (Section 2.5)

• Running programs (Section 2.6)

• Object file tools (Section 2.7)

• ANSI name space pollution cleanup in the standard C library
(Section 2.8)

The compiler system is responsible for converting source code into an
executable program. This can involve several steps:

• Preprocessing — The compiler system performs such operations as
expanding macro definitions or including header files in the source code.

• Compiling — The compiler system converts a source file or preprocessed
file to an object file with the .o file suffix.

• Linking — The compiler system produces a binary image.

These steps can be performed by separate preprocessing, compiling, and
linking commands, or they can be performed in a single operation, with the
compiler system calling each tool at the appropriate time during the
compilation.

Other tools in the compiler system help debug the program after it has
been compiled and linked, examine the object files that are produced, create
libraries of routines, or analyze the run-time performance of the program.

Table 2–1 summarizes the tools in the compiler system and points to the
chapter or section where they are described in this and other documents.

The Compiler System 2–1

Table 2–1: Compiler System Functions

Task Tools Where Documented

Compile, link, and
load programs, build
shared libraries

Compiler drivers, link
editor, dynamic loader

This chapter, Chapter 4, cc(1),
c89(1), as(1), ld(1),
loader(5), Assembly Language
Programmer’s Guide, DEC C
Language Reference Manual

Debug programs Symbolic debugger (dbx
and ladebug) and Third
Degree

Chapter 5, Chapter 6, dbx(1),
third(5), ladebug(1),
Ladebug Debugger Manual

Profile programs Profiler, call graph
profiler

Chapter 8, prof(1), gprof(1),
pixie(5), atom(1), hiprof(5),
atomtools(5)

Optimize programs Optimizer, postlink
optimizer

This chapter, Chapter 10, cc(1),
third(5)

Examine object files nm, file, size, dis,
odump, and stdump tools

This chapter, nm(1), file(1),
size(1), dis(1), odump(1),
stdump(1), Programming
Support Tools

Produce necessary
libraries

Archiver (ar), linker (ld)
command

This chapter, Chapter 4, ar(1),
ld(1)

2.1 Compiler System Components

Figure 2–1 shows the relationship between the major components of the
compiler system and their primary inputs and outputs.

Figure 2–1: Compiling a Program

ZK-1079U-AI

.c
.c
.i

.o

.a

.so

.i .o a.out

preprocessor compiler linker

2–2 The Compiler System

Compiler system commands, sometimes called driver programs, invoke the
components of the compiler system. Each language has its own set of
compiler commands and options.

The cc command invokes the C compiler. In the Tru64 UNIX programming
environment, a single cc compiler command can perform multiple actions,
including the following:

• Determine whether to call the appropriate preprocessor, compiler (or
assembler), or linker based on the file name suffix of each file.
Table 2–2 lists the supported file suffixes, which identify the contents of
the input files.

• Compile and link a source file to create an executable program. If
multiple source files are specified, the files can be passed to other
compilers before linking.

• Assemble one or more .s files, which are assumed to contain assembler
code, by calling the as assembler, and link the resulting object files.
(Note that if you directly invoke the assembler, you need to link the
object files in a separate step; the as command does not automatically
link assembled object files.)

• Prevent linking and the creation of the executable program, thereby
retaining the .o object file for a subsequent link operation.

• Pass the major options associated with the link command (ld) to the
linker. For example, you can include the −L option as part of the cc
command to specify the directory path to search for a library. Each
language requires different libraries at link time; the driver program
for a language passes the appropriate libraries to the linker. For more
information on linking with libraries, see Chapter 4 and Section 2.5.3.

• Create an executable program file with a default name of a.out or with
a name that you specify.

Table 2–2: File Suffixes and Associated Files

Suffix File

.a Archive library

.c C source code

.i The driver assumes that the source code was processed by the C
preprocessor and that the source code is that of the processing
driver, for example, % cc -c source.i. The file, source.i, is
assumed to contain C source code.

.o Object file.

The Compiler System 2–3

Table 2–2: File Suffixes and Associated Files (cont.)

Suffix File

.s Assembly source code.

.so Shared object (shared library).

2.2 Data Types in the Tru64 UNIX Environment

The following sections describe how data is represented on the Tru64 UNIX
system.

2.2.1 Data Type Sizes

The Tru64 UNIX system is little-endian; that is, the address of a multibyte
integer is the address of its least significant byte and the more significant
bytes are at higher addresses. The C compiler supports only little-endian
byte ordering. The following table gives the sizes of supported data types:

Data Type Size, in Bits

char 8

short 16

int 32

long 64

long long 64

float 32 (IEEE single)

double 64 (IEEE double)

pointer 64a

long double 64
a32-bit pointers available with -xtaso_short.

2.2.2 Floating-Point Range and Processing

The C compiler supports IEEE single-precision (32-bit float) and
double-precision (64-bit double) floating-point data, as defined by the IEEE
Standard for Binary Floating-Point Arithmetic (ANSI/IEEE Std 754-1985).

Floating-point numbers have the following ranges:

• float: 1.17549435e-38f to 3.40282347e+38f

• double: 2.2250738585072014e-308 to 1.79769313486231570e+308

2–4 The Compiler System

Tru64 UNIX provides the basic floating-point number formats, operations
(add, subtract, multiply, divide, square root, remainder, and compare), and
conversions defined in the standard. You can obtain full IEEE-compliant
trapping behavior (including NaN [not-a-number]) by specifying a
compilation option, or by specifying a fast mode when IEEE-style traps are
not required. You can also select, at compile time, the rounding mode
applied to the results of IEEE operations. See cc(1) for information on the
options that support IEEE floating-point processing.

A user program can control the delivery of floating-point traps to a thread
by calling ieee_set_fp_control(), or dynamically set the IEEE rounding
mode by calling write_rnd(). See ieee(3) for additional information on
how to handle IEEE floating-point exceptions.

2.2.3 Structure Alignment

The C compiler aligns structure members on natural boundaries by default.
That is, the components of a structure are laid out in memory in the order
in which they are declared. The first component has the same address as
the entire structure. Each additional component follows its predecessor on
the next natural boundary for the component type.

For example, the following structure is aligned as shown in Figure 2–2:

struct {char c1;
short s1;
float f;
char c2;
}

Figure 2–2: Default Structure Alignment

ZK-1082U-AI

31 15

32

0

char c1

char c2

short s1

64

63

16

71

float f

78

The first component of the structure, c1, starts at offset 0 and occupies the
first byte. The second component, s1, is a short; it must start on a word
boundary. Therefore, padding is added between c1 and s1. No padding is
needed to make f and c2 fall on their natural boundaries. However,

The Compiler System 2–5

because size is rounded up to a multiple of f’s alignment, three bytes of
padding are added after c2.

You can use the following mechanisms to override the default alignment of
structure members:

• The #pragma member_alignment and #pragma
nomember_alignment directives

• The #pragma pack directive

• The −Zpn option

See Section 3.6 and Section 3.8 for information on these directives.

2.2.4 Bit-Field Alignment

In general, the alignment of a bit field is determined by the bit size and bit
offset of the previous field. For example, the following structure is aligned
as shown in Figure 2–3:

struct a {
char f0: 1;
short f1: 12;
char f2: 3;

} struct_a;

Figure 2–3: Default Bit-Field Alignment

ZK-1080U-AI

31 15 12 0

char f2 char f0

short f1

The first bit field, f0, starts on bit offset 0 and occupies 1 bit. The second,
f1, starts at offset 1 and occupies 12 bits. The third, f2, starts at offset 13
and occupies 3 bits. The size of the structure is two bytes.

Certain conditions can cause padding to occur prior to the alignment of the
bit field:

• Bit fields of size 0 cause padding to the next pack boundary. (The pack
boundary is determined by the #pragma pack directive or the −Zpn
compiler option.) For bit fields of size 0, the bit field’s base type is
ignored. For example, consider the following structure:

struct b {
char f0: 1;

2–6 The Compiler System

int : 0;
char f1: 2;

} struct_b;

If the source file is compiled with the −Zp1 option or if a
#pragma pack 1 directive is encountered in the compilation, f0 would
start at offset 0 and occupy 1 bit, the unnamed bit field would start at
offset 8 and occupy 0 bits, and f1 would start at offset 8 and occupy 2
bits.

Similarly, if the −Zp2 option or the #pragma pack 2 directive were
used, the unnamed bit field would start at offset 16. With −Zp4 or
#pragma pack 4, it would start at offset 32.

• If the bit field does not fit in the current unit, padding occurs to either
the next pack boundary or the next unit boundary, whichever is closest.
(The unit boundary is determined by the bit field’s base type; for
example, the unit boundary associated with the declaration “char
foo: 1” is a byte.) The current unit is determined by the current
offset, the bit field’s base size, and the kind of packing specified, as
shown in the following examples:

struct c {
char f0: 7;
short f1: 11;

} struct_c;

Assuming that you specify either the −Zp1 option or the
#pragma pack 1 directive, f0 starts on bit offset 0 and occupies 7 bits
in the structure. Because the base size of f1 is 8 bits and the current
offset is 7, f1 will not fit in the current unit. Padding is added to reach
the next unit boundary or the next pack boundary, whichever comes
first, in this case, bit 8. The layout of this structure is shown in
Figure 2–4.

Figure 2–4: Padding to the Next Pack Boundary

ZK-1081U-AI

31 20 19 0

short f1

8 7

char f0

2.2.5 The _align Storage Class Modifier

Data alignment is implied by data type. For example, the C compiler aligns
an int (32 bits) on a 4-byte boundary and a long (64 bits) on an 8-byte
boundary. The _align storage-class modifier aligns objects of any of the C

The Compiler System 2–7

data types on the specified storage boundary. It can be used in a data
declaration or definition.

The _align modifier has the following format:

_align (keyword)
_align (n)

Where keyword is a predefined alignment constant and n is an integer
power of 2. The predefined constant or power of 2 tells the compiler the
number of bytes to pad in order to align the data.

For example, to align an integer on the next quadword boundary, use any
of the following declarations:

int _align(QUADWORD) data;
int _align(quadword) data;
int _align(3) data;

In this example, int _align (3) specifies an alignment of 2x2x2 bytes,
which is 8 bytes, or a quadword of memory.

The following table shows the predefined alignment constants, their
equivalent power of 2, and equivalent number of bytes:

Constant Power of 2 Number of Bytes

BYTE or byte 0 1

WORD or word 1 2

LONGWORD or longword 2 4

QUADWORD or quadword 3 8

2.3 Using the C Preprocessor

The C preprocessor performs macro expansion, includes header files, and
executes preprocessor directives prior to compiling the source file. The
following sections describe the Tru64 UNIX-specific operations performed
by the C preprocessor. For more information on the C preprocessor, see
cc(1), cpp(1), and the DEC C Language Reference Manual.

2.3.1 Predefined Macros

When the compiler is invoked, it defines C preprocessor macros that
identify the language of the input files and the environments on which the
code can run. See cc(1) for a list of the preprocessor macros. You can
reference these macros in #ifdef statements to isolate code that applies to
a particular language or environment. Use the following statement to
uniquely identify Tru64 UNIX:

2–8 The Compiler System

#if defined (__digital__) && defined (__unix_ _)

The type of source file and the type of standards you apply determine the
macros that are defined. The C compiler supports several levels of
standardization:

• The −std option enforces the ANSI C standard, but allows some
common programming practices disallowed by the standard, and defines
the macro __STDC__ to be 0 (zero). This is the default.

• The −std0 option enforces the Kernighan and Ritchie (K & R)
programming style, with certain ANSI extensions in areas where the
K & R behavior is undefined or ambiguous. In general, −std0 compiles
most pre-ANSI C programs and produces expected results. It does not
define the __STDC__ macro.

• The −std1 option strictly enforces the ANSI C standard and all of its
prohibitions (such as those that apply to handling a void, the definition
of an lvalue in expressions, the mixing of integrals and pointers, and
the modification of an rvalue). It defines the __STDC__ macro to be 1.

2.3.2 Header Files

Header files are typically used for the following purposes:

• To define interfaces to system libraries

• To define constants, types, and function prototypes common to
separately compiled modules in a large application

C header files, sometimes known as include files, have a .h suffix.
Typically, the reference page for a library routine or system call indicates
the required header files. Header files can be used in programs written in
different languages.

_______________________ Note _______________________

If you intend to debug your program using dbx or ladebug, do
not place executable code in a header file. The debugger
interprets a header file as one line of source code; none of the
source lines in the file appears during the debugging session.
For more information on the dbx debugger, see Chapter 5. For
details on ladebug, see the Ladebug Debugger Manual.

You can include header files in a program source file in one of two ways:

#include "filename"

This indicates that the C macro preprocessor should first search for
the include file filename in the directory in which it found the file

The Compiler System 2–9

that contains the directive, then in the search path indicated by the
−I options, and finally in /usr/include.

#include <filename>

This indicates that the C macro preprocessor should search for the
include file filename in the search path indicated by the −I options
and then in /usr/include, but not in the directory where it found
the file that contains the directive.

You can also use the −Idir and -nocurrent_include options to specify
additional pathnames (directories) to be searched by the C preprocessor for
#include files.

• For -Idir, the C preprocessor searches first in the directory where it
found the file that contains the directive, followed by the specified
pathname (dir), and then the default directory (/usr/include). If
dir is omitted, the default directory is not searched.

• For -I, with no arguments, the C preprocessor does not to search in
/usr/include.

• For -nocurrent_include, the C preprocessor does not search the
directory containing the file that contains the #include directive; that
is, #include "filename" is treated the same as #include
<filename>.

2.3.3 Setting Up Multilanguage Include Files

C, Fortran, and assembly code can reside in the same include files, and can
then be conditionally included in programs as required. To set up a
shareable include file, you must create a .h file and enter the respective
code, as shown in the following example:

#ifdef __LANGUAGE_C__
.
. (C code)
.
#endif
#ifdef __LANGUAGE_ASSEMBLY__
.
. (assembly code)
.
#endif

When the compiler includes this file in a C source file, the
__LANGUAGE_C__ macro is defined and the C code is compiled. When the

2–10 The Compiler System

compiler includes this file in an assembly language source file, the
__LANGUAGE_ASSEMBLY_ _ macro is defined, and the assembly language
code is compiled.

2.3.4 Implementation-Specific Preprocessor Directives (#pragma)

The #pragma directive is a standard method of implementing features that
vary from one compiler to the next. The C compiler supports the following
implementation-specific pragmas:

• #pragma environment

• #pragma extern_prefix

• #pragma function

• #pragma inline

• #pragma intrinsic

• #pragma linkage

• #pragma member_alignment

• #pragma message

• #pragma pack

• #pragma pointer_size

• #pragma use_linkage

• #pragma weak

Chapter 3 provides detailed descriptions of these pragmas.

2.4 Compiling Source Programs

The compilation environment established by the cc command produces
object files that comply with the common object file format (COFF).

Options supported by the cc command select a variety of program
development functions, including debugging, optimizing, and profiling
facilities, and the names assigned to output files. See cc(1) for details on cc
command-line options.

The following sections describe the default compiler behavior and how to
compile multilanguage programs.

2.4.1 Default Compilation Behavior

Most compiler options have default values that are used if the option is not
specified on the command line. For example, the default name for an

The Compiler System 2–11

output file is filename.o for object files, where filename is the base
name of the source file. The default name for an executable program object
is a.out. The following example uses the defaults in compiling two source
files named prog1.c and prog2.c:

% cc prog1.c prog2.c

This command runs the C compiler, creating object files prog1.o and
prog2.o and the executable program a.out.

When you enter the cc compiler command with no other options, the
following options are in effect:

-noansi_alias

Turns off ANSI C aliasing rules, which prevents the optimizer from
being aggressive in its optimizations.

-arch generic

Generates instructions that are appropriate for all Alpha processors.

-assume aligned_objects

Allows the compiler to make such an assumption, and thereby
generate more efficient code for pointer dereferences of aligned
pointer types.

-assume math_errno

Allows the compiler to make the assumption that the program might
interrogate errno after any call to a math library routine that is
capable of setting errno.

-call_shared

Produces a dynamic executable file that uses shareable objects at run
time.

-nocheck_bounds

Disables the run-time checking of array bounds.

-cpp

Causes the C macro preprocessor to be called on C and assembly
source files before compiling.

-error_limit 30

Limits the number of error-level diagnostics that the compiler will
output for a given compilation to 30.

2–12 The Compiler System

-float

Informs the compiler that it is not necessary to promote expressions
of type float to type double.

-nofp_reorder

Directs the compiler to use only certain scalar rules for calculations.

-fprm n

Performs normal rounding (unbiased round to nearest) of
floating-point numbers.

-fptm n

Generates instructions that do not generate floating-point underflow
or inexact trapping modes.

-g0

Does not produce symbol information for symbolic debugging.

-I/usr/include

Specifies that #include files whose names do not begin with a slash
(/) are always sought first in the directory /usr/include.

-inline manual

Inlines only those function calls explicitly requested for inlining by a
#pragma inline directive.

-intrinsics

Directs the compiler to recognize certain functions as intrinsics and
perform appropriate optimizations.

-member_alignment

Directs the compiler to naturally align data structure members (with
the exception of bit-field members).

-nomisalign

Generates alignment faults for arbitrarily aligned addresses.

-nestlevel=50

Sets the nesting level limit for include files to 50.

The Compiler System 2–13

-O1

Enables global optimizations.

-p0

Disables profiling.

-nopg

Turns off gprof profiling.

-preempt_module

Allows symbol preemption on a module-by-module basis.

-SD/usr/include

Suppresses messages for nonportable constructs in header files whose
pathnames are prefixed with /usr/include.

-signed

Causes all char declarations to be signed char.

-std

Enforces the ANSI C standard, but allows some common
programming practices disallowed by the standard.

-tune generic

Selects instruction tuning that is appropriate for all implementations
of the Alpha architecture.

-writable_strings

Makes string literals writable.

The following list includes miscellaneous aspects of the default cc compiler
behavior:

• The output file is named a.out unless another name is specified by
using the -o option.

• Source files are automatically linked if compilation (or assembly) is
successful.

• Floating-point computations are fast floating point, not full IEEE.

• Pointers are 64 bits. For information on using 32-bit pointers, see
Appendix A.

2–14 The Compiler System

• Temporary files are placed in the /tmp directory.

2.4.2 Compiling Multilanguage Programs

When the source language of the main program differs from that of a
subprogram, compile each program separately with the appropriate driver
and link the object files in a separate step. You can create objects suitable
for linking by specifying the -c option, which stops a driver immediately
after the object file has been created. For example:

% cc -c main.c

This command produces the object file main.o, not the executable file
a.out.

After creating object modules for source files written in languages other
than C, you can use the cc command to compile C source files and link all
of the object modules into an executable file. For example, the following cc
command compiles c-prog.c and links c-prog.o and nonc-prog.o into
the executable file a.out:

% cc nonc-prog.o c-prog.c

2.4.3 Enabling Run-Time Checking of Array Bounds

The cc command’s -check_bounds option generates run-time code to
perform array bounds verification. The -nocheck_bounds option (the
default) disables the run-time checking of array bounds.

The kind of code that causes the compiler to emit run-time checks, and the
exact bounds values used in a given check, are subject to certain
characteristics of the compiler implementation that would not be obvious to
a user. The exact conditions, which assume a good understanding of the C
language rules involving arrays, are as follows:

• Checks are made only when the name of a declared array object is used.
No checks are made when a pointer value is used, even if the pointer is
dereferenced using the subscript operator. This means, for example,
that no checks are made on formal parameters declared as arrays of
one dimension because they are considered pointers in the C language.
However, if a formal parameter is a multidimensional array, the first
subscript represents a pointer-manipulation that determines the array
object to be accessed, and that bound cannot be checked, but bounds
checks are generated for the second and subsequent subscripts.

• If an array is accessed using the subscript operator (as either the left or
right operand) and the subscript operator is not the operand of an
address-of operator, the check is for whether the index is between zero
and the number of elements in the array minus one inclusive.

The Compiler System 2–15

• If an array is accessed using the subscript operator (as either the left or
right operand) and the subscript operator is the operand of the
address-of operator, the check is for whether the index is between zero
and the number of elements in the array inclusive. The C language
specifically requires that it be valid to use the address that is one past
the end of an array in a computation, to allow such common
programming practice as loop termination tests like:

int a[10];
int *b;
for (b = a ; b < &a[10] ; b++) { }

In this case, the use of &a[10] is allowed even though a[10] is outside
the bounds of the array.

• If the array is being accessed using pointer addition, the check is for
whether the value being added is between zero and the number of
elements in the array inclusive. Adding an integer to an array name
involves converting the array name to a pointer to the first element and
adding the integer value scaled by the size of an element. The
implementation of bounds checking in the compiler is triggered by the
conversion of the array name to a pointer, but at the point in time when
the bounds check is introduced, it is not known whether the resulting
pointer value will be dereferenced. Therefore, this case is treated like
the previous case: only the computation of the address is checked and it
is valid to compute the address of one element beyond the end of the
array.

• If the array is being accessed using pointer subtraction (that is, the
subraction of an integer value from a pointer, not the subtraction of one
pointer from another), the check is for whether the value being
subtracted is between the negation of the number of elements in the
array and zero inclusive.

Note that in the last three cases, an optional compile-time message
(ident SUBSCRBOUNDS2) can be enabled to detect the case where an
array has been accessed using either a constant subscript or constant
pointer arithmetic, and the element accessed is exactly one past the end
of the array.

• No check is made for arrays declared with one element. Because ANSI
C does not allow arrays without dimensions inside struct declarations,
it is common practice to implement a dynamic-sized array as a struct
that holds the number of elements allocated in some member, and whose
last member is an array declared with one element. Because accesses to
the final array member are intended to be bounded by the run-time
allocated size, it is not useful to check against the declared bound of 1.

Note that in this case, an optional compile-time message (ident
SUBSCRBOUNDS1) can be enabled to detect the case where an array

2–16 The Compiler System

declared with a single element has been accessed using either a
constant subscript or constant pointer arithmetic, and the element
accessed is not part of the array.

• The compiler will emit run-time checks for arrays indexed by constants
(even though the compiler can and does detect this case at
compile-time). An exception would be that no run-time check is made if
the compiler can determine that the access is valid.

• If a multidimensional array is accessed, the compiler will perform
checks on each of the subscript expressions, making sure each is within
the corresponding bound. So, for the following code the compiler will
check that both x and y are between 0 and 9 (it will not check that
10 * x + y is between 0 and 99):

int a[10][10];
int x,y,z;
x = a[x][y];

The following examples illustrate these rules:
int a[10];
int *b;
int c;
int *d;
int one[1];
int vla[c]; // C9X variable-length array

a[c] = 1; // check c is 0-9, array subscript
c[a] = 1; // check c is 0-9, array subscript
b[c] = 1; // no check, b is a pointer
d = a + c; // check c is 0-10, computing address
d = b + c; // no check, b is a pointer
b = &a[c] // check c is 0-10, computing address
*(a + c) = 1; // check c is 0-10, computing address
*(a - c) = 1; // check c is -10 to 0, computing address

a[1] = 1; // no run-time check - know access is valid
vla[1] = 1; // run-time check, vla has run-time bounds
a[10] = 1; // run-time check (and compiler diagnostic)
d = a + 10; // no run-time check, computing address

// SUBSCRBOUNDS2 message can be enabled

c = one[5]; // no run-time check, array of one element
// SUBSCRBOUNDS1 message can be enabled

When an out-of-bounds access is encountered, the output is as follows:

Trace/BPT trap (core dumped)

A program can trap this error with the following code:

signal(SIGTRAP, handler);

Note that when run-time checking is enabled, incorrect checks might be
made in certain cases where arrays are legitimately accessed using pointer
arithmetic.

The Compiler System 2–17

The compiler is only able to output the checking code for the first
arithmetic operation performed on a pointer that results from converting
an array name to a pointer. This can result in an incorrect check if the
resulting pointer value is again operated on by pointer arithmetic. Consider
the expression a = b + c - d, where a is a pointer, b is an array, and c
and d are integers. When bounds-checking is enabled, a check will be made
to verify that c is within the bounds of the array. This will lead to an
incorrect run-time trap in cases where c is outside the bounds of the array
but c - d is not.

In these cases, you can recode the pointer expression so that the integer
part is in parentheses. This way, the expression will contain only one
pointer arithmetic operation and the correct check will be made. In the
previous example, the expression would be changed to the following:

a = b + (c - d);

2.5 Linking Object Files

The cc driver command can link object files to produce an executable
program. In some cases, you may want to use the ld linker directly.
Depending on the nature of the application, you must decide whether to
compile and link separately or to compile and link with one compiler
command. Factors to consider include:

• Whether all source files are in the same language

• Whether any files are in source form

2.5.1 Linking with Compiler Commands

You can use a compiler command instead of the linker command to link
separate objects into one executable program. Each compiler (except the
assembler) recognizes the .o suffix as the name of a file that contains
object code suitable for linking and immediately invokes the linker.

Because the compiler driver programs pass the libraries associated with
that language to the linker, using the compiler command is usually
recommended. For example, the cc driver uses the C library (libc.so) by
default. For information about the default libraries used by each compiler
command, see the appropriate command in the reference pages, such as
cc(1).

You can also use the -l option of the cc command to specify additional
libraries to be searched for unresolved references. The following example
shows how to use the cc driver to pass the names of two libraries to the
linker with the -l option:

2–18 The Compiler System

% cc -o all main.o more.o rest.o -lm -lexc

The -lm option specifies the math library; the -lexc option specifies the
exception library.

Compile and link modules with a single command when you want to
optimize your program. Most compilers support increasing levels of
optimization with the use of certain options. For example:

• The -O0 option requests no optimization (usually for debugging
purposes).

• The -O1 option requests certain local (module-specific) optimizations.

• Cross-module optimizations can be requested with the -O3 option or
with the -ifo option. In this case, compiling multiple files in one
operation allows the compiler to perform the maximum possible
optimizations.

• Certain compilers may provide a combination of options (such as -c
and -o) that compile multiple source files into a single object module.
This combination allows interprocedural optimizations to occur, yet
retains the object file.

2.5.2 Linking with the ld Command

Normally, users do not need to run the linker directly, but use the cc
command to indirectly invoke the linker. Executables that need to be built
solely from assembler objects can be built with the ld command.

The linker (ld) combines one or more object files (in the order specified)
into one executable program file, performing relocation, external symbol
resolutions, and all other processing required to make object files ready for
execution. Unless you specify otherwise, the linker names the executable
program file a.out. You can execute the program file or use it as input for
another linker operation.

The as assembler does not automatically invoke the linker. To link a
program written in assembly language, do either of the following:

• Assemble and link with one of the other compiler commands. The .s
suffix of the assembly language source file automatically causes the
compiler command to invoke the assembler.

• Assemble with the as command and then link the resulting object file
with the ld command.

For information about the options and libraries that affect the linking
process, see ld(1).

The Compiler System 2–19

2.5.3 Specifying Libraries

When you compile your program on the Tru64 UNIX system, it is
automatically linked with the C library, libc.so. If you call routines that
are not in libc.so or one of the archive libraries associated with your
compiler command, you must explicitly link your program with the library.
Otherwise, your program will not be linked correctly.

You need to explicitly specify libraries in the following situations:

• When compiling multilanguage programs

If you compile multilanguage programs, be sure to explicitly request
any required run-time libraries to handle unresolved references. Link
the libraries by specifying -lstring, where string is an abbreviation
of the library name.

For example, if you write a main program in C and some procedures in
another language, you must explicitly specify the library for that
language and the math library. When you use these options, the linker
replaces the -l with lib and appends the specified characters (for the
language library and for the math library) and the .a or .so suffix,
depending upon whether it is a static (nonshared archive library) or
dynamic (call-shared object or shared library) library. Then, it searches
the following directories for the resulting library name:

/usr/shlib
/usr/ccs/lib
/usr/lib/cmplrs/cc
/usr/lib
/usr/local/lib
/var/shlib

For a list of the libraries that each language uses, see the reference
pages of the compiler drivers for the various languages.

• When storing object files in an archive library

You must include the pathname of the library on the compiler or linker
command line. For example, the following command specifies that the
libfft.a archive library in the /usr/jones directory is to be linked
along with the math library:

% cc main.o more.o rest.o /usr/jones/libfft.a -lm

The linker searches libraries in the order that you specify. Therefore, if
any file in your archive library uses data or procedures from the math
library, you must specify the archive library before you specify the math
library.

2–20 The Compiler System

2.6 Running Programs

To run an executable program in your current working directory, in most
cases you enter its file name. For example, to run the program a.out
located in your current directory, enter:

% a.out

If the executable program is not in a directory in your path, enter the
directory path before the file name, or enter:

% ./a.out

When the program is invoked, the main function in a C program can accept
arguments from the command line if the main function is defined with one
or more of the following optional parameters:
int main (int argc, char *argv[], char *envp[])[...]

The argc parameter is the number of arguments in the command line that
invoked the program. The argv parameter is an array of character strings
containing the arguments. The envp parameter is the environment array
containing process information, such as the user name and controlling
terminal. (The envp parameter has no bearing on passing command-line
arguments. Its primary use is during exec and getenv function calls.)

You can access only the parameters that you define. For example, the
following program defines the argc and argv parameters to echo the
values of parameters passed to the program:

/*
* Filename: echo-args.c
* This program echoes command-line arguments.
*/

#include <stdio.h>

int main(int argc, char *argv[])
{
int i;

printf("program: %s\n", argv[0]); /* argv[0] is program name */

for (i=1; i < argc; i++)
printf("argument %d: %s\n", i, argv[i]);

return(0);
}

The program is compiled with the following command to produce a program
file called a.out:

The Compiler System 2–21

$ cc echo-args.c

When the user invokes a.out and passes command-line arguments, the
program echoes those arguments on the terminal. For example:

$ a.out Long Day\’s "Journey into Night"
program: a.out
argument 1: Long
argument 2: Day’s
argument 3: Journey into Night

The shell parses all arguments before passing them to a.out. For this
reason, a single quote must be preceded by a backslash, alphabetic
arguments are delimited by spaces or tabs, and arguments with embedded
spaces or tabs are enclosed in quotation marks.

2.7 Object File Tools

After a source file has been compiled, you can examine the object file or
executable file with following tools:

• odump — Displays the contents of an object file, including the symbol
table and header information.

• stdump — Displays symbol table information from an object file.

• nm — Displays only symbol table information.

• file — Provides descriptive information on the general properties of
the specified file, for example, the programming language used.

• size — Displays the size of the text, data, and bss segments.

• dis — Disassembles object files into machine instructions.

The following sections describe these tools. In addition, see strings(1) for
information on using the strings command to find the printable strings in
an object file or other binary file.

2.7.1 Dumping Selected Parts of Files (odump)

The odump tool displays header tables and other selected parts of an object
or archive file. For example, odump displays the following information
about the file echo-args.o:

% odump -at echo-args.o

ARCHIVE SYMBOL TABLE

2–22 The Compiler System

ARCHIVE HEADER
Member Name Date Uid Gid Mode Size

SYMBOL TABLE INFORMATION
[Index] Name Value Sclass Symtype Ref
echo-args.o:
[0] main 0x0000000000000000 0x01 0x06 0xfffff
[1] printf 0x0000000000000000 0x06 0x06 0xfffff
[2] _fpdata 0x0000000000000000 0x06 0x01 0xfffff

For more information, see odump(1).

2.7.2 Listing Symbol Table Information (nm)

The nm tool displays symbol table information for object files. For example,
nm displays the following information about the object file produced for the
executable file a.out:

% nm
nm: Warning: - using a.out

Name Value Type Size

.bss | 0000005368709568 | B | 0000000000000000

.data | 0000005368709120 | D | 0000000000000000

.lit4 | 0000005368709296 | G | 0000000000000000

.lit8 | 0000005368709296 | G | 0000000000000000

.rconst | 0000004831842144 | Q | 0000000000000000

.rdata | 0000005368709184 | R | 0000000000000000

.

.

.

The Name column contains the symbol or external name; the Value column
shows the address of the symbol, or debugging information; the Type
column contains a letter showing the symbol type; and the Size column
shows the symbol’s size (accurate only when the source file is compiled with
the debugging option, for example, −g). Some of the symbol type letters are:

• B — External zeroed data

• D — External initialized data

• G — External small initialized data

• Q — Read-only constants

• R — External read-only data

For more information, see nm(1).

The Compiler System 2–23

2.7.3 Determining a File’s Type (file)

The file command reads input files, tests each file to classify it by type,
and writes the file’s type to standard output. The file command uses the
/etc/magic file to identify files that contain a magic number. (A magic
number is a numeric or string constant that indicates a file’s type.)

The following example shows the output of the file command on a
directory containing a C source file, object file, and executable file:

% file *.*
.: directory
..: directory
a.out: COFF format alpha dynamically linked, demand paged executable
or object module not stripped - version 3.11-8
echo-args.c: c program text
echo-args.o: COFF format alpha executable or object module not
stripped - version 3.12-6

For more information, see file(1).

2.7.4 Determining a File’s Segment Sizes (size)

The size tool displays information about the text, data, and bss segments
of the specified object or archive file or files in octal, hexadecimal, or
decimal format. For example, when it is called without any arguments, the
size command returns information on a.out. You can also specify the
name of an object or executable file on the command line. For example:

% size
text data bss dec hex
8192 8192 0 16384 4000
% size echo-args.o
text data bss dec hex
176 96 0 272 110

For more information, see size(1).

2.7.5 Disassembling an Object File (dis)

The dis tool disassembles object file modules into machine language. For
example, the dis command produces the following output when it
disassembles the a.out program:

% dis a.out
...

__start:
0x120001080: 23defff0 lda sp, -16(sp)
0x120001084: b7fe0008 stq zero, 8(sp)
0x120001088: c0200000 br t0, 0x12000108c

2–24 The Compiler System

0x12000108c: a21e0010 ldl a0, 16(sp)
0x120001090: 223e0018 lda a1, 24(sp)
...

For more information, see dis(1).

2.8 ANSI Name Space Pollution Cleanup in the Standard C
Library

The ANSI C standard states that users whose programs link against libc
are guaranteed a certain range of global identifiers that can be used in
their programs without danger of conflict with, or preemption of, any global
identifiers in libc.

The ANSI C standard also reserves a range of global identifiers that libc
can use in its internal implementation. These are called reserved
identifiers and consist of the following, as defined in ANSI document
number X3.159-1989:

• Any external identifier beginning with an underscore

• Any external identifier beginning with an underscore followed by an
uppercase letter or an underscore

ANSI conformant programs are not permitted to define global identifiers
that either match the names of ANSI routines or fall into the reserved
name space specified earlier in this section. All other global identifier
names are available for use in user programs.

Historical libc implementations contain large numbers of non-ANSI,
nonreserved global identifiers that are both documented and supported.
These routines are often called from within libc by other libc routines,
both ANSI and otherwise. A user’s program that defines its own version of
one of these non-ANSI, nonreserved items would preempt the routine of the
same name in libc. This could alter the behavior of supported libc
routines, both ANSI and otherwise, even though the user’s program may be
ANSI-conformant. This potential conflict is known as ANSI name space
pollution.

The implementation of libc on Tru64 UNIX includes a large number of
non-ANSI, nonreserved global identifiers that are both documented and
supported. To protect against preemption of these global identifiers within
libc and to avoid pollution of the user’s name space, the vast majority of
these identifiers have been renamed to the reserved name space by
prepending two underscores (_ _) to the identifier names. To preserve
external access to these items, weak identifiers have been added using the
original identifier names that correspond to their renamed reserved

The Compiler System 2–25

counterparts. Weak identifiers work much like symbolic links between files.
When the weak identifier is referenced, the strong counterpart is used
instead.

User programs linked statically against libc may have extra symbol table
entries for weak identifiers. Each of these identifiers will have the same
address as its reserved counterpart, which will also be included in the
symbol table. For example, if a statically linked program simply called the
tzset() function from libc, the symbol table would contain two entries
for this call, as follows:

stdump -b a.out | grep tzset
18. (file 9) (4831850384) tzset Proc Text symref 23 (weakext)
39. (file 9) (4831850384) __tzset Proc Text symref 23

In this example, tzset is the weak identifier and __tzset is its strong
counterpart. The __tzset identifier is the routine that will actually do the
work.

User programs linked as shared should not see such additions to the symbol
table because the weak/strong identifier pairs remain in the shared library.

Existing user programs that reference non-ANSI, nonreserved identifiers
from libc do not need to be recompiled because of these changes, with one
exception: user programs that depended on preemption of these identifiers
in libc will no longer be able to preempt them using the nonreserved
names. This kind of preemption is not ANSI-compliant and is highly
discouraged. However, the ability to preempt these identifiers still exists by
using the new reserved names (those preceded by two underscores).

These changes apply to the dynamic and static versions of libc:

• /usr/shlib/libc.so

• /usr/lib/libc.a

When debugging programs linked against libc, references to weak
symbols resolve to their strong counterparts, as in the following example:

% dbx a.out
dbx version 3.11.4

Type ’help’ for help.

main: 4 tzset

(dbx) stop in tzset

[2] stop in __tzset

(dbx)

2–26 The Compiler System

When the weak symbol tzset in libc is referenced, the debugger
responds with the strong counterpart __tzset instead because the strong
counterpart actually does the work. The behavior of the dbx debugger is
the same as if __tzset were referenced directly.

The Compiler System 2–27

3
Pragma Preprocessor Directives

The #pragma directive is a standard method for implementing features
that vary from one compiler to the next. This chapter describes the
implementation-specific pragmas that are supported on the C compiler:

• #pragma environment (Section 3.1)

• #pragma extern_prefix (Section 3.2)

• #pragma inline (Section 3.3)

• #pragma intrinsic and #pragma function (Section 3.4)

• #pragma linkage (Section 3.5)

• #pragma member_alignment (Section 3.6)

• #pragma message (Section 3.7)

• #pragma pack (Section 3.8)

• #pragma pointer_size (Section 3.9)

• #pragma use_linkage (Section 3.10)

• #pragma weak (Section 3.11)

Pragmas supported by all implementations of Compaq C are described in
the DEC C Language Reference Manual.

Some pragmas are subject to macro expansion. The DEC C Language
Reference Manual lists these pragmas. It also describes the use of double
underscores as prefixes to pragma names and keywords to avoid macro
expansion problems when porting a program that defines a macro with the
same name as a pragma name or keyword.

3.1 The #pragma environment Directive

The #pragma environment directive allows you to set, save, and restore
the state of all context pragmas. The context pragmas are:

#pragma extern_prefix
#pragma member_alignment
#pragma message
#pragma pack
#pragma pointer_size

Pragma Preprocessor Directives 3–1

A context pragma can save and restore previous states, usually before and
after including a header file that might also use the same type of pragma.

The #pragma environment directive protects include files from
compilation contexts set by encompassing programs, and protects
encompassing programs from contexts set in header files that they include.

This pragma has the following syntax:
#pragma environment [cmd_line | hdr_defaults | restore | save]

cmd_line

Sets the states of all of the context pragmas set on the command line.
You can use this pragma to protect header files from environment
pragmas that take effect before the header file is included.

hdr_defaults

Sets the states of all of the context pragmas to their default values.
This is equivalent to the situation in which a program with no
command-line options and no pragmas is compiled, except that this
pragma sets the pragma message state to #pragma nostandard, as
is appropriate for header files.

restore

Restores the current state of every context pragma.

save

Saves the current state of every context pragma.

Without requiring further changes to the source code, you can use #pragma
environment to protect header files from things such as language
enhancements that might introduce additional compilation contexts.

A header file can selectively inherit the state of a pragma from the
including file and then use additional pragmas as needed to set the
compilation to nondefault states. For example:

#ifdef __pragma_environment
#pragma __environment save 1
#pragma __environment header_defaults 2
#pragma member_alignment restore 3
#pragma member_alignment save 4
#endif
.
. /*contents of header file*/
.
#ifdef __pragma_environment

3–2 Pragma Preprocessor Directives

#pragma __environment restore
#endif

In this example:

1 Saves the state of all context pragmas.
2 Sets the default compilation environment.
3 Pops the member alignment context from the #pragma

member_alignment stack that was pushed by #pragma
__environment save, restoring the member alignment context to its
pre-existing state.

4 Pushes the member alignment context back onto the stack so that the
#pragma __environment restore can pop the entry.

Therefore, the header file is protected from all pragmas, except for the
member alignment context that the header file was meant to inherit.

3.2 The #pragma extern_prefix Directive
The #pragma extern_prefix directive controls the compiler’s synthesis of
external names, which the linker uses to resolve external name requests.

When you specify #pragma extern_prefix with a string argument, the C
compiler attaches the string to the beginning of all external names
produced by the declarations that follow the pragma specification.

This pragma is useful for creating libraries where the facility code can be
attached to the external names in the library.

This pragma has the following syntax:
#pragma extern_prefix "string" [(id,...)]

#pragma extern_prefix save

#pragma extern_prefix restore

The quoted string is attached to external names in the declarations that
follow the pragma specification.

You can also specify a prefix for specific external identifiers using the
optional list [(id,...)].

The save and restore keywords can be used to save the current pragma
prefix string and to restore the previously saved pragma prefix string,
respectively.

The default prefix for external identifiers, when none has been specified by
a pragma, is the null string.

The recommended use is as follows:

Pragma Preprocessor Directives 3–3

#pragma extern_prefix save
#pragma extern_prefix " prefix-to-prepend-to-external-names "
...some declarations and definitions ...
#pragma extern_prefix restore

When an extern_prefix is in effect and you are using #include to
include header files, but do not want the extern_prefix to apply to
extern declarations in the header files, use the following code sequence:

#pragma extern_prefix save
#pragma extern_prefix ""
#include ...
#pragma extern_prefix restore

Otherwise, the prefix is attached to the beginning of external identifiers for
definitions in the included files.

______________________ Notes ______________________

The following notes apply when specifying optional identifiers on
#pragma extern_prefix:

• For each id there must not be a declaration of that id
visible at the point of the pragma, otherwise a warning is
issued, and there is no affect on that id.

• Each id affected by a pragma with a nonempty prefix is
expected to be subsequently declared with external linkage
in the same compilation unit. The compiler issues a default
informational if there is no such declaration made by the end
of the compilation.

• It is perfectly acceptable for the id list form of the pragma,
or declarations of the ids listed, to occur within a region of
source code controlled by the other form of the pragma. The
two forms do not interact; the form with an id list always
supersedes the other form.

• There is no interaction between the save/restore stack and
the id lists.

• If the same id appears in more than one pragma, then a
default informational message is issued, unless the prefix on
the second pragma is either empty ("") or matches the
prefix from the previous pragma. In any case, the behavior is
that the last-encountered prefix supersedes all others.

3–4 Pragma Preprocessor Directives

3.3 The #pragma inline Directive

Function inlining is the inline expansion of function calls, replacing the
function call with the function code itself. Inline expansion of functions
reduces execution time by eliminating function-call overhead and allowing
the compiler’s general optimization methods to apply across the expanded
code. Compared with the use of function-like macros, function inlining has
the following advantages:

• Arguments are evaluated only once.

• Overuse of parentheses is not necessary to avoid problems with
precedence.

• Actual expansion can be controlled from the command line.

• The semantics are as if inline expansion had not occurred. You cannot
get this behavior using macros.

The following preprocessor directives control function inlining:
#pragma inline (id, ...)

#pragma noinline (id, ...)

Where id is a function identifier:

• If a function is named in a #pragma inline directive, calls to that
function are expanded as inline code, if possible.

• If a function is named in a #pragma noinline directive, calls to that
function are not expanded as inline code.

• If a function is named in both a #pragma inline and a
#pragma noinline directive, an error message is issued.

If a function is to be expanded inline, you must place the function
definition in the same module as the function call. The definition can
appear either before or after the function call.

The cc command options -O3, -O4, -inline size, -inline speed, or
-inline all cause the compiler to attempt to expand calls to functions
named in neither a #pragma inline nor a #pragma noinline directive
as inline code whenever appropriate, as determined by the following
function characteristics:

• Size

• Number of times the function is called

• Conformance to the following restrictions:

– The function does not take a parameter’s address.

– A field of a struct argument. An argument that is a pointer to a
struct is not restricted.

Pragma Preprocessor Directives 3–5

– The function does not use the varargs or stdarg package to access
the function’s arguments because they require arguments to be in
adjacent memory locations, and inline expansion may violate that
requirement.

For optimization level -O2, the C compiler inlines small static routines only.

The #pragma inline directive causes inline expansion regardless of the
size or number of times the specified functions are called.

3.4 The #pragma intrinsic and #pragma function Directives

Certain functions can be declared to be intrinsic. Intrinsic functions are
functions for which the C compiler generates optimized code in certain
situations, possibly avoiding a function call.

Table 3–1 shows the functions that can be declared to be intrinsic.

Table 3–1: Intrinsic Functions
abs fabs labs

printf fprintf sprintf

strcpy strlen memcpy

memmove memset alloca

bcopy bzero

To control whether a function is treated as an intrinsic, use one of the
following directives (where func_name_list is a comma-separated list of
function names optionally enclosed in parentheses):
#pragma intrinsic [(] func_name_list [)]

#pragma function [(] func_name_list [)]

#pragma function ()

The #pragma intrinsic directive enables intrinsic treatment of a
function. When the #pragma intrinsic directive is turned on, the
compiler understands how the functions work and is thus able to generate
more efficient code. A declaration for the function must be in effect at the
time the pragma is processed.

The #pragma function directive disables the intrinsic treatment of a
function. A #pragma function directive with an empty func_name_list
disables intrinsic processing for all functions.

Some standard library functions also have built-in counterparts in the
compiler. A built-in is a synonym name for the function and is equivalent to

3–6 Pragma Preprocessor Directives

declaring the function to be intrinsic. The following built-ins (and their
built-in names) are provided:

Function Synonym

abs __builtin_abs

labs __builtin_labs

fabs __builtin_fabs

alloca __builtin_alloca

strcpy __builtin_strcpy

Several methods are available for using intrinsics and built-ins. The header
files containing the declarations of the functions contain the
#pragma intrinsic directive for the functions shown in Table 3–1. To
enable the directive, you must define the preprocessor macro
_INTRINSICS. For alloca, all that is necessary is to include alloca.h.

For example, to get the intrinsic version of abs, a program should either
include stdlib.h and compile with -D_INTRINSICS or define
_INTRINSICS with a #define directive before including stdlib.h.

To enable built-in processing, use the -D switch. For example, to enable the
fabs built-in, the proc.c program is compiled with one of the following:

% cc -Dfabs=__builtin_fabs prog.c
% cc -Dabs=__builtin_abs prog.c

Optimization of the preceding functions varies according to the function
and how it is used:

• The following functions are inlined:

abs
fabs
labs
alloca

The function call overhead is removed.

• In certain instances, the printf and fprintf functions are converted
to call puts, putc, fputs, or fputc (or their equivalents), depending
on the format string and the number and types of arguments.

• In certain instances, the sprintf function is inlined or converted to a
call to strcpy.

• The strcpy function is inlined if the source string (the second
argument) is a string literal.

Pragma Preprocessor Directives 3–7

3.5 The #pragma linkage Directive

The #pragma linkage directive allows you to specify linkage types. A
linkage type specifies how a function uses a set of registers. It allows you to
specify the registers that a function uses. It also allows you to specify the
characteristics of a function (for example, the registers in which it passes
parameters or returns values) and the registers that it can modify. The
#pragma use_linkage directive associates a previously defined linkage
with a function (see Section 3.10).

The #pragma linkage directive affects both the call site and function
compilation (if the function is written in C). If the function is written in
assembler, you can use the “linkage pragma” to describe how the assembler
uses registers.

The #pragma linkage directive has the following format:
#pragma linkage linkage-name = (characteristics)

linkage-name

Identifies the linkage type being defined. It has the form of a C
identifier. Linkage types have their own name space, so their names
will not conflict with other identifiers or keywords in the compilation
unit.

characteristics

Specifies information about where parameters will be passed, where
the results of the function are to be received, and what registers are
modified by the function call.

You must specify a register-list. A register-list is a
comma-separated list of register names, either rn or fn. A
register-list can also contain parenthesized sublists. Use the
register-list to describe arguments and function result types that
are structures, where each member of the structure is passed in a
single register. For example:

parameters(r0,(f0,f1))

The preceding example is a function with two parameters. The first
parameter is passed in register r0. The second parameter is a
structure type with two floating-point members, which are passed in
registers f0 and f1.

The following list of characteristics can be specified as a
parenthesized list of comma-separated items. Note, these keywords
can be supplied in any order.

• parameters (register-list)

3–8 Pragma Preprocessor Directives

The parameters characteristic passes arguments to a routine in
specific registers.

Each item in the register-list describes one parameter that is
passed to the routine.

You can pass structure arguments by value, with the restriction
that each member of the structure is passed in a separate
parameter location. Doing so, however, may produce code that is
slower because of the large number of registers used. The compiler
does not diagnose this condition.

Valid registers for the parameters option include integer registers
r0 through r25 and floating-point registers f0 through f30.

Structure types require at least one register for each field. The
compiler verifies that the number of registers required for a
structure type is the same as the number provided in the pragma.

• result (register-list)

The compiler needs to know which registers will be used to return
the value from the function. Use the result characteristic to pass
this information.

If a function does not return a value (that is, the function has a
return type of void), do not specify result as part of the linkage.

Valid registers for the register option include general-purpose
registers r0 through r25 and floating-point registers f0 through
f30.

• preserved (register-list)
nopreserve (register-list)
notused (register-list)
notneeded ((lp))

The compiler needs to know which registers are used by the
function and which are not, and of those used, whether they are
preserved across the function call. To specify this information, use
the preserved, nopreserve, notused, and notneeded options:

– A preserved register contains the same value after a call to
the function as it did before the call.

– A nopreserve register does not necessarily contain the same
value after a call to the function as it did before the call.

– A notused register is not used in any way by the called
function.

– The notneeded characteristic indicates that certain items are
not needed by the routines using this linkage. The lp keyword
specifies that the Linkage Pointer register (r27) does not need

Pragma Preprocessor Directives 3–9

to be set up when calling the specified functions. The linkage
pointer is required when the called function accesses global or
static data. You must determine whether it is valid to
specify that the register is not needed.

Valid registers for the preserved, nopreserve, and notused
options include general-purpose registers r0 through r30 and
floating-point registers f0 through f30.

The #pragma linkage directive does not support structures containing
nested substructures as parameters or function return types with special
linkages. Functions that have a special linkage associated with them do not
support parameters or return types that have a union type.

The following characteristics specify a simple-register-list containing
two elements (registers f3 and f4); and a register-list containing two
elements (register r0 and a sublist containing the registers f0 and f1):

nopreserve(f3,f4)
parameters(r0,(f0,f1))

The following example shows a linkage using such characteristics:

#pragma linkage my_link=(nopreserve(f3,f4),
parameters(r0,(f0,f1)),
notneeded (lp))

The parenthesized notation in a register-list describes arguments and
function return values of type struct, where each member of the struct
is passed in a single register. In the following example, sample_linkage
specifies two parameters — the first is passed in registers r0, r1, and r2
and the second is passed in f1:

struct sample_struct_t {
int A, B;
short C;
} sample_struct;

#pragma linkage sample_linkage = (parameters ((r0, r1, r2), f1))
void sub (struct sample_struct_t p1, double p2) { }

main()
{

double d;

sub (sample_struct, d);
}

3–10 Pragma Preprocessor Directives

3.6 The #pragma member_alignment Directive

By default, the compiler aligns structure members on natural boundaries.
Use the #pragma [no]member_alignment preprocessor directive to
determine the byte alignment of structure members.

This pragma has the following formats:
#pragma member_alignment [save | restore]

#pragma nomember_alignment

save | restore Saves the current state of the member alignment
(including pack alignment) and restores the
previous state, respectively. The ability to control
the state is necessary for writing header files that
require member_alignment or
nomember_alignment, or that require inclusion in
a member_alignment that is already set.

Use #pragma member_alignment to specify natural-boundary alignment
of structure members. When #pragma member_alignment is used, the
compiler aligns structure members on the next boundary appropriate to the
type of the member, rather than on the next byte. For instance, an int
variable is aligned on the next longword boundary; a short variable is
aligned on the next word boundary.

Where the #pragma [no]member_alignment directives allow you to
choose between natural and byte alignment, the pragma pack directive
allows you to specify structure member alignment on byte, word, longword,
or quadword boundaries. See Section 3.8 for more information on
#pragma pack.

With any combination of #pragma member_alignment,
#pragma nomember_alignment, and #pragma pack, each pragma
remains in effect until the next one is encountered.

3.7 The #pragma message Directive

The #pragma message directive controls the issuance of individual
diagnostic messages or groups of diagnostic messages. The use of this
pragma overrides any command-line options that may affect the issuance of
messages.

The #pragma message directive has the following formats:

Pragma Preprocessor Directives 3–11

#pragma message [enable | disable](message-list)

#pragma message [save | restore]

enable | disable message-list

• enable — Enables issuance of the messages specified in the
message list.

• disable — Disables issuance of the messages specified in the
message list.

• message-list

The message-list can be one of the following:

– A single message identifier. Use the -verbose option on the
cc command to obtain the message identifier.

– The name of a message group:

� ALL — Messages in the compiler

� CHECK — Messages about potentially poor coding practices

� PORTABLE — Messages about portability

– A single message identifier enclosed in parentheses.

– A message group name enclosed in parentheses.

– A comma-separated list of message identifiers or group names,
freely mixed, enclosed in parentheses.

Only messages of severity Warning or Information can be
disabled. If the message has severity of Error or Fatal, it is issued
regardless of any attempt to disable it.

The default is to issue all diagnostic messages for the selected
compiler mode except those in the CHECK group, which must be
explicitly enabled to display its messages.

save | restore

• save — Saves the current state of which messages are enabled
and disabled.

• restore — Restores the previous state of which messages are
enabled and disabled.

The save and restore options are useful primarily within
header files.

3.8 The #pragma pack Directive
The #pragma pack directive changes the alignment restrictions on all
members of a structure. The pragma must appear before the entire

3–12 Pragma Preprocessor Directives

structure definition because it acts on the whole structure. The syntax of
this pragma is as follows:
#pragma pack (n)

The n is a number (such as 1, 2, or 4) that specifies that subsequent
structure members are to be aligned on n-byte boundaries. If you supply a
value of 0 (zero) for n, the alignment reverts to the default, which may
have been set by the -Zpn option on the cc command.

3.9 The #pragma pointer_size Directive

The #pragma pointer_size directive controls pointer size allocation for
the following:

• References

• Pointer declarations

• Function declarations

• Array declarations

This pragma has the following syntax:
#pragma pointer_size { long | short | 64 | 32 } | { restore | save }

long | 64 Sets all pointer sizes as 64 bits in all declarations
that follow this directive, until the compiler
encounters another #pragma pointer_size
directive.

short | 32 Sets all pointer sizes as 32 bits in declarations that
follow this directive, until the compiler encounters
another #pragma pointer_size directive.

save | restore Saves the current pointer size and restores the
saved pointer size, respectively. The save and
restore options are particularly useful for
specifying mixed pointer support and for protecting
header files that interface to older objects. Objects
compiled with multiple pointer size pragmas will
not be compatible with old objects, and the compiler
cannot discern that incompatible objects are being
mixed.

For example:

#pragma pointer_size long
/* pointer sizes in here are 64-bits */

#pragma pointer_size save

Pragma Preprocessor Directives 3–13

#pragma pointer_size short
/* pointer sizes in here are 32-bits */

#pragma pointer_size restore
/* pointer sizes in here are again 64-

bits */

The use of short pointers is restricted to Compaq C++ and Compaq C
compilers residing on a Tru64 UNIX system. Programs should not attempt
to pass short pointers from C++ routines to routines written in any
language other than the C programming language. Also, Compaq C++ may
require explicit conversion of short pointers to long pointers in applications
that use short pointers. You should first port those applications in which
you are considering using short pointers, and then analyze them to
determine if short pointers would be beneficial. A difference in the size of a
pointer in a function declaration is not sufficient to overload a function.

The C compiler issues an error level diagnostic if it encounters any of the
following conditions:

• Two functions defined differ only with respect to pointer sizes.

• Two functions differ in return type only with respect to pointer size.

3.10 The #pragma use_linkage Directive

After defining a special linkage with the #pragma linkage directive, as
described in Section 3.5, use the #pragma use_linkage directive to
associate the linkage with a function.

This pragma has the following format:
#pragma use_linkage linkage-name (routine1, routine2, ...)

linkage-name

Specifies the name of a linkage previously defined by the #pragma
linkage directive.

routine1, routine2, ...
Specifies the names of functions that you want associated with the
specified linkage.

The #pragma use_linkage directive must appear in the source file before
any use or definition of the specified routines. Otherwise, the results are
unpredictable.

The following example defines a special linkage and associates it with a
routine that takes three integer parameters and returns a single integer
result in the same location where the first parameter was passed:

3–14 Pragma Preprocessor Directives

#pragma linkage example_linkage (parameters(r16, r17, r19), result(r16))
#pragma use_linkage example_linkage (sub)
int sub (int p1, int p2, short p3);

main()
{

int result;

result = sub (1, 2, 3);
}

In this example, the result(r16) option indicates that the function result
will be returned in register r16 instead of the usual location (r0). The
parameters option indicates that the three parameters passed to sub
should be passed in registers r16, r17, and r19.

3.11 The #pragma weak Directive

The #pragma weak directive defines a new weak external symbol and
associates this new symbol with an external symbol. The syntax for this
pragma is as follows:
#pragma weak (secondary-name, primary-name)

See Section 2.8 for information on strong and weak symbols.

Pragma Preprocessor Directives 3–15

4
Shared Libraries

Shared libraries are the default system libraries. The default behavior of
the C compiler is to use shared libraries when performing compile and link
operations.

This chapter addresses the following topics:

• Overview of shared libraries (Section 4.1)

• Resolving symbols (Section 4.2)

• Linking with shared libraries (Section 4.3)

• Turning off shared libraries (Section 4.4)

• Creating shared libraries (Section 4.5)

• Working with private shared libraries (Section 4.6)

• Using quickstart (Section 4.7)

• Debugging programs linked with shared libraries (Section 4.8)

• Loading a shared library at run time (Section 4.9)

• Protecting shared library files (Section 4.10)

• Shared library versioning (Section 4.11)

• Symbol binding (Section 4.12)

• Shared library restrictions (Section 4.13)

4.1 Shared Library Overview

Shared libraries consist of executable code that can be located at any
available address in memory. Only one copy of a shared library’s
instructions is loaded, and the system shares that one copy among multiple
programs instead of loading a copy for each program using the library, as is
the case with archive (static) libraries.

Programs that use shared libraries enjoy the following significant
advantages over programs that use archive libraries:

• Programs linked with shared libraries do not need to be recompiled and
relinked when changes are made to those libraries.

Shared Libraries 4–1

• Unlike programs linked with archive libraries, programs linked with
shared libraries do not include library routines in the executable
program file. Programs linked with shared libraries include information
to load the shared library and gain access to its routines and data at
load time.

This means that use of shared libraries occupies less space in memory
and on disk. When multiple programs are linked to a single shared
library, the amount of physical memory used by each process can be
significantly reduced.

From a user perspective, the use of shared libraries is transparent. In
addition, you can build your own shared libraries and make them available
to other users. Most object files and archive libraries can be made into
shared libraries. See Section 4.5 for more information on which files can be
made into shared libraries.

Shared libraries differ from archive libraries in the following ways:

• You build shared libraries by using the ld command with the
appropriate options. You create archive libraries by using the ar
command. For more information on the ld command, see ld(1).

• When shared libraries are linked into an executable program, they can
be positioned at any available address. At run time, the loader
(/sbin/loader) assigns a location in the process’s private virtual
address space. In contrast, when archive libraries are linked into an
executable program, they have a fixed location in the process’s private
virtual address space.

• Shared libraries reside in the /usr/shlib directory. Archive libraries
reside in the /usr/lib directory.

• Shared library naming convention specifies that a shared library name
begins with the prefix lib and ends with the suffix .so. For example,
the library containing common C language functions is libc.so.
Archive library names also begin with the prefix lib, but they end with
the suffix .a.

Figure 4–1 shows the difference between the use of archive and shared
libraries.

4–2 Shared Libraries

Figure 4–1: Use of Archive and Shared Libraries

from libc from libc

process1

process1

process2

process2

information
to load libc

information
to load libc

Application using shared library:

ZK-0474U-AI

kernel

Application using archive library:

scanf.oscanf.o

kernel

libc

4.2 Resolving Symbols

Symbol resolution is the process of mapping an unresolved symbol
imported by a program or shared library to the pathname of the shared
library that exports that symbol. Symbols are resolved in much the same
way for shared and archive libraries, except that the final resolution of
symbols in shared objects does not occur until a program is invoked.

The following sections describe:

• Search path of the linker (ld) (Section 4.2.1)

• Search path of the run-time loader (/sbin/loader) (Section 4.2.2)

• Name resolution (Section 4.2.3)

• Options to the ld command to determine how unresolved external
symbols are to be handled (Section 4.2.4)

Shared Libraries 4–3

4.2.1 Search Path of the Linker

When the linker (ld) searches for files that have been specified by using
the -l option on the command line, it searches each directory in the order
shown in the following list, looking first in each directory for a shared
library (.so) file.

1. /usr/shlib

2. /usr/ccs/lib

3. /usr/lib/cmplrs/cc

4. /usr/lib

5. /usr/local/lib

6. /var/shlib

If the linker does not find a shared library, it searches through the same
directories again, looking for an archive (.a) library. You can prevent the
search for archive libraries by using the −no_archive option on the ld
command.

4.2.2 Search Path of the Loader

Unless otherwise directed, the run-time loader (/sbin/loader) follows the
same search path as the linker. You can use one of the following methods to
direct the run-time loader to look in directories other than those specified
by the default search path:

• Specify a directory path by using the -rpath string option to the ld
command and setting string to the list of directories to be searched.

• Set the environment variable LD_LIBRARY_PATH to point to the
directory in which you keep your private shared libraries before
executing your programs. The run-time loader examines this variable
when the program is executed; if it is set, the loader searches the paths
defined by LD_LIBRARY_PATH before searching the list of directories
discussed in Section 4.2.1.

You can set the LD_LIBRARY_PATH variable by either of the following
methods:

– Set it as an environment variable at the shell prompt.

For the C shell, use the setenv command followed by a
colon-separated path. For example:

% setenv LD_LIBRARY_PATH .:$HOME/testdir

For the Bourne and Korn shells, set the variable and then export it.
For example:

4–4 Shared Libraries

$ LD_LIBRARY_PATH=.:$HOME/testdir
$ export LD_LIBRARY_PATH

These examples set the path so that the loader looks first in the
current directory and then in your $HOME/testdir directory.

– Add the definition of the variable to your login or shell startup files.
For example, you could add the following line to your .login or
.cshrc file if you work in the C shell:

setenv LD_LIBRARY_PATH .:$HOME/testdir:/usr/shlib

If the loader cannot find the library it needs in the paths defined by any of
the preceding steps, it looks through the directories specified in the default
path described in Section 4.2.1. In addition, you can use the _RLD_ROOT
environment variable to alter the search path of the run-time loader. For
more information, see loader(5).

4.2.3 Name Resolution

The semantics of symbol name resolution are based on the order in which
the object file or shared object containing a given symbol appears on the
link command line. The linker normally takes the leftmost definition for
any symbol that must be resolved.

The sequence in which names are resolved proceeds as if the link command
line was stored in the executable program. When the program runs, all
symbols that are accessed during execution must be resolved. The loader
aborts execution of the program if an unresolved text symbol is accessed.

For information on how unresolved symbols are handled by the system, see
Section 4.2.4. The following sequence resolves references to any symbol
from the main program or from a library:

1. If a symbol is defined in an object or in an archive library from which
you build the main executable program file, that symbol is used by the
main program file and all of the shared libraries that it uses.

2. If the symbol is not defined by the preceding step and is defined by one
or more of the shared objects linked with the executable program, then
the leftmost library on the link command line containing a definition is
used.

3. If the libraries on the link command line were linked to be dependent
on other libraries, then the dependencies of libraries are searched in a
breadth-first fashion instead of being searched in a depth-first fashion.
For example, as shown in the following diagram, executable program A
is linked against shared library B and shared library D, and library B
is linked against library C.

Shared Libraries 4–5

A
/ \
B D
/

C

The search order is A-B-D-C. In a breadth-first search, the
grandchildren of a node are searched after all the children have been
searched.

4. If the symbol is not resolved in any of the previous steps, the symbol
remains unresolved.

Note that because symbol resolution always prefers the main object, shared
libraries can be set up to call back into a defined symbol in the main object.
Likewise, the main object can define a symbol that will override (preempt
or hook) a definition in a shared library.

4.2.4 Options to Determine Handling of Unresolved External
Symbols

The default behavior of the linker when building executable programs
differs from its default behavior when building shared libraries:

• When building executable programs, an unresolved symbol produces an
error by default. The link fails and the output file is not marked as
executable.

• When building shared libraries, an unresolved symbol produces only a
warning message by default.

You can control the behavior of the linker by using the following options to
the ld command:

-expect_unresolved pattern

This option specifies that any unresolved symbols matching pattern
are neither displayed nor treated as warnings or errors. This option
can occur multiple times on a link command line. The patterns use
shell wildcards (?, *, [,]) and must be quoted properly to prevent
expansion by the shell. See sh(1), csh(1), and ksh(1) for more
information.

-warning_unresolved

This option specifies that all unresolved symbols except those
matching the −expect_unresolved pattern produce warning
messages. This mode is the default for linking shared libraries.

4–6 Shared Libraries

-error_unresolved

This option causes the linker to print an error message and return a
nonzero error status when a link is completed with unresolved
symbols other than those matching the −expect_unresolved
pattern. This mode is the default for linking executable images.

4.3 Linking with Shared Libraries

When compiling and linking a program, using shared libraries is the same
as using static libraries. For example, the following command compiles
program hello.c and links it against the default system C shared library
libc.so:

% cc -o hello hello.c

You can pass certain ld command options to the cc command to allow
flexibility in determining the search path for a shared library. For example,
you can use the -Ldir option with the cc command to change the search
path by adding dir before the default directories, as shown in the following
example:

% cc -o hello hello.c -L/usr/person -lmylib

To exclude the default directories from the search and limit the search to
specific directories and specific libraries, specify the -L option first with no
arguments. Then, specify it again with the directory to search, followed by
the -l option with the name of the library to search for. For example, to
limit the search path to /usr/person for use with the private library
libmylib.so, enter the following command:

% cc -o hello hello.c -L -L/usr/person -lmylib

Note that because the cc command always implicitly links in the C library,
the preceding example requires that a copy of libc.so or libc.a must be
in the /usr/person directory.

4.4 Turning Off Shared Libraries

In application linking, the default behavior is to use shared libraries. To
link an application that does not use shared libraries, you must use the
-non_shared option to the cc or ld commands when you link that
application.

For example:

% cc -non_shared -o hello hello.c

Shared Libraries 4–7

Although shared libraries are the default for most programming
applications, some applications cannot use shared libraries:

• Applications that need to run in single-user mode cannot be linked with
shared libraries because the /usr/shlib directory must be mounted to
provide access to shared libraries.

• Applications whose sole purpose is single-user benchmarks should not
be linked with shared libraries.

4.5 Creating Shared Libraries

You create shared libraries by using the ld command with the -shared
option. You can create shared libraries from object files or from existing
archive libraries.

4.5.1 Creating Shared Libraries from Object Files

To create the shared library libbig.so from the object files bigmod1.o
and bigmod2.o, enter the following command:

% ld -shared -no_archive -o libbig.so bigmod1.o bigmod2.o -lc

The -no_archive option tells the linker to resolve symbols using only
shared libraries. The -lc option tells the linker to look in the system C
shared library for unresolved symbols.

To make a shared library available on a system level by copying it into the
/usr/shlib directory, you must have root privileges. System shared
libraries should be located in the /usr/shlib directory or in one of the
default directories so that the run-time loader (/sbin/loader) can locate
them without requiring every user to set the LD_LIBRARY_PATH variable
to directories other than those in the default path.

4.5.2 Creating Shared Libraries from Archive Libraries

You can also create a shared library from an existing archive library by
using the ld command. The following example shows how to convert the
static library old.a into the shared library libold.so:

% ld -shared -no_archive -o libold.so -all old.a -none -lc

In this example, the -all option tells the linker to link all the objects from
the archive library old.a. The -none option tells the linker to turn off the
-all option. Note that the -no_archive option applies to the resolution of
the -lc option but not to old.a (because old.a is explicitly mentioned).

4–8 Shared Libraries

4.6 Working with Private Shared Libraries

In addition to system shared libraries, any user can create and use private
shared libraries. For example, you have three applications that share some
common code. These applications are named user, db, and admin. You
decide to build a common shared library, libcommon.so, containing all the
symbols defined in the shared files io_util.c, defines.c, and
network.c. To do this, take the following steps:

1. Compile each C file that will be part of the library:

% cc -c io_util.c
% cc -c defines.c
% cc -c network.c

2. Create the shared library libcommon.so by using the ld command:

% ld -shared -no_archive \
-o libcommon.so io_util.o defines.o network.o -lc

3. Compile each C file that will be part of the application:

% cc -c user.c
% cc -o user user.o -L. -lcommon

Note that the second command in this step tells the linker to look in
the current directory and use the library libcommon.so. Compile
db.c and admin.c in the same manner:

% cc -c db.c
% cc -o db db.o -L. -lcommon

% cc -c admin.c
% cc -o admin admin.o -L. -lcommon

4. Copy libcommon.so into a directory pointed to by LD_LIBRARY_PATH,
if it is not already in that directory.

5. Run each compiled program (user, db, and admin).

4.7 Using Quickstart

One advantage of using shared libraries is the ability to change a library
after all executable images have been linked and to fix bugs in the library.
This ability is very useful during the development phase of an application.

During the production cycle, however, the shared libraries and applications
that you develop are often fixed and will not change until the next release.
If this is the case, you can take advantage of quickstart, a method of using
predetermined addresses for all symbols in your program and libraries.

Shared Libraries 4–9

No special link options are required to prepare an application for
quickstarting; however, a certain set of conditions must be satisfied. If an
object cannot be quickstarted, it still runs, but startup time is slower.

When the linker creates a shared object (a shared library or a main
executable program that uses shared libraries), it assigns addresses to the
text and data portions of the object. These addresses are what might be
called “quickstarted addresses.” The linker performs all dynamic relocations
in advance, as if the object will be loaded at its quickstarted address.

Any object depended upon is assumed to be at its quickstarted address.
References to that object from the original object have the address of the
depended-upon object set accordingly.

To use quickstart, an object must meet the following conditions:

• The object’s actual run-time memory location must match the
quickstart location. The run-time loader tries to use the quickstart
location. However, if another library is already occupying that spot, the
object will not be able to use it.

• All depended-upon objects must be quickstarted.

• All depended-upon objects must be unchanged since they were linked. If
objects have changed, addresses of functions within the library might
have moved or new symbols might have been introduced that can affect
the loading. (Note that you might still be able to quickstart objects that
have been modified since linking by running the fixso utility on the
changed objects. See fixso(1) for additional information.)

The operating system detects these conditions by using checksums and
timestamps.

When you build libraries, they are given a quickstart address. Unless each
library used by an application chooses a unique quickstart address, the
quickstart constraints cannot be satisfied. Rather than worry about
addresses on an application basis, give a unique quickstart address to each
shared library that you build to ensure that all of your objects can be
loaded at their quickstart addresses.

The linker maintains the so_locations database to register each
quickstart address when you build a library. The linker avoids addresses
already in the file when choosing a quickstart address for a new library.

By default, ld runs as though the -update_registry ./so_locations
option has been selected, so the so_locations file in the directory of the
build is updated (or created) as necessary.

To ensure that your libraries do not collide with shared libraries on your
system, enter the following commands:

4–10 Shared Libraries

% cd <directory_of_build>
% cp /usr/shlib/so_locations .
% chmod +w so_locations

You can now build your libraries. If your library builds occur in multiple
directories, use the -update_registry option to the ld command to
explicitly specify the location of a common so_locations file. For example:

% ld -shared -update_registry /common/directory/so_locations ...

If you install your shared libraries globally for all users of your system,
update the systemwide so_locations file. Enter the following commands
as root, with shared_library.so being the name of your actual shared
library:

cp shared_library.so /usr/shlib
mv /usr/shlib/so_locations /usr/shlib/so_locations.old
cp so_locations /usr/shlib

If several people are building shared libraries, the common so_locations
file must be administered as any shared database would be. Each shared
library used by any given process must be given a unique quickstart
address in the file. The range of default starting addresses that the linker
assigns to main executable files does not conflict with the quickstarted
addresses it creates for shared objects. Because only one main executable
file is loaded into a process, an address conflict never occurs between a
main file and its shared objects.

If you are building only against existing shared libraries (and not building
your own libraries), you do not need to do anything special. As long as the
libraries meet the previously described conditions, your program will be
quickstarted unless the libraries themselves are not quickstarted. Most
shared libraries shipped with the operating system are quickstarted.

If you are building shared libraries, you must first copy the so_locations
file as previously described. Next, you must build all shared libraries in
bottom-up dependency order, using the so_locations file. Specify all
depended-upon libraries on the link line. After all libraries are built, you
can then build your applications.

4.7.1 Verifying that an Object Is Quickstarting

To test whether an application’s executable program is quickstarting, set
the _RLD_ARGS environment variable to −quickstart_only and run the
program. For example:

% setenv _RLD_ARGS -quickstart_only
% foo
(non-quickstart output)

Shared Libraries 4–11

21887:foo: /sbin/loader: Fatal Error: NON-QUICKSTART detected \
-- QUICKSTART must be enforced

If the program runs successfully, it is quickstarting. If a load error message
is produced, the program is not quickstarting.

4.7.2 Manually Tracking Down Quickstart Problems

To determine why an executable program is not quickstarting, you can use
the fixso utility, described in Section 4.7.3, or you can manually test for
the conditions described in the following list of requirements. Using fixso
is easier, but it is helpful to understand the process involved:

1. The executable program must be quickstartable.

Test the quickstart flag in the dynamic header. The value of the
quickstart flag is 0x00000001. For example:

% odump -D foo | grep FLAGS

(non-quickstart output)

FLAGS: 0x00000000

(quickstart output)

FLAGS: 0x00000001

If the quickstart flag is not set, one or more of the following conditions
exists:

– The executable program was linked with unresolvable symbols.
Make sure that the ld options -warning_unresolved and
-expect_unresolved are not used when the executable program
is linked. Fix any unresolved symbol errors that occur when the
executable program is linked.

– The executable program is not linked directly against all of the
libraries that it uses at run time. Add the option
-transitive_link to the ld options used when the executable
program is built.

2. The executable program’s dependencies must be quickstartable. Get a
list of an executable program’s dependencies. For example:

% odump -Dl foo

(quickstart output)

LIBRARY LIST SECTION
Name Time-Stamp CheckSum Flags Version

foo:
libX11.so Sep 17 00:51:19 1993 0x78c81c78 NONE

4–12 Shared Libraries

libc.so Sep 16 22:29:50 1993 0xba22309c NONE osf.1
libdnet_stub.so Sep 16 22:56:51 1993 0x1d568a0c NONE osf.1

Test the quickstart flag in the dynamic header of each of the
dependencies:

% cd /usr/shlib
% odump -D libX11.so libc.so libdnet_stub.so | grep FLAGS

(quickstart output)

FLAGS: 0x00000001
FLAGS: 0x00000001
FLAGS: 0x00000001

If any of these dependencies cannot be quickstarted, the same
measures suggested in step 1 can be applied here, provided that the
shared library can be rebuilt by the user.

3. The timestamp and checksum information must match for all
dependencies.

The dependencies list in step 2 shows the expected values of the
timestamp and checksum fields for each of foo’s dependencies. Match
these values against the current values for each of the libraries:

% cd /usr/shlib
% odump -D libX11.so libc.so libdnet_stub.so | \
grep TIME_STAMP

(quickstart output)

TIME_STAMP: (0x2c994247) Fri Sep 17 00:51:19 1993
TIME_STAMP: (0x2c99211e) Thu Sep 16 22:29:50 1993
TIME_STAMP: (0x2c992773) Thu Sep 16 22:56:51 1993

% odump -D libX11.so libc.so libdnet_stub.so | grep CHECKSUM

(quickstart output)

ICHECKSUM: 0x78c81c78
ICHECKSUM: 0xba22309c
ICHECKSUM: 0x1d568a0c

If any of the tests in these examples shows a timestamp or checksum
mismatch, relinking the program should fix the problem.

You can use the version field to verify that you have identified the
correct libraries to be loaded at run time. To test the dependency
versions, use the odump command as shown in the following example:

% odump -D libX11.so | grep IVERSION
% odump -D libc.so | grep IVERSION

IVERSION: osf.1
% odump -D libdnet_stub.so | grep IVERSION

Shared Libraries 4–13

IVERSION: osf.1

The lack of an IVERSION entry is equivalent to a blank entry in the
dependency information. It is also equivalent to the special version
_null.

If any version mismatches are identified, you can normally find the
correct matching version of the shared library by appending the version
identifier from the dependency list or _null to the path /usr/shlib.

4. Each of the executable program’s dependencies must also contain
dependency lists with matching timestamp and checksum information.

Repeat step 3 for each of the shared libraries in the executable
program’s list of dependencies:

% odump -Dl libX11.so

(quickstart output)

LIBRARY LIST SECTION
Name Time-Stamp CheckSum Flags Version

libX11.so:
libdnet_stub.so Sep 16 22:56:51 1993 0x1d568a0c NONE osf.1
libc.so Sep 16 22:29:50 1993 0xba22309c NONE osf.1

% odump -D libdnet_stub.so libc.so | grep TIME_STAMP
TIME_STAMP: (0x2c992773) Thu Sep 16 22:56:51 1993
TIME_STAMP: (0x2c99211e) Thu Sep 16 22:29:50 1993

% odump -D libdnet_stub.so libc.so | grep CHECKSUM
ICHECKSUM: 0x1d568a0c
ICHECKSUM: 0xba22309c

If the timestamp or checksum information does not match, the shared
library must be rebuilt to correct the problem. Rebuilding a shared
library will change its timestamp and, sometimes, its checksum.
Rebuild dependencies in bottom-up order so that an executable
program or shared library is rebuilt after its dependencies have been
rebuilt.

4.7.3 Tracking Down Quickstart Problems with the fixso Utility

The fixso utility can identify and repair quickstart problems caused by
timestamp and checksum discrepancies. It can repair programs as well as
the shared libraries they depend on, but it might not be able to repair
certain programs, depending on the degree of symbolic changes required.

The fixso utility cannot repair a program or shared library if any of the
following restrictions apply:

• The program or shared library depends on other shared libraries that
cannot be quickstarted. This restriction can be avoided by using fixso
to repair shared libraries in bottom-up order.

4–14 Shared Libraries

• New name conflicts are introduced after a program or shared library is
created. Name conflicts result when the same global symbol name is
exported by two or more shared library dependencies or by the program
and one of its shared library dependencies.

• The program’s shared library dependencies are not all loaded at their
quickstart locations. A shared library cannot be loaded at its quickstart
locations if other shared libraries are loaded at that location and are
already in use. This rule applies systemwide, not just to individual
processes. To avoid this restriction, use a common so_locations file
for registering unique addresses for shared libraries.

• The program or shared library depends on an incompatible version of
another shared library. This restriction can be avoided by instructing
fixso where to find a compatible version of the offending shared
library.

The fixso utility can identify quickstart problems as shown in the
following example:

% fixso -n hello.so
fixso: Warning: found ’/usr/shlib/libc.so’ (0x2d93b353) which does

not match timestamp 0x2d6ae076 in liblist of hello.so, will fix
fixso: Warning: found ’/usr/shlib/libc.so’ (0xc777ff16) which does

not match checksum 0x70e62eeb in liblist of hello.so, will fix

The -n option suppresses the generation of an output file. Discrepancies
are reported, but fixso does not attempt to repair the problems it finds.
The following example shows how fixso can be used to repair quickstart
problems:

% fixso -o ./fixed/main main
fixso: Warning: found ’/usr/shlib/libc.so’ (0x2d93b353) which does

not match timestamp 0x2d7149c9 in liblist of main, will fix
% chmod +x fixed/main

The -o option specifies an output file. If no output file is specified, fixso
uses a.out. Note that fixso does not create the output file with execute
permission. The chmod command allows the output file to be executed. This
change is necessary only for executable programs and can be bypassed
when using fixso to repair shared libraries.

If a program or shared library does not require any modifications to repair
quickstart, fixso indicates this as shown in the following example:

% fixso -n /bin/ls
no fixup needed for /bin/ls

4.8 Debugging Programs Linked with Shared Libraries

Debugging a program that uses shared libraries is essentially the same as
debugging a program that uses archive libraries.

Shared Libraries 4–15

The dbx debugger’s listobj command displays the names of the
executable programs and all of the shared libraries that are known to the
debugger. See Chapter 5 for more information about using dbx.

4.9 Loading a Shared Library at Run Time

In some situations, you might want to load a shared library from within a
program. This section includes two short C program examples and a
makefile to demonstrate how to load a shared library at run time.

The following example (pr.c) shows a C source file that prints out a simple
message:

printmsg()
{

printf("Hello world from printmsg!\n");
}

The next example (used1.c) defines symbols and demonstrates how to use
the dlopen function:

#include <stdio.h>
#include <dlfcn.h>

/* All errors from dl* routines are returned as NULL */
#define BAD(x) ((x) == NULL)

main(int argc, char *argv[])
{

void *handle;
void (*fp)();

/* Using "./" prefix forces dlopen to look only in the current
* current directory for pr.so. Otherwise, if pr.so was not
* found in the current directory, dlopen would use rpath,
* LD_LIBRARY_PATH and default directories for locating pr.so.
*/

handle = dlopen("./pr.so", RTLD_LAZY);
if (!BAD(handle)) {

fp = dlsym(handle, "printmsg");
if (!BAD(fp)) {

/*
* Here is where the function
* we just looked up is called.
*/
(*fp)();

}
else {

perror("dlsym");
fprintf(stderr, "%s\n", dlerror());

}
}
else {

perror("dlopen");
fprintf(stderr, "%s\n", dlerror());

}
dlclose(handle);

}

4–16 Shared Libraries

The following example shows the makefile that makes pr.o, pr.so,
so_locations, and usedl.o:

this is the makefile to test the examples

all: runit

runit: usedl pr.so
./usedl

usedl: usedl.c
$(CC) -o usedl usedl.c

pr.so: pr.o
$(LD) -o pr.so -shared pr.o -lc

4.10 Protecting Shared Library Files

Because of the sharing mechanism used for shared libraries, normal file
system protections do not protect libraries against unauthorized reading.
For example, when a shared library is used in a program, the text part of
that library can be read by other processes even when the following
conditions exist:

• The library’s permissions are set to 600.

• The other processes do not own the library or are not running with
their UID set to the owner of that library.

Only the text part of the library, not the data segment, is shared in this
manner.

To prevent unwanted sharing, link any shared libraries that need to be
protected by using the linker’s -T and -D options to put the data section in
the same 8-MB segment as the text section. For example, enter a command
similar to the following:

% ld -shared -o libfoo.so -T 30000000000 \
-D 30000400000 object_files

In addition, segment sharing can occur with any file that uses the mmap
system call without the PROT_WRITE flag as long as the mapped address
falls in the same memory segment as other files using mmap.

