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About This Manual

This book discusses topics related to writing kernel modules for computer
systems running the Compaq Tru64TM UNIX® (formerly DIGITAL UNIX)
operating system.

Audience

This book is intended for systems engineers who:

• Understand the design and implementation of the Tru64 UNIX
operating system and desire to enhance the functionality of the
/vmunix kernel with kernel modules that they write

• Understand the basics of the CPU hardware architecture, including
interrupts, direct memory access (DMA) operations, and I/O

• Use standard library routines to develop programs in the C language

• Know the Bourne or some other shell based on the UNIX operating
system

• Understand basic UNIX operating system concepts, such as kernel,
shell, process, configuration, and autoconfiguration

• Understand how to use the Tru64 UNIX programming tools, compilers,
and debuggers

• Develop programs in an environment that involves dynamic memory
allocation, linked list data structures, and multitasking

This book assumes that you have a strong background in operating systems
based on the UNIX operating system. It also assumes that you have a
strong background in systems and C programming. In addition, the book
assumes that you have no source code licenses.

New and Changed Features

Writing Kernel Modules is a new book. However, it contains information
incorporated from the last released version of Writing Device Drivers:
Advanced Topics. The following list summarize changes and additions
made since the last release of Writing Device Drivers: Advanced Topics:
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• New chapters on module initialization, module attributes, dispatch
point callbacks, kernel-mode capabilities, and building kernel modules
have been added.

• Information on locking mechanisms and kernel threads has been
revised.

• Device driver–specific information previously in Writing Device Drivers:
Advanced Topics has been moved to the Writing Device Drivers book,
including:

– Using interfaces related to the I/O handle

– Using funnels

– Writing a disk device driver

Scope of the Book

This book is for users of the Tru64 UNIX operating system on computer
systems developed by Compaq Computer Corporation. It describes how to
develop a kernel module and presents examples where kernel modules can
be used. The book also presents examples that show how to use routines
associated with symmetric multiprocessing and kernel threads.

The book assumes that you are new to writing kernel modules but may
have experience writing device drivers or programming in the UNIX kernel.

Organization

The book contains the following chapters:

Chapter 1 Introduction to Kernel Modules

Provides an overview of the chapters in this book.
Defines kernel modules, presents a high-level model
for using kernel modules, presents reasons for
writing a kernel module, and describes general
rules for writing a kernel module.

Chapter 2 Module Initialization

Describes how to initialize a kernel module using
the configure routine.

Chapter 3 Module Attributes

Describes setting module attributes and the module
attribute table.
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Chapter 4 Dispatch Point Callbacks

Describes the boot timeline and how to implement
callbacks in a kernel module.

Chapter 5 Kernel-Mode Capabilities

Describes programming capabilities available in
kernel mode.

Chapter 6 Symmetric Multiprocessing and Locking Methods

Provides an overview of the SMP environment,
including guidelines for selecting a locking method.

Chapter 7 Simple Lock Routines

Describes how to define and use simple locks in an
SMP environment.

Chapter 8 Complex Lock Routines

Describes how to define and use complex locks in an
SMP environment.

Chapter 9 Kernel Threads

Provides an introduction to multithreaded
programming for kernel modules and discusses
using kernel threads.

Chapter 10 Building and Testing a Kernel Module

Describes key steps for creating a single binary
module (.mod file) and testing the module.

Related Documentation

The printed version of the Tru64 UNIX documentation uses letter icons on
the spines of the books to help specific audiences quickly find the books
that meet their needs. (You can order the printed documentation from
Compaq.) The following list describes this convention:

G Books for general users

S Books for system and network administrators

P Books for programmers
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D Books for device driver writers

R Books for reference page users

Some books in the documentation help meet the needs of several audiences.
For example, the information in some system books is also used by
programmers. Keep this in mind when searching for information on specific
topics.

The Documentation Overview provides information on all of the books in
the Tru64 UNIX documentation set.

Writing kernel modules is a complex task; writers require knowledge in a
variety of areas. One way to acquire this knowledge is to have at least the
following categories of documentation available:

• Hardware documentation

• Bus-specific device driver documentation

• Operating system overview documentation

• Programming tools documentation

• Network programming documentation

The following sections list the documentation associated with each of these
categories.

Hardware Documentation

If your kernel module is a device driver, you should have available the
hardware manual associated with the device for which you are writing the
module. You should also have access to the manual that describes the
architecture associated with the CPU on which the driver operates, for
example, the Alpha Architecture Reference Manual.

Bus-Specific Device Driver Documentation

Writing Device Drivers is the core book for developing device driver kernel
modules on the Tru64 UNIX Version 5.0 operating system. It contains
information needed for developing modules on any bus that operates on
Compaq platforms.

Reference Pages, Section 9r, Device Drivers (Volume 1) and Reference Pages,
Section 9s, 9u, and 9v, Device Drivers (Volume 2) describe the routines, data
structures, and global variables that device drivers use.

The following books provide information about writing device drivers for a
specific bus:
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• Writing EISA and ISA Bus Device Drivers

This manual provides information for systems engineers who write
device drivers for the EISA/ISA bus. The manual describes EISA/ISA
bus-specific topics, including EISA/ISA bus architecture and data
structures that EISA/ISA bus device drivers use.

• Writing PCI Bus Device Drivers

This manual provides information for systems engineers who write
device drivers for the PCI bus. The manual describes PCI bus-specific
topics, including PCI bus architecture and data structures that PCI bus
device drivers use.

• Writing Device Drivers for the SCSI/CAM Architecture Interfaces

This manual provides information for systems engineers who write
device drivers for the SCSI/CAM Architecture routines. The manual
provides an overview of the Tru64 UNIX SCSI/CAM Architecture and
describes User Agent routines, data structures, common and generic
routines and macros, error handling, and debugging routines. The
manual includes information on configuration and installation.
examples show how programmers can define SCSI/CAM device drivers
and write to the SCSI/CAM special I/O routine that the operating
system supplies to process special SCSI I/O commands.

• Writing TURBOchannel Device Drivers

This manual contains information systems engineers need to write
device drivers that operate on the TURBOchannel bus. The manual
describes TURBOchannel-specific topics, including TURBOchannel
routines that TURBOchannel device drivers use.

• Writing VMEbus Device Drivers

This manual contains information systems engineers need to write
device drivers that operate on the VMEbus. The manual describes
VMEbus-specific topics, including VMEbus architecture and routines
that VMEbus device drivers use.

Operating System Overview Documentation

Refer to the Technical Overview for a technical introduction to the Tru64
UNIX operating system.

This manual provides a technical overview of the Tru64 UNIX system,
focusing on the networking subsystem, the file system, virtual memory, and
the development environment. This manual does not supersede the
Software Product Description (SPD), which is the definitive description of
the Tru64 UNIX system.
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Programming Tools Documentation

To create your kernel modules, you use a number of programming
development tools and should have on hand the manuals that describe how
to use these tools. The following manuals provide information related to
programming tools used in the Tru64 UNIX operating system environment:

• Kernel Debugging

This manual provides information about debugging kernels. The
manual describes using the dbx, kdbx, and kdebug debuggers to find
problems in kernel code. It also describes how to write a kdbx utility
extension and how to create and analyze a crash dump file. This
manual is for system administrators responsible for modifying,
rebuilding, and debugging the kernel configuration. It is also for system
programmers who need to debug their kernel space programs.

• Programming Support Tools

This manual describes several commands and utilities in the Tru64
UNIX system, including facilities for text manipulation, macro and
program generation, and source file management. The commands and
utilities described in this manual are primarily for programmers, but
some of them (such as grep, awk, sed, and the Source Code Control
System (SCCS)) are useful for other users. This manual assumes that
you are a moderately experienced user of UNIX systems.

• Programmer’s Guide

This manual describes the programming environment of the Tru64
UNIX operating system, with an emphasis on the C programming
language. This manual is for all programmers who use the Tru64 UNIX
operating system to create or maintain programs in any supported
language.

System Management Documentation

Refer to the System Administration manual for information about building
a kernel and for general information on system administration.

This manual describes how to configure, use, and maintain the Tru64
UNIX operating system. It includes information on general day-to-day
activities and tasks, changing your system configuration, and locating and
eliminating sources of trouble. This manual is for the system
administrators responsible for managing the operating system. It assumes
a knowledge of operating system concepts, commands, and configurations.
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Reader’s Comments

Compaq welcomes any comments and suggestions you have on this and
other Tru64 UNIX manuals.

