
Tru64 UNIX
System Configuration and Tuning

Part Number: AA-RH9GA-TE

July 1999

Product Version: Tru64 UNIX Version 5.0 or higher

This manual decribes high-performance and high-availability
configurations and provides recommendations for improving operating
system performance.

Compaq Computer Corporation
Houston, Texas

© 1999 Compaq Computer Corporation

COMPAQ, the Compaq logo, and the Digital logo are registered in the U.S. Patent and Trademark Office.

Microsoft and Windows NT are registered trademarks of Microsoft Corporation. Intel, Pentium, and Intel
Inside are registered trademarks of Intel Corporation. UNIX is a registered trademark and The Open
Group is a trademark of The Open Group in the US and other countries. Other product names mentioned
herein may be the trademarks of their respective companies.

Possession, use, or copying of the software described in this publication is authorized only pursuant to a
valid written license from Compaq Computer Corporation or an authorized sublicensor.

Compaq Computer Corporation shall not be liable for technical or editorial errors or omissions contained
herein. The information in this document is subject to change without notice.

Contents

About This Manual

1 Introduction to Performance and Availability
1.1 Performance Terminology and Concepts 1–1
1.2 High-Performance Configurations 1–2
1.2.1 CPU Resources 1–3
1.2.2 Memory Resources 1–5
1.2.3 Disk Storage 1–7
1.2.3.1 RAID Technology 1–7
1.2.3.2 SCSI Concepts 1–9
1.2.3.2.1 Data Paths 1–9
1.2.3.2.2 Transmission Methods 1–10
1.2.3.2.3 SCSI Bus Speeds 1–11
1.2.3.2.4 SCSI Bus Length and Termination 1–12
1.2.4 Network Subsystem 1–13
1.3 High-Availability Configurations 1–13

2 Planning a High-Performance and High-Availability Configuration
2.1 Identifying a Resource Model for Your Workload 2–1
2.2 Identifying Performance and Availability Goals 2–2
2.3 Choosing System Hardware 2–3
2.3.1 CPU Configuration 2–4
2.3.2 Memory and Swap Space Configuration 2–5
2.3.2.1 Determining Your Physical Memory Requirements .. . 2–5
2.3.2.2 Choosing a Swap Space Allocation Mode 2–6
2.3.2.3 Determining Swap Space Requirements 2–7
2.3.3 I/O Bus Slot Capacity 2–8
2.3.4 Support for High-Performance Disk Storage 2–9
2.3.5 Support for High-Performance Network 2–9
2.4 Choosing Disk Storage Hardware 2–9
2.4.1 Fast Disks 2–10
2.4.2 Solid-State Disks 2–10
2.4.3 Devices with Wide Data Paths 2–11
2.4.4 High-Performance Host Bus Adapters 2–11

Contents iii

2.4.5 DMA Host Bus Adapters 2–11
2.4.6 RAID Controllers 2–12
2.4.7 Fibre Channel 2–12
2.4.8 Prestoserve 2–12
2.5 Choosing How to Manage Disks 2–13
2.5.1 Using a Shared Pool of Storage for Flexible Management 2–13
2.5.2 Striping Data or Disks to Distribute I/O 2–14
2.5.3 Using Parity RAID to Improve Disk Performance 2–15
2.6 Choosing a High-Availability Configuration 2–16
2.6.1 Using a Cluster for System Availability 2–17
2.6.2 Using RAID for Disk Data Availability 2–18
2.6.3 Using Redundant Networks 2–19
2.6.4 Using Redundant Power Supplies and Systems 2–19

3 Monitoring Systems and Diagnosing Performance Problems
3.1 Obtaining Information About System Events 3–1
3.1.1 Using Event Manager 3–2
3.1.2 Using DECevent 3–3
3.2 Using System Accounting and Disk Quotas 3–3
3.3 Continuously Monitoring Performance 3–4
3.3.1 Using Performance Manager 3–5
3.3.2 Using Performance Visualizer 3–6
3.4 Gathering Performance Information 3–7
3.5 Profiling and Debugging Kernels 3–8
3.6 Accessing and Modifying Kernel Subsystems 3–10
3.6.1 Displaying the Subsystems Configured in the Kernel 3–11
3.6.2 Displaying Current Subsystem Attribute Values 3–12
3.6.3 Displaying Minimum and Maximum Attribute Values 3–13
3.6.4 Modifying Attribute Values at Run Time 3–14
3.6.5 Modifying Attribute Values at Boot Time 3–15
3.6.6 Permanently Modifying Attribute Values 3–16
3.6.7 Displaying and Modifying Kernel Variables by Using the

dbx Debugger 3–17

4 Improving System Performance
4.1 Steps for Configuring and Tuning Systems 4–1
4.2 Tuning Special Configurations 4–2
4.2.1 Tuning Internet Servers 4–3
4.2.2 Tuning Large-Memory Systems 4–3
4.2.3 Tuning NFS Servers 4–4
4.3 Checking the Configuration by Using the sys_check Utility . . 4–5

iv Contents

4.4 Solving Common Performance Problems 4–6
4.4.1 Application Completes Slowly 4–7
4.4.2 Insufficient Memory or Excessive Paging 4–8
4.4.3 Insufficient Swap Space 4–8
4.4.4 Processes Swapped Out 4–9
4.4.5 Insufficient CPU Cycles 4–9
4.4.6 Disk Bottleneck 4–10
4.4.7 Poor Disk I/O Performance 4–11
4.4.8 Poor AdvFS Performance 4–12
4.4.9 Poor UFS Performance 4–13
4.4.10 Poor NFS Performance 4–14
4.4.11 Poor Network Performance 4–15
4.5 Using the Advanced Tuning Guidelines 4–15

5 Tuning System Resource Allocation
5.1 Tuning Process Limits 5–1
5.1.1 Increasing System Tables and Data Structures 5–2
5.1.2 Increasing the Maximum Number of Processes 5–3
5.1.3 Increasing the Maximum Number of Threads 5–4
5.2 Tuning Program Size Limits 5–4
5.2.1 Increasing the Size of a User Process Stack 5–5
5.2.2 Increasing the Size of a User Process Data Segment 5–5
5.3 Tuning Address Space Limits 5–6
5.4 Tuning Interprocess Communication Limits 5–7
5.4.1 Increasing the Maximum Size of a System V Message .. . 5–8
5.4.2 Increasing the Maximum Size of a System V Message

Queue 5–9
5.4.3 Increasing the Maximum Number of Messages on a

System V Queue 5–9
5.4.4 Increasing the Maximum Size of a System V Shared

Memory Region 5–10
5.4.5 Increasing the Maximum Number of Shared Memory

Regions Attached to a Process 5–11
5.4.6 Modifying Shared Page Table Sharing 5–11
5.5 Tuning the Open File Limits 5–12
5.5.1 Increasing the Maximum Number of Open Files 5–12
5.5.2 Increasing the Maximum Number of Open File

Descriptors 5–13

6 Managing Memory Performance
6.1 Virtual Memory Operation 6–1

Contents v

6.1.1 Physical Page Tracking 6–2
6.1.2 File System Buffer Cache Memory Allocation 6–3
6.1.2.1 Metadata Buffer Cache Memory Allocation 6–3
6.1.2.2 Unified Buffer Cache Memory Allocation 6–3
6.1.2.3 AdvFS Buffer Cache Memory Allocation 6–6
6.1.3 Process Memory Allocation 6–7
6.1.3.1 Process Virtual Address Space Allocation 6–7
6.1.3.2 Virtual Address to Physical Address Translation 6–8
6.1.3.3 Page Faults 6–9
6.1.4 Page Reclamation 6–11
6.1.4.1 Modified Page Prewriting 6–13
6.1.4.2 Reclaiming Memory by Paging 6–14
6.1.4.3 Reclaiming Memory by Swapping 6–15
6.2 Configuring Swap Space for High Performance 6–17
6.3 Gathering Memory Information 6–18
6.3.1 Monitoring Memory by Using the vmstat Command 6–19
6.3.2 Monitoring Memory by Using the ps Command 6–23
6.3.3 Monitoring Swap Space Usage by Using the swapon

Command 6–25
6.3.4 Monitoring the UBC by Using the dbx Debugger 6–26
6.4 Tuning to Provide More Memory to Processes 6–26
6.4.1 Reducing the Number of Processes Running

Simultaneously 6–27
6.4.2 Reducing the Static Size of the Kernel 6–27
6.4.3 Decreasing the Borrowed Memory Threshold 6–27
6.4.4 Decreasing the Size of the AdvFS Buffer Cache 6–28
6.4.5 Decreasing the Memory for AdvFS Access Structures 6–29
6.4.6 Decreasing the Size of the Metadata Buffer Cache 6–30
6.4.7 Decreasing the Size of the namei Cache 6–31
6.4.8 Increasing the Memory Reserved for Kernel malloc

Allocations 6–32
6.5 Tuning Paging and Swapping Operation 6–33
6.5.1 Increasing the Paging Threshold 6–34
6.5.2 Increasing the Rate of Swapping 6–35
6.5.3 Decreasing the Rate of Swapping 6–36
6.5.4 Enabling Aggressive Task Swapping 6–37
6.5.5 Limiting the Resident Set Size to Avoid Swapping 6–37
6.5.6 Increasing Modified Page Prewriting 6–39
6.5.7 Decreasing Modified Page Prewriting 6–40
6.5.8 Increasing the Size of the Page-In and Page-Out Clusters 6–41

vi Contents

6.5.9 Increasing the Swap I/O Queue Depth for Page Ins and
Swap Outs 6–42

6.5.10 Decreasing the Swap I/O Queue Depth for Page Ins and
Swap Outs 6–43

6.5.11 Increasing the Swap I/O Queue Depth for Page Outs 6–43
6.5.12 Decreasing the Swap I/O Queue Depth for Page Outs 6–44
6.6 Reserving Physical Memory for Shared Memory 6–44
6.6.1 Tuning the Kernel to Use Granularity Hints 6–45
6.6.2 Modifying Applications to Use Granularity Hints 6–46

7 Managing CPU Performance
7.1 Gathering CPU Performance Information 7–1
7.1.1 Monitoring CPU Usage by Using the ps Command 7–3
7.1.2 Monitoring CPU Statistics by Using the vmstat

Command 7–3
7.1.3 Monitoring the Load Average by Using the uptime

Command 7–6
7.1.4 Checking CPU Usage by Using the kdbx Debugger 7–6
7.1.5 Checking Lock Usage by Using the kdbx Debugger 7–7
7.2 Improving CPU Performance 7–8
7.2.1 Adding Processors 7–8
7.2.2 Using the Class Scheduler 7–9
7.2.3 Prioritizing Jobs 7–9
7.2.4 Scheduling Jobs at Offpeak Hours 7–9
7.2.5 Stopping the advfsd Daemon 7–10
7.2.6 Using Hardware RAID to Relieve the CPU of I/O

Overhead 7–10

8 Managing Disk Storage Performance
8.1 Guidelines for Distributing the Disk I/O Load 8–1
8.2 Monitoring the Distribution of Disk I/O 8–3
8.3 Displaying Disk Usage by Using the iostat Command 8–3
8.4 Managing LSM Performance 8–4
8.4.1 LSM Features 8–5
8.4.2 Basic LSM Disk, Disk Group, and Volume Guidelines 8–6
8.4.2.1 Initializing LSM Disks as Sliced Disks 8–8
8.4.2.2 Sizing the rootdg Disk Group 8–8
8.4.2.3 Sizing Private Regions 8–8
8.4.2.4 Making Private Regions in a Disk Group the Same

Size 8–9
8.4.2.5 Organizing Disk Groups 8–9

Contents vii

8.4.2.6 Mirroring the Root File System 8–9
8.4.2.7 Mirroring Swap Devices 8–10
8.4.2.8 Saving the LSM Configuration 8–10
8.4.3 LSM Mirrored Volume Configuration Guidelines 8–10
8.4.3.1 Placing Mirrored Plexes on Different Disks and

Buses 8–12
8.4.3.2 Using Multiple Plexes in a Mirrored Volume 8–12
8.4.3.3 Choosing a Read Policy for a Mirrored Volume 8–12
8.4.3.4 Using a Symmetrical Plex Configuration 8–13
8.4.3.5 Using Hot Sparing for Mirrored Volumes 8–13
8.4.4 Dirty-Region Logging Configuration Guidelines 8–14
8.4.4.1 Configuring Log Plexes 8–15
8.4.4.2 Using the Correct Log Size 8–16
8.4.4.3 Placing Logging Subdisks on Infrequently Used

Disks 8–16
8.4.4.4 Using Solid-State Disks for DRL Subdisks 8–16
8.4.4.5 Using a Nonvolatile Write-Back Cache for DRL 8–16
8.4.5 LSM Striped Volume Configuration Guidelines 8–17
8.4.5.1 Increasing the Number of Disks in a Striped Volume 8–18
8.4.5.2 Distributing Striped Volume Disks Across Different

Buses 8–18
8.4.5.3 Choosing the Correct LSM Stripe Width 8–19
8.4.6 LSM RAID 5 Configuration Guidelines 8–20
8.4.6.1 Using RAID 5 Logging 8–21
8.4.6.2 Using the Appropriate Strip Width 8–21
8.4.6.3 Using Hot Sparing for RAID 5 Volumes 8–22
8.4.7 Gathering LSM Information 8–22
8.4.7.1 Displaying Configuration Information by Using the

volprint Utility 8–24
8.4.7.2 Monitoring Performance Statistics by Using the

volstat Utility 8–26
8.4.7.3 Tracking Operations by Using the voltrace Utility 8–27
8.4.7.4 Monitoring Events by Using the volwatch Script 8–28
8.4.7.5 Monitoring Events by Using the volnotify Utility 8–28
8.5 Managing Hardware RAID Subsystem Performance 8–29
8.5.1 Hardware RAID Features 8–29
8.5.2 Hardware RAID Products 8–31
8.5.3 Hardware RAID Configuration Guidelines 8–32
8.5.3.1 Distributing Storage Set Disks Across Buses 8–33
8.5.3.2 Using Disks with the Same Data Capacity 8–33
8.5.3.3 Choosing the Correct Hardware RAID Stripe Size 8–33

viii Contents

8.5.3.4 Mirroring Striped Sets 8–34
8.5.3.5 Using a Write-Back Cache 8–34
8.5.3.6 Using Dual-Redundant Controllers 8–35
8.5.3.7 Using Spare Disks to Replace Failed Disks 8–35
8.6 Managing CAM Performance 8–35

9 Managing File System Performance
9.1 Gathering File System Information 9–1
9.1.1 Displaying File System Disk Space 9–1
9.1.2 Checking the namei Cache with the dbx Debugger 9–2
9.2 Tuning File Systems 9–2
9.2.1 Increasing the Size of the namei Cache 9–4
9.2.2 Delaying vnode Deallocation 9–5
9.2.3 Delaying vnode Recycling 9–6
9.2.4 Increasing Memory for the UBC 9–7
9.2.5 Increasing the Borrowed Memory Threshold 9–8
9.2.6 Increasing the Minimum Size of the UBC 9–8
9.2.7 Improving Large File Caching Performance 9–9
9.2.8 Disabling File Read Access Time Flushing 9–10
9.2.9 Caching Only File System Metadata with Prestoserve .. . 9–11
9.3 Managing Advanced File System Performance 9–11
9.3.1 AdvFS Features 9–12
9.3.2 AdvFS I/O Queues 9–14
9.3.3 AdvFS Access Structures 9–17
9.3.4 AdvFS Configuration Guidelines 9–18
9.3.4.1 Configuring File Domains 9–19
9.3.4.2 Configuring Filesets for High Performance 9–20
9.3.4.3 Distribute the AdvFS I/O Load 9–21
9.3.4.4 Improving the Transaction Log Performance 9–21
9.3.4.5 Forcing Synchronous Writes 9–21
9.3.4.6 Preventing Partial Data Writes 9–22
9.3.4.7 Enabling Direct I/O 9–23
9.3.4.8 Configuring an AdvFS root File system 9–24
9.3.4.9 Striping Files 9–24
9.3.4.10 Using AdvFS Quotas 9–25
9.3.4.11 Consolidating I/O Transfers 9–25
9.3.5 Gathering AdvFS Information 9–26
9.3.5.1 Monitoring AdvFS Performance Statistics by Using

the advfsstat Command 9–27
9.3.5.2 Identifying Disks in an AdvFS File Domain by Using

the advscan Command 9–29

Contents ix

9.3.5.3 Checking AdvFS File Domains by Using the
showfdmn Command 9–30

9.3.5.4 Displaying AdvFS File Information by Using the
showfile Command 9–30

9.3.5.5 Displaying the AdvFS Filesets in a File Domain by
Using the showfsets Command 9–31

9.3.5.6 Monitoring the Bitmap Metadata Table 9–32
9.3.6 Tuning AdvFS 9–32
9.3.6.1 Increasing the Size of the AdvFS Buffer Cache 9–33
9.3.6.2 Increasing the Number of AdvFS Buffer Hash Chains 9–34
9.3.6.3 Increasing the Memory for Access Structures 9–36
9.3.6.4 Increasing Data Cached in the Ready Queue 9–37
9.3.6.5 Increasing the AdvFS Smooth Sync Cache Timeout

Value 9–38
9.3.6.6 Specifying the Maximum Number of I/O Requests on

the Device Queue 9–39
9.3.6.7 Disabling the Flushing of Modified mmapped Pages 9–40
9.3.7 Improving AdvFS Performance 9–41
9.3.7.1 Defragmenting a File Domain 9–42
9.3.7.2 Decreasing the I/O Transfer Size 9–43
9.3.7.3 Moving the Transaction Log 9–44
9.3.7.4 Balancing a Multivolume File Domain 9–45
9.3.7.5 Migrating Files Within a File Domain 9–46
9.4 Managing UFS Performance 9–47
9.4.1 UFS Configuration Guidelines 9–47
9.4.1.1 Modifying the File System Fragment and Block Sizes 9–48
9.4.1.2 Reducing the Density of inodes 9–49
9.4.1.3 Allocating Blocks Sequentially 9–49
9.4.1.4 Increasing the Number of Blocks Combined for a

Cluster 9–49
9.4.1.5 Using MFS 9–49
9.4.1.6 Using UFS Disk Quotas 9–50
9.4.1.7 Increasing the Number of UFS and MFS Mounts 9–50
9.4.2 Gathering UFS Information 9–51
9.4.2.1 Displaying UFS Information by Using the dumpfs

Command 9–51
9.4.2.2 Monitoring UFS Clustering by Using the dbx

Debugger 9–52
9.4.2.3 Checking the Metadata Buffer Cache by Using the

dbx Debugger 9–53
9.4.3 Tuning UFS 9–53

x Contents

9.4.3.1 Increasing the Size of the Metadata Buffer Cache 9–54
9.4.3.2 Increasing the Size of the Metadata Hash Chain

Table 9–55
9.4.3.3 Increasing the UFS Smooth Sync Cache Timeout

Value 9–56
9.4.3.4 Delaying UFS Cluster Flushing 9–57
9.4.3.5 Increasing the Number of Blocks Combined for

Read-Ahead 9–58
9.4.3.6 Increasing the Number of Blocks Combined for a

Cluster 9–58
9.4.3.7 Defragmenting a File System 9–59
9.5 Managing NFS Performance 9–60
9.5.1 Gathering NFS Information 9–60
9.5.1.1 Displaying NFS Information by Using the nfsstat

Command 9–62
9.5.1.2 Displaying Idle Thread Information by Using the ps

Command 9–63
9.5.2 Improving NFS Performance 9–64
9.5.2.1 Using Prestoserve to Improve NFS Server

Performance 9–65
9.5.2.2 Configuring Server Threads 9–65
9.5.2.3 Configuring Client Threads 9–66
9.5.2.4 Modifying Cache Timeout Limits 9–66
9.5.2.5 Decreasing Network Timeouts 9–66
9.5.2.6 Using NFS Protocol Version 3 9–67

10 Managing Network Performance
10.1 Gathering Network Information 10–1
10.1.1 Monitoring Network Statistics by Using the netstat

Command 10–2
10.1.2 Checking Socket Listen Queue Statistics by Using the

sysconfig Command 10–6
10.2 Tuning the Network Subsystem 10–6
10.2.1 Improving the Lookup Rate for TCP Control Blocks 10–9
10.2.2 Increasing the Number of TCP Hash Tables 10–9
10.2.3 Tuning the TCP Socket Listen Queue Limits 10–10
10.2.4 Increasing the Number of Outgoing Connection Ports 10–11
10.2.5 Modifying the Range of Outgoing Connection Ports 10–12
10.2.6 Disabling Use of a PMTU 10–13
10.2.7 Increasing the Number of IP Input Queues 10–14
10.2.8 Enabling mbuf Cluster Compression 10–14

Contents xi

10.2.9 Enabling TCP Keepalive Functionality 10–15
10.2.10 Improving the Lookup Rate for IP Addresses 10–16
10.2.11 Decreasing the TCP Partial-Connection Timeout Limit . . 10–17
10.2.12 Decreasing the TCP Connection Context Timeout Limit . 10–18
10.2.13 Decreasing the TCP Retransmission Rate 10–18
10.2.14 Disabling Delaying the Acknowledgment of TCP Data . . 10–19
10.2.15 Increasing the Maximum TCP Segment Size 10–20
10.2.16 Increasing the Transmit and Receive Buffers for a TCP

Socket 10–20
10.2.17 Increasing the Transmit and Receive Buffers for a UDP

Socket 10–21
10.2.18 Increasing the Size of the ARP Table 10–22
10.2.19 Increasing the Maximum Size of a Socket Buffer 10–23
10.2.20 Preventing Dropped Input Packets 10–23

11 Managing Application Performance
11.1 Gathering Profiling and Debugging Information 11–1
11.2 Improving Application Performance 11–4
11.2.1 Using the Latest Operating System Patches 11–5
11.2.2 Using the Latest Version of the Compiler 11–5
11.2.3 Using Parallelism 11–5
11.2.4 Optimizing Applications 11–6
11.2.5 Using Shared Libraries 11–6
11.2.6 Reducing Application Memory Requirements 11–6
11.2.7 Controlling Memory Locking 11–7

Glossary

Index

Figures
1–1 Moving Instructions and Data Through the Memory

Hardware 1–4
1–2 Physical Memory Usage 1–6
1–3 Configuration with Potential Points of Failure 1–14
1–4 Fully Redundant Cluster Configuration 1–15
6–1 UBC Memory Allocation 6–4
6–2 Memory Allocation During High File System Activity and No

Paging Activity 6–5

xii Contents

6–3 Memory Allocation During Low File System Activity and
High Paging Activity 6–5

6–4 Virtual Address Space Usage 6–8
6–5 Virtual-to-Physical Address Translation 6–9
6–6 Paging and Swapping Attributes 6–12
6–7 Paging Operation 6–15
9–1 AdvFS I/O Queues 9–15

Tables
1–1 Memory Management Hardware Resources 1–3
1–2 RAID Level Performance and Availability Comparison 1–8
1–3 SCSI Bus Speeds 1–11
1–4 SCSI Bus and Segment Lengths 1–13
2–1 Resource Models and Possible Configuration Solutions 2–2
2–2 High-Performance System Hardware Options 2–3
2–3 High-Performance Disk Storage Hardware Options 2–9
2–4 High-Performance Disk Storage Configuration Solutions 2–13
2–5 High-Availability Configurations 2–16
3–1 Tools for Continuous Performance Monitoring 3–4
3–2 Kernel Profiling and Debugging Tools 3–9
4–1 Internet Server Tuning Guidelines 4–3
4–2 Large-Memory System Tuning Guidelines 4–4
4–3 NFS Server Tuning Guidelines 4–4
4–4 Advanced Tuning Guidelines 4–16
5–1 Default Values for the maxusers Attribute 5–2
5–2 IPC Limits Tuning Guidelines 5–7
6–1 Default Values for vm_page_free_target Attribute 6–12
6–2 Virtual Memory and UBC Monitoring Tools 6–18
6–3 Memory Resource Tuning Guidelines 6–26
6–4 Paging and Swapping Tuning Guidelines 6–33
7–1 CPU Monitoring Tools 7–1
7–2 Primary CPU Performance Improvement Guidelines 7–8
8–1 Disk I/O Distribution Monitoring Tools 8–3
8–2 LSM Disk, Disk Group, and Volume Configuration

Guidelines 8–6
8–3 LSM Mirrored Volume Guidelines 8–11
8–4 Dirty-Region Logging Guidelines 8–14
8–5 LSM Striped Volume Guidelines 8–17
8–6 LSM RAID 5 Volume Guidelines 8–21
8–7 LSM Monitoring Tools 8–23
8–8 Hardware RAID Subsystem Configuration Guidelines 8–32

Contents xiii

9–1 General File System Tuning Guidelines 9–3
9–2 AdvFS Configuration Guidelines 9–18
9–3 AdvFS Monitoring Tools 9–26
9–4 AdvFS Tuning Guidelines 9–33
9–5 AdvFS Performance Improvement Guidelines 9–41
9–6 UFS Configuration Guidelines 9–48
9–7 UFS Monitoring Tools 9–51
9–8 UFS Tuning Guidelines 9–54
9–9 NFS Monitoring Tools 9–61
9–10 NFS Performance Guidelines 9–64
10–1 Network Monitoring Tools 10–1
10–2 Network Tuning Guidelines 10–7
11–1 Application Profiling and Debugging Tools 11–1
11–2 Application Performance Improvement Guidelines 11–5

xiv Contents

About This Manual

This manual contains information about configuring Compaq Tru64 UNIX
(formerly DIGITAL UNIX) for high performance and high availability. This
manual also describes how to tune systems to improve performance.

For Tru64 UNIX, it is recommended that you use the graphical user
interface (GUI) for system administration. This GUI is presented by
SysMan, an application that is loaded by default when the Common
Desktop Environment (CDE) software is loaded on your system. The
SysMan applications are available in the Application Manager, which you
can access from the CDE Front Panel.

Audience
This manual is intended for system administrators who are responsible for
managing a Tru64 UNIX operating system. Administrators should have an
in-depth knowledge of their applications and users, in addition to operating
system concepts, commands, and utilities. Such an understanding is crucial
to successfully tuning a system for better performance.

New and Changed Features
Additions and changes that have been made to the manual for this version
of Tru64 UNIX include the following:

• This manual describes only kernel subsystem attributes that can be
used to improve system performance. All kernel subsystem attributes
are documented in the reference pages. See sys_attrs(5) for more
information.

• Kernel subsystem attributes use only underscores instead of
combinations of dashes and underscores.

• Section 4.1 describes the steps that you can follow to configure and tune
high-performance and high-availability systems.

• Tru64 UNIX is able to satisfy page faults by reclaiming pages from the
free page list. This improves virtual memory and Unified Buffer Cache
(UBC) performance.

• The vm_perf data structure and other data structures require you to
specify a processor number.

About This Manual xv

• You can specify swap devices by using the vm subsystem attribute
swapdevice. See Section 6.2 for more information.

• LSM provides RAID 5 and hot spare support. See Section 8.4 for more
information.

• LSM block-change logging (BCL) has been replaced with dirty-region
logging (DRL), which can improve the recovery time of mirrored
volumes after a system failure.

• AdvFS supports direct I/O, which can significantly improve disk I/O
throughput for applications that read or write data only once and do
not reuse the data. See Section 9.3.4.7 for more information.

• Smooth sync functionality improves AdvFS asynchronous I/O
performance by preventing I/O spikes caused by the update daemon,
increasing the chance of a buffer cache hit, and improving the
consolidation of I/O requests. See Section 9.3.6.5 for more information.

• There are two new AdvFS subsystem attributes, AdvfsMinFreeAccess
and AdvfsMaxFreeAccess, which control the allocation of AdvFS
access structures. See Section 9.3.6.3 for more information.

• It is no longer necessary to preallocate space for the AdvFS bitmap
metadata table (BMT) or increase the number of pages by which the
BMT extent size grows. The operating system performs this function
automatically. See Section 9.3.5.6 for more information.

• You can modify the UFS block size by using the newfs command. See
Section 9.4.1.1 for more information.

Organization

This manual consists of eleven chapters and a glossary:

Chapter 1 Introduces the terms and concepts related to performance and
availability.

Chapter 2 Describes how to characterize your applications and users and choose
a hardware and software configuration that will meet your needs.

Chapter 3 Describes how to monitor subsystems and identify and solve
performance problems. The chapter also describes how to tune the
kernel by modifying subsystem attributes.

Chapter 4 Describes the steps for configuring and tuning a high-performance
and high-availability system. This chapter also provides tuning
guidelines for Internet servers, large-memory systems, and NFS
servers, and describes how to solve common performance problems.

Chapter 5 Describes how to tune operating system limits in order to provide
applications and users with more system resources.

xvi About This Manual

Chapter 6 Describes memory operation and how to manage virtual memory
performance.

Chapter 7 Describes how to monitor CPUs and improve CPU performance.

Chapter 8 Describes how to manage the disk I/O subsystem, including the
Logical Storage Manager (LSM) and hardware RAID subsystems.

Chapter 9 Describes how to manage file system performance.

Chapter 10 Describes how to monitor and tune the network subsystem.

Chapter 11 Describes how to improve application performance.

Glossary Lists the terms relating to system performance and availability.

Related Documents

The System Administration manual provides information on managing and
monitoring your system. The Programmer’s Guide provides information on
the tools for programming on the Tru64 UNIX operating system. It also
provides information on how to optimize the code used to create an
application program, and how to optimize the results of the build process.
The Asynchronous Transfer Mode manual contains information about
tuning Asynchronous Transfer Mode (ATM).

The following Tru64 UNIX manuals also provide useful, relevant
information:

• Technical Overview

• Network Administration

• Logical Storage Manager

• AdvFS Administration

• Systems & Options Catalog

The printed version of the Tru64 UNIX documentation uses letter icons on
the spines of the books to help specific audiences quickly find the books
that meet their needs. (You can order the printed documentation from
Compaq.) The following list describes this convention:

G Books for general users

S Books for system and network administrators

P Books for programmers

About This Manual xvii

D Books for device driver writers

R Books for reference page users

Some books in the documentation help meet the needs of several audiences.
For example, the information in some system books is also used by
programmers. Keep this in mind when searching for information on specific
topics.

The Documentation Overview provides information on all of the books in
the Tru64 UNIX documentation set.

Reader’s Comments

Compaq welcomes any comments and suggestions you have on this and
other Tru64 UNIX manuals.

You can send your comments in the following ways:

• Fax: 603-884-0120 Attn: UBPG Publications, ZKO3-3/Y32

• Internet electronic mail: readers_comment@zk3.dec.com

A Reader’s Comment form is located on your system in the following
location:

/usr/doc/readers_comment.txt

• Mail:

Compaq Computer Corporation
UBPG Publications Manager
ZKO3-3/Y32
110 Spit Brook Road
Nashua, NH 03062-9987

A Reader’s Comment form is located in the back of each printed
manual. The form is postage paid if you mail it in the United States.

Please include the following information along with your comments:

• The full title of the book and the order number. (The order number is
printed on the title page of this book and on its back cover.)

• The section numbers and page numbers of the information on which
you are commenting.

• The version of Tru64 UNIX that you are using.

• If known, the type of processor that is running the Tru64 UNIX
software.

The Tru64 UNIX Publications group cannot respond to system problems or
technical support inquiries. Please address technical questions to your local

xviii About This Manual

system vendor or to the appropriate Compaq technical support office.
Information provided with the software media explains how to send
problem reports to Compaq.

Conventions

The following conventions are used in this manual:

A number sign represents the superuser prompt.

% cat Boldface type in interactive examples indicates
typed user input.

file Italic (slanted) type indicates variable values,
placeholders, and function argument names.

[|]
{ | } In syntax definitions, brackets indicate items that

are optional and braces indicate items that are
required. Vertical bars separating items inside
brackets or braces indicate that you choose one item
from among those listed.

...
A vertical ellipsis indicates that a portion of an
example that would normally be present is not
shown.

cat(1) A cross-reference to a reference page includes the
appropriate section number in parentheses. For
example, cat(1) indicates that you can find
information on the cat command in Section 1 of the
reference pages.

About This Manual xix

1
Introduction to Performance and

Availability

Businesses need a computing environment that is dependable and able to
handle the workload placed on that environment. Users and applications
place different demands on a system, and both require consistent
performance with minimal down time. A system also must be able to
absorb an increase in workload without a decline in performance.

By following the guidelines in this manual, you can configure and tune a
dependable, high-performance Tru64 UNIX system that will meet your
current and future computing needs.

This chapter provides the following information:

• Terminology that is used to define system performance (see Section 1.1)

• Introduction to high-performance configurations (see Section 1.2)

• Introduction to high-availability configurations (see Section 1.3)

Later chapters in this manual provide detailed information about choosing
high-performance and high-availability configurations and improving
performance.

1.1 Performance Terminology and Concepts

System performance depends on an efficient utilization of system
resources, which are the hardware and software components available to
users or applications. A system must perform well under the normal
workload exerted on the system by applications and users.

Because workloads change over time (for example, running additional
applications), a system must be scalable, which refers to a system’s ability
to utilize additional hardware resources with a predictable impact on
performance. Scalability can also refer to the ability to absorb an increase
in workload without a significant performance degradation.

A performance problem in a specific area of the configuration is called a
bottleneck. A bottleneck can occur if the workload demands more from a
resource than its capacity, which is the maximum theoretical throughput
of a system resource.

Introduction to Performance and Availability 1–1

Performance is often described in terms of two rates. Bandwidth is the
rate at which an I/O subsystem or component can transfer bytes of data.
Bandwidth is often called the transfer rate. Bandwidth is especially
important for applications that perform large sequential data transfers.
Throughput is the rate at which an I/O subsystem or component can
perform I/O operations. Throughput is especially important for applications
that perform many small I/O operations.

Performance is also measured in terms of latency, which is the amount of
time to complete a specific operation. Latency is often called delay.
High-performance systems require a low latency time. I/O latency is
measured in milliseconds; memory latency is measured in nanoseconds.
Memory latency depends on the memory bank configuration and the
amount of memory.

Disk performance is often described in terms of disk access time, which is
a combination of the seek time, the amount of time for a disk head to
move to a specific disk track, and the rotational latency, which is the
amount of time for a disk to rotate to a specific disk sector.

A data transfer can consist of file-system data or raw I/O, which is I/O to a
disk or disk partition that does not contain a file system. Raw I/O bypasses
buffers and caches, and it may provide better performance than file system
I/O, in some cases. Raw I/O is often used by the operating system and by
database application software.

Data transfers also have different access patterns. A sequential access
pattern is an access pattern in which data is read from or written to
contiguous (adjacent) blocks on a disk. A random access pattern is an
access pattern in which data is read from or written to blocks in different
(usually nonadjacent) locations on a disk.

1.2 High-Performance Configurations

A configuration consists of system, disk storage, and network hardware,
in addition to the operating system and application software. Different
configurations provide various amounts of CPU power, memory resources,
I/O performance, and storage capacity. Use the configuration guidelines in
this manual to choose the configuration that is appropriate for your
workload, performance, and availability needs.

After you configure the system, you may be able to tune the operating
system in order to improve performance. Tuning usually involves modifying
the kernel by changing the default values of attributes, which affect the
behavior and performance of kernel subsystems.

1–2 Introduction to Performance and Availability

The following sections provide some background information about how the
CPU, memory, and I/O configuration affect performance. See the Compaq
Systems & Options Catalog and the Tru64 UNIX Technical Overview for
information about hardware and operating system performance features.

1.2.1 CPU Resources

CPUs support different processor speeds and onboard cache sizes. In
addition, you can choose single-CPU systems or multiprocessor systems,
which allow two or more processors to share common physical memory.
Environments that are CPU-intensive, such as large database
environments, require multiprocessing systems to handle the workload.

An example of a multiprocessing system is a symmetrical multiprocessing
(SMP) system, in which the CPUs execute the same version of the operating
system, access common memory, and execute instructions simultaneously.

When programs are executed, the operating system moves data and
instructions through CPU caches, physical memory, and disk swap space.
Accessing the data and instructions occurs at different speeds, depending
on the location. Table 1–1 describes the various hardware resources.

Table 1–1: Memory Management Hardware Resources

Resource Description

CPU chip caches Various internal caches reside in the CPU chip. They vary in
size up to a maximum of 64 KB, depending on the processor.
These caches include the translation lookaside buffer, the
high-speed internal virtual-to-physical translation cache, the
high-speed internal instruction cache, and the high-speed
internal data cache.

Secondary cache The secondary direct-mapped physical data cache is external
to the CPU, but usually resides on the main processor board.
Block sizes for the secondary cache vary from 32 bytes to 256
bytes (depending on the type of processor). The size of the
secondary cache ranges from 128 KB to 8 MB.

Tertiary cache The tertiary cache is not available on all Alpha CPUs;
otherwise, it is identical to the secondary cache.

Physical memory The actual amount of physical memory varies.

Swap space Swap space consists of one or more disks or disk partitions
(block special devices).

The hardware logic and the Privileged Architecture Library (PAL) code
control much of the movement of addresses and data among the CPU
cache, the secondary and tertiary caches, and physical memory. This
movement is transparent to the operating system.

Introduction to Performance and Availability 1–3

Movement between caches and physical memory is significantly faster than
movement between disk and physical memory, because of the relatively
slow speed of disk I/O. Applications should utilize caches and avoid disk I/O
operations whenever possible.

Figure 1–1 shows how instructions and data are moved among various
hardware components during program execution, and shows the machine
cycles needed to access data and instructions from the hardware locations.

Figure 1–1: Moving Instructions and Data Through the Memory Hardware

ZK-1362U-AI

Main processor board

Tertiary cache
(optional)

Memory boards

Registers

Secondary
cache

Internal data
and instruction

caches

<1

1

5

10

25 - 50

1,000,000

Approximate
number of machine

cycles that are needed
to access data and
instructions from
different locations

CPU
chip

Disk
data

Swap
space

For more information on the CPU, secondary cache, and tertiary cache, see
the Alpha Architecture Reference Manual.

1–4 Introduction to Performance and Availability

There are several ways that you can optimize CPU performance. You can
reschedule processes or use the Class Scheduler to allocate a percentage of
CPU time to a task or application. This allows you to reserve a majority of
CPU time for important processes, while limiting CPU usage by less
critical processes. See Chapter 7 for more information.

1.2.2 Memory Resources

Sufficient memory resources are vital to system performance.
Configurations running CPU and memory-intensive applications often
require very-large memory (VLM) systems that utilize 64-bit architecture,
multiprocessing, and at least 2 GB of memory. Very-large database (VLDB)
systems are VLM systems that also utilize complex storage configurations.

The total amount of physical memory is determined by the capacity of
the memory boards installed in your system. The virtual memory
subsystem tracks and manages this memory in 8-KB portions called
pages, distributing them among the following areas:

• Static wired memory

Allocated at boot time and used for operating system data and text and
for system tables, static wired memory is also used by the metadata
buffer cache, which holds recently accessed UNIX File System (UFS)
and CD-ROM File System (CDFS) metadata.

• Dynamically wired memory

Dynamically wired memory that is used for dynamically allocated data
structures, such as system hash tables. User processes also allocate
dynamically wired memory for address space by using virtual memory
locking interfaces, including the mlock function. The amount of
dynamically wired memory varies according to the demand. The vm
subsystem attribute vm_syswiredpercent specifies the maximum
amount of memory that a user process can wire (80 percent of physical
memory, by default).

• Physical memory for processes and data caching

Physical memory that is not wired is referred to as pageable memory. It
is used for processes’ most-recently accessed anonymous memory
(modifiable virtual address space) and file-backed memory (memory
that is used for program text or shared libraries). Pageable memory is
also used to cache the most-recently accessed UFS file system data for
reads and writes and for page faults from mapped file regions, in
addition to AdvFS metadata and file data. The virtual memory
subsystem allocates physical pages according to the process and file
system demand.

Introduction to Performance and Availability 1–5

Because processes and file systems compete for a limited amount of
physical memory, the virtual memory subsystem periodically reclaims
the oldest pages by writing their contents to swap space or disk
(paging). Under heavy loads, entire processes may be suspended to free
memory (swapping). You can control virtual memory operation by
tuning various vm subsystem attributes, as described in this chapter.

Figure 1–2 shows the division of physical memory.

Figure 1–2: Physical Memory Usage

Static
wired
memory

ZK-1359U-AI

Dynamically-
wired
memory
(size can
change)

Memory shared by processes
and the UBC (subject to
paging and swapping)

Because retrieving data from memory is significantly faster than a disk I/O
operation, buffer caching is used to cache recently-used disk data in
physical memory. I/O performance is improved if the cached data is later
reused.

There are several buffer caches that are used to cache data:

• The UBC caches the most-recently accessed file data for reads and
writes and for page faults from mapped file regions, in addition to
Advanced File System (AdvFS) metadata and file data. The UBC and
processes compete for the portion of physical memory that is not wired
by the kernel.

• The AdvFS buffer cache is a subset of the UBC.

• The metadata buffer cache caches only UFS and CDFS metadata
and is part of static wired memory.

Various kernel subsystem attributes control the amount of memory
available to processes and to the file system buffer caches, and the rate of
page reclamation. You may be able to tune the attributes in order to
optimize memory performance. See Chapter 6 for more information.

1–6 Introduction to Performance and Availability

1.2.3 Disk Storage

Disk storage configurations vary greatly, so you must determine which
configuration will meet the performance and availability needs of your
applications and users.

Disk storage configurations can consist of single disks with traditional
discrete disk partitions. However, you may want to use the Logical
Storage Manager (LSM) to manage large amounts of disk storage. LSM
enables you to set up a shared pool of storage, and also provides
high-performance and high-availability features, such as RAID support.

Storage configurations can also include hardware RAID subsystems,
which greatly expand the number of disks that can be connected to a single
I/O bus and provide many high-performance and high-availability features,
including RAID support and write-back caches. There are various types of
hardware RAID subsystems, suitable for different environments.

Host bus adapters, RAID controllers, and disks have various performance
features and support different parallel Small Computer System Interface
(SCSI) variants. SCSI is a device and interconnect technology that
continues to evolve in terms of high performance, availability, and
configuration flexibility. See Section 1.2.3.1 for more information about
RAID functionality. See Section 1.2.3.2 for more information about SCSI.

See Chapter 2 and Chapter 8 for more information about storage
configurations.

1.2.3.1 RAID Technology

You can use redundant array of independent disks (RAID) technology in a
storage configuration for high performance and high data availability. You
can obtain RAID functionality by using LSM or a hardware-based RAID
subsystem.

There are four primary RAID levels:

• RAID 0—Also known as data or disk striping, RAID 0 divides data into
blocks and distributes the blocks across multiple disks in a array, which
improves throughput. Striping does not provide disk data availability.

• RAID 1—Also known as data or disk mirroring, RAID 1 maintains
identical copies of data on different disks in an array. Duplicating data
on different disks provides high data availability and improves disk
read performance. You can combine RAID 1 with RAID 0 in order to
mirror striped data or disks.

• RAID 3—A type of parity RAID, RAID 3 divides data blocks and
distributes the data across a disk array, providing parallel access to

Introduction to Performance and Availability 1–7

data and increasing bandwidth. RAID 3 also provides data availability
by placing redundant parity information on a separate disk, which is
used to regenerate data if a disk in the array fails.

• RAID 5—A type of parity RAID, RAID 5 distributes data blocks across
disks in an array. RAID 5 allows independent access to data and can
handle simultaneous I/O operations, which improves throughput. RAID
5 provides data availability by distributing redundant parity
information across the array of disks. The parity information is used to
regenerate data if a disk in the array fails.

In addition, high-performance RAID controllers support dynamic parity
RAID (also called adaptive RAID 3/5), which combines the benefits of
RAID 3 and RAID 5 to improve disk I/O performance for a wide variety of
applications. Dynamic parity RAID dynamically adjusts, according to
workload needs, between data transfer-intensive algorithms and I/O
operation-intensive algorithms.

It is important to understand that RAID performance depends on the state
of the devices in the RAID subsystem. There are three possible states:
steady state (no failures), failure (one or more disks have failed), and
recovery (subsystem is recovering from failure).

Table 1–2 compares the performance features and degrees of availability
for the different RAID levels.

Table 1–2: RAID Level Performance and Availability Comparison

RAID Level Performance Feature Degree of Availability

RAID 0
(striping)

Balances I/O load and improves
throughput

Lower than single disk

RAID 1
(mirroring)

Improves read performance, but
degrades write performance

Highest

RAID 0+1 Balances I/O load and improves
throughput, but degrades write
performance

Highest

RAID 3 Improves bandwidth, but performance
may degrade if multiple disks fail

Higher than single disk

RAID 5 Improves throughput, but performance
may degrade if multiple disks fail

Higher than single disk

Dynamic
parity RAID

Improves bandwidth and throughput,
but performance may degrade if
multiple disks fail

Higher than single disk

There are many variables to consider when choosing a RAID configuration:

• Not all RAID products support all RAID levels.

1–8 Introduction to Performance and Availability

For example, only high-performance RAID controllers support dynamic
parity RAID.

• RAID products provide different performance features.

For example, only RAID controllers support write-back caches and
relieve the CPU of the I/O overhead.

• Some RAID configurations are more cost-effective than others.

In general, LSM provides more cost-effective RAID functionality than
hardware RAID subsystems. In addition, parity RAID provides data
availability at a cost that is lower than RAID 1 (mirroring), because
mirroring n disks requires 2n disks.

• Data recovery rates depend on the RAID configuration.

For example, if a disk fails, it is faster to regenerate data by using a
mirrored copy than by using parity information. In addition, if you are
using parity RAID, I/O performance declines as additional disks fail.

See Chapter 2 and Chapter 8 for more information about RAID
configurations.

1.2.3.2 SCSI Concepts

The most common type of SCSI is parallel SCSI, which supports SCSI
variants that provide you with a variety of performance and configuration
options. The SCSI variants are based on data path (narrow or wide),
transmission method (single-ended or differential), and bus speed (Slow,
Fast, or Ultra). These variants determine the bus bandwidth and the
maximum allowable SCSI bus length.

Serial SCSI is the next generation of SCSI. Serial SCSI reduces parallel
SCSI’s limitations on speed, distance, and connectivity (number of devices
on the bus), and also provides availability features like hot swap and fault
tolerance.

Fibre Channel is an example of serial SCSI. A high-performance I/O bus
that supports multiple protocols (SCSI, IPI, FIPS60, TCP/IP, HIPPI, and so
forth.), Fibre Channel is based on a network of intelligent switches. Link
speeds are available up to 100 MB/sec in full-duplex mode.

The following sections describe parallel SCSI concepts in detail.

1.2.3.2.1 Data Paths

Disks, host bus adapters, I/O controllers, and storage enclosures support a
specific data path. The data path and the bus speed determine the actual
bandwidth for a bus. There are two data paths available:

Introduction to Performance and Availability 1–9

• Narrow Data Path

Specifies an 8-bit data path. The performance of this mode is limited.
SCSI bus specifications restrict the number of devices on a narrow
SCSI bus to eight.

• Wide Data Path

Specifies a 16-bit data path for Slow and Fast SCSI, and a 32-bit data
path for UltraSCSI. This mode increases the amount of data that is
transferred in parallel on the bus. SCSI bus specifications restrict the
number of devices on a wide bus to 16.

Disks and host bus adapters that use a wide data path can provide
nearly twice the bandwidth of disks and adapters that use a narrow
data path. Wide devices can greatly improve I/O performance for large
data transfers.

Most current disks have versions that support wide and narrow data paths.
Devices with different data paths (or transmission methods) cannot be
directly connected on a single bus. You must use a SCSI signal converter
(for example, a DWZZA or DWZZB) or an UltraSCSI extender (for
example, a DWZZC) to connect devices with different data paths.

1.2.3.2.2 Transmission Methods

The transmission method for a bus refers to the electrical
implementation of the SCSI specification. Single-ended SCSI is a low-cost
solution for devices that are usually located within the same cabinet.
Single-ended SCSI usually requires short cable lengths. Differential SCSI
can be used to connect devices that are up to 25 meters apart.

A single-ended SCSI bus uses one data lead and one ground lead for the
data transmission. A single-ended receiver looks at only the signal wire as
the input. The transmitted signal arrives at the receiving end of the bus on
the signal wire slightly distorted by signal reflections. The length and
loading of the bus determine the magnitude of this distortion. Therefore,
the single-ended transmission method is economical, but it is more
susceptible to noise than the differential transmission method and requires
short cables.

A differential SCSI bus uses two wires to transmit a signal. The two wires
are driven by a differential driver that places a signal on one wire
(+SIGNAL) and another signal that is 180 degrees out of phase (-SIGNAL)
on the other wire. The differential receiver generates a signal output only
when the two inputs are different. Because signal reflections are virtually
the same on both wires, they are not seen by the receiver, which notices
only differences on the two wires. The differential transmission method is

1–10 Introduction to Performance and Availability

less susceptible to noise than single-ended SCSI and enables you to use
long cables.

You can directly connect devices only if they have the same transmission
method (differential or single-ended) and data path (narrow or wide). Use a
SCSI signal converter or an UltraSCSI extender to connect devices with
different transmission methods or data paths.

1.2.3.2.3 SCSI Bus Speeds

The SCSI bus speed, also called the transfer rate or bandwidth, is the
number of transfers per second. Fast bus speeds provide the best
performance. Both bus speed and the data path (narrow or wide) determine
the actual bus bandwidth (number of bytes transferred per second).

Not all devices support all bus speeds. To set the bus speed on a host bus
adapter, use either console commands or the Loadable Firmware Update
(LFU) utility, depending on the type of adapter. See the Compaq Systems &
Options Catalog for information about SCSI device support.

Table 1–3 shows the currently available bus speeds.

Table 1–3: SCSI Bus Speeds

Bus Speed Maximum Transfer
Rate (million
transfers/sec)

Maximum Byte
Transfer Rate -
Narrow (MB/sec)

Maximum Byte
Transfer Rate -
Wide (MB/sec)

Slow 5 5 10

Fast SCSI 10 10 20

UltraSCSI 20 20 40

Fast SCSI bus speed, also called Fast10, is an extension to the SCSI-2
specification. It uses the fast synchronous transfer option, enabling I/O
devices to attain high peak-rate transfers in synchronous mode.

UltraSCSI, also called Fast20, is a high-performance, extended version of
SCSI-2 that reduces many performance and configuration deficiencies of
Fast SCSI. Compared to Fast SCSI bus speed, UltraSCSI doubles the
bandwidth and configuration distances, but with no increase in cost.
UltraSCSI also provides faster transaction times and faster, more accurate
data analysis.

UltraSCSI devices are wide and can be either single-ended or differential.
All UltraSCSI components are backward compatible with regular SCSI-2
components.

Introduction to Performance and Availability 1–11

Because of UltraSCSI’s high bus speed, single-ended UltraSCSI signals
cannot maintain their strength and integrity over the same distance as
single-ended Fast SCSI signals. Therefore, UltraSCSI technology uses bus
segments and bus extenders, so that systems and storage can be
configured over long distances.

An UltraSCSI bus extender couples two bus segments together without any
impact on SCSI protocol. A bus segment is defined as an unbroken
electrical path consisting of conductors (in cables or backplanes) and
connectors. Every UltraSCSI bus segment must have two terminators, one
at each end of the bus segment. Therefore, an UltraSCSI bus segment
corresponds to an entire bus in Fast SCSI. The SCSI domain is the
collection of SCSI devices on all the bus segments. As with a Fast SCSI
bus, an UltraSCSI bus segment can only support devices of the same type
(single-ended or differential).

In addition to extending the effective length of a bus, UltraSCSI bus
extenders can be used as SCSI signal converters, so you can connect
differential bus segments to single-ended bus segments. This allows you to
mix differential and single-ended devices on the same bus. A bus extender
also enables bus segments to be isolated from each other for maintenance
reasons.

Although UltraSCSI components allow an UltraSCSI domain to extend for
longer distances than a Fast SCSI bus, there are still limits. Also, because
the use of bus expanders allows UltraSCSI domains to look like a tree,
instead of a straight line, the concept of bus length must be replaced with
the concept of the UltraSCSI domain diameter.

1.2.3.2.4 SCSI Bus Length and Termination

There is a limit to the length of the cables in a SCSI bus. The maximum
cable length depends on the bus speed and the transmission method
(single-ended or differential). The total cable length for a physical bus or
UltraSCSI bus segment is calculated from one terminated end to the other.

In addition, each SCSI bus or bus segment must be terminated only at
each end. Improper bus termination and lengths are a common cause of
bus malfunction.

If you are using devices that have the same transmission method and data
path (for example, wide and differential), a bus will consist of only one
physical bus (or multiple bus fragments in the case of UltraSCSI). If you
have devices with different transmission methods, you will have both
single-ended and differential physical buses or bus segments, each of which
must be terminated only at both ends and adhere to the rules on bus length.

1–12 Introduction to Performance and Availability

Table 1–4 shows the maximum bus lengths for different bus speeds and
transmission methods.

Table 1–4: SCSI Bus and Segment Lengths

Bus Speed Transmission Method Maximum Bus or Segment Length

Slow Single-ended 6 meters

Fast Single-ended 3 meters

Fast Differential 25 meters

Ultra Differential 25 meters

Ultra Single-ended 1.5 meters (daisy-chain configuration,
in which devices are spaced less than
1 meter apart)

Ultra Single-ended 4 meters (daisy-chain configuration, in
which devices are spaced more than 1
meter apart)

Ultra Single-ended 20 meters (point to point
configuration, in which devices are
only at the ends of the bus segment)

Note that the total length of a physical bus must include the amount of
cable that is located inside each system and disk storage shelf. This length
varies, depending on the device. For example, the length of cable inside a
BA350, BA353, or BA356 storage shelf is approximately 1.0 meter.

1.2.4 Network Subsystem

The operating system supports various networks and network adapters
that provide different performance features. For example, an Asynchronous
Transfer Mode (ATM) high-performance network is ideal for applications
that need the high speed and the low latency (switched, full-duplex
network infrastructure) that ATM networks provide.

In addition, you can configure multiple network adapters or use NetRAIN
to increase network access and provide high network availability.

Kernel attributes control network subsystem operation. You may be able to
optimize network performance for your applications and workload by
modifying kernel subsystem attribute values.

1.3 High-Availability Configurations

In addition to high performance, many environments require some degree
of high availability, which is the ability to withstand a hardware or

Introduction to Performance and Availability 1–13

software failure. Resources (for example, disk data, systems, and network
connections) can be made highly available by using some form of resource
duplication or redundancy. In some cases, an automatic failover
mechanism may also be used in order to make the resource failure virtually
imperceptible to users.

There are various degrees of availability, and you must determine how
much you need for your environment. Critical operations may require a
configuration that does not have a single point of failure; that is, a
configuration in which you have duplicated each vital resource. However,
some environments may be able to accommodate some down time and may
require only data to be highly available.

Figure 1–3 shows a configuration that is vulnerable to various single
failures, including network, disk, and bus failures.

Figure 1–3: Configuration with Potential Points of Failure

SCSI bus

ZK-1365U-AI

Client Client

Single
system

Network
adapter

Host bus
adapter

Network

Disks

Figure 1–4 shows a fully redundant cluster configuration with no single
point of failure.

1–14 Introduction to Performance and Availability

Figure 1–4: Fully Redundant Cluster Configuration

Redundant
Cluster interconnects

Mirrored disk sets

ZK-1364U-AI

UPS

Client Client Client

Cluster member
system

Cluster member
system

Redundant
network
adapters

Multiple
host bus
adapters

Networks

By duplicating important resources, a configuration can be resistant to
resource failures, as follows:

• Disk data

RAID technology provides you with various degrees of data availability.
For example, you can use RAID 1 (mirroring) to replicate data on
different disks. If one disk fails, a copy is still available to users and
applications. You can also use parity RAID for high data availability.
The parity information is used to reconstruct data if a failure occurs.

In addition, to protect data against a host bus adapter or bus failure,
mirror data the across disks located on different buses.

• Network access

You can also make the network connection highly available by using
redundant network connections. If one connection becomes unavailable,
you can still use the other connection for network access. Whether you
can use multiple networks depends on the application, network
configuration, and network protocol.

Introduction to Performance and Availability 1–15

In addition, you can use NetRAIN (redundant array of independent
network adapters) to provide highly-available network access. NetRAIN
enables you to configure multiple interfaces on the same LAN segment
into a single interface, and provides failover support for network
adapter and network connections.

• System or application

To make systems and applications highly available, you must use a
TruCluster Server to set up a cluster, which is a loosely coupled group
of servers configured as member systems and usually connected to
shared disk storage. Software applications are installed on every
member system, but only one system runs an application at one time
and makes it available to users.

A cluster utilizes a failover mechanism to protect against failures. If a
member system fails, all cluster-configured applications running on
that system will fail over to a viable member system. The new system
then starts the applications and makes them available to users.

Some cluster products support a high-performance cluster
interconnect that provides fast and reliable communications between
members. You can configure redundant cluster interconnects for high
availability. If one cluster interconnect fails, the cluster members can
still communicate over the remaining interconnect.

• Power

Systems and storage units are vulnerable to power failures. To protect
against a power supply failure, use redundant power supplies. You can
also protect disks against a power supply failure in a storage cabinet by
mirroring across independently powered cabinets.

In addition, use an uninterruptible power supply (UPS) system to
protect against a total power failure (for example, the power in a
building fails). A UPS system depends on a viable battery source and
monitoring software.

You must repair or replace a failed component as soon as possible to
maintain some form of redundancy. This will help to ensure that you do not
experience down time.

Production environments often require that resources be resistant to
multiple failures. The more levels of resource redundancy, the greater the
resource availability. For example, if you have only two cluster member
systems and one fails, the remaining system is now a potential point of
failure. Therefore, a cluster with three or more member systems has higher
availability than a two-system cluster, because it has more levels of
redundancy and can survive multiple system failures.

1–16 Introduction to Performance and Availability

Availability is also measured by a resource’s reliability, which is the
average amount of time that a component will perform before a failure that
causes a loss of data. It is often expressed as the mean time to data loss
(MTDL), the mean time to first failure (MTTF), and the mean time
between failures (MTBF).

See Section 2.6 for detailed information about setting up a high-availability
configuration.

Introduction to Performance and Availability 1–17

2
Planning a High-Performance and

High-Availability Configuration

A high-performance configuration is one that will rapidly respond to the
demands of a normal workload, and also handle an increase in the
workload. A high-availability configuration provides protection against
single points of failure.

This chapter describes how to perform the following tasks:

• Identify a resource model for your workload (Section 2.1)

• Identify performance and availability goals (Section 2.2)

• Choose high-performance system hardware (Section 2.3)

• Choose high-performance disk storage hardware (Section 2.4)

• Choose how to manage your disk storage (Section 2.5)

• Choose a high-availability configuration (Section 2.6)

2.1 Identifying a Resource Model for Your Workload

Before you can plan or tune a configuration, you must identify a resource
model for your workload. That is, you must determine if your applications
are memory-intensive or CPU-intensive, and how they perform disk and
network I/O. This information will help you to choose the configuration and
tuning guidelines that are appropriate for your workload.

For example, if a database server performs large sequential data transfers,
choose a configuration that provides high bandwidth. If a application
performs many disk write operations, you may not want to choose a RAID
1 (mirrored) configuration.

Use Table 2–1 to help you determine the resource model for your workload
and identify a possible configuration solution for each model.

Planning a High-Performance and High-Availability Configuration 2–1

Table 2–1: Resource Models and Possible Configuration Solutions

Resource Model Configuration Solution

CPU-intensive Multiprocessing system, fast CPUs, or
hardware RAID subsystem

Memory-intensive VLM system or large onboard CPU cache

Requires large amount of disk
storage

System with a large I/O capacity, LSM, or
hardware RAID subsystem

Requires low disk latency Solid-state disks, fast disks, RAID array, or
Fibre Channel

Requires high throughput High-performance SCSI adapters, striping,
RAID 5, or dynamic parity RAID

Requires high bandwidth High-performance adapters, wide devices,
RAID 3, or dynamic parity RAID

Performs many large sequential
data transfers

High-performance disks, wide devices,
striping, parity RAID

Performs many small data transfers RAID 5

Issues predominantly read transfers Mirroring, RAID 5, or striping

Issues predominantly write transfers Prestoserve or write-back cache

Performs many network operations Multiple network adapters, NetRAIN, or
high-performance adapters

Application must be highly available Cluster

Data must be highly available Mirroring (especially across different buses)
or parity RAID

Network I/O-intensive Multiple network adapters or NetRAIN

2.2 Identifying Performance and Availability Goals

Before you choose a configuration, you must determine the level of
performance and availability that you need. In addition, you must account
for cost factors and plan for future workload expansion.

When choosing a system and disk storage configuration, you must be sure
to evaluate the configuration choices in terms of the following criteria:

• Performance

You must determine an acceptable level of performance for the
applications and users. For example, you may want a real-time
environment that responds immediately to user input, or you may want
an environment that has high throughput.

2–2 Planning a High-Performance and High-Availability Configuration

• Availability

You must determine how much availability is needed. Some
environments require only highly available data. Other environments
require you to eliminate all single points of failure.

• Cost

You must determine the cost limitations for the environment. For
example, solid-state disks provide high throughput and high
bandwidth, but at a high cost.

• Scalability

A system that is scalable is able to utilize additional resources (for
example, additional CPUs) with a predictable increase in performance.
Scalability can also refer to the ability of a system to absorb an increase
in workload without a significant performance degradation. Be sure to
include in your plans any potential workload increases and, if
necessary, choose a configuration that is scalable.

After you determine the goals for your environment, you can choose the
system and disk storage configuration that will address these goals.

2.3 Choosing System Hardware
Different systems provide different configuration and performance features.
A primary consideration for choosing a system is its CPU and memory
capabilities. Some systems support multiple CPUs, fast CPU speeds, and
very-large memory (VLM) configurations.

Because very-large database (VLDB) systems and cluster systems usually
require many external I/O buses, another consideration is the number of
I/O bus slots in the system. Some systems support I/O expansion units for
additional I/O capacity.

Be sure that a system is adequately scalable, which will determine whether
you can increase system performance by adding resources, such as CPU
and memory boards. If applicable, choose a system that supports RAID
controllers, high-performance network adapters, and cluster products.

Table 2–2 describes some hardware options that can be used in a
high-performance system, and the performance benefit for each option.

Table 2–2: High-Performance System Hardware Options

Hardware Option Performance Benefit

Multiple CPUs (Section 2.3.1) Improves processing time

Fast CPU speed (Section 2.3.1) Improves processing time

Planning a High-Performance and High-Availability Configuration 2–3

Table 2–2: High-Performance System Hardware Options (cont.)

Hardware Option Performance Benefit

Onboard CPU cache (Section 2.3.1) Improves processing time

Very-large memory (Section 2.3.2) Improves processing time and decreases
disk I/O latency

Large I/O capacity (Section 2.3.3) Allows you to connect many I/O adapters
and controllers for disk storage and
network connections

Support for high-performance disk
storage (Section 2.3.4)

Improves overall system performance
and availability

Support for high-performance networks
(Section 2.3.5)

Increases network access and network
performance

For detailed information about hardware performance features, see the
Compaq Systems & Options Catalog.

The following sections describe these hardware options in detail.

2.3.1 CPU Configuration

To choose a CPU configuration that will meet your needs, you must
determine your requirements for the following:

• Number of CPUs

Only certain types of systems support multiprocessing. If your
environment is CPU-intensive or if your applications can benefit from
multiprocessing, you may want a system that supports multiple CPUs.

Depending on the type of multiprocessing system, you can install two or
more CPUs. You must determine the number of CPUs that you need,
and then choose a system that supports that number of CPUs and has
enough backplane slots available for the CPU boards.

• CPU processing speed

CPUs have different processing speeds and other performance features.
For example, some processors support EV56 technology.

If your environment is CPU-intensive, you may want to choose a system
that supports high-performance CPUs.

• CPU cache size

CPUs have different sizes for on-chip caches, which can improve
performance. Some systems have secondary caches that reside on the
main processor board, and some have tertiary caches.

2–4 Planning a High-Performance and High-Availability Configuration

Caches that reside on the CPU chip can vary in size up to a maximum
of 64 KB (depending on the type of processor). These caches include the
translation lookaside buffer, the high-speed internal virtual-to-physical
translation cache, the high-speed internal instruction cache, and the
high-speed internal data cache.

The secondary direct-mapped physical data cache is external to the
CPU, but usually resides on the main processor board. Block sizes for
the secondary cache vary from 32 bytes to 256 bytes (depending on the
type of processor). The size of the secondary cache ranges from 128 KB
to 8 MB. The tertiary cache is not available on all Alpha CPUs;
otherwise, it is identical to the secondary cache.

2.3.2 Memory and Swap Space Configuration

You must determine the total amount of memory and swap space that you
need to handle your workload. Insufficient memory resources and swap
space will cause performance problems. In addition, your memory bank
configuration will affect performance.

To configure memory and swap space, perform the following tasks:

1. Determine how much physical memory your workload requires and
choose a system that provides the necessary memory and has enough
backplane slots for memory boards (Section 2.3.2.1).

2. Choose a swap space allocation mode (Section 2.3.2.2).

3. Determine how much swap space you need (Section 2.3.2.3).

4. Configure swap space in order to efficiently distribute the disk I/O
(Section 6.2).

The following sections describe these tasks.

2.3.2.1 Determining Your Physical Memory Requirements

You must have enough system memory to provide an acceptable level of
user and application performance. The amount of memory installed in your
system must be at least as much as the sum of the following:

• The total amount of memory that will be wired, including operating
system data and text, system tables, the metadata buffer cache, and
dynamically allocated data structures

• The total amount of memory your processes need for anonymous
memory, which holds data elements and structures that are modified
during process execution (heap space, stack space, and space allocated
by the malloc function)

Planning a High-Performance and High-Availability Configuration 2–5

• The total amount of memory that the UBC requires to cache data

In addition, each network connection to your server requires the following
memory resources:

• Kernel socket structure

• Internet protocol control block (inpcb) structure

• TCP control block structure

• Any additional socket buffer space that is needed as packets arrive and
are consumed

These memory resources total 1 KB for each connection endpoint (not
including the socket buffer space), so you need 10 MB of memory to
accommodate 10,000 connections. There is no limit on a system’s ability to
handle millions of TCP connections, if you have enough memory resources
to service the connections. However, when memory is low, the server will
reject new connection requests until enough existing connections are freed.
Use the netstat -m command to display the memory that is currently
being used by the network subsystem.