Any program using mmap to examine files that might be highly protected
can ensure that no segment sharing takes place by introducing a writable
page into the segment before or during the mmap. The easiest way to
provide protection is to use the mmap system call on the file with
PROT_WRITE enabled in the protection, and use the mprotect system call
to make the mapped memory read-only. Alternatively, to disable all

Shared Libraries 4–17

segmentation and to avoid any unauthorized sharing, enter the following
line in the configuration file:

segmentation 0

4.11 Shared Library Versioning

One of the advantages of using shared libraries is that a program linked
with a shared library does not need to be rebuilt when changes are made to
that library. When a changed shared library is installed, applications
should work as well with the newer library as they did with the older one.

_______________________ Note _______________________

Because of the need for address fixing, it can take longer to load
an existing application that uses an older version of a shared
library when a new version of that shared library is installed.
You can avoid this kind of problem by relinking the application
with the new library.

4.11.1 Binary Incompatible Modifications

Infrequently, a shared library might be changed in a way that makes it
incompatible with applications that were linked with it before the change.
This type of change is referred to as a binary incompatibility. A binary
incompatibility introduced in a new version of a shared library does not
necessarily cause applications that rely on the old version to break (that is,
violate the backward compatibility of the library). The system provides
shared library versioning to allow you to take steps to maintain a shared
library’s backward compatibility when introducing a binary incompatibility
in the library.

Among the types of incompatible changes that might occur in shared
libraries are the following:

• Removal of documented interfaces

For example, if the malloc() function in libc.so was replaced with a
function called (__malloc), programs that depend on the older function
would fail due to the missing malloc symbol.

• Modification of documented interfaces

For example, if a second argument to the malloc() function in
libc.so was added, the new malloc() would probably fail when
programs that depend on the older function pass in only one argument,
leaving undefined values in the second argument.

4–18 Shared Libraries

• Modification of global data definitions

For example, if the type of the errno symbol in libc.so was changed
from an int to a long, programs linked with the older library might
read and write 32-bit values to and from the newly expanded 64-bit
data item. This might yield invalid error codes and indeterminate
program behavior.

This is by no means an exhaustive list of the types of changes that result in
binary incompatibilities. Shared library developers should exercise common
sense to determine whether any change is likely to cause failures in
applications linked with the library prior to the change.

4.11.2 Shared Library Versions

You can maintain the backward compatibility of a shared library affected
by incompatible changes by providing multiple versions of the library. Each
shared library is marked by a version identifier. You install the new version
of the library in the library’s default location, and the older, binary
compatible version of the library in a subdirectory whose name matches
that library’s version identifier.

For example, if an incompatible change was made to libc.so, the new
library (/usr/shlib/libc.so) must be accompanied by an instance of the
library before the change (/usr/shlib/osf.1/libc.so). In this example,
the older, binary compatible version of libc.so is the osf.1 version. After
the change is applied, the new libc.so is built with a new version
identifier. Because a shared library’s version identifier is listed in the
shared library dependency record of a program that uses the library, the
loader can identify which version of a shared library is required by an
application (see Section 4.11.6).

In the example, a program built with the older libc.so, before the binary
incompatible change, requires the osf.1 version of the library. Because the
version of /usr/shlib/libc.so does not match the one listed in the
program’s shared library dependency record, the loader will look for a
matching version in /usr/shlib/osf.1.

Applications built after the incompatible change will use
/usr/shlib/libc.so and will depend on the new version of the library.
The loader will load these applications by using /usr/shlib/libc.so
until some further binary incompatibility is introduced.

Table 4–1 describes the linker options used to effect version control of
shared libraries.

Shared Libraries 4–19

Table 4–1: Linker Options that Control Shared Library Versioning

Option Description

-set_version version-string Establishes the version identifiers associated
with a shared library. The string
version-string is either a single version
identifier or a colon-separated list of version
identifiers. No restrictions are placed on the
names of version identifiers; however, it is
highly recommended that UNIX directory
naming conventions be followed. If a shared
library is built with this option, any program
built against it will record a dependency on
the specified version or, if a list of version
identifiers is specified, the rightmost version
specified in the list. If a shared library is
built with a list of version identifiers, the
run-time loader will allow any program to
run that has a shared library dependency on
any of the listed versions. This option is only
useful when building a shared library (with
-shared).

-exact_version Sets an option in the dynamic object
produced by the ld command that causes the
run-time loader to ensure that the shared
libraries the object uses at run time match
the shared libraries used at link time. This
option is used when building a dynamic
executable file (with -call_shared) or a
shared library (with -shared). Its use
requires more rigorous testing of shared
library dependencies. In addition to testing
shared libraries for matching versions,
timestamps and checksums must also match
the timestamps and checksums recorded in
shared library dependency records at link
time.

You can use the odump command to examine a shared library’s versions
string, as set by using the -set_version version-string option of the
ld command that created the library. For example:

% odump -D library-name

The value displayed for the IVERSION field is the version string specified
when the library was built. If a shared library is built without the
-set_version option, no IVERSION field will be displayed. These shared
libraries are handled as if they had been built with the version identifier
_null.

4–20 Shared Libraries

When ld links a shared object, it records the version of each shared library
dependency. Only the rightmost version identifier in a colon-separated list
is recorded. To examine these dependencies for any shared executable file
or library, use the following command:

% odump -Dl shared-object-name

4.11.3 Major and Minor Versions Identifiers

Tru64 UNIX does not distinguish between major and minor versions of
shared libraries:

• Major versions are used to distinguish incompatible versions of shared
libraries.

• Minor versions typically distinguish different but compatible versions of
a library. Minor versions are often used to provide revision-specific
identification or to restrict the use of backward-compatible shared
libraries.

Tru64 UNIX shared libraries use a colon-separated list of version
identifiers to provide the versioning features normally attained through
minor versions.

The following sequence of library revisions shows how revision-specific
identification can be added to the version list of a shared library without
affecting shared library compatibility:

Shared Library Version

libminor.so 3.0

libminor.so 3.1:3.0

libminor.so 3.2:3.1:3.0

Each new release of libminor.so adds a new identifier at the beginning
of the version list. The new identifier distinguishes the latest revision from
its predecessors. Any executable files linked against any revision of
libminor.so will record 3.0 as the required version, so no distinction is
made between the compatible libraries. The additional version identifiers
are only informational.

The following sequence of library revisions shows how the use of
backward-compatible shared libraries can be restricted:

Shared Libraries 4–21

Shared Library Version

libminor2.so 3.0

libminor2.so 3.0:3.1

libminor2.so 3.0:3.1:3.2

In this example, programs linked with old versions of libminor2.so can
be executed with newer versions of the library, but programs linked with
newer versions of libminor2.so cannot be executed with any of the
previous versions.

4.11.4 Full and Partial Versions of Shared Libraries

You can implement a binary compatible version of a shared library as a
complete, independent object or as a partial object that depends directly or
indirectly on a complete, independent object. A fully duplicated shared
library takes up more disk space than a partial one, but involves simpler
dependency processing and uses less swap space. The reduced disk space
requirements are the only advantage of a partial version of a shared library.

A partial shared library includes the minimum subset of modules required
to provide backward compatibility for applications linked prior to a binary
incompatible change in a newer version of the library. It is linked against
one or more earlier versions of the same library that provide the full set of
library modules. By this method, you can chain together multiple versions
of shared libraries so that any instance of the shared library will indirectly
provide the full complement of symbols normally exported by the library.

For example, version osf.1 of libxyz.so includes modules x.o, y.o, and
z.o. It was built and installed using the following commands:

% ld -shared -o libxyz.so -set_version osf.1 \
x.o y.o z.o -lc

% mv libxyz.so /usr/shlib/libxyz.so

If, at some future date, libxyz.so requires an incompatible change that
affects only module z.o, a new version, called osf.2, and a partial version,
still called osf.1, can be built as follows:

% ld -shared -o libxyz.so -set_version osf.2 x.o \
y.o new_z.o -lc

% mv libxyz.so /usr/shlib/libxyz.so
% ld -shared -o libxyz.so -set_version osf.1 z.o \

-lxyz -lc
% mv libxyz.so /usr/shlib/osf.1/libxyz.so

4–22 Shared Libraries

4.11.5 Linking with Multiple Versions of Shared Libraries

In general, applications are linked with the newest versions of shared
libraries. Occasionally, you might need to link an application or shared
library with an older, binary compatible version of a shared library. In such
a case, use the ld command’s -L option to identify older versions of the
shared libraries used by the application.

The linker issues a warning when you link an application with more than
one version of the same shared library. In some cases, the multiple version
dependencies of an application or shared library will not be noticed until it
is loaded for execution.

By default, the ld command tests for multiple version dependencies only
for those libraries it is instructed to link against. To identify all possible
multiple version dependencies, use the ld command’s -transitive_link
option to include indirect shared library dependencies in the link step.

When an application is linked with partial shared libraries, the linker must
carefully distinguish dependencies on multiple versions resulting from
partial shared library implementations. The linker reports multiple version
warnings when it cannot differentiate between acceptable and unacceptable
multiple version dependencies.

In some instances, multiple version dependencies might be reported at link
time for applications that do not use multiple versions of shared libraries
at run time. Consider the libraries and dependencies shown in Figure 4–2
and described in the following table.

Shared Libraries 4–23

Figure 4–2: Linking with Multiple Versions of Shared Libraries

libB.so

libcommon.so

ZK-0882U-AI

a.out

libA.so

Library Version Dependency Dependent Version

libA.so v1 libcommon.so v1

libB.so v2 libcommon.so v2

libcommon.so v1:v2 --- —

In the preceding table, libA.so was linked against a version of
libcommon.so that had a rightmost version identifier of v1. Unlike
libA.so, libB.so was linked against a version of libcommon.so that
had a rightmost version identifier of v2. Because the libcommon.so shown
in the table includes both v1 and v2 in its version string, the dependencies
of both libA.so and libB.so are satisfied by the one instance of
libcommon.so.

When a.out is linked, only libA.so and libB.so are mentioned on the
link command line. However, the linker examines the dependencies of
libA.so and libB.so, recognizes the possible multiple version
dependency on libcommon.so, and issues a warning. By linking a.out
against libcommon.so as well, you can avoid this false warning.

4.11.6 Version Checking at Load Time

The loader performs version matching between the list of versions
supported by a shared library and the versions recorded in shared library

4–24 Shared Libraries

dependency records. If a shared object is linked with the -exact_match
option on the link command line, the loader also compares the timestamp
and checksum of a shared library against the timestamp and checksum
values saved in the dependency record.

After mapping in a shared library that fails the version-matching test, the
loader attempts to locate the correct version of the shared library by
continuing to search other directories in RPATH, LD_LIBRARY_PATH, or the
default search path.

If all of these directories are searched without finding a matching version,
the loader attempts to locate a matching version by appending the version
string recorded in the dependency to the directory path at which the first
nonmatching version of the library was located.

For example, a shared library libfoo.so is loaded in directory
/usr/local/lib with version osf.2, but a dependency on this library
requires version osf.1. The loader attempts to locate the correct version of
the library using a constructed path like the following:

/usr/local/lib/osf.1/libfoo.so

If this constructed path fails to locate the correct library or if no version of
the library is located at any of the default or user-specified search
directories, the loader makes one last attempt to locate the library by
appending the required version string to the standard system shared
library directory (/usr/shlib). This last attempt will therefore use a
constructed path like the following:

/usr/shlib/osf.1/libfoo.so

If the loader fails to find a matching version of a shared library, it aborts
the load and reports a detailed error message indicating the dependency
and shared library version that could not be located.

You can disable version checking for programs that are not installed with
the setuid function by setting the loader environment variable as shown
in the following C shell example:

% setenv _RLD_ARGS -ignore_all_versions

You can also disable version checking for specific shared libraries as shown
in the following example:

% setenv _RLD_ARGS -ignore_version libDXm.so

4.11.7 Multiple Version Checking at Load Time

Like the linker, the loader must distinguish between valid and invalid uses
of multiple versions of shared libraries:

Shared Libraries 4–25

• Valid uses of multiple versions occur when partial shared libraries that
depend on other versions of the same libraries are loaded. In some
cases, these partial shared libraries depend on different partial shared
libraries, and the result can be complicated dependency relationships
that the loader must interpret carefully to avoid reporting false errors.

• Invalid uses of multiple versions occur when two different shared
objects depend on different versions of another shared object. Partial
shared library chains are an exception to this rule. For version-checking
purposes, the first partial shared library in a chain defines a set of
dependencies that overide similar dependencies in other members of
the chain.

The following figures show shared object dependencies that will result in
multiple dependency errors. Version identifiers are shown in parentheses.

In Figure 4–3, an application uses two layered products that are built with
incompatible versions of the base system.

Figure 4–3: Invalid Multiple Version Dependencies Among Shared
Objects: Example 1

layrd1.so layrd2.so

libc.so(osf.1) libc.so(osf.2)

appl_1

ZK-0884U-AI

In Figure 4–4, an application is linked with a layered product that was
built with an incompatible version of the base system.

4–26 Shared Libraries

Figure 4–4: Invalid Multiple Version Dependencies Among Shared
Objects: Example 2

ZK-0885U-AI

layrd1.so

libc.so(osf.1)

appl_2

libc.so(osf.2)

In Figure 4–5, an application is linked with an incomplete set of
backward-compatible libraries that are implemented as partial shared
libraries.

Shared Libraries 4–27

Figure 4–5: Invalid Multiple Version Dependencies Among Shared
Objects: Example 3

ZK-0886U-AI

appl_3

libc_r.so(osf.2) libc.so(osf.1)

libc.so(osf.2)

The following figures show valid uses of multiple versions of shared
libraries.

In Figure 4–6, an application uses a backward-compatibility library
implemented as a partial shared library.

4–28 Shared Libraries

Figure 4–6: Valid Uses of Multiple Versions of Shared Libraries: Example 1

ZK-0887U-AI

libc.so(osf.1)

libc.so(osf.2)

appl_4

libc.so(osf.3)

In Figure 4–7, an application uses two backward-compatible libraries, one
of which depends on the other.

Shared Libraries 4–29

Figure 4–7: Valid Uses of Multiple Versions of Shared Libraries: Example 2

libc.so(osf.2)

ZK-0888U-AI

libc_r.so(osf.2)

libc.so(osf.1)

appl_5

libc_r.so(osf.1)

4.12 Symbol Binding

The loader can resolve symbols using either deferred or immediate binding.
Immediate binding requires that all symbols be resolved when an
executable program or shared library is loaded. Deferred (lazy) binding
allows text symbols to be resolved at run time. A lazy text symbol is
resolved the first time that a reference is made to it in a program.

By default, programs are loaded with deferred binding. Setting the
LD_BIND_NOW environment variable to a non-null value selects immediate
binding for subsequent program invocations.

Immediate binding can be useful to identify unresolvable symbols. With
deferred binding in effect, unresolvable symbols might not be detected until
a particular code path is executed.

Immediate binding can also reduce symbol-resolution overhead. Run-time
symbol resolution is more expensive per symbol than load-time symbol
resolution.

4.13 Shared Library Restrictions

The use of shared libraries is subject to the following restrictions:

• Shared libraries should not have any undefined symbols.

4–30 Shared Libraries

Shared libraries should be explicitly linked with other shared libraries
that define the symbols they refer to.

In certain cases, such as a shared library that refers to symbols in an
executable file, it is difficult to avoid references to undefined symbols.
See Section 4.2.4 for a discussion on how to handle unresolved external
symbols in a shared library.

• Certain files (such as assembler files, older object files, and C files) that
were optimized at level O3 might not work with shared libraries.

C modules compiled with the Tru64 UNIX C compiler at optimization
level O2 or less will work with shared libraries. Executable programs
linked with shared libraries can be compiled at optimization level O3 or
less.

• Programs that are installed using the setuid or setgid subroutines
do not use the settings of the various environment variables that
govern library searches (such as LD_LIBRARY_PATH, _RLD_ARGS,
_RLD_LIST, and _RLD_ROOT); they use only system-installed libraries
(that is, those in /usr/shlib). This restriction prevents potential
threats to the security of these programs, and it is enforced by the
run-time loader (/sbin/loader).

Shared Libraries 4–31

5
Debugging Programs with dbx

The dbx debugger is a command-line program. It is a tool for debugging
programs at the source-code level and machine-code level, and can be used
with C, Fortran, Pascal, and assembly language. After invoking dbx, you
can enter dbx commands that control and trace execution, display variable
and expression values, and display and edit source files.

The ladebug debugger, an alternate debugger, provides both command-line
and graphical user interfaces (GUIs) and supports some languages that are
not supported by dbx. The ladebug debugger has better features than dbx
for debugging multithreaded programs. For more information about
ladebug, see the Ladebug Debugger Manual or ladebug(1).

This chapter provides information on the following topics:

• General debugging considerations (Section 5.1)

• How to run the dbx debugger (Section 5.2)

• What you can specify in dbx commands (Section 5.3)

• How to enter dbx commands using options provided by the dbx monitor
(Section 5.4)

• How to control dbx (Section 5.5)

• How to examine source code and machine code (Section 5.6)

• How to control the execution of the program you are debugging
(Section 5.7)

• How to set breakpoints (Section 5.8)

• How to examine the state of a program (Section 5.9)

• How to preserve multiple core files (Section 5.10)

• How to debug a running process (Section 5.11)

• How to debug multithreaded processes (Section 5.12)

• How to debug multiple asynchronous processes (Section 5.13)

Complete details on dbx command-line options, dbx commands, variables,
and so on can be found in dbx(1).

You can also use Visual Threads (available on the Associated Products CD)
to analyze multithreaded applications for potential logic and performance

Debugging Programs with dbx 5–1

problems. You can use Visual Threads with DECthreads applications that
use POSIX threads (Pthreads) and with Java applications.

Examples in this chapter refer to a sample program called sam. The C
language source program (sam.c) is listed in Example 5–1.

In addition to the conventions outlined in the preface of this manual, an
additional convention is used in the command descriptions in this chapter;
uppercase keywords are used to indicate variables for which specific rules
apply. These keywords are described in Table 5–1.

Table 5–1: Keywords Used in Command Syntax Descriptions

Keyword Value

ADDRESS Any expression specifying a machine address.

COMMAND_LIST One or more commands, each separated by semicolons.

DIR Directory name.

EXP Any expression including program variable names for the
command. Expressions can contain dbx variables, for
example, ($listwindow + 2). If you want to use the variable
names in, to, or at in an expression, you must surround
them with parentheses; otherwise, dbx assumes that these
words are debugger keywords.

FILE File name.

INT Integer value.

LINE Source-code line number.

NAME Name of a dbx command.

PROCEDURE Procedure name or an activation level on the stack.

REGEXP Regular expression string. See ed(1).

SIGNAL System signal. See signal(2).

STRING Any ASCII string.

VAR Valid program variable or dbx predefined variable (see Table
5-9). For machine-level debugging, VAR can also be an
address. You must qualify program variables with duplicate
names as described in Section 5.3.2.

The following example shows the use of the uppercase words in commands:

(dbx) stop VAR in PROCEDURE if EXP

Enter stop, in, and if as shown. Enter the values for VAR, PROCEDURE,
and EXP as defined in Table 5–1.

5–2 Debugging Programs with dbx

_______________________ Note _______________________

Information on debugging multiple asynchronous processes,
including extensions to the syntax of certain dbx commands to
provide control of the asynchronous session, is contained in
Section 5.13.

5.1 General Debugging Considerations

The following sections introduce the dbx debugger and some debugging
concepts. They also give suggestions about how to approach a debugging
session, including where to start, how to isolate errors, and how to avoid
common pitfalls. If you are an experienced programmer, you may not need
to read these sections.

5.1.1 Reasons for Using a Source-Level Debugger

The dbx debugger enables you to trace problems in a program object at the
source-code level or at the machine-code level. With dbx, you control a
program’s execution, monitoring program control flow, variables, and
memory locations. You can also use dbx to trace the logic and flow of
control to become familiar with a program written by someone else.

5.1.2 Explanation of Activation Levels

Activation levels define the currently active scopes (usually procedures) on
the stack. An activation stack is a list of calls that starts with the initial
program, usually main(). The most recently called procedure or block is
number 0. The next procedure called is number 1. The last activation level
is always the main procedure (the procedure that controls the whole
program). Activation levels can also consist of blocks that define local
variables within procedures. You see activation levels in stack traces (see
the where and tstack debugger commands) and when moving around the
activation stack (see the up, down, and func debugger commands). The
following example shows a stack trace produced by a where command:

> 0 prnt(pline = 0x11ffffcb8) ["sam.c":52, 0x120000c04] 1
1 main(argc = 2, argv = 0x11ffffe08) ["sam.c":45, 0x120000bac] 2
| | | | | |
3 4 5 6 7 8

1 The most recently called procedure is prnt. The activation level of
prnt is 0; this function is at the top of the stack.

2 The main program is main.

Debugging Programs with dbx 5–3

3 Activation level number. The angle bracket (>) indicates the activation
level that is currently under examination.

4 Procedure name.
5 Procedure arguments.
6 Source file name.

7 Current line number.
8 Current program counter.

5.1.3 Isolating Program Execution Failures

Because the dbx debugger finds only run-time errors, you should fix
compiler errors before starting a debugging session. Run-time errors can
cause a program to fail during execution (resulting in the creation of a core
dump file) or to produce incorrect results. The approach for debugging a
program that fails during execution differs from the approach for
debugging a program that executes to completion but produces incorrect
results. (See Section 5.1.4 for information on how to debug programs that
produce incorrect results.)

If a program fails during execution, you can usually save time by using the
following approach to start a debugging session instead of blindly
debugging line by line:

1. Invoke the program under dbx, specifying any appropriate options and
the names of the executable file and the core dump file on the dbx
command line.

2. Get a stack trace using the where command to locate the point of
failure.

_____________________ Note _____________________

If you have not stripped symbol table information from the
object file, you can get a stack trace even if the program was
not compiled with the −g debug option.

3. Set breakpoints to isolate the error using the stop or stopi
commands.

4. Display the values of variables using the print command to see where
a variable might have been assigned an incorrect value.

If you still cannot find the error, other dbx commands described in this
chapter might be useful.

5–4 Debugging Programs with dbx

5.1.4 Diagnosing Incorrect Output Results

If a program executes to completion but produces incorrect values or
output, follow these steps:

1. Set a breakpoint where you think the problem is happening — for
example, in the code that generates the value or output.

2. Run the program.

3. Get a stack trace using the where command.

4. Display the values for the variables that might be causing the problem
using the print command.

5. Repeat this procedure until the problem is found.

5.1.5 Avoiding Pitfalls

The debugger cannot solve all problems. For example, if your program
contains logic errors, the debugger can only help you find the problem, not
solve it. When information displayed by the debugger appears confusing or
incorrect, taking the following actions might correct the situation:

• Separate lines of source code into logical units wherever possible (for
example, after if conditions). The debugger may not recognize a source
statement written with several others on the same line.

• If executable code appears to be missing, it might have been contained
in an included file. The debugger treats an included file as a single line
of code. If you want to debug this code, remove it from the included file
and compile it as part of the program.

• Make sure you recompile the source code after changing it. If you do not
do this, the source code displayed by the debugger will not match the
executable code. The debugger warns you if the source file is more
recent than the executable file.

• If you stop the debugger by pressing Ctrl/Z and then resume the same
debugging session, the debugger continues with the same object module
specified at the start of the session. This means that if you stop the
debugger to fix a problem in the code, recompile, and resume the
session, the debugger will not reflect the change. You must start a new
session.

Similarly, dbx will not reflect changes you have made if you edit and
recompile your program in one window on a workstation while running
the debugger in another window. You must stop and restart dbx each
time you want it to recognize changes you have made.

• When entering a command to display an expression that has the same
name as a dbx keyword, you must enclose the expression within

Debugging Programs with dbx 5–5

parentheses. For example, to display the value of output (a keyword in
the playback and record commands, discussed in Section 5.9.4), you
must specify the following command:

(dbx) print (output)

• If the debugger does not display any variables or executable code, make
sure you compiled the program with the −g option.

5.2 Running dbx

Before invoking dbx, you need to compile the program for debugging. You
might also want to create a dbx initialization file that will execute
commands when the debugger is started.

5.2.1 Compiling a Program for Debugging

To prepare a program for debugging, specify the −g option at compilation
time. With this option set, the compiler inserts into the program symbol
table information that the debugger uses to locate variables. With the −g
option set, the compiler also sets its optimization level to −O0. When you
use different levels of optimizing, for example −O2, the optimizer does not
alter the flow of control within a program, but it might move operations
around so that the object code and source code do not correspond. These
changed sequences of code can create confusion when you use the debugger.

You can do limited debugging on code compiled without the −g option. For
example, the following commands work properly without recompiling for
debugging:

• stop in PROCEDURE

• stepi

• cont

• conti

• (ADDRESS)/<COUNT><MODE>

• tracei

Although you can do limited debugging, it is usually more advantageous to
recompile the program with −g. Note that the debugger does not warn you
if an object file was compiled without the −g option.

Complete symbol table information is available only for programs in which
all modules have been compiled with the −g option. Other programs will
have symbol table information only for symbols that are either referenced
by or defined in modules compiled with the −g option.

5–6 Debugging Programs with dbx

_______________________ Note _______________________

Any routines in shared library applications in which breakpoints
are to be set must be compiled with the −g option. If the −g
option is not specified, the symbol table information that dbx
needs to set breakpoints is not generated and dbx will not be
able to stop the application.

5.2.2 Creating a dbx Initialization File

You can create a dbx initialization file that contains commands you
normally enter at the beginning of each dbx session. For example, the file
could contain the following commands:

set $page = 5
set $lines = 20
set $prompt = "DBX> "
alias du dump

The initialization file must have the name .dbxinit. Each time you
invoke the debugger, dbx executes the commands in .dbxinit. The
debugger looks first for .dbxinit in the current directory and then in your
home directory (the directory assigned to the $HOME environment variable).

5.2.3 Invoking and Terminating dbx

You invoke dbx from the shell command line by entering the dbx command
and any necessary parameters.

After invocation, dbx sets the current function to the first procedure of the
program.

The dbx command has the following syntax:

dbx [options] [objfile [corefile]]

options Several of the most important options supported by
the dbx command line are shown in Table 5–2.

objfile The name of the executable file of the program that
you want to debug. If objfile is not specified, dbx
uses a.out by default.

corefile Name of a core dump file. If you specify corefile,
dbx lists the point of program failure. The dump
file holds an image of memory at the time the

Debugging Programs with dbx 5–7

program failed. Use dbx commands to get a stack
trace and look at the core file code. The debugger
displays information from the core file, not from
memory as it usually does. See also Section 5.10.

The maximum number of arguments accepted by dbx is 1000; however,
system limits on your machine might reduce this number.

Table 5–2: dbx Command Options

Option Function

-cfilename Selects an initialization command file other than your
.dbxinit file.

-Idirname Tells dbx to look in the specified directory for source
files. To specify multiple directories, use a separate −I
for each. Unless you specify this option when you
invoke dbx, the debugger looks for source files in the
current directory and in the object file’s directory. You
can change directories with the use command (see
Section 5.6.1).

−i Invokes dbx in interactive mode. With this option set,
dbx does not treat source lines beginning with number
signs (#) as comments.

−k Maps memory addresses. This option is useful for
kernel debugging. (For information on kernel
debugging, see the Kernel Debugging manual.)

−module_path Specifies the directory path where dbx should search
for shared libraries (or loadable kernel modules). This
option is useful if, for example, you are debugging a
core dump (or a kernel crash dump) and the version of
a shared library (or module) that was running when
the dump occurred has been moved to a different
location. (For information on kernel debugging, see the
Kernel Debugging manual.)

−module_verbose Causes dbx to print the path of shared libraries (or
loadable kernel modules, if you are debugging a
kernel) as they are being loaded. By default, dbx does
not print the path. (For information on kernel
debugging, see the Kernel Debugging manual.)

5–8 Debugging Programs with dbx

Table 5–2: dbx Command Options (cont.)

Option Function

-pid process-id Attaches dbx to a currently running process.

−r Immediately executes the object file that you specify
on the command line. If program execution terminates
with an error, dbx displays the message that describes
the error. You can then either invoke the debugger or
allow the program to continue exiting. The dbx
debugger reads from /dev/tty when you specify the
−r option and standard input is not a terminal. If the
program executes successfully, dbx prompts you for
input.

The following example invokes dbx with no options. Because an object file
name is not specified, dbx prompts for one. In this case, the user responds
with sam. The default debugger prompt is (dbx).

% dbx
enter object file name (default is ’a.out’): sam
dbx version 3.12
Type ’help’ for help.

main: 23 if (argc < 2) {
(dbx)

Use the quit or q command to end a debugging session. The quit
command accepts no arguments.

5.3 Using dbx Commands

You can enter up to 10,240 characters on an input line. Long lines can be
continued with a backslash (\). If a line exceeds 10,240 characters, dbx
displays an error message. The maximum string length is also 10,240.

The following sections describe scoping and the use of qualified variable
names, dbx expressions and precedence, and dbx data types and constants.

5.3.1 Qualifying Variable Names

Variables in dbx are qualified by file, procedure, block, or structure. When
using commands like print to display a variable’s value, dbx indicates the
scope of the variable when the scope could be ambiguous (for example, you
have a variable by the same name in two or more procedures). If the scope
is wrong, you can specify the full scope of the variable by separating scopes
with periods. For example:

Debugging Programs with dbx 5–9

sam.main.i
| | |
1 2 3

1 Current file

2 Procedure name

3 Variable name

5.3.2 dbx Expressions and Their Precedence

The dbx debugger recognizes expression operators from C; these operators
can also be used for debugging any other supported language. (Note that
dbx uses brackets ([]) for array subscripts even in Fortran, whose
natural subscript delimiters are parentheses.) In addition to the standard
C operators, dbx uses the number sign (#) as shown in Table 5–3.

Table 5–3: The dbx Number-Sign Expression Operator

Syntax Description

("FILE" #EXP) Uses the line number specified by #EXP in the file named
by FILE.

(PROCEDURE #EXP) Uses the relative line number specified by #EXP in the
procedure named by PROCEDURE.

(#EXP) Returns the address for the line specified by (#EXP).

Operators follow the C language precedence. Table 5–4 shows the language
operators recognized by dbx in order of precedence from top to bottom and
from left to right, with the dbx-specific number-sign operator included
among the unary operators to show its place in the precedence hierarchy.

Table 5–4: Expression Operator Precedence

Unary: &, +, −, * (pointer), #, sizeof()a, ~, /, (type), (type *)

Binary: <<, >>, ", !, ==, !=, <=, >=, <, >, &, &&, |, ||, +, −, *,/b, %, [], −>
aThe sizeof operator specifies the number of bytes retrieved to get an element, not (number-of-bits
+7)/8.
bFor backward compatibility, dbx also accepts two slashes (//) as a division operator.

5.3.3 dbx Data Types and Constants

Table 5–5 lists the built-in data types that dbx commands can use.

5–10 Debugging Programs with dbx

Table 5–5: Built-in Data Types

Data Type Description Data Type Description

$address Pointer $real Double-precision real

$boolean Boolean $short 16-bit integer

$char Character $signed Signed integer

$double Double-precision real $uchar Unsigned character

$float Single-precision real $unsigned Unsigned integer

$integer Signed integer $void Empty

You can use the built-in data types for type coercion — for example, to
display the value of a variable in a type other than the type specified in the
variable’s declaration. The dbx debugger understands C language data
types, so that you can refer to data types without the $. The types of
constants that are acceptable as input to dbx are shown in Table 5–6.
Constants are displayed by default as decimal values in dbx output.

Table 5–6: Input Constants

Constant Description

false 0

true Nonzero

nil 0

0xnumber Hexadecimal

0tnumber Decimal

0number Octal

number Decimal

number.[number][e|E][+|-]EXP Float

Notes:

• Overflow on nonfloat uses the rightmost digits. Overflow on float uses
the leftmost digits of the mantissa and the highest or lowest exponent
possible.

• The $octin variable changes the default input expected to octal. The
$hexin variable changes the default input expected to hexadecimal
(see Section 5.5.2).

Debugging Programs with dbx 5–11

• The $octints variable changes the default output to octal. The
$hexints variable changes the default output to hexadecimal (see
Section 5.5.2).

5.4 Working with the dbx Monitor

The dbx debugger provides a command history, command-line editing, and
symbol name completion. The dbx debugger also allows multiple commands
on an input line. These features can reduce the amount of input required or
allow you to repeat previously executed commands.

5.4.1 Repeating dbx Commands

The debugger keeps a command history that allows you to repeat debugger
commands without retyping them. You can display these commands by
using the history command. The $lines variable controls the number of
history lines saved. The default is 20 commands. You can use the set
command to modify the $lines variable (see Section 5.5.1).

To repeat a command, use the Return key or one of the exclamation point
(!) commands.

The history command has the following forms:

history Displays the commands in the history list.

Return key Repeats the last command that you entered. You
can disable this feature by setting the
$repeatmode variable to 0 (see Section 5.5.1).

!string Repeats the most recent command that starts with
the specified string.

!integer Repeats the command associated with the specified
integer.

!−integer Repeats the command that occurred the specified
number of commands (integer) before the most
recent command.

The following example displays the history list and then repeats execution
of the twelfth command in the list:

(dbx) history
10 print x

5–12 Debugging Programs with dbx

11 print y
12 print z

(dbx) !12
(!12 = print z)
123
(dbx)

5.4.2 Editing the dbx Command Line

The dbx debugger provides support for command-line editing. You can edit
a command line to correct mistakes without reentering the entire
command. To enable command-line editing, set the EDITOR, EDITMODE, or
LINEEDIT environment variable before you invoke dbx. For example, to set
LINEEDIT from the C shell, enter the following command:

% setenv LINEEDIT

From the Bourne or Korn shells, enter this command:

$ export LINEEDIT

The debugger offers the following modes of command-line editing:

• If the environment variable LINEEDIT is not set and either of the
environment variables EDITMODE or EDITOR contains a path ending in
vi, the debugger uses a command-line editing mode that resembles the
Korn shell’s vi mode, in which the following editing keys are recognized:

$ + - 0 A B C D E F I R S W X ^
a b c d e f h i j k l r s w x ~
Ctrl/D
Ctrl/H
Ctrl/J
Ctrl/L
Ctrl/M
Ctrl/V

See ksh(1) for more information.

• If the environment variable LINEEDIT is set to any value, even the null
string, or if LINEEDIT is not set and either of the environment
variables EDITMODE or EDITOR contains a path ending in emacs, the
debugger uses a command-line editing mode that resembles the Korn
shell’s emacs mode. This mode behaves slightly differently depending
on whether it is enabled by LINEEDIT or by EDITOR or EDITMODE.

Table 5–7 lists the emacs-mode command-line editing commands.

Debugging Programs with dbx 5–13

Table 5–7: Command-Line Editing Commands in emacs mode

Command Function

Ctrl/A Moves the cursor to the beginning of the command line.

Ctrl/B Moves the cursor back one character.

Ctrl/C Clears the line.

Ctrl/D Deletes the character at the cursor.

Ctrl/E Moves the cursor to the end of the line.

Ctrl/F Moves the cursor ahead one character.

Ctrl/H Deletes the character immediately preceding the cursor.

Ctrl/J Executes the line.

Ctrl/K (When enabled by EDITOR or EDITMODE) Deletes from the cursor
to the end of the line. If preceded by a numerical parameter
whose value is less than the current cursor position, deletes from
the given position up to the cursor. If preceded by a numerical
parameter whose value is greater than the current cursor
position, deletes from the cursor up to the given position.

Ctrl/K char (When enabled by LINEEDIT) Deletes characters until the cursor
rests on the next occurrence of char.

Ctrl/L Redisplays the current line.

Ctrl/M Executes the line.

Ctrl/N Moves to the next line in the history list.

Ctrl/P Moves to the previous line in the history list.

Ctrl/R char Searches back in the current line for the specified character.

Ctrl/T Interchanges the two characters immediately preceding the cursor.

Ctrl/U Repeats the next character four times.

Ctrl/W Deletes the entire line.

Ctrl/Y Inserts immediately before the cursor any text cut with Ctrl/K.

Ctrl/Z Tries to complete a file or symbol name.

Escape Tries to complete a file or symbol name.

Down Arrow Moves to the next line in the history list.

Up Arrow Moves to the previous line in the history list.

5–14 Debugging Programs with dbx

Table 5–7: Command-Line Editing Commands in emacs mode (cont.)

Command Function

Left Arrow Moves the cursor back one character.

Right Arrow Moves the cursor ahead one character.

5.4.3 Entering Multiple Commands

You can enter multiple commands on the command line by using a
semicolon (;) as a separator. This feature is useful when you are using the
when command (see Section 5.8.4).

The following example has two commands on one command line; the first
command stops the program and the second command reruns it:

(dbx) stop at 40; rerun
[2] stop at "sam.c":40
[2] stopped at [main:40 ,0x120000b40] i=strlen(line1.string);
(dbx)

5.4.4 Completing Symbol Names

The dbx debugger provides symbol name completion. When you enter a
partial symbol name and press Ctrl/Z, dbx attempts to complete the name.
If a unique completion is found, dbx redisplays the input with the unique
completion added; otherwise, all possible completions are shown, and you
can choose one.

To enable symbol name completion, you must enable command-line editing
as described in Section 5.4.2. The following example displays all names
beginning with the letter i:

(dbx) i Ctrl/Z
ioctl.ioctl .ioctl isatty.isatty .isatty i int 1
(dbx) i 2

1 The display might include data types and library symbols.

2 After listing all names beginning with the partial name, dbx prompts
again with the previously specified string, giving you an opportunity to
specify additional characters and repeat the search.

The following example shows symbol name completion. In this case, the
entry supplied is unambiguous:

(dbx) print file Ctrl/Z
(dbx) print file_header_ptr
0x124ac
(dbx)

Debugging Programs with dbx 5–15

5.5 Controlling dbx

The dbx debugger provides commands for setting and removing dbx
variables, creating and removing aliases, invoking a subshell, checking and
deleting items from the status list, displaying a list of object files associated
with an application, and recording and playing back input.

5.5.1 Setting and Removing Variables

The set command defines a dbx variable, sets an existing dbx variable to
a different value, or displays a list of existing dbx predefined variables. The
unset command removes a dbx variable. Use the print command to
display the values of program and debugger variables. The dbx predefined
variables are listed in Table 5–8. You cannot define a debugger variable
with the same name as a program variable.

The set and unset commands have the following forms:

set Displays a list of dbx predefined variables.

set VAR = EXP Assigns a new value to a variable or defines a new
variable.

unset VAR Unsets the value of a dbx variable.

The following example shows the use of the set and unset commands:

(dbx) set 1
$listwindow 10
$datacache 1
$main "main"
$pagewindow 22
test 5
$page 1
$maxstrlen 128
$cursrcline 24
more (n if no)? n
(dbx) set test = 12 2
(dbx) set
$listwindow 10
$datacache 1
$main "main"
$pagewindow 22
test 12
$page 1
$maxstrlen 128
$cursrcline 24

5–16 Debugging Programs with dbx

more (n if no)? n
(dbx) unset test 3
(dbx) set
$listwindow 10
$datacache 1
$main "main"
$pagewindow 22
$page 1
$maxstrlen 128
$cursrcline 24
more (n if no)? n
(dbx)

1 Display a list of dbx predefined variables.

2 Assign a new value to a variable.

3 Remove a variable.

5.5.2 Predefined dbx Variables

The predefined dbx variables are shown in Table 5–8. Each variable is
labeled I for integer, B for Boolean, or S for string. Variables that you can
examine but cannot modify are indicated by an R.

Table 5–8: Predefined dbx Variables

Type Name Default Description

S $addrfmt "0x%lx" Specifies the format for
addresses. Can be set to
anything you can format
with a C language printf
statement.

B $assignverify 1 Specifies whether new
values are displayed when
assigning a value to a
variable.

B $asynch_interface 0 Controls whether dbx is,
or can be, configured to
control multiple
asynchronous processes.
Incremented by 1 when a
process is attached;
decremented by 1 when a
process terminates or is
detached. Can also be set
by the user. If 0 or
negative, asynchronous
debugging is disabled.

Debugging Programs with dbx 5–17

Table 5–8: Predefined dbx Variables (cont.)

Type Name Default Description

B $break_during_step 0 Controls whether
breakpoints are checked
while processing
step/stepi,
next/nexti, call,
return, and so on.

B $casesense 0 Specifies whether source
searching and variables
are case sensitive. A
nonzero value means case
sensitive; a 0 means not
case sensitive.

I R $curevent 0 Shows the last event
number as reported by the
status command.

I R $curline 0 Shows the current line in
the source code.

I R $curpc − Shows the current
address. Used with the wi
and li aliases.

I R $cursrcline 1 Shows the last line listed
plus 1.

B $datacache 1 Caches information from
the data space so that dbx
only has to check the data
space once. If you are
debugging the operating
system, set this variable to
0; otherwise, set it to a
nonzero value.

S R $defaultin Null string Shows the name of the file
that dbx uses to store
information when using
the record input
command.

S R $defaultout Null string Shows the name of the file
that dbx uses to store
information when using
the record output
command.

5–18 Debugging Programs with dbx

Table 5–8: Predefined dbx Variables (cont.)

Type Name Default Description

B $dispix 0 When set to 1, specifies
the display of only real
instructions when
debugging in pixie mode.

B $hexchars Not defined A nonzero value indicates
that character values are
shown in hexadecimal.

B $hexin Not defined A nonzero value indicates
that input constants are
hexadecimal.

B $hexints Not defined A nonzero value indicates
that output constants are
shown in hexadecimal; a
nonzero value overrides
octal.

B $hexstrings Not defined A nonzero value indicates
that strings are displayed
in hexadecimal; otherwise,
strings are shown as
characters.

I R $historyevent None Shows the current history
number.

I $lines 20 Specifies the size of the
dbx history list.

I $listwindow $pagewindow/2 Specifies the number of
lines shown by the list
command.

S $main "main" Specifies the name of the
procedure where execution
begins. The debugger
starts the program at
main() unless otherwise
specified.

I $maxstrlen 128 Specifies the maximum
number of characters that
dbx prints for pointers to
strings.

Debugging Programs with dbx 5–19

Table 5–8: Predefined dbx Variables (cont.)

Type Name Default Description

S $module_path Null string Specifies the directory
path where dbx should
search for shared libraries
(or loadable kernel
modules). This variable is
useful if, for example, you
are debugging a core dump
(or a kernel crash dump)
and the version of a
shared library (or module)
that was running when
the dump occurred has
been moved to a different
location. For information
on kernel debugging, see
the Kernel Debugging
manual.

I $module_verbose 0 When set to a nonzero
value, causes dbx to print
the location of shared
libraries (or loadable
kernel modules, if
debugging a kernel) as
they are being loaded. By
default, or when this
variable is set to 0, dbx
does not print the location.
For information on kernel
debugging, see the Kernel
Debugging manual.

B $octin Not defined Changes the default input
constants to octal when set
to a nonzero value.
Hexadecimal overrides
octal.

B $octints Not defined Changes the default
output constants to octal
when set to a nonzero
value. Hexadecimal
overrides octal.

B $page 1 Specifies whether to page
long information. A
nonzero value enables
paging; a 0 disables it.

5–20 Debugging Programs with dbx

Table 5–8: Predefined dbx Variables (cont.)

Type Name Default Description

I $pagewindow Various Specifies the number of
lines displayed when
viewing information that
is longer than one screen.
This variable should be set
to the number of lines on
the terminal. A value of 0
indicates a minimum of 1
line. The default value
depends on the terminal
type; for a standard video
display, the default is 24.

B $pimode 0 Displays input when using
the playback input
command.

I $printdata 0 A nonzero value indicates
that the values of registers
are displayed when
instructions are
disassembled; otherwise,
register values are not
displayed.

B $printtargets 1 If set to 1, specifies that
displayed disassembly
listings are to include the
labels of targets for jump
instructions. If set to 0,
disables this label display.

B $printwhilestep 0 For use with the step [n]
and stepi [n]
instructions. A nonzero
value specifies that all n
lines or instructions should
be displayed. A 0 value
specifies that only the last
line and/or instruction
should be displayed.

B $printwide 0 Specifies wide (useful for
structures or arrays) or
vertical format for
displaying variables. A
nonzero value indicates
wide format; 0 indicates
vertical format.

S $prompt "(dbx)" Sets the prompt for dbx.

Debugging Programs with dbx 5–21

Table 5–8: Predefined dbx Variables (cont.)

Type Name Default Description

B $readtextfile 1 When set to a value of 1,
dbx tries to read
instructions from the
object file instead of from
the process. This variable
should always be set to 0
when the process being
debugged copies in code
during the debugging
process. However,
performance is better
when $readtextfile is
set to 1.

B $regstyle 1 Specifies the type of
register names to be used.
A value of 1 specifies
hardware names. A 0
specifies software names
as defined by the file
regdefs.h.

B $repeatmode 1 Specifies whether dbx
should repeat the last
command when the
Return key is pressed. A
nonzero value indicates
that the command is
repeated; otherwise, it is
not repeated.

B $rimode 0 Records input when using
the record output
command.

S $sigvec "sigaction" Tells dbx the name of the
code called by the system
to set signal handlers.

S $sigtramp "_sigtramp" Tells dbx the name of the
code called by the system
to invoke user signal
handlers.

5–22 Debugging Programs with dbx

Table 5–8: Predefined dbx Variables (cont.)

Type Name Default Description

B $stopall_on_step 1 Specifies whether dbx
should stop every child
process that is forked (1)
or ignore many of the forks
generated by various
system and library calls
(0). If $stop_all_forks
is not set, the value of
$stop_on_fork
determines dbx’s behavior
with forks.
$stop_all_forks traps
forks in libraries and
system calls that are
usually ignored by
$stop_on_fork.

B $stop_in_main N/A Not used. This variable is
displayed by the set
command, but it presently
has no effect on dbx
operation.

B $stop_on_exec 1 Specifies whether dbx
should detect calls to
execl() and execv(),
and stop the newly
activated images at the
first line of executable
code.

B $stop_on_fork 1 Specifies whether dbx
should advance a new
image activated by a
fork() or vfork() call
to its main activation
point and then stop (1) or
continue until stopped by
a breakpoint or event (0).
The dbx program tries to
avoid stopping on forks
from system or library
calls unless
$stop_all_forks is set.

Debugging Programs with dbx 5–23

Table 5–8: Predefined dbx Variables (cont.)

Type Name Default Description

S $tagfile "tags" Contains a file name
indicating the file in which
the tag command and the
tagvalue macro are to
search for tags.

I $traploops 3 Specifies the number of
consecutive calls to a
SIGTRAP handler that will
be made before dbx
assumes that the program
has fallen into a
trap-handling loop.

5.5.3 Defining and Removing Aliases

The alias command defines a new alias or displays a list of all current
aliases.

The alias command allows you to rename any debugger command.
Enclose commands containing spaces within double- or single-quotation
marks. You can also define a macro as part of an alias.

The dbx debugger has a group of predefined aliases. You can modify these
aliases or add new aliases. You can also include aliases in your .dbxinit
file for use in future debugging sessions. The unalias command removes
an alias from a command. You must specify the alias to remove. The alias
is removed only for the current debugging session.

The alias and unalias commands have the following forms:

alias

Displays a list of all aliases.

alias NAME1[(ARG1,...,ARGN)] "NAME2"

Defines a new alias. NAME1 is the new name. NAME2 is the command
to string to rename. ARG1,...,ARGN are the command arguments.

unalias NAME

Removes an alias from a command, where NAME is the alias name.

The following example shows the use of the alias and unalias commands:

(dbx) alias 1
h history

5–24 Debugging Programs with dbx

si stepi
Si nexti
...
g goto
s step
More (n if no) ?n
(dbx) alias ok(x) "stop at x" 2
(dbx) ok(52) 3
[2] Stop at "sam.c":52 4
(dbx)
(dbx) unalias h 5
(dbx) alias
si stepi
Si nexti
...
g goto
s step
More (n if no)? n
(dbx)

1 Display aliases.

2 Define an alias for setting a breakpoint.

3 Set a breakpoint at line 52.

4 Debugger acknowledges breakpoint set at line 52.

5 Remove the h alias. (Note that it disappears from the alias list.)

5.5.4 Monitoring Debugging Session Status

The status command checks which, if any, of the following commands are
currently set:

• stop or stopi commands for breakpoints

• trace or tracei commands for line-by-line variable tracing

• when command

• record input and record output commands for saving information
in a file

The status command accepts no arguments. For example:

(dbx) status
[2] trace i in main
[3] stop in prnt
[4] record output /tmp/dbxt0018898 (0 lines)
(dbx)

The numbers in brackets (for example, [2]) indicate status item numbers.

Debugging Programs with dbx 5–25

5.5.5 Deleting and Disabling Breakpoints

The delete command deletes breakpoints and stops the recording of input
and output. Deleting a breakpoint or stopping recording removes the
pertinent items from the status list produced by the status command.

The disable command disables breakpoints without deleting them. The
enable command reenables disabled events.

The delete command has the following forms:

delete EXP1[,...,EXPN]

Deletes the specified status items.

delete all

delete *

Deletes all status items.

The following example shows the use of the delete command:

(dbx) status
[2] record output /tmp/dbxt0018898 (0 lines)
[3] trace i in main
[4] print pline at "sam.c":
[5] stop in prnt
(dbx) delete 4
(dbx) status
[2] record output /tmp/dbxt0018898 (0 lines)
[3] trace i in main
[5] stop in prnt
(dbx)

The disable and enable commands have the following forms:

disable EVENT1[,EVENT2,...]

enable EVENT1[,EVENT2,...]

Disables or enables the specified events.

disable all

enable all

Disables or enables all events.

5.5.6 Displaying the Names of Loaded Object Files

The listobj command displays the names of all object files that have
been loaded by dbx, together with their sizes and the address at which

5–26 Debugging Programs with dbx

they were loaded. These objects include the main program and all of the
shared libraries that are used in an application. The listobj command
accepts no arguments. For example:

(dbx) listobj
sam addr: 0x120000000 size: 0x2000
/usr/shlib/libc.so addr: 0x3ff80080000 size: 0xbc000
(dbx)

5.5.7 Specifying the Location of Shared Libraries for Core Dumps

When a core dump occurs, the location of any shared libraries used by the
program is recorded in the core file, enabling dbx to find the libraries. If
the version of a shared library that was running when the dump occurred
is moved to a different location, dbx will not find it. You can specify the
directory path where dbx should look for shared libraries by using any one
of the following methods (see dbx(1) for complete details):

• On the dbx command line, specify the directory path with the
-module_path option. For example:

% dbx a.out core -module_path /usr/project4/lib_dir

• Before invoking dbx, set the environment variable DBX_MODULE_PATH.
For example:

% setenv DBX_MODULE_PATH /usr/project4/lib_dir

• During the dbx session, if you want to load a shared library
dynamically, first set the $module_path dbx variable and then use the
addobj command to load the library, as in the following example:

(dbx) set $module_path /usr/project4/lib_dir
(dbx) addobj libdef.so

To verify that modules are being loaded from the correct location, turn on
verbose module-loading using any one of the following methods:

• Specify the -module_verbose dbx command option.

• Set the DBX_MODULE_VERBOSE environment variable to any integer
value.

• Set the $module_verbose dbx variable to a nonzero value.

5.5.8 Invoking a Subshell from Within dbx

To invoke an interactive subshell at the dbx prompt, enter sh. To return to
dbx from a subshell, enter exit or press Ctrl/D. To invoke a subshell that
performs a single command and returns to dbx, enter sh and the desired
shell command. For example:

Debugging Programs with dbx 5–27

(dbx) sh
% date
Tue Aug 9 17:25:15 EDT 1998

% exit
...

(dbx) sh date
Tue Aug 9 17:29:34 EDT 1998
(dbx)

5.6 Examining Source Programs

The following sections describe how to list and edit source code, change
directories, change source files, search for strings in source code, display
qualified symbol names, and display type declarations.

5.6.1 Specifying the Locations of Source Files

If you did not specify the −I option when invoking dbx (see Section 5.2.3),
the debugger looks for source files in the current directory or the object
file’s directory. The use command has two functions:

• Change the directory or list of directories in which the debugger looks

• List the directory or directories currently in use

The command recognizes absolute and relative pathnames (for example,
./), but it does not recognize the C shell tilde (~).

The use command has the following forms:

use

Lists the current directories.

use DIR1 ... DIRN

Replaces the current list of directories with a new set.

For example:

(dbx) use
. 1
(dbx) use /usr/local/lib
(dbx) use
/usr/local/lib 2
(dbx)

1 Current directory

2 New directory

5–28 Debugging Programs with dbx

5.6.2 Moving Up or Down in the Activation Stack

As described in Section 5.1.2, the debugger maintains a stack of activation
levels. To find the name or activation number for a specific procedure, get a
stack trace with the where or tstack command. You can move through the
activation stack by using the up, down, and func commands.

5.6.2.1 Using the where and tstack Commands

The where command displays a stack trace showing the current activation
levels (active procedures) of the program being debugged. The tstack
command displays a stack trace for all threads. See Section 5.12 for more
information about debugging threads.

The where and tstack commands have the following form:

where [EXP]
tstack [EXP] Displays a stack trace.

If EXP is specified, dbx displays only the top EXP levels of the stack;
otherwise, the entire stack is displayed.

If a breakpoint is set in prnt in the sample program sam.c, the program
runs and stops in the procedure prnt(). If you enter where, the debugger’s
stack trace provides the information shown in the following example:

(dbx) stop in prnt
[1] stop in prnt

(dbx) run
...

(dbx) where 1
> 0 prnt(pline = 0x11ffffcb8) ["sam.c":52, 0x120000c04]

| | | | | |
1 2 3 4 5 6

(dbx)

1 Activation level

2 Procedure name

3 Current value of the argument pline

4 Source file name

5 Line number

6 Program counter

Debugging Programs with dbx 5–29

5.6.2.2 Using the up, down, and func Commands

The up and down commands move you directly up or down in the stack;
they are useful when tracking a call from one level to another.

The func command can move you up or down incrementally or to a specific
activation level or procedure. The func command changes the current line,
the current file, and the current procedure, which changes the scope of the
variables you can access. You can also use the func command to examine
source code when a program is not executing.

The up, down, and func commands have the following forms:

up [EXP] Moves up the specified number of activation levels
in the stack. The default is one level.

down [EXP] Moves down the specified number of activation
levels in the stack. The default is one level.

func Displays the current activation levels.

func PROCEDURE Moves to the activation level specified by
PROCEDURE.

func EXP Moves to the activation level specified by the
expression.

The following example shows the use of these commands:

(dbx) where
> 0 prnt(pline = 0x11ffffcb8) ["sam.c":52, 0x120000c04]

1 main(argc = 2, argv = 0x11ffffe08) ["sam.c":45, 0x120000bac]
(dbx) up
main: 45 prnt(&line1); 1
(dbx) where

0 prnt(pline = 0x11ffffcb8) ["sam.c":52, 0x120000c04]
> 1 main(argc = 2, argv = 0x11ffffe08) ["sam.c":45, 0x120000bac]
(dbx) down
prnt: 52 fprintf(stdout,"%3d. (%3d) %s", 2
(dbx) where
> 0 prnt(pline = 0x11ffffcb8) ["sam.c":52, 0x120000c04]

1 main(argc = 2, argv = 0x11ffffe08) ["sam.c":45, 0x120000bac]
(dbx) func 1
main 47 prnt(&line1) 3

5–30 Debugging Programs with dbx

(dbx)

1 Move up one level.

2 Move down one level.

3 Move directly to main.

5.6.3 Changing the Current Source File

The file command displays the current source file name or changes the
current source file.

_______________________ Note _______________________

Before setting a breakpoint or trace on a line number, use the
func command to get the correct procedure. The file command
cannot be specific enough for the debugger to access the
information necessary to set a breakpoint.

The file command has the following forms:

file Displays the name of the file currently in use.

file FILE Changes the current file to the specified file.

For example:

(dbx) file
sam.c 1
(dbx) file data.c
(dbx) file
data.c 2
(dbx)

1 Current file

2 New file

5.6.4 Listing Source Code

The list command displays lines of source code. The dbx variable
$listwindow defines the number of lines that dbx lists by default. The
list command uses the current file, procedure, and line, unless otherwise
specified.

The list command has the following forms:

Debugging Programs with dbx 5–31

list Lists the number of lines specified by
$listwindow, starting at the current line.

list EXP Lists the number of lines specified by EXP, starting
at the current line.

list EXP1,EXP2 List lines from EXP1 to EXP2.

list EXP:INT Starting at the specified line (EXP), lists the
specified number of lines (INT), overriding
$listwindow.

list PROCEDURE Lists the specified procedure for $listwindow
lines.

The following example specifies a two-line list starting at line 49:

(dbx) list 49:2
49 void prnt(pline)
50 LINETYPE *pline;

If you use the list command’s predefined alias w, the output is as follows:

(dbx) w
45 prnt(&line1);
46 }
47 }
48
49 void prnt(pline)

> 50 LINETYPE *pline;
51 {

* 52 fprintf(stdout,"%3d. (%3d) %s",pline->linenumber,
53 pline->length, pline->string);
54 fflush(stdout);

The right angle bracket in column 1 (>) indicates the current line, and the
asterisk in column 2 (*) indicates the location of the program counter (PC)
at this activation level.

5.6.5 Searching for Text in Source Files

The slash (/) and question mark (?) commands search for regular
expressions in source code. The slash searches forward from the current
line, and the question mark searches backward. Both commands wrap
around at the end of the file if necessary, searching the entire file from the
point of invocation back to the same point. By default, dbx does not

5–32 Debugging Programs with dbx

distinguish uppercase letters from lowercase when searching. If you set the
dbx variable $casesense to any nonzero value, the search is case sensitive.

The / and ? commands have the following form:

/[REGEXP] Searches forward for the specified regular
expression or, if no expression is specified, for the
regular expression associated with the last previous
search command.

?[REGEXP] Searches backward in the same manner as the
slash command’s forward search.

For example:

(dbx) /lines
no match
(dbx) /line1
16 LINETYPE line1;

(dbx) /
39 while(fgets(line1.string, sizeof(line1.string), fd) != NULL){

(dbx)

5.6.6 Editing Source Files from Within dbx

The edit command enables you to change source files from within dbx. To
make the changes effective, you must quit from dbx, recompile the
program, and restart dbx.

The edit command has the following forms:

edit Invokes an editor on the current file.

edit FILE Invokes an editor on the specified file.

The edit command loads the editor indicated by the environment variable
EDITOR or, if EDITOR is not set, the vi editor. To return to dbx, exit
normally from the editor.

5.6.7 Identifying Variables that Share the Same Name

The which and whereis commands display program variables. These
commands are useful for debugging programs that have multiple variables
with the same name occurring in different scopes. The commands follow
the rules described in Section 5.3.1.

The which and whereis commands have the following forms:

Debugging Programs with dbx 5–33

which VAR Displays the default version of the specified
variable.

whereis VAR Displays all versions of the specified variable.

In the following example, the user checks to see where the default variable
named i is and then verifies that this is the only instance of i in the
program by observing that whereis shows only the one occurrence:

(dbx) which i
sam.main.i
(dbx) whereis i
sam.main.i

5.6.8 Examining Variable and Procedure Types

The whatis command lists the type declaration for variables and
procedures in a program.

The whatis command has the following form:

whatis VAR Displays the type declaration for the specified
variable or procedure.

For example:

(dbx) whatis main
int main(argc,argv)
int argc;
unsigned char **argv;
(dbx) whatis i
int i;
(dbx)

5.7 Controlling the Program

The following sections describe the dbx commands used to run a program,
step through source code, return from a procedure call, start at a specified
line, continue after stopping at a breakpoint, assign values to program
variables, patch an executable disk file, execute a particular routine, set an
environment variable, and load shared libraries.

5.7.1 Running and Rerunning the Program

The run and rerun commands start program execution. Each command
accepts program arguments and passes those arguments to the program. If

5–34 Debugging Programs with dbx

no arguments are specified for a run command, dbx runs the program with
no arguments. If no arguments are specified for a rerun command, dbx
defaults to the arguments used with the previous run or rerun command.
You can specify arguments in advance of entering a rerun command by
using the args command. Arguments set by the args command are
ignored by a subsequent run command.

You can also use these commands to redirect program input and output in
a manner similar to redirection in the C shell:

• The optional parameter <FILE1 redirects input to the program from
the specified file.

• The optional parameter >FILE2 redirects output from the program to
the specified file.

• The optional parameter >&FILE2 redirects both stderr and stdout to
the specified file.

_______________________ Note _______________________

The redirected output differs from the output saved with the
record output command (see Section 5.9.4.2), which saves
debugger output, not program output.

The run, args, and rerun commands have the following forms:

run [ARG1 ... ARGN] [<FILE1] [>FILE2]

run [ARG1 ... ARGN] [<FILE1] [>&FILE2]

Runs the program with the specified arguments and redirections.

args [ARG1 ... ARGN] [<FILE1] [>FILE2]

args [ARG1 ... ARGN] [<FILE1] [>&FILE2]

Sets the specified arguments and redirections for use by subsequent
commands; the specified values remain in effect until explicitly
altered by new values given with a run or rerun command.

rerun [ARG1 ... ARGN] [<FILE1] [>FILE2]

rerun [ARG1 ... ARGN] [<FILE1] [>&FILE2]

Reruns the program with the specified arguments and redirections.

For example:

(dbx) run sam.c 1
0. (19)#include <stdio.h>

Debugging Programs with dbx 5–35

1. (14) struct line {
2. (19) char string[256];
...
Program terminated normally
(dbx) rerun 2
0. (19)#include <stdio.h>
1. (14) struct line {
2. (19) char string[256];
...
Program terminated normally
(dbx)

1 The argument is sam.c.
2 Reruns the program with the previously specified arguments.

5.7.2 Executing the Program Step by Step

For debugging programs written in high-level languages, the step and
next commands execute a fixed number of source-code lines as specified by
EXP. For debugging programs written in assembly language, the stepi and
nexti commands work the same as step and next except that they step
by machine instructions instead of by program lines. If EXP is not specified,
dbx executes one source-code line or machine instruction; otherwise, dbx
executes the source-code lines or machine instructions as follows:

• The dbx debugger does not take comment lines into consideration in
interpreting EXP. The program executes EXP source-code lines,
regardless of the number of comment lines interspersed among them.

• For step and stepi, dbx considers EXP to apply both to the current
procedure and to called procedures. Program execution stops after EXP
source lines in the current procedure and any called procedures.

• For next and nexti, dbx considers EXP to apply only to the current
procedure. Program execution stops after executing EXP source lines in
the current procedure, regardless of the number of source lines
executed in any called procedures.

The step/stepi and next/nexti commands have the following form:

step [EXP]

stepi [EXP] Executes the specified number of lines or
instructions in both the current procedure and any
called procedures. The default is 1.

next [EXP]
nexti [EXP] Executes the specified number of source-code lines

or machine instructions in only the current

5–36 Debugging Programs with dbx

procedure, regardless of the number of lines
executed in any called procedures. The default is 1.

For example:

(dbx) rerun
[7] stopped at [prnt:52,0x120000c04] fprintf(stdout,"%3d.(%3d) %s",
(dbx) step 2
0. (19) #include <stdio.h>
[prnt:55 ,0x120000c48] }

(dbx) step
[main:40 ,0x120000b40] i=strlen(line1.string);

(dbx)

The $break_during_step and $printwhilestep variables affect
stepping. See Table 5–8 for more information.

5.7.3 Using the return Command

The return command is used in a called procedure to execute the
remaining instructions in the procedure and return to the calling procedure.

The return command has the following forms:

return Executes the rest of the current procedure and stops
at the next sequential line in the calling procedure.

return PROCEDURE Executes the rest of the current procedure and any
calling procedures intervening between the current
procedure and the procedure named by PROCEDURE.
Stops at the point of the call in the procedure that
is named.

For example:

(dbx) rerun
[7] stopped at [prnt:52,0x120000c04] fprintf(stdout,"%3d.(%3d) %s",
(dbx) return
0. (19) #include <stdio.h>

stopped at [main:45 +0xc,0x120000bb0] prnt(&line1);
(dbx)

5.7.4 Going to a Specific Place in the Code

The goto command shifts to the specified line and continues execution.
This command is useful in a when statement — for example, to skip a line
known to cause problems. The goto command has the following form:

Debugging Programs with dbx 5–37

goto LINE Goes to the specified source line when you continue
execution.

For example:

(dbx) when at 40 {goto 43}
[8] start sam.c:43 at "sam.c":40
(dbx)

5.7.5 Resuming Execution After a Breakpoint

For debugging programs written in high-level languages, the cont
command resumes program execution after a breakpoint. For debugging
programs written in assembly language, the conti command works the
same as cont. The cont and conti commands have the following forms:

cont

conti

Continues from the current source-code line or machine-code address.

cont to LINE

conti to ADDRESS

Continues until the specified source-code line or machine-code address.

cont in PROCEDURE

conti in PROCEDURE

Continues until the specified procedure.

cont SIGNAL

conti SIGNAL

After receiving the specified signal, continues from the current line or
machine instruction.

cont SIGNAL to LINE

conti SIGNAL to ADDRESS

After receiving the specified signal, continues until the specified line
or address.

cont SIGNAL in PROCEDURE

5–38 Debugging Programs with dbx

conti SIGNAL in PROCEDURE

Continues until the specified procedure and sends the specified signal.

The following example shows the use of the cont command in a C program:
(dbx) stop in prnt
[9] stop in prnt
(dbx) rerun
[9] stopped at [prnt:52,0x120000c04] fprintf(stdout,"%3d.(%3d) %s",
(dbx) cont
0. (19) #include <stdio.h>

[9] stopped at [prnt:52,0x120000c04] fprintf(stdout,"%3d.(%3d) %s",
(dbx)

The following example shows the use of the conti command in an
assembly-language program:

(dbx) conti
0. (19) #include <stdio.h>

[4] stopped at >*[prnt:52 ,0x120000c04] ldq r16,-32640(gp)
(dbx)

5.7.6 Changing the Values of Program Variables

The assign command changes the value of a program variable. The
assign command has the following form:

assign VAR = EXP

assign EXP1 = EXP2

Assigns a new value to the program variable named by VAR or the
address represented by the resolution of EXP1.

For example:

(dbx) print i
19 1
(dbx) assign i = 10
10 2
(dbx) assign *(int *)0x444 = 1 3
1
(dbx)

1 The value of i.
2 The new value of i.
3 Coerce the address to be an integer and assign a value of 1 to it.

5.7.7 Patching Executable Disk Files

The patch command patches an executable disk file to correct bad data or
instructions. Only text, initialized data, or read-only data areas can be

Debugging Programs with dbx 5–39

patched. The bss segment cannot be patched because it does not exist in
disk files. The patch command fails if it is entered against a program that
is executing.

The patch command has the following form:

patch VAR = EXP

patch EXP1 = EXP2

Assigns a new value to the program variable named by VAR or the
address represented by the resolution of EXP1.

The patch is applied to the default disk file; you can use qualified variable
names to specify a patch to a file other than the default. Applying a patch
in this way also patches the in-memory image of the file being patched.

For example:

(dbx) patch &main = 0
(dbx) patch var = 20
(dbx) patch &var = 20
(dbx) patch 0xnnnnn = 0xnnnnn

5.7.8 Running a Specific Procedure

It is possible for you to set the current line pointer to the beginning of a
procedure, place a breakpoint at the end of the procedure, and run the
procedure. However, it is usually easier to use the call or print command
to execute a procedure in your program. The call or print command
executes the procedure you specify on the command line. You can pass
parameters to the procedure by specifying them as arguments to the call
or print command.

The call or print command does not alter the flow of your program.
When the procedure returns, the program remains stopped at the point
where you entered the call or print command. The print command
displays values returned by called procedures; the call command does not.

The call and print commands have the following forms:

call PROCEDURE([parameters])

print PROCEDURE([parameters])

Executes the object code associated with the named procedure or
function. Specified parameters are passed to the procedure or function.

For example:

5–40 Debugging Programs with dbx

(dbx) stop in prnt 1
[11] stop in prnt
(dbx) call prnt(&line1) 2
[11] stopped at [prnt:52,0x120000c] fprintf(stdout,"%3d.(%3d) %s",
(dbx) status 3
[11] stop in prnt
[12] stop at "sam.c":40
[2] record output example2 (126 lines)
(dbx) delete 11,12 4
(dbx)

1 The stop command sets a breakpoint in the prnt() function.
2 The call command begins executing the object code associated with

prnt(). The line1 argument passes a string by reference to prnt.
3 The status command displays the currently active breakpoints.
4 The delete command deletes the breakpoints at lines 52 and 40.

The print command allows you to include a procedure as part of an
expression to be printed. For example:

(dbx) print sqrt(2.)+sqrt(3.)

5.7.9 Setting Environment Variables

Use the setenv command to set an environment variable. You can use this
command to set the value of an existing environment variable or create a
new environment variable. The environment variable is visible to both dbx
and the program you are running under dbx control, but it is not visible
after you exit the dbx environment. However, if you start a shell with the
sh command within dbx, that shell can see dbx environment variables. To
change an environment variable for a process, you must enter the setenv
command before starting up the process within dbx with the run command.

The setenv command has the following form:

setenv VAR "STRING"

Changes the value of an existing environment variable or create a
new one. To reset an environment variable, specify a null string.

For example:

(dbx) setenv TEXT "sam.c" 1
(dbx) run 2
[4] stopped at [prnt:52,0x120000e34] fprintf(stdout,"%3d.(%3d) %s",
(dbx) setenv TEXT "" 3
(dbx) run 4
Usage: sam filename

Program exited with code 1

1 The setenv command sets the environment variable TEXT to the value
sam.c.

Debugging Programs with dbx 5–41

2 The run command executes the program from the beginning. The
program reads input from the file named in the the environment
variable TEXT. Program execution stops at the breakpoint at line 52.

3 The setenv command sets the environment variable TEXT to null.

4 The run command executes the program. Because the TEXT
environment variable contains a null value, the program must get
input.

5.8 Setting Breakpoints

A breakpoint stops program execution and lets you examine the program’s
state at that point. The following sections describe the dbx commands to
set a breakpoint at a specific line or in a procedure and to stop for signals.

5.8.1 Overview

When a program stops at a breakpoint, the debugger displays an
informational message. For example, if a breakpoint is set in the sample
program sam.c at line 23 in the main() procedure, the following message
is displayed:

[4] stopped at [main:40, 0x120000b18] i=strlen(line1.string);
| | | | |
1 2 3 4 5

1 Breakpoint status number.

2 Procedure name.
3 Line number.
4 Current program counter. Use this number to display the

assembly-language instructions from this point. (See Section 5.7.5 for
more information.)

5 Source line.

Before setting a breakpoint in a program with multiple source files, be sure
that you are setting the breakpoint in the right file. To select the right
procedure, take the following steps:

1. Use the file command to select the source file.

2. Use the func command to specify a procedure name.

3. List the lines of the file or procedure using the list command (see
Section 5.6.4).

4. Use a stop at command to set a breakpoint at the desired line.

5–42 Debugging Programs with dbx

5.8.2 Setting Breakpoints with stop and stopi

For debugging programs written in high-level languages, the stop
command sets breakpoints to stop execution as follows: at a source line, in
a procedure, when a variable changes, or when a specified condition is true.
For debugging programs written in assembly language, the stopi
command works the same as stop, except that it traces by machine
instructions instead of by program lines. You can also instruct dbx to stop
when it enters a new image invoked by an exec(\) call by setting the
$stop_on_exec predefined variable (see Table 5–8).

• The stop at and stopi at commands set a breakpoint at a specific
source-code line or machine-code address, as applicable. The dbx
debugger stops only at lines or addresses that have executable code. If
you specify a nonexecutable stopping point, dbx sets the breakpoint at
the next executable point. If you specify the VAR parameter, the
debugger displays the variable and stops only when VAR changes; if you
specify if EXP, the debugger stops only when EXP is true.

• The stop in and stopi in commands set a breakpoint at the
beginning or, conditionally, for the duration of a procedure.

• The stop if and stopi if commands cause dbx to stop program
execution under specified conditions. Because dbx must check the
condition after the execution of each line, this command slows program
execution markedly. Whenever possible, use stop/stopi at or
stop/stopi in instead of stop/stopi if.

• If the $stop_on_exec predefined variable is set to 1, an exec() call
causes dbx to stop and read in the new image’s symbol table, then
advance to the image’s main activation point and stop for user input.

The delete command removes breakpoints established by the stop or
stopi command.

The stop and stopi commands have the following forms:

stop VAR

stopi VAR

Stops when VAR changes.

stop VAR at LINE

stopi VAR at ADDRESS

Stops when VAR changes at a specified source-code line or
machine-code address.

stop VAR at LINE if EXP

Debugging Programs with dbx 5–43

stopi VAR at ADDRESS if EXP

Stops when VAR changes at a specified line or address only if the
expression is true.

stop if EXP

stopi if EXP

Stops if EXP is true.

stop VAR if EXP

stopi VAR if EXP

Stops when VAR changes if EXP is true.

stop in PROCEDURE

stopi in PROCEDURE

Stops at the beginning of the procedure.

stop VAR in PROCEDURE

Stops in the specified procedure when VAR changes.

stop VAR in PROCEDURE if EXP

stopi VAR in PROCEDURE if EXP

Stops when VAR changes in the specified procedure if EXP is true.

_______________________ Note _______________________

Specifying both VAR and EXP causes stops anywhere in the
procedure, not just at the beginning. Using this feature is time
consuming because the debugger must check the condition
before and after each source line is executed. (When both
arguments are specified, EXP is always checked before VAR.)

The following example shows the use of stop in a C program:
(dbx) stop at 52
[3] stop at "sam.c":52
(dbx) rerun
[3] stopped at [prnt:52,0x120000fb0] fprintf(stdout,"%3d.(%3d) %s",
(dbx) stop in prnt
[15] stop in prnt
(dbx)

The following example shows the use of stopi in an assembly-language
program:

5–44 Debugging Programs with dbx

(dbx) stopi at 0x120000c04
[4] stop at 0x120000c04
(dbx) rerun
[7] stopped at >*[prnt:52 ,0x120000c04] ldq r16, -32640(gp)

5.8.3 Tracing Variables During Execution

For debugging programs written in high-level languages, the trace
command lists the value of a variable while the program is executing and
determines the scope of the variable being traced. For debugging programs
written in assembly language, the tracei command works the same as
trace, except that it traces by machine instructions instead of by program
lines.

The trace and tracei commands have the following forms:

trace LINE

Lists the specified source line each time it is executed.

trace VAR

tracei VAR

Lists the specified variable after each source line or machine
instruction is executed.

trace [VAR] at LINE

tracei [VAR] at ADDRESS

Lists the specified variable at the specified line or instruction.

trace [VAR] in PROCEDURE

tracei [VAR] in PROCEDURE

Lists the specified variable in the specified procedure.

trace [VAR] at LINE if EXP

tracei [VAR] at ADDRESS if EXP

Lists the variable at the specified source-code line or machine-code
address when the expression is true and the value of the variable has
changed. (EXP is checked before VAR.)

trace [VAR] in PROCEDURE if EXP

Debugging Programs with dbx 5–45

tracei [VAR] in PROCEDURE if EXP

Lists the variable in the specified procedure when the expression is
true and the value of the variable has changed. (EXP is checked before
VAR.)

For example:

(dbx) trace i
[5] trace i in main
(dbx) rerun sam.c
[4] [main:25 ,0x400a50]
(dbx) c
[5] i changed before [main: line 41]:
new value = 19;

[5] i changed before [main: line 41]:
old value = 19;
new value = 14;

[5] i changed before [main: line 41]:
old value = 14;
new value = 19;

[5] i changed before [main: line 41]:
old value = 19;
new value = 13;

[5] i changed before [main: line 41]:
old value = 13;
new value = 17;

[5] i changed before [main: line 41]:
old value = 17;
new value = 3;

[5] i changed before [main: line 41]:
old value = 3;
new value = 1;

[5] i changed before [main: line 41]:
old value = 1;
new value = 30;

5.8.4 Writing Conditional Code in dbx

The when command controls the conditions under which certain dbx
commands that you specify will be executed.

The when command has the following forms:

when VAR [if EXP] {COMMAND_LIST}

Executes the command list whenEXP is true and VAR changes.

5–46 Debugging Programs with dbx

when [VAR] at LINE [if EXP] {COMMAND_LIST}

Executes the command list when EXP is true, VAR changes, and the
debugger encounters LINE.

when in PROCEDURE {COMMAND_LIST}

Executes the command list upon entering PROCEDURE.

when [VAR] in PROCEDURE [if EXP] {COMMAND_LIST}

Executes the specified commands on each line of PROCEDURE when
EXP is true and VAR changes. (EXP is checked before VAR.)

For example:

(dbx) when in prnt {print line1.length}
[6] print line1.length in prnt
(dbx) rerun
19 1
14
19
.
.
.
17
59
45
12
More (n if no)?
(dbx) delete 6
(dbx) when in prnt {stop}
[7] stop in prnt
(dbx) rerun
[7] stopped at [prnt:52,0x12000fb0] fprintf(stdout,"%3d.(%3d) %s") 2

1 Value of line1.length.

2 Stops in the procedure prnt.

5.8.5 Catching and Ignoring Signals

The catch command either lists the signals that dbx catches or specifies a
signal for dbx to catch. If the process encounters a specified signal, dbx
stops the process.

The ignore command either lists the signals that dbx does not catch or
specifies a signal for dbx to add to the ignore list.

The catch and ignore commands have the following forms:

catch Displays a list of all signals that dbx catches.

catch SIGNAL Adds a signal to the catch list.

Debugging Programs with dbx 5–47

ignore Displays a list of all signals that dbx does not catch.

ignore SIGNAL Removes a signal from the catch list and adds it to
the ignore list.

For example:

(dbx) catch 1
INT QUIT ILL TRAP ABRT EMT FPE BUS SEGV SYS PIPE TERM URG \
STOP TTIN TTOU IO XCPU XFSZ VTALRM PROF WINCH INFO USR1 USR2
(dbx) ignore 2
HUP KILL ALRM TSTP CONT CHLD
(dbx) catch kill 3
(dbx) catch
INT QUIT ILL TRAP ABRT EMT FPE KILL BUS SEGV SYS PIPE TERM URG \
STOP TTIN TTOU IO XCPU XFSZ VTALRM PROF WINCH INFO USR1 USR2
(dbx) ignore
HUP ALRM TSTP CONT CHLD
(dbx)

1 Displays the catch list.

2 Displays the ignore list.

3 Adds KILL to the catch list and removes KILL from the ignore list.

The backslashes in the preceding example represent line continuation. The
actual output from catch and ignore is a single line.

5.9 Examining Program State

When dbx is stopped at a breakpoint, the program state can be examined
to determine what might have gone wrong. The debugger provides
commands for displaying stack traces, variable values, and register values.
The debugger also provides commands to display information about the
activation levels shown in the stack trace and to move up and down the
activation levels (see Section 5.6.2).

5.9.1 Printing the Values of Variables and Expressions

The print command displays the values of one or more expressions.

The printf command lists information in a specified format and supports
all formats of the printf() function except strings (%s). For a list of
formats, see printf(3). You can use the printf command to see a
variable’s value in a different number base.

The default command alias list (see Section 5.5.3) provides some useful
aliases for displaying the value of variables in different bases — octal (po),
decimal (pd), and hexadecimal (px). The default number base is decimal.

5–48 Debugging Programs with dbx

You can specify either the real machine register names or the software
names from the include file regdef.h. A prefix before the register number
specifies the type of register; the prefix can be either $f or $r, as shown in
the following list of registers:

Register Name(s) Register Type

$f00-$f31 Floating-point register (1 of 32)

$r00-$r31 Machine register (1 of 32)

$fpcr Floating-point control register

$pc Program counter value

$ps Program status registera

aThe program status register is useful only for kernel debugging. For user-level programs, its value is
always 8.

You can also specify prefixed registers in the print command to display a
register value or the program counter. The following commands display the
values of machine register 3 and the program counter:

(dbx) print $r3
(dbx) print $pc

The print command has the following forms:

print EXP1,...,EXPN

Displays the value of the specified expressions.

printf "STRING", EXP1,...,EXPN

Displays the value of the specified expressions in the format specified
by the string.

_______________________ Note _______________________

If the expression contains a name that is the same as a dbx
keyword, you must enclose the name within parentheses. For
example, to print output, a keyword in the playback and
record commands, specify the name as follows:

(dbx) print (output)

For example:

(dbx) print i
14 1
(dbx) po i
016 2
(dbx) px i

Debugging Programs with dbx 5–49

0xe 3
(dbx) pd i
14 4
(dbx)

1 Decimal
2 Octal
3 Hexadecimal
4 Decimal

The printregs command displays a complete list of register values; it
accepts no arguments. As with the print command, the default base for
display by printregs is decimal. To display values in hexadecimal with
the printregs command, set the dbx variable $hexints.

For example:

(dbx) printregs
$vfp= 4831837712 $r0_v0=0
$r1_t0=0 $r2_t1=0
$r3_t2=18446744069416926720 $r4_t3=18446744071613142936
$r5_t4=1 $r6_t5=0
...
$f25= 0.0 $f26= 0.0
$f27= 2.3873098155006918e-314 $f28= 2.6525639909000367e-314
$f29= 9.8813129168249309e-324 $f30= 2.3872988413145664e-314
$f31= 0.0 $pc= 4831840840

5.9.2 Displaying Activation-Level Information with the dump
Command

The dump command displays information about activation levels, including
values for all variables that are local to a specified activation level. To see
what activation levels are currently active in the program, use the where
command to get a stack trace.

The dump command has the following forms:

dump Displays information about the current activation
level.

dump . Displays information about all activation levels.

dump PROCEDURE Displays information about the specified procedure
(activation level).

For example:

5–50 Debugging Programs with dbx

(dbx) where
> 0 prnt(pline = 0x11ffffcb8) ["sam.c":52, 0x120000c04]

1 main(argc = 2, argv = 0x11ffffe08) ["sam.c":45, 0x120000bac]
(dbx) dump
prnt(pline = 0x11ffffcb8) ["sam.c":52, 0x120000c04]
(dbx) dump .
> 0 prnt(pline = 0x11ffffcb8) ["sam.c":52, 0x120000c04]

1 main(argc = 2, argv = 0x11ffffe08) ["sam.c":45, 0x120000bac]
line1 = struct {

string = "#include <stdio.h>"
length = 19
linenumber = 0

}
fd = 0x140000158
fname = 0x11ffffe9c = "sam.c"
i = 19
curlinenumber = 1

(dbx) dump main
main(argc = 2, argv = 0x11ffffe08) ["sam.c":45, 0x120000bac]
line1 = struct {

string = "#include <stdio.h>"
length = 19
linenumber = 0

}
fd = 0x140000158
fname = 0x11ffffe9c = "sam.c"
i = 19
curlinenumber = 1
(dbx)

5.9.3 Displaying the Contents of Memory

You can display memory contents by specifying the address and the format
of the display. Use the following form, with no spaces between the three
parts of the command:

address/count mode

The address portion of the command is the address of the first item to be
displayed, count is the number of items to be shown, and mode indicates
the format in which the items are to be displayed. For example:

prnt/20i

This example displays the contents of 20 machine instructions, beginning
at the address of the prnt function.

The values for mode are shown in Table 5–9.

Debugging Programs with dbx 5–51

Table 5–9: Modes for Displaying Memory Addresses

Mode Display Format

b Displays a byte in octal.

c Displays a byte as a character.

D Displays a long word (64 bits) in decimal.

d Displays a short word (16 bits) in decimal.

dd Displays a word (32 bits) in decimal.

f Displays a single-precision real number.

g Displays a double-precision real number.

i Displays machine instructions.