You can send your comments in the following ways:

• Fax: 603-884-0120 Attn: UBPG Publications, ZKO3-3/Y32

• Internet electronic mail: readers_comment@zk3.dec.com

A Reader’s Comment form is located on your system in the following
location:

/usr/doc/readers_comment.txt

• Mail:

Compaq Computer Corporation
UBPG Publications Manager
ZKO3-3/Y32
110 Spit Brook Road
Nashua, NH 03062-9987

A Reader’s Comment form is located in the back of each printed
manual. The form is postage paid if you mail it in the United States.

Please include the following information along with your comments:

• The full title of the book and the order number. (The order number is
printed on the title page of this book and on its back cover.)

• The section numbers and page numbers of the information on which
you are commenting.

• The version of Tru64 UNIX that you are using.

• If known, the type of processor that is running the Tru64 UNIX
software.

The Tru64 UNIX Publications group cannot respond to system problems or
technical support inquiries. Please address technical questions to your local
system vendor or to the appropriate Compaq technical support office.
Information provided with the software media explains how to send
problem reports to Compaq.

Conventions

This book uses the following conventions:

...
A vertical ellipsis indicates that a portion of an
example that would normally be present is not
shown.
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. . .
In syntax definitions, a horizontal ellipsis indicates
that the preceding item can be repeated one or
more times.

file Italic type indicates variable values, placeholders,
and function argument names.

buf In function definitions and syntax definitions used
in module configuration, this typeface is used to
indicate names that you must type exactly as
shown.

[] In formal parameter declarations in function
definitions and in structure declarations, brackets
indicate arrays. Brackets are also used to specify
ranges for device minor numbers and device special
files in file fragments. However, for syntax
definitions, these brackets indicate items that are
optional.

| Vertical bars separating items that appear in
syntax definitions indicate that you choose one item
from among those listed.
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1
Introduction to Kernel Modules

This chapter presents an overview of kernel modules by discussing the
following topics:

• Definition of kernel module

• Purpose of a kernel module

• The kernel module environment

• Designing a kernel module

• Writing a kernel module

1.1 What Is a Kernel Module?
A kernel module is a binary image containing code and data structures
that runs in the UNIX kernel. It has the following characteristics:

• Is statically loaded as part of /vmunix or dynamically loaded into
memory

• Runs in kernel mode

• Has a file name ending with the extension .mod

• Contains a well-defined routine that executes first to initialize the
module

• May be a device driver when it performs any one of these additional
tasks:

– Handles interrupts from hardware devices

– Accepts I/O requests from applications

The kernel contains many modules, some of which are device drivers. In
this book, a kernel module is defined more broadly than a device driver
because it can be used to perform a variety of functions, including:

• Management functions

• Common functions shared by other modules
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1.1.1 Purpose of a Kernel Module

The kernel consists of a set of kernel modules that interact with each other,
each performing a specific function. Some kernel modules perform software
functions exclusively, while others (such as device drivers) control the
operation of system hardware components.

A purpose for writing a kernel module is to provide a middle layer of code,
or common code, thus increasing the efficiency of your system by combining
like tasks in a single area and eliminating redundant code.

For example, assume you need to write a SCSI driver for disk and tape
peripheral devices. You could write two monolithic drivers–one for each
hardware device–but this would mean replicating a majority of the code,
while only a small amount would differ. By writing a kernel module
containing common code, you eliminate this redundancy (see Figure 1–1).
One class driver might handle SCSI tapes and another handle SCSI disks.
Both call the kernel module, which sends the I/O request to a variety of
port drivers. The port drivers send requests to the SCSI controller. As you
add more disk or tape drives to your system, the kernel module would
seamlessly manage the expansion, while controller-specific code would be
confined to the new port drivers. Similarly, you can add a different SCSI
device (for example, a scanner) by writing a new class driver. The kernel
module would maintain a consistent interface to the other kernel modules
and make adding the new driver easier.

1.1.2 Kernel Module Environment

Figure 1–1 shows a kernel module in relationship to other modules in the
kernel. As a binary image, a kernel module can be loaded statically as part
of /vmunix or dynamically loaded into memory. In this example, the kernel
module is part of a driver subsystem.
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Figure 1–1: Kernel Module Environment
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The following list describes the main components in Figure 1–1.

Application
A user-mode program that, in the context of this book, makes various
requests to the kernel modules. If a kernel module is part of a device
driver, these requests typically perform I/O operations to hardware
components. Another term for application is utility.

Bus
A hardware component that connects multiple buses and controllers
to the system.
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Class/Port Driver
The class/port driver comprises two drivers. The class driver supports
user interfaces while the port driver supports the hardware and
handles interrupts. The driver model is always made of more than
one module and it can have multiple class drivers, multiple port
drivers, and some common code in a middle layer. The structure of
this driver eliminates code duplication.

Controller
A hardware component that performs a specific function, such as
communicate on the network or control the graphics monitor.

Device
A hardware component that is connected to a controller.

Device Driver
A kernel module that supports one or more hardware components.
There are two driver models: the monolithic driver model and the
class/port driver model.

Interrupt
A signal from a hardware component that eventually causes the
interrupt handler in the appropriate driver to be called.

Kernel Module
A .mod file residing in the kernel that executes common code. In
Figure 1–1, the kernel module is part of a device driver.

Kernel Space
Activities that happen within the UNIX kernel. Modules may be
statically loaded as part of /vmunix or dynamically loaded as needed.
The module framework, which in Figure 1–1 can be thought of as
the background area of kernel space, loads, unloads, makes
management requests, and keeps track of the modules in kernel space.

Library
User-mode code that is called by applications. Libraries contain
routines that perform common functions used by many applications.
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Monolithic Driver
Kernel module code that is all-inclusive; supporting everything from
user requests to processing interrupts from hardware.

Pseudodevice driver
A pseudodevice driver, such as the pty terminal driver, structured
like other drivers but not operating on a bus and not controlling
hardware. A pseudodevice driver does not register itself in the
hardware topology (system configuration tree). Instead, it relies on
the device driver method of the cfgmgr framework to create the
associated device special files.

Switch Table
A data structure in the kernel where the block and character I/O
interface entry points are stored.

System Routines
Routines in the kernel that can be called from user mode (applications
and libraries).

User Space
User application level or command-line interface to the operating
system.

1.1.3 Designing a Kernel Module

The following are guidelines for you to consider when designing your kernel
module:

• A kernel module is best written as a single binary image that can be
statically loaded as part of /vmunix or dynamically loaded into memory.

• When you write your kernel module, it is important to design your code
correctly with regard to dispatch points along the boot timeline.
These are points along the boot path (timeline) that are reached as the
operating system boots. When a dispatch point is reached, certain
things are configured and made available. As a single binary image,
your kernel module can be statically loaded as part of /vmunix or
dynamically loaded into memory, therefore any callbacks you register
must reflect the proper order of dispatch along the boot timeline (see
Chapter 2).

• If you support dynamically loaded kernel modules, plan to write
features that support dynamic unloading as well, for these reasons:
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– Unloading a module will free up resources.

– Dynamic unloading allows you to replace an old version of a kernel
module with a new version without rebooting.

1.2 Writing a Kernel Module — Key Tasks
This book is organized so that key tasks for writing a kernel module are
logically grouped:

• Section 1.2.1 describe tasks that all kernel module writers need to
perform to develop a kernel module.

• Section 1.2.2 describes optional tasks for writers whose modules run in
an SMP environment or use kernel threads.

• Section 1.2.3 describes building and testing tasks that pertain to all
kernel module writers.

1.2.1 Required Tasks

All kernel module writers need to understand module initialization,
creating the module attribute table, using callbacks, and working in kernel
mode. The following sections describe these tasks.

Initializing a Kernel Module

Kernel module initialization occurs in both static and dynamic mode.
Kernel module writers must understand the concept of a single binary
image, the build-load-initialize sequence, and how to use the configure
routine to perform initialization tasks to add a kernel module (make it
known to the kernel) or to remove it. Chapter 2 describes these concepts
and the required tasks for coding your kernel module to initialize properly.
It also describes how to unload dynamically loaded modules.

Creating the Attribute Table

All kernel modules must contain an attribute table. Chapter 3 describes a
variety of tasks you can perform on the module attribute table to retrieve
data from the table and set data in the table.

Using Callbacks

Kernel modules contain one or more callback routines that perform
different aspects of initialization along the boot timeline. Coding callback
routines in a kernel module is a key task for creating a kernel module that
may function as a single binary image. Chapter 4 describes the rules for
using callbacks in a kernel module. It discusses callbacks in relation to
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dispatch points along the boot timeline, and how the kernel calls the kernel
module’s callback routine.