To ensure that your server has enough memory to handle high peak loads,
you should have available 10 times the memory that is needed on a busy
day. For optimal performance and for scalability, configure more than the
minimum amount of memory needed.

2.3.2.2 Choosing a Swap Space Allocation Mode

There are two modes that you can use to allocate swap space. The modes
differ in how the virtual memory subsystem reserves swap space for
anonymous memory (modifiable virtual address space). Anonymous
memory is memory that is not backed by a file, but is backed by swap space
(for example, stack space, heap space, and memory allocated by the malloc
function). There is no performance benefit attached to either mode.

The swap space allocation modes are as follows:

• Immediate mode—This mode reserves swap space when a process
first allocates anonymous memory. Immediate mode is the default swap
space allocation mode and is also called eager mode.

Immediate mode may cause the system to reserve an unnecessarily
large amount of swap space for processes. However, it ensures that
swap space will be available to processes if it is needed. Immediate
mode is recommended for systems that overcommit memory (that is,
systems that page).

• Deferred mode—This mode reserves swap space only if the virtual
memory subsystem needs to write a modified virtual page to swap space.

2–6 Planning a High-Performance and High-Availability Configuration

It postpones the reservation of swap space for anonymous memory until
it is actually needed. Deferred mode is also called lazy mode.

Deferred mode requires less swap space than immediate mode and may
cause the system to run faster because it requires less swap space
bookkeeping. However, because deferred mode does not reserve swap
space in advance, the swap space may not be available when a process
needs it, and the process may be killed asynchronously. Deferred mode
is recommended for large-memory systems or systems that do not
overcommit memory (page).

You specify the swap space allocation mode by using the vm subsystem
attribute vm_swap_eager. Specify 1 to enable immediate mode (the
default); specify 0 to enable deferred mode.

See the System Administration manual for more information on swap space
allocation methods.

2.3.2.3 Determining Swap Space Requirements

Swap space is used to hold the recently accessed modified pages from
processes and from the UBC. In addition, if a crash dump occurs, the
operating system writes all or part of physical memory to swap space.

It is important to configure a sufficient amount of swap space and to
distribute swap space across multiple disks. An insufficient amount of swap
space can severely degrade performance and prevent processes from
running or completing. A minimum of 128 MB of swap space is
recommended.

The optimal amount of swap space for your configuration depends on the
following factors:

• Total amount of memory configured in the system—In general, systems
with large amounts of memory require less swap space than
low-memory systems.

• Your applications’ anonymous memory requirements—Anonymous
memory holds data elements and structures that are modified during
process execution, such as heap space, stack space, and memory
allocated with the malloc function.

• Crash dump configuration—Swap space should be large enough to hold
a complete crash dump file. Tru64 UNIX supports compressed crash
dumps, which require less swap space to hold the dump file than
uncompressed crash dumps. See the System Administration manual for
more information on compressed crash dumps.

Planning a High-Performance and High-Availability Configuration 2–7

• Swap space allocation mode—Less swap space is required if you are
using deferred mode instead of immediate mode.

• Whether you use the AdvFS verify command—If you want to use the
AdvFS verify command, allocate an additional 5 percent of total
memory for swap space.

To calculate the amount of swap space required by your configuration,
follow these steps:

1. Determine the total amount of anonymous memory (modifiable virtual
address space) required by all of your processes. To do this, invoke the
ps -o vsz command and add the values in the VSZ (virtual address
size) column. For example:

ps -o vsz
VSZ
536K
2.16M
2.05M
2.16M
2.16M
3.74M
2.16M
#

2. If you are using immediate mode, add 10 percent to the total amount
of anonymous memory.

If you are using deferred mode, divide the total amount of anonymous
memory by 2.

3. If you are using AdvFS, add 5 percent of total memory to this value.
The resulting value represents the optimal amount of swap space.

You can configure swap space when you first install the operating system,
or you can add swap space at a later date. In addition, swap space must
following the guidelines for distributing disk I/O. See Section 6.2 for
information about adding swap space after installation and configuring
swap space for high performance.

2.3.3 I/O Bus Slot Capacity

Systems provide support for different numbers of I/O bus slots to which you
can connect external storage devices and network adapters. Some
enterprise systems provide up to 132 PCI slots for external storage. These
systems are often used in VLDB systems and cluster configurations.

You must ensure that the system you choose has sufficient I/O buses and
slots available for your disk storage and network configuration. Some
systems support I/O expansion units for additional I/O capacity.

2–8 Planning a High-Performance and High-Availability Configuration

2.3.4 Support for High-Performance Disk Storage

Systems support different local disk storage configurations, including
multiple storage shelves, large disk capacity, and UltraSCSI devices. In
addition, some systems support high-performance PCI buses, which are
required for hardware RAID subsystems and clusters.

You must ensure that the system you choose supports the disk storage
configuration that you need. See Section 2.4 and Section 2.5 for more
information on disk storage configurations.

2.3.5 Support for High-Performance Network

Systems support various networks and network adapters that provide
different performance features. For example, an Asynchronous Transfer
Mode (ATM) high-performance network is ideal for applications that need
the high speed and the low latency (switched, full-duplex network
infrastructure) that ATM networks provide.

In addition, you can configure multiple network adapters or use NetRAIN
to increase network access and provide high network availability.

2.4 Choosing Disk Storage Hardware

The disk storage subsystem is used for both data storage and for swap
space. Therefore, an incorrectly configured or tuned disk subsystem can
degrade both disk I/O and virtual memory performance. Using your
resource model, as described in Section 2.1, choose the disk storage
hardware that will meet your performance needs.

Table 2–3 describes some hardware options that can be used in a
high-performance disk storage configuration and the performance benefit
for each option.

Table 2–3: High-Performance Disk Storage Hardware Options

Hardware Option Performance Benefit

Fast disks (Section 2.4.1) Improves disk access time and
sequential data transfer performance

Solid-state disks (Section 2.4.2) Provides very low disk access time

Wide devices (Section 2.4.3) Provides high bandwidth and improves
performance for large data transfers

High-performance host bus adapters
(Section 2.4.4)

Increases bandwidth and throughput,
and supports wide data paths and fast
bus speeds

Planning a High-Performance and High-Availability Configuration 2–9

Table 2–3: High-Performance Disk Storage Hardware Options (cont.)

Hardware Option Performance Benefit

DMA host bus adapters (Section 2.4.5) Relieves CPU of data transfer overhead

RAID controllers (Section 2.4.6 and
Section 8.5)

Decreases CPU overhead; increases the
number of disks that can be connected to
an I/O bus; provides RAID functionality;
and supports write-back caches

Fibre Channel (Section 2.4.7) Provides high access speeds and other
high-performance features

Prestoserve (Section 2.4.8) Improves synchronous write
performance

For detailed information about hardware performance features, see the
Compaq Systems & Options Catalog.

The following sections describe some of these high-performance disk
storage hardware options in detail.

2.4.1 Fast Disks

Disks that spin with a high rate of revolutions per minute (RPM) have a
low disk access time (latency). High-RPM disks are especially beneficial to
the performance of sequential data transfers.

High-performance disks (7200 RPM) can improve performance for many
transaction processing applications (TPAs). UltraSCSI disks (10,000 RPM)
are ideal for demanding applications, including network file servers and
Internet servers, that require high bandwidth and high throughput.

2.4.2 Solid-State Disks

Solid-state disks provide outstanding performance compared to magnetic
disks, but at a higher cost. By eliminating the seek and rotational latencies
that are inherent in magnetic disks, solid-state disks can provide very high
disk I/O performance. Disk access time is under 100 microseconds, which
allows you to access critical data more than 100 times faster than with
magnetic disks.

Available in both wide (16-bit) and narrow (8-bit) versions, solid-state disks
are ideal for response-time critical applications with high data transfer
rates, such as online transaction processing (OLTP), and applications that
require high bandwidth, such as video applications.

Solid-state disks complement hardware RAID configurations by eliminating
bottlenecks caused by random workloads and small data sets. Solid-state

2–10 Planning a High-Performance and High-Availability Configuration

disks also provide data reliability through a nonvolatile data-retention
system.

For the best performance, use solid-state disks for your most frequently
accessed data to reduce the I/O wait time and CPU idle time. In addition,
connect the disks to a dedicated bus and use a high-performance host bus
adapter.

2.4.3 Devices with Wide Data Paths

Disks, host bus adapters, SCSI controllers, and storage expansion units
support wide data paths, which provide nearly twice the bandwidth of
narrow data paths. Wide devices can greatly improve I/O performance for
large data transfers.

Disks with wide (16-bit) data paths provide twice the bandwidth of disks
with narrow (8-bit) data paths. To obtain the performance benefit of wide
disks, all the disks on a SCSI bus must be wide. If you use both wide and
narrow disks on the same SCSI bus, the bus performance will be
constrained by the narrow disks.

2.4.4 High-Performance Host Bus Adapters

Host bus adapters and interconnects provide different performance features
at various costs. For example, FWD (fast, wide, and differential) SCSI bus
adapters provide high bandwidth and high throughput connections to disk
devices. Other adapters support UltraSCSI.

In addition, some host bus adapters provide dual-port (dual-channel)
support, which allows you to connect two buses to one I/O bus slot.

Bus speed (the rate of data transfers) depends on the host bus adapter.
Different adapters support bus speeds ranging from 5 million bytes per
second (5 MHz) for slow speed to 40 million bytes per second (20 MHz) for
UltraSCSI.

You must use high-performance host bus adapters, such as the KZPSA
adapter, to connect systems to high-performance RAID array controllers.

2.4.5 DMA Host Bus Adapters

Some host bus adapters support direct memory access (DMA), which
enables an adapter to bypass the CPU and go directly to memory to access
and transfer data. For example, the KZPAA is a DMA adapter that
provides a low-cost connection to SCSI disk devices.

Planning a High-Performance and High-Availability Configuration 2–11

2.4.6 RAID Controllers

RAID controllers are used in hardware RAID subsystems, which greatly
expand the number of disks connected to a single I/O bus, relieve the CPU
of the disk I/O overhead, and provide RAID functionality and other
high-performance and high-availability features.

There are various types of RAID controllers, which provide different
features. High-performance RAID array controllers support dynamic parity
RAID and battery-backed, write-back caches. Backplane RAID storage
controllers provide a low-cost RAID solution.

See Section 8.5 for more information about hardware RAID subsystems.

2.4.7 Fibre Channel

Fibre Channel is a high-performance I/O bus that is an example of serial
SCSI and provides network storage capabilities. Fibre Channel supports
multiple protocols, including SCSI, Intellitan Protocol Interface (IPI),
TCP/IP, and High-Performance Peripheral Interface (HPPI).

Fibre Channel is based on a network of intelligent switches. Link speeds
are available up to 100 MB/sec full duplex. Although Fibre Channel is more
expensive than parallel SCSI, Fibre Channel Arbitrated Loop (FC-AL)
decreases costs by eliminating the Fibre Channel fabric and using
connected nodes in a loop topology with simplex links. In addition, an
FC-AL loop can connect to a Fibre Channel fabric.

2.4.8 Prestoserve

The Prestoserve product is a combination of NVRAM hardware and
software. Prestoserve can speed up synchronous disk writes, including NFS
server access, by reducing the amount of disk I/O.

Prestoserve uses nonvolatile, battery-backed memory to temporarily cache
file system writes that otherwise would have to be written to disk. This
capability improves performance for systems that perform large numbers of
synchronous writes.

To optimize Prestoserve cache use, you may want to enable Prestoserve only
on the most frequently used file systems, or configure Prestoserve to cache
only UFS or AdvFS metadata. In addition, Prestoserve can greatly improve
performance for NFS servers. See Section 9.2.9 for more information.

You cannot use Prestoserve in a cluster or for nonfile system I/O.

2–12 Planning a High-Performance and High-Availability Configuration

2.5 Choosing How to Manage Disks
There are various methods that you can use to manage your disk storage
configuration. These methods provide different performance and availability
features. You must understand your workload resource model, as described
in Section 2.1, to determine the best way to manage disk storage.

In addition, if you require highly-available disk storage, see Section 2.6 for
information about the available options.

After you choose a method for managing disk storage, see Chapter 8 for
configuration guidelines.

Table 2–4 describes some options for managing disk storage and the
performance benefit and availability impact for each option.

Table 2–4: High-Performance Disk Storage Configuration Solutions

Configuration Option Performance Benefit

Shared pool of storage (LSM)
(Section 2.5.1)

Facilitates management of large
amounts of storage (LSM also provides
RAID functionality)

Data or disk striping (RAID 0)
(Section 2.5.2)

Distributes disk I/O and improves
throughput, but decreases availability

RAID 3 (Section 2.5.3) Improves bandwidth and provides
availability

RAID 5 (Section 2.5.3) Improves throughput and provides
availability

Dynamic parity RAID (Section 2.5.3) Improves overall disk I/O performance
and provides availability

Mirroring (RAID 1) (Section 2.6.2) Improves read performance and provides
high availability, but decreases write
performance

Mirroring striped data or disks
(Section 2.5.2 and Section 2.6.2)

Combines the performance benefits of
RAID 0 with the availability benefits of
RAID 1

The following sections describe some of these high-performance storage
configurations in detail.

2.5.1 Using a Shared Pool of Storage for Flexible Management

There are two methods that you can use to manage the physical disks in
your environment. The traditional method of managing disks and files is to
divide each disk into logical areas called disk partitions, and to then create
a file system on a partition or use a partition for raw I/O.

Planning a High-Performance and High-Availability Configuration 2–13

Each disk type has a default partition scheme. The disktab database file
lists the default disk partition sizes. The size of a partition determines the
amount of data it can hold. It can be time-consuming to modify the size of a
partition. You must back up any data in the partition, change the size by
using the disklabel command, and then restore the data to the resized
partition.

An alternative to managing disks with static disk partitions is to use the
Logical Storage Manager (LSM) to set up a shared pool of storage that
consists of multiple disks. You can create virtual disks (LSM volumes) from
this pool of storage, according to your performance and capacity needs, and
then place file systems on the volumes or use them for raw I/O.

LSM provides you with flexible and easy management for large storage
configurations. Because there is no direct correlation between a virtual disk
and a physical disk, file system or raw I/O can span disks as needed. In
addition, you can easily add disks to and remove disks from the pool,
balance the load, and perform other storage management tasks.

LSM also provides you with high-performance and high-availability RAID
functionality, hot spare support, and load balancing.

See Section 8.4 for information about LSM configurations.

2.5.2 Striping Data or Disks to Distribute I/O

Data or disk striping (RAID 0) distributes disk I/O and can improve
throughput. The striped data is divided into blocks (sometimes called
chunks or stripes) and distributed across multiple disks in a array. Striping
enables parallel I/O streams to operate concurrently on different devices, so
that I/O operations can be handled simultaneously by multiple devices.

LSM enables you to stripe data across different buses and adapters.
Hardware RAID subsystems provide only disk striping.

LSM data striping provides better performance than disk striping with
hardware RAID and supports more flexible configurations. With LSM, you
can create a striped 36-GB volume comprised of three 9-GB disks and two
4.5-GB disks, or you can create a striped 13.5-GB volume comprised of two
4.5-GB disks and half of a 9-GB disk. The other half of the 9-GB disk can
be used in other LSM volumes.

The performance benefit of striping depends on the size of the stripe and
how your users and applications perform disk I/O. For example, if an
application performs multiple simultaneous I/O operations, you can specify
a stripe size that will enable each disk in the array to handle a separate
I/O operation. If an application performs large sequential data transfers,

2–14 Planning a High-Performance and High-Availability Configuration

you can specify a stripe size that will distribute a large I/O evenly across
the disks.

For volumes that receive only one I/O at a time, you may not want to use
striping if access time is the most important factor. In addition, striping
may degrade the performance of small data transfers, because of the
latencies of the disks and the overhead associated with dividing a small
amount of data.

Striping decreases data availability because one disk failure makes the
entire disk array unavailable. To make striped data or disks highly
available, you can combine RAID 0 with RAID 1 to mirror the striped data
or disks.

See Chapter 8 for more information about LSM and hardware RAID
subsystems.

2.5.3 Using Parity RAID to Improve Disk Performance

Parity RAID provides both high performance and high availability. Tru64
UNIX supports three types of parity RAID, each with different performance
and availability benefits:

• RAID 3—Divides data blocks and distributes the data across a disk
array, providing parallel access. RAID 3 provides a high data transfer
rate and increases bandwidth, but it provides no improvement in
throughput (the I/O transaction rate).

Use RAID 3 to improve the I/O performance of applications that
transfer large amounts of sequential data. RAID 3 provides no
improvement for applications that perform multiple I/O operations
involving small amounts of data.

RAID 3 also provides high data availability by storing redundant parity
information on a separate disk. The parity information is used to
regenerate data if a disk in the array fails. However, performance
degrades as multiple disks fail, and data reconstruction is slower than
if you had used mirroring.

• RAID 5—Distributes data blocks across disks in an array. RAID 5 allows
independent access to data and can handle simultaneous I/O operations.

RAID 5 can be used for configurations that are mainly read-intensive.
RAID 5 is not suitable for write-intensive applications.

As a cost-efficient alternative to mirroring, you can use RAID 5 to
improve the availability of rarely-accessed data. RAID 5 provides high
data availability by distributing redundant parity information across
disks. Each array member contains enough parity information to
regenerate data if a disk fails. However, performance may degrade and

Planning a High-Performance and High-Availability Configuration 2–15

data may be lost if multiple disks fail. In addition, data reconstruction
is slower than if you had used mirroring. LSM supports only RAID 5 for
parity RAID.

• Dynamic parity RAID—Dynamically adjusts, according to the workload,
between data transfer-intensive algorithms and I/O operation-intensive
algorithms, combining the performance benefits of RAID 3 and RAID 5.
Also known as adaptive RAID 3/5, dynamic parity RAID improves disk
I/O performance for a wide variety of applications. Only
high-performance RAID controllers support dynamic parity RAID.

LSM can provide more flexible RAID configurations than hardware RAID,
because LSM is able to utilize portions of disks, instead of requiring
complete disks. See Chapter 8 for more information about LSM and
hardware RAID subsystems.

2.6 Choosing a High-Availability Configuration

You can set up a configuration that provides the level of availability that
you need. For example, you can make only disk data highly available or
you can set up a cluster configuration with no single point of failure, as
shown in Figure 1–4.

Table 2–5 lists each possible point of failure, the configuration solution that
will provide high availability, and any performance benefits and tradeoffs.

Table 2–5: High-Availability Configurations

Point of Failure Configuration Solution Benefits and Tradeoffs

Single system Latest hardware, firmware,
and operating system
releases

Provides the latest hardware
and software enhancements,
but may require down time
during upgrade

Cluster with at least two
systems (Section 2.6.1)

Improves overall
performance by spreading
workload across member
systems, but increases costs
and management complexity

Multiple systems Cluster with more than two
members (Section 2.6.1)

Improves overall
performance by spreading
workload across member
systems, but increases costs
and management complexity

Cluster interconnect Second cluster interconnect
(Section 2.6.1)

Increases costs

2–16 Planning a High-Performance and High-Availability Configuration

Table 2–5: High-Availability Configurations (cont.)

Point of Failure Configuration Solution Benefits and Tradeoffs

Disk Mirrored data or disks
(Section 2.6.2)

Improves read performance,
but increases costs and
decreases write performance

Parity RAID (Section 2.6.2) Improves disk I/O
performance, but increases
management complexity and
decreases performance when
under heavy write loads and
in failure mode

Host bus adapter or
bus

Mirrored data across disks
on different buses
(Section 2.6.2)

Improves read performance,
but increases costs and
decreases write performance

Network connection Multiple network
connections or use NetRAIN
(Section 2.6.3)

Improves network access
and possibly performance,
but increases costs

System cabinet power
supply

Redundant power supplies
(Section 2.6.4)

Increases costs

Storage unit power
supply

Redundant power supplies
or mirroring across cabinets
with independent power
supplies (Section 2.6.4 and
Section 2.6.2)

Increases costs

Total power supply Battery-backed
uninterruptible power
supply (UPS) system
(Section 2.6.4)

Increases costs

The following sections describe some of the previous high-availability
configurations in detail.

2.6.1 Using a Cluster for System Availability

If users and applications depend on the availability of a single system for
CPU, memory, data, and network resources, they will experience down time
if a system crashes or an application fails. To make systems and
applications highly available, you must use the TruCluster Server product
to set up a cluster.

A cluster is a loosely coupled group of servers configured as member
systems and connected to highly available shared disk storage and common
networks. Software applications are installed on every member system, but
only one system runs an application at one time.

Planning a High-Performance and High-Availability Configuration 2–17

If a resource for a member system fails (for example, a network adapter or
a bus fails), all cluster-configured applications running on that system will
fail over to a viable member system. The new system then starts the
applications and makes them available to users.

To protect against multiple system failures, use more than two member
systems in a cluster.

In addition, TruCluster Server supports a high-performance cluster
interconnect that enables fast and reliable communications between
members. To protect against interconnect failure, use redundant cluster
interconnects.

You can use only specific systems, host bus adapters, RAID controllers, and
disks with the cluster products. In addition, member systems must have
enough I/O bus slots for adapters, controllers, and interconnects.

You can use LSM or hardware RAID to improve the performance and
availability of a cluster’s shared storage. For example, LSM enables you to
create a mirrored and striped volume that can be used to access an LSM
volume simultaneously from different cluster member systems.

See the TruCluster Server Software Product Description for detailed
information about the product.

2.6.2 Using RAID for Disk Data Availability

RAID technology provides you with high data availability, in addition to
high performance. RAID 1 (data or disk mirroring) provides high data
availability by maintaining identical copies of data on different disks in an
array. If the original disk fails, the copy is still available to users and
applications. To protect data against a host bus adapter or bus failure,
mirror across disks located on different buses.

Mirroring can improve read performance because data can be read from
two different locations. However, it decreases disk write performance,
because data must be written to two different locations.

LSM provides more flexible RAID configurations than hardware RAID.
LSM mirrors (and stripes) data. For example, LSM can mirror (and stripe)
data across portions of disks or across different types of disks. Hardware
RAID subsystems mirror entire disks.

Hardware RAID subsystems and LSM also use parity RAID, to provide
high data availability and high performance. With parity RAID, data is
spread across disks, and parity information is used to reconstruct data if a
failure occurs. Tru64 UNIX supports three types of parity RAID (RAID 3,
RAID 5, and dynamic parity RAID) and each provides different

2–18 Planning a High-Performance and High-Availability Configuration

performance and availability benefits. LSM supports only RAID 5. Only
high-performance RAID controllers support dynamic parity RAID. See
Section 2.5.3 for more information.

See Chapter 8 for more information about LSM and hardware RAID
subsystems.

2.6.3 Using Redundant Networks

Network connections may fail because of a failed network interface or a
problem in the network itself. You can make the network connection highly
available by using redundant network connections. If one connection
becomes unavailable, you can still use the other connection for network
access. Whether you can use multiple networks depends on the application,
network configuration, and network protocol.

You can also use NetRAIN (redundant array of independent network
adapters) to configure multiple interfaces on the same LAN segment into a
single interface, and to provide failover support for network adapter and
network connections. One interface is always active while the other
interfaces remain idle. If the active interface fails, an idle interface is
brought on line within less than 10 seconds.

NetRAIN supports only Ethernet and FDDI.

See nr(7) for more information about NetRAIN. See the Network
Administration manual for information about network configuration. See
Chapter 10 for information about improving network performance.

2.6.4 Using Redundant Power Supplies and Systems

To protect against a power supply failure for cabinets, systems, and storage
shelves, use redundant power supplies. Alternately, for disk storage units,
you can mirror across cabinets with different power supplies.

In addition, use an uninterruptible power supply (UPS) system to protect
against a total power failure (for example, the power in a building fails). A
UPS system depends on a viable battery source and monitoring software.

Planning a High-Performance and High-Availability Configuration 2–19

3
Monitoring Systems and Diagnosing

Performance Problems

You must gather a wide variety of performance information in order to
identify performance problems or areas where performance is deficient.

Some symptoms or indications of performance problems are obvious. For
example, applications complete slowly or messages appear on the console
indicating that the system is out of resources. Other problems or
performance deficiencies are not obvious and can be detected only by
monitoring system performance.

This chapter describes how to perform the following tasks:

• Understand how the system logs event messages (Section 3.1)

• Set up system accounting and disk quotas to track and control resource
utilization (Section 3.2)

• Establish a method to continuously monitor system performance
(Section 3.3)

• Use tools to gather a variety of performance information (Section 3.4)

• Profile and debug kernels (Section 3.5)

• Access and modify kernel subsystem attributes (Section 3.6)

After you identify a performance problem or an area in which performance
is deficient, you can identify an appropriate solution. See Chapter 4 for
information about improving system performance.

3.1 Obtaining Information About System Events
It is recommended that you set up a routine to continuously monitor
system events and to alert you when serious problems occur. Periodically
examining event and log files allows you to correct a problem before it
affects performance or availability, and helps you diagnose performance
problems.

The system event logging facility and the binary event logging facility log
system events. The system event logging facility uses the syslog function
to log events in ASCII format. The syslogd daemon collects the messages
logged from the various kernel, command, utility, and application

Monitoring Systems and Diagnosing Performance Problems 3–1

programs. This daemon then writes the messages to a local file or forwards
the messages to a remote system, as specified in the /etc/syslog.conf
event logging configuration file. You should periodically monitor these
ASCII log files for performance information.

The binary event logging facility detects hardware and software events in
the kernel and logs detailed information in binary format records. The
binary event logging facility uses the binlogd daemon to collect various
event log records. The daemon then writes these records to a local file or
forwards the records to a remote system, as specified in the
/etc/binlog.conf default configuration file.

You can examine the binary event log files by using the following methods:

• The Event Manager (EVM) uses the binary log files to communicate
event information to interested parties for immediate or later action.
See Section 3.1.1 for more information about EVM.

• The DECevent utility continuously monitors system events through the
binary event logging facility, decodes events, and tracks the number
and the severity of events logged by system devices. DECevent can
analyze system events and provides a notification mechanism (for
example, mail) that can warn of potential problems. See Section 3.1.2
for more information about DECevent.

• You can use the dia command or the uerf command to translate
binary log files to ASCII format. See the System Administration
manual, dia(8), and uerf(8) for information.

In addition, it is recommended that you configure crash dump support into
the system. Significant performance problems may cause the system to
crash, and crash dump analysis tools can help you diagnose performance
problems.

See the System Administration manual for more information about event
logging and crash dumps.

The following sections describe Event Manager and the DECevent utility.

3.1.1 Using Event Manager

Event Manager (EVM) allows you to obtain event information and
communicate this information to interested parties for immediate or later
action. Event Manager provides the following features:

• Enables kernel-level and user-level processes and components to post
events.

• Enables event consumers, such as programs and users, to subscribe for
notification when selected events occur.

3–2 Monitoring Systems and Diagnosing Performance Problems

• Supports existing Event Channels such as the binary logger daemon.

• Provides a graphical user interface (GUI) that enables users to review
events.

• Provides an applications programming interface (API) library that
enables programmers to write routines that post or subscribe to events.

• Supports command-line utilities for administrators to configure and
manage the EVM environment and for users to post or retrieve events.

See the System Administration manual for more information about EVM.

3.1.2 Using DECevent

The DECevent utility continuously monitors system events through the
binary event logging facility, decodes events, and tracks the number and
the severity of events logged by system devices. DECevent attempts to
isolate failing device components and provides a notification mechanism
that can warn of potential problems.

DECevent determines if a threshold has been crossed, according to the
number and severity of events reported. Depending on the type of threshold
crossed, DECevent analyzes the events and notifies users of the events (for
example, through mail).

You must register a license to use DECevent’s analysis and notification
features, or these features may also be available as part of your service
agreement. A license is not needed to use DECevent to translate the binary
log file to ASCII format.

See the DECevent Translation and Reporting Utility manual for more
information.

3.2 Using System Accounting and Disk Quotas

It is recommended that you set up system accounting, which allows you to
obtain information about the resources consumed by each user. Accounting
can track the amount of CPU usage and connect time, the number of
processes spawned, memory and disk usage, the number of I/O operations,
and the number of print operations.

In addition, you should establish Advanced File System (AdvFS) and UNIX
File System (UFS) disk quotas to track and control disk usage. Disk
quotas allow you to limit the disk space available to users and to monitor
disk space usage.

Monitoring Systems and Diagnosing Performance Problems 3–3

See the System Administration manual for information about system
accounting and UFS disk quotas. See the AdvFS Administration manual
for information about AdvFS quotas.

3.3 Continuously Monitoring Performance

You may want to set up a routine to continuously monitor system
performance. Some monitoring tools will alert you when serious problems
occur (for example, mail). It is important that you choose a monitoring tool
that has low overhead in order to obtain accurate performance information.

The following tools allow you to continuously monitor performance:

Table 3–1: Tools for Continuous Performance Monitoring

Name Description

Performance Manager Simultaneously monitors multiple Tru64 UNIX
systems, detects performance problems, and
performs event notification. See Section 3.3.1 for
more information.

Performance Visualizer Graphically displays the performance of all
significant components of a parallel system.
Using Performance Visualizer, you can monitor
the performance of all the member systems in a
cluster. See Section 3.3.2 for more information.

monitor Collects a variety of performance data on a
running system and either displays the
information or saves it to a binary file. The
monitor utility is available on the Tru64 UNIX
Freeware CD-ROM. See
ftp://gatekeeper.dec.com/pub/DEC for
information.

top Provides continuous reports on the state of the
system, including a list of the processes using the
most CPU resources. The top command is
available on the Tru64 UNIX Freeware CD-ROM.
See ftp://eecs.nwu.edu/pub/top for
information.

tcpdump Continuously monitors the network traffic
associated with a particular network service and
allows you to identify the source of a packet. See
tcpdump(8) for information.

3–4 Monitoring Systems and Diagnosing Performance Problems

Table 3–1: Tools for Continuous Performance Monitoring (cont.)

Name Description

nfswatch Continuously monitors all incoming network
traffic to a Network File System (NFS) server, and
displays the number and percentage of packets
received. See nfswatch(8) for information.

xload Displays the system load average in a histogram
that is periodically updated. See xload(1X) for
information.

volstat Provides information about activity on volumes,
plexes, subdisks, and disks under LSM control.
The volstat utility reports statistics that reflect
the activity levels of LSM objects since boot time
or since you reset the statistics. See
Section 8.4.7.2 for information.

volwatch Monitors LSM for failures in disks, volumes, and
plexes, and sends mail if a failure occurs. See
Section 8.4.7.4 for information.

The following sections describe the Performance Manager and Performance
Visualizer products.

3.3.1 Using Performance Manager

Performance Manager (PM) for Tru64 UNIX allows you to simultaneously
monitor multiple Tru64 UNIX systems, so you can detect and correct
performance problems. PM can operate in the background, alerting you to
performance problems. Monitoring only a local node does not require a PM
license. However, a license is required to monitor multiple nodes and
clusters.

Performance Manager (PM) is located on Volume 2 of the Associated
Products CD-ROM in your distribution kit. To use PM, you must be running
the pmgrd daemon. To start PM, invoke the /usr/bin/pmgr command.

PM gathers and displays Simple Network Protocol (SNMP and eSNMP)
data for the systems you choose, and allows you to detect and correct
performance problems from a central location. PM has a graphical user
interface (GUI) that runs locally and displays data from the monitored
systems. Use the GUI to choose the systems and data that you want to
monitor.

You can customize and extend PM to create and save performance
monitoring sessions. Graphs and charts can show hundreds of different
system values, including CPU performance, memory usage, disk transfers,

Monitoring Systems and Diagnosing Performance Problems 3–5

file-system capacity, network efficiency, database performance, and AdvFS
and cluster-specific metrics. Data archives can be used for high-speed
playback or long-term trend analysis.

PM provides comprehensive thresholding, rearming, and tolerance facilities
for all displayed metrics. You can set a threshold on every key metric, and
specify the PM reaction when a threshold is crossed. For example, you can
configure PM to send mail, to execute a command, or to display a
notification message.

PM also has performance analysis and system management scripts, as well
as cluster-specific and AdvFS-specific scripts. Run these scripts separately
to target specific problems, or run them simultaneously to check the overall
system performance. The PM analyses include suggestions for eliminating
problems. PM can monitor both individual cluster members and an entire
cluster concurrently.

See http://www.zso.dec.com/unix/pm/pmweb/index.html for
information about Performance Manager.

3.3.2 Using Performance Visualizer

Performance Visualizer is a valuable tool for developers of parallel
applications. Because it monitors the performance of several systems
simultaneously, it allows you to see the impact of a parallel application on
all the systems, and to ensure that the application is balanced across all
systems. When problems are identified, you can change the application
code and use Performance Visualizer to evaluate the impact of these
changes. Performance Visualizer is a Tru64 UNIX layered product and
requires a license.

Performance Visualizer also helps you identify overloaded systems,
underutilized resources, active users, and busy processes. You can monitor
the following:

• CPU utilization by each CPU in a multiprocessing system

• Load average

• Use of paged memory

• Paging events, which indicate how much a system is paging

• Use of swap space

• Behavior of individual processes

You can choose to look at all of the hosts in a parallel system or at
individual hosts. See the Performance Visualizer documentation for more
information.

3–6 Monitoring Systems and Diagnosing Performance Problems

3.4 Gathering Performance Information

There are various commands and utilities that you can use to gather
system performance information. It is important that you gather statistics
under a variety of conditions. Comparing sets of data will help you to
diagnose performance problems.

For example, to determine how an application affects system performance,
you can gather performance statistics without the application running,
start the application, and then gather the same statistics. Comparing
different sets of data will enable you to identify whether the application is
consuming memory, CPU, or disk I/O resources.

In addition, you must gather information at different stages during the
application processing to obtain accurate performance information. For
example, an application may be I/O-intensive during one stage and
CPU-intensive during another.

To obtain a basic understanding of system performance, invoke the
following commands while under a normal workload:

• vmstat

The primary source of performance problems is a lack of memory, which
can affect response time and application completion time. Use the
vmstat command to monitor memory usage. If the command output
shows a low free page count or excessive page outs, you may be
overallocating memory. See Section 4.4.2 for information about solving
low memory problems.

In addition, a lack of CPU resources can result in long application
completion times. The vmstat command enables you to monitor CPU
usage. If the command output shows a high system or user time, see
Section 4.4.5 for information about solving CPU resource problems.

See Section 6.3.1 for information about using the the vmstat command
to monitor memory and CPU usage.

• iostat, volstat, and advfsstat

If your disk I/O load is not spread evenly among the available disks,
bottlenecks may occur at the disks that are being excessively used. Use
the iostat, volstat command (for Logical Storage Manager), and
advfsstat (for Advanced File System) commands to determine if disk
I/O is being evenly distributed. If the command output shows that some
disks are being excessively used, see Section 4.4.6 for information about
identifying and relieving disk bottlenecks.

See Section 8.2 for information about monitoring the distribution of
disk I/O.

Monitoring Systems and Diagnosing Performance Problems 3–7

• swapon -s

Insufficient swap space for your workload can result in poor application
performance and response time. To check swap space, use the swapon
-s command. If the command output shows insufficient swap space, see
Section 4.4.3 for information about increasing swap resources.

See Section 6.3.3 for information about monitoring swap space.

There are many tools that you can use to query subsystems, profile the
system kernel and applications, and collect CPU statistics. See the
following tables for information:

Kernel profiling and debugging Table 3–2

Memory resource monitoring Table 6–2

CPU monitoring Table 7–1

Disk I/O distribution monitoring Table 8–1

Logical Storage Manager (LSM) monitoring Table 8–7

Advanced File System (AdvFS) monitoring Table 9–3

UNIX File System (UFS) monitoring Table 9–7

Network File System (NFS) monitoring Table 9–9

Network subsystem monitoring Table 10–1

Application profiling and debugging Table 11–1

3.5 Profiling and Debugging Kernels

Table 3–2 describes the tools that you can use to profile and debug the
kernel. Detailed information about these profiling and debugging tools is
located in the Kernel Debugging manual and in the tools’ reference pages.

3–8 Monitoring Systems and Diagnosing Performance Problems

Table 3–2: Kernel Profiling and Debugging Tools

Name Use Description

prof Analyzes profiling
data

Analyzes profiling data and produces statistics
showing which portions of code consume the
most time and where the time is spent (for
example, at the routine level, the basic block
level, or the instruction level).
The prof command uses as input one or more
data files generated by the kprofile,
uprofile, or pixie profiling tools. The prof
command also accepts profiling data files
generated by programs linked with the -p
switch of compilers such as cc. See prof(1) for
more information.

kprofile Produces a program
counter profile of a
running kernel

Profiles a running kernel using the
performance counters on the Alpha chip. You
analyze the performance data collected by the
tool with the prof command. See
kprofile(1) for more information.

dbx Debugs running
kernels, programs,
and crash dumps,
and examines and
temporarily
modifies kernel
variables

Provides source-level debugging for C, Fortran,
Pascal, assembly language, and machine code.
The dbx debugger allows you to analyze crash
dumps, trace problems in a program object at
the source-code level or at the machine code
level, control program execution, trace program
logic and flow of control, and monitor memory
locations.
Use dbx to debug kernels, debug stripped
images, examine memory contents, debug
multiple threads, analyze user code and
applications, display the value and format of
kernel data structures, and temporarily modify
the values of some kernel variables. See dbx(8)
for more information.

Monitoring Systems and Diagnosing Performance Problems 3–9

Table 3–2: Kernel Profiling and Debugging Tools (cont.)

Name Use Description

kdbx Debugs running
kernels and crash
dumps

Allows you to examine a running kernel or a
crash dump. The kdbx debugger, a frontend to
the dbx debugger, is used specifically to debug
kernel code and display kernel data in a
readable format. The debugger is extensible
and customizable, allowing you to create
commands that are tailored to your kernel
debugging needs.
You can also use extensions to check resource
usage (for example, CPU usage). See kdbx(8)
for more information.

ladebug Debugs kernels and
applications

Debugs programs and the kernel and helps
locate run-time programming errors. The
ladebug symbolic debugger is an alternative
to the dbx debugger and provides both
command-line and graphical user interfaces
and support for debugging multithreaded
programs. See the Ladebug Debugger Manual
and ladebug(1) for more information.

3.6 Accessing and Modifying Kernel Subsystems

The operating system includes various subsystems that are used to define
or extend the kernel. Kernel variables control subsystem behavior or track
subsystem statistics since boot time.

Kernel variables are assigned default values at boot time. For certain
configurations and workloads, especially memory- or network-intensive
systems, the default values of some attributes may not be appropriate, so
you must modify these values to provide optimal performance.

Although you can use the dbx debugger to directly change variable values
on a running kernel, Compaq recommends that you use kernel subsystem
attributes to access the kernel variables.

Subsystem attributes are managed by the configuration manager server,
cfgmgr. You can display and modify attributes by using the sysconfig
and sysconfigdb commands and by using the Kernel Tuner,
dxkerneltuner, which is provided by the Common Desktop Environment
(CDE). In some cases, you can modify attributes while the system is
running. However, these run-time modifications are lost when the system
reboots.

The following sections describe how to perform these tasks:

3–10 Monitoring Systems and Diagnosing Performance Problems

• Display the subsystems configured in a system (Section 3.6.1)

• Display the current values of subsystem attributes (Section 3.6.2)

• Display the maximum and minimum values of subsystem attributes
(Section 3.6.3)

• Modify current attribute values at run time(Section 3.6.4)

• Modify attribute values at boot time (Section 3.6.5)

• Permanently modify attribute values (Section 3.6.6)

• Use dbx to display and modify kernel variables (Section 3.6.7)

3.6.1 Displaying the Subsystems Configured in the Kernel

Each system includes different subsystems, depending on the configuration
and the installed kernel options. For example, all systems include the
mandatory subsystems, such as the generic, vm, and vfs subsystems.
Other subsystems are optional, such as the Prestoserve subsystem presto.

Use one of the following methods to display the kernel subsystems
currently configured in your operating system:

• sysconfig -s

This command displays the subsystems currently configured in the
operating system. See sysconfig(8) for more information.

• Kernel Tuner

This GUI displays the subsystems currently configured in the operating
system. To access the Kernel Tuner, click on the Application Manager
icon in the CDE menu bar, select System_Admin, and then select
MonitoringTuning. You can then click on Kernel Tuner. A pop-up menu
containing a list of configured subsystems appears.

The following example shows how to use the sysconfig -s command to
display the subsystems configured in the kernel:

sysconfig -s
cm: loaded and configured
hs: loaded and configured
ksm: loaded and configured
generic: loaded and configured
io: loaded and configured
ipc: loaded and configured
proc: loaded and configured
sec: loaded and configured
socket: loaded and configured
rt: loaded and configured
bsd_tty: loaded and configured
xpr: loaded and configured
kdebug: loaded and configured
dli: loaded and configured
ffm_fs: loaded and configured

Monitoring Systems and Diagnosing Performance Problems 3–11

atm: loaded and configured
atmip: loaded and configured
lane: loaded and configured
atmifmp: loaded and configured
atmuni: loaded and configured
atmilmi3x: loaded and configured
uni3x: loaded and configured
bparm: loaded and configured
advfs: loaded and configured
net: loaded and configured
.
.
.

3.6.2 Displaying Current Subsystem Attribute Values

Most kernel subsystems include one or more attributes. These attributes
control or monitor some part of the subsystem and are assigned a value at
boot time. For example, the vm subsystem includes the
vm_page_free_swap attribute, which controls when swapping starts. The
socket subsystem includes the sobacklog_hiwat attribute, which
monitors the maximum number of pending socket requests.

Kernel subsystem attributes are documented in the reference pages. For
example, sys_attrs_advfs(5) includes definitions for all the advfs
subsystem attributes. See sys_attrs(5) for more information.

Use one of the following methods to display the current value of an
attribute:

• sysconfig -q subsystem [attribute]

This command displays the current values for the attributes of the
specified subsystem or the current value for only the specified attribute.
See sysconfig(8) for more information.

• Kernel Tuner

This GUI displays the current values of all the subsystem attributes. To
access the Kernel Tuner, click on the Application Manager icon in the
CDE menu bar, select System_Admin, and then select
MonitoringTuning. You can then click on Kernel Tuner. A pop-up menu
containing a list of subsystems appears. Select a subsystem to display
the subsystem attributes and their current values.

The following example shows how to use the sysconfig -q command to
display the current values of the vfs subsystem attributes:

sysconfig -q vfs
vfs:
name_cache_size = 3141
name_cache_hash_size = 512
buffer_hash_size = 2048
special_vnode_alias_tbl_size = 64

3–12 Monitoring Systems and Diagnosing Performance Problems

bufcache = 3
bufpages = 1958
path_num_max = 64
sys_v_mode = 0
ucred_max = 256
nvnode = 1428
max_vnodes = 49147
min_free_vnodes = 1428
vnode_age = 120
namei_cache_valid_time = 1200
max_free_file_structures = 0
max_ufs_mounts = 1000
vnode_deallocation_enable = 1
pipe_maxbuf_size = 262144
pipe_databuf_size = 8192
pipe_max_bytes_all_pipes = 134217728
noadd_exec_access = 0
fifo_do_adaptive = 1
nlock_record = 10000
smoothsync_age = 30
revoke_tty_only = 1
strict_posix_osync = 0

_______________________ Note _______________________

The current value of an attribute may not reflect a legal value, if
you are not actually using a subsystem.

3.6.3 Displaying Minimum and Maximum Attribute Values

Each subsystem attribute has a minimum and maximum value. If you
modify an attribute, the value must be between these values. However, the
minimum and maximum values should be used with caution. Instead, use
the tuning guidelines described in this manual to determine an appropriate
attribute value for your configuration.

Use one of the following methods to display the minimum and maximum
allowable values for an attribute:

• sysconfig -Q subsystem [attribute]

Displays the minimum and maximum values for all the attributes of
the specified subsystem or for only the specified attribute. The
command output includes information in the type field about the value
expected (for example, integer, unsigned integer, long integer, or string).
The output also specifies, in the op field, the operations that you can
perform on the attribute:

– C—The attribute can be modified only when the subsystem is
initially loaded; that is, the attribute supports only boot time,
permanent modifications.

Monitoring Systems and Diagnosing Performance Problems 3–13

– R—The attribute can be tuned at run time; that is, you can modify
the value that the system is currently using.

– Q—The attribute’s current value can be displayed (queried).

For example:
sysconfig -Q vfs bufcache
vfs:
bufcache - type=INT op=CQ min_val=0 max_val=50

The output of the previous command shows that the minimum value is
0 and the maximum value is 50. The output also shows that you cannot
modify the current (run-time) value.

See sysconfig(8) for more information.

• Kernel Tuner

This GUI displays the minimum and maximum values for the
subsystem attributes. To access the Kernel Tuner, click on the
Application Manager icon in the CDE menu bar, select System_Admin,
and then select MonitoringTuning. You can then click on Kernel Tuner.
A pop-up menu containing a list of subsystems appears. Select a
subsystem to display a list of the subsystem’s attributes and their
minimum and maximum values.

3.6.4 Modifying Attribute Values at Run Time

Modifying an attribute’s current value at run time allows the change to
occur immediately, without rebooting the system. Not all attributes support
run-time modifications.

Modifications to run-time values are lost when you reboot the system and
the attribute values return to their permanent values. To make a
permanent change to an attribute value, see Section 3.6.6.

To determine if an attribute can be tuned at run time, use one of the
following methods:

• sysconfig -Q subsystem [attribute]

The command output indicates that an attribute can be tuned at run
time if the op field includes an R. The following command shows that
the max_vnodes attribute can be tuned at run time:
sysconfig -Q vfs max-vnodes
vfs:
max_vnodes - type=INT op=CRQ min_val=0 max_val=1717986918

See sysconfig(8) for more information.

• Kernel Tuner

To access the Kernel Tuner, click on the Application Manager icon in
the CDE menu bar, select System_Admin, and then select

3–14 Monitoring Systems and Diagnosing Performance Problems

MonitoringTuning. You can then click on Kernel Tuner. A pop-up menu
containing a list of subsystems appears. Select a subsystem to display
the subsystem’s attributes. The attribute can be tuned at run time if
the attribute’s Current Value field allows you to enter a value.

To modify an attribute’s value at run time, use one of the following methods:

• sysconfig -r subsystem attribute=value

This command modifies the run-time value of the specified subsystem
attribute. The value argument specifies the new attribute value that
you want the system to use. The following example changes the current
value of the socket subsystem attribute somaxconn to 65536.

sysconfig -r socket somaxconn=65535
somaxconn: reconfigured

• Kernel Tuner

This GUI allows you to enter a new current value for an attribute. To
access the Kernel Tuner, click on the Application Manager icon in the
CDE menu bar, select System_Admin, and then select
MonitoringTuning. You can then click on Kernel Tuner. A pop-up menu
containing a list of subsystems appears. Select a subsystem and enter
the new attribute value in the attribute’s Current Value field.

_______________________ Note _______________________

Do not specify erroneous values for subsystem attributes,
because system behavior may be unpredictable. If you want to
modify an attribute, use only the recommended values described
in this manual.

To return to the original attribute value, either modify attribute’s current
value or reboot the system.

3.6.5 Modifying Attribute Values at Boot Time

You can set the value of a subsystem attribute at the boot prompt. This will
modify the value of the attribute only for the next system boot.

To do this, enter the b -fl i command at the boot prompt. You will be
prompted for the kernel name, attribute name, and attribute value. For
example, enter the following to set the value of the somaxconn attribute to
65535:

Enter kernel_name [option_1 ... option_n]: vmunix somaxconn=65535

Monitoring Systems and Diagnosing Performance Problems 3–15

3.6.6 Permanently Modifying Attribute Values

To permanently change the value of an attribute, you must include the new
value in the /etc/sysconfigtab file, using the required format. Do not
edit the file manually.

_______________________ Note _______________________

Before you permanently modify a subsystem attribute, it is
recommended that you maintain a record of the original value,
in case you need to return to this value.

Use one of the following methods to permanently modify the value of an
attribute:

• sysconfigdb -a -f stanza_file subsystem

Use this command to specify the stanza-formatted file that contains the
subsystem, the attribute, and the new permanent attribute value. The
subsystem argument specifies the subsystem whose attribute you want
to modify. See stanza(4) and sysconfigdb(8) for more information.

The following is an example of a stanza-formatted file that changes the
permanent values of the socket subsystem attributes somaxconn and
somaxconn to 65535:

socket:
somaxconn = 65535
sominconn = 65535

See stanza(4) for information about stanza-formatted files.

To use the new permanent value, reboot the system or, if the attribute
can be tuned at run time, use the sysconfig -r command to change
the current value (see Section 3.6.4).

• Kernel Tuner

This GUI allows you to change the permanent value of an attribute. To
access the Kernel Tuner, click on the Application Manager icon in the
CDE menu bar, select System_Admin, and then select
MonitoringTuning. You can then click on Kernel Tuner. A pop-up menu
containing a list of subsystems appears. Select the subsystem for the
attribute that you want to modify. Enter the new permanent value in
the attribute’s Boot Time Value field.

To use the new attribute value, reboot the system or, if the attribute
can be tuned at run time, enter the new value in the Current Value
field (see Section 3.6.4).

3–16 Monitoring Systems and Diagnosing Performance Problems

_______________________ Note _______________________

Do not specify erroneous values for subsystem attributes,
because system behavior may be unpredictable. If you want to
modify an attribute, use only the recommended values described
in this manual.

3.6.7 Displaying and Modifying Kernel Variables by Using the dbx
Debugger

Use the dbx debugger to examine the values of kernel variables and data
structures, and to modify the current (run-time) values of kernel variables.

_______________________ Note _______________________

In some cases, you must specify the processor number with the
dbx print command. For example, to examine the nchstats
data structure on a single-processor system, use the dbx print
processor_ptr[0].nchstats command.

The following example of the dbx print command displays the current
(run-time) value of the maxusers kernel variable:

/usr/ucb/dbx −k /vmunix /dev/mem
(dbx) print maxusers
512
(dbx)

Use the dbx patch command to modify the current (run-time) values of
kernel variables. The values you assign by using the dbx patch command
are lost when you rebuild the kernel.

______________________ Notes ______________________

If possible, use the sysconfig command or the Kernel Tuner to
modify subsystem attributes instead of using dbx to modify
kernel variables. Do not specify erroneous values for kernel
variables, because system behavior may be unpredictable. If you
want to modify a variable, use only the recommended values
described in this manual.

Monitoring Systems and Diagnosing Performance Problems 3–17

The following example of the dbx patch command changes the current
value of the cluster_consec_init variable to 8:

/usr/ucb/dbx −k /vmunix /dev/mem
(dbx) patch cluster_consec_init = 8
8
(dbx)

To ensure that the system is utilizing a new kernel variable value, reboot
the system. See the Programmer’s Guide for detailed information about the
dbx debugger.

You can also use the dbx assign command to modify run-time kernel
variable values. However, the modifications are lost when you reboot the
system.

3–18 Monitoring Systems and Diagnosing Performance Problems

4
Improving System Performance

You may be able to improve Tru64 UNIX performance by tuning the
operating system or performing other tasks. You may need to tune the
system under the following circumstances:

• You are running a large or specialized configuration that requires you
to modify the default values of some subsystem attributes.

• You want to optimize performance in a generally well-functioning
system.

• You want to solve a specific performance problem.

To help you improve system performance, this chapter describes the
following:

• Steps for configuring and tuning high-performance and high-availability
systems (see Section 4.1)

• Applying configuration-specific tuning guidelines (Section 4.2)

• Running sys_check and applying its configuration and tuning
guidelines (Section 4.3)

• Identifying and solving some common performance problems
(Section 4.4)

• Using the advanced tuning guidelines described in this manual
(Section 4.5)

4.1 Steps for Configuring and Tuning Systems

Before you configure and tune a system, you must become familiar with the
terminology and concepts relating to performance and availability. See
Chapter 1 for information.

In addition, you must understand how your applications utilize system
resources, because not all configurations and tuning guidelines are
appropriate for all types of workloads. For example, you must determine if
your applications are memory-intensive or CPU-intensive, or if they
perform many disk or network operations. See Section 2.1 for information
about identifying a resource model for your configuration.

Improving System Performance 4–1

To help you configure and tune a system that will meet your performance
and availability needs, follow these steps:

1. Ensure that your hardware and software configuration is appropriate
for your workload resource model and your performance and
availability goals. See Chapter 2.

2. Make sure that you have adhered to the configuration guidelines for:

• Memory and swap space (Section 2.3.2)

• Disks, LSM, and hardware RAID (Chapter 8)

• AdvFS, UFS, and NFS file systems (Chapter 9)

3. Perform the following initial tuning tasks:

a. If you have a large-memory system, Internet server, or NFS server,
follow the tuning guidelines that are described in Section 4.2.

b. Apply any tuning recommendations described in your application
documentation.

c. Make sure that you have sufficient system resources for large
applications or for large-memory systems. See Chapter 5 for
information about resource tuning.

d. Run sys_check and consider following its configuration and
tuning recommendations (see Section 4.3).

4. Monitor the system and evaluate its performance, identifying any
areas in which performance can be improved. Section 3.4 describes the
tools that you can use to monitor performance.

5. If performance is deficient, see Section 4.4 for information about
solving common performance problems, and see Section 4.5 for
information about using the advanced tuning guidelines.

System tuning usually involves modifying kernel subsystem attributes. See
Section 3.6 for information.

4.2 Tuning Special Configurations

Large configurations or configurations that run memory-intensive or
network-intensive applications may require special tuning. The following
sections provide information about tuning these special configurations:

• Internet servers (Section 4.2.1)

• Large-memory servers (Section 4.2.2)

• NFS servers (Section 4.2.3)

4–2 Improving System Performance

In addition, your application product documentation may include specific
configuration and tuning guidelines that you should follow.

4.2.1 Tuning Internet Servers

Internet servers (including Web, proxy, firewall, and gateway servers) run
network-intensive applications that usually require significant system
resources. If you have an Internet server, it is recommended that you
modify the default values of some kernel attributes.

Follow the guidelines in Table 4–1 to help you tune an Internet server.

Table 4–1: Internet Server Tuning Guidelines

Guideline Reference

Increase the system resources available to processes. Section 5.1

Increase the available address space. Section 5.3

Ensure that the Unified Buffer Cache (UBC) has sufficient
memory.

Section 9.2.4

Increase the size of the hash table that the kernel uses to look
up TCP control blocks.

Section 10.2.1

Increase the number of TCP hash tables. Section 10.2.2

Increase the limits for partial TCP connections on the socket
listen queue.

Section 10.2.3

For proxy servers only, increase the maximum number of
concurrent nonreserved, dynamically allocated ports.

Section 10.2.4

Disable use of a path maximum transmission unit (PMTU). Section 10.2.6

Increase the number of IP input queues. Section 10.2.7

For proxy servers only, enable mbuf cluster compression. Section 10.2.8

4.2.2 Tuning Large-Memory Systems

Large memory systems often run memory-intensive applications, such as
database programs, that usually require significant system resources. If
you have a large memory system, it is recommended that you modify the
default values of some kernel attributes.

Follow the guidelines in Table 4–2 to help you tune a large-memory system.

Improving System Performance 4–3

Table 4–2: Large-Memory System Tuning Guidelines

Guideline Reference

Increase the system resources available to processes. Section 5.1

Increase the size of a System V message and queue. Section 5.4.1

Increase the maximum size of a single System V shared
memory region.

Section 5.4.4

Increase the minimum size of a System V shared memory
segment.

Section 5.4.6

Increase the available address space. Section 5.3

Reduce the size of the AdvFS buffer cache. Section 6.4.4

Increase the number of AdvFS buffer hash chains, if you are
using AdvFS.

Section 9.3.6.2

Increase the memory reserved for AdvFS access structures, if
you are using AdvFS.

Section 9.3.6.3

Increase the size of the metadata buffer cache to more than 3
percent of main memory, if you are using UFS.

Section 9.4.3.1

Increase the size of the metadata hash chain table, if you are
using UFS.

Section 9.4.3.2

4.2.3 Tuning NFS Servers

NFS servers run only a few small user-level programs, which consume few
system resources. File system tuning is important because processing NFS
requests consumes the majority of CPU and wall clock time. See Chapter 9
for information on file system tuning.

In addition, if you are running NFS over TCP, tuning TCP may improve
performance if there are many active clients. See Section 10.2 for
information on network subsystem tuning. If you are running NFS over
UDP, network subsystem tuning is not needed.

Follow the guidelines in Table 4–3 to help you tune a system that is only
serving NFS.

Table 4–3: NFS Server Tuning Guidelines

Guideline Reference

Set the value of the maxusers attribute to the number of
server NFS operations that are expected to occur each second.

Section 5.1

Increase the size of the namei cache. Section 9.2.1

4–4 Improving System Performance

Table 4–3: NFS Server Tuning Guidelines (cont.)

Guideline Reference

Increase the memory reserved for AdvFS access structures, if
you are using AdvFS.

Section 9.3.6.3

Increase the size of the metadata buffer cache, if you are using
UFS.

Section 9.4.3.1

4.3 Checking the Configuration by Using the sys_check
Utility

After you apply any configuration-specific tuning guidelines, as described in
Section 4.2, run the sys_check utility to check your system configuration.

The sys_check utility creates an HTML file that describes the system
configuration, and can be used to diagnose problems. The utility checks
kernel attribute settings and memory and CPU resources, provides
performance data and lock statistics for SMP systems and for kernel
profiles, and outputs any warnings and tuning guidelines.

Consider applying the sys_check utility’s configuration and tuning
guidelines before applying any advanced tuning guidelines.

_______________________ Note _______________________

You may experience impaired system performance while running
the sys_check utility. Invoke the utility during offpeak hours to
minimize the performance impact.

You can invoke the sys_check utility from the SysMan graphical user
interface or from the command line. If you specify sys_check without any
command-line options, it performs a basic system analysis and creates an
HTML file with configuration and tuning guidelines. Options that you can
specify at the command line include the following:

• The -all option provides information about all subsystems, including
security information and setld inventory verification.

• The -perf option provides only performance data and excludes
configuration data.

• The -escalate option creates escalation files required for reporting
problems to Compaq.

See sys_check(8) for more information.

Improving System Performance 4–5

4.4 Solving Common Performance Problems

The following sections provide examples of some common performance
problems and solutions:

• Slow application performance (Section 4.4.1)

• Insufficient memory or excessive paging (Section 4.4.2)

• Insufficient swap space (Section 4.4.3)

• Swapped out processes (Section 4.4.4)

• Insufficient CPU cycles (Section 4.4.5)

• Disk bottleneck (Section 4.4.6)

• Poor disk I/O performance (Section 4.4.7)

• Poor AdvFS performance (Section 4.4.8)

• Poor UFS performance (Section 4.4.9)

• Poor NFS performance (Section 4.4.10)

• Poor network performance (Section 4.4.11)

Each section describes how to detect the problem, the possible causes of the
problem, and how to eliminate or diminish the problem.

4–6 Improving System Performance

4.4.1 Application Completes Slowly

Use the following table to detect a slow application completion time and to
diagnose the performance problem:

How to detect Check application log files.
Use the ps command to display information about application
processing times and whether an application is swapped out. See
Section 6.3.2.
Use process accounting commands to obtain information about
process completion times. See accton(8).

Cause Application is inefficient.

Solution Rewrite the application so that it runs more efficiently. See
Chapter 7. Use profiling and debugging commands to analyze
applications and identify inefficient areas of code. See
Section 11.1.

Cause Application is not optimized.

Solution Optimize the application. See Chapter 7.

Cause Application is being swapped out.

Solution Delay swapping processes. See Section 6.5.3.
Increase the memory available to processes. See Section 6.4.
Reduce an application’s use of memory. See Section 11.2.6.

Cause Application requires more memory resources.

Solution Increase the memory available to processes. See Section 6.4.
Reduce an application’s use of memory. See Section 11.2.6.

Cause Insufficient swap space.

Solution Increase the swap space and distribute it across multiple disks.
See Section 4.4.3.

Cause Application requires more CPU resources.

Solution Provide more CPU resources to processes. See Section 4.4.5.

Cause Disk I/O bottleneck.

Solution Distribute disk I/O efficiently. See Section 4.4.6.

Improving System Performance 4–7

4.4.2 Insufficient Memory or Excessive Paging

A high rate of paging or a low free page count may indicate that you have
inadequate memory for the workload. Avoid paging if you have a large
memory system. Use the following table to detect insufficient memory and
to diagnose the performance problem:

How to detect Use the vmstat command to display information about paging
and memory consumption. See Section 6.3.1 for more information.

Cause Insufficient memory resources available to processes.

Solution Reduce an application’s use of memory. See Section 11.2.6.
Increase the memory resources that are available to processes.
See Section 6.4.
Add physical memory.

4.4.3 Insufficient Swap Space

If you consume all the available swap space, the system will display
messages on the console indicating the problem. Use the following table to
detect if you have insufficient swap space and to diagnose the performance
problem:

How to detect Invoke the swapon -s while you are running a normal workload.
See Section 6.3.3.

Cause Insufficient swap space for your configuration.

Solution Configure enough swap space for your configuration and
workload. See Section 2.3.2.3.

Cause Swap space not distributed.

Solution Distribute the swap load across multiple swap devices to improve
performance. See Section 6.2.

Cause Applications are utilizing excessive memory resources.

Solution Increase the memory available to processes. See Section 6.4.
Reduce an application’s use of memory. See Section 11.2.6.

4–8 Improving System Performance

4.4.4 Processes Swapped Out

Swapped out (suspended) processes will decrease system response time and
application completion time. Avoid swapping if you have a large memory
system or large applications. Use the following table to detect if processes
are being swapped out and to diagnose the performance problem:

How to detect Use the ps command to determine if your system is swapping
processes. See Section 6.3.2.

Cause Insufficient memory resources.

Solution Increase the memory available to processes. See Section 6.4.
Reduce an application’s use of memory. See Section 11.2.6.

Cause Swapping occurs too early during page reclamation.

Solution Decrease the rate of swapping. See Section 6.5.3.

4.4.5 Insufficient CPU Cycles

Although a low CPU idle time can indicate that the CPU is being fully
utilized, performance can suffer if the system cannot provide a sufficient
number of CPU cycles to processes. Use the following table to detect
insufficient CPU cycles and to diagnose the performance problem:

How to detect Use the vmstat command to display information about CPU
system, user, and idle times. See Section 6.3.1 for more
information.
Use the kdbx cpustat extension to check CPU usage. See
Section 7.1.4).

Cause Excessive CPU demand from applications.

Solution Optimize applications. See Section 11.2.4.
Use hardware RAID to relieve the CPU of disk I/O overhead. See
Section 8.5.
Add processors

Improving System Performance 4–9

4.4.6 Disk Bottleneck

Excessive I/O to only one or a few disks may cause a bottleneck at the
overutilized disks. Use the following table to detect an uneven distribution
of disk I/O and to diagnose the performance problem:

How to detect Use the iostat command to display which disks are being used
the most. See Section 8.2.
Use the swapon -s command to display the utilization of swap
disks. See Section 6.3.3.
Use the volstat command to display information about the LSM
I/O workload. See Section 8.4.7.2 for more information.
Use the advfsstat to display AdvFS disk usage information.
See Section 9.3.5.1.

Cause Disk I/O not evenly distributed.

Solution Use disk striping. See Section 2.5.2.
Distribute disk, swap, and file system I/O across different disks
and, optimally, multiple buses. See Section 8.1.

4–10 Improving System Performance

4.4.7 Poor Disk I/O Performance

Because disk I/O operations are much slower than memory operations, the
disk I/O subsystem is often the source of performance problems. Use the
following table to detect poor disk I/O performance and to diagnose the
performance problem:

How to detect Monitor the memory allocated to the UBC by using the dbx
ufs_getapage_stats and vm_tune data structures. See
Section 6.3.4.
Use the iostat command to determine if a you have a bottleneck
at a disk. See Section 8.2 for more information.
Check for disk fragmentation. See Section 9.3.7.1 and
Section 9.4.3.7.
Check the hit rate of the namei cache with the dbx nchstats
data structure. See Section 9.1.2.
Use the advfsstat command to monitor the performance of
AdvFS domains and filesets. See Section 9.3.5.1.
Check UFS clustering with the dbx ufs_clusterstats data
structure. See Section 6.3.4.
Check the hit rate of the metadata buffer cache by using the dbx
bio_stats data structure. See Section 9.4.2.3.

Cause Disk I/O is not efficiently distributed.

Solution Use disk striping. See Section 2.5.2.
Distribute disk, swap, and file system I/O across different disks
and, optimally, multiple buses. See Section 8.1.

Cause File systems are fragmented.

Solution Defragment file systems. See Section 9.3.7.1 and Section 9.4.3.7.

Cause Maximum open file limit is too small.

Solution Increase the maximum number of open files. See Section 5.5.1.

Cause The namei cache is too small.

Solution Increase the size of the namei cache. See Section 9.2.1.

Improving System Performance 4–11

4.4.8 Poor AdvFS Performance

Use the following table to detect poor AdvFS performance and to diagnose
the performance problem:

How to detect Use the advfsstat command to monitor the performance of
AdvFS domains and filesets. See Section 9.3.5.1.
Check for disk fragmentation by using the AdvFS defragment
command with the -v and -n options. See Section 9.3.7.1.

Cause Single-volume domains are being used.

Solution Use multiple-volume file domains. See Section 9.3.4.1.

Cause File system is fragmented.

Solution Defragment the file system. See Section 9.3.7.1.

Cause There are too few AdvFS buffer cache hits.

Solution Allocate sufficient memory to the AdvFS buffer cache. See
Section 9.3.6.1.
Increase the number of AdvFS buffer hash chains (Section 9.3.6.2.
Increase the dirty data caching threshold. See Section 9.3.6.4.
Modify the AdvFS device queue limit. See Section 9.3.6.6.

Cause The advfsd daemon is running unnecessarily.

Solution Stop the daemon. See Section 7.2.5.