O Displays a long word in octal.

o Displays a short word in octal.

oo Displays a word (32 bits) in octal.

s Displays a string of characters that ends in a null byte.

X Displays a long word in hexadecimal.

x Displays a short word in hexadecimal.

xx Displays a word (32 bits) in hexadecimal.

The following example shows the output when displaying memory
addresses as instructions:

(dbx) &prnt/20i
[prnt:51, 0x120000bf0] ldah gp, 8193(r27)
[prnt:51, 0x120000bf4] lda gp, -25616(gp)
[prnt:51, 0x120000bf8] lda sp, -64(sp)
[prnt:51, 0x120000bfc] stq r26, 8(sp)
[prnt:51, 0x120000c00] stq r16, 16(sp)
[prnt:52, 0x120000c04] ldq r16, -32640(gp)

>*[prnt:52, 0x120000c08] addq r16, 0x38, r16
[prnt:52, 0x120000c0c] ldq r17, -32552(gp)
[prnt:52, 0x120000c10] ldq r1, 16(sp)
[prnt:52, 0x120000c14] ldl r18, 260(r1)
[prnt:52, 0x120000c18] ldl r19, 256(r1)
[prnt:52, 0x120000c1c] bis r1, r1, r20
[prnt:52, 0x120000c20] ldq r27, -32624(gp)
[prnt:52, 0x120000c24] jsr r26, (r27), 0x4800030a0
[prnt:52, 0x120000c28] ldah gp, 8193(r26)
[prnt:52, 0x120000c2c] lda gp, -25672(gp)
[prnt:54, 0x120000c30] ldq r16, -32640(gp)
[prnt:54, 0x120000c34] addq r16, 0x38, r16
[prnt:54, 0x120000c38] ldq r27, -32544(gp)

5–52 Debugging Programs with dbx

[prnt:54, 0x120000c3c] jsr r26, (r27), 0x480003100

5.9.4 Recording and Playing Back Portions of a dbx Session

The dbx debugger allows you to capture and replay portions of your input
to the program and also portions of its output. Recorded information is
written to a file so that you can reuse or reexamine it.

Recording input can be useful for creating command files containing
sequences that you want to repeat many times; you can even use recorded
input to control dbx for purposes such as regression testing. Recording
output is useful for capturing large volumes of information that are
inconvenient to deal with on the screen, so that you can analyze them later.
To look at recorded output later, you can read the saved file directly or you
can play it back with dbx.

5.9.4.1 Recording and Playing Back Input

The record input command records debugger input. The
playback input command repeats a recorded sequence. The
record input and playback input commands have the following forms:

record input [FILE]

Begins recording dbx commands in the specified file or, if no file is
specified, in a file placed in /tmp and given a generated name.

playback input [FILE]

source [FILE]

Executes the commands from the specified file or, if no file is specified,
from the temporary file. The two forms are identical in function.

The name given to the temporary file, if used, is contained in the debugger
variable $defaultin. To display the temporary file name, use the print
command:

(dbx) print $defaultin

Use a temporary file when you need to refer to the saved output only
during the current debugging session; specify a file name to save
information for reuse after you end the current debugging session. Use the
status command to see whether recording is active. Use the delete
command to stop recording. Note that these commands will appear in the
recording; if you are creating a file for future use, you will probably want to
edit the file to remove commands of this type.

Debugging Programs with dbx 5–53

Use the playback input command to replay the commands recorded with
the record input command. By default, playback is silent; you do not see
the commands as they are played. If the dbx variable $pimode is set to 1,
dbx displays commands as they are played back.

The following example records input and displays the resulting file:

(dbx) record input 1
[2] record input /tmp/dbxtX026963 (0 lines)
(dbx) status
[2] record input /tmp/dbxtX026963 (1 lines)
(dbx) stop in prnt
[3] stop in prnt
(dbx) when i = 19 {stop}
[4] stop ifchanged i = 19
(dbx) delete 2 2
(dbx) playback input 3
[3] stop in prnt
[4] stop ifchanged i = 19
[5] stop in prnt
[6] stop ifchanged i = 19
/tmp/dbxtX026963: 4: unknown event 2 4
(dbx)

1 Start recording.
2 Stop recording.
3 Play back the recorded input. As events 3 and 4 are played, they

create duplicates of themselves, numbered 5 and 6, respectively.
4 The debugger displays this error message because event 2, the

command to begin recording, was deleted when recording was stopped.

The temporary file resulting from the preceding dbx commands contains
the following text:

status
stop in prnt
when i = 19 {stop}
delete 2

5.9.4.2 Recording and Playing Back Output

Use the record output command to record dbx output during a
debugging session. To produce a complete record of activity by recording
input along with the output, set the dbx variable $rimode. You can use the
debugger’s playback output command to look at the recorded
information, or you can use any text editor.

The record output and playback output commands have the following
forms:

5–54 Debugging Programs with dbx

record output [FILE]

Begins recording dbx output in the specified file or, if no file is
specified, in a file placed in /tmp and given a generated name.

playback output [FILE]

Displays recorded output from the specified file or, if no file is
specified, from the temporary file.

The name given to the temporary file, if used, is contained in the debugger
variable $defaultout. To display the temporary file name, use the print
command:

(dbx) print $defaultout

The playback output command works the same as the cat command; a
display from the record output command is identical to the contents of
the recording file.

Use a temporary file when you need to refer to the saved output only
during the current debugging session; specify a file name to save
information for reuse after you end the current debugging session. Use the
status command to see whether recording is active. Use the delete
command to stop recording.

The following example shows a sample dbx interaction and the output
recorded for this interaction in a file named code:

(dbx) record output code
[3] record output code (0 lines)
(dbx) stop at 25
[4] stop at "sam.c":25
(dbx) run sam.c
[4] stopped at [main:25 ,0x120000a48] if (argc < 2) {
(dbx) delete 3
(dbx) playback output code
[3] record output code (0 lines)
(dbx) [4] stop at "sam.c":25
(dbx) [4] stopped at [main:25 ,0x120000a48] if (argc < 2) {
(dbx)

5.10 Enabling Core-Dump-File Naming
This section explains how to enable the operating system’s core-dump-file
naming feature so that you can preserve multiple core files.

When you enable core-file naming, the system produces core files with
names in the following format:

Debugging Programs with dbx 5–55

core.prog-name.host-name.tag

The name of the core file has four parts separated by periods:

• The literal string core.

• Up to 16 characters of the program name, as displayed by the ps
command.

• Up to 16 characters of the system’s network host name, as derived from
the part of the host name that precedes the first dot in the host name
format.

• A numeric tag that is assigned to the core file to make it unique among
all of the core files generated by a program on a host. The maximum
value for this tag, and therefore the maximum number of core files for
this program and host, is set by a system configuration parameter (see
Section 5.10.1).

The tag is not a literal version number. The system selects the first
available unique tag for the core file. For example, if a program’s core
files have tags 0, 1, and 3, the system uses tag 2 for the next core file it
creates for that program. If the system-configured limit for core-file
instances is reached, no further core files are created for that program
and host combination. By default, up to 16 versions of a core file can be
created.

To conserve disk space, be sure to remove core files after you have
examined them. This is necessary because named core files are not
overwritten.

You can enable core-file naming at either the system level (Section 5.10.1)
or the individual application level (Section 5.10.2).

5.10.1 Enabling Core-File Naming at the System Level

You can enable core-file naming at the system level by means of the
dxkerneltuner(8X) (graphical interface) or sysconfig(8) utility. To
enable core-file naming, set the enhanced-core-name process subsystem
attribute to 1. To limit the number of unique core-file versions that a
program can create on a specific host system, set the process subsystem
attribute enhanced-core-max-versions to the desired value. For
example:

proc:

enhanced-core-name = 1
enhanced-core-max-versions = 8

The minimum, maximum, and default numbers of versions are 1, 99999,
and 16, respectively.

5–56 Debugging Programs with dbx

5.10.2 Enabling Core-File Naming at the Application Level

To enable core-file naming at the application level, your program should
use the uswitch system call with the UWS_CORE flag set, as in the
following example:
#include <signal.h>
#include <xsys/uswitch.h>
/*
* Request enhanced core file naming for
* this process, then create a core file.
*/
main()
{

long uval = uswitch(USC_GET, 0);
uval = uswitch(USC_SET, uval | USW_CORE);
if (uval < 0) {

perror("uswitch");
exit(1);

}
raise(SIGQUIT);

}

5.11 Debugging a Running Process
You can use the dbx debugger to debug running processes that are started
outside the dbx environment. It supports the debugging of such processes,
both parent and child, by using the /proc file system. The debugger can
debug running processes only if the /proc file system is mounted. If /proc
is not already mounted, the superuser can mount it with the following
command:

mount -t procfs /proc /proc

You can add the following entry to the /etc/fstab file to mount /proc
upon booting:

/proc /proc procfs rw 0 0

The dbx debugger checks first to see if /proc is mounted, but it will still
function if this is not the case.

To attach to a running process, use the dbx command attach, which has
the following form:

attach process-id

The process-id argument is the process ID of the process you want
to attach to.

You can also attach to a process for debugging by using the command-line
option −pid process id.

To detach from a running process, use the dbx command detach, which
has the following form:

Debugging Programs with dbx 5–57

detach [process-id]

The optional process-id argument is the process ID of the process
you want to detach from. If no argument is given, dbx detaches from
the current process.

To change from one process to another, use the dbx command switch,
which has the following form:

switch process-id

The process-id argument is the process ID of the process you want
to switch to. You must already have attached to a process before you
can switch to it. You can use the alias sw for the switch command.

The attach command first checks to see whether /proc is mounted; dbx
gives a warning that tells you what to do if it is not mounted. If /proc is
mounted, dbx looks for the process ID in /proc. If the process ID is in
/proc, dbx attempts to open the process and issues a stop command. If
the process is not there or if the permissions do not allow attaching to it,
dbx reports this failure.

When the stop command takes effect, dbx reports the current position,
issues a prompt, and waits for user commands. The program probably will
not be stopped directly in the user code; it will more likely be stopped in a
library or system call that was called by user code.

The detach command deletes all current breakpoints, sets up a “run on
last close” flag, and closes (“releases”) the process. The program then
continues running if it has not been explicitly terminated inside dbx.

To see a summary of all active processes under the control of dbx, use the
plist command, which has the following form:

plist Displays a list of active processes and their status.
Indicates the current process with a marker: -->

5.12 Debugging Multithreaded Applications
The dbx debugger provides three basic commands to assist in the
debugging of applications that use threads:

• The tlist command displays a quick list of all threads and where they
are currently positioned in the program. This command accepts no
arguments.

Using the tlist command, you can see all of the threads, with their
IDs, that are currently in your program.

5–58 Debugging Programs with dbx

• The tset command sets the current thread. The debugger maintains
one thread as the current thread; this thread is the one that hits a
breakpoint or receives a signal that causes it to stop and relinquish
control to dbx.

Use tset to choose a different thread as the current thread so that you
can examine its state with the usual dbx commands. Note that the
selected thread remains the current thread until you enter another
tset command. Note also that the continue, step, or next
commands might be inappropriate for a given thread if it is blocked or
waiting to join with another thread.

• The tstack command lists the stacks of all threads in your application.
It is similar to the where command and, like where, takes an optional
numeric argument to limit the number of stack levels displayed.

The tset and tstack commands have the following forms:

tset [EXP] Choose a thread to be the current thread. The EXP
argument is the hexadecimal ID of the desired
thread.

tstack [EXP] Display stack traces for all threads. If EXP is
specified, dbx displays only the top EXP levels of the
stacks; otherwise, the entire stacks are displayed.

If the DECthreads product is installed on your system, you can gain access
to the DECthreads pthread debugger by issuing a call cma_debug()
command within your dbx session. The pthread debugger can provide a
great deal of useful information about the threads in your program. For
information on using the pthread debugger, enter a help command at its
debug> prompt.

A sample threaded program, twait.c, is shown in Example 12–1. The
following example shows a dbx session using that program. Long lines in
this example have all been folded at 72 characters to represent display on a
narrow terminal.

% dbx twait
dbx version 3.11.6
Type ’help’ for help.

main: 50 pthread_t me = pthread_self(), timer_thread;
(dbx) stop in do_tick
[2] stop in do_tick
(dbx) stop at 85
[3] stop at "twait.c":85
(dbx) stop at 35
[4] stop at "twait.c":35
(dbx) run
1: main thread starting up

Debugging Programs with dbx 5–59

1: exit lock initialized
1: exit lock obtained
1: exit cv initialized
1: timer_thread 2 created
1: exit lock released
[2] thread 0x81c62e80 stopped at [do_tick:21 ,0x12000730c] pthread_
t me = pthread_self();
(dbx) tlist
thread 0x81c623a0 stopped at [msg_receive_trap:74 +0x8,0x3ff808edf04]
Source not available
thread 0x81c62e80 stopped at [do_tick:21 ,0x12000730c] pthread_
t me = pthread_self();
(dbx) where
> 0 do_tick(argP = (nil)) ["twait.c":21, 0x12000730c]

1 cma__thread_base(0x0, 0x0, 0x0, 0x0, 0x0) ["../../../../../src/usr/
ccs/lib/DECthreads/COMMON/cma_thread.c":1441, 0x3ff80931410]
(dbx) tset 0x81c623a0
thread 0x81c623a0 stopped at [msg_receive_trap:74 +0x8,0x3ff808edf04]
Source not available
(dbx) where
> 0 msg_receive_trap(0x3ff8087b8dc, 0x3ffc00a2480, 0x3ff8087b928, 0x181
57f0d0d, 0x3ff8087b68c) ["/usr/build/osf1/goldos.bld/export/alpha/usr/in
clude/mach/syscall_sw.h":74, 0x3ff808edf00]

1 msg_receive(0x61746164782e, 0x3ffc009a420, 0x3ffc009a420, 0x3c20, 0
xe0420) ["../../../../../src/usr/ccs/lib/libmach/msg.c":95, 0x3ff808e474
4]

2 cma__vp_sleep(0x280187f578, 0x3990, 0x7, 0x3ffc1032848, 0x0) ["../.
./../../../src/usr/ccs/lib/DECthreads/COMMON/cma_vp.c":1471, 0x3ff809375
cc]

3 cma__dispatch(0x7, 0x3ffc1032848, 0x0, 0x3ffc100ee08, 0x3ff80917e3c
) ["../../../../../src/usr/ccs/lib/DECthreads/COMMON/cma_dispatch.c":967
, 0x3ff80920e48]

4 cma__int_wait(0x11ffff228, 0x140009850, 0x3ffc040cdb0, 0x5, 0x3ffc0
014c00) ["../../../../../src/usr/ccs/lib/DECthreads/COMMON/cma_condition
.c":2202, 0x3ff80917e38]

5 cma_thread_join(0x11ffff648, 0x11ffff9f0, 0x11ffff9e8, 0x60aaec4, 0
x3ff8000cf38) ["../../../../../src/usr/ccs/lib/DECthreads/COMMON/cma_thr
ead.c":825, 0x3ff80930a58]

6 pthread_join(0x140003110, 0x40002, 0x11ffffa68, 0x3ffc040cdb0, 0x0)
["../../../../../src/usr/ccs/lib/DECthreads/COMMON/cma_pthread.c":2193,
0x3ff809286c8]

7 main() ["twait.c":81, 0x12000788c]
(dbx) tlist
thread 0x81c623a0 stopped at [msg_receive_trap:74 +0x8,0x3ff808edf04]
Source not available
thread 0x81c62e80 stopped at [do_tick:21 ,0x12000730c] pthread_
t me = pthread_self();
(dbx) tset 0x81c62e80
thread 0x81c62e80 stopped at [do_tick:21 ,0x12000730c] pthread_
t me = pthread_self();
(dbx) cont
2: timer thread starting up, argP=0x0
[4] thread 0x81c62e80 stopped at [do_tick:35 ,0x120007430] printf("
%d: wait for next tick\n", THRID(&me));
(dbx) cont
2: wait for next tick
2: TICK #1
[4] thread 0x81c62e80 stopped at [do_tick:35 ,0x120007430] printf("
%d: wait for next tick\n", THRID(&me));
(dbx) tstack
Thread 0x81c623a0:
> 0 msg_receive_trap(0x3ff8087b8dc, 0x3ffc00a2480, 0x3ff8087b928, 0x181
57f0d0d, 0x3ff8087b68c) ["/usr/build/osf1/goldos.bld/export/alpha/usr/in
clude/mach/syscall_sw.h":74, 0x3ff808edf00]

5–60 Debugging Programs with dbx

1 msg_receive(0x61746164782e, 0x3ffc009a420, 0x3ffc009a420, 0x3c20, 0
xe0420) ["../../../../../src/usr/ccs/lib/libmach/msg.c":95, 0x3ff808e474
4]

2 cma__vp_sleep(0x280187f578, 0x3990, 0x7, 0x3ffc1032848, 0x0) ["../.
./../../../src/usr/ccs/lib/DECthreads/COMMON/cma_vp.c":1471, 0x3ff809375
cc]

3 cma__dispatch(0x7, 0x3ffc1032848, 0x0, 0x3ffc100ee08, 0x3ff80917e3c
) ["../../../../../src/usr/ccs/lib/DECthreads/COMMON/cma_dispatch.c":967
, 0x3ff80920e48]

4 cma__int_wait(0x11ffff228, 0x140009850, 0x3ffc040cdb0, 0x5, 0x3ffc0
014c00) ["../../../../../src/usr/ccs/lib/DECthreads/COMMON/cma_condition
.c":2202, 0x3ff80917e38]

5 cma_thread_join(0x11ffff648, 0x11ffff9f0, 0x11ffff9e8, 0x60aaec4, 0
x3ff8000cf38) ["../../../../../src/usr/ccs/lib/DECthreads/COMMON/cma_thr
ead.c":825, 0x3ff80930a58]

6 pthread_join(0x140003110, 0x40002, 0x11ffffa68, 0x3ffc040cdb0, 0x0)
["../../../../../src/usr/ccs/lib/DECthreads/COMMON/cma_pthread.c":2193,
0x3ff809286c8]

7 main() ["twait.c":81, 0x12000788c]
Thread 0x81c62e80:
> 0 do_tick(argP = (nil)) ["twait.c":35, 0x120007430]

1 cma__thread_base(0x0, 0x0, 0x0, 0x0, 0x0) ["../../../../../src/usr/
ccs/lib/DECthreads/COMMON/cma_thread.c":1441, 0x3ff80931410]
More (n if no)?
(dbx) tstack 3
Thread 0x81c623a0:
> 0 msg_receive_trap(0x3ff8087b8dc, 0x3ffc00a2480, 0x3ff8087b928, 0x181
57f0d0d, 0x3ff8087b68c) ["/usr/build/osf1/goldos.bld/export/alpha/usr/in
clude/mach/syscall_sw.h":74, 0x3ff808edf00]

1 msg_receive(0x61746164782e, 0x3ffc009a420, 0x3ffc009a420, 0x3c20, 0
xe0420) ["../../../../../src/usr/ccs/lib/libmach/msg.c":95, 0x3ff808e474
4]

2 cma__vp_sleep(0x280187f578, 0x3990, 0x7, 0x3ffc1032848, 0x0) ["../.
./../../../src/usr/ccs/lib/DECthreads/COMMON/cma_vp.c":1471, 0x3ff809375
cc]
Thread 0x81c62e80:
> 0 do_tick(argP = (nil)) ["twait.c":35, 0x120007430]

1 cma__thread_base(0x0, 0x0, 0x0, 0x0, 0x0) ["../../../../../src/usr/
ccs/lib/DECthreads/COMMON/cma_thread.c":1441, 0x3ff80931410]
(dbx) cont
2: wait for next tick
2: TICK #2
[4] thread 0x81c62e80 stopped at [do_tick:35 ,0x120007430] printf("
%d: wait for next tick\n", THRID(&me));
(dbx) assign ticks = 29
29
(dbx) cont
2: wait for next tick
2: TICK #29
[4] thread 0x81c62e80 stopped at [do_tick:35 ,0x120007430] printf("
%d: wait for next tick\n", THRID(&me));
(dbx) cont
2: wait for next tick
2: TICK #30
2: exiting after #31 ticks
1: joined with timer_thread 2
[3] thread 0x81c623a0 stopped at [main:85 ,0x1200078ec] if (errn
o != 0) printf("errno 7 = %d\n",errno);
(dbx) tlist
thread 0x81c623a0 stopped at [main:85 ,0x1200078ec] if (errno != 0)
printf("errno 7 = %d\n",errno);
thread 0x81c62e80 stopped at [msg_rpc_trap:75 +0x8,0x3ff808edf10]
Source not available
(dbx) cont

Debugging Programs with dbx 5–61

Program terminated normally

(dbx) tlist
(dbx) quit

5.13 Debugging Multiple Asynchronous Processes

The dbx debugger can debug multiple simultaneous asynchronous
processes. While debugging asynchronous processes, dbx can display status
and accept commands asynchronously. When running asynchronously, the
debugger might exhibit confusing behavior because a running process can
display output on the screen while you are entering commands to examine
a different process that is stopped.

The debugger automatically enters asynchronous mode in either of the
following circumstances:

• You command it to attach to a new process while a previous process is
still attached.

• The process to which dbx is attached forks off a child process, and the
debugger automatically attaches to the child process without detaching
from the parent.

The debugger uses several predefined variables to define the behavior of
asynchronous debugging. (See also Table 5–8.) The variable
$asynch_interface can be viewed as a counter that is incremented by 1
when a new process is attached and decremented by 1 when a process
terminates or is detached. The default value is 0.

When $asynch_interface has a positive nonzero value, asynchronous
debugging is enabled; when the variable is 0 (zero) or negative,
asynchronous debugging is disabled. To prevent dbx from entering
asynchronous mode, set the $asynch_interface variable to a negative
value. (Note that disabling asynchronous mode might make debugging
more difficult if a parent is waiting on a child that is stopped.)

When a process executes a fork() or vfork() call to spawn a child
process, dbx attaches to the child process and automatically enters
asynchronous mode (if permitted by $asynch_interface). The default
behavior is to stop the child process right after the fork. You can change
this default by setting the variable $stop_on_fork to 0; in this case, dbx
will attach to the child process but not stop it.

The dbx debugger attempts to apply a degree of intelligence to the
handling of forks by filtering out many of the fork calls made by various
system and library calls. If you want to stop the process on these forks also,
you can set the predefined variable $stop_all_forks to 1. This variable’s

5–62 Debugging Programs with dbx

default value is 0. Stopping on all forks can be particularly useful when
you are debugging a library routine.

You can use the debugger’s plist and switch commands to monitor and
switch between processes.

5.14 Sample Program

Example 5–1 is the sample C program (sam.c) that is referred to in
examples throughout this chapter.

Example 5–1: Sample Program Used in dbx Examples

#include <stdio.h>
struct line {

char string[256];
int length;
int linenumber;

};

typedef struct line LINETYPE;

void prnt();

main(argc,argv)
int argc;
char **argv;

{
LINETYPE line1;
FILE *fd;
extern FILE *fopen();
extern char *fgets();
extern char *getenv();
char *fname;
int i;
static curlinenumber=0;

if (argc < 2) {
if((fname = getenv("TEXT")) == NULL || *fname == ’ ’) {

fprintf(stderr, "Usage: sam filename\n");
exit(1);

}
} else

fname = argv[1];

fd = fopen(fname,"r");
if (fd == NULL) {

fprintf(stderr, "cannot open %s\n",fname);
exit(1);

Debugging Programs with dbx 5–63

Example 5–1: Sample Program Used in dbx Examples (cont.)

}

while(fgets(line1.string, sizeof(line1.string), fd) != NULL){
i=strlen(line1.string);
if (i==1 && line1.string[0] == ’\n’)

continue;
line1.length = i;
line1.linenumber = curlinenumber++;
prnt(&line1);

}
}

void prnt(pline)
LINETYPE *pline;
{

fprintf(stdout,"%3d. (%3d) %s",
pline->linenumber, pline->length, pline->string);

fflush(stdout);
}

5–64 Debugging Programs with dbx

6
Checking C Programs with lint

You can use the lint program to check your C programs for potential
coding problems. The lint program checks a program more carefully than
some C compilers, and displays messages that point out possible problems.
Some of the messages require corrections to the source code; others are
only informational messages and do not require corrections.

This chapter addresses the following topics:

• Syntax of the lint command (Section 6.1)

• Program flow checking (Section 6.2)

• Data type checking (Section 6.3)

• Variable and function checking (Section 6.4)

• Checking the use of variables before they are initialized (Section 6.5)

• Migration checking (Section 6.6)

• Portability checking (Section 6.7)

• Checking for coding errors and coding style differences (Section 6.8)

• Increasing table sizes for large programs (Section 6.9)

• Creating a lint library (Section 6.10)

• Understanding lint error messages (Section 6.11)

• Using warning class options to suppress lint messages (Section 6.12)

• Generating function prototypes for compile-time detection of syntax
errors (Section 6.13)

See lint(1) for a complete list of lint options.

6.1 Syntax of the lint Command

The lint command has the following syntax:

lint [options] [file ...]

options

Options to control lint checking operations.

Checking C Programs with lint 6–1

The cc driver options, −std, −std0, and −std1, are available as
options to lint. These options affect the parsing of the source as well
as the selection of the lint library to use. Selecting either the −std
or −std1 options turns on ANSI parsing rules in lint.

When you use the −MA lint option, −std1 is used for the C
preprocessing phase and _ANSI_C_SOURCES is defined using the −D
preprocessor option. The following table describes the action lint
takes for each option:

lint Option Preprocessor Switch lint Parsing lint Library

−MA −std1 and
−D_ANSI_C_SOURCE

ANSI llib-lansi.ln

−std −std ANSI llib-lcstd.ln

−std1 −std1 ANSI llib-lcstd.ln

−std0 −std0 EXTDa llib-lc.ln
aEXTD is Extended C language, also know as K&R C.

file

The name of the C language source file for lint to check. The name
must have one of the following suffixes:

Suffix Description

.c C source file

.i File produced by the C preprocessor (cpp)

.ln lint library file

Note that lint library files are the result of a previous invocation of
the lint program with either the -c or -o option. They are
analogous to the .o files produced by the cc command when it is
given a .c file as input. The ability to specify lint libraries as input
to the lint program facilitates intermodule interface checking in
large applications. Adding rules that specify the construction of lint
libraries to their makefiles can make building such applications more
efficient. See Section 6.10 for a discussion on how to create a lint
library.

You can also specify as input a lint library that resides in one of the
system’s default library search directories by using the -lx option. The
library name must have the following form:

6–2 Checking C Programs with lint

llib-llibname.ln

By default, the lint program appends the extended C (K&R C) lint
library (llib-lc.ln) to the list of files specified on the command line. If
the −std or −std1 option is used, it appends the standard C lint library
(llib-lcstd.ln) instead.

The following additional libraries are included with the system:

Library Description Specify As

crses Checks curses library call syntax −lcrses

m Checks math library call syntax −lm

port Checks for portability with other systems −p (not −lport)

ansi Enforces ANSI C standard rules −MA (not −lansi)

If you specify no options on the command line, the lint program checks
the specified C source files and writes messages about any of the following
coding problems that it finds:

• Loops that are not entered and exited normally

• Data types that are not used correctly

• Functions that are not used correctly

• Variables that are not used correctly

• Coding techniques that could cause problems if a program is moved to
another system

• Nonstandard coding practices and style differences that could cause
problems

The lint program also checks for syntax errors in statements in the
source programs. Syntax checking is always done and is not influenced by
any options that you specify on the lint command.

If lint does not report any errors, the program has correct syntax and will
compile without errors. Passing that test, however, does not mean that the
program will operate correctly or that the logic design of the program is
accurate.

See Section 6.10 for information on how to create your own lint library.

6.2 Program Flow Checking

The lint program checks for dead code, that is, parts of a program that are
never executed because they cannot be reached. It writes messages about

Checking C Programs with lint 6–3

statements that do not have a label but immediately follow statements that
change the program flow, such as goto, break, continue, and return.

The lint program also detects and writes messages for loops that cannot
be entered at the top. Some programs that include this type of loop may
produce correct results; however, this type of loop can cause problems.

The lint program does not recognize functions that are called but can
never return to the calling program. For example, a call to exit may result
in code that cannot be reached, but lint does not detect it.

Programs generated by yacc and lex may have hundreds of break
statements that cannot be reached. The lint program normally writes an
error message for each of these break statements. To eliminate the
extraneous code associated with these break statements, use the -O option
to the cc command when compiling the program. Use the −b option with
the lint program to prevent it from writing these messages when checking
yacc and lex output code. (For information on yacc and lex, see the
Programming Support Tools manual.)

6.3 Data Type Checking

The lint program enforces the type checking rules of the C language more
strictly than the compiler does. In addition to the checks that the compiler
makes, lint checks for potential data type errors in the following areas:

• Binary operators and implied assignments

• Structures and unions

• Function definition and uses

• Enumerators

• Type checking control

• Type casts

Details on each of these potential problem areas are provided in the
sections that follow.

6.3.1 Binary Operators and Implied Assignments

The C language allows the following data types to be mixed in statements,
and the compiler does not indicate an error when they are mixed:

char
short
int
long

6–4 Checking C Programs with lint

unsigned
float
double

The C language automatically converts data types within this group to
provide the programmer with more flexibility in programming. This
flexibility, however, means that the programmer, not the language, must
ensure that the data type mixing produces the desired result.

You can mix these data types when using them in the following ways (in
the examples, alpha is type char and num is type int):

• Operands on both sides of an assignment operator, for example:

alpha = num; /* alpha converts to int */

• Operands in a conditional expression, for example:

value=(alpha < num) ? alpha : num;
/* alpha converts to int */

• Operands on both sides of a relational operator, for example:

if(alpha != num) /* alpha converts to int */

• The type of an argument in a return statement is converted to the
type of the value that the function returns, for example:

funct(x) /* returns an integer */
{

return(alpha);
}

The data types of pointers must agree exactly, except that you can mix
arrays of any type with pointers to the same type.

6.3.2 Structures and Unions

The lint program checks structure operations for the following
requirements:

• The left operand of the structure pointer operator (->) must be a
pointer to a structure.

• The left operand of the structure member operator (.) must be a
structure.

• The right operand of these operators must be a member of the same
structure.

The lint program makes similar checks for references to unions.

Checking C Programs with lint 6–5

6.3.3 Function Definition and Uses

The lint program applies strict rules to function argument and return
value matching. Arguments and return values must agree in type, with the
following exceptions:

• You can match arguments of type float with arguments of type
double.

• You can match arguments within the following types:

char
short
int
unsigned

• You can match pointers with the associated arrays.

6.3.4 Enumerators

The lint program checks enumerated data type variables to ensure that
they meet the following requirements:

• Enumerator variables or members of an enumerated type are not mixed
with other types or other enumerator variables.

• The enumerated data type variables are only used in the following
areas:

Assignment (=)
Initialization
Equivalence (==)
Not equivalence (!=)
Function arguments
Return values

6.3.5 Type Casts

Type casts in the C language allow the program to treat data of one type as
if it were data of another type. The lint program can check for type casts
and write a message if it finds one.

The -wp and -h options for the lint command line control the writing of
warning messages about casts. If neither of these options are used, lint
produces warning messages about casts that may cause portability
problems.

In migration checking mode, -Qc suppresses cast warning messages (see
Section 6.6).

6–6 Checking C Programs with lint

6.4 Variable and Function Checking

The lint program checks for variables and functions that are declared in a
program but not used. The lint program checks for the following errors in
the use of variables and functions:

• Functions that return values inconsistently

• Functions that are defined but not used

• Arguments to a function call that are not used

• Functions that can return either with or without values

• Functions that return values that are never used

• Programs that use the value of a function when the function does not
return a value

Details on each of these potential problem areas are provided in the
sections that follow.

6.4.1 Inconsistent Function Return

If a function returns a value under one set of conditions but not under
another, you cannot predict the results of the program. The lint program
checks functions for this type of behavior. For example, if both of the
following statements are in a function definition, a program calling the
function may or may not receive a return value:

return(expr);
...
return;

These statements cause the lint program to write the following message
to point out the potential problem:

function name has return(e); and return

The lint program also checks functions for returns that are caused by
reaching the end of the function code (an implied return). For example, in
the following part of a function, if a tests false, checkout calls fix_it and
then returns with no defined return value:

checkout (a)
{

if (a) return (3);
fix_it ();

}

These statements cause the lint program to write the following message:

function checkout has return(e); and return

Checking C Programs with lint 6–7

If fix_it, like exit, never returns, lint still writes the message even
though nothing is wrong.

6.4.2 Function Values that Are Not Used

The lint program checks for cases in which a function returns a value and
the calling program may not use the value. If the value is never used, the
function definition may be inefficient and should be examined to determine
whether it should be modified or eliminated. If the value is sometimes
used, the function may be returning an error code that the calling program
does not check.

6.4.3 Disabling Function-Related Checking

To prevent lint from checking for problems with functions, specify one or
more of the following options to the lint command:

-x Do not check for variables that are declared in an extern statement but
never used.

-v Do not check for arguments to functions that are not used, except for
those that are also declared as register arguments.

-u Do not check for functions and external variables that are either used
and not defined or defined and not used. Use this flag to eliminate
useless messages when you are running lint on a subset of files of a
larger program. (When using lint with some, but not all, files that
operate together, many of the functions and variables defined in those
files may not be used. Also, many functions and variables defined
elsewhere may be used.)

You can also place directives in the program to control checking:

• To prevent lint from warning about unused function arguments, add
the following directive to the program before the function definition:

/*ARGSUSED*/

• To prevent lint from writing messages about variable numbers of
arguments in calls to a function, add the following directive before the
function definition:

/*VARARGSn*/

To check the first several arguments and leave the later arguments
unchecked, add a digit (n) to the end of the VARARGS directive to give
the number of arguments that should be checked, such as:

/*VARARGS2*/

When lint reads this directive, it checks only the first two arguments.

6–8 Checking C Programs with lint

• To suppress complaints about unused functions and function arguments
in an entire file, place the following directive at the beginning of the file:

/*LINTLIBRARY*/

This is equivalent to using the −v and −x options.

• To permit a standard prototype checking library to be formed from
header files by making function prototype declarations appear as
function definitions, use the following directive:

/*LINTSTDLIB[_filename]*/

The /*LINTSTDLIB*/ directive implicitly activates the functions of the
/*NOTUSED*/ and /*LINTLIBRARY*/ directives to reduce warning
noise levels. When a file is referenced (filename), only prototypes in
that file are expanded. Multiple /*LINTSTDLIB_filename */
statements are allowed. (See Section 6.10.1 for more details on the use
of /*LINTSTDLIB*/ directives.)

• To suppress warnings about all used but undefined external symbols
and functions that are subsequently encountered in the file, use the
following directive:

/*NOTDEFINED*/

• To suppress comments about unreachable code, use the following
directive:

/*NOTREACHED*/

When placed at appropriate points in a program (typically immediately
following a return, break, or continue statement), the
/*NOTREACHED*/ directive stops comments about unreachable code.
Note that lint does not recognize the exit function and other
functions that may not return.

• To suppress warnings about all unused external symbols, functions, and
function parameters that are subsequently encountered in the file, use
the following directive:

/*NOTUSED*/

The /*NOTUSED*/ directive is similar to the /*LINTLIBRARY*/
directive, although /*NOTUSED*/ also applies to external symbols.

6.5 Checking on the Use of Variables Before They Are
Initialized

The lint program checks for the use of a local variable (auto and
register storage classes) before a value has been assigned to it. Using a
variable with an auto (automatic) or register storage class also includes
taking the address of the variable. This is necessary because the program

Checking C Programs with lint 6–9

can use the variable (through its address) any time after it knows the
address of the variable. Therefore, if the program does not assign a value to
the variable before it finds the address of the variable, lint reports an
error.

Because lint only checks the physical order of the variables and their
usage in the file, it may write messages about variables that are initialized
properly (in execution sequence).

The lint program recognizes and writes messages about:

• Initialized automatic variables

• Variables that are used in the expression that first sets them

• Variables that are set and never used

_______________________ Note _______________________

The Tru64 UNIX operating system initializes static and
extern variables to zero. Therefore, lint assumes that these
variables are set to zero at the start of the program and does not
check to see if they have been assigned a value when they are
used. When developing a program for a system that does not do
this initialization, ensure that the program sets static and
extern variables to an initial value.

6.6 Migration Checking

Use lint to check for all common programming techniques that might
cause problems when migrating programs from 32-bit operating systems to
the Tru64 UNIX operating system. The −Q option provides support for
checking ULTRIX and DEC OSF/1 Version 1.0 programs that you are
migrating to 64-bit systems.

Because the −Q option disables checking for most other programming
problems, use this option only for migration checking. Suboptions are
available to suppress specific categories of checking. For example, entering
−Qa suppresses the checking of pointer alignment problems. You can enter
more than one suboption with the −Q option, for example, −QacP to
suppress checking for pointer alignment problems, problematic type casts,
and function prototype checks, respectively. For more information about
migration checking, see lint(1).

6–10 Checking C Programs with lint

6.7 Portability Checking

Use lint to help ensure that you can compile and run C programs using
different C language compilers and other systems.

The following sections indicate areas to check before compiling the program
on another system. Checking only these areas, however, does not guarantee
that the program will run on any system.

_______________________ Note _______________________

The llib-port.ln library is brought in by using the −p option,
not by using the −lport option.

6.7.1 Character Uses

Some systems define characters in a C language program as signed
quantities with a range from −128 to 127; other systems define characters
as positive values. The lint program checks for character comparisons or
assignments that may not be portable to other systems. For example, the
following fragment may work on one system but fail on systems where
characters always take on positive values:

char c;
...
if((c = getchar()) <0)...

This statement causes the lint program to write the following message:

nonportable character comparison

To make the program work on systems that use positive values for
characters, declare c as an integer because getchar returns integer values.

6.7.2 Bit Field Uses

Bit fields may produce problems when a program is transferred to another
system. Bit fields may be signed quantities on the new system. Therefore,
when constant values are assigned to a bit field, the field may be too small
to hold the value. To make this assignment work on all systems, declare
the bit field to be of type unsigned before assigning values to it.

6.7.3 External Name Size

When changing from one type of system to another, be aware of differences
in the information retained about external names during the loading
process:

Checking C Programs with lint 6–11

• The number of characters allowed for external names can vary.

• Some programs that the compiler command calls and some of the
functions that your programs call can further limit the number of
significant characters in identifiers. (In addition, the compiler adds a
leading underscore to all names and keeps uppercase and lowercase
characters separate.)

• On some systems, uppercase or lowercase may not be important or may
not be allowed.

When transferring from one system to another, you should always take the
following steps to avoid problems with loading a program:

1. Review the requirements of each system.

2. Run lint with the -p option.

The -p option tells lint to change all external symbols to lowercase and
limit them to six characters while checking the input files. The messages
produced identify the terms that may need to be changed.

6.7.4 Multiple Uses and Side Effects

Be careful when using complicated expressions because of the following
considerations:

• The order in which complex expressions are evaluated differs in many
C compilers.

• Function calls that are arguments of other functions may not be treated
the same as ordinary arguments.

• Operators such as assignment, increment, and decrement may cause
problems when used on different systems.

The following situations demonstrate the types of problems that can result
from these differences:

• If any variable is changed by a side effect of one of the operators and is
also used elsewhere in the same expression, the result is undefined.

• The evaluation of the variable years in the following printf
statement is confusing because on some machines years is
incremented before the function call and on other machines it is
incremented after the function call:

printf("%d %d\n", ++years, amort(interest, years));

• The lint program checks for simple scalar variables that may be
affected by evaluation order problems, such as in the following
statement:

6–12 Checking C Programs with lint

a[i]=b[i++];

This statement causes the lint program to write the following message:

warning: i evaluation order undefined

6.8 Checking for Coding Errors and Coding Style
Differences
Use lint to detect possible coding errors and to detect differences from the
coding style that lint expects. Although coding style is mainly a matter of
individual taste, examine each difference to ensure that the difference is
both needed and accurate. The following sections indicate the types of
coding and style problems that lint can find.

6.8.1 Assignments of Long Variables to Integer Variables

If you assign variables of type long to variables of type int, the program
may not work properly. The long variable is truncated to fit in the integer
space and data may be lost.

An error of this type frequently occurs when a program that uses more
than one typedef is converted to run on a different system.

To prevent lint from writing messages when it detects assignments of
long variables to int variables, use the -a option.

6.8.2 Operator Precedence

The lint program detects possible or potential errors in operator
precedence. Without parentheses to show order in complex sequences, these
errors can be hard to find. For example, the following statements are not
clear:

if(x&077==0). . . /* evaluated as: if(x & (077 == 0)) */
/* should be: if((x & 077) == 0) */

x<<2+40 /* evaluated as: x <<(2+40) */
/* should be: (x<<2) + 40 */
/* shift x left 42 positions */

Use parentheses to make the operation more clearly understood. If you do
not, lint issues a message.

6.8.3 Conflicting Declarations

The lint program writes messages about variables that are declared in
inner blocks in ways that conflict with their use in outer blocks. This
practice is allowed, but may cause problems in the program.

Checking C Programs with lint 6–13

Use the -h option with the lint program to prevent lint from checking
for conflicting declarations.

6.9 Increasing Table Size

The lint command provides the −N option and related suboptions to allow
you to increase the size of various internal tables at run time if the default
values are not enough for your program. These tables include:

• Symbol table

• Dimension table

• Local type table

• Parse tree

These tables are dynamically allocated by the lint program. Using the −N
option on large source files can improve performance.

6.10 Creating a lint Library

For programming projects that define additional library routines, you can
create an additional lint library to check the syntax of the programs.
Using this library, the lint program can check the new functions in
addition to the standard C language functions. To create a new lint
library, follow these steps:

1. Create an input file that defines the new functions.

2. Process the input file to create the lint library file.

3. Run lint using the new library.

The following sections describe these steps.

6.10.1 Creating the Input File

The following example shows an input file that defines three additional
functions for lint to check:

/*LINTLIBRARY*/

#include <dms.h>

int dmsadd(rmsdes, recbuf, reclen)
int rmsdes;
char *recbuf;
unsigned reclen;

{ return 0; }

6–14 Checking C Programs with lint

int dmsclos(rmsdes)
int rmsdes;

{ return 0; }
int dmscrea(path, mode, recfm, reclen)

char *path;
int mode;
int recfm;
unsigned reclen;

{ return 0; }

The input file is a text file that you create with an editor. It consists of:

• A directive to tell the cpp program that the following information is to
be made into a library of lint definitions:

/*LINTLIBRARY*/

• A series of function definitions that define:

– The type of the function (int in the example)

– The name of the function

– The parameters that the function expects

– The types of the parameters

– The value that the function returns

Alternatively, you can create a lint library file from function prototypes.
For example, assume that the dms.h file includes the following prototypes:

int dmsadd(int,
char*,
unsigned);

int dmsclose(int);
int dmscrea(char*,

int,
int,
unsigned);

In this case, the input file contains the following:

/*LINTSTDLIB*/
#include <dms.h>

In the case where a header file may include other headers, the
LINTSTDLIB command can be restricted to specific files:

/*LINTSTDLIB_dms.h*/

In this case, only prototypes declared in dms.h will be expanded. Multiple
LINTSTDLIB commands can be included.

In all cases, the name of the input file must have the prefix llib-l. For
example, the name of the sample input file created in this section could be

Checking C Programs with lint 6–15

llib-ldms. When choosing the name of the file, ensure that it is not the
same as any of the existing files in the /usr/ccs/lib directory.

6.10.2 Creating the lint Library File

The following command creates a lint library file from the input file
described in the previous section:

% lint [options] -c llib_ldms.c

This command tells lint to create a lint library file, llib-ldms.ln,
using the file llib-ldms.c as input. To use llib-ldms.ln as a system
lint library (that is, a library specified in the -lx option of the lint
command), move it to /usr/ccs/lib. Use the −std or −std1 option to use
ANSI preprocessing rules to build the library.

6.10.3 Checking a Program with a New Library

To check a program using a new library, use the lint command with the
following format:
lint -lpgm filename.c

The variable pgm represents the identifier for the library, and the variable
filename.c represents the name of the file containing the C language
source code that is to be checked. If no other options are specified, the lint
program checks the C language source code against the standard lint
library in addition to checking it against the indicated special lint library.

6.11 Understanding lint Error Messages

Although most error messages produced by lint are self-explanatory,
certain messages may be misleading without additional explanation.
Usually, once you understand what a message means, correcting the error
is straightforward. The following is a list of the more ambiguous lint
messages:

constant argument to NOT

A constant is used with the NOT operator (!). This is a common coding
practice and the message does not usually indicate a problem. The
following program demonstrates the type of code that can generate
this message:

% cat x.c
#include <stdio.h>
#define SUCCESS 0

main()

6–16 Checking C Programs with lint

{
int value = !SUCCESS;

printf("value = %d\n", value);
return 0;

}
% lint -u x.c
"x.c", line 7: warning: constant argument to NOT
% ./x
value = 1
%

The program runs as expected, even though lint complains.

Recommended Action: Suppress these lint warning messages by
using the -wC option.

constant in conditional context

A constant is used where a conditional is expected. This problem
occurs often in source code due to the way in which macros are
encoded. For example:

typedef struct _dummy_q {
int lock;
struct _dummy_q *head, *tail;

} DUMMY_Q;

#define QWAIT 1
#define QNOWAIT 0
#define DEQUEUE(q, elt, wait) 1 \

for (;;) {
simple_lock(&(q)->lock);

if (queue_empty(&(q)->head))
if (wait) { 1 \

assert(q);
simple_unlock(&(q)->lock);
continue;

} else
*(elt) = 0;

else
dequeue_head(&(q)->head);
simple_unlock(&(q)->lock);

break;
}

int doit(DUMMY_Q *q, int *elt)
{

DEQUEUE(q, elt, QNOWAIT);

Checking C Programs with lint 6–17

}

1 The QWAIT or QNOWAIT option is passed as the third argument
(wait) and is later used in the if statement. The code is correct,
but lint issues the warning because constants used in this way
are normally unnecessary and often generate wasteful or
unnecessary instructions.

Recommended Action: Suppress these lint warning messages by
using the -wC option.

conversion from long may lose accuracy

A signed long is copied to a smaller entity (for example, an int).
This message is not necessarily misleading; however, if it occurs
frequently, it may or may not indicate a coding problem, as shown in
the following example:

long BuffLim = 512; 1

void foo (buffer, size)
char *buffer;
int size;
{
register int count;
register int limit = size < (int)BufLimit ? size : (int)BufLim; 1

1 The lint program reports the conversion error, even though the
appropriate (int) cast exists.

Recommended Action: Review code sections for which lint reports
this message, or suppress the message by using the -wl option.

declaration is missing declarator

A line in the declaration section of the program contains just a
semicolon (;). Although you would not deliberately write code like this,
it is easy to inadvertently generate such code by using a macro
followed by a semicolon. If, due to conditionalization, the macro is
defined as empty, this message can result.

Recommended Action: Remove the trailing semicolon.

degenerate unsigned comparison

An unsigned comparison is being performed against a signed value
when the result is expected to be less than zero. The following
program demonstrates this situation:

% cat x.c
#include <stdio.h>

6–18 Checking C Programs with lint

unsigned long offset = -1;

main()
{

if (offset < 0) { 1
puts ("code is Ok...");
return 0;

} else {
puts ("unsigned comparison failed...");
return 1;

}
}
% cc -g -o x x.c
% lint x.c
"x.c" line 7: warning: degenerate unsigned comparison
% ./x
unsigned comparison failed...
%

1 Unsigned comparisons such as this will fail if the unsigned
variable contains a negative value. The resulting code may be
correct, depending upon whether the programmer intended a
signed comparison.

Recommended Action: You can fix the previous example in two
ways:

• Add a (long) cast before offset in the if comparison.

• Change the declaration of offset from unsigned long to long.
In certain cases, it might be necessary to cast the signed value to
unsigned.

function prototype not in scope

This error is not strictly related to function prototypes, as the
message implies. Actually, this error occurs from invoking any
function that has not been previously declared or defined.

Recommended Action: Add the function prototype declaration.

null effect

The lint program detected a cast or statement that does nothing.
The following code segments demonstrate various coding practices
that cause lint to generate this message:

scsi_slot = device->ctlr_hd->slot,unit_str; 1

#define MCLUNREF(p) \
(MCLMAPPED(p) && --mclrefcnt[mtocl(p)] == 0)

Checking C Programs with lint 6–19

(void) MCLUNREF(m); 2

1 Reason: unit_str does nothing.

2 Reason: (void) is unnecessary; MCLUNREF is a macro.

Recommended Action: Remove unnecessary casts or statements, or
update macros.

possible pointer alignment problem

A pointer is used in a way that may cause an alignment problem. The
following code segment demonstrates the type of code that causes
lint to generate this message:

read(p, args, retval)
struct proc *p;
void *args;
long *retval;

{
register struct args {

long fdes;
char *cbuf;
unsigned long count;

} *uap = (struct args *) args; 1
struct uio auio;
struct iovec aiov;

1 The line *uap = (struct args *) args causes the error to be
reported. Because this construct is valid and occurs throughout
the kernel source, this message is filtered out.

precision lost in field assignment

An attempt was made to assign a constant value to a bit field when
the field is too small to hold the value. The following code segment
demonstrates this problem:

% cat x.c
struct bitfield {

unsigned int block_len : 4;
} bt;

void
test()
{

bt.block_len = 0xff;
}
% lint -u x.c

6–20 Checking C Programs with lint

"x.c", line 8: warning: precision lost in field assignment
% cc -c -o x x.c
%

This code compiles without error. However, because the bit field may
be too small to hold the constant, the results may not be what the
programmer intended and a run-time error may occur.

Recommended Action: Change the bit field size or assign a
different constant value.

unsigned comparison with 0

An unsigned comparison is being performed against zero when the
result is expected to be equal to or greater than zero.

The following program demonstrates this problem:

% cat z.c
#include <stdio.h>
unsigned offset = -1;

main()
{

if (offset > 0) { 1
puts("unsigned comparison with 0 Failed");
return 1;

} else {
puts("unsigned comparison with 0 is Ok");
return 0;

}
}
% cc -o z z.c
% lint z.c
"z.c", line 7: warning: unsigned comparison with 0?
% ./z
unsigned comparison with 0 Failed
%

1 Unsigned comparisons such as this will fail if the unsigned
variable contains a negative value. The resulting code may not be
correct, depending on whether the programmer intended a signed
comparison.

Recommended Action: You can fix the previous example in two
ways:

• Add an (int) cast before offset in the if comparison.

• Change the declaration of offset from unsigned to int.

Checking C Programs with lint 6–21

6.12 Using Warning Class Options to Suppress lint
Messages

Several lint warning classes have been added to the lint program to
allow the suppression of messages associated with constants used in
conditionals, portability, and prototype checks. By using the warning class
option to the lint command, you can suppress messages in any of the
warning classes.

The warning class option has the following format:

-wclass [class...]

All warning classes are active by default, but may be individually
deactivated by including the appropriate option as part of the class
argument. Table 6–1 lists the individual options.

_______________________ Note _______________________

Several lint messages depend on more than one warning class.
Therefore, you may need to specify several warning classes for
the message to be suppressed. Notes in Table 6–1 indicate which
messages can be suppressed only by specifying multiple warning
classes.

For example, because lint messages related to constants in conditional
expressions do not necessarily indicate a coding problem (as described in
Section 6.11), you may decide to use the -wC option to suppress them.

The -wC option suppresses the following messages:

• constant argument to NOT

• constant in conditional context

Because many of the messages associated with portability checks are
related to non-ANSI compilers and limit restrictions that do not exist in
the C compiler for Tru64 UNIX, you can use the -wp option to suppress
them. The -wp option suppresses the following messages:

• ambiguous assignment for non-ansi compilers

• illegal cast in a constant expression

• long in case or switch statement may be truncated in
non-ansi compilers

• nonportable character comparison

• possible pointer alignment problem, op %s

6–22 Checking C Programs with lint

• precision lost in assignment to (sign-extended?) field

• precision lost in field assignment

• too many characters in character constant

Although the use of function prototypes is a recommended coding practice
(as described in Section 6.13), many programs do not include them. You can
use the -wP option to suppress prototype checks. The -wP option
suppresses the following messages:

• function prototype not in scope

• mismatched type in function argument

• mix of old and new style function declaration

• old style argument declaration

• use of old-style function definition in presence of
prototype

Table 6–1: lint Warning Classes

Warning Class Description of Class

a Non-ANSI features. Suppresses:
• Partially elided initializationa

• Static function %s not defined or useda

c Comparisons with unsigned values. Suppresses:

• Comparison of unsigned with negative constant

• Degenerate unsigned comparison

• Possible unsigned comparison with 0

d Declaration consistency. Suppresses:

• External symbol type clash for %s
• Illegal member use: perhaps %s.%sb

• Incomplete type for %s has already been completed

• Redeclaration of %s
• Struct/union %s never definedb

• %s redefinition hides earlier onea b

Checking C Programs with lint 6–23

Table 6–1: lint Warning Classes (cont.)

Warning Class Description of Class

h Heuristic complaints. Suppresses:
• Constant argument to NOTc

• Constant in conditional contextc

• Enumeration type clash, op %s
• Illegal member use: perhaps %s.%sd

• Null effect e

• Possible pointer alignment problem, op %sf

• Precedence confusion possible: parenthesize!g

• Struct/union %s never definedd

• %s redefinition hides earlier oned

k K&R type code expected. Suppresses:
• Argument %s is unused in function %sh

• Function prototype not in scopeh

• Partially elided initializationh

• Static function %s is not defined or usedh

• %s may be used before setb d

• %s redefinition hides earlier oneb d

• %s set but not used in function %s h

l Assign long values to non-long variables. Suppresses:

• Conversion from long may lose accuracy

• Conversion to long may sign-extend incorrectly

n Null-effect code. Suppresses:
• Null effect b

o Unknown order of evaluation. Suppresses:
• Precedence confusion possible: parenthesize! b

• %s evaluation order undefined

6–24 Checking C Programs with lint

Table 6–1: lint Warning Classes (cont.)

Warning Class Description of Class

p Various portability concerns. Suppresses:

• Ambiguous assignment for non-ANSI compilers

• Illegal cast in a constant expression

• Long in case or switch statement may be truncated in
non-ANSI compilers

• Nonportable character comparison
• Possible pointer alignment problem, op %s b

• Precision lost in assignment to (possibly) sign-extended
field

• Precision lost in field assignment

• Too many characters in character constant

r Return statement consistency. Suppresses:

• Function %s has return(e); and return;

• Function %s must return a value

• main() returns random value to invocation environment

S Storage capacity checks. Suppresses:

• Array not large enough to store terminating null

• Constant value (0x%x) exceeds (0x%x)

u Proper usage of variables and functions. Suppresses:
• Argument %s unused in function %sa

• Static function %s not defined or useda

• %s set but not used in function %sa

• %s unused in function %sh

A Activate all warnings. Default option in lint script.
Specifying another A class toggles the setting of all classes.

C Constants occurring in conditionals. Suppresses:
• Constant argument to NOTb

• Constant in conditional contextb

D External declarations are never used. Suppresses:

• Static %s %s unused

O Obsolete features. Suppresses:

• Storage class not the first type specifier

Checking C Programs with lint 6–25

Table 6–1: lint Warning Classes (cont.)

Warning Class Description of Class

P Prototype checks. Suppresses:
• Function prototype not in scopea

• Mismatched type in function argument

• Mix of old- and new-style function declaration
• Old-style argument declarationa

• Use of old-style function definition in presence of prototype

R Detection of unreachable code. Suppresses:

• Statement not reached
aYou can also suppress this message by deactiviating the k warning class.
bYou must also deactivate the h warning class to suppress this message.
cYou must also deactivate the C warning class to suppress this message.
dYou must also deactivate the d warning class to suppress this message.
eYou must also deactivate the n warning class to suppress this message.
fYou must also deactivate the p warning class to suppress this message.
gYou must also deactivate the o warning class to suppress this message.
hOther flags may also suppress these messages.

6.13 Generating Function Prototypes for Compile-Time
Detection of Syntax Errors

In addition to correcting the various errors reported by the lint program,
Compaq recommends adding function prototypes to your program for both
external and static functions. These declarations provide the compiler with
information it needs to check arguments and return values.

The cc compiler provides an option that automatically generates prototype
declarations. By specifying the -proto[is] option for a compilation, you
create an output file (with the same name as the input file but with a .H
extension) that contains the function prototypes. The i option includes
identifiers in the prototype, and the s option generates prototypes for static
functions as well.

You can copy the function prototypes from a .H file and place them in the
appropriate locations in the source and include files.

6–26 Checking C Programs with lint

7
Debugging Programs with Third Degree

The Third Degree tool checks for leaking heap memory, referencing invalid
addresses and reading uninitialized memory in C and C++ programs.
Programs must first be compiled with either the -g or -gn option, where n
is greater than 0. Third Degree also helps you determine the allocation
habits of your program by listing heap objects and finding wasted memory.
It accomplishes this by instrumenting executable objects with extra code
that automatically monitors memory management services and load/store
instructions at run time. The requested reports are written to one or more
log files that can optionally be displayed, or associated with source code by
using the xemacs(1) editor.

By default, Third Degree checks only for memory leaks, resulting in fast
instrumentation and run-time analysis. The other more expensive and
intrusive checks are selected with options on the command line. See
third(1) for more information.

You can use Third Degree for the following types of applications:

• Applications that allocate memory by using the malloc, calloc,
realloc, valloc, alloca, and sbrk functions and the C++ new
function. You can also use Third Degree to instrument programs using
other memory allocators, such as the mmap function, but it will not check
accesses to the memory obtained in this manner. If your application
uses mmap, see the description of the -mapbase option in third(1).

Third Degree detects and forbids calls to the brk function.
Furthermore, if your program allocates memory by partitioning large
blocks that it obtained by using the sbrk function, Third Degree may
not be able to precisely identify memory blocks in which errors occur.

• Applications that call fork(2). You must specify the -fork option with
the third(1) command.

• Applications that use the Tru64 UNIX implementation of POSIX
threads (pthread(3)). You must specify the -pthread option with the
third(1) command. In pthread programs, Third Degree does not check
system-library routines (for example, libc and libpthread) for access
to invalid addresses or uninitialized variables; therefore, strcpy and
other such routines will not be checked.

• Applications that use 31–bit heap addresses.

Debugging Programs with Third Degree 7–1

7.1 Running Third Degree on an Application

To invoke Third Degree, use the third(1) command as follows:

third [option...] app [argument...]

In this command synopsis, option selects one or more options beyond the
default nonthreaded leak checking, app is the name of the application, and
argument represents one or more optional arguments that are passed to
the application if you want to run the instrumented program immediately.
(Use the -run option if app needs no arguments.)

The instrumented program, named app.third (see third(1)), differs from
the original as follows:

• The code is larger and runs more slowly because of the additional
instrumentation code that is inserted. The amount of overhead depends
on the number and nature of the specified options.

• To detect errant use of uninitialized data, Third Degree initializes all
otherwise uninitialized data to a special pattern (0xfff8a5a5, or as
specified in the -uninit option). This can cause the instrumented
program to behave differently, behave incorrectly, or crash (particularly
if this special pattern is used as a pointer). All of these behaviors
indicate a bug in the program. You can take advantage of this by
running regression tests on the instrumented program, and you can
investigate problems using the third(1) command’s -g option and
running a debugger. Third Degree poisons memory in this way only if
the -uninit option is specified (for example, -uninit heap+stack).
Otherwise, most instrumented programs run just like the original.

• Each allocated heap memory object is larger because Third Degree pads
it to allow boundary checking. You can adjust the amount of padding by
specifying the -pad option.

• When memory is deallocated with free or delete, it is held back from
the free pool to help detect invalid access. Adjust the holding queue size
with the -free option.

Third Degree writes error messages in a format similar to that used by the
C compiler. It writes them to a log file named app.3log, by default. You
can use emacs to automatically point to each error in sequence. In emacs,
use Esc/x compile, replace the default make command with a command
such as cat app.3log, and step through the errors as if they were
compilation errors, with Ctrl/x .`

You can change the name used for the log file by specifying one of the
following options:

7–2 Debugging Programs with Third Degree

−pids
Includes the process identification number (PID) in the log file name.

−dirname directory-name

Specifies the directory path in which Third Degree creates its log file.

-fork

Includes the PID in the name of the log file for each forked process.

Depending on the option supplied, the log file’s name will be as follows:

Option Filename Use

None or −fork parent app.3log Default

−pids or -fork child app.12345.3log Include PID

−dirname /tmp /tmp/app.3log Set directory

−dirname /tmp -pids /tmp/app.12345.3log Set directory and PID

Errors in signal handlers may be reported in an additional .sig.3log
option.

7.1.1 Using Third Degree with Shared Libraries

Errors in an application, such as passing too small a buffer to the strcpy
function, are often caught in library routines. Third Degree supports the
instrumentation of shared libraries; it instruments programs linked with
either the −non_shared or the −call_shared option.

The following options let you determine which shared libraries are
instrumented by Third Degree:

−all Instruments all shared libraries that were linked
with the call-shared executable.

−excobj objname Excludes the named shared library from
instrumentation. You can use the −excobj option
more than once to specify several shared libraries.

−incobj objname Instruments the named shared library. You can use
the −incobj option more than once to specify
several shared libraries, including those loaded
using dlopen().

Debugging Programs with Third Degree 7–3

-Ldirectory Tells Third Degree where to find the program’s
shared libraries if they are not in the standard
places known to the linker and loader.

When Third Degree finishes instrumenting the application, the current
directory contains an instrumented version of each specified shared library,
and at least minimally instrumented versions of libc.so, libcxx.so, and
libpthread.so, as appropriate. The instrumented application needs to
use these versions of the libraries. Define the LD_LIBRARY_PATH
environment variable to tell the instrumented application where the
instrumented shared libraries reside. The third(1) command will do this
automatically if you specify the -run option or you specify arguments to the
application (which also cause the instrumented program to be executed).

By default, Third Degree does not fully instrument any of the shared
libraries used by the application, though it does have to minimally
instrument libc.so, libcxx.so, and libpthread.so when used. This
makes the instrumentation operation much faster and causes the
instrumented application to run faster as well. Third Degree detects and
reports errors in the instrumented portion normally, but it does not detect
errors in the uninstrumented libraries. If your partially instrumented
application crashes or malfunctions and you have fixed all of the errors
reported by Third Degree, reinstrument the application and all of its
shared libraries and run the new instrumented version, or use Third
Degree’s -g option to investigate the problem in a debugger.

Third Degree needs to instrument a shared library (but only minimally, by
default) to generate error reports that include stack traces through its
procedures. Also, a debuggable procedure (compiled with the -g option, for
example) must appear within the first few stack frames nearest the error.
This avoids printing spurious errors that the highly optimized and
assembly code in system libraries can generate. Use the -hide option to
override this feature.

For pthread programs, Third Degree does not check some system shared
libraries (including libc) for errors, because doing so would not be thread
safe.

7.2 Debugging Example

Assume that you must debug the small application represented by the
following source code (ex.c):

1 #include <assert.h>
2
3 int GetValue() {

7–4 Debugging Programs with Third Degree

4 int q;
5 int *r=&q;
6 return q; /* q is uninitialized */
7 }
8
9 long* GetArray(int n) {

10 long* t = (long*) malloc(n * sizeof(long));
11 t[0] = GetValue();
12 t[0] = t[1]+1; /* t[1] is uninitialized */
13 t[1] = -1;
14 t[n] = n; /* array bounds error*/
15 if (n<10) free(t); /* may be a leak */
16 return t;
17 }
18
19 main() {
20 long* t = GetArray(20);
21 t = GetArray(4);
22 free(t); /* already freed */
23 exit(0);
24 }

The following sections explain how to use Third Degree to debug this
sample application.

7.2.1 Customizing Third Degree

Command-line options are used to turn on and off various capabilities of
Third Degree.

If you do not specify any options, Third Degree instruments the program as
follows but does not run the instrumented program or display the resulting
.3log file(s):

• Detect leaks at program exit.

• Do not check for memory errors (invalid addresses or uninitialized
values).

• Do not analyze the heap-usage history.

You can run the instrumented application with a command such as
./app.third arg1 arg2 after setting the LD_LIBRARY_PATH
environment variable. Alternatively, you can append the application
arguments to the third(1) command line and/or specify the -run or
-display options. You can view the resulting .3log file manually or by
specifying the -display option.

To add checks for memory errors, specify the -invalid option and/or the
-uninit option.

Debugging Programs with Third Degree 7–5

You can abbreviate the -invalid option, like all third(1) options, to three
letters (-inv). It tells Third Degree to check that all significant load and
store instructions are accessing valid memory addresses that application
code should. This option carries a noticeable performance overhead, but it
has little effect on the run-time environment.

The -uninit option takes a “+”-separated list of keyword arguments. This
is usually heap+stack (or h+s), which asks that both heap memory and
stack memory be checked for all significant load instructions. Checking
involves prefilling all stack frames and heap objects allocated with malloc,
and so on (but not calloc), with the unusual pattern 0xfff8a5a5, and
reporting any load instruction that reads such a value out of memory. That
is, the selected memory is poisoned, much as by the cc -trapuv option, to
highlight code that reads uninitialized data areas. If the offending code was
selected for instrumentation, Third Degree will report each case (once only)
in the .3log file. However, whether or not the code was instrumented, the
code will load and process the poison pattern instead of the value that the
original program would have loaded. This may cause the program to
malfunction or crash, because the pattern is not a valid pointer, character,
or floating-point number, and it is a negative integer. Such behavior is a
sign of a bug in the program.

You can identify malfunctions by running regression tests on the
instrumented program, specifying -quiet and omitting -display if
running within third(1). You can debug malfunctions or crashes by looking
at the error messages in the .3log file and by running the instrumented
program in a debugger such as dbx(1), or ladebug(1) for C++ and pthread
applications. To use a debugger, compile with a -g option and specify -g on
the third(1) command line as well.

The -uninit option can report false errors, particularly for variables,
array elements, and structure members of less than 32 bits (for example,
short, char, bit-field). See Section 7.6. However, using the -uninit
heap+stack option can improve the accuracy of leak reports.

To add a heap-usage analysis, specify the -history option. This enables
the -uninit heap option.

7.2.2 Modifying the Makefile

Add the following entry to the application’s makefile:

ex.third: ex
third ex

Build ex.third as follows:

7–6 Debugging Programs with Third Degree

> make ex.third
third ex

Now run the instrumented application ex.third and check the log
ex.3log. Alternatively, run it and display the .3log file immediately by
adding the -display option before the program name.

7.2.3 Examining the Third Degree Log File

The ex.3log file contains several parts that are described in the following
sections, assuming this command line as an example:

> third -invalid -uninit h+s -history -display ex

7.2.3.1 List of Run-Time Memory Access Errors

The types of errors that Third Degree can detect at run-time include such
conditions as reading uninitialized memory, reading or writing unallocated
memory, freeing invalid memory, and certain serious errors likely to cause
an exception. For each error, an error entry is generated with the following
items:

• A banner line with the type of error and number — The error banner
line contains a three-letter abbreviation of each error (see Section 7.3
for a list of the abbreviations). If the process that caused the error is
not the root process (for instance, because the application forks one or
more child processes), the PID of the process that caused the error also
appears in the banner line.

• An error message line formatted to look like a compiler error message
— Third Degree lists the file name and line number nearest to the
location where the error occurred. Usually this is the precise location
where the error occurred, but if the error occurs in a library routine, it
can also point to the place where the library call occurred.

• One or more stack traces — The last part of an error entry is a stack
trace. The first procedure listed in the stack trace is the procedure in
which the error occurred.

The following examples show entries from the log file:

• The following log entry indicates that a local variable of procedure
GetValue was read before being initialized. The line number confirms
that q was never given a value.

-- rus -- 0 --
ex.c: 6: reading uninitialized local variable q of GetValue

GetValue ex, ex.c, line 6
GetArray ex, ex.c, line 11

Debugging Programs with Third Degree 7–7

main ex, ex.c, line 20
__start ex

• In the following log entry, an error is reported at line 12:

t[0] = t[1]+1

Because the array was not initialized, the program is using the
uninitialized value of t[1] in the addition. The memory block
containing array t is identified by the call stack that allocated it. Stack
variables are identified by name if the code was compiled with the -g
option.

-- ruh -- 1 --
ex.c: 12: reading uninitialized heap at byte 8 of 160-byte block

GetArray ex, ex.c, line 12
main ex, ex.c, line 20
__start ex

This block at address 0x14000ca20 was allocated at:
malloc ex
GetArray ex, ex.c, line 10
main ex, ex.c, line 20
__start ex

• The following log entry indicates that the program has written to the
memory location one position past the end of the array, potentially
overwriting important data or even Third Degree internal data
structures. Keep in mind that certain errors reported later could be a
consequence of this error:

-- wih -- 2 --
ex.c: 14: writing invalid heap 1 byte beyond 160-byte block

GetArray ex, ex.c, line 14
main ex, ex.c, line 20
__start ex

This block at address 0x14000ca20 was allocated at:
malloc ex
GetArray ex, ex.c, line 10
main ex, ex.c, line 20
__start ex

• The following log entry indicates that an error occurred while freeing
memory that was previously freed. For errors involving calls to the
free function, Third Degree usually gives three call stacks:

– The call stack where the error occurred

– The call stack where the object was allocated

– The call stack where the object was freed

7–8 Debugging Programs with Third Degree

Upon examining the program, it is clear that the second call to
GetArray (line 20) frees the object (line 14), and that another attempt
to free the same object occurs at line 21:

-- fof -- 3 --
ex.c: 22: freeing already freed heap at byte 0 of 32-byte block

free ex
main ex, ex.c, line 22
__start ex

This block at address 0x14000d1a0 was allocated at:
malloc ex
GetArray ex, ex.c, line 10
main ex, ex.c, line 21
__start ex

This block was freed at:
free ex
GetArray ex, ex.c, line 15
main ex, ex.c, line 21
__start ex

See Section 7.3 for more information.

7.2.3.2 Memory Leaks

The following excerpt shows the report generated when leak detection on
program exit, the default, is selected. The report shows a list of memory
leaks sorted by importance and by call stack.

--
--
New blocks in heap after program exit

Leaks - blocks not yet deallocated but apparently not in use:
* A leak is not referenced by static memory, active stack frames,

or unleaked blocks, though it may be referenced by other leaks.
* A leak "not referenced by other leaks" may be the root of a leaked tree.
* A block referenced only by registers, unseen thread stacks, mapped memory,

or uninstrumented library data is falsely reported as a leak. Instrumenting
shared libraries, if any, may reduce the number of such cases.

* Any new leak lost its last reference since the previous heap report, if any.

A total of 160 bytes in 1 leak were found:

160 bytes in 1 leak (including 1 not referenced by other leaks) created at:
malloc ex
GetArray ex, ex.c, line 10
main ex, ex.c, line 20
__start ex

Objects - blocks not yet deallocated and apparently still in use:
* An object is referenced by static memory, active stack, or other objects.
* A leaked block may be falsely reported as an object if a pointer to it

remains when a new stack frame or heap block reuses the pointer’s memory.
Using the option to report uninitialized stack and heap may avoid such cases.

* Any new object was allocated since the previous heap report, if any.

A total of 0 bytes in 0 objects were found:

Upon examining the source, it is clear that the first call to GetArray did
not free the memory block, nor was it freed anywhere else in the program.
Moreover, no pointer to this block exists in any other heap block, so it

Debugging Programs with Third Degree 7–9

qualifies as “not referenced by other leaks”. The distinction is often
useful to find the real culprit for large memory leaks.

Consider a large tree structure and assume that the pointer to the root has
been erased. Every block in the structure is a leak, but losing the pointer to
the root is the real cause of the leak. Because all blocks but the root still
have pointers to them, albeit only from other leaks, only the root will be
specially qualified, and therefore the likely cause of the memory loss.

See Section 7.4 for more information.

7.2.3.3 Heap History

When heap history is enabled, Third Degree collects information about
dynamically allocated memory. It collects this information for every block
that is freed by the application and for every block that still exists
(including memory leaks) at the end of the program’s execution. The
following excerpt shows a heap allocation history report:

--
--

Heap Allocation History for parent process

Legend for object contents:
There is one character for each 32-bit word of contents.
There are 64 characters, representing 256 bytes of memory per line.
’.’ : word never written in any object.
’z’ : zero in every object.
’i’ : a non-zero non-pointer value in at least one object.
’pp’: a valid pointer or zero in every object.
’ss’: a valid pointer or zero in some but not all objects.

192 bytes in 2 objects were allocated during program execution:

--
160 bytes allocated (8% written) in 1 objects created at:

malloc ex
GetArray ex, ex.c, line 10
main ex, ex.c, line 20
__start ex

Contents:
0: i.ii....................................

--
32 bytes allocated (38% written) in 1 objects created at:

malloc ex
GetArray ex, ex.c, line 10
main ex, ex.c, line 21
__start ex

Contents:
0: i.ii....

The sample program allocated two objects for a total of 192 bytes
(8*(20+4)). Because each object was allocated from a different call stack,
there are two entries in the history. Only the first few bytes of each array
were set to a valid value, resulting in the written ratios shown.

7–10 Debugging Programs with Third Degree

If the sample program was a real application, the fact that so little of the
dynamic memory was ever initialized is a warning that it was probably
using memory ineffectively.

See Section 7.4.4 for more information.

7.2.3.4 Memory Layout

The memory layout section of the report summarizes the memory used by
the program by size and address range. The following excerpt shows a
memory layout section:

memory layout at program exit
heap 40960 bytes [0x14000c000-0x140016000]
stack 2720 bytes [0x11ffff560-0x120000000]

ex data 48528 bytes [0x140000000-0x14000bd90]
ex text 1179648 bytes [0x120000000-0x120110000]

The heap size and address range indicated reflect the value returned by
sbrk(0), (the heap break) at program exit. Therefore, the size is the total
amount of heap space that has been allotted to the process. Third Degree
does not support the use of the malloc variables that would alter this
interpretation of sbrk(0).

The stack size and address range reflect the lowest address reached by the
main thread’s stack pointer during execution of the program. That is, Third
Degree keeps track of it through each instrumented procedure call. For this
value to reflect the maximum stack size, all shared libraries need to have
been instrumented (for example, using the third(1) command’s -all
option for a nonthreaded program and -incobj options for libraries loaded
with dlopen(3)). The stacks of threads (created using pthread_create)
are not included.

The data and text sizes and address ranges show where the static portions
of the executable and each shared library were loaded.

7.3 Interpreting Third Degree Error Messages

Third Degree reports both fatal errors and memory access errors. Fatal
errors include the following:

• Bad parameter

For example, malloc(-10).

• Failed allocator

Debugging Programs with Third Degree 7–11

For example, malloc returned a zero, indicating that no memory is
available.

• Call to the brk function with a nonzero argument

Third Degree does not allow you to call brk with a nonzero argument.

• Memory allocation not permitted in signal handler.

A fatal error causes the instrumented application to crash after flushing
the log file. If the application crashes, first check the log file and then rerun
it under a debugger, having specified -g on the third(1) command line.

Memory errors include the following (as represented by a three-letter
abbreviation):

Name Error

ror Reading out of range: not heap, stack, or static (for example,
NULL)

ris Reading invalid data in stack: probably an array bound error

rus Reading an uninitialized (but valid) location in stack

rih Reading invalid data in heap: probably an array bound error

ruh Reading an uninitialized (but valid) location in heap

wor Writing out of range: neither in heap, stack, or static area

wis Writing invalid data in stack: probably an array bound error

wih Writing invalid data in heap: probably an array bound error

for Freeing out of range: neither in heap or stack

fis Freeing an address in the stack

fih Freeing an invalid address in the heap: no valid object there

fof Freeing an already freed object

fon Freeing a null pointer (really just a warning)

mrn malloc returned null

You can suppress the reporting of specific memory errors by specifying one
or more -ignore options. This is often useful when the errors occur within
library functions for which you do not have the source. Third Degree allows
you to suppress specific memory errors in individual procedures and files,
and at particular line numbers. See third(1) for more details.

Alternatively, do not select the library for checking, by specifying -excobj
or omitting the -all or -incobj option.

7–12 Debugging Programs with Third Degree

7.3.1 Fixing Errors and Retrying an Application

If Third Degree reports many write errors from your instrumented
program, fix the first few errors and then reinstrument the program. Not
only can write errors compound, but they can also corrupt Third Degree’s
internal data structures.

7.3.2 Detecting Uninitialized Values

Third Degree’s technique for detecting the use of uninitialized values can
cause programs that have worked to fail when instrumented. For example,
if a program depends on the fact that the first call to the malloc function
returns a block initialized to zero, the instrumented version of the program
will fail because Third Degree poisons all blocks with a nonzero value
(0xfff8a5a5, by default).

When it detects a signal, perhaps caused by dereferencing or otherwise
using this uninitialized value, Third Degree displays a message of the
following form:

*** Fatal signal SIGSEGV detected.
*** This can be caused by the use of uninitialized data.
*** Please check all errors reported in app.3log.

Using uninitialized data is the most likely reason for an instrumented
program to crash. To determine the cause of the problem, first examine the
log file for reading-uninitialized-stack and reading-uninitialized-heap
errors. Very often, one of the last errors in the log file reports the cause of
the problem.

If you have trouble pinpointing the source of the error, you can confirm that
it is indeed due to reading uninitialized data by removing one of the heap
and stack options from the -uninit option (or the whole option).
Removing stack disables the poisoning of newly allocated stack memory
that Third Degree normally performs on each procedure entry. Similarly,
removing heap disables the poisoning of heap memory performed on each
dynamic memory allocation. By using one or both options, you can alter the
behavior of the instrumented program and may likely get it to complete
successfully. This will help you determine which type of error is causing the
instrumented program to crash and, as a result, help you focus on specific
messages in the log file.

Alternatively, run the instrumented program in a debugger (using the -g
option of the third(1) command) and remove the cause of the failure. You
need not use the -uninit option if you just want to check for memory
leaks; however, using the -uninit option can make the leak reports more
accurate.

Debugging Programs with Third Degree 7–13

If your program establishes signal handlers, there is a small chance that
Third Degree’s changing of the default signal handler may interfere with it.
Third Degree defines signal handlers only for those signals that normally
cause program crashes (including SIGILL, SIGTRAP, SIGABRT, SIGEMT,
SIGFPE, SIGBUS, SIGSEGV, SIGSYS, SIGXCPU, and SIGXFSZ). You can
disable Third Degree’s signal handling by specifying the -signals option.

7.3.3 Locating Source Files

Third Degree prefixes each error message with a file and line number in
the style used by compilers. For example:

--- fof -- 3 --
ex.c: 21: freeing already freed heap at byte 0 of 32-byte block

free malloc.c
main ex.c, line 21
__start crt0.s

Third Degree tries to point as closely as possible to the source of the error,
and it usually gives the file and line number of a procedure near the top of
the call stack when the error occurred, as in this example. However, Third
Degree may not be able to find this source file, either because it is in a
library or because it is not in the current directory. In this case, Third
Degree moves down the call stack until it finds a source file to which it can
point. Usually, this is the point of call of the library routine.

To tag these error messages, Third Degree must determine the location of
the program’s source files. If you are running Third Degree in the directory
containing the source files, Third Degree will locate the source files there. If
not, to add directories to Third Degree’s search path, specify one or more
-use options. This allows Third Degree to find the source files contained in
other directories. The location of each source file is the first directory on the
search path in which it is found.

7.4 Examining an Application’s Heap Usage

In addition to run-time checks that ensure that only properly allocated
memory is accessed and freed, Third Degree provides two ways to
understand an application’s heap usage:

• It can find and report memory leaks.

• It can list the contents of the heap.

By default, Third Degree checks for leaks when the program exits.

This section discusses how to use the information provided by Third Degree
to analyze an application’s heap usage.

7–14 Debugging Programs with Third Degree

7.4.1 Detecting Memory Leaks

A memory leak is an object in the heap to which no in-use pointer exists.
The object can no longer be accessed and can no longer be used or freed. It
is useless, will never go away, and wastes memory.

Third Degree finds memory leaks by using a simple trace-and-sweep
algorithm. Starting from a set of roots (the currently active stack and the
static areas), Third Degree finds pointers to objects in the heap and marks
these objects as visited. It then recursively finds all potential pointers
inside these objects and, finally, sweeps the heap and reports all unmarked
objects. These unmarked objects are leaks.

The trace-and-sweep algorithm finds all leaks, including circular
structures. This algorithm is conservative: in the absence of type
information, any 64-bit pattern that is properly aligned and pointing inside
a valid object in the heap is treated as a pointer. This assumption can
infrequently lead to the following problems:

• Third Degree considers pointers either to the beginning or interior of an
object as true pointers. Only objects with no pointers to any address
they contain are considered leaks.

• If an instrumented application hides true pointers by storing them in
the address space of some other process or by encoding them, Third
Degree will report spurious leaks. When instrumenting such an
application with Third Degree, specify the -mask option. This option
lets you specify a mask that is applied as an AND operator against
every potential pointer. For example, if you use the top three bits of
pointers as flags, specify a mask of 0x1fffffffffffffff. See third(1).

• Third Degree can confuse any bit pattern (such as string, integer,
floating-point number, and packed struct) that looks like a heap pointer
with a true pointer, thereby missing a true leak.

• Third Degree does not notice pointers that optimized code stores only in
registers, not in memory. As a result, it may produce false leak reports.

To maximize the accuracy of the leak reports, use the -uninit h+s and
-all options. However, the -uninit option can cause the program to fail,
and the -all option increases the instrumentation and run time. So, just
check both the Leaks and Objects listings, and evaluate for possible
program errors.

7.4.2 Reading Heap and Leak Reports

You can supply command options that tell Third Degree to generate heap
and leak reports incrementally, listing only new heap objects or leaks since
the last report or listing all heap objects or leaks. You can request these

Debugging Programs with Third Degree 7–15

reports when the program terminates, or before or after every nth call to a
user-specified function. See third(1) for details of the -blocks, -every,
-before, and -after options. The -blocks option (the default) reports
both the leaks and the objects in the heap, so you will never miss one in
the event that it is classified as the wrong type. The .3log file describes
the situations where incorrect classification can occur, along with ways to
improve its accuracy.

You should pay closest attention to the leaks report, because Third Degree
has found evidence that suggests that the reported blocks really are leaked,
whereas the evidence suggests that the blocks reported as objects were not.
However, if your debugging and examination of the program suggests
otherwise, you can reasonably deduce that the evidence was misleading to
the tool.

Third Degree lists memory objects and leaks in the report by decreasing
importance, based on the number of bytes involved. It groups together
objects allocated with identical call stacks. For example, if the same call
sequence allocates a million one-byte objects, Third Degree reports them as
a one-megabyte group containing a million allocations.

To tell Third Degree when objects or leaks are the same and should be
grouped in the report (or when objects or leaks are different and should not
be thus grouped), specify the -depth option. It sets the depth of the call
stack that Third Degree uses to differentiate leaks or objects. For example,
if you specify a depth of 1 for objects, Third Degree groups valid objects in
the heap by the function and line number that allocated them, no matter
what function was the caller. Conversely, if you specify a very large depth
for leaks, Third Degree groups only leaks allocated at points with identical
call stacks from main upwards.

In most heap reports, the first few entries account for most of the storage,
but there is a very long list of small entries. To limit the length of the
report, you can use the -min option. It defines a percentage of the total
memory leaked or in use by an object as a threshold. When all smaller
remaining leaks or objects amount to less than this threshold, Third
Degree groups them together under a single final entry.