Working in Kernel Mode

You can perform many tasks in kernel mode. Chapter 5 describes how to:

• Work with string routines

• Use data copying routines

• Use kernel-related routines

• Work with system time

• Use kernel threads

• Use locks

1.2.2 Additional Tasks

If your kernel module executes in a symmetric multiprocessing (SMP)
environment or uses kernel threads, you must perform additional tasks, as
described in the following sections.

Working in an SMP Enviroment

Selecting a locking methodology and coding the correct type of lock in your
kernel module are key tasks for writing kernel modules that execute in an
SMP environment. Chapter 6 through Chapter 8 describe how to:

• Choose a locking methodology

• Use simple lock routines

• Use complex lock routines

Working with Kernel Threads

Chapter 9 describes the key concepts and tasks for developing kernel
modules that use kernel threads. These include:

• Advantages of using kernel threads

• Kernel threads operations

• Kernel threads data structures

• Creating, starting, blocking, unblocking, and terminating thread
processes
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1.2.3 Building and Testing a Kernel Module

After you have written your kernel module, the next task is to build the
executable module (a .mod file) and test it. Chapter 10 walks you through
steps to build and test your kernel module.

1–8 Introduction to Kernel Modules



2
Module Initialization

Kernel module initialization refers to the tasks necessary to incorporate a
kernel module into the kernel and make it available for use by the system.
After you write your kernel module, you create a single binary image (a file
with the .mod extension) from the kernel module source file (usually a C
file). This file is loaded into memory and its configure routine is called to
perform initialization. Module initialization consists primarily of allocating
and initializing data structures and calling on other kernel modules to tell
them that your module is loaded and available.

The configure routine manages initialization. This chapter describes how
this routine performs a variety of initialization tasks, including:

• Initializing the kernel module at system startup or at run time

• Preparing the kernel module for removal from the system

Other requests to the configure routine, such as reconfiguring the kernel
module when an attribute value changes and returning information from
the attribute table, are covered in Chapter 3.

2.1 The configure Routine
The configure routine handles requests targeted at the kernel module
and performs the required actions. The configure routine’s structure is
the same for all kernel modules, regardless of the function they perform
and whether or not the kernel module is a device driver.

The naming convention for the configure routine requires that the name
of the routine be the module name followed by _configure. This allows
the module framework to locate the routine and call it. For example, for the
kernel module example.mod, the configure routine would be named
example_configure.

Note that if your module does not contain a properly named configure
routine, one of the following conditions will occur:

• For statically loaded modules, the /vmunix kernel will not be able to
build.

• For dynamically loaded modules, the module will not be able to load
into memory.
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2.1.1 Parameters

The configure routine accepts the following parameters:

op (cfg_op_t)

The module framework sets this parameter to one of several request
codes that describe the operation the module should perform:

• Initialize the module – CFG_OP_CONFIGURE

• Obtain attribute values – CFG_OP_QUERY

• Change attribute values – CFG_OP_RECONFIGURE

• Prepare the module for unloading – CFG_OP_UNCONFIGURE

These operations are described in Section 2.1.2.

indata (cfg_attr_t)

Specifies a pointer to an array of data structures that contain
information about the attributes in your kernel module attribute
table, plus status information. The module framework checks the
validity of attribute values when it copies attributes into memory, and
it sets the status to indicate whether the value passes those tests.

indatalen (size_t)

Specifies the number of structures in the indata array.

outdata (cfg_attr_t)

Specifies a pointer to a module-specific output data structure when
the op parameter specifies a subsystem-defined operation. Otherwise,
its value is NULL.

outdatalen (size_t)

Specifies the size of the outdata parameter in bytes.

Typically, the configure routine is written as a switch statement,
with one case statement to handle each operation.

For example:

int example_configure (cfg_op_t op,
cfg_attr_t *indata,
size_t indatalen,
cfg_attr_t *outdata,
size_t outdatalen)

{
int status;.
.
.
.
switch(op) {

case CFG_OP_CONFIGURE:
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status=value;
.
.
.
break;

case CFG_OP_QUERY:
status=value;
.
.
.
break;

case CFG_OP_UNCONFIGURE:
status=value;
.
.
.
break;

case CFG_OP_RECONFIGURE:
status=value;
.
.
.
break;

default:
status=ENOTSUP;

break;
}

return (status);
}

The ENOTSUP error return value indicates that the kernel module
does not support the requested operation. Otherwise, the routine
returns a status value appropriate for the request. (See Section 2.1.3
for information on return status values.)

2.1.2 Request Codes

The configure routine accepts several parameters (see Section 2.1.1 for a
list of all parameters accepted by the configure routine). The op
parameter takes one of the following request codes, which describe the
specific operation the module should perform:

• CFG_OP_CONFIGURE

When the module framework calls the configure routine with the
CFG_OP_CONFIGURE request code, the kernel module begins
initialization. In this way, the configure routine functions similarly to
the main() routine in a user program. Your kernel module must be
initialized whether it is loaded dynamically or statically. Section 2.2.1
describes this operation in more detail.

• CGF_OP_QUERY

This request code retrieves values of attributes defined in the module
attribute table. The kernel module should initialize the values of
attributes stored in the module attribute table so that the proper values
are retrieved. (See Chapter 3 for more information.)
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• CFG_OP_RECONFIGURE

This request code specifies that values for some attributes in the
module attribute table have been set and that the kernel module should
operate based on changes to the values of the attributes. (See Chapter 3
for more information.)

• CFG_OP_UNCONFIGURE

This request code specifies that an attempt to unload your module has
been requested, which will result in either module cleanup or a return
error. In effect, this request asks your module to undo the initialization
tasks performed in CFG_OP_CONFIGURE and prepare it for removal
from the system. (See Section 2.2.2 for more information.)

2.1.3 Return Status Values

The configure routine may return any standard status value from the file
/usr/include/errno.h as an int to the module framework. The
following list defines the most common return status values:

• ESUCCESS – Indicates success.

• ENOMEM – Indicates insufficient memory.

• ENOTSUP – Indicates that the operation is not supported.

• ENOSYS – Indicates that the operation is not supported at this time. It
may have been called too early and is supported later in the boot
timeline.

• EINVAL – Indicates that an unrecognized parameter was passed (for
example, indata, indatalen).

The return status value is later appended to the higher 16 bits of a final
return that is returned to the caller. The module framework status resides
in the lower 16 bits of the return status.

2.2 Module Initialization
Before a kernel module can be useful, it typically needs to initialize data
structures and let other kernel modules know that it exists and is
available. The module framework calls the configure routine with the
CFG_OP_CONFIGURE request code to alert the module to perform
initialization. Likewise, the module framework passes the
CFG_OP_UNCONFIGURE request code to alert the kernel module to prepare
for removal from the system. These codes are described in detail in the
following sections.

2–4 Module Initialization



2.2.1 Receiving the CFG_OP_CONFIGURE Request

The module framework calls the configure routine with the
CFG_OP_CONFIGURE request code to request that the module perform its
one-time initialization. This is always the first call into the module,
regardless of whether it is statically or dynamically loaded. If the kernel
module is statically loaded, the module framework calls the configure
routine very early in the boot timeline. Because of this, the kernel module
typically registers callback routines to execute immediately or at specific
dispatch points to perform initialization tasks. These tasks include:

• Allocating data structures

• Initializing locks

• Starting kernel threads

• Registering with other subsystems

When you code your kernel module initialization process using callbacks,
the result is a single binary image that can be loaded statically or
dynamically. Otherwise, your kernel module will be either a static module
or a dynamic module, but not both. Chapter 4 expands on this concept by
discussing the relationship between callbacks and dispatch points. The
following sections present further considerations for modules that are
loaded either statically or dynamically.

2.2.1.1 Implementing Statically or Dynamically Loaded Kernel Modules

When a kernel module is statically loaded, it is linked as part of /vmunix
and loaded into memory as part of the kernel. The module framework must
call the configure routine with the CFG_OP_CONFIGURE request code
before memory can be allocated, locks can be used, and subsystems can be
used. As a result, a statically loaded module typically is not able to perform
initialization when its configure routine is called with the
CFG_OP_CONFIGURE request code. Instead, it registers callbacks that are
invoked when these resources become available as the system boots. In
contrast, a dynamically loaded module is linked as its own image and
loaded into memory on its own. If you used callbacks in a dynamically
loaded module, the initialization still occurs properly.