4–12 Improving System Performance

4.4.9 Poor UFS Performance

Use the following table to detect poor UFS performance and to diagnose the
performance problem:

How to detect Monitor the memory allocated to the UBC by using the dbx
ufs_getapage_stats. See Section 6.3.4.
Check the hit rate of the namei cache with the dbx nchstats
data structure. See Section 9.1.2.
Use the dumpfs command to display UFS information. See
Section 9.4.2.1.
Check how effectively the system is clustering and check
fragmentation by using the dbx print command to examine the
ufs_clusterstats, ufs_clusterstats_read, and
ufs_clusterstats_write data structures. See Section 9.4.2.2.
Check the hit rate of the metadata buffer cache by using the dbx
bio_stats data structure. See Section 9.4.2.3.

Cause The UBC is too small.

Solution Increase the amount of memory allocated to the UBC. See
Section 9.2.4.

Cause The metadata buffer cache is too small.

Solution Increase the size of metadata buffer cache. See Section 9.4.3.1.

Cause The file system fragment size is incorrect.

Solution Make the file system fragment size equal to the block size. See
Section 9.4.1.1.

Cause File system is fragmented.

Solution Defragment the file system. Section 9.4.3.7.

Improving System Performance 4–13

4.4.10 Poor NFS Performance

Use the following table to detect poor NFS performance and to diagnose the
performance problem:

How to detect Use the dbx print nfs_sv_active_hist command to display
a histogram of the active NFS server threads. See Section 3.6.7.
Use the dbx print nchstats command to determine the namei
cache hit rate. See Section 9.1.2.
Use the dbx print bio_stats command to determine the
metadata buffer cache hit rate. See Section 9.4.2.3.
Use the nfsstat command to display the number of NFS
requests and other information. See Section 9.5.1.1.
Use the ps axlmp 0 | grep nfs command to display the
number of idle threads. See Section 9.5.2.3.

Cause NFS server threads busy.

Solution Reconfigure the server to run more threads. See Section 9.5.2.2.

Cause Memory resources are not focused on file system caching.

Solution Increase the amount of memory allocated to the UBC. See
Section 9.2.4.
If you are using AdvFS, increase the memory allocated for AdvFS
buffer caching. See Section 9.3.6.1.
If you are using AdvFS, increase the memory reserved for AdvFS
access structures. See Section 9.3.6.3 for information.

Cause System resource allocation is not adequate.

Solution Set the value of the maxusers attribute to the number of server
NFS operations that are expected to occur each second. See
Section 5.1 for information.

Cause UFS metadata buffer cache hit rate is low.

Solution Increase the size of the metadata buffer cache. See Section 9.4.3.1.
Increase the size of the namei cache. See Section 9.2.1.

Cause CPU idle time is low.

Solution Use UFS, instead of AdvFS. See Section 9.4.

4–14 Improving System Performance

4.4.11 Poor Network Performance

Use the following table to detect poor network performance and to diagnose
the performance problem:

How to detect Use the netstat command to display information about network
collisions and dropped network connections. See Section 10.1.1.
Check the socket listen queue statistics to check the number of
pending requests and the number of times the system dropped a
received SYN packet. See Section 10.1.2.

Cause The TCP hash table is too small.

Solution Increase the size of the hash table that the kernel uses to look up
TCP control blocks. See Section 10.2.1.

Cause The limit for the socket listen queue is too low.

Solution Increase the limit for partial TCP connections on the socket listen
queue. See Section 10.2.3.

Cause There are too few outgoing network ports.

Solution Increase the maximum number of concurrent nonreserved,
dynamically allocated ports. See Section 10.2.4.

Cause Network connections are becoming inactive too quickly.

Solution Enable TCP keepalive functionality. See Section 10.2.9.

4.5 Using the Advanced Tuning Guidelines

If system performance is still deficient after applying the initial tuning
recommendations (Section 4.1) and considering the solutions to common
performance problems (Section 4.4), you may be able to improve
performance by using the advanced tuning guidelines. Advanced tuning
requires an in-depth knowledge of Tru64 UNIX and the applications
running on the system, and should be performed by an experienced system
administrator.

Before using the advanced tuning guidelines, you must:

• Understand your workload resource model, because not all tuning
guidelines are appropriate for all configurations (see Section 2.1)

• Gather performance information to identify an area in which to focus
your efforts (see Section 3.4 for information on using commands to
obtain a basic understanding of system performance)

Use the advanced tuning guidelines shown in Table 4–4 to help you tune
your system. Before implementing any tuning guideline, you must ensure

Improving System Performance 4–15

that it is appropriate for your configuration and workload and also consider
its benefits and tradeoffs.

Table 4–4: Advanced Tuning Guidelines

If your workload consists of: You can improve performance by:

Applications requiring extensive
system resources

Increasing resource limits (Chapter 5)

Memory-intensive applications Increasing the memory available to
processes (Section 6.4)
Modifying paging and swapping operations
(Section 6.5)
Reserving shared memory (Section 6.6)

CPU-intensive applications Freeing CPU resources (Section 7.2)

Disk I/O-intensive applications Distributing the disk I/O load (Section 8.1)

File system-intensive applications Modifying AdvFS, UFS, or NFS operation
(Chapter 9)

Network-intensive applications Modifying network operation (Section 10.2)

Nonoptimized or poorly written
applications applications

Optimizing or rewriting the applications
(Chapter 11)

4–16 Improving System Performance

5
Tuning System Resource Allocation

The Tru64 UNIX operating system sets resource limits at boot time. These
limits control the size of system tables, virtual address space, and other
system resources.

The default system resource limits are appropriate for most configurations.
However, if your system has a large amount of memory, is running a
program that requires extensive resources, or running a large-memory
application, you may need to increase the system limits by modifying
subsystem attributes.

This chapter describes how to increase the following system-wide limits:

• Process limits (Section 5.1)

• Program size limits (Section 5.2)

• Address space limits (Section 5.3)

• Interprocess communication (IPC) limits (Section 5.4)

• Open file limits (Section 5.5)

Instead of modifying system-wide limits, you can use the setrlimit
function to control the consumption of system resources by a specific
process and its child processes. See setrlimit(2) for information.

5.1 Tuning Process Limits

Tru64 UNIX uses process limits that are appropriate for most
configurations. However, if your applications are memory-intensive or you
have a very-large memory (VLM) system or an Internet server (including,
Web, proxy, firewall, or gateway servers), you may want to increase the
process limits. Because increasing process limits increases the amount of
wired memory in the system, increase the limits only if your system
requires more resources.

The following sections describe how to increase these limits:

• System tables and data structures (Section 5.1.1)

• Maximum number of processes (Section 5.1.2)

• Maximum number of threads (Section 5.1.3)

Tuning System Resource Allocation 5–1

5.1.1 Increasing System Tables and Data Structures

System algorithms use the proc subsystem attribute maxusers to size
various system data structures and system tables, such as the system
process table, which determines how many active processes can be running
at one time.

The value of the maxusers attribute is used to set the default
values for some subsystem attributes that set system limits,
including the max_proc_per_user, max_threads_per_user,
min_free_vnodes, and name_cache_size attributes.

Performance Benefit and Tradeoff

Increasing the value of maxusers provides more system resources to
processes. However, increasing the resources available to users will
increase the amount of wired memory.

You can modify the maxusers attribute without rebooting the system.

When to Tune

If you have a large-memory system or Internet server, or your system
experiences a lack of resources, increase the value of the maxusers
attribute. A lack of resources can be indicated by a No more processes,
Out of processes, or pid table is full message.

Recommended Values

The default value assigned to the maxusers attribute depends on the
amount of memory in the system. Table 5–1 shows the default value of the
maxusers attribute for systems with various amounts of memory.

Table 5–1: Default Values for the maxusers Attribute

Size of Memory Value of maxusers

Up to 256 MB 128

257 MB to 512 MB 256

513 MB to 1024 MB 512

1025 MB to 2048 MB 1024

2049 MB to 4096 MB 2048

4097 MB or more 2048

To determine an appropriate value for the maxusers attribute, double the
default value until you notice a performance improvement. If you have an

5–2 Tuning System Resource Allocation

Internet server, you can increase the value of the maxusers attribute to
2048. It is recommended that you not increase the value of the maxusers
attribute to more than 2048.

If you increase the value of maxusers, you may want to increase the value
of the max_vnodes attribute proportionally (see Section 5.5.1).

You must not decrease the default value of the maxusers attribute.

See Section 3.6 for information about modifying kernel subsystem
attributes.

5.1.2 Increasing the Maximum Number of Processes

The proc subsystem attribute max_proc_per_user specifies the
maximum number of processes that can be allocated at any one time to
each user, except superuser.

Performance Benefit and Tradeoff

Increasing the value of max_proc_per_user provides more system
resources to processes.

When to Tune

If your system experiences a lack of processes or you have a very-large
memory (VLM) system or an Internet server, you may want to increase the
value of the max_proc_per_user attribute.

You cannot modify the max_proc_per_user attribute without rebooting
the system.

Recommended Values

The default value of the max_proc_per_user attribute is based on the
maxusers attribute. If you want to increase the maximum number of
processes, you can increase the value of the maxusers attribute
(Section 5.1.1). As an alternative, you can specify a value for the
max_proc_per_user attribute that is equal to or greater than the
maximum number of processes that will be running on the system at one
time. If you have a Web server, these processes include CGI processes.

If you have an Internet server, increase the value of the
max_proc_per_user attribute to 512.

If you specify a value of 0 (zero) for the max_proc_per_user attribute,
there is no limit on processes.

See Section 3.6 for information about modifying kernel subsystem
attributes.

Tuning System Resource Allocation 5–3

5.1.3 Increasing the Maximum Number of Threads

The proc subsystem attribute max_threads_per_user specifies the
maximum number of threads that can be allocated at any one time to each
user, except superuser.

Performance Benefit and Tradeoff

Increasing the value of max_threads_per_user provides more system
resources to processes.

You cannot modify the max_proc_per_user attribute without rebooting
the system.

When to Tune

If your system experiences a lack of threads or you have a VLM system or
an Internet server, you may want to increase the value of the
max_threads_per_user attribute.

Recommended Values

The default value of the max_threads_per_user attribute is based on the
value of the maxusers attribute. If you want to increase the maximum
number of threads, you can modify the maxusers attribute (Section 5.1.1).
As an alternative, you can specify a value for the max_threads_per_user
attribute that is equal to or greater than the maximum number of threads
that are allocated at one time on the system. For example, you could
increase the value of the max_threads_per_user attribute to 512.

On a very busy server with sufficient memory or an Internet server,
increase the value of the max_threads_per_user attribute to 4096.

Setting the value of the max_threads_per_user attribute to 0 (zero) will
remove the limit on threads.

If you specify a value of 0 (zero) for the max_threads_per_user attribute,
there is no limit on threads.

See Section 3.6 for information about modifying kernel subsystem
attributes.

5.2 Tuning Program Size Limits

If you are running a very large application, you may need to increase the
values of the proc subsystem attributes that control program size limits.
Some large programs and large-memory processes may not run unless you
modify the default values of these attributes.

5–4 Tuning System Resource Allocation

The following sections describe how to perform the following tasks:

• Increase the maximum size of a user process stack (Section 5.2.1)

• Increase the maximum size of a user process data segment
(Section 5.2.2)

5.2.1 Increasing the Size of a User Process Stack

The proc subsystem attributes per_proc_stack_size and
max_per_proc_stack_size specify the default and maximum sizes of a
user process stack. Some large programs and large-memory processes may
not run unless you increase the default value of these attributes.

Performance Benefit and Tradeoff

Increasing the default and maximum sizes of a user process stack enables
very large applications to run.

You cannot modify the per_proc_stack_size
max_per_proc_stack_size attributes without rebooting the system.

When to Tune

If you are running a large program or a large-memory process, or if you
receive Cannot grow stack messages, increase the default and maximum
sizes of a user process stack.

Recommended Values

The default value of the per_proc_stack_size attribute is 8388608
bytes. The default value of the max_per_proc_stack_size attribute is
33554432 bytes. Choose values that are significantly less than the address
space limit. See Section 5.3 for information.

See Section 3.6 for information about modifying kernel subsystem
attributes.

5.2.2 Increasing the Size of a User Process Data Segment

The proc subsystem attributes per_proc_data_size and
max_per_proc_data_size specify the default and maximum sizes of a
user process data segment. Some large programs and large-memory
processes may not run unless you increase the default values of these
attributes.

Tuning System Resource Allocation 5–5

Performance Benefit and Tradeoff

Increasing the default and maximum sizes of a user process data segment
enables very large applications to run.

You cannot modify the per_proc_data_size and
max_per_proc_data_size attributes without rebooting the system.

When to Tune

You may need to increase the values of the per_proc_data_size and
max_per_proc_data_size attributes if you are running a large program
or a large-memory process, if you receive an Out of process memory
message, or the system is an Internet server.

Recommended Values

The default value of the per_proc_data_size is 1342177281 bites. The
default value of the max_per_proc_data_size is 1 GB (1073741824
bytes). Choose values that are significantly less than the address space
limit. See Section 5.3 for information.

If you have an Internet server, increase the value of the
max_per_proc_data_size attribute to 10 GB (10737418240 bytes).

See Section 3.6 for information about modifying kernel subsystem
attributes.

5.3 Tuning Address Space Limits

The proc subsystem attributes per_proc_address_space and
max_per_proc_address_space specify the default and maximum
amount of user process address space (number of valid virtual regions).

Performance Benefit and Tradeoff

Increasing the address space limit enables large programs to run, improves
the performance of memory-intensive applications. However, this causes a
small increase in the demand for memory.

You cannot modify the per_proc_address_space and
max_per_proc_address_space attributes without rebooting the system.

When to Tune

You may want to increase the address space limit if you are running a
memory-intensive process, or if the system is an Internet server.

5–6 Tuning System Resource Allocation

Recommended Values

The default value for the per_proc_address_space and
max_per_proc_address_space attributes is 4 GB (4294967296 bytes).

If you have an Internet server, increase the value of the
max_per_proc_address_space attribute to 10 GB (10737418240 bytes).

See Section 3.6 for information about modifying kernel attributes.

5.4 Tuning Interprocess Communication Limits

Interprocess communication (IPC) is the exchange of information
between two or more processes. Some examples of IPC include messages,
shared memory, semaphores, pipes, signals, process tracing, and processes
communicating with other processes over a network.

The Tru64 UNIX operating system provides the following facilities for
interprocess communication:

• Pipes — See the Guide to Realtime Programming for information about
pipes.

• Signals — See the Guide to Realtime Programming for information.

• Sockets — See the Network Programmer’s Guide for information.

• Streams — See the Programmer’s Guide: STREAMS for information.

• X/Open Transport Interface (XTI) — See the Network Programmer’s
Guide for information.

If you are running processes that are memory-intensive, you may want to
increase the values of some ipc subsystem attributes.

Table 5–2 describes the guidelines for increasing IPC limits and lists the
performance benefits as well as tradeoffs.

Table 5–2: IPC Limits Tuning Guidelines

Guideline Performance Benefit Tradeoff

Increase the maximum size of a
System V message
(Section 5.4.1)

May improve the performance
of applications that can
benefit from a large System V
message size

Consumes a small
amount of
memory

Increase the maximum number
of bytes on a System V message
queue (Section 5.4.2)

May improve the performance
of applications that can
benefit from a large System V
message queue

Consumes a small
amount memory

Tuning System Resource Allocation 5–7

Table 5–2: IPC Limits Tuning Guidelines (cont.)

Guideline Performance Benefit Tradeoff

Increase the maximum number
of outstanding messages on a
System V queue (Section 5.4.3)

May improve the performance
of applications that benefit
from having a large number
of outstanding messages

Consumes a small
amount of
memory

Increase the maximum size of a
System V shared memory
region (Section 5.4.4)

May improve the performance
of memory-intensive
applications that can benefit
from a large System V shared
memory region

Consumes
memory

Increase the maximum number
of shared memory regions that
can be attached to a process
(Section 5.4.5)

May improve the performance
of applications that attach
many shared memory regions

May consume
memory

Modify the shared page table
limit (Section 5.4.6)

Enables memory-intensive or
VLM systems to run
efficiently

May consume
memory

The following sections describe how to tune some System V attributes. See
sys_attrs_ipc(5) for information about additional IPC subsystem
attributes.

5.4.1 Increasing the Maximum Size of a System V Message

The ipc subsystem attribute msg_max specifies the maximum size of a
System V message that an application can receive.

Performance Benefit and Tradeoff

Increasing the value of the msg_max attribute, may improve the
performance of applications that can benefit from a System V message size
that is larger than the default value. However, increasing this value will
consume memory.

You cannot modify the msg_max attribute without rebooting the system.

When to Tune

If your applications can benefit from setting the default maximum size of a
System V message to a value that is larger than 8192 bytes, you may want
to increase the value of the msg_max attribute.

Recommended Values

The default value of the msg_max attribute is 8192 bytes (1 page).

5–8 Tuning System Resource Allocation

See Section 3.6 for information about modifying kernel subsystem
attributes.

5.4.2 Increasing the Maximum Size of a System V Message Queue

The ipc subsystem attribute msg_mnb, specifies the maximum number of
bytes that can be in a System V message queue at one time.

A process cannot send a message to a queue if the number of bytes in the
queue is greater than the limit specified by the msg_mnb attribute. When
the limit is reached, the process sleeps and waits for this condition to be
resolved.

Performance Benefit and Tradeoff

Increasing the value of the msg_mnb attribute may improve performance for
applications that can benefit from a System V message queue that is larger
than the default size. However, increasing this value will consume memory.

You cannot modify the msg_mnb attribute without rebooting the system.

When to Tune

You can track the use of IPC facilities with the ipcs -a command (see
ipcs(1)). By looking at the current number of bytes and message headers
in the queues, you can then determine whether you need to tune the
System V message queue to diminish waiting.

Recommended Values

The default value of the msg_mnb attribute is 16384 bytes.

See Section 3.6 for information about modifying kernel subsystem
attributes.

5.4.3 Increasing the Maximum Number of Messages on a System V
Queue

The ipc subsystem attribute msg_tql specifies the maximum number of
messages that can be on a System V message queue; that is, the total
number of messages that can be outstanding in the system.

Performance Benefit and Tradeoff

Increasing the value of the msg_tql attribute may improve the
performance of applications that benefit from increasing the number of
outstanding messages to a value that is larger than the default value.
However, increasing the value of this attribute will consume memory.

You cannot modify the msg_tql attribute without rebooting the system.

Tuning System Resource Allocation 5–9

When to Tune

You may want to increase the value of the msg_tql attribute if your
applications can benefit from increasing the maximum number of
outstanding messages to a value than is larger than 40.

You can track the use of IPC facilities with the ipcs -a command (see
ipcs(1)). By looking at the current number of bytes and message headers
in the queues, you can then determine whether you need to tune the
System V message queue to diminish waiting.

Recommended Values

The default value of the msg_tql is 40.

See Section 3.6 for information about modifying kernel subsystem
attributes.

5.4.4 Increasing the Maximum Size of a System V Shared Memory
Region

The ipc subsystem attribute shm_max specifies the maximum size of a
single System V shared memory region.

Performance Benefit and Tradeoff

Increasing the value of the shm_max attribute may improve the
performance of memory-intensive applications that can benefit from a large
System V shared memory region. However, increasing the value of the
shm_max attribute will increase the demand for memory.

You cannot modify the shm_max attribute without rebooting the system.

When to Tune

If your applications are memory-intensive and can benefit from a System V
shared memory region that is larger than the default value of 512 pages,
you may want to increase the value of the shm_max attribute.

Recommended Values

The default value of the shm_max attribute is 4194304 bytes (512 pages).

See Section 3.6 for information about modifying kernel subsystem
attributes.

5–10 Tuning System Resource Allocation

5.4.5 Increasing the Maximum Number of Shared Memory Regions
Attached to a Process

The ipc subsystem attribute shm_seg specifies the maximum number of
System V shared memory regions that can be attached to a single process
at any point in time.

As a design consideration, consider whether you will get better
performance by using threads instead of shared memory.

Performance Benefit and Tradeoff

Increasing the number of System V shared memory regions that can be
attached to a single process may improve the performance of applications
that attach many shared memory regions.

Increasing the value of the shm_seg attribute will consume memory if the
process attaches many shared memory regions.

You cannot modify the shm_seg attribute without rebooting the system.

When to Tune

You may want to increase the value of the shm_seg attribute if a process’
attempt to attach a shared memory region exceeds the limit (the shmat
function returns an EMFILE error).

Recommended Values

The default value of the shm_seg is 32.

See Section 3.6 for information about modifying kernel subsystem
attributes.

5.4.6 Modifying Shared Page Table Sharing

Third-level page table sharing occurs when the size of a System V shared
memory segment, as created by the shmget function, is equal to or larger
than the value of the ipc subsystem attribute ssm_threshold.

Performance Benefit and Tradeoff

Increasing the shared page table limit restricts shared page tables to
applications that create shared memory segments larger than 8 MB.
However, this will increase the demand for memory.

You can disable page table sharing, if your applications cannot use shared
page tables.

You can modify the ssm_threshold attribute without rebooting the
system.

Tuning System Resource Allocation 5–11

When to Tune

If you want to restrict page table sharing to applications that create shared
memory segments larger than 8 MB, increase the value of the
ssm_threshold attribute.

If your applications cannot use shared pages tables because of alignment
restrictions, you may want to disable the sharing of page tables.

Recommended Values

The default value of the ssm_threshold attribute is 8 MB (8388608 bytes).

Setting the ssm_threshold attribute to 0 (zero) will disable the use of
segmented shared memory.

See Section 3.6 for information about modifying kernel subsystem
attributes.

5.5 Tuning the Open File Limits

The following sections describe how to perform the following tasks:

• Increase the maximum number of open files (Section 5.5.1).

• Increase the maximum number of open file descriptors (Section 5.5.2).

5.5.1 Increasing the Maximum Number of Open Files

The kernel data structure for an open file is called a vnode. These are
used by all file systems. The number of vnodes determines the number of
open files. The allocation and deallocation of vnodes is handled dynamically
by the operating system.

The vfs subsystem attribute max_vnodes specifies the size of the vnode
cache, which is always equal to or more than the maximum number of open
files in the system. You may need to increase the default value of this
attribute to increase the maximum number of open files. Note that you can
also accomplish this task by increasing the value of the proc subsystem
attribute maxusers. See Section 5.1 for information.

Performance Benefit and Tradeoff

Increasing the size of the vnode cache can improve the performance of
applications that require many open files, but it will also consume memory.

You can modify the max_vnodes attribute without rebooting the system.

5–12 Tuning System Resource Allocation

When to Tune

If your applications require many open files or you receive a message
indicating you are out of vnodes, increase the default value of the
max_vnodes attribute.

Recommended Values

The default value of the max_vnodes attribute is 5 percent of memory.

See Section 3.6 for information about modifying kernel subsystem
attributes.

5.5.2 Increasing the Maximum Number of Open File Descriptors

You may want to increase the maximum number of open file descriptors for
all processes or for a specific application. The proc subsystem attributes
open_max_soft and open_max_hard control the maximum system-wide
number of open file descriptors for each process.

The open file descriptor limits prevent runaway allocations, such as
allocations within a loop that cannot be exited because of an error
condition, from consuming all of the available file descriptors. If a process
reaches the open_max_soft limit, a warning message is issued. If a
process reaches the open_max_hard limit, the process is stopped.

Performance Benefit and Tradeoff

Improves the performance of applications that open many files.

You cannot modify the open_max_soft and open_max_hard attributes
without rebooting the system.

When to Tune

If you have an application that requires many open files, you can increase
the open file descriptor limit by increasing the values of the
open_max_soft and open_max_hard attributes. However, increasing the
open file descriptor limit may cause runaway allocations.

Recommended Values

The default value of the open_max_soft and open_max_hard attributes
is 4096, which is the maximum system-wide value that you can set in the
/etc/sysconfigtab file.

If you have an application that requires many open files, you can increase
the open file descriptor limit only for that application, instead of increasing

Tuning System Resource Allocation 5–13

the system-wide limit. To enable extended (64 KB) file descriptors for a
specific application, follow these steps:

1. Set the setsysinfo system call’s SSI_FD_NEWMAX operation
parameter to 1, which sets the utask bit, enables up to 65,536 (64 KB)
open file descriptors, and raises the process’s hard file limit to 64 KB.
This setting is inherited by any child process. See setsysinfo(2) for
more information.

2. Set the process’s file descriptor soft limit to a value that is more than
4096 (the default value) by using the setrlimit function as shown in
the following code fragment:

#include <sys/resource.h>
struct rlimit *rlp;

rlp->rlim_cur = 6000;
rlp->rlim_max = 6000;
setrlimit(RLIMIT_NOFILE, rlp);

This setting is inherited by any child process. See setrlimit(2) for
more information.

3. This step is required only for applications that use the select
function’s fd_set parameter, which points to an I/O descriptor set
(and a FD_CLR, FD_ISSET, FD_SET, or FD_ZERO macro) and can modify
an I/O descriptor set. If you meet these qualifications, you can use one
of two procedures, one that enables a static definition of the maximum
number of file descriptors or one that enables a dynamic definition:

• Static definition:

Override the default value of 4096 for FD_SETSIZE in the
<sys/select.h> header file by specifying the maximum value of
65536. You must specify this value before you include the
<sys/time.h> header file (which also includes the <sys/select.h>
header file) in the code, as follows:

#define FD_SETSIZE 65536
#include <sys/time.h>

This setting is not inherited by child processes; therefore,
FD_SETSIZE must be set explicitly in the code for each child
process that requires 64 KB file descriptors.

• Dynamic definition:

Instead of using statically defined fd_set structures, you can use
fd_set pointers in conjunction with a malloc function, which
provides forward compatibility with any future changes to the
maximum file descriptor limit. For example:

5–14 Tuning System Resource Allocation

fd_set *fdp;

fdp = (fd_set *) malloc(
(fds_howmany(max_fds,FD_NFDBITS))*sizeof(fd_mask));

The value for max_fds is the number of file descriptors to be
manipulated. It is recommended that you use the file descriptor
soft limit for this value. All other keywords are defined in the
<sys/select.h> header file. The following code segment shows
this choice:

#include <sys/time.h>
#include <sys/resource.h>

my_program()
{
fd_set *fdp;
struct rlimit rlim;
int max_fds;

getrlimit(RLIMIT_NOFILE, &rlim;);
max_fds = rlim.rlim_cur;

fdp = (fd_set *) malloc(
(fds_howmany(max_fds,FD_NFDBITS))*sizeof(fd_mask));

FD_SET(2, fdp);

for (;;) {
switch(select(max_fds, (fd_set *)0, fdp, (fd_set
*)0,
struct timeval *)0)) {
...
}

In addition, the vfs subsystem attribute max_vnodes must be set high
enough for the needs of any application that requires a high number of
descriptors. The max_vnodes attribute specifies the size of the vnode
cache, and is set to 5 percent of system memory by default. See
Section 5.5.1 for more information.

To disable support for up to 64 KB file descriptors for an application, set
the setsysinfo system call’s SSI_FD_NEWMAX operation parameter to 0,
which disables the utask bit and returns the hard file limit to the default
maximum of 4096 open file descriptors. However, if the process is using
more than 4096 file descriptors, the setsysinfo system call will return an
EINVAL error. In addition, if a calling process’s hard or soft limit exceeds
4096, the limit is set to 4 KB after the call is successful. This setting is
inherited by any child process.

Tuning System Resource Allocation 5–15

6
Managing Memory Performance

You may be able to improve Tru64 UNIX performance by optimizing your
memory resources. Usually, the best way to improve performance is to
eliminate or reduce paging and swapping. This can be done by increasing
memory resources.

This chapter describes how to perform the following tasks:

• Understand how the operating system allocates virtual memory to
processes and to file system caches, and how memory is reclaimed
(Section 6.1)

• Configure swap space for high performance (Section 6.2)

• Obtain information about memory usage (Section 6.3)

• Provide more memory resources to processes (Section 6.4)

• Modify paging and swapping operation (Section 6.5)

• Reserve physical memory for shared memory (Section 6.6)

6.1 Virtual Memory Operation

The operating system allocates physical memory in 8-KB units called pages.
The virtual memory subsystem tracks and manages all the physical pages
in the system and efficiently distributes the pages among three areas:

• Static wired memory

Allocated at boot time and used for operating system data and text and
for system tables, static wired memory is also used by the metadata
buffer cache, which holds recently accessed UNIX File System (UFS)
and CD-ROM File System (CDFS) metadata.

You can reduce the amount of static wired memory only by removing
subsystems or by decreasing the size of the metadata buffer cache (see
Section 6.1.2.1).

• Dynamically wired memory

Dynamically wired memory is allocated at boot time and used for
dynamically allocated data structures, such as system hash tables. User
processes also allocate dynamically wired memory for address space by
using virtual memory locking interfaces, including the mlock function.

Managing Memory Performance 6–1

The amount of dynamically wired memory varies according to the
demand. The vm subsystem attribute vm_syswiredpercent specifies
the maximum amount of memory that a user process can wire (80
percent of physical memory, by default).

• Physical memory for processes and data caching

Physical memory that is not wired is referred to as pageable memory. It
is used for processes’ most-recently accessed anonymous memory
(modifiable virtual address space) and file-backed memory (memory
that is used for program text or shared libraries). Pageable memory is
also used to cache the most-recently accessed UFS file system data for
reads and writes and for page faults from mapped file regions, in
addition to AdvFS metadata and file data.

The virtual memory subsystem allocates physical pages according to
the process and file system demand.Because processes and file systems
compete for a limited amount of physical memory, the virtual memory
subsystem periodically reclaims the oldest pages by writing their
contents to swap space or disk (paging). Under heavy loads, entire
processes may be suspended to free large amounts of memory
(swapping). You can control virtual memory operation by tuning various
vm subsystem attributes, as described in this chapter.

You must understand memory operation to determine which tuning
guidelines will improve performance for your workload. The following
sections describe how the virtual memory subsystem:

• Tracks physical pages (Section 6.1.1)

• Allocates memory to file system buffer caches (Section 6.1.2)

• Allocates memory to processes (Section 6.1.3)

• Reclaims pages (Section 6.1.4)

6.1.1 Physical Page Tracking

The virtual memory subsystem tracks all the physical memory pages in the
system. Page lists are used to identify the location and age of each page.
The oldest pages are the first to be reclaimed. At any one time, each
physical page can be found on one of the following lists:

• Wired list — Pages that are wired and cannot be reclaimed

• Free list — Pages that are clean and are not being used

Page reclamation begins when the size of the free list decreases to a
tunable limit.

• Active list — Pages that are currently being used by processes or the
UBC

6–2 Managing Memory Performance

To determine which active pages should be reclaimed first, the
page-stealer daemon identifies the oldest pages on the active list. The
oldest pages that are being used by processes are designated Inactive
pages. The oldest pages that are being used by the UBC are designates
UBC LRU (Unified Buffer Cache least-recently used) pages.

Use the vmstat command to determine the number of pages that are on
the page lists. Remember that pages on the active list (the act field in the
vmstat output) include both inactive and UBC LRU pages.

6.1.2 File System Buffer Cache Memory Allocation

The operating system uses three caches to store file system user data and
metadata. If the cached data is later reused, a disk I/O operation is
avoided, which improves performance. This is because data can be
retrieved from memory faster than a disk I/O operation.

The following sections describe these file system caches:

• Metadata buffer cache (Section 6.1.2.1)

• Unified Buffer Cache (Section 6.1.2.2)

• AdvFS buffer cache (Section 6.1.2.3)

6.1.2.1 Metadata Buffer Cache Memory Allocation

At boot time, the kernel allocates wired memory for the metadata buffer
cache. The cache acts as a layer between the operating system and disk by
storing recently accessed UFS and CDFS metadata, which includes file
header information, superblocks, inodes, indirect blocks, directory blocks,
and cylinder group summaries. Performance is improved if the data is later
reused and a disk operation is avoided.

The metadata buffer cache uses bcopy routines to move data in and out of
memory. Memory in the metadata buffer cache is not subject to page
reclamation.

The size of the metadata buffer cache is specified by the value of the vfs
subsystem attribute bufcache. See Section 6.4.6 and Section 9.4.3.1 for
tuning information.

6.1.2.2 Unified Buffer Cache Memory Allocation

The physical memory that is not wired is available to processes and to the
Unified Buffer Cache (UBC), which compete for this memory.

The UBC functions as a layer between the operating system and disk by
storing recently accessed UFS file system data for reads and writes from

Managing Memory Performance 6–3

conventional file activity and holding page faults from mapped file sections.
File system performance is improved if the cached data is later reused and
a disk I/O operation is avoided.

In addition, AdvFS wires UBC pages for its metadata and file data,
although the AdvFS buffer cache actively manages this data. See
Section 6.1.2.3 for information about the AdvFS buffer cache.

Figure 6–1 shows how the virtual memory subsystem allocates physical
memory to the UBC and for processes.

Figure 6–1: UBC Memory Allocation

ZK-1360U-AI

UBC maximum (ubc_maxpercent
default is 100%)

UBC borrowing threshold
(ubc_borrowpercent default is 20%)
UBC minimum
(ubc_minpercent default is 10%)

Memory shared
by UBC

and processes

Memory
available

only to UBC

The amount of memory that the UBC can utilize is determined by three vm
subsystem attributes:

• ubc_minpercent attribute

Specifies the minimum percentage of virtual memory that only the UBC
can utilize. The remaining memory is shared with processes. The
default is 10 percent.

• ubc_maxpercent attribute

Specifies the maximum percentage of virtual memory that the UBC can
utilize. The default is 100 percent.

• ubc_borrowpercent attribute

Specifies the UBC borrowing threshold. The default is 20 percent.
Between the value of the ubc_borrowpercent attribute and the value
of the ubc_maxpercent attribute, the memory that is allocated to the
UBC is considered borrowed from processes. When paging begins, these
borrowed pages are reclaimed, until the amount of memory allocated to
the UBC decreases to the value of the ubc_borrowpercent attribute.

6–4 Managing Memory Performance

At any one time, the amount of memory allocated to the UBC and to
processes depends on file system and process demands. For example, if file
system activity is heavy and process demand is low, most of the pages will
be allocated to the UBC, as shown in Figure 6–2.

Figure 6–2: Memory Allocation During High File System Activity and No
Paging Activity

ZK-1426U-AI

UBC maximum

UBC borrowing threshold

UBC minimum

Memory used
by processes

Memory
used by
the UBC

In contrast, heavy process activity, such as large increases in the working
sets for large executables, will cause the virtual memory subsystem to
reclaim UBC borrowed pages, down to the value of the
ubc_borrowpercent attribute, as shown in Figure 6–3.

Figure 6–3: Memory Allocation During Low File System Activity and High
Paging Activity

ZK-1427U-AI

UBC maximum

UBC borrowing threshold

UBC minimum

Memory used
by processes

Memory
used by
the UBC

The UBC uses a hashed list to quickly locate the physical pages that it is
holding. A hash table contains file and offset information that is used to
speed lookup operations.

Managing Memory Performance 6–5

The UBC also uses a buffer to facilitate the movement of data between
memory and disk. The vm subsystem attribute vm_ubcbuffers specifies
the maximum file system device I/O queue depth for writes (that is, the
number of UBC I/O requests that can be outstanding).

6.1.2.3 AdvFS Buffer Cache Memory Allocation

The AdvFS buffer cache functions as a layer between the operating system
and disk by storing recently accessed file data and metadata. Performance
is improved if the cached data is later reused and a disk operation is
avoided.

AdvFS wires UBC pages for both file data and metadata, although AdvFS
actively manages the cache by using its own management routines and
data structures. For example, AdvFS performs its own hashing of cached
data, and uses its own cache lookup routines and modified data flushing
routines. AdvFS interacts with the UBC by using the UBC to hold the
actual data content for metadata and file sysem user data. When an AdvFS
I/O operation occurs, AdvFS searches the AdvFS buffer cache for the data
before querying the UBC for the cache page.

You can tune the AdvFS buffer cache by modifying the values of some
advfs attributes. Because AdvFS manages its own buffer cache, tuning the
UBC will not have a great effect on AdvFS.

At boot time, the kernel determines the amount of physical memory that is
available for AdvFS buffer cache headers, and allocates a buffer cache
header for each possible page. Buffer headers are maintained in a global
array and temporarily assigned a buffer handle that refers to an actual
page. The number of AdvFS buffer headers depends on the number of 8-KB
pages that can be obtained from the amount of memory specified by the
advfs subsystem attribute AdvfsCacheMaxPercent. The default value is
7 percent of physical memory.

The AdvFS buffer cache is organized as a fixed-size hash chain table, which
uses a file page offset, fileset handle, and domain handle to calculate the
hash key that is used to look up a page. The size of the hash chain table
depends on the number of buffer cache headers. However, you can override
AdvFS table size calculation by changing the AdvfsCacheHashSize
attribute.

When a page of data is requested, AdvFS searches the hash chain table for
a match. If the entry is already in memory, AdvFS returns the buffer
handle and a pointer to the page of data to the requester.

If no entry is found, AdvFS obtains a free buffer header and initializes it to
represent the requested page. AdvFS performs a read operation to obtain

6–6 Managing Memory Performance

the page from disk and attaches the buffer header to a UBC page. The
UBC page is then wired into memory. AdvFS buffer cache pages remain
wired until the buffer needs to be recycled, the file is deleted, or the fileset
is unmounted.

See Section 6.4.4, Section 9.3.6.1, and Section 9.3.6.2 for information about
tuning the AdvFS buffer cache.

6.1.3 Process Memory Allocation

Physical memory that is not wired is available to processes and the UBC,
which compete for this memory. The virtual memory subsystem allocates
memory resources to processes and to the UBC according to the demand,
and reclaims the oldest pages if the demand depletes the number of
available free pages.

The following sections describe how the virtual memory subsystem
allocates memory to processes.

6.1.3.1 Process Virtual Address Space Allocation

The fork system call creates new processes. When you invoke a process,
the fork system call:

1. Creates a UNIX process body, which includes a set of data structures
that the kernel uses to track the process and a set of resource
limitations. See fork(2) for more information.

2. Establishes a contiguous block of virtual address space for the
process. Virtual address space is the array of virtual pages that the
process can use to map into actual physical memory. Virtual address
space is used for anonymous memory (memory that holds data
elements and structures that are modified during process execution)
and for file-backed memory (memory used for program text or shared
libraries).

Because physical memory is limited, a process’ entire virtual address
space cannot be in physical memory at one time. However, a process
can execute when only a portion of its virtual address space (its
working set) is mapped to physical memory. Pages of anonymous
memory and file-backed memory are paged in only when needed. If the
memory demand increases and pages must be reclaimed, the pages of
anonymous memory are paged out and their contents moved to swap
space, while the pages of file-backed memory are simply released.

3. Creates one or more threads of execution. The default is one thread for
each process. Multiprocessing systems support multiple process
threads.

Managing Memory Performance 6–7

Although the virtual memory subsystem allocates a large amount of virtual
address space for each process, it uses only part of this space. Only 4 TB is
allocated for user space. User space is generally private and maps to a
nonshared physical page. An additional 4 TB of virtual address space is
used for kernel space. Kernel space usually maps to shared physical pages.
The remaining space is not used for any purpose.

Figure 6–4 shows the use of process virtual address space.

Figure 6–4: Virtual Address Space Usage

User space
(4 TB)

Kernel space
(maximum 4 TB)Unused

ZK-1363U-AI

0 2
64

6.1.3.2 Virtual Address to Physical Address Translation

When a virtual page is touched (accessed), the virtual memory subsystem
must locate the physical page and then translate the virtual address into a
physical address. Each process has a page table, which is an array
containing an entry for each current virtual-to-physical address
translation. Page table entries have a direct relation to virtual pages (that
is, virtual address 1 corresponds to page table entry 1) and contain a
pointer to the physical page and protection information.

Figure 6–5 shows the translation of a virtual address into a physical
address.

6–8 Managing Memory Performance

Figure 6–5: Virtual-to-Physical Address Translation

Virtual address

Physical address

Virtual address

Physical address

Process Virtual Address Space

Physical Memory Pages

Page table

ZK-1358U-AI

A process resident set is the complete set of all the virtual addresses that
have been mapped to physical addresses (that is, all the pages that have
been accessed during process execution). Resident set pages may be shared
among multiple processes.

A process working set is the set of virtual addresses that are currently
mapped to physical addresses. The working set is a subset of the resident
set, and it represents a snapshot of the process resident set at one point in
time.

6.1.3.3 Page Faults

When an anonymous (nonfile-backed) virtual address is requested, the
virtual memory subsystem must locate the physical page and make it
available to the process. This occurs at different speeds, depending on
whether the page is in memory or on disk (see Figure 1–1).

If a requested address is currently being used (that is, the address is in the
active page list), it will have an entry in the page table. In this case, the
PAL code loads the physical address into the translation lookaside buffer,
which then passes the address to the CPU. Because this is a memory
operation, it occurs quickly.

If a requested address is not active in the page table, the PAL lookup code
issues a page fault, which instructs the virtual memory subsystem to
locate the page and make the virtual-to-physical address translation in the
page table.

Managing Memory Performance 6–9

There are four different types of page faults:

• If a requested virtual address is being accessed for the first time, a
zero-filled-on-demand page fault occurs. The virtual memory
subsystem performs the following tasks:

1. Allocates an available page of physical memory.

2. Fills the page with zeros.

3. Enters the virtual-to-physical address translation in the page table.

• If a requested virtual address has already been accessed and is located
in the memory subsystem’s internal data structures, a short page
fault occurs. For example, if the physical address is located in the hash
queue list or the page queue list, the virtual memory subsystem passes
the address to the CPU and enters the virtual-to-physical address
translation in the page table. This occurs quickly because it is a
memory operation.

• If a requested virtual address has already been accessed, but the
physical page has been reclaimed, the page contents will be found either
on the free page list or in swap space. If a page is located on the free
page list, it is removed from the hash queue and the free list and then
reclaimed. This operation occurs quickly, and does not require disk I/O.

If a page is found in swap space, a page-in page fault occurs. The
virtual memory subsystem copies the contents of the page from swap
space into the physical address and enters the virtual-to-physical
address translation in the page table. Because this requires a disk I/O
operation, it requires more time than a memory operation.

• If a process needs to modify a read-only virtual page, a copy-on-write
page fault occurs. The virtual memory subsystem allocates an
available page of physical memory, copies the read-only page into the
new page, and enters the translation in the page table.

The virtual memory subsystem uses several techniques to improve process
execution time and decrease the number of page faults:

• Mapping additional pages

The virtual memory subsystem attempts to anticipate which pages the
task will need next. Using an algorithm that checks which pages were
most recently used, the number of available pages, and other factors,
the subsystem maps additional pages along with the page that contains
the requested address.

6–10 Managing Memory Performance

• Page coloring

If possible, the virtual memory subsystem maps a process’ entire
resident set into the secondary cache and executes the entire task, text,
and data within the cache.

The vm subsystem attribute private_cache_percent specifies the
percentage of the secondary cache that is reserved for anonymous
memory. This attribute is used only for benchmarking. The default is to
reserve 50 percent of the cache for anonymous memory and 50 percent
for file-backed memory (shared). To cache more anonymous memory,
increase the value of the private_cache_percent attribute.

6.1.4 Page Reclamation

Because memory resources are limited, the virtual memory subsystem
must periodically reclaim pages. The free page list contains clean pages
that are available to processes and the UBC. As the demand for memory
increases, the list may become depleted. If the number of pages falls below
a tunable limit, the virtual memory subsystem will replenish the free list
by reclaiming the least-recently used pages from processes and the UBC.

To reclaim pages, the virtual memory subsystem:

1. Prewrites modified pages to swap space, in an attempt to forestall a
memory shortage. See Section 6.1.4.1 for more information.

2. Begins paging if the demand for memory is not satisfied, as follows:

a. Reclaims pages that the UBC has borrowed and puts them on the
free list.

b. Reclaims the oldest inactive and UBC LRU pages from the active
page list, moves the contents of the modified pages to swap space
or disk, and puts the clean pages on the free list.

c. If needed, more aggressively reclaims pages from the active list.

See Section 6.1.4.2 for more information about reclaiming memory by
paging.

3. Begins swapping if the demand for memory is not met. The virtual
memory subsystem temporarily suspends processes and moves entire
resident sets to swap space, which frees large numbers of pages. See
Section 6.1.4.3 for information about swapping.

The point at which paging and swapping start and stop depends on the
values of some vm subsystem attributes. Figure 6–6 shows some of the
attributes that control paging and swapping.

Managing Memory Performance 6–11

Figure 6–6: Paging and Swapping Attributes

(vm_page_free_target)

(vm_page_free_hardswap)

ZK-0933U-AI

Paging threshold

Reclaim a page for each page
allocated (vm_page_free_min)

Swapping stops

 vm_page_free_optimal)
(vm_page_free_swap and

Swapping starts

(vm_page_free_reserved)
Only privileged tasks can run

Free Page List

Detailed descriptions of the attributes are as follows:

• vm_page_free_target—Paging begins when the number of pages on
the free list is less than this value. Paging stops when the number of
pages is equal to or more than this value. The default value of the
vm_page_free_target attribute is based on the amount of memory in
the system. Use Table 6–1 to determine the default value for your
system.

Table 6–1: Default Values for vm_page_free_target Attribute

Size of Memory Value of vm_page_free_target

Up to 512 MB 128

513 MB to 1024 MB 256

1025 MB to 2048 MB 512

2049 MB to 4096 MB 768

More than 4096 MB 1024

• vm_page_free_min—Specifies the threshold at which a page must be
reclaimed for each page allocated. The default value is twice the value
of the vm_page_free_reserved attribute.

6–12 Managing Memory Performance

• vm_page_free_reserved—Only privileged tasks can get memory
when the number of pages on the free list is less than this value. The
default value is 10 pages.

• vm_page_free_swap—Idle task swapping begins when the number of
pages on the free list is less than this value for a period of time. The
default value of the vm_page_free_swap attribute is based on the
values of the vm_page_free_target and vm_page_free_min
attributes by using this formula:

vm_page_free_min + ((vm_page_free_target - vm_page_free_min) / 2)

• vm_page_free_optimal—Hard swapping begins when the number of
pages on the free list is less than this value for five seconds. The first
processes to be swapped out include those with the lowest scheduling
priority and those with the largest resident set size. The default value
of the vm_page_free_optimal attribute is based on the values of the
vm_page_free_target and vm_page_free_min attributes by using
this formula:

vm_page_free_min + ((vm_page_free_target - vm_page_free_min) / 2)

• vm_page_free_hardswap—Swapping stops when the number of pages
on the free list is equal to or more than this value. The default value is
the value of the vm_page_free_target attribute multiplied by 16.

See Section 6.5 for information about modifying paging and swapping
attributes.

The following sections describe the page reclamation procedure in detail.

6.1.4.1 Modified Page Prewriting

The virtual memory subsystem attempts to prevent memory shortages by
prewriting modified inactive and UBC LRU pages to disk. To reclaim a
page that has been prewritten, the virtual memory subsystem only needs to
validate the page, which can improve performance. See Section 6.1.1 for
information about page lists.

When the virtual memory subsystem anticipates that the pages on the free
list will soon be depleted, it prewrites to disk the oldest modified (dirty)
pages that are currently being used by processes or the UBC.

The value of the vm subsystem attribute vm_page_prewrite_target
determines the number of inactive pages that the subsystem will prewrite
and keep clean. The default value is vm_page_free_target * 2.

The vm_ubcdirtypercent attribute specifies the modified UBC LRU page
threshold. When the number of modified UBC LRU pages is more than this
value, the virtual memory subsystem prewrites to disk the oldest modified

Managing Memory Performance 6–13

UBC LRU pages. The default value of the vm_ubcdirtypercent attribute
is 10 percent of the total UBC LRU pages.

In addition, the sync function periodically flushes (writes to disk) system
metadata and data from all unwritten memory buffers. For example, the
data that is flushed includes, for UFS, modified inodes and delayed block
I/O. Commands such as the shutdown command, also issue their own sync
functions. To minimize the impact of I/O spikes caused by the sync
function, the value of the vm subsystem attribute ubc_maxdirtywrites
specifies the maximum number of disk writes that the kernel can perform
each second. The default value is five I/O operations per second.

6.1.4.2 Reclaiming Memory by Paging

When the memory demand is high and the number of pages on the free
page list falls below the value of the vm subsystem attribute
vm_page_free_target, the virtual memory subsystem uses paging to
replenish the free page list. The page-out daemon and task swapper
daemon are extensions of the page reclamation code, which controls paging
and swapping.

The paging process is as follows:

1. The page reclamation code activates the page-stealer daemon, which
first reclaims the clean pages that the UBC has borrowed from the
virtual memory subsystem, until the size of the UBC reaches the
borrowing threshold that is specified by the value of the
ubc_borrowpercent attribute (the default is 20 percent). Freeing
borrowed UBC pages is a fast way to reclaim pages, because UBC
pages are usually not modified. If the reclaimed pages are dirty
(modified), their contents must be written to disk before the pages can
be moved to the free page list.

2. If freeing clean UBC borrowed memory does not sufficiently replenish
the free list, a page out occurs. The page-stealer daemon reclaims the
oldest inactive and UBC LRU pages from the active page list, moves
the contents of the modified pages to disk, and puts the clean pages on
the free list.

3. Paging becomes increasingly aggressive if the number of free pages
continues to decrease. If the number of pages on the free page list falls
below the value of the vm subsystem attribute vm_page_free_min
(the default is 20 pages), a page must be reclaimed for each page taken
from the list.

Figure 6–7 shows the movement of pages during paging operations.

6–14 Managing Memory Performance

Figure 6–7: Paging Operation

Swap

Free pages

Active pages
(VM and UBC)

Clean pages from the free list are moved to the
active list for use by processes and the UBC

The virtual memory
subsystem identifies the
least-recently-used
active pages.

These inactive and
UBC LRU pages
are the first pages
to be reclaimed when
paging begins.

When memory is needed, paging begins.
The virtual memory subsystem reclaims
UBC borrowed pages and then inactive
and UBC LRU pages and moves the
pages to free list. Modified pages are
first written to swap space or disk.

ZK-1361U-AI

Inactive
pages

UBC
LRU
pages

Paging stops when the number of pages on the free list increases to the
limit specified by the vm subsystem attribute vm_page_free_target.
However, if paging individual pages does not sufficiently replenish the free
list, swapping is used to free a large amount of memory (see Section 6.1.4.3).

6.1.4.3 Reclaiming Memory by Swapping

If there is a continuously high demand for memory, the virtual memory
subsystem may be unable to replenish the free page list by reclaiming
single pages. To dramatically increase the number of clean pages, the
virtual memory subsystem uses swapping to suspend processes, which
reduces the demand for physical memory.

The task swapper will swap out a process by suspending the process,
writing its resident set to swap space, and moving the clean pages to the
free page list. Swapping has a serious impact on system performance

Managing Memory Performance 6–15

because a swapped out process cannot execute, and should be avoided on
VLM systems and systems running large programs.

The point at which swapping begins and ends is controlled by a number of
vm subsystem attributes, as follows:

• Idle task swapping begins when the number of pages on the free list
falls below the value of the vm_page_free_swap attribute for a period
of time. The task swapper suspends all tasks that have been idle for 30
seconds or more.

• Hard task swapping begins when the number of pages on the free page
list falls below the value of the vm_page_free_optimal attribute for
more than five seconds. The task swapper suspends, one at a time, the
tasks with the lowest priority and the largest resident set size.

• Swapping stops when the number of pages on the free list increases to
the value of the vm_page_free_hardswap attribute.

• A swap in occurs when the number of pages on the free list increases
to the value of the vm_page_free_optimal attribute for a period of
time. The value of the vm_inswappedmin attribute specifies the
minimum amount of time, in seconds, that a task must remain in the
inswapped state before it can be moved out of swap space. The default
value is 1 second. The task’s working set is then paged in from swap
space, and the task can now execute. You can modify the value of the
vm_inswappedmin attribute without rebooting the system.

You may be able to improve system performance by modifying the
attributes that control when swapping begins and ends, as described in
Section 6.5. Large-memory systems or systems running large programs
should avoid paging and swapping, if possible.

Increasing the rate of swapping (swapping earlier during page reclamation)
may increase throughput. As more processes are swapped out, fewer
processes are actually executing and more work is done. Although
increasing the rate of swapping moves long-sleeping threads out of memory
and frees memory, it may degrade interactive response time because when
an outswapped process is needed, it will have a long latency period.

Decreasing the rate of swapping (by swapping later during page
reclamation) may improve interactive response time, but at the cost of
throughput. See Section 6.5.2 and Section 6.5.3 for more information about
changing the rate of swapping.

To facilitate the movement of data between memory and disk, the virtual
memory subsystem uses synchronous and asynchronous swap buffers. The
virtual memory subsystem uses these two types of buffers to immediately

6–16 Managing Memory Performance

satisfy a page-in request without having to wait for the completion of a
page-out request, which is a relatively slow process.

Synchronous swap buffers are used for page-in page faults and for swap
outs. Asynchronous swap buffers are used for asynchronous page outs and
for prewriting modified pages. See Section 6.5.9, Section 6.5.10,
Section 6.5.11, and Section 6.5.12 for swap buffer tuning information.

6.2 Configuring Swap Space for High Performance

Use the swapon command to display swap space, and to configure
additional swap space after system installation. To make this additional
swap space permanent, use the vm subsystem attribute swapdevice to
specify swap devices in the /etc/sysconfigtab file. For example:

vm:
swapdevice=/dev/disk/dsk0b,/dev/disk/dsk0d

See Section 3.6 for information about modifying kernel subsystem
attributes.

See Section 2.3.2.2 and Section 2.3.2.3 for information about swap space
allocation modes and swap space requirements.

The following list describes how to configure swap space for high
performance:

• Ensure that all your swap devices are configured when you boot the
system, instead of adding swap space while the system is running.

• Use fast disks for swap space to decrease page-fault latency.

• Use disks that are not busy for swap space.

• Spread out swap space across multiple disks; do not put multiple swap
partitions on the same disk. This makes paging and swapping more
efficient and helps to prevent any single adapter, disk, or bus from
becoming a bottleneck. The page reclamation code uses a form of disk
striping (known as swap space interleaving) that improves performance
when data is written to multiple disks.

• Spread out your swap disks across multiple I/O buses to prevent a
single bus from becoming a bottleneck.

• Configure multiple swap devices as individual devices (or LSM
volumes) instead of striping the devices and configuring only one logical
swap device.

• If you are paging heavily and cannot increase the amount of memory in
your system, consider using RAID 5 for swap devices. See Chapter 8 for
more information about RAID 5.

Managing Memory Performance 6–17

See the System Administration manual for more information about adding
swap devices. See Chapter 8 for more information about configuring and
tuning disks for high performance and availability.

6.3 Gathering Memory Information

Table 6–2 describes the tools that you can use to gather information about
memory usage.

Table 6–2: Virtual Memory and UBC Monitoring Tools

Name Use Description

sys_check Analyzes system
configuration and
displays statistics
(Section 4.3)

Creates an HTML file that describes the
system configuration, and can be used to
diagnose problems. The sys_check utility
checks kernel variable settings and
memory and CPU resources, and provides
performance data and lock statistics for
SMP systems and kernel profiles.
The sys_check utility calls various
commands and utilities to perform a basic
analysis of your configuration and kernel
variable settings, and provides warnings
and tuning guidelines if necessary. See
sys_check(8) for more information.

uerf Displays total system
memory

Use the uerf -r 300 command to
determine the amount of memory on your
system. The beginning of the listing shows
the total amount of physical memory
(including wired memory) and the amount
of available memory. See uerf(8) for more
information.

vmstat Displays virtual
memory and CPU
usage statistics
(Section 6.3.1)

Displays information about process
threads, virtual memory usage (page lists,
page faults, page ins, and page outs),
interrupts, and CPU usage (percentages of
user, system and idle times). First
reported are the statistics since boot time;
subsequent reports are the statistics since
a specified interval of time.

6–18 Managing Memory Performance

Table 6–2: Virtual Memory and UBC Monitoring Tools (cont.)

Name Use Description

ps Displays CPU and
virtual memory
usage by processes
(Section 6.3.2)

Displays current statistics for running
processes, including CPU usage, the
processor and processor set, and the
scheduling priority.
The ps command also displays virtual
memory statistics for a process, including
the number of page faults, page
reclamations, and page ins; the percentage
of real memory (resident set) usage; the
resident set size; and the virtual address
size.

ipcs Displays IPC
statistics

Displays interprocess communication
(IPC) statistics for currently active
message queues, shared-memory
segments, semaphores, remote queues,
and local queue headers.
The information provided in the following
fields reported by the ipcs −a command
can be especially useful: QNUM, CBYTES,
QBYTES, SEGSZ, and NSEMS. See ipcs(1)
for more information.

swapon Displays information
about swap space
utilization
(Section 6.3.3)

Displays the total amount of allocated
swap space, swap space in use, and free
swap space for each swap device. You can
also use the swapon command to allocate
additional swap space.

dbx Reports UBC
statistics
(Section 6.3.4)

You can check the UBC by using the dbx
print command to examine the
ufs_getapage_stats data structure,
which contains information about UBC
page usage.

The following sections describe some of these tools in detail.

6.3.1 Monitoring Memory by Using the vmstat Command

The vmstat command shows the virtual memory, process, and CPU
statistics for a specified time interval. The first line of the output is for all
time since a reboot, and each subsequent report is for the last interval.

Managing Memory Performance 6–19

An example of the vmstat command is as follows; output is provided in
one-second intervals:

/usr/ucb/vmstat 1
Virtual Memory Statistics: (pagesize = 8192)
procs memory pages intr cpu
r w u act free wire fault cow zero react pin pout in sy cs us sy id
2 66 25 6417 3497 1570 155K 38K 50K 0 46K 0 4 290 165 0 2 98
4 65 24 6421 3493 1570 120 9 81 0 8 0 585 865 335 37 16 48
2 66 25 6421 3493 1570 69 0 69 0 0 0 570 968 368 8 22 69
4 65 24 6421 3493 1570 69 0 69 0 0 0 554 768 370 2 14 84
4 65 24 6421 3493 1570 69 0 69 0 0 0 865 1K 404 4 20 76

1 2 3 4 5

The vmstat command includes information that you can use to diagnose
CPU and virtual memory problems. Examine the following fields:

1 Process information (procs):

• r — Number of threads that are running or can run.

• w — Number of threads that are waiting interruptibly (waiting for
an event or a resource, but can be interrupted or suspended). For
example, the thread can accept user signals or be swapped out of
memory.

• u — Number of threads that are waiting uninterruptibly (waiting
for an event or a resource, but cannot be interrupted or
suspended). For example, the thread cannot accept user signals; it
must come out of the wait state to take a signal. Processes that are
waiting uninterruptibly cannot be stopped by the kill command.

2 Virtual memory information (memory):

• act — Number of pages on the active list, including inactive pages
and UBC LRU pages.

• free — Number of pages on the free list.

• wire — Number of pages on the wired list. Pages on the wired list
cannot be reclaimed.

See Section 6.1.1 for more information on page lists.

3 Paging information (pages):

• fault — Number of address translation faults.

• cow — Number of copy-on-write page faults. These page faults
occur if the requested page is shared by a parent process and a
child process, and one of these processes needs to modify the page.
If a copy-on-write page fault occurs, the virtual memory subsystem
loads a new address into the translation buffer, and then copies the
contents of the requested page into this address, so that the
process can modify it.

6–20 Managing Memory Performance

• zero — Number of zero-filled-on-demand page faults. These page
faults occur if a requested page is not located in the internal data
structures and has never been referenced. If a
zero-filled-on-demand page fault occurs, the virtual memory
subsystem allocates an available page of physical memory, fills the
page with zeros, and then enters the address into the page table.

• react — Number of pages that have been faulted (touched) while
on the inactive page list.

• pin — Number of requests for pages from the page-stealer daemon.

• pout — Number of pages that have been paged out to disk.

4 Interrupt information (intr):

• in — Number of nonclock device interrupts per second.

• sy — Number of system calls called per second.

• cs — Number of task and thread context switches per second.

5 CPU usage information (cpu):

• us — Percentage of user time for normal and priority processes.
User time includes the time the CPU spent executing library
routines.

• sy — Percentage of system time. System time includes the time
the CPU spent executing system calls.

• id — Percentage of idle time.

See Section 7.1.2 for information about using the vmstat command to
monitor CPU usage.

To use the vmstat command to diagnose a memory performance problem:

• Check the size of the free page list (free). Compare the number of free
pages to the values for the active pages (act) and the wired pages
(wire). The sum of the free, active, and wired pages should be close to
the amount of physical memory in your system. Although the value for
free should be small, if the value is consistently small (less than 128
pages) and accompanied by excessive paging and swapping, you may
not have enough physical memory for your workload.

• Examine the pout field. If the number of page outs is consistently high,
you may have insufficient memory.

• The following command output may indicate that the size of the UBC is
too small for your configuration:

– The output of the vmstat or monitor command shows excessive
file system page-in activity, but little or no page-out activity or
shows a very low free page count.

Managing Memory Performance 6–21

– The output of the iostat command shows little or no swap disk I/O
activity or shows excessive file system I/O activity. See Section 8.2
for more information.

Excessive paging also can increase the miss rate for the secondary cache,
and may be indicated by the following output:

• The output of the ps command shows high task swapping activity. See
Section 6.3.2 for more information.

• The output of the swapon command shows excessive use of swap space.
See Section 6.3.3 for more information.

You can also use the vmstat -P command to display statistics about
physical memory use. For example:

vmstat -P
Total Physical Memory = 512.00 M

= 65536 pages
Physical Memory Clusters:

start_pfn end_pfn type size_pages / size_bytes
0 256 pal 256 / 2.00M

256 65527 os 65271 / 509.93M
65527 65536 pal 9 / 72.00k

Physical Memory Use:

start_pfn end_pfn type size_pages / size_bytes
256 280 unixtable 24 / 192.00k
280 287 scavenge 7 / 56.00k
287 918 text 631 / 4.93M
918 1046 data 128 / 1.00M

1046 1209 bss 163 / 1.27M
1210 1384 kdebug 174 / 1.36M
1384 1390 cfgmgmt 6 / 48.00k
1390 1392 locks 2 / 16.00k
1392 1949 unixtable 557 / 4.35M
1949 1962 pmap 13 / 104.00k
1962 2972 vmtables 1010 / 7.89M
2972 65527 managed 62555 / 488.71M

============================
Total Physical Memory Use: 65270 / 509.92M

Managed Pages Break Down:

free pages = 1207
active pages = 25817

inactive pages = 20103
wired pages = 15434

ubc pages = 15992
==================

Total = 78553

WIRED Pages Break Down:

vm wired pages = 1448
ubc wired pages = 4550
meta data pages = 1958

malloc pages = 5469
contig pages = 159

6–22 Managing Memory Performance

user ptepages = 1774
kernel ptepages = 67

free ptepages = 9
==================

Total = 15434

See Section 6.4 for information about increasing memory resources.

6.3.2 Monitoring Memory by Using the ps Command

The ps command displays the current status of the system processes. You
can use it to determine the current running processes (including users),
their state, and how they utilize system memory. The command lists
processes in order of decreasing CPU usage, so you can identify which
processes are using the most CPU time.

The ps command provides only a snapshot of the system; by the time the
command finishes executing, the system state has probably changed. In
addition, one of the first lines of the command may refer to the ps
command itself.

An example of the ps command is as follows:

/usr/ucb/ps aux
USER PID %CPU %MEM VSZ RSS TTY S STARTED TIME COMMAND
chen 2225 5.0 0.3 1.35M 256K p9 U 13:24:58 0:00.36 cp /vmunix /tmp
root 2236 3.0 0.5 1.59M 456K p9 R + 13:33:21 0:00.08 ps aux
sorn 2226 1.0 0.6 2.75M 552K p9 S + 13:25:01 0:00.05 vi met.ps
root 347 1.0 4.0 9.58M 3.72 ?? S Nov 07 01:26:44 /usr/bin/X11/X -a
root 1905 1.0 1.1 6.10M 1.01 ?? R 16:55:16 0:24.79 /usr/bin/X11/dxpa
mat 2228 0.0 0.5 1.82M 504K p5 S + 13:25:03 0:00.02 more
mat 2202 0.0 0.5 2.03M 456K p5 S 13:14:14 0:00.23 -csh (csh)
root 0 0.0 12.7 356M 11.9 ?? R < Nov 07 3-17:26:13 [kernel idle]

1 2 3 4 5 6 7

The ps command output includes the following information that you can
use to diagnose CPU and virtual memory problems:

1 Percentage of CPU time usage (%CPU).
2 Percentage of real memory usage (%MEM).

3 Process virtual address size (VSZ)—This is the total amount of
anonymous memory allocated to the process (in bytes).

4 Real memory (resident set) size of the process (RSS)—This is the total
amount of physical memory (in bytes) mapped to virtual pages (that is,
the total amount of memory that the application has physically used).
Shared memory is included in the resident set size figures; as a result,
the total of these figures may exceed the total amount of physical
memory available on the system.

5 Process status or state (S)—This specifies whether a process is in one
of the following states:

Managing Memory Performance 6–23

• Runnable (R)

• Sleeping (S)—Process has been waiting for an event or a resource
for less than 20 seconds, but it can be interrupted or suspended.
For example, the process can accept user signals or be swapped out.

• Uninterruptible sleeping (U)—Process is waiting for an event or a
resource, but cannot be interrupted or suspended. You cannot use
the kill command to stop these processes; they must come out of
the wait state to accept the signal.

• Idle (I)—Process has been sleeping for more than 20 seconds.

• Stopped (T)—Process has been stopped.

• Halted (H)—Process has been halted.

• Swapped out (W)—Process has been swapped out of memory.

• Locked into memory (L)—Process has been locked into memory and
cannot be swapped out.

• Has exceeded the soft limit on memory requirements (>)

• A process group leader with a controlling terminal (+)

• Has a reduced priority (N)

• Has a raised priority (<)
6 Current CPU time used (TIME), in the format hh:mm:ss.ms.
7 The command that is running (COMMAND).

From the output of the ps command, you can determine which processes
are consuming most of your system’s CPU time and memory resources, and
whether processes are swapped out. Concentrate on processes that are
running or paging. Here are some concerns to keep in mind:

• If a process is using a large amount of memory (see the RSS and VSZ
fields), the process may have excessive memory requirements. See
Section 11.2 for information about decreasing an application’s use of
memory.

• Are duplicate processes running? Use the kill command to terminate
any unnecessary processes. See kill(1) for more information.