______________________ Notes ______________________

Because the realloc function always allocates a new object (by
involving calls to malloc, copy, and free), its use can make
interpretation of a Third Degree report counterintuitive. An
object can be listed twice under different identities.

7–16 Debugging Programs with Third Degree

Leaks and objects are mutually exclusive: an object must be
reachable from the roots.

7.4.3 Searching for Leaks

It may not always be obvious when to search for memory leaks. By default,
Third Degree checks for leaks after program exit, but this may not always
be what you want.

Leak detection is best done as near as possible to the end of the program
while all used data structures are still in scope. Remember, though, that
the roots for leak detection are the contents of the stack and static areas. If
your program terminates by returning from main and the only pointer to
one of its data structures was kept on the stack, this pointer will not be
seen as a root during the leak search, leading to false reporting of leaked
memory. For example:

1 main (int argc, char* argv[]) {
2 char* bytes = (char*) malloc(100);
3 exit(0);
4 }

When you instrument this program, specifying -blocks all -before
exit will cause Third Degree to not find any leaks. When the program
calls the exit function, all of main’s variables are still in scope.

However, consider the following example:

1 main (int argc, char* argv[]) {
2 char* bytes = (char*) malloc(100);
3 }

When you instrument this program, providing the same (or no) options,
Third Degree’s leak check may report a storage leak because main has
returned by the time the check happens. Either of these two behaviors may
be correct, depending on whether bytes was a true leak or simply a data
structure still in use when main returned.

Rather than reading the program carefully to understand when leak
detection should be performed, you can check for new leaks after a specified
number of calls to the specified procedure. Use the following options to
disable the default leak-checking and to request a leak before every
10,000th call to the procedure proc_name:

-blocks cancel
-blocks new -every 10000 -before proc_name

Debugging Programs with Third Degree 7–17

7.4.4 Interpreting the Heap History

When you instrument a program using the -history option, Third Degree
generates a heap history for the program. A heap history allows you to see
how the program used dynamic memory during its execution. For example,
you can use this feature to eliminate unused fields in data structures or to
pack active fields to use memory more efficiently. The heap history also
shows memory blocks that are allocated but never used by the application.

When heap history is enabled, Third Degree collects information about
each dynamically allocated object at the time it is freed by the application.
When program execution completes, Third Degree assembles this
information for every object that is still alive (including memory leaks). For
each object, Third Degree looks at the contents of the object and categorizes
each word as never written by the application, zero, a valid pointer, or
some other value.

Third Degree next merges the information for each object with what it has
gathered for all other objects allocated at the same call stack in the
program. The result provides you with a cumulative picture of the use of all
objects of a given type.

Third Degree provides a summary of all objects allocated during the life of
the program and the purposes for which their contents were used. The
report shows one entry per allocation point (for example, a call stack where
an allocator function such as malloc or new was called). Entries are sorted
by decreasing volume of allocation.

Each entry provides the following:

• Information about all objects that have been allocated

• Total number of bytes allocated

• Total number of objects that have been allocated

• Percentage of bytes of the allocated objects that have been written

• The call stack and a cumulative map of the contents of all objects
allocated by that call stack

The contents part of each entry describes how the objects were used. If all
allocated objects are not the same size, Third Degree considers only the
minimum size common to all objects. For very large allocations, it
summarizes the contents of only the beginning of the objects, by default,
the first kilobyte. You can adjust the maximum size value by specifying the
-size option.

In the contents portion of an entry, Third Degree uses one of the following
characters to represent each 32-bit longword that it examines:

7–18 Debugging Programs with Third Degree

Character Description

Dot (.) Indicates a longword that was never written in any of the objects, a
definite sign of wasted memory. Further analysis is generally
required to see if it is simply a deficiency of a test that never used
this field, if it is a padding problem solved by swapping fields or
choosing better types, or if this field is obsolete.

z Indicates a field whose value was always 0 (zero) in every object.

pp Indicates a pointer: that is, a 64-bit quantity that was a valid
pointer into the stack, the static data area, the heap (or was zero).

ss Indicates a sometime pointer. This longword looked like a pointer in
at least one of the objects, but not in all objects. It could be a
pointer that is not initialized in some instances, or a union.
However, it could also be the sign of a serious programming error.

i Indicates a longword that was written with some nonzero value in
at least one object and that never contained a pointer value in any
object.

Even if an entry is listed as allocating 100 MB, it does not mean that at
any point in time 100 MB of heap storage were used by the allocated
objects. It is a cumulative figure; it indicates that this point has allocated
100 MB over the lifetime of the program. This 100 MB may have been
freed, may have leaked, or may still be in the heap. The figure simply
indicates that this allocator has been quite active.

Ideally, the fraction of the bytes actually written should always be close to
100 percent. If it is much lower, some of what is allocated is never used.
The common reasons why a low percentage is given include the following:

• A large buffer was allocated but only a small fraction was ever used.

• Parts of every object of a given type are never used. They may be
forgotten fields or padding between real fields resulting from alignment
rules in C structures.

• Some objects have been allocated but never used at all. Sometimes leak
detection will find these objects if their pointers are discarded. However,
if they are kept on a free list, they will be found only in the heap history.

7.5 Using Third Degree on Programs with Insufficient
Symbolic Information

If the executable you instrumented contains too little symbolic information
for Third Degree to pinpoint some program locations, Third Degree prints
messages in which procedure names or file names or line numbers are
unknown. For example:

Debugging Programs with Third Degree 7–19

-- rus -- 0 --
reading uninitialized stack at byte 40 of 176 in frame of main

proc_at_0x1200286f0 libc.so
pc = 0x12004a268 libc.so
main app, app.c, line 16
__start app

Third Degree tries to print the procedure name in the stack trace, but if the
procedure name is missing (because this is a static procedure), Third Degree
prints the program counter in the instrumented program. This information
enables you to find the location with a debugger. If the program counter is
unavailable, Third Degree prints the number of the unknown procedure.

Most frequently, the file name or line number is unavailable because the
file was compiled with the default -g0 option. In this case, Third Degree
prints the name of the object in which the procedure was found. This object
may be either the main application or a shared library.

By default, error reports are printed only if a stack frame with a source file
name and a line number appears within two frames of the top of the stack.
This hides spurious reports that can be caused by the highly optimized and
assembly language code in the system libraries. Use the -hide option to
hide fewer (or more) reports involving nondebuggable procedures.

If the lack of symbolic information is hampering your debugging, consider
recompiling the program with more symbolic information. Recompile with
the −g or -g1option and link without the −x option. Using -g will make
variable names appear in reports instead of the byte offset shown in the
previous example.

7.6 Validating Third Degree Error Reports

The following spurious errors can occur:

• Modifications to variables, array elements, or structure members that
are less than 32 bits in size (such as short, char, bit field), as in this
example:

void Packed() {
char c[4];
struct { int a:6; int b:9; int c:4} x;
c[0] = c[1] = 1; /* rus errors here ... */
x.a = x.c = x.e = 3; /* ... maybe here */

}

Ignore any implausible error messages, such as those reported for
strcpy, memcpy, printf, and so on.

• Third Degree poisons newly allocated memory with a special value to
detect references to uninitialized variables (see Section 7.3.2). Programs

7–20 Debugging Programs with Third Degree

that explicitly store this special value into memory and subsequently
read it may cause spurious “reading uninitialized memory” errors.

If you think that you have found a false positive, you can verify it by using
a debugger on the procedure in which the error was reported. All errors
reported by Third Degree are detected at loads and stores in the
application, and the line numbers shown in the error report match those
shown in the disassembly output. Compile and instrument the program
with the -g option before debugging.

7.7 Undetected Errors

Third Degree can fail to detect real errors, such as the following:

• Errors in operations on quantities smaller than 32 bits can go
undetected (for example, char, short, and bit-field). The -uninit
repeat option can expose such errors by checking more load and store
operations, which Third Degree usually considers too low a risk to
check.

• Third Degree cannot detect a chance access of the wrong object in the
heap. It can only detect memory accesses from objects. For example,
Third Degree cannot determine that a[last+100] is the same address
as b[0]. You can reduce the chances of this happening by altering the
amount of padding added to objects. To do this, specify the -pad option.

• Third Degree may not be able to detect if the application walks past the
end of an array unless it also walks past the end of the array’s stack
frame or its heap object. Because Third Degree brackets objects in the
heap by guard words, it will miss small array bounds errors. (Guard
words are spare memory added at the ends of valid memory blocks to
detect overshoots.) In the stack, adjacent memory is likely to contain
local variables, and Third Degree may fail to detect larger bounds
errors. For example, issuing a sprintf operation to a local buffer that
is much too small may be detected, but if the array bounds are only
exceeded by a few words and enough local variables surround the array,
the error can go undetected. Use the cc command’s -check_bounds
option to detect array bounds violations more precisely.

• Hiding pointers by encoding them or by keeping pointers only to the
inside of a heap object will degrade the effectiveness of Third Degree’s
leak detection.

• Third Degree may detect more uninitialized variables if compiler
optimization is disabled (that is, with the -O0 and -inline none
options).

Debugging Programs with Third Degree 7–21

• At times, some leaks may not be reported, because old pointers were
found in memory. Selecting checks for uninitialized heap memory
(-uninit heap) may reduce this problem.

• Any degree of optimization will skew leak-reporting results, because
instructions that the compiler considers nonessential may be optimized
away.

7–22 Debugging Programs with Third Degree

8
Profiling Programs to Improve

Performance

Profiling is a method of identifying sections of code that consume large
portions of execution time. In a typical program, most execution time is
spent in relatively few sections of code. To improve performance, the
greatest gains result from improving coding efficiency in time-intensive
sections.

8.1 Overview
Tru64 UNIX supports four approaches to performance improvement:

• Automatic and profile-directed optimizations (see Section 8.4).

• Manual design and code optimizations (see Section 8.5).

• Minimizing system-resource usage (see Section 8.6).

• Verifying the significance of test cases (see Section 8.7).

One approach might be enough, but more might be beneficial if no single
approach addresses all aspects of a program’s performance. This chapter
describes each approach and the tools provided by Tru64 UNIX to support
them. In addition, the following topics are covered in this chapter:

• Selecting profiling information to display (Section 8.8)

• Merging profile data files (Section 8.9)

• Profiling multithread applications (Section 8.10)

• Using monitor routines to control profiling (Section 8.11)

For more information, see the following reference pages:

• Profiling: cc(1), hiprof(1), pixie(1), third(1), uprofile(1), prof(1),
gprof(1)

• System monitoring: ps(1), swapon(8), vmstat(1)

• Performance Manager, available from the Tru64 UNIX Associated
Products installation media: pmgr(8X)

• Graphical tools, available from the Graphical Program Analysis subset
of the Tru64 UNIX Associated Products installation media, or as part of

Profiling Programs to Improve Performance 8–1

the Compaq Enterprise Toolkit for Windows/NT desktops with the
Microsoft VisualStudio97: dxheap(1), dxprof(1), mview(1), pview(1)

• Visual Threads, available from the Tru64 UNIX Associated Products
installation media: dxthreads(1). Use Visual Threads to analyze a
multithreaded appplication for potential logic and performance
problems.

• The System Configuration and Tuning manual.

8.2 Profiling Sample Program

The examples in the remainder of this chapter refer to the program
sample, whose source code is contained in the files profsample.c (main
program), add_vector.c, mul_by_scalar.c, print_it.c, and
profsample.h. These files are shown in Example 8–1.

Example 8–1: Profiling Sample Program

****************** profsample.c *************
#include <math.h>
#include <stdio.h>
#include "profsample.h"

#define LEN 100000
static void mul_by_pi(double ary[])
{

mul_by_scalar(ary, LEN/2, 3.14159);
}

void main()
{

double ary1[LEN];
double *ary2;
double sum = 0.0;
int i;

ary2 = malloc(LEN * sizeof(double));
for (i=0; i<LEN; i++) {

ary1[i] = 0.0;
ary2[i] = sqrt((double)i);

}
mul_by_pi(ary1);
mul_by_scalar(ary2, LEN, 2.71828);
for (i=0; i<100; i++)

add_vector(ary1, ary2, LEN);
for (i=0; i<100; i++)

sum += ary1[i];
if (sum < 0.0)

8–2 Profiling Programs to Improve Performance

Example 8–1: Profiling Sample Program (cont.)

print_it(0.0);
else

print_it(sum);
}
****************** profsample.h: ********************

void mul_by_scalar(double ary[], int len, double num);
void add_vector(double arya[], double aryb[], int len);
void print_it(double value);

***************** add_vector.c: ********************

void add_vector(double arya[], double aryb[], int len)
{

int i;
for (i=0; i<LEN; i++) {

arya[i] += aryb[i];
}

}
**************** mul_by_scalar.c: ******************

void mul_by_scalar(double ary[], int len, double num)
{

int i;
for (i=0; i<LEN; i++) {

ary[i] *= num;
}

}
**************** print_it.c: **********************

#include <stdio.h>
#include "profsample.h"

void print_it(double value)
{

printf("Value = %f\n", value);
}

8.3 Compilation Options for Profiling

When using debug and optimization options with the cc command, note
the following considerations. They apply to all the profiling tools discussed
in this chapter unless stated otherwise.

Profiling Programs to Improve Performance 8–3

• The -g1 option provides the minimum debug information needed (that
is, line numbers and procedure names) and is sufficient for all profilers.
The cc command default, -g0, is tolerated but provides no names for
local (for example, static) procedures. The -g2 and higher options
provide less than optimal code as well as unneeded information.

• When doing automatic or profile-directed optimization (Section 8.4),
note that the cc command’s -feedback option automatically applies
the -g1 option. Also, you need to experiment to find the automatic
optimization level (for example, -O3) that provides the best run-time
performance for your program and compiler.

• When doing manual optimization, note that none of the profiling tools
show inlined procedures separately, by their own names. Profiling
statistics for an inlined procedure are included in the statistics for the
calling procedure. For example, if proc1 calls proc2 (which is inlined),
the statistics for proc1 will include the time spent in proc2. Therefore,
to provide some optimization but with minimal inlining when profiling,
use the -O2 (or -O) option. In some cases, you may need to specify the
-inline none option to eliminate all inlining. This restriction does not
apply to automatic optimization.

8.4 Automatic and Profile-Directed Optimizations

The following sections discuss automatic and profile-directed optimizations.

8.4.1 Techniques

Automatic and profile-directed optimizations are the simplest approaches
to improving application performance.

Some degree of automatic optimization can be achieved by using the
compiler’s and linker’s optimization options. These can help in the
generation of minimal instruction sequences that make best use of the CPU
architecture and cache memory.

However, the compiler and linker can improve their optimizations if they
are given information on which instructions are executed most often when
the program is run with its normal input data and environment. While the
default optimizations give improved performance for most common
situations, the optimizers can do even better if they can tune the program
in favor of the heavily used instruction sequences as determined from a
sample run.

Tru64 UNIX helps you provide the optimizers with this information on
processing hot spots by allowing a profiler’s results to be fed back into a

8–4 Profiling Programs to Improve Performance

recompilation. This customized, profile-directed optimization can be used in
conjunction with automatic optimization.

8.4.2 Tools and Examples

The following sections discuss the tools used for automatic and profile
directed optimizations.

8.4.2.1 Automatic Optimization

The cc command’s automatic optimization options are selected with the −O,
−fast, −inline, −om, and other related options. See cc(1) for details and
Chapter 10 for more information on the many options and tradeoffs
available.

For example, this command selects a high degree of optimization in both
the compiler and the linker:

% cc -non_shared -O3 -om *.c

8.4.2.2 Profile-Directed Optimization

The pixie profiler provides profile information that the cc command’s
−feedback and −om options can use to tune the generated instruction
sequences to the demands placed on the program by particular sets of input
data. This technique sould be used only with executables. For shared
libraries, use cord as described in Section 8.4.2.3.

The following example shows the three necessary basic steps in this
process, which consist of (1) preparing the program for profile-directed
optimization, (2) creating an instrumented version of the program and
running it to collect profiling statistics, and (3) feeding that information
back to the compiler and linker to help them optimize the executable code.
Later examples show how to elaborate on these steps to accommodate
ongoing changes during development and data from multiple profiling runs.

% cc -feedback sample -o sample -non_shared -O3 *.c -lm 1
% pixie -update -quiet sample 2
% cc -feedback sample -o sample -non_shared -om -O3 *.c -lm 3

1 When the program is compiled with the -feedback option for the first
time, a special augmented executable file is created. It contains
information used by the compiler to relate the executable to the source
files. It also contains a section later used to store profiling feedback
information for the compiler. This section remains empty after the first
compilation, because no feedback information has yet been generated
by the pixie profiler (step 2). The file name specified with the

Profiling Programs to Improve Performance 8–5

-feedback option should be the same as the executable file name,
which in this example is sample (from the -o option). By default, the
-feedback option applies the -g1 option, which provides optimum
symbolization for profiling. (For information about the -g1 and -O3
options, see Section 8.3.)

2 The pixie command creates an instrumented version of the program
(sample.pixie) and then runs it (because a prof option, -update, is
specified). Execution statistics and address mapping data are
automatically collected in an instruction-counts file (sample.Counts)
and an instruction-addresses file (sample.Addrs). The -update
option puts this profiling information in the augmented executable.
The -quiet option prevents informational and progress messages
from being printed.

3 In the second compilation with the -feedback option, the profiling
information in the augmented executable guides the compiler and
(through the -om option) the postlink optimizer. This customized
feedback enhances any automatic optimization provided by the -O3
and -om options. When the -om option is used with nonshared
executables, it is particularly effective because it optimizes all library
routines, too. Compiler optimizations can be made even more effective
by using the -ifo and/or -assume whole_program options in
conjuction with the -feedback option. However, as noted in
Section 10.1.1, the compiler may be unable to compile very large
programs as if there were only one source file.

Example 8–2 shows the output for each of these steps. See pixie(1) and
cc(1) for more information.

Example 8–2: Sample Profile-Directed Optimization Output

% cc -feedback sample -o sample -non_shared -O3 add_vector.c mul_by_scalar.c print_it.c profsample.c -lm
add_vector.c:
cc: Info: Feedback file sample does not exist (nofbfil)
cc: Info: Compilation will proceed without feedback optimizations (nofbopt)
mul_by_scalar.c:
cc: Info: Feedback file sample does not exist (nofbfil)
cc: Info: Compilation will proceed without feedback optimizations (nofbopt)
print_it.c:
cc: Info: Feedback file sample does not exist (nofbfil)
cc: Info: Compilation will proceed without feedback optimizations (nofbopt)
profsample.c:
cc: Info: Feedback file sample does not exist (nofbfil)
cc: Info: Compilation will proceed without feedback optimizations (nofbopt)

% pixie -update -quiet sample
Value = 540.930890

% cc -feedback sample -o sample -non_shared -om -O3 add_vector.c mul_by_scalar.c print_it.c profsample.c -lm
add_vector.c:
mul_by_scalar.c:
print_it.c:
profsample.c:

8–6 Profiling Programs to Improve Performance

During a typical development process, steps 2 and 3 of the previous
example are repeated as needed to reflect the impact of any changes to the
source code. For example:

% cc -feedback sample -o sample -non_shared -O3 *.c -lm
% pixie -update -quiet sample
% cc -feedback sample -o sample -non_shared -O3 *.c -lm
[modify source code]
% cc -feedback sample -o sample -non_shared -O3 *.c -lm
.....
[modify source code]
% cc -feedback sample -o sample -non_shared -O3 *.c -lm
% pixie -update -quiet sample
% cc -feedback sample -o sample -non_shared -om -O3 *.c -lm

Because the profiling information in the augmented executable persists
from compilation to compilation, the pixie processing step that updates
the information does not have to be repeated every time a source module is
modified and recompiled. But with each modification the relevance of the
old feedback information to the actual code is reduced, and the potential
quality of the optimization is degraded, depending on the exact
modification. The pixie processing step after the last modification and
recompilation guarantees that the feedback information is correctly
updated for the last compilation.

The profiling information in an augmented executable file makes it larger
than a normal executable (typically 3–5 percent). After development is
completed, you can use the strip command to remove any profiling and
symbol table information. For example:

% strip sample

You might want to run your instrumented program several times with
different inputs to get an accurate picture of its profile. The following
example explains how to merge profiling statistics from two runs of a
program, prog, whose output varies from run to run with different sets of
input:

% cc -feedback prog -o prog -non_shared -O3 *.c 1
% pixie -pids prog 2
% prog.pixie 3
(input set 1)
% prog.pixie
(input set 2)
% prof -pixie -update prog prog.Counts.* 4
% cc -feedback prog -o prog -non_shared -om -O3 *.c 5

1 The first compilation produces an augmented executable, as explained
in the previous example.

2 By default, each run of the instrumented program (prog.pixie)
produces a profiling data file called prog.Counts. The -pids option
adds the process ID of each of the instrumented program’s test runs to

Profiling Programs to Improve Performance 8–7

the name of the profiling data file produced (that is,
prog.Counts.pid). Thus, the data files produced by subsequent runs
do not overwrite each other.

3 The instrumented program is run twice, producing a uniquely named
data file each time — for example prog.Counts.371 and
prog.Counts.422.

4 The prof -pixie command merges the two data files. The -update
option updates the executable, prog, with the combined information.

5 The second compilation step uses the combined profiling information
from the two runs of the program to guide the optimization.

8.4.2.3 Profile-Directed Reordering

You can use a different kind of feedback file (created with the pixie or
prof -pixie command) as input to the cord utility. The cord utility
reorders the procedures in an executable program or shared library to
improve cache utilization. The following example shows how to create a
feedback file and then use the −cord option to compile an executable with
the feedback file as input:

% cc -O3 -o sample *.c -lm
% pixie -feedback sample.fb sample 1
% cc -O3 -cord -feedback sample.fb -o sample *.c -lm 2

1 The pixie command creates an instrumented version of the program
and also runs it (because a prof option, -feedback is specified). The
-feedback option creates a feedback file (sample.fb) that collects
execution statistics to be used by the compiler in the next step.

2 The cc command’s -feedback option accepts the feedback file as
input. The −cord option invokes the cord utility.

Compiling a shared library with feedback is similar. Profile the shared
library with one or more programs that exercise the library code that most
needs optimizing. For example:

% cc -o libexample.so -shared -g1 -O3 lib*.c 1
% cc -o exerciser -O3 exerciser.c -L. -lexample 2
% pixie -L. -incobj libexample.so -run exerciser 3
% prof -pixie -feedback libexample.fb libexample.so exerciser.Counts 4
% cc -cord -feedback libexample.fb -o libexample.so -shared -g1 -O3 lib*.c 5

1 The shared library is compiled with the -g1 option to give feedback
data for each source line.

2 A program to exercise the important parts of the library is built.
3 The shared library and program are instrumented and run to profile

them.
4 A feedback file is generated for just the shared library.

8–8 Profiling Programs to Improve Performance

5 The shared library is recompiled, relinked, and reordered to optimize
the performance of the code that the profile shows is most heavily used.

Use a feedback file generated with the same optimization level.

You can also use cord with the runcord utility. For more information, see
pixie(1), prof(1), cord(1), and runcord(1).

8.5 Manual Design and Code Optimizations

The following sections discuss the techniques and tools used for manual
design and code optimizations.

8.5.1 Techniques

The effectiveness of the automatic optimizations described in Section 8.4 is
limited by the efficiency of the algorithms that the program uses. You can
further improve a program’s performance by manually optimizing its
algorithms and data structures. Such optimizations may include reducing
complexity from N-squared to log-N, avoiding copying of data, and reducing
the amount of data used. It may also extend to tuning the algorithm to the
architecture of the particular machine it will be run on — for example,
processing large arrays in small blocks such that each block remains in the
data cache for all processing, instead of the whole array being read into the
cache for each processing phase.

Tru64 UNIX supports manual optimization with its profiling tools, which
identify the parts of the application that impose the highest CPU load —
CPU cycles, cache misses, and so on. By evaluating various profiles of a
program, you can identify which parts of the program use the most CPU
resources, and you can then redesign or recode algorithms in those parts to
use less resources. The profiles also make this exercise more cost-effective
by helping you to focus on the most demanding code rather than on the
least demanding.

8.5.2 Tools and Examples

The following sections discuss the tools used for CPU-time profiling with
call graph and for CPU-time/event profiling with source lines and
instructions.

8.5.2.1 CPU-Time Profiling with Call Graph

A call-graph profile shows how much CPU time is used by each procedure,
and how much is used by all the other procedures that it calls. This profile

Profiling Programs to Improve Performance 8–9

can show which phases or subsystems in a program spend most of the total
CPU time, which can help in gaining a general understanding of the
program’s performance. This section describes two tools that provide this
information:

• The hiprof profiler

• The cc command’s -pg option

Both tools are used with the gprof tool, implicitly or explicitly, to format
and display the profile.

The optional dxprof command provides a graphical display of CPU-time
call-graph profiles.

Using the hiprof Profiler

The hiprof profiler (see hiprof(1)) instruments the program and
generates a call graph while the instrumented program executes. This
profiler does not require that the program be compiled in any particular
way except as indicated in Section 8.3. The hiprof command can generate
a call-graph profile for shared libraries and for program code, with
moderate optimization and minimal debug information. For example:

% cc -o libsample.so -shared -g1 -O2 add_vector.c mul_by_scalar.c print_it.c 1
% cc -o sample -g1 -O2 profsample.c -L. -lsample -lm 2
% hiprof -numbers -L. -inc libsample.so sample 3

1 A shared library, libsample.so, is created from three source modules,
with debug information and optimization as indicated in Section 8.3.

2 The source module profsample is compiled and linked against the
shared library libsample.so (located in the current directory) to
produce the executable sample.

3 The -inc[obj] option tells hiprof to profile libsample.so in
addition to the executable (sample). The hiprof command creates an
instrumented version of the program (sample.hiprof). Because at
least one gprof option (-numbers) is specified, hiprof then
automatically runs that instrumented program to create a profile data
file (sample.hiout) and then runs gprof to display the profile. The
-numbers option prints each procedure’s starting line number,
source-file name, and library name. This helps identify any multiple
static procedures with the same name.

The resulting sample profile is shown in Example 8–3. The call-graph
profile estimates the total cost of calling a procedure, including other
procedures that it calls. The estimation assumes that each call to a given
procedure takes the same amount of time; this may not be true in many
cases, but it is always accurate when there is only one caller.

8–10 Profiling Programs to Improve Performance

By default, hiprof uses a low-frequency sampling technique. This can
profile all the code executed by the program, including all selected libraries.
It also provides a call-graph profile of all selected procedures (except those
in the threads-related system libraries) and detailed profiles at the level of
source lines or machine instructions (if selected).

Example 8–3: Sample hiprof Default Profile, Using gprof

% cc -o libsample.so -shared -g1 -O2 add_vector.c mul_by_scalar.c print_it.c
add_vector.c:
mul_by_scalar.c:
print_it.c:

% cc -o sample -g1 -O2 profsample.c -L. -lsample -lm

% hiprof -numbers -L. -inc libsample.so sample
hiprof: info: instrumenting sample ...

hiprof: info: the LD_LIBRARY_PATH environment variable is not defined
hiprof: info: setting LD_LIBRARY_PATH=.:. 1
hiprof: info: running instrumented program sample.hiprof ...

Value = 179804.149985

hiprof: info: instrumented program exited with status 0
hiprof: info: displaying profile for sample ...

gprof -b -scaled -all -numbers -L. sample.hiprof ./sample.hiout 2

*********************** call-graph profile ******************* 3

granularity: samples per 4 bytes; units: seconds*1e-3; total: 323e-3 seconds

called / total parents
index %total self descendents called + self name index

called / total children

2 321 1 / 1 __start [2]
[1] 100.0 2 321 1 main [1] 4

318 0 100 / 100 add_vector [3] 5
3 0 2 / 2 mul_by_scalar [4]
0 0 1 / 1 print_it [5]

--

318 0 100 / 100 main [1] 6
[3] 98.5 318 0 100 add_vector [3]

--

3 0 2 / 2 main [1]
[4] 0.9 3 0 2 mul_by_scalar [4]

--

0 0 1 / 1 main [1]
[5] 0.0 0 0 1 print_it [5]

--

*********************** timing profile section ***************

Profiling Programs to Improve Performance 8–11

Example 8–3: Sample hiprof Default Profile, Using gprof (cont.)

granularity: samples per 4 bytes; units: seconds*1e-3; total: 323e-3 seconds

% cumulative self self/call total/call
total units units calls seconds seconds name
98.5 318 318 100 3184e-6 3184e-6 add_vector [3]
0.9 321 3 2 1465e-6 1465e-6 mul_by_scalar [4]
0.6 323 2 1 1953e-6 323242e-6 main [1]
0.0 323 0 1 0 0 print_it [5]

*********************** index section ************************
Index by function name - 4 entries

[3] add_vector :"add_vector.c":1
[1] main :"profsample.c":12
[4] mul_by_scalar :"mul_by_scalar.c":1
[5] print_it :"print_it.c":4

1 The LD_LIBRARY_PATH environment variable is automatically set to
point to the working directory, where the instrumented shared library
libsample is located (see Section 8.8.4.1).

2 The automatically generated gprof command line uses the -scaled
option by default, which can display profiles with CPU-cycle
granularity and millisecond units if the procedures selected for display
have short run times.

3 The gprof output comprises three sections: a call-graph profile, a
timing profile, and an index (a concise means of identifying each
procedure). In this example, the three sections have been separated by
rows of asterisks (with the section names) that do not appear in the
output produced by gprof. In the call-graph profile section, each
routine in the program has its own subsection that is contained within
dashed lines and identified by the index number in the first column.

4 This line describes the main routine, which is the subject of this
portion of the call-graph profile because it is the leftmost routine in the
rightmost column of this section. The index number [2] in the first
column corresponds to the index number [2] in the index section at
the end of the output. The percentage in the second column reports the
total amount of time in the subgraph that is accounted for by main
and its descendants, in this case add_vector, mul_by_scalar, and
print_it. The 1 in the called column indicates the total number of
times that the main routine is called.

5 This line describes the relationship of add_vector to main. Because
add_vector is below main in this section, add_vector is identified
as the child of main. The fraction 100/100 indicates that of the total

8–12 Profiling Programs to Improve Performance

of 100 calls to add_vector (the denominator), 100 of these calls came
from main (the numerator).

6 This line describes the relationship of main to add_vector. Because
main is listed above add_vector in the last column, main is identified
as the parent of add_vector.

For nonthreaded programs, hiprof can alternatively count the number of
machine cycles used or page faults suffered by the program. The cost of
each parent procedure’s calls is accurately calculated, making the
call-graph profile much more useful than the one in the default mode,
which can only estimate the costs of parents. Also, the CPU time (in
nanosecond units for short tests) or page-faults count reported for the
instrumented routines includes that for the uninstrumented routines that
they call. This can summarize the costs and reduce the run-time overhead,
but note that the machine-cycle counter wraps if no instrumented
procedure is called at least every few seconds.

In the following example, the hiprof command’s -cycles option is used
to display a profile of the machine cycles used by the sample program:

% cc -o libsample.so -shared -g1 -O2 add_vector.c mul_by_scalar.c print_it.c
% cc -o sample -g1 -O2 profsample.c -L. -lsample -lm
% hiprof -cycles -numbers -L. -inc libsample.so sample

The resulting sample profile is shown in Example 8–4.

Example 8–4: Sample hiprof -cycles Profile, Using gprof

% cc -o libsample.so -shared -g1 -O2 add_vector.c mul_by_scalar.c print_it.c
add_vector.c:
mul_by_scalar.c:
print_it.c:

% cc -o sample -g1 -O2 profsample.c -L. -lsample -lm

% hiprof -cycles -numbers -L. -inc libsample.so sample
hiprof: info: instrumenting sample ...

hiprof: info: the LD_LIBRARY_PATH environment variable is not defined
hiprof: info: setting LD_LIBRARY_PATH=.:.
hiprof: info: running instrumented program sample.hiprof ...

Value = 179804.149985

hiprof: info: instrumented program exited with status 0
hiprof: info: displaying profile for sample ...

gprof -b -scaled -all -numbers -L. sample ./sample.hiout

granularity: cycles; units: seconds*1e-9; total: 362320292e-9 seconds

called / total parents
index %total self descendents called + self name index

called / total children

Profiling Programs to Improve Performance 8–13

Example 8–4: Sample hiprof -cycles Profile, Using gprof (cont.)

<spontaneous>
[1] 100.0 893310 361426982 1 __start [1]

361371860 1 / 1 main [2]

--

361371860 1 / 1 __start [1]
[2] 99.7 36316218 325055642 1 main [2]

321107275 100 / 100 add_vector [3]
3519530 2 / 2 mul_by_scalar [4]
428838 1 / 1 print_it [5]

--

321107275 100 / 100 main [2]
[3] 88.6 321107275 0 100 add_vector [3]

--

3519530 2 / 2 main [2]
[4] 1.0 3519530 0 2 mul_by_scalar [4]

--

428838 1 / 1 main [2]
[5] 0.1 428838 0 1 print_it [5]

--

granularity: cycles; units: seconds*1e-9; total: 362320292e-9 seconds

% cumulative self self/call total/call
total units units calls seconds seconds name
88.6 321107275 321107275 100 3211e-6 3211e-6 add_vector [3]
10.0 357423492 36316218 1 36316e-6 361372e-6 main [2]
1.0 360943022 3519530 2 1760e-6 1760e-6 mul_by_scalar [4]
0.2 361836332 893310 1 893310e-9 362320e-6 __start [1]
0.1 362265170 428838 1 428838e-9 428838e-9 print_it [5]

Index by function name - 11 entries

[1] __start <sample>
[3] add_vector <libsample.so>:"add_vector.c":1
[2] main <sample>:"profsample.c":12
[4] mul_by_scalar <libsample.so>:"mul_by_scalar.c":1
[5] print_it <libsample.so>:"print_it.c":4

Using the cc Command’s -pg Option

The cc command’s -pg option uses the same sampling technique as
hiprof, but the program needs to be instrumented by compiling with the
-pg option. (The program also needs to be compiled with the debug and
optimization options indicated in Section 8.3.) Only the executable is
profiled (not shared libraries), and few system libraries are compiled to

8–14 Profiling Programs to Improve Performance

generate a call-graph profile; therefore, hiprof may be preferred. However,
the cc command’s -pg option and gprof are supported in a very similar
way on different vendors’ UNIX systems, so this may be an advantage. For
example:

% cc -pg -o sample -g1 -O2 *.c -lm 1
% ./sample 2
% gprof -scaled -b -numbers sample 3

1 The cc command’s -pg call-graph profiling option creates an
instrumented version of the program, sample. (You must specify the
-pg option for both the compile and link phases.)

2 Running the instrumented program produces a profiling data file
(named gmon.out, by default) to be used by the gprof tool. For
information about working with multiple data files, see Section 8.9.

3 The gprof command extracts information from the profiling data file
and displays it. The -scaled option displays CPU time in units that
give the best precision without exceeding the report’s column widths.
The -b option suppresses the printing of a description of each field in
the profile.

The resulting sample profile is shown in Example 8–5. The gprof tool
estimates the total cost of calling a procedure (including its calls) in its
call-graph profile.

Example 8–5: Sample cc -pg Profile, Using gprof

% cc -pg -o sample -g1 -O2 add_vector.c mul_by_scalar.c print_it.c profsample.c -lm
add_vector.c:
mul_by_scalar.c:
print_it.c:
profsample.c:

% ./sample
Value = 179804.149985

% gprof -scaled -b -numbers sample

granularity: samples per 8 bytes; units: seconds*1e-3; total: 326e-3 seconds

called / total parents
index %total self descendents called + self name index

called / total children

5 321 1 / 1 __start [2]
[1] 100.0 5 321 1 main [1]

317 0 100 / 100 add_vector [3]
4 0 2 / 2 mul_by_scalar [4]
0 0 1 / 1 print_it [5]

--

317 0 100 / 100 main [1]
[3] 97.3 317 0 100 add_vector [3]

Profiling Programs to Improve Performance 8–15

Example 8–5: Sample cc -pg Profile, Using gprof (cont.)

--

4 0 2 / 2 main [1]
[4] 1.2 4 0 2 mul_by_scalar [4]

--

0 0 1 / 1 main [1]
[5] 0.0 0 0 1 print_it [5]

--

granularity: samples per 8 bytes; units: seconds*1e-3; total: 326e-3 seconds

% cumulative self self/call total/call
total units units calls seconds seconds name
97.3 317 317 100 3174e-6 3174e-6 add_vector [3]
1.5 322 5 1 4883e-6 326172e-6 main [1]
1.2 326 4 2 1953e-6 1953e-6 mul_by_scalar [4]
0.0 326 0 1 0 0 print_it [5]

Index by function name - 4 entries

[3] add_vector <sample>:"add_vector.c":1
[1] main <sample>:"profsample.c":12
[4] mul_by_scalar <sample>:"mul_by_scalar.c":1
[5] print_it <sample>:"print_it.c":4

8.5.2.2 CPU−Time/Event Profiles for Sourcelines/Instructions

A good performance-improvement strategy may start with a procedure-level
profile of the whole program (possibly with a call graph, to provide an
overall picture), but it will often progress to detailed profiling of individual
source lines and instructions. The following tools provide this information:

• The uprofile profiler

• The hiprof profiler

• The cc command’s -p option

• The pixie profiler

Using the uprofile Profiler

The uprofile profiler (see uprofile(1)) uses a high-frequency sampling
technique to generate a profile of the CPU time or events such as cache
misses, associated with each procedure or source line or instruction. The
profiler achieves this without modifying the application program at all, by
using hardware counters that are built into the Alpha CPU. Running the
uprofile command with no arguments yields a list of all the kinds of
events that a particular machine can profile, depending on the nature of its

8–16 Profiling Programs to Improve Performance

architecture. The default is to profile machine cycles, resulting in a
CPU-time profile. The following example shows how to display a profile of
the instructions that used the top 90 percent of CPU time:

% cc -o sample -g1 -O2 *.c -lm 1
% uprofile -asm -quit 90cum% sample 2

The resulting sample profile, which includes explanatory text, is shown in
Example 8–6.

1 For information about the -g1 and -O2 options, see Section 8.3.

2 The uprofile command runs the sample program, collecting the
performance counter data into a profile data file (named umon.out, by
default). Because prof options (-asm and -quit) are specified,
uprofile then automatically runs the prof tool to display the profile.

The -asm option provides per-instruction profiling of cycles (and other
CPU statistics, such as data cache misses, if specified). Because no
counter statistics are specified here, uprofile displays a CPU-time
profile for each instruction. The -quit 90cum% option truncates the
profile after 90 percent of the whole has been printed (see
Section 8.8.3). (Also available are the -heavy option, which reports the
lines that executed the most instructions, and the -lines option,
which reports the profile per source line within each procedure (see
Section 8.8.2).

Example 8–6: Sample uprofile CPU-Time Profile, Using prof

% cc -o sample -g1 -O2 add_vector.c mul_by_scalar.c print_it.c profsample.c -lm
add_vector.c:
mul_by_scalar.c:
print_it.c:
profsample.c:

% uprofile -asm -quit 90cum% sample
Value = 179804.149985
Writing umon.out

Displaying profile for sample:

Profile listing generated Thu Dec 3 10:29:25 1998 with:
prof -asm -quit 90cum% sample umon.out

--
* -a[sm] using performance counters: *
* cycles0: 1 sample every 65536 Cycles (0.000164 seconds) *
* sorted in descending order by total time spent in each procedure; *
* unexecuted procedures excluded *
--

Each sample covers 4.00 byte(s) for 0.052% of 0.3123 seconds

millisec % cum % address:line instruction

add_vector (add_vector.c)

Profiling Programs to Improve Performance 8–17

Example 8–6: Sample uprofile CPU-Time Profile, Using prof (cont.)

0.0 0.00 0.00 0x120001260:2 addl zero, a2, a2
0.0 0.00 0.00 0x120001264:5 bis zero, zero, t0
0.0 0.00 0.00 0x120001268:5 ble a2, 0x12000131c
0.0 0.00 0.00 0x12000126c:5 subl a2, 0x3, t1
0.0 0.00 0.00 0x120001270:5 cmple t1, a2, t2
0.0 0.00 0.00 0x120001274:5 beq t2, 0x1200012f4
0.0 0.00 0.00 0x120001278:5 ble t1, 0x1200012f4
0.0 0.00 0.00 0x12000127c:5 subq a0, a1, t3
0.0 0.00 0.00 0x120001280:5 lda t3, 31(t3)
0.0 0.00 0.00 0x120001284:5 cmpule t3, 0x3e, t3
0.0 0.00 0.00 0x120001288:5 bne t3, 0x1200012f4
0.0 0.00 0.00 0x12000128c:5 ldq_u zero, 0(sp)
20.2 6.45 6.45 0x120001290:6 ldl zero, 128(a1)
1.3 0.42 6.87 0x120001294:6 lds $f31, 128(a0)
35.6 11.39 18.26 0x120001298:6 ldt $f0, 0(a1)
20.0 6.40 24.66 0x12000129c:6 ldt $f1, 0(a0)
9.7 3.10 27.75 0x1200012a0:6 ldt $f10, 8(a1)
14.9 4.77 32.53 0x1200012a4:6 ldt $f11, 8(a0)
17.4 5.56 38.09 0x1200012a8:6 ldt $f12, 16(a1)
7.0 2.26 40.35 0x1200012ac:6 ldt $f13, 16(a0)
8.2 2.62 42.97 0x1200012b0:6 ldt $f14, 24(a1)
12.9 4.14 47.11 0x1200012b4:6 ldt $f15, 24(a0)
24.9 7.97 55.09 0x1200012b8:6 addt $f1,$f0,$f0
24.7 7.92 63.01 0x1200012bc:6 addt $f11,$f10,$f10
37.8 12.12 75.13 0x1200012c0:6 addt $f13,$f12,$f12
39.2 12.54 87.67 0x1200012c4:6 addt $f15,$f14,$f14
0.8 0.26 87.93 0x1200012c8:5 addl t0, 0x4, t0
0.0 0.00 87.93 0x1200012cc:5 lda a1, 32(a1)
8.4 2.68 90.61 0x1200012d0:6 stt $f0, 0(a0)

By comparison, the following example shows how to display a profile of the
instructions that suffered the top 90 percent of data cache misses on an
EV56 Alpha system:

% cc -o sample -g1 -O2 *.c -lm
% uprofile -asm -quit 90cum% dcacheldmisses sample

The resulting sample profile is shown in Example 8–7.

Example 8–7: Sample uprofile Data-Cache-Misses Profile, Using prof

% uprofile -asm -quit 90cum% dcacheldmisses sample
Value = 179804.149985
Writing umon.out

Displaying profile for sample:

Profile listing generated Thu Dec 3 10:34:25 1998 with:
prof -asm -quit 90cum% sample umon.out

--
* -a[sm] using performance counters: *
* dcacheldmiss: 1 sample every 16384 DCache LD Misses 1 *
* sorted in descending order by samples recorded for each procedure; *
* unexecuted procedures excluded *

8–18 Profiling Programs to Improve Performance

Example 8–7: Sample uprofile Data-Cache-Misses Profile, Using prof
(cont.)

--

Each sample covers 4.00 byte(s) for 0.18% of 550 samples 2

samples % cum % address:line instruction

add_vector (add_vector.c)
0.0 0.00 0.00 0x120001260:2 addl zero, a2, a2
0.0 0.00 0.00 0x120001264:5 bis zero, zero, t0
0.0 0.00 0.00 0x120001268:5 ble a2, 0x12000131c
0.0 0.00 0.00 0x12000126c:5 subl a2, 0x3, t1
0.0 0.00 0.00 0x120001270:5 cmple t1, a2, t2
0.0 0.00 0.00 0x120001274:5 beq t2, 0x1200012f4
0.0 0.00 0.00 0x120001278:5 ble t1, 0x1200012f4
0.0 0.00 0.00 0x12000127c:5 subq a0, a1, t3
0.0 0.00 0.00 0x120001280:5 lda t3, 31(t3)
0.0 0.00 0.00 0x120001284:5 cmpule t3, 0x3e, t3
0.0 0.00 0.00 0x120001288:5 bne t3, 0x1200012f4
0.0 0.00 0.00 0x12000128c:5 ldq_u zero, 0(sp)
1.0 0.18 0.18 0x120001290:6 ldl zero, 128(a1)
3.0 0.55 0.73 0x120001294:6 lds $f31, 128(a0)
62.0 11.27 12.00 0x120001298:6 ldt $f0, 0(a1) 3
64.0 11.64 23.64 0x12000129c:6 ldt $f1, 0(a0)
8.0 1.45 25.09 0x1200012a0:6 ldt $f10, 8(a1)
47.0 8.55 33.64 0x1200012a4:6 ldt $f11, 8(a0)
13.0 2.36 36.00 0x1200012a8:6 ldt $f12, 16(a1)
38.0 6.91 42.91 0x1200012ac:6 ldt $f13, 16(a0)
15.0 2.73 45.64 0x1200012b0:6 ldt $f14, 24(a1)
51.0 9.27 54.91 0x1200012b4:6 ldt $f15, 24(a0)
49.0 8.91 63.82 0x1200012b8:6 addt $f1,$f0,$f0
142.0 25.82 89.64 0x1200012bc:6 addt $f11,$f10,$f10
13.0 2.36 92.00 0x1200012c0:6 addt $f13,$f12,$f12

1 The stated sampling rate of 1 sample every 16384 means that each
sample shown in the profile occurred after 16384 data cache misses,
but not all of these occurred at the instruction indicated.

2 The total number of samples is shown, not the number of data cache
misses.

3 Indicates the number of samples recorded at an instruction, which
statistically implies a proportionate number of data cache misses.

The uprofile profiling technique has the advantage of very low run-time
overhead. Also, the detailed information it can provide on the costs of
executing individual instructions or source lines is essential in identifying
exactly which operation in a procedure is slowing the program down.

The disadvantages of uprofile are as follows:

• Only executables can be profiled. To profile code in a library, you must
first link the program with the -non_shared option.

Profiling Programs to Improve Performance 8–19

• Only one program can be profiled with the hardware counters at one
time.

• Threads cannot be profiled individually.

• The Alpha EV6 architecture’s execution of instructions out of sequence
can significantly reduce the accuracy of fine-grained profiles.

Using the hiprof Profiler

As noted earlier, the hiprof command’s default PC-sampling technique
can also generate CPU-time profiles like those of uprofile. Its low
sampling frequency yields a sparser profile (requiring a longer run time to
compensate), but it has some advantages:

• Shared libraries can be profiled.

• Threads can be individually profiled (at the cost of very large memory
and data file size).

• It is independent of hardware resources and architecture.

In the following example, the hiprof command’s -lines option is used to
display a profile of the CPU time used by each source line, grouped by
procedure:

% cc -o libsample.so -shared -g1 -O2 add_vector.c mul_by_scalar.c print_it.c
% cc -o sample -g1 -O2 profsample.c -L. -lsample -lm
% hiprof -lines -numbers -L. -inc libsample.so sample

The resulting sample profile is shown in Example 8–8.

Example 8–8: Sample hiprof -lines PC-Sampling Profile

% cc -o libsample.so -shared -g1 -O2 add_vector.c mul_by_scalar.c print_it.c
add_vector.c:
mul_by_scalar.c:
print_it.c:

% cc -o sample -g1 -O2 profsample.c -L. -lsample -lm

% hiprof -lines -numbers -L. -inc libsample.so sample
hiprof: info: instrumenting sample ...

hiprof: info: the LD_LIBRARY_PATH environment variable is not defined
hiprof: info: setting LD_LIBRARY_PATH=.:.
hiprof: info: running instrumented program sample.hiprof ...

Value = 179804.149985

hiprof: info: instrumented program exited with status 0
hiprof: info: displaying profile for sample ...

gprof -b -scaled -all -lines -numbers -L. sample.hiprof ./sample.hiout

Milliseconds per source line, in source order within functions

8–20 Profiling Programs to Improve Performance

Example 8–8: Sample hiprof -lines PC-Sampling Profile (cont.)

procedure (file) line bytes millisec % cum %

add_vector (add_vector.c) 2 52 0.0 0.00 0.00
5 92 1.0 0.30 0.30
6 92 318.4 98.19 98.49
8 4 0.0 0.00 98.49

mul_by_scalar (mul_by_scalar.c) 2 52 0.0 0.00 98.49
5 72 0.0 0.00 98.49
6 64 3.9 1.20 99.70
8 4 0.0 0.00 99.70

main (profsample.c) 9 32 0.0 0.00 99.70
12 128 0.0 0.00 99.70
16 8 0.0 0.00 99.70
19 32 0.0 0.00 99.70
20 36 0.0 0.00 99.70
21 16 0.0 0.00 99.70
22 24 0.0 0.00 99.70
24 4 0.0 0.00 99.70
25 36 0.0 0.00 99.70
26 16 0.0 0.00 99.70
27 28 1.0 0.30 100.00
28 20 0.0 0.00 100.00
29 40 0.0 0.00 100.00
30 4 0.0 0.00 100.00
31 20 0.0 0.00 100.00
32 4 0.0 0.00 100.00
33 20 0.0 0.00 100.00
34 56 0.0 0.00 100.00

Using the cc Command’s -p Option

The cc command’s −p option uses a low-frequency sampling technique to
generate a profile of CPU time that is similar to uprofile’s but
statistically less accurate. However, the -p option does offer the following
advantages:

• Shared libraries can be profiled

• Threads can be individually profiled

• Independent of hardware resources and architecture

• Common to many UNIX operating systems

• On Tru64 UNIX, can profile all the shared libraries used by a program

The program needs to be relinked with the −p option, but it does not need
to be recompiled from source so long as the original compilation used an
acceptable debug level, such as the −g1 cc command option (see Section 8.3).
For example, to profile individual source lines and procedures of a program
(if the program runs for long enough to generate a dense sample array):

% cc -p -o sample -g1 -O2 *.c -lm 1
% setenv PROFFLAGS ’-all -stride 1’ 2

Profiling Programs to Improve Performance 8–21

% ./sample 3
% prof -all -proc -heavy -numbers sample 4

1 The cc command’s -p PC-sample-profiling option creates an
instrumented version of the program, called sample.

2 The -all option specified with the PROFFLAGS environment variable
asks for all shared libraries to be profiled (see Section 8.8.4). This
causes sqrt (from libm.so) to show up in the profile as the second
highest CPU-time user. The variable must be set before the
instrumented program is run.

The -stride 1 option in PROFFLAGS asks for a separate counter to be
used for each instruction, to allow accurate per-source-line profiling
with prof’s -heavy option.

3 Running the instrumented program produces a PC-sampling data file
called mon.out, by default, to be used by the prof tool. For
information about working with multiple data files, see Section 8.9.

4 The prof tool (see prof(1)) uses the PC-sampling data file to produce
the profile. Because this technique works by periodic sampling of the
program counter, you might see different output when you profile the
same program multiple times.

When running prof manually, as in this example, you can filter which
shared libraries to include in the displayed profile; the -all option tells
prof to include all libraries (see Section 8.8.4). The -proc[edures]
option profiles the instructions executed in each procedure and the
calls to procedures. The -heavy option reports the lines that executed
the most instructions. (Also, -lines shows per-line profiles and -asm
shows per-instruction profiles, both grouped by procedure.)

The resulting sample profile is shown in Example 8–9.

Example 8–9: Sample cc -p Profile, Using prof

% cc -p -o sample -g1 -O2 add_vector.c mul_by_scalar.c print_it.c profsample.c -lm
add_vector.c:
mul_by_scalar.c:
print_it.c:
profsample.c:

% setenv PROFFLAGS "-all -stride 1"

% ./sample
Value = 179804.149985

% prof -all -proc -heavy -numbers sample
Profile listing generated Mon Feb 23 15:33:07 1998 with:

prof -all -proc -heavy -numbers sample

--
* -p[rocedures] using pc-sampling; *
* sorted in descending order by total time spent in each procedure; *

8–22 Profiling Programs to Improve Performance

Example 8–9: Sample cc -p Profile, Using prof (cont.)

* unexecuted procedures excluded *
--

Each sample covers 4.00 byte(s) for 0.25% of 0.3955 seconds

%time seconds cum % cum sec procedure (file)

93.1 0.3682 93.1 0.37 add_vector (<sample>:"add_vector.c":1)
5.4 0.0215 98.5 0.39 sqrt (<libm.so>)
1.0 0.0039 99.5 0.39 mul_by_scalar (<sample>:"mul_by_scalar.c":1)
0.5 0.0020 100.0 0.40 main (<sample>:"profsample.c":12)

--
* -h[eavy] using pc-sampling; *
* sorted in descending order by time spent in each source line; *
* unexecuted lines excluded *
--

Each sample covers 4.00 byte(s) for 0.25% of 0.3955 seconds

procedure (file) line bytes millisec % cum %

add_vector (add_vector.c) 6 80 363.3 91.85 91.85
add_vector (add_vector.c) 5 96 4.9 1.23 93.09
mul_by_scalar (mul_by_scalar.c) 6 60 3.9 0.99 94.07
main (profsample.c) 20 36 2.0 0.49 94.57

Using the pixie Profiler

The pixie tool (see pixie(1)) can also profile source-lines and instructions
(including shared libraries), but note that when it displays counts of
cycles, it is actually reporting counts of instructions executed, not
machine cycles. Its −truecycles 2 option can estimate the number of
cycles that would be used if all memory accesses were satisfied by the
cache, but programs can rarely cache enough of their data for this to be
accurate, and only the Alpha EV4 and EV5 families can be fully simulated
in this way. For example:
% cc -o sample -g1 -O2 *.c -lm 1
% pixie -all -proc -heavy -quit 5 sample 2

1 For information about the -g1 and -O2 options, see Section 8.3.
2 The pixie command creates an instrumented version of the program

(sample.pixie) and an instruction-addresses file (sample.Addrs).
Because prof options (-proc, -heavy, -quit) are specified, pixie
automatically runs that instrumented program to create an
instructions-counts file (sample.Counts) and then runs prof to
display the profile, using the .Addrs and .Counts files as input.

The -all option asks for shared libraries to be profiled. Although a
pixie profile can include shared libraries, system libraries (like

Profiling Programs to Improve Performance 8–23

libm.so, which contains the sqrt function) do not include source-line
numbers, so they are not included in the -heavy option’s per-line
profile, and static procedures get proc_at... names created for them.

The -heavy option reports lines that executed the most instructions.
The -proc[edures] option profiles the instructions executed in each
procedure and the calls to procedures. The -quit 5 option truncates
the report after 5 lines for each mode (-heavy, -proc[edures]).

The resulting sample profile is shown in Example 8–10.

Example 8–10: Sample pixie Profile, Using prof

% cc -o sample -g1 -O2 add_vector.c mul_by_scalar.c print_it.c profsample.c -lm
add_vector.c:
mul_by_scalar.c:
print_it.c:
profsample.c:

% pixie -all -proc -heavy -quit 5 sample
pixie: info: instrumenting sample ...

pixie: info: the LD_LIBRARY_PATH environment variable is not defined
pixie: info: setting LD_LIBRARY_PATH=.
pixie: info: running instrumented program sample.pixie ...

Value = 179804.149985

pixie: info: instrumented program exited with status 0
pixie: info: displaying profile for sample ...

Profile listing generated Mon Feb 23 15:33:55 1998 with:
prof -pixie -all -procedures -heavy -quit 5 sample ./sample.Counts

--
* -p[rocedures] using basic-block counts; *
* sorted in descending order by the number of cycles executed in each *
* procedure; unexecuted procedures are excluded *
--

69089823 cycles (0.1727 seconds at 400.00 megahertz)

cycles %cycles cum % seconds cycles bytes procedure (file)
/call /line

60001400 86.85 86.85 0.1500 600014 48 add_vector (add_vector.c)
7100008 10.28 97.12 0.0178 72 ? sqrt (<libm.so>)
1301816 1.88 99.01 0.0033 1301816 27 main (profsample.c)
675020 0.98 99.98 0.0017 337510 36 mul_by_scalar (mul_by_scalar.c)

854 0.00 99.98 0.0000 854 ? __cvtas_t_to_a (<libc.so>)

--
* -p[rocedures] using invocation counts; *
* sorted in descending order by number of calls per procedure; *
* unexecuted procedures are excluded *
--

100504 invocations total

calls %calls cum% bytes procedure (file)

8–24 Profiling Programs to Improve Performance

Example 8–10: Sample pixie Profile, Using prof (cont.)

100000 99.50 99.50 820 sqrt (<libm.so>)
100 0.10 99.60 192 add_vector (add_vector.c)
39 0.04 99.64 164 proc_at_0x3ff815bc1e0 (<libc.so>)
38 0.04 99.67 144 proc_at_0x3ff815bc150 (<libc.so>)
38 0.04 99.71 16 proc_at_0x3ff815bc140 (<libc.so>)

--
* -h[eavy] using basic-block counts; *
* sorted in descending order by the number of cycles executed in each *
* line; unexecuted lines are excluded *
--

procedure (file) line bytes cycles % cum %

add_vector (add_vector.c) 6 92 45000000 65.13 65.13
add_vector (add_vector.c) 5 92 15001200 21.71 86.85
main (profsample.c) 20 36 600003 0.87 87.71
main (profsample.c) 22 24 600000 0.87 88.58
mul_by_scalar (mul_by_scalar.c) 6 64 487500 0.71 89.29

The -procedures profile includes a profile of call counts.

The optional dxprof command provides a graphical display of profiles
collected by either pixie or the cc command’s −p option.

You can also run the prof -pixstats command on the executable file
sample to generate a detailed report on opcode frequencies, interlocks, a
miniprofile, and more. For more information, see prof(1).

8.6 Minimizing System Resource Usage

The following sections describe the techniques and tools to help you
minimize use of system resources by your application.

8.6.1 Techniques

The techniques described in the previous sections can improve an
application’s use of just the CPU. You can make further performance
enhancements by improving the efficiency with which the application uses
the other components of the computer system, such as heap memory, disk
files, network connections, and so on.

As with CPU profiling, the first phase of a resource usage improvement
process is to monitor how much memory, data I/O and disk space, elapsed
time, and so on, is used. The throughput of the computer can then be
increased or tuned in ways that help the program, or the program’s design

Profiling Programs to Improve Performance 8–25

can be tuned to make better use of the computer resources that are
available. For example:

• Reduce the size of the data files that the program reads and writes.

• Use memory-map files instead of regular I/O.

• Allocate memory incrementally on demand instead of allocating at
startup the maximum that could be required.

• Fix heap leaks and do not leave allocated memory unused.
See the System Configuration and Tuning manual for a broader discussion
of analyzing and tuning a Tru64 UNIX system.

8.6.2 Tools and Examples

The following sections discuss using system monitors and the Third Degree
tool to minimize system resource usage.

8.6.2.1 System Monitors

The Tru64 UNIX base system commands ps u, swapon -s, and vmstat 3
can show the currently active processes’ usage of system resources such as
CPU time, physical and virtual memory, swap space, page faults, and so on.
See ps(1), swapon(8), and vmstat(3) for more information.

The optional pview command provides a graphical display of similar
information for the processes that comprise an application. See pview(1).

The time commands provided by the Tru64 UNIX system and command
shells provide an easy way to measure the total elapsed and CPU times for
a program and it descendants. See time(1).

Performance Manager is an optional system performance monitoring and
management tool with a graphical interface. See pmgr(8X).

For more information about related tools, see the System Configuration and
Tuning manual.

8.6.2.2 Heap Memory Analyzers

The Third Degree tool (see third(1)) reports heap memory leaks in a
program, by instrumenting it with the Third Degree memory-usage
checker, running it, and displaying a log of leaks detected at program exit.
For example:
% cc -o sample -g -non_shared *.c -lm 1
% third -display sample 2

1 Full debug information (that is, compiling with the -g option) is
usually best for Third Degree, but if less is available, the reports will

8–26 Profiling Programs to Improve Performance

just be machine-level instead of source-level. The -g1 option is fine if
you are just checking for memory leaks.

2 The third command creates an instrumented version of the program
(sample.third). Because the -display option is specified, third
automatically runs that instrumented program to create a log file
(sample.3log) and then runs more to display the file.

The resulting sample log file is shown in Example 8–11.

Example 8–11: Sample third Log File

cc -o sample -g -non_shared add_vector.c mul_by_scalar.c print_it.c profsample.c -lm
add_vector.c:
mul_by_scalar.c:
print_it.c:
profsample.c:
third -display sample
third: info: instrumenting sample ...

third: info: running instrumented program sample.third ...

Value = 179804.149985

third: info: instrumented program exited with status 0
third: info: error log for sample ...

more ./sample.3log
Third Degree version 5.0
sample.third run by jpx on frumpy.abc.dec.com at Mon Jun 21 16:59:50 1999

////////////////////////////// Options //////////////////////////////

--
--
New blocks in heap after program exit

Leaks - blocks not yet deallocated but apparently not in use:
* A leak is not referenced by static memory, active stack frames,

or unleaked blocks, though it may be referenced by other leaks.
* A leak "not referenced by other leaks" may be the root of a leaked tree.
* A block referenced only by registers, unseen thread stacks, mapped memory,

or uninstrumented library data is falsely reported as a leak. Instrumenting
shared libraries, if any, may reduce the number of such cases.

* Any new leak lost its last reference since the previous heap report, if any.

A total of 800000 bytes in 1 leak were found:

800000 bytes in 1 leak (including 1 not referenced by other leaks) created at:
malloc sample
main sample, profsample.c, line 19
__start sample

Objects - blocks not yet deallocated and apparently still in use:
* An object is referenced by static memory, active stack, or other objects.
* A leaked block may be falsely reported as an object if a pointer to it

remains when a new stack frame or heap block reuses the pointer’s memory.
Using the option to report uninitialized stack and heap may avoid such cases.

Profiling Programs to Improve Performance 8–27

Example 8–11: Sample third Log File (cont.)

* Any new object was allocated since the previous heap report, if any.

A total of 0 bytes in 0 objects were found:

--
--

memory layout at program exit
heap 933888 bytes [0x140012000-0x1400f6000]
stack 819504 bytes [0x11ff37ed0-0x120000000]

sample data 66464 bytes [0x140000000-0x1400103a0]
sample text 802816 bytes [0x120000000-0x1200c4000]

===

By default, Third Degree profiles memory leaks, with little overhead.

If you are interested only in leaks occurring during the normal operation of
the program, not during startup or shutdown, you can specify additional
places to check for previously unreported leaks. For example, the
preshutdown leak report will give this information:

% third -display -after startup -before shutdown sample

Third Degree can also detect various kinds of bugs that may be affecting
the correctness or performance of a program. See Chapter 7 for more
information on debugging and leak detection.

The optional dxheap command provides a graphical display of Third
Degree’s heap and bug reports. See dxheap(1).

The optional mview command provides a graphical analysis of heap usage
over time. This view of a program’s heap can clearly show the presence (if
not the cause) of significant leaks or other undesirable trends such as
wasted memory. See mview(1).

8.7 Verifying the Significance of Test Cases

The following sections discuss the techniques and tools used to verify the
significance of test cases.

8.7.1 Techniques

Most of the profiling techniques described in the previous sections are
effective only if you profile and optimize or tune the parts of the program
that are executed in the scenarios whose performance is important. Careful

8–28 Profiling Programs to Improve Performance

selection of the data used for the profiled test runs is often sufficient, but
you may want a quantitative analysis of which code was and was not
executed in a given set of tests.

8.7.2 Tools and Examples

The pixie command’s −t[estcoverage] option reports lines of code that
were not executed in a given test run. For example:

% cc -o sample -g1 -O2 *.c -lm
% pixie -t sample

Similarly, the −zero option reports the names of procedures that were
never executed. Conversely, pixie’s −p[rocedure], −h[eavy], and −a[sm]
options show which procedures, source lines, and instructions were
executed.

If multiple test runs are needed to build up a typical scenario, the prof
command can be run separately on a set of profile data files. For example:

% cc -o sample -g1 -O2 *.c -lm 1
% pixie -pids sample 2
% ./sample.pixie 3
% ./sample.pixie
% prof -pixie -t sample sample.Counts.* 4

1 For information about the -g1 and -O2 options, see Section 8.3.
2 The pixie command creates an instrumented version of the program

(sample.pixie) and an instruction-addresses file (sample.Addrs).
The -pids option adds the process ID of the instrumented program’s
test run (item 3) to the name of the profiling data file produced, so that
a unique file is retained after each run. For information about working
with multiple data files, see Section 8.9.

3 The instrumented program is run twice (usually with different input
data) to produce two profiling data files named sample.Counts.pid.

4 The -pixie option tells prof to use pixie mode rather than the
default PC-sampling mode. The prof tool uses the sample.Addrs file
and the two sample.Counts.pid files to create the profile from the
two runs.

8.8 Selecting Profiling Information to Display

Depending on the size of the application and the type of profiling you
request, profilers may generate a very large amount of output. However,
you are often only interested in profiling data about a particular portion of
your application. The following sections show how you can select the
appropriate information by using:

• prof options (with the pixie, uprofile, or prof command)

Profiling Programs to Improve Performance 8–29

• gprof options (with the hiprof or gprof command)

Many of the prof and gprof options perform similar functions and have
similar names and syntax. The examples used show prof options. For
complete details, see hiprof(1), pixie(1), uprofile(1), prof(1), and
gprof(1).

See Section 8.11 for information on using monitor routines to control
profiling.

8.8.1 Limiting Profiling Display to Specific Procedures

The prof command’s −only option prints profiling information for only a
specified procedure. You can use this option several times on the command
line. For example:

% pixie -only mul_by_scalar -only add_vector sample

The −exclude option prints profiling information for all procedures except
the specified procedure. You can use this option several times on the
command line. Do not use −only and −exclude together on the same
command line.

Many of the prof profiling options print output as percentages; for
example, the percentage of total execution time attributed to a particular
procedure.

By default, the −only and −exclude options cause prof to calculate
percentages based on all of the procedures in the application even if they
were omitted from the listing. You can change this behavior with the −Only
and −Exclude options. They work the same as −only and −exclude, but
cause prof to calculate percentages based only on those procedures that
appear in the listing.

The −totals option, used with the −procedures and −invocations
listings, prints cumulative statistics for the entire object file instead of for
each procedure in the object.

8.8.2 Displaying Profiling Information for Each Source Line

The prof and gprof -heavy and -lines options display the number of
machine cycles, instructions, page faults, cache misses, and so on for each
source line in your application. The -asm option displays them for each
instruction.

The −heavy option prints an entry for every source line. Entries are sorted
from the line with the heaviest use to the line with the lightest. Because
−heavy often prints a large number of entries, you might want to use one

8–30 Profiling Programs to Improve Performance

of the −quit, −only, or −exclude options to reduce output to a
manageable size (see Section 8.8.3).

The −lines option is similar to −heavy, but sorts the output differently.
This option prints the lines for each procedure in the order that they occur
in the source file. Even lines that never executed are printed. The
procedures themselves are sorted by decreasing total use.

8.8.3 Limiting Profiling Display by Line

The −quit option reduces the amount of profiling output displayed. It
affects the output from the −procedures, −heavy, and −lines profiling
modes.

The −quit option has the following three forms:

−quit N Truncates the listing after N lines.

−quit N% Truncates the listing after the first line that shows less
than N% of the total.

−quit Ncum% Truncates the listing after the line at which the
cumulative total reaches N% of the total.

If you specify several modes on the same command line, −quit affects the
output from each mode. The following command prints only the 20 most
time-consuming procedures and the 20 most time-consuming source lines:

% pixie -procedures -heavy -quit 20 sample

Depending on the profiling mode, the total can refer to the total amount of
time, the total number of executed instructions, or the total number of
invocation counts.

8.8.4 Including Shared Libraries in the Profiling Information

When you are using the hiprof, pixie, third, prof, or gprof
commands, the following options let you selectively display profiling
information for shared libraries used by the program:

• −all displays profiles for all shared libraries (if any) described in the
data file(s) in addition to the executable.

• −incobj lib displays the profile for the named shared library in
addition to the executable.

• −excobj lib does not display the profile for the named shared library,
if -all was specified.

For example, the following command displays profiling information in all
shared libraries except for user1.so:

Profiling Programs to Improve Performance 8–31

% prof -all -excobj user1.so sample

When you are using the cc command’s -p option to obtain a PC-sampling
profile, you can use the PROFFLAGS environment variable to include or
exclude profiling information for shared libraries when the instrumented
program is run (as shown in Example 8–9). The PROFFLAGS variable
accepts the -all, -incobj, and excobj options.

For more information specific to shared libraries, see Section 8.8.4.1.

8.8.4.1 Specifying the Location of Instrumented Shared Libraries

The LD_LIBRARY_PATH environment variable is used to tell the loader
where to find instrumented shared libraries.

By default, when you run hiprof, pixie, or third, the LD_LIBRARY_PATH
variable is automatically set to point to the working directory. You can set
it to point to an arbitrary directory, as in the following C shell example:

% setenv LD_LIBRARY_PATH "my_inst_libraries"

8.9 Merging Profile Data Files

If the program you are profiling is fairly complicated, you may want to run
it several times with different inputs to get an accurate picture of its
profile. Each of the profiling tools lets you merge profile data from different
runs of a program. But first you must override the default behavior
whereby each run of the instrumented program overwrites the existing
data file. Section 8.9.1 explains how to do that. Section 8.9.2 explains how
to merge data files.

8.9.1 Data File-Naming Conventions

The default name of a profiling data file depends on the tool used to create
it, as follows:

Tool Default Name of Profiling Data File

hiprof program.hiout

pixie program.Counts (used with program.Addrs)

uprofile umon.out

cc -p mon.out

cc -pg gmon.out

By default, when you make multiple profiling runs, each run overwrites the
existing data file in the working directory. Each tool has options for

8–32 Profiling Programs to Improve Performance

renaming data files so they can be preserved from run to run. The hiprof,
pixie, and uprofile commands have the following options:

-dirname path Specifies a directory where the data file is to be created.

-pids Adds the process ID of the instrumented program’s run
to the data file name.

For example, the following command sequence produces two data files of
the form sample.pid.hiout in the subdirectory profdata:

% hiprof -dir profdata -pids sample
% ./sample
% ./sample

Then, when using the gprof command, you can specify a wildcard to
include all the profiling data files in the directory:

% gprof -b sample profdata/*

When using the cc -p or cc -pg profiling options, you need to set the
PROFFLAGS environment variable (before running the instrumented
program). For example, the following command sequence would produce
two data files of the form pid.sample in the subdirectory profdata (C
shell example):

% cc -pg -o sample -g1 -O2 *.c -lm
% setenv PROFFLAGS "-dir profdata -pids"
% ./sample
% ./sample

Note that PROFFLAGS affects the profiling behavior of a program during its
execution; it has no effect on the prof and gprof postprocessors. When
you set PROFFLAGS to a null string, no profiling occurs.

For more information about file naming conventions, see the tool reference
pages. See Section 8.10 for the file-naming conventions for multithreaded
programs.

8.9.2 Data File-Merging Techniques

After creating several profiling data files from multiple runs of a program,
you can display profiling information based on an average of these files.

Use the prof or gprof postprocessor, depending on the profiling technique
used, as follows:

Profiling Programs to Improve Performance 8–33

If the Profiling Tool is Use this Post Processor

cc -p, uprofile, or pixie prof

cc -pg, or hiprof gprof

One merge technique is to specify the name of each data file explicitly on
the command line. For example, the following command prints profiling
information from two profile data files generated using hiprof:

% gprof sample sample.1510.hiout sample.1522.hiout

Keeping track of many different profiling data files, however, can be
difficult. Therefore, prof and gprof provide the −merge option to combine
several data files into a single merged file. When prof operates in pixie
mode (prof −pixie), the −merge option combines the .Counts files.
When prof operates in PC-sampling mode, this switch combines the
mon.out or other profile data files.

The following example combines two profile data files into a single data file
named total.out:

% prof -merge total.out sample 1773.sample 1777.sample

At a later time, you can then display profiling data using the combined file,
just as you would use a normal mon.out file. For example:

% prof -procedures sample total.out

The merge process is similar for −pixie mode. You must specify the
executable file’s name, the .Addrs file, and each .Counts file. For example:

% prof -pixie -merge total.Counts a.out a.out.Addrs \
a.out.Counts.1866 a.out.Counts.1868

8.10 Profiling Multithreaded Applications

_______________________ Note _______________________

To analyze a multithreaded appplication for potential logic and
performance problems, you can use Visual Threads, which is
available on the Tru64 UNIX Associated Products installation
media. Visual Threads can be used on DECthreads applications
that use POSIX threads (Pthreads) and on Java applications.
See dxthreads(1).

Profiling multithreaded applications is essentially the same as profiling
nonthreaded applications. However, to profile multithreaded applications,

8–34 Profiling Programs to Improve Performance

you must compile your program with the −pthread or −threads option (as
they are defined by the cc command). Other threads packages are not
supported.

When using hiprof(1), pixie(1), or third(1), specify the -pthread option
to enable the tool’s thread-safe profiling support. The uprofile(1)
command and the cc command’s -p and -pg options need no extra option
to become thread-safe.

The default case for profiling multithreaded applications is to provide one
profile covering all threads. In this case, you get profiling across the entire
process, and you get one output file of profiling data from all threads.

When using hiprof(1) or pixie(1), specify the -threads option for
per-thread data.

When using the cc command’s -p or -pg option, set the PROFFLAGS
environment variable to −threads for per-thread profiling, as shown in the
following C shell example:

setenv PROFFLAGS "-threads"

The uprofile(1) and third(1) tools do not provide per-thread data.

Per-thread profiling data files are given names that include unique thread
numbers, which reflect the sequence in which the threads were created or
in which their profiling was started.

If you use the monitor() or monstartup() calls (see Section 8.11) in a
threaded program, you must first set PROFFLAGS to "-disable_default
-threads", which gives you complete control of profiling the application.

If the application uses monitor() and allocates separate buffers for each
thread profiled, you must first set PROFFLAGS to "-disable_default
-threads" because this setting affects the file-naming conventions that
are used. Without the −threads option, the buffer and address range used
as a result of the first monitor or monstartup call would be applied to
every thread that subsequently requests profiling. In this case, a single
data file that covers all threads being profiled would be created.

Each thread in a process must call the monitor() or monstartup()
routines to initiate profiling for itself.

8.11 Using monitor Routines to Control Profiling

The default behavior for the cc command’s -p and -pg modes on Tru64
UNIX systems is to profile the entire text segment of your program and
place the profiling data in mon.out for prof profiling or in gmon.out for

Profiling Programs to Improve Performance 8–35

gprof profiling. For large programs, you might not need to profile the
entire text segment. The monitor routines provide the ability to profile
portions of your program specified by the lower and upper address
boundaries of a function address range.

The monitor routines are as follows:

monitor Use this routine to gain control of explicit profiling
by turning profiling on and off for a specific text
range. This routine is not supported for gprof
profiling.

monstartup Similar to monitor,except it specifies address
range only and is supported for gprof profiling.

moncontrol Use this routine with monitor and monstartup to
turn PC sampling on or off during program
execution for a specific process or thread.

monitor_signal Use this routine to profile nonterminating
programs, such as daemons.

You can use monitor and monstartup to profile an address range in each
shared library as well as in the static executable.

For more information on these functions, see monitor(3).

By default, profiling begins as soon your program starts to execute. To
prevent this behavior, set the PROFFLAGS environment variable to
−disable_default, as shown in the following C shell example:

setenv PROFFLAGS "-disable_default"

Then, you can use the monitor routines to begin profiling after the first
call to monitor or monstartup.

Example 8–12 demonstrates how to use the monstartup and monitor
routines within a program to begin and end profiling.

Example 8–12: Using monstartup() and monitor()

/* Profile the domath() routine using monstartup.
* This example allocates a buffer for the entire program.
* Compile command: cc -p foo.c -o foo -lm
* Before running the executable, enter the following
* from the command line to disable default profiling support:
* setenv PROFFLAGS -disable_default

8–36 Profiling Programs to Improve Performance

Example 8–12: Using monstartup() and monitor() (cont.)

*/

#include <stdio.h>
#include <sys/syslimits.h>

char dir[PATH_MAX];

extern void __start();
extern unsigned long _etext;

main()
{

int i;
int a = 1;

/* Start profiling between __start (beginning of text)
* and _etext (end of text). The profiling library
* routines will allocate the buffer.
*/

monstartup(__start,&_etext);

for(i=0;i<10;i++)
domath();

/* Stop profiling and write the profiling output file. */

monitor(0);
}
domath()
{

int i;
double d1, d2;

d2 = 3.1415;
for (i=0; i<1000000; i++)

d1 = sqrt(d2)*sqrt(d2);
}

The external name _etext lies just above all the program text. See end(3)
for more information.

When you set the PROFFLAGS environment variable to
−disable_default, you disable default profiling buffer support. You can
allocate buffers within your program, as shown in Example 8–13.

Profiling Programs to Improve Performance 8–37

Example 8–13: Allocating Profiling Buffers Within a Program

/* Profile the domath routine using monitor().
* Compile command: cc -p foo.c -o foo -lm
* Before running the executable, enter the following
* from the command line to disable default profiling support:
* setenv PROFFLAGS -disable_default
*/

#include <sys/types.h>
#include <sys/syslimits.h>

extern char *calloc();

void domath(void);
void nextproc(void);

#define INST_SIZE 4 /* Instruction size on Alpha */
char dir[PATH_MAX];

main()
{

int i;
char *buffer;
size_t bufsize;

/* Allocate one counter for each instruction to
* be sampled. Each counter is an unsigned short.
*/

bufsize = (((char *)nextproc - (char *)domath)/INST_SIZE)
* sizeof(unsigned short);

/* Use calloc() to ensure that the buffer is clean
* before sampling begins.
*/

buffer = calloc(bufsize,1);

/* Start sampling. */
monitor(domath,nextproc,buffer,bufsize,0);
for(i=0;i<10;i++)

domath();

/* Stop sampling and write out profiling buffer. */
monitor(0);

}
void domath(void)
{

int i;

8–38 Profiling Programs to Improve Performance

Example 8–13: Allocating Profiling Buffers Within a Program (cont.)

double d1, d2;

d2 = 3.1415;
for (i=0; i<1000000; i++)

d1 = sqrt(d2)*sqrt(d2);
}

void nextproc(void)
{}

You use the monitor_signal() routine to profile programs that do not
terminate. Declare this routine as a signal handler in your program and
build the program for prof or gprof profiling. While the program is
executing, send a signal from the shell by using the kill command.

When the signal is received, monitor_signal is invoked and writes
profiling data to the data file. If the program receives another signal, the
data file is overwritten.

Example 8–14 shows how to use the monitor_signal routine.

Setting the PROFFLAGS environment variable to -sigdump SIGNAME
provides the same capability without needing any new program code.

Example 8–14: Using monitor_signal() to Profile Nonterminating Programs

/* From the shell, start up the program in background.
* Send a signal to the process, for example: kill -30 <pid>
* Process the [g]mon.out file normally using gprof or prof
*/

#include <signal.h>

extern int monitor_signal();

main()
{

int i;
double d1, d2;

/*
* Declare monitor_signal() as signal handler for SIGUSR1
*/

signal(SIGUSR1,monitor_signal);
d2 = 3.1415;

Profiling Programs to Improve Performance 8–39

Example 8–14: Using monitor_signal() to Profile Nonterminating
Programs (cont.)

/*
* Loop infinitely (absurd example of non-

terminating process)
*/

for (;;)
d1 = sqrt(d2)*sqrt(d2);

}

8–40 Profiling Programs to Improve Performance

9
Using and Developing Atom Tools

Program analysis tools are extremely important for computer architects
and software engineers. Computer architects use them to test and measure
new architectural designs, and software engineers use them to identify
critical pieces of code in programs or to examine how well a branch
prediction or instruction scheduling algorithm is performing. Program
analysis tools are needed for problems ranging from basic block counting to
data cache simulation. Although the tools that accomplish these tasks may
appear quite different, each can be implemented simply and efficiently
through code instrumentation.

Atom provides a flexible code instrumentation interface that is capable of
building a wide variety of tools. Atom separates the common part in all
problems from the problem-specific part by providing machinery for
instrumentation and object-code manipulation, and allowing the tool
designer to specify what points in the program are to be instrumented.
Atom is independent of any compiler and language as it operates on object
modules that make up the complete program.

This chapter discusses the following:

• How to run installed Atom tools and new Atom tools that are still
under development (Section 9.1).

• How to develop specialized Atom tools (Section 9.2).

9.1 Running Atom Tools
The following sections describe how to:

• Use installed Atom tools (Section 9.1.1).

• Test Atom tools under development (Section 9.1.2).

9.1.1 Using Installed Tools

The Tru64 UNIX operating system provides a number of example Atom
tools, listed in Table 9–1, to help you develop your own custom-designed
Atom tools. These tools are distributed in source form to illustrate Atom’s
programming interfaces — they are not intended for production use. Some
of the tools are further described in Section 9.2.

Using and Developing Atom Tools 9–1

Table 9–1: Example Prepackaged Atom Tools

Tool Description

branch Instruments all conditional branches to determine how
many are predicted correctly.

cache Determines the cache miss rate if an application runs in
an 8 K direct-mapped cache.

dtb Determines the number of dtb (data translation buffer)
misses if the application uses 8 KB pages and a fully
associative translation buffer.

dyninst Provides fundamental dynamic counts of instructions,
loads, stores, blocks, and procedures.

inline Identifies potential candidates for inlining.

iprof Prints the number of times each procedure is called as
well as the number of instructions executed by each
procedure.

malloc Records each call to the malloc function and prints a
summary of the application’s allocated memory.

prof Prints the number of instructions executed by each
procedure in pthread programs.

ptrace Prints the name of each procedure as it is called.

trace Generates an address trace, logs the effective address of
every load and store operation, and logs the address of
the start of every basic block as it is executed.

The example tools can be found in the
/usr/lib/complrs/atom/examples directory. Each one has three files:

• An instrumentation file — a C source file that uses Atom’s API to
modify application programs such that additional routines provided by
the tool are invoked at particular times during program execution.

• An analysis file — a C source file that contains the routines that are
invoked by the modified program when it is executed. These analysis
routines can collect the run-time data that the tool reports.

• A description file (toolname.desc) — a text file that tells Atom the
names of the tool’s instrumentation and analysis files, along with any
options that Atom should use when running the tool.

Atom tools that are put into production use or that are delivered to
customers as products usually have .o object modules installed instead of
their proprietary sources. The Tru64 UNIX hiprof(1), pixie(1), and
third(1) commands and the Visual Threads product include Atom tools
that are delivered, installed, and run this way. By convention, their

9–2 Using and Developing Atom Tools

instrumentation, analysis, and description files are in
/usr/lib/complrs/atom/tools.

To run an installed Atom tool or example on an application program, use
the following form of the atom(1) command:

atom application_program −tool toolname [−env environment] [options...]

This form of the atom command requires the −tool option and
accepts the −env option.

The −tool option identifies the installed Atom tool to be used. By
default, Atom searches for installed tools in the
/usr/lib/cmplrs/atom/tools and
/usr/lib/cmplrs/atom/examples directories. You can add
directories to the search path by supplying a colon-separated list of
additional directories to the ATOMTOOLPATH environment variable.

The −env option indicates that an alternative version of the tool is
desired. For example, some Tru64 UNIX tools require -env threads
to run the thread-safe version. The atom(1) command searches for a
toolname.env.desc file instead of the default toolname.desc file.
It prints an error message if a description file for the specified
environment cannot be found.

9.1.2 Testing Tools Under Development

A second form of the atom(1) command is provided to make it easy to
compile and run a new atom tool that you are developing. You just name
the instrumentation and analysis files directly on the command line:

atom application_program instrumentation_file [analysis_file] [options...]