To overcome the problem of resources not being available for a statically
loaded module, the configure routine registers callback routines to be
called at specific dispatch points, as described in Chapter 4. Initialization
takes place when these callback routines are called. Callbacks enable your
module to be a single binary image that can be statically or dynamically
loaded.
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2.2.1.2 Checking the Configuration

To handle initialization correctly, whether your module is statically loaded
or dynamically loaded, global variables keep track of the following
information:

• Whether the kernel module has already been initialized

A kernel module receives the CFG_OP_CONFIGURE request code only
once. Therefore, you define a global variable to keep track of this
information and set the variable’s initial value to FALSE. When the
configure routine successfully accepts the CFG_OP_CONFIGURE
request, set this value to TRUE. For example, for a kernel module
named example.mod, the module defines the example_config global
variable as follows to indicate whether the module has been initialized:

int example_init_config = FALSE;

• Whether the module was dynamically or statically loaded

The module framework returns the current configuration state when
you call the cfgmgr_get_state routine. The cfgmgr_get_state
routine returns SUBSYSTEM_STATICALLY_CONFIGURED if the module
was statically loaded. It returns
SUBSYSTEM_DYNAMICALLY_CONFIGURED if the module was
dynamically loaded. Your module can call this routine if it needs to
know how it was loaded. Typically, a kernel module should be written
such that it does not need to call this routine.

• Whether the module’s callback routines completed successfully

When the kernel module is configured at startup, callback routines run
at different times along the boot timeline. Therefore, global variables
are the only way to communicate the success or failure of the callback
routines. For example, you would not want to perform any
postconfiguration operations if the preconfiguration callback routine
failed.

In this example, the following global variable is defined to hold the
callback status:

int example_inited=EFAIL;

Note that the global variable is defined with an error status. When the
kernel module is loaded, the callback routine has not yet been called.
The callback routine stores its status in this global variable before it
returns to the caller. This status is available to the remainder of the
source code in the module for the purpose of checking the callback
routine status (that is, it checks if the module has been successfully
initialized).
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2.2.1.3 Allocating Memory for Data Structures

Your kernel module may need to allocate memory for data structures
during initialization. You must wait until the CFG_PT_VM_AVAIL dispatch
point occurs. When you are ready to allocate memory, you use the MALLOC
macro. (Use the FREE macro to deallocate memory.) See Section 5.3.7 for
more information about allocating memory.

2.2.2 Receiving the CFG_OP_UNCONFIGURE Request

The module framework calls the configure routine with the
CFG_OP_UNCONFIGURE request code to have both statically loaded and
dynamically loaded kernel modules prepare to go off line. When modules are
brought off line, they are not available for use by any other module in the
kernel. Only dynamically loaded kernel modules can actually be unloaded.
Statically loaded modules remain loaded once they are brought off line.
(See Section 2.2.1.2 to determine how the kernel module was loaded.)

When a module (static or dynamic) has successfully gone off line, it should
return ESUCCESS.

To prepare to go off line, the kernel module must accomplish the following
tasks before returning a success status value to the module framework:

• Deallocate all data structures

• Deinitialize locks

• Terminate all kernel threads

• Deregister with other kernel subsystems

A kernel module (static or dynamic) can determine that it cannot be
unloaded. In this case, the module should return an error to the module
framework to keep it from attempting to unload the module.
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3
Module Attributes

This chapter describes the module attribute table and the operations that
can be performed on it to:

• Retrieve data from the table

• Set data in the table

It also describes entries in the table and how to manipulate the values of
the attributes.

3.1 The Attribute Table
Every kernel module must have one attribute table that defines some of the
data for the kernel module. The system administrator can use settable
attributes in the attribute table to tune the module.

_______________________ Note _______________________

If your kernel module does not have any defined attributes, you
are still required to provide an attribute table with one
terminating NULL entry.

The name of the attribute table is the module name followed by
_attributes. For example, for the example.mod kernel module, the
attribute table would be named example_attributes.

The attribute table is an array of the data structure cfg_subsys_attr_t
(defined in /usr/include/sys/sysconfig.h). Each
cfg_subsys_attr_t data structure defines an attribute for your module.
There are no required attributes for this table.

A attribute table entry comprises one instance of the
cfg_subsys_attr_t data structure. The last table entry must be all
zeros. Section 3.2 describes the fields in an attribute table entry.
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3.2 Attribute Table Entry

An attribute table entry is one instance of the cfg_subsys_attr_t data
structure. An entry is composed of many fields, defined in the following list:

• addr (caddr_t)

Specifies the kernel address of the location holding the value of the
attribute. Using this address, the module framework returns the
attribute’s value during a CFG_OP_QUERY request and changes the
value with a CFG_OP_RECONFIGURE request. As a result, the
configure routine does not need to do additional processing. If you do
not provide an address, the configure routine must separately handle
value retrieval and deposit.

Note that if the attribute supports the CFG_OP_CONFIGURE or
CFG_OP_RECONFIGURE request operation, then the address given in
this field must be a writable location. That is, it cannot be a location of
the type const.

• name (char)

Specifies the ASCII name of the attribute. The name must be between
two and CFG_ATTR_NAME_SZ characters in length, including the
terminating null character.

To create a name for your attribute, follow these conventions:

– Use lowercase letters, unless capitals make better sense (for
example, when using an acronym in the attribute name, such as
MAC_address).

– Use an underscore to separate parts of the name.

– Create intuitive names; do not overabbreviate names.

– Do not begin the name of the attribute with either Method_ or
Device_. The module framework reserves names that begin with
these strings.

• min_val and max_val (ulong)

Define the mininum and maximum allowed values for the attributes.
The module framework interprets the contents of these two fields
differently, depending on the data type of the attribute. If the attribute
is one of the integer data types, these fields contain the minimum and
maximum integer values the attribute can have. For attributes with the
CFG_ATTR_STRTYPE data type, these fields contain the minimum and
maximum lengths of the string. For attributes with the
CFG_ATTR_BINTYPE data type, these fields contain the minimum and
maximum numbers of bytes allowed.
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• val_size (ulong)

If the attribute is a binary type, this field contains the current size (in
bytes) of the attribute value. This field is not used if the attribute is an
integer or string.

• type (uchar)

Specifies the data type of the value for this attribute. See Section 3.2.1
for a list of values for this field.

• operation (uchar)

Specifies the operations that the module allows on this attribute (for
example, initialize or query). This field is a bit mask. See Section 3.2.2
for a list of values for this field.

3.2.1 Attribute Data Types

The following data types are supported for attribute table entries:

CFG_ATTR_STRTYPE – A null-terminated array of characters
CFG_ATTR_INTTYPE – A 32-bit signed integer
CFG_ATTR_UINTTYPE – A 32-bit unsigned integer
CFG_ATTR_LONGTYPE – A 64-bit signed integer
CFG_ATTR_ULONGTYPE – A 64-bit unsigned integer
CFG_ATTR_BINTYPE – An array of bytes

3.2.2 Operations Allowed on an Attribute

You can set the operation field in an attribute table entry to any
combination of the following request codes:

CFG_OP_CONFIGURE

The value of the attribute can be modified during initialization using
a data value from the /etc/sysconfigtab file. (Section 10.6
describes how to create the /etc/sysconfigtab file.) If the kernel
address for the attribute is specified in the attribute table, the
initialization occurs before the module framework calls the kernel
module’s configure routine with the CFG_OP_CONFIGURE request
code. If the attribute’s address is not specified, the configure routine
must perform the modification itself.

Setting this flag in the operator field allows the system administrator
to set the value of the attribute through the /etc/sysconfigtab
file. This gives the system administrator the ability to tune your
module each time it is loaded.
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CFG_OP_QUERY

Setting this flag allows users or applications to retrieve the value of
the attribute. The module framework can read the attribute and
return it to applications. The attribute’s value is retrieved before the
module framework calls the kernel module’s configure routine with
the CFG_OP_QUERY request code. (See Section 3.3.)

CFG_OP_RECONFIGURE

Setting this flag allows the value of the attribute to be modified by
users or applications at any time after the kernel module is up and
running. The module framework sets the value before it calls the
configure routine with the CFG_OP_RECONFIGURE request code.
(See Section 3.4.)

CFG_HIDDEN_ATTR

Setting this flag prevents the attribute from displaying in the output
of a cfg_subsys_query_all operation.

_______________________ Note _______________________

If you do not specify the kernel address of an attribute in the
attribute table, the configure routine must handle the setting,
resetting, and retrieval of the attribute value by itself. The
module framework cannot perform these actions automatically,
unless you supply the kernel address of the attribute.

3.3 Attribute Get Requests
When an application wants to get attribute values of a kernel module, it
calls the cfg_subsys_query(3)routine or the
cfg_subsys_query_all(3) routine in the /usr/ccs/lib/libcfg.a
library. The library makes the request to the module framework.