• If a process is using a large amount of CPU time, it may be in an infinite
loop. You may have to use the kill command to terminate the process
and then correct the problem by making changes to its source code.

You can also use the Class Scheduler to allocate a percentage of CPU
time to a specific task or application (see Section 7.2.2) or lower the
process’ priority by using either the nice or renice command. These
commands have no effect on memory usage by a process. See nice(8) or
renice(8) for more information.

6–24 Managing Memory Performance

• Check the processes that are swapped out. Examine the S (state) field.
A W entry indicates a process that has been swapped out. If processes
are continually being swapped out, this could indicate a lack of memory
resources. See Section 6.4 for information about increasing memory
resources.

6.3.3 Monitoring Swap Space Usage by Using the swapon Command

Use the swapon -s command to display your swap device configuration.
For each swap partition, the command displays the total amount of
allocated swap space, the amount of swap space that is being used, and the
amount of free swap space. This information can help you determine how
your swap space is being utilized.

An example of the swapon command is as follows:

/usr/sbin/swapon -s
Swap partition /dev/disk/dsk1b (default swap):

Allocated space: 16384 pages (128MB)
In-use space: 10452 pages (63%)
Free space: 5932 pages (36%)

Swap partition /dev/disk/dsk4c:
Allocated space: 128178 pages (1001MB)
In-use space: 10242 pages (7%)
Free space: 117936 pages (92%)

Total swap allocation:

Allocated space: 144562 pages (1.10GB)
Reserved space: 34253 pages (23%)
In-use space: 20694 pages (14%)
Available space: 110309 pages (76%)

You can configure swap space when you first install the operating system,
or you can add swap space at a later date. Application messages, such as
the following, usually indicate that not enough swap space is configured
into the system or that a process limit has been reached:

“unable to obtain requested swap space”
“swap space below 10 percent free”

See Section 2.3.2.3 for information about swap space requirements. See
Section 6.2 for information about adding swap space and distributing swap
space for high performance.

Managing Memory Performance 6–25

6.3.4 Monitoring the UBC by Using the dbx Debugger

If you have not disabled read-ahead, you can monitor the UBC by using the
dbx print command to examine the ufs_getapage_stats data
structure. For example:

/usr/ucb/dbx −k /vmunix /dev/mem
(dbx) print ufs_getapage_stats
struct {

read_looks = 2059022
read_hits = 2022488
read_miss = 36506
alloc_error = 0
alloc_in_cache = 0

}
(dbx)

To calculate the hit rate, divide the value of the read_hits field by the
value of the read_looks field. A good hit rate is a rate above 95 percent.
In the previous example, the hit rate is approximately 98 percent.

6.4 Tuning to Provide More Memory to Processes

If your system is paging or swapping, you may be able to increase the
memory that is available to processes by tuning various kernel subsystem
attributes.

Table 6–3 shows the guidelines for increasing memory resources to
processes and lists the performance benefits as well as tradeoffs. Some of
the guidelines for increasing the memory available to processes may affect
UBC operation and file system caching. Adding physical memory to your
system is the best way to stop paging or swapping.

Table 6–3: Memory Resource Tuning Guidelines

Guideline Performance Benefit Tradeoff

Reduce the number of processes
running at the same time
(Section 6.4.1)

Decreases CPU load and
demand for memory

System performs less
work

Reduce the static size of the
kernel (Section 6.4.2)

Frees memory Not all functionality
may be available

Decrease the borrowed memory
threshold (Section 6.4.3)

Improves system response
time when memory is low

May degrade file
system performance

Decrease the memory allocated
to the AdvFS buffer cache
(Section 6.4.4)

Provides more memory
resources to processes

May degrade AdvFS
performance on
systems that open
and reuse files

6–26 Managing Memory Performance

Table 6–3: Memory Resource Tuning Guidelines (cont.)

Guideline Performance Benefit Tradeoff

Decrease the memory allocated
to AdvFS access-structures
(Section 6.4.5)

Provides more memory
resources to processes

May degrade AdvFS
performance on
low-memory systems
that use AdvFS

Decrease the size of the
metadata buffer cache
(Section 6.4.6)

Provides more memory
resources to processes

May degrade UFS
performance on
small systems

Decrease the size of the namei
cache (Section 6.4.7)

Frees memory May slow lookup
operations and
degrade file system
performance

Increase the percentage of
memory reserved for kernel
malloc allocations
(Section 6.4.8)

Improves network
throughput under a heavy
load

Consumes memory

Reduce process memory
requirements (Section 11.2.6)

Frees memory Program may not
run optimally

The following sections describe the guidelines that will increase the
memory available to processes in detail.

6.4.1 Reducing the Number of Processes Running Simultaneously

You can improve performance and reduce the demand for memory by
running fewer applications simultaneously. Use the at or the batch
command to run applications at offpeak hours.

See at(1) for more information.

6.4.2 Reducing the Static Size of the Kernel

You can reduce the static size of the kernel by deconfiguring any
unnecessary subsystems. Use the sysconfig command to display the
configured subsystems and to delete subsystems. Be sure not to remove any
subsystems or functionality that is vital to your environment.

See Section 3.6 for information about modifying kernel subsystem
attributes.

6.4.3 Decreasing the Borrowed Memory Threshold

You may be able to prevent paging by decreasing the borrowed memory
threshold. If you do this, less memory remains in the UBC when page

Managing Memory Performance 6–27

reclamation begins. The ubc_borrowpercent attribute specifies the UBC
borrowing threshold. See Section 6.1.2.2 for information about borrowed
memory.

Performance Benefit and Tradeoff

Decreasing the borrowed memory threshold may improve the system
response time when memory is low, but may also reduce UBC effectiveness.

You can modify the ubc_borrowpercent attribute without rebooting the
system.

When to Tune

If your workload does not use file systems heavily, you may want to
decrease the borrowed memory threshold.

Recommended Values

The default value of the ubc_borrowpercent attribute is 20 percent.

See Section 3.6 for information about modifying kernel subsystem
attributes.

6.4.4 Decreasing the Size of the AdvFS Buffer Cache

The advfs subsystem attribute AdvfsCacheMaxPercent determines the
maximum amount of memory that can be used for the AdvFS buffer cache.
See Section 6.1.2.3 for information about the AdvFS buffer cache.

Performance Benefit and Tradeoff

To free memory resources, you may want to decrease the amount of
memory allocated to the AdvFS buffer cache. Decreasing the cache size also
decreases the overhead associated with managing the cache.

However, decreasing the size of the AdvFS buffer cache may degrade
AdvFS performance if you reuse many AdvFS files.

You cannot modify the AdvfsCacheMaxPercent attribute without
rebooting the system.

When to Tune

If you are not using AdvFS, decrease the size of the AdvFS buffer cache.

If you are using AdvFS, but most of your data is read or written only once,
reducing the size of the AdvFS buffer cache may improve performance. The
cache lookup time is decreased because the cache contains fewer entries to
search. If you are using AdvFS, but you have a large-memory system, you
also may want to decrease the size of the AdvFS cache.

6–28 Managing Memory Performance

Recommended Values

The default value of the AdvfsCacheMaxPercent attribute is 7 percent of
physical memory. The minimum is 1 percent; the maximum is 30 percent.

If you are not using AdvFS, decrease the cache size to 1 percent.

See Section 3.6 for information about modifying kernel subsystem
attributes.

6.4.5 Decreasing the Memory for AdvFS Access Structures

AdvFS access structures are in-memory data structures that AdvFS uses to
cache low-level information about files that are currently open and files
that were opened but are now closed. Caching open file information can
enhance AdvFS performance if the open files are later reused.

At boot time, the system reserves for AdvFS access structures a portion of
the physical memory that is not wired by the kernel. The memory reserved
is either twice the value of the AdvfsMinFreeAccess attribute or the
value of the AdvfsAccessMaxPercent attribute, whichever is smaller.
Access structures are then placed on the access structure free list, and are
allocated and deallocated according to the kernel configuration and
workload demands.

There are three attributes that control the allocation of AdvFS access
structures:

• The AdvfsAccessMaxPercent attribute controls the maximum
percentage of pageable memory that can be allocated for AdvFS access
structures.

• The AdvfsMinFreeAccess attribute controls the allocation of AdvFS
access structures. At boot time, and when the number of access
structures on the free list is less than the value of the
AdvfsMinFreeAccess attribute, AdvFS allocates access structures,
until the number of access structures on the free list is either twice the
value of the AdvfsMinFreeAccess attribute or the value of the
AdvfsAccessMaxPercent attribute, whichever is smaller.

• The AdvfsMaxFreeAccessPercent attribute controls when access
structures are deallocated from the free list. When the percentage of
access structures on the free list is more than the value of the
AdvfsMaxFreeAccessPercent attribute, and the number of access
structures on the free list is more than twice the value of the
AdvfsMinFreeAccess attribute, AdvFS deallocates access structures.

See Section 9.3.3 for more information about access structures.

Managing Memory Performance 6–29

Performance Benefit and Tradeoff

Decreasing the amount of memory allocated for access structures makes
more memory available to processes and file system buffer caching, but it
may degrade performance on low-memory systems that use AdvFS or
systems that reuse AdvFS files.

You can modify the AdvfsAccessMaxPercent attribute without rebooting
the system.

When to Tune

If you do not use AdvFS, you may want to decrease the value of the
AdvfsMinFreeAccess attribute to minimize the memory allocated to
AdvFS access structures at boot time.

If your workload does not reuse AdvFS files, you may want to decrease the
value of the AdvfsMaxFreeAccessPercent attribute. This will cause the
system to aggressively deallocate free access structures.

If you have a large-memory system, you may want to decrease the value of
the AdvfsAccessMaxPercent attribute. This is because the number of
open files does not scale with the size of system memory as efficiently as
UBC memory usage and process memory usage.

Recommended Values

The default value of the AdvfsAccessMaxPercent attribute is 25 percent
of pageable memory. The minumum value is 5 percent; the maximum value
is 95 percent.

The default value of the AdvfsMinFreeAccess attribute is 128. The
minumum value is 1; the maximum value is 100,000.

The default value of the AdvfsMaxFreeAccessPercent attribute is 80
percent. The minimum value is 5 percent; the maximum value is 95 percent.

See Section 3.6 for information about modifying kernel subsystem
attributes.

6.4.6 Decreasing the Size of the Metadata Buffer Cache

The metadata buffer cache contains recently accessed UFS and CD–ROM
File System (CDFS) metadata. The vfs subsystem attribute bufcache
specifies the percentage of physical memory that the kernel wires for the
metadata buffer cache.

6–30 Managing Memory Performance

Performance Benefit and Tradeoff

Decreasing the size of the metadata buffer cache will increase the amount
of memory that is available to processes and for file system buffer caching.
However, decreasing the size of the cache may degrade UFS performance.

You cannot modify the bufcache attribute without rebooting the system.

When to Tune

If you have a high cache hit rate or if you use only AdvFS, you may want to
decrease the size of the metadata buffer cache.

Recommended Values

The default size of the metadata buffer cache is 3 percent of physical
memory. You can decrease the value of the bufcache attribute to a
minimum of 1 percent.

For VLM systems and systems that use only AdvFS, set the value of the
bufcache attribute to 1 percent.

You can reduce the memory allocated for the metadata buffer cache below 1
percent by decreasing the value of the vfs subsystem attribute bufpages,
which specifies the number of pages in the cache. The default value is 1958
pages.

See Section 3.6 for information about modifying kernel subsystem
attributes.

6.4.7 Decreasing the Size of the namei Cache

The namei cache is used by UFS, AdvFS, CDFS, and NFS to store
information about recently used file names, parent directory vnodes, and
file vnodes. The number of vnodes determines the number of open files. The
namie cache also stores vnode information for files that were referenced but
not found. Having this information in the cache substantially reduces the
amount of searching that is needed to perform pathname translations.

The vfs subsystem attribute name_cache_size specifies the number of
elements in the namei cache.

Performance Benefit and Tradeoff

Decreasing the size of the namei cache can free memory resources.
However, this may degrade file system performance by reducing the
number of cache hits.

You cannot modify the name_cache_size attribute without rebooting.

Managing Memory Performance 6–31

When to Tune

Monitor the namei cache by using the dbx print command to examine the
nchstats data structure. If the hit rate is low, you may want to decrease
the cache size. See Section 9.1.2 for information.

Recommended Values

Decrease the number of elements in the namei cache by decreasing the
value of the name_cache_size attribute. The default value is:

2 * (148 + 10 * maxusers) * 11 / 10

The maximum value is:

2 * max_vnodes * 11 / 10

Make sure that decreasing the size of the namei cache does not degrade file
system performance.

See Section 3.6 for information about modifying kernel subsystem
attributes.

6.4.8 Increasing the Memory Reserved for Kernel malloc Allocations

If you are running a large Internet application, you may need to increase
the amount of memory reserved for the kernel malloc subsystem. To do
this, increase the value of the generic subsystem attribute
kmemreserve_percent, which increases the percentage of physical
memory reserved for kernel memory allocations that are less than or equal
to the page size (8 KB).

Performance Benefit and Tradeoff

Increasing the value of the kmemreserve_percent attribute improves
network throughput by reducing the number of packets that are dropped
while the system is under a heavy network load. However, increasing this
value consumes memory.

You can modify the kmemreserve_percent attribute without rebooting.

When to Tune

You may want to increase the value of the kmemreserve_percent
attribute if the output of the netstat command shows dropped packets, or
if the output of the vmstat -M command shows dropped packets under the
fail_nowait heading. This may occur under a heavy network load.

6–32 Managing Memory Performance

Recommended Values

The default value of the kmemreserve_percent attribute is 0, which
means that the percentage of reserved physical memory will be 0.4 percent
of available memory or 256, whichever is the smallest value.

Increase the value of the kmemreserve_percent attribute (up to the
maximum of 75) by small increments until the output of the vmstat -M
command shows no entries under the fail_nowait heading.

See Section 3.6 for information about modifying kernel subsystem
attributes.

6.5 Tuning Paging and Swapping Operation

You may be able to improve performance by modifying paging and
swapping operations. Very-large memory (VLM) systems should avoid
paging and swapping.

Table 6–4 describes the guidelines for controlling paging and swapping and
lists the performance benefits and any tradeoffs.

Table 6–4: Paging and Swapping Tuning Guidelines

Guideline Performance Benefit Tradeoff

Increase the paging threshold
(Section 6.5.1)

Maintains performance
when free memory is
exhausted

May waste memory

Increase the rate of swapping
(Section 6.5.2)

Increases process
throughput

Decreases interactive
response performance

Decrease the rate of swapping
(Section 6.5.3)

Improves process
interactive response
performance

Decreases process
throughput

Enable aggressive swapping
(Section 6.5.4)

Improves system
throughput

Degrades interactive
response performance

Limit process resident set size
(Section 6.5.5)

Prevents a process from
being swapped out
because of a large
resident set size

May increase paging
activity

Use memory locking
(Section 11.2.7)

Prevents a process from
being swapped out

Improves process
throughput

Increase the rate of dirty page
prewriting (Section 6.5.6)

Prevents drastic
performance degradation
when memory is
exhausted

Decreases peak
workload performance

Managing Memory Performance 6–33

Table 6–4: Paging and Swapping Tuning Guidelines (cont.)

Guideline Performance Benefit Tradeoff

Decrease the rate of dirty page
prewriting (Section 6.5.7)

Improves peak workload
performance

May cause drastic
performance
degradation when
memory is exhausted

Increase the size of the page-in
and page-out clusters
(Section 6.5.8)

Improves peak workload
performance

Decreases total
system workload
performance

Increase the swap device I/O
queue depth for page ins and
swap outs (Section 6.5.9)

Increases overall system
throughput

Consumes memory

Decrease the swap device I/O
queue depth for page ins and
swap outs (Section 6.5.10)

Improves the interactive
response time and frees
memory

Decreases system
throughput

Increase the swap device I/O
queue depth for page outs
(Section 6.5.11)

Frees memory and
increases throughput

Decreases interactive
response performance

Decrease the swap device I/O
queue depth for page outs
(Section 6.5.12)

Improves interactive
response time

Consumes memory

The following sections describe the guidelines for controlling paging and
swapping in detail.

6.5.1 Increasing the Paging Threshold

The vm subsystem attribute vm_page_free_target specifies the
minimum number of pages on the free list before paging begins. Increasing
the paging threshold may prevent performance problems when a severe
memory shortage occurs. See Section 6.1.4 for information about paging
and swapping attributes.

Performance Benefit and Tradeoff

Increasing the value of the vm_page_free_target attribute (the paging
threshold) may improve performance when free memory is exhausted.
However, this may increase paging activity on a low-memory system. In
addition, an excessively high value can waste memory.

You can modify the vm_page_free_target attribute without rebooting
the system.

6–34 Managing Memory Performance

When to Tune

You may want to increase the value of the vm_page_free_target
attribute if you have sufficient memory resources, and your system
experiences performance problems when a severe memory shortage occurs.
Do not increase the value if the system is not paging.

Recommended Values

The default value of the vm_page_free_target attribute is based on the
amount of memory in the system. Use the following table to determine the
default value for your system:

Size of Memory Value of vm_page_free_target

Up to 512 MB 128

513 MB to 1024 MB 256

1025 MB to 2048 MB 512

2049 MB to 4096 MB 768

More than 4096 MB 1024

If you want to increase the value of the vm_page_free_target attribute,
start at the default value and then double the value. Do not specify a value
that is more than 1024 pages or 8 MB.

Do not decrease the value of the vm_page_free_target attribute.

If you increase the default value of the vm_page_free_target attribute,
you may also want to increase the value of the vm_page_free_min
attribute.

See Section 3.6 for information about modifying kernel subsystem
attributes.

6.5.2 Increasing the Rate of Swapping

Swapping has a drastic impact on system performance. You can modify
kernel subsystem attributes to control when swapping begins and ends.
VLM systems and systems running large programs should avoid swapping.
Hard swapping begins when the number of pages on the free list is less
than the value of the vm subsystem attribute vm_page_free_optimal for
five seconds. See Section 6.1.4 for more information about paging and
swapping attributes.

Managing Memory Performance 6–35

Performance Benefit and Tradeoff

Increasing the rate of swapping (swapping earlier during page reclamation)
by raising the value of the vm_page_free_optimal attribute moves
long-sleeping threads out of memory, frees memory, and increases
throughput. As more processes are swapped out, fewer processes are
actually executing and more work is done. However, when an outswapped
process is needed, it will have a long latency, so increasing the rate of
swapping may degrade interactive response time.

You can modify the vm_page_free_optimal attribute without rebooting
the system.

When to Tune

You do not need to modify task swapping if the system is not paging.

Recommended Values

The default value of the vm_page_free_optimal attribute is based on the
values of the vm_page_free_target and vm_page_free_min attributes.
Increase the value of the vm_page_free_optimal only by 2 pages at a
time. Do not specify a value that is more than the value of the vm
subsystem attribute vm_page_free_target.

See Section 3.6 for information about modifying kernel subsystem
attributes.

6.5.3 Decreasing the Rate of Swapping

Swapping has a drastic impact on system performance. You can modify
kernel subsystem attributes to control when swapping begins and ends.
VLM systems and systems running large programs should avoid swapping.
Hard swapping begins when the number of pages on the free list is less
than the value of the vm subsystem attribute vm_page_free_optimal for
five seconds. See Section 6.1.4 for more information about paging and
swapping attributes.

Performance Benefit and Tradeoff

Decreasing the rate of swapping (swapping later during page reclamation)
by decreasing the value of the vm_page_free_optimal attribute improves
interactive response time, but at the cost of throughput.

You can modify the vm_page_free_optimal attribute without rebooting
the system.

6–36 Managing Memory Performance

When to Tune

You do not need to modify task swapping if the system is not paging.

Recommended Values

The default value of the vm_page_free_optimal attribute is based on the
values of the vm_page_free_target and vm_page_free_min attributes.
Decrease the value of the vm_page_free_optimal attribute by 2 pages at
a time. Do not specify a value that is less than the value of the vm
subsystem attribute vm_page_free_min.

See Section 3.6 for information about modifying kernel attributes.

6.5.4 Enabling Aggressive Task Swapping

Swapping begins when the free page list falls below the swapping
threshold, as specified by the vm subsystem attribute vm_page_free_swap.
Tasks are swapped in when the demand for memory decreases. You can use
the vm subsystem attribute vm_aggressive_swap to enable aggressive
task swapping, which causes the virtual memory subsystem to swap in
processes at a rate that is slower than normal task swapping.

Performance Benefit and Tradeoff

Aggressive task swapping improves system throughput, but it degrades the
interactive response performance.

You can modify the vm_aggressive_swap attribute without rebooting.

When to Tune

Usually, you do not need to enable aggressive task swapping.

Recommended Values

By default, the vm_aggressive_swap attribute is disabled (set to 0). To
enable aggressive task swapping, set the value of the
vm_aggressive_swap attribute to 1.

See Section 3.6 for information about modifying kernel attributes.

6.5.5 Limiting the Resident Set Size to Avoid Swapping

By default, Tru64 UNIX does not limit the resident set size for a process. If
the number of free pages cannot keep up with the demand for memory,
processes with large resident set sizes are likely candidates for swapping.
To avoid swapping a process because it has a large resident set size, you
can specify process-specific and system-wide limits for resident set sizes.

Managing Memory Performance 6–37

To set a limit on the resident set size for a specific process, use the
setrlimit system call to specify a value (in bytes) for the RLIMIT_RSS
resource parameter.

To set a system-wide limit, use the vm subsystem attribute
vm_rss_maxpercent, which specifies the maximum percentage of
managed pages that can be used for a resident set.

If you limit the resident set size, either for a specific process or system-wide,
you must also use the vm subsystem attribute anon_rss_enforce to set
either a soft or hard limit on the size of a resident set. If you enable a hard
limit, a task’s resident set cannot exceed the limit. If a task reaches the
hard limit, pages of the task’s anonymous memory are moved to swap
space to keep the resident set size within the limit.

If you enable a soft limit, anonymous memory paging will start when the
following conditions are met:

• A task’s resident set exceeds the system-wide or per-process limit.

• The number of pages of the free page list is less than the value of the
vm subsystem attribute vm_rss_block_target.

A task that has exceeded its soft limit remains blocked until the number of
pages on the free page list reaches the value of the vm subsystem attribute
vm_rss_wakeup_target attribute.

Performance Benefit and Tradeoff

Limiting resident set sizes will prevent a process from being swapped out
because of a large resident set size.

You cannot modify the anon_rss_enforce attribute without rebooting the
system. You can modify the vm_rss_maxpercent, vm_rss_block_target,
and vm_rss_wakeup_target attributes without rebooting the system.

When to Tune

You do not need to limit resident set sizes if the system is not paging.

Recommended Values

To set a system-wide limit, use the vm subsystem attribute
vm_rss_maxpercent to specify the maximum percentage of managed
pages that can be used for a resident set. The minimum value of the
attribute is 1; the maximum and default values are 100. Decrease the
default value by decrements of 10 percent.

Use the attribute anon_rss_enforce to set either a soft or hard limit on
the size of a resident set. If set to 0 (zero), the default, there is no limit on

6–38 Managing Memory Performance

the size of a process’ resident set. Set the attribute to 1 to enable a soft
limit; set the attribute to 2 to enable a hard limit.

If you enable a soft limit, use the vm_rss_block_target to specify the
free page list threshold at which anonymous paging begins. The default
value of the vm_rss_block_target attribute is the same as the default
value of the vm_page_free_optimal attribute, which specifies the
swapping threshold. You can increase the default value of the
vm_rss_block_target attribute to delay paging anonymous memory. You
can decrease the default value to start paging earlier. The minimum value
of the vm_rss_block_target attribute is 0; the maximum value is 2 GB.

If you enable a soft limit, use the vm subsystem attribute
vm_rss_wakeup_target attribute to specify the free page list threshold at
which a task that has exceeded its soft limit becomes unblocked. The
default value of the vm_rss_wakeup_target attribute is the same as the
default value of the vm_page_free_optimal attribute, which specifies the
swapping threshold. You can increase the value of the
vm_rss_wakeup_target attribute to free more memory before unblocking
the task. You can decrease the value so that the task is unblocked sooner,
but less memory is freed. The minimum value of the
vm_rss_block_target attribute is 0; the maximum value is 2 GB.

6.5.6 Increasing Modified Page Prewriting

The virtual memory subsystem attempts to prevent a memory shortage by
prewriting modified (dirty) pages to disk. To reclaim a page that has been
prewritten, the virtual memory subsystem only needs to validate the page,
which can improve performance.

When the virtual memory subsystem anticipates that the pages on the free
list will soon be depleted, it prewrites to disk the oldest inactive and UBC
LRU pages.

The value of the vm subsystem attribute vm_page_prewrite_target
determines the number of inactive pages that the subsystem will prewrite
and keep clean. The vm_ubcdirtypercent attribute specifies the
modified UBC LRU page threshold. When the number of modified UBC
LRU pages is more than this value, the virtual memory subsystem
prewrites to disk the oldest modified UBC LRU pages.

See Section 6.1.4.1 for more information about modified page prewriting.

Managing Memory Performance 6–39

Performance Benefit and Tradeoff

Increasing the rate of modified page prewriting will prevent a drastic
performance degradation when memory is exhausted, but will also reduce
peak workload performance. Increasing the rate of modified page
prewriting will also increase the amount of continuous disk I/O, but will
provide better file system integrity if a system crash occurs.

You can modify the vm_page_prewrite_target or vm_ubcdirtypercent
attribute without rebooting the system.

When to Tune

You do not need to modify dirty page prewriting if the system is not paging.

Recommended Values

To increase the rate of inactive dirty page prewriting, increase the value of
the vm_page_prewrite_target attribute by increments of 64 pages. The
default value is vm_page_free_target * 2.

The default value of the vm_ubcdirtypercent attribute 10 percent of the
total UBC LRU pages (that is, 10 percent of the total UBC LRU pages
must be dirty before the oldest UBC LRU pages are prewritten). To
increase the rate of UBC LRU dirty page prewriting, decrease the value of
the vm_ubcdirtypercent attribute by decrements of 1 percent.

See Section 3.6 for information about modifying kernel attributes.

6.5.7 Decreasing Modified Page Prewriting

The virtual memory subsystem attempts to prevent a memory shortage by
prewriting modified (dirty) pages to disk. To reclaim a page that has been
prewritten, the virtual memory subsystem only needs to validate the page,
which can improve performance.

When the virtual memory subsystem anticipates that the pages on the free
list will soon be depleted, it prewrites to disk the oldest inactive and UBC
LRU pages.

The value of the vm subsystem attribute vm_page_prewrite_target
determines the number of inactive pages that the subsystem will prewrite
and keep clean. The vm_ubcdirtypercent attribute specifies the
modified UBC LRU page threshold. When the number of modified UBC
LRU pages is more than this value, the virtual memory subsystem
prewrites to disk the oldest modified UBC LRU pages.

See Section 6.1.4.1 for more information about modified page prewriting.

6–40 Managing Memory Performance

Performance Benefit and Tradeoff

Decreasing the rate of modified page prewriting will improve peak
workload performance, but it will cause a drastic performance degradation
when memory is exhausted.

You can modify the vm_page_prewrite_target and
vm_ubcdirtypercent attributes without rebooting the system.

When to Tune

You do not need to modify inactive dirty page writing if the system is not
paging. Decrease UBC LRU dirty page prewriting only for benchmarking.

Recommended Values

To decrease the rate of inactive dirty page prewriting, decrease the default
value of the vm_page_prewrite_target attribute. The default value is
vm_page_free_target * 2.

The default value of the vm_ubcdirtypercent attribute is 10 percent of
the total UBC LRU pages (that is, 10 percent of the UBC LRU pages must
be dirty before the UBC LRU pages are prewritten). To decrease the rate of
UBC LRU dirty page prewriting, increase the value of the
vm_ubcdirtypercent attribute.

See Section 3.6 for information about modifying kernel attributes.

6.5.8 Increasing the Size of the Page-In and Page-Out Clusters

The virtual memory subsystem reads in and writes out additional pages in
an attempt to anticipate pages that it will need. The vm subsystem attribute
vm_max_rdpgio_kluster specifies the maximum size of an anonymous
page-in cluster. The vm subsystem attribute vm_max_wrpgio_kluster
specifies the maximum size of an anonymous page-out cluster.

Performance Benefit and Tradeoff

If you increase the value of the vm_max_rdpgio_kluster attribute, the
system will spend less time page faulting because more pages will be in
memory. This will increase the peak workload performance, but will
consume more memory and decrease system performance.

Increasing the value of the vm_max_wrpgio_kluster attribute improves
the peak workload performance and conserves memory, but may cause
more page ins and decrease the total system workload performance.

You cannot modify the vm_max_rdpgio_kluster and
vm_max_wrpgio_kluster attributes without rebooting the system.

Managing Memory Performance 6–41

When to Tune

You may want to increase the size of the page-in clusters if you have a
large-memory system and you are swapping processes. You may want to
increase the size of the page-out clusters if you are paging, and you are
swapping processes.

Recommended Values

The default value of the vm_max_rdpgio_kluster attribute is 16384
bytes (2 pages). The default value of the vm_max_wrpgio_kluster
attribute is 32768 bytes (4 pages).

See Section 3.6 for information about modifying kernel subsystem
attributes.

6.5.9 Increasing the Swap I/O Queue Depth for Page Ins and Swap
Outs

Synchronous swap buffers are used for page-in page faults and for swap
outs. For each swap device, the vm subsystem attribute
vm_syncswapbuffers specifies the maximum swap device I/O queue
depth for page ins and swap outs.

Performance Benefit and Tradeoff:

Increasing the value of the vm_syncswapbuffers attribute increases
overall system throughput, but it consumes memory.

You can modify the vm_syncswapbuffers attribute without rebooting the
system.

When to Tune:

Usually, you do not need to decrease the swap I/O queue depth.

Recommended Values:

The default value of the vm_syncswapbuffers attribute is 128. The value
should be equal to the approximate number of simultaneously running
processes that the system can easily handle.

See Section 3.6 for information about modifying kernel subsystem
attributes.

6–42 Managing Memory Performance

6.5.10 Decreasing the Swap I/O Queue Depth for Page Ins and Swap
Outs

Synchronous swap buffers are used for page-in page faults and for swap
outs. The vm subsystem attribute vm_syncswapbuffers specifies the
maximum swap device I/O queue depth for page ins and swap outs.

Performance Benefit and Tradeoff

Decreasing the value of the vm_syncswapbuffers attribute decreases
memory demands and improves interactive response time, but it decreases
overall system throughput.

You can modify the vm_syncswapbuffers attribute without rebooting the
system.

When to Tune

Usually, you do not have to decrease the swap I/O queue depth.

Recommended Values

The default value of the vm_syncswapbuffers attribute is 128. The value
should be equal to the approximate number of simultaneously running
processes that the system can easily handle.

See Section 3.6 for information about modifying kernel subsystem
attributes.

6.5.11 Increasing the Swap I/O Queue Depth for Page Outs

Asynchronous swap buffers are used for asynchronous page outs and for
prewriting modified pages. The vm subsystem attribute
vm_asyncswapbuffers controls the maximum depth of the swap device
I/O queue for page outs.

Performance Benefit and Tradeoff

Increasing the value of the vm_asyncswapbuffers attribute will free
memory and increase the overall system throughput.

You can modify the vm_asyncswapbuffers attribute without rebooting
the system.

When to Tune

If you are using LSM, you may want to increase the page-out rate. Be
careful if you increase the value of the vm_asyncswapbuffers attribute,
because this will cause page-in requests to lag asynchronous page-out
requests.

Managing Memory Performance 6–43

Recommended Values

The default value of the vm_asyncswapbuffers attribute is 4. You can
specify a value that is the approximate number of I/O transfers that a swap
device can handle at one time.

See Section 3.6 for information about modifying kernel subsystem
attributes.

6.5.12 Decreasing the Swap I/O Queue Depth for Page Outs

Asynchronous swap buffers are used for asynchronous page outs and for
prewriting modified pages. The vm subsystem attribute
vm_asyncswapbuffers controls the maximum depth of the swap device
I/O queue for page outs.

Performance Benefit and Tradeoff

Decreasing the vm_asyncswapbuffers attribute will use more memory,
but it will improve the interactive response time.

You can modify the vm_asyncswapbuffers attribute without rebooting
the system.

When to Tune

Usually, you do not need to decrease the swap I/O queue depth.

Recommended Values

The default value of the vm_asyncswapbuffers attribute is 4. You can
specify a value that is the approximate number of I/O transfers that a swap
device can handle at one time.

See Section 3.6 for information about modifying kernel subsystem
attributes.

6.6 Reserving Physical Memory for Shared Memory

Granularity hints allow you to reserve a portion of dynamically wired
physical memory at boot time for shared memory. This functionality allows
the translation lookaside buffer to map more than a single page, and
enables shared page table entry functionality, which may result in more
cache hits.

On some database servers, using granularity hints provides a 2 to 4
percent run-time performance gain that reduces the shared memory detach
time. See your database application documentation to determine if you
should use granularity hints.

6–44 Managing Memory Performance

For most applications, use the Segmented Shared Memory (SSM)
functionality (the default) instead of granularity hints.

To enable granularity hints, you must specify a value for the vm subsystem
attribute gh_chunks. In addition, to make granularity hints more effective,
modify applications to ensure that both the shared memory segment
starting address and size are aligned on an 8-MB boundary.

Section 6.6.1 and Section 6.6.2 describe how to enable granularity hints.

6.6.1 Tuning the Kernel to Use Granularity Hints

To use granularity hints, you must specify the number of 4-MB chunks of
physical memory to reserve for shared memory at boot time. This memory
cannot be used for any other purpose and cannot be returned to the system
or reclaimed.

To reserve memory for shared memory, specify a nonzero value for the
gh_chunks attribute. For example, if you want to reserve 4 GB of memory,
specify 1024 for the value of gh_chunks (1024 * 4 MB = 4 GB). If you
specify a value of 512, you will reserve 2 GB of memory.

The value you specify for the gh_chunks attribute depends on your
database application. Do not reserve an excessive amount of memory,
because this decreases the memory available to processes and the UBC.

_______________________ Note _______________________

If you enable granularity hints, disable the use of segmented
shared memory by setting the value of the ipc subsystem
attribute ssm_threshold attribute to zero.

You can determine if you have reserved the appropriate amount of memory.
For example, you can initially specify 512 for the value of the gh_chunks
attribute. Then, invoke the following sequence of dbx commands while
running the application that allocates shared memory:

/usr/ucb/dbx -k /vmunix /dev/mem

(dbx) px &gh_free_counts
0xfffffc0000681748
(dbx) 0xfffffc0000681748/4X
fffffc0000681748: 0000000000000402 0000000000000004
fffffc0000681758: 0000000000000000 0000000000000002
(dbx)

The previous output shows the following:

• The first number (402) specifies the number of 512-page chunks (4 MB).

Managing Memory Performance 6–45

• The second number (4) specifies the number of 64-page chunks.

• The third number (0) specifies the number of 8-page chunks.

• The fourth number (2) specifies the number of 1-page chunks.

To save memory, you can reduce the value of the gh_chunks attribute until
only one or two 512-page chunks are free while the application that uses
shared memory is running.

The following vm subsystem attributes also affect granularity hints:

• gh_min_seg_size

Specifies the shared memory segment size above which memory is
allocated from the memory reserved by the gh_chunks attribute. The
default is 8 MB.

• gh_fail_if_no_mem

When set to 1 (the default), the shmget function returns a failure if the
requested segment size is larger than the value specified by the
gh_min_seg_size attribute, and if there is insufficient memory in the
gh_chunks area to satisfy the request.

If the value of the gh_fail_if_no_mem attribute is 0, the entire
request will be satisfied from the pageable memory area if the request
is larger than the amount of memory reserved by the gh_chunks
attribute.

• gh_keep_sorted

Specifies whether the memory reserved for granularity hints is sorted.
The default does not sort reserved memory.

• gh_front_alloc

Specifies whether the memory reserved for granularity hints is
allocated from low physical memory addresses (the default). This
functionality is useful if you have an odd number of memory boards.

In addition, messages will display on the system console indicating
unaligned size and attach address requests. The unaligned attach
messages are limited to one per shared memory segment.

See Section 3.6 for information about modifying kernel subsystem
attributes.

6.6.2 Modifying Applications to Use Granularity Hints

You can make granularity hints more effective by making both the shared
memory segment starting address and size aligned on an 8-MB boundary.

6–46 Managing Memory Performance

To share third-level page table entries, the shared memory segment attach
address (specified by the shmat function) and the shared memory segment
size (specified by the shmget function) must be aligned on an 8-MB
boundary. This means that the lowest 23 bits of both the address and the
size must be zero.

The attach address and the shared memory segment size is specified by the
application. In addition, System V shared memory semantics allow a
maximum shared memory segment size of 2 GB minus 1 byte. Applications
that need shared memory segments larger than 2 GB can construct these
regions by using multiple segments. In this case, the total shared memory
size specified by the user to the application must be 8-MB aligned. In
addition, the value of the shm_max attribute, which specifies the maximum
size of a System V shared memory segment, must be 8-MB aligned.

If the total shared memory size specified to the application is greater than 2
GB, you can specify a value of 2139095040 (or 0x7f800000) for the value of
the shm_max attribute. This is the maximum value (2 GB minus 8 MB) that
you can specify for the shm_max attribute and still share page table entries.

Use the following dbx command sequence to determine if page table entries
are being shared:

/usr/ucb/dbx -k /vmunix /dev/mem

(dbx) p *(vm_granhint_stats *)&gh_stats_store
struct {

total_mappers = 21
shared_mappers = 21
unshared_mappers = 0
total_unmappers = 21
shared_unmappers = 21
unshared_unmappers = 0
unaligned_mappers = 0
access_violations = 0
unaligned_size_requests = 0
unaligned_attachers = 0
wired_bypass = 0
wired_returns = 0

}
(dbx)

For the best performance, the shared_mappers kernel variable should be
equal to the number of shared memory segments, and the
unshared_mappers, unaligned_attachers, and
unaligned_size_requests variables should be zero.

Because of how shared memory is divided into shared memory segments,
there may be some unshared segments. This occurs when the starting
address or the size is aligned on an 8-MB boundary. This condition may be
unavoidable in some cases. In many cases, the value of total_unmappers
will be greater than the value of total_mappers.

Managing Memory Performance 6–47

Shared memory locking changes a lock that was a single lock into a hashed
array of locks. The size of the hashed array of locks can be modified by
modifying the value of the vm subsystem attribute vm_page_lock_count.
The default value is zero.

6–48 Managing Memory Performance

7
Managing CPU Performance

You may be able to improve performance by optimizing CPU resources.
This chapter describes how to perform the following tasks:

• Obtain information about CPU performance (Section 7.1)

• Improve CPU performance (Section 7.2)

7.1 Gathering CPU Performance Information

Table 7–1 describes the tools you can use to gather information about CPU
usage.

Table 7–1: CPU Monitoring Tools

Name Use Description

sys_check Analyzes system
configuration and
displays statistics
(Section 4.3)

Creates an HTML file that describes the system
configuration, and can be used to diagnose
problems. This utility checks kernel variable
settings and memory and CPU resources, and
provides performance data and lock statistics
for SMP systems and kernel profiles.
The sys_check utility performs a basic
analysis of your configuration and kernel
variable settings, and provides warnings and
tuning guidelines if necessary. See
sys_check(8) for more information.

ps Displays CPU and
virtual memory
usage by processes
(Section 6.3.2 and
Section 7.1.1)

Displays current statistics for running
processes, including CPU usage, the processor
and processor set, and the scheduling priority.
The ps command also displays virtual memory
statistics for a process, including the number of
page faults, page reclamations, and page ins;
the percentage of real memory (resident set)
usage; the resident set size; and the virtual
address size.

Managing CPU Performance 7–1

Table 7–1: CPU Monitoring Tools (cont.)

Name Use Description

Process
Tuner

Displays CPU and
virtual memory
usage by processes

Displays current statistics for running
processes. Invoke the Process Tuner graphical
user interface (GUI) from the CDE Application
Manager to display a list of processes and their
characteristics, display the processes running
for yourself or all users, display and modify
process priorities, or send a signal to a process.
While monitoring processes, you can select
parameters to view (percent of CPU usage,
virtual memory size, state, and nice priority)
and also sort the view.

vmstat Displays virtual
memory and CPU
usage statistics
(Section 7.1.2)

Displays information about process threads,
virtual memory usage (page lists, page faults,
page ins, and page outs), interrupts, and CPU
usage (percentages of user, system and idle
times). First reported are the statistics since
boot time; subsequent reports are the statistics
since a specified interval of time.

monitor Collects
performance data

Collects a variety of performance data on a
running system and either displays the
information in a graphical format or saves it to
a binary file. The monitor command is
available on the Tru64 UNIX Freeware
CD-ROM. See
ftp://gatekeeper.dec.com/pub/DEC for
information.

top Provides continuous
reports on the
system

Provides continuous reports on the state of the
system, including a list of the processes using
the most CPU resources. The top command is
available on the Tru64 UNIX Freeware
CD-ROM. See
ftp://eecs.nwu.edu/pub/top for
information.

ipcs Displays IPC
statistics

Displays interprocess communication (IPC)
statistics for currently active message queues,
shared-memory segments, semaphores, remote
queues, and local queue headers. The
information provided in the following fields
reported by the ipcs −a command can be
especially useful: QNUM, CBYTES, QBYTES,
SEGSZ, and NSEMS. See ipcs(1) for more
information.

7–2 Managing CPU Performance

Table 7–1: CPU Monitoring Tools (cont.)

Name Use Description

uptime Displays the system
load average
(Section 7.1.3)

Displays the number of jobs in the run queue
for the last 5 seconds, the last 30 seconds, and
the last 60 seconds. The uptime command also
shows the number of users logged into the
system and how long a system has been
running.

w Reports system load
averages and user
information

Displays the current time, the amount of time
since the system was last started, the users
logged in to the system, and the number of jobs
in the run queue for the last 5 seconds, 30
seconds, and 60 seconds.
The w command also displays information
about system users, including login and process
information. See w(1) for more information.

xload Monitors the
system load average

Displays the system load average in a
histogram that is periodically updated. See
xload(1X) for more information.

(kdbx)
cpustat

Reports CPU
statistics
(Section 7.1.4)

Displays CPU statistics, including the
percentages of time the CPU spends in various
states.

(kdbx)
lockstats

Reports lock
statistics
(Section 7.1.5)

Displays lock statistics for each lock class on
each CPU in the system.

The following sections describe some of these commands in detail.

7.1.1 Monitoring CPU Usage by Using the ps Command

The ps command displays a snapshot of the current status of the system
processes. You can use it to determine the current running processes
(including users), their state, and how they utilize system memory. The
command lists processes in order of decreasing CPU usage so you can
identify which processes are using the most CPU time.

See Section 6.3.2 for detailed information about using the ps command to
diagnose CPU performance problems.

7.1.2 Monitoring CPU Statistics by Using the vmstat Command

The vmstat command shows the virtual memory, process, and CPU
statistics for a specified time interval. The first line of output displays

Managing CPU Performance 7–3

statistics since reboot time; each subsequent line displays statistics since
the specified time interval.

An example of the vmstat command is as follows; output is provided in
one-second intervals:

/usr/ucb/vmstat 1
Virtual Memory Statistics: (pagesize = 8192)
procs memory pages intr cpu
r w u act free wire fault cow zero react pin pout in sy cs us sy id
2 66 25 6417 3497 1570 155K 38K 50K 0 46K 0 4 290 165 0 2 98
4 65 24 6421 3493 1570 120 9 81 0 8 0 585 865 335 37 16 48
2 66 25 6421 3493 1570 69 0 69 0 0 0 570 968 368 8 22 69
4 65 24 6421 3493 1570 69 0 69 0 0 0 554 768 370 2 14 84
4 65 24 6421 3493 1570 69 0 69 0 0 0 865 1K 404 4 20 76

The following fields are particularly important for CPU monitoring:

• Process information (procs):

– r — Number of threads that are running or can run.

– w — Number of threads that are waiting interruptibly (waiting for
an event or a resource, but can be interrupted or suspended). For
example, the thread can accept user signals or be swapped out of
memory.

– u — Number of threads that are waiting uninterruptibly (waiting
for an event or a resource, but cannot be interrupted or suspended).
For example, the thread cannot accept user signals; it must come
out of the wait state to take a signal. Processes that are waiting
uninterruptibly cannot be stopped by the kill command.

• CPU usage information (cpu):

– us — Percentage of user time for normal and priority processes.
User time includes the time the CPU spent executing library
routines.

– sy — Percentage of system time. System time includes the time the
CPU spent executing system calls.

– id — Percentage of idle time.

See Section 6.3.1 for detailed information about the using the vmstat
command to diagnose performance problems.

To use the vmstat command to diagnose a CPU performance problem,
check the user (us), system (sy), and idle (id) time split. You must
understand how your applications use the system to determine the
appropriate values for these times. The goal is to keep the CPU as
productive as possible. Idle CPU cycles occur when no runnable processes
exist or when the CPU is waiting to complete an I/O or memory request.

7–4 Managing CPU Performance

The following list describes how to interpret the values for user, system,
and idle time:

• System time (sy)—A high percentage of system time may indicate a
system bottleneck, which can be caused by excessive system calls,
device interrupts, context switches, soft page faults, lock contention, or
cache missing.

A high percentage of system time and a low percentage of idle time may
indicate that something in the application load is stimulating the
system with high overhead operations. Such overhead operations could
consist of high system call frequencies, high interrupt rates, large
numbers of small I/O transfers, or large numbers of IPCs or network
transfers.

A high percentage of system time and low percentage of idle time may
also be caused by failing hardware. Use the uerf command to check
your hardware.

A high percentage of system time may also indicate that the system is
thrashing; that is, the amount of memory available to the virtual
memory subsystem has gotten so low that the system is spending all its
time paging and swapping in an attempt to regain memory. A system
that spends more than 50 percent of its time in system mode and idle
mode may not have enough memory resources. See Section 6.4 for
information about increasing memory resources.

• Idle time (id)—A high percentage of idle time on one or more
processors indicates either:

– Threads are blocked because the CPU is waiting for some event or
resource (for example, memory or I/O)

– Threads are idle because the CPU is not busy

If you have a high idle time and poor response time, and you are sure
that your system has a typical load, one or more of the following
problems may exist:

– The hardware may have reached its capacity

– A kernel data structure is exhausted

– You may have a memory, disk I/O, or network bottleneck

If the idle time percentage is very low but performance is acceptable,
your system is utilizing its CPU resources efficiently.

• User time (us)—A high percentage of user time can be a characteristic
of a well-performing system. However, if the system has poor
performance, a high percentage of user time may indicate a user code
bottleneck, which can be caused by inefficient user code, insufficient

Managing CPU Performance 7–5

CPU processing power, or excessive memory latency or cache missing.
See Section 7.2 for information on optimizing CPU resources.

Use profiling to determine which sections of code consume the most
processing time. See Section 11.1 and the Programmer’s Guide for more
information on profiling.

A high percentage of user time and a low percentage of idle time may
indicate that your application code is consuming most of the CPU. You
can optimize the application, or you may need a more powerful
processor. See Section 7.2 for information on optimizing CPU resources.

7.1.3 Monitoring the Load Average by Using the uptime Command

The uptime command shows how long a system has been running and the
load average. The load average counts the jobs that are waiting for disk
I/O, and applications whose priorities have been changed with either the
nice or the renice command. The load average numbers give the average
number of jobs in the run queue for the last 5 seconds, the last 30 seconds,
and the last 60 seconds.

An example of the uptime command is as follows:

/usr/ucb/uptime
1:48pm up 7 days, 1:07, 35 users, load average: 7.12, 10.33, 10.31

The command output displays the current time, the amount of time since
the system was last started, the number of users logged into the system,
and the load averages for the last 5 seconds, the last 30 seconds, and the
last 60 seconds.

From the command output, you can determine whether the load is
increasing or decreasing. An acceptable load average depends on your type
of system and how it is being used. In general, for a large system, a load of
10 is high, and a load of 3 is low. Workstations should have a load of 1 or 2.

If the load is high, look at what processes are running with the ps
command. You may want to run some applications during offpeak hours.
See Section 6.3.2 for information about the ps command.

You can also lower the priority of applications with the nice or renice
command to conserve CPU cycles. See nice(1) and renice(8) for more
information.

7.1.4 Checking CPU Usage by Using the kdbx Debugger

The kdbx debugger cpustat extension displays CPU statistics, including
the percentages of time the CPU spends in the following states:

7–6 Managing CPU Performance

• Running user-level code

• Running system-level code

• Running at a priority set with the nice function

• Idle

• Waiting (idle with input or output pending)

The cpustat extension to the kdbx debugger can help application
developers determine how effectively they are achieving parallelism across
the system.

By default, the kdbx cpustat extension displays statistics for all CPUs in
the system. For example:

/usr/bin/kdbx −k /vmunix /dev/mem
(kdbx)cpustat
Cpu User (%) Nice (%) System (%) Idle (%) Wait (%)
===== ========== ========== ========== ========== ==========

0 0.23 0.00 0.08 99.64 0.05
1 0.21 0.00 0.06 99.68 0.05

See the Kernel Debugging manual and kdbx(8) for more information.

7.1.5 Checking Lock Usage by Using the kdbx Debugger

The kdbx debugger lockstats extension displays lock statistics for each
lock class on each CPU in the system, including the following information:

• Address of the structure

• Class of the lock for which lock statistics are being recorded

• CPU for which the lock statistics are being recorded

• Number of instances of the lock

• Number of times that processes have tried to get the lock

• Number of times that processes have tried to get the lock and missed

• Percentage of time that processes miss the lock

• Total time that processes have spent waiting for the lock

• Maximum amount of time that a single process has waited for the lock

• Minimum amount of time that a single process has waited for the lock

For example:

/usr/bin/kdbx −k /vmunix /dev/mem
(kdbx)lockstats

See the Kernel Debugging manual and kdbx(8) for more information.

Managing CPU Performance 7–7

7.2 Improving CPU Performance

A system must be able to efficiently allocate the available CPU cycles
among competing processes to meet the performance needs of users and
applications. You may be able to improve performance by optimizing CPU
usage.

Table 7–2 describes the guidelines for improving CPU performance.

Table 7–2: Primary CPU Performance Improvement Guidelines

Guideline Performance Benefit Tradeoff

Add processors (Section 7.2.1) Increases CPU resources Applicable only for
multiproccessing
systems, and may
affect virtual memory
performance

Use the Class Scheduler
(Section 7.2.2)

Allocates CPU resources
to critical applications

None

Prioritize jobs (Section 7.2.3) Ensures that important
applications have the
highest priority

None

Schedule jobs at offpeak hours
(Section 7.2.4)

Distributes the system
load

None

Stop the advfsd daemon
(Section 7.2.5)

Decreases demand for
CPU power

Applicable only if you
are not using the
AdvFS graphical user
interface

Use hardware RAID
(Section 7.2.6)

Relieves the CPU of disk
I/O overhead and provides
disk I/O performance
improvements

Increases costs

The following sections describe how to optimize your CPU resources. If
optimizing CPU resources does not solve the performance problem, you
may have to upgrade your CPU to a faster processor.

7.2.1 Adding Processors

Multiprocessing systems allow you to expand the computing power of a
system by adding processors. Workloads that benefit most from
multiprocessing have multiple processes or multiple threads of execution
that can run concurrently, such as database management system (DBMS)
servers, Internet servers, mail servers, and compute servers.

7–8 Managing CPU Performance

You may be able to improve the performance of a multiprocessing system
that has only a small percentage of idle time by adding processors. See
Section 7.1.2 for information about checking idle time.

Before you add processors, you must ensure that a performance problem is
not caused by the virtual memory or I/O subsystems. For example,
increasing the number of processors will not improve performance in a
system that lacks sufficient memory resources.

In addition, increasing the number of processors may increase the demands
on your I/O and memory subsystems and could cause bottlenecks.

If you add processors and your system is metadata-intensive (that is, it
opens large numbers of small files and accesses them repeatedly), you can
improve the performance of synchronous write operations by using
Prestoserve (see Section 2.4.8), or by using a RAID controller with a
write-back cache (see Section 8.5).

7.2.2 Using the Class Scheduler

Use the Class Scheduler to allocate a percentage of CPU time to specific
tasks or applications. This allows you to reserve CPU time for important
processes, while limiting CPU usage by less critical processes.

To use class scheduling, group together processes into classes and assign
each class a percentage of CPU time. You can also manually assign a class
to any process.

The Class Scheduler allows you to display statistics on the actual CPU
usage for each class.

See the System Administration manual and class_scheduling(4),
class_admin(8), runclass(1), and classcntl(2) for more information
about the Class Scheduler.

7.2.3 Prioritizing Jobs

You can prioritize jobs so that important applications are run first. Use the
nice command to specify the priority for a command. Use the renice
command to change the priority of a running process.

See nice(1) and renice(8) for more information.

7.2.4 Scheduling Jobs at Offpeak Hours

You can schedule jobs so that they run at offpeak hours (use the at and
cron commands) or when the load level permits (use the batch command).

Managing CPU Performance 7–9

This can relieve the load on the CPU and the memory and disk I/O
subsystems.

See at(1) and cron(8) for more information.

7.2.5 Stopping the advfsd Daemon

The advfsd daemon allows Simple Network Management Protocol (SNMP)
clients such as Netview or Performance Manager (PM) to request AdvFS
file system information. If you are not using the AdvFS graphical user
interface (GUI), you can free CPU resources and prevent the advfsd
daemon from periodically scanning disks by stopping the advfsd daemon.

To prevent the advfsd daemon from starting at boot time, rename
/sbin/rc3.d/S53advfsd to /sbin/rc3.d/T53advfsd.

To immediately stop the daemon, use the following command:

/sbin/init.d/advfsd stop

7.2.6 Using Hardware RAID to Relieve the CPU of I/O Overhead

RAID controllers can relieve the CPU of the disk I/O overhead, in addition
to providing many disk I/O performance-enhancing features. See
Section 8.5 for more information about hardware RAID.

7–10 Managing CPU Performance

8
Managing Disk Storage Performance

There are various ways that you can manage your disk storage. Depending
on your performance and availability needs, you can use static disk
partitions, the Logical Storage Manager (LSM), hardware RAID, or a
combination of these solutions.

The disk storage configuration can have a significant impact on system
performance, because disk I/O is used for file system operations and also by
the virtual memory subsystem for paging and swapping.

You may be able to improve disk I/O performance by following the
configuration and tuning guidelines described in this chapter, which
describes the following:

• Improving overall disk I/O performance by distributing the I/O load
(Section 8.1)

• Managing LSM performance (Section 8.4)

• Managing hardware RAID subsystem performance (Section 8.5)

• Managing Common Access Method (CAM) performance (Section 8.6)

Not all guidelines are appropriate for all disk storage configurations. Before
applying any guideline, be sure that you understand your workload
resource model, as described in Section 2.1, and the guideline’s benefits and
tradeoffs.

8.1 Guidelines for Distributing the Disk I/O Load

Distributing the disk I/O load across devices helps to prevent a single disk,
controller, or bus from becoming a bottleneck. It also enables simultaneous
I/O operations.

For example, if you have 16 GB of disk storage, you may get better
performance from sixteen 1-GB disks rather than four 4-GB disks, because
using more spindles (disks) may allow more simultaneous operations. For
random I/O operations, 16 disks may be simultaneously seeking instead of
four disks. For large sequential data transfers, 16 data streams can be
simultaneously working instead of four data streams.

Use the following guidelines to distribute the disk I/O load:

Managing Disk Storage Performance 8–1

• Stripe data or disks.

RAID 0 (data or disk striping) enables you to efficiently distribute data
across the disks. See Section 2.5.2 for detailed information about the
benefits of striping. Note that availability decreases as you increase the
number of disks in a striped array.

To stripe data, use LSM (Section 8.4.5). To stripe disks, use a hardware
RAID subsystem (Section 8.5).

As an alternative to data or disk striping, you can use the Advanced
File System (AdvFS) to stripe individual files across disks in a file
domain. However, do not stripe a file and also the disk on which it
resides. See Section 9.3 for more information.

• Use RAID 5.

RAID 5 distributes disk data and parity data across disks in an array
to provide high data availability and to improve read performance.
However, RAID 5 decreases write performance in a nonfailure state,
and decreases read and write performance in a failure state. RAID 5
can be used for configurations that are mainly read-intensive. As a
cost-efficient alternative to mirroring, you can use RAID 5 to improve
the availability of rarely-accessed data.

To create a RAID 5 configuration, use LSM (Section 8.4.6) or a
hardware RAID subsystem (Section 8.5).

• Distribute frequently used file systems across disks and, if possible,
different buses and controllers.

Place frequently used file systems on different disks and, if possible,
different buses and controllers. Directories containing executable files
or temporary files, such as /var, /usr, and /tmp, are often frequently
accessed. If possible, place /usr and /tmp on different disks.

You can use the AdvFS balance command to balance the percentage of
used space among the disks in an AdvFS file domain. See
Section 9.3.7.4 for information.

• Distribute swap I/O across devices.

To make paging and swapping more efficient and help prevent any
single adapter, bus, or disk from becoming a bottleneck, distribute swap
space across multiple disks. Do not put multiple swap partitions on the
same disk.

You can also use the Logical Storage Manager (LSM) to mirror your
swap space. See Section 8.4.2.7 for more information.

See Section 6.2 for more information about configuring swap devices for
high performance.

Section 8.2 describes how to monitor the distribution of disk I/O.

8–2 Managing Disk Storage Performance

8.2 Monitoring the Distribution of Disk I/O

Table 8–1 describes some commands that you can use to determine if your
disk I/O is being distributed.

Table 8–1: Disk I/O Distribution Monitoring Tools

Name Use Description

showfdmn Displays
information about
AdvFS file domains

Determines if files are evenly distributed
across AdvFS volumes. See Section 9.3.5.3 for
information.

advfsstat Displays
information about
AdvFS file domain
and filset usage

Provides performance statistics information for
AdvFS file domains and filesets that you can
use to determine if the file system I/O is evenly
distributed. See Section 9.3.5.1 for information.

swapon Displays the swap
space configuration

Provides information about swap space usage.
For each swap partition, the swapon -s
command displays the total amount of allocated
swap space, the amount of swap space that is
being used, and the amount of free swap space.
See Section 6.3.3 for information.

volstat Displays
performance
statistics for LSM
objects

Provides information about LSM volume and
disk usage that you can use to characterize and
understand your I/O workload, including the
read/write ratio, the average transfer size, and
whether disk I/O is evenly distributed. See
Section 8.4.7.2 for information.

iostat Displays disk I/O
statistics

Provides information about which disks are
being used the most. See Section 8.3 for
information.

8.3 Displaying Disk Usage by Using the iostat Command

For the best performance, disk I/O should be evenly distributed across
disks. Use the iostat command to determine which disks are being used
the most. The command displays disk I/O statistics for disks, in addition to
terminal and CPU statistics.

An example of the iostat command is as follows; output is provided in
one-second intervals:

/usr/ucb/iostat 1
tty floppy0 dsk0 dsk1 cdrom0 cpu

tin tout bps tps bps tps bps tps bps tps us ni sy id
1 73 0 0 23 2 37 3 0 0 5 0 17 79
0 58 0 0 47 5 204 25 0 0 8 0 14 77
0 58 0 0 8 1 62 1 0 0 27 0 27 46

Managing Disk Storage Performance 8–3

The iostat command output displays the following information:

• The first line of the iostat command output is the average since boot
time, and each subsequent report is for the last interval.

• For each disk (dskn), the number of KB transferred per second (bps)
and the number of transfers per second (tps).

• For the system (cpu), the percentage of time the CPU has spent in user
state running processes either at their default priority or preferred
priority (us), in user mode running processes at a less favored priority
(ni), in system mode (sy), and in idle mode (id). This information
enables you to determine how disk I/O is affecting the CPU. User mode
includes the time the CPU spent executing library routines. System
mode includes the time the CPU spent executing system calls.

The iostat command can help you to do the following:

• Determine which disk is being used the most and which is being used
the least. This information will help you determine how to distribute
your file systems and swap space. Use the swapon -s command to
determine which disks are used for swap space.

• Determine if the system is disk bound. If the iostat command output
shows a lot of disk activity and a high system idle time, the system may
be disk bound. You may need to balance the disk I/O load, defragment
disks, or upgrade your hardware.

• Determine if an application is written efficiently. If a disk is doing a
large number of transfers (the tps field) but reading and writing only
small amounts of data (the bps field), examine how your applications
are doing disk I/O. The application may be performing a large number
of I/O operations to handle only a small amount of data. You may want
to rewrite the application if this behavior is not necessary.

8.4 Managing LSM Performance

The Logical Storage Manager (LSM) provides flexible storage management,
improved disk I/O performance, and high data availability, with little
additional overhead. Although any type of system can benefit from LSM, it
is especially suited for configurations with large numbers of disks or
configurations that regularly add storage.

LSM allows you to set up unique pools of storage that consist of multiple
disks. From these disk groups, you can create virtual disks (LSM volumes),
which are used in the same way as disk partitions. You can create UFS or
AdvFS file systems on a volume, use a volume as a raw device, or create
volumes on top of RAID storage sets.

8–4 Managing Disk Storage Performance

Because there is no direct correlation between an LSM volume and a
physical disk, file system or raw I/O can span disks. You can easily add
disks to and remove disks from a disk group, balance the I/O load, and
perform other storage management tasks.

In addition, LSM provides high performance and high availability by using
RAID technology. LSM is often referred to as software RAID. LSM
configurations can be more cost-effective and less complex than a hardware
RAID subsystem. Note that LSM RAID features require a license.

To obtain the best LSM performance, you must follow the configuration and
tuning guidelines described in this manual. The following sections contain:

• Information about LSM features and license requirements
(Section 8.4.1)

• Guidelines for disks, disk groups, and databases (Section 8.4.2)

• Guidelines for mirroring volumes (Section 8.4.3)

• Guidelines for using dirty-region logging (DRL) with mirrored volumes
(Section 8.4.4)

• Guidelines for striping volumes (Section 8.4.5)

• Guidelines for RAID 5 volumes (Section 8.4.6)

• Information about monitoring the LSM configuration and performance
(Section 8.4.7)

See the Logical Storage Manager manual for detailed information about
using LSM.

8.4.1 LSM Features

LSM provides the following basic disk management features that do not
require a license:

• Disk concatenation enables you to create a large volume from multiple
disks.

• Load balancing transparently distributes data across disks.

• Configuration database load-balancing automatically maintains an
optimal number of LSM configuration databases in appropriate
locations without manual intervention.

• The volstat command provides detailed LSM performance
information.

The following LSM features require a license:

• RAID 0 (striping) distributes data across disks in an array. Striping is
useful if you quickly transfer large amounts of data, and also enables

Managing Disk Storage Performance 8–5

you to balance the I/O load from multi-user applications across multiple
disks. LSM striping provides significant I/O performance benefits with
little impact on the CPU.

• RAID 1 (mirroring) maintains copies of data on different disks and
reduces the chance that a single disk failure will cause the data to be
unavailable.

• RAID 5 (parity RAID) provides data availability through the use of
parity data and distributes disk data and file data across disks in an
array.

• Mirrored root file system and swap space improves availability.

• Hot spare support provides an automatic reaction to I/O failures on
mirrored or RAID 5 objects by relocating the affected objects to spare
disks or other free space.

• Dirty-region logging (DRL) can be used to improve the recovery time of
mirrored volumes after a system failure.

• A graphical user interface (GUI) enables easy disk management and
provides detailed performance information.

8.4.2 Basic LSM Disk, Disk Group, and Volume Guidelines

LSM enables you to group disks into storage pools called disk groups. Each
disk group maintains a configuration database that contains records
describing the LSM objects (volumes, plexes, subdisks, disk media names,
and disk access names) that are being used in the disk group.

How you configure your LSM disks, disk groups, and volumes determines
the flexibility and performance of your configuration. Table 8–2 describes
the LSM disk, disk group, and volume configuration guidelines and lists
performance benefits as well as tradeoffs.

Table 8–2: LSM Disk, Disk Group, and Volume Configuration Guidelines

Guideline Benefit Tradeoff

Initialize your LSM disks as
sliced disks (Section 8.4.2.1)

Uses disk space efficiently None

Make the rootdg disk group a
sufficient size (Section 8.4.2.2)

Ensures sufficient space for
disk group information

None

Use a sufficient private region
size for each disk in a disk group
(Section 8.4.2.3)

Ensures sufficient space for
database copies

Large private
regions require
more disk space

8–6 Managing Disk Storage Performance

Table 8–2: LSM Disk, Disk Group, and Volume Configuration Guidelines
(cont.)

Guideline Benefit Tradeoff

Make the private regions in a
disk group the same size
(Section 8.4.2.4)

Efficiently utilizes the
configuration space

None

Organize disk groups according
to function (Section 8.4.2.5)

Allows you to move disk
groups between systems

Reduces flexibility
when configuring
volumes

Mirror the root file system
(Section 8.4.2.6)

Provides availability and
improves read performance

Cost of additional
disks and small
decrease in write
performance

Mirror swap devices
(Section 8.4.2.7)

Provides availability and
improves read performance

Cost of additional
disks and small
decrease in write
performance

Use hot-sparing (Section 8.4.6.3
and Section 8.4.3.5)

Improves recovery time
after a disk failure in a
mirrored or RAID 5 volume

Requires an
additional disk

Save the LSM configuration
(Section 8.4.2.8)

Improves availability None

Use mirrored volumes
(Section 8.4.3)

Improves availability and
read performance

Cost of additional
disks and small
decrease in write
performance

Use dirty region logging
(Section 8.4.4)

Improves
resynchronization time
after a mirrored volume
failure

Slightly increases
I/O overhead

Use striped volumes
(Section 8.4.5)

Improves performance Decreases
availability

Use RAID 5 volumes
(Section 8.4.6)

Provides data availability
and improves read
performance

Consumes CPU
resources,
decreases write
performance in a
nonfailure state,
and decreases read
and write
performance in a
failure state

The following sections describe the previous guidelines in detail.

Managing Disk Storage Performance 8–7

8.4.2.1 Initializing LSM Disks as Sliced Disks

Initialize your LSM disks as sliced disks, instead of configuring individual
partitions as simple disks. The disk label for a sliced disk contains
information that identifies the partitions containing the private and the
public regions. In contrast, simple disks have both public and private
regions in the same partition.