This form of the command requires the instrumentation_file
parameter and accepts the analysis_file parameter, but not the
-tool or -env options.

The instrumentation_file parameter specifies the name of a C
source file or an object module that contains the Atom tool’s
instrumentation procedures. If the instrumentation procedures are in
more than one file, the .o of each file may be linked together into one
file using the ld command with a -r option. By convention, most
instrumentation files have the suffix .inst.c or .inst.o.

If you pass an object module for this parameter, consider compiling
the module with either the -g1 or-g option. If there are errors in your
instrumentation procedures, Atom can issue more complete diagnostic
messages when the instrumentation procedures are thus compiled.

Using and Developing Atom Tools 9–3

The analysis_file parameter specifies the name of a C source file
or an object module that contains the Atom tool’s analysis procedures.
If the analysis routines are in more than one file, the .o of each file
may be linked together into one file using the ld command with a -r
option. Note that you do not need to specify an analysis file if the
instrumentation file does not call analysis procedures to the
application it instruments. By convention, most analysis files have the
suffix .anal.c or .anal.o.

Analysis routines may perform better if they are compiled as a single
compilation unit.

You can have multiple instrumentation and analysis source files. The
following example creates composite instrumentation and analysis objects
from several source files:

% cc -c file1.c file2.c
% cc -c file7.c file8
% ld -r -o tool.inst.o file1.o file2.o
% ld -r -o tool.anal.o file7.o file8.o
% atom hello tool.inst.o tool.anal.o -o hello.atom

_______________________ Note _______________________

You can also write analysis procedures in C++. You must assign
a type of extern "C" to each procedure to allow it to be called
from the application. You must also compile and link the
analysis files before entering the atom command. For example:

% cxx -c tool.a.C
% ld -r -o tool.anal.o tool.a.o -lcxx -lexc
% atom hello tool.inst.c tool.anal.o -o hello.atom

9.1.3 Atom Options

With the exception of the −tool and −env options, both forms of the atom
command accept any of the remaining options described in atom(1). The
following options deserve special mention:

-A1

Causes Atom to optimize calls to analysis routines by reducing the
number of registers that need to be saved and restored. For some
tools, specifying this option increases the performance of the
instrumented application by a factor of two (at the expense of some
increase in application size). The default behavior is for Atom not to
apply these optimizations.

9–4 Using and Developing Atom Tools

-debug

Lets you debug instrumentation routines by causing Atom to transfer
control to the symbolic debugger at the start of the instrumentation
routine. In the following example, the ptrace sample tool is run
under the dbx debugger. The instrumentation is stopped at line 12,
and the procedure name is printed.

% atom hello ptrace.inst.c ptrace.anal.c -o hello.ptrace -debug
dbx version 3.11.8
Type ’help’ for help.
Stopped in InstrumentAll
(dbx) stop at 12
[4] stop at "/udir/test/scribe/atom.user/tools/ptrace.inst.c":12
(dbx) c
[3] [InstrumentAll:12 ,0x12004dea8] if (name == NULL) name = "UNKNOWN";
(dbx) p name
0x2a391 = "__start"

-ladebug

Lets you debug instrumentation routines with the optional ladebug
debugger, if installed on your system. Atom puts the control in
ladebug with a stop at the instrumentation routine. Use ladebug if
the instrumentation routines contain C++ code. See the Ladebug
Debugger Manual for more information.

-ga (-g)

Produces the instrumented program with debugging information. This
options lets you debug analysis routines with a symbolic debugger.
The default -A0 option (not -A1) is recommended with -ga (or -g).
For example:

% atom hello ptrace.inst.c ptrace.anal.c -o hello.ptrace -ga
% dbx hello.ptrace
dbx version 3.11.8
Type ’help’ for help.
(dbx) stop in ProcTrace
[2] stop in ProcTrace
(dbx) r
[2] stopped at [ProcTrace:5 ,0x120005574] fprintf (stderr,"%s\n",name);
(dbx) n
__start

[ProcTrace:6 ,0x120005598] }

-gp

Produces the instrumented program with debugging information. This
option lets you debug application routines with a symbolic debugger.

−pthread
Specifies that thread-safe support is required. This option should be
used when instrumenting threaded applications.

Using and Developing Atom Tools 9–5

-toolargs

Passes arguments to the Atom tool’s instrumentation routine. Atom
passes the arguments in the same way that they are passed to C
programs, using the argc and argv arguments to the main program.
For example:

#include <stdio.h>
unsigned InstrumentAll(int argc, char **argv) {

int i;
for (i = 0; i < argc; i++) {

printf(stderr,"argv[%d]: %s\n",argv[i]);
}

}

The following example shows how Atom passes the −toolargs
arguments:

% atom hello args.inst.c -toolargs="8192 4"
argv[0]: hello
argv[1]: 8192
argv[2]: 4

9.2 Developing Atom Tools

The remainder of this chapter describes how to develop atom tools.

9.2.1 Atom’s View of an Application

Atom views an application as a hierarchy of components:

1. The program, including the executable and all shared libraries.

2. A collection of objects. An object can be either the main executable or
any shared library. An object has its own set of attributes (such as its
name) and consists of a collection of procedures.

3. A collection of procedures, each of which consists of a collection of basic
blocks.

4. A collection of basic blocks, each of which consists of a collection of
instructions.

5. A collection of instructions.

Atom tools insert instrumentation points in an application program at
procedure, basic block, or instruction boundaries. For example, basic block
counting tools instrument the beginning of each basic block, data cache
simulators instrument each load and store instruction, and branch
prediction analyzers instrument each conditional branch instruction.

9–6 Using and Developing Atom Tools

At any instrumentation point, Atom allows a tool to insert a procedure call
to an analysis routine. The tool can specify that the procedure call be made
before or after an object, procedure, basic block, or instruction.

9.2.2 Atom Instrumentation Routine

A tool’s instrumentation routine contains the code that traverses the
application’s objects, procedures, basic blocks, and instructions to locate
instrumentation points; adds calls to analysis procedures; and builds the
instrumented version of an application.

As described in atom_instrumentation_routines(5), an
instrumentation routine can employ one of the following interfaces based
on the needs of the tool:

Instrument (int iargc, char **iargv, Obj *obj)

Atom calls the Instrument routine for each object in the application
program. As a result, an Instrument routine does not need to use
the object navigation routines (such as GetFirstObj). Because Atom
automatically writes each modified object before passing the next to
the Instrument routine, the Instrument routine should never call
the BuildObj, WriteObj, or ReleaseObj routine. When using the
Instrument interface, you can define an InstrumentInit routine to
perform tasks required before Atom calls Instrument for the first
object (such as defining analysis routine prototypes, adding program
level instrumentation calls, and performing global initializations). You
can also define an InstrumentFini routine to perform tasks
required after Atom calls Instrument for the last object (such as
global cleanup).

InstrumentAll (int iargc, char **iargv)

Atom calls the InstrumentAll routine once for the entire application
program, which allows a tool’s instrumentation code itself to
determine how to traverse the application’s objects. With this method,
there are no InstrumentInit or InstrumentFini routines. An
InstrumentAll routine must call the Atom object navigation
routines and use the BuildObj, WriteObj, or ReleaseObj routine to
manage the application’s objects.

Regardless of the instrumentation routine interface, Atom passes the
arguments specified in the -toolargs option to the routine. In the case of
the Instrument interface, Atom also passes a pointer to the current object.

Using and Developing Atom Tools 9–7

9.2.3 Atom Instrumentation Interfaces

Atom provides a comprehensive interface for instrumenting applications.
The interface supports the following types of activities:

• Navigating among a program’s objects, procedures, basic blocks, and
instructions. See Section 9.2.3.1.

• Building, releasing, and writing objects. See Section 9.2.3.2.

• Obtaining information about the different components of an application.
See Section 9.2.3.3.

• Resolving procedure names and call targets. See Section 9.2.3.4.

• Adding calls to analysis routines at desired locations in the program.
See Section 9.2.3.5.

9.2.3.1 Navigating Within a Program

The Atom application navigation routines, described in
atom_application_navigation(5), allow an Atom tool’s instrumentation
routine to find locations in an application at which to add calls to analysis
procedures as follows:

• The GetFirstObj, GetLastObj, GetNextObj, and GetPrevObj
routines navigate among the objects of a program. For nonshared
programs, there is only one object. For call-shared programs, the first
object corresponds to the main program. The remaining objects are each
of its dynamically linked shared libraries.

• The GetFirstObjProc and GetLastObjProc routines return a
pointer to the first or last procedure, respectively, in the specified object.
The GetNextProc and GetPrevProc routines navigate among the
procedures of an object.

• The GetFirstBlock, GetLastBlock, GetNextBlock, and
GetPrevBlock routines navigate among the basic blocks of a procedure.

• The GetFirstInst, GetLastInst, GetNextInst, and GetPrevInst
routines navigate among the instructions of a basic block.

• The GetInstBranchTarget routine returns a pointer to the
instruction that is the target of a specified branch instruction.

• The GetProcObj routine returns a pointer to the object that contains
the specified procedure. Similarly, the GetBlockProc routine returns a
pointer to the procedure that contains the specified basic block, and the
GetInstBlock routine returns a pointer to the basic block that
contains the specified instruction.

9–8 Using and Developing Atom Tools

9.2.3.2 Building Objects

The Atom object management routines, described in
atom_object_management(5), allow an Atom tool’s InstrumentAll
routine to build, write, and release objects.

The BuildObj routine builds the internal data structures Atom requires to
manipulate the object. An InstrumentAll routine must call the BuildObj
routine before traversing the procedures in the object and adding analysis
routine calls to the object. The WriteObj routine writes the instrumented
version the specified object, deallocating the internal data structures the
BuildObj routine previously created. The ReleaseObj routine deallocates
the internal data structures for the given object, but it does not write out
the instrumented version the object.

The IsObjBuilt routine returns a nonzero value if the specified object has
been built with the BuildObj routine but not yet written with the
WriteObj routine or unbuilt with the ReleaseObj routine.

9.2.3.3 Obtaining Information About an Application’s Components

The Atom application query routines, described in
atom_application_query(5), allow an instrumentation routine to obtain
static information about a program and its objects, procedures, basic
blocks, and instructions.

The GetAnalName routine returns the name of the analysis file, as passed
to the atom command. This routine is useful for tools that have a single
instrumentation file and multiple analysis files. For example, multiple
cache simulators might share a single instrumentation file but each have a
different analysis file.

The GetProgInfo routine returns the number of objects in a program.

Table 9–2 lists the routines that provide information about a program’s
objects.

Table 9–2: Atom Object Query Routines

Routine Description

GetObjInfo Returns information about an object’s text, data, and
bss segments; the number of procedures, basic blocks,
or instructions it contains; its object ID; or a Boolean
hint as to whether the given object should be excluded
from instrumentation.

GetObjInstArray Returns an array consisting of the 32-bit instructions
included in the object.

Using and Developing Atom Tools 9–9

Table 9–2: Atom Object Query Routines (cont.)

Routine Description

GetObjInstCount Returns the number of instructions in the array
included in the array returned by the
GetObjInstArray routine.

GetObjName Returns the original file name of the specified object.

GetObjOutName Returns the name of the instrumented object.

The following instrumentation routine, which prints statistics about the
program’s objects, demonstrates the use of Atom object query routines:

1 #include <stdio.h>
2 #include <cmplrs/atom.inst.h>
3 unsigned InstrumentAll(int argc, char **argv)
4 {
5 Obj *o; Proc *p;
6 const unsigned int *textSection;
7 long textStart;
8 for (o = GetFirstObj(); o != NULL; o = GetNextObj(o)) {
9 BuildObj(o);

10 textSection = GetObjInstArray(o);
11 textStart = GetObjInfo(o,ObjTextStartAddress);
12 printf("Object %d\n", GetObjInfo(o,ObjID));
13 printf(" Object name: %s\n", GetObjName(o));
14 printf(" Text segment start: 0x%lx\n", textStart);
15 printf(" Text size: %ld\n", GetObjInfo(o,ObjTextSize));
16 printf(" Second instruction: 0x%x\n", textSection[1]);
17 ReleaseObj(o);
18 }
19 return(0);
20 }

Because the instrumention routine adds no procedures to the executable,
there is no need for an analysis procedure. The following example
demonstrates the process of compiling and instrumenting a program with
this tool. A sample run of the instrumented program prints the object
identifier, the compile-time starting address of the text segment, the size of
the text segment, and the binary for the second instruction. The
disassembler provides a convenient method for finding the corresponding
instructions.

% cc hello.c -o hello
% atom hello info.inst.c -o hello.info
Object 0
Object Name: hello
Start Address: 0x120000000
Text Size: 8192
Second instruction: 0x239f001d

Object 1
Object Name: /usr/shlib/libc.so
Start Address: 0x3ff80080000
Text Size: 901120

9–10 Using and Developing Atom Tools

Second instruction: 0x239f09cb
% dis hello | head -3
0x120000fe0: a77d8010 ldq t12, -32752(gp)
0x120000fe4: 239f001d lda at, 29(zero)
0x120000fe8: 279c0000 ldah at, 0(at)

% dis /ust/shlib/libc.so | head -3
0x3ff800bd9b0: a77d8010 ldq t12,-32752(gp)
0x3ff800bd9b4: 239f09cb lda at,2507(zero)
0x3ff800bd9b8: 279c0000 ldah at, 0(at)

Table 9–3 lists the routines that provide information about an object’s
procedures.

Table 9–3: Atom Procedure Query Routines

Routine Description

GetProcInfo Returns information pertaining to the procedure’s
stack frame, register-saving, register-usage, and
prologue characteristics as defined in the Calling
Standard for Alpha Systems and the Assembly
Language Programmer’s Guide. Such values are
important to tools, like Third Degree, that monitor the
stack for access to uninitialized variables. It can also
return such information about the procedure as the
number of basic blocks or instructions it contains, its
procedure ID, its lowest or highest source line number,
or an indication if its address has been taken.

ProcFileName Returns the name of the source file that contains the
procedure.

ProcName Returns the procedure’s name.

ProcPC Returns the compile-time program counter (PC) of the
first instruction in the procedure.

Table 9–4 lists the routines that provide information about a procedure’s
basic blocks.

Using and Developing Atom Tools 9–11

Table 9–4: Atom Basic Block Query Routines

Routine Description

BlockPC Returns the compile-time program counter (PC) of the
first instruction in the basic block.

GetBlockInfo Returns the number of instructions in the basic block
or the block ID. The block ID is unique to this basic
block within its containing object.

IsBranchTarget Indicates if the block is the target of a branch
instruction.

Table 9–5 lists the routines that provide information about a basic block’s
instructions.

Table 9–5: Atom Instruction Query Routines

Routine Description

GetInstBinary Returns a 32-bit binary representation of the assembly
language instruction.

GetInstClass Returns the instruction class (for instance, floating-point
load or integer store) as defined by the Alpha Architecture
Reference Manual. An Atom tool uses this information to
determine instruction scheduling and dual issue rules.

GetInstInfo Parses the entire 32-bit instruction and obtains all or a
portion of that instruction.

GetInstRegEnum Returns the register type (floating-point or integer) from
an instruction field as returned by the GetInstInfo
routine.

GetInstRegUsage Returns a bit mask with one bit set for each possible
source register and one bit set for each possible
destination register.

InstPC Returns the compile-time program counter (PC) of the
instruction.

InstLineNo Returns the instruction’s source line number.

IsInstType Indicates whether the instruction is of the specified type
(load instruction, store instruction, conditional branch, or
unconditional branch).

9.2.3.4 Resolving Procedure Names and Call Targets

Resolving procedure names and subroutine targets is trivial for nonshared
programs because all procedures are contained in the same object.
However, the target of a subroutine branch in a call-shared program could
be in any object.

9–12 Using and Developing Atom Tools

The Atom application procedure name and call target resolution routines,
described in atom_application_resolvers(5), allow an Atom tool’s
instrumentation routine to find a procedure by name and to find a target
procedure for a call site:

• The ResolveTargetProc routine attempts to resolve the target of a
procedure call.

• The ResolveNamedProc routine returns the procedure identified by
the specified name string.

• The ReResolveProc routine completes a procedure resolution if the
procedure initially resided in an unbuilt object.

• The ResolveObjNamedProc() routine returns the procedure identified
by the specified name string. If the specified object is symbolically
linked, it is checked first for a local version of the procedure. If a local
version does not exist or if the specified object was not symbolically
linked, then all built objects are searched for the procedure.

9.2.3.5 Adding Calls to Analysis Routines to a Program

The Atom application instrumentation routines, described in
atom_application_instrumentation(5), add arbitrary procedure calls
at various points in the application as follows:

• You must use the AddCallProto routine to specify the prototype of
each analysis procedure to be added to the program. In other words, an
AddCallProto call must define the procedural interface for each
analysis procedure used in calls to AddCallProgram, AddCallObj,
AddCallProc, AddCallBlock, and AddCallInst. Atom provides
facilities for passing integers and floating-point numbers, arrays,
branch condition values, effective addresses, cycle counters, as well as
procedure arguments and return values.

• Use the AddCallProgram routine in an instrumentation routine to add
a call to an analysis procedure before a program starts execution or
after it completes execution. Typically such an analysis procedure does
something that applies to the whole program, such as opening an
output file or parsing command-line options.

• Use the AddCallObj routine in an instrumentation routine to add a
call to an analysis procedure before an object starts execution or after it
completes execution. Typically such an analysis procedure does
something that applies to the single object, such as initializing some
data for its procedures.

• Use the AddCallProc routine in an instrumentation routine to add a
call to an analysis procedure before a procedure starts execution or
after it completes execution.

Using and Developing Atom Tools 9–13

• Use the AddCallBlock routine in an instrumentation routine to add a
call to an analysis procedure before a basic block starts execution or
after it completes execution.

• Use the AddCallInst routine in an instrumentation routine to add a
call to an analysis procedure before a given instruction executes or after
it executes.

• Use the ReplaceProcedure routine to replace a procedure in the
instrumented program. For example, the Third Degree Atom tool
replaces memory allocation functions such as malloc and free with its
own versions to allow it to check for invalid memory accesses and
memory leaks.

9.2.4 Atom Description File

An Atom tool’s description file, as described in
atom_description_file(5), identifies and describes the tool’s
instrumentation and analysis files. It can also specify the options to be
used by the cc, ld, and atom commands when it is compiled, linked, and
invoked. Each Atom tool must supply at least one description file.

There are two types of Atom description file:

• A description file providing an environment for generalized use of the
tool. A tool can provide only one general-purpose environment. The
name of this type of description file has the following format:

tool.desc

• A description file providing an environment for use of the tool in specific
contexts, such as in a multithreaded application or in kernel mode. A
tool can provide several special-purpose environments, each of which
has its own description file. The name of this type of description file has
the following format:

tool.environment.desc

The names supplied for the tool and environment portions of these
description file names correspond to values the user specifies to the −tool
and −env options of an atom command when invoking the tool.

An Atom description file is a text file containing a series of tags and values.
See atom_description_file(5) for a complete description of the file’s
syntax.

9.2.5 Writing Analysis Procedures

An instrumented application calls analysis procedures to perform the
specific functions defined by an Atom tool. An analysis procedure can use

9–14 Using and Developing Atom Tools

system calls or library functions, even if the same call or function is
instrumented within the application. The routines used by the analysis
routine and the instrumented application are physically distinct. The
following is a list of library routines that can and cannot be called:

• Standard C Library (libc.a) routines (including system calls) can be
called, except for:

– unwind(3) routines and other exception-handling routines

– pthread_atfork

– tis(3) routines

Also, the standard I/O routines have certain differences in behavior, as
described in Section 9.2.5.1.

• Math Library (libm.a) routines can be called.

• Other routines related to multithreading or exception-handling should
not be called (for example, pthread(3), exc_*, and libmach routines).

• Other routines that assume a particular environment (for example, X
and Motif) may not be useful or correct in an Atom analysis
environment.

Thread Local Storage (TLS) is not supported in analysis routines.

9.2.5.1 Input/Output

The standard I/O library provided to analysis routines does not
automatically flush and close streams when the instrumented program
terminates, so the analysis code must flush or close them explicitly when
all output has been completed. Also, the stdout and stderr streams that
are provided to analysis routines will be closed when the application calls
exit(), so analysis code may need to duplicate one or both of these
streams if they need to be used after application exit (for example, in a
ProgramAfter or ObjAfter analysis routine — see AddCallProto(5)).

For output to stderr (or a duplicate of stderr) to appear immediately,
analysis code should call setbuf(stream,NULL) to make the stream
unbuffered or call fflush after each set of fprintf calls. Similarly,
analysis routines using C++ streams can call cerr.flush().

9.2.5.2 Fork and Exec System Calls

If a process calls a fork function but does not call an exec function, the
process is cloned and the child inherits an exact copy of the parent’s state.
In many cases, this is exactly the behavior that an Atom tool expects. For
example, an instruction-address tracing tool sees references for both the

Using and Developing Atom Tools 9–15

parent and the child, interleaved in the order in which the references
occurred.

In the case of an instruction-profiling tool (for example, the trace tool
referenced in Table 9–1), the file is opened at a ProgramBefore
instrumentation point and, as a result, the output file descriptor is shared
between the parent and the child processes. If the results are printed at a
ProgramAfter instrumentation point, the output file contains the parent’s
data, followed by the child’s data (assuming that the parent process
finishes first).

For tools that count events, the data structures that hold the counts should
be returned to zero in the child process after the fork call because the
events occurred in the parent, not the child. This type of Atom tool can
support correct handling of fork calls by instrumenting the fork library
procedure and calling an analysis procedure with the return value of the
fork routine as an argument. If the analysis procedure is passed a return
value of 0 (zero) in the argument, it knows that it was called from a child
process. It can then reset the counts variable or other data structures so
that they tally statistics only for the child process.

9.2.6 Determining the Instrumented PC from an Analysis Routine

The Atom Xlate routines, described in Xlate(5), allow you to determine
the instrumented program counter (PC) for selected instructions. You can
use these functions to build a table that translates an instruction’s PC in
the instrumented application to its PC in the uninstrumented application.

To enable analysis code to determine the instrumented PC of an instruction
at run time, an Atom tool’s instrumentation routine must select the
instruction and place it into an address translation buffer (XLATE).

An Atom tool’s instrumentation routine creates and fills the address
translation buffer by calling the CreateXlate and AddXlateAddress
routines, respectively. An address translation buffer can only hold
instructions from a single object.

The AddXlateAddress routine adds the specified instruction to an
existing address translation buffer.

An Atom tool’s instrumentation passes an address translation buffer to an
analysis routine by passing it as a parameter of type XLATE *, as indicated
in the analysis routine’s prototype definition in an AddCallProto call.

Another way to determine an instrumented PC is to specify a formal
parameter type of REGV in an analysis routine’s prototype and pass the
REG_IPC value.

9–16 Using and Developing Atom Tools

An Atom tool’s analysis routine uses the following interfaces to access an
address translation buffer passed to it:

• The XlateNum routine returns the number of addresses in the specified
address translation buffer.

• The XlateInstTextStart routine returns the starting address of the
text segment for the instrumented object corresponding to the specified
address translation buffer.

• The XlateInstTextSize routine returns the size of the text segment.

• The XlateLoadShift routine returns the difference between the
run-time addresses in the object corresponding to the specified address
translation buffer and the compile-time addresses.

• The XlateAddr routine returns the instrumented run-time address for
the instruction in the specified position of the specified address
translation buffer. Note that the run-time address for an instruction in
a shared library is not necessarily the same as its compile-time address.

The following example demonstrates the use of the Xlate routines by the
instrumentation and analysis files of a tool that uses the Xlate routines.
This tool prints the target address of every jump instruction. To use it,
enter the following command:

% atom progname xlate.inst.c xlate.anal.c -all

The following source listing (xlate.inst.c) contains the instrumentation
for the xlate tool:

#include <stdlib.h>
#include <stdio.h>
#include <alpha/inst.h>
#include <cmplrs/atom.inst.h>

static void address_add(unsigned long);
static unsigned address_num(void);
static unsigned long * address_paddrs(void);
static void address_free(void);

void InstrumentInit(int iargc, char **iargv)
{

/* Create analysis prototypes. */
AddCallProto("RegisterNumObjs(int)");
AddCallProto("RegisterXlate(int, XLATE *, long[0])");
AddCallProto("JmpLog(long, REGV)");

/* Pass the number of objects to the analysis routines. */
AddCallProgram(ProgramBefore, "RegisterNumObjs",

GetProgInfo(ProgNumberObjects));
}

Instrument(int iargc, char **iargv, Obj *obj)
{

Proc * p;
Block * b;
Inst * i;

Using and Developing Atom Tools 9–17

Xlate * pxlt;
union alpha_instruction bin;
ProcRes pres;
unsigned long pc;
char proto[128];

/*
* Create an XLATE structure for this Obj. We use this to translate
* instrumented jump target addresses to pure jump target addresses.
*/

pxlt = CreateXlate(obj, XLATE_NOSIZE);

for (p = GetFirstObjProc(obj); p; p = GetNextProc(p)) {
for (b = GetFirstBlock(p); b; b = GetNextBlock(b)) {

/*
* If the first instruction in this basic block has had its
* address taken, it’s a potential jump target. Add the
* instruction to the XLATE and keep track of the pure address
* too.
*/
i = GetFirstInst(b);
if (GetInstInfo(i, InstAddrTaken)) {

AddXlateAddress(pxlt, i);
address_add(InstPC(i));

}

for (; i; i = GetNextInst(i)) {
bin.word = GetInstInfo(i, InstBinary);
if (bin.common.opcode == op_jsr &&

bin.j_format.function == jsr_jmp)
{

/*
* This is a jump instruction. Instrument it.
*/

AddCallInst(i, InstBefore, "JmpLog", InstPC(i),
GetInstInfo(i, InstRB));

}
}

}
}

/*
* Re-prototype the RegisterXlate() analysis routine now that we
* know the size of the pure address array.
*/

sprintf(proto, "RegisterXlate(int, XLATE *, long[%d])", address_num());
AddCallProto(proto);

/*
* Pass the XLATE and the pure address array to this object.
*/

AddCallObj(obj, ObjBefore, "RegisterXlate", GetObjInfo(obj, ObjID),
pxlt, address_paddrs());

/*
* Deallocate the pure address array.
*/

address_free();
}

/*
** Maintains a dynamic array of pure addresses.
*/
static unsigned long * pAddrs;

9–18 Using and Developing Atom Tools

static unsigned maxAddrs = 0;
static unsigned nAddrs = 0;

/*
** Add an address to the array.
*/
static void address_add(

unsigned long addr)
{

/*
* If there’s not enough room, expand the array.
*/

if (nAddrs >= maxAddrs) {
maxAddrs = (nAddrs + 100) * 2;
pAddrs = realloc(pAddrs, maxAddrs * sizeof(*pAddrs));
if (!pAddrs) {

fprintf(stderr, "Out of memory\n");
exit(1);

}
}

/*
* Add the address to the array.
*/

pAddrs[nAddrs++] = addr;
}

/*
** Return the number of elments in the address array.
*/
static unsigned address_num(void)
{

return(nAddrs);
}

/*
** Return the array of addresses.
*/
static unsigned long *address_paddrs(void)
{

return(pAddrs);
}

/*
** Deallocate the address array.
*/
static void address_free(void)
{

free(pAddrs);
pAddrs = 0;
maxAddrs = 0;
nAddrs = 0;

}

The following source listing (xlate.anal.c) contains the analysis routine
for the xlate tool:

#include <stdlib.h>
#include <stdio.h>
#include <cmplrs/atom.anal.h>

Using and Developing Atom Tools 9–19

/*
* Each object in the application gets one of the following data
* structures. The XLATE contains the instrumented addresses for
* all possible jump targets in the object. The array contains
* the matching pure addresses.
*/
typedef struct {

XLATE * pXlt;
unsigned long * pAddrsPure;

} ObjXlt_t;

/*
* An array with one ObjXlt_t structure for each object in the
* application.
*/
static ObjXlt_t * pAllXlts;
static unsigned nObj;
static int translate_addr(unsigned long, unsigned long *);
static int translate_addr_obj(ObjXlt_t *, unsigned long,

unsigned long *);

/*
** Called at ProgramBefore. Registers the number of objects in
** this application.
*/
void RegisterNumObjs(

unsigned nobj)
{

/*
* Allocate an array with one element for each object. The
* elements are initialized as each object is loaded.
*/

nObj = nobj;
pAllXlts = calloc(nobj, sizeof(pAllXlts));
if (!pAllXlts) {

fprintf(stderr, "Out of Memory\n");
exit(1);

}
}

/*
** Called at ObjBefore for each object. Registers an XLATE with
** instrumented addresses for all possible jump targets. Also
** passes an array of pure addresses for all possible jump targets.
*/
void RegisterXlate(

unsigned iobj,
XLATE * pxlt,
unsigned long * paddrs_pure)

{
/*
* Initialize this object’s element in the pAllXlts array.
*/

pAllXlts[iobj].pXlt = pxlt;
pAllXlts[iobj].pAddrsPure = paddrs_pure;

}

/*
** Called at InstBefore for each jump instruction. Prints the pure
** target address of the jump.
*/
void JmpLog(

unsigned long pc,
REGV targ)

9–20 Using and Developing Atom Tools

{
unsigned long addr;

printf("0x%lx jumps to - ", pc);
if (translate_addr(targ, &addr))

printf("0x%lx\n", addr);
else

printf("unknown\n");
}

/*
** Attempt to translate the given instrumented address to its pure
** equivalent. Set ’*paddr_pure’ to the pure address and return 1
** on success. Return 0 on failure.
**
** Will always succeed for jump target addresses.
*/
static int translate_addr(

unsigned long addr_inst,
unsigned long * paddr_pure)

{
unsigned long start;
unsigned long size;
unsigned i;

/*
* Find out which object contains this instrumented address.
*/

for (i = 0; i < nObj; i++) {
start = XlateInstTextStart(pAllXlts[i].pXlt);
size = XlateInstTextSize(pAllXlts[i].pXlt);
if (addr_inst >= size && addr_inst < start + size) {

/*
* Found the object, translate the address using that
* object’s data.
*/
return(translate_addr_obj(&pAllXlts[i], addr_inst,

paddr_pure));
}

}

/*
* No object contains this address.
*/

return(0);
}

/*
** Attempt to translate the given instrumented address to its
** pure equivalent using the given object’s translation data.
** Set ’*paddr_pure’ to the pure address and return 1 on success.
** Return 0 on failure.
*/
static int translate_addr_obj(

ObjXlt_t * pObjXlt,
unsigned long addr_inst,
unsigned long * paddr_pure)

{
unsigned num;
unsigned i;

/*
* See if the instrumented address matches any element in the XLATE.
*/

Using and Developing Atom Tools 9–21

num = XlateNum(pObjXlt->pXlt);
for (i = 0; i < num; i++) {

if (XlateAddr(pObjXlt->pXlt, i) == addr_inst) {
/*
* Matches this XLATE element, return the matching pure
* address.
*/
*paddr_pure = pObjXlt->pAddrsPure[i];
return(1);

}
}

/*
* No match found, must not be a possible jump target.
*/

return(0);
}

9.2.7 Sample Tools

This section describes the basic tool building interface by using three
simple examples: procedure tracing, instruction profiling, and data cache
simulation.

9.2.7.1 Procedure Tracing

The ptrace tool prints the names of procedures in the order in which they
are executed. The implementation adds a call to each procedure in the
application. By convention, the instrumentation for the ptrace tool is
placed in the file ptrace.inst.c. For example:

1 #include <stdio.h>
2 #include <cmplrs/atom.inst.h> 1
3
4 unsigned InstrumentAll(int argc, char **argv) 2
5 {
6 Obj *o; Proc *p;
7 AddCallProto("ProTrace(char *)"); 3
8 for (o = GetFirstObj(); o != NULL; o = GetNextObj(o)) { 4
9 if (BuildObj(o) return 1; 5
10 for (p = GetFirstObjProc(o); p != NULL; p = GetNextProc(p)) { 6
11 const char *name = ProcName(p); 7
12 if (name == NULL) name = "UNKNOWN"; 8
13 AddCallProc(p,ProcBefore,"ProcTrace",name); 9
14 }
15 WriteObj(o); 10
16 }
17 return(0);
18 }

1 Includes the definitions for Atom instrumentation routines and data
structures.

2 Defines the InstrumentAll procedure. This instrumentation routine
defines the interface to each analysis procedure and inserts calls to
those procedures at the correct locations in the applications it
instruments.

9–22 Using and Developing Atom Tools

3 Calls the AddCallProto routine to define the ProcTrace analysis
procedure. ProcTrace takes a single argument of type char *.

4 Calls the GetFirstObj and GetNextObj routines to cycle through
each object in the application. If the program was linked nonshared,
there is only a single object. If the program was linked call-shared, it
contains multiple objects: one for the main executable and one for each
dynamically linked shared library. The main program is always the
first object.

5 Builds the first object. Objects must be built before they can be used.
In very rare circumstances, the object cannot be built. The
InstrumentAll routine reports this condition to Atom by returning a
nonzero value.

6 Calls the GetFirstObjProc and GetNextProc routines to step
through each procedure in the application program.

7 For each procedure, calls the ProcName procedure to find the
procedure name. Depending on the amount of symbol table information
that is available in the application, some procedures names, such as
those defined as static, may not be available. (Compiling
applications with the −g1 option provides this level of symbol
information.) In these cases, Atom returns NULL.

8 Converts the NULL procedure name string to UNKNOWN.

9 Calls the AddCallProc routine to add a call to the procedure pointed
to by p. The ProcBefore argument indicates that the analysis
procedure is to be added before all other instructions in the procedure.
The name of the analysis procedure to be called at this instrumentation
point is ProcTrace. The final argument is to be passed to the analysis
procedure. In this case, it is the procedure named obtained on line 11.

10 Writes the instrumented object file to disk.

The instrumentation file added calls to the ProcTrace analysis procedure.
This procedure is defined in the analysis file ptrace.anal.c as shown in
the following example:

1 #include <stdio.h>
2
3 void ProcTrace(char *name)
4 {
5 fprintf(stderr, "%s\n",name);
6 }

The ProcTrace analysis procedure prints, to stderr, the character string
passed to it as an argument. Note that an analysis procedure cannot return
a value.

Using and Developing Atom Tools 9–23

After the instrumentation and analysis files are specified, the tool is
complete. To demonstrate the application of this tool, compile and link the
following application as follows:

#include <stdio.h>
main()
{

printf("Hello world!\n");
}

The following example builds a nonshared executable, applies the ptrace
tool, and runs the instrumented executable. This simple program calls
almost 30 procedures.

% cc -non_shared hello.c -o hello
% atom hello ptrace.inst.c ptrace.anal.c -o hello.ptrace
% hello.ptrace

__start
main
printf
_doprnt
__getmbcurmax
strchr
strlen
memcpy
.
.
.

The following example repeats this process with the application linked
call-shared. The major difference is that the LD_LIBRARY_PATH
environment variable must be set to the current directory because Atom
creates an instrumented version of the libc.so shared library in the local
directory.

% cc hello.c -o hello
% atom hello ptrace.inst.c ptrace.anal.c -o hello.ptrace -all
% setenv LD_LIBRARY_PATH ‘pwd‘
% hello.ptrace

__start
_call_add_gp_range
__exc_add_gp_range
malloc
cartesian_alloc
cartesian_growheap2
__getpagesize
__sbrk
.
.
.

9–24 Using and Developing Atom Tools

The call-shared version of the application calls almost twice the number of
procedures that the nonshared version calls.

Note that only calls in the original application program are instrumented.
Because the call to the ProcTrace analysis procedure did not occur in the
original application, it does not appear in a trace of the instrumented
application procedures. Likewise, the standard library calls that print the
names of each procedure are also not included. If the application and the
analysis program both call the printf function, Atom would link into the
instrumented application two copies of the function. Only the copy in the
application program would be instrumented. Atom also correctly
instruments procedures that have multiple entry points.

9.2.7.2 Profile Tool

The iprof example tool counts the number of instructions a program
executes. It is useful for finding critical sections of code. Each time the
application is executed, iprof creates a file called iprof.out that
contains a profile of the number of instructions that are executed in each
procedure and the number of times each procedure is called.

The most efficient place to compute instruction counts is inside each basic
block. Each time a basic block is executed, a fixed number of instructions
are executed. The following example shows how the iprof tool’s
instrumentation procedure (iprof.inst.c) performs these tasks:

1 #include #include
2 static int n = 0;
3
4 static const char * SafeProcName(Proc *);
5
6 void InstrumentInit(int argc, char **argv)
7{
8 AddCallProto("OpenFile(int)"); 1
9 AddCallProto("ProcedureCalls(int)");
10 AddCallProto("ProcedureCount(int,int)");
11 AddCallProto("ProcedurePrint(int,char*)");
12 AddCallProto("CloseFile()");
13 AddCallProgram(ProgramAfter,"CloseFile"); 2
14 }
15
16 Instrument(int argc, char **argv, Obj *obj)
17 {
18 Proc *p; Block *b;
19
20 for (p = GetFirstObjProc(obj); p != NULL; p = GetNextProc(p)) { 3
21 AddCallProc(p,ProcBefore,"ProcedureCalls",n);
22 for (b = GetFirstBlock(p); b != NULL; b = GetNextBlock(b)) { 4
23 AddCallBlock(b,BlockBefore,"ProcedureCount", 5
24 n,GetBlockInfo(b,BlockNumberInsts));
25 }
26 AddCallObj(obj, ObjAfter,"ProcedurePrint",n,SafeProcName(p)); 6
27 n++; 7
28 }
29 }

Using and Developing Atom Tools 9–25

30
31 void InstrumentFini(void)
32 {
33 AddCallProgram(ProgramBefore,"OpenFile",n); 8
34 }
35
36 static const char *SafeProcName(Proc *p)
37 {
38 const char * name;
39 static char buf[128];
40
41 name = ProcName(p); 9
42 if (name)
43 return(name);
44 sprintf(buf, "proc_at_0x%lx", ProcPC(p));
45 return(buf);
46 }

1 Defines the interface to the analysis procedures.

2 Adds a call to the CloseFile analysis procedure to the end of the
program.

3 Loops through each procedure in the object.

4 Loops through each basic block in the procedure.

5 Adds a call to the ProcedureCount analysis procedure before any of
the instructions in this basic block are executed. The argument types
of the ProcedureCount are defined in the prototype on line 10. The
first argument is a procedure index of type int; the second argument,
also an int, is the number of instructions in the basic block. The
ProcedureCount analysis procedure adds the number of instructions
in the basic block to a per-procedure data structure. Similarly, the
ProcedureCalls analysis procedure increments a procedure’s call
count before each call begins executing the called procedure.

6 Adds a call to the ProcedurePrint analysis procedure to the end of
the program. The ProcedurePrint analysis procedure prints a line
summarizing this procedure’s instruction use and call count.

7 Increments the procedure index.

8 Adds a call to the OpenFile analysis procedure to the beginning of the
program, passing it an int representing the number of procedures in
the application. The OpenFile procedure allocates the per-procedure
data structure that tallies instructions and opens the output file.

9 Determines the procedure name.

The analysis procedures used by the iprof tool are defined in the
iprof.anal.c file as shown in the following example:

1 #include #include #include #include
2 long instrTotal = 0;
3 long *instrPerProc;
4 long *callsPerProc;

9–26 Using and Developing Atom Tools

5
6 FILE *OpenUnique(char *fileName, char *type)
7 {
8 FILE *file;
9 char Name[200];
10
11 if (getenv("ATOMUNIQUE") != NULL)
12 sprintf(Name,"%s.%d",fileName,getpid());
13 else
14 strcpy(Name,fileName);
15
16 file = fopen(Name,type);
17 if (file == NULL)
18 {
19 fprintf(stderr,"Atom: can’t open %s for %s\n",Name, type);
20 exit(1);
21 }
22 return(file);
23 }
24
25 static FILE *file;
26 void OpenFile(int number)
27 {
28 file = OpenUnique("iprof.out","w");
29 fprintf(file,"%30s %15s %15s %12s\n","Procedure","Calls",
30 "Instructions","Percentage");
31 instrPerProc = (long *) calloc(sizeof(long), number); 1
32 callsPerProc = (long *) calloc(sizeof(long), number);
33 if (instrPerProc == NULL || callsPerProc == NULL) {
34 fprintf(stderr,"Malloc failed\n");
35 exit(1);
36 }
37 }
38
39 void ProcedureCalls(int number)
40 {
41 callsPerProc[number]++;
42 }
43
44 void ProcedureCount(int number, int instructions)
45 {
46 instrTotal += instructions;
47 instrPerProc[number] += instructions;
48 }
49
50
51 void ProcedurePrint(int number, char *name)
52 {
53 if (instrPerProc[number] > 0) { 2
54 fprintf(file,"%30s %15ld %15ld %12.3f\n",
55 name, callsPerProc[number], instrPerProc[number],
56 100.0 * instrPerProc[number] / instrTotal);
57 }
58 }
59
60 void CloseFile() 3
61 {
62 fprintf(file,"\n%30s %15s %15ld\n", "Total", "", instrTotal);
63 fclose(file);
64 }

Using and Developing Atom Tools 9–27

1 Allocates the counts data structure. The calloc function zero-fills the
counts data.

2 Filters procedures that are never called.
3 Closes the output file. Tools must explicitly close files that are opened

in the analysis procedures.

After the instrumentation and analysis files are specified, the tool is
complete. To demonstrate the application of this tool, compile and link the
"Hello" application as follows:

#include <stdio.h>
main()
{

printf("Hello world!\n");
}

The following example builds a call-shared executable, applies the iprof
tool, and runs the instrumented executable. In contrast to the ptrace tool
described in Section 9.2.7.1, the iprof tool sends its output to a file
instead of stdout.

% cc hello.c -o hello
% atom hello iprof.inst.c iprof.anal.c -o hello.iprof -all
% setenv LD_LIBRARY_PATH ‘pwd‘
% hello.iprof
Hello world!
% more iprof.out
Procedure Calls Instructions Percentage
__start 1 92 1.487

main 1 15 0.242
.
.
.

printf 1 81 0.926
.
.
.

Total 8750
% unsetenv LD_LIBRARY_PATH

9.2.7.3 Data Cache Simulation Tool

Instruction and data address tracing has been used for many years as a
technique to capture and analyze cache behavior. Unfortunately, current
machine speeds make this increasingly difficult. For example, the Alvinn
SPEC92 benchmark executes 961,082,150 loads, 260,196,942 stores, and

9–28 Using and Developing Atom Tools

73,687,356 basic blocks, for a total of 2,603,010,614 Alpha instructions.
Storing the address of each basic block and the effective address of all the
loads and stores would take in excess of 10 GB and slow down the
application by a factor of over 100.

The cache tool uses on-the-fly simulation to determine the cache miss
rates of an application running in an 8-KB direct-mapped cache. The
following example shows its instrumentation routine:

1 #include <stdio.h>
2 #include <cmplrs/atom.inst.h>
3
4 unsigned InstrumentAll(int argc, char **argv)
5 {
6 Obj *o; Proc *p; Block *b; Inst *i;
7
8 AddCallProto("Reference(VALUE)");
9 AddCallProto("Print()");
10 for (o = GetFirstObj(); o != NULL; o = GetNextObj(o)) {
11 if (BuildObj(o)) return (1);
12 for (p=GetFirstProc(); p != NULL; p = GetNextProc(p)) {
13 for (b = GetFirstBlock(p); b != NULL; b = GetNextBlock(b)) {
14 for (i = GetFirstInst(b); i != NULL; i = GetNextInst(i)) { 1
15 if (IsInstType(i,InstTypeLoad) || IsInstType(i,InstTypeStore)) {
16 AddCallInst(i,InstBefore,"Reference",EffAddrValue); 2
17 }
18 }
19 }
20 }
21 WriteObj(o);
22 }
23 AddCallProgram(ProgramAfter,"Print");
24 return (0);
25 }

1 Examines each instruction in the current basic block.

2 If the instruction is a load or a store, adds a call to the Reference
analysis procedure, passing the effective address of the data reference.

The analysis procedures used by the cache tool are defined in the
cache.anal.c file as shown in the following example:

1 #include <stdio.h>
2 #include <assert.h>
3 #define CACHE_SIZE 8192
4 #define BLOCK_SHIFT 5
5 long tags[CACHE_SIZE >> BLOCK_SHIFT];
6 long references, misses;
7
8 void Reference(long address) {
9 int index = (address & (CACHE_SIZE-1)) >> BLOCK_SHIFT;
10 long tag = address >> BLOCK_SHIFT;
11 if tags[index] != tag) {
12 misses++;
13 tags[index] = tag;
14 }
15 references++;
16 }
17 void Print() {

Using and Developing Atom Tools 9–29

18 FILE *file = fopen("cache.out","w");
19 assert(file != NULL);
20 fprintf(file,"References: %ld\n", references);
21 fprintf(file,"Cache Misses: %ld\n", misses);
22 fprintf(file,"Cache Miss Rate: %f\n", (100.0 * misses) / references);
23 fclose(file);
24 }

After the instrumentation and analysis files are specified, the tool is
complete. To demonstrate the application of this tool, compile and link the
"Hello" application as follows:

#include <stdio.h>
main()
{

printf("Hello world!\n");
}

The following example applies the cache tool to instrument both the
nonshared and call-shared versions of the application:

% cc hello.c -o hello
% atom hello cache.inst.c cache.anal.c -o hello.cache -all
% setenv LD_LIBRARY_PATH ‘pwd‘
% hello.cache
Hello world!
% more cache.out
References: 1091
Cache Misses: 225
Cache Miss Rate: 20.623281
% cc -non_shared hello.c -o hello
% atom hello cache.inst.c cache.anal.c -o hello.cache -all
% hello.cache
Hello world!
% more cache.out
References: 382
Cache Misses: 93
Cache Miss Rate: 24.345550

9–30 Using and Developing Atom Tools

10
Optimizing Techniques

Optimizing an application program can involve modifying the build process,
modifying the source code, or both.

In many instances, optimizing an application program can result in major
improvements in run-time performance. Two preconditions should be met,
however, before you begin measuring the run-time performance of an
application program and analyzing how to improve the performance:

• Check the software on your system to ensure that you are using the
latest versions of the compiler and the operating system to build your
application program. Newer versions of a compiler often perform more
advanced optimizations, and newer versions of the operating system
often operate more efficiently.

• Test your application program to ensure that it runs without errors.
Whether you are porting an application from a 32-bit system to Tru64
UNIX or developing a new application, never attempt to optimize an
application until it has been thoroughly debugged and tested. (If you
are porting an application written in C, use lint with the −Q option or
compile your program using the C compiler’s −check option to identify
possible portability problems that you may need to resolve.)

After you verify that these conditions have been met, you can begin the
optimization process.

The process of optimizing an application can be divided into two separate,
but complementary, activities:

• Tuning your application’s build process so that you use, for example, an
optimal set of preprocessing and compilation optimizations

• Analyzing your application’s source code to ensure that it uses efficient
algorithms and that it does not use programming language constructs
that can degrade performance

The following sections provide details that relate to these two aspects of the
optimization process.

Optimizing Techniques 10–1

10.1 Guidelines to Build an Application Program
Opportunities to improve an application’s run-time performance exist in all
phases of the build process. The following sections identify some of the
major opportunities that exist in the areas of compiling, linking and
loading, preprocessing and postprocessing, and library selection.

10.1.1 Compilation Considerations

Compile your application with the highest optimization level possible, that
is, the level that produces the best performance and the correct results. In
general, applications that conform to language-usage standards should
tolerate the highest optimization levels, and applications that do not
conform to such standards may have to be built at lower optimization
levels. For details, see cc(1) or Chapter 2.

If your application will tolerate it, compile all of the source files together in
a single compilation. Compiling multiple source files increases the amount
of code that the compiler can examine for possible optimizations. This can
have the following effects:

• More procedure inlining

• More complete data flow analysis

• A reduction in the number of external references to be resolved during
linking

To take advantage of these optimizations, use the following compilation
options: -ifo and either −O3 or −O4.

To determine whether the highest level of optimization benefits your
particular program, compare the results of two separate compilations of the
program, with one compilation at the highest level of optimization and the
other compilation at the next lower level of optimization. Some routines
may not tolerate a high level of optimization; such routines will have to be
compiled separately.

Other compilation considerations that can have a significant impact on
run-time performance include the following:

• For C applications with numerous floating-point operations, consider
using the −fp_reorder option if a small difference in the result is
acceptable.

• If your C application uses a lot of char, short, or int data items
within loops, you may be able to use the C compiler’s highest-level
optimization option to improve performance. (The highest-level
optimization option (−O4) implements byte vectorization, among other
optimizations, for Alpha systems.)

10–2 Optimizing Techniques

• For C and Fortran applications whose performance can be characterized
using one or more sample runs, consider using the -feedback option,
as discussed in Section 8.4.2.2. This option can be used in conjunction
with the -om option (which always requires the -non_shared option)
and/or the -ifo option for even better results.

• For C applications that are thoroughly debugged and that do not
generate any exceptions, consider using the −speculate option. When
a program compiled with this option is executed, values associated with
a variety of execution paths are precomputed so that they are
immediately available if they are needed. This "work ahead" operation
uses idle machine cycles, so it has no negative effect on performance.
Performance is usually improved whenever a precomputed value is
used.

The −speculate option can be specified in two forms:

−speculate all
−speculate by_routine

Both options result in exceptions being dismissed: the −speculate
all option dismisses exceptions generated in all compilation units of
the program, and the −speculate by_routine option dismisses only
the exceptions in the compilation unit to which it applies. If speculative
execution results in a significant number of dismissed exceptions,
performance will be degraded. The −speculate all option is more
aggressive and may result in greater performance improvements than
the other option, especially for programs doing floating-point
computations. The −speculate all option cannot be used if any
routine in the program does exception handling; however, the
−speculate by_routine option can be used when exception handling
occurs outside the compilation unit on which it is used. Neither
−speculate option should be used if debugging is being done.

To print a count of the number of dismissed exceptions when the
program does a normal termination, specify the following environment
variable:

% setenv _SPECULATE_ARGS -stats

The statistics feature is not currently available with the −speculate
all option.

Use of the −speculate all and −speculate by_routine options
disables all messages about alignment fixups. To generate alignment
messages for both speculative and nonspeculative alignment fixups,
specify the following environment variable:

% setenv _SPECULATE_ARGS -alignmsg

Optimizing Techniques 10–3

Both options can be specified as follows:

% setenv _SPECULATE_ARGS -stats -alignmsg

• You can use the following compilation options together or individually
to improve run-time performance:

Option Description

−ansi_alias Specifies whether source code observes ANSI C aliasing
rules. ANSI C aliasing rules allow for more aggressive
optimizations.

−ansi_args Specifies whether source code observes ANSI C rules
about arguments. If ANSI C rules are observed, special
argument-cleaning code does not have to be generated.

−fast Turns on the optimizations for the following options for
increased performance:

−ansi_alias
−ansi_args
−assume trusted_short_alignment
−D_FASTMATH
−float
−fp_reorder
−ifo
−D_INLINE_INTRINSICS
−D_INTRINSICS
-intrinsics

−O3
−readonly_strings

−feedback Specifies that the compiler should use the profile
information contained in the specified file when
performing optimizations. For more information, see
Section 8.4.2.2.

−fp_reorder Specifies whether certain code transformations that
affect floating-point operations are allowed.

−G Specifies the maximum byte size of data items in the
small data sections (sbss or sdata).

−inline Specifies whether to perform inline expansion of
functions.

−ifo Provides improved optimization (interfile optimization)
and code generation across file boundaries that would not
be possible if the files were compiled separately.

−O Specifies the level of optimization that is to be achieved
by the compilation.

10–4 Optimizing Techniques

Option Description

−om Performs a variety of code optimizations for programs
compiled with the −non_shared option.

−preempt_module Supports symbol preemption on a module-by-module
basis.

−speculate Enables work (for example, load or computation
operations) to be done in running programs on execution
paths before the paths are taken.

−tune Selects processor-specific instruction tuning for specific
implementations of the Alpha architecture.

−unroll Controls loop unrolling done by the optimizer at levels
−O2 and above.

Using the preceding options may cause a reduction in accuracy and
adherence to standards. See cc(1) for details on these options.

• For C applications, the compilation option in effect for handling
floating-point exceptions can have a significant impact on execution
time as follows:

– Default exception handling (no special compilation option)

With the default exception-handling mode, overflow, divide-by-zero,
and invalid-operation exceptions always signal the SIGFPE
exception handler. Also, any use of an IEEE infinity, an IEEE NaN
(not-a-number), or an IEEE denormalized number will signal the
SIGFPE exception handler. By default, underflows silently produce a
zero result, although the compilers support a separate option that
allows underflows to signal the SIGFPE handler.

The default exception-handling mode is suitable for any portable
program that does not depend on the special characteristics of
particular floating-point formats. The default mode provides the
best exception-handling performance.

– Portable IEEE exception handling (−ieee)

With the portable IEEE exception-handling mode, floating-point
exceptions do not signal unless a special call is made to enable the
fault. This mode correctly produces and handles IEEE infinity,
IEEE NaNs, and IEEE denormalized numbers. This mode also
provides support for most of the nonportable aspects of IEEE
floating point: all status options and trap enables are supported,
except for the inexact exception. (See ieee(3) for information on the
inexact exception feature (−ieee_with_inexact). Using this
feature can slow down floating-point calculations by a factor of 100
or more, and few, if any, programs have a need for its use.)

Optimizing Techniques 10–5

The portable IEEE exception-handling mode is suitable for any
program that depends on the portable aspects of the IEEE
floating-point standard. This mode is usually 10-20 percent slower
than the default mode, depending on the amount of floating-point
computation in the program. In some situations, this mode can
increase execution time by more than a factor of two.

10.1.2 Linking and Loading Considerations

If your application does not use many large libraries, consider linking it
nonshared. This allows the linker to optimize calls into the library, which
decreases your application’s startup time and improves run-time
performance (if calls are made frequently). Nonshared applications,
however, can use more system resources than call-shared applications. If
you are running a large number of applications simultaneously and the
applications have a set of libraries in common (for example, libX11 or
libc), you may increase total system performance by linking them as
call-shared. See Chapter 4 for details.

For applications that use shared libraries, ensure that those libraries can
be quickstarted. Quickstarting is a Tru64 UNIX capability that can greatly
reduce an application’s load time. For many applications, load time is a
significant percentage of the total time that it takes to start and run the
application. If an object cannot be quickstarted, it still runs, but startup
time is slower. See Section 4.7 for details.

10.1.2.1 Using the Postlink Optimizer

You perform postlink optimizations by using the −om option on the cc
command line. This option must be used with the −non_shared option and
must be specified when performing the final link. For example:

% cc -om -non_shared prog.c

The -om option can also benefit from the -feedback option, as discussed
in Section 8.4.2.2.

The postlink optimizer performs the following code optimizations:

• Removal of nop (no operation) instructions, that is, those instructions
that have no effect on machine state.

• Removal of .lita data; that is, that portion of the data section of an
executable image that holds address literals for 64-bit addressing.
Using available options, you can remove unused .lita entries after
optimization and then compress the .lita section.

• Reallocation of common symbols according to a size you determine.

10–6 Optimizing Techniques

When you use the −om option, you get the full range of postlink
optimizations. To specify a specific postlink optimization, use the −WL
compiler option, followed by one of the following options:

-om_compress_lita

This option removes unused .lita entries after optimization, then
compresses the .lita section.

-om_dead_code

This option removes dead code (unreachable options) generated after
optimizations have been applied. The .lita section is not compressed
by this option.

-om_feedback

This option directs the compiler to use the pixie-produced
information stored in the augmented executable by means of the cc
command’s -feedback option and the pixie (or prof) command’s
-update option.

-om_ireorg_feedback,file
This option directs the compiler to use the pixie-produced
information in file.Counts and file.Addrs to reorganize the
instructions to reduce cache thrashing.

-om_no_inst_sched

This option turns off instruction scheduling.

-om_no_align_labels

This option turns off alignment of labels. Normally, the −om option
will align the targets of all branches on quadword boundaries to
improve loop performance.

-om_Gcommon,num
This option sets the size threshold of “common” symbols. Every
“common” symbol whose size is less than or equal to num will be
allocated close together.

For more information, see cc(1).

10.1.3 Preprocessing and Postprocessing Considerations

Preprocessing options and postprocessing (run-time) options that can affect
performance include the following:

Optimizing Techniques 10–7

• Use the Kuck & Associates Preprocessor (KAP) tool to gain extra
optimizations. The preprocessor uses final source code as input and
produces an optimized version of the source code as output.

KAP is especially useful for applications with the following
characteristics on both symmetric multiprocessing systems (SMP) and
uniprocessor systems:

– Programs with a large number of loops or loops with large loop
bounds

– Programs that act on large data sets

– Programs with significant reuse of data

– Programs with a large number of procedure calls

– Programs with a large number of floating-point operations
To take advantage of the parallel processing capabilities of SMP
systems, the KAP preprocessors support automatic and directed
decomposition for C programs. KAP’s automatic decomposition feature
analyzes an existing program to locate loops that are candidates for
parallel execution. Then, it decomposes the loops and inserts all
necessary synchronization points. If more control is desired, the
programmer can manually insert directives to control the
parallelization of individual loops. On Tru64 UNIX systems, KAP uses
DECthreads to implement parallel processing.

For C programs, KAP is invoked with the kapc (which invokes separate
KAP processing) or kcc command (which invokes combined KAP
processing and Compaq C compilation). For information on how to use
KAP on a C program, see the KAP for C for DIGITAL UNIX manual.

KAP is available for Tru64 UNIX systems as a separately orderable
layered product.

• Use the cord utility (−cord cc command option) to improve the
instruction cache behavior for C applications. This utility uses data in a
feedback file from an actual run of your application to improve your
application’s use of the instruction cache. Section 8.4.2.3 shows how to
create a feedback file and use the cord utility. (If you have produced a
feedback file and you are going to compile your program with the
−non_shared option, it is better to use the feedback file with the −om
option than with the −cord option. See Section 10.1.2.1 for details on
the om utility.)

• To improve compiler optimizations, try recompiling your C programs
with a feedback file. The C compilers can make use of data from an
actual run of the program to fine-tune their optimizations. The feedback
information is most useful at the highest two levels of optimization (−03
or −O4). If you are compiling a program with a feedback file and with

10–8 Optimizing Techniques

the −non_shared option, it is better to use the
−prof_use_om_feedback option than the −prof_use_feedback or
−feedback options. (See Section 10.1.2.1 for details on the om utility.)

See Section 8.4.2.2 for information on how to create and use feedback
files for profile-directed optimization.

10.1.4 Library Routine Selection

Library routine options that can affect performance include the following:

• Use the Compaq Extended Math Library (CXML) for applications that
perform numerically intensive operations. CXML is a collection of
mathematical routines that are optimized for Alpha systems — both
SMP systems and uniprocessor systems. The routines in CXML are
organized in the following four libraries:

– BLAS — A library of basic linear algebra subroutines

– LAPACK — A linear algebra package of linear system and
eigensystem problem solvers

– Sparse Linear System Solvers — A library of direct and iterative
sparse solvers

– Signal Processing — A basic set of signal-processing functions,
including one-, two-, and three-dimensional fast Fourier transforms
(FFTs), group FFTs, sine/cosine transforms, convolution functions,
correlation functions, and digital filters

By using CXML, applications that involve numerically intensive
operations may run significantly faster on Tru64 UNIX systems,
especially when used with KAP. CXML routines can be called explicitly
from your program or, in certain cases, from KAP (that is, when KAP
recognizes opportunities to use the CXML routines). You access CXML
by specifying the −lcxml option on the compilation command line.

For details on CXML, see the Compaq Extended Math Library
Reference Guide.

The CXML routines are written in Fortran. For information on calling
Fortran routines from a C program, see the Compaq Fortran (formerly
Digital Fortran) user manual for Tru64 UNIX. (Information about
calling CXML routines from C programs is also provided in the
TechAdvantage C/C++ Getting Started Guide.)

• If your application does not require extended-precision accuracy, you
can use math library routines that are faster but slightly less accurate.
Specifying the −D_FASTMATH option on the compilation command
causes the compiler to use faster floating-point routines at the expense
of three bits of floating-point accuracy. See cc(1) for details.

Optimizing Techniques 10–9

• Consider compiling your C programs with the −D_INTRINSICS and
−D_INLINE_INTRINSICS options; this causes the compiler to inline
calls to certain standard C library routines.

10.2 Application Coding Guidelines

If you are willing to modify your application, use the profiling tools to
determine where your application spends most of its time. Many
applications spend most of their time in a few routines. Concentrate your
efforts on improving the speed of those heavily used routines.

Tru64 UNIX provides several profiling tools that work for programs written
in C and other languages. See Chapter 8, gprof(1), hiprof(1), pixie(1),
prof(1), third(1), uprofile(1), and atom(1) for more details.

After you identify the heavily used portions of your application, consider the
algorithms used by that code. Is it possible to replace a slow algorithm with
a more efficient one? Replacing a slow algorithm with a faster one often
produces a larger performance gain than tweaking an existing algorithm.

When you are satisfied with the efficiency of your algorithms, consider
making code changes to help the compiler optimize the object code that it
generates for your application. High Performance Computing by Kevin
Dowd (O’Reilly & Associates, Inc., ISBN 1-56592-032-5) is a good source of
general information on how to write source code that maximizes
optimization opportunities for compilers.

The following sections identify performance opportunities involving data
types, I/O handling, cache usage and data alignment, and general coding
issues.

10.2.1 Data-Type Considerations

Data-type considerations that can affect performance include the following:

• The smallest unit of efficient access on Alpha systems is 32 bits.
Accessing an 8- or 16-bit scalar can result in a sequence of machine
instructions to access the data. A 32- or 64-bit data item can be
accessed with a single, efficient machine instruction.

If performance is a critical concern, avoid using integer and logical data
types that are less than 32 bits, especially for scalars that are used
frequently. In C programs, consider replacing char and short
declarations with int and long declarations.

• Division of integer quantities is slower than division of floating-point
quantities. If possible, consider replacing such integer operations with
equivalent floating-point operations.

10–10 Optimizing Techniques

Integer division operations are not native to the Alpha processor and
must be emulated in software, so they can be slow. Other non-native
operations include transcendental operations (for example, sine and
cosine) and square root.

10.2.2 Using Direct I/O on AdvFS Files

Direct I/O allows an application to use the file-system features that the
Advanced File System (AdvFS) provides, such as file management, online
backup, and online recovery, while eliminating the overhead of copying user
data into the AdvFS cache. Direct I/O uses Direct Memory Access (DMA)
commands to copy the user data directly between an application’s buffer
and a disk.

Normal file-system I/O maintains file pages in a cache. This allows the I/O
to be completed asynchronously; once the data is in the cache and
scheduled for I/O, the application does not need to wait for the data to be
transferred to disk. In addition, because the data is already in the cache,
subsequent accesses to this page do not need to read the data from disk.
Most applications use normal file-system I/O.

Normal file-system I/O is not suited for applications that access the data on
disk infrequently and manage inter-thread competition themselves. Such
applications can take advantage of the reduced overhead of direct I/O.
However, because data is not cached, access to a given page must be
serialized among competing threads. To do this, direct I/O enforces
synchronous I/O as the default. This means that when the read() routine
returns to the application, the I/O has completed and the data is on disk.
Any subsequent retrieval of that data will also incur an I/O operation to
retrieve the data from disk.

An application can take advantage of asynchronous I/O, but still use the
underlying direct I/O mechanism, by using the aio_read() and
aio_write() system routines. These routines will return to the
application before the data has been transferred to disk, and the
aio_error() routine allows the application to poll for the completion of
the I/O. (The kernel synchronizes the access to file pages so that two
threads cannot concurrently write the same page.)

Threads using direct I/O to access a given file will be able to do so
concurrently, provided that they do not access the same range of pages. For
example, if thread A is writing pages 10 through 19 and thread B is
writing pages 20 through 39, these operations will occur simultaneously.
Continuing this example, if thread B attempts to write pages 15 through 39
in a single direct I/O transfer, it will be forced to wait until thread A
completes its write because their page ranges overlap.

Optimizing Techniques 10–11

When using direct I/O, the best performance occurs when the requested
transfer is aligned on a file page boundary and the transfer size is evenly
divisible into 8-kilobyte pages. Larger transfers are generally more efficient
than smaller ones, although the optimal transfer size depends on the
underlying storage hardware.

______________________ NOTE ______________________

Direct I/O mode and the use of mapped file regions (mmap) are
exclusive operations. You cannot set direct I/O mode on a file
that uses mapped file regions. Mapping a file will also fail if the
file is already open for direct I/O.

Direct I/O and atomic data logging modes are also mutually
exclusive. If a file is open in one of these modes, subsequent
attempts to open the file in the other mode will fail.

You can activate the direct I/O feature for use on an AdvFS file for both AIO
and nonAIO applications. To activate the feature, use the open function in
an application, setting the O_DIRECTIO file access flag. For example:

open ("file", O_DIRECTIO | O_RDWR, 0644)

Direct I/O mode remains in effect until the file is closed by all users.

The fcntl() function with the parameter F_GETCACHEPOLICY can be
used to return the caching policy of a file, either FCACHE or FDIRECTIO
mode. For example:

int fcntlarg = 0;
ret = fcntl(filedescriptor, F_GETCACHEPOLICY, &fcntlarg);
if (ret != -1 && fcntlarg == FDIRECTIO) {
.
.
.

For details on the use of direct I/O and AdvFS, see fcntl(2) and open(2).

10.2.3 Cache Usage and Data Alignment Considerations

Cache usage patterns can have a critical impact on performance:

• If your application has a few heavily used data structures, try to
allocate these data structures on cache line boundaries in the secondary
cache. Doing so can improve the efficiency of your application’s use of
cache. See Appendix A of the Alpha Architecture Reference Manual for
additional information.

• Look for potential data cache collisions between heavily used data
structures. Such collisions occur when the distance between two data

10–12 Optimizing Techniques

structures allocated in memory is equal to the size of the primary
(internal) data cache. If your data structures are small, you can avoid
this by allocating them contiguously in memory. You can use the
uprofile tool to determine the number of cache collisions and their
locations. See Appendix A of the Alpha Architecture Reference Manual
for additional information on data cache collisions.

Data alignment can also affect performance. By default, the C compiler
aligns each data item on its natural boundary; that is, it positions each
data item so that its starting address is an even multiple of the size of the
data type used to declare it. Data not aligned on natural boundaries is
called misaligned data. Misaligned data can slow performance because it
forces the software to make necessary adjustments at run time.

In C programs, misalignment can occur when you type cast a pointer
variable from one data type to a larger data type; for example, type casting
a char pointer (1-byte alignment) to an int pointer (4-byte alignment) and
then dereferencing the new pointer may cause unaligned access. Also in C,
creating packed structures using the #pragma pack directive can cause
unaligned access. (See Chapter 3 for details on the #pragma pack
directive.)

To correct alignment problems in C programs, you can use the −align
option or you can make necessary modifications to the source code. If
instances of misalignment are required by your program for some reason,
use the __unaligned data-type qualifier in any pointer definitions that
involve the misaligned data. When data is accessed through the use of a
pointer declared __unaligned, the compiler generates the additional code
necessary to copy or store the data without generating alignment errors.
(Alignment errors have a much more costly impact on performance than
the additional code that is generated.)

Warning messages identifying misaligned data are not issued during the
compilation of C programs.

During execution of any program, the kernel issues warning messages
(“unaligned access”) for most instances of misaligned data. The messages
include the program counter (PC) value for the address of the instruction
that caused the misalignment.

You can use either of the following two methods to access code that causes
the unaligned access fault:

• By using a debugger to examine the PC value presented in the
"unaligned access" message, you can find the routine name and line
number for the instruction causing the misalignment. (In some cases,
the "unaligned access" message results from a pointer passed by a
calling routine. The return address register (ra) contains the address of

Optimizing Techniques 10–13

the calling routine — if the contents of the register have not been
changed by the called routine.)

• By turning off the -align option on the command line and running
your program in a debugger session, you can examine your program’s
stack and variables at the point where the debugger stops due to the
unaligned access.

For additional information on data alignment, see Appendix A in the Alpha
Architecture Reference Manual. See cc(1) for details on alignment-control
options that you can specify on compilation command lines.

10.2.4 General Coding Considerations

General coding considerations specific to C applications include the
following:

• Use libc functions (for example: strcpy, strlen, strcmp, bcopy,
bzero, memset, memcpy) instead of writing similar routines or your
own loops. These functions are hand coded for efficiency.

• Use the unsigned data type for variables wherever possible because:

– The variable is always greater than or equal to zero, which enables
the compiler to perform optimizations that would not otherwise be
possible.

– The compiler generates fewer instructions for all unsigned divide
operations.

Consider the following example:

int long i;
unsigned long j;
...
return i/2 + j/2;

In the example, i/2 is an expensive expression; however, j/2 is
inexpensive.

The compiler generates three instructions for the signed i/2 operations:

addq $l, l, $28
cmovge $l, $l, $28
sra $28, l, $2

The compiler generates only one instruction for the unsigned j/2
operation:

srl $3, 1, $4

Also, consider using the −unsigned option to treat all char
declarations as unsigned char.

10–14 Optimizing Techniques

• If your application uses large amounts of data for a short period of
time, consider allocating the data dynamically with the malloc
function instead of declaring it statically. When you have finished using
the memory, free it so it can be used for other data structures later in
your program. Using this technique to reduce the total memory usage of
your application can substantially increase the performance of
applications running in an environment in which physical memory is a
scarce resource.

If an application uses the malloc function extensively, you may be able
to improve the application’s performance (processing speed, memory
utilization, or both) by using malloc’s control variables to tune memory
allocation. See malloc(3) for details.

• If your application uses local arrays whose sizes are unknown at
compile time, you can gain a performance advantage by allocating them
with the alloca function, which uses very few instructions and is very
efficient. Storage allocated by the alloca function is automatically
reclaimed when an exit is made from the routine in which the
allocation is made.

The alloca function allocates space on the stack, not the heap, so you
must make sure that the object being allocated does not exhaust all of
the free stack space. If the object does not fit in the stack, a core dump
is issued.

Programs that issue calls to the alloca function should include the
alloca.h header file. If the header file is not included, the program
will execute properly, but it will run much slower.

• Minimize type casting, especially type conversion from integer to
floating point and from a small data type to a larger data type.

• To avoid cache misses, make sure that multidimensional arrays are
traversed in natural storage order; that is, in row major order with the
rightmost subscript varying fastest and striding by 1. Avoid column
major order (which is used by Fortran).

• If your application fits in a 32-bit address space and allocates large
amounts of dynamic memory by allocating structures that contain
many pointers, you may be able to save significant amounts of memory
by using the −xtaso option. To use the option, you must modify your
source code with a C-language pragma that controls pointer size
allocations. See cc(1) and Chapter 2 for details.

• Do not use indirect calls in C programs (that is, calls that use routines
or pointers to functions as arguments). Indirect calls introduce the
possibility of changes to global variables. This effect reduces the
amount of optimization that can be safely performed by the optimizer.

Optimizing Techniques 10–15

• Use functions to return values instead of reference parameters.

• Use do while instead of while or for whenever possible. With
do while, the optimizer does not have to duplicate the loop condition in
order to move code from within the loop to outside the loop.

• Use local variables and avoid global variables. Declare any variable
outside a function as static, unless that variable is referenced by
another source file. Minimizing the use of global variables increases
optimization opportunities for the compiler.

• Use value parameters instead of reference parameters or global
variables. Reference parameters have the same degrading effects as
pointers.

• Write straightforward code. For example, do not use ++ and --
operators within an expression. When you use these operators for their
values instead of their side effects, you often get bad code. For example,
the following coding is not recommended:

while (n--)
{

...
}

The following coding is recommended:

while (n != 0)
{
n--;

...
}

• Avoid taking and passing addresses (that is, & values). Using & values
can create aliases, make the optimizer store variables from registers to
their home storage locations, and significantly reduce optimization
opportunities.

• Avoid creating functions that take a variable number of arguments. A
function with a variable number of arguments causes the optimizer to
unnecessarily save all parameter registers on entry.

• Declare functions as static unless the function is referenced by
another source module. Use of static functions allows the optimizer to
use more efficient calling sequences.

Also, avoid aliases where possible by introducing local variables to store
dereferenced results. (A dereferenced result is the value obtained from a
specified address.) Dereferenced values are affected by indirect operations
and calls, whereas local variables are not; local variables can be kept in

10–16 Optimizing Techniques

registers. Example 10–1 shows how the proper placement of pointers and
the elimination of aliasing enable the compiler to produce better code.

Example 10–1: Pointers and Optimization

Source Code:
int len = 10;
char a[10];

void
zero()
{
char *p;
for (p = a; p != a + len;) *p++ = 0;
}

Consider the use of pointers in Example 10–1. Because the statement
*p++=0 might modify len, the compiler must load it from memory and add
it to the address of a on each pass through the loop, instead of computing
a + len in a register once outside the loop.

Two different methods can be used to increase the efficiency of the code
used in Example 10–1:

• Use subscripts instead of pointers. As shown in the following example,
the use of subscripting in the azero procedure eliminates aliasing; the
compiler keeps the value of len in a register, saving two instructions,
and still uses a pointer to access a efficiently, even though a pointer is
not specified in the source code:

Source Code:
char a[10];
int len;
void
azero()

{
int i;
for (i = 0; i != len; i++) a[i] = 0;
}

• Use local variables. As shown in the following example, specifying len
as a local variable or formal argument ensures that aliasing cannot
take place and permits the compiler to place len in a register:

Source Code:
char a[10];
void
lpzero(len)

Optimizing Techniques 10–17

int len;
{
char *p;
for (p = a; p != a + len;) *p++ = 0;
}

10–18 Optimizing Techniques

11
Handling Exception Conditions

An exception is a special condition that occurs during the currently
executing thread and requires the execution of code that acknowledges the
condition and performs some appropriate actions. This code is known as an
exception handler.

A termination handler consists of code that executes when the flow of
control leaves a specific body of code. Termination handlers are useful for
cleaning up the context established by the exiting body of code, performing
such tasks as freeing memory buffers or releasing locks.

This chapter covers the following topics:

• Overview of exception handling (Section 11.1)

• Raising an exception from a user program (Section 11.2)

• Writing a structured exception handler (Section 11.3)

• Writing a termination handler (Section 11.4)

11.1 Exception-Handling Overview

On Tru64 UNIX systems, hardware traps exceptions, as described in the
Alpha Architecture Reference Manual, and delivers them to the operating
system kernel. The kernel converts certain hardware exceptions, such as
bad memory accesses and arithmetic traps, to signals. A process can enable
the delivery of any signal and establish a signal handler to deal with the
consequences of the signal processwide.

The Calling Standard for Alpha Systems defines special structures and
mechanisms that enable the processing of exceptional events on Tru64
UNIX systems in a more precise and organized way. Among the activities
that the standard defines are the following:

• The manner in which exception handlers are established

• The way in which exceptions are raised

• How the exception system searches for and invokes a handler

• How a handler returns to the exception system

• The manner in which the exception system traverses the stack and
maintains procedure context

Handling Exception Conditions 11–1

The run-time exception dispatcher that supports the structured
exception-handling capabilities of the Tru64 UNIX C compiler is an example
of the type of frame-based exception handler described in the standard.
(See Section 11.3 for a discussion of structured exception handling.)

The following sections briefly describe the Tru64 UNIX components that
support the exception-handling mechanism defined in the Calling Standard
for Alpha Systems.

11.1.1 C Compiler Syntax

Syntax provided by the Tru64 UNIX C compiler allows you to protect
regions of code against user- or system-defined exception conditions. This
mechanism, known as structured exception handling, allows you to define
exception handlers and termination handlers and to indicate the regions of
code that they protect.

The c_excpt.h header file defines the symbols and functions that user
exception processing code can use to obtain the current exception code and
other information describing the exception.

11.1.2 libexc Library Routines

The exception support library, /usr/ccs/lib/cmplrs/cc/libexc.a,
provides routines with the following capabilities:

• The ability to raise user-defined exceptions or convert UNIX signals to
exceptions. These routines include:

exc_raise_status_exception
exc_raise_signal_exception
exc_raise_exception
exc_exception_dispatcher
exc_dispatch_exception

These exception management routines also provide the mechanism to
dispatch exceptions to the appropriate handlers. In the case of C
language structured exception handling, described in Section 11.3, the
C-specific handler invokes a routine containing user-supplied code to
determine what action to take. The user-supplied code can either handle
the exception or return for some other procedure activation to handle it.

• The ability to perform virtual and actual unwinding of levels of
procedure activations from the stack and continuing execution in a
handler or other user code. These routines include:

unwind

11–2 Handling Exception Conditions

exc_virtual_unwind
RtlVirtualUnwind
exc_resume
exc_longjmp
exc_continue
exc_unwind
RtlUnwindRfp

Some of the unwind routines also support invoking handlers as they
unwind so that the language or user can clean up items at particular
procedure activations.

• The ability to access procedure-specific information and map any
address within a routine to the corresponding procedure information.
This information includes enough data to cause an unwind or determine
whether a routine handles an exception. These routines include:

exc_add_pc_range_table
exc_remove_pc_range_table
exc_lookup_function_table_address
exc_lookup_function_entry
find_rpd
exc_add_gp_range
exc_remove_gp_range
exc_lookup_gp

The C language structured exception handler calls routines in the last two
categories to allow user code to fix up an exception and resume execution,
and to locate and dispatch to a user-defined exception handler. Section 11.3
describes this process. For detailed information on any routine provided in
/usr/ccs/lib/cmplrs/cc/libexc.a, see the routine’s reference page.

11.1.3 Header Files that Support Exception Handling

Various header files define the structures that support the
exception-handling system and the manipulation of procedure context.
Table 11–1 describes these files.

Handling Exception Conditions 11–3

Table 11–1: Header Files that Support Exception Handling

File Description

excpt.h Defines the exception code structure and defines a number of
Tru64 UNIX exception codes; also defines the system exception
and context records and associated flags and symbolic constants,
the run-time procedure type, and prototypes for the functions
provided in libexc.a. See excpt(4) for more information.

c_excpt.h Defines symbols used by C language structured exception
handlers and termination handlers; also defines the exception
information structure and functions that return the exception
code, other exception information, and information concerning
the state in which a termination handler is called. See
c_excpt(4) for more information.

machine/fpu.h Defines prototypes for the ieee_set_fp_control and
ieee_get_fp_control routines, which enable the delivery of
IEEE floating-point exceptions and retrieve information that
records their occurrence; also defines structures and constants
that support these routines. See ieee(3) for more information.

pdsc.h Defines structures, such as the run-time procedure descriptor
and code-range descriptor, that provide run-time contexts for
the procedure types and flow-control mechanisms described in
the Calling Standard for Alpha Systems. See pdsc(4) for more
information.

11.2 Raising an Exception from a User Program

A user program typically raises an exception in either of two ways:

• A program can explicitly initiate an application-specific exception by
calling the exc_raise_exception or
exc_raise_status_exception function. These functions allow the
calling procedure to specify information that describes the exception.

• A program can install a special signal handler,
exc_raise_signal_exception, that converts a POSIX signal to an
exception. The exc_raise_signal_exception function invokes the
exception dispatcher to search the run-time stack for any exception
handlers that have been established in the current or previous stack
frames. In this case, the code reported to the handler has EXC_SIGNAL
in its facility field and the signal value in its code field. (See excpt(4)
and the excpt.h header file for a dissection of the code data structure.)

_____________________ Note _____________________

The exact exception code for arithmetic and
software-generated exceptions, defined in the signal.h

11–4 Handling Exception Conditions

header file, is passed to a signal handler in the code
argument. The special signal handler
exc_raise_signal_exception moves this code to
ExceptionRecord.ExceptionInfo[0] before invoking the
exception dispatcher.

The examples in Section 11.3 show how to explicitly raise an exception and
convert a signal to an exception.

11.3 Writing a Structured Exception Handler
The structured exception-handling capabilities provided by the Tru64
UNIX C compiler allow you to deal with the possibility that a certain
exception condition may occur in a certain code sequence. The syntax
establishing a structured exception handler is as follows:

try {
try-body

}
except (exception-filter) {

exception-handler

}

The try-body is a statement or block of statements that the exception
handler protects. If an exception occurs while the try body is executing, the
C-specific run-time handler evaluates the exception-filter to determine
whether to transfer control to the associated exception-handler,
continue searching for a handler in outer-level try body, or continue normal
execution from the point at which the exception occurred.

The exception-filter is an expression associated with the exception
handler that guards a given try body. It can be a simple expression or it
can invoke a function that evaluates the exception. An exception filter must
evaluate to one of the following integral values in order for the exception
dispatcher to complete its servicing of the exception:

• < 0

The exception dispatcher dismisses the exception and resumes the
thread of execution that was originally disrupted by the exception. If
the exception is noncontinuable, the dispatcher raises a
STATUS_NONCONTINUABLE_EXCEPTION exception.

• 0

The exception dispatcher continues to search for a handler, first in any
try...except blocks in which the current handler might be nested

Handling Exception Conditions 11–5

and then in the try...except blocks defined in the procedure frame
preceding the current frame on the run-time stack. If a filter chooses
not to handle an exception, it typically returns this value.

• > 0

The exception dispatcher transfers control to the exception handler, and
execution continues in the frame on the run-time stack in which the
handler is found. This process, known as “handling the exception,”
unwinds all procedure frames below the current frame and causes any
termination handlers established within those frames to execute.

Two intrinsic functions are allowed within the exception filter to access
information about the exception being filtered:

long exception_code ();
Exception_info_ptr exception_info ();

The exception_code function returns the exception code. The
exception_info function returns a pointer to an EXCEPTION_POINTERS
structure. Using this pointer, you can access the machine state (for
instance, the system exception and context records) at the time of the
exception. See excpt(4) and c_excpt(4) for more information.

You can use the exception_code function within an exception filter or
exception handler. However, you can use the exception_info function
only within an exception filter. If you need to use the information returned
by the exception_info function within the exception handler, you should
invoke the function within the filter and store the information locally. If
you need to refer to exception structures outside of the filter, you must copy
them as well because their storage is valid only during the execution of the
filter.

When an exception occurs, the exception dispatcher virtually unwinds the
run-time stack until it reaches a frame for which a handler has been
established. The dispatcher initially searches for an exception handler in
the stack frame that was current when the exception occurred.

If the handler is not in this stack frame, the dispatcher virtually unwinds
the stack (in its own context), leaving the current stack frame and any
intervening stack frames intact until it reaches a frame that has
established an exception handler. It then executes the exception filter
associated with that handler.

During this phase of exception dispatching, the dispatcher has only
virtually unwound the run-time stack; all call frames that may have
existed on the stack at the time of the exception are still there. If it cannot
find an exception handler or if all handlers reraise the exception, the
exception dispatcher invokes the system last-chance handler. (See

11–6 Handling Exception Conditions

exc_set_last_chance_handler(3) for instructions on how to set up a
last-chance handler.)

By treating the exception filter as if it were a Pascal-style nested
procedure, exception-handling code evaluates the filter expression within
the scope of the procedure that includes the try...except block. This
allows the filter expression to access the local variables of the procedure
containing the filter, even though the stack has not actually been unwound
to the stack frame of the procedure that contains the filter.

Prior to executing an exception handler (for instance, if an exception filter
returns EXCEPTION_EXECUTE_HANDLER), the exception dispatcher
performs a real unwind of the run-time stack, executing any termination
handlers established for try...finally blocks that terminated as a
result of the transfer of control to the exception handler. Only then does the
dispatcher call the exception handler.