The module framework validates the requests to get the valid attribute
values. After successful validation, the module framework calls the
configure routine with the CFG_OP_QUERY request code. Figure 3–1
illustrates these relationships.
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Figure 3–1: Attribute Get Requests

5

xx_configure
Routine

Kernel Module 

2

6

4

Get 
attributes

Get all
attributes

ZK-1543U-AI

1

3

sysconfigApplication

Module
Attribute
Table

CFG_OP_QUERY
Module
Framework

libcfg.a

The following list presents the sequence of steps in an attribute get request:

1 The application requests specific attributes or all attributes by calling
the appropriate library routine in /usr/ccs/lib/libcfg.a.

2 The library passes the request to the module framework.
3 The module framework reads the requested attributes if the attribute’s

address is specified in the attribute table.
4 The module framework calls the configure routine with

CFG_OP_QUERY.
5 The configure routine handles returning values for the requested

attributes whose address is not specified in the attribute table.
6 The configure routine returns control to the module framework.

Consider the following when you use attribute get requests:
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• You do not have to process a CFG_OP_QUERY request in your
configure routine; you can simply return ESUCCESS.

• If you do not keep some or all of your attributes up to date or if you
want to have control over a get operation, do the following:

– Do not give the attribute’s kernel address in the attribute table and
make the address NULL.

– Bring all your attributes up to date when you receive the
CFG_OP_QUERY request.

– Process the CFG_OP_QUERY request by providing the attribute’s
values to the indata parameter (see Section 2.1) and by setting the
attribute’s status appropriately.

– To determine which attributes are being requested, use the indata
parameter.

3.4 Attribute Set Requests
When an application wants to set attribute values of a kernel module, it
calls the cfg_subsys_reconfig(3) routine in the
/usr/ccs/lib/libcfg.a library. The library makes the request to the
module framework.

The module framework sets the values of the requested attributes, then
calls the configure routine with the CFG_OP_RECONFIGURE request code.
The kernel module evaluates these values and functions accordingly.
Figure 3–2 illustrates these relationships.
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Figure 3–2: Attribute Set Requests
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The following list presents the sequence of steps in an attribute set request:

1 The application requests to set the values of specific attributes.

2 The library passes the request to the module framework.

3 The module framework checks if the new value falls within the range
specified in the attribute table and sets the status of each attribute. If
the value checking succeeds, the module framework sets the attribute’s
value to the new value.

4 The module framework calls the configure routine with
CFG_OP_RECONFIGURE.

5 The kernel module evaluates the new values and executes based on
those values.
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4
Dispatch Point Callbacks

This chapter describes callbacks in relation to dispatch points along the
boot timeline and the rules for implementing them in your kernel module.
Kernel modules may contain one or more callback routines, which perform
different tasks at different dispatch points. The kernel interacts with the
callback routines to perform these tasks at the appropriate time.

This chapter contains the following information:

• The UNIX boot timeline and how callbacks are affected

• Why you would use callbacks in your kernel module

• Dispatch points along the UNIX boot timeline

• How to implement callbacks in your kernel module

4.1 Understanding the UNIX Boot Timeline
To understand why callbacks are needed and how to implement them, you
need to understand some details of the UNIX boot timeline.

The boot timeline represents all code that executes while the system boots.
Key to the boot process are dispatch points that indicate certain functions
can be done. In kernel mode, dispatch points occur in a specifically ordered
manner (see Section 4.3). For example, the kernel-mode dispatch point
CFG_PT_VM_AVAIL indicates the point where virtual memory can be
allocated. Any activity your module performs that requires the allocation of
virtual memory must happen at or after this dispatch point. In user mode,
the dispatch points are more loosely ordered.

Callbacks are the mechanism for ensuring that the code in your module
executes at the right point along the boot timeline. Section 4.4 describes
ways that you can code your callback routine and, consequently, register
the callback in your kernel module.

Figure 4–1 shows the boot timeline and kernel-mode dispatch points.
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Figure 4–1: Dispatch Points Along the Boot Timeline
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The arrows along the timeline depict the dispatch points. Note that the
routines shown in the example can be called at any time once the dispatch
point is reached, but not before.

4.2 Why Use Callbacks?
Many kernel modules are dynamic modules—that is, they are dynamically
loaded into memory as needed. Other kernel modules are statically loaded
as part of /vmunix early in the boot timeline. For a kernel module to be a
single binary image, it must be able to load statically as part of /vmunix or
load dynamically as needed.

As explained in Chapter 2, when a module is loaded into memory, the only
routine in the module that is known to the operating system is the
configure routine. The module framework has access to the configure
routine because of the predetermined name of the routine—that is, the
module framework knows to look for a routine name ending with
_configure. The framework calls the configure routine at initialization
so that the kernel module can register its other routines with the rest of
the operating system.

When static kernel modules are called to initialize themselves, they cannot
allocate memory, initialize locks, or call any routine that is not yet
available on the boot timeline. For example, as Figure 4–1 shows, the call
to initialize a kernel module (CFG_PT_VM_AVAIL) occurs early in the boot
timeline, while the dispatch point for locking (CFG_PT_LOCK_AVAIL) occurs
later. To avoid the problem of calling routines that are not yet available, the
kernel module can register a callback routine that will be called later in
the boot timeline. When that routine is called, it will perform the required
initialization correctly because the routines it requires will be available.

Callbacks, then, are the mechanism for implementing kernel modules as
single binary images. Statically loaded kernel modules register callbacks
that the module framework can execute at a later time. For a static
configuration, callbacks are registered to execute at dispatch points along
the boot timeline.
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For example, the device switch subsystem is statically configured. It
registers a callback routine to initialize the in-memory copy of the database
after virtual memory is available (at the dispatch point called
CFG_PT_VM_AVAIL). It registers another callback routine to update the
on-disk database files, if necessary. This callback occurs after the root file
system becomes writable (at dispatch point CFG_PT_ROOTFS_WR) because
the subsystem’s files reside on the root file system.

For a dynamically loaded module, callback routines that register with the
dispatch points along the boot timeline are called directly from the
register_callback routine because the dispatch point has already
occurred.

Kernel modules call the register_callback routine to register their own
callback routine. The kernel calls this routine when the specified dispatch
point occurs.

4.3 Dispatch Points on the Boot Timeline
This section presents a list of dispatch points as they occur on the boot
timeline. In kernel mode (prior to single-user mode), the dispatch points
occur in a strict chronological order.

CFG_PT_HAL_INIT
Description: Hardware architecture layer is initialized.

CFG_PT_VM_AVAIL
Description: Virtual memory is available.
Common routines available: Device switch routines.

CFG_PT_LOCK_AVAIL
Description: Locking is available.
Common routines available: Routines that handle hardware
registration.

CFG_PT_TOPOLOGY_CONF
Description: The topology configuration point. The operating system can
create threads, timeouts begin working, kernel event management is
available, the system begins incrementing time.

CFG_PT_POSTCONFIG
Description: Postscan the hardware. Tasks that require completion of
hardware configuration can be performed at this dispatch point.
Hardware events are posted.
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CFG_PT_GLROOTFS_AVAIL
Description: Global root file system has been mounted.

CFG_PT_ROOTFS_AVAIL
Description: Root file system has been mounted read-only. Tasks that
require completion of the root file system mount operation can be
performed at this dispatch point. Dynamic device registration can occur.

CFG_PT_ENTER_SUSER
Description: Enter single-user mode.

4.4 Implementing Callbacks in Your Kernel Module

This section describes how you code callbacks in your kernel module.

4.4.1 Coding Callbacks

To implement callbacks in your kernel module, you must:

• Call the register_callback routine

• Write a callback routine in your kernel module that will be passed
parameters from the kernel’s callback subsystem

Section 4.4.1.1 describes the first step in this process, registering your
callback routine. It defines the parameters that are passed to the callback
subsystem when you register callbacks. Section 4.4.1.2 describes how to
write a callback routine in your kernel module that receives information
from the callback subsystem prior to performing some task. Figure 4–2
shows how the kernel module uses the kernel’s callback subsystem.
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Figure 4–2: Using the Kernel Callback Subsystem
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1 Some routine, typically the configure routine, calls
register_callback because it needs the kernel module callback
routine (abc_dowork in the example) called at some later point. When
you call register_callback to register your callback routine, you
pass several parameters: the dispatch point, the priority, the address of
the callback routine, and an argument to be passed to the callback
routine.

When register_callback is called, it does either step 2 or step 3:
2 The register_callback routine calls abc_dowork directly if the

kernel dispatch point is on the boot timeline and it has already
occurred. This completes the callback sequence.

3 The register_callback routine saves information about the
callback and proceeds to the next step in the callback sequence. (This
is the normal operation.)