A sliced disk places the entire disk under LSM control, uses disk storage
efficiently, and avoids using space for multiple private regions on the same
disk. When a disk is initialized as an LSM sliced disk, by default, the disk
is repartitioned so that partition g contains the LSM public region and
partition h contains the private region. LSM volume data resides in the
public region, which uses the majority of the disk starting at block 0. LSM
configuration data and metadata reside in the private region, which uses
the last 4096 blocks of the disk, by default.

Usually, you do not have to change the size of the LSM private region. See
Section 8.4.2.3 for more information.

8.4.2.2 Sizing the rootdg Disk Group

The default disk group, rootdg is automatically created when you
initialize LSM. Unlike other disk groups, the rootdg configuration
database contains disk-access records that define all disks under LSM
control, in addition to its own disk-group configuration information.

You must make sure that the rootdg disk group is large enough to
accommodate all the disk-access records. The default size of a configuration
database is 4096 blocks. Usually, you do not have to change this value.

8.4.2.3 Sizing Private Regions

LSM keeps the disk media label and configuration database copies in each
disk’s private region. You must make sure that the private region for each
disk is big enough to accommodate the database copies. In addition, the
maximum number of LSM objects (disks, subdisks, volumes, and plexes) in
a disk group depends on an adequate private region size.

The default private region size is 4096 blocks. Usually, you do not have to
modify the default size.

To check the amount of free space in a disk group, use the voldg list
command and specify the disk group.

You may want to increase the default private region size if you have a very
large LSM configuration and need more space for the database copies. Note
that a large private region consumes more disk space.

8–8 Managing Disk Storage Performance

You may want to decrease the default private region size if your LSM
configuration is small, and you do not need 4096 blocks for the configuration
database. This may improve the LSM startup and disk import times.

Use the voldisksetup command with the privlen option to set the
private region size. See voldisksetup(8) for more information.

If you change the size of a disk’s private region, all disks that contain the
configuration database (that is, if nconfig is not 0) should be the same
size. See Section 8.4.2.4 for more information.

8.4.2.4 Making Private Regions in a Disk Group the Same Size

The private region of each disk in a disk group should be the same size.
This enables LSM to efficiently utilize the configuration database space.

To determine the size of a disk’s private region, use the voldisk list
command and specify the name of the disk.

Use the voldisksetup command with the privlen option to set the
private region size. See voldisksetup(8) for more information.

8.4.2.5 Organizing Disk Groups

You may want to organize disk groups according to their function. This
enables disk groups to be moved between systems.

Note that using many disk groups decreases the size of the LSM
configuration database for each disk group, but it increases management
complexity and reduces flexibility when configuring volumes.

8.4.2.6 Mirroring the Root File System

Mirroring the root file system improves overall system availability and also
improves read performance for the file system. If a disk containing a copy
of the root file system fails, the system can continue running. In addition, if
the system is shut down, multiple boot disks can be used to load the
operating system and mount the root file system.

Note that mirroring requires additional disks and slightly decreases write
performance.

You can configure the root file system under LSM by selecting the option
during the full installation, or by encapsulating it into LSM at a later time.
The root disk will appear as an LSM volume that you can mirror.

If you mirror the root file system with LSM, you should also mirror the
swap devices with LSM. See Section 8.4.2.7 for information about mirroring
swap devices.

Managing Disk Storage Performance 8–9

_______________________ Note _______________________

In a TruCluster configuration, you cannot use LSM to configure
the root file system, swap devices, boot partition, quorum disks,
or any partition on a quorum disk. See the TruCluster
documentation for more information.

See the Logical Storage Manager manual for restrictions and instructions
for mirroring the root disk and booting from a mirrored root volume.

8.4.2.7 Mirroring Swap Devices

Mirroring swap devices improves system availability by preventing a
system failure caused by a failed swap disk, and also improves read
performance. In addition, mirroring both the root file system and swap
devices ensures that you can boot the system even if errors occur when you
start the swap volume. See Section 8.4.2.6 for information about mirroring
the root file system.

Note that mirroring requires additional disks and slightly decreases write
performance.

You can configure swap devices under LSM by selecting the option during
the full installation or by encapsulating them into LSM at a later time. The
swap devices will appear as LSM volumes that you can mirror.

You can also mirror secondary swap devices. Compaq recommends that you
use multiple disks for secondary swap devices and add the devices as
several individual volumes, instead of striping or concatenating them into a
single large volume. This makes the swapping algorithm more efficient.

See the Logical Storage Manager manual for restrictions and instructions
for mirroring swap space.

8.4.2.8 Saving the LSM Configuration

Use the volsave command to periodically create a copy of the LSM
configuration. You can use the volrestore command to re-create the LSM
configuration if you lose a disk group configuration.

See the Logical Storage Manager manual for information about saving and
restoring the LSM configuration.

8.4.3 LSM Mirrored Volume Configuration Guidelines

Use LSM mirroring (RAID 1) to reduce the chance that a single disk failure
will make disk data unavailable. Mirroring maintains multiple copies of

8–10 Managing Disk Storage Performance

volume data on different plexes. If a physical disk that is part of a mirrored
plex fails, its plex becomes unavailable, but the system continues to operate
using an unaffected plex.

At least two plexes are required to provide data redundancy, and each plex
must contain different disks. You can use hot sparing to replace a failed
mirrored disk. See Section 8.4.3.5 for information.

Because a mirrored volume has copies of the data on multiple plexes,
multiple read operations can be simultaneously performed on the plexes,
which dramatically improves read performance. For example, read
performance may improve by 100 percent on a mirrored volume with two
plexes because twice as many reads can be performed simultaneously. LSM
mirroring provides significant I/O read performance benefits with little
impact on the CPU.

Writes to a mirrored volume result in simultaneous write requests to each
copy of the data, so mirroring may slightly decrease write performance. For
example, an individual write request to a mirrored volume may require an
additional 5 percent of write time, because the volume write must wait for
the completion of the write to each plex.

However, mirroring can improve overall system performance because the
read performance that is gained may compensate for the slight decrease in
write performance. To determine whether your system performance may
benefit from mirroring, use the volstat command to compare the number
of read operations on a volume to the number of write operations.

Table 8–3 describes LSM mirrored volume configuration guidelines and
lists performance benefits as well as tradeoffs.

Table 8–3: LSM Mirrored Volume Guidelines

Guideline Benefit Tradeoff

Place mirrored plexes on
different disks and
buses(Section 8.4.3.1)

Improves performance and
increases availability

Cost of additional
hardware

Attach multiple plexes to a
mirrored volume
(Section 8.4.3.2)

Improves performance for
read-intensive workloads
and increases availability

Cost of additional
disks

Use the appropriate read policy
(Section 8.4.3.3)

Efficiently distributes reads None

Use a symmetrical
configuration (Section 8.4.3.4)

Provides more predictable
performance

None

Managing Disk Storage Performance 8–11

Table 8–3: LSM Mirrored Volume Guidelines (cont.)

Guideline Benefit Tradeoff

Configure hot sparing
(Section 8.4.3.5)

Increases data availability
(highly recommended)

Requires an
additional disk
device

Use dirty-region logging (DRL)
(Section 8.4.4)

Improves mirrored volume
recovery rate

May cause an
additional decrease
in write
performance

The following sections describe the previous LSM mirrored volume
guidelines in detail.

8.4.3.1 Placing Mirrored Plexes on Different Disks and Buses

Each mirrored plex must contain different disks for effective data
redundancy. If you are mirroring a striped plex, each plex must contain
different disks for data redundancy. This enables effective striping and
mirroring.

By default, the volassist command locates plexes so that the loss of a
disk will not result in loss of data.

In addition, placing each mirrored plex on a different bus or I/O controller
improves performance by distributing the I/O workload and preventing a
bottleneck at any one device. Mirroring across different buses also
increases availability by protecting against bus and adapter failure.

8.4.3.2 Using Multiple Plexes in a Mirrored Volume

To improve performance for read-intensive workloads, use more than two
plexes in a mirrored volume.

Although a maximum of 32 plexes can be attached to the same mirrored
volume, using this number of plexes uses disk space inefficiently.

8.4.3.3 Choosing a Read Policy for a Mirrored Volume

To provide optimal performance for different types of mirrored volumes,
LSM supports the following read policies:

• round

Reads, in a round-robin manner, from all plexes in the volume.

8–12 Managing Disk Storage Performance

• prefer

Reads preferentially from the plex that is designated the preferred plex
(usually the plex with the highest performance). If one plex exhibits
superior performance, either because the plex is striped across multiple
disks or because it is located on a much faster device, designate that
plex as the preferred plex.

• select

Uses a read policy based on the volume’s plex associations. For
example, if a mirrored volume contains a single striped plex, that plex
is designated the preferred plex. For any other set of plex associations,
the round policy is used. The select read policy is the default policy.

Use the volprint -t command to display the read policy for a volume.
See Section 8.4.7.1 for information. Use the volume rdpol command to
set the read policy. See volprint(8) and volume(8) for information.

8.4.3.4 Using a Symmetrical Plex Configuration

Configure symmetrical plexes for predictable performance and easy
management. Use the same number of disks in each mirrored plex. For
mirrored striped volumes, you can stripe across half of the available disks
to form one plex and across the other half to form the other plex.

In addition, use disks with the same performance characteristics, if
possible. You may not gain the performance benefit of a fast disk if it is
being used with a slow disk on the same mirrored volume. This is because
the overall write performance for a mirrored volume will be determined
and limited by the slowest disk. If you have disks with different
performance characteristics, group the fast disks into one volume, and
group the slow disks in another volume.

8.4.3.5 Using Hot Sparing for Mirrored Volumes

If more than one disk in a mirrored volume fails, you may lose all the data
in the volume, unless you configure hot sparing. Compaq recommends that
you use LSM hot sparing.

Hot sparing enables you to set up a spare disk that can be automatically
used to replace a failed disk in a mirrored set. The automatic replacement
capability of hot sparing improves the reliability of mirrored data when a
single disk failure occurs.

Note that hot sparing requires an additional disk for the spare disk.

Use the volwatch -s command to enable hot sparing. See the Logical
Storage Manager manual for more information about hot-sparing
restrictions and guidelines.

Managing Disk Storage Performance 8–13

8.4.4 Dirty-Region Logging Configuration Guidelines

For fast resynchronization of a mirrored volume after a system failure,
LSM uses dirty-region logging (DRL). However, DRL adds a small I/O
overhead for most write access patterns. Typically, the DRL performance
degradation is more significant on systems with few writes than on systems
with heavy write loads.

DRL logically divides a volume into a set of consecutive regions. Each region
is represented by a status bit in the dirty-region log. A write operation to a
volume marks the region’s status bit as dirty before the data is written to
the volume. When a system restarts after a failure, the LSM recovers only
those regions of the volume that are marked as dirty in the dirty-region log.

If you disable DRL and the system fails, LSM must copy the full contents
of a volume between its mirrors to restore and resynchronize all plexes to a
consistent state. Although this process occurs in the background and the
volume remains available, it can be a lengthy, I/O-intensive procedure.

Log subdisks are used to store a mirrored volume’s dirty-region log. To
enable DRL, you must associate at least one log subdisk to a mirrored plex.
You can use multiple log subdisks to mirror the log. However, only one log
subdisk can exist per plex.

A plex that contains only a log subdisk and no data subdisks is referred to
as a log plex. By default, LSM creates a log plex for a mirrored volume.
Although you can associate a log subdisk with a regular plex that contains
data subdisks, the log subdisk will become unavailable if you detach the
plex because one of its data subdisks has failed. Therefore, Compaq
recommends that you configure DRL as a log plex.

Table 8–4 describes LSM DRL configuration guidelines and lists
performance benefits as well as tradeoffs.

Table 8–4: Dirty-Region Logging Guidelines

Guideline Benefit Tradeoff

Configure one log plex for each
mirrored volume (Section 8.4.4.1)

Greatly reduces mirror
resynchronization time
after a system failure.

Slight decrease in
write performance

Configure two or more log plexes
for each mirrored volume
(Section 8.4.4.1)

Greatly reduces mirror
resynchronization time
after a system failure and
provides DRL availability

Slight decrease in
write performance

8–14 Managing Disk Storage Performance

Table 8–4: Dirty-Region Logging Guidelines (cont.)

Guideline Benefit Tradeoff

Configure log plexes on disks
that are different from the
volume’s data plexes
(Section 8.4.4.1)

Minimizes the logging
overhead for writes by
ensuring the same disk
does not have to seek
between the log area and
data area for the same
volume write

None

Use the default log size
(Section 8.4.4.2)

Improves performance None

Place logging subdisks on
infrequently used disks
(Section 8.4.4.3)

Helps to prevent disk
bottlenecks

None

Use solid-state disks for logging
subdisks (Section 8.4.4.4)

Minimizes DRL’s write
degradation

Cost of solid-state
disks

Use a write-back cache for
logging subdisks (Section 8.4.4.5)

Minimizes DRL write
degradation

Cost of hardware
RAID subsystem

The following sections describe the previous DRL guidelines in detail.

8.4.4.1 Configuring Log Plexes

For each mirrored volume, configure one log plex, which is a plex that
contains a single log subdisk and no data subdisks. After a system failure,
a write to a mirrored volume may have completed on one of its plexes and
not on the other plex. LSM must resynchronize each mirrored volume’s
plex to ensure that all plexes are identical.

A log plex significantly reduces the time it takes to resynchronize a
mirrored volume when rebooting after a failure, because only the regions
within the volume that were marked as dirty are resynchronized, instead of
the entire volume.

By default, LSM creates a log plex for a mirrored volume.

For high availability, you can configure more than one log plex (but only
one per plex) for a volume. This ensures that logging can continue even if a
disk failure causes one log plex to become unavailable.

In addition, configure multiple log plexes on disks that are different from
the volume’s data plexes. This will minimize the logging overhead for
writes by ensuring that a disk does not have to seek between the log area
and data area for the same volume write.

Managing Disk Storage Performance 8–15

8.4.4.2 Using the Correct Log Size

The size of a dirty-region log is proportional to the volume size and depends
on whether you are using LSM in a TruCluster configuration.

For systems not configured as part of a cluster, log subdisks must be
configured with two or more sectors. Use an even number, because the last
sector in a log subdisk with an odd number of sectors is not used.

The log subdisk size is usually proportional to the volume size. If a volume
is less than 2 GB, a log subdisk of two sectors is sufficient. Increase the log
subdisk size by two sectors for every additional 2 GB of volume size.

Log subdisks for TruCluster member systems must be configured with 65
or more sectors. Use the same sizing guidelines for non-cluster
configurations and multiply that result by 33 to determine the optimal log
size for a cluster configuration.

By default, the volassist addlog command calculates the optimal log
size based on the volume size, so usually you do not have to use the
loglen attribute to specify a log size. However, the log size that is
calculated by default is for a cluster configuration. If a volume will never be
used in a cluster, use the volassist -c addlog to calculate the optimal
log size for a noncluster environment. Compaq recommends that you use
the default log size.

See the Logical Storage Manager manual for more information about log
sizes.

8.4.4.3 Placing Logging Subdisks on Infrequently Used Disks

Place logging subdisks on infrequently used disks. Because these subdisks
are frequently written, do not put them on busy disks. In addition, do not
configure DRL subdisks on the same disks as the volume data, because this
will cause head seeking or thrashing.

8.4.4.4 Using Solid-State Disks for DRL Subdisks

If persistent (nonvolatile) solid-state disks are available, use them for
logging subdisks.

8.4.4.5 Using a Nonvolatile Write-Back Cache for DRL

To minimize DRL’s impact on write performance, use LSM in conjunction
with a RAID subsystem that has a nonvolatile (battery backed) write-back
cache. Typically, the DRL performance degradation is more significant on
systems with few writes than on systems with heavy write loads.

8–16 Managing Disk Storage Performance

8.4.5 LSM Striped Volume Configuration Guidelines

Striping data (RAID 0) is useful if you need to write large amounts of data,
to quickly read data, or to balance the I/O load from multi-user applications
across multiple disks. Striping is especially effective for applications that
perform large sequential data transfers or multiple, simultaneous I/O
operations. LSM striping provides significant I/O performance benefits with
little impact on the CPU.

Striping distributes data in fixed-size units (stripes) across the disks in a
volume. Each stripe is a set of contiguous blocks on a disk. The default
stripe size (width) is 64 KB. The stripes are interleaved across the striped
plex’s subdisks, which must be located on different disks to evenly
distribute the disk I/O.

The performance benefit of striping depends on the number of disks in the
stripe set, the location of the disks, how your users and applications
perform I/O, and the width of the stripe. I/O performance improves and
scales linearly as you increase the number of disks in a stripe set. For
example, striping volume data across two disks can double both read and
write performance for that volume (read and write performance improves
by 100 percent). Striping data across four disks can improve performance
by a factor of four (read and write performance improves by 300 percent).

However, a single disk failure in a volume will make the volume
inaccessible, so striping a volume increases the chance that a disk failure
will result in a loss of data availability. You can combine mirroring (RAID
1) with striping to obtain high availability. See Section 8.4.3 for mirroring
guidelines.

Table 8–5 describes the LSM striped volume configuration guidelines and
lists performance benefits as well as tradeoffs.

Table 8–5: LSM Striped Volume Guidelines

Guideline Benefit Tradeoff

Use multiple disks in a striped
volume (Section 8.4.5.1)

Improves performance by
preventing a single disk
from being an I/O bottleneck

Decreases volume
reliability

Use disks on different buses for
the stripe set (Section 8.4.5.2)

Improves performance by
preventing a single bus or
controller from being an I/O
bottleneck

Decreases volume
reliability

Use the appropriate stripe
width (Section 8.4.5.3)

Ensures that an individual
volume I/O is handled
efficiently

None

Managing Disk Storage Performance 8–17

Table 8–5: LSM Striped Volume Guidelines (cont.)

Guideline Benefit Tradeoff

Avoid splitting small data
transfers (Section 8.4.5.3)

Improves overall throughput
and I/O performance by
handling small requests
efficiently

None

Avoid splitting large data
transfers (Section 8.4.5.3)

Improves overall throughput
and I/O performance by
handling multiple requests
efficiently.

Optimizes a
volume’s overall
throughput and
performance for
multiple I/O
requests, instead of
for individual I/O
requests.

The following sections describe the previous LSM striped volume
configuration guidelines in detail.

8.4.5.1 Increasing the Number of Disks in a Striped Volume

Increasing the number of disks in a striped volume can increase the
throughput, depending on the applications and file systems you are using
and the number of simultaneous users. This helps to prevent a single disk
from becoming an I/O bottleneck.

However, a single disk failure in a volume will make the volume
inaccessible, so increasing the number of disks in a striped volume reduces
the effective mean-time-between-failures (MTBF) of the volume. To provide
high availability for a striped volume, you can mirror the striped volume.
See Section 8.4.3 for mirroring guidelines.

8.4.5.2 Distributing Striped Volume Disks Across Different Buses

Distribute the disks of a striped volume across different buses or
controllers. This helps to prevent a single bus or controller from becoming
an I/O bottleneck, but decreases volume reliability.

LSM can obtain I/O throughput and bandwidth that is significantly higher
than a hardware RAID subsystem by enabling you to spread the I/O
workload for a striped volume across different buses. To prevent a single
bus from becoming an I/O bottleneck, configure striped plexes using disks
on different buses and controllers, if possible.

You can obtain the best performance benefit by configuring a striped plex
so that the stripe columns alternate or rotate across different buses. For
example, you could configure a four-way stripe that uses four disks on two

8–18 Managing Disk Storage Performance

buses so that stripe columns 0 and 2 are on disks located on one bus and
stripe columns 1 and 3 are on disks located on the other bus.

However, if you are mirroring a striped volume and you have a limited
number of buses, mirroring across buses should take precedence over
striping across buses. For example, if you want to configure a volume with
a pair of two-way stripes (that is, you want to mirror a two-way stripe) by
using four disks on two buses, place one of the plexes of the two-way stripe
on disks located on one bus, and configure the other two-way striped plex
on the other bus.

For the best possible performance, use a select or round-robin read policy,
so that all of the volume’s reads and writes will be evenly distributed
across both buses. Mirroring data across buses also provides high data
availability in case one of the controllers or buses fails.

8.4.5.3 Choosing the Correct LSM Stripe Width

A striped volume consists of a number of equal-sized subdisks, each located
on different disks. To obtain the performance benefit of striping, you must
select a stripe width that is appropriate for the I/O workload and
configuration.

The number of blocks in a stripe unit determines the stripe width. LSM
uses a default stripe width of 64 KB (or 128 sectors), which works well in
most configurations, such as file system servers or database servers, that
perform multiple simultaneous I/Os to a volume. The default stripe width
is appropriate for these configurations, regardless of whether the I/O
transfer size is small or large.

For highly specialized configurations in which large, raw I/Os are
performed one at a time (that is, two or more I/Os are never issued
simultaneously to the same volume), you may not want to use the default
stripe width. Instead, use a stripe width that enables a large data transfer
to be split up and performed in parallel.

The best stripe width for configurations that perform large, individual I/O
transfers depends on whether the I/O size varies, the number of disks in
the stripe-set, the hardware configuration (for example, the number of
available I/O buses), and the disk performance characteristics (for example,
average disk seek and transfer times). Therefore, try different stripe widths
to determine the width that will provide the best performance for your
configuration. Use the LSM online support to obtain help with configuring
and deconfiguring plexes with different stripe widths and comparing actual
I/O workloads.

If you are striping mirrored volumes, ensure that the stripe width is the
same for each plex. Also, avoid striping the same data by both LSM and a

Managing Disk Storage Performance 8–19

hardware RAID subsystem. If a striped plex is properly configured with
LSM, striping the data with hardware RAID may degrade performance.

8.4.6 LSM RAID 5 Configuration Guidelines

RAID 5 provides high availability and improves read performance. A RAID
5 volume contains a single plex, consisting of multiple subdisks from
multiple physical disks. Data is distributed across the subdisks, along with
parity information that provides data redundancy.

RAID 5 provides data availability through the use of parity, which
calculates a value that is used to reconstruct data after a failure. While
data is written to a RAID 5 volume, parity is also calculated by performing
an exclusive OR (XOR) procedure on the data. The resulting parity
information is written to the volume. If a portion of a RAID 5 volume fails,
the data that was on that portion of the failed volume is re-created from
the remaining data and the parity information.

RAID 5 can be used for configurations that are mainly read-intensive. As a
cost-efficient alternative to mirroring, you can use RAID 5 to improve the
availability of rarely accessed data.

______________________ Notes ______________________

LSM mirroring and striping (RAID 0+1) provide significant I/O
performance benefits with little impact on the CPU. However,
LSM RAID 5 decreases write performance and has a negative
impact on CPU performance, because a write to a RAID 5
volume requires CPU resources to calculate the parity
information and may involve multiple reads and writes.

In addition, if a disk fails in a RAID 5 volume, write
performance will significantly degrade. In this situation, read
performance may also degrade, because all disks must be read in
order to obtain parity data for the failed disk.

Therefore, Compaq recommends that you use LSM mirroring
and striping or hardware (controller-based) RAID, instead of
LSM (software-based) RAID 5.

Mirroring RAID 5 volumes and using LSM RAID 5 volumes
TruCluster shared storage is not currently supported.

Table 8–6 describes LSM RAID 5 volume configuration guidelines and lists
performance benefits as well as tradeoffs. Many of the guidelines for
creating striped and mirrored volumes also apply to RAID 5 volumes.

8–20 Managing Disk Storage Performance

Table 8–6: LSM RAID 5 Volume Guidelines

Guideline Benefit Tradeoff

Configure at least one log plex
(Section 8.4.6.1)

Increases data availability
(highly recommended)

Requires an
additional disk

Use the appropriate stripe
width (Section 8.4.6.2)

Significantly improves write
performance

May slightly reduce
read performance

Configure hot sparing
(Section 8.4.6.3)

Increases data availability
(highly recommended)

Requires an
additional disk
device

The following sections describe these guidelines in detail.

8.4.6.1 Using RAID 5 Logging

Compaq recommends that you use logging to protect RAID 5 volume data if
a disk or system failure occurs. Without logging, it is possible for data not
involved in any active writes to be lost or corrupted if a disk and the
system fail. If this double failure occurs, there is no way of knowing if the
data being written to the data portions of the disks or the parity being
written to the parity portions were actually written. Therefore, the
recovery of the corrupted disk may be corrupted.

Make sure that each RAID 5 volume has at least one log plex. Do not use a
disk that is part of the RAID 5 plex for a log plex.

You can associate a log with a RAID 5 volume by attaching it as an
additional, non-RAID 5 layout plex. More than one log plex can exist for
each RAID 5 volume, in which case the log areas are mirrored. If you use
the volassist command to create a RAID 5 volume, a log is created by
default.

8.4.6.2 Using the Appropriate Strip Width

Using the appropriate stripe width can significantly improve write
performance. However, it may slightly reduce read performance.

The default RAID 5 stripe width is 16 KB, which is appropriate for most
environments. To decrease the performance impact of RAID 5 writes, the
stripe size used for RAID 5 is usually smaller than the size used for
striping (RAID 0).

Unlike striping, splitting a write across all the disks in a RAID 5 set
improves write performance, because the system does not have to read
existing data to determine the new parity information when it is writing a
full striped row of data. For example, writing 64 KB of data to a
five-column RAID 5 stripe with a 64-KB stripe width may require two

Managing Disk Storage Performance 8–21

parallel reads, followed by two parallel writes (that is, reads from the
existing data and parity information, then writes to the new data and new
parity information).

However, writing the same 64 KB of data to a five-column RAID 5 stripe
with a 16-KB stripe width may enable the data to be written immediately
to disk (that is, five parallel writes to the four data disks and to the parity
disk). This is possible because the new parity information for the RAID 5
stripe row can be determined from the 64 KB of data, and reading old data
is not necessary.

8.4.6.3 Using Hot Sparing for RAID 5 Volumes

Compaq recommends that you use LSM hot sparing. If more than one disk
in a RAID 5 volume fails, you may lose all the data in the volume, unless
you configure hot sparing.

Hot sparing enables you to set up a spare disk that can be automatically
used to replace a failed RAID 5 disk. The automatic replacement capability
of hot sparing improves the reliability of RAID 5 data when a single disk
failure occurs. In addition, hot sparing reduces the RAID 5 volume’s I/O
performance degradation caused by the overhead associated with
reconstructing the failed disk’s data.

Note that RAID 5 hot sparing requires an additional disk for the spare disk.

Use the volwatch -s command to enable hot sparing. See the Logical
Storage Manager manual for more information about hot-sparing
restrictions and guidelines.

8.4.7 Gathering LSM Information

Table 8–7 describes the tools you can use to obtain information about the
LSM.

8–22 Managing Disk Storage Performance

Table 8–7: LSM Monitoring Tools

Name Use Description

volprint Displays LSM
configuration
information
(Section 8.4.7.1)

Displays information about LSM disk groups,
disk media, volumes, plexes, and subdisk
records. It does not display disk access records.
See volprint(8) for more information.

volstat Monitors LSM
performance
statistics
(Section 8.4.7.2)

For LSM volumes, plexes, subdisks, or disks,
displays either the total performance statistics
since the statistics were last reset (or the
system was booted), or the current performance
statistics within a specified time interval.
These statistics include information about read
and write operations, including the total
number of operations, the number of failed
operations, the number of blocks read or
written, and the average time spent on the
operation. The volstat utility also can reset
the I/O statistics. See volstat(8) for more
information.

voltrace Tracks LSM
operations
(Section 8.4.7.3)

Sets I/O tracing masks against one or all
volumes in the LSM configuration and logs the
results to the LSM default event log,
/dev/volevent. The utility also formats and
displays the tracing mask information and can
trace the following ongoing LSM events:
requests to logical volumes, requests that LSM
passes to the underlying block device drivers,
and I/O events, errors, and recoveries. See
voltrace(8) for more information.

Managing Disk Storage Performance 8–23

Table 8–7: LSM Monitoring Tools (cont.)

Name Use Description

volwatch Monitors LSM
events
(Section 8.4.7.4)

Monitors LSM for failures in disks, volumes,
and plexes, and sends mail if a failure occurs.
The volwatch script automatically starts
when you install LSM. The script also enables
hot sparing. See volwatch(8) for more
information.

volnotify Monitors LSM
events
(Section 8.4.7.5)

Displays events related to disk and
configuration changes, as managed by the LSM
configuration daemon, vold. The volnotify
utility displays requested event types until
killed by a signal, until a given number of
events have been received, or until a given
number of seconds have passed. See
volnotify(8) for more information.

_______________________ Note _______________________

In a TruCluster configuration, the volstat, voltrace, and
volnotify tools provide information only for the member
system on which you invoke the command. Use Event Manager,
instead of the volnotify utility, to obtain information about
LSM events from any cluster member system. See EVM(5) for
more information.

The following sections describe some of these commands in detail.

8.4.7.1 Displaying Configuration Information by Using the volprint Utility

The volprint utility displays information about LSM objects (disks,
subdisks, disk groups, plexes, and volumes). You can select the objects
(records) to be displayed by name or by using special search expressions. In
addition, you can display record association hierarchies, so that the
structure of records is more apparent. For example, you can obtain
information about failed disks in a RAID 5 configuration, I/O failures, and
stale data.

Invoke the voldisk list command to check disk status and display disk
access records or physical disk information.

The following example uses the volprint utility to show the status of the
voldev1 volume:

/usr/sbin/volprint -ht voldev1
Disk group: rootdg

8–24 Managing Disk Storage Performance

V NAME USETYPE KSTATE STATE LENGTH READPOL PREFPLEX
PL NAME VOLUME KSTATE STATE LENGTH LAYOUT NCOL/WID MODE
SD NAME PLEX DISK DISKOFFS LENGTH [COL/]OFF DEVICE MODE

v voldev1 fsgen ENABLED ACTIVE 209712 SELECT -
pl voldev1-01 voldev1 ENABLED ACTIVE 209712 CONCAT - RW
sd dsk2-01 voldev1-01 dsk2 65 209712 0 dsk2 ENA
pl voldev1-02 voldev1 ENABLED ACTIVE 209712 CONCAT - RW
sd dsk3-01 voldev1-02 dsk3 0 209712 0 dsk3 ENA
pl voldev1-03 voldev1 ENABLED ACTIVE LOGONLY CONCAT - RW
sd dsk2-02 voldev1-03 dsk2 0 65 LOG dsk2 ENA

The following volprint command output shows that the RAID 5 volume
r5vol is in degraded mode:

volprint -ht
V NAME USETYPE KSTATE STATE LENGTH READPOL PREFPLEX
PL NAME VOLUME KSTATE STATE LENGTH LAYOUT NCOL/WID MODE
SD NAME PLEX DISK DISKOFFS LENGTH [COL/]OFF DEVICE MODE

v r5vol RAID5 ENABLED DEGRADED 20480 RAID -
pl r5vol-01 r5vol ENABLED ACTIVE 20480 RAID 3/16 RW
sd disk00-00 r5vol-01 disk00 0 10240 0/0 dsk4d1
sd disk01-00 r5vol-01 disk01 0 10240 1/0 dsk2d1 dS
sd disk02-00 r5vol-01 disk02 0 10240 2/0 dsk3d1 -
pl r5vol-l1 r5vol ENABLED LOG 1024 CONCAT - RW
sd disk03-01 r5vol-l1 disk00 10240 1024 0 dsk3d0 -
pl r5vol-l2 r5vol ENABLED LOG 1024 CONCAT - RW
sd disk04-01 r5vol-l2 disk02 10240 1024 0 dsk1d1 -

The output shows that volume r5vol is in degraded mode, as shown by the
STATE, which is listed as DEGRADED. The failed subdisk is disk01-00, as
shown by the last column, where the d indicates that the subdisk is
detached, and the S indicates that the subdisk contents are stale.

It is also possible that a disk containing a RAID 5 log could experience a
failure. This has no direct effect on the operation of the volume; however,
the loss of all RAID 5 logs on a volume makes the volume vulnerable to a
complete failure.

The following volprint command output shows a failure within a RAID 5
log plex:

volprint -ht
V NAME USETYPE KSTATE STATE LENGTH READPOL PREFPLEX
PL NAME VOLUME KSTATE STATE LENGTH LAYOUT NCOL/WID MODE
SD NAME PLEX DISK DISKOFFS LENGTH [COL/]OFF DEVICE MODE
v r5vol RAID5 ENABLED ACTIVE 20480 RAID -
pl r5vol-01 r5vol ENABLED ACTIVE 20480 RAID 3/16 RW
sd disk00-00 r5vol-01 disk00 0 10240 0/0 dsk4d1 ENA
sd disk01-00 r5vol-01 disk01 0 10240 1/0 dsk2d1 dS
sd disk02-00 r5vol-01 disk02 0 10240 2/0 dsk3d1 ENA
pl r5vol-l1 r5vol DISABLED BADLOG 1024 CONCAT - RW
sd disk03-01 r5vol-l1 disk00 10240 1024 0 dsk3d0 ENA
pl r5vol-l2 r5vol ENABLED LOG 1024 CONCAT - RW
sd disk04-01 r5vol-l2 disk02 10240 1024 0 dsk1d1 ENA

Managing Disk Storage Performance 8–25

The previous command output shows that the RAID 5 log plex r5vol-l1
has failed, as indicated by the BADLOG plex state.

See volprint(8) for more information.

8.4.7.2 Monitoring Performance Statistics by Using the volstat Utility

The volstat utility provides information about activity on volumes,
plexes, subdisks, and disks under LSM control. It reports statistics that
reflect the activity levels of LSM objects since boot time.

In a TruCluster configuration, the volstat utility provides information
only for the member system on which you invoke the command.

The amount of information displayed depends on which options you specify
with the volstat utility. For example, you can display statistics for a
specific LSM object, or you can display statistics for all objects at one time.
If you specify a disk group, only statistics for objects in that disk group are
displayed. If you do not specify a particular disk group, the volstat utility
displays statistics for the default disk group (rootdg).

You can also use the volstat utility to reset the base statistics to zero.
This can be done for all objects or only for specified objects. Resetting the
statistics to zero before a particular operation makes it possible to measure
the subsequent impact of that operation.

LSM records the following three I/O statistics:

• A count of read and write operations.

• The number of read and write blocks.

• The average operation time. This time refects the total time it took to
complete an I/O operation, including the time spent waiting in a disk
queue on a busy device.

LSM records these statistics for logical I/Os for each volume. The statistics
are recorded for the following types of operations: reads, writes, atomic
copies, verified reads, verified writes, plex reads, and plex writes. For
example, one write to a two-plex volume requires updating statistics for the
volume, both plexes, one or more subdisks for each plex, and one disk for
each subdisk. Likewise, one read that spans two subdisks requires
updating statistics for the volume, both subdisks, and both disks that
contain the subdisks.

Because LSM maintains various statistics for each disk I/O, you can use
LSM to understand your application’s I/O workload and to identify
bottlenecks. LSM often uses a single disk for multiple purposes to
distribute the overall I/O workload and optimize I/O performance. If you

8–26 Managing Disk Storage Performance

use traditional disk partitions, monitoring tools combine statistics for an
entire disk. If you use LSM, you can obtain statistics for an entire disk and
also for its subdisks, which enables you to determine how the disk is being
used (for example, by file system operations, raw I/O, swapping, or a
database application).

LSM volume statistics enable you to characterize the I/O usage pattern for
an application or file system, and LSM plex statistics can determine the
effectiveness of a striped plex’s stripe width (size). You can also combine
LSM performance statistics with the LSM online configuration support tool
to identify and eliminate I/O bottlenecks without shutting down the system
or interrupting access to disk storage.

After measuring actual data-access patterns, you can adjust the placement
of file systems. You can reassign data to specific disks to balance the I/O
load among the available storage devices. You can reconfigure volumes on
line after performance patterns have been established without adversely
affecting volume availability.

LSM also maintains other statistical data. For example, read and write
failures that appear for each mirror, and corrected read and write failures
for each volume, accompany the read and write failures that are recorded.

The following example displays statical data for volumes:
volstat -vpsd

OPERATIONS BLOCKS AVG TIME(ms)
TYP NAME READ WRITE READ WRITE READ WRITE
dm dsk6 3 82 40 62561 8.9 51.2
dm dsk7 0 725 0 176464 0.0 16.3
dm dsk9 688 37 175872 592 3.9 9.2
dm dsk10 29962 0 7670016 0 4.0 0.0
dm dsk12 0 29962 0 7670016 0.0 17.8
vol v1 3 72 40 62541 8.9 56.5
pl v1-01 3 72 40 62541 8.9 56.5
sd dsk6-01 3 72 40 62541 8.9 56.5
vol v2 0 37 0 592 0.0 10.5
pl v2-01 0 37 0 592 0.0 8.0
sd dsk7-01 0 37 0 592 0.0 8.0
sd dsk12-01 0 0 0 0 0.0 0.0
pl v2-02 0 37 0 592 0.0 9.2
sd dsk9-01 0 37 0 592 0.0 9.2
sd dsk10-01 0 0 0 0 0.0 0.0
pl v2-03 0 6 0 12 0.0 13.3
sd dsk6-02 0 6 0 12 0.0 13.3

See volstat(8) for more information.

8.4.7.3 Tracking Operations by Using the voltrace Utility

Use the voltrace utility to trace operations on volumes. You can set I/O
tracing masks against a group of volumes or the entire system. You can
then use the voltrace utility to display ongoing I/O operations relative to
the masks.

Managing Disk Storage Performance 8–27

In a TruCluster configuration, the voltrace utility provides information
only for the member system on which you invoke the command.

The trace records for each physical I/O show a volume and buffer-pointer
combination that enables you to track each operation, even though the
traces may be interspersed with other operations. Similar to the I/O
statistics for a volume, the I/O trace statistics include records for each
physical I/O done, and a logical record that summarizes all physical records.

_______________________ Note _______________________

Because the voltrace requires significant overhead and
produces a large output, run the command only occasionally.

The following example uses the voltrace utility to trace volumes:

/usr/sbin/voltrace -l
96 598519 START read vdev v2 dg rootdg dev 40,6 block 89 len 1 concurrency 1 pid 43
96 598519 END read vdev v2 dg rootdg op 926159 block 89 len 1 time 1
96 598519 START read vdev v2 dg rootdg dev 40,6 block 90 len 1 concurrency 1 pid 43
96 598519 END read vdev v2 dg rootdg op 926160 block 90 len 1 time 1

See voltrace(8) for more information.

8.4.7.4 Monitoring Events by Using the volwatch Script

The volwatch script is automatically started when you install LSM. This
script sends mail if certain LSM configuration events occur, such as a plex
detach caused by a disk failure. The script also enables hot sparing.

The volwatch script sends mail to root by default. To specify another mail
recipient or multiple mail recipients, use the rcmgr command to set the
rc.config.common variable VOLWATCH_USERS.

See volwatch(8) for more information.

8.4.7.5 Monitoring Events by Using the volnotify Utility

The volnotify utility monitors events related to disk and configuration
changes, as managed by the vold configuration daemon. The volnotify
utility displays requested event types until killed by a signal, until a given
number of events have been received, or until a given number of seconds
have passed.

The volnotify utility can display the following events:

• Disk group import, deport, and disable events

• Plex, volume, and disk detach events

8–28 Managing Disk Storage Performance

• Disk change events

• Disk group change events

In a TruCluster configuration, the volnotify utility only reports events
that occur locally on the member system. Therefore, use EVM to get LSM
events that occur anywhere within the cluster.

8.5 Managing Hardware RAID Subsystem Performance
Hardware RAID subsystems provide RAID functionality for high
performance and high availability, relieve the CPU of disk I/O overhead,
and enable you to connect many disks to a single I/O bus. There are
various types of hardware RAID subsystems with different performance
and availability features, but they all include a RAID controller, disks in
enclosures, cabling, and disk management software.

RAID storage solutions range from low-cost backplane RAID array
controllers to cluster-capable RAID array controllers that provide extensive
performance and availability features, such as write-back caches and
complete component redundancy.

Hardware RAID subsystems use disk management software, such as the
RAID Configuration Utility (RCU) and the StorageWorks Command
Console (SWCC) utility, to manage the RAID devices. Menu-driven
interfaces allow you to select RAID levels.

Use hardware RAID to combine multiple disks into a single storage set
that the system sees as a single unit. A storage set can consist of a simple
set of disks, a striped set, a mirrored set, or a RAID set. You can create
LSM volumes, AdvFS file domains, or UFS file systems on a storage set, or
you can use the storage set as a raw device.

The following sections discuss the following RAID hardware topics:

• Hardware RAID features (Section 8.5.1)

• Hardware RAID products (Section 8.5.2)

• Guidelines for hardware RAID configurations (Section 8.5.3)

See the hardware RAID product documentation for detailed configuration
information.

8.5.1 Hardware RAID Features

Hardware RAID storage solutions range from low-cost backplane RAID
array controllers to cluster-capable RAID array controllers that provide
extensive performance and availability features. All hardware RAID
subsystems provide you with the following features:

Managing Disk Storage Performance 8–29

• A RAID controller that relieves the CPU of the disk I/O overhead

• Increased disk storage capacity

Hardware RAID subsystems allow you to connect a large number of
disks to a single I/O bus. In a typical storage configuration, you attach a
disk storage shelf to a system by using a SCSI bus connected to a host
bus adapter installed in a I/O bus slot. However, you can connect a
limited number of disks to a SCSI bus, and systems have a limited
number of I/O bus slots.

In contrast, hardware RAID subsystems contain multiple internal SCSI
buses that can be connected to a system by using a single I/O bus slot.

• Read cache

A read cache improves I/O read performance by holding data that it
anticipates the host will request. If a system requests data that is
already in the read cache (a cache hit), the data is immediately
supplied without having to read the data from disk. Subsequent data
modifications are written both to disk and to the read cache
(write-through caching).

• Write-back cache

Hardware RAID subsystems support write-back caches (as a standard
or an optional feature), which can improve I/O write performance while
maintaining data integrity. A write-back cache decreases the latency of
many small writes, and can improve Internet server performance
because writes appear to be written immediately. Applications that
perform few writes will not benefit from a write-back cache.

With write-back caching, data intended to be written to disk is
temporarily stored in the cache, consolidated, and then periodically
written (flushed) to disk for maximum efficiency. I/O latency is reduced
by consolidating contiguous data blocks from multiple host writes into a
single unit.

A write-back cache must be battery-backed to protect against data loss
and corruption.

• RAID support

All hardware RAID subsystems support RAID 0 (disk striping), RAID 1
(disk mirroring), and RAID 5. High-performance RAID array
subsystems also support RAID 3 and dynamic parity RAID. See
Section 1.2.3.1 for information about RAID levels.

• Non-RAID disk array capability or "just a bunch of disks" (JBOD)

8–30 Managing Disk Storage Performance

• Component hot swapping and hot sparing

Hot swap support allows you to replace a failed component while the
system continues to operate. Hot spare support allows you to
automatically use previously installed components if a failure occurs.

• Graphical user interface (GUI) for easy management and monitoring

8.5.2 Hardware RAID Products

There are different types of hardware RAID subsystems, which provide
various degrees of performance and availability at various costs. Compaq
supports the following hardware RAID subsystems:

• Backplane RAID array storage subsystems

These entry-level subsystems, such as those utilizing the RAID Array
230/Plus storage controller, provide a low-cost hardware RAID solution
and are designed for small and midsize departments and workgroups.

A backplane RAID array storage controller is installed in an I/O bus
slot, either a PCI bus slot or an EISA bus slot, and acts as both a host
bus adapter and a RAID controller.

Backplane RAID array subsystems provide RAID functionality (0, 1,
0+1, and 5), an optional write-back cache, and hot swap functionality.

• High-performance RAID array subsystems

These subsystems, such as the RAID Array 450 subsystem, provide
extensive performance and availability features and are designed for
client/server, data center, and medium to large departmental
environments.

A high-performance RAID array controller, such as an HSZ50
controller, is connected to a system through a FWD SCSI bus and a
high-performance host bus adapter installed in an I/O bus slot.

High-performance RAID array subsystems provide RAID functionality
(0, 1, 0+1, 3, 5, and dynamic parity RAID), dual-redundant controller
support, scalability, storage set partitioning, a standard battery-backed
write-back cache, and components that can be hotswapped.

• Enterprise Storage Arrays (ESA)

These preconfigured high-performance hardware RAID subsystems,
such as the RAID Array 10000, provide the highest performance,
availability, and disk capacity of any RAID subsystem. They are used
for high transaction-oriented applications and high bandwidth
decision-support applications.

Managing Disk Storage Performance 8–31

ESAs support all major RAID levels, including dynamic parity RAID;
fully redundant components that can be hotswapped; a standard
battery-backed write-back cache; and centralized storage management.

See the Compaq Systems & Options Catalog for detailed information about
hardware RAID subsystem features.

8.5.3 Hardware RAID Configuration Guidelines

Table 8–8 describes the hardware RAID subsystem configuration guidelines
and lists performance benefits as well as tradeoffs.

Table 8–8: Hardware RAID Subsystem Configuration Guidelines

Guideline Performance Benefit Tradeoff

Evenly distribute disks in a
storage set across different
buses (Section 8.5.3.1)

Improves performance and
helps to prevent bottlenecks

None

Use disks with the same
data capacity in each
storage set (Section 8.5.3.2)

Simplifies storage
management

None

Use an appropriate stripe
size (Section 8.5.3.3)

Improves performance None

Mirror striped sets
(Section 8.5.3.4)

Provides availability and
distributes disk I/O
performance

Increases
configuration
complexity and may
decrease write
performance

Use a write-back cache
(Section 8.5.3.5)

Improves write performance,
especially for RAID 5 storage
sets

Cost of hardware

Use dual-redundant RAID
controllers (Section 8.5.3.6)

Improves performance,
increases availability, and
prevents I/O bus bottlenecks

Cost of hardware

Install spare disks
(Section 8.5.3.7)

Improves availability Cost of disks

Replace failed disks
promptly (Section 8.5.3.7)

Improves performance None

The following sections describe some of these guidelines. See your RAID
subsystem documentation for detailed configuration information.

8–32 Managing Disk Storage Performance

8.5.3.1 Distributing Storage Set Disks Across Buses

You can improve performance and help to prevent bottlenecks by
distributing storage set disks evenly across different buses.

In addition, make sure that the first member of each mirrored set is on a
different bus.

8.5.3.2 Using Disks with the Same Data Capacity

Use disks with the same capacity in a storage set. This simplifies storage
management.

8.5.3.3 Choosing the Correct Hardware RAID Stripe Size

You must understand how your applications perform disk I/O before you
can choose the stripe (chunk) size that will provide the best performance
benefit. See Section 2.1 for information about identifying a resource model
for your system.

Here are some guidelines for stripe sizes:

• If the stripe size is large compared to the average I/O size, each disk in
a stripe set can respond to a separate data transfer. I/O operations can
then be handled in parallel, which increases sequential write
performance and throughput. This can improve performance for
environments that perform large numbers of I/O operations, including
transaction processing, office automation, and file services
environments, and for environments that perform multiple random
read and write operations.

• If the stripe size is smaller than the average I/O operation, multiple
disks can simultaneously handle a single I/O operation, which can
increase bandwidth and improve sequential file processing. This is
beneficial for image processing and data collection environments.
However, do not make the stripe size so small that it will degrade
performance for large sequential data transfers.

For example, if you use an 8-KB stripe size, small data transfers will be
distributed evenly across the member disks, but a 64-KB data transfer will
be divided into at least eight data transfers.

In addition, the following guidelines can help you to choose the correct
stripe size:

• Raw disk I/O operations

If your applications are doing I/O to a raw device and not a file system,
use a stripe size that distributes a single data transfer evenly across

Managing Disk Storage Performance 8–33

the member disks. For example, if the typical I/O size is 1 MB and you
have a four-disk array, you could use a 256-KB stripe size. This would
distribute the data evenly among the four member disks, with each
doing a single 256-KB data transfer in parallel.

• Small file system I/O operations

For small file system I/O operations, use a stripe size that is a multiple
of the typical I/O size (for example, four to five times the I/O size). This
will help to ensure that the I/O is not split across disks.

• I/O to a specific range of blocks

Choose a stripe size that will prevent any particular range of blocks
from becoming a bottleneck. For example, if an application often uses a
particular 8-KB block, you may want to use a stripe size that is slightly
larger or smaller than 8 KB or is a multiple of 8 KB to force the data
onto a different disk.

8.5.3.4 Mirroring Striped Sets

Striped disks improve I/O performance by distributing the disk I/O load.
However, striping decreases availability because a single disk failure will
cause the entire stripe set to be unavailable. To make a stripe set highly
available, you can mirror the stripe set.

8.5.3.5 Using a Write-Back Cache

RAID subsystems support, either as a standard or an optional feature, a
nonvolatile (battery-backed) write-back cache that can improve disk I/O
performance while maintaining data integrity. A write-back cache improves
performance for systems that perform large numbers of writes and for
RAID 5 storage sets. Applications that perform few writes will not benefit
from a write-back cache.

With write-back caching, data intended to be written to disk is temporarily
stored in the cache and then periodically written (flushed) to disk for
maximum efficiency. I/O latency is reduced by consolidating contiguous
data blocks from multiple host writes into a single unit.

A write-back cache improves performance, especially for Internet servers,
because writes appear to be written immediately. If a failure occurs, upon
recovery, the RAID controller detects any unwritten data that still exists in
the write-back cache and writes the data to disk before enabling normal
controller operations.

A write-back cache must be battery-backed to protect against data loss and
corruption.

8–34 Managing Disk Storage Performance

If you are using an HSZ40 or HSZ50 RAID controller with a write-back
cache, the following guidelines may improve performance:

• Set CACHE_POLICY to B.

• Set CACHE_FLUSH_TIMER to a minimum of 45 (seconds).

• Enable the write-back cache (WRITEBACK_CACHE) for each unit, and set
the value of MAXIMUM_CACHED_TRANSFER_SIZE to a minimum of 256.

See the RAID subsystem documentation for more information about using
the write-back cache.

8.5.3.6 Using Dual-Redundant Controllers

If supported by your RAID subsystem, you can use a dual-redundant
controller configuration and balance the number of disks across the two
controllers. This can improve performance, increase availability, and
prevent I/O bus bottlenecks.

8.5.3.7 Using Spare Disks to Replace Failed Disks

Install predesignated spare disks on separate controller ports and storage
shelves. This will help you to maintain data availability and recover
quickly if a disk failure occurs.

8.6 Managing CAM Performance

The Common Access Method (CAM) is the operating system interface to the
hardware. CAM maintains pools of buffers that are used to perform I/O.
Each buffer takes approximately 1 KB of physical memory. Monitor these
pools and tune them if necessary.

You may be able to modify the following io subsystem attributes to
improve CAM performance:

• cam_ccb_pool_size—The initial size of the buffer pool free list at
boot time. The default is 200.

• cam_ccb_low_water—The number of buffers in the pool free list at
which more buffers are allocated from the kernel. CAM reserves this
number of buffers to ensure that the kernel always has enough memory
to shut down runaway processes. The default is 100.

• cam_ccb_increment—The number of buffers either added or removed
from the buffer pool free list. Buffers are allocated on an as-needed
basis to handle immediate demands, but are released in a more
measured manner to guard against spikes. The default is 50.

Managing Disk Storage Performance 8–35

If the I/O pattern associated with your system tends to have intermittent
bursts of I/O operations (I/O spikes), increasing the values of the
cam_ccb_pool_size and cam_ccb_increment attributes may improve
performance.

You may be able to diagnose CAM performance problems by using dbx to
examine the ccmn_bp_head data structure, which provides statistics on
the buffer structure pool that is used for raw disk I/O. The information
provided is the current size of the buffer structure pool (num_bp) and the
wait count for buffers (bp_wait_cnt).

For example:

/usr/ucb/dbx −k /vmunix /dev/mem
(dbx) print ccmn_bp_head
struct {

num_bp = 50
bp_list = 0xffffffff81f1be00
bp_wait_cnt = 0

}
(dbx)

If the value for the bp_wait_cnt field is not zero, CAM has run out of
buffer pool space. If this situation persists, you may be able to eliminate
the problem by changing one or more of the CAM subsystem attributes
described in this section.

8–36 Managing Disk Storage Performance

9
Managing File System Performance

The Tru64 UNIX operating system supports different file system options
that have various performance features and functionality.

This chapter describes the following:

• Gathering information about all types of file systems (Section 9.1)

• Applying tuning guidelines that are applicable to all types of file
systems (Section 9.2)

• Managing Advanced File System (AdvFS) performance (Section 9.3)

• Managing UNIX File System (UFS) performance (Section 9.4)

• Managing Network File System (NFS) performance (Section 9.5)

9.1 Gathering File System Information

The following sections describe how to use tools to monitor general file
system activity and describe some general file system tuning guidelines.

See Section 6.3.4 for information about using dbx to check the Unified
Buffer Cache (UBC).

9.1.1 Displaying File System Disk Space

The df command displays the disk space used by a UFS file system or
AdvFS fileset. Because an AdvFS fileset can use multiple volumes, the df
command reflects disk space usage somewhat differently than UFS.

For example:

df /usr/var/spool/mqueue
Filesystem 512-blocks Used Available Capacity Mounted on
/dev/rz13e 2368726 882 2130970 1% /usr/var/spool/mqueue

df /usr/sde
Filesystem 512-blocks Used Available Capacity Mounted on
flume_sde#sde 1048576 319642 709904 32% /usr/sde

See df(1) for more information.

Managing File System Performance 9–1

9.1.2 Checking the namei Cache with the dbx Debugger

The namei cache is used by UNIX File System (UFS), Advanced File
System (AdvFS), CD–ROM File System (CDFS), Memory File System
(MFS), and Network File System (NFS) to store information about recently
used file names, parent directory vnodes, and file vnodes. The number of
vnodes determines the number of open files. The namei cache also stores
vnode information for files that were referenced but not found. Having this
information in the cache substantially reduces the amount of searching
that is needed to perform pathname translations.

To check namei cache statistics, use the dbx print command and specify
a processor number to examine the nchstats data structure. Consider the
following example:

/usr/ucb/dbx −k /vmunix /dev/mem
(dbx) print processor_ptr[0].nchstats
struct {

ncs_goodhits = 47967479
ncs_neghits = 3611935
ncs_badhits = 1828974
ncs_falsehits = 58393
ncs_miss = 4194525
ncs_long = 60
ncs_badtimehits = 406034
ncs_collisions = 149
ncs_unequaldups = 0
ncs_pad = {

[0] 0
[1] 0
[2] 0

}
}
(dbx)

Examine the ncs_goodhits (found a match), ncs_neghits (found a
match that did not exist), and ncs_miss (did not find a match) fields to
determine the hit rate. The hit rate should be above 80 percent
(ncs_goodhits plus ncs_neghits divided by the sum of the
ncs_goodhits, ncs_neghits, ncs_miss, and ncs_falsehits fields).
See Section 9.2.1 for information on how to improve the namei cache hit
rate and lookup speeds.

If the value in the ncs_badtimehits field is more than 0.1 percent of the
ncs_goodhits field, then you may want to delay vnode deallocation. See
Section 9.2.2 for more information.

9.2 Tuning File Systems

You may be able to improve I/O performance by modifying some kernel
subsystem attributes that affect file system performance. General file
system tuning often involves tuning the Virtual File System (VFS), which

9–2 Managing File System Performance

provides a uniform interface that allows common access to files, regardless
of the file system on which the files reside.

To successfully improve file system performance, you must understand how
your applications and users perform disk I/O, as described in Section 2.1.
Because file systems share memory with processes, you should also
understand virtual memory operation, as described in Chapter 6.

Table 9–1 describes the guidelines for general file system tuning and lists
the performance benefits as well as the tradeoffs. There are also specific
guidelines for AdvFS and UFS file systems. See Section 9.3 and Section 9.4
for information.

Table 9–1: General File System Tuning Guidelines

Guideline Performance Benefit Tradeoff

Increase the size of the namei
cache (Section 9.2.1)

Improves namei cache
lookup operations

Consumes memory

Delay vnode deallocation
(Section 9.2.2)

Improves namei cache
lookup operations

Consumes memory

Delay vnode recycling
(Section 9.2.3)

Improves cache lookup
operations

None

Increase the memory
allocated to the UBC
(Section 9.2.4)

Improves file system I/O
performance

May cause excessive
paging and swapping

Decrease the amount of
memory borrowed by the
UBC (Section 9.2.5)

Improves file system I/O
performance

Decreases the
memory available for
processes, and may
decrease system
response time

Increase the minimum size of
the UBC (Section 9.2.6)

Improves file system I/O
performance

Decreases the
memory available for
processes

Increase the amount of UBC
memory used to cache a large
file (Section 9.2.7)

Improves large file
performance

May allow a large file
to consume all the
pages on the free list

Managing File System Performance 9–3

Table 9–1: General File System Tuning Guidelines (cont.)

Guideline Performance Benefit Tradeoff

Disable flushing file read
access times (Section 9.2.8)

Improves file system
performance for systems
that perform mainly read
operations

Jeopardizes the
integrity of read
access time updates
and violates POSIX
standards

Use Prestoserve to cache only
file system metadata
(Section 9.2.9)

Improves performance for
applications that access
large amounts of file system
metadata

Prestoserve is not
supported in a cluster
or for nonfile system
I/O operations

The following sections describe these guidelines in detail.

9.2.1 Increasing the Size of the namei Cache

The namei cache is used by UFS, AdvFS, CDFS, and NFS to store
information about recently used file names, parent directory vnodes, and
file vnodes. The number of vnodes determines the number of open files. The
namei cache also stores vnode information for files that were referenced but
not found. Having this information in the cache substantially reduces the
amount of searching that is needed to perform pathname translations.

The vfs subsystem attribute name_cache_size specifies the maximum
number of elements in the cache. You can also control the size of the namei
cache with the maxusers attribute, as described in Section 5.1.

Performance Benefit and Tradeoff

You may be able to make lookup operations faster by increasing the size of
the namei cache. However, this increases the amount of wired memory.

Note that many benchmarks perform better with a large namei cache.

You cannot modify the name_cache_size attribute without rebooting the
system.

When to Tune

Monitor the namei cache by using the dbx print command and specifying
a processor number to examine the nchstats data structure. If the miss
rate (misses / (good + negative + misses)) is more than 20 percent, you may
want to increase the cache size. See Section 9.1.2 for more information.

9–4 Managing File System Performance

Recommended Values

The default value of the vfs subsystem attribute name_cache_size is:

2 * (148 + 10 * maxusers) * 11 / 10

See Section 3.6 for information about modifying kernel subsystem
attributes.

9.2.2 Delaying vnode Deallocation

File systems use a kernel data structure called a vnode for each open file.
The number of vnodes determines the number of open files. By default,
Tru64 UNIX uses dynamic vnode allocation, which enables the supply of
kernel vnodes to increase and decrease, according to the system demand.

You enable and disable dynamic vnode allocation by using the vfs
subsystem attribute vnode_deallocation_enable, which is set to 1
(enabled), by default. If you disable dynamic vnode allocation, the operating
system will use a static vnode pool. For the best performance, Compaq
recommends that you use dynamic vnode allocation.

If you are using dynamic vnode allocation, a vnode is deallocated (removed
from the free list and its memory is returned to the system) when it has
not been accessed through the namei cache for more than the amount of
time specified by the vfs subsystem attribute namei_cache_valid_time.
The default value is 1200 seconds.

Performance Benefit and Tradeoff

Increasing the default value of the namei_cache_valid_time attribute
delays vnode deallocation, which may improve the cache hit rate. However,
this will increase the amount of memory consumed by the vnode pool.

You cannot modify the namei_cache_valid_time attribute without
rebooting the system.

When to Tune

The default value of the namei_cache_valid_time attribute (1200
seconds) is appropriate for most workloads. However, for workloads with
heavy vnode pool activity, you may be able to optimize performance by
modifying the default value.

You can obtain namei cache statistics for the number of cache lookup
failures due to vnode deallocation by examining the ncs_badtimehits
field in the dbx nchstats data structure. If the value in the
ncs_badtimehits field is more than 0.1 percent of the successful cache
hits, as specified in the ncs_goodhits field, then you may want to

Managing File System Performance 9–5

increase the default value of the namei_cache_valid_time attribute. See
Section 9.1.2 for more information about monitoring the namei cache.

Recommended Values

To delay the deallocation of vnodes, increase the value of the vfs subsystem
attribute namei_cache_valid_time. The default value is 1200.

_______________________ Note _______________________

Decreasing the value of the namei_cache_valid_time
attribute accelerates the deallocation of vnodes from the namei
cache and reduces the efficiency of the cache.

See Section 3.6 for information about modifying kernel subsystem
attributes.

9.2.3 Delaying vnode Recycling

File systems use a kernel data structure called a vnode for each open file.
The number of vnodes determines the number of open files. By default,
Tru64 UNIX uses dynamic vnode allocation, which enables the supply of
kernel vnodes to increase and decrease, according to the system demand.

You enable and disable dynamic vnode allocation by using the vfs
subsystem attribute vnode_deallocation_enable, which is set to 1
(enabled), by default. If you disable dynamic vnode allocation, the operating
system will use a static vnode pool. For the best performance, Compaq
recommends that you use dynamic vnode allocation.

Using dynamic vnode allocation, a vnode can be recycled and used to
represent a different file object when it has been on the vnode free list for
more than the amount of time specified by the vfs subsystem attribute
vnode_age. The default value is 120 seconds.

Performance Benefit and Tradeoff

Increasing the value of the vnode_age attribute delays vnode recycling
and increases the chance of a cache hit. However, delaying vnode recycling
increases the length of the free list and the amount of memory consumed
by the vnode pool.

You can modify the vnode_age attribute without rebooting the system.

When to Tune

The default value of the vnode_age attribute is appropriate for most
workloads. However, for workloads with heavy vnode pool activity, you may
be able to optimize performance by modifying the default value.

9–6 Managing File System Performance

Recommended Values

To delay the recycling of vnodes, increase the default value of the
vnode_age attribute. The default value is 120 seconds.

Decreasing the value of the vnode_age attribute accelerates vnode
recycling, but decreases the chance of a cache hit.

See Section 3.6 for information about modifying kernel subsystem
attributes.

9.2.4 Increasing Memory for the UBC

The Unified Buffer Cache (UBC) shares with processes the memory that is
not wired. The UBC caches UFS and CDFS file system data for reads and
writes, AdvFS metadata and file data, and MFS data. Performance is
improved if the cached data is later reused and a disk operation is avoided.

The vm subsystem attribute ubc_maxpercent specifies the maximum
amount of nonwired memory that can be allocated to the UBC. See
Section 6.1.2.2 for information about UBC memory allocation.

Performance Benefit and Tradeoff

If you reuse data, increasing the size of the UBC will improve the chance
that data will be found in the cache. An insufficient amount of memory
allocated to the UBC can impair file system performance. However, the
performance of an application that generates a lot of random I/O will not be
improved by a large UBC, because the next access location for random I/O
cannot be predetermined.

Be sure that allocating more memory to the UBC does not cause excessive
paging and swapping.

You can modify the ubc_maxpercent attribute without rebooting the
system.

When to Tune

For most configurations, use the default value of the ubc_maxpercent
attribute (100 percent).

Recommended Values

To increase the maximum amount of memory allocated to the UBC, you can
increase the value of the vm subsystem attribute ubc_maxpercent. The
default value is 100 percent, which should be appropriate for most
configurations, including Internet servers.

Managing File System Performance 9–7

See Section 3.6 for information about modifying kernel subsystem
attributes.

9.2.5 Increasing the Borrowed Memory Threshold

The UBC borrows all physical memory between the value of the vm
subsystem attribute ubc_borrowpercent and the value of the
ubc_maxpercent attribute. See Section 6.1.2.2 for more information about
allocating memory to the UBC.

Performance Benefit and Tradeoff

Increasing the value of the ubc_borrowpercent attribute will reduce the
amount of memory that the UBC borrows from processes and allow more
memory to remain in the UBC when page reclamation begins. This can
increase the UBC cache effectiveness, but it may degrade system response
time when a low-memory condition occurs (for example, a large process
working set).

You can modify the ubc_borrowpercent attribute without rebooting the
system.

When to Tune

If vmstat output shows excessive paging but few or no page outs, you may
want to increase the borrowing threshold.

Recommended Values

The value of the ubc_borrowpercent attribute can range from 0 to 100.
The default value is 20 percent.

See Section 3.6 for information about modifying kernel subsystem
attributes.

9.2.6 Increasing the Minimum Size of the UBC

The minimum amount of memory that can be allocated to the UBC is
specified by the vm subsystem attribute ubc_minpercent. See
Section 6.1.2.2 for information about allocating memory to the UBC.

Performance Benefit and Tradeoff

Increasing the minimum size of the UBC will prevent large programs from
completely consuming the memory that can be used by the UBC.

Because the UBC and processes share virtual memory, increasing the
minimum size of the UBC may cause the system to page.

9–8 Managing File System Performance

You can modify the ubc_minpercent attribute without rebooting the
system.

When to Tune

For I/O servers, you may want to raise the value of the vm subsystem
attribute ubc_minpercent to ensure that enough memory is available for
the UBC.

To ensure that the value of the ubc_minpercent is appropriate, use the
vmstat command to examine the page-out rate. See Section 6.3.1 for
information.

Recommended Values

The default value of the ubc_minpercent is 10 percent.

If the values of the vm subsystem attributes ubc_maxpercent and
ubc_minpercent are close together, you may degrade I/O performance.

See Section 3.6 for information about modifying kernel subsystem
attributes.

9.2.7 Improving Large File Caching Performance

If a large file completely fills the UBC, it may take all of the pages on the
free page list, which may cause the system to page excessively. The vm
subsystem attribute vm_ubcseqpercent specifies the maximum amount of
memory allocated to the UBC that can be used to cache a single file.

The vm subsystem attribute vm_ubcseqstartpercent specifies the size of
the UBC as a percentage of physical memory, at which time the virtual
memory subsystem starts stealing the UBC LRU pages for a file to satisfy
the demand for pages.

Performance Benefit and Tradeoff

Increasing the value of the vm_ubcseqpercent attribute will improve the
I/O performance of a large single file, but will decrease the memory
available for small files.

You can modify the vm_ubcseqpercent and vm_ubcseqstartpercent
attributes without rebooting the system.