The exception-handler is a compound statement that deals with the
exception condition. It executes within the scope of the procedure that
includes the try...except construct and can access its local variables. A
handler can respond to an exception in several different ways, depending
on the nature of the exception. For instance, it can log an error or correct
the circumstances that led to the exception being raised.

Either an exception filter or exception handler can take steps to modify or
augment the exception information it has obtained and ask the C language
exception dispatcher to deliver the new information to exception code
established in some outer try body or prior call frame. This activity is more
straightforward from within the exception filter, which operates with the
frames of the latest executing procedures — and the exception context —
still intact on the run-time stack. The filter completes its processing by
returning a 0 to the dispatcher to request the dispatcher to continue its
search for the next handler.

For an exception handler to trigger a previously established handler, it
must raise another exception, from its own context, that the previously
established handler is equipped to handle.

Example 11–1 shows a simple exception handler established to handle a
segmentation violation signal (SIGSEGV) that has been converted to an
exception by the exc_raise_signal_exception signal handler.

Example 11–1: Handling a SIGSEGV Signal as a Structured Exception

#include <signal.h>
#include <excpt.h>
#include <machine/fpu.h>
#include <errno.h>

Handling Exception Conditions 11–7

Example 11–1: Handling a SIGSEGV Signal as a Structured Exception
(cont.)

main ()
{
Exception_info_ptr except_info;
PCONTEXT context_record;
system_exrec_type *exception_record;
long code;
sigset_t newmask, oldmask;
struct sigaction act, oldact;
char *x=0;
/*

Set up things so that SIGSEGV signals are delivered. Set
exc_raise_signal_exception as the SIGSEGV signal handler
in sigaction.

*/
act.sa_handler = exc_raise_signal_exception;
sigemptyset(&act.sa_mask);
act.sa_flags = 0;
if (sigaction(SIGSEGV, &act, &oldact) < 0)

perror("sigaction:");
/*

If a segmentation violation occurs within the following try
block, the run-time exception dispatcher calls the exception
filter associated with the except statement to determine
whether to call the exception handler to handle the SIGSEGV
signal exception.

*/
try {

*x=55;
}

*
The exception filter tests the exception code against
SIGSEGV. If it tests true, the filter returns 1 to the
dispatcher, which then executes the handler; if it tests
false, the filter returns -1 to the dispatcher, which
continues its search for a handler in the previous run-time
stack frames. Eventually the last-chance handler executes.
Note: Normally the printf in the filter would be replaced
with a call to a routine that logged the unexpected signal.

*/
except(exception_code() == EXC_VALUE(EXC_SIGNAL,SIGSEGV) ? 1 :
(printf("unexpected signal exception code 0x%lx\n",

exception_code()), 0))
{

printf("segmentation violation reported: handler\n");
exit(0);

}
printf("okay\n");
exit(1);

}

The following is a sample run of this program:

% cc segfault_ex.c -lexc
% a.out
segmentation violation reported in handler

11–8 Handling Exception Conditions

Example 11–2 is similar to Example 11–1 insofar as it also demonstrates a
way of handling a signal exception, in this case, a SIGFPE. This example
further shows how an IEEE floating-point exception, floating
divide-by-zero, must be enabled by a call to ieee_set_fp_control(), and
how the handler obtains more detailed information on the exception by
reading the system exception record.

Example 11–2: Handling an IEEE Floating-Point SIGFPE as a Structured
Exception

#include <signal.h>
#include <excpt.h>
#include <machine/fpu.h>
#include <errno.h>

main ()
{
Exception_info_ptr except_info;
PCONTEXT context_record;
system_exrec_type exception_record;
long code;
sigset_t newmask, oldmask;
struct sigaction act, oldact;
unsigned long float_traps=IEEE_TRAP_ENABLE_DZE, trap_mask;
int fpsigstate;
double temperature=75.2, divisor=0.0, quot, return_val;

/*
Set up things so that IEEE DZO traps are reported and that
SIGFPE signals are delivered. Set exc_raise_signal_exception
as the SIGFPE signal handler.

*/
act.sa_handler = exc_raise_signal_exception;
sigemptyset(&act.sa_mask);
act.sa_flags = 0;
if (sigaction(SIGFPE, &act, &oldact) < 0)

perror("sigaction:");
ieee_set_fp_control(float_traps);

/*
If a floating divide-by-zero FPE occurs within the following
try block, the run-time exception dispatcher calls the
exception filter associated with the except statement to
determine whether the SIGFPE signal exception is to be
handled by the exception handler.

*/

try {
printf("quot = IEEE %.2f / %.2f\n",temperature,divisor);
quot = temperature / divisor;

}
/*

The exception filter saves the exception code and tests it
against SIGFPE. If it tests true, the filter obtains the
exception information, copies the exception record structure,
and returns 1 to the dispatcher which then executes the hand-
ler. If the filter’s test of the code is false, the filter
returns 0 to the handler, which continues its search for a
handler in previous run-time frames. Eventually the last-chance
handler executes. Note: Normally the filter printf is replaced

Handling Exception Conditions 11–9

Example 11–2: Handling an IEEE Floating-Point SIGFPE as a Structured
Exception (cont.)

with a call to a routine that logged the unexpected signal.
*/
except((code=exception_code()) == EXC_VALUE(EXC_SIGNAL,SIGFPE) ?

(except_info = exception_info(),
exception_record = *(except_info->ExceptionRecord), 1) :

(printf("unexpected signal exception code 0x%lx\n",
exception_code()), 0))

/*
The exception handler follows and prints out the signal code,
which has the following format:

0x 8 0ffe 0003
| | | |
hex SIGFPE EXC_OSF facility EXC_SIGNAL

*/
{ printf("Arithmetic error\n");

printf("exception_code() returns 0x%lx\n", code);
printf("EXC_VALUE macro in excpt.h generates 0x%lx\n",

EXC_VALUE(EXC_SIGNAL, SIGFPE));
printf("Signal code in the exception record is 0x%lx\n",

exception_record.ExceptionCode);
/*

To find out what type of SIGFPE this is, look at the first
optional parameter in the exception record. Verify that it is
FPE_FLTDIV_FAULT).

*/
printf("No. of parameters is %u\n",

exception_record.NumberParameters);
printf("SIGFPE type is 0x%lx\n",

exception_record.ExceptionInformation[0]);
/*

Set return value to IEEE_PLUS_INFINITY and return.
*/

if (exception_record.ExceptionInformation[0] ==
FPE_FLTDIV_FAULT)

{
((long)&return_val) = IEEE_PLUS_INFINITY;
printf("Returning 0x%f to caller\n", return_val);
return(0);

}
/*

If this is a different kind of SIGFPE, return gracelessly.
*/

else
return(-1);

}
/*

We get here only if no exception occurred in the try block.
*/

printf("okay: %d\n", quot);
exit(1);

}

The following is a sample run of this program:

11–10 Handling Exception Conditions

% % cc sigfpe_ex.c -lexc
% a.out
quot = IEEE 75.20 / 0.00
Arithmetic error
exception_code() returns 0x80ffe0003
The EXC_VALUE macro in excpt.h generates 0x80ffe0003
The signal code in the exception record is 0x80ffe0003
No. of parameters is 1
SIGFPE type is 0x09
Returning 0xINF to caller

A procedure (or group of interrelated procedures) can contain any number
of try...except constructs, and can nest these constructs. If an exception
occurs within the try...except block, the system invokes the exception
handler associated with that block.

Example 11–3 demonstrates the behavior of multiple try...except
blocks by defining two private exception codes and raising either of these
two exceptions within the innermost try block.

Example 11–3: Multiple Structured Exception Handlers

#include <excpt.h>
#include <strings.h>
#include <stdio.h>
#define EXC_NOTWIDGET EXC_VALUE(EXC_C_USER, 1)
#define EXC_NOTDECWIDGET EXC_VALUE(EXC_C_USER, 2)
void getwidgetbyname();
/*

main() sets up an exception handler to field the EXC_NOTWIDGET
exception and then calls getwidgetbyname().

*/
main(argc, argv)

int argc;
char *argv[];

{
char *widget[20];
long code;

try {
if (argc > 1)

strcpy(widget, argv[1]);
else

{
printf("Enter widget name: ");
gets(widget);
}

getwidgetbyname(widget);
}

except((code=exception_code()) == EXC_NOTWIDGET)
{

Handling Exception Conditions 11–11

Example 11–3: Multiple Structured Exception Handlers (cont.)

printf("Exception 0x%lx: %s is not a widget\n",
code, widget);

exit(0);
}

}
/*

getwidgetbyname() sets up an exception handler to field the
EXC_NOTDECWIDGET exception. Depending upon the data it is
passed, its try body calls exc_raise_status_exception() to
generate either of the user-defined exceptions.

*/
void
getwidgetbyname(char* widgetname[20])
{
long code;

try {
if (strcmp(widgetname, "foo") == 0)

exc_raise_status_exception(EXC_NOTDECWIDGET);
if (strcmp(widgetname, "bar") == 0)

exc_raise_status_exception(EXC_NOTWIDGET);
}

/*
The exception filter tests the exception code against
EXC_NOTDECWIDGET. If it tests true, the filter returns
1 to the dispatcher; if it tests false, the filter returns
-1 to the dispatcher, which continues its search for a
handler in the previous run-time stack frames. When the
generated exception is EXC_NOTWIDGET, the dispatcher finds
its handler in main()’s frame.

*/
except((code=exception_code()) == EXC_NOTDECWIDGET)
{

printf("Exception 0x%lx: %s is not a Compaq-supplied
widget\n",
code, widgetname);

exit(0);
}
printf("widget name okay\n");

}

The following is a sample run of this program:

% cc raise_ex.c -lexc
% a.out
Enter widget name: foo
Exception 0x20ffe009: foo is not a Compaq-supplied widget

11–12 Handling Exception Conditions

% a.out
Enter widget name: bar
Exception 0x10ffe009: bar is not a widget

11.4 Writing a Termination Handler

The cc compiler allows you to ensure that a specified block of termination
code is executed whenever control is passed from a guarded body of code.
The termination code is executed regardless of how the flow of control
leaves the guarded code. For example, a termination handler can guarantee
that cleanup tasks are performed even if an exception or some other error
occurs while the guarded body of code is executing.

The syntax for a termination handler is as follows:

try {
try-body

}
finally {

termination-handler

}

The try-body is the code, expressed as a compound statement, that the
termination handler protects. The try body can be a block of statements or
a set of nested blocks. It can include the following statement, which causes
an immediate exit from the block and execution of its termination handler:

leave;

_______________________ Note _______________________

The longjmp() routine for Tru64 UNIX does not use an unwind
operation. Therefore, in the presence of frame-based exception
handling, do not use a longjmp() from a try-body or
termination-handler. Rather, use an exc_longjmp(), which
is implemented through an unwind operation.

The termination-handler is a compound statement that executes when
the flow of control leaves the guarded try body, regardless of whether the
try body terminated normally or abnormally. The guarded body is
considered to have terminated normally when the last statement in the
block is executed (that is, when the body’s closing “}” is reached). Using the
leave statement also causes a normal termination. The guarded body
terminates abnormally when the flow of control leaves it by any other

Handling Exception Conditions 11–13

means, for example, due to an exception or due to a control statement such
as return, goto, break, or continue.

A termination handler can call the following intrinsic function to determine
whether the guarded body terminated normally or abnormally:

int abnormal_termination ();

The abnormal_termination function returns 0 if the try body completed
sequentially; otherwise, it returns 1.

The termination handler itself may terminate either sequentially or by a
transfer of control out of the handler. If it terminates sequentially (by
reaching the closing “}”), subsequent control flow depends on how the try
body terminated:

• If the try body terminated normally, execution continues with the
statement following the complete try...finally block.

• If the try body terminated abnormally with an explicit jump out of the
body, the jump is completed. However, if the jump exits the body of one
or more containing try...finally statements, their termination
handlers are invoked before control is finally transferred to the target
of the jump.

• If the try body terminated abnormally due to an unwind, a jump to an
exception handler, or an exc_longjmp call, control is returned to the C
run-time exception handler, which will continue invoking termination
handlers as required before jumping to the target of the unwind.

Like exception filters, termination handlers are treated as Pascal-style
nested procedures and are executed without the removal of frames from the
run-time stack. A termination handler can thus access the local variables of
the procedure in which it is declared.

Note that there is a performance cost in the servicing of abnormal
terminations, inasmuch as abnormal terminations (and exceptions) are
considered to be outside the normal flow of control for most programs. Keep
in mind that explicit jumps out of a try body are considered abnormal
termination. Normal termination is the simple case and costs less at run
time.

In some instances, you can avoid this cost by replacing a jump out of a try
body with a leave statement (which transfers control to the end of the
innermost try body) and testing a status variable after completion of the
entire try...finally block.

A termination handler itself may terminate nonsequentially (for instance,
to abort an unwind) by means of a transfer of control (for instance, a goto,
break, continue, return, exc_longjmp, or the occurrence of an

11–14 Handling Exception Conditions

exception). If this transfer of control exits another try...finally block,
its termination handler will execute.

Example 11–4 shows the order in which termination handlers and
exception handlers execute when an exception causes the termination of
the innermost try body.

Example 11–4: Abnormal Termination of a Try Block by an Exception

#include <signal.h>
#include <excpt.h>
#include <errno.h>

#define EXC_FOO EXC_VALUE(EXC_C_USER, 1)

signed
foo_except_filter()
{
printf("2. The exception causes the exception filter

to be evaluated.\n");
return(1);

}

main ()
{
try {

try {
printf("1. The main body executes.\n");
exc_raise_status_exception(EXC_FOO);

}
finally {

printf("3. The termination handler executes
because control will leave the
try...finally block to \n");

}
}

except(foo_except_filter()) {
printf("4. execute the exception handler.\n");
}

}

The following is a sample run of this program:

% cc segfault_ex.c -lexc
% a.out
1. The main body executes.
2. The exception causes the exception filter to be evaluated.
3. The termination handler executes because control will leave the

Handling Exception Conditions 11–15

try...finally block to
4. execute the exception handler.

11–16 Handling Exception Conditions

12
Developing Thread-Safe Libraries

To support the development of multithreaded applications, the Tru64 UNIX
operating system provides DECthreads, the Compaq Multithreading
Run-Time Library. The DECthreads interface implements IEEE Standard
1003.1c-1995 threads (also referred to as POSIX 1003.1c threads), with
several extensions.

In addition to an actual threading interface, the operating system also
provides Thread-Independent Services (TIS). The TIS routines are an aid to
creating efficient thread-safe libraries that do not create their own threads.
(See Section 12.4.1 for information about TIS routines.)

This chapter addresses the following topics:

• Overview of multithread support in Tru64 UNIX (Section 12.1)

• Run-time library changes for POSIX conformance (Section 12.2)

• Characteristics of thread-safe and thread-reentrant routines
(Section 12.3)

• How to write thread-safe code (Section 12.4)

• How to build multithreaded applications (Section 12.5)

12.1 Overview of Thread Support

A thread is a single, sequential flow of control within a program. Multiple
threads execute concurrently and share most resources of the owning
process, including the address space. By default, a process initially has one
thread.

The purposes for which multiple threads are useful include:

• Improving the performance of applications running on multiprocessor
systems

• Implementing certain programming models (for example, the
client/server model)

• Encapsulating and isolating the handling of slow devices

You can also use multiple threads as an alternative approach to managing
certain events. For example, you can use one thread per file descriptor in a

Developing Thread-Safe Libraries 12–1

process that otherwise might use the select() or poll() system calls to
efficiently manage concurrent I/O operations on multiple file descriptors.

The components of the multithreaded development environment for the
Tru64 UNIX system include the following:

• Compiler support — Compile using the −pthread option on the cc or
c89 command.

• Threads package — The libpthread.so library provides interfaces for
threads control.

• Thread-safe support libraries — These libraries include libaio,
libcfg, liblmf, libm, libmsfs, libpruplist, libpthread, librt,
and libsys5.

• The ladebug debugger

• The prof and gprof profilers — Compile with the −p and −pthread
options for prof and with −pg and −pthread for gprof to use the
libprof1_r.a profiling library.

• The atom utility (pixie, third, and hiprof tools)

For information on profiling multithreaded applications, see Section 8.10.

To analyze a multithreaded application for potential logic and performance
problems, you can use Visual Threads, which is available on the Associated
Products Volume 2 CD. Visual Threads can be used on DECthreads
applications that use POSIX threads (Pthreads) and on Java applications.

12.2 Run-Time Library Changes for POSIX Conformance

For releases of the DEC OSF/1 system (that is, for releases prior to
DIGITAL UNIX Version 4.0), a large number of separate reentrant routines
(*_r routines) were provided to solve the problem of static data in the C
run-time library (the first two problems listed in Section 12.3.1). For
releases of the Tru64 UNIX system, the problem of static data in the
nonreentrant versions of the routines is fixed by replacing the static data
with thread-specific data. Except for a few routines specified by POSIX
1003.1c, the alternate routines are not needed on Tru64 UNIX systems and
are retained only for binary compatibility.

The following functions are the only alternate thread-safe routines that are
specified by POSIX 1003.1c and need to be used when writing thread-safe
code:

12–2 Developing Thread-Safe Libraries

asctime_r* ctime_r* getgrgid_r*

getgrnam_r* getpwnam_r* getpwuid_r*

gmtime_r* localtime_r* rand_r*

readdir_r* strtok_r

Starting with DIGITAL UNIX Version 4.0, the interfaces flagged with an
asterisk (*) in the preceding list have new definitions that conform to
POSIX 1003.1c. The old versions of these routines can be obtained by
defining the preprocessor symbol _POSIX_C_SOURCE with the value
199309L (which denotes POSIX 1003.1b conformance — however, doing
this will disable POSIX 1003.1c threads). The new versions of the routines
are the default when compiling code under DIGITAL UNIX Version 4.0 or
higher, but you must be certain to include the header files specified on the
manpages for the various routines.

For more information on programming with threads, see the Guide to
DECthreads and cc(1), monitor(3), prof(1), and gprof(1).

12.3 Characteristics of Thread-Safe and Reentrant
Routines

Routines within a library can be thread safe or not. A thread-safe routine is
one that can be called concurrently from multiple threads without
undesirable interactions between threads. A routine can be thread safe for
either of the following reasons:

• It is inherently reentrant.

• It uses thread-specific data or mutex locks. (A mutex is a
synchronization object that is used to allow multiple threads to serialize
their access to shared data.)

Reentrant routines do not share any state across concurrent invocations
from multiple threads. A reentrant routine is the ideal thread-safe routine,
but not all routines can be made reentrant.

Prior to DIGITAL UNIX Version 4.0, many of the C run-time library (libc)
routines were not thread safe, and alternate versions of these routines
were provided in libc_r. Starting with DIGITAL UNIX Version 4.0, all of
the alternate versions formerly found in libc_r were merged into libc. If
a thread-safe routine and its corresponding nonthread-safe routine had the
same name, the nonthread-safe version was replaced. The thread-safe
versions are modified to use TIS routines (see Section 12.4.1); this enables
them to work in both single-threaded and multithreaded environments —
without extensive overhead in the single-threaded case.

Developing Thread-Safe Libraries 12–3

12.3.1 Examples of Nonthread-Safe Coding Practices

Some common practices that can prevent code from being thread safe can
be found by examining why some of the libc functions were not thread
safe prior to DIGITAL UNIX Version 4.0:

• Returning a pointer to a single, statically allocated buffer

The ctime(3) interface provides an example of this problem:

char *ctime(const time_t *timer);

This function takes no output arguments and returns a pointer to a
statically allocated buffer containing a string that is the ASCII
representation of the time specified in the single parameter to the
function. Because a single, statically allocated buffer is used for this
purpose, any other thread that calls this function will overwrite the
string returned to the previously calling thread.

To make the ctime() function thread safe, the POSIX 1003.1c
standard has defined an alternate version, ctime_r(), which accepts
an additional output argument. The argument is a user-supplied buffer
that is allocated by the caller. The ctime_r() function writes the
ASCII time string into the buffer:

char *ctime_r(const time_t *timer, char *buf);

Users of this function must ensure that the storage occupied by the buf
argument is not used by another thread.

• Maintaining internal state

The rand() function provides an example of this problem:

void srand(unsigned int seed);
int rand(void);

This function is a simple pseudorandom number generator. For any
given starting seed value that is set with the srand() function, it
generates an identical sequence of pseudorandom numbers. To do this,
it maintains a state value that is updated on each call. If another
thread is calling this function, the sequence of numbers returned within
any one thread for a given starting seed is nondeterministic. This may
be undesirable.

To avoid this problem, a second interface, rand_r(), is specified in
POSIX 1003.1c. This function accepts an additional argument that is a
pointer to a user-supplied integer used by rand_r() to hold the state of
the random number generator:

int rand_r(unsigned int *seed);

12–4 Developing Thread-Safe Libraries

The users of this function must ensure that the seed argument is not
used by another thread. Using thread-specific data is one way of doing
this (see Section 12.4.2).

• Operating on read/write data items shared between threads

The problem of sharing read/write data can be solved by using mutexes.
In this case, the routine is not considered reentrant, but it is still
thread safe. Like thread-specific data, mutex locking is transparent to
the user of the routine.

Mutexes are used in several libc routines, most notably the stdio
routines, for example, printf(). Mutex locking in the stdio routines
is done by stream to prevent concurrent operations on a stream from
colliding, as in the case of two processes trying to fill a stream buffer at
the same time. Mutex locking is also done on certain internal data
tables in the C run-time library during operations such as fopen() and
fclose(). Because the alternate versions of these routines do not
require an application program interface (API) change, they have the
same name as the original versions.

See Section 12.4.3 for an example of how to use mutexes.

12.4 Writing Thread-Safe Code

When writing code that can be used by both single-threaded and
multithreaded applications, it is necessary to code in a thread-safe manner.
The following coding practices must be observed:

• Static read/write data should be either eliminated, converted to
thread-specific data, or protected by mutexes. In the C language, to
reduce the potential for misuse of the data, it is good practice to declare
static read-only data with the const type modifier.

• Global read/write data should be eliminated or protected by mutex locks.

• Per-process system resources, such as file descriptors, should be used
with care because they are accessible by all threads.

• References to the global “errno” cell should be replaced with calls to
geterrno() and seterrno(). This replacement is not necessary if the
source file includes errno.h and one of the following conditions is true:

– The file is compiled with the -pthread option (cc or c89 command).

– The pthread.h file is included at the top of the source file.

– The _REENTRANT preprocessor symbol is explicitly set before the
include of errno.h.

• Dependencies on any other nonthread-safe libraries or object files must
be avoided.

Developing Thread-Safe Libraries 12–5

12.4.1 Using TIS

Thread Independent Services (TIS) is a package of routines provided by the
C run-time library that can be used to write efficient code for both
single-threaded and multithreaded applications. TIS routines can be used
for handling mutexes, handling thread-specific data, and a variety of other
purposes.

When used by a single-threaded application, these routines use simplified
semantics to perform thread-safe operations for the single-threaded case.
When DECthreads is present, the bodies of the routines are replaced with
more complicated algorithms to optimize their behavior for the
multithreaded case.

TIS is used within libc itself to allow a single version of the C run-time
library to service both single-threaded and multithreaded applications. See
the Guide to DECthreads and tis(3) for information on how to use this
facility.

12.4.2 Using Thread-Specific Data

Example 12–1 shows how to use thread-specific data in a function that can
be used by both single-threaded and multithreaded applications. For
clarity, most error checking has been left out of the example.

Example 12–1: Threads Programming Example

#include <stdlib.h>
#include <string.h>
#include <tis.h>

static pthread_key_t key;

void __init_dirname()
{
tis_key_create(&key, free);
}

void __fini_dirname()
{
tis_key_delete(key);
}

char *dirname(char *path)
{
char *dir, *lastslash;
/*
* Assume key was set and get thread-specific variable.

12–6 Developing Thread-Safe Libraries

Example 12–1: Threads Programming Example (cont.)

*/
dir = tis_getspecific(key);
if(!dir) { /* First time this thread got here. */
dir = malloc(PATH_MAX);
tis_setspecific(key, dir);
}

/*
* Copy dirname component of path into buffer and return.
*/
lastslash = strrchr(path, ’/’);
if(lastslash) {
memcpy(dir, path, lastslash-path);
dir[lastslash-dir+1] = ’\0’;
} else
strcpy(dir, path);
return dir;
}

The following TIS routines are used in the preceding example:

tis_key_create

Generates a unique data key.

tis_key_delete

Deletes a data key.

tis_getspecific

Obtains the data associated with the specified key.

tis_setspecific

Sets the data value associated with the specified key.

The __init_ and __fini_ routines are used in the example to initialize
and destroy the thread-specific data key. This operation is done only once,
and these routines provide a convenient way to ensure that this is the case,
even if the library is loaded with dlopen(). See ld(1) for an explanation of
how to use the __init_ and __fini_ routines.

Thread-specific data keys are provided by DECthreads at run time and are
a limited resource. If your library must use a large number of data keys,

Developing Thread-Safe Libraries 12–7

code the library to create just one data key and store all of the separate
data items as a structure or an array of pointers pointed to by that key.

12.4.3 Using Mutex Locks to Share Data Between Threads

In some cases, using thread-specific data is not the correct way to convert
static data into thread-safe code. For example, thread-specific data should
not be used when a data object is meant to be shareable between threads
(as in stdio streams within libc). Manipulating per-process resources is
another case in which thread-specific data is inadequate. The following
example shows how to manipulate per-process resources in a thread-safe
fashion:

#include <pthread.h>
#include <tis.h>

/*
* NOTE: The putenv() function would have to set and clear the
* same mutex lock before it accessed the environment.
*/

extern char **environ;
static pthread_mutex_t environ_mutex = PTHREAD_MUTEX_INITIALIZER;

char *getenv(const char *name)
{

char **s, *value;
int len;
tis_mutex_lock(&environ_mutex);
len = strlen(name);
for(s=environ; value=*s; s++)

if(strncmp(name, value, len) == 0 &&
value[len] == ’=’) {

tis_mutex_unlock(&environ_mutex);
return &(value[len+1]);

}
tis_mutex_unlock(&environ_mutex);
return (char *) 0L;

}

In the preceding example, note how the lock is set once (tis_mutex_lock)
before accessing the environment and is unlocked exactly once
(tis_mutex_unlock) before returning. In the multithreaded case, any
other thread attempting to access the environment while the first thread
holds the lock is blocked until the first thread performs the unlock
operation. In the single-threaded case, no contention occurs unless an error
exists in the coding of the locking and unlocking sequences.

12–8 Developing Thread-Safe Libraries

If it is necessary for the lock state to remain valid across a fork() system
call in multithreaded applications, it may be useful to create and register
pthread_atfork() handler functions to set the lock prior to any fork()
call, and to unlock it in both the child and parent after the fork() call.
This guarantees that a fork() operation is not done by one thread while
another thread holds the lock. If the lock was held by another thread, it
would end up permanently locked in the child because the fork()
operation produces a child with only one thread. In the case of an
independent library, the call to pthread_atfork() can be done in an
__init_ routine in the library. Unlike most Pthread routines, the
pthread_atfork routine is available in libc and may be used by both
single-threaded and multithreaded applications.

12.5 Building Multithreaded Applications

The compilation and linking of multithreaded applications differs from that
of single-threaded applications in a few minor but important ways.

12.5.1 Compiling Multithreaded C Applications

Depending on whether an application is single threaded or multithreaded,
many system header files provide different sets of definitions when they are
included in the compilation of an application. Whether the compiler
generates single-threaded or thread-safe behavior is determined by
whether the _REENTRANT preprocessor symbol is defined. When you specify
the −pthread option on the cc or c89 command, the _REENTRANT symbol
is automatically defined; it is also defined if the pthread.h header file is
included. This header file must be the first file included in any application
that uses the Pthread library, libpthread.so.

The −pthread option has no other effect on the compilation of C programs.
The reentrancy of the code generated by the C compiler is determined only
by the proper use of reentrant coding practices by the programmer and by
the use of thread-safe support routines or functions — not by the use of any
special options.

12.5.2 Linking Multithreaded C Applications

To link a multithreaded C application, use the cc or c89 command with
the −pthread option. When linking, the −pthread option has the effect of
modifying the library search path in the following ways:

• The Pthread library is included into the link.

• The exceptions library is included into the link.

Developing Thread-Safe Libraries 12–9

• For each library mentioned in a −l option, an attempt is made to locate
and presearch a library of corresponding thread-safe routines whose
name includes the suffix _r.

The −pthread option does not modify the behavior of the linker in any
other way. The reentrancy of the linked code is determined by use of proper
programming practices in the orginal code, and by compiling and linking
with the proper header files and libraries, respectively.

12.5.3 Building Multithreaded Applications in Other Languages

Not all compilers necessarily generate reentrant code; the definition of the
language itself can make this difficult. It is also necessary for any run-time
libraries linked with the application to be thread safe. For details on such
matters, consult the manual for the compiler you are using and the
documentation for the run-time libraries.

12–10 Developing Thread-Safe Libraries

13
OpenMP Parallel Processing

OpenMP is a specification for a set of compiler directives that can be used
to provide shared memory parallelism in C programs. These directives
allow programmers to write code that can run concurrently on multiple
processors without altering the structure of the source code from that of
ordinary serial ANSI C. Correct use of these directives can greatly improve
the elapsed-time performance of user code by allowing that code to execute
simultaneously on different processors of a multiprocessor machine.
Compiling the same source code, but ignoring the parallel directives,
produces a serial C program that performs the same function.

The OpenMP C and C++ Application Programming Interface is available on
the web at the following URL:

http://www.openmp.org/mp-documents/cspec.pdf | .ps

This chapter addresses the following topics:

• Command-line options (Section 13.1)

• Environment variables (Section 13.2)

• Run-time performance tuning (Section 13.3)

• Common user errors (Section 13.4)

• Locks (Section 13.5)

• Implementation-specific behavior (Section 13.6)

13.1 cc Command-Line Options

The following options on the cc command line support parallel processing:

-mp Causes the compiler to recognize both OpenMP
manual decomposition pragmas and old-style
manual decomposition directives. Forces libots3
to be included in the link. (Old-style manual
decomposition directives are described in
Appendix D.)

-omp Causes the compiler to recognize only OpenMP
manual decomposition pragmas and to ignore

OpenMP Parallel Processing 13–1

old-style manual decomposition directives. (Note
that the -mp and -omp switches are the same
except for their treatment of old-style manual
decomposition directives; -mp recognizes the
old-style directives and -omp does not.)

-granularity size Controls the size of shared data in memory that can
be safely accessed from different threads. Valid
values for size are: byte, longword, and
quadword:

byte Requests that all data of
one byte or greater can be
accessed from different
threads sharing data in
memory. This option will
slow run-time performance.

longword Ensures that naturally
aligned data of four bytes or
greater can be accessed
safely from different threads
sharing access to that data
in memory. Accessing data
items of three bytes or less
and unaligned data may
result in data items written
from multiple threads being
inconsistently updated.

quadword Ensures that naturally
aligned data of eight bytes
can be accessed safely from
different threads sharing
data in memory. Accessing
data items of seven bytes or
less and unaligned data
may result in data items
written from multiple
threads being inconsistently
updated. This is the default.

-check_omp Enables run-time checking of certain OpenMP
constructs. This includes run-time detection of

13–2 OpenMP Parallel Processing

invalid nesting and other invalid OpenMP cases.
When invalid nesting is discovered at run time and
this switch is set, the executable will fail with a
Trace/BPT trap. If this switch is not set and invalid
nesting is discovered, the behavior is indeterminate
(for example, an executable may hang).

The compiler detects the following invalid nesting
conditions:

• Enter a FOR, SINGLE, or SECTIONS directive if
already in a work-sharing construct, CRITICAL
section, or a MASTER

• Execute a BARRIER directive if already in a
work-sharing sharing construct, a CRITICAL
SECTION, or a MASTER

• Execute a MASTER directive if already in a
work-sharing construct

• Execute an ORDERED directive if already in a
CRITICAL SECTION

• Execute an ORDERED directive unless already in
an ORDERED FOR

The default is disabled run-time checking.

13.2 Environment Variables

In addition to the environment variables outlined in the OpenMP
specification, the following environment variables are recognized by the
compiler and the run-time system:

MP_THREAD_COUNT Specifies how many threads are to be created by the
run-time system. The default is the number of
processors available to your process. The
OMP_NUM_THREADS environment variable takes
precedence over this variable.

MP_STACK_SIZE Specifies how many bytes of stack space are to be
allocated by the run-time system for each thread. If
you specify zero, the run-time system uses the
default, which is very small. Therefore, if a program
declares any large arrays to be PRIVATE, specify a
value large enough to allocate them. If you do not
use this environment variable, the run-time system
allocates 5 MB.

OpenMP Parallel Processing 13–3

MP_SPIN_COUNT Specifies how many times the run-time system can
spin while waiting for a condition to become true.
The default is 16,000,000, which is approximately
one second of CPU time.

MP_YIELD_COUNT Specifies how many times the run-time system can
alternate between calling sched_yield and testing
the condition before going to sleep by waiting for a
thread condition variable. The default is 10.

13.3 Tuning Run-Time Performance

The OpenMP specification provides a variety of methods for distributing
work to the available threads within a parallel for construct. The following
sections describe these methods.

13.3.1 Schedule Type and Chunksize Settings

The choice of settings for the schedule type and the chunksize can affect
the ultimate performance of the resulting parallelized application, either
positively or negatively. Choosing inappropriate settings for the schedule
type and the chunksize can degrade the performance of parallelized
application to the point where it performs as bad or worse than it would if
it was serialized.

The general guidelines are as follows:

• Smaller chunksize values generally perform faster than larger. The
values for the chunksize should be less than or equal to the values
derived by dividing the number of iterations by the number of available
threads.

• The behavior of the DYNAMIC and GUIDED schedule types make them
better suited for target machines with a variety of workloads, other
than the parallelized application. These types assign iterations to
threads as they become available; if a processor (or processors) becomes
tied up with other applications, the available threads will pick up the
next iterations.

• Although the RUNTIME schedule type does facilitate tuning of the
schedule type at run time, it results in a minor performance penalty in
run-time overhead.

• An effective means of determining appropriate settings for schedule and
chunksize can be to set the schedule to RUNTIME and experiment with
various schedule and chunksize pairs through the OMP_SCHEDULE

13–4 OpenMP Parallel Processing

environment variable. After the exercise, explicitly set the schedule and
chunksize to the values that yielded the best performance.

Note that the schedule and chunksize settings are only two of the many
factors that can affect the performance of your application. Some of the
other areas that can affect performance include:

• Availability of system resources: CPUs on the target machine spending
time processing other applications are not available to the parallelized
application.

• Structure of parallelized code: Threads of a parallelized region that
perform disproportionate amounts of work.

• Use of implicit and explicit barriers: Parallelized regions that force
synchronization of all threads at these explicit or implicit points may
cause the application to suspend while waiting for a thread (or threads).

• Use of CRITICAL sections versus ATOMIC statements: Using CRITICAL
sections incurs more overhead than ATOMIC. For additional information
on schedule types and chunksize settings, see Appendix D of the
OpenMP C and C++ Application Programming Interface.

13.3.2 Additional Controls

When one of the threads needs to wait for an event caused by some other
thread, a three-level process begins:

1. The thread spins for a number of iterations waiting for the event to
occur.

2. It yields the processor to other threads a number of times, checking for
the event to occur.

3. It posts a request to be awakened and goes to sleep.

When another thread causes the event to occur, it will awaken the sleeping
thread.

You may get better performance by tuning the threaded environment with
the MP_SPIN_COUNT and MP_YIELD_COUNT environment variables or by
using the mpc_destroy routine:

• MP_SPIN_COUNT — If your application is running standalone, the
default settings will give good performance. However, if your
application needs to share the processors with other applications, it is
probably appropriate to reduce MP_SPIN_COUNT. This will make the
threads waste less time spinning and give up the processor sooner; the
cost is the extra time to put a thread to sleep and re-awaken it. In such
a shared environment, an MP_SPIN_COUNT of about 1000 might be a
good choice.

OpenMP Parallel Processing 13–5

• mpc_destroy — If you need to perform operations that are awkward
when extra threads are present (for example, fork), the mpc_destroy
routine can be useful. It destroys any worker threads created to run
parallel regions. Normally, you would only call it when you are not
inside a parallel region. (The mpc_destroy routine is defined in the
libots3 library.)

13.4 Common User Errors

The following sections describe some common user errors that will cause
problems if they occur in parallelized programs.

13.4.1 Scoping

The OpenMP parallel construct applies to the following structured block.
When more than one statement is to be performed in parallel, ensure the
structured block is contained within curly braces. For example:

#pragma omp parallel
{

pstatement one
pstatement two

}

The preceding structured block is quite different from the following:

#pragma omp parallel
pstatement one
pstatement two

In general, the use of curly braces to explicitly define the scope of the
subsequent block (or blocks) is strongly encouraged.

13.4.2 Deadlock

As with any multithreaded application, programmers must use care to
prevent run-time deadlock conditions. With the implicit barriers at the end
of many OpenMP constructs, an application will result in a deadlock if all
threads do not actively participate in the construct. These types of
conditions may be more prevalent when implementing parallelism in
dynamic extents of the application. For example:

worker ()
{
#pragma omp barrier
}

main ()
{
#pragma omp parallel sections

{

13–6 OpenMP Parallel Processing

#pragma omp section
worker();

}
}

The preceding example results in deadlock (with more than one thread
active) because not all threads visit the worker routine and the barrier
waits for all threads. The -check_omp option aids in detecting such
conditions (seeSection 13.1).

For more information, see the OpenMP C and C++ Application
Programming Interface for a description of valid and invalid directive
nesting.

13.4.3 Threadprivate Storage

The threadprivate directive identifies variables that have file scope but
are private to each thread. The values for these variables are maintained if
the number of threads remains constant. The impact on the values for
threadprivate variables from explicitly increasing or decreasing the
number of threads within a program is not defined.

13.5 Using Locks

Using the lock control routines (see the OpenMP C and C++ Application
Programming Interface) requires that they be called in a specific sequence:

1. The lock to be associated with the lock variable must first be initialized.

2. The associated lock is made available to the executing thread.

3. The executing thread is released from lock ownership.

4. When finished, the lock must always be disassociated from the lock
variable.

Attempting to use the locks outside the above sequence may cause
unexpected behavior, including deadlock conditions.

13.6 Implementation-Specific Behavior

The OpenMP specification identifies several features and default values as
implementation-specific. This section lists those instances and the
implementation chosen by Compaq C.

Support for nested
parallel regions

Whenever a nested parallel region is encountered, a
team consisting of one thread is created to execute
that region.

OpenMP Parallel Processing 13–7

Default value for
OMP_SCHEDULE

The default value is dynamic,1. If an application
uses the run-time schedule but OMP_SCHEDULE is
not defined, then this value is used.

Default value for
OMP_NUM_THREADS

The default value is equal to the number of
processors on the machine.

Default value for
OMP_DYNAMIC

The default value is 0. Note that this
implementation does not support dynamic
adjustments to the thread count. Attempts to use
omp_set_dynamic to a nonzero value have no
effect on the run-time environment.

Default schedule When a for or parallel for loop does not contain a
schedule clause, a dynamic schedule type is used
with the chunksize set to 1.

Flush directive The flush directive, when encountered, will flush
all variables, even if one or more variables are
specified in the directive.

13–8 OpenMP Parallel Processing

14
Posting and Receiving EVM Events

This chapter describes the user-level programming interface to the Tru64
UNIX Event Manager (EVM).

In the context of this chapter, an event is an indication that something has
happened that may be of interest to one or more of the following:

• A system administrator, application manager, or some other class of
user

• System monitoring software

• The operating system

• An application program

Interested parties may be part of the local system or they may be running
on a remote system.

The chapter describes the contents of EVM events and the programming
interface to the EVM subsystem. Details about the functions supported by
the EVM programming interface are provided in online reference pages.
(Section 14.7 provides summary descriptions and examples of some of the
most commonly used EVM functions.)

The event viewer and the command-line interface are not addressed in this
chapter. For information about the viewer, see the online help; for
information about command-line operations, see the System Administration
manual.

The principal issues addressed by this chapter are as follows:

• Determining which status changes should be established as events

• Designing the contents of events

• Using EVM’s API functions and utilities to post, subscribe to, and
retrieve events

14.1 Events and Event Management

EVM provides a centralized means of posting, distributing, storing, and
reviewing event information — regardless of the event channel used by
individual event posters and without requiring existing posters to change

Posting and Receiving EVM Events 14–1

how they interact with their current channels. EVM makes event
information more accessible to system administrators than was previously
possible with Tru64 UNIX systems, and it provides a flexible infrastructure
that can be used as an event distribution channel by:

• Internal development groups at Compaq

• Independent software vendors

• Customer-application developers

• Existing event channels

The mechanism used to pass event information is known as an event (or
event notification), and the component generating the event is known as
the event poster. EVM’s event-posting mechanism is a one-way
communication channel. It is intended to allow the poster to communicate
information to any entity that cares to receive it. It is not necessary for the
poster to know which entities, if any, are subscribing to receive an event
being posted.

An entity that expresses an interest in receiving event information is
known as an event subscriber. Depending on the event, subscribers might
include system administrators, other software components, or ordinary
users. It is quite possible that some events will never be subscribed to.

Events can be posted and subscribed to by any process, and the same
process can be both a poster and a subscriber. However, in all cases, the
ability to post and receive specific events is governed by security
authorizations (see Section 14.4).

Previous versions of the Tru64 UNIX system supported a variety of
disparate channels for handling events, some standard and some
proprietary. In the simplest case, an event channel is a static ASCII log
file containing event information, from a single source, that a user can view
by means of standard UNIX tools (for example, more). Examples of more
active channels include the system message logger (syslog) and the binary
event logger (binlog), both of which use daemon processes to receive, log,
and forward event information from multiple sources. (See syslogd(8) and
binlogd(8) for information about syslog and binlog.)

EVM provides a single point of focus for multiple event channels by
combining events from all sources into a single event stream. Interested
parties can either monitor the combined stream in real time or view
historical events retrieved from storage. EVM’s viewing facilities include a
graphical event viewer, which is integrated with the SysMan application
suite, and a full set of command-line utilities, which allow events to be
filtered, sorted, and formatted in a variety of ways. EVM can also be
configured to perform automatic notification of selected conditions.

14–2 Posting and Receiving EVM Events

_______________________ Note _______________________

EVM is a facility for broadcasting messages and should not be
used to implement a private point-to-point communication
channel between two processes. Using EVM for such purposes
could have a negative impact on system performance. If you
need to establish communication with another process and the
information you will be sending to that process is not of interest
to any other processes, you should use a more direct
communication channel, for example, sockets or pipes.

Figure 14–1 provides an overview of posting, subscribing, and retrieval
operations. (See evmget(1) for information on event retrieval operations.)

Figure 14–1: EVM Overview

ZK-1458U-AI

Event Retrievers
(evmget)

Event Subscribers

EVM Daemon

Event Posters

syslog binlog Text
logs

14.2 Overview of How EVM Events Are Handled

An EVM event is an opaque data package that can be passed between
various software components and stored for later review. The data package

Posting and Receiving EVM Events 14–3

is “opaque” in the sense that API programmers must not access the
package directly or depend on its format to remain consistent over time,
even though it may be possible to discover the format by examining
“private” header files.

In order to be posted, an event must match an event template that is
stored in an EVM database. Events that do not have templates cannot be
posted. Data items for an event can be supplied in either the posted event
itself or the matching template. The contents of the event received by the
event subscriber results from merging the data items in the posted event
with the data items in the event template. See Section 14.6.3.2 and
Section 14.6.3.3 for more information about matching and merging.

A typical event life cycle involves the following operations:

1. Templates are created for all events that some process may want to
post, and these templates are stored in an EVM database when the
product or subsystem is installed.

2. Processes that are interested in receiving events establish a connection
to the EVM daemon and then issue subscription requests, specifying a
filter that identifies the set of events in which they are interested.

3. When a process or kernel component detects an eventworthy status
change, it connects to EVM and posts the event that corresponds to
that status change.

Alternatively, if the event is posted to an existing Tru64 UNIX event
channel, the channel processes the event in its own way, which may
include logging it. The channel then converts the event to EVM format
and passes it to EVM.

4. EVM validates the request to post the event, checking, among other
things, whether the event has a corresponding template in the EVM
template database and whether the poster is authorized to post the
event. If it is valid, EVM creates a merged version of the event by
combining data items in the posted event with data items in the
template.

5. EVM passes the merged event to all processes that have subscribed to
receive the event.

6. Subscribers handle the event in some appropriate way; for example,
they could store it, send mail to the system administrator, or initiate
an application failover.

14.3 Starting and Stopping EVM
EVM is started automatically at system startup time. Similarly, it is
stopped automatically when the system is shut down.

14–4 Posting and Receiving EVM Events

See the System Administration manual for information about starting and
stopping the EVM daemon.

See Section 14.6.3.4 for information on how EVM establishes the event
template database at startup and for information on how to subsequently
modify that database.

14.4 Authorization to Post and Receive Events

Security is an important consideration when dealing with the posting and
receipt of events. Uncontrolled access to certain event information could
provide an unauthorized user with sensitive information about system
operation, and uncontrolled posting of certain events could allow an
unauthorized user to initiate critical system actions, for example, a system
shutdown.

The system administrator controls access to events at any level by
modifying the EVM authorization file, /etc/evm.auth.

See the System Administration manual for information about how to
control access to events.

14.5 Contents of an EVM Event
The format, type, and purpose of the data carried in events varies widely.
In a simple case, an event is a simple text message. In a more complicated
case, an event might be a complex set of binary data that requires an
understanding of its format to be able to translate it. For two cooperating
applications, an event might be a simple binary flag or count. Note,
however, that an event is not required to carry data. In some cases,
transmitting only a particular event type from poster to subscriber may be
all that the subscriber needs to recognize that a particular status change
has occurred.

Event data is complicated by the need to be able to translate it in various
ways. For an event to be human readable, it must be possible to combine
numeric data with explanatory text. At the same time, the information in
the same event may need to be seen as binary data by a subscribing
process. In addition, it may also be necessary to have the human-readable
form in multiple languages.

The EVM data mechanism allows data to be carried in any way that is
appropriate to the event. The constructs that provide this capability are the
EVM format data item (one of EVM’s standard data items) and EVM
variable data items.

Event data structures contain two types of data items:

Posting and Receiving EVM Events 14–5

• Standard data items — A fixed set of items with predefined names.

• Variable data items — Items whose names and types are typically
defined by the event designer.

When you create an event as part of a post request, you can include any
number of data items. When you post the event, EVM automatically adds
certain environmental standard data items such as the host name and the
timestamp.

14.5.1 Standard Data Items

Standard data items are those data items that are commonly required in
an event and are understood (and may be acted upon) by EVM. The names
of standard data items are specified as enumerated constants;
consequently, the names themselves do not take up any space in an event.

Some standard data items are inserted in an event by the application that
posts the event or by the template for the event. Others are automatically
inserted, as needed, by EVM components. You can extract any data item
from an event.

Table 14–1 defines some of the commonly used standard data items. See
EvmEvent(5) for a complete list of the standard data items.

Table 14–1: Standard Data Items

Data Item Description

Event name (Section 14.5.1.1) Names the event.

Format (Section 14.5.1.2) Specifies the event message string.

Priority (Section 14.5.1.3) Indicates the importance of the event. Does not
affect the order of event distribution.

I18N catalog (Section 14.5.1.4) Name of the I18N catalog file for
internationalized events.

I18N msgset ID
(Section 14.5.1.4)

Identifies the message set within the I18N
message catalog.

I18N message ID
(Section 14.5.1.4)

I18N message ID for event format.

Reference (Section 14.5.1.5) Provides a reference to the event explanation
text.

The following sections provide detailed descriptions of the standard data
items defined in Table 14–1.

14–6 Posting and Receiving EVM Events

14.5.1.1 Event Name Data Item

The event name is the primary way to identify an event. The name must be
present for an event to be posted. Although it can be any syntactically valid
string, the name should generally identify the posting subsystem and
indicate what happened.

The event name is an ASCII character string. It consists of a dot-separated
series of components, with the leftmost component representing the most
general (least specific) part of the event. Component substrings can include
any combination of letters, digits, and underscore characters. No restriction
is placed on the number of components that can be included in an event
name; however, at least three components must be present for an event to
be posted. An event name cannot start or end with a dot.

By convention, the first three components of the event name should identify,
respectively, the vendor, product, and application or subsystem. To ensure
consistency and facilitate any future changes, it is good programming
practice to use a macro to define the common name components.

For example, the names of all events posted by Tru64 UNIX subsystems
begin with the following components:

sys.unix.subsystem

The next component after the required components in the event name
should identify the event. For example, a file system might post an event
with the following name:

sys.unix.fs.filesystem_full

The naming scheme provides an open-ended way to identify events,
allowing you to provide detail to any level. Careful naming helps
subscribers select specific events or event classes for viewing and
monitoring. The more detail in the event name, the more precise the
specification criteria can be.

For example, given the event name myco.myprod.env.temp.high, a
system administrator could monitor all temperature-related events by
specifying myco.myprod.env.temp or only the temperature-too-high
events by specifying myco.myprod.env.temp.high.

14.5.1.1.1 Reserved Component Names

By convention, the practice of beginning component names with an
underscore character (_) to identify a particular type of entity is reserved
for system use. The identifying component is appended to the base event
name for the event, and, depending on the entity being identified, the
following component might then identify the specific instance.

Posting and Receiving EVM Events 14–7

For example, an event named sys.unix.hw.registered might contain a
variable named hwid with a value of 1234, indicating that the event refers
to a device with that hardware ID. However, there is no way to search for
events relating only to that device because it is not possible to filter events
by the contents of a variable. Appending the reserved component name
_hwid, followed by the hardware ID, when the event is posted, yields the
posted name:

sys.unix.hw.registered._hwid.1234

Now, you can find all events pertaining to hardware device 1234 with the
following command:

evmget -f "[name *._hwid.1234]" | evmshow

Or, you can find all events that include any hardware ID with the following
command:

evmget -f "[name *._hwid]" | evmshow

Where a reserved component name is followed by an instance value, the
posted event should contain a variable with the same name (including the
leading underscore) and value. This allows a subscribing client to retrieve
the value from the event through EVM’s normal API functions, rather than
having to parse the event name to find the value.

Local sites and third-party product vendors should establish their own
conventions using a double underscore to start reserved component names,
for example, __prod_code.

The following reserved name components have been identified:

Component
Name

Following
Value

Comments

_hwid EHS
hardware ID

Identify events referring to hardware device IDs.

_hostname System host
name

This is the host name referred to by the event,
which may not be the posting host. For example,
a monitoring application could include this in
events reporting that it has detected a failure of
another system.

_failure None Identifies failure events.

The following general rules apply to the use of reserved components:

• It is not necessary to include a reserved component in an event’s
template name when registering the event because the EVM name
matching scheme finds the best match for a posted event. In the
example shown previously in this section, the template (and the base
name of the event) would be sys.unix.hw.registered. Reserved

14–8 Posting and Receiving EVM Events

components are appended to the name to give a further level of detail
when the event is posted.

• An event can include any number of trailing reserved component
names, in any order, and in any component position following the
event’s base name.

• Any product or subsystem can post events containing reserved
components names. This convention allows all events referring to
hardware components to be found easily even if some are not being
posted with a sys.unix.hw prefix.

14.5.1.1.2 Comparing Event Names

Use EVM’s API functions to compare the name of an event with the name
you are looking for. Do not use strcmp(); the name of the incoming event
may have more components than you expected. See Section 14.7.10.9 for
more information on event name matching.

14.5.1.2 Event Format Data Item

The format data item is a human-readable character string that
summarizes the event. It can include references to other data items
contained in the event. Consider the following examples:

Application close-down has started

Close-down of application $app has started

In the second example, $app is replaced by the name of the application.

The format line should begin with a brief and consistent identification of
the posting component and should be a concise indication of what has
transpired. Consider the following guidelines:

• It is not necessary to write a full sentence, but be sure that what you
write can be clearly understood.

• Do not write multiple sentences and do not include a period at the end
of the message. (Use the event’s explanation text to provide the full
(and more grammatical) description of what happened. See
Section 14.6.2 for information on how explanation text is handled.)

• Try to place the most important information — the phrase that tells the
administrator what happened — at the beginning of the line to make it
unnecessary for the administrator to scroll the viewer window
horizontally to find this information. Variable data is often better
placed towards the end of the line.

• You do not have to include a reference to every variable in the format
string. The administrator can easily get the variable data by requesting

Posting and Receiving EVM Events 14–9

a detailed description of the event. However, try to include the key
data, such as the name of a file system or device.

You can include variable names for substitution by preceding them with
the $ character, for example, $app. If necessary, you can include standard
data items by preceding their names with the @ character, for example,
@host_name. You can specify standard data item names in upper– or
lowercase, but variable names are case sensitive.

You can escape the special meaning of $ and @ characters in the format
text by preceding them with a backslash (\). To include a literal backslash
in the text, use a double backslash (\\). To separate the name of the data
item or variable from adjacent text, you can surround the name in braces,
for example, ${app}.

Table 14–2 shows some examples of the way that variables and data items
are substituted into an event’s format text to produce a formatted version
of the event.

Table 14–2: Substituting Variables into Event Text

Format Data Item Variable Data Item Resulting Text

Application started None Application started

Debug message: $msg msg (string) =
"Checkpoint reached"

Debug message: Checkpoint
reached

Temperature too high: $temp temp (float) = 87.2 Temperature too high: 87.2

This event was posted by
@user_name

None This event was posted by jem

14.5.1.3 Event Priority Data Item

The priority of an event is used as the basis for event selection to log, sort,
review, and take action — human or automated. The priority is not used to
establish the order in which events will be delivered to subscribing EVM
clients; events are delivered in the order in which they are received by
EVM. The priority is an integer value in the range 0-700, with 0 being the
least significant priority. See EvmEvent(5) for information about the various
priority levels.

You can expect that system administrators will respond to event priorities
in the following ways:

• Configure the logger to log all events with priority 200 (notice level) or
higher.

• Configure the logger to send mail or issue an alert (for example, page
someone) when an event of priority 600 (alert level) or higher is posted.

14–10 Posting and Receiving EVM Events

• Use the viewer to search for all events with priority 300 (warning level)
or higher.

• Use the viewer to peruse logged events of all priorities to help analyze
problems or to verify that the system is operating correctly.

Do not hardcode the priority into the posting code; it should always be
established in the template file.

When choosing the priority of an event, try to be consistent with other
events in your own application and other similar applications. Do not try to
use the full range of possible priorities if they are not applicable to your
application. Use the priority information in EvmEvent(5) as a guideline,
and look at existing templates to see what priorities are being used by
similar events.

Choose the priority of an event carefully and objectively. Think about what
you are reporting, not the possible consequences. For example, some
application failures are critical, but not all of them are. The determination
of which applications are critical should be left to a higher-level component.
The higher-level component can subscribe to error events and issue a
critical-level event if it is notified of an application error that it knows to be
critical.

Based on these considerations, events that indicate an error situation but
do not necessarily meet the “critical” criteria should be given a priority of
400 (error level), not 500 (critical level). On the other hand, an event
reporting an excessive system temperature is almost always critical.

Event priorities for events that are related to each other should be
established independently of each other. This means, for example, that if
you post a failure event with a priority of 500 to indicate that an
application has failed and you later post a related event to indicate that is
has been restored, the second event should have a lower priority, for
example, 200. Giving the “restore” event a priority of 500 may cause an
action that is not appropriate for the event.

14.5.1.4 I18N Catalog Name, Message Set ID, and Message ID Data Items

If your events contain text that is likely to be viewed by administrators in
different countries, you should consider internationalizing them. To
internationalize your events, you need to supply an I18N catalog file
containing the format strings for all of the events. Note that you should
still include the text within the event, in case the catalog file is not
available when the event text is viewed.

The catalog file should be located according to normal I18N rules, and you
must include the name of the file in your event specifications. You can

Posting and Receiving EVM Events 14–11

provide different versions of the catalog file for different language locales.
See the Writing Software for the International Market manual for more
information.

You can optionally break the catalog file into multiple message sets and
specify the message set ID in your events. Note that all messages
pertaining to a particular event must belong to the same set.

The data items I18N_catalog and I18N_msgset_id define the catalog
name and, if applicable, the message set for the format text and any string
variables contained in the event and having an associated message ID. The
I18N_format_msg_id data item gives the message ID for the format text.
If no catalog or message ID is supplied, the format text specified in the
format data item is used to display the event summary.

See Section 14.6.4 for information on how to establish translations for
event text.

14.5.1.5 Reference Data Item

The reference data item is used to find the event explanation text for a
detailed display of the event. The value of this item is passed to the event
channel’s “explain” script, along with the name of the event, to allow it to
identify the explanation text associated with the event. Because each
channel can have its own explain script, the format of the field might be
different for each channel — however, for events that are stored in and
retrieved from the EVM log (the evmlog channel), this item should contain
a string of the following form:

cat:catalog_name[:set_number]

The catalog_name is the name of an I18N catalog containing the
explanation text for the event. To allow the explain script to locate the
appropriate message, each explanation message in the catalog must begin
with the name of the event enclosed in braces.

The optional set_number is the number of the catalog message set
containing the explanation. If no set number is supplied, the whole catalog
is searched.

Third-party product vendors and local applications should not add
explanations to the Tru64 UNIX explanation catalog, evmexp.cat, but
should provide separate catalogs. The value of this item should generally
be set as a global data item in the template file.

See Section 14.6.2 for details on how to write event explanation text.

14–12 Posting and Receiving EVM Events

14.5.2 Variable Data Items

You can use variable data items in your events to provide any information
that is different for each instance of an event. For example, if you are
posting an event because you have detected a high temperature, you could
include the actual temperature as a floating-point value in a variable data
item.

Variable data items have the following properties:

• A name

• A type

• A value

• A size (implicit for most types)

• An I18N message ID (optional — applies to string variables only)

A variable name can be made up of any combination of upper– or lowercase
alphanumeric characters and the underscore (_) character. Names should
be meaningful, but remember that the variable name is carried inside the
event, and the longer the name, the larger the physical event.

A variable data item can be extracted and used directly by the subscriber
or combined with the event format text string to produce a formatted
version of the event for display.

Table 14–3 shows the variable types that EVM supports.

Table 14–3: EVM’s Variable Data Types

Type Identifier Size and Type

EvmTYPE_BOOLEAN 8-bit integer

EvmTYPE_CHAR 8-bit character

EvmTYPE_INT16 16-bit signed integer

EvmTYPE_INT32 32-bit signed integer

EvmTYPE_INT64 64-bit signed integer

EvmTYPE_UINT8 8-bit unsigned integer

EvmTYPE_UINT16 16-bit unsigned integer

EvmTYPE_UINT32 32-bit unsigned integer

EvmTYPE_UINT64 64-bit unsigned integer

EvmTYPE_FLOAT 32-bit floating-point value

EvmTYPE_DOUBLE 64-bit floating-point value

Posting and Receiving EVM Events 14–13

Table 14–3: EVM’s Variable Data Types (cont.)

Type Identifier Size and Type

EvmTYPE_STRING Null-terminated character string

EvmTYPE_OPAQUE Binary data whose size must be specified explicitly

In general, because variables contain information that is specific to an
instance of an event, they should be included in the event by the poster.
However, for documentation purposes, it is also useful to include variable
names and types, along with dummy values, in the template version of the
event. See Section 14.6.3 for information on templates.

14.6 Designing a Set of Events

When designing an application or subsystem, you need to also design an
associated set of events.

EVM events need to be designed with care. Events must meet the
requirements of two styles of interfaces: the human style (readable text)
and the program style (binary data). Once an event is posted, it can be seen
and acted upon in either its text form or its binary data form.

Designing an event involves the following considerations:

1. Decide on a family name for a set of related events. (See
Section 14.5.1.1 for details.)

2. Create a list of the status changes that might be of interest to a
monitoring entity, and choose a name for each event. (See
Section 14.6.1 for details.)

3. Decide on the contents of each event. All events need a name. Most
events need a format string and a priority, and many also need
variables. For each variable, consider the type and possible values.
(See Section 14.5 for details.)

4. Write a detailed description of each event for documentation purposes.
Include details on what the event means, when it might occur, any
actions the user or responsible subscriber should take in response to it,
and the contents of the event (particularly any variable data items).
The explanation text is usually held in a catalog file and can be
accessed for display. (See Section 14.6.2 for details.)

5. For each event, decide which items go into the template and which will
be coded by the poster. Except for the event name, all items in both
posting code and templates are optional. If an optional item is declared
in both places, the poster’s declaration has precedence. (See
Section 14.6.3 for details on templates, Section 14.5 for details on

14–14 Posting and Receiving EVM Events

event items that are commonly posted, and Section 14.6.3.3 for details
on how data items in templates and posted events are merged.)

6. Decide whether the events should be internationalized. If so, choose a
name for the I18N catalog file and establish any required message sets
within the catalog. (See Section 14.6.4 for details.)

Designers must recognize that an EVM event is an interface upon which
other programs or subsystems may rely. Therefore, once established, the
interface should generally not be changed.

14.6.1 Deciding Which Status Changes Are Eventworthy

The importance of an event can vary from application to application, and it
may be difficult in some cases to decide whether a status change recognized
by your code is important enough to communicate to others.

It is advisable to post events for the following types of occurrences:

• When a component makes a change to the system. For example, a
system management program might post an event if it adds a new user
to the system or changes the network configuration.

• When a potentially significant error occurs. For example, a system
management program should post an event if it finds that a key system
file is missing, and a device driver should post an event if it detects a
disk failure.

• When a boundary indicating that a failure is likely to occur is passed.
For example, file system management software might post a warning
event when it detects that a file system has passed a boundary and
become at least 95 percent full. Take care, however, to avoid posting
repeated events of this nature if the state oscillates around the
boundary. Your code should typically only post the same event again if
the condition is still true after some preset time interval has elapsed,
even if the state has dropped below the boundary several times during
the time interval.

• When a user is granted a privilege or takes some action that affects the
operation of the system. For example, a system management program
might post an event when a disk is mounted or unmounted, or when
the system is being closed down.

Do not post events for the following types of occurrences:

• In response to an error made by a user in a session that is under your
control and where you have direct communication with the user. For
example, a configuration program should not post an event just because
a user responded incorrectly to a prompt.

Posting and Receiving EVM Events 14–15

• If you are dealing with an “error” that meets the following criteria: it is
expected and is normal behavior, you know why it is happening, and it
will not cause a system administrator to take any action.

• If the condition that you have just detected was reported very recently,
and reporting it again will serve no useful purpose.

If you do post an event, avoid posting the same event repeatedly over a
short period of time if, for example, a condition oscillates between true and
false. In some cases, it may be helpful to post an occasional summary
event, stating, for example, that the same incident has occurred multiple
times within a specified length of time.

High levels of event activity can cause the loss of events because an
application may not be able to handle the message load. See
Section 14.7.10.10 for information on how to handle missed events.

14.6.2 Writing Event Explanation Text

You should supply explanation text for every EVM event. Explanation text
is not included within an event when it is posted, but might be held in a
catalog file and referenced by the contents of the event’s reference and
name data items (see Section 14.5.1.5). The explanation text for sys.unix
events is physically held in a catalog file named evmexp.cat. To display
the explanation text for an event, use the -x or -d option of evmshow.

Your explanation should include the name of the event and a description of
what it means. If an event can mean different things, depending on the
context (for example, the number of occurrences within a given time period
or the presence of certain other events), then state that fact and provide a
couple of sample situations. Whenever an action is required, state what the
action is. If the action varies with the context, then state that fact and
provide examples. If the event does not require an action from the user, it
is often helpful to state that explicitly.

Example 14–1 shows sample explanation text for a system event.

Example 14–1: Sample Event Explanation Text

Example 1:

EVENT sys.unix.evm.daemon.event_activity

Explanation:

This high-priority event is posted by the EVM daemon when it
detects a high number of events occurring over several minutes.

14–16 Posting and Receiving EVM Events

Example 14–1: Sample Event Explanation Text (cont.)

Action: Use the EVM event viewer or the evmget(1) command to
review the event log for the source of the activity. If the
log does not show high activity around the time at which this
event was posted, it is likely that the events were low priority,
and hence were not logged. You can monitor low-priority events by
running the evmwatch(1) command with an appropriate filter, or
by temporarily reconfiguring the EVM logger to log low-priority
events.

Note: You can change the parameters that control the posting
of this event by modifying the daemon configuration file,
/etc/evmdaemon.conf.

14.6.3 Designing Event Templates

Each posted event must have a template, and each template can support
one or more events. A template defines the event name and any fixed data
item within the event.

An event template is used for two purposes:

• To register the event with EVM. An event that is not registered cannot
be posted.

• To allow data items that are common to most or all instances of an
event (for example, message catalog information) to be held in the
template for that event. Including fixed data items in a template makes
it easy to update this information and relieves event posters from the
need to repeatedly provide this information in their post requests. See
Section 14.6.3.1 for information on how to decide what to include in an
event template.

See Section 14.6.3.3 for a description of the way that the contents of
event templates are merged with the contents of a posted event.

Templates are stored in files that are held in a centralized EVM database
(see Section 14.6.3.4). You can put any number of event templates in a
template file.

14.6.3.1 Deciding what to Put in an Event Template

Deciding which items should be supplied by event posters and which
should be supplied in the template is a design-level decision. As a general

Posting and Receiving EVM Events 14–17

rule, it is better to include constant data items in the event template than
to have them hardcoded into an event by posting programs.

A key benefit of the event template mechanism is that it allows you to
centralize the fixed attributes of all of your application’s events, making it
very easy to change them during the development cycle and providing a
single place to look for the information once the application has been
deployed.

As a general rule, try to minimize the amount of event information that you
hardcode into a posting application program and to put as much as possible
into the event template. Typically, your application should only provide:

• Event name (required — it must have at least three components and be
at least as long as the event name in the matching template)

• Contents of any variables

The template should generally include:

• Event name (required — it must have at least two components)

• Priority

• Format text

• I18N message catalog information (for internationalized events)

• Cluster_event flag (if applicable)

• Variables (initialized to zero values or empty strings)

Although the posting application is generally expected to supply values for
variable data items when it posts an event, it is helpful to include the
variable in the template as well because this makes the template more
valuable as a point of documentation. In the template, you should typically
give variables zero values (or for string variables, an empty string). In
some special cases, it may be useful to provide a real default value in a
template (which can be overridden by the poster) — if this is the case, be
sure to describe the situation in a comment in the template file.

The following source file is an example of an event template file containing
one event:

Example event file
priority 200 # Default priority
ref cat:myapp_exp.cat # Global reference
event {

name myco.myapp.env.temperature
format "Temperature is $temperature"
var { name temperature type FLOAT value 0,0 }

}

14–18 Posting and Receiving EVM Events

You can include as many variables as you like in an event, but note that
opaque variables (binary structures) are not supported in templates.

14.6.3.2 Matching the Names of Posted Events with Event Template Names

Each time an attempt is made to post an event, EVM looks in its template
database for the template whose event name matches the name of the
posted event. If no match is found, EVM returns an error code to the
program that posted the event. If a match is found, EVM then retrieves
any data items held in the template and combines them with the items
supplied by the program that posted the event. This operation produces the
“merged” event that is distributed to subscribers. See Section 14.6.3.3 for
details on the merging operation.

The template-matching process requires a match only between the leftmost
components of a posted event’s name and all of the components of a
template event’s name. EVM looks for the best match in its database, using
the following rules:

• The closest match is the template event whose name exactly matches
the most components of the posted event, when compared from left to
right.

• A match is considered to have occurred if the posted event has at least
as many components as the closest database entry, but not if it has
fewer components.

• Components must match exactly.

• At least two components are required in the template name, and at
least three are required in the name of the posted event.

It is recommended that you provide a separate template for each distinct
event your application will post because this allows you to centralize the
event’s unique information by storing it in the template. However, the
benefit of the best-match mechanism is that it allows you to extend an
event’s name with different instance information each time you post it; for
example, you could add a device name or temperature value as additional
components. Having these additional instance components makes it easier
to filter and sort events. See Section 14.5.1.1.1 for examples of ways to
extend an event’s name.

Table 14–4 shows some examples of event name matching between event
templates and posted events.

Posting and Receiving EVM Events 14–19

Table 14–4: Name Matching Examples

Posted Event Name Template Event Name Match?

myco.myprod.env myco.myprod.env Yes

myco.myprod.env.temp.high.70 myco.myprod.env.temp Yes

myco.myotherprod myco.myotherprod.start No — the
posted event
has too few
components

14.6.3.3 Merging Data Items from Templates and Posted Events

After the EVM daemon has successfully validated a posted event, it merges
the data items contained in the posted event with any data items contained
in the template, and then distributes the merged event to any clients who
have subscribed to the event. The merge process gives the event designer
maximum flexibility in deciding which text and data items are to be
provided by the template and which are to be provided by the poster.

Figure 14–2 illustrates the concept of event merging.

Figure 14–2: Posted Event and Template Merging

ZK-1399U-AI

Application extracts:
temp = 82.7

EVM logger stores
binary event

Subscribers

EVM daemon
Merged event

Template Event Posted Event

Viewer displays:
"Temperature too high: 82.7"

Name
Priority
Format
Variable

myco.myprod.env.temp.high
600
Temperature too high: $temp
Name: temp
Type: Float
Value: 82.7

Name
Priority
Format

myco.myprod.env.temp.high
600
Temperature too high: $temp

Name
Variable

myco.myprod.env.temp.high
Name: temp
Type: Float
Value: 82.7

EVM
Log

If the same data item is supplied in both the template and the posted
event, the posted value is used in the merged event.

The merge process yields a canonical (binary) event structure that contains
a combination of the data items from the posted event and the template.

14–20 Posting and Receiving EVM Events

The merged event is distributed to subscribers in its canonical form, not as
a formatted message, and subscribers must use the EVM API functions to
format the event for display or to extract information from it. The API
functions are described in Section 14.7.

14.6.3.4 Installing Template Files — Location, Naming, Ownership, and
Permission Requirements

Event template files should normally be installed as part of the product or
application installation process. System template are stored in
subdirectories under /usr/share/evm/templates, while third-party
product and local application templates should be stored under the local
template directory /var/evm/adm/templates. A link is provided from the
system template directory to the local directory. To add templates for a
product or local application, the application’s installation process should
create an appropriately named subdirectory of the local template directory
and install its templates in the new directory. EVM’s template search
policy follows symbolic links, so you may also install the templates in a
directory more closely associated with the application, and connect it to the
local directory with a link.

Template files must have the suffix .evt, must be owned by root or bin,
and must have one of the following access permissions: 0600, 0400, 0640, or
0440. Also be sure to give the new directory appropriate permissions.

After you install the file, run (as root) the command evmreload -d to
cause EVM to recognize the new templates, and then check for any errors.
See evmreload(8) for details.

14.6.3.5 Checking Event Template Registration

You can check whether your templates are registered by using evmwatch
with the -i option. For example, the following command lists the names of
all event templates registered for the myapp application:

evmwatch -i -f "[name myco.myprod.myapp]" | evmshow -t "@name"

Use the -d option of evmshow to display the template details. Note that
evmwatch will not return the templates of any events for which you do not
have access authorization, so you may need to be logged in as root to see
your templates.

14.6.4 Establishing Translations for Event Text (I18N)

The objective of event internationalization (I18N) is to allow an event’s
format data item, and the values of any string variables contained in the
event, to be converted to another language for display. If you are developing

Posting and Receiving EVM Events 14–21

a product that will be used internationally, you can include support for
translation of any or all of these items.

Because different users may want to view the same stored event in
different languages, language interpretation must be performed on-the-fly
when the event is formatted for presentation, not when it is posted. It is
impractical for an event to carry the text in all possible languages, so its
associated message catalog must be available when the event is formatted.
Product developers are responsible for providing message catalogs and for
including them for installation along with their products. To handle the
case in which the catalog is not available, an internationalized event can
carry a default native-language string.

An internationalized event can contain the following items:

• An I18N message catalog name

• An I18N message set identifier (optional)

• An I18N message identifier for the format data item

• A separate I18N message identifier for each internationalized string
variable

• Default native-language strings for any or all of the previous items in
this list

All message identifiers for the event must relate to the same message
catalog, and they must all belong to the same message set (1, by default).

In general, the catalog ID, set ID, and message ID for the event format
string should all be supplied in the event template because the format
string is usually fixed. Where events contain string-type variables, the
variables are likely to refer to items such as device names or application
names, which usually will not need to be translated, regardless of the
language for display — and hence in most cases it will not be necessary to
supply a message ID. In the rare cases in which the value of a string
variable does need to be translated, the poster must supply the message ID.

Table 14–5 shows some internationalized values for an example event.

Table 14–5: Example Data Item Values for an Internationalized Event

Event Data Item Value Message ID

Name acme.prod.env.temp n/a

Message catalog acme_prod.cat n/a

Format string Temperature of sensor $sensor
is $temperature

541

14–22 Posting and Receiving EVM Events

Table 14–5: Example Data Item Values for an Internationalized Event
(cont.)

Event Data Item Value Message ID

String variable “sensor” S27 n/a

String variable “temperature” high 542

English and French versions of temperature.cat contain:

• English

– 541:Temperature of sensor $sensor is $temperature

– 542:high

– 543:low

• French

– 541:La temperature du senseur $sensor est
$temperature

– 542:haute

– 543:basse

When the viewer has to display the event, it invokes a format function,
which, depending on the user’s locale setting, returns either of these
strings if it can find the appropriate catalog file and if the file contains the
specified messages:

"Temperature at sensor S27 is high"
"La temperature du senseur S27 est haute"

If the format function cannot interpret the events from a catalog, it uses
the values that are carried in the event and returns the following message
regardless of the user’s locale:

"Temperature at sensor S27 is high"

If an event file is passed to another system for analysis, it is possible that
the associated catalog file will be unavailable. If the event includes default
values, as in the previous example, it can still be displayed in the original
language. If the event does not include defaults, the formatted string can
still show the event name, along with a dump of any variables. For example:

Event "myco.myprod.env.temp": $sensor = "S27" $temperature = "high"

See the Writing Software for the International Market manual for
additional information on I18N issues.

Posting and Receiving EVM Events 14–23

14.7 The EVM Programming Interface

EVM events are opaque data structures that can only be accessed and
manipulated by using EVM’s application programming interface (API)
functions. The following sections provide programming information and
examples of some of the operations commonly performed on EVM events.

14.7.1 The EVM Header File

Programs that use EVM functions must include the following header file:

#include <evm/evm.h>

14.7.2 The EVM API Library

Programs that use EVM API functions must link against either the shared
library libevm.so or the static library libevm.a. The shared library is
located in the root-partition directory, /shlib, and consequently is
available to programs that may need to be run when the system is in
single-user mode. However, because the EVM daemon is not started until
run level 2, any attempt to connect to the daemon while in single-user
mode will fail. There is a symbolic link from /usr/shlib to the shared
library in /shlib, making the library available to programs linked using
the default library search path.

14.7.3 Return Status Codes

The status codes returned by EVM functions are enumerated in the header
file evm/evm.h. EVM functions commonly return the following values:

• EvmERROR_NONE — The operation completed without error.

• EvmERROR_INVALID_ARGUMENT — One of the arguments passed to a
function was invalid.

• EvmERROR_INVALID_VALUE — A structure contained an invalid value.

• EvmERROR_NO_MEMORY — An operation failed because an attempt to
acquire heap memory failed.

• EvmERROR_NOT_PRESENT — A requested item is not present in the
event.

14.7.4 Signal Handling

The EVM API does not use signals in its normal processing, and in general
does not interfere with an application program’s use of signals. However,
because Tru64 UNIX’s default action is to silently terminate a process that

14–24 Posting and Receiving EVM Events

attempts to write to a local connection if there is no process to read the
data, there is a danger that a client process could exit without trace if the
EVM daemon should terminate before or during activity on the connection.

To prevent this from happening, the EvmConnCreate() function checks
whether the caller has already established a handler for SIGPIPE, and, if
not, the function installs a default handler. The handler takes no action if
the signal occurs, but its presence prevents the client from terminating. A
program can override the EVM handler by setting its own handler either
before or after the call to EvmConnCreate(). If it is important that the
program takes the default action, set the action to SIG_DFL after calling
EvmConnCreate().

14.7.5 EVM In Multithreaded Programs

All EVM API functions are thread-safe; in the few cases where it is
necessary to use internal static storage, they use locks to protect the
storage from simultaneous access by separate threads. Nevertheless, if you
are using EVM API calls in a multithreaded program, you need to take
certain precautions to avoid synchronization errors:

1. If possible, restrict the use of all entities returned by any API function
to the thread in which it was established. These items include:

Entity Type Returned by

Connection context EvmConnection_t EvmConnCreate()

Event EvmEvent_t EvmEventCreate(),
EvmEventCreateVa(),
EvmEventRead(),
EvmEventDup()

Data item EvmItemValue_t EvmItemGet()

Data item list EvmItemList_t EvmItemListGet()

Variable EvmVarValue_t EvmVarGet()

Variable list EvmVarList_t EvmVarListGet()

Event filter EvmFilter_t EvmFilterCreate()

Connection fd EvmFd_t EvmConnFdGet()

2. If it is necessary to refer to these entities in more than one thread, it is
essential that you protect them against simultaneous access or update
by using locks.

If you do not follow these rules, it is highly likely that random errors will
occur.

Posting and Receiving EVM Events 14–25

14.7.6 Reassigning and Replicating EVM Events

If you need to reassign EVM events after they have been created, received,
or read, it may be useful to understand how an event is held in memory.

The EvmEvent_t type defines a pointer to a short “handle” structure that
holds some control information and a pointer to the event body. When you
use EvmEventCreate() or any related function to create a new event, the
function allocates heap memory separately for the handle and the event
body, stores the pointer in the handle, and returns the pointer to the
handle as the function’s EvmEvent_t output argument. You must use the
returned pointer any time you need to refer to the event.

If you modify the event (by adding a variable, for example), it is likely that
the space used by the event body will be freed and reallocated. When this
happens, the address stored in the handle is automatically updated to
reflect the new location; hence, the reallocation is completely transparent.
The location of the handle remains unchanged for the life of the event.

If you need to transfer an event from one variable to another, you can do so
using a simple C-language assignment statement between variables of type
EvmEvent_t. Because the value you hold is simply a pointer to a constant
location — the event’s handle — you can, if you wish, continue to use both
of the variables to refer to the event. However, if you subsequently use
EvmEventDestroy() to destroy the event, you must be sure to discard
both references.

You must also be aware that reassigning an event copies just the reference
to its handle; it does not copy the event body. If you need to make a
completely independent copy of the event, you can do so using the
EvmEventDup() function call.

14.7.7 Callback Functions

EVM posting and subscribing clients connect to the EVM daemon using the
EvmConnCreate() function call, and must specify one of three possible
response modes: EvmRESPONSE_IGNORE, EvmRESPONSE_WAIT or
EvmRESPONSE_CALLBACK. The modes are described in EvmConnCreate(3).

Subscribing clients are required to specify EvmRESPONSE_CALLBACK as the
response mode, and incoming events are passed to them by the callback
function that you supply as the fourth argument to EvmConnCreate(). An
example of the use of a callback function by a subscribing client is given in
Section 14.7.10.6.

When working with a callback function, it is important to understand that
your function is not called asynchronously, in the manner of a signal

14–26 Posting and Receiving EVM Events

handler. Rather, your program must monitor the connection for input
activity, using EvmConnWait() or select() or a related function, and
then call EvmConnDispatch() to handle the activity.
EvmConnDispatch() then reads an incoming message from the
connection and invokes your callback function if necessary. The possible
reasons the callback being invoked are listed in EvmCallback(5).

As with any function, the arguments passed to your callback function are
passed on the program stack and are available only within the scope of the
function; therefore, if you want to save any values for use after you have
returned from the callback, you must copy them to global memory space
before returning.

Note that if the callback is reporting an incoming event and you wish to
preserve the event instead of handling it and then destroying it within the
callback, you can simply declare a globally accessible variable of type
EvmEvent_t and assign the incoming event to it, for example:

/* In global declarations */
EvmEvent_t SavedEvent;
...

/* In your callback function */
SavedEvent = cbdata->event;

In this case, you must not destroy the event in the callback function,
because the assignment copies just the reference to the event, not the event
body. Remember, however, that you must still arrange to destroy the event
from elsewhere once you have finished with it; otherwise, you may have
introduced a memory leak.

See Section 14.7.6 for a description of event assignment.

14.7.8 Handling Disconnections

If your program is a subscribing client, it is particularly important that you
handle disconnection from the EVM daemon correctly. A disconnect should
not occur under normal operation, but may occur in a system that is being
tested or if a fault is encountered.

Although you should always test the return code from functions dealing
with a connection, failure to do so is most likely to cause a system impact
in a subscribing client, which may spend most of its time waiting for
activity on a connection.

If a disconnect occurs, your program will drop out of its select() or
EvmConnWait() call, and subsequent calls to EvmConnCheck() and
EvmConnDispatch() will return failure status codes. When this happens,
you should not return immediately to the select() or EvmConnWait()

Posting and Receiving EVM Events 14–27

call because that would result in a CPU-bound loop. Instead, check
whether the status code indicates a connection error and, if so, destroy the
connection using EvmConnDestroy() and then attempt to reconnect. If
the initial attempt to reconnect fails, you should arrange to try again after
a reasonable delay — say 30 seconds — and continue to retry periodically
until the connection is re-established.

Note that not all error codes returned by the connection functions indicate
a disconnect. In particular, it is very possible that the program will drop
out of EvmConnWait() as a result of a signal. If this is indicated, the
correct action is to return immediately to the EvmConnWait() call.

14.7.9 Using Event Filters

An event filter is used to identify the set of events in which you are
interested. Once established, a filter evaluator is given a string defining the
events of interest, and then can be passed a series of events, returning for
each a Boolean indication of whether the event passes the filter.

Filters are used in EVM subscribing client programs to specify the set of
events for which they wish to subscribe, and may also be used in
determining the action to be taken for the events they receive. To limit the
set of events returned, filters can also be used by several of EVM’s
command-line utilities as start options. See the System Administration
manual for information on the use of filters by command-line utilities, and
see EvmFilter(5) for a formal description of filter syntax.)

See Section 14.7.10.8 for an example of how to use filters.

14.7.10 Sample EVM Programming Operations

Examples of the following operations are provided in the sections that
follow:

• Performing simple event manipulations (Section 14.7.10.1)

• Using variable-length argument lists (Section 14.7.10.2)

• Adding and retrieving variables (Section 14.7.10.3)

• Posting events (Section 14.7.10.4)

• Reading and writing events (Section 14.7.10.5)

• Subscribing for event notification (Section 14.7.10.6)

• Handling multiple I/O sources (Section 14.7.10.7)

• Using filter evaluators (Section 14.7.10.8)

• Matching event names (Section 14.7.10.9)

14–28 Posting and Receiving EVM Events

• Dealing with missed events (Section 14.7.10.10)

14.7.10.1 Performing Simple Event Manipulations

All EVM clients need to work with the EVM event, an opaque binary
structure that can hold standard data items and variables. Example 14–2
shows you how to create an event, add items to it, and then retrieve the
items from it.

The example introduces the following functions:

• EvmEventCreate — Creates an empty event. (See EvmEventCreate(3)
for details.)