4 The routine dispatch_callback calls the kernel module callback
routine abc_dowork at the appropriate dispatch point.

5 The kernel module callback routine executes.

4.4.1.1 Calling the register_callback Routine

The register_callback routine enables your kernel module to execute
its callback routine by storing callback information until the correct
dispatch point. The register_callback routine has the following format:

Dispatch Point Callbacks 4–5



int register_callback(void (*func)(), int point, int order, ulong arg);

where

• The func parameter is the name of the callback routine that you want
called at a particular dispatch point.

• The point parameter is the value of the dispatch point at which you
want your callback routine called (for example, CFG_PT_VM_AVAIL).

• The order parameter is used to order multiple callback requests
registered for the same dispatch point. A request with a smaller order
value is executed before a request with a larger value. A kernel module
may use this to coordinate among other modules. The order constant
most useful to kernel module writers is CFG_ORD_DONTCARE. This
constant registers the callback with no specific order priority.

If you are a device driver writer, consider using one of the following
order constants:

CFG_ORD_NOMINAL—Registers the callback with lowest order
priority.
CFG_ORD_MAXIMUM—Registers the callback with the highest order
priority.

• The arg parameter is used by the kernel module to communicate
information to the callback routine. Pass the integer 0L to indicate that
you do not want to pass an argument.

When you call register_callback to register your callback routine, the
information you pass says, in effect, “At this dispatch point, with this
priority, call the kernel module callback routine with this argument.”
Normally, the callback will occur later than the register_callback call.
There is one exception: if the callback being registered is for a dispatch
point along the boot timeline that has already passed, the callback occurs
immediately.

Upon successful completion, the register_callback routine returns the
status value ESUCCESS. Otherwise, it returns one of the following error
status values:

ENOMEM—The system limit on the maximum number of registered
callbacks was exceeded. You can correct this error by increasing the
value of the max_callbacks attribute in the cm subsystem and then
rebooting the system. (See System Configuration and Tuning for
details.)
EINVAL—The value that you passed as the point argument is outside
the minimum and maximum range.
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A kernel module calls the unregister_callback routine to deregister a
callback. It has the following format:

int unregister_callback(void (*func)(), int point, int order, ulong arg);

where the parameters are identical to those used by register_callback.
Note that some callbacks may never be unregistered.

4.4.1.2 Writing the Callback Routine

When a callback occurs, the kernel executes the callback routine you
specified in the call to register_callback. The callback routine does all
the callback processing and implements whatever action you require when
the callback occurs. The callback routine is most often written as part of
your kernel module. It can be statically linked to the kernel as part of
/vmunix or dynamically loaded at run time. The requirement is that it
exists in the kernel prior to when the callback occurs.

The callback routine that you write in your kernel module is passed the
dispatch point, order, and argument parameters when it is called.

A kernel module callback routine must conform to the following format:

void xx_callback(int point, int order, ulong arg, ulong arg2);

where the parameters are defined as follows:

• The point parameter is the value associated with the dispatch point.
The value from the same parameter in the corresponding call to
register_callback is passed.

• The order parameter specifies the order in which the callback routine
is being called. The value from the same parameter in the
corresponding call to register_callback is passed.

• The arg parameter specifies the argument that the kernel module
asked to pass to the callback routine. The value from the same
parameter in the corresponding call to register_callback is passed.

• The arg2 parameter is an additional value supplied by the callback
dispatcher. It is used to communicate point-specific information to the
callback routine. For many dispatch points, this parameter is not used.

4.4.2 Registering Callbacks

To code callbacks in your kernel module, register all the callbacks in your
configure routine. The following pseudocode fragment for
abc_configure.mod registers two callbacks from within the configure
routine:
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.

.

.
abc_configure (opcode, ...){

switch (opcode) {
case CFG_OP_CONFIGURE:

register_callback (abc_vm, CFG_PT_VM_AVAIL, CFG_ORD_DONTCARE, arg1)
.

register_callback (abc_post, CFG_PT_POST_CONFIG, CFG_ORD_DONTCARE, arg2)
.
.
.
}

}
abc_vm (int point, int priority, int arg){
.
.
.
}
abc_post (int point, int priority, int arg){
.
.
.
}

_______________________ Note _______________________

Because there are a limited number of callbacks that you can
use, registering a large number of callback entries is not
recommended.

4.4.3 Nesting Callbacks and Deregistering Callbacks

A kernel module can register multiple callbacks, possibly at different
callback points, by calling register_callback() many times. Callbacks
may not, however, be nested—calling register_callback() from within
a callback routine is illegal.

To enable deregistration, call unregister_callback() from within a
callback routine. This allows a callback to unregister itself or other
callbacks.

4.4.4 Defining New Dispatch Points in your Kernel Module

You can write a kernel module that uses the predefined dispatch points (see
Section 4.3), or you can write a module that defines and uses new ones. The
following steps describe how to define a new kernel dispatch point:

1. Choose and reserve a unique number for the new dispatch point.

The valid range for developer-defined dispatch points is listed in the
/usr/include/sys/sysconfig.h file, along with the values for the
system-defined dispatch points.

Values for developer-defined run-time dispatch points triggered within
the kernel must be within the range of these values:
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CFG_PT_RUNTIME_KERN_MIN_EXT (20000) to
CFG_PT_RUNTIME_KERN_MAX_EXT (29999).

Values for developer-defined run-time dispatch points triggered outside
the kernel (user mode) must be within the following range:
CFG_PT_RUNTIME_USER_MIN_EXT (30000) to
CFG_PT_RUNTIME_USER_MAX_EXT (39999).

2. Trigger the callback.

All kernel callbacks triggered within the kernel are activated by the
dispatch_callback() routine, which has the following format:

dispatch_callback (CFG_PT_MYPOINT, arg2)

where CFG_PT_MYPOINT is the unique value for the dispatch point you
define and arg2 communicates point-specific information to the
callback routine. Thus, when you define a dispatch point triggered
from the kernel, you need to insert the dispatch_callback() call at
the appropriate place within your kernel module.

In contrast, when you define a dispatch point triggered from user
space, you do not need to supply the dispatch_callback() call in
the kernel module. A callback triggered from user mode is
accomplished by setting the value of the user_cfg_pt attribute in the
generic subsystem to the value of the dispatch point. For example, if
you define a dispatch point triggered in user mode with a value of
35600, the following command triggers callbacks registered for this
dispatch point:

sysconfig -r generic user_cfg_pt=35600

To trigger the callback, you would execute the above command from
within a script or from the user prompt. Alternately, you could call the
cfg_subsys_reconfig(3) routine from within a program to achieve
the same result.
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5
Kernel-Mode Capabilities

Tru64 UNIX offers several kernel-mode programming capabilities. This
chapter describes the tasks that you can do in kernel mode:

• Work with string routines

• Use data copying routines

• Use kernel-related routines

• Manage system time

• Use kernel threads

• Use locks

This chapter discusses the routines most commonly used and provides code
fragments to illustrate how to call them in a kernel module. These code
fragments and associated descriptions supplement the reference page
descriptions for these and the other routines presented in Reference Pages,
Section 9r, Device Drivers (Volume 1).

5.1 Using String Routines
String routines allow kernel modules to:

• Compare two null-terminated strings

• Compare two strings by using a specified number of characters

• Copy a null-terminated character string

• Copy a null-terminated character string with a specified limit

• Return the number of characters in a null-terminated string

The following sections describe the routines that perform these tasks.

5.1.1 Comparing Two Null-Terminated Strings

To compare two null-terminated character strings, call the strcmp routine.
The following code fragment shows a call to strcmp:
.
.
.
register struct device *device;
struct controller *ctlr;
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.

.

.
if (strcmp(device->ctlr_name, ctlr->ctlr_name)) { 1
.
.
.
}

1 Shows that the strcmp routine takes two arguments:

• The first argument specifies a pointer to a string (an array of
characters terminated by a null character). In this example, this is
the controller name pointed to by the ctlr_name field of the
pointer to the device structure.

• The second argument also specifies a pointer to a string. In the
example, this is the controller name pointed to by the ctlr_name
field of the pointer to the controller structure.

The code fragment sets up a condition statement that performs tasks based
on the results of the comparison. Figure 5–1 shows how strcmp compares
two sample character-string values in the code fragment. In item 1,
strcmp compares the two controller names and returns the value 0 (zero)
because the two strings were identical.

In item 2, strcmp returns an integer that is less than zero because the
lexicographical comparison indicates that the characters in the first
controller name, fb, come before the letters in the second controller name,
ipi. In other words, the first pair of letters—in the same position in both
strings—that do not match are f and i, and f is less than i.

Figure 5–1: Results of the strcmp Routine
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5.1.2 Comparing Two Strings by Using a Specified Number of
Characters

To compare two strings by using a specified number of characters, call the
strncmp routine. The following code fragment shows a call to strncmp:

.