When to Tune

You may want to increase the value of the vm_ubcseqpercent attribute if
you reuse large files.

Managing File System Performance 9–9

Recommended Values

The default value of the vm_ubcseqpercent attribute is 10 percent of
memory allocated to the UBC.

To force the system to reuse the pages in the UBC instead of taking pages
from the free list, perform the following tasks:

• Make the maximum size of the UBC greater than the size of the UBC
as a percentage of memory. That is, the value of the vm subsystem
attribute ubc_maxpercent (the default is 100 percent) must be greater
than the value of the vm_ubcseqstartpercent attribute (the default
is 50 percent).

• Make the value of the vm_ubcseqpercent attribute, which specifies the
size of a file as a percentage of the UBC, greater than a referenced file.
The default value of the vm_ubcseqpercent attribute is 10 percent.

For example, using the default values, the UBC would have to be larger
than 50 percent of all memory and a file would have to be larger than 10
percent of the UBC (that is, the file size would have to be at least 5 percent
of all memory) in order for the system to reuse the pages in the UBC.

On large-memory systems that are doing a lot of file system operations, you
may want to decrease the value of the vm_ubcseqstartpercent attribute
to 30 percent. Do not specify a lower value unless you decrease the size of
the UBC. In this case, do not change the value of the vm_ubcseqpercent
attribute.

See Section 3.6 for information about modifying kernel subsystem
attributes.

9.2.8 Disabling File Read Access Time Flushing

When a read system call is made to a file system’s files, the default
behavior is for the file system to update both the in-memory file access time
and the on-disk stat structure, which contains most of the file information
that is returned by the stat system call.

Performance Benefit and Tradeoff

You can improve file system performance for systems that perform mainly
read operations (such as proxy servers) by specifying, at mount time, that
the file system update only the in-memory file access time when a read
system call is made to a file. The file system will update the on-disk stat
structure only if the file is modified.

Updating only the in-memory file access time for reads can improve proxy
server response time by decreasing the number of disk I/O operations.

9–10 Managing File System Performance

However, this behavior jeopardizes the integrity of read access time
updates and violates POSIX standards. Do not use this functionality if it
will affect utilities that use read access times to perform tasks, such as
migrating files to different devices.

When to Perform this Task

You may want to disable file read access time flushing if your system
performs mainly read operations.

Recommended Procedure

To disable file read access time flushing, use the mount command with the
noatimes option.

See read(2) and mount(8) for more information.

9.2.9 Caching Only File System Metadata with Prestoserve

Prestoserve can improve the overall run-time performance for systems that
perform large numbers of synchronous writes. The prmetaonly attribute
controls whether Prestoserve caches only UFS and AdvFS file system
metadata, instead of both metadata and synchronous write data (the
default).

Performance Benefit and Tradeoff

Caching only metadata may improve the performance of applications that
access many small files or applications that access a large amount of
file-system metadata but do not reread recently written data.

When to Tune

Cache only file system metadata if your applications access many small
files or access a large amount of file-system metadata but do not reread
recently written data.

Recommended Values

Set the value of the prmetaonly attribute to 1 (enabled) to cache only file
system metadata.

See Section 3.6 for information about modifying kernel subsystem
attributes.

9.3 Managing Advanced File System Performance

The Advanced File System (AdvFS) provides file system features beyond
those of a traditional UFS file system. Unlike the rigid UFS model in which

Managing File System Performance 9–11

the file system directory hierarchy (tree) is bound tightly to the physical
storage, AdvFS consists of two distinct layers: the directory hierarchy layer
and the physical storage layer.

The following sections describe:

• AdvFS features (Section 9.3.1)

• AdvFS I/O queues (Section 9.3.2)

• AdvFS access structures (Section 9.3.3)

• AdvFS guidelines for high-performance configurations (Section 9.3.4)

• Monitoring AdvFS performance (Section 9.3.5)

• Tuning AdvFS (Section 9.3.6)

• Improving AdvFS performance (Section 9.3.7)

See the AdvFS Administration manual for detailed information about
setting up and managing AdvFS.

9.3.1 AdvFS Features

The AdvFS decoupled file system structure enables you to manage the
physical storage layer apart from the directory hierarchy layer. You can put
multiple volumes (disks, LSM volumes, or RAID storage sets) in a file
domain and distribute the filesets and files across the volumes. A file’s
blocks usually reside together on the same volume, unless the file is striped
or the volume is full. Each new file is placed on the successive volume by
using round-robin scheduling.

AdvFS enables you to move files between a defined group of disk volumes
without changing file pathnames. Because the pathnames remain the
same, the action is completely transparent to users.

The AdvFS Utilities product, which is licensed separately from the
operating system, extends the capabilities of the AdvFS file system.

AdvFS provides the following basic features that do not require a license:

• High-performance file system

AdvFS uses an extent-based file allocation scheme that consolidates
data transfers, which increases sequential bandwidth and improves
performance for large data transfers. AdvFS performs large reads from
disk when it anticipates a need for sequential data. AdvFS also performs
large writes by combining adjacent data into a single data transfer.

• Fast file system recovery

Rebooting after a system interruption is extremely fast, because AdvFS
uses write-ahead logging, instead of the fsck utility, as a way to check

9–12 Managing File System Performance

for and repair file system inconsistencies. The recovery speed depends
on the number of uncommitted records in the log, not the amount of
data in the fileset; therefore, reboots are quick and predictable.

• Direct I/O support

AdvFS allows you to enable direct I/O functionality on the files in a
fileset or on a specific file. If direct I/O is enabled, file data is
synchronously read or written without copying the data into the AdvFS
buffer cache. Direct I/O can significantly improve disk I/O throughput
for applications that read or write data only once or do not frequently
write to previously written pages. See Section 9.3.4.7 for more
information.

• Smooth sync

Smooth sync functionality improves AdvFS asynchronous I/O
performance by preventing I/O spikes caused by the update daemon,
increasing the chance of a buffer cache hit, and improving the
consolidation of I/O requests. See Section 9.3.6.5 for more information.

• Online file domain defragmentation capability

Defragmenting disk data can improve performance by making data
more contiguous. AdvFS enables you to perform this task without
interrupting data availability.

• Disk quotas

AdvFS enables you to track and control the amount of disk storage that
each user, group, and fileset consumes.

The optional AdvFS utilities product, which requires a license, provides the
following features:

• Disk spanning

A file or fileset can span disks within a multi-volume file domain.

• Online file system resizing

You can dynamically change the size of a file system by adding or
removing disks. AdvFS enables you to perform this task without
disrupting users or applications.

• Ability to recover deleted files

Users can retrieve their own unintentionally deleted files from
predefined trashcan directories, without assistance from system
administrators.

• I/O load balancing across disks

You can distribute the percentage of used space evenly between
volumes in a multi-volume domain.

Managing File System Performance 9–13

• Online file migration across disks

You can move specific files to different volumes to eliminate bottlenecks
caused by heavily used files.

• Online backup

You can back up file system contents with limited interruption to users.

• Clone filesets

AdvFS enables you to clone a fileset, which produces a read-only
snapshot of fileset data structures. Cloning can increase the availability
of data by preserving the state of the AdvFS data at a particular time
and protecting against accidental file deletion or corruption.

• File-level striping

File-level striping may improve I/O bandwidth (transfer rates) by
distributing file data across multiple disk volumes.

• Graphical user interface

The AdvFS GUI simplifies disk and file system administration, provides
status, and alerts you to potential problems.

See the AdvFS Administration manual for detailed information about
AdvFS features.

9.3.2 AdvFS I/O Queues

The AdvFS buffer cache is part of the UBC, and acts as a layer between
the operating system and disk by storing recently accessed AdvFS file
system data. Performance is improved if the cached data is later reused (a
buffer cache hit) and a disk operation is avoided.

At boot time, the kernel determines the amount of physical memory that is
available for AdvFS buffer cache headers, and allocates a buffer cache
header for each possible page. The size of an AdvFS page is 8 KB.

The number of AdvFS buffer cache headers depends on the number of 8-KB
pages that can be obtained from the amount of memory specified by the
advfs subsystem attribute AdvfsCacheMaxPercent. The default value is
7 percent of physical memory. See Section 6.1.2.3 for more information
about how the system allocates memory to the AdvFS buffer cache.

For each AdvFS volume, I/O requests are sent to one of the following
queues, which feed I/O requests to the device queue:

• Blocking queue

The blocking queue caches synchronous I/O requests. A synchronous I/O
request is a read operation or a write that must be flushed to disk before

9–14 Managing File System Performance

it is considered complete and the application can continue. This ensures
data reliability because the data has been written to disk and is not
stored only in memory. Therefore, I/O requests on the blocking queue
cannot be asynchronously removed, because the I/O must complete.

• Lazy queue

The lazy queue caches asynchronous I/O requests. Asynchronous I/O
requests are cached in the lazy queue and periodically flushed to disk in
portions that are large enough to allow the disk drivers to optimize the
order of the write.

Figure 9–1 shows the movement of synchronous and asynchronous I/O
requests through the AdvFS I/O queues.

Figure 9–1: AdvFS I/O Queues

Smooth
sync

queue

Ready
queue

Consol
queueWait

queue

Synchronous
I/O request

Blocking queue

Lazy queue
Device
queue

Asynchronous
I/O request

ZK-1425U-AI

disk

When an asynchronous I/O request enters the lazy queue, it is assigned a
time stamp. The lazy queue is a pipeline that contains a sequence of
queues through which an I/O request passes: the wait queue (if applicable),
the smooth sync queue, the ready queue, and the consol (consolidation)
queue. An AdvFS buffer cache hit can occur while an I/O request is in any
part of the lazy queue.

Detailed descriptions of the AdvFS queues are as follows:

• Wait queue—Asynchronous I/O requests that are waiting for an AdvFS
transaction log write to complete first enter the wait queue. Each file
domain has a transaction log that tracks fileset activity for all filesets
in the file domain, and ensures AdvFS metadata consistency if a crash
occurs.

AdvFS uses write-ahead logging, which requires that when metadata is
modified, the transaction log write must complete before the actual
metadata is written. This ensures that AdvFS can always use the
transaction log to create a consistent view of the file system metadata.
After the transaction log is written, I/O requests can be moved from the
wait queue to the smooth sync queue.

Managing File System Performance 9–15

• Smooth sync queue—The smooth sync queue improves AdvFS
asynchronous I/O performance by preventing I/O spikes caused by the
update daemon, increasing the chance of an AdvFS buffer cache hit,
and improving the consolidation of I/O requests.

When smooth sync is not enabled, the update daemon flushes data
from memory to disk every 30 seconds, regardless of how long a buffer
has been cached. However, with smooth sync enabled (the default
behavior), asynchronous I/O requests remain in the smooth sync queue
for the amount of time specified by the value of the vfs attribute
smoothsync_age (the default is 30 seconds). After this time, the buffer
moves to the ready queue. The movement of buffers from the smooth
sync queue to the ready queue occurs continuously, based on the age of
the buffer, and reduces the need to flush large numbers of requests
every 30 seconds. See Section 9.3.6.5 for information about tuning the
smooth sync queue.

• Ready queue—Asynchronous I/O requests that are not waiting for an
AdvFS transaction log write to complete enter the ready queue, where
they are sorted and held until the size of the ready queue reaches the
value specified by the AdvfsReadyQLim attribute, or until the update
daemon flushes the data. The default value of the AdvfsReadyQLim
attribute is 16,384 512-byte blocks (8 MB).

You can modify the size of the ready queue for all AdvFS volumes by
changing the value of the AdvfsReadyQLim attribute. Alternatively,
you can modify the ready queue limit for a specific AdvFS volume by
using the chvol -t command. See Section 9.3.6.4 for information
about tuning the ready queue.

• Consol queue—I/O requests are moved from the ready queue to the
consol queue, which feeds the device queue. The consol queue serves as
a holding area that enables the interleaving of I/O requests as they
move from the blocking and the consol queues to the device queue, and
also prevents flooding the device queue with requests.

Both the consol queue and the blocking queue feed the device queue, where
logically contiguous I/O requests are consolidated into larger I/Os before
they are sent to the device driver. The size of the device queue affects the
amount of time it takes to complete a synchronous (blocking) I/O operation.
AdvFS issues several types of blocking I/O operations, including AdvFS
metadata and log data operations.

The AdvfsMaxDevQLen attribute limits the total number of I/O requests on
the AdvFS device queue. The default value is 24 requests. When the
number of requests exceeds this value, only synchronous requests from the
blocking queue are accepted onto the device queue.

9–16 Managing File System Performance

Although the default value of the AdvfsMaxDevQLen attribute is
appropriate for most configurations, you may need to modify this value.
However, increase the default value only if devices are not being kept busy.
Make sure that increasing the size of the device queue does not cause a
decrease in response time. See Section 9.3.6.6 for more information about
tuning the AdvFS device queue.

Use the advfsstat command to show the AdvFS queue statistics. See
Section 9.3.5.1 for information.

9.3.3 AdvFS Access Structures

AdvFS access structures are in-memory data structures that AdvFS uses to
cache low-level information about files that are currently open and files
that were opened but are now closed. Caching open file information can
enhance AdvFS performance if the open files are later reused. If your users
or applications open and then reuse many files, you may be able to improve
AdvFS performance by modifying how the system allocates AdvFS access
structures.

There are three attributes that control the allocation of AdvFS access
structures:

• The AdvfsAccessMaxPercent attribute controls the maximum
percentage of pageable memory that can be allocated for AdvFS access
structures.

• At boot time, the system reserves for AdvFS access structures a portion
of the physical memory that is not wired. The memory reserved is
either twice the value of the AdvfsMinFreeAccess attribute or the
value of the AdvfsAccessMaxPercent attribute, whichever is smaller.
These access structures are then placed on the access structure free list.

As AdvFS files are opened, access structures are taken from the free
list. If the number of access structures on the free list falls below the
value of the AdvfsMinFreeAccess attribute, AdvFS allocates
additional access structures and places them on the free list, until the
number of access structures on the free list is twice the value of the
AdvfsMinFreeAccess attribute or the value of the
AdvfsAccessMaxPercent attribute, whichever is smaller.

• At any one time, the access structure free list contains only a portion of
the access structures that the system has allocated. The
AdvfsMaxFreeAccessPercent attribute specifies the maximum
percentage of the total allocated access structures that can be on the
free list at one time. Access structures are deallocated from the free list,
and memory is returned to the pool that is reserved for access
structures when the following occurs:

Managing File System Performance 9–17

– The number of access structures on the free list exceeds the value of
the AdvfsMaxFreeAccessPercent attribute (as a percentage of
the total allocated access structures). For example, this condition is
satisfied if the value of the AdvfsMaxFreeAccessPercent
attribute is 80 percent, there are 100 allocated access structures,
and the number of access structures on the free list is more then 80.

– The number of access structures on the free list is more than twice
the value of the AdvfsMinFreeAccess attribute.

You may be able to improve AdvFS performance by modifying the previous
attributes and allocating more memory for AdvFS access structures.
However, this will reduce the amount of memory available to processes and
may cause excessive paging and swapping. See Section 9.3.6.3 for
information.

If you do not use AdvFS or if your workload does not frequently write to
previously-written pages, do not allocate a large amount of memory for
access structures. If you have a large-memory system, you may want to
decrease the amount of memory reserved for AdvFS access structures. See
Section 6.4.5 for information.

9.3.4 AdvFS Configuration Guidelines

You will obtain the best performance if you carefully plan your AdvFS
configuration. Table 9–2 lists AdvFS configuration guidelines and
performance benefits as well as tradeoffs. See the AdvFS Administration
manual for detailed information about AdvFS configuration.

Table 9–2: AdvFS Configuration Guidelines

Guideline Performance Benefit Tradeoff

Use a few file domains
instead of a single large
domain (Section 9.3.4.1)

Facilitates administration None

Use a multi-volume file
domains, instead of
single-volume domains
(Section 9.3.4.1)

Improves throughput Multi-volumes increase
the chance of domain
failure

Configure one fileset for
each domain
(Section 9.3.4.2)

Facilitates administration None

Keep filesets less than 50
GB in size (Section 9.3.4.2)

Facilitates administration None

9–18 Managing File System Performance

Table 9–2: AdvFS Configuration Guidelines (cont.)

Guideline Performance Benefit Tradeoff

Distribute the I/O load over
multiple disks
(Section 9.3.4.3)

Improves throughput Requires multiple disks

Place the transaction log on
fast or uncongested volume
(Section 9.3.4.4)

Prevents the log from
becoming a bottleneck

None

Log only file structures
(Section 9.3.4.4)

Maintains high
performance

Increases the possibility
of inconsistent data after
a crash

Force all AdvFS file writes
to be synchronous
(Section 9.3.4.5)

Ensures that data is
successfully written to
disk

May degrade file system
performance

Prevent partial writes
(Section 9.3.4.6)

Ensures that system
crashes do not cause
partial disk writes

May degrade
asynchronous write
performance

Enable direct I/O
(Section 9.3.4.7)

Improves disk I/O
throughput for database
applications that read or
write data only once

Degrades I/O
performance for
applications that
repeatedly access the
same data

Use AdvFS for the root file
system (Section 9.3.4.8)

Provides fast startup after
a crash

None

Stripe files across different
disks and, if possible,
different buses
(Section 9.3.4.9)

Improves sequential read
and write performance

Increases chance of
domain failure

Use quotas
(Section 9.3.4.10)

Tracks and controls the
amount of disk storage
that each user, group, or
fileset consumes

None

Consolidate I/O transfers
(Section 9.3.4.11)

Improves AdvFS
performance

None

Allocate sufficient swap
space (Section 2.3.2.3)

Facilitates the use of the
verify command

Requires additional disk
space

The following sections describe these AdvFS configuration guidelines in
detail.

9.3.4.1 Configuring File Domains

To facilitate AdvFS administration and improve performance, configure a
few file domains with multiple volumes instead of many file domains or a

Managing File System Performance 9–19

single large file domain. Using a few file domains with multiple volumes
provides better control over physical resources, improves a fileset’s total
throughput, and decreases the administration time.

Each file domain uses a transaction log on one of the volumes. If you
configure only a single large multi-volume file domain, the log may become
a bottleneck. In contrast, if you configure many file domains, you spread
the overhead associated with managing the logs for the file domains.

Multi-volume file domains improve performance because AdvFS generates
parallel streams of output using multiple device consolidation queues. A file
domain with three volumes on different disks is more efficient than a file
domain consisting of a single disk because the latter has only one I/O path.

However, a single volume failure within a file domain will render the entire
domain inaccessible, so the more volumes that you have in a file domain,
the greater the risk that the domain will fail. To reduce the risk of file
domain failure, limit the number of volumes in a file domain to eight or
mirror the file domain with LSM or hardware RAID.

In addition, follow these guidelines for configuring file domains:

• For the best efficiency, spread a file domain across several of the same
type of disks with the same speed.

• Use an entire disk in a file domain. For example, do not use partition a
in one file domain and partition b in another file domain.

• Use a single disk partition to add a disk to a file domain (for example,
partition c), instead of using multiple partitions.

• Make sure that busy files are not located on the same volume. Use the
migrate command to move files across volumes.

• If you are using LSM, use multiple, small LSM volumes in a file
domain, instead of a single, large concatenated or striped volume. This
enables AdvFS to balance I/O across volumes.

9.3.4.2 Configuring Filesets for High Performance

Configuring many filesets in a file domain can adversely affect performance
and AdvFS administration. If possible, configure only one fileset for each
file domain.

In addition, the recommended maximum size of a fileset is 50 GB. Once a
fileset reaches 30 GB, consider creating another file domain and fileset. You
may want to establish a monitoring routine that alerts you to a large fileset
size.

Use the showfsets command to display the number of filesets in a domain
and the size of a fileset. See showfsets(8) for more information.

9–20 Managing File System Performance

9.3.4.3 Distribute the AdvFS I/O Load

Distribute the AdvFS I/O load over multiple disks to improve throughput.
Use multiple file domains and spread filesets across the domains.

The number of filesets depends on your storage needs. Each fileset can be
managed and backed up independently, and can be assigned quotas. Be
sure that heavily used filesets are located on different file domains, so that
a single transaction log does not become a bottleneck.

See Section 8.1 for more information about distributing the disk I/O load.

9.3.4.4 Improving the Transaction Log Performance

Each file domain has a transaction log that tracks fileset activity for all
filesets in the file domain, and ensures AdvFS metadata consistency if a
crash occurs. The AdvFS file domain transaction log may become a
bottleneck if the log resides on a congested disk or bus, or if the file domain
contains many filesets.

To prevent the log from becoming a bottleneck, put the log on a fast,
uncongested volume. You may want to put the log on a disk that contains
only the log. See Section 9.3.7.3 for information on moving an existing
transaction log.

To make the transaction log highly available, use LSM or hardware RAID
to mirror the log.

You can also divide a large multi-volume file domain into smaller file
domains to distribute transaction log I/O.

By default, AdvFS logs only file structures. However, you can also log file
data to ensure that a file is internally consistent if a crash occurs. However,
data logging can degrade performance. See Section 9.3.4.6 for information
about atomic write data logging.

9.3.4.5 Forcing Synchronous Writes

By default, asynchronous write requests are cached in the AdvFS buffer
cache, and the write system call then returns a success value. The data is
written to disk at a later time (asynchronously).

Use the chfile -l on command to force all write requests to a specified
AdvFS file to be synchronous. If you enable forced synchronous writes on a
file, data must be successfully written to disk before the write system call
will return a success value. This behavior is similar to the behavior
associated with a file that has been opened with the O_SYNC option;
however, forcing synchronous writes persists across open calls.

Managing File System Performance 9–21

Forcing all writes to a file to be synchronous ensures that the write has
completed when the write system call returns a success value. However, it
may degrade write performance.

A file cannot have both forced synchronous writes enabled and atomic write
data logging enabled. See Section 9.3.4.6 for more information.

Use the chfile command to determine whether forced synchronous writes
or atomic write data logging is enabled. Use the chfile -l off command
to disable forced synchronous writes (the default).

9.3.4.6 Preventing Partial Data Writes

AdvFS writes data to disk in 8-KB chunks. By default, and in accordance
with POSIX standards, AdvFS does not guarantee that all or part of the
data will actually be written to disk if a crash occurs during or immediately
after the write. For example, if the system crashes during a write that
consists of two 8-KB chunks of data, only a portion (anywhere from 0 to 16
KB) of the total write may have succeeded. This can result in partial data
writes and inconsistent data.

To prevent partial writes if a system crash occurs, use the chfile -L on
command to enable atomic write data logging for a specified file.

By default, each file domain has a transaction log file that tracks fileset
activity and ensures that AdvFS can maintain a consistent view of the file
system metadata if a crash occurs. If you enable atomic write data logging
on a file, data from a write call will be written to the transaction log file
before it is written to disk. If a system crash occurs during or immediately
after the write call, upon recovery, the data in the log file can be used to
reconstruct the write. This guarantees that each 8-KB chunk of a write
either is completely written to disk or is not written to disk.

For example, if atomic write data logging is enabled and a crash occurs
during a write that consists of two 8-KB chunks of data, the write can have
three possible states: none of the data is written, 8 KB of the data is
written, or 16 KB of data is written.

Atomic write data logging may degrade AdvFS write performance because
of the extra write to the transaction log file. In addition, a file that has
atomic write data logging enabled cannot be memory mapped by using the
mmap system call, and it cannot have direct I/O enabled (see Section 9.3.4.7).

A file cannot have both forced synchronous writes enabled (see
Section 9.3.4.5) and atomic write data logging enabled. However, you can
enable atomic write data logging on a file and also open the file with an
O_SYNC option. This ensures that the write is synchronous, but also

9–22 Managing File System Performance

prevents partial writes if a crash occurs before the write system call
returns.

Use the chfile command to determine if forced synchronous writes or
atomic write data logging is enabled. Use the chfile -L off command to
disable atomic write data logging (the default).

To enable atomic write data logging on AdvFS files that are NFS mounted,
the NFS property list daemon, proplistd, must be running on the NFS
client and the fileset must be mounted on the client by using the mount
command’s proplist option.

If atomic write data logging is enabled and you are writing to a file that
has been NFS mounted, the offset into the file must be on an 8-KB page
boundary, because NFS performs I/O on 8-KB page boundaries.

You can also activate and deactivate atomic data logging by using the
fcntl system call. In addition, both the chfile command and fcntl can
be used on an NFS client to activate or deactivate this feature on a file that
resides on the NFS server.

9.3.4.7 Enabling Direct I/O

You can use direct I/O to read and write data from a file without copying
the data into the AdvFS buffer cache. If you enable direct I/O, read and
write requests are executed to and from disk through direct memory access,
bypassing the AdvFS buffer cache.

Direct I/O can significantly improve disk I/O throughput for database
applications that read or write data only once (or for applications that do
not frequently write to previously written pages). However, direct I/O can
degrade disk I/O performance for applications that access data multiple
times, because data is not cached. As soon as you specify direct I/O, any
data already in the buffer cache is automatically flushed to disk.

If you enable direct I/O, by default, reads and writes to a file will be done
synchronously. However, you can use the asynchronous I/O (AIO) functions
(aio_read and aio_write) to enable an application to achieve an
asynchronous-like behavior by issuing one or more synchronous direct I/O
requests without waiting for their completion. See the Programmer’s Guide
for more information.

Although direct I/O will handle I/O requests of any byte size, the best
performance will occur when the requested byte size is aligned on file page
boundaries and is evenly divisible into 8-KB pages. Direct transfer from the
user buffer to the disk is optimized in this case.

Managing File System Performance 9–23

To enable direct I/O for a specific file, use the open system call and set the
O_DIRECTIO file access flag. Once a file is opened for direct I/O, this mode
is in effect until all users close the file.

Note that you cannot enable direct I/O for a file if it is already opened for
data-logging or if it is memory mapped. Use the fcntl system call with the
F_GETCACHEPOLICY argument to determine if an open file has direct I/O
enabled.

See fcntl(2), open(2), AdvFS Administration, and the Programmer’s Guide
for more information.

9.3.4.8 Configuring an AdvFS root File system

There are several advantages to configuring an AdvFS root file system:

• Quick restart after a crash, because you do not run the fsck utility
after a crash.

• One set of tools to manage all local file systems. All features of AdvFS
except addvol and rmvol are available to manage the root file system.

• Use AdvFS with LSM to mirror the root file system. This allows your
root file system to remain viable even if there is a disk failure.

You can configure an AdvFS root file system during the initial base-system
installation, or you can convert your existing root file system after
installation. See the AdvFS Administration manual for more information.

9.3.4.9 Striping Files

You may be able to use the AdvFS stripe utility to improve the sequential
read and write performance of an individual file by spreading file data
evenly across different disks in a file domain. For the maximum
performance benefit, stripe files across disks on different I/O buses.

Striping files, instead of striping entire disks with RAID 0, is useful if an
application continually accesses only a few specific files. Do not stripe both
a file and the disk on which it resides. For information about striping
entire disks, see Chapter 8.

The stripe utility distributes a zero-length file (a file with no data written
to it yet) evenly across a specified number of volumes. As data is appended
to the file, the data is spread across the volumes. The size of each data
segment (also called the stripe or chunk size) is fixed at 64 KB (65,536
bytes). AdvFS alternates the placement of the segments on the disks in a
sequential pattern. For example, the first 64 KB of the file is written to the
first volume, the second 64 KB is written to the next volume, and so on.

9–24 Managing File System Performance

If an application’s I/O transfer read or write size is more than 64 KB,
striping files may improve application performance by enabling parallel I/O
operations on multiple controllers or volumes, because AdvFS file striping
uses a fixed 64 KB stripe width.

_______________________ Note _______________________

Distributing data across multiple volumes decreases data
availability, because one volume failure makes the entire file
domain unavailable. To make striped files highly available, you
can use RAID 1 to mirror the disks across which the file is
striped. For information about mirroring, see Chapter 8.

See stripe(8) for more information.

9.3.4.10 Using AdvFS Quotas

AdvFS quotas allow you to track and control the amount of physical
storage that a user, group, or fileset consumes. In addition, AdvFS quota
information is always maintained, but quota enforcement can be activated
and deactivated.

You can set quota values on the amount of disk storage and on the number
of files. Quotas that apply to users and groups are similar to UFS quotas.
You can set a separate quota for each user or each group of users for each
fileset.

In addition, you can restrict the space that a fileset itself can use. Fileset
quotas are useful when a file domain contains multiple filesets. Without
fileset quotas, any fileset can consume all of the disk space in the file
domain.

All quotas can have two types of limits: hard and soft. A hard limit cannot
be exceeded; space cannot be allocated and files cannot be created. A soft
limit permits a period of time during which the limit can be exceeded as
long as the hard limit has not been exceeded.

For information about AdvFS quotas, see the AdvFS Administration
manual.

9.3.4.11 Consolidating I/O Transfers

By default, AdvFS consolidates a number of I/O transfers into a single,
large I/O transfer, which can improve AdvFS performance. To enable the
consolidation of I/O transfers, use the chvol command with the −c on
option.

Managing File System Performance 9–25

It is recommended that you not disable the consolidation of I/O transfers.
See chvol(8) for more information.

9.3.5 Gathering AdvFS Information

Table 9–3 describes the tools you can use to obtain information about
AdvFS.

Table 9–3: AdvFS Monitoring Tools

Name Use Description

advfsstat Displays AdvFS
performance
statistics
(Section 9.3.5.1)

Allows you to obtain extensive AdvFS
performance information, including buffer
cache, fileset, volume, and bitfile metadata
table (BMT) statistics, for a specific interval of
time.

advscan Identifies disks in a
file domain
(Section 9.3.5.2)

Locates pieces of AdvFS file domains on disk
partitions and in LSM disk groups.

showfdmn Displays detailed
information about
AdvFS file domains
and volumes
(Section 9.3.5.3)

Allows you to determine if file data is evenly
distributed across AdvFS volumes. The
showfdmn utility displays information about a
file domain, including the date created and the
size and location of the transaction log, and
information about each volume in the domain,
including the size, the number of free blocks,
the maximum number of blocks read and
written at one time, and the device special file.
For multivolume domains, the utility also
displays the total volume size, the total
number of free blocks, and the total percentage
of volume space currently allocated.

showfile Displays
information about
files in an AdvFS
fileset
(Section 9.3.5.4)

Displays detailed information about files (and
directories) in an AdvFS fileset. The
showfile command allows you to check a
file’s fragmentation. A low performance
percentage (less than 80 percent) indicates
that the file is fragmented on the disk.
The showfile command also displays the
extent map of each file. An extent is a
contiguous area of disk space that AdvFS
allocates to a file. Simple files have one extent
map; striped files have an extent map for
every stripe segment. The extent map shows
whether the entire file or only a portion of the
file is fragmented.

9–26 Managing File System Performance

Table 9–3: AdvFS Monitoring Tools (cont.)

Name Use Description

showfsets Displays AdvFS
fileset information
for a file domain
(Section 9.3.5.5)

Displays information about the filesets in a
file domain, including the fileset names, the
total number of files, the number of used
blocks, the quota status, and the clone status.
The showfsets command also displays block
and file quota limits for a file domain or for a
specific fileset in the domain.

quota Displays disk usage
and quota limits

Displays the block usage, number of files, and
quotas for a user or group. You can choose to
display quota information for users or groups,
for all filesets with usage over quota, or for all
mounted filesets regardless of whether quotas
are activated. See quota(1) for more
information.

vdf Clarifies the
relationship
between file domain
and fileset disk
usage

Reformats output from the showfdmn,
showfsets, shfragbf, and df commands to
display information about the disk usage of
AdvFS file domains and filesets. It clarifies the
relationship between a domain’s disk usage
and its fileset’s disk usage. See vdf(8) for
more information.

vbmtpg Displays a
formatted page of
the BMT
(Section 9.3.5.6)

The vbmtpg utility displays a complete,
formatted page of the BMT for a mounted or
unmounted AdvFS domain. This utility is
useful for debugging when there has been
some seemingly random file corruption.

The following sections describe some of these commands in detail.

9.3.5.1 Monitoring AdvFS Performance Statistics by Using the advfsstat
Command

The advfsstat command displays various AdvFS performance statistics
and monitors the performance of AdvFS domains and filesets. Use this
command to obtain detailed information, especially if the iostat command
output indicates a disk bottleneck (see Section 8.2).

The advfsstat command displays detailed information about a file
domain, including information about the AdvFS buffer cache, fileset vnode
operations, locks, the namei cache, and volume I/O performance. The
command reports information in units of one disk block (512 bytes). By
default, the command displays one sample. You can use the -i option to
output information at specific time intervals.

Managing File System Performance 9–27

The following example of the advfsstat -v 2 command shows the
current I/O queue statistics for the specified file domain:

/usr/sbin/advfsstat -v 2 test_domain
vol1 rd wr rg arg wg awg blk wlz sms rlz con dev

54 0 48 128 0 0 0 1 0 0 0 65

The previous example shows the following fields:

• Read and write requests—Compare the number of read requests (rd) to
the number of write requests (wr). Read requests are blocked until the
read completes, but write requests will not block the calling thread,
which increases the throughput of multiple threads.

• Consolidated reads and writes—You may be able to improve
performance by consolidating reads and writes. The consolidated read
values (rg and arg) and write values (wg and awg) indicate the number
of disparate reads and writes that were consolidated into a single I/O to
the device driver. If the number of consolidated reads and writes
decreases compared to the number of reads and writes, AdvFS may not
be consolidating I/O.

• I/O queue values—The blk, wlz, sms, rlz, con, and dev fields can
indicate potential performance issues. The sms value specifies the
number of requests on the smooth sync queue. The con value specifies
the number of entries on the consolidate queue. These entries are ready
to be consolidated and moved to the device queue. The device queue
value (dev) shows the number of I/O requests that have been issued to
the device controller. The system must wait for these requests to
complete.

If the number of I/O requests on the device queue increases continually
and you experience poor performance, applications may be I/O bound on
this device. You may be able to eliminate the problem by adding more
disks to the domain or by striping with LSM or hardware RAID.

You can monitor the type of requests that applications are issuing by using
the advfsstat command’s -f option to display fileset vnode operations.
You can display the number of file creates, reads, and writes and other
operations for a specified domain or fileset. For example:

/usr/sbin/advfsstat -i 3 -f 2 scratch_domain fset1
lkup crt geta read writ fsnc dsnc rm mv rdir mkd rmd link

0 0 0 0 0 0 0 0 0 0 0 0 0
4 0 10 0 0 0 0 2 0 2 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0

24 8 51 0 9 0 0 3 0 0 4 0 0
1201 324 2985 0 601 0 0 300 0 0 0 0 0
1275 296 3225 0 655 0 0 281 0 0 0 0 0
1217 305 3014 0 596 0 0 317 0 0 0 0 0
1249 304 3166 0 643 0 0 292 0 0 0 0 0
1175 289 2985 0 601 0 0 299 0 0 0 0 0
779 148 1743 0 260 0 0 182 0 47 0 4 0

9–28 Managing File System Performance

0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0

See advfsstat(8) for more information.

Note that it is difficult to link performance problems to some statistics such
as buffer cache statistics. In addition, lock performance that is related to
lock statistics cannot be tuned.

9.3.5.2 Identifying Disks in an AdvFS File Domain by Using the advscan
Command

The advscan command locates pieces of AdvFS domains on disk partitions
and in LSM disk groups. Use the advscan command when you have moved
disks to a new system, have moved disks in a way that has changed device
numbers, or have lost track of where the domains are.

You can specify a list of volumes or disk groups with the advscan
command to search all partitions and volumes. The command determines
which partitions on a disk are part of an AdvFS file domain.

You can also use the advscan command for repair purposes if you deleted
the /etc/fdmns directory, deleted a directory domain under /etc/fdmns,
or deleted some links from a domain directory under /etc/fdmns.

Use the advscan command to rebuild all or part of your /etc/fdmns
directory, or you can manually rebuild it by supplying the names of the
partitions in a domain.

The following example scans two disks for AdvFS partitions:

/usr/advfs/advscan dsk0 dsk5
Scanning disks dsk0 dsk5
Found domains:
usr_domain

Domain Id 2e09be37.0002eb40
Created Thu Jun 26 09:54:15 1998
Domain volumes 2
/etc/fdmns links 2
Actual partitions found:

dsk0c
dsk5c

For the following example, the dsk6 file domains were removed from
/etc/fdmns. The advscan command scans device dsk6 and re-creates the
missing domains.

/usr/advfs/advscan -r dsk6
Scanning disks dsk6
Found domains: *unknown*

Domain Id 2f2421ba.0008c1c0
Created Mon Jan 20 13:38:02 1998
Domain volumes 1
/etc/fdmns links 0

Managing File System Performance 9–29

Actual partitions found:
dsk6a*

unknown
Domain Id 2f535f8c.000b6860
Created Tue Feb 25 09:38:20 1998
Domain volumes 1
/etc/fdmns links 0
Actual partitions found:

dsk6b*

Creating /etc/fdmns/domain_dsk6a/
linking dsk6a

Creating /etc/fdmns/domain_dsk6b/
linking dsk6b

See advscan(8) for more information.

9.3.5.3 Checking AdvFS File Domains by Using the showfdmn Command

The showfdmn command displays the attributes of an AdvFS file domain
and detailed information about each volume in the file domain.

The following example of the showfdmn command displays domain
information for the root_domain file domain:

% /sbin/showfdmn root_domain
Id Date Created LogPgs Version Domain Name

34f0ce64.0004f2e0 Wed Mar 17 15:19:48 1999 512 4 root_domain

Vol 512-Blks Free % Used Cmode Rblks Wblks Vol Name
1L 262144 94896 64% on 256 256 /dev/disk/dsk0a

See showfdmn(8) for more information about the output of the command.

9.3.5.4 Displaying AdvFS File Information by Using the showfile Command

The showfile command displays the full storage allocation map (extent
map) for one or more files in an AdvFS fileset. An extent is a contiguous
area of disk space that AdvFS allocates to a file.

The following example of the showfile command displays the AdvFS
characteristics for all of the files in the current working directory:

/usr/sbin/showfile *

Id Vol PgSz Pages XtntType Segs SegSz I/O Perf File
23c1.8001 1 16 1 simple ** ** ftx 100% OV
58ba.8004 1 16 1 simple ** ** ftx 100% TT_DB

** ** ** ** symlink ** ** ** ** adm
239f.8001 1 16 1 simple ** ** ftx 100% advfs

** ** ** ** symlink ** ** ** ** archive
9.8001 1 16 2 simple ** ** ftx 100% bin (index)

** ** ** ** symlink ** ** ** ** bsd
** ** ** ** symlink ** ** ** ** dict

288.8001 1 16 1 simple ** ** ftx 100% doc
28a.8001 1 16 1 simple ** ** ftx 100% dt

9–30 Managing File System Performance

** ** ** ** symlink ** ** ** ** man
5ad4.8001 1 16 1 simple ** ** ftx 100% net

** ** ** ** symlink ** ** ** ** news
3e1.8001 1 16 1 simple ** ** ftx 100% opt

** ** ** ** symlink ** ** ** ** preserve
** ** ** ** advfs ** ** ** ** quota.group
** ** ** ** advfs ** ** ** ** quota.user

b.8001 1 16 2 simple ** ** ftx 100% sbin (index)
** ** ** ** symlink ** ** ** ** sde

61d.8001 1 16 1 simple ** ** ftx 100% tcb
** ** ** ** symlink ** ** ** ** tmp
** ** ** ** symlink ** ** ** ** ucb

6df8.8001 1 16 1 simple ** ** ftx 100% users

The I/O column specifies whether write operations are forced to be
synchronous. See Section 9.3.4.5 for information.

The following example of the showfile command shows the characteristics
and extent information for the tutorial file, which is a simple file:

/usr/sbin/showfile -x tutorial

Id Vol PgSz Pages XtntType Segs SegSz I/O Perf File
4198.800d 2 16 27 simple ** ** async 66% tutorial

extentMap: 1
pageOff pageCnt vol volBlock blockCnt

0 5 2 781552 80
5 12 2 785776 192

17 10 2 786800 160
extentCnt: 3

The Perf entry shows the efficiency of the file-extent allocation, expressed
as a percentage of the optimal extent layout. A high value, such as 100
percent, indicates that the AdvFS I/O subsystem is highly efficient. A low
value indicates that files may be fragmented.

See showfile(8) for more information about the command output.

9.3.5.5 Displaying the AdvFS Filesets in a File Domain by Using the showfsets
Command

The showfsets command displays the AdvFS filesets (or clone filesets)
and their characteristics in a specified domain.

The following is an example of the showfsets command shows that the
dmn1 file domain has one fileset and one clone fileset:

/sbin/showfsets dmn1
mnt
Id : 2c73e2f9.000f143a.1.8001
Clone is : mnt_clone
Files : 7456, SLim= 60000, HLim=80000
Blocks (1k) : 388698, SLim= 6000, HLim=8000
Quota Status : user=on group=on

Managing File System Performance 9–31

mnt_clone
Id : 2c73e2f9.000f143a.2.8001
Clone of : mnt
Revision : 2

See showfsets(8) for information about the options and output of the
command.

9.3.5.6 Monitoring the Bitmap Metadata Table

The AdvFS fileset data structure (metadata) is stored in a file called the
bitfile metadata table (BMT). Each volume in a domain has a BMT that
describes the file extents on the volume. If a domain has multiple volumes
of the same size, files will be distributed evenly among the volumes.

The BMT is the equivalent of the UFS inode table. However, the UFS inode
table is statically allocated, while the BMT expands as more files are added
to the domain. Each time AdvFS needs additional metadata, the BMT
grows by a fixed size (the default is 128 pages). As a volume becomes
increasingly fragmented, the size by which the BMT grows may be
described by several extents.

To monitor the BMT, use the vbmtpg command and examine the number of
mcells (freeMcellCnt). The value of freeMcellCnt can range from 0 to
22. A volume with 1 free mcell has very little space in which to grow the
BMT. See vbmtpg(8) for more information.

You can also invoke the showfile command and specify
mount_point/.tags/M-10 to examine the BMT extents on the first
domain volume that contains the fileset mounted on the specified mount
point. To examine the extents of the other volumes in the domain, specify
M-16, M-24, and so on. If the extents at the end of the BMT are smaller
than the extents at the beginning of the file, the BMT is becoming
fragmented. See showfile(8) for more information.

9.3.6 Tuning AdvFS

After you configure AdvFS, as described in Section 9.3.4, you may be able
to tune it to improve performance. To successfully improve performance,
you must understand how your applications and user perform file system
I/O, as described in Section 2.1.

Table 9–4 lists AdvFS tuning guidelines and performance benefits as well
as tradeoffs. The guidelines described in Table 9–1 also apply to AdvFS
configurations.

9–32 Managing File System Performance

Table 9–4: AdvFS Tuning Guidelines

Guideline Performance Benefit Tradeoff

Decrease the size of the
metadata buffer cache to 1
percent (Section 6.4.6)

Improves performance for
systems that use only
AdvFS

None

Increase the percentage of
memory allocated for the AdvFS
buffer cache (Section 9.3.6.1)

Improves AdvFS
performance if data reuse
is high

Consumes memory

Increase the size of the AdvFS
buffer cache hash table
(Section 9.3.6.2)

Speeds lookup operations
and decreases CPU usage

Consumes memory

Increase the memory reserved
for AdvFS access structures
(Section 9.3.6.3)

Improves AdvFS
performance for systems
that open and reuse files

Consumes memory

Increase the amount of data
cached in the ready queue
(Section 9.3.6.4)

Improves AdvFS
performance for systems
that open and reuse files

May cause I/O spikes
or increase the
number of lost
buffers if a crash
occurs

Increase the smooth sync
caching threshold for
asynchronous I/O requests
(Section 9.3.6.5)

Improves performance of
AdvFS asynchronous I/O

Increases the chance
that data may be lost
if a system crash
occurs

Increase the maximum number
of I/O requests on the device
queue (Section 9.3.6.6)

Keeps devices busy May degrade
response time

Disable the flushing of dirty
pages mapped with the mmap
function during a sync call
(Section 9.3.6.7)

May improve performance
for applications that
manage their own flushing

None

The following sections describe the AdvFS tuning guidelines in detail.

9.3.6.1 Increasing the Size of the AdvFS Buffer Cache

The advfs subsystem attribute AdvfsCacheMaxPercent specifies the
maximum percentage of physical memory that can be used to cache AdvFS
file data. Caching AdvFS data improves I/O performance only if the cached
data is reused.

Performance Benefit and Tradeoff

If data reuse is high, you may be able to improve AdvFS performance by
increasing the percentage of memory allocated to the AdvFS buffer cache.
However, this will decrease the amount of memory available for processes.

Managing File System Performance 9–33

You also may need to increase the number of AdvFS buffer cache hash
chains to increase the size of the AdvFS buffer cache. See Section 9.3.6.2
for information.

You cannot modify the AdvfsCacheMaxPercent attribute without
rebooting the system.

When to Tune

You may need to increase the size of the AdvFS buffer cache if data reuse is
high and if pages are being rapidly recycled. Increasing the size of the
buffer cache will enable pages to remain in the cache for a longer period of
time. This increases the chance that a cache hit will occur.

Use the advfsstat -b command to determine if pages are being recycled
too quickly. If the command output shows that the ratio of total hits (hit)
to total counts (cnt), for both pin and ref, is less than 85 percent, pages
are being rapidly recycled.

Recommended Values

The default value of the AdvfsCacheMaxPercent attribute is 7 percent of
memory. The minimum value is 1 percent; the maximum value is 30
percent.

Increase the value of the AdvfsCacheMaxPercent attribute only by small
increments to optimize file system performance without wasting memory. If
you increase the value of the AdvfsCacheMaxPercent attribute and
experience no performance benefit, return to the original value.

Use the vmstat command to check virtual memory statistics, as described
in Section 6.3.1. Make sure that increasing the size of the AdvFS buffer
cache does not cause excessive paging and swapping.

See Section 3.6 for information about modifying kernel subsystem
attributes.

9.3.6.2 Increasing the Number of AdvFS Buffer Hash Chains

The buffer cache hash table for the AdvFS buffer cache is used to locate
pages of AdvFS file data in memory. The table contains a number of hash
chains, which contain elements that point to pages of file system data that
have already been read into memory. When a read or write system call is
done for a particular offset within an AdvFS file, the system sequentially
searches the appropriate hash chain to determine if the file data is already
in memory.

9–34 Managing File System Performance

The value of the advfs subsystem attribute AdvfsCacheHashSize
specifies the number of hash chains (entries) on the AdvFS buffer cache
hash table.

Performance Benefit and Tradeoff

Increasing the number of hash chains on the buffer cache hash table will
result in shorter hash chains. Short hash chains contain less elements to
search, which increases search speeds and decreases CPU usage.

Increasing the size of the AdvFS buffer cache hash table will increase the
amount of wired memory.

You cannot modify the AdvfsCacheHashSize attribute without rebooting
the system.

When to Tune

If you have more than 4 GB of memory, you may want to increase the value
of the AdvfsCacheHashSize attribute, which will increase the number of
hash chains on the table.

To determine if your system performance may benefit from increasing the
size of the buffer hash table, divide the number of AdvFS buffers by the
current value of the AdvfsCacheHashSize attribute. Use the sysconfig
-q advfs AdvfsCacheHashSize to determine the current value of the
attribute. To obtain the number of AdvFS buffers, examine the AdvFS
system initialization message that reports this value and the total amount
of memory being used.

The result of the previous calculation will show the average number of
buffers for each buffer hash table chain. A small number means fewer
potential buffers that AdvFS must search. This assumes that buffers are
evenly distributed across the AdvFS buffer cache hash table. If the average
number of buffers for each chain is greater that 100, you may want to
increase the size of the hash chain table.

Recommended Values

The default value of the AdvfsCacheHashSize attribute is either 8192 KB
or 10 percent of the size of the AdvFS buffer cache (rounded up to the next
power of 2), whichever is the smallest value. The minimum value is 1024
KB. The maximum value is either 65536 or the size of the AdvFS buffer
cache, whichever is the smallest value. The AdvfsCacheMaxPercent
attribute specifies the size of the AdvFS buffer cache (see Section 9.3.6.1).

You may want to double the default value of the AdvfsCacheHashSize
attribute if the system is experiencing high CPU system time (see

Managing File System Performance 9–35

Section 6.3.1), or if a kernel profile shows high percentage of CPU usage in
the find_page routine.

See Section 3.6 for information about modifying kernel subsystem
attributes.

9.3.6.3 Increasing the Memory for Access Structures

AdvFS access structures are in-memory data structures that AdvFS uses to
cache low-level information about files that are currently open and files
that were opened but are now closed. Caching open file information can
enhance AdvFS performance if the open files are later reused.

At boot time, the system reserves for AdvFS access structures a portion of
physical memory that is not wired. Access structures are placed on the
access structure free list, and are allocated and deallocated according to the
kernel configuration and workload demands.

There are three attributes that control the allocation of AdvFS access
structures:

• The AdvfsAccessMaxPercent attribute controls the maximum
percentage of pageable memory that can be allocated for AdvFS access
structures.

• At boot time, and when the number of access structures on the free list
is less than the value of the AdvfsMinFreeAccess attribute, AdvFS
allocates additional access structures, until the number of access
structures on the free list is twice the value of the
AdvfsMinFreeAccess attribute or the value of the
AdvfsAccessMaxPercent attribute, whichever is smaller.

• The AdvfsMaxFreeAccessPercent attribute controls when access
structures are deallocated from the free list. When the percentage of
access structures on the free list is more than the value of the
AdvfsMaxFreeAccessPercent attribute, and the number of access
structures on the free list is more than twice the value of the
AdvfsMinFreeAccess attribute, AdvFS deallocates access structures.

See Section 9.3.3 for information about access structures and attributes.

Performance Benefit and Tradeoff

Increasing the value of the AdvfsAccessMaxPercent attribute allows you
to allocate more memory resources for access structures, which may
improve AdvFS performance on systems that open and reuse many files.
However, this increases memory consumption.

If you increase the value of the AdvfsMinFreeAccess attribute, you will
retain more access structures on the free list and delay access structure

9–36 Managing File System Performance

deallocation, which may improve AdvFS performance for systems that open
and reuse many files. However, this increases memory consumption.

If you increase the value of the AdvfsMaxFreeAccessPercent attribute,
the system will retain access structures on the free list for a longer time,
which may improve AdvFS performance for systems that open and reuse
many files.

You can modify the AdvfsAccessMaxPercent, AdvfsMinFreeAccess, and
AdvfsMaxFreeAccessPercent attributes without rebooting the system.

When to Tune

If your users or applications open and then reuse many AdvFS files (for
example, if you have a proxy server), you may be able to improve AdvFS
performance by increasing memory resources for access structures.

If you do not use AdvFS, if your workload does not frequently write to
previously written pages, or if you have a large-memory system, you may
want to decrease the memory allocated for access structures. See
Section 6.4.5 for information.

Recommended Values

The default value of the AdvfsAccessMaxPercent attribute is 25 percent
of pageable memory. The minimum value is 5 percent; the maximum value
is 95 percent.

The default value of the AdvfsMinFreeAccess attribute is 128. The
minimum value is 1; the maximum value is 100,000.

The default value of the AdvfsMaxFreeAccessPercent attribute is 80
percent. The minimum value is 5 percent; the maximum value is 95 percent.

See Section 3.6 for information about modifying kernel subsystem
attributes.

9.3.6.4 Increasing Data Cached in the Ready Queue

AdvFS caches asynchronous I/O requests in the AdvFS buffer cache. If the
cached data is later reused, pages can be retrieved from memory and a disk
operation is avoided.

Asynchronous I/O requests are sorted in the ready queue and remain there
until the size of the queue reaches the value specified by the
AdvfsReadyQLim attribute or, if smooth sync is not enabled, until the
update daemon flushes the data. See Section 9.3.2 for more information
about AdvFS queues. See Section 9.3.6.5 for information about using
smooth sync to control asynchronous I/O request caching.

Managing File System Performance 9–37

Performance Benefit and Tradeoff

Increasing the size of the ready queue can improve AdvFS performance if
data is reused by increasing the time that a buffer will stay on the I/O
queue and not be flushed to disk.

You can modify the AdvfsReadyQLim attribute without rebooting the
system.

When to Tune

If you have high data reuse (data is repeatedly read and written), you may
want to increase the size of the ready queue. This can increase the number
of AdvFS buffer cache hits. If you have low data reuse, it is recommended
that you use the default value.

Recommended Values

You can modify the size of the ready queue for all AdvFS volumes by
changing the value of the AdvfsReadyQLim attribute. The default value of
the AdvfsReadyQLim attribute is 16,384 512-byte blocks (8 MB).

You can modify the size for a specific AdvFS volume by using the chvol
-t command. See chvol(8) for more information.

If you change the size of the ready queue and performance does not
improve, return to the original value.

See Section 3.6 for information about modifying kernel subsystem
attributes.

9.3.6.5 Increasing the AdvFS Smooth Sync Cache Timeout Value

Smooth sync functionality improves AdvFS asynchronous I/O performance
by preventing I/O spikes caused by the update daemon, increasing the
chance of an AdvFS buffer cache hit, and improving the consolidation of I/O
requests. By default, smooth sync is enabled on your system.

AdvFS uses I/O request queues to cache asynchronous I/O requests before
they are handed to the device driver. Without smooth sync enabled, every
30 seconds, the update daemon flushes data from memory to disk,
regardless of how long a buffer has been cached. However, with smooth
sync enabled (the default), the update daemon will not automatically flush
the AdvFS ready queue buffers. Instead, asynchronous I/O requests remain
in the smooth sync queue for the amount of time specified by the value of
the vfs attribute smoothsync_age (the default is 30 seconds). After this
time, the buffer moves to the ready queue.

You enable smooth sync functionality (the default) by using the
smoothsync_age attribute. However, you do not specify a value for

9–38 Managing File System Performance

smoothsync_age in the /etc/sysconfigtab file. Instead, the
/etc/inittab file is used to enable smooth sync when the system boots to
multiuser mode, and to disable smooth sync when the system goes from
multiuser mode to single-user mode. This procedure is necessary to reflect
the behavior of the update daemon, which operates only in multiuser mode.

To enable smooth sync, the following lines must be included in the
/etc/inittab file and the time limit for caching buffers in the smooth
sync queue must be specified (the default is 30 seconds):

smsync:23:wait:/sbin/sysconfig -r vfs smoothsync_age=30 > /dev/null 2>&1
smsyncS:Ss:wait:/sbin/sysconfig -r vfs smoothsync_age=0 > /dev/null 2>&1

Performance Benefit and Tradeoff

Increasing the amount of time an asynchronous I/O request remains in the
smooth sync queue increases the chance that a buffer cache hit will occur,
which improves AdvFS performance if data is reused. However, this also
increases the chance that data may be lost if a system crash occurs.

Decreasing the value of the smoothsync_age attribute will speed the
flushing of buffers.

When to Tune

You may want to increase the amount of time an asynchronous I/O request
remains in the smooth sync queue if you reuse AdvFS data.

Recommended Values

Thirty seconds is the default smooth sync queue timeout limit. If you
increase the value of the smoothsync_age attribute in the /etc/inittab
file, you may improve the chance of a buffer cache hit by retaining buffers
on the smooth sync queue for a longer period of time. Use the advfsstat
-S command to show the AdvFS smooth sync queue statistics.

To disable smooth sync, specify a value of 0 (zero) for the smoothsync_age
attribute.

9.3.6.6 Specifying the Maximum Number of I/O Requests on the Device Queue

Small, logically contiguous AdvFS I/O requests are consolidated into larger
I/O requests and put on the device queue, before they are sent to the device
driver. See Section 9.3.2 for more information about AdvFS queues.

The AdvfsMaxDevQLen attribute controls the maximum number of I/O
requests on the device queue. When the number of requests on the queue
exceeds this value, only synchronous requests are accepted onto the device
queue.

Managing File System Performance 9–39

Performance Benefit and Tradeoff

Increasing the size of the device queue can keep devices busy, but may
degrade response time.

Decreasing the size of the device queue decreases the amount of time it
takes to complete a synchronous (blocking) I/O operation and can improve
response time.

You can modify the AdvfsMaxDevQLen attribute without rebooting the
system.

When to Tune

Although the default value of the AdvfsMaxDevQLen attribute is
appropriate for many configurations, you may need to modify this value.
Increase the default value of the AdvfsMaxDevQLen attribute only if
devices are not being kept busy.

Recommended Values

The default value of the AdvfsMaxDevQLen attribute is 24 requests. The
minimum value is 0; the maximum value is 65536. A guideline is to specify
a value for the AdvfsMaxDevQLen attribute that is less than or equal to
the average number of I/O operations that can be performed in 0.5 seconds.

Make sure that increasing the size of the device queue does not cause a
decrease in response time. To calculate response time, multiply the value of
the AdvfsMaxDevQLen attribute by the average I/O latency time for your
disks.

If you do not want to limit the number of requests on the device queue, set
the value of the AdvfsMaxDevQLen attribute to 0 (zero), although this is
not recommended.

See Section 3.6 for information about modifying kernel subsystem
attributes.

9.3.6.7 Disabling the Flushing of Modified mmapped Pages

The AdvFS buffer cache can contain modified data due to a write system
call or a memory write reference after an mmap system call. The update
daemon runs every 30 seconds and issues a sync call for every fileset
mounted with read and write access. However, if smooth sync is enabled
(the default), the update daemon will not flush the ready queue. Instead,
asynchronous I/O requests remain in the smooth sync queue for the
amount of time specified by the value of the vfs attribute
smoothsync_age (the default is 30 seconds). See Section 9.3.6.5 for
information about the smooth sync queue.

9–40 Managing File System Performance

The AdvfsSyncMmapPages attribute controls whether modified (dirty)
mmapped pages are flushed to disk during a sync system call. If the
AdvfsSyncMmapPages attribute is set to 1 (the default), the modified
mmapped pages are asynchronously written to disk. If the
AdvfsSyncMmapPages attribute is set to 0, modified mmapped pages are
not written to disk during a sync system call.

Performance Benefit

Disabling the flushing of modified mmapped pages may improve
performance of applications that manage their own mmap page flushing.

You can modify the AdvfsSyncMmapPages attribute without rebooting the
system.

When to Tune

Disable flushing mmapped pages only if your applications manage their
own mmap page flushing.

Recommended Values

If your applications manage their own mmap page flushing, set the value of
the AdvfsSyncMmapPages attribute to zero.

See mmap(2) and msync(2) for more information. See Section 3.6 for
information about modifying kernel subsystem attributes.

9.3.7 Improving AdvFS Performance

After you configure AdvFS, as described in Section 9.3.4, you may be able
to improve performance by performing some administrative tasks.

Table 9–4 lists AdvFS performance improvement guidelines and
performance benefits as well as tradeoffs.

Table 9–5: AdvFS Performance Improvement Guidelines

Guideline Performance Benefit Tradeoff

Defragment file domains
(Section 9.3.7.1)

Improves read and write
performance

Procedure is
time-consuming

Decrease the I/O transfer
read-ahead size (Section 9.3.7.2)

Improves performance for
mmap page faulting

None

Move the transaction log to a
fast or uncongested volume
(Section 9.3.7.3)

Prevents log from
becoming a bottleneck

None

Managing File System Performance 9–41

Table 9–5: AdvFS Performance Improvement Guidelines (cont.)

Guideline Performance Benefit Tradeoff

Balance files across volumes in
a file domain (Section 9.3.7.4)

Improves performance
and evens the future
distribution of files

None

Migrate frequently used or
large files to different file
domains (Section 9.3.7.5)

Improves I/O performance None

The following sections describe the AdvFS performance improvement
guidelines in detail.

9.3.7.1 Defragmenting a File Domain

An extent is a contiguous area of disk space that AdvFS allocates to a file.
Extents consist of one or more 8-KB pages. When storage is added to a file,
it is grouped in extents. If all data in a file is stored in contiguous blocks,
the file has one file extent. However, as files grow, contiguous blocks on the
disk may not be available to accommodate the new data, so the file must be
spread over discontiguous blocks and multiple file extents.

File I/O is most efficient when there are few extents. If a file consists of
many small extents, AdvFS requires more I/O processing to read or write
the file. Disk fragmentation can result in many extents and may degrade
read and write performance because many disk addresses must be
examined to access a file. In addition, if a domain has a large number of
small files, you may prematurely run out of disk space due to
fragmentation.

Use the defragment utility to reduce the amount of file fragmentation in a
file domain by attempting to make the files more contiguous, which reduces
the number of file extents. The utility does not affect data availability and
is transparent to users and applications. Striped files are not defragmented.

Performance Benefit and Tradeoff

Defragmenting improves AdvFS performance by making AdvFS disk I/O
more efficient. However, the defragment process can be time-consuming
and requires disk space in order to run.

When to Perform this Task

Compaq recommends that you run defragment only if you experience
problems because of excessive fragmentation and only when there is low
file system activity. In addition, there is little performance benefit from
defragmenting in the following circumstances:

9–42 Managing File System Performance

• A file domain contains primarily files that are smaller than 8 KB.

• A file domain is used in a mail server.

• A file domain is read-only.

To determine if a file domain is fragmented, use the defragment utility
with the −v and −n options to show the amount of file fragmentation.
Ideally, you want few extents for each file. For example:

defragment -vn staff_dmn

defragment: Gathering data for ’staff_dmn’
Current domain data:

Extents: 263675
Files w/ extents: 152693
Avg exts per file w/exts: 1.73
Aggregate I/O perf: 70%
Free space fragments: 85574

<100K <1M <10M >10M
Free space: 34% 45% 19% 2%
Fragments: 76197 8930 440 7

You can also use the showfile command to check a file’s fragmentation.
See Section 9.3.5.4 for information.

Recommended Procedure

You can improve the efficiency of the defragmenting process by deleting any
unneeded files in the file domain before running the defragment utility.
See defragment(8) for more information.

9.3.7.2 Decreasing the I/O Transfer Size

AdvFS reads and writes data by a fixed number of 512-byte blocks. The
default value depends on the disk driver’s reported preferred transfer size.
For example, a common default value is either 128 blocks or 256 blocks.

If you use the addvol or mkfdmn command on a Logical Storage Manager
(LSM) volume, the preferred transfer size may be larger than if LSM was
not used. The value depends on how you configured the LSM volume.

Performance Benefit

You may be able to improve performance for mmap page faulting and reduce
read-ahead paging and cache dilution by decreasing the read-ahead size.

When to Perform this Task

You may want to decrease the I/O transfer size if you experience
performance problems with AdvFS I/O throughput.

Managing File System Performance 9–43

Recommended Procedure

To display the range of I/O transfer sizes, use the chvol -l command. Use
the chvol -r command to modify the read I/O transfer size (the amount of
data read for each I/O request). Use the chvol -w command to modify the
write I/O transfer size (the amount of data written for each I/O request).

You can decrease the read-ahead size by using the chvol -r command.

You can decrease the amount of data written for each I/O request by using
the chvol -w command. In general, you want to maximize the amount of
data written for each I/O by using the default write I/O transfer size or a
larger value.

However, in some cases (for example, if you are using LSM volumes), you
may need to reduce the AdvFS write-consolidation size. If your AdvFS
domains are using LSM, the default preferred transfer size is high, and I/O
throughput is not optimal, reduce the write I/O transfer size.

See chvol(8) for more information.

9.3.7.3 Moving the Transaction Log

The AdvFS transaction log should be located on a fast or uncongested disk
and bus; otherwise, performance may be degraded.

Performance Benefit

Locating the transaction log on a fast or uncongested bus improves
performance.

When to Tune

Use the showfdmn command to determine the current location of the
transaction log. In the showfdmn command display, the letter L displays
next to the volume that contains the log. Move the transaction log if the
volume on which it resides is busy and the transaction log is a bottleneck.
See showfdmn(8) for more information.

Recommended Procedure

Use the switchlog command to relocate the transaction log of the
specified file domain to a faster or less congested volume in the same
domain. See switchlog(8) for more information.

In addition, you can divide a large multi-volume file domain into several
smaller file domains. This will distribute the transaction log I/O across
multiple logs.

9–44 Managing File System Performance

9.3.7.4 Balancing a Multivolume File Domain

If the files in a multivolume domain are not evenly distributed, performance
may be degraded. Use the balance utility to distribute the percentage of
used space evenly across volumes in a multivolume file domain. This
improves performance and the distribution of future file allocations. Files
are moved from one volume to another until the percentage of used space
on each volume in the domain is as equal as possible.

The balance utility does not affect data availability and is transparent to
users and applications. If possible, use the defragment utility before you
balance files.

The balance utility does not generally split files. Therefore, file domains
with very large files may not balance as evenly as file domains with
smaller files.

Performance Benefit

Balancing files across the volumes in a file domain improves the
distribution of disk I/O.

When to Perform this Task

You may want to balance a file domain if the files are not evenly
distributed across the domain.

To determine if you need to balance your files across volumes, use the
showfdmn command to display information about the volumes in a domain.
The % Used field shows the percentage of volume space that is currently
allocated to files or metadata (fileset data structure). In the following
example, the usr_domain file domain is not balanced. Volume 1 has 63%
used space while volume 2 has 0% used space (it has just been added).

showfdmn usr_domain

Id Date Created LogPgs Version Domain Name
3437d34d.000ca710 Sun Oct 5 10:50:05 1997 512 3 usr_domain
Vol 512-Blks Free % Used Cmode Rblks Wblks Vol Name
1L 1488716 549232 63% on 128 128 /dev/disk/dsk0g
2 262144 262000 0% on 128 128 /dev/disk/dsk4a

--------- ------- ------
1750860 811232 54%

See showfdmn(8) for more information.

Recommended Procedure

Use the balance utility to distribute the percentage of used space evenly
across volumes in a multivolume file domain. See balance(8) for more
information.

Managing File System Performance 9–45

9.3.7.5 Migrating Files Within a File Domain

Performance may degrade if too many frequently accessed or large files
reside on the same volume in a multivolume file domain. You can improve
I/O performance by altering the way files are mapped on the disk.

Use the migrate utility to move frequently accessed or large files to
different volumes in the file domain. You can specify the volume where a file
is to be moved, or allow the system to pick the best space in the file domain.
You can migrate either an entire file or specific pages to a different volume.

In addition, the migrate command enables you to defragment a specific
file and make the file more contiguous, which improves performance.

Performance Benefit

Distributing the I/O load across the volumes in a file domain improves
AdvFS performance.