• EvmEventDestroy — Destroys a previously created event, freeing its
memory. This function must be used if it is necessary to free an event.
Although the event reference points to a structure allocated from the
heap, that structure contains references to other structures, and hence
using free() directly on the event reference will result in lost memory.
(See EvmEventDestroy(3) for details.)

• EvmItemSet — Sets data item values in the event. The list of items
and variables to be supplied is the same as that supplied for
EvmEventCreateVa. (See EvmItemSet(3) for details.)

• EvmItemGet — Supplies the value of a specified event data item. (See
EvmItemGet(3) for details.)

• EvmItemRelease — Releases any memory that was allocated when a
specified data item was retrieved from an event by EvmItemGet(). (See
EvmItemRelease(3) for details.)

Example 14–2: Performing Simple Event Manipulations

#include <stdio.h>
#include <evm/evm.h>

main()
{

EvmEvent_t event;
EvmItemValue_t itemval;
EvmStatus_t status;

EvmEventCreate(&event); 1

EvmItemSet(event,EvmITEM_NAME,"myco.examples.app.started"); 2
EvmItemSet(event,EvmITEM_PRIORITY,200);

status = EvmItemGet(event,EvmITEM_NAME,&itemval); 3
if (status == EvmERROR_NONE)
{ fprintf(stdout,"Event name: %s\n",itemval.NAME);

EvmItemRelease(EvmITEM_NAME,itemval);
}

Posting and Receiving EVM Events 14–29

Example 14–2: Performing Simple Event Manipulations (cont.)

EvmEventDestroy(event); 4
}

1 You can create an empty event with EvmEventCreate(). When you
use this function, you supply a pointer to the event handle, and you
receive an event that contains no standard data items. Even though it
is empty, the event does take up memory, and you must eventually use
EvmEventDestroy() to free the space.

2 You can add any of the standard data items to the event using
EvmItemSet(). In most cases, however, the only item you will want to
add in your program is the name of the event — other standard items
will be automatically added when you post the event, or are better
included in the event template. See EvmItemSet(3) for a list of the
settable items.

3 You can retrieve any item from the event using EvmItemGet(). The
value is copied from the event into storage referenced through your
EvmItemValue_t structure, so you must use EvmItemRelease() to
release the storage once you have finished with it. Retrieving the item
does not remove it from the event; you receive a copy and you can get
it as many times as you wish.

This piece of code retrieves the event’s name (which was added
earlier), prints its value, and then releases the storage. You should
always check the return status from the “get” operation because you
may be requesting an item that is not present in the event.

4 When you have finished with the event, free the storage space used by
the event.

14.7.10.2 Using Variable-Length Argument Lists

You can reduce the size and improve the efficiency of your code by creating
an event and adding items to it in a single step, using the “varargs”
(variable-length argument list) version of the create function — and you
can add items to an existing event efficiently by using the varargs version
of the item-set function.

Example 14–3 introduces the following functions:

• EvmEventCreateVa — Creates an event and supplies item names and
values in a single call. (See EvmEventCreateVa(3) for details.)

14–30 Posting and Receiving EVM Events

• EvmItemSetVa — Sets data item values in the event. The list of items
and variables to be supplied is the same as that supplied for
EvmEventCreateVa. (See EvmItemSetVa(3) for details.)

Example 14–3: Using Variable-Length Argument Lists

#include <stdio.h>
#include <evm/evm.h>

main()
{

EvmEvent_t event;

EvmEventCreateVa(&event, 1
EvmITEM_NAME,"myco.examples.app.started",
EvmITEM_PRIORITY,200,
EvmITEM_NONE);

EvmItemSetVa(event,
EvmITEM_NAME,"myco.examples.app.finished", 2
EvmITEM_PRIORITY,100,
EvmITEM_NONE);

EvmEventDestroy(event); 3
}

1 Each item you include in EvmEventCreateVa() must have an
identifier and a value, and the argument list must be terminated with
an EvmITEM_NONE identifier.

2 The varargs version of EvmItemSet() uses the same style of
argument list as EvmEventCreateVa(). In this example, items that
are already present in the event are being added, so the new values
just replace the old ones.

3 When you have finished with the event, free the storage space used by
the event.

14.7.10.3 Adding and Retrieving Variables

Example 14–4 shows you how to add variable data values to an event and
how to retrieve the variables from an event.

The example introduces the following functions:

• EvmVarSet — Sets the value of a named variable data item in an
event. This function is used both for adding a variable and for altering
the value of an existing variable. (See EvmVarSet(3) for details.)

• EvmVarGet — Returns details on a specified event variable in a given
variable structure. The caller must free any memory used by the
variable by calling EvmVarRelease(). (See EvmVarGet(3) for details.)

Posting and Receiving EVM Events 14–31

• EvmVarRelease — Releases any memory that was allocated when the
specified variable was retrieved from an event by EvmVarGet(). It does
not release the specified variable structure, only any heap storage
referenced by the structure. (See EvmVarRelease(3) for details.)

Example 14–4: Adding and Retrieving Variables

#include <stdio.h>
#include <evm/evm.h>

void
main()
{ EvmEvent_t event;

EvmStatus_t status;
EvmVarValue_t varval_1, varval_2; 1
EvmVarStruct_t varinfo;

EvmEventCreateVa(&event,
EvmITEM_NAME,"myco.examples.app.finished",
EvmITEM_NONE);

varval_1.STRING = "my_app";
varval_2.UINT16 = 17;

EvmVarSet(event,"progname",EvmTYPE_STRING,varval_1,0,0); 2
EvmVarSet(event,"exit_code",EvmTYPE_UINT16,varval_2,0,0);

status = EvmVarGet(event,"progname",&varinfo); 3
if (status == EvmERROR_NONE)
{ fprintf(stdout,"%s: %s\n",varinfo.name_p,

varinfo.value.STRING);
EvmVarRelease(&varinfo);

}
status = EvmVarGet(event,"exit_code",&varinfo);
if (status == EvmERROR_NONE)
{ fprintf(stdout,"%s: %d\n",varinfo.name_p,

varinfo.value.UINT16);
EvmVarRelease(&varinfo);

}

EvmEventDestroy(event); 4
}

1 To add a variable to the event, you must first place the value in a
union of type EvmVarValue_t. The members of the union have the
same names as the EVM variable types.

2 Use EvmVarSet() to add the variables to the event, giving them
meaningful names. The final two arguments are set to 0 unless you are
adding an “opaque” variable or supplying an I18N message ID for a
string variable.

3 You can retrieve the value of any variable by passing its name to
EvmVarGet(), which copies the value into an EvmVarStruct_t
structure. The structure also contains the name, type, and size of the

14–32 Posting and Receiving EVM Events

variable, so you can write generic code to handle any type of variable.
Retrieving a variable does not remove the variable from the event, and
you can retrieve it as many times as you wish. The returned
information always take up space in heap memory, so you must use
EvmVarRelease() to clean up when you have finished with the value.

4 When you have finished with the event, free the storage space used by
the event.

14.7.10.4 Posting Events

The most likely reason for creating an event is to post it. Posting an event
results in the event being distributed to subscribers by the EVM daemon.
Before you can post the event, you must create a posting connection to the
daemon.

Example 14–5 shows how to create the connection, post the event, and
disconnect.

The example introduces the following functions:

• EvmConnCreate — Establishes a connection between an application
program and EVM, and defines how I/O activity is to be handled. A
separate connection must be established for each type of connection:
posting, listening (subscribing), or retrieving. (See EvmConnection(5)
and EvmConnCreate(3) for details.)

• EvmEventPost — Posts an event to EVM. (See EvmEventPost(3) for
details.)

• EvmConnDestroy — Destroys a specified connection. (See
EvmConnDestroy(3) for details.)

Example 14–5: Posting Events

#include <stdio.h>
#include <evm/evm.h>

void
main()
{ EvmEvent_t event;

EvmStatus_t status;
EvmConnection_t conn;

status = EvmConnCreate(EvmCONNECTION_POST, EvmRESPONSE_WAIT, 1
NULL,NULL,NULL,&conn);

if (status != EvmERROR_NONE)
{ fprintf(stderr,"Failed to create EVM posting connection\n");

exit(1);
}

EvmEventCreateVa(&event, 2
EvmITEM_NAME,"myco.examples.app.error_detected",

Posting and Receiving EVM Events 14–33

Example 14–5: Posting Events (cont.)

EvmITEM_NONE);

status = EvmEventPost(conn,event);
if (status != EvmERROR_NONE)
{ fprintf(stderr,"Failed to post event\n");

exit(1);
}

EvmEventDestroy(event); 3
EvmConnDestroy(conn);

}

1 You can create a connection to the EVM daemon using
EvmConnCreate(). The connection remains in place until your
program exits, or until you explicitly destroy it with
EvmConnDestroy(). In the following code segment, the first two
arguments to EvmConnCreate() specify that the connection will be
used for posting events and that you want the post function to wait for
the daemon to acknowledge acceptance of the event before returning,
so that you can take action if the attempt fails. (See
EvmConnCreate(3) for other response options.) The NULL value for the
third argument indicates that you are making a connection to the
EVM daemon running on the local system — you will almost always
specify NULL here; seeEvmConnCreate(3) for details about remote
connection. The fourth and fifth values are used for other response
types, and should always be NULL for wait-mode response. The final
argument receives the handle to the connection — you must supply
this for all future calls being made on this connection.

2 Create an event and post it.

3 Clean up by destroying the event and the connection. If you expect to
be posting events periodically, it may be better not to destroy the
connection, but to reuse it for all future events. This will save you the
overhead of re-establishing the connection each time you have
something to post.

14.7.10.5 Reading and Writing Events

You will need to use the EVM read and write functions if you are writing a
program that performs any of the following operations:

• Stores events in a file

• Passes events to another process

• Analyzes events stored in a file

14–34 Posting and Receiving EVM Events

• Receives events from a process other than the EVM daemon

You cannot write events directly using the standard UNIX write functions
because the event handle only contains a pointer to the body of the event
— and because the location of the body may change each time the event is
modified. Conversely, when you read an event, it is not enough just to read
the body; a handle has to be created to allow you to reference the event
through the API functions.

Example 14–6 shows you how to write events to a file, to read them from a
file into your program, and to validate them.

The example introduces the following functions:

• EvmEventWrite — Writes an event to a specified file descriptor. (See
EvmEventWrite(3) for details.)

• EvmEventRead — Creates a new event structure and populates it with
an event read from a specified file descriptor. EvmEventDestroy must
be used to free the new event. (See EvmEventRead(3) for details.)

• EvmEventValidate — Performs a data integrity check on the event.
This check is intended to validate an event that has just been received
over a connection or retrieved from storage. (See EvmEventValidate(3)
for details.)

Example 14–6: Reading and Writing Events

#include <stdio.h>
#include <fcntl.h>
#include <evm/evm.h>

void
main()
{ EvmEvent_t event_in,event_out;

EvmStatus_t status;
EvmItemValue_t itemval;
int fd;

EvmEventCreateVa(&event_out, 1
EvmITEM_NAME,"myco.examples.app.saved_event",
EvmITEM_NONE);

fd = open("eventlog",O_RDWR | O_CREAT | O_TRUNC, 2
S_IRUSR | S_IWUSR);

if (fd < 0)
{ fprintf(stderr,"Failed to open output log file\n");

exit(1);
}

status = EvmEventWrite(fd,event_out);
if (status != EvmERROR_NONE)
{ fprintf(stderr,"Failed to write event to log file\n");

exit(1);
}

Posting and Receiving EVM Events 14–35

Example 14–6: Reading and Writing Events (cont.)

lseek(fd,0,SEEK_SET); 3
status = EvmEventRead(fd,&event_in);
if (status != EvmERROR_NONE)
{ fprintf(stderr,"Failed to read event from log file\n");

exit(1);
}

status = EvmEventValidate(event_in); 4
if (status != EvmERROR_NONE)
{ fprintf(stderr,"Event read from logfile is invalid");

exit(1);
}

status = EvmItemGet(event_in,EvmITEM_NAME,&*itemval); 5
if(status == EvmERROR_NONE)
{ fprintf(stdout,"Event name: %s\n",itemval.NAME);

EvmItemRelease(EvmITEM_NAME,itemval);
}

EvmEventDestroy(event_in); 6
EvmEventDestroy(event_out);

}

1 Create an event containing a name.
2 Create an output log file and use EvmEventWrite() to write the

event to it. You can write the event to any file descriptor, including a
pipe to another process — but because the event is a binary data
package, take care not to write it to a terminal or printer.

3 Read the event back in using EvmEventRead(). Note that you
produce a different event this time, and you have to supply a pointer
to the event handle, not the handle itself.

4 Because the incoming event has been outside the control of this
process, it is important to verify its integrity. You should use the
EvmEventValidate() function to do this each time you either read
an event from a file or receive it from any process other than the EVM
daemon.

5 You can show that the event just read is the same event that was just
written out by retrieving and displaying its name.

6 Free the space used by the event.

14.7.10.6 Subscribing for Event Notification

A program that subscribes for receiving event notifications must perform
the following operations:

• Create a “listening” connection to the EVM daemon

• Tell the daemon which events it is interested in by passing a filter string

14–36 Posting and Receiving EVM Events

• Monitor event activity on the connection and be prepared to handle
each event as it arrives

Example 14–7 waits for events to arrive and displays each incoming event
on stdout.

The example introduces the following functions:

• EvmConnSubscribe — Requests notification of any posted events that
match the supplied filter. (See EvmConnSubscribe(3) for details.)

• EvmConnWait — Blocks until activity is detected on a specified
connection. When activity is detected, the calling program can call
ConnDispatch to handle the activity. (See EvmConnWait(3) for details.)

• EvmConnDispatch — Handles any outstanding I/O on a specified
connection by calling the program’s callback function as needed. (See
EvmConnDispatch(3) for details.)

• EvmEventFormat — Formats an event. (See EvmEventFormat(3) for
details.)

Example 14–7: Subscribing for Event Notification

#include <stdio.h>
#include <evm/evm.h>

void
EventCB(EvmConnection_t conn, EvmCallbackArg_t cbarg,

EvmCallbackData_t *cbdata);

/*==
* Function: main()
==/
main()
{ EvmConnection_t conn;

EvmStatus_t status;

status = EvmConnCreate(EvmCONNECTION_LISTEN, EvmRESPONSE_CALLBACK,
NULL,EventCB,NULL,&conn); 1

if (status != EvmERROR_NONE)
{ fprintf(stderr,"Failed to create EVM listening connection\n");

exit(1);
}

status = EvmConnSubscribe(conn,NULL,"[name *.evm.msg.user]"); 2
if (status != EvmERROR_NONE)
{ fprintf(stderr,"Failed to subscribe for event notification\n");

exit(1);
}

for (;;) 3
{ status = EvmConnWait(conn,NULL);

if (status == EvmERROR_NONE)
{ fprintf(stderr,"Connection error\n");

exit(1);
}

Posting and Receiving EVM Events 14–37

Example 14–7: Subscribing for Event Notification (cont.)

if (EvmConnDispatch(conn) != EvmERROR_NONE)
{ fprintf(stderr,"Connection dispatch error\n");

exit(1);
}

}
}

/*==
* Function: EventCB()
==/
void
EventCB(EvmConnection_t conn, EvmCallbackArg_t cbarg, 4

EvmCallbackData_t *cbdata)
{ char buff[256];

switch (cbdata->reason) { 5
case EvmREASON_EVENT_DELIVERED:

EvmEventFormat(buff, sizeof(buff), cbdata->event);
fprintf(stdout,"Event: %s\n",buff);

EvmEventDestroy(cbdata->event); 6
break;

default: 7
break;

}
}

1 Use EvmConnCreate() to establish a connection to the EVM daemon,
this time specifying a listening connection. The following arguments
appear in this code segment:

• The first two arguments to EvmConnCreate() specify that the
connection will be used for listening and that, when events arrive,
you want to be notified through a callback function.

• The NULL third argument indicates that you are making a
connection to the local EVM daemon; see EvmConnCreate(3) for
details on remote connection.

• The fourth argument specifies the callback function to be called
when events arrive — EventCB is the next function.

• The fifth argument is the callback argument — a value that will be
passed to the callback function each time it is called to service this
connection. You can use this argument for anything you want, but
in this example it is just set to NULL.

• The final argument receives the handle to the connection.
2 The next step is to use the EvmConnSubscribe() function to let the

EVM daemon know which events you are interested in receiving. In
this case, you will watch for user messages that can be posted with
evmpost. These events have the name sys.unix.evm.msg.user.

14–38 Posting and Receiving EVM Events

Note that calling EvmConnSubscribe() results in your callback
function being invoked with a reason code of
EvmREASON_SUBSCRIBE_COMPLETE when you call
EvmConnDispatch().

3 This example does not have anything to do except wait for arriving
events, so we loop forever, using EvmConnWait() to watch for activity
on the connection. Passing NULL as the second argument to
EvmConnWait() indicates that you do not want to time out if there is
no activity. EvmConnWait() will return each time any activity occurs
— not always because an event has arrived. For example, the EVM
daemon may have sent some other message or the process may have
been interrupted by a signal. Each time the function returns without
error, you must call EvmConnDispatch() to handle the activity. This
will usually (but not always) result in EventCB(), the callback
function, being called.

4 The callback function is called by EvmConnDispatch() whenever it
reads a message from the daemon that needs to be handled by
application code. This includes incoming events; remember, however,
that you may need to consider other types of messages in your
application. The following arguments appear in this code segment:

• The first argument to the callback function is the connection
handle. This is useful to identify the connection in some
circumstances, but you may find that you do not have a use for it.

• The second argument is the callback argument that you supplied
when you established the connection. You may choose to use this
value to identify the connection, or (in C++ code) to pass a pointer
to an object instance, or you may not use it at all.

• The final argument is the callback data, a pointer to a structure
containing information about the callback. The code must examine
the callback data structure to find out why it was called. The
structure includes a reason code, a status value, and (if an event is
being delivered) a pointer to the event. See EvmCallback(5) for
details on the structure.

For this example, you are looking for incoming event messages,
indicated by the EvmREASON_EVENT_DELIVERED reason code. As each
event comes in, you format it and display it, and then (because you are
responsible for the space it consumes) destroy it when you are done
with it.

5 The action taken always depends on the reason for the callback. In
this case, the reason is “event delivered,” so you use the
EvmEventFormat() function to format the event for display, and then
you print it to stdout.

Posting and Receiving EVM Events 14–39

Note that EvmEventFormat() produces a text line that is formed
from the event’s format data item (if present), and places the result in
the buffer that you supply. Formatting does not cause the event itself
to change.

6 The delivered event is using heap space, and it is the responsibility of
the application to free the space once it has finished with the event.

7 Because we made a subscription request earlier, the function will also
be invoked with a callback reason of
EvmREASON__SUBSCRIBE_COMPLETE. For this example, this and any
other reason codes can be ignored.

14.7.10.7 Handling Multiple I/O Sources

If you are writing a program that has responsibilities other than just
listening for events, you may not want to use EvmEventWait() to wait for
events to arrive. For example, you may wish to use the select system call
to wait for I/O activity on multiple file descriptors, including the EVM
connection.

Example 14–8 shows how to handle the EVM connection in conjunction
with input from stdin.

The example introduces the following functions:

• EvmConnFdGet — Returns the file descriptor (file number) associated
with a specified connection. (See EvmConnFdGet(3) for details.)

• EvmConnCheck — Checks whether any I/O activity is outstanding on a
specified connection. (See EvmConnCheck(3) for details.)

Example 14–8: Handling Multiple I/O Sources

#include <stdio.h>
#include <sys/time.h>
#include <evm/evm.h>

void HandleInput();
void EventCB(EvmConnection_t conn, EvmCallbackArg_t cbarg,

EvmCallbackData_t *cbdata);

/*===
* Function: main()
===/
main()
{ EvmConnection_t conn;

EvmStatus_t status;
fd_set read_fds;
int conn_fd;
EvmBoolean_t io_waiting;

status = EvmConnCreate(EvmCONNECTION_LISTEN, EvmRESPONSE_CALLBACK,
NULL,EventCB,NULL,&conn);

14–40 Posting and Receiving EVM Events

Example 14–8: Handling Multiple I/O Sources (cont.)

if (status != EvmERROR_NONE)
{ fprintf(stderr,"Failed to create EVM listening connection\n");

exit(1);
}

status = EvmConnSubscribe(conn,NULL,"[name sys.unix.evm.msg.user]");
if (status != EvmERROR_NONE)
{ fprintf(stderr,"Failed to subscribe for event notification\n");

exit(1);
}

EvmConnFdGet(conn,&conn_fd); 1

for (;;) 2
{ FD_ZERO(&read_fds);

FD_SET(fileno(stdin),&read_fds);
FD_SET(conn_fd,&read_fds);

select(FD_SETSIZE,&read_fds,NULL,NULL,NULL);

if (FD_ISSET(fileno(stdin),&read_fds))
HandleInput();

status = EvmConnCheck(conn,&io_waiting); 3
if (status != EvmERROR_NONE)
{ fprintf(stderr,"Connection error\n");

exit(1);
}
if (io_waiting)
{ status = EvmConnDispatch(conn);

if (status != EvmERROR_NONE)
{ fprintf(stderr,"Connection dispatch error\n");

exit(1);
}

}
}

}

/*===
* Function: HandleInput()
===/
void
HandleInput() 4
{ char buff[256];

if (feof(stdin))
exit(0);

if (fgets(buff,sizeof(buff),stdin) == NULL)
exit(0);

if (buff[0] == ’\n’)
exit(0);

fprintf(stdout,buff);
}

/*===
* Function: EventCB()
===/
void

Posting and Receiving EVM Events 14–41

Example 14–8: Handling Multiple I/O Sources (cont.)

EventCB(EvmConnection_t conn, EvmCallbackArg_t cbarg, 5
EvmCallbackData_t *cbdata)

{ char buff[256];

switch (cbdata->reason) {
case EvmREASON_EVENT_DELIVERED:

EvmEventFormat(buff, sizeof(buff), cbdata->event);
fprintf(stdout,"Event: %s\n",buff);

EvmEventDestroy(cbdata->event);
break;

default:
break;

}
}

1 Use EvmConnFdGet() to find the file descriptor assigned to the
connection.

2 In this example, select is used to wait for I/O activity because this
allows waiting on multiple file descriptors. When the select call
returns, check to see which of the file descriptors has activity, and deal
with it appropriately.

3 EvmConnCheck() is used here to determine whether any activity is
outstanding on the EVM connection. Because the connection’s file
descriptor is known, FD_ISSET() could have been used for the same
purpose.

4 The HandleInput() function reads lines of input from stdin and
echoes them to stdout. It terminates the program on error or if an
empty line is read.

5 The event callback function is identical to the one used in the previous
example.

14.7.10.8 Using Filter Evaluators

Some event subscribers need to monitor events using a variety of criteria,
and then react in different ways according to the attributes of the incoming
events. For example, the EVM logger reads a set of filter strings from its
configuration file and subscribes for all of the events described in the
strings. Then, as each event arrives, it has to determine which of the filter
strings the event matches in order to write it to the correct set of logs.

One approach is to create multiple connections to the EVM daemon and
subscribe on each connection with a separate filter string. However, this is

14–42 Posting and Receiving EVM Events

costly in connection overhead and frequently results in the same event
being sent across two or more of the connections.

A much better approach is to take all of the filter strings and combine them
into a single logical string using the OR logical operator. This combined
string is then used to subscribe for all matching events on a single
connection. The combined string can then be discarded, but the original set
of strings must be retained. It can be used to resubscribe later if the
connection has to be re-established or if the filter has to change.

However, when an event arrives, you need to know which of the original
filter strings it matches, so that you can decide what to do with it. You can
use an EVM filter evaluator to do this. A filter evaluator is an object that
can be created, loaded with a filter string, and then passed a series of
events to determine which (if any) of the events match the filter. If you
maintain a separate evaluator for each of the original filter strings, you can
apply each incoming event to each of the evaluators to decide which
evaluators match the event.

Example 14–9 demonstrates this technique by using three simple filter
strings and by printing a different message according to which of the
filters, if any, each incoming event matches.

The example introduces the following functions:

• EvmFilterCreate — Establishes an instance of a filter evaluator and
returns a handle. (See EvmFilterCreate(3) and EvmFilter(5) for
details.)

• EvmFilterSet — Passes a filter string to the filter evaluator to be
used in subsequent matches. (See EvmFilterSet(3) and EvmFilter(5)
for details.)

• EvmFilterTest — Compares a specified event with the filter string
currently associated with the filter evaluator. If the event matches the
filter string, EvmFilterTest returns EvmTRUE; otherwise, it returns
EvmFALSE. (See EvmFilterTest(3) and EvmFilter(5) for details.)

• EvmFilterDestroy — Destroys a filter evaluator, freeing up all
associated resources. (See EvmFilterDestroy(3) and EvmFilter(5) for
details.)

Example 14–9: Using Filter Evaluators

#include <stdio.h>
#include <sys/time.h>
#include <evm/evm.h>

void
EventCB(EvmConnection_t conn, EvmCallbackArg_t cbarg,

Posting and Receiving EVM Events 14–43

Example 14–9: Using Filter Evaluators (cont.)

EvmCallbackData_t *cbdata);

#define FILTER_1 "[name *.class_1]" 1
#define FILTER_2 "[name *.class_2]"
#define FILTER_3 "([name *.class_2] | [name *.class_3]) & [priority >= 300]"

/*===
* Function: main()
===/
main()
{ EvmConnection_t conn;

Evmstatus_t status;
int conn_fd;
char *filter_string;

status = EvmConnCreate(EvmCONNECTION_LISTEN, EvmRESPONSE_CALLBACK,
NULL,EventCB,NULL,&conn);

if (status != EvmERROR_NONE)
{ fprintf(stderr,"Failed to create EVM listening connection\n");

exit(1);
}

filter_string = (char *)malloc(strlen(FILTER_1) + strlen(FILTER_2) +
strlen(FILTER_3) + 30); 2

sprintf(filter_string,"(%s) | (%s) | (%s)",FILTER_1,FILTER_2,FILTER_3);

status = EvmConnSubscribe(conn,NULL,filter_string); 3
if (status != EvmERROR_NONE)
{ fprintf(stderr,"Failed to subscribe for event notification\n");

exit(1);
}
free(filter_string);

for (;;) 4
{ status = EvmConnWait(conn,NULL);

if (status != EvmERROR_NONE)
{ fprintf(stderr,"Connection error\n");

exit(1);
}
if (EvmConnDispatch(conn) != EvmERROR_NONE)
{ fprintf(stderr,"Connection dispatch error\n");

exit(1);
}

}
}

/*===
* Function: EventCB()
===/
void
EventCB(EvmConnection_t conn, EvmCallbackArg_t cbarg,

EvmCallbackData_t *cbdata)
{ EvmBoolean_t match;

static EvmFilter_t f1,f2,f3; 5
static EvmBoolean_t filters_initialized = EvmFALSE;

if (! filters_initialized)
{ if (EvmFilterCreate(&f1) != EvmERROR_NONE)

{ fprintf(stderr,"Failed to create filter evaluator\n");

14–44 Posting and Receiving EVM Events

Example 14–9: Using Filter Evaluators (cont.)

exit(1);
}
if (EvmFilterSet(f1,FILTER_1) != EvmERROR_NONE)
{ fprintf(stderr,"Failed to set filter evaluator\n");

exit(1);
}

EvmFilterCreate(&f2);
EvmFilterSet(f2,FILTER_2);
EvmFilterCreate(&f3);
EvmFilterSet(f3,FILTER_3);

filters_initialized = EvmTRUE;
}

switch (cbdata->reason) { 6
case EvmREASON_EVENT_DELIVERED:

EvmFilterTest(f1,cbdata->event,&match);
if (match)

fprintf(stdout,"Filter 1 event received\n");

EvmFilterTest(f2,cbdata->event,&match);
if (match)

fprintf(stdout,"Filter 2 event received\n");

EvmFilterTest(f3,cbdata->event,&match);
if (match)

fprintf(stdout,"Filter 3 event received\n");

EvmEventDestroy(cbdata->event);
break;

default:
break;

}
}

1 This section of code defines three simple filter strings. The first two
filter by name alone, but the third string selects events with either of
two names, provided they have a priority of at least 300.

2 This section of code combines the three filter strings into a single
logical expression, surrounding each substring with parentheses and
separating them with the logical OR operator. This will cause the
daemon to notify you of any event that matches at least one of the
substrings.

3 Use the combined string to subscribe for the events, and then, because
the string is no longer useful to you, free its space. If you have to
resubscribe for any reason, you can always recombine the substrings.

4 Once the evaluators have been established, keep them so that you can
use them for all events that you receive (that is, make them static

Posting and Receiving EVM Events 14–45

entities). Alternatively, you could create a new set of evaluators each
time you receive an event, and destroy them as you exit the function.
However, keeping them around avoids the repeated setup/teardown
overhead.

5 This section of code creates three filter evaluators using
EvmFilterCreate() and loads them with the three filter strings. For
clarity here, only the return status for the first filter is checked, but in
production code it is important to check it in each case. Note that this
code is executed only the first time we receive an event.

6 This section of code tests each incoming event against each of the three
filter evaluators established in the previous section, and prints a
different message for each evaluator that is matched by the event. It is
quite possible that some events will match more than one evaluator; in
which case, more than one message is printed.

14.7.10.9 Matching Event Names

The EVM naming policy allows an event name to be extended with any
number of trailing components, yet still match its base name. This means
that you cannot depend on an event having exactly the name you expect it
to have because it may have extra trailing components.

Therefore, when you need to compare an event’s name against a known
name, do not use the usual string comparison functions because they will
incorrectly fail to match the name if components have been added. Instead,
you should use EVM’s name-matching functions. These functions match an
event name against the pattern you supply, ignoring any trailing
components in the candidate name. They also allow you to include wildcard
characters in your name pattern.

Example 14–10 introduces the following function:

• EvmEventNameMatch — Takes the following input arguments: an event
name string (which may contain wildcard characters) and an event.
Returns an indication of whether the event matches the name string.

Related function:

• EvmEventNameMatchStr — Takes an event name in a character
string, rather than extracting it from an event.

Example 14–10: Matching Event Names

#include <stdio.h>
#include <evm/evm.h>

/*===

14–46 Posting and Receiving EVM Events

Example 14–10: Matching Event Names (cont.)

* Function: main()
===/
main()
{ EvmStatus_t status;

EvmEvent_t event;
EvmBoolean_t match;
char buff[80];

while (EvmERROR_NONE == EvmEventRead(fileno(stdin),&event)) 1
{ EvmEventNameMatch("*.msg",event,&match);

if (match)
{ EvmEventFormat(buff,sizeof(buff),event);

fprintf(stdout,"%s\n",buff);
}

}

}

1 This section of code reads events from stdin and displays only those
events that match the wildcard string *.msg. This match will work
even though events of this type usually have the name
sys.unix.evm.msg.user or sys.unix.evm.msg.admin.

14.7.10.10 Dealing with Missed Events

When the EVM daemon sends an event to a subscribing client, it does so
with a connection that depends upon fixed-size memory buffers. If the
client does not deal with its incoming events within a reasonable time and
there is a heavy event load, the buffer may fill and the daemon will be
unable to send further events. The default sizes of a connection’s send and
receive buffers are both 8 KB.

Because the EVM daemon is a critical resource for many system
components and applications, it cannot “block” while waiting for a client to
clear its connection buffer. Consequently, if it fails to write to a connection
because the buffer is full, the daemon marks the connection as blocked and
continues with its other activities. When the client eventually reads its
input and frees space in the buffer, the EVM daemon completes the failed
write and the client will receive the event. However, if in the meantime any
other events arrive that should be sent to the blocked subscriber, the
daemon does not attempt to send them; instead, it counts how many have
been missed and reports the number to the subscriber once the connection
becomes unblocked. The subscriber must take any appropriate action, but
there is no way for it to know which events have been missed.

The likelihood of your application missing incoming events depends on
several factors:

Posting and Receiving EVM Events 14–47

• The speed and load of the system

• The set of subscribed-for events

• The frequency with which events are being posted

• The size of the connection’s input buffer

• The sizes of the events being posted

To minimize the risk of missing incoming events, you should design your
application to deal with incoming events as fast as possible and to take
appropriate action when it is notified that it has missed events.

Example 14–11 subscribes for all events and displays each event on
stdout. If any events are missed, a special message is displayed. The risk
of missing events is reduced by increasing the size of the connection’s input
buffer above the default 8 KB.

The example introduces the following function:

• EvmConnControl — Provides a means of controlling and inquiring
about certain features of the connection, including the send and receive
buffer sizes.

Example 14–11: Dealing with Missed Events

#include <stdio.h>
#include <evm/evm.h>

#define INPUT_BUFF_SIZE (32 * 1024)

void EventCB(EvmConnection_t conn, EvmCallbackArg_t cbarg,
EvmCallbackData_t *cbdata);

/*===
* Function: main()
===/
main()
{ EvmConnection_t conn;

EvmStatus_t status;
int conn_fd;

status = EvmConnCreate(EvmCONNECTION_LISTEN, EvmRESPONSE_CALLBACK,
NULL,EventCB,NULL,&conn);

if (status != EvmERROR_NONE)
{ fprintf(stderr,"Failed to create EVM listening connection\n");

exit(1);
}

status = EvmConnControl(conn,EVM_CONN_RCV_SZ_SET,(void *)INPUT_BUFF_SIZE); 1
if (status != EvmERROR_NONE)
{ fprintf(stderr,"Failed to increase EVM connection buffer "

"size to %d bytes\n", INPUT_BUFF_SIZE);
exit(1);

}

status = EvmConnSubscribe(conn,NULL,"[name *]");

14–48 Posting and Receiving EVM Events

Example 14–11: Dealing with Missed Events (cont.)

if (status != EvmERROR_NONE)
{ fprintf(stderr,"Failed to subscribe for event notification\n"); 2

exit(1);
}

for (;;)
{ status = EvmConnWait(conn,NULL);

if (status != EvmERROR_NONE)
{ fprintf(stderr,"Connection error\n");

exit(1);
}
if (EvmConnDispatch(conn) != EvmERROR_NONE)
{ fprintf(stderr,"Connection dispatch error\n");

exit(1);
}

}
}

/*===
* Function: EventCB()
===/
void
EventCB(EvmConnection_t conn, EvmCallbackArg_t cbarg,

EvmCallbackData_t *cbdata)
{ char buff[256];

switch (cbdata->reason) {
case EvmREASON_EVENT_DELIVERED:

EvmEventFormat(buff, sizeof(buff), cbdata->event);
fprintf(stdout,"Event: %s\n",buff);

EvmEventDestroy(cbdata->event);

sleep(1); 3
break;

case EvmREASON_EVENTS_MISSED: 4
fprintf(stdout,"*** Missed %d incoming events\n",

cbdata->extension.eventMissedData.missedCount);
break;

default:
break;

}

}

1 Once the connection has been created, the received-message (input)
buffer size is increased to reduce the chance of missing incoming
events. The EvmConnControl() function supports several different
types of request, including setting the send buffer size and retrieving
the current buffer sizes.

2 This example subscribes for notification of all events.

Posting and Receiving EVM Events 14–49

3 To demonstrate missing events, sleep for one second after each event is
received. This simulates a heavy processing load and ensures that the
input connection buffer will be filled if the event load is heavy.

4 The callback function will be invoked with reason code
EvmREASON_EVENTS_MISSED if the daemon has been unable to send
us one or more missed events. The callback data member
extension.eventMissedData.missedCount contains a count of the
number of missed events.

14.8 Adding an Event Channel to EVM
An EVM event channel is defined as any source of event information. An
event channel may be an active channel, in which case it posts its own
event information to EVM as soon as the event occurs, or it may be a
passive channel, meaning that the information may accumulate within the
channel but EVM has to take the action to look for it.

An event channel does not have to be a formal event notification
mechanism. It can be anything that is capable of storing information or
showing a status or a change of state. For example:

• If an application or system components writes state information to its
own log file, each line in the log file can be thought of as an event. The
log file can be checked periodically for new lines, and an event can be
posted for each new line found. The log file itself also serves as a place
from which to retrieve historical events.

• Some applications and system components provide a means of querying
status. In these cases, the status can be monitored periodically, and an
event can be posted whenever a significant change is detected. Because
this type of event channel typically does not include a means of storing
event information, EVM’s own logging mechanism can be used to log
the events.

• If a central part of an application handles all event information for the
application, it may be feasible to modify the handling code so that it
also forwards event information to EVM. This is an example of an
active event channel.

The process of taking an existing event channel and making it accessible
through EVM is termed encapsulation.

EVM event channels are configured through the channel configuration file.
This file is read by the EVM channel manager when EVM is started, and is
also used by command-line utilities when channel information is needed.
When you change this file, you must make the channel manager aware of
the change by entering the following command:

14–50 Posting and Receiving EVM Events

evmreload -c

See evmchannel.conf(4) for the syntax of the channel configuration file.
You can encapsulate an event channel by providing a set of executable
programs to handle the various channel functions. The functions are:

• The get function — retrieves historical events from the channel when
evmget is run.

• The details function — provides a detailed display of an event stream
when evmshow is run with the -d option.

• The explain function — provides explanatory text for an event stream
when evmshow is run with the -x option.

• The monitor function — executed periodically by the EVM channel
manager to check the channel status and post events if necessary.

• The cleanup function — executed daily by the EVM channel manager to
perform any cleanup actions necessary for the channel.

Each of these functions is optional, and is defined for the channel by
including the appropriate entry in a channel definition in the channel
configuration file. Channel functions can be any kind of executable file and
must operate as described in the following sections.

Channel functions that use temporary files should be sure to clean up before
exiting, and they must also be able to clean up if they are interrupted.

You must also add event templates for any events which may be posted or
retrieved through a new event channel. See Section 14.6.3 for information
about adding event templates. You must also make sure that the events are
given the correct posting and access privileges, by modifying the EVM
authorization file as necessary. See the System Administration manual for
details of how to control access to events.

14.8.1 The Get Function

The channel get function is executed by the EVM get_server, which is
executed by the EVM daemon to handle event retrieval requests made
through evmget. This function is always executed as root and must take
appropriate security precautions.

The function must support the following invocation syntax:

function-name [-f filter-string]

If desired, other arguments may be passed to the function by including
them in the function’s line in the channel configuration file.

Posting and Receiving EVM Events 14–51

When executed, the get function should retrieve events from the channel’s
log files, convert them to EVM event format, and write the EVM events to
its stdout stream. If a filter-string is supplied, only events that
match the filter can be written to stdout. Error messages can be written
to stderr and will be passed back to evmget for output to its stderr
stream, so be sure that they are clearly identified as originating in this
function. Nothing other than EVM events can be written to stdout.

The form of a get script depends very much on the form in which the native
events are stored. In general, the steps will be:

1. Use standard UNIX tools such as awk and sed to select the event
lines, removing blank lines and comments, and reformat them as
necessary for the next step. This should be a reasonably simple matter
if the events are single lines of text, with a constant format in each
line, and include items such as a timestamp, host name, and message
in the same position in every line.

2. Convert the lines into EVM events. You may be able to do this by
using UNIX tools to format the lines into a form suitable for input to
evmpost, using the -r option to produce EVM events on stdout
instead of posting them. Alternatively, for a faster conversion, you can
use the EVM channel utility
/usr/share/evm/channels/bin/text2evm to do the conversion.
This tool currently requires input of the form:

event-name yyyy/mm/dd hh:mm:ss host user message

3. If a filter string was supplied, pass the output through evmshow, using
the -f and -r options, to restrict the output to that requested in the
filter.

4. Finally, if you want the retrieved events to include data items
contained in the events’ templates, you can pipe the output through
the EVM channel utility
/usr/share/evm/channels/bin/merge_template.

If your channel’s log files are difficult to convert to EVM format — for
example, because each entry is made up of multiple unstructured lines of
text, which cannot be parsed easily — it may be better not to supply a get
function, but instead to allow the events to be logged by the EVM logger as
they are posted. This consumes more storage space, as the events would be
stored in two places, but it may significantly improve retrieval time and
programming effort.

If you do supply your own get function for the channel, be sure to change
the filter strings in the EVM logger’s configuration file so that your events
are not duplicated in the EVM log. See the System Administration manual
for information on how to change the logger’s configuration file.

14–52 Posting and Receiving EVM Events

14.8.2 The Details Function

The details function is executed by evmshow when it is invoked with the -d
option. Although it is currently executed with the privileges of the user
executing evmshow, this is likely to change in a future release, so it is
important that it take appropriate security precautions.

The function must support the following invocation syntax:

function-name

When executed, the details function must accept a stream of EVM events
through stdin, and display on stdout a stream of text that describes the
contents of each event. Various forms of evmshow will be useful in
producing the output, but be careful not to use the -d option because that
would result in a recursive loop.

Unless redirected, messages written to stderr will appear on evmshow’s
stderr stream, so if needed they should be clearly identified as being
written by this function.

If your channel does not require special formatting for detailed display,
omit this function from the channel configuration. By default, the evmlog
channel function,
/usr/share/evm/channels/evmlog/evmlog_details, will be used to
display the events belonging to any channel that does not supply its own
details function. If you do need to develop your own function, you can use
this shell script as a model.

14.8.3 The Explain Function

The explain function is executed by evmshow when it is invoked with the
-x option. Although it is currently executed with the privileges of the user
executing evmshow, this is likely to change in a future release, so it is
important that it take appropriate security precautions. The function must
support the following invocation syntax:

function-name event-name [reference]

The explain function is invoked with the name of the event requiring
explanation and an optional reference value. If supplied, the reference is
the contents of the event’s reference data item. If no reference is available,
a hyphen will usually be passed for this argument, but the function should
also allow the argument to be omitted.

The explain function should use its arguments to produce a formatted
explanation of the event, and write it as lines of text to stdout. If no
explanation can be found, an appropriate message should be written to

Posting and Receiving EVM Events 14–53

stdout in place of the explanation. Unless redirected, messages written to
stderr will appear on evmshow’s stderr stream, so, if they are needed,
they should be clearly identified as being written by this function.

Your explain function can invoke the evmlog explain function,
/usr/share/evm/channels/evmlog/evmlog_explain, provided that:

• The events in your channel contain a reference data item of the form:
cat:catalog-name[:set_number], where catalog-name is the name
of an I18N catalog file containing the explanations for your channel’s
events and the optional set_number is the number of the message set
containing the explanation.

• Each explanation in the catalog begins with the name of an event
enclosed in braces, for example, {myco.myprod.myapp.startup}.

The message catalog must be located according to normal I18N rules. To
minimize search time, you should group explanations into sets and provide
the set numbers in the reference data items of the events. See
mkcatdefs(1) and gencat(1) for the procedures to generate a catalog file.

14.8.4 The Monitor Function

The monitor function is executed by the EVM channel manager. It is
executed with an init argument when the channel manager is started and
each time the channel manager is reconfigured with evmreload, and
periodically thereafter without the init argument. The execution period is
controlled with the mon_period channel value. This function is always
executed as root and must take appropriate security precautions.

The function must support the following invocation syntax:

function-name [init]

The presence or absence of the init argument can be used to decide
whether the function needs to initialize any work files that it has to
maintain. If desired, you can pass additional arguments to the function by
including them on the command line in the channel configuration file, but
note that the init argument is always passed as the last argument.

There are no restrictions on the actions that can be taken by the monitor
function, although its job should generally be to check status and post
events if it detects a change of state. The function is invoked with no
stdout or stderr, so if it is necessary to report error conditions, they
should generally be posted as EVM events - taking care not to cause an
event storm by unnecessarily reporting the same condition each time the
function is invoked.

14–54 Posting and Receiving EVM Events

The following example monitor script initializes itself by counting the
number of lines in a log file and saving the count in a state file. On
subsequent invocations, it compares the number of lines in the file with the
previous number, extracts each new line with the UNIX tail command,
and posts it as an EVM event with evmpost.

#! /bin/sh
INIT=$1
STATE=/tmp/mylog.state
LOG=/tmp/mylog

EVENT_NAME=myco.admin.mylog.line_added

No log? Create one!
if [! -f $LOG]
then

touch $LOG
fi

If we’re initializing then save the current logfile
state and exit:
if ["$INIT" != ""]
then

Count the lines in the demolog, and save the count
in the state file:
wc -l $LOG | awk ’{print $1}’ > $STATE
exit

fi

Find out how many lines there were in the file last time
we checked:
OLDCOUNT=‘cat $STATE‘

How many now?
NEWCOUNT=‘wc -l $LOG | awk ’{print $1}’‘
if [$NEWCOUNT > $OLDCOUNT]
then

Save the new line count to the state file:
echo $NEWCOUNT > $STATE

What’s the difference between the old and new counts?
diff=‘expr $NEWCOUNT - $OLDCOUNT | awk ’{print $1}’‘

Post an event for each new line:
tail -$diff $LOG | while read LINE
do

echo ’event { name ’${EVENT_NAME} \
’ var {name msg type STRING value "’$LINE’"} }’ | evmpost

done
fi

14.8.5 The Cleanup Function

The cleanup function is executed daily by the EVM channel manager, at the
time specified in the channel configuration file, to perform housekeeping
actions such as archiving and deleting the channel’s log files. This function
is always executed as root and must take appropriate security precautions.

Posting and Receiving EVM Events 14–55

The cleanup function is specified as a command line that is executed
exactly as specified, so arguments may be passed to the function through
the command line if desired. The function is free to take whatever action is
appropriate. It is executed with no stdout or stderr streams, so any
desired status messages should generally be issued in the form of EVM
events by using evmpost, instead of being written to stderr. Nothing
should be written to stdout.

Write the function so that it has the same effect regardless of the time of
day at which it is run; for example, it might use the -mtime option of the
find command to identify log files to be archived.

14.8.6 Channel Security

In most cases, channel functions are executed by processes that are
children of the EVM daemon, and, as a result, they will be run with full
root privileges. Because of this, you must protect your system’s integrity by
ensuring that:

• Functions are placed in a directory that has restricted write privileges.

• Functions themselves have restricted write and execute privileges.

• Functions do not call other programs that have inappropriate privileges.

14–56 Posting and Receiving EVM Events

A
Using 32-Bit Pointers on Tru64 UNIX

Systems

The size of the default pointer type on Tru64 UNIX systems is 64 bits, and
all system interfaces use 64-bit pointers. The Compaq C compiler, in
addition to supporting 64-bit pointers, also supports the use of 32-bit
pointers.

In most cases, 64-bit pointers do not cause any problems in a program and
the issue of 32-bit pointers can be ignored altogether. However, in the
following cases, the issue of 32-bit pointers does become a concern:

• If you are porting a program with pointer-to-int assignments

• If the 64-bit pointer size is unnecessary for your program and it causes
your program to use too much memory — for example, your program
uses very large structures composed of pointer fields and has no need to
exceed the 32-bit address range in those fields

• If you are developing a program for a mixed system environment (32–
and 64-bit systems) and the program’s in-memory structures are
accessed from both types of systems

The use of 32-bit pointers in applications requires that the applications be
compiled and linked with special options and, depending on the specific
nature of the code, may also require source-code changes.

The following types of pointers are referred to in this appendix:

• Short pointer: A 32-bit pointer. When a short pointer is declared, 32
bits are allocated.

• Long pointer: A 64-bit pointer. When a long pointer is declared, 64 bits
are allocated. This is the default pointer type on Tru64 UNIX systems.

• Simple pointer: A pointer to a nonpointer data type, for example, int
*num_val. More specifically, the pointed-to type contains no pointers, so
the size of the pointed-to type does not depend on the size of a pointer.

• Compound pointer: A pointer to a data type whose size depends upon
the size of a pointer, for example, char **FontList.

Using 32-Bit Pointers on Tru64 UNIX Systems A–1

A.1 Compiler-System and Language Support for 32-Bit
Pointers

The following mechanisms control the use of 32-bit pointers:

• The cc options -xtaso and -xtaso_short are needed for compiling
programs that use pointers with a 32-bit data type:

– −xtaso

Enables recognition of the #pragma pointer_size directive and
causes -taso (truncated address support option) to be passed to the
linker (if linking).

– −xtaso_short

Same as -xtaso, except -xtaso_short also sets the initial
compiler default state to use short pointers. Because all system
routines continue to use 64-bit pointers, most applications require
source changes when compiled in this way. However, the use of
protect_headers_setup (see Section A.3.3) can greatly reduce or
eliminate the need to change the source code.

Because the use of short pointers, in general, requires a thorough
knowledge of the application they are applied to, -xtaso_short is
not recommended for use as a porting aid. In particular, do not
attempt to use -xtaso_short to port a poorly written program
(that is, a program that heavily mixes pointer and int values).

• The ld option -taso ensures that executable files and associated
shared libraries are located in the lower 31-bit addressable virtual
address space. The -taso option can be helpful when porting programs
that assume address values can be stored in 32-bit variables (that is,
programs that assume that pointers are the same length as int
variables). The -taso option does not affect the size of the pointer data
type; it just ensures that the value of any pointer in a program would
be the same in either a 32-bit or a 64-bit representation.

The −taso linker option does impose restrictions on the run-time
environment and how libraries can be used. See Section A.2 for details
on the -taso option.

• The #pragma pointer_size directive controls the size of pointer types
in a C program. These pragmas are recognized by the compiler only if
the −xtaso or −xtaso_short options are specified on the cc command
line; they are ignored if neither of the options is specified.

See Section 3.9 for details on the #pragma pointer_size directive.

The following example demonstrates the use of both short and long
pointers:

A–2 Using 32-Bit Pointers on Tru64 UNIX Systems

main ()

{
int *a_ptr;

printf ("A pointer is %ld bytes\n", sizeof (a_ptr));
}

When compiled with either the default settings or the −xtaso option, the
sample program prints the following message:

A pointer is 8 bytes

When compiled with the −xtaso_short option, this sample program prints
the following message:

A pointer is 4 bytes

A.2 Using the –taso Option
The -taso option establishes 32-bit addressing within all 64-bit pointers
within a program. It thereby solves almost all 32-bit addressing problems,
except those that require constraining the physical size of some pointers to
32-bits (which is handled by the -xtaso or -xtaso_short option and
pointer_size pragmas).

The -taso option is most frequently used to handle addressing problems
introduced by point-to-int assignments in a program. Many C programs,
especially older C programs that do not conform to currently accepted
programming practices, assign pointers to int variables. Such assignments
are not recommended, but they do produce correct results on systems in
which pointers and int variables are the same size. However, on a Tru64
UNIX system, this practice can produce incorrect results because the
high-order 32 bits of an address are lost when a 64-bit pointer is assigned to
a 32-bit int variable. The following code fragment illustrates this problem:
{
char *x; /* 64-bit pointer */
int z; /* 32-bit int variable */
.
.
.

x = malloc(1024); /* get memory and store address in 64 bits */
z = x; /* assign low-order 32 bits of 64-bit pointer to

32-bit int variable */
}

The most portable way to fix the problem presented by pointer-to-int
assignments in existing source code is to modify the code to eliminate this
type of assignment. However, in the case of large applications, this can be
time consuming. (To find pointer-to-int assignments in existing source
code, you can use the lint -Q command.)

Using 32-Bit Pointers on Tru64 UNIX Systems A–3

Another way to overcome this problem is to use the -taso option. The
-taso option makes it unnecessary for the pointer-to-int assignments to be
modified. It does this by causing a program’s address space to be arranged
so that all locations within the program — when it starts execution — can
be expressed within the 31 low-order bits of a 64-bit address, including the
addresses of routines and data coming from shared libraries.

The -taso option does not in any way affect the sizes used for any of the
data types supported by the system. Its only effect on any of the data types
is to limit addresses in pointers to 31 bits (that is, the size of pointers
remains at 64 bits, but addresses use only the low-order 31 bits).

A.2.1 Use and Effects of the -taso Option

The -taso option can be specified on the cc or ld command lines used to
create object modules. (If specified on the cc command line, the option is
passed to the ld linker.) The -taso option directs the linker to set a flag in
object modules and this flag directs the loader to load the modules into
31-bit address space.

The 31-bit address limit is used to avoid the possibility of setting the sign
bit (bit 31) in 32-bit int variables when pointer-to-int assignments are
made. Allowing the sign bit to be set in an int variable by pointer-to-int
assignment would create a potential problem with sign extension. For
example:

{
char *x; /* 64-bit pointer */
int z; /* 32-bit int variable */

.

.

.
/* address of named_obj = 0x0000 0000 8000 0000 */

x = &named_obj; /* 0x0000 0000 8000 0000 = original pointer
value */

z = x; /* 0x8000 0000 = value created by pointer-to-int
assignment */

x = z; /* 0xffff ffff 8000 0000 = value created by pointer-
to-int-to-pointer or pointer-to-int-to-long
assignment (32 high-order bits set to ones by
sign extension) */

}

The -taso option ensures that the text and data segments of an
application are loaded into memory that can be reached by a 31-bit
address. Therefore, whenever a pointer is assigned to an int variable, the
values of the 64-bit pointer and the 32-bit variable will always be identical
(except in the special situations described in Section A.2.2).

Figure A–1 is an example of a memory diagram of programs that use the
-taso and -call_shared options. (If you invoke the linker through the

A–4 Using 32-Bit Pointers on Tru64 UNIX Systems

cc command, the default is -call_shared. If you invoke ld directly, the
default is -non_share.)

Figure A–1: Layout of Memory Under -taso Option

Not accessible

Mappable by program

Heap (grows up)

Stack(grows towards zero)

Mappable by program

Not accessible (by convention)

0xffff ffff ffff ffff

0xffff fc00 0000 0000
0xffff fbff ffff ffff

$sp

0x0000 0000 0001 0000
0x0000 0000 0000 ffff

0x0000 0000 0000 0000

Reserved for kernel

Reserved for dynamic loader

Reserved for shared libraries

0x0000 0000 11ff ffff
0x0000 0000 1200 0000

0x0000 0000 8000 0000
0x0000 0000 7fff ffff

0x0000 03ff 8000 0000
0x0000 03ff 7fff ffff

ZK-0876U-AI

Data

Text

0x0000 0000 1400 0000

Not mappable using 31-bit addresses

Note that stack and heap addresses will also fit into 31 bits. The stack
grows downward from the bottom of the text segment, and the heap grows
upward from the top of the data segment.

The -T and -D options (linker options that are used to set text and data
segment addresses, respectively) can also be used to ensure that the text
and data segments of an application are loaded into low memory. The
-taso option, however, in addition to setting default addresses for text and

Using 32-Bit Pointers on Tru64 UNIX Systems A–5

data segments, also causes shared libraries linked outside the 31-bit
address space to be appropriately relocated by the loader.

The default addresses used for the text and data segments are determined
by the options that you specify on the cc command line:

• Specifying the -non_shared or -call_shared option with the -taso
option results in the following defaults:

0x0000 0000 1200 0000 (text segment’s starting address)
0x0000 0000 1400 0000 (data segment’s starting address)

• Specifying the -shared option with the -taso option results in the
following defaults:

0x0000 0000 7000 0000 (text segment’s starting address)
0x0000 0000 8000 0000 (data segment’s ending address)

Using these default values produces sufficient amounts of space for text
and data segments for most applications (see the Symbol Table/Object File
Specification for details on the contents of text and data segments). The
default values also allow an application to allocate a large amount of mmap
space.

If you specify the -taso option and also specify text and data segment
address values with -T and -D , the values specified override the -taso
default addresses.

The odump utility can be used to check whether a program was built
successfully within 31-bit address space. To display the start addresses of
the text, data, and bss segments, enter the following command:

% odump -ov obj_file_x.o

None of the addresses should have any bits set in bits 31 to 63; only bits 0
to 30 should ever be set.

Shared objects built with -taso cannot be linked with shared objects that
were not built with -taso. If you attempt to link “taso” shared objects with
“nontaso” shared objects, the following error message is displayed:

Cannot mix 32 and 64 bit shared objects without -taso option

A.2.2 Limits on the Effects of the -taso Option

The -taso option does not prevent a program from mapping addresses
outside the 31-bit limit, and it does not issue warning messages if this is
done. Such addresses could be established using any one of the following
mechanisms:

• -T and -D options

A–6 Using 32-Bit Pointers on Tru64 UNIX Systems

As noted previously, if the -T and -D options are used with the -taso
option, the values that you specify for them will override the -taso
option’s default values. Therefore, to avoid defeating the purpose of the
-taso option, you must select addresses for the -T and -D options that
are within the 31-bit address range.

• malloc() function

To avoid problems with addressing when you use malloc in a “taso”
application, you must ensure that the combination of the default
data-size resource limit and the starting address of the data segment do
not exceed the maximum 31-bit address (0x7fff ffff).

The data-size resource limit is the maximum amount of data space that
can be used by a process. This limit can be adjusted using the limit (C
shell) or ulimit (Korn shell) commands. As noted previously, the
starting address of the data segment can be adjusted using the -D
option on the cc command.

• mmap system call

Applications that use the mmap system call must use a jacket routine to
mmap to ensure that mapping addresses do not exceed a 31-bit range.
This entails taking the following steps:

1. To prevent mmap from allocating space outside the 31-bit address
space, specify the following compilation option on the cc command
line for all modules (or at least all modules that refer to mmap):

-Dmmap=_mmap_32_

This option equates the name of the mmap function with the name
of a jacket routine (_mmap_32_). As a result, the jacket routine is
invoked whenever references are made to the mmap function in the
source program.

2. If the mmap function is invoked in only one of the source modules,
either include the jacket routine in that module or create an
mmap_32c.o object module and specify it on the cc command line.
(The file specification for the jacket routine is
/usr/opt/alt/usr/lib/support/mmap_32.c.)

If the mmap function is invoked from more than one source file, you
must use the method of creating an mmap_32c.o object module and
specifying it on a cc command line because including the jacket
routine in more than one module would generate linker errors.

A.3 Using the –xtaso or –xtaso_short Option

The -xtaso and -xtaso_short options enable you to use both short
(32-bit) and long (64-bit) pointer data types in a program. Note that the

Using 32-Bit Pointers on Tru64 UNIX Systems A–7

64-bit data type is constrained to 31-bit addressing because -xtaso and
-xtaso_short both engage the -taso option.

You should only use the -xtaso or -xtaso_short option when you have a
need to use the short pointer data type in your program. If you want to use
32-bit addressing but do not need short pointers, you should use the -taso
option.

Most programs that use short pointers will also need to use long pointers
because Tru64 UNIX is a 64-bit system and all applications must use 64-bit
pointers wherever pointer data is exchanged with the operating system or
any system-supplied library. Because normal applications use the standard
system data types, no conversion of pointers is needed. In an application
that uses short pointers, it may be necessary to explicitly convert some
short pointers to long pointers by using pointer_size pragmas (see
Section 3.9).

_______________________ Note _______________________

New applications for which the use of short pointers is being
considered should be developed with long pointers first and then
analyzed to determine whether short pointers would be
beneficial.

A.3.1 Coding Considerations Associated with Changing Pointer
Sizes

The following coding considerations may be pertinent when you are
working with pointers in your source code:

• The size of pointers used in a typedef that includes pointers as part of
its definition is determined when the typedef is declared, not when it
is used. Therefore, if a short pointer is declared as part of a typedef
definition, all variables that are declared using that typedef will use a
short pointer, even if those variables are compiled in a context where
long pointers are being declared.

• The size of pointers within a macro is governed by the context in which
the macro is expanded. The only way to specify pointer size as part of a
macro is by using a typedef declared with the desired pointer size.

• In general, conversions between short and long simple pointers are safe
and are performed implicitly without the need for casts on assignments
or function calls. On the other hand, compound pointers generally
require source code changes to accommodate conversions between short
and long pointer representations.

A–8 Using 32-Bit Pointers on Tru64 UNIX Systems

For example, the argument vector, argv, is a long compound pointer
and must be declared as such. Many X11 library functions return long
compound pointers; the return values for these functions must be
declared correctly or erroneous behavior will result. If a function was
compiled to exclusively use short pointers and needed to access such a
vector, it would be necessary to add code to copy the values from the
long pointer vector into a short pointer vector before passing it to the
function.

• Only the C and C++ compilers support the use of short pointers. Short
pointers should not be passed from C and C++ routines to routines
written in other languages.

• The pointer_size pragma and the -xtaso_short option have no
effect on the size of the second argument to main(), traditionally called
argv. This argument always has a size of 8 bytes even if the
pointer_size pragma has been used to set other pointer sizes to 4
bytes.

A.3.2 Restrictions on the Use of 32-Bit Pointers

Most applications on Tru64 UNIX systems use addresses that are not
representable in 32 bits. Therefore, no library that might be called by
normal applications can contain short pointers. Vendors who create
software libraries generally should not use short pointers.

A.3.3 Avoiding Problems with System Header Files

When the system libraries are built, the compiler assumes that pointers
are 64 bits and that structure members are naturally aligned. These are
the C and C++ compiler defaults. The interfaces to the system libraries (the
header files in the /usr/include tree) do not explicitly encode these
assumptions.

You can alter the compiler’s assumptions about pointer size (with
-xtaso_short) and structure member alignment (with -Zpn [where n!=8]
or -nomember_alignment). If you use any of these options and your
application includes a header file from the /usr/include tree and then
calls a library function or uses types declared in that header file, problems
may occur. In particular, the data layouts computed by the compiler when
it processes the system header file declarations may differ from the layouts
compiled into the system libraries. This situation can cause unpredictable
results.

Run the script protect_headers_setup.sh immediately after the
compiler is installed on your system to eliminate the possibility of problems
with pointer size and data alignment under the conditions described in this

Using 32-Bit Pointers on Tru64 UNIX Systems A–9

section. See protect_headers_setup(8) for details on how and why this
is done.

You can enable or disable the protection established by the
protect_headers_setup script by using variations of the
-protect_headers option on your compilation command line. See cc(1)
for information about the -protect_headers option.

A–10 Using 32-Bit Pointers on Tru64 UNIX Systems

B
Differences in the System V Habitat

This appendix describes how to achieve source code compatibility for C
language programs in the System V habitat. In addition, it provides a
summary of system calls and library functions that differ from the default
operating system.

B.1 Source Code Compatibility

To achieve source code compatibility for the C language programs, alter
your shell’s PATH environment variable and then compile and link your
applications.

When you modify the PATH environment variable, access to the System V
habitat works on two levels:

• The first level results from the modified PATH environment variable
causing the System V versions of several user commands to execute
instead of the default system versions.

• The second level results from executing the System V cc or ld
commands.

Executing the System V versions of the cc and ld commands causes source
code references to system calls and subroutines to be resolved against the
libraries in the System V habitat. If a subroutine or system call is not
found in the System V habitat, the reference is resolved against the
standard default libraries and other libraries that you can specify with the
commands. Also, the include file search path is altered so that the System
V versions of the system header files (for example, /usr/include files) are
used instead of the standard versions.

The library functions that invoke system calls use the system call table to
locate the system primitives in the kernel. The base operating system
contains several system call tables, including one for System V. The system
calls that exhibit System V behavior have entries in the System V partition
of the system call table.

When you link your program and your PATH is set for the System V
habitat, libsys5 is searched to resolve references to system calls. As
shown in Figure B–1, the unlink() system call invoked by libsys5
points to an entry in the System V partition of the system call table. This

Differences in the System V Habitat B–1

maps to a different area of the kernel than the mapping for the default
system unlink() system call.

Figure B–1: System Call Resolution

unlink()

default
system calls

system
calls

libsys5.a

system call
table

libc.a

kernel

unlink()

unlink()

...

ZK-0814U-AI

SVID

User Process
Base System

System V
Habitat

User Process SVID
partition

partition

unlink()

default system

...

vector
table

The cc and ld commands that reside in the System V habitat are shell
scripts that, when specified, add several options to the default system cc
and ld commands before the commands are executed.

The cc command automatically inserts the -Ipath option on the
command line to specify the use of the SVID versions of system header
files. For example, the /usr/include file is used instead of the default
version. System header files that do not have SVID differences are obtained
from the default location.

The cc and ld commands automatically include the following options:

• The -Lpath option provides the path of the System V libraries.

• The -lsys5 option indicates that the libsys5.a library should be
searched before the standard C library to resolve system call and
subroutine references.

• The -D__SVID_ _ option selectively turns on SVID specific behavior
from the default system.

B–2 Differences in the System V Habitat

By default, cc dynamically links programs using shared libraries when
they exist. The System V habitat provides libsys5.so in addition to
libsys5.a to support this feature.

The System V version of the cc and ld commands pass all user-specified
command-line options to the default system versions of the cc and ld
commands. This allows you to create library hierarchies. For example, if
your PATH environment variable is set to the System V habitat and your
program includes references to math library functions and libloc.a
functions located in the /local/lib directory, you can compile the
program as follows:

% cc −non_shared −L/local/lib src.c −lm −lloc

The System V cc command takes the preceding command line and adds
the necessary options to search the System V habitat libraries, which are
searched prior to the default libraries. It also includes any existing System
V header files instead of the standard header files for /usr/include.
Hence, if your environment is set to SVID 2, the preceding command line is
processed as follows:

/bin/cc -D__SVID__ -I$SVID2PATH/usr/include -L$SVID2PATH/usr/lib \
−non_shared −L/local/lib src.c −lm −lloc −lsys5

Using this command line, libraries are searched in the following order:

1. /usr/lib/libm.a

2. /local/lib/libloc.a

3. SVID2PATH/usr/lib/libsys5.a

4. /usr/lib/libc.a

The libraries that are searched and the order that they are searched in
depends on the function you are performing. For more information, see
cc(1) and ld(1).

B.2 Summary of System Calls and Library Routines

Table B–1 describes the behavior of the system calls in the System V
habitat. For a complete explanation of these system calls, refer to the
reference pages for each system call. Table B–2 describes the behavior of
the library functions in the System V habitat.

See the reference pages for complete descriptions of the system calls and
library routines.

Differences in the System V Habitat B–3

Table B–1: System Call Summary

System Call System V Behavior

longjmp(2) and
setjmp(2)

Saves and restores the stack only.

mknod(2) Provides the ability to create a directory, regular file, or
special file.

mount(2sv) and
umount(2sv)

Takes different arguments than the default system
version and requires that the <sys/types.h> header
file is included.

____________ Note ____________
To access the reference page for the System
V version of mount, make sure that the 2sv
section specifier is included on the man
command line.

open(2) Specifies that the O_NOCTTY flag is not set by default as
it is in the base system. Thus, if the proper conditions
exist, an open call to a terminal device will allow the
device to become the controlling terminal for the process.

pipe(2) Supports a pipe operation on STREAMS-based file
descriptors.

sigaction(2) and
signal(2)

Specifies that the kernel pass additional information to
the signal handler. This includes passing the reason that
the signal was delivered (into the siginfo structure)
and the context of the calling process when the signal
was delivered into the ucontext structure.

sigpause(2) Unblocks the specified signal from the calling process’s
signal mask and suspends the calling process until a
signal is received. The signals SIGKILL and SIGSTOP
cannot be reset.

B–4 Differences in the System V Habitat

Table B–1: System Call Summary (cont.)

System Call System V Behavior

sigset(2) Specifies that if the disposition for SIGCHLD is set to
SIG_IGN, the calling process’s children cannot turn into
zombies when they terminate. If the parent
subsequently waits for its children, it blocks until all of
its children terminate. This operation then returns a
value of -1 and sets errno to [ECHILD].

unlink(2) Does not allow users (including superusers) to unlink
nonempty directories and sets errno to ENOTEMPTY.
It allows superusers to unlink a directory if it is empty.

Table B–2: Library Function Summary

Library Functions System V Behavior

getcwd(3) Gets the name of the current directory.
char *getcwd (char * buffer, int size);

mkfifo(3) Supports creation of STREAMS-based FIFO and uses
/dev/streams/pipe.

mktemp(3) Uses the getpid function to obtain the pid part of the
unique name.

ttyname(3) Returns a pointer to a string with the pathname that
begins with /dev/pts/ when the terminal is a
pseudoterminal device.

Differences in the System V Habitat B–5

C
Creating Dynamically Configurable

Kernel Subsystems

When you create a new kernel subsystem or modify an existing kernel
subsystem, you can write the subsystem so that it is dynamically
configurable. This appendix explains how to make a subsystem dynamically
configurable by providing the following information:

• A conceptual description of a dynamically configurable subsystem
(Section C.1)

• A conceptual description of the attribute table, including example
attribute tables (Section C.2)

• An explanation of how to create a configuration routine, including an
example configuration routine (Section C.3)

• A description of how to check the operating system version number to
ensure that the subsystem is compatible with it (Section C.4)

• Instructions for building a loadable subsystem into the kernel for
testing purposes (Section C.5)

• Instructions for building a static subsystem that allows run-time
attribute modification into the kernel for testing purposes (Section C.6)

• Information about debugging a dynamically configurable subsystem
(Section C.7)

Before the Tru64 UNIX system supported dynamically configurable
subsystems, system administrators managed kernel subsystems by editing
their system’s configuration file. Each addition or removal of a subsystem
or each change in a subsystem parameter required rebuilding the kernel,
an often difficult and time-consuming process. System administrators
responsible for a number of systems had to make changes to each system’s
configuration file and rebuild each kernel.

Dynamically configurable subsystems allow system administrators to
modify system parameters, and load and unload subsystems without
editing files and rebuilding the kernel. System administrators use the
sysconfig command to configure the subsystems of their kernel. Using
this command, system administrators can load and configure, unload and

Creating Dynamically Configurable Kernel Subsystems C–1

unconfigure, reconfigure (modify), and query subsystems on their local
system and on remote systems.

Device driver writers should note device-driver specific issues when writing
loadable device drivers. For information about writing loadable device
drivers, see the Writing Device Drivers manual.

C.1 Overview of Dynamically Configurable Subsystems

Many Tru64 UNIX kernel subsystems are static, meaning that they are
linked with the kernel at build time. After the kernel is built, these
subsystems cannot be loaded or unloaded. An example of a static
subsystem is the vm (virtual memory) subsystem. This subsystem must be
present in the kernel for the system to operate correctly.

Some kernel subsystems are or can be loadable. A loadable subsystem is
one that can be added to or removed from the kernel without rebuilding the
kernel. An example of a subsystem that is loadable is the presto
subsystem, which is loaded only when the Prestoserve software is in use.

Both static and loadable subsystems can be dynamically configurable:

• For a static subsystem, dynamically configurable means that selected
subsystem attributes can be modified without rebuilding the kernel.
This type of subsystem can also answer queries about the values of its
attributes and be unconfigured if it is not in use (however, it cannot be
unloaded).

• For a loadable subsystem, dynamically configurable means that the
subsystem is configured into the kernel at load time, can be modified
without rebuilding the kernel, and is unconfigured before it is unloaded.
This type of subsystem can also answer queries about its attributes.

Like traditional kernel subsystems, dynamically configurable subsystems
have parameters. These parameters are referred to as attributes. Examples
of subsystem attributes are timeout values, table sizes and locations in
memory, and subsystem names. You define the attributes for the subsystem
in an attribute table. (Attribute tables are described in Section C.2.)

Before initially configuring a loadable subsystem, system administrators
can store values for attributes in the sysconfigtab database. This
database is stored in the /etc/sysconfigtab file and is loaded into
kernel memory at boot time. The values stored in this database become the
initial value for the subsystem’s attributes, whether your subsystem has
supplied an initial value for the attribute. Figure C–1 demonstrates how
initial attribute values come from the sysconfigtab database.

C–2 Creating Dynamically Configurable Kernel Subsystems

Figure C–1: System Attribute Value Initialization

name

size

table

attribute receives value
from sysconfigtab database

attribute receives value

attribute value is assigned
in subsystem code

from sysconfigtab database

Kernel Memory Space

"Ten Item Tb1"

10size=

name=

name="Ten Item Tbl"

size= 10

*table=NULL

0

Subsystem
Code

Kernel

ZK-0973U-AI

Note that the size attribute in Figure C–1 receives its initial value from
the sysconfigtab database even though the subsystem initializes the
size attribute to 0 (zero).

Using an attribute table declared in the subsystem code, you control which
of the subsystem’s attribute values can be set at initial configuration. (For
information about how you control the attributes that can be set in the
sysconfigtab database, see Section C.2.)

In addition to being able to store attribute values for initial configuration,
system administrators can query and reconfigure attribute values at any
time when the subsystem is configured into the kernel. During a query
request, attribute values are returned to the system administrator. During
a reconfiguration request, attribute values are modified. How the return or
modification occurs depends upon how attributes are declared in the
subsystem code:

Creating Dynamically Configurable Kernel Subsystems C–3

• If the subsystem’s attribute table supplies the kernel with the address of
an attribute, the kernel can modify or return the value of that attribute.
Supplying an address to the kernel and letting the kernel handle the
attribute value is the most efficient way to maintain an attribute value.

• If the kernel has no access to the attribute value, the subsystem must
modify or return the attribute value. Although it is most efficient to let
the kernel maintain attribute values, some cases require the subsystem
to maintain the value. For example, the kernel cannot calculate the
value of an attribute, so the subsystem must maintain values that need
to be calculated.

Again, you control which of the subsystem’s attribute values can be queried
or reconfigured, as described in Section C.2.

In addition to an attribute table, each dynamically configurable subsystem
contains a configuration routine. This routine performs tasks such as
calculating the values of attributes that are maintained in the subsystem.
This routine also performs subsystem-specific tasks, which might include,
for example, determining how large a table needs to be or storing memory
locations in local variables that can be used by the subsystem. (Section C.3
describes how you create the configuration routine.) The kernel calls the
subsystem configuration routine each time the subsystem is configured,
queried, reconfigured, or unconfigured.

Any subsystem that can be configured into the kernel can also be
unconfigured from the kernel. When a system administrator unconfigures a
subsystem from the kernel, the kernel memory occupied by that subsystem
is freed if the subsystem is loadable. The kernel calls the subsystem
configuration routine during an unconfigure request to allow the subsystem
to perform any subsystem specific unconfiguration tasks. An example of a
subsystem specific unconfiguration task is freeing memory allocated by the
subsystem code.

C.2 Overview of Attribute Tables

The key to creating a good dynamically configurable subsystem is to
declare a good attribute table. The attribute table defines the subsystem’s
attributes, which are similar to system parameters. (Examples of attributes
are timeout values, table sizes and locations in memory, and so on.) The
attribute table exists in two forms, the definition attribute table and the
communication attribute table:

• The definition attribute table is included in your subsystem code. It
defines the subsystem attributes. Each attribute definition is one
element of the attribute table structure. The definitions include the
name of the attribute, its data type, and a list of the requests that

C–4 Creating Dynamically Configurable Kernel Subsystems

system administrators are allowed to make for that attribute. The
definition of each attribute also includes its minimum and maximum
values, and optionally its storage location. The kernel uses the attribute
definition as it responds to configuration, reconfiguration, query, and
unconfiguration requests from the system administrator.

• The communication attribute table is used for communication between
the kernel and your subsystem code. Each element of this attribute
table structure carries information about one attribute. The information
includes the following:

– The name and data type of the attribute

– The request that has been made for an operation on that attribute

– The status of the request

– The value of the attribute

This attribute table passes from the kernel to your subsystem each time
the system administrator makes a configuration, reconfiguration, query,
or unconfiguration request.

The reason for having two types of attribute tables is to save kernel
memory. Some of the information in the definition attribute table and the
communication attribute table (such as the name and data types of the
attributes) is the same. However, much of the information differs. For
example, the definition attribute table need not store the status of a
request because no requests have been made at attribute definition time.
Likewise, the communication attribute table does not need to contain a list
of the supported requests for each attribute. To save kernel memory, each
attribute table contains only the needed information.

_______________________ Note _______________________

Attribute names defined in a subsystem attribute table must not
begin with the string method. This string is reserved for naming
attributes used in loadable device driver methods. For more
information about device driver methods, see the Writing Device
Drivers manual.

The following sections explain both types of attribute tables by showing
and explaining their declaration in /sys/include/sys/sysconfig.h.

C.2.1 Definition Attribute Table

The definition attribute table has the data type cfg_subsys_attr_t,
which is a structure of attributes declared as follows in the
/sys/include/sys/sysconfig.h file:

Creating Dynamically Configurable Kernel Subsystems C–5

typedef struct cfg_attr {
char name[CFG_ATTR_NAME_SZ]; 1
uint type; 2
uint operation; 3
whatever address; 4
uint min; 5
uint max;
uint binlength; 6

}cfg_subsys_attr_t;

1 The name of the attribute is stored in the name field. You choose this
name, which can be any string of alphabetic characters, with a length
between two and the value stored in the CFG_ATTR_NAME_SZ constant.
The CFG_ATTR_NAME_SZ constant is defined in the
/sys/include/sys/sysconfig.h file.

2 You specify the attribute data type in this field, which can be one of
the data types listed in Table C–1.

Table C–1: Attribute Data Types

Data Type Name Description

CFG_ATTR_STRTYPE Null terminated array of characters (char*)

CFG_ATTR_INTTYPE 32-bit signed number (int)

CFG_ATTR_UINTTYPE 32-bit unsigned number (unsigned)

CFG_ATTR_LONGTYPE 64-bit signed number (long)

CFG_ATTR_ULONGTYPE 64-bit unsigned number

CFG_ATTR_BINTYPE Array of bytes

3 The operation field specifies the requests that can be performed on
the attribute. You specify one or more of the request codes listed in
Table C–2 in this field.

The CFG_OP_UNCONFIGURE request code has no meaning for
individual attributes because you cannot allow the unconfiguration of a
single attribute.

Therefore, you cannot specify CFG_OP_UNCONFIGURE in the
operation field.

C–6 Creating Dynamically Configurable Kernel Subsystems

Table C–2: Codes that Determine the Requests Allowed for an
Attribute

Request Code Meaning

CFG_OP_CONFIGURE The value of the attribute can be set when the
subsystem is initially configured.

CFG_OP_QUERY The value of the attribute can be displayed at
any time while the subsystem is configured.

CFG_OP_RECONFIGURE The value of the attribute can be modified at any
time while the subsystem is configured.

4 The address field determines whether the kernel has access to the
value of the attribute.

If you specify an address in this field, the kernel can read and modify
the value of the attribute. When the kernel receives a query request
from the sysconfig command, it reads the value in the location you
specify in this field and returns that value. For a configure or
reconfigure request, the kernel checks for the following conditions:

• The data type of the new value is appropriate for the attribute.

• The value falls within the minimum and maximum values for the
attribute.

If the value meets these requirements, the kernel stores the new value
for the attribute. (You specify minimum and maximum values in the
next two fields in the attribute definition.)

In some cases, you want or need to respond to query, configure, or
reconfigure requests for an attribute in the subsystem code. In this
case, specify a NULL in this field. For more information about how you
control attribute values, see Section C.3.

5 The min and max fields define the minimum and maximum allowed
values for the attribute. You choose these values for the attribute.

The kernel interprets the contents of these two fields differently,
depending on the data type of the attribute. If the attribute is one of
the integer data types, these fields contain minimum and maximum
integer values. For attributes with the CFG_ATTR_STRTYPE data type,
these fields contain the minimum and maximum lengths of the string.
For attributes with the CFG_ATTR_BINTYPE data type, these fields
contain the minimum and maximum numbers of bytes you can modify.

6 If you want the kernel to be able to read and modify the contents of a
binary attribute, you use the binlength field to specify the current
size of the binary data. If the kernel modifies the length of the binary
data stored in the attribute, it also modifies the contents of this field.

Creating Dynamically Configurable Kernel Subsystems C–7

This field is not used if the attribute is an integer or string or if you
intend to respond to query and reconfigure request for a binary
attribute in the configuration routine.

C.2.2 Example Definition Attribute Table

Example C–1 provides an example definition attribute table to help you
understand its contents and use. The example attribute table is for a
fictional kernel subsystem named table_mgr. The configuration routine
for the fictional subsystem is shown and explained in Section C.3.

Example C–1: Example Attribute Table

#include <sys/sysconfig.h>
#include <sys/errno.h>

/*
* Initialize attributes
*/
static char name[] = "Default Table";
static int size = 0;
static long *table = NULL;

/*
* Declare attributes in an attribute table
*/

cfg_subsys_attr_t table_mgr_attrbutes[] = {
/*
* "name" is the name of the table
*/

{"name", 1 CFG_ATTR_STRTYPE, 2
CFG_OP_CONFIGURE | CFG_OP_QUERY | CFG_OP_RECONFIGURE, 3
(caddr_t) name, 4 2, sizeof(name), 5 0 6 },

/*
* "size" indicates how large the table should be
*/

{"size", CFG_ATTR_INTTYPE,
CFG_OP_CONFIGURE | CFG_OP_QUERY | CFG_OP_RECONFIGURE,
NULL, 1, 10, 0},

/*
* "table" is a binary representation of the table
*/

{"table", CFG_ATTR_BINTYPE,
CFG_OP_QUERY,
NULL, 0, 0, 0},

/*
* "element" is a cell in the table array

C–8 Creating Dynamically Configurable Kernel Subsystems

Example C–1: Example Attribute Table (cont.)

*/
{"element", CFG_ATTR_LONGTYPE,
CFG_OP_QUERY | CFG_OP_RECONFIGURE,
NULL, 0, 99, 0},

{,0,0,0,0,0,0} /* required last element */
};

The final entry in the table, {,0,0,0,0,0,0}, is an empty attribute. This
attribute signals the end of the attribute table and is required in all
attribute tables.

The first line in the attribute table defines the name of the table. This
attribute table is named table_mgr_attributes. The following list
explains the fields in the attribute name:

1 The name of the attribute is stored in the name field, which is
initialized to Default Table by the data declaration that precedes
the attribute table.

2 The attribute data type is CFG_ATTR_STRTYPE, which is a null
terminated array of characters.

3 This field specifies the operations that can be performed on the
attribute. In this case, the attribute can be configured, queried, and
reconfigured.

4 This field determines whether the kernel has access to the value of the
attribute.

If you specify an address in this field, as shown in the example, the
kernel can read and modify the value of the attribute. When the kernel
receives a query request from the sysconfig command, it reads the
value in the location you specify in this field and returns that value.
For a configure or reconfigure request, the kernel checks that the data
type of the new value is appropriate for the attribute and that the
value falls within the minimum and maximum values for the attribute.
If the value meets these requirements, the kernel stores the new value
for the attribute. (You specify minimum and maximum values in the
next two fields in the attribute definition.)

5 These two fields define the minimum allowed value for the attribute
(in this case, 2), and the maximum allowed value for the attribute (in
this case, sizeof(name)).

If you want the minimum and maximum values of the attribute to be
set according to the system minimum and maximum values, you can
use one of the constants defined in the /usr/include/limits.h file.

Creating Dynamically Configurable Kernel Subsystems C–9

6 If you want the kernel to be able to read and modify the contents of a
binary attribute, use this field to specify the current size of the binary
data. If the kernel modifies the length of the binary data stored in the
attribute, it also modifies the contents of this field.

This field is not used if the attribute is an integer or string or if you
intend to respond to query and reconfigure request for a binary
attribute in the configuration routine.

C.2.3 Communication Attribute Table

The communication attribute table, which is declared in the
/sys/include/sys/sysconfig.h file, has the cfg_attr_t data type. As
the following example shows, this data type is a structure of attributes:

typedef struct cfg_attr {
char name[CFG_ATTR_NAME_SZ]; 1
uint type; 2
uint status; 3
uint operation; 4
long index; 5
union { 6

struct {
caddr_t val;
ulong min_len;
ulong max_len;
void (*disposal)();

}str;
struct {

caddr_t val;
ulong min_size;
ulong max_size;
void (*disposal)();
ulong val_size;

}bin;
struct {

caddr_t val;
ulong min_len;
ulong max_len;

}num;
}attr;

}cfg_attr_t;

1 The name field specifies the name of the attribute, following the same
attribute name rules as the name field in the definition attribute table.