.

.
register struct device *device;
.
.
.
if( (strncmp(device->dev_name, "rz", 2) == 0)) 1
.
.
.

1 Shows that the strncmp routine takes three arguments:

• The first argument specifies a pointer to a string. In the example,
this is the device name pointed to by the dev_name field of the
pointer to the device structure.

• The second argument also specifies a pointer to a string. In the
example, this is the character string rz.

• The third argument specifies the number of bytes to be compared.
In the example, the number of bytes to compare is 2.

The code fragment sets up a condition statement that performs tasks based
on the results of the comparison. Figure 5–2 shows how strncmp compares
two sample character-string values in the code fragment. In item 1,
strncmp compares the first two characters of the device name none with
the string rz and returns an integer less than the value 0 (zero). The
reason for this is that strncmp makes a lexicographical comparison
between the two strings and the string no comes before the string rz. In
item 2, strncmp compares the first two characters of the device name rza
with the string rz and returns the value 0 (zero). The reason for this is
that strncmp makes a lexicographical comparison between the two strings
and the string rz is equal to the string rz.
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Figure 5–2: Results of the strncmp Routine
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5.1.3 Copying a Null-Terminated Character String

To copy a null-terminated character string, call the strcpy routine. The
following code fragment shows a call to strcpy:

.

.

.
struct tc_slot tc_slot[TC_IOSLOTS]; 1
char curr_module_name[TC_ROMNAMLEN + 1]; 2
.
.
.
strcpy(tc_slot[i].modulename, curr_module_name); 3
.
.
.

1 Declares an array of tc_slot structures of size TC_IOSLOTS.

2 Declares a variable to store the module name from the ROM of a
device on the TURBOchannel bus.

3 Shows that the strcpy routine takes two arguments:

• The first argument specifies a pointer to a buffer large enough to
hold the string to be copied. In the example, this buffer is the
modulename field of the tc_slot structure associated with the
specified bus.

• The second argument specifies a pointer to a string. This is the
string to be copied to the buffer specified by the first argument. In
the example, this is the module name from the ROM, which is
stored in the curr_module_name variable.
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Figure 5–3 shows how strcpy copies a sample value in the code fragment.
The routine copies the string CB (the value contained in
curr_module_name) to the modulename field of the tc_slot structure
associated with the specified bus. This field is presumed large enough to
store the character string. The strcpy routine returns the pointer to the
location following the end of the destination buffer.

Figure 5–3: Results of the strcpy Routine
cbslot

CB

strcpy (tc_slot[i].modulename, curr_module_name);

struct tc_slot cbslot{

char modulename[TC_ROMNAMELEN+1]

.

.

.

.

.

.
}
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5.1.4 Copying a Null-Terminated Character String with a Specified
Limit

To copy a null-terminated character string with a specified limit, call the
strncpy routine. The following code fragment shows a call to strncpy:

.

.

.
register struct device *device;
char * buffer;
.
.
.
strncpy(buffer, device->dev_name, 2); 1
if (buffer == somevalue)
.
.
.

1 Shows that strncpy takes three arguments:

• The first argument specifies a pointer to a buffer of at least the
same number of bytes as specified in the third argument. In the
example, this is the pointer to the buffer variable.

• The second argument specifies a pointer to a string. This is the
character string to be copied and in the example is the value
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pointed to by the dev_name field of the pointer to the device
structure.

• The third argument specifies the number of characters to copy,
which in the example is two characters.

The code fragment sets up a condition statement that performs some tasks
based on the characters stored in the pointer to the buffer variable.

Figure 5–4 shows how strncpy copies a sample value in the code
fragment. The routine copies the first two characters of the string none
(the value pointed to by the dev_name field of the pointer to the device
structure). The strncpy routine stops copying after it copies a null
character or the number of characters specified in the third argument,
whichever comes first.

The figure also shows that strncpy returns a pointer to the /NULL
character at the end of the first string (or to the location following the last
copied character if there is no NULL). The copied string will not be null
terminated if its length is greater than or equal to the number of
characters specified in the third argument.

Figure 5–4: Results of the strncpy Routine
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5.1.5 Returning the Number of Characters in a Null-Terminated
String

To return the number of characters in a null-terminated character string,
call the strlen routine. The following code fragment shows a call to
strlen:
.
.
.
char *strptr;
.
.
.
if ((strlen(strptr)) > 1) 1

1 Shows that the strlen routine takes one argument: a pointer to a
string. In the example, this pointer is the variable strptr.
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The code fragment sets up a condition statement that performs some tasks
based on the length of the string. Figure 5–5 shows how strlen checks the
number of characters in a sample string in the code fragment. As the figure
shows, strlen returns the number of characters pointed to by the strptr
variable, which in the code fragment is four. Note that strlen does not
count the terminating null character.

Figure 5–5: Results of the strlen Routine

4

if ((strlen(strptr)) > 1)

strptr=name‘\0’

.

.

.

*
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5.2 Using Data Copying Routines
The data copying routines allow kernel modules to:

• Copy a series of bytes with a specified limit

• Zero a block of memory

• Copy data from user address space to kernel address space

• Copy data from kernel address space to user address space

• Move data between user virtual space and system virtual space

The following sections describe the routines that perform these tasks.

5.2.1 Copying a Series of Bytes with a Specified Limit

To copy a series of bytes with a specified limit, call the bcopy routine. The
following code fragment shows a call to bcopy:

.

.

.
struct tc_slot tc_slot[TC_IOSLOTS]; 1
.
.
.
char *cp; 2
.
.
.
bcopy(tc_slot[index].modulename, cp, TC_ROMNAMLEN + 1); 3
.
.
.
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1 Declares an array of tc_slot structures of size TC_IOSLOTS.

2 Declares a pointer to a buffer that stores the bytes of data copied from
the first argument.

3 Shows that the bcopy routine takes three arguments:

• The first argument is a pointer to a byte string (array of
characters). In the example, this array is the modulename field of
the tc_slot structure associated with this bus.

• The second argument is a pointer to a buffer that is at least the
size specified in the third argument. In the example, this buffer is
represented by the pointer to the cp variable.

• The third argument is the number of bytes to be copied. In the
example, the number of bytes is the value of the constant
TC_ROMNAMLEN plus 1.

Figure 5–6 shows how bcopy copies a series of bytes by using a sample
value in the code fragment. As the figure shows, bcopy copies the
characters CB to the buffer cp. No check is made for null bytes. The copy is
nondestructive; that is, the address ranges of the first two arguments can
overlap.

Figure 5–6: Results of the bcopy Routine
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5.2.2 Zeroing a Block of Memory

To zero a block of memory, call the bzero routine. The following code
fragment shows a call to bzero.

.

.

.
struct bus *new_bus;
.
.
.
bzero(new_bus, sizeof(struct bus)); 1
.
.
.

1 Shows that the bzero routine takes two arguments:

• The first argument is a pointer to a string whose size is at least the
size specified in the second argument. In the example, the first
argument is a pointer to a bus structure.

• The second argument is the number of bytes to be zeroed. In the
example, this size is expressed through the use of the sizeof
operator, which returns the size of a bus structure.

In the example, bzero zeros the number of bytes associated with the size
of the bus structure, starting at the address specified by new_bus.

5.2.3 Copying Data from User Address Space to Kernel Address
Space

To copy data from the unprotected user address space to the protected
kernel address space, call the copyin routine. The following code
fragment shows a call to copyin:

.

.

.
register struct buf *bp;
int err;
caddr_t buff_addr;
caddr_t kern_addr;
.
.
.
if (err = copyin(buff_addr,kern_addr,bp->b_resid)) { 1
.
.
.

1 Shows that the copyin routine takes three arguments:

• The first argument specifies the address in user space of the data to
be copied. In the example, this address is the user buffer’s address.

• The second argument specifies the address in kernel space to copy
the data to. In the example, this address is the address of the
kernel buffer.
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• The third argument specifies the number of bytes to copy. In the
example, the number of bytes is contained in the b_resid field of
the pointer to the buf structure.

The code fragment sets up a condition statement that performs tasks based
on whether copyin executes successfully. Figure 5–7 shows how copyin
copies data from user address space to kernel address space by using
sample data.

As Figure 5–7 shows, copyin copies the data from the unprotected user
address space (specified by buff_addr) to the protected kernel address
space (specified by kern_addr). The b_resid field indicates the number of
bytes. The figure also shows that copyin returns the value 0 (zero) upon
successful completion. If the address in user address space cannot be
accessed, copyin returns the error EFAULT.