When to Perform this Task

To determine which files to move, use the showfile -x command to look
at the extent map and the performance percentage of a file. A low
performance percentage (less than 80%) indicates that the file is
fragmented on the disk. The extent map shows whether the entire file or a
portion of the file is fragmented.

The following example displays the extent map of a file called src. The file,
which resides in a two-volume file domain, shows an 18% performance
efficiency in the Perf field.

showfile -x src

Id Vol PgSz Pages XtntType Segs SegSz I/O Perf File
8.8002 1 16 11 simple ** ** async 18% src

extentMap: 1
pageOff pageCnt vol volBlock blockCnt

0 1 1 187296 16
1 1 1 187328 16
2 1 1 187264 16
3 1 1 187184 16
4 1 1 187216 16
5 1 1 187312 16
6 1 1 187280 16
7 1 1 187248 16
8 1 1 187344 16
9 1 1 187200 16

10 1 1 187232 16
extentCnt: 11

The file src consists of 11 file extents. This file would be a good candidate
to move to another volume to reduce the number of file extents.

9–46 Managing File System Performance

See Section 8.2 for information about using commands to determine if file
system I/O is evenly distributed.

Recommended Procedure

Use the migrate utility to move frequently accessed or large files to
different volumes in the file domain. Note that using the balance utility
after migrating files may cause the files to move to a different volume.

See migrate(8) and balance(8) for more information.

9.4 Managing UFS Performance

The UNIX File System (UFS) can provide you with high-performance file
system operations, especially for critical applications. For example, UFS
file reads from striped disks can be 50 percent faster than if you are using
AdvFS, and will consume only 20 percent of the CPU power that AdvFS
requires.

However, unlike AdvFS, the UFS file system directory hierarchy is bound
tightly to a single disk partition.

The following sections describe:

• Using the UFS guidelines to set up a high-performance configuration
(Section 9.4.1)

• Obtaining information about UFS performance (Section 9.4.2)

• Tuning UFS in order to improve performance (Section 9.4.3)

9.4.1 UFS Configuration Guidelines

There are a number of parameters that can improve the UFS performance.
You can set all of the parameters when you use the newfs command to
create a file system. For existing file systems, you can modify some
parameters by using the tunefs command. See newfs(8) and tunefs(8) for
more information.

Table 9–6 describes UFS configuration guidelines and performance benefits
as well as tradeoffs.

Managing File System Performance 9–47

Table 9–6: UFS Configuration Guidelines

Guideline Performance Benefit Tradeoff

Make the file system
fragment size equal to the
block size (Section 9.4.1.1)

Improves performance for
large files

Wastes disk space for
small files

Use the default file system
fragment size of 1 KB
(Section 9.4.1.1)

Uses disk space efficiently Increases the overhead for
large files

Reduce the density of
inodes on a file system
(Section 9.4.1.2)

Frees disk space for file
data and improves large
file performance

Reduces the number of
files that can be created
on the file system

Allocate blocks
sequentially
(Section 9.4.1.3)

Improves performance for
disks that do not have a
read-ahead cache

Reduces the total
available disk space

Increase the number of
blocks combined for a
cluster (Section 9.4.1.4)

May decrease number of
disk I/O operations

May require more memory
to buffer data

Use a Memory File System
(MFS) (Section 9.4.1.5)

Improves I/O performance Does not ensure data
integrity because of cache
volatility

Use disk quotas
(Section 9.4.1.6)

Controls disk space
utilization

UFS quotas may result in
a slight increase in reboot
time

Increase the maximum
number of UFS and MFS
mounts (Section 9.4.1.7)

Allows more mounted file
systems

Requires additional
memory resources

The following sections describe the UFS configuration guidelines in detail.

9.4.1.1 Modifying the File System Fragment and Block Sizes

The UFS file system block size is 8 KB. The default fragment size is 1 KB.
You can use the newfs command to modify the fragment size so that it is
25, 50, 75, or 100 percent of the block size.

The UFS file system block size can be 8 KB (the default), 16 KB, 32 KB, or
64 KB. The default fragment size is 1 KB. You can modify the fragment
size so that it is 25, 50, 75, or 100 percent of the block size. Use the newfs
command to modify block and fragment sizes.

Although the default fragment size uses disk space efficiently, it increases
the overhead for large files. If the average file in a file system is larger
than 16 KB but less than 96 KB, you may be able to improve disk access
time and decrease system overhead by making the file system fragment
size equal to the default block size (8 KB).

9–48 Managing File System Performance

See newfs(8) for more information.

9.4.1.2 Reducing the Density of inodes

An inode describes an individual file in the file system. The maximum
number of files in a file system depends on the number of inodes and the
size of the file system. The system creates an inode for each 4 KB (4096
bytes) of data space in a file system.

If a file system will contain many large files and you are sure that you will
not create a file for each 4 KB of space, you can reduce the density of
inodes on the file system. This will free disk space for file data, but will
reduce the number of files that can be created.

To do this, use the newfs -i command to specify the amount of data
space allocated for each inode. See newfs(8) for more information.

9.4.1.3 Allocating Blocks Sequentially

The UFS rotdelay parameter specifies the time, in milliseconds, to service
a transfer completion interrupt and initiate a new transfer on the same
disk. You can set the rotdelay parameter to 0 (the default) to allocate
blocks sequentially. This is useful for disks that do not have a read-ahead
cache. However, it will reduce the total amount of available disk space.

Use either the tunefs command or the newfs command to modify the
rotdelay value. See newfs(8) and tunefs(8) for more information.

9.4.1.4 Increasing the Number of Blocks Combined for a Cluster

The value of the UFS maxcontig parameter specifies the number of blocks
that can be combined into a single cluster (or file-block group). The default
value of maxcontig is 8. The file system attempts I/O operations in a size
that is determined by the value of maxcontig multiplied by the block size
(8 KB).

Device drivers that can chain several buffers together in a single transfer
should use a maxcontig value that is equal to the maximum chain length.
This may reduce the number of disk I/O operations. However, more
memory will be needed to cache data.

Use the tunefs command or the newfs command to change the value of
maxcontig. See newfs(8) and tunefs(8) for more information.

9.4.1.5 Using MFS

The Memory File System (MFS) is a UFS file system that resides only in
memory. No permanent data or file structures are written to disk. An MFS

Managing File System Performance 9–49

can improve read/write performance, but it is a volatile cache. The contents
of an MFS are lost after a reboot, unmount operation, or power failure.

Because no data is written to disk, an MFS is a very fast file system and can
be used to store temporary files or read-only files that are loaded into the
file system after it is created. For example, if you are performing a software
build that would have to be restarted if it failed, use an MFS to cache the
temporary files that are created during the build and reduce the build time.

See mfs(8) for information.

9.4.1.6 Using UFS Disk Quotas

You can specify UFS file system limits for user accounts and for groups by
setting up UFS disk quotas, also known as UFS file system quotas. You can
apply quotas to file systems to establish a limit on the number of blocks and
inodes (or files) that a user account or a group of users can allocate. You
can set a separate quota for each user or group of users on each file system.

You may want to set quotas on file systems that contain home directories,
because the sizes of these file systems can increase more significantly than
other file systems. Do not set quotas on the /tmp file system.

Note that, unlike AdvFS quotas, UFS quotas may cause a slight increase in
reboot time. For information about AdvFS quotas, see Section 9.3.4.10. For
information about UFS quotas, see the System Administration manual.

9.4.1.7 Increasing the Number of UFS and MFS Mounts

Mount structures are dynamically allocated when a mount request is made
and subsequently deallocated when an unmount request is made. The vfs
subsystem attribute max_ufs_mounts specifies the maximum number of
UFS and MFS mounts on the system.

Performance Benefit and Tradeoff

Increasing the maximum number of UFS and MFS mounts enables you to
mount more file systems. However, increasing the maximum number
mounts requires memory resources for the additional mounts.

You can modify the max_ufs_mounts attribute without rebooting the
system.

When to Tune

Increase the maximum number of UFS and MFS mounts if your system
will have more than the default limit of 1000 mounts.

9–50 Managing File System Performance

Recommended Values

The default value of the max_ufs_mounts attribute is 1000.

See Section 3.6 for information about modifying kernel subsystem
attributes.

9.4.2 Gathering UFS Information

Table 9–7 describes the tools you can use to obtain information about UFS.

Table 9–7: UFS Monitoring Tools

Name Use Description

dumpfs Displays UFS
information
(Section 9.4.2.1)

Displays detailed information
about a UFS file system or a
special device, including
information about the file
system fragment size, the
percentage of free space, super
blocks, and the cylinder groups.

(dbx) print
ufs_clusterstats

Reports UFS
clustering statistics
(Section 9.4.2.2)

Reports statistics on how the
system is performing cluster
read and write transfers.

(dbx) print bio_stats Reports UFS
metadata buffer
cache statistics
(Section 9.4.2.3)

Reports statistics on the
metadata buffer cache, including
superblocks, inodes, indirect
blocks, directory blocks, and
cylinder group summaries.

The following sections describe these commands in detail.

9.4.2.1 Displaying UFS Information by Using the dumpfs Command

The dumpfs command displays UFS information, including super block and
cylinder group information, for a specified file system. Use this command to
obtain information about the file system fragment size and the minimum
free space percentage. The following example shows part of the output of
the dumpfs command:

/usr/sbin/dumpfs /devices/disk/dsk0g | more
magic 11954 format dynamic time Tue Sep 14 15:46:52 1998
nbfree 21490 ndir 9 nifree 99541 nffree 60
ncg 65 ncyl 1027 size 409600 blocks 396062
bsize 8192 shift 13 mask 0xffffe000
fsize 1024 shift 10 mask 0xfffffc00
frag 8 shift 3 fsbtodb 1
cpg 16 bpg 798 fpg 6384 ipg 1536
minfree 10% optim time maxcontig 8 maxbpg 2048

Managing File System Performance 9–51

rotdelay 0ms headswitch 0us trackseek 0us rps 60

The information contained in the first lines are relevant for tuning. Of
specific interest are the following fields:

• bsize — The block size of the file system, in bytes (8 KB).

• fsize — The fragment size of the file system, in bytes. For the
optimum I/O performance, you can modify the fragment size.

• minfree — The percentage of space that cannot be used by normal
users (the minimum free space threshold).

• maxcontig — The maximum number of contiguous blocks that will be
laid out before forcing a rotational delay; that is, the number of blocks
that are combined into a single read request.

• maxbpg — The maximum number of blocks any single file can allocate
out of a cylinder group before it is forced to begin allocating blocks from
another cylinder group. A large value for maxbpg can improve
performance for large files.

• rotdelay — The expected time (in milliseconds) to service a transfer
completion interrupt and initiate a new transfer on the same disk. It is
used to decide how much rotational spacing to place between successive
blocks in a file. If rotdelay is zero, then blocks are allocated
contiguously.

9.4.2.2 Monitoring UFS Clustering by Using the dbx Debugger

To determine how efficiently the system is performing cluster read and
write transfers, use the dbx print command to examine the
ufs_clusterstats data structure.

The following example shows a system that is not clustering efficiently:

/usr/ucb/dbx −k /vmunix /dev/mem
(dbx) print ufs_clusterstats
struct {

full_cluster_transfers = 3130
part_cluster_transfers = 9786
non_cluster_transfers = 16833
sum_cluster_transfers = {

[0] 0
[1] 24644
[2] 1128
[3] 463
[4] 202
[5] 55
[6] 117
[7] 36
[8] 123
[9] 0

}
}
(dbx)

9–52 Managing File System Performance

The preceding example shows 24644 single-block transfers and no 9-block
transfers. A single block is 8 KB. The trend of the data shown in the
example is the reverse of what you want to see. It shows a large number of
single-block transfers and a declining number of multiblock (1−9) transfers.
However, if the files are all small, this may be the best blocking that you
can achieve.

You can examine the cluster reads and writes separately with the
ufs_clusterstats_read and ufs_clusterstats_write data
structures.

See Section 9.4.3 for information on tuning UFS.

9.4.2.3 Checking the Metadata Buffer Cache by Using the dbx Debugger

The metadata buffer cache contains UFS file metadata—superblocks,
inodes, indirect blocks, directory blocks, and cylinder group summaries. To
check the metadata buffer cache, use the dbx print command to examine
the bio_stats data structure.

Consider the following example:

/usr/ucb/dbx −k /vmunix /dev/mem
(dbx) print bio_stats
struct {

getblk_hits = 4590388
getblk_misses = 17569
getblk_research = 0
getblk_dupbuf = 0
getnewbuf_calls = 17590
getnewbuf_buflocked = 0
vflushbuf_lockskips = 0
mntflushbuf_misses = 0
mntinvalbuf_misses = 0
vinvalbuf_misses = 0
allocbuf_buflocked = 0
ufssync_misses = 0

}
(dbx)

If the miss rate is high, you may want to raise the value of the bufcache
attribute. The number of block misses (getblk_misses) divided by the
sum of block misses and block hits (getblk_hits) should not be more than
3 percent.

See Section 9.4.3.1 for information on how to tune the metadata buffer
cache.

9.4.3 Tuning UFS

After you configure your UFS file systems, you may be able to improve UFS
performance. To successfully improve performance, you must understand

Managing File System Performance 9–53

how your applications and users perform file system I/O, as described in
Section 2.1.

Table 9–8 describes UFS tuning guidelines and performance benefits as
well as tradeoffs. The guidelines described in Table 9–1 also apply to UFS
configurations.

Table 9–8: UFS Tuning Guidelines

Guideline Performance Benefit Tradeoff

Increase the size of
metadata buffer cache to
more than 3 percent of
main memory
(Section 9.4.3.1)

Increases cache hit rate
and improves UFS
performance

Requires additional
memory resources

Increase the size of the
metadata hash chain table
(Section 9.4.3.2)

Improves UFS lookup
speed

Increases wired memory

Increase the smooth sync
caching threshold for
asynchronous UFS I/O
requests (Section 9.4.3.3)

Improves performance of
AdvFS asynchronous I/O

Increases the chance that
data may be lost if a
system crash occurs

Delay flushing UFS
clusters to disk
(Section 9.4.3.4)

Frees CPU cycles and
reduces number of I/O
operations

May degrade real-time
workload performance
when buffers are flushed

Increase number of blocks
combined for read ahead
(Section 9.4.3.5)

May reduce disk I/O
operations

May require more memory
to buffer data

Increase number of blocks
combined for a cluster
(Section 9.4.3.6)

May decrease disk I/O
operations

Reduces available disk
space

Defragment the file
system (Section 9.4.3.7)

Improves read and write
performance

Requires down time

The following sections describe how to tune UFS in detail.

9.4.3.1 Increasing the Size of the Metadata Buffer Cache

At boot time, the kernel wires a percentage of physical memory for the
metadata buffer cache, which temporarily holds recently accessed UFS and
CD-ROM File System (CDFS) metadata. The vfs subsystem attribute
bufcache specifies the size of the metadata buffer cache as a percentage of
physical memory. See Section 6.1.2.1 for information about how memory is
allocated to the metadata buffer cache.

9–54 Managing File System Performance

Performance Benefit and Tradeoff

Allocating additional memory to the metadata buffer cache may improve
UFS performance if you reuse files, but it will reduce the amount of
memory available to processes and the UBC.

You cannot modify the bufcache attribute without rebooting the system.

When to Tune

Usually, you do not have to increase the size of the metadata buffer cache.

However, you may want to increase the size of the cache if you reuse data
and have a high cache miss rate (low hit rate). To determine whether to
increase the size of the metadata buffer cache, use the dbx print
command to examine the bio_stats data structure. If the miss rate (block
misses divided by the sum of the block misses and block hits) is more than
3 percent, you may want to increase the cache size. See Section 9.4.2.3 for
more information.

Recommended Values

The default value of the bufcache attribute is 3 percent.

If you have a general-purpose timesharing system, do not increase the
value of the bufcache attribute to more than 10 percent. If you have an
NFS server that does not perform timesharing, do not increase the value of
the bufcache attribute to more than 35 percent.

See Section 3.6 for information about modifying kernel subsystem
attributes.

9.4.3.2 Increasing the Size of the Metadata Hash Chain Table

The hash chain table for the metadata buffer cache stores the heads of the
hashed buffer queues. The vfs subsystem attribute buffer_hash_size
specifies the size of the hash chain table, in table entries, for the metadata
buffer cache.

Performance Benefit and Tradeoff

Increasing the size of the hash chain table distributes the buffers, which
makes the average chain lengths short. This can improve lookup speeds.
However, increasing the size of the hash chain table increases wired
memory.

You cannot modify the buffer_hash_size attribute without rebooting the
system.

Managing File System Performance 9–55

When to Tune

Usually, you do not have to modify the size of the hash chain table.

Recommended Values

The minimum size of the buffer_hash_size attribute is 16; the
maximum size is 524287. The default value is 512.

You can modify the value of the buffer_hash_size attribute so that each
hash chain has 3 or 4 buffers. To determine a value for the
buffer_hash_size attribute, use the dbx print command to examine
the value of the nbuf kernel variable, then divide the value by 3 or 4, and
finally round the result to a power of 2. For example, if nbuf has a value of
360, dividing 360 by 3 gives you a value of 120. Based on this calculation,
specify 128 (2 to the power of 7) as the value of the buffer_hash_size
attribute.

See Section 3.6 for information about modifying kernel attributes.

9.4.3.3 Increasing the UFS Smooth Sync Cache Timeout Value

Smooth sync functionality improves UFS I/O performance by preventing
I/O spikes caused by the update daemon, and by increasing the UBC hit
rate, which decreases the total number of disk operations. Smooth sync
also helps to efficiently distribute I/O requests over the sync interval, which
decreases the length of the disk queue and reduces the latency that results
from waiting for a busy page to be freed. By default, smooth sync is
enabled on your system.

UFS caches asynchronous I/O requests in the dirty-block queue and in the
UBC object dirty-page list queue before they are handed to the device
driver. With smooth sync enabled (the default), the update daemon will
not flush buffers from the dirty page lists and dirty wired page lists.
Instead, the buffers get moved to the device queue only after the amount of
time specified by the value of the vfs attribute smoothsync_age (the
default is 30 seconds). After this time, the buffer moves to the device queue.

If smooth sync is disabled, every 30 seconds the update daemon flushes
data from memory to disk, regardless of how long a buffer has been cached.

Smooth sync functionality is controlled by the smoothsync_age attribute.
However, you do not specify a value for smoothsync_age in the
/etc/sysconfigtab file. Instead, the /etc/inittab file is used to
enable smooth sync when the system boots to multiuser mode and to
disable smooth sync when the system goes from multiuser mode to
single-user mode. This procedure is necessary to reflect the behavior of the
update daemon, which operates only in multiuser mode.

9–56 Managing File System Performance

To enable smooth sync, the following lines must be included in the
/etc/inittab file and the time limit for caching buffers in the smooth
sync queue must be specified (default is 30 seconds):

smsync:23:wait:/sbin/sysconfig -r vfs smoothsync_age=30 > /dev/null 2>&1
smsyncS:Ss:wait:/sbin/sysconfig -r vfs smoothsync_age=0 > /dev/null 2>&1

Performance Benefit and Tradeoff

Increasing the amount of time that an asynchronous I/O request ages
before being placed on the device queue (increasing the value of the
smoothsync_age attribute) will increase the chance that a buffer cache hit
will occur, which improves UFS performance if the data is reused. However,
this increases the chance that data may be lost if a system crash occurs.

Decreasing the value of the smoothsync_age attribute will speed the
flushing of buffers.

When to Tune

Usually, you do not have to modify the smooth sync queue timeout limit.

Recommended Values

Thirty seconds is the default smooth sync queue timeout limit. If you
increase the value of the smoothsync_age attribute in the /etc/inittab
file, you will increase the chance that a buffer cache hit will occur.

To disable smooth sync, specify a value of 0 (zero) for the smoothsync_age
attribute.

See Section 3.6 for information about modifying kernel subsystem
attributes.

9.4.3.4 Delaying UFS Cluster Flushing

By default, clusters of UFS pages are written asynchronously (the write
must be completed). Enabling the delay_wbuffers kernel variable causes
these clusters to be written synchronously (delayed), as other dirty data
and metadata pages are written. However, if the percentage of UBC dirty
pages reaches the value of the delay_wbuffers_percent kernel variable,
the clusters will be written asynchronously, regardless of the setting of the
delay_wbuffers kernel variable.

Performance Benefit and Tradeoff

Delaying full write buffer flushing can free CPU cycles. However, it may
adversely affect real-time workload performance, because the system will
experience a heavy I/O load at sync time.

Managing File System Performance 9–57

You can modify the delay_wbuffers kernel variable without rebooting the
system.

When to Tune

Delay cluster flushing if your applications frequently write to previously
written pages. This can result in a net decrease in the total number of I/O
requests.

Recommended Values

To delay cluster flushing, use the dbx patch command to set the value of
the delay_wbuffers kernel variable to 1 (enabled). The default value of
delay_wbuffers is 0 (disabled).

See Section 3.6.7 for information on using dbx.

9.4.3.5 Increasing the Number of Blocks Combined for Read-Ahead

You can increase the number of blocks that are combined for a read-ahead
operation.

Performance Benefit and Tradeoff

Increase the number of blocks combined for read-ahead if your applications
can use a large read-ahead size.

When to Tune

Usually, you do not have to increase the number of blocks combined for
read-ahead.

Recommended Values

To increase the number of blocks combined for read-ahead, use the dbx
patch command to set the value of the cluster_consec_init kernel
variable equal to the value of the cluster_max_read_ahead kernel
variable (the default is 8), which specifies the maximum number of
read-ahead clusters that the kernel can schedule.

In addition, you must make sure that cluster read operations are enabled on
nonread-ahead and read-ahead blocks. To do this, use dbx to set the value
of the cluster_read_all kernel variable to 1, which is the default value.

See Section 3.6.7 for information on using dbx.

9.4.3.6 Increasing the Number of Blocks Combined for a Cluster

You can increase the number of blocks combined for a cluster. The
cluster_maxcontig kernel variable specifies the number of blocks that

9–58 Managing File System Performance

are combined into a single I/O operation. Contiguous writes are done in a
unit size that is determined by the file system block size (8 KB) multiplied
by the value of the cluster_maxcontig parameter.

Performance Benefit and Tradeoff

Increase the number of blocks combined for a cluster if your applications
can use a large cluster size.

When to Tune

Usually, you do not have to increase the number of blocks combined for a
cluster.

Recommended Values

The default value of cluster_maxcontig kernel variable is 8.

See Section 3.6.7 for information about using dbx.

9.4.3.7 Defragmenting a File System

When a file consists of noncontiguous file extents, the file is considered
fragmented. A very fragmented file decreases UFS read and write
performance, because it requires more I/O operations to access the file.

Performance Benefit and Tradeoff

Defragmenting a UFS file system improves file system performance.
However, it is a time-consuming process.

When to Perform This Task

You can determine whether the files in a file system are fragmented by
determining how effectively the system is clustering. You can do this by
using the dbx print command to examine the ufs_clusterstats data
structure. See Section 9.4.2.2 for information.

UFS block clustering is usually efficient. If the numbers from the UFS
clustering kernel structures show that clustering is not effective, the files
in the file system may be very fragmented.

Recommended Procedure

To defragment a UFS file system, follow these steps:

1. Back up the file system onto tape or another partition.

2. Create a new file system either on the same partition or a different
partition.

Managing File System Performance 9–59

3. Restore the file system.

See the System Administration manual for information about backing up
and restoring data and creating UFS file systems.

9.5 Managing NFS Performance

The Network File System (NFS) shares the Unified Buffer Cache (UBC)
with the virtual memory subsystem and local file systems. NFS can put an
extreme load on the network. Poor NFS performance is almost always a
problem with the network infrastructure. Look for high counts of
retransmitted messages on the NFS clients, network I/O errors, and
routers that cannot maintain the load.

Lost packets on the network can severely degrade NFS performance. Lost
packets can be caused by a congested server, the corruption of packets
during transmission (which can be caused by bad electrical connections,
noisy environments, or noisy Ethernet interfaces), and routers that
abandon forwarding attempts too quickly.

You can monitor NFS by using the nfsstat and other commands. When
evaluating NFS performance, remember that NFS does not perform well if
any file-locking mechanisms are in use on an NFS file. The locks prevent
the file from being cached on the client. See nfsstat(8) for more
information.

The following sections describe how to perform the following tasks:

• Gather NFS performance information (Section 9.5.1)

• Improving NFS performance (Section 9.5.2)

9.5.1 Gathering NFS Information

Table 9–9 describes the commands you can use to obtain information about
NFS operations.

9–60 Managing File System Performance

Table 9–9: NFS Monitoring Tools

Name Use Description

nfsstat Displays network and
NFS statistics
(Section 9.5.1.1)

Displays NFS and RPC
statistics for clients and
servers, including the
number of packets that
had to be retransmitted
(retrans) and the
number of times a reply
transaction ID did not
match the request
transaction ID (badxid).

nfswatch Monitors an NFS server Monitors all incoming
network traffic to an NFS
server and divides it into
several categories,
including NFS reads and
writes, NIS requests, and
RPC authorizations. Your
kernel must be configured
with the packetfilter
option to use the
command. See
nfswatch(8) and
packetfilter(7) for
more information.

ps axlmp Displays information
about idle threads
(Section 9.5.1.2)

Displays information
about idle threads on a
client system.

(dbx) print
nfs_sv_active_hist

Displays active NFS
server threads
(Section 3.6.7)

Displays a histogram of
the number of active NFS
server threads.

(dbx) print nchstats Displays the hit rate
(Section 9.1.2)

Displays the namei cache
hit rate.

(dbx) print bio_stats Displays metadata
buffer cache
information
(Section 9.4.2.3)

Reports statistics on the
metadata buffer cache hit
rate.

(dbx) print vm_tune Reports UBC statistics
(Section 6.3.4)

Reports the UBC hit rate.

The following sections describe how to use some of these tools.

Managing File System Performance 9–61

9.5.1.1 Displaying NFS Information by Using the nfsstat Command

The nfsstat command displays statistical information about NFS and
Remote Procedure Call (RPC) interfaces in the kernel. You can also use this
command to reinitialize the statistics.

An example of the nfsstat command is as follows:

/usr/ucb/nfsstat

Server rpc:
calls badcalls nullrecv badlen xdrcall
38903 0 0 0 0

Server nfs:
calls badcalls
38903 0

Server nfs V2:
null getattr setattr root lookup readlink read
5 0% 3345 8% 61 0% 0 0% 5902 15% 250 0% 1497 3%
wrcache write create remove rename link symlink
0 0% 1400 3% 549 1% 1049 2% 352 0% 250 0% 250 0%
mkdir rmdir readdir statfs
171 0% 172 0% 689 1% 1751 4%

Server nfs V3:
null getattr setattr lookup access readlink read
0 0% 1333 3% 1019 2% 5196 13% 238 0% 400 1% 2816 7%
write create mkdir symlink mknod remove rmdir
2560 6% 752 1% 140 0% 400 1% 0 0% 1352 3% 140 0%
rename link readdir readdir+ fsstat fsinfo pathconf
200 0% 200 0% 936 2% 0 0% 3504 9% 3 0% 0 0%
commit
21 0%

Client rpc:
calls badcalls retrans badxid timeout wait newcred
27989 1 0 0 1 0 0
badverfs timers
0 4

Client nfs:
calls badcalls nclget nclsleep
27988 0 27988 0

Client nfs V2:
null getattr setattr root lookup readlink read
0 0% 3414 12% 61 0% 0 0% 5973 21% 257 0% 1503 5%
wrcache write create remove rename link symlink
0 0% 1400 5% 549 1% 1049 3% 352 1% 250 0% 250 0%
mkdir rmdir readdir statfs
171 0% 171 0% 713 2% 1756 6%

Client nfs V3:
null getattr setattr lookup access readlink read
0 0% 666 2% 9 0% 2598 9% 137 0% 200 0% 1408 5%
write create mkdir symlink mknod remove rmdir
1280 4% 376 1% 70 0% 200 0% 0 0% 676 2% 70 0%
rename link readdir readdir+ fsstat fsinfo pathconf
100 0% 100 0% 468 1% 0 0% 1750 6% 1 0% 0 0%
commit

9–62 Managing File System Performance

10 0%
#

The ratio of timeouts to calls (which should not exceed 1 percent) is the
most important thing to look for in the NFS statistics. A timeout-to-call
ratio greater than 1 percent can have a significant negative impact on
performance. See Chapter 10 for information on how to tune your system to
avoid timeouts.

Use the nfsstat -s -i 10 command to display NFS and RPC
information at ten-second intervals.

If you are attempting to monitor an experimental situation with nfsstat,
reset the NFS counters to 0 before you begin the experiment. Use the
nfsstat -z command to clear the counters.

See nfsstat(8) for more information about command options and output.

9.5.1.2 Displaying Idle Thread Information by Using the ps Command

On a client system, the nfsiod daemon spawns several I/O threads to
service asynchronous I/O requests to the server. The I/O threads improve
the performance of both NFS reads and writes. The optimum number of I/O
threads depends on many variables, such as how quickly the client will be
writing, how many files will be accessed simultaneously, and the
characteristics of the NFS server. For most clients, seven threads are
sufficient.

The following example uses the ps axlmp command to display idle I/O
threads on a client system:

#
/usr/ucb/ps axlmp 0 | grep nfs

0 42 0 nfsiod_ S 0:00.52
0 42 0 nfsiod_ S 0:01.18
0 42 0 nfsiod_ S 0:00.36
0 44 0 nfsiod_ S 0:00.87
0 42 0 nfsiod_ S 0:00.52
0 42 0 nfsiod_ S 0:00.45
0 42 0 nfsiod_ S 0:00.74

#

The previous output shows a sufficient number of sleeping threads and 42
server threads that were started by nfsd, where nfsiod_ has been
replaced by nfs_tcp or nfs_udp.

If your output shows that few threads are sleeping, you may be able to
improve NFS performance by increasing the number of threads. See
Section 9.5.2.2, Section 9.5.2.3, nfsiod(8), and nfsd(8) for more
information.

Managing File System Performance 9–63

9.5.2 Improving NFS Performance

Improving performance on a system that is used only for serving NFS
differs from tuning a system that is used for general timesharing, because
an NFS server runs only a few small user-level programs, which consume
few system resources. There is minimal paging and swapping activity, so
memory resources should be focused on caching file system data.

File system tuning is important for NFS because processing NFS requests
consumes the majority of CPU and wall clock time. Ideally, the UBC hit rate
should be high. Increasing the UBC hit rate can require additional memory
or a reduction in the size of other file system caches. In general, file system
tuning will improve the performance of I/O-intensive user applications.

In addition, a vnode must exist to keep file data in the UBC. If you are
using AdvFS, an access structure is also required to keep file data in the
UBC.

If you are running NFS over TCP, tuning TCP may improve performance if
there are many active clients. See Section 10.2 for more information.
However, if you are running NFS over UDP, no network tuning is needed.

Table 9–10 lists NFS tuning and performance-improvement guidelines and
the benefits as well as tradeoffs.

Table 9–10: NFS Performance Guidelines

Guideline Performance Benefit Tradeoff

Set the value of the maxusers
attribute to the number of
server NFS operations that are
expected to occur each second
(Section 5.1)

Provides the appropriate
level of system resources

Consumes memory

Increase the size of the namei
cache (Section 9.2.1)

Improves file system
performance

Consumes memory

Increase the number of AdvFS
access structures, if you are
using AdvFS (Section 9.3.6.3)

Improves AdvFS
performance

Consumes memory

Increase the size of the
metadata buffer cache, if you
are using UFS (Section 9.4.3.1)

Improves UFS
performance

Consumes wired
memory

Use Prestoserve
(Section 9.5.2.1)

Improves synchronous
write performance for NFS
servers

Cost

Configure the appropriate
number of threads on an NFS
server (Section 9.5.2.2)

Enables efficient I/O
blocking operations

None

9–64 Managing File System Performance

Table 9–10: NFS Performance Guidelines (cont.)

Guideline Performance Benefit Tradeoff

Configure the appropriate
number of threads on the
client system (Section 9.5.2.3)

Enables efficient I/O
blocking operations

None

Modify cache timeout limits on
the client system
(Section 9.5.2.4)

May improve network
performance for read-only
file systems and enable
clients to quickly detect
changes

Increases network
traffic to server

Decrease network timeouts on
the client system
(Section 9.5.2.5)

May improve performance
for slow or congested
networks

Reduces the
theoretical
performance

Use NFS Protocol Version 3 on
the client system
(Section 9.5.2.6)

Improves network
performance

Decreases the
performance benefit of
Prestoserve

The following sections describe some of these guidelines.

9.5.2.1 Using Prestoserve to Improve NFS Server Performance

You can improve NFS performance by installing Prestoserve on the server.
Prestoserve greatly improves synchronous write performance for servers
that are using NFS Version 2. Prestoserve enables an NFS Version 2 server
to write client data to a nonvolatile (battery-backed) cache, instead of
writing the data to disk.

Prestoserve may improve write performance for NFS Version 3 servers, but
not as much as with NFS Version 2, because NFS Version 3 servers can
reliably write data to volatile storage without risking loss of data in the
event of failure. NFS Version 3 clients can detect server failures and resend
any write data that the server may have lost in volatile storage.

See the Guide to Prestoserve for more information.

9.5.2.2 Configuring Server Threads

The nfsd daemon runs on NFS servers to service NFS requests from client
machines. The daemon spawns a number of server threads that process
NFS requests from client machines. At least one server thread must be
running for a machine to operate as a server. The number of threads
determines the number of parallel operations and must be a multiple of 8.

To improve performance on frequently used NFS servers, configure either
16 or 32 threads, which provides the most efficient blocking for I/O
operations. See nfsd(8) for more information.

Managing File System Performance 9–65

9.5.2.3 Configuring Client Threads

Client systems use the nfsiod daemon to service asynchronous I/O
operations, such as buffer cache read-ahead and delayed write operations.
The nfsiod daemon spawns several I/O threads to service asynchronous
I/O requests to its server. The I/O threads improve performance of both
NFS reads and writes.

The optimal number of I/O threads to run depends on many variables, such
as how quickly the client is writing data, how many files will be accessed
simultaneously, and the behavior of the NFS server. The number of threads
must be a multiple of 8 minus 1 (for example, 7 or 15 is optimal).

NFS servers attempt to gather writes into complete UFS clusters before
initiating I/O, and the number of threads (plus 1) is the number of writes
that a client can have outstanding at any one time. Having exactly 7 or 15
threads produces the most efficient blocking for I/O operations. If write
gathering is enabled, and the client does not have any threads, you may
experience a performance degradation. To disable write gathering, use the
dbx patch command to set the nfs_write_gather kernel variable to
zero. See Section 3.6.7 for information.

Use the ps axlmp 0 | grep nfs command to display idle I/O threads on
the client. If few threads are sleeping, you may be able to improve NFS
performance by increasing the number of threads. See nfsiod(8) for more
information.

9.5.2.4 Modifying Cache Timeout Limits

For read-only file systems and slow network links, performance may be
improved by changing the cache timeout limits on NFS client systems.
These timeouts affect how quickly you see updates to a file or directory that
has been modified by another host. If you are not sharing files with users
on other hosts, including the server system, increasing these values will
slightly improve performance and will reduce the amount of network traffic
that you generate.

See mount(8) and the descriptions of the acregmin, acregmax, acdirmin,
acdirmax, actimeo options for more information.

9.5.2.5 Decreasing Network Timeouts

NFS does not perform well if it is used over slow network links, congested
networks, or wide area networks (WANs). In particular, network timeouts
on client systems can severely degrade NFS performance. This condition
can be identified by using the nfsstat command and determining the
ratio of timeouts to calls. If timeouts are more than 1 percent of the total

9–66 Managing File System Performance

calls, NFS performance may be severely degraded. See Section 9.5.1.1 for
sample nfsstat output of timeout and call statistics.

You can also use the netstat -s command to verify the existence of a
timeout problem. A nonzero value in the fragments dropped after
timeout field in the ip section of the netstat output may indicate that
the problem exists. See Section 10.1.1 for sample netstat command
output.

If fragment drops are a problem on a client system, use the mount
command with the -rsize=1024 and -wsize=1024 options to set the size
of the NFS read and write buffers to 1 KB.

9.5.2.6 Using NFS Protocol Version 3

NFS Protocol Version 3 provides NFS client-side asynchronous write
support, which improves the cache consistency protocol and requires less
network load than Version 2. These performance improvements slightly
decrease the performance benefit that Prestoserve provided for NFS
Version 2. However, with Protocol Version 3, Prestoserve still speeds file
creation and deletion.

Managing File System Performance 9–67

10
Managing Network Performance

This chapter describes how to manage Tru64 UNIX network subsystem
performance. The following sections describe how to:

• Monitor the network subsystem (Section 10.1)

• Tune the network subsystem (Section 10.2)

10.1 Gathering Network Information

Table 10–1 describes the commands you can use to obtain information
about network operations.

Table 10–1: Network Monitoring Tools

Name Use Description

netstat Displays network
statistics
(Section 10.1.1)

Displays a list of active sockets for each
protocol, information about network
routes, and cumulative statistics for
network interfaces, including the
number of incoming and outgoing
packets and packet collisions. Also,
displays information about memory
used for network operations.

traceroute Displays the packet
route to a network
host

Tracks the route network packets follow
from gateway to gateway. See
traceroute(8) for more information.

ping Determines if a
system can be
reached on the
network

Sends an Internet Control Message
Protocol (ICMP) echo request to a host
to determine if a host is running and
reachable, and to determine if an IP
router is reachable. Enables you to
isolate network problems, such as direct
and indirect routing problems. See
ping(8) for more information.

sobacklog_hiwat
attribute

Reports the
maximum number
of pending requests
to any server socket
(Section 10.1.2)

Allows you to display the maximum
number of pending requests to any
server socket in the system.

Managing Network Performance 10–1

Table 10–1: Network Monitoring Tools (cont.)

Name Use Description

sobacklog_drops
attribute

Reports the number
of backlog drops
that exceed a socket
backlog limit
(Section 10.1.2)

Allows you to display the number of
times the system dropped a received
SYN packet because the number of
queued SYN_RCVD connections for a
socket equaled the socket backlog limit.

somaxconn_drops
attribute

Reports the number
of drops that exceed
the value of the
somaxconn
attribute
(Section 10.1.2)

Allows you to display the number of
times the system dropped a received
SYN packet because the number of
queued SYN_RCVD connections for a
socket equaled the upper limit on the
backlog length (somaxconn attribute).

tcpdump Monitors network
interface packets

Monitors and displays packet headers
on a network interface. You can specify
the interface on which to listen, the
direction of the packet transfer, or the
type of protocol traffic to display.
The tcpdump command allows you to
monitor the network traffic associated
with a particular network service and
to identify the source of a packet. It lets
you determine whether requests are
being received or acknowledged, or to
determine the source of network
requests, in the case of slow network
performance.
Your kernel must be configured with
the packetfilter option to use the
command. See tcpdump(8) and
packetfilter(7) for more
information.

The following sections describe some of these commands in detail.

10.1.1 Monitoring Network Statistics by Using the netstat Command

To check network statistics, use the netstat command. Some problems to
look for are:

• If the netstat -i command shows excessive amounts of input errors
(Ierrs), output errors (Oerrs), or collisions (Coll), this may indicate a
network problem; for example, cables are not connected properly or the
Ethernet is saturated.

• Use the netstat -is command to check for network device driver
errors.

10–2 Managing Network Performance

• Use the netstat -m command to determine if the network is using an
excessive amount of memory in proportion to the total amount of
memory installed in the system.

If the netstat -m command shows several requests for memory
delayed or denied, this means that either physical memory was
temporarily depleted or the kernel malloc free lists were empty.

• Each socket results in a network connection. If the system allocates an
excessive number of sockets, use the netstat -an command to
determine the state of your existing network connections.

An example of the netstat -an command is as follows:
/usr/sbin/netstat -an | grep tcp | awk ’{print $6}’ | sort | uniq -c

1 CLOSE_WAIT
58 ESTABLISHED
2 FIN_WAIT_1
3 FIN_WAIT_2
17 LISTEN
1 SYN_RCVD

15749 TIME_WAIT

For Internet servers, the majority of connections usually are in a
TIME_WAIT state. In the previous example, there are almost 16,000
sockets being used, which requires 16 MB of memory.

• Use the netstat -p ip command to check for bad checksums, length
problems, excessive redirects, and packets lost because of resource
problems.

• Use the netstat -p tcp command to check for retransmissions, out
of order packets, and bad checksums.

• Use the netstat -p udp command to check for bad checksums and
full sockets.

• Use the netstat -rs command to obtain routing statistics.

Most of the information provided by netstat is used to diagnose network
hardware or software failures, not to identify tuning opportunities. See the
Network Administration manual for more information on how to diagnose
failures.

The following output produced by the netstat -i command shows input
and output errors:

/usr/sbin/netstat -i
Name Mtu Network Address Ipkts Ierrs Opkts Oerrs Coll
ln0 1500 DLI none 133194 2 23632 4 4881
ln0 1500 <Link> 133194 2 23632 4 4881
ln0 1500 red-net node1 133194 2 23632 4 4881
sl0* 296 <Link> 0 0 0 0 0
sl1* 296 <Link> 0 0 0 0 0
lo0 1536 <Link> 580 0 580 0 0
lo0 1536 loop localhost 580 0 580 0 0

Managing Network Performance 10–3

Use the following netstat command to determine the causes of the input
(Ierrs) and output (Oerrs) shown in the preceding example:

/usr/sbin/netstat -is

ln0 Ethernet counters at Fri Jan 14 16:57:36 1998

4112 seconds since last zeroed
30307093 bytes received
3722308 bytes sent
133245 data blocks received
23643 data blocks sent

14956647 multicast bytes received
102675 multicast blocks received
18066 multicast bytes sent
309 multicast blocks sent
3446 blocks sent, initially deferred
1130 blocks sent, single collision
1876 blocks sent, multiple collisions

4 send failures, reasons include:
Excessive collisions

0 collision detect check failure
2 receive failures, reasons include:

Block check error
Framing Error

0 unrecognized frame destination
0 data overruns
0 system buffer unavailable
0 user buffer unavailable

The following netstat -s displays statistics for each protocol:

/usr/sbin/netstat -s
ip:

67673 total packets received
0 bad header checksums
0 with size smaller than minimum
0 with data size < data length
0 with header length < data size
0 with data length < header length
8616 fragments received
0 fragments dropped (dup or out of space)
5 fragments dropped after timeout
0 packets forwarded
8 packets not forwardable
0 redirects sent

icmp:
27 calls to icmp_error
0 errors not generated old message was icmp
Output histogram:

echo reply: 8
destination unreachable: 27

0 messages with bad code fields
0 messages < minimum length
0 bad checksums
0 messages with bad length

10–4 Managing Network Performance

Input histogram:
echo reply: 1
destination unreachable: 4
echo: 8

8 message responses generated
igmp:

365 messages received
0 messages received with too few bytes
0 messages received with bad checksum
365 membership queries received
0 membership queries received with invalid field(s)
0 membership reports received
0 membership reports received with invalid field(s)
0 membership reports received for groups to which we belong
0 membership reports sent

tcp:
11219 packets sent

7265 data packets (139886 bytes)
4 data packets (15 bytes) retransmitted
3353 ack-only packets (2842 delayed)
0 URG only packets
14 window probe packets
526 window update packets
57 control packets

12158 packets received
7206 acks (for 139930 bytes)
32 duplicate acks
0 acks for unsent data
8815 packets (1612505 bytes) received in-sequence
432 completely duplicate packets (435 bytes)
0 packets with some dup. data (0 bytes duped)
14 out-of-order packets (0 bytes)
1 packet (0 bytes) of data after window
0 window probes
1 window update packet
5 packets received after close
0 discarded for bad checksums
0 discarded for bad header offset fields
0 discarded because packet too short

19 connection requests
25 connection accepts
44 connections established (including accepts)
47 connections closed (including 0 drops)
3 embryonic connections dropped
7217 segments updated rtt (of 7222 attempts)
4 retransmit timeouts

0 connections dropped by rexmit timeout
0 persist timeouts
0 keepalive timeouts

0 keepalive probes sent
0 connections dropped by keepalive

udp:
12003 packets sent
48193 packets received
0 incomplete headers
0 bad data length fields
0 bad checksums
0 full sockets
12943 for no port (12916 broadcasts, 0 multicasts)

See netstat(1) for more information about the output produced by the
various command options.

Managing Network Performance 10–5

10.1.2 Checking Socket Listen Queue Statistics by Using the
sysconfig Command

You can determine whether you need to increase the socket listen queue
limit by using the sysconfig -q socket command to display the values
of the following attributes:

• sobacklog_hiwat

Allows you to monitor the maximum number of pending requests to any
server socket in the system. The initial value is zero.

• sobacklog_drops

Allows you to monitor the number of times the system dropped a
received SYN packet because the number of queued SYN_RCVD
connections for a socket equaled the socket backlog limit. The initial
value is zero.

• somaxconn_drops

Allows you to monitor the number of times the system dropped a
received SYN packet because the number of queued SYN_RCVD
connections for the socket equaled the upper limit on the backlog length
(somaxconn attribute). The initial value is zero.

It is recommended that the value of the sominconn attribute equal the
value of the somaxconn attribute. If so, the value of somaxconn_drops
will have the same value as sobacklog_drops.

However, if the value of the sominconn attribute is 0 (the default), and if
one or more server applications uses an inadequate value for the backlog
argument to its listen system call, the value of sobacklog_drops may
increase at a rate that is faster than the rate at which the
somaxconn_drops counter increases. If this occurs, you may want to
increase the value of the sominconn attribute.

See Section 10.2.3 for information on tuning socket listen queue limits.

10.2 Tuning the Network Subsystem

Most resources used by the network subsystem are allocated and adjusted
dynamically; however, there are some tuning guidelines that you can use to
improve performance, particularly with systems that are Internet servers,
including Web, proxy, firewall, and gateway servers.

Network performance is affected when the supply of resources is unable to
keep up with the demand for resources. The following two conditions can
cause this to occur:

• A problem with one or more hardware or software network components

10–6 Managing Network Performance

• A workload (network traffic) that consistently exceeds the capacity of
the available resources, although everything appears to be operating
correctly

Neither of these problems are network tuning issues. In the case of a
problem on the network, you must isolate and eliminate the problem. In
the case of high network traffic (for example, the hit rate on a Web server
has reached its maximum value while the system is 100 percent busy), you
must either redesign the network and redistribute the load, reduce the
number of network clients, or increase the number of systems handling the
network load. See the Network Programmer’s Guide and the Network
Administration manual for information on how to resolve network
problems.

Table 10–2 lists network subsystem tuning guidelines and performance
benefits as well as tradeoffs.

Table 10–2: Network Tuning Guidelines

Guideline Performance Benefit Tradeoff

Increase the size of the hash
table that the kernel uses to
look up TCP control blocks
(Section 10.2.1)

Improves the TCP control
block lookup rate and
increases the raw
connection rate

Slightly increases the
amount of wired
memory

Increase the number of TCP
hash tables (Section 10.2.2)

Reduces hash table lock
contention for SMP
systems

Slightly increases the
amount of wired
memory

Increase the limits for partial
TCP connections on the socket
listen queue (Section 10.2.3)

Improves throughput and
response time on systems
that handle a large
number of connections

Consumes memory
when pending
connections are
retained in the queue

Increase the number of
outgoing connection ports
(Section 10.2.4)

Allows more simultaneous
outgoing connections

None

Modify the range of outgoing
connection ports
(Section 10.2.5)

Allows you to use ports
from a specific range

None

Disable the use of a PMTU
(Section 10.2.6)

Improves the efficiency of
servers that handle remote
traffic from many clients

May reduce server
efficiency for LAN
traffic

Increase the number of IP
input queues (Section 10.2.7)

Reduces IP input queue
lock contention for SMP
systems

None

Enable mbuf cluster
compression (Section 10.2.8)

Improves efficiency of
network memory
allocation

None

Managing Network Performance 10–7

Table 10–2: Network Tuning Guidelines (cont.)

Guideline Performance Benefit Tradeoff

Enable TCP keepalive
functionality (Section 10.2.9)

Enables inactive socket
connections to time out

None

Increase the size of the kernel
interface alias table
(Section 10.2.10)

Improves the IP address
lookup rate for systems
that serve many domain
names

Slightly increases the
amount of wired
memory

Make partial TCP connections
time out more quickly
(Section 10.2.11)

Prevents clients from
overfilling the socket
listen queue

A short time limit
may cause viable
connections to break
prematurely

Make the TCP connection
context time out more quickly
at the end of the connection
(Section 10.2.12)

Frees connection resources
sooner

Reducing the timeout
limit increases the
potential for data
corruption; use
caution if you apply
this guideline

Reduce the TCP
retransmission rate
(Section 10.2.13)

Prevents premature
retransmissions and
decreases congestion

A long retransmit
time is not
appropriate for all
configurations

Enable the immediate
acknowledgment of TCP data
(Section 10.2.14)

Can improve network
performance for some
connections

May adversely affect
network bandwidth

Increase the TCP maximum
segment size (Section 10.2.15)

Allows sending more data
per packet

May result in
fragmentation at the
router boundary

Increase the size of the
transmit and receive socket
buffers (Section 10.2.16)

Buffers more TCP packets
per socket

May decrease
available memory
when the buffer space
is being used

Increase the size of the
transmit and receive buffers
for a UDP socket
(Section 10.2.17)

Helps to prevent dropping
UDP packets

May decrease
available memory
when the buffer space
is being used

Allocate sufficient memory to
the UBC (Section 9.2.4 and
Section 9.2.5 Section 9.2.6)

Improves disk I/O
performance

May decrease the
physical memory
available to processes

Increase the size of the ARP
table (Section 10.2.18)

May improve network
performance on a system
that is simultaneously
connected to many nodes
on the same LAN

Consumes memory
resources

10–8 Managing Network Performance

Table 10–2: Network Tuning Guidelines (cont.)

Guideline Performance Benefit Tradeoff

Increase the maximum size of a
socket buffer (Section 10.2.19)

Allows large socket buffer
sizes

Consumes memory
resources

Prevent dropped input packets
(Section 10.2.20)

Allows high network loads None

The following sections describe these tuning guidelines in detail.

10.2.1 Improving the Lookup Rate for TCP Control Blocks

You can modify the size of the hash table that the kernel uses to look up
Transmission Control Protocol (TCP) control blocks. The inet subsystem
attribute tcbhashsize specifies the number of hash buckets in the kernel
TCP connection table (the number of buckets in the inpcb hash table).

Performance Benefit and Tradeoff

The kernel must look up the connection block for every TCP packet it
receives, so increasing the size of the table can speed the search and
improve performance. This results in a small increase in wired memory.

You can modify the tcbhashsize attribute without rebooting the system.

When to Tune

Increase the number of hash buckets in the kernel TCP connection table if
you have an Internet server.

Recommended Values

The default value of the tcbhashsize attribute is 512. For Internet
servers, set the tcbhashsize attribute to 16384.

See Section 3.6 for information about modifying kernel subsystem
attributes.

10.2.2 Increasing the Number of TCP Hash Tables

Because the kernel must look up the connection block for every
Transmission Control Protocol (TCP) packet it receives, a bottleneck may
occur at the TCP hash table in SMP systems. Increasing the number of
tables distributes the load and may improve performance. The inet
subsystem attribute tcbhashnum specifies the number of TCP hash tables.

Managing Network Performance 10–9

Performance Benefit and Tradeoff

For SMP systems, you may be able to reduce hash table lock contention by
increasing the number of hash tables that the kernel uses to look up TCP
control blocks. This will slightly increase wired memory.

You cannot modify the tcbhashnum attribute without rebooting the system.

When to Tune

Increase the number of TCP hash tables if you have an SMP system that is
an Internet server.

Recommended Values

The minimum and default values of the tcbhashnum attribute are 1; the
maximum value is 64. For busy Internet server SMP systems, you can
increase the value of the tcbhashnum attribute to 16. If you increase this
attribute, you should also increase the size of the hash table. See
Section 10.2.1 for information.

Compaq recommends that you make the value of the tcbhashnum attribute
the same as the value of the inet subsystem attribute ipqs. See
Section 10.2.7 for information.

See Section 3.6 for information about modifying kernel attributes.

10.2.3 Tuning the TCP Socket Listen Queue Limits

You may be able to improve performance by increasing the limits for the
socket listen queue (only for TCP). The socket subsystem attribute
somaxconn specifies the maximum number of pending TCP connections
(the socket listen queue limit) for each server socket. If the listen queue
connection limit is too small, incoming connect requests may be dropped.
Note that pending TCP connections can be caused by lost packets in the
Internet or denial of service attacks.

The socket subsystem attribute sominconn specifies the minimum
number of pending TCP connections (backlog) for each server socket. The
attribute controls how many SYN packets can be handled simultaneously
before additional requests are discarded. The value of the sominconn
attribute overrides the application-specific backlog value, which may be set
too low for some server software.

Performance Benefit and Tradeoff

To improve throughput and response time with fewer drops, you can
increase the value of the somaxconn attribute.

10–10 Managing Network Performance

If you want to improve performance without recompiling an application or
if you have an Internet server, increase the value of the sominconn
attribute. Increasing the value of this attribute can also prevent a client
from saturating a socket listen queue with erroneous TCP SYN packets.

You can modify the somaxconn and sominconn attributes without
rebooting the system. However, sockets that are already open will continue
to use the previous socket limits until the applications are restarted.

When to Tune

Increase the socket listen queue limits if you have an Internet server or a
busy system that has many pending connections and is running
applications generating a large number of connections.

Monitor the sobacklog_hiwat, sobacklog_drops, and
somaxconn_drops attributes to determine if socket queues are
overflowing. If so, you may need to increase the socket listen queue limits.
See Section 10.1.2 for information.

Recommended Values

The default value of the somaxconn attribute is 1024. For Internet servers,
set the value of the somaxconn attribute to the maximum value of 65535.

The default value of the sominconn attribute is zero. To improve
performance without recompiling an application and for Internet servers,
set the value of the sominconn attribute to the maximum value of 65535.

If a client is saturating a socket listen queue with erroneous TCP SYN
packets, effectively blocking other users from the queue, increase the value
of the sominconn attribute to 65535. If the system continues to drop
incoming SYN packets, you can decrease the value of the inet subsystem
attribute tcp_keepinit to 30 (15 seconds).

The value of the sominconn attribute should be the same as the value of
the somaxconn attribute.

See Section 3.6 for information about modifying kernel subsystem
attributes.

10.2.4 Increasing the Number of Outgoing Connection Ports

When a TCP or UDP application creates an outgoing connection, the kernel
dynamically allocates a nonreserved port number for each connection. The
kernel selects the port number from a range of values between the value of
the inet subsystem attribute ipport_userreserved_min and the value
of the ipport_userreserved attribute. If you use the default attribute
values, the number of simultaneous outgoing connections is limited to 3976.

Managing Network Performance 10–11

Performance Benefit

Increasing the number of ports provides more ports for TCP and UDP
applications.

You can modify the ipport_userreserved attribute without rebooting
the system.

When to Tune

If your system requires many outgoing ports, you may want to increase the
value of the ipport_userreserved attribute.

Recommended Values

The default value of the ipport_userreserved attribute is 5000, which
means that the default number of ports is 3976 (5000 minus 1024).

If your system is a proxy server (for example, a Squid caching server or a
firewall system) with a load of more than 4000 simultaneous connections,
increase the value of the ipport_userreserved attribute to the
maximum value of 65000.

It is not recommended that you reduce the value of the
ipport_userreserved attribute to a value that is less than 5000 or
increase it to a value that is higher than 65000.

You can also modify the range of outgoing connection ports. See
Section 10.2.5 for information.

See Section 3.6 for information about modifying kernel subsystem
attributes.

10.2.5 Modifying the Range of Outgoing Connection Ports

When a TCP or UDP application creates an outgoing connection, the kernel
dynamically allocates a nonreserved port number for each connection. The
kernel selects the port number from a range of values between the value of
the inet subsystem attribute ipport_userreserved_min and the value
of the ipport_userreserved attribute. Using the default values for these
attributes, the range of outgoing ports starts at 1024 and stops at 5000.

Performance Benefit and Tradeoff

Modifying the range of outgoing connections provides TCP and UDP
applications with a specific range of ports.

You can modify the ipport_userreserved_min and
ipport_userreserved attributes without rebooting the system.

10–12 Managing Network Performance

When to Tune

If your system requires outgoing ports from a particular range, you can
modify the values of the ipport_userreserved_min and
ipport_userreserved attributes.

Recommended Values

The default value of the ipport_userreserved_min attribute is 1024.
The default value of the ipport_userreserved is 5000. The maximum
value of both attributes is 65000.

Do not reduce the ipport_userreserved attribute to a value that is less
than 5000, or reduce the ipport_userreserved_min attribute to a value
that is less than 1024.

See Section 3.6 for information about modifying kernel subsystem
attributes.

10.2.6 Disabling Use of a PMTU

Packets transmitted between servers are fragmented into units of a specific
size in order to ease transmission of the data over routers and small-packet
networks, such as Ethernet networks. When the inet subsystem attribute
pmtu_enabled is enabled (set to 1, which is the default behavior), the
system determines the largest common path maximum transmission unit
(PMTU) value between servers and uses it as the unit size. The system also
creates a routing table entry for each client network that attempts to
connect to the server.

Performance Benefit and Tradeoff

If a server handles traffic among many remote clients, disabling the use of
a PMTU can decrease the size of the kernel routing table, which improves
server efficiency. However, on a server that handles local traffic and some
remote traffic, disabling the use of a PMTU can degrade bandwidth.

You can modify the pmtu_enabled attribute without rebooting the system.

When to Tune

Disable use of a PMTU if you have a server that handles traffic among
many remote clients, or if you have an Internet server that has poor
performance and the routing table increases to more than 1000 entries.

Recommended Values

Set the value of the pmtu_enabled attribute to 0 to disable the use of
PMTU protocol.

Managing Network Performance 10–13

See Section 3.6 for information about modifying kernel subsystem
attributes.

10.2.7 Increasing the Number of IP Input Queues

The inet subsystem attribute ipqs specifies the number of IP input
queues.

Performance Benefit and Tradeoff

Increasing the number of IP input queues can reduce lock contention at the
queue by increasing the number of queues and distributing the load.

You cannot modify the ipqs attribute without rebooting the system.

When to Tune

Increase the number of IP input queues if you have an SMP system that is
an Internet server.

Recommended Values

For SMP systems that are Internet servers, increase the value of the ipqs
attribute to 16. The maximum value is 64.

It is recommended that you make the value of the ipqs attribute the same
as the value of the inet subsystem attribute tcbhashnum. See
Section 10.2.2 for information.

See Section 3.6 for information about modifying kernel subsystem
attributes.

10.2.8 Enabling mbuf Cluster Compression

The socket subsystem attribute sbcompress_threshold controls
whether mbuf clusters are compressed at the socket layer. By default, mbuf
clusters are not compressed (sbcompress_threshold is set to 0).

Performance Benefit

Compressing mbuf clusters can prevent proxy servers from consuming all
the available mbuf clusters.

You can modify the sbcompress_threshold attribute without rebooting
the system.

When to Tune

You may want to enable mbuf cluster compression if you have a proxy
server. These systems are more likely to consume all the available mbuf
clusters if they are using FDDI instead of Ethernet.

10–14 Managing Network Performance

To determine the memory that is being used for mbuf clusters, use the
netstat -m command. The following example is from a firewall server
with 128 MB memory that does not have mbuf cluster compression enabled:

netstat -m
2521 Kbytes for small data mbufs (peak usage 9462 Kbytes)
78262 Kbytes for mbuf clusters (peak usage 97924 Kbytes)
8730 Kbytes for sockets (peak usage 14120 Kbytes)
9202 Kbytes for protocol control blocks (peak usage 14551

2 Kbytes for routing table (peak usage 2 Kbytes)
2 Kbytes for socket names (peak usage 4 Kbytes)
4 Kbytes for packet headers (peak usage 32 Kbytes)

39773 requests for mbufs denied
0 calls to protocol drain routines

98727 Kbytes allocated to network

The previous example shows that 39773 requests for memory were denied.
This indicates a problem because this value should be zero. The example
also shows that 78 MB of memory has been assigned to mbuf clusters, and
that 98 MB of memory is being consumed by the network subsystem.

Recommended Values

To enable mbuf cluster compression, modify the default value of the
socket subsystem attribute sbcompress_threshold. Packets will be
copied into the existing mbuf clusters if the packet size is less than this
value. For proxy servers, specify a value of 600.

If you increase the value of the sbcompress_threshold attribute to 600,
the memory allocated to the network subsystem immediately decreases to
18 MB, because compression at the kernel socket buffer interface results in
a more efficient use of memory.

10.2.9 Enabling TCP Keepalive Functionality

Keepalive functionality enables the periodic transmission of messages on a
connected socket in order to keep connections active. Sockets that do not
exit cleanly are cleaned up when the keepalive interval expires. If
keepalive is not enabled, those sockets will continue to exist until you
reboot the system.

Applications enable keepalive for sockets by setting the setsockopt
function’s SO_KEEPALIVE option. To override programs that do not set
keepalive on their own, or if you do not have access to the application
sources, use the inet subsystem attribute tcp_keepalive_default to
enable keepalive functionality.

Performance Benefit

Keepalive functionality cleans up sockets that do not exit cleanly when the
keepalive interval expires.

Managing Network Performance 10–15

You can modify the tcp_keepalive_default attribute without rebooting
the system. However, sockets that already exist will continue to use old
behavior, until the applications are restarted.

When to Tune

Enable keepalive if you require this functionality, and you do not have
access to the source code.

Recommended Values

To override programs that do not set keepalive on their own, or if you do not
have access to application source code, set the inet subsystem attribute
tcp_keepalive_default to 1 in order to enable keepalive for all sockets.

If you enable keepalive, you can also configure the following TCP options
for each socket:

• The inet subsystem attribute tcp_keepidle specifies the amount of
idle time before sending a keepalive probe (specified in 0.5 second
units). The default interval is 2 hours.

• The inet subsystem attribute tcp_keepintvl specifies the amount of
time (in 0.5 second units) between the retransmission of keepalive
probes. The default interval is 75 seconds.

• The inet subsystem attribute tcp_keepcnt specifies the maximum
number of keepalive probes that are sent before the connection is
dropped. The default is 8 probes.

• The inet subsystem attribute tcp_keepinit specifies the maximum
amount of time before an initial connection attempt times out in 0.5
second units. The default is 75 seconds.

See Section 3.6 for information about modifying kernel subsystem
attributes.

10.2.10 Improving the Lookup Rate for IP Addresses

The inet subsystem attribute inifaddr_hsize specifies the number of
hash buckets in the kernel interface alias table (in_ifaddr).

If a system is used as a server for many different server domain names,
each of which are bound to a unique IP address, the code that matches
arriving packets to the right server address uses the hash table to speed
lookup operations for the IP addresses.

Performance Benefit and Tradeoff

Increasing the number of hash buckets in the table can improve
performance on systems that use large numbers of aliases.

10–16 Managing Network Performance

You can modify the inifaddr_hsize attribute without rebooting the
system.

When to Tune

Increase the number of hash buckets in the kernel interface alias table if
your system uses large numbers of aliases.

Recommended Values

The default value of the inet subsystem attribute inifaddr_hsize is 32;
the maximum value is 512.

For the best performance, the value of the inifaddr_hsize attribute is
always rounded down to the nearest power of 2. If you are using more than
500 interface IP aliases, specify the maximum value of 512. If you are
using less than 250 aliases, use the default value of 32.

See Section 3.6 for information about modifying kernel subsystem
attributes.

10.2.11 Decreasing the TCP Partial-Connection Timeout Limit

The inet subsystem attribute tcp_keepinit specifies the amount of time
that a partially established TCP connection remains on the socket listen
queue before it times out. Partial connections consume listen queue slots
and fill the queue with connections in the SYN_RCVD state.

Performance Benefit and Tradeoff

You can make partial connections time out sooner by decreasing the value
of the tcp_keepinit attribute.

You can modify the tcp_keepinit attribute without rebooting the system.

When to Tune

You do not need to modify the TCP partial-connection timeout limit, unless
the value of the somaxconn_drops attribute often increases. If this occurs,
you may want to decrease the value of the tcp_keepinit attribute.

Recommended Values

The value of the tcp_keepinit attribute is in units of 0.5 seconds. The
default value is 150 units (75 seconds). If the value of the sominconn
attribute is 65535, use the default value of the tcp_keepinit attribute.

Do not set the value of the tcp_keepinit attribute too low, because you
may prematurely break connections associated with clients on network

Managing Network Performance 10–17

paths that are slow or network paths that lose many packets. Do not set
the value to less than 20 units (10 seconds).

See Section 3.6 for information about modifying kernel subsystem
attributes.

10.2.12 Decreasing the TCP Connection Context Timeout Limit

The TCP protocol includes a concept known as the Maximum Segment
Lifetime (MSL). When a TCP connection enters the TIME_WAIT state, it
must remain in this state for twice the value of the MSL, or else
undetected data errors on future connections can occur. The inet
subsystem attribute tcp_msl determines the maximum lifetime of a TCP
segment and the timeout value for the TIME_WAIT state.

Performance Benefit and Tradeoff

You can decrease the value of the tcp_msl attribute to make the TCP
connection context time out more quickly at the end of a connection.
However, this will increase the chance of data corruption.

You can modify the tcp_msl attribute without rebooting the system.

When to Tune

Usually, you do not have to modify the TCP connection context timeout
limit.

Recommended Values

The value of the tcp_msl attribute is set in units of 0.5 seconds. The
default value is 60 units (30 seconds), which means that the TCP
connection remains in TIME_WAIT state for 60 seconds (or twice the value of
the MSL). In some situations, the default timeout value for the TIME_WAIT
state (60 seconds) is too large, so reducing the value of the tcp_msl
attribute frees connection resources sooner than the default behavior.

Do not reduce the value of the tcp_msl attribute unless you fully
understand the design and behavior of your network and the TCP protocol.
It is strongly recommended that you use the default value; otherwise, there
is the potential for data corruption.

See Section 3.6 for information about modifying kernel subsystem
attributes.

10.2.13 Decreasing the TCP Retransmission Rate

The inet subsystem attribute tcp_rexmit_interval_min specifies the
minimum amount of time before the first TCP retransmission.