2 The type field specifies the data type of the attribute. Table C–1 lists
the possible data types.

C–10 Creating Dynamically Configurable Kernel Subsystems

3 The status field contains a predefined status code. Table C–3 lists the
possible status values.

Table C–3: Attribute Status Codes

Status Code Meaning

CFG_ATTR_EEXISTS Attribute does not exist.

CFG_ATTR_EINDEX Invalid attribute index.

CFG_ATTR_ELARGE Attribute value or size is too large.

CFG_ATTR_EMEM No memory available for the attribute.

CFG_ATTR_EOP Attribute does not support the requested operation.

CFG_ATTR_ESMALL Attribute value or size is too small.

CFG_ATTR_ESUBSYS The kernel is disallowed from configuring, responding
to queries on, or reconfiguring the subsystem. The
subsystem code must perform the operation.

CFG_ATTR_ETYPE Invalid attribute type or mismatched attribute type.

CFG_ATTR_SUCCESS Successful operation.

4 The operation field contains one of the operation codes listed in
Table C–2.

5 The index field is an index into a structured attribute.

6 The attr union contains the value of the attribute and its maximum
and minimum values.

For attributes with the CFG_ATTR_STRTYPE data type, the val
variable contains string data. The minimum and maximum values are
the minimum and maximum lengths of the string. The disposal
routine is a routine you write to free the kernel memory when your
application is finished with it..

For attributes with the CFG_ATTR_BINTYPE data type, the val field
contains a binary value. The minimum and maximum values are the
minimum and maximum numbers of bytes you can modify. The
disposal routine is a routine you write to free the kernel memory
when your application is finished with it. The val_size variable
contains the current size of the binary data.

For numerical data types, the val variable contains an integer value
and the minimum and maximum values are also integer values.

Creating Dynamically Configurable Kernel Subsystems C–11

C.2.4 Example Communication Attribute Table

This section describes an example communication attribute table to help
you understand its contents and use. The example attribute table is for a
fictional kernel subsystem named table_mgr. The configuration routine
for the fictional subsystem is shown and explained in Section C.3.

table_mgr_configure(
cfg_op_t op, /*Operation code*/ 1
caddr_t indata, /*Data passed to the subsystem*/ 2
ulong indata_size, /*Size of indata*/
caddr_t outdata, /*Data returned to kernel*/ 3
ulong outdata_size) /*Count of return data items*/

{

The following list explains the fields in the table_mgr_configure
communication attribute table:

1 The op variable contains the operation code, which can be one of the
following:

CFG_OP_CONFIGURE
CFG_OP_QUERY
CFG_OP_RECONFIGURE
CFG_OP_UNCONFIGURE

2 The indata structure delivers data of indata_size to the
configuration routine. If the operation code is CFG_OP_CONFIGURE or
CFG_OP_QUERY, the data is a list of attribute names that are to be
configured or queried. For the CFG_OP_RECONFIGURE operation code,
the data consists of attribute names and values. No data is passed to
the configuration routine when the operation code is
CFG_OP_UNCONFIGURE.

3 The outdata structure and the outdata_size variables are
placeholders for possible future expansion of the configurable
subsystem capabilities.

C.3 Creating a Configuration Routine

To make the subsystem configurable, you must define a configuration
routine. This routine works with the definition attribute table to configure,
reconfigure, answer queries on, and unconfigure the subsystem.

Depending upon the needs of the subsystem, the configuration routine
might be simple or complicated. Its purpose is to perform tasks that the
kernel cannot perform for you. Because you can inform the kernel of the

C–12 Creating Dynamically Configurable Kernel Subsystems

location of the attributes in the definition attribute table, it is possible for
the kernel to handle all configure, reconfigure, and query requests for an
attribute. However, the amount of processing done during these requests is
then limited. For example, the kernel cannot calculate the value of an
attribute for you, so attributes whose value must be calculated must be
handled by a configuration routine.

The following sections describe an example configuration routine. The
example routine is for a fictional table_mgr subsystem that manages a
table of binary values in the kernel. The configuration routine performs
these tasks:

• Allocates kernel memory for the table at initial configuration

• Handles queries about attributes of the table

• Modifies the size of the table when requested by the system
administrator

• Frees kernel memory when unconfigured

• Returns to the kernel

Source code for this subsystem is included on the system in the
/usr/examples/cfgmgr directory. The definition attribute table for this
subsystem is shown in Section C.2.2. The communication attribute table for
this subsystem is shown in Section C.2.4.

C.3.1 Performing Initial Configuration

At initial configuration, the table_mgr subsystem creates a table that it
maintains. As shown in Example C–1, the system administrator can set the
name and size of the table at initial configuration. To set these values, the
system administrator stores the desired values in the sysconfigtab
database.

The default name of the table, defined in the subsystem code, is
Default Table. The default size of the table is zero elements.

The following example shows the code that is executed during the initial
configuration of the table_mgr subsystem:

.

.

.
switch(op){ 1
case CFG_OP_CONFIGURE:

attributes = (cfg_attr_t*)indata; 2

for (i=0; i<indata_size; i++){ 3
if (attributes[i].status == CFG_ATTR_ESUBSYS) { 4

if (!strcmp("size", attributes[i].name)){ 5

Creating Dynamically Configurable Kernel Subsystems C–13

/* Set the size of the table */
table = (long *) kalloc(attributes[i].attr.num.val*sizeof(long)); 6

/*
* Make sure that memory is available
*/

if (table == NULL) { 7
attributes[i].status = CFG_ATTR_EMEM;
continue;

}

/*
* Success, so update the new table size and attribute status
*/

size = attributes[i].attr.num.val; 8
attributes[i].status = CFG_ATTR_SUCCESS;
continue;

}
}
}

break;
.
.
.

1 The configuration routine contains a switch statement to allow the
subsystem to respond to the various possible operations. The subsystem
performs different tasks, depending on the value of the op variable.

2 This statement initializes the pointer attributes. The configuration
routine can now manipulate the data it was passed in the indata
structure.

3 The for loop examines the status of each attribute passed to the
configuration routine.

4 If the status field for the attribute contains the CFG_ATTR_ESUBSYS
status, the configuration routine must configure that attribute.

5 For the initial configuration, the only attribute that needs to be
manipulated is the size attribute. The code within the if statement
is executed only when the size attribute is the current attribute.

6 When the status field contains CFG_ATTR_ESUBSYS and the attribute
name field contains size, the local variable table receives the
address of an area of kernel memory. The area of kernel memory must
be large enough to store a table of the size specified in
attributes[i].attr.num.val. The value specified in
attributes[i].attr.num.val is an integer that specifies the
number of longwords in the table. The kernel reads the integer value
from the sysconfigtab database and passes it to the configuration
routine in the attr union.

7 The kalloc routine returns NULL if it is unable to allocate kernel
memory. If no memory has been allocated for the table, the
configuration routine returns CFG_ATTR_EMEM, indicating that no

C–14 Creating Dynamically Configurable Kernel Subsystems

memory was available. When this situation occurs, the kernel displays
an error message. The subsystem is configured into the kernel, but the
system administrator must use the sysconfig command to reset the
size of the table.

8 If kernel memory is successfully allocated, the table size from the
sysconfigtab file is stored in the static external variable size. The
subsystem can now use that value for any operations that require the
size of the table.

C.3.2 Responding to Query Requests

During a query request, a user of the table_mgr subsystem can request
that the following be displayed:

• The name of the table

• The table size

• The table itself

• A single element of the table

As shown in Example C–1, the name attribute declaration includes an
address ((caddr_t) name) that allows the kernel to access the name of the
table directly. As a result, no code is needed in the configuration routine to
respond to a query about the name of the table.

The following example shows the code that is executed as part of a query
request:

switch (op):
.
.
.

case CFG_OP_QUERY:
/*
* indata is a list of attributes to be queried, and
* indata_size is the count of attributes
*/
attributes = (cfg_attr_t *) indata; 1

for (i = 0; i < indata_size; i++) { 2
if (attributes[i].status == CFG_ATTR_ESUBSYS) { 3

/*
* We need to handle the query for the following
* attributes.
*/

if (!strcmp(attributes[i].name, "size")) { 4

/*
* Fetch the size of the table.
*/

attributes[i].attr.num.val = (long) size;
attributes[i].status = CFG_ATTR_SUCCESS;
continue;

Creating Dynamically Configurable Kernel Subsystems C–15

}

if (!strcmp(attributes[i].name, "table")) { 5

/*
* Fetch the address of the table, along with its size.
*/

attributes[i].attr.bin.val = (caddr_t) table;
attributes[i].attr.bin.val_size = size * sizeof(long);
attributes[i].status = CFG_ATTR_SUCCESS;
continue;

}

if (!strcmp(attributes[i].name, "element")) { 6

/*
* Make sure that the index is in the right range.
*/

if (attributes[i].index < 1 || attributes[i].index > size) {
attributes[i].status = CFG_ATTR_EINDEX;

continue;
}

/*
* Fetch the element.
*/

attributes[i].attr.num.val = table[attributes[i].index - 1];
attributes[i].status = CFG_ATTR_SUCCESS;
continue;

}
}

}

break;
.
.
.

1 This statement initializes the pointer attributes. The configuration
routine can now manipulate the data that was passed to it in the
indata structure.

2 The for loop examines the status of each attribute passed to the
configuration routine.

3 If the status field for the attribute contains the CFG_ATTR_ESUBSYS
status, the configuration routine must respond to the query request for
that attribute.

4 When the current attribute is size, this routine copies the value
stored in the size variable into the val field of the attr union
(attributes[i].attr.num.val). Because the size variable is an
integer, the num portion of the union is used.

This routine then stores the status CFG_ATTR_SUCCESS in the status
field attributes[i].status.

5 When the current attribute is table, this routine stores the address of
the table in the val field of the attr union. Because this attribute is
binary, the bin portion of the union is used and the size of the table is

C–16 Creating Dynamically Configurable Kernel Subsystems

stored in the val_size field. The size of the table is calculated by
multiplying the current table size, size, and the size of a longword.

The status field is set to CFG_ATTR_SUCCESS, indicating that the
operation was successful.

6 When the current attribute is element, this routine stores the value of
an element in the table into the val field of the attr union. Each
element is a longword, so the num portion of the attr union is used.

If the index specified on the sysconfig command line is out of range,
the routine stores CFG_ATTR_EINDEX into the status field. When this
situation occurs, the kernel displays an error message. The system
administrator must retry the operation with a different index.

When the index is in range, the status field is set to
CFG_ATTR_SUCCESS, indicating that the operation is successful.

C.3.3 Responding to Reconfigure Requests

A reconfiguration request modifies attributes of the table_mgr subsystem.
The definition attribute table shown in Example C–1 allows the system
administrator to reconfigure the following table_mgr attributes:

• The name of the table

• The size of the table

• The contents of one element of the table

As shown in Example C–1, the name attribute declaration includes an
address ((caddr_t) name) that allows the kernel to access the name of
the table directly. Thus, no code is needed in the configuration routine to
respond to a reconfiguration request about the name of the table.

The following example shows the code that is executed during a
reconfiguration request:

switch(op){
.
.
.

case CFG_OP_RECONFIGURE:
/*
* The indata parameter is a list of attributes to be
* reconfigured, and indata_size is the count of attributes.
*/

attributes = (cfg_attr_t *) indata; 1

for (i = 0; i < indata_size; i++) { 2
if (attributes[i].status == CFG_ATTR_ESUBSYS) { 3

/*
* We need to handle the reconfigure for the following
* attributes.
*/

Creating Dynamically Configurable Kernel Subsystems C–17

if (!strcmp(attributes[i].name, "size")) { 4

long *new_table;
int new_size;

/*
* Change the size of the table.
*/
new_size = (int) attributes[i].attr.num.val; 5
new_table = (long *) kalloc(new_size * sizeof(long));

/*
* Make sure that we were able to allocate memory.
*/
if (new_table == NULL) { 6
attributes[i].status = CFG_ATTR_EMEM;

continue;
}

/*
* Update the new table with the contents of the old one,
* then free the memory for the old table.
*/
if (size) { 7

bcopy(table, new_table, sizeof(long) *
((size < new_size) ? size : new_size));

kfree(table);
}

/*
* Success, so update the new table address and size.
*/
table = new_table; 8
size = new_size;
attributes[i].status = CFG_ATTR_SUCCESS;
continue;

}

if (!strcmp(attributes[i].name, "element")) { 9

/*
* Make sure that the index is in the right range.
*/
if (attributes[i].index < 1 || attributes[i].index > size) { 10

attributes[i].status = CFG_ATTR_EINDEX;
continue;

}

/*
* Update the element.
*/
table[attributes[i].index - 1] = attributes[i].attr.num.val; 11
attributes[i].status = CFG_ATTR_SUCCESS;
continue;

}
}

}

break;

C–18 Creating Dynamically Configurable Kernel Subsystems

.

.

.

1 This statement initializes the pointer attributes. The configuration
routine can now manipulate the data that was passed to it in the
indata structure.

2 The for loop examines the status of each attribute passed to the
configuration routine.

3 If the status field for the attribute contains the CFG_ATTR_ESUBSYS
status, the configuration routine must reconfigure that attribute.

4 When the current attribute is size, the reconfiguration changes the
size of the table. Because the subsystem must ensure that kernel
memory is available and that no data in the existing table is lost, two
new variables are declared. The new_table and new_size variables
store the definition of the new table and new table size.

5 The new_size variable receives the new size, which is passed in the
attributes[i].attr.num.val field. This value comes from the
sysconfig command line.

The new_table variable receives an address that points to an area of
memory that contains the appropriate number of bytes for the new
table size. The new table size is calculated by multiplying the value of
the new_size variable and the number of bytes in a longword
(sizeof (long)).

6 The kalloc routine returns NULL if it was unable to allocate kernel
memory. If no memory has been allocated for the table, the
configuration routine returns CFG_ATTR_EMEM, indicating that no
memory was available. When this situation occurs, the kernel displays
an error message. The system administrator must reenter the
sysconfig command with an appropriate value.

7 This if statement determines whether a table exists. If one does, then
the subsystem copies data from the existing table into the new table. It
then frees the memory that is occupied by the existing table.

8 Finally, after the subsystem is sure that kernel memory has been
allocated and data in the existing table has been saved, it moves the
address stored in new_table into table. It also moves the new table
size from new_size into size.

The status field is set to CFG_ATTR_SUCCESS, indicating that the
operation is successful.

9 When the current attribute is element, the subsystem stores a new
table element into the table.

10 Before it stores the value, the routine checks to ensure that the index
specified is within a valid range. If the index is out of the range, the
routine stores CFG_ATTR_EINDEX in the status field. When this

Creating Dynamically Configurable Kernel Subsystems C–19

situation occurs, the kernel displays an error message. The system
administrator must retry the operation with a different index.

11 When the index is in range, the subsystem stores the val field of the
attr union into an element of the table. Each element is a longword,
so the num portion of the attr union is used.

The status field is set to CFG_ATTR_SUCCESS indicating that the
operation is successful.

C.3.4 Performing Subsystem-Defined Operations

The table_mgr subsystem defines an application-specific operation that
doubles the value of all fields in the table.

When a subsystem defines its own operation, the operation code must be in
the range of CFG_OP_SUBSYS_MIN and CFG_OP_SUBSYS_MAX, as defined
in the <sys/sysconfig.h> file. When the kernel receives an operation
code in this range, it immediately transfers control to the subsystem code.
The kernel does no work for subsystem-defined operations.

When control transfers to the subsystem, it performs the operation,
including manipulating any data passed in the request.

The following example shows the code that is executed in response to a
request that has the CFG_OP_SUBSYS_MIN value:

switch (op) {
...

case CFG_OP_SUBSYS_MIN:

/*
* Double each element of the table.
*/

for (i=0; ((table != NULL) && (i < size)); i++)
table[i] *= 2;

break;
...
}

The code doubles the value of each element in the table.

C.3.5 Unconfiguring the Subsystem

When the table_mgr subsystem is unconfigured, it frees kernel memory.
The following example shows the code that is executed in response to an
unconfiguration request:

C–20 Creating Dynamically Configurable Kernel Subsystems

switch(op){
...

case CFG_OP_UNCONFIGURE:
/*
* Free up the table if we allocated one.

*/
if (size)

kfree(table, size*sizeof(long));
size = 0;
break;
}

return ESUCCESS;
}

This portion of the configuration routine determines whether memory has
been allocated for a table. If it has, the routine frees the memory using
kfree function.

C.3.6 Returning from the Configuration Routine

The following example shows the return statement for the configuration
routine.

switch(op){
...

size = 0;
break;
}

return ESUCCESS;

The subsystem configuration routine returns ESUCCESS on completing a
configuration, query, reconfigure, or unconfigure request. The way this
subsystem is designed, no configuration, query, reconfiguration, or
unconfiguration request, as a whole, fails. As shown in the examples in
Section C.3.1 and Section C.3.3, operations on individual attributes might
fail.

In some cases, you might want the configuration, reconfiguration, or
unconfiguration of a subsystem to fail. For example, if one or more key
attributes failed to be configured, you might want the entire subsystem
configuration to fail. The following example shows a return that has an
error value:

switch(op){
...

if (table == NULL) {

Creating Dynamically Configurable Kernel Subsystems C–21

attributes[i].status = CFG_ATTR_EMEM;
return ENOMEM; /*Return message from errno.h*/

}

The if statement in the example tests whether memory has been allocated
for the table. If no memory has been allocated for the table, the subsystem
returns with an error status and the configuration of the subsystem fails.
The following messages, as defined in /sys/include/sys/sysconfig.h
and /usr/include/errno.h files, are displayed:

No memory available for the attribute
Not enough core

The system administrator must then retry the subsystem configuration by
reentering the sysconfig command.

Any nonzero return status is considered an error status on return from the
subsystem. The following list describes what occurs for each type of request
if the subsystem returns an error status:

• An error on return from initial configuration causes the subsystem to
not be configured into the kernel.

• An error on return from a query request causes no data to be displayed.

• An error on return from an unconfiguration request causes the
subsystem to remain configured into the kernel.

C.4 Allowing for Operating System Revisions in Loadable
Subsystems

When you create a loadable subsystem, you should add code to the
subsystem to check the operating system version number. This code
ensures that the subsystem is not loaded into an operating system whose
version is incompatible with the subsystem.

Operating system versions that are different in major ways from the last
version are called major releases of the operating system. Changes made to
the system at a major release can cause the subsystem to operate
incorrectly, so you should test and update the subsystem at each major
operating system release. Also, you might want to take advantage of new
features added to the operating system at a major release.

Operating system versions that are different in minor ways from the last
version are called minor releases of the operating system. In general, the
subsystem should run unchanged on a new version of the operating system
that is a minor release. However, you should still test the subsystem on the
new version of the operating system. You might want to consider taking
advantage of any new features provided by the new version.

C–22 Creating Dynamically Configurable Kernel Subsystems

To allow you to check the operating system version number, the Tru64
UNIX system provides the global kernel variables version_major and
version_minor. The following example shows the code you use to test the
operating system version:

...
extern int version_major;
extern int version_minor;

if (version_major != 5 && version_minor != 0)
return EVERSION;

The code in this example ensures that the subsystem is running on the
Version 5.0 release of the operating system.

C.5 Building and Loading Loadable Subsystems

After you have written a loadable subsystem, you must build it and
configure it into the kernel for testing purposes. This section describes how
to build and load a loadable subsystem. For information about how to build
a static subsystem that allows run-time attribute configuration, see
Section C.6.

The following procedure for building dynamically loadable subsystems
assumes that you are building a subsystem named table_mgr, which is
contained in the files table_mgr.c and table_data.c. To build this
subsystem, follow these steps:

1. Move the subsystem source files into a directory in the /usr/sys area:

mkdir /usr/sys/mysubsys
cp table_mgr.c /usr/sys/mysubsys/table_mgr.c
cp table_data.c /usr/sys/mysubsys/table_data.c

You can replace the mysubsys directory name with the directory name
of your choice.

2. Edit the /usr/sys/conf/files file using the text editor of your
choice and insert the following lines:

#
table_mgr subsystem
#
MODULE/DYNAMIC/table_mgr optional table_mgr Binary
mysubsys/table_mgr.c module table_mgr
mysubsys/table_data.c module table_mgr

The entry in the files file describes the subsystem to the config
program. The first line of the entry contains the following information:

Creating Dynamically Configurable Kernel Subsystems C–23

• The MODULE/DYNAMIC/table_mgr token indicates that the
subsystem is a dynamic kernel module (group of objects) named
table_mgr.

• The optional keyword indicates that the subsystem is not
required into the kernel.

• The table_mgr identifier is the token that identifies the
subsystem on the sysconfig and autosysconfig command lines.
Use caution when choosing this name to ensure that it is unique
with respect to other subsystem names. You can list more than one
name for the subsystem.

• The Binary keyword indicates that the subsystem has already
been compiled and object files can be linked into the target kernel.

Succeeding lines of the files file entry give the pathname to the
source files that compose each module.

3. Generate the makefile and related header files by entering the
following command:

/usr/sys/conf/sourceconfig BINARY

4. Change to the /usr/sys/BINARY directory and build the module as
follows:

cd /usr/sys/BINARY
make table_mgr.mod

5. When the module builds without errors, move it into the /subsys
directory so that the system can load it:

cp table_mgr.mod /subsys/

6. Load the subsystem by using either the /sbin/sysconfig command
or the /sbin/init.d/autosysconfig command.

The following shows the command line you would use to load and
configure the table_mgr subsystem:

/sbin/sysconfig -c table_mgr

If you want the subsystem to be configured into the kernel each time
the system reboots, enter the following command:

/sbin/init.d/autosysconfig add table_mgr

The autosysconfig command adds the table_mgr subsystem to the
list of subsystems that are automatically configured into the kernel.

C–24 Creating Dynamically Configurable Kernel Subsystems

C.6 Building a Static Configurable Subsystem Into the
Kernel

After you have written a static subsystem that allows run-time attribute
configuration, you must build it into the kernel for testing purposes. This
section describes how to build a static subsystem that supports the
dynamic configuration of attributes.

The following procedure for building dynamically loadable subsystems
assumes that you are building a subsystem named table_mgr, which is
contained in the file table_mgr.c:

1. Move the subsystem source files into a directory in the /usr/sys area:

mkdir /usr/sys/mysubsys
cp table_mgr.c /usr/sys/mysubsys/table_mgr.c
cp table_data.c /usr/sys/mysubsys/table_data.c

You can replace the mysubsys directory name with the directory name
of your choice.

2. Edit the /usr/sys/conf/files file using the text editor of your
choice and insert the following lines:

#
table_mgr subsystem
#
MODULE/STATIC/table_mgr optional table_mgr Binary
mysubsys/table_mgr.c module table_mgr
mysubsys/table_data.c module table_mgr

The entry in the files file describes the subsystem to the config
program. The first line of the entry contains the following information:

• The MODULE/STATIC/table_mgr token indicates that the
subsystem is a static kernel module (group of objects) named
table_mgr.

• The optional keyword indicates that the subsystem is not
required in the kernel.

• The table_mgr identifier is the token that identifies the subsystem
in the system configuration file. Use caution when choosing this
name to ensure that it is unique with respect to other subsystem
names. You can list more than one name for the subsystem.

• The Binary keyword indicates that the subsystem has already
been compiled and object files can be linked into the target kernel.

Succeeding lines of the files file entry give the pathname to the
source files that compose each module.

3. Rebuild the kernel by running the /usr/sbin/doconfig program:

Creating Dynamically Configurable Kernel Subsystems C–25

/usr/sbin/doconfig

4. Enter the name of the configuration file at the following prompt:

*** KERNEL CONFIGURATION AND BUILD PROCEDURE ***
Enter a name for the kernel configuration file. [MYSYS]: MYSYS.TEST

For purposes of testing the kernel subsystem, enter a new name for the
configuration file, such as MYSYS.TEST. Giving the doconfig program
a new configuration file name allows the existing configuration file to
remain on the system. You can then use the existing configuration file
to configure a system that omits the subsystem you are testing.

5. Select option 15 from the Kernel Option Selection menu. Option 15
indicates that you are adding no new kernel options.

6. Indicate that you want to edit the configuration file in response to the
following prompt:

Do you want to edit the configuration file? (y/n) [n] yes

The doconfig program then starts the editor. (To control which editor
is invoked by doconfig, define the EDITOR environment variable.)
Add the identifier for the subsystem, in this case table_mgr, to the
configuration file:

options TABLE_MGR

After you exit from the editor, the doconfig program builds a new
configuration file and a new kernel.

7. Copy the new kernel into the root (/) directory:

cp /usr/sys/MYSYS_TEST/vmunix /vmunix

8. Shut down and reboot the system:

shutdown -r now

_______________________ Note _______________________

You can specify that the module is required in the kernel by
replacing the optional keyword with the standard keyword.
Using the standard keyword saves you from editing the system
configuration file. The following files file entry is for a
required kernel module, one that is built into the kernel
regardless of its inclusion in the system configuration file:

#
table_mgr subsystem
#
MODULE/STATIC/table_mgr standard Binary
mysubsys/table_mgr.c module table_mgr
mysubsys/table_data.c module table_mgr

C–26 Creating Dynamically Configurable Kernel Subsystems

When you make an entry such as the preceding one in the
files file, you add the subsystem to the kernel by entering the
following doconfig command, on a system named MYSYS:

/usr/sbin/doconfig -c MYSYS

Replace MYSYS with the name of the system configuration file in
the preceding command.

This command builds a vmunix kernel that is described by the
existing system configuration file, with the addition of the
subsystem being tested, in this case, the table_mgr subsystem.

C.7 Testing Your Subsystem

You can use the sysconfig command to test configuration,
reconfiguration, query, and unconfiguration requests on the configurable
subsystem. When you are testing the subsystem, enter the sysconfig
command with the −v option. This option causes the sysconfig command
to display more information than it normally does. The command displays,
on the /dev/console screen, information from the cfgmgr configuration
management server and the kloadsrv kernel loading software.
Information from kloadsrv is especially useful in determining the names
of unresolved symbols that caused the load of a subsystem to fail.

In most cases, you can use dbx, kdebug, and kdbx to debug kernel
subsystems just as you use them to test other kernel programs. If you are
using the kdebug debugger through the dbx −remote command, the
subsystem’s .mod file must be in the same location on the system running
dbx and the remote test system. The source code for the subsystem should
be in the same location on the system running dbx. For more information
about the setup required to use the kdebug debugger, see the Kernel
Debugging manual.

If the subsystem is dynamically loadable and has not been loaded when you
start dbx, you must enter the dbx addobj command to allow the debugger
to determine the starting address of the subsystem. If the debugger does
not have access to the starting address of the subsystem, you cannot use it
to examine the subsystem data and set breakpoints in the subsystem code.
The following procedure shows how to invoke the dbx debugger, configure
the table_mgr.mod subsystem, and enter the addobj command:

1. Invoke the dbx debugger:

dbx -k /vmunix
dbx version 3.11.4
Type ’help’ for help.

Creating Dynamically Configurable Kernel Subsystems C–27

stopped at [thread_block:1542 ,0xfffffc00002f5334]

(dbx)

2. Enter the sysconfig command to initially configure the subsystem:

sysconfig -c table_mgr

3. Enter the addobj command as shown:

(dbx) addobj /subsys/table_mgr.mod
(dbx) p &table_mgr_configure
0xffffffff895aa000

Be sure to specify the full pathname to the subsystem on the addobj
command line. (If the subsystem is loaded before you begin the dbx
session, you do not need to enter the addobj command.)

If you want to set a breakpoint in the portion of the subsystem code that
initially configures the subsystem, you must enter the addobj command
following the load of the subsystem, but before the kernel calls the
configuration routine. To stop execution between the load of the subsystem
and the call to its configuration routine, set a breakpoint in the special
routine, subsys_preconfigure. The following procedure shows how to set
this breakpoint:

1. Invoke the dbx debugger and set a breakpoint in the
subsys_preconfigure routine, as follows:

dbx -remote /vmunix
dbx version 3.11.4
Type ’help’ for help.

stopped at [thread_block:1542 ,0xfffffc00002f5334]

(dbx) stop in subsys_preconfigure
(dbx) run

2. Enter the sysconfig command to initially configure the table_mgr
subsystem:

sysconfig -c table_mgr

3. Enter the addobj command and set a breakpoint in the configuration
routine:

[5] stopped at [subsys_preconfigure:1546 ,0xfffffc0000273c58]
(dbx) addobj /subsys/table_mgr.mod
(dbx) stop in table_mgr_configure
[6] stop in table_mgr_configure
(dbx) continue

C–28 Creating Dynamically Configurable Kernel Subsystems

[6] stopped at [table_mgr_configure:47 ,0xffffffff895aa028]
(dbx)

4. When execution stops in the subsys_preconfigure routine, you can
use the dbx stack trace command, trace, to ensure that the
configuration request is for the subsystem that you are testing. Then,
set the breakpoint in the subsystem configuration routine.

Creating Dynamically Configurable Kernel Subsystems C–29

D
Parallel Processing — Old Style

Parallel processing of Compaq C programs is supported in two forms on
Tru64 UNIX systems:

• OpenMP interface — a parallel-processing interface defined by the
OpenMP Architecture Review Board.

• Old-style parallel-processing interface — a parallel-processing interface
developed prior to the OpenMP interface.

This appendix describes the old-style parallel-processing interface, that is,
the language features supported before the OpenMP interface was
implemented. See Chapter 13 for information about the OpenMP interface.

______________________ NOTE ______________________

Programmers using the old-style interface should consider
converting to the OpenMP interface, an industry standard.

Anyone converting an application to parallel processing or
developing a new parallel-processing application should use the
OpenMP interface.

Understanding this appendix requires a basic understanding of the
concepts of multiprocessing, such as what a thread is, if a data access is
thread-safe, and so forth.

The parallel-processing directives use the #pragma preprocessing directive
of ANSI C, which is the standard C mechanism for adding
implementation-defined behaviors to the language. Because of this, the
terms parallel-processing directives (or parallel directives) and
parallel-processing pragmas are used somewhat interchangeably in this
appendix.

This appendix contains information on the following topics:

• The general coding rules that apply to the use of parallel-processing
pragmas (Section D.1)

• The syntax of the parallel-processing pragmas (Section D.2)

• Environment variables that can be used to control certain aspects of
thread resource allocation at run time (Section D.3)

Parallel Processing — Old Style D–1

D.1 Use of Parallel-Processing Pragmas

This section describes the general coding rules that apply to all
parallel-processing pragmas and provides an overview of how the pragmas
are generally used.

D.1.1 General Coding Rules

In many ways, the coding rules for the parallel-processing pragmas follow
the rules of most other pragmas in Compaq C. For example, macro
substitution is not performed in the pragmas. In other ways, the
parallel-processing pragmas are unlike any other pragmas in Compaq C.
This is because while other pragmas generally perform such functions as
setting a compiler state (for example, message or alignment), these
pragmas are statements. For example:

• The pragmas must appear inside a function body.

• The pragmas affect the program execution (as described in this
appendix).

• Most pragmas apply to the statement that follows them. If you wish the
pragma to apply to more than one statement, you must use a compound
statement (that is, the statements must be enclosed in curly braces).

Several of the pragmas can be followed by modifiers that specify additional
information. To make using these modifiers easier, each one can appear on
a separate line following the parallel-processing pragma as long as the line
containing the modifiers also begins with #pragma followed by the modifier.
For example:

#pragma parallel if(test_function()) local(var1, var2, var2)

This example can also be written as:

#pragma parallel
#pragma if(test_function())
#pragma local(var1, var2, var2)

Note that the modifiers themselves cannot be broken over several lines. For
example, the earlier code could not be written as:

#pragma parallel
#pragma if(test_function()) local(var1,
#pragma var2, var2)

D.1.2 General Use

The #pragma parallel directive is used to begin a parallel region. The
statement that follows the #pragma parallel directive delimits the extent
of the parallel region. It is typically either a compound statement

D–2 Parallel Processing — Old Style

containing ordinary C statements (with or without other
parallel-processing directives) or another parallel-processing directive (in
which case the parallel region consists of that one statement). Within a
compound statement delimiting a parallel region, any ordinary C
statements not controlled by other parallel-processing directives simply
execute on each thread. The C statements within the parallel region that
are controlled by other parallel-processing directives execute according to
the semantics of that directive.

All other parallel-processing pragmas, except for #pragma critical, must
appear lexically inside a parallel region. The most common type of code
that appears in a parallel region is a for loop to be executed by the threads.
Such a for loop must be preceded by a #pragma pfor. This construct
allows different iterations of the for loop to be executed by different
threads, which speeds up the program execution. The following example
shows the pragmas that might be used to execute a loop in parallel:

#pragma parallel local(a)
#pragma pfor iterate(a = 1 ; 1000 ; 1)
for(a = 0 ; a < 1000 ; a++) {
<loop code>
}

A loop that executes in parallel must obey certain properties. These include:

• The index variable is not modified by the loop except by the third
expression of the for statement. Further, that expression must always
adjust the index variable by the same amount.

• Each iteration of the loop must be independent. That is, the
computations performed by one iteration of the loop must not depend on
the results of another iteration

• The number of iterations of the loop is known before the loop starts.

The programmer is responsible for verifying that the parallel loops obey
these restrictions.

Another use of parallel processing is to have several different blocks of code
run in parallel. The #pragma psection and #pragma sections directives
are used for this purpose. The following code shows how these directives
might be used:

Parallel Processing — Old Style D–3

#pragma parallel
#pragma psection
{

#pragma section
{ <code block>
}
#pragma section
{ <code block>
}
#pragma section
{ <code block>
}

}

Once again, certain restrictions apply to the code block. For example, one
code block must not rely on computations performed in other code blocks.

The final type of code that can appear in a parallel region is serial code.
Serial code is neither within a #pragma pfor nor a #pragma psection. In
this case, the same code will be executed by all of the threads created to
execute the parallel region. While this may seem wasteful, it is often
desirable to place serial code between two #pragma pfor loops or
#pragma psection blocks. Although the serial code will be executed by all
of the threads, this construct is more efficient than closing the parallel
region after the first pfor or psection and opening another before the
second one. This is due to run-time overhead associated with creating and
closing a parallel region.

Be careful when placing serial code in a parallel region. Note that the
following statements could produce unexpected results:
a++;
b++

Unexpected results may occur because all threads will execute the
statements, causing the variables a and b to be incremented some number
of times. To avoid this problem, enclose the serial code in a #pragma one
processor block. For example:
#pragma one processor
{
a++;
b++
}

Note that no thread can proceed past the code until it has been executed.

D.1.3 Nesting Parallel Directives

Nested parallel regions are not currently supported in Compaq C. If a
parallel region lexically contains another parallel region, the compiler will
issue an error. However, if a routine executing inside a parallel region calls
another routine that then tries to enter a parallel region, this second
parallel region will execute serially and no error will be reported.

D–4 Parallel Processing — Old Style

With the exception of #pragma parallel, it is invalid for most parallel
constructs to execute other parallel constructs. For example, when running
the code in a #pragma pfor, #pragma one processor,
#pragma section, or #pragma critical code block, the only other
parallel-processing construct that can execute is a #pragma critical. In
the case where one parallel-processing pragma is lexically nested within
another, the compiler will issue an error for all illegal cases. However, if
code running in a code block transfers to a routine that then executes one
of these directives, the behavior is unpredictable.

(As noted earlier in this appendix, all parallel-processing pragmas, except
for #pragma critical, must appear lexically inside a #pragma parallel
region.)

D.2 Parallel-Processing Pragma Syntax

This section describes the syntax of each of the parallel-processing pragmas.

The following parallel-processing pragmas are supported by the old-style
parallel-processing interface:

• #pragma parallel — Denotes a parallel region of code (Section D.2.1).

• #pragma pfor — Marks a for loop that is to be run in parallel
(Section D.2.2).

• #pragma psection — Begins a number of code sections, each of which
is to be run in parallel with the others (Section D.2.3).

• #pragma section — Specifies each code section within a psection area
(Section D.2.3).

• #pragma critical — Protects access to a critical area of code so that
only one thread at a time can execute it (Section D.2.4).

• #pragma one processor — A section of code that should be executed
by only one thread (Section D.2.5).

• #pragma synchronize — Stops threads until they all reach this point
(Section D.2.6).

• #pragma enter gate and #pragma exit gate — A more complex
form of synchronization. No thread is allowed to leave the exit gate
until all threads have passed the enter gate (Section D.2.7).

Parallel Processing — Old Style D–5

D.2.1 #pragma parallel

The #pragma parallel directive marks a parallel region of code. The
syntax of this pragma is:

#pragma parallel [parallel-modifiers...] statement-or-code_block

The parallel-modifiers for #pragma parallel are:

local(variable-list)
byvalue(variable-list)
shared(variable-list)
if (expression) [[no]ifinline]
numthreads(numthreads-option)

local, byvalue,
and shared
modifiers

The variable-list argument to the local,
byvalue, and shared modifiers is a
comma-separated list of variables that have already
been declared in the program. You can specify any
number of local, byvalue, and shared modifiers.
This is useful if one of the modifiers requires a
large number of variables.

The variables following the shared and byvalue
modifiers will be shared by each thread.

The variables following the local modifier will be
unique to each thread. Note that the value of
variables outside the region are not passed into the
region. Inside the region, the value of variables on
the local modifier is undefined. Putting a variable
in the local list has the same effect as declaring
that variable inside the parallel region.

These modifiers are provided only for compatibility
with other C compilers. In Compaq C, all visible
variables declared outside the parallel region can be
accessed and modified within the parallel region,
and are shared by all threads (unless the variable is
specified in the local modifier). For example:
int a,b,c;
#pragma parallel local(a) shared(b) byvalue(c)
{
<code that references a, b, and c>
}

This is the same as:

int a,b,c;
#pragma parallel
{
int a;
<code that references a, b, and c>
}

D–6 Parallel Processing — Old Style

if modifier The expression following the if modifier specifies a
condition that will determine whether the code in
the parallel region will actually be executed in
parallel by many threads or serially by a single
thread. If the condition is nonzero, the code will be
run in parallel. This modifier can be used to delay,
until run time, the decision to parallelize or not.

Note that running a small amount of code in
parallel may take more time than running the code
serially. This is due to the overhead involved in
creating and destroying the threads needed to run
the code in parallel.

noifinline
modifier

The noifinline modifier can only be used if the
if modifier is present. The default value,
ifinline, tells the compiler to generate two
versions of the code within the parallel region: one
to execute in parallel if the if expression is
nonzero, and one to execute serially if the if
expression is zero. The noifinline modifier tells
the compiler to generate only one form of the code.
The noifinline modifier will cause less code to be
generated, but the code will execute more slowly for
those cases in which the if expression is zero.

numthreads
modifier

The numthreads-option is one of:

min=expr1, max=expr2
percent=expr
expr

In all cases, the expressions should evaluate to a
positive integer value. The case of
numthreads(expr) is equivalent to
numthreads(min=0,max=expr). If a min clause is
specified, the code will be run in parallel only if
expr1 threads (or more) are available to execute
the region. If a max clause is specified, the parallel
region will be executed by no more than expr2
threads. If a percent clause is specified, the
parallel region will be executed by expr percent of
the available threads.

An example of a parallel region is:

Parallel Processing — Old Style D–7

#pragma parallel local(a,b) if(func()) numthreads(x)
{
code
}

The region of code will be executed if func returns a nonzero value. If it is
executed in parallel, at most x threads will be used. Inside the parallel
region each thread will have a local copy of the variables a and b. All other
variables will be shared by the threads.

D.2.2 #pragma pfor

The #pragma pfor directive marks a loop for parallel execution. A
#pragma pfor can only appear lexically inside a parallel region. The
syntax of this pragma is:

#pragma pfor iterate(iterate-expressions) [pfor-options] for-statement

As the syntax shows, the #pragma pfor must be followed by the iterate
modifier. The iterate-expressions takes a form similar to a for loop:

index-variable = expr1 ; expr2 ; expr3

• The index-variable = expr1 must match the first expression in the
for statement that follows the #pragma pfor. To run correctly, the
index-variable must be local to the parallel region.

• The expr2 expression specifies the number of times the loop will
execute.

• The expr3 expression specifies the value to be added to the index
variable during each iteration of the loop.

Note that the iterate-expressions are closely related to the
expressions that appear in the for statement that follows the
#pragma pfor. It is the programmer’s responsibility to ensure that the
information provided in the iterate-expressions correctly characterizes
how the for loop will execute.

The pfor-options are:

schedtype(schedule-type)
chunksize(expr)

The schedtype option tells the run-time scheduler how to partition the
iterations among the available threads. Valid schedule-type values are:

• simple — The scheduler will partition the iterations evenly among all
of the available threads. This is the default.

• dynamic — The scheduler will give each thread the number of
iterations specified by the chunksize expression.

D–8 Parallel Processing — Old Style

• interleave — This is the same as dynamic except that the work is
assigned to the threads in an interleaved way.

• gss — The scheduler will give each thread a varied number of
iterations. This is like dynamic, but instead of giving each thread a
fixed chunksize, the number of iterations will begin with a large
number and end with a small number.

The chunksize option is required for a schedtype of either dynamic or
interleave. It is used to specify the number of iterations.

D.2.3 #pragma psection and #pragma section

The #pragma psection and #pragma section directives designate
sections of code that are to be executed in parallel with each other. These
directives can only appear lexically inside a parallel region. The syntax of
these pragmas is:

#pragma psection

{

#pragma section

stmt1

#pragma section

stmt2. . .

#pragma section

stmtn

}

These pragmas do not have modifiers. The #pragma psection must be
followed by a code block enclosed in braces. The code block must consist
only of #pragma section directives followed by a statement or a group of
statements enclosed in braces. You can specify any number of
#pragma section directives within a psection code block.

D.2.4 #pragma critical

The #pragma critical directive designates a section of code that is to be
executed by no more than one thread at a time. The syntax of this pragma
is:

#pragma critical [lock-option] statement-or-code-block

The lock-option can be one of:

Parallel Processing — Old Style D–9

• block — The lock is specific to this critical section. Other threads can
execute other critical sections while this critical section is executing,
but only one thread can execute this critical section. This option can
only be specified for critical sections within a parallel region.

• region — The lock is specific to this parallel region. Other threads
that are executing code lexically outside the parallel region can execute
other critical sections, but no other critical section within the parallel
region can execute. This option can only be specified for critical sections
within a parallel region.

• global — The global lock. No other critical section can execute while
this one is executing. This is the default value.

• expr — An expression that specifies a user-supplied lock variable. In
this case, the expression must designate a 32-bit or 64-bit integer
variable.

D.2.5 #pragma one processor

The #pragma one processor directive designates a section of code that is
to be executed by only one thread. This directive can only appear inside a
parallel region. The syntax of this pragma is:

#pragma one processor statement-or-code-block

D.2.6 #pragma synchronize

The #pragma synchronize directive prevents the next statement from
being executed until all threads have reached this point. This directive can
only appear inside a parallel region. The syntax of this pragma is:

#pragma synchronize

D.2.7 #pragma enter gate and #pragma exit gate

The #pragma enter gate and #pragma exit gate directives allow a
more flexible form of synchronization than #pragma synchronize. These
directives can only appear inside a parallel region. Each
#pragmaentergate in the region must have a matching
#pragma exit gate. The syntax of these pragmas are:

#pragma enter gate (name)

#pragma exit gate (name)

The name is an identifier that designates each gate. The names of gates are
in their own name space; for example, a gate name of foo is distinct from a
variable named foo. A gate name is not declared before it is used.

D–10 Parallel Processing — Old Style

This type of synchronization operates as follows: No thread can execute the
statement after the #pragma exit gate until all threads have passed the
matching #pragma enter gate.

D.3 Environment Variables

Certain aspects of parallel code execution can be controlled by the values of
environment variables in the process when the program is started. The
environment variables currently examined at the start of the first parallel
execution in the program are as follows:

• MP_THREAD_COUNT — Tells the run-time system how many threads to
create. The default is to use the number of processors on the system as
the number of threads to create.

• MP_CHUNK_SIZE — Tells the run-time system what chunksize to use if
the user either asked for the RUNTIME schedule type or omitted the
chunksize when asking for another schedule type that requires a
chunksize.

• MP_STACK_SIZE — Tells the run-time system how many bytes of stack
space to allocate for each thread when it creates threads. The default is
quite small, and if you declare any large arrays as local, you need to
specify stack that is large enough to allocate them in.

• MP_SPIN_COUNT — Tells the run-time system how many times to spin
while waiting for a condition to become true.

• MP_YIELD_COUNT — Tells the run-time system how many times to
alternate between calling sched_yield and testing the condition
before really going to sleep by waiting for a Pthread condition variable.

You can set these environment variables to integer values by using the
conventions of your command-line shell. If an environment variable is not
set, the run-time system chooses a plausible default behavior (which is
generally biased toward allocating resources to minimize elapsed time).

Parallel Processing — Old Style D–11

E
Handling Names of Device Special Files

The manner in which devices and device special files are named and
organized has been changed in Version 5.0 of the Tru64 UNIX operating
system. For details on these changes, see dsfmgr(8) and the System
Administration manual. Also, see the Installation Guide for information on
the effects that various installation operations have on the accessibility of
new- and old-style device special file names.

To support the Version 5.0 changes that affect device handling, the
operating system provides conversion routines that make it relatively easy
to handle the transition between the new- and old-style names. This
appendix documents those routines. These routines will continue to be
provided until the old-style names are no longer supported by the system.

System components or applications that reference the names of device
special files will need to modify their source code. The modifications can be
done, as necessary, either by replacing all device special file names with
their new names or by using the conversion routines to derive the new
names.

The following rules apply to all of the conversion routines:

• Arguments will be returned if their pointers in the functions calls are
non-null.

• Only the first argument is mandatory. However, the functions will not
return useful information, except status information, unless other
arguments are specified.

The individual routines — dsfcvt_btoc(), dsfcvt_ctob(),
dsfcvt_ntoo(), dsfcvt_oton(), dsfcvt_noro(), and
dsfcvt_cdevtoname() — are described in the following list. Descriptions
of the parameters follow the routine descriptions.

dsfcvt_btoc() Convert block name to character name. The block
device name is searched for in the device status
database, and, if found, the corresponding character
device name is then searched for. If it is found, the
name is returned along with the hardware ID.

Handling Names of Device Special Files E–1

Synopsis:
int dsfcvt_btoc(

const char *blk_name,
char *chr_name,
char *blk_path,
char *chr_path,
long *hardware_id);

Return values: ESUCCESS (both device names
found), ENOENT (block device name not found),
ENODEV (character device name not found).

dsfcvt_ctob() Convert character name to block name. The
character name is searched for in the device status
database, and, if found, the corresponding block
device is then searched for. If it is found, the name
is returned along with the hardware ID.

Synopsis:
int dsfcvt_ctob(

const char *chr_name,
char *blk_name,
char *chr_path,
char *blk_path,
long *hardware_id);

Return values: ESUCCESS (both device names
found), ENOENT (character device name not
found), ENODEV (block device name not found).

dsfcvt_ntoo() Convert new name to old name. The new name is
searched for in the device status database, and, if
found, the old name, if any, is returned along with
the hardware ID.

Synopsis:
int dsfcvt_ntoo(

const char *new_name,
char *old_name,
char *new_path,
char *old_path,
long *hardware_id);

Return values: ESUCCESS (both device names
found), ENOENT (new device name not found),
ENODEV (old device name not found).

dsfcvt_oton() Convert old name to new name. The old name is
searched for in the device status database, and, if
found, the new name is returned along with the
hardware ID.

E–2 Handling Names of Device Special Files

Synopsis:
int dsfcvt_oton(

const char *old_name,
char *new_name,
char *old_path,
char *new_path,
long *hardware_id);

Return values: ESUCCESS (both device names
found), ENOENT (old device name not found),
ENODEV (new device name not found).

dsfcvt_noro() Convert a name to old or new name. The input
name (either new or old) is searched for in the
device status database. The first old or new name
that matches will be returned in the appropriate
field, and the input name will be returned in its
appropriate field. The hardware ID is also returned.

The search name may be in either or both name
arguments. If in both, they must be the same name
and must not point to the same string value.

Synopsis:
int dsfcvt_noro(

char *new_name,
char *old_name,
char *new_path,
char *old_path,
long *hardware_id);

Return values: ESUCCESS (both device names
found), ENOENT (input device name, old or new,
not found), ENODEV (other device name, old or
new, not found).

dsfcvt_cdevtoname() Convert a device’s unique numeric identifier (cdev)
to new name and path. The cdev is searched for in
the device status database, and, if found, the new
name and path are returned.

Synopsis:
int dsfcvt_cdevtoname(

dev_t cdev,
char *new_name,
char *new_path);

Return values: ESUCCESS (device found),
ENOENT (device not found).

Handling Names of Device Special Files E–3

The following list provides information about the arguments to the
functions:

blk_name|chr_name Pointer to a name of a block or character device,
respectively; for example, dsk1a, rz4a, or rrz4a.

blk_path|chr_path Pointer to a path for a device identified by
blk_name (for example, /dev/disk/dsk1a) or
chr_name (for example, /dev/rdisk/dsk1a).

new_name|old_name Pointer to a device name. The new_name argument
follows the new-style naming conventions and the
old_name argument follows the old-style naming
conventions.

new_path|old_path Pointer to a path for a device name. The new_path
argument follows the new-style naming conventions
and the old_path argument follows the old-style
naming conventions — for example,
/dev/disk/dsk1a and /dev/rdisk/dsk1a for
block and character devices, respectively, under
new-style conventions, or /dev/rz4a and
/dev/rrz4a for block and character devices,
respectively, under old-style conventions.

hardware_id Pointer to where the unique numeric identifier for a
device is to be returned. (This identifier is assigned
and maintained by the kernel.)

cdev The unique major-minor number assigned to a
device by the kernel.

E–4 Handling Names of Device Special Files

Index

Special Characters
/

(See slash)
?

(See question mark)

A
a.out, 2–19

default executable file, 2–3, 2–12
abnormal_termination function,

11–14
activation levels

changing in dbx, 5–30
displaying information about in

dbx, 5–50
displaying values of local

variables within, 5–50
identifying with stack trace,

5–3, 5–29
AdvFS

direct I/O use, 10–11
AES

application-level interface
requirements, 1–2

AIO routines, 10–11
alias command (dbx), 5–24
_align storage class modifier, 2–7
alignment

bit-field alignment, 2–6
data type alignment, 2–5

alignment, data
avoiding misalignment, 10–12

alloca function, 10–15
allocation, data

coding suggestions, 10–15
Alpha instruction set

using non-native instructions,
10–10

ANSI
name space cleanup, 2–26

ANSI standards
application development

considerations, 1–2
-ansi_alias option (cc), 10–4
-ansi_args option (cc), 10–4
application development

phases of, 1–1
Application Environment

Specification
(See AES)

application programs
building guidelines, 10–2
coding guidelines, 10–10
compiling and linking in

System V habitat, B–1
optimizing, 10–1
porting, 1–2, 6–11
reducing memory usage with

-xtaso, 10–15
archive file

determining section sizes, 2–24
dumping selected parts of, 2–22

array bounds
enabling run-time checking, 2–15

array usage
allocation considerations, 10–12
optimizing in C, 10–15

as command, 2–3
linking files compiled with, 2–19

assign command (dbx), 5–39
(See -fp_reorder option)
Atom tools, 9–1

command syntax, 9–3
developing, 9–6

Index–1

examples of, 9–1
running Atom tools, 9–1
testing tools under

development, 9–3
using installed tools, 9–1

attribute
defined, C–2
example of defining, C–9
initial value assignment, C–2

attribute data types, C–6
attribute request codes, C–6
attribute table

contents of, C–4
automatic decomposition

use in KAP, 10–8

B
backward compatibility

shared libraries, 4–18
binary incompatibility

shared libraries, 4–18
binlog and syslog

interaction with EVM, 14–4
reducing memory usage, 10–15
bit fields, 6–11
breakpoints

continuing from, 5–38
setting, 5–43
setting conditional breakpoints,

5–43
setting in procedures, 5–43

built-in data types
use in dbx commands, 5–10

built-in function
pragma counterpart, 3–6

byte ordering
supported by Tru64 UNIX, 2–4

C
C language, program checking

data type, 6–4
external names, 6–11

function definitions, 6–6
functions and variables , 6–7
initializing variables, 6–10
migration, 6–10
portability, 6–11
structure, union, 6–5
use of characters, 6–11
use of uninitialized variables,

6–9
compiling multilanguage

programs, 2–15
-c option (dbx), 5–8
C preprocessor, 2–8

implementation-specific
directives, 2–11

including common files, 2–9
multilanguage include files, 2–10
predefined macros, 2–8

C programs
optimization considerations,

10–1
c_excpt.h header file, 11–3
cache collisions, data

avoiding, 8–16, 10–12
cache misses

avoiding, 10–15
cache misses, data

profiling for, 8–16
cache thrashing

preventing, 8–16, 10–12
cache usage

coding suggestions, 10–12
improving with cord, 8–8, 10–8

call command (dbx), 5–40
call-graph profiling, 8–9
callback functions (EVM), 14–4
calls

(See procedure calls)
catch command (dbx), 5–47
cc command

compilation control options, 2–11
debugging option, 5–6
default behavior, 2–12
-g and -O options for profiling,

8–3

Index–2

invoking the linker, 2–19
-p option, 8–16, 8–21
-pg option, 8–9, 8–14
setting default alignment, 3–13
specifying additional libraries,

2–18
specifying function inlining, 3–5
specifying search path for

libraries, 2–3
taso option, A–4
using in System V habitat, B–1

CFG_ATTR_BINTYPE data type,
C–6

CFG_ATTR_INTTYPE data type,
C–6

CFG_ATTR_LONGTYPE data
type, C–6

CFG_ATTR_STRTYPE data type,
C–6

CFG_ATTR_UINTTYPE data
type, C–6

CFG_ATTR_ULONGTYPE data
type, C–6

CFG_OP_CONFIGURE request
code, C–6

CFG_OP_QUERY request code,
C–6

CFG_OP_RECONFIGURE request
code, C–6

cfg_subsys_attr_t data type, C–5
characters

use in a C program, 6–11
cma_debug() command (dbx), 5–59
coding errors

checking performed by lint, 6–13
coding suggestions

C-specific considerations, 10–14
cache usage patterns, 10–12
data alignment, 10–12
data types, 10–10
library routine selection, 10–9
sign considerations, 10–14

command-line editing (dbx), 5–13
common file

(See header file)

Compaq Extended Math Library
how to access, 10–9

compiler commands
invoking the linker, 1–5

compiler optimizations
improving with feedback file,

8–4, 8–5, 10–8
recommended optimization

levels, 10–2
use of -O option (cc), 10–2

compiler options (cc), 2–11
compiler system, 2–1

ANSI name space cleanup, 2–25
C compiler environments, 2–11
C preprocessor, 2–8
driver programs, 2–2
linker, 2–18
object file tools, 2–22

compiling applications
in System V habitat, B–1

completion handling, 11–5
compound pointer, A–1
conditional code

writing in dbx, 5–46
cont command (dbx), 5–38
conti command (dbx), 5–38
cord utility, 8–8, 10–8
core dump file

naming, 5–55
specifying for dbx, 5–4, 5–7
specifying the location of shared

libraries for, 5–27
critical directive, D–9
Ctrl/Z

symbol name completion in dbx,
5–15

CXML
how to access, 10–9

D
data alignment

coding suggestions, 10–12
data allocation

coding suggestions, 10–15

Index–3

data cache collisions
avoiding, 8–16, 10–12

data cache misses
profiling for, 8–16

data flow analysis
compilation optimizations, 10–2

data reuse
handling efficiently, 10–8

data segment
affect of -taso option, A–6

data sets, large
handling efficiently, 10–8

data structures
allocation suggestions, 10–12

data type
alignment in structures, 2–5
modifying alignment, 2–7
types supported by Tru64

UNIX, 2–4
data types

array, 6–5
array pointer, 6–5
casts, 6–6
coding suggestions, 10–10
effect of -O option (cc), 10–2
floating-point range and

processing, 2–4
for attributes, C–6
mixing, 6–4
sizes, 2–4

data types, built-in
use in dbx commands, 5–10

data types, variable (EVM), 14–13
dbx commands, 5–1

(See also dbx debugger)
alias, 5–24
args, 5–34
assign, 5–39
call, 5–40
catch, 5–47
cma_debug(), 5–59
cont, 5–38
conti, 5–38
delete, 5–26
disable, 5–26

down, 5–30
dump, 5–50
edit, 5–33
enable, 5–26
file, 5–31
func, 5–30
goto, 5–37
ignore, 5–47
list, 5–31
listobj, 5–26
next, 5–36
nexti, 5–36
patch, 5–39
playback input , 5–53
playback output, 5–55
print, 5–48
printregs, 5–50
quit, 5–9
record input, 5–53
record output, 5–54
rerun, 5–34
return, 5–37
run, 5–34
set, 5–16
setenv, 5–41
sh, 5–27
source, 5–53
status, 5–25
step, 5–36
stepi, 5–36
stop, 5–43
stopi, 5–43
tlist, 5–58
trace, 5–45
tracei, 5–45
tset, 5–59
tstack, 5–29, 5–59
unalias, 5–24
unset, 5–16
up, 5–30
use, 5–28
whatis, 5–34
when, 5–46
where, 5–29
whereis, 5–33

Index–4

which, 5–33
and ?, 5–32

dbx debugger, 1–5, 5–1
(See also dbx commands)
built-in data types, 5–10
command-line editing, 5–13
command-line options, 5–7
compile command option (-g),

5–6
completing symbol name

(Ctrl/Z), 5–15
debugging techniques, 5–4
EDITMODE option, 5–13
EDITOR option, 5–13
entering multiple commands,

5–15
-g option (cc), 5–6
initialization file (dbxinit), 5–7
invoking a shell from dbx, 5–27
invoking an editor, 5–33
LINEEDIT option, 5–13, 5–15
operator precedence, 5–10
predefined variables, 5–17
repeating commands, 5–12

.dbxinit file, 5–7
debugger, 5–1

(See dbx debugger)
debugging

general concepts, 5–3
kernel debugging (-k option), 5–8
programs using shared

libraries, 4–15
debugging tools, 1–5

(See also dbx debugger,
Ladebug debugger, lint,
Third Degree)

supported by Tru64 UNIX, 1–5
decomposition

use in KAP, 10–8
delete command (dbx), 5–26
development tools, software

(Tru64 UNIX), 1–4
device special file names

old-style and new-style
conversion of, E–1

-D_FASTMATH option (cc), 10–9
-D_INLINE_INTRINSICS option

(cc), 10–10
-D_INTRINSICS option (cc), 10–10
direct I/O

use to improve performance,
10–11

direct memory access
(See DMA)

directed decomposition
use in KAP, 10–8

directive
pragma environment directives,

3–1
pragma extern_prefix

directives, 3–3
pragma function, 3–6
pragma inline, 3–5
pragma intrinsic, 3–6
pragma linkage, 3–8
pragma member_alignment, 3–11
pragma message, 3–11
pragma pack, 3–12
pragma pointer_size, 3–13
pragma use_linkage, 3–14
pragma weak, 3–15

directives
ifdef, 2–10
include, 2–10

directories
linker search order, 2–20

directories, source
specifying in dbx, 5–28

dis (object file tool), 2–24
disable command (dbx), 5–26
disk files, executable

patching in dbx, 5–39
distribution media

loading applications on, 1–7
DMA

use by direct I/O, 10–11
use with -taso option, A–6
down command (dbx), 5–30
driver program

compiler system, 2–2

Index–5

dsfcvt* routines, E–1
dump command (dbx), 5–50
dynamically configurable

subsystem
creating, C–1
defined, C–2

E
edit command (dbx), 5–33
editing

command-line editing in dbx,
5–13

EDITMODE variable
dbx command-line editing, 5–13

editor
invoking from dbx, 5–33

EDITOR variable
dbx command-line editing, 5–13

enable command (dbx), 5–26
endian byte ordering

supported by Tru64 UNIX, 2–4
enter gate directive, D–10
–check_omp option (cc), 13–2
–granularity option (cc), 13–2
–mp option (cc), 13–1
–omp option (cc), 13–1
enumerated data type, 6–6
environment directive

pragma environment directive,
3–1

environment variables
EDITMODE, 5–13
EDITOR, 5–13
LINEEDIT, 5–13
MP_CHUNK_SIZE, D–11
MP_SPIN_COUNT, 13–4, D–11
MP_STACK_SIZE, 13–3, D–11
MP_THREAD_COUNT, 13–3,

D–11
MP_YIELD_COUNT, 13–4, D–11
PROFFLAGS, 8–35
setting in dbx, 5–41

Event Manager
(See EVM)

event poster (EVM)
definition, 14–2

event subscriber (EVM)
definition, 14–2

event templates
how to create, 14–17

events (EVM), 14–1
(See also EVM)
authorization to send or

receive, 14–5
contents of, 14–5
data items, 14–5
designing, 14–14
event names, 14–7
event priority, 14–10
event reception filters, 14–28
format data item, 14–9

EVM, 14–1
(See also events (EVM))
(See also EVM functions)
callback functions, 14–4
event poster

definition, 14–2
event reception filters, 14–28
event subscriber

definition, 14–2
header file requirements, 14–24
interaction with binlog and

syslog, 14–4
programming interface, 14–24
return status codes, 14–24
starting and stopping, 14–4

EVM commands
evmget, 14–3

EVM functions
EvmConnCheck, 14–40e
EvmConnControl, 14–48e
EvmConnCreate, 14–33e
EvmConnDestroy, 14–33e
EvmConnDispatch, 14–37e
EvmConnFdGet, 14–40e
EvmConnSubscribe, 14–37e
EvmConnWait, 14–37e
EvmEventCreate, 14–29e
EvmEventCreateVa, 14–31e

Index–6

EvmEventDestroy, 14–29e
EvmEventFormat, 14–37e
EvmEventNameMatch, 14–46e
EvmEventNameMatchStr, 14–46e
EvmEventPost, 14–33e
EvmEventRead, 14–35e
EvmEventValidate, 14–35e
EvmEventWrite, 14–35e
EvmFilterCreate, 14–43e
EvmFilterDestroy, 14–43e
EvmFilterSet, 14–43e
EvmFilterTest, 14–43e
EvmItemGet, 14–29e
EvmItemRelease, 14–29e
EvmItemSet, 14–29e
EvmItemSetVa, 14–31e
EvmVarGet, 14–32e
EvmVarRelease, 14–32e
EvmVarSet, 14–32e

exception
definition, 11–1
frame-based, 11–5
structured, 11–5

exception code, 11–6
exception filter, 11–5
exception handler

locating on the run-time stack,
11–6

exception handling
application development

considerations, 11–1
floating-point operations

performance considerations,
10–5

header files, 11–3
exception_code function, 11–6
exception_info function, 11–6
excpt.h header file, 11–3
executable disk files

patching in dbx, 5–39
executable image

creating, 2–3, 2–19
executable program

how to run, 2–21
exit gate directive, D–10

expressions
displaying values in dbx, 5–38,

5–48
operator precedence in dbx, 5–10

extern_prefix directive
pragma extern_prefix directive,

3–3
external names, 6–11
external references

reducing resolution during
linking, 10–2

F
-fast option (cc), 10–4
feedback file

profile-directed optimization,
8–4

feedback files
profile-directed optimization,

8–5, 10–8
profile-directed reordering with

cord, 8–8
-feedback option (cc), 8–5, 10–4
-feedback option (pixie), 8–8
file (object file tool), 2–24
file command (dbx), 5–31
file names

suffixes for programming
language files, 2–3

file sharing
effects on performance, 10–6

files
(See archive files; executable

disk files; header files;
object files; source files)

fixso utility, 4–14
floating-point operations

exception handling, 10–5
-fp_reorder option (cc), 10–2
use of KAP, 10–8

floating-point operations
(complicated)

use of CXML, 10–9
floating-point range and processing

Index–7

IEEE standard, 2–4
format data item (EVM), 14–9
-fp_reorder option (cc), 10–2, 10–4
fpu.h header file, 11–3
frame-based exception handling,

11–5
func command (dbx), 5–30
function directive

pragma function directive, 3–6
functions

checking performed by lint, 6–7

G
-G option (cc), 10–4
-g option (cc), 5–6, 8–3
goto command (dbx), 5–37
gprof, 8–1, 8–9, 8–14

(See also profiling)

H
handling exceptions, 11–1
header file

including, 2–9
header files

c_excpt.h, 11–3
excpt.h, 11–3
fpu.h, 11–3
multilanguage, 2–10
pdsc.h, 11–3
standards conformance in, 1–3

heap memory analyzer
and profiling, 8–26

hiprof, 8–1, 8–9, 8–10, 8–16,
8–20, 9–2

(See also profiling)

I
-I option (dbx), 5–8
-i option (dbx), 5–8
-ieee option (cc), 10–5
IEEE floating-point

(See floating-point range and
processing)

ifdef directive
for multilanguage include files,

2–10
-ifo option (cc), 10–2, 10–4
ignore command (dbx), 5–47
image activation in dbx, 5–43
include file

(See header file)
inline directive

pragma inline directive, 3–5
-inline option (cc), 10–4
inlining, procedure

compilation optimizations, 10–2
-D_INLINE_INTRINSICS

option (cc), 10–10
installation tools, 1–6
instruction and source line

profiling, 8–16
instruction set, Alpha

using non-native instructions,
10–10

integer division
substituting floating-point

division, 10–11
integer multiplication

substituting floating-point
multiplication, 10–11

internationalization
developing applications, 1–3

interprocess communications
pipes, 1–7
signals, 1–7
sockets, 1–7
STREAMS, 1–7
System V IPC, 1–7
threads, 1–7
X/Open Transport Interface

(XTI), 1–7
intrinsic directive

pragma intrinsic directive, 3–6
IPC

(See interprocess
communications)

Index–8

ISO standards
application development

considerations, 1–2

K
-k option (dbx), 5–8
KAP

usage recommendation, 10–8
kernel debugging

-k option, 5–8
Kuck & Associates Preprocessor

(See KAP)

L
ladebug debugger, 5–1
large data sets

handling efficiently, 10–8
ld command, 2–19

linking taso shared objects, A–6
specifying -taso option, A–4
using in System V habitat, B–1

ld linker
handling assembly language

files, 2–19
linking object files, 1–5
linking with shared libraries,

4–7
using directly or through cc, 2–18

leave statement, 11–13
libc.so default C library, 2–20
libexc exception library, 11–1
libpthread.so, 12–2
libraries

shared, 4–1
library

linking programs with, 2–20
library description files (lint), 6–14
library selection

effect on performance, 10–9
limiting search paths, 4–7
limits.h file, C–9
LINEEDIT variable

dbx command-line editing, 5–13
dbx symbol name completion,

5–15
linkage directive

pragma linkage directive, 3–8
linker

(See ld linker)
linking applications

by using compiler command, 2–18
in System V habitat, B–1

linking options
effects of file sharing, 10–6

lint, 6–1
coding error checking, 6–13
coding problem checker, 6–1
command syntax, 6–1
creating a lint library, 6–14
data type checking, 6–4
error messages, 6–16
increasing table size, 6–14
migration checking, 6–10
options, 6–1
portability checking, 6–11
program flow checking, 6–3
variable and function checking,

6–7
warning classes, 6–22

list command (dbx), 5–31
listobj command (dbx), 5–26
load time

reducing shared library load
time, 10–6

loadable subsystem
defined, C–2

loader
search path of, 4–4

long pointer, A–1
loops

KAP optimizations, 10–8
lint analysis of, 6–4

M
macros

predefined, 2–8

Index–9

magic number, 2–24
malloc function

tuning options, 10–15
use with “taso”, A–7

member_alignment directive
pragma member_alignment

directive, 3–11
memory

detecting leaks, 7–1, 8–26
displaying contents in dbx, 5–51
tuning memory usage, 10–15

memory access
detecting uninitialized or

invalid, 7–1
message directive

pragma message directive, 3–11
messages, IPC

(See System V IPC)
misaligned data

(See unaligned data)
misses, cache

avoiding, 10–15
mmap system call

shared libraries, 4–17
use with taso, A–7

-module_path option (dbx), 5–8
-module_verbose option (dbx), 5–8
moncontrol routine, 8–36

sample code, 8–36
monitor routines

for controlling profiling, 8–35
monitor_signal routine, 8–36

sample code, 8–39
monitoring tools, 8–1
monstartup routine, 8–36

sample code, 8–36
MP_CHUNK_SIZE variable, D–11
MP_SPIN_COUNT variable,

13–4, D–11
MP_STACK_SIZE variable, 13–3,

D–11
MP_THREAD_COUNT variable,

13–3, D–11
MP_YIELD_COUNT variable,

13–4, D–11

mpc_destroy routine, 13–5
multilanguage program

compiling, 2–15
include files for, 2–10

multiprocessing, symmetrical
(See SMP)

multithreaded application
developing libraries for, 12–1
how to build, 12–9
profiling, 8–34

N
name resolution

semantics, 4–5
name space

cleanup, 2–25
naming conventions

shared libraries, 4–2
next command (dbx), 5–36
nexti command (dbx), 5–36
nm (object file tool), 2–23
nm command, 2–23
(See -fp_reorder option)

O
-O option (cc), 2–18, 4–31, 6–4,

8–3, 10–2, 10–4, 10–8
object file

determining file type, 2–24
determining section sizes, 2–24
disassembling into machine

code, 2–24
dumping selected parts of, 2–22
listing symbol table

information, 2–23
object file tools, 2–22

dis, 2–24
file, 2–24
nm, 2–23
odump, 2–22
size, 2–24

odump (object file tool), 2–22

Index–10

odump command, A–6
-Olimit option (cc), 10–4
-om

postlink optimizer, 10–6
-om option (cc), 10–4
omp barrier directive, 13–6
omp parallel directive, 13–6
one processor directive, D–10
OpenMP directives, 13–1
operators

precedence in dbx expressions,
5–10

optimization
automatic and profile-directed,

8–4
compilation options, 2–19
compiler optimization options,

10–2
improving with feedback file,

8–4, 10–8
post linking, 10–6
techniques, 10–1
use of -O option (cc), 10–2
when profiling, 8–3

options, cc compiler, 2–11
output errors

using dbx to isolate, 5–5

P
-p option (cc), 8–16, 8–21
pack directive

pragma pack directive, 3–12
parallel directive, D–6
parallel processing

OpenMP directives, 13–1
pre-OpenMP style, D–1

parameter
(See attribute)

patch command (dbx), 5–39
pdsc.h header file, 11–3
performance

profiling to improve, 8–1
pfor directive, D–8
-pg option (cc), 8–9, 8–14

pipes, 1–7
pixie, 8–1, 8–5, 8–16, 8–23, 8–29,

9–2
(See also profiling)

-pixstats option (prof), 8–25
playback input command (dbx), 5–53
playback output command (dbx),

5–55
pointer size

conversion, A–1
pointer_size directive

pragma pointer_size directive,
3–13

pointers
32-bit, A–2
compound, A–1
long, A–1
reducing memory use for

pointers (-xtaso), 10–15
short, A–1
simple, A–1

portability
bit fields, 6–11
external names, 6–11
standards, 1–2

POSIX standards
application development

considerations, 1–2
poster

(See event poster (EVM))
pragma

critical, D–9
enter gate, D–10
environment directive, 3–1
exit gate, D–10
extern_prefix directive, 3–3
function, 3–6
inline, 3–5
intrinsic, 3–6
linkage, 3–8
member_alignment, 3–11
message, 3–11
omp barrier, 13–6
omp parallel, 13–6
one processor, D–10

Index–11

pack, 3–12
parallel, D–6
pfor, D–8
pointer_size, 3–13
psection, D–9
section, D–9
synchronize, D–10
threadprivate, 13–7
use_linkage, 3–14
weak, 3–15

predefined variables
in dbx, 5–17

-preempt_module option (cc), 10–4
-preempt_symbol option (cc), 10–4
preprocessor, C

(See C preprocessor)
print command (dbx), 5–48
printregs command (dbx), 5–50
procedure calls

handling efficiently, 10–8
procedure inlining

compilation optimizations, 10–2
-D_INLINE_INTRINSICS

option (cc), 10–10
prof, 8–1, 8–16, 8–21, 8–23

(See also profiling)
PROFFLAGS

environment variable, 8–35
profiling, 8–1

automatic and profile-directed
optimizations, 8–4

CPU-time profiling with
call-graph, 8–9

CPU-time/event profiling for
source lines and
instructions, 8–16

feedback files for optimization,
8–4, 8–5, 8–8

-g option (cc), 8–3
gprof, 8–9, 8–14
hiprof, 8–9, 8–10, 8–16, 8–20,

9–2
instructions and source lines,

8–16
limiting display by line, 8–31

limiting display information, 8–29
manual design and code

optimizations, 8–9
memory leaks, 8–26
merging data files, 8–7, 8–32
minimizing system resource

usage, 8–25
moncontrol routine, 8–36
monitor_signal routine, 8–36
monstartup routine, 8–36
multithreaded applications, 8–34
-O option (cc), 8–3
-p option (cc), 8–16, 8–21
PC sampling with hiprof, 8–20
-pg option (cc), 8–9, 8–14
pixie, 8–5, 8–16, 8–23, 8–29, 9–2
prof, 8–16, 8–21, 8–23
profile-directed reordering with

cord, 8–8
sample program, 8–2
selecting information to display,

8–29
shared library, 8–10, 8–31
source lines and instructions,

8–16
-testcoverage option (pixie), 8–29
Third Degree, 7–1, 8–26, 9–2
uprofile, 8–16
using Atom tools, 9–1
using heap memory analyzer,

8–26
using monitor routines, 8–35
using optimization options

when, 8–3
using system monitors, 8–26
verifying significance of test

cases, 8–28
program checking

C programs, 6–1
program installation tools, 1–6
programming languages

supported by Tru64 UNIX, 1–4
-protect_headers option, A–10
protect_headers_setup script, A–9
psection directive, D–9

Index–12

Q
question mark (?)

search command in dbx, 5–32
quickstart

reducing shared library load
time, 10–6

troubleshooting
fixso, 4–14
manually, 4–12

using, 4–9
quit command (dbx), 5–9

R
-r option (dbx), 5–8
RCS code management system, 1–6
record input command (dbx), 5–53
record output command (dbx), 5–54
registers

displaying values in dbx, 5–50
rerun command (dbx), 5–34
resolution of symbols

shared libraries, 4–3
return command (dbx), 5–37
routines

calling under dbx control, 5–40
run command (dbx), 5–34
run time

build options that affect run
time, 10–2

coding guidelines for improving,
10–10

run-time errors
using dbx to isolate, 5–4

S
SCCS (Source Code Control

System), 1–6
scope, 5–1

(See also activation levels)
determining activation levels,

5–3

determining scope of variables,
5–45

specifying scope of dbx
variables, 5–9

search commands in dbx (/ and ?),
5–32

search order
linker libraries, 2–20

search path
limiting, 4–7
loader, 4–4
shared libraries, 4–4

section directive, D–9
secure programs, 1–4
semantics

name resolution, 4–5
semaphores

(See System V IPC)
set command (dbx), 5–16
setenv command (dbx), 5–41

effect on debugger, 5–13, 5–15
setld utility, 1–6
sh command (dbx), 5–27
shared libraries

advantages, 4–1
applications that cannot use, 4–8
backwards compatibility, 4–18
binary incompatibility, 4–18
creating, 4–8
debugging programs using, 4–15
displaying in dbx, 5–26
linking with a C program, 4–7
major version, 4–21
minor version, 4–21
mmap system call, 4–17
multiple version dependencies,

4–23
naming convention, 4–2
overview, 4–2
partial version, 4–22
performance considerations,

10–6
search path, 4–4
specifying the location for core

dumps, 5–27

Index–13

symbol resolution, 4–3
turning off, 4–7
version identifier, 4–19
versioning, 4–18

shared library
profiling, 8–10, 8–31

shared library versioning
defined, 4–18

shared memory
(See System V IPC)

shared object, 4–10
short pointer, A–1
signals, 1–7

stopping at in dbx, 5–47
signed variables

effect on performance, 10–14
simple pointer, A–1
size (object file tool), 2–24
slash (/)

search command in dbx, 5–32
SMP

decomposition support in KAP,
10–8

sockets, 1–7
software development tools (Tru64

UNIX), 1–4
source code

checking with lint, 6–1
listing in dbx, 5–31
searching in dbx, 5–32

source code compatibility
in System V habitat, B–1

Source Code Control System
SCCS, 1–6

source command (dbx), 5–53
source directories

specifying in dbx, 5–28
source file

controlling access to, 1–5
source files

specifying in dbx, 5–31
source line and instruction

profiling, 8–16
-speculate option (cc), 10–3
-speculate option (cc), 10–4

stack trace
obtaining in dbx, 5–29
using to identify activation

level, 5–3, 5–29
standards

programming considerations,
1–2

startup time
decreasing, 10–6

static subsystem
defined, C–2

status command (dbx), 5–25
stdump (object file tool), 2–26
step command (dbx), 5–36
stepi command (dbx), 5–36
stop command (dbx), 5–43
$stop_on_exec variable (dbx), 5–43
stopi command (dbx), 5–43
storage class modifier

_align, 2–7
STREAMS, 1–7
strings command, 2–22
strong symbol, 2–26
structure

member alignment, 2–5
structure alignment

pragma member_alignment
directive, 3–11

structured exception handling,
11–5

structures
checking performed by lint, 6–5

subscriber
(See event subscriber (EVM))

suffixes, file name
for programming language files,

2–3
symbol names

completing using Ctrl/Z in dbx,
5–15

symbol table
ANSI name space cleanup, 2–26
listing, 2–23

symbol, strong, 2–26
symbol, weak, 2–26

Index–14

symbols
binding, 4–30
name resolution semantics, 4–5
options for handling unresolved

symbols, 4–6
resolution, 4–5
resolving in shared libraries, 4–3
search path, 4–4

symmetrical multiprocessing
(See SMP)

synchronize directive, D–10
sysconfig command, C–1, C–27
sysconfigtab database, C–2
system calls

differences in System V habitat,
B–1

system libraries, 4–1
System V habitat, B–1

compiling and linking
applications in, B–1

summary of system calls, B–3
using cc command, B–1
using ld command, B–1

System V IPC, 1–7

T
taso option

cc command, A–4
affect of -T and -D options, A–6
templates (EVM)

(See event templates)
termination handler

how to code, 11–13
-testcoverage option (pixie), 8–29
text segment

affect of -taso option, A–6
Third Degree, 7–1, 8–1, 8–26, 9–2

(See also profiling)
thread

profiling multithreaded
applications, 8–34

thread-safe code
how to write, 12–5

thread-safe routine

characteristics, 12–3
threadprivate directive, 13–7
threads, 1–7

debugging multithreaded
applications, 5–58

direct I/O use, 10–11
Visual Threads, 5–1

tlist command (dbx), 5–58
tools

major tools for software
development, 1–4

use with -taso option, A–6
trace command (dbx), 5–45
tracei command (dbx), 5–45
truncated address support option,

A–4
(See -taso option)

trusted programs, 1–4
try...except statement

use in exception handler, 11–5
try...finally statement

use in termination handler, 11–13
tset command (dbx), 5–59
tstack command (dbx), 5–29, 5–59
-tune option (cc), 10–4
type casts

checking performed by lint, 6–6
when to avoid, 10–15

type declarations
displaying in dbx, 5–34

U
unalias command (dbx), 5–24
unaligned data

avoiding, 10–12
unions

checking performed by lint, 6–5
unresolved symbols

options to ld command, 4–6
shared libraries, 4–3

-unroll option (cc), 10–4
unset command (dbx), 5–16
unsigned variables

effect on performance, 10–14

Index–15

up command (dbx), 5–30
-update option (pixie), 8–5
-update option (prof), 8–7
uprofile, 8–1, 8–16

(See also profiling)
use command (dbx), 5–28
use_linkage directive

pragma use_linkage directive,
3–14

/usr/shlib directory
shared libraries, 4–2

V
variable data types (EVM), 14–13
variables, 5–1

(See also environment
variables)

assigning values to, 5–39
determining scope of, 5–45
displaying names in dbx, 5–33
displaying type declarations, 5–34
obtaining values within

activation levels, 5–50
predefined variables in dbx, 5–17
tracing, 5–45

variables, signed or unsigned

effect on performance, 10–14
versioning

shared libraries, 4–18
Visual Threads, 5–1, 8–34

W
warning classes, 6–22
weak directive

pragma weak directive, 3–15
weak symbol, 2–26
whatis command (dbx), 5–34
when command (dbx), 5–46
where command (dbx), 5–29
whereis command (dbx), 5–33
which command (dbx), 5–33

X
X/Open standards

application development
considerations, 1–2

X/Open Transport Interface (XTI),
1–7

-xtaso option (cc), 10–15, A–2
-xtaso_short option (cc), A–2
XTI, 1–7

Index–16

How to Order Tru64 UNIX Documentation

You can order documentation for the Tru64 UNIX operating system and related
products at the following Web site:

http://www.businesslink.digital.com/

If you need help deciding which documentation best meets your needs, see the Tru64
UNIX Documentation Overview or call 800-344-4825 in the United States and
Canada. In Puerto Rico, call 787-781-0505. In other countries, contact your local
Compaq subsidiary.

If you have access to Compaq’s intranet, you can place an order at the following Web
site:

http://asmorder.nqo.dec.com/

The following table provides the order numbers for the Tru64 UNIX operating
system documentation kits. For additional information about ordering this and
related documentation, see the Documentation Overview or contact Compaq.

Name Order Number

Tru64 UNIX Documentation CD-ROM QA-6ADAA-G8

Tru64 UNIX Documentation Kit QA-6ADAA-GZ

End User Documentation Kit QA-6ADAB-GZ

Startup Documentation Kit QA-6ADAC-GZ

General User Documentation Kit QA-6ADAD-GZ

System and Network Management Documentation Kit QA-6ADAE-GZ

Developer’s Documentation Kit QA-6ADAG-GZ

Reference Pages Documentation Kit QA-6ADAF-GZ

Reader’s Comments

Tru64 UNIX
Programmer’s Guide
AA-RH9VA-TE

Compaq welcomes your comments and suggestions on this manual. Your input will help us to write
documentation that meets your needs. Please send your suggestions using one of the following methods:

• This postage-paid form

• Internet electronic mail: readers_comment@zk3.dec.com

• Fax: (603) 884-0120, Attn: UBPG Publications, ZKO3-3/Y32

If you are not using this form, please be sure you include the name of the document, the page number,
and the product name and version.

Please rate this manual:
Excellent Good Fair Poor

Accuracy (software works as manual says) � � � �

Clarity (easy to understand) � � � �

Organization (structure of subject matter) � � � �

Figures (useful) � � � �

Examples (useful) � � � �

Index (ability to find topic) � � � �

Usability (ability to access information quickly) � � � �

Please list errors you have found in this manual:

Page Description
_________ ___
_________ ___
_________ ___
_________ ___

Additional comments or suggestions to improve this manual:

What version of the software described by this manual are you using? ______________________

Name, title, department __
Mailing address __
Electronic mail ___
Telephone __
Date ___

UBPG PUBLICATIONS MANAGER

 Do Not Cut or Tear - Fold Here

 Do Not Cut or Tear - Fold Here and Tape

NO POSTAGE
NECESSARY IF
MAILED IN THE
UNITED STATES

FIRST CLASS MAIL PERMIT NO. 33 MAYNARD MA

POSTAGE WILL BE PAID BY ADDRESSEE

ZKO3-3/Y32
110 SPIT BROOK RD

COMPAQ COMPUTER CORPORATION

NASHUA NH 03062-9987

C
ut on D

otted L
ine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