10–18 Managing Network Performance

Performance Benefit and Tradeoff

You can increase the value of the tcp_rexmit_interval_min attribute to
slow the rate of TCP retransmissions, which decreases congestion and
improves performance.

You can modify the tcp_rexmit_interval_min attribute without
rebooting the system.

When to Tune

Not every connection needs a long retransmission time. Usually, the default
value is adequate. However, for some wide area networks (WANs), the
default retransmission interval may be too small, causing premature
retransmission timeouts. This may lead to duplicate transmission of packets
and the erroneous invocation of the TCP congestion-control algorithms.

To check for retransmissions, use the netstat -p tcp command and
examine the output for data packets retransmitted.

Recommended Values

The tcp_rexmit_interval_min attribute is specified in units of 0.5
seconds. The default value is 2 units (1 second).

Do not specify a value that is less than 1 unit. Do not change the attribute
unless you fully understand TCP algorithms.

See Section 3.6 for information about modifying kernel subsystem
attributes.

10.2.14 Disabling Delaying the Acknowledgment of TCP Data

By default, the system delays acknowledging TCP data. The inet
subsystem attribute tcpnodelack determines whether the system delays
acknowledging TCP data.

Performance Benefit and Tradeoff

Disabling delaying of TCP data may improve performance. However, this
may adversely impact network bandwidth.

You can modify the tcpnodelack attribute without rebooting the system.

When to Tune

Usually, the default value of the tcpnodelack attribute is adequate.
However, for some connections (for example, loopback), the delay can
degrade performance. Use the tcpdump command to check for excessive
delays.

Managing Network Performance 10–19

Recommended Values

The default value of the tcpnodelack is zero. To disable the TCP
acknowledgment delay, set the value of the tcpnodelack attribute to one.

See Section 3.6 for information about modifying kernel subsystem
attributes.

10.2.15 Increasing the Maximum TCP Segment Size

The inet subsystem attribute tcp_mssdflt specifies the TCP maximum
segment size.

Performance Benefit and Tradeoff

Increasing the maximum TCP segment size allows sending more data per
socket, but may cause fragmentation at the router boundary.

You can modify the tcp_mssdflt attribute without rebooting the system.

When to Tune

Usually, you do not need to modify the maximum TCP segment size.

Recommended Values

The default value of the tcp_mssdflt attribute is 536. You can increase
the value to 1460.

See Section 3.6 for information about modifying kernel subsystem
attributes.

10.2.16 Increasing the Transmit and Receive Buffers for a TCP
Socket

The inet subsystem attribute tcp_sendspace specifies the default
transmit buffer size for a TCP socket. The tcp_recvspace attribute
specifies the default receive buffer size for a TCP socket.

Performance Benefit and Tradeoff

Increasing the transmit and receive socket buffers allows you to buffer
more TCP packets per socket. However, increasing the values uses more
memory when the buffers are being used by an application (sending or
receiving data).

You can modify the tcp_sendspace and tcp_recvspace attributes
without rebooting the system.

10–20 Managing Network Performance

When to Tune

You may want to increase the transmit and receive socket buffers if you
have a busy system with sufficient memory (for example, more than 1 GB
of physical memory). Before you apply this modification, you may want to
increase the maximum size of a socket buffer, as described in
Section 10.2.19.

Recommended Values

The default values of the tcp_sendspace and tcp_recvspace attributes
are 32 KB (32768 bytes). You can increase the value of these attributes to
60 KB.

You may want to increase the maximum size of a socket buffer before you
increase the transmit and receive buffers. See Section 10.2.19 for
information.

See Section 3.6 for information about modifying kernel subsystem
attributes.

10.2.17 Increasing the Transmit and Receive Buffers for a UDP
Socket

The inet subsystem attribute udp_sendspace specifies the default
transmit buffer size for an Internet User Datagram Protocol (UDP) socket.
The inet subsystem attribute udp_recvspace specifies the default receive
buffer size for a UDP socket.

Performance Benefit and Tradeoff

Increasing the UDP transmit and receive socket buffers allows you to
buffer more UDP packets per socket. However, increasing the values uses
more memory when the buffers are being used by an application (sending
or receiving data).

_______________________ Note _______________________

UDP attributes do not affect Network File System (NFS)
performance.

You can modify the udp_sendspace and udp_recvspace attributes
without rebooting the system. However, you must restart applications to
use the new UDP socket buffer values.

Managing Network Performance 10–21

When to Tune

Use the netstat -p udp command to check for full sockets. If the output
shows many full sockets, increase the value of the udp_recvspace
attribute.

Recommended Values

The default value of the udp_sendspace is 9 KB (9216 bytes). The default
value of the udp_recvspace is 40 KB (42240 bytes). You can increase the
values of these attributes to 64 KB.

See Section 3.6 for information about modifying kernel subsystem
attributes.

10.2.18 Increasing the Size of the ARP Table

The net subsystem attribute arptab_nb specifies the number of hash
buckets in the address resolution protocol (ARP) table (that is, the table’s
width). The net subsystem attribute arptab_depth specifies the number
of entries in each hash bucket in the ARP table.

Performance Benefit and Tradeoff

Increasing the size of the ARP table may improve performance. Wide ARP
tables can decrease the chance that a search will be needed to match an
address to an ARP entry. Deep ARP tables can hold a large number of
entries. However, increasing the size of the ARP table will increase the
memory used by the table.

Increasing the size of the ARP table will not affect performance unless the
system is simultaneously connected to many nodes on the same LAN. See
the Kernel Debugging manual and kdbx(8) for more information.

You can modify the arptab_nb and arptab_depth attributes without
rebooting the system.

When to Tune

Display the ARP table by using the arp -a command or the kdbx arp
debugger extension. Increase the value of the arptab_nb and
arptab_depth attributes if the ARP table contains more than 400 entries.

Recommended Values

You can increase the width of the ARP table by increasing the value of the
inarptab_nb attribute. The default value is 37. The maximum value is
1024.

10–22 Managing Network Performance

You can increase the depth of the ARP table by increasing the value of the
arptab_depth attributes. The default value is 16. The maximum value is
256.

See Section 3.6 for information about modifying kernel subsystem
attributes.

10.2.19 Increasing the Maximum Size of a Socket Buffer

The socket subsystem attribute sb_max specifies the maximum size of a
socket buffer.

Performance Benefit and Tradeoff

Increasing the maximum size of a socket buffer may improve performance
if your applications can benefit from a large buffer size.

You can modify the sb_max attribute without rebooting the system.

When to Tune

If you require a large socket buffer, increase the maximum socket buffer
size.

Recommended Values

The default value of the sb_max attribute is 128 KB. Increase this value
before you increase the size of the transmit and receive socket buffers (see
Section 10.2.16).

See Section 3.6 for information about modifying kernel subsystem
attributes.

10.2.20 Preventing Dropped Input Packets

If the IP input queue overflows under a heavy network load, input packets
may be dropped.

The inet subsystem attribute ipqmaxlen specifies the maximum length
(in bytes) of the IP input queue (ipintrq) before input packets are
dropped. The ifqmaxlen attribute specifies the number of output packets
that can be queued to a network adapter before packets are dropped.

Performance Benefit and Tradeoff

Increasing the IP input queue can prevent packets from being dropped.

You can modify the ipqmaxlen and ifqmaxlen attributes without
rebooting the system.

Managing Network Performance 10–23

When to Tune

If your system drops packets, you may want to increase the values of the
ipqmaxlen and ifqmaxlen attributes. To check for input dropped packets,
examine the ipintrq kernel structure by using dbx. If the ifq_drops
field is not 0, the system is dropping input packets. For example:

dbx −k /vmunix
(dbx)print ipintrq
struct {

ifq_head = (nil)
ifq_tail = (nil)
ifq_len = 0
ifq_maxlen = 512
ifq_drops = 128

.

.

.

Use the netstat -id command to monitor dropped output packets.
Examine the output for a nonzero value in the Drop column for an
interface. The following example shows 579 dropped output packets on the
tu1 network interface:

netstat -id

Name Mtu Network Address Ipkts Ierrs Opkts Oerrs Coll Drop

fta0 4352 link 08:00:2b:b1:26:59 41586 0 39450 0 0 0
fta0 4352 DLI none 41586 0 39450 0 0 0
fta0 4352 10 fratbert 41586 0 39450 0 0 0
tu1 1500 link 00:00:f8:23:11:c8 2135983 0 163454 13 3376 579
tu1 1500 DLI none 2135983 0 163454 13 3376 579
tu1 1500 red-net ratbert 2135983 0 163454 13 3376 579
.
.
.

In addition, you can use the netstat -p ip, and check for a nonzero
number in the lost packets due to resource problems field or no
memory or interface queue was full field. For example:

netstat -p ip
ip:

259201001 total packets received
0 bad header checksums
0 with size smaller than minimum
0 with data size < data length
0 with header length < data size
0 with data length < header length
25794050 fragments received
0 fragments dropped (duplicate or out of space)
802 fragments dropped after timeout
0 packets forwarded
67381376 packets not forwardable

67381376 link-level broadcasts
0 packets denied access
0 redirects sent
0 packets with unknown or unsupported protocol
170988694 packets consumed here

10–24 Managing Network Performance

160039654 total packets generated here
0 lost packets due to resource problems
4964271 total packets reassembled ok
2678389 output packets fragmented ok
14229303 output fragments created
0 packets with special flags set

Recommended Values

The default and minimum values for the ipqmaxlen and ifqmaxlen
attributes are 1024; the maximum values are 65535. For most
configurations, the default values are adequate. Only increase the values if
you drop packets.

If your system drops packets, increase the values of the ipqmaxlen and
ifqmaxlen attributes until you no longer drop packets. For example, you
can increase the default values to 2000.

See Section 3.6 for information about modifying kernel subsystem
attributes.

Managing Network Performance 10–25

11
Managing Application Performance

You may be able to improve overall Tru64 UNIX performance by improving
application performance. This chapter describes how to:

• Profile and debug applications (Section 11.1)

• Improve application performance (Section 11.2)

11.1 Gathering Profiling and Debugging Information

You can use profiling to identify sections of application code that consume
large portions of execution time. To improve performance, concentrate on
improving the coding efficiency of those time-intensive sections.

Table 11–1 describes the commands you can use to obtain information
about applications. Detailed information about these tools is located in the
Programmer’s Guide and the Kernel Debugging manual.

In addition, prof_intro(1) provides an overview of application profilers,
profiling, optimization, and performance analysis.

Table 11–1: Application Profiling and Debugging Tools

Name Use Description

atom Profiles applications Consists of a set of prepackaged tools (third,
hiprof, or pixie) that can be used to
instrument applications for profiling or
debugging purposes. The atom toolkit also
consists of a command interface and a collection
of instrumentation routines that you can use to
create custom tools for instrumenting
applications. See the Programmer’s Guide and
atom(1) for more information.

third Checks memory
access and detects
memory leaks in
applications

Performs memory access checks and memory
leak detection of C and C++ programs at run
time, by using the atom tool to add code to
executable and shared objects. The Third
Degree tool instruments the entire program,
including its referenced libraries. See
third(1) for more information.

Managing Application Performance 11–1

Table 11–1: Application Profiling and Debugging Tools (cont.)

Name Use Description

hiprof Produces a profile
of procedure
execution times in
an application

An atom-based program profiling tool that
produces a flat profile, which shows the
execution time spent in any given procedure,
and a hierarchical profile, which shows the
time spent in a given procedure and all of its
descendents.
The hiprof tool uses code instrumentation
instead of program counter (PC) sampling to
gather statistics. The gprof command is
usually used to filter and merge output files
and to format profile reports. See hiprof(1)
for more information.

pixie Profiles basic blocks
in an application

Produces a profile showing the number of times
each instruction was executed in a program.
The information can be reported as tables or
can be used to automatically direct later
optimizations by using the -feedback, -om,
or -cord options in the C compiler (see cc(1)).
The pixie profiler reads an executable
program, partitions it into basic blocks, and
writes an equivalent program containing
additional code that counts the execution of
each basic block.
The pixie utility also generates a file
containing the address of each of the basic
blocks. When you run this pixie-generated
program, it generates a file containing the
basic block counts. The prof and pixstats
commands can analyze these files. See
pixie(1) for more information.

11–2 Managing Application Performance

Table 11–1: Application Profiling and Debugging Tools (cont.)

Name Use Description

prof Analyzes profiling
data and displays a
profile of statistics
for each procedure
in an application

Analyzes profiling data and produces statistics
showing which portions of code consume the
most time and where the time is spent (for
example, at the routine level, the basic block
level, or the instruction level).
The prof command uses as input one or more
data files generated by the kprofile,
uprofile, or pixie profiling tools. The prof
command also accepts profiling data files
generated by programs linked with the -p
switch of compilers such as cc.
The information produced by prof allows you
to determine where to concentrate your efforts
to optimize source code. See prof(1) for more
information.

gprof Analyzes profiling
data and displays
procedure call
information and
statistical program
counter sampling in
an application

Analyzes profiling data and allows you to
determine which routines are called most
frequently, and the source of the routine call,
by gathering procedure call information and
erforming statistical program counter (PC)
sampling.
The gprof tool produces a flat profile of the
routines’ CPU usage. To produce a graphical
execution profile of a program, the tool uses
data from PC sampling profiles, which are
produced by programs compiled with the cc
-pg command, or from instrumented profiles,
which are produced by programs modified by
the atom -tool hiprof command. See
gprof(1) for more information.

uprofile Profiles user code in
an application

Profiles user code using performance counters
in the Alpha chip. The uprofile tool allows
you to profile only the executable part of a
program. The uprofile tool does not collect
information on shared libraries. You process
the performance data collected by the tool with
the prof command. See the Kernel Debugging
manual or uprofile(1) for more information.

Managing Application Performance 11–3

Table 11–1: Application Profiling and Debugging Tools (cont.)

Name Use Description

Visual
Threads

Identifies
bottlenecks and
performance
problems in
multithreaded
applications

Enables you to analyze and refine your
multithreaded applications. You can use Visual
Threads to identify bottlenecks and
performance problems, and to debug potential
thread-related logic problems. Visual Threads
uses rule-based analysis and statistics
capabilities and visualization techniques.
Visual Threads is licensed as part of the
Developers’ Toolkit for Tru64 UNIX.

dbx Debugs running
kernels, programs,
and crash dumps,
and examines and
temporarily
modifies kernel
variables

Provides source-level debugging for C, Fortran,
Pascal, assembly language, and machine code.
The dbx debugger allows you to analyze crash
dumps, trace problems in a program object at
the source-code level or at the machine code
level, control program execution, trace program
logic and flow of control, and monitor memory
locations.
Use dbx to debug kernels, debug stripped
images, examine memory contents, debug
multiple threads, analyze user code and
applications, display the value and format of
kernel data structures, and temporarily modify
the values of some kernel variables. See dbx(8)
for more information.

ladebug Debugs kernels and
applications

Debugs programs and the kernel and helps
locate run-time programming errors. The
ladebug symbolic debugger is an alternative
to the dbx debugger and provides both
command-line and graphical user interfaces
and support for debugging multithreaded
programs. See the Ladebug Debugger Manual
and ladebug(1) for more information.

lsof Displays open files Displays information about files that are
currently opened by the running processes. The
lsof is is available on the Tru64 UNIX
Freeware CD-ROM.

11.2 Improving Application Performance

Well-written applications use CPU, memory, and I/O resources efficiently.
Table 11–2 describes some guidelines to improve application performance.

11–4 Managing Application Performance

Table 11–2: Application Performance Improvement Guidelines

Guideline Performance Benefit Tradeoff

Install the latest operating
system patches (Section 11.2.1)

Provides the latest
optimizations

None

Use the latest version of the
compiler (Section 11.2.2)

Provides the latest
optimizations

None

Use parallelism (Section 11.2.3) Improves SMP performance None

Optimize applications
(Section 11.2.4)

Generates more efficient code None

Use shared libraries
(Section 11.2.5)

Frees memory May increase
execution time

Reduce application memory
requirements (Section 11.2.6)

Frees memory Program may not
run optimally

Use memory locking as part of
real-time program initialization
(Section 11.2.7)

Allows you to lock and unlock
memory as needed

Reduces the
memory available
to processes and
the UBC

The following sections describe how to improve application performance.

11.2.1 Using the Latest Operating System Patches

Always install the latest operating system patches, which often contain
performance enhancements.

Check the /etc/motd file to determine which patches you are running. See
your customer service representative or for information about installing
patches.

11.2.2 Using the Latest Version of the Compiler

Always use the latest version of the compiler to build your application
program. Usually, new versions include advanced optimizations.

Check the software on your system to ensure that you are using the latest
version of the compiler.

11.2.3 Using Parallelism

To enhance parallelism, application developers working in Fortran or C
should consider using the Kuch & Associates Preprocessor (KAP), which
can have a significant impact on SMP performance. See the Programmer’s
Guide for details on KAP.

Managing Application Performance 11–5

11.2.4 Optimizing Applications

Optimizing an application program can involve modifying the build process
or modifying the source code. Various compiler and linker optimization
levels can be used to generate more efficient user code. See the
Programmer’s Guide for more information on optimization.

Whether you are porting an application from a 32-bit system to Tru64
UNIX or developing a new application, never attempt to optimize an
application until it has been thoroughly debugged and tested. If you are
porting an application written in C, use the lint command with the -Q
option or compile your program using the C compiler’s -check option to
identify possible portability problems that you may need to resolve.

11.2.5 Using Shared Libraries

Using shared libraries reduces the need for memory and disk space. When
multiple programs are linked to a single shared library, the amount of
physical memory used by each process can be significantly reduced.

However, shared libraries initially result in an execution time that is
slower than if you had used static libraries.

11.2.6 Reducing Application Memory Requirements

You may be able to reduce an application’s use of memory, which provides
more memory resources for other processes or for file system caching.
Follow these coding considerations to reduce your application’s use of
memory:

• Configure and tune applications according to the guidelines provided by
the application’s installation procedure. For example, you may be able
to reduce an application’s anonymous memory requirements, set
parallel/concurrent processing attributes, size shared global areas and
private caches, and set the maximum number of open/mapped files.

• You may want to use the mmap function instead of the read or write
function in your applications. The read and write system calls require
a page of buffer memory and a page of UBC memory, but mmap requires
only one page of memory.

• Look for data cache collisions between heavily used data structures,
which occur when the distance between two data structures allocated in
memory is equal to the size of the primary (internal) data cache. If your
data structures are small, you can avoid collisions by allocating them
contiguously in memory. To do this, use a single malloc call instead of
multiple calls.

11–6 Managing Application Performance

• If an application uses large amounts of data for a short time, allocate
the data dynamically with the malloc function instead of declaring it
statically. When you have finished using dynamically allocated memory,
it is freed for use by other data structures that occur later in the
program. If you have limited memory resources, dynamically allocating
data reduces an application’s memory usage and can substantially
improve performance.

• If an application uses the malloc function extensively, you may be able
to improve its processing speed or decrease its memory utilization by
using the function’s control variables to tune memory allocation. See
malloc(3) for details on tuning memory allocation.

• If your application fits in a 32-bit address space and allocates large
amounts of dynamic memory by using structures that contain many
pointers, you may be able to reduce memory usage by using the -xtaso
option. The -xtaso option is supported by all versions of the C
compiler (-newc, -migrate, and -oldc versions). To use the -xtaso
option, modify your source code with a C-language pragma that controls
pointer size allocations. See cc(1) for details.

See the Programmer’s Guide for detailed information on process memory
allocation.

11.2.7 Controlling Memory Locking

Real-time application developers should consider memory locking as a
required part of program initialization. Many real-time applications remain
locked for the duration of execution, but some may want to lock and unlock
memory as the application runs. Memory-locking functions allow you to
lock the entire process at the time of the function call and throughout the
life of the application. Locked pages of memory cannot be used for paging
and the process cannot be swapped out.

Memory locking applies to a process’s address space. Only the pages
mapped into a process’s address space can be locked into memory. When
the process exits, pages are removed from the address space and the locks
are removed.

Use the mlockall function to lock all of a process’ address space. Locked
memory remains locked until either the process exits or the application
calls the munlockall function. Use the ps to determine if a process is
locked into memory and cannot be swapped out. See Section 6.3.2.

Memory locks are not inherited across a fork, and all memory locks
associated with a process are unlocked on a call to the exec function or
when the process terminates. See the Guide to Realtime Programming
manual and mlockall(3) for more information.

Managing Application Performance 11–7

Glossary

This glossary lists the terms that are used to describe Tru64 UNIX
performance and availability.

active list
Pages that are being used by the virtual memory subsystem or the UBC.

adaptive RAID 3/5
See dynamic parity RAID.

anonymous memory
Modifiable memory that is used for stack, heap, or malloc.

attributes
Dynamically configurable kernel variables, whose values you can modify to
improve system performance. You can utilize new attribute values without
rebuilding the kernel.

bandwidth
The rate at which an I/O subsystem or component can transfer bytes of
data. Bandwidth is especially important for applications that perform large
sequential transfers. Bandwidth is also called the transfer rate.

bottleneck
A system resource that is being pushed near to its capacity and is causing
a performance degradation.

cache
A temporary location for holding data that is used to improve performance
by reducing latency. CPU caches and secondary caches hold physical
addresses. Disk track caches and write-back caches hold disk data. Caches
can be volatile (that is, not backed by disk data or a battery) or nonvolatile.

capacity
The maximum theoretical throughput of a system resource, or the
maximum amount of data, in bytes, that a disk can contain. A resource that
has reached its capacity may become a bottleneck and degrade performance.

Glossary–1

cluster
A loosely coupled group of servers (cluster member systems) that share
data for the purposes of high availability. Some cluster products utilize a
high-performance interconnect for fast and dependable communication.

copy-on-write page fault
A page fault that occurs when a process needs to modify a read-only virtual
page.

configuration
The assemblage of hardware and software that comprises a system or a
cluster. For example, CPUs, memory boards, the operating system, and
mirrored disks are parts of a configuration.

configure
To set up or modify a hardware or software configuration. For example,
configuring the I/O subsystem can include connecting SCSI buses and
setting up mirrored disks.

deferred mode
A swap space allocation mode by which swap space is not reserved until
the system needs to write a modified virtual page to swap space. Deferred
mode is sometimes referred to as lazy mode.

disk access time
A combination of the seek time and the rotational latency, measured in
milliseconds. A low access time is especially important for applications that
perform many small I/O operations.

dynamically wired memory
Wired memory that is used for dynamically allocated data structures, such
as system hash tables. User processes also allocate dynamically wired
memory for address space by using virtual memory locking interfaces,
including the mlock function.

dynamic parity RAID
Also called adaptive RAID 3/5, dynamic parity RAID combines the features
of RAID 3 and RAID 5 to improve disk I/O performance and availability for
a wide variety of applications. Adaptive RAID 3/5 dynamically adjusts,
according to workload needs, between data transfer-intensive algorithms
and I/O operation-intensive algorithms.

eager mode
See immediate mode.

fail over / failover
To automatically utilize a redundant resource after a hardware or software
failure, so that the resource remains available. For example, if a cluster

Glossary–2

member system fails, the applications running on that system
automatically fail over to another member system.

file-backed memory
Memory that is used for program text or shared libraries.

free list
Pages that are clean and are not being used (the size of this list controls
when page reclamation occurs).

hardware RAID
A storage subsystem that provides RAID functionality by using intelligent
controllers, caches, and software.

high availability
The ability of a resource to withstand a hardware or software failure. High
availability is achieved by using some form of resource duplication that
removes single points of failure. Availability also is measured by a
resource’s reliability. No resource can be protected against an infinite
number of failures.

immediate mode
A swap space allocation mode by which swap space is reserved when
modifiable virtual address space is created. Immediate mode is often
referred to as eager mode and is the default swap space allocation mode.

kernel variables
Variables that determine kernel and subsystem behavior and performance.
System attributes and parameters are used to access kernel variables.

latency
The amount of time to complete a specific operation. Latency is also called
delay. High performance requires a low latency time. I/O latency can be
measured in milliseconds, while memory latency is measured in
microseconds. Memory latency depends on the memory bank configuration
and the system’s memory requirements.

lazy mode
See deferred mode.

mirroring
Maintaining identical copies of data on different disks, which provides high
data availability and improves disk read performance. Mirroring is also
known as RAID 1.

multiprocessor
A system with two or more processors (CPUs) that share common physical
memory.

Glossary–3

page
The smallest portion of physical memory that the system can allocate
(8 KB of memory).

page coloring
The attempt to map a process’ entire resident set into the secondary cache.

page fault
An instruction to the virtual memory subsystem to locate a requested page
and make the virtual-to-physical address translation in the page table.

page in
To move a page from a disk location to physical memory.

page-in page fault
A page fault that occurs when a requested address is found in swap space.

page out
To write the contents of a modified (dirty) page from physical memory to
swap space.

page table
An array that contains an entry for each current virtual-to-physical
address translation.

paging
The process by which pages that are allocated to processes and the UBC
are reclaimed for reuse.

parameters
Statically configurable kernel variables, whose values can be modified to
improve system performance. You must rebuild the kernel to utilize new
parameter values. Many parameters have corresponding attributes.

parity RAID
A type of RAID functionality that provides high data availability by storing
on a separate disk or multiple disks redundant information that is used to
regenerate data.

RAID
RAID (redundant array of independent disks) technology provides high
disk I/O performance and data availability. The Tru64 UNIX operating
system provides RAID functionality by using disks and software (LSM).
Hardware-based RAID functionality is provided by intelligent controllers,
caches, disks, and software.

Glossary–4

RAID 0
Also known as disk striping, RAID 0 functionality divides data into blocks
and distributes the blocks across multiple disks in a array. Distributing the
disk I/O load across disks and controllers improves disk I/O performance.
However, striping decreases availability because one disk failure makes the
entire disk array unavailable.

RAID 1
Also known as data mirroring, RAID 1 functionality maintains identical
copies of data on different disks in an array. Duplicating data provides high
data availability. In addition, RAID 1 improves the disk read performance,
because data can be read from two locations. However, RAID 1 decreases
disk write performance, because data must be written twice. Mirroring n
disks requires 2n disks.

RAID 3
RAID 3 functionality divides data blocks and distributes (stripes) the data
across a disk array, providing parallel access to data. RAID 3 provides data
availability; a separate disk stores redundant parity information that is
used to regenerate data if a disk fails. It requires an extra disk for the
parity information. RAID 3 increases bandwidth, but it provides no
improvement in the throughput. RAID 3 can improve the I/O performance
for applications that transfer large amounts of sequential data.

RAID 5
RAID 5 functionality distributes data blocks across disks in an array.
Redundant parity information is distributed across the disks, so each array
member contains the information that is used to regenerate data if a disk
fails. RAID 5 allows independent access to data and can handle
simultaneous I/O operations. RAID 5 provides data availability and
improves performance for large file I/O operations, multiple small data
transfers, and I/O read operations. It is not suited to applications that are
write-intensive.

random access pattern
Refers to an access pattern in which data is read from or written to blocks
in various locations on a disk.

raw I/O
I/O to a device that does not use a file system. Raw I/O bypasses buffers
and caches, and can provide better performance than file system I/O.

redundancy
The duplication of a resource for purposes of high availability. For example,
you can obtain data redundancy by mirroring data across different disks or
by using parity RAID. You can obtain system redundancy by setting up a

Glossary–5

cluster, and network redundancy by using multiple network connections.
The more levels of resource redundancy you have, the greater the resource
availability. For example, a cluster with four member systems has more
levels of redundancy and thus higher availability than a two-system cluster.

reliability
The average amount of time that a component will perform before a failure
that causes a loss of data. Often expressed as the mean time to data loss
(MTDL) or the mean time to first failure (MTTF).

resident set
The complete set of all the virtual addresses that have been mapped to
physical addresses (that is, all the pages that have been accessed during
process execution).

resource
A hardware or software component (such as the CPU, memory, network, or
disk data) that is available to users or applications.

physical memory
The total capacity of the memory boards installed in your system. Physical
memory is either wired or it is shared by processes and the UBC.

rotational latency
The amount of time, in milliseconds, for a disk to rotate to a specific disk
sector.

scalability
The ability of a system to utilize additional resources with a predictable
increase in performance, or the ability of a system to absorb an increase in
workload without a significant performance degradation.

seek time
The amount of time, in milliseconds, for a disk head to move to a specific
disk track.

sequential access pattern
Refers to an access pattern in which data is read from or written to
contiguous blocks on a disk.

short page fault
A page fault that occurs when a requested address is found in the virtual
memory subsystem’s internal data structures.

SMP
Symmetrical multiprocessing (SMP) is the ability of a multiprocessor
system to execute the same version of the operating system, access common
memory, and execute instructions simultaneously.

Glossary–6

software RAID
Storage subsystem that provides RAID functionality by using software (for
example, LSM).

static wired memory
Wired memory that is allocated at boot time and used for operating system
data and text and for system tables, static wired memory is also used by
the metadata buffer cache, which holds recently accessed UNIX File
System (UFS) and CD-ROM File System (CDFS) metadata.

striping
Distributing data across multiple disks in a disk array, which improves I/O
performance by allowing parallel access. Striping is also known as RAID 0.
Striping can improve the performance of sequential data transfers and I/O
operations that require high bandwidth.

swap in
To move a swapped-out process’ pages from disk swap space to physical
memory in order for the process to execute. Swapins occur only if the
number of pages on the free page list is higher than a specific amount for a
period of time.

swap out
To move all the modified pages associated with a low-priority process or a
process with a large resident set size from physical memory to swap space.
A swapout occurs when number of pages on the free page list falls below a
specific amount for a period of time. Swapouts will continue until the
number of pages on the free page list reaches a specific amount.

swapping
Writing a suspended process’ modified (dirty) pages to swap space, and
putting the clean pages on the free list. Swapping occurs when the number
of pages on the free list falls below a specific threshold.

throughput
The rate at which an I/O subsystem or component can perform I/O
operations. Throughput is especially important for applications that
perform many small I/O operations.

tune
To modify the kernel by changing the values of kernel variables, thus
improving system performance.

UBC
See Unified Buffer Cache.

Glossary–7

Unified Buffer Cache
A portion of physical memory that is used to cache most-recently accessed
file system data.

UltraSCSI
Refers to a storage configuration of devices (adapters or controllers) and
disks that doubles the performance of SCSI-2 configurations. UltraSCSI
(also called Fast-20) supports increased bandwidth and throughput, and
can support extended cable distances.

virtual address space
The array of pages that an application can map into physical memory.
Virtual address space is used for anonymous memory (memory used for
stack, heap, or malloc) and for file-backed memory (memory used for
program text or shared libraries).

virtual memory subsystem
A subsystem that uses a portion of physical memory, disk swap space, and
daemons and algorithms in order to control the allocation of memory to
processes and to the UBC.

VLDB
Refers to very-large database (VLDB) systems, which are VLM systems
that use a large and complex storage configuration. The following is a
typical VLM/VLDB system configuration:

• An SMP system with two or more high-speed CPUs

• More than 4 GB of physical memory

• Multiple high-performance host bus adapters

• RAID storage configuration for high performance and high availability

VLM
Refers to very-large memory (VLM) systems, which utilize 64-bit
architecture, multiprocessing, and at least 2 GB of memory.

wired list
Pages that are wired and cannot be reclaimed.

wired memory
Pages of memory that are wired and cannot be reclaimed by paging.

working set
The set of virtual addresses that are currently mapped to physical
addresses. The working set is a subset of the resident set and represents a
snapshot of the process’ resident set.

Glossary–8

workload
The total number of applications running on a system and the users
utilizing a system at any one time under normal conditions.

zero-filled-on-demand page fault
A page fault that occurs when a requested address is accessed for the first
time.

Glossary–9

Index

A
access patterns

random, 1–2
sequential, 1–2

accounting
monitoring resources, 3–3

active page list, 6–2
monitoring, 6–20

adaptive RAID 3/5, 1–8
AdvFS

access structure tuning, 6–29,
9–36

access structures, 9–17
balancing volumes, 9–45
blocking queue, 9–14
buffer cache, 6–6
buffer cache tuning, 6–28,

9–14, 9–33
buffer hash chains, 9–34
configuration guidelines, 9–18
configuring file domains, 9–19
configuring filesets, 9–20
configuring root, 9–24
consol queue, 9–16
consolidating I/O transfers, 9–25
defragmenting file domains,

9–42, 9–46
device queue, 9–16
device queue size, 9–39
disks in file domains, 9–20
displaying extent map, 9–27, 9–30
enabling direct I/O, 9–23
extents, 9–12
features, 9–12
flushing modified mmapped

pages, 9–40
flushing read access times, 9–10
forcing synchronous writes, 9–21

I/O queues, 9–14
improving performance

guidelines, 9–41
lazy queue, 9–14
managing files with, 9–11
migrating files, 9–46
monitoring, 9–26, 9–27, 9–29,

9–30, 9–31
monitoring the BMT, 9–27, 9–32
moving transaction log, 9–44
multiple-volume domains, 9–19
page size, 9–14
preventing partial data writes,

9–22
quotas, 9–25
ready queue, 9–16, 9–37
smooth sync queue, 9–16
spread I/O load, 9–21
striping files, 9–24
transaction log relocation, 9–21
transfer size, 9–43
tuning guidelines, 9–32
using smooth sync caching for

asynchronous I/O, 9–38
wait queue, 9–15

AdvfsAccessMaxMaxPercent
attribute

decreasing memory for access
structures, 6–29

AdvfsAccessMaxPercent attribute
controlling memory reserved for

access structures, 9–36
AdvfsCacheHashSize attribute

increasing the number of hash
chains, 9–34

AdvfsCacheMaxPercent attribute
controlling AdvFS cache size,

6–28

Index–1

increasing AdvFS cache size, 9–33
advfsd daemon

stopping, 7–10
AdvfsMaxDevQLen attribute

increasing device queue size, 9–39
AdvfsMaxFreeAccessPercent

attribute
controlling percentage of access

structures on free list, 9–36
AdvfsMinFreeAccess attribute

controlling size of access
structure free list, 9–36

AdvfsReadyQLim attribute
controlling AdvFS

asynchronous I/O request
caching, 9–37

advfsstat command
displaying AdvFS performance

statistics, 9–27
AdvfsSyncMmapPages attribute

disabling modified mmapped
page flushing, 9–40

advscan command
displaying file domain location,

9–27, 9–29
anon_rss_enforce attribute

limiting resident set size, 6–37
anonymous memory

calculating amount of, 2–8
applications

address space, 5–6
characteristics, 2–1
compilers, 11–5
CPU and memory statistics, 7–3
debugging, 11–4, 11–1
granularity hints, 6–46
improving performance, 11–4
memory locking, 11–7
memory requirements, 11–6
memory usage, 6–26
monitoring, 6–23, 7–3
parallelism, 11–5
patches, 11–5
priorities, 7–9
process resources, 5–1

profiling, 11–1, 11–4
resident set size, 6–23
shared libraries, 11–6
virtual address space, 6–7, 6–23

arptab_depth attribute
specifying ARP table depth, 10–22

arptab_nb attribute
specifying ARP table width,

10–22
asynchronous I/O, 9–15
asynchronous swap buffers, 6–17,

6–43, 6–44
at command

scheduling applications, 7–9
atom toolkit

profiling applications, 11–4
atomic write data logging

using to prevent partial data
writes, 9–22

attributes
displaying subsystems, 3–11
displaying values for, 3–12, 3–13
managing, 3–10
modifying run-time values, 3–14
modifying values at boot time,

3–15
modifying values permanently,

3–16
availability, 1–13

buses, 2–18
cluster interconnects, 2–18
disk, 2–16, 2–18
failover, 2–18
LSM, 2–18
networks, 2–19
points of failure, 1–13
power, 2–19
RAID features, 2–18
systems, 2–16, 2–17

B
balance command

moving AdvFS files across
volumes, 9–45

Index–2

bandwidth, 1–2
batch command

scheduling applications, 7–9
bio_stats structure

determining block miss rate, 9–55
displaying metadata buffer

cache statistics, 9–51, 9–53
bitmap metadata table

(See BMT)
BMT

description of, 9–32
monitoring, 9–32

bottleneck, 1–1
bufcache attribute

controlling metadata buffer
cache size, 6–30, 9–53, 9–54

buffer caches, 1–6
buffer_hash_size attribute

controlling hash chain table
size, 9–55

bufpages attribute
specifying pages in metadata

buffer cache, 6–31
buses

availability, 2–18
distributing data, 8–1
length, 1–12
speed, 1–11
termination, 1–12

C
cache access times, 1–3
CAM

monitoring, 8–36
tuning, 8–35

cam_ccb_increment attribute
tuning CAM, 8–35

cam_ccb_low_water attribute
tuning CAM, 8–35

cam_ccb_pool_size attribute
tuning CAM, 8–35

chfile command
forcing AdvFS synchronous

writes, 9–21

preventing partial AdvFS data
writes, 9–22

chvol command
consolidating AdvFS I/O

transfers, 9–25
controlling AdvFS dirty data

caching, 9–37
modifying I/O transfer size, 9–43

Class Scheduler
allocating CPU resources, 7–9

cluster_consec_init kernel variable
increasing read-ahead blocks,

9–58
cluster_maxcontig kernel variable

increasing blocks in a cluster,
9–58

cluster_read_all kernel variable
enabling cluster read

operations, 9–58
clusters, 2–17
Common Access Method

(See CAM)
configuration

planning, 2–1
copy-on-write page fault, 6–10
CPUs

adding processors, 7–8
Class Scheduler, 7–9
improving performance, 7–8
internal caches, 1–3
monitoring, 6–19, 6–23, 7–3,

7–6, 8–3
scheduling jobs, 7–9
using hardware RAID, 7–10

cpustat extension
reporting CPU statistics, 7–3,

7–6
crash dumps

determining swap space for, 2–7
cron command

scheduling applications, 7–9

D
data path, 1–9

Index–3

dbx
checking the namei cache, 9–2,

9–61
debugging applications, 11–4
debugging kernels, 3–10
displaying active NFS server

threads, 9–61
displaying kernel variables, 3–17
displaying UBC hit rate, 9–61
displaying UBC statistics,

6–19, 6–26
modifying kernel variables, 3–17

debugging
applications, 11–1
dbx, 3–10, 11–4
kdbx, 3–10
kernels, 3–9
ladebug, 3–10, 11–4

DECevent utility
monitoring system events, 3–2,

3–3
deferred swap mode, 2–6
defragment command

AdvFS, 9–42
delay_wbuffers variable

delaying cluster flushing, 9–57
df command

monitoring file system disk
space, 9–1

dia command
logging events, 3–2

direct I/O, 9–23
dirty-region logging

configuration guidelines, 8–14
disk

availability, 2–16, 2–18
characterizing I/O, 8–26
defragmenting, 9–42, 9–59
distributing data, 8–1
distributing file systems, 8–2
guidelines for distributing I/O,

8–1
hardware RAID, 8–29
high-performance, 2–10
improving performance, 8–1

LSM, 2–14, 8–4, 8–5
mirroring, 2–18
monitoring, 9–51
monitoring I/O distribution, 8–3
partitions, 2–13
pool of storage, 2–14
Prestoserve, 2–12
quotas, 3–3
RAID 5, 1–8
solid-state, 2–10
striping, 2–14
using in hardware RAID

subsystem, 8–29
using LSM hot sparing, 8–13,

8–22
wide data paths, 2–11

disk quotas
AdvFS, 9–25
limiting disk usage, 3–3
UFS, 9–50

DMA host bus adapters
using for high performance, 2–11

DRL
(See dirty-region logging)

dumpfs command
displaying UFS information, 9–51

dynamic parity RAID, 1–8, 2–16

E
eager swap mode, 2–6
event logging

dia command, 3–2
options for, 3–1
uerf command, 3–2

Event Manager
monitoring system events, 3–2

event monitoring
DECevent, 3–3
Event Manager, 3–2
nfswatch, 3–4
Performance Manager, 3–4, 3–5
Performance Visualizer, 3–4, 3–6
volstat utility, 3–4
volwatch command, 3–4

Index–4

extent map
displaying, 9–27, 9–30

extents, 9–12

F
failover, 2–18
file domains

configuring, 9–19
monitoring, 9–27, 9–30

file systems
AdvFS, 9–11
distributing, 8–2
monitoring, 9–1, 9–26
tuning, 9–2, 9–32, 9–53
UFS, 9–47

filesets
configuring, 9–20
monitoring, 9–27, 9–30, 9–31

free page list, 6–2
monitoring, 6–20

G
gh_chunks attribute

reserving shared memory, 6–45
gh_fail_if_no_mem attribute

reserving shared memory, 6–46
gh_min_seg_size attribute

reserving shared memory, 6–46
gprof command

profiling applications, 11–4
granularity hints

reserving shared memory, 6–44

H
hardware

CPUs, 2–4
disk storage, 2–9
high performance, 2–3, 2–9
memory boards, 2–5
networks, 2–9
storage, 2–8, 2–9

hardware RAID, 8–29
(See also RAID)
configuration guidelines, 8–29,

8–32
disk capacity, 8–33
distributing disk data, 8–33
dual-redundant controllers, 8–35
features, 8–29
products, 8–31
RAID support, 8–30
spare disks, 8–35
stripe size, 8–33
striping mirrored disks, 8–34
write-back cache, 8–30, 8–34

high availability
(See availability)

hiprof, 11–4
(See also atom toolkit)
profiling applications, 11–4

host bus adapters
high-performance, 2–11

hot sparing
using with LSM mirrored

volumes, 8–13
using with LSM RAID 5, 8–22

I
I/O clustering

checking cluster reads and
writes, 9–52

idle time
monitoring, 6–20, 7–4, 8–3

immediate swap mode, 2–6
inactive page list, 6–2
inifaddr_hsize attribute

improving IP address lookups,
10–16

inodes
reducing density of, 9–49

Internet server
definition of, 5–1
tuning, 4–3

interprocess communications
(See IPC)

Index–5

interrupts
monitoring, 6–21

iostat command
displaying CPU usage, 8–3
displaying disk usage, 8–3

IPC, 5–7
(See also System V IPC)
monitoring, 6–19, 7–3

ipcs command
monitoring IPC, 5–7, 6–19, 7–3

ipintrq data structure
checking dropped packets, 10–24

ipport_userreserved attribute
increasing number of outgoing

connection ports, 10–11
ipport_userreserved_min attribute

modifying range of outgoing
ports, 10–12

ipqmaxlen attribute
preventing dropped packets,

10–23
ipqs attribute

increasing IP input queues, 10–14

K
kdbx

debugging kernels, 3–10
kernel

debugging, 3–8, 3–10, 11–4
displaying attribute values,

3–12, 3–13
displaying subsystems, 3–11
displaying variable values, 3–17
managing attributes, 3–10
modifying, 3–10
modifying attribute values at

boot time, 3–15
modifying attribute values at

run time, 3–14
modifying attribute values

permanently, 3–16
profiling, 3–8, 3–10
reducing size of, 6–27

kmemreserve_percent attribute

increasing memory reserved for
kernel allocations, 6–32

kprofile utility
profiling kernels, 3–10

L
ladebug

debugging kernels and
applications, 3–10, 11–4

large programs
(See program size limits)

latency, 1–2
lazy swap mode, 2–6
locks

monitoring, 7–3, 7–7
lockstats extension

displaying lock statistics, 7–3,
7–7

LSM
configuration guidelines, 8–6
data availability, 2–18
DRL configuration guidelines,

8–14
DRL subdisks, 8–16
features, 8–5
hardware RAID, 8–16
hot sparing for RAID 1, 8–13
hot sparing for RAID 5, 8–22
identifying bottlenecks, 8–26
improving performance, 8–26
log plexes, 8–15
log size, 8–16
managing disks, 8–4
mirrored volume read policies,

8–12
mirrored volumes, 8–10, 8–12,

8–14
mirroring root file system, 8–9
mirroring striped data, 8–12
mirroring swap devices, 8–10
monitoring, 3–4, 8–22, 8–24,

8–26, 8–27, 8–28
organizing disk groups, 8–9
page-out rate, 6–43

Index–6

placing mirrored plexes, 8–12
plexes, 8–12
pool of storage, 2–14
private region sizes, 8–8, 8–9
RAID 5 logging, 8–21
RAID 5 volumes, 8–20
RAID support, 8–4, 8–5
rootdg size, 8–8
saving the configuration, 8–10
sliced disks, 8–8
solid-state disks, 8–16
stripe size, 8–19, 8–21
striped volume disks, 8–18
striped volume guidelines, 8–17
symmetrical configuration, 8–13

lsof command
displaying open files, 11–4

M
malloc function

controlling memory usage, 11–7
malloc map

increasing, 6–32
max_per_proc_address_space

attribute
increasing user address space,

5–6
max_per_proc_data_size attribute

increasing maximum segment
size, 5–5

max_per_proc_stack_size attribute
increasing maximum stack size,

5–5
max_proc_per_user attribute

increasing number of processes,
5–3

max_threads_per_user attribute
increasing number of threads,

5–4
max_ufs_mounts attribute

increasing the number of UFS
mounts, 9–50

max_vnodes attribute
increasing open files, 5–12

maxusers attribute
increasing namei cache size, 9–4
increasing open files, 5–12
increasing system resources, 5–2

Memory File System
(See MFS)

memory management, 1–5, 6–1
(See also paging, swapping,

UBC, and virtual memory)
AdvFS buffer cache allocation,

6–6
buffer caches, 1–3
CPU cache access, 1–3
increasing memory resources,

6–26
locking, 11–7
metadata buffer cache, 6–3
network requirements, 2–6
operation, 6–1
overview, 1–5
paging, 6–14
PAL code, 6–9
prewriting modified pages,

6–13, 6–39, 6–40
swap buffers, 6–16
swap space requirements, 2–8
swapping, 6–15
tracking pages, 6–2
UBC, 6–3

metadata buffer cache, 6–3
hash chain table size, 9–55
monitoring, 9–51, 9–53
specifying pages in, 6–31
tuning, 6–30, 9–54

MFS, 9–49
mount limit, 9–50

migrate command
defragmenting files, 9–46
moving AdvFS files, 9–46

mirroring, 2–18
hardware RAID, 8–30
LSM, 8–10
RAID 1, 1–7

monitor command
monitoring systems, 3–4, 7–3

Index–7

monitoring
AdvFS, 9–27
applications, 11–1
CAM, 8–36
CPUs, 7–1
disk I/O distribution, 8–3
file systems, 9–1, 9–26, 9–51
kernels, 3–9
LSM, 8–22, 8–24
lsof command, 11–4
memory, 6–18
monitor command, 3–4
namei cache, 9–2
networks, 10–2
NFS, 9–60
open files, 11–4
sockets, 10–6
swap space, 6–19
sys_check, 4–5
top command, 3–4
UFS, 9–51

mount noatimes command
disabling file read access time

flushing, 9–10
msg_max attribute

increasing message size, 5–8
msg_mnb attribute

controlling number of bytes on
a queue, 5–9

msg_tql attribute
increasing message queue size,

5–9
multiprocessing, 7–8
multiprocessor, 1–3

N
name_cache_size attribute

controlling namei cache size,
6–31, 9–4

namei cache
decreasing size of, 6–31
monitoring, 9–2
size, 9–4
tuning, 9–4

namei_cache_valid_time attribute
controlling vnode deallocation,

9–5
nchstats structure

checking the namei cache, 9–2
NetRAIN

network availability, 2–19
netstat command

checking for retransmitted
packets, 10–19

monitoring dropped packets, 6–32
monitoring full sockets, 10–22
monitoring packets, 10–24

netstat utility
monitoring networks, 10–2

networks
ARP table size, 10–22
availability, 2–19
checking for dropped packets,

10–23
IP address lookup, 10–16
IP input queues, 10–14
keepalive, 10–15
mbuf cluster compression, 10–14
memory requirements, 2–6
monitoring, 3–4, 9–61, 9–62,

10–2, 10–2t, 10–6
NetRAIN, 2–19
NFS limits, 9–66
outgoing connection ports,

10–11, 10–12
partial TCP timeout limit, 10–17
PMTU, 10–13
preventing dropped packets,

10–23
socket buffer size, 10–23
socket listen queue, 10–10
TCP context timeout limit, 10–18
TCP data acknowledgment, 10–19
TCP hash table, 10–9
TCP lookup rate, 10–9
TCP retransmission rate, 10–18
TCP segment size, 10–20
TCP socket buffers, 10–20
tuning guidelines, 10–6

Index–8

UDP socket buffers, 10–21
NFS

cache timeout limits, 9–66
client threads, 9–66
displaying UBC hit rate, 9–61
monitoring, 3–4, 9–61, 9–62, 9–63
mount options, 9–66
server threads, 9–65
timeout limit, 9–66
tuning guidelines, 4–4, 9–64
using Prestoserve, 9–65
versions of, 9–67
write gathering, 9–66

nfsd daemon, 9–65
nfsiod daemon, 9–66
nfsstat utility

displaying NFS statistics, 9–61
nfswatch command

monitoring NFS, 3–4, 9–61
nice command

decreasing system load, 7–6
prioritizing applications, 7–9

O
open files

displaying with lsof, 11–4
open_max_hard attribute

controlling open file descriptors,
5–13

open_max_soft attribute
controlling open file descriptors,

5–13

P
page coloring, 6–11
page fault, 6–9
page in

monitoring, 6–20
page lists

tracking, 6–2
page outs, 6–14

monitoring, 6–20

page table, 6–8
page-in page fault, 6–10
pages

distribution of, 1–6
monitoring, 6–20
reclaiming, 1–6, 6–2, 6–11
size, 1–5, 6–1
tracking, 6–2

paging, 6–14
attributes for, 6–11
controlling rate of, 6–14
increasing threshold, 6–34
monitoring, 6–21
reclaiming pages, 1–6, 6–2
reducing, 6–27
threshold, 6–12, 6–14

PAL code
influence on memory

management, 6–9
parallelism

using in applications, 11–5
parity RAID, 2–15
per_proc_address_space attribute

increasing user address space,
5–6

per_proc_data_size attribute
increasing default segment size,

5–5
per_proc_stack_size attribute

increasing maximum stack size,
5–5

performance, 3–1
improving, 4–1
monitoring, 3–1

Performance Manager
monitoring system events, 3–4,

3–5
Performance Visualizer

monitoring cluster events, 3–4,
3–6

physical memory, 1–5
buffer caches, 1–6
distribution of, 1–5, 1–6, 6–1
process, 1–5
requirements, 2–5

Index–9

reserving for shared memory,
6–44

UBC, 1–5, 6–2
virtual memory, 1–5, 6–2
wired, 1–5, 6–1

ping command
querying remote system, 10–2

pipes, 5–7
pixie profiler, 11–4

(See also atom toolkit)
profiling applications, 11–4

pmtu_enabled attribute
disabling PMTU, 10–13

points of failure
buses, 2–18
cluster interconnects, 2–18
disk, 2–16, 2–18
networks, 2–19
power, 2–19
systems, 2–16, 2–17

power
availability, 2–19

Prestoserve
caching only metadata, 9–11
improving synchronous writes,

2–12
NFS performance, 9–65

prewriting modified pages, 6–13
decreasing, 6–40
increasing, 6–39

priorities
changing application, 7–9

private_cache_percent attribute
reserving cache memory, 6–11

prmetaonly attribute
caching only metadata, 9–11

process
resident set size limit, 6–37

Process Tuner
displaying process information,

7–3
prof command

profiling applications, 3–10,
11–4

profiling

applications, 11–1
kernel, 3–9

program size limits
tuning, 5–4

ps command
displaying CPU usage, 6–23, 7–3
displaying idle threads, 9–63
displaying memory usage, 6–23
displaying thread information,

9–61

Q
quota command

displaying disk usage and
limits, 9–27

R
RAID, 1–7

availability, 2–18
controllers, 2–12
hardware subsystem, 8–29
levels, 1–7
LSM, 8–4
LSM versus hardware RAID,

2–18
products, 1–8
striping versus RAID 5, 8–21

RAID 0, 2–14
RAID 3, 2–15
RAID 5, 2–15
RAID 5 volumes

LSM, 8–20
RAID levels, 1–7
random access patterns, 1–2
raw I/O, 1–2
real-time interprocess

communication
pipes and signals, 5–7

redundancy, 1–13
reliability, 1–17
resident set, 6–9

controlling size of, 6–37

Index–10

displaying size of, 6–23
rotational latency, 1–2

S
sb_max attribute

increasing socket buffer size,
10–23

sbcompress_threshold attribute
enabling mbuf cluster

compressions, 10–14
scalability, 1–1, 2–1
SCSI

bus length, 1–12
bus speed, 1–11
bus termination, 1–12
data path, 1–9
parallel, 1–9
transmission method, 1–10

seek time, 1–2
sequential access patterns, 1–2
setrlimit

controlling resource
consumption, 5–1

setrlimit system call
setting resident set limit, 6–37

shared memory
reserving memory for, 6–44

shm_max attribute
increasing shared memory

region size, 5–10
shm_seg attribute

increasing attached shared
memory regions, 5–11

short page fault, 6–10
showfdmn utility

displaying file domain and
volume statistics, 9–30

showfile utility
displaying AdvFS file

information, 9–27, 9–30
showfsets utility

displaying fileset information,
9–27, 9–31

signals, 5–7

smooth sync queue, 9–16
smoothsync_age attribute

caching I/O longer, 9–38, 9–56
SMP, 1–3
sobacklog_drops attribute

monitoring sockets, 10–2, 10–6
sobacklog_hiwat attribute

monitoring sockets, 10–2t, 10–6
sockets

IPC, 5–7
monitoring, 10–2, 10–2t, 10–6
tuning, 10–10, 10–20, 10–23

software RAID
(See LSM)

solid-state disks, 2–10
somaxconn attribute

increasing socket listen queue,
10–10

somaxconn_drops attribute
monitoring sockets, 10–2, 10–6

sominconn attribute
increasing socket listen queue,

10–10
ssm_threshold attribute

controlling shared page tables,
5–11

stack size
increasing, 5–5

streams , 5–7
striping, 2–14

hardware RAID, 8–30
LSM, 8–17
stripe size, 8–27

striping files
AdvFS, 9–24

swap out, 6–15
swap space

allocation modes, 2–6
crash dump space, 2–7
decreasing I/O queue depth,

6–43, 6–44
determining requirements, 2–7
distributing, 6–17
I/O queue depth, 6–17

Index–11

increasing I/O queue depth,
6–42, 6–43

monitoring, 6–25, 8–4
performance guidelines, 6–17
specifying, 6–17
vm_swap_eager attribute, 2–7

swapdevice attribute
specifying swap space, 6–17

swapin, 6–16
swapon command

adding swap space, 6–17, 6–19
monitoring swap space, 6–19,

6–25
swapping

aggressive, 6–37
controlling rate of, 6–14
decreasing rate of, 6–36
disk space, 6–19
impact on performance, 6–15
increasing rate of, 6–35
operation, 6–15
threshold, 6–13, 6–16

switchlog command
moving transaction log, 9–44

symmetrical multiprocessing, 1–3
sync

minimizing impact of, 6–14
synchronous I/O, 9–14
synchronous swap buffers, 6–17,

6–42, 6–43
sys_check utility

analyzing the system
configuration, 4–5, 7–3

system events
monitoring with tcpdump

utility, 3–4
system jobs

displaying statistics for, 7–3
system load

decreasing with nice, 7–6
monitoring, 7–3, 7–6

system time
monitoring, 6–20, 7–4, 8–3

System V IPC, 5–7
systems

adding CPUs, 7–8
availability, 2–16, 2–17
cluster support, 2–18
CPUs, 2–4
disk storage support, 2–9
high-performance, 2–3
I/O bus slot capacity, 2–8
memory, 2–5
multiprocessing, 2–4
network support, 2–9
optimizing CPU resources, 7–8

T
tcbhashnum attribute

increasing number of hash
tables, 10–9

tcbhashsize attribute
improving TCP lookups, 10–9

tcp_keepalive_default attribute
enabling keepalive, 10–15

tcp_keepcnt attribute
specifying maximum keepalive

probes, 10–16
tcp_keepidle attribute

use to specify idle time, 10–16
tcp_keepinit attribute

specifying TCP timeout limit,
10–16, 10–17

tcp_keepintvl attribute
specifying retransmission

probes, 10–16
tcp_msl attribute

decreasing TCP context timeout
limit, 10–18

tcp_mssdflt attribute
increasing the TCP segment

size , 10–20
tcp_recvspace attribute

increasing TCP socket buffers ,
10–20

tcp_rexmit_interval_min attribute
decreasing TCP retransmission

rate, 10–18
tcp_sendspace attribute

Index–12

increasing TCP socket buffers,
10–20

tcpdump utility
monitoring network events, 3–4
monitoring network packets,

10–2
tcpnodelack attribute

delaying TCP data
acknowledgment, 10–19

third, 11–4
(See also atom toolkit)
profiling applications, 11–4

threads
monitoring, 9–61

throughput, 1–2
top command

monitoring systems, 3–4, 7–3
traceroute command

displaying packet route, 10–2
transmission method, 1–10
tuning

address space, 5–6
advanced, 4–15
AdvFS, 9–32
application memory, 11–6
CPUs, 7–8
file systems, 9–2
Internet servers, 4–3
IPC limits, 5–7
large memory systems, 4–3
memory, 6–26, 6–33
network subsystem, 10–6
NFS, 4–4, 9–64
open file limits, 5–12
paging and swapping, 6–33
process limits, 5–1
program size limits, 5–4
special configurations, 4–2
steps for, 4–1
system resources, 5–1
UFS, 9–53

U
UBC, 1–5, 1–6, 6–2

allocating memory to, 6–3
borrowed memory, 9–8
borrowing threshold, 6–14
caching large files, 9–9
forcing the reuse of pages, 9–9
monitoring, 6–19, 6–26, 9–1
monitoring pages used by, 6–22
size, 9–7, 9–8
tuning, 9–7, 9–8
write device queue depth, 6–6

UBC LRU page list, 6–2
ubc_borrowpercent attribute

controlling UBC borrowed
memory, 9–8

ubc_maxdirtywrites attribute
prewriting modified pages,

6–13, 6–14, 6–39, 6–40
prewriting pages, 6–39

ubc_maxpercent attribute
controlling paging, 6–27
controlling UBC memory

allocation, 6–4, 9–7
ubc_minpercent attribute

controlling UBC minimum size,
6–4, 9–8

udp_recvspace attribute
increasing UDP socket buffers ,

10–21
udp_sendspace attribute

increasing UDP socket buffers,
10–21

uerf command
logging events, 3–2
monitoring memory, 6–19

UFS
block size, 9–48
blocks combined for a cluster,

9–49
combining blocks for a write, 9–58
combining blocks for read

ahead, 9–58
configuration guidelines, 9–47
defragmenting, 9–59
enabling cluster read

operations, 9–58

Index–13

flushing clusters, 9–57
flushing read access times, 9–10
fragment size, 9–48, 9–51
inode density, 9–49
memory file system (MFS), 9–49
monitoring, 9–51, 9–52
mount limit, 9–50
quotas, 9–50
sequential block allocation, 9–49
smooth sync caching, 9–56
tuning guidelines, 9–53

ufs_clusterstats structure
displaying UFS clustering

statistics, 9–51, 9–52
ufs_getapage_stats structure

monitoring the UBC, 6–26
monitoring UBC, 6–19

Unified Buffer Cache
(See UBC)

uninterruptible power supply
system

(See UPS system)
uprofile utility

profiling applications, 11–4
UPS system

power availability, 1–16, 2–19
uptime command

displaying system load, 7–3, 7–6
user address space

increasing, 5–6
user data segment

increasing, 5–5
user time

monitoring, 6–20, 7–4, 8–3

V
vbmtpg utility

monitoring the BMT, 9–27
vdf command

displaying disk space usage, 9–27
VFS

tuning, 9–2
virtual address space, 6–7, 6–8

displaying size of, 6–23

virtual file system
(See VFS)

virtual memory
accessing addresses, 6–9
address space, 6–7
aggressive swapping, 6–37
application memory

requirements, 11–6
distribution of, 1–5, 6–2
function of, 1–6, 6–2
monitoring, 6–19, 6–23
monitoring pages used by, 6–22
page faulting, 6–9
page table, 6–8
paging operation, 6–14
paging threshold, 6–34
resident set, 6–9
swapping operation, 6–15
translating virtual addresses,

6–8
working set, 6–9

Visual Threads
profiling applications, 11–4

VLM systems
tuning, 4–3

vm_aggressive_swap attribute
enabling aggressive swapping,

6–37
vm_asyncswapbuffers attribute

controlling swap I/O queue
depth, 6–17

decreasing swap I/O queue
depth, 6–44

increasing swap I/O queue
depth, 6–43

vm_max_rdpgio_kluster attribute
increasing page-in cluster size,

6–41
vm_max_wrpgio_kluster attribute

controlling page-out cluster
size, 6–41

vm_page_free_hardswap attribute
setting swapping threshold, 6–13

vm_page_free_min attribute

Index–14

controlling rate of swapping,
6–35, 6–36

setting free list minimum, 6–12
vm_page_free_optimal attribute

controlling rate of swapping,
6–35, 6–36

setting swapping threshold, 6–13
vm_page_free_reserved attribute

setting privileged tasks
threshold, 6–13

vm_page_free_swap attribute
setting swapping threshold, 6–13

vm_page_free_target attribute
controlling paging, 6–34
controlling rate of swapping,

6–35, 6–36
setting paging threshold, 6–12

vm_page_prewrite_target attribute
prewriting modified pages, 6–13
prewriting pages, 6–39, 6–40

vm_rss_block_target attribute
setting free page threshold for

resident set limit, 6–37
vm_rss_maxpercent attribute

setting resident set limit, 6–37
vm_rss_wakeup_target attribute

setting free page threshold for
resident set limit, 6–37

vm_swap_eager attribute
use to specify allocation mode,

2–7
vm_syncswapbuffers attribute

controlling swap I/O queue
depth, 6–17

decreasing swap I/O queue
depth, 6–43

increasing swap I/O queue
depth, 6–42

vm_tune structure
displaying UBC hit rate, 9–61

vm_ubcbuffers attribute
controlling write device queue

depth, 6–6
vm_ubcdirtypercent attribute

prewriting pages, 6–13, 6–39,
6–40

vm_ubcseqpercent attribute
controlling large file caching,

9–9
vm_ubcseqstartpercent attribute

controlling large file caching,
9–9

vmstat command
monitoring dropped packets, 6–32
monitoring the CPU, 6–19, 7–3
monitoring virtual memory, 6–19
tracking page lists, 6–3

vnode_age attribute
retaining vnodes on free list, 9–6

vnodes
definition, 5–12
delaying deallocation, 9–5
retaining on free list, 9–6

volnotify utility
monitoring LSM events, 8–24,

8–28
volprint utility

displaying LSM information,
8–24

monitoring LSM, 8–24
volstat utility

displaying LSM performance
statistics, 8–24, 8–26

monitoring LSM events, 3–4
voltrace utility

tracking volume I/O, 8–24, 8–27
volwatch script

monitoring LSM events, 3–4,
8–24

monitoring LSM objects, 8–28

W
w utility

displaying system information,
7–3

wired memory, 1–5, 6–1
wired page list, 6–2

monitoring, 6–20

Index–15

working set, 6–9
workload, 1–1

characterizing, 2–1
write-back cache

hardware RAID, 8–30, 8–34
multiprocessing systems, 7–8

X
X/Open Transport Interface, 5–7

xload command
monitoring system load, 3–4, 7–3

XTI, 5–7

Z
zero-filled-on-demand page fault,

6–10

Index–16

How to Order Tru64 UNIX Documentation

You can order documentation for the Tru64 UNIX operating system and related
products at the following Web site:

http://www.businesslink.digital.com/

If you need help deciding which documentation best meets your needs, see the Tru64
UNIX Documentation Overview or call 800-344-4825 in the United States and
Canada. In Puerto Rico, call 787-781-0505. In other countries, contact your local
Compaq subsidiary.

If you have access to Compaq’s intranet, you can place an order at the following Web
site:

http://asmorder.nqo.dec.com/

The following table provides the order numbers for the Tru64 UNIX operating
system documentation kits. For additional information about ordering this and
related documentation, see the Documentation Overview or contact Compaq.

Name Order Number

Tru64 UNIX Documentation CD-ROM QA-6ADAA-G8

Tru64 UNIX Documentation Kit QA-6ADAA-GZ

End User Documentation Kit QA-6ADAB-GZ

Startup Documentation Kit QA-6ADAC-GZ

General User Documentation Kit QA-6ADAD-GZ

System and Network Management Documentation Kit QA-6ADAE-GZ

Developer’s Documentation Kit QA-6ADAG-GZ

Reference Pages Documentation Kit QA-6ADAF-GZ

Reader’s Comments

Tru64 UNIX
System Configuration and Tuning
AA-RH9GA-TE

Compaq welcomes your comments and suggestions on this manual. Your input will help us to write
documentation that meets your needs. Please send your suggestions using one of the following methods:

• This postage-paid form

• Internet electronic mail: readers_comment@zk3.dec.com

• Fax: (603) 884-0120, Attn: UBPG Publications, ZKO3-3/Y32

If you are not using this form, please be sure you include the name of the document, the page number,
and the product name and version.

Please rate this manual:
Excellent Good Fair Poor

Accuracy (software works as manual says) � � � �

Clarity (easy to understand) � � � �

Organization (structure of subject matter) � � � �

Figures (useful) � � � �

Examples (useful) � � � �

Index (ability to find topic) � � � �

Usability (ability to access information quickly) � � � �

Please list errors you have found in this manual:

Page Description
_________ ___
_________ ___
_________ ___
_________ ___

Additional comments or suggestions to improve this manual:

What version of the software described by this manual are you using? ______________________

Name, title, department __
Mailing address __
Electronic mail ___
Telephone __
Date ___

UBPG PUBLICATIONS MANAGER

 Do Not Cut or Tear - Fold Here

 Do Not Cut or Tear - Fold Here and Tape

NO POSTAGE
NECESSARY IF
MAILED IN THE
UNITED STATES

FIRST CLASS MAIL PERMIT NO. 33 MAYNARD MA

POSTAGE WILL BE PAID BY ADDRESSEE

ZKO3-3/Y32
110 SPIT BROOK RD

COMPAQ COMPUTER CORPORATION

NASHUA NH 03062-9987

C
ut on D

otted L
ine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