Figure 5–7: Results of the copyin Routine
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5.2.4 Copying Data from Kernel Address Space to User Address
Space

To copy data from the protected kernel address space to the unprotected
user address space, call the copyout routine. The following code fragment
shows a call to copyout:

.

.

.
register struct buf *bp;
int err;
caddr_t buff_addr;
caddr_t kern_addr;
.
.
.
if (err = copyout(kern_addr,buff_addr,bp->b_resid)) { 1
.
.
.

1 Shows that the copyout routine takes three arguments:

• The first argument specifies the address in kernel space of the data
to be copied. In the example, this address is the kernel buffer’s
address, which is stored in the kern_addr argument.

• The second argument specifies the address in user space to copy
the data to. In the example, this address is the user buffer’s virtual
address, which is stored in the buff_addr argument.

• The third argument specifies the number of bytes to copy. In the
example, the number of bytes is contained in the b_resid field of
the pointer to the buf structure.

Figure 5–8 shows the results of copyout, based on the code fragment. As
the figure shows, copyout copies the data from the protected kernel
address space (specified by kern_addr) to the unprotected user address
space (specified by buff_addr). The number of bytes is indicated by the
b_resid field. The figure also shows that copyout returns the value 0
(zero) upon successful completion. If the address in kernel address space
cannot be accessed or if the number of bytes to copy is invalid, copyout
returns the error EFAULT.
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Figure 5–8: Results of the copyout Routine

User Address Space Kernel Address Space

Return 0
upon success

if (err=copyout(kern_addr, buff_addr, bp > b_resid))

12345

12345

ZK-0629U-AI

5.2.5 Moving Data Between User Virtual Space and System Virtual
Space

To move data between user virtual space and system virtual space, call the
uiomove routine. The following code fragment shows a call to uiomove:

.

.

.
struct uio *uio;
register struct buf *bp;
int err;
int cnt;
unsigned tmp;
.
.
.
err = uiomove(&buf,cnt,uio); 1
.
.
.

1 Shows that the uiomove routine takes three arguments:

• The first argument specifies a pointer to the kernel buffer in
system virtual space.

• The second argument specifies the number of bytes of data to be
moved. In this example, the number of bytes to be moved is stored
in the cnt variable.
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• The third argument specifies a pointer to a uio structure. This
structure describes the current position within a logical user buffer
in user virtual space.

5.3 Using Kernel-Related Routines

The kernel-related routines allow kernel modules to:

• Print text to the console and error logger

• Put a calling process to sleep

• Wake up a sleeping process

• Initialize a timer (callout) queue element

• Remove the scheduled routine from the timer queues

• Set the interrupt priority mask

• Allocate memory

The following sections describe the routines that perform these tasks.

5.3.1 Printing Text to the Console and Error Logger

To print text to the console terminal and the error logger, call the printf
routine. The kernel printf routine is a scaled-down version of the C
library printf routine. The printf routine prints diagnostic information
directly on the console terminal and writes ASCII text to the error logger.
Because printf is not interrupt driven, all system activities are suspended
when you call it. Only a limited number of characters (currently 128) can
be sent to the console display during each call to any section of a module.
The reason is that the characters are buffered until the module returns to
the kernel, at which time they are actually sent to the console display. If
more than 128 characters are sent to the console display, the storage
pointer may wrap around, discarding all previous characters; or it may
discard all characters following the first 128.

If you need to see the results on the console terminal, limit the message
size to the maximum of 128 whenever you send a message from within the
module. However, printf also stores the messages in an error log file. You
can use the uerf command to view the text of this error log file. See the
printf(9) reference page for this command. The messages are easier to
read if you use uerf with the -o terse option.

Kernel-Mode Capabilities 5–13



The following code fragment shows a call to this routine:

.

.

.
printf("CBprobe @ %8x, vbaddr = %8x, ctlr = %8x\n",cbprobe,vbaddr,ctlr);
.
.
.

The code example shows a typical use for the printf routine in the
debugging of kernel modules. In the example, printf takes two
arguments:

• The first argument specifies a pointer to a string that contains two
types of objects. One object is ordinary characters such as, ‘‘hello,
world,’’ which are copied to the output stream. The other object is a
conversion specification, such as %d. (Supported conversion
specifications include %c, %d, %ld, %lx, %o, %s, and %x. See printf(9)
for explanations of these specifications.)

• The second argument specifies the argument list. In this example, the
argument list consists of the arguments cbprobe, vbaddr, and ctlr.

The operating system also supports the uprintf routine. The uprintf
routine prints to the current user’s terminal. Interrupt service routines
should never call uprintf. It does not perform any space checking, so do
not use this routine to print verbose messages. The uprintf routine does
not log messages to the error logger.

5.3.2 Putting a Calling Process to Sleep

To put a calling process to sleep in a symmetric multiprocessing (SMP)
environment, call the mpsleep routine. The mpsleep routine blocks the
current kernel thread until a wakeup is issued (see Section 5.3.3).

Generally, kernel modules call this routine to wait for the transfer to
complete an interrupt from the device. That is, the write routine of the
kernel module sleeps on the address of a known location, and the device’s
interrupt service routine wakes the process when the device interrupts. It
is the responsibility of the wakened process to check if the condition for
which it was sleeping has been removed. The following code fragment
shows a call to this routine:

.

.

.
mpsleep((vm_offset_t)&sc->error_recovery_flag, PCATCH,

"ftaerr", 0, &sc->lk_fta_kern_str,
MS_LOCK_SIMPLE | MS_LOCK_ON_ERROR)) 1

.

.

.

1 Calls the mpsleep routine to block the current kernel thread. The
mpsleep routine takes several arguments:
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• The channel argument specifies an address associated with the
calling kernel thread to be put to sleep. In this example, the
address (or event) associated with the current kernel thread is
stored in the error_recovery_flag field.

• The pri argument specifies whether the sleep request is
interruptible. Setting this argument to the PCATCH flag causes the
process to sleep in an interruptible state (that is, the kernel thread
can take asynchronous signals). Not setting the PCATCH flag causes
the process to sleep in an uninterruptible state (that is, the kernel
thread cannot take asynchronous signals).

• The wmesg argument specifies the wait message. In this call,
fta_error_recovery passes the string ftaerr.

• The timo argument specifies the maximum amount of time the
kernel thread should block. If you pass the value 0 (zero), mpsleep
assumes there is no timeout.

• The lockp argument specifies a pointer to a simple or complex
lock. You pass a simple or complex lock structure pointer if you
want to release the lock. Pass the value 0 (zero) if you do not want
to release the lock.

• The flags argument specifies the lock type. You can pass the
bitwise inclusive OR of the valid lock bits defined in
/usr/sys/include/sys/param.h.

.

5.3.3 Waking Up a Sleeping Process

To wake up all processes sleeping on a specified address, call the wakeup
routine. The following code fragment shows a call to this routine:

.

.

.
wakeup(&ctlr->bus_name); 1
.
.
.

1 Shows that the wakeup routine takes one argument: the address on
which the wakeup is to be issued. In the example, this address is that
of the bus name associated with the bus to which this controller is
connected. This address was specified in a previous call to the
mpsleep routine. All processes sleeping on this address are wakened.

5.3.4 Initializing a Timer (Callout) Queue Element

To initialize a timer queue element, call the timeout routine. The
following code fragment shows a call to this routine:
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.

.

.
#define NONEIncSec 1
.
.
.
cb = &none_unit[unit];
.
.
.
timeout(noneincled, (caddr_t)none, NONEIncSec*hz); 1
.
.
.

1 Shows that the timeout routine takes three arguments:

• The first argument specifies a pointer to the routine to be called. In
the example, timeout will call the noneincled routine on the
interrupt stack (not in processor context) as dispatched from the
softclock routine.

• The second argument specifies a single argument to be passed to
the called routine. In the example, this argument is the pointer to
the NONE device’s none_unit data structure. This argument is
passed to the noneincled routine. Because the data types of the
arguments are different, the code fragment performs a type-casting
operation that converts the argument type to be of type caddr_t.

• The third argument specifies the amount of time to delay before
calling the specified routine. You express time as ticks. To obtain a
particular time in seconds, you multiply the number of seconds
times hz (hz contains the number of ticks per second).

In the example, the constant NONEIncSec is used with the hz
global variable to determine the amount of time before timeout
calls noneincled. The global variable hz contains the number of
clock ticks per second. This variable is a second’s worth of clock
ticks. The example illustrates a 1-second delay.

5.3.5 Removing Scheduled Routines from the Timer (Callout) Queue

To remove the scheduled routines from the timer queue, call the untimeout
routine. The following code fragment shows a call to this routine:

.

.

.
untimeout(noneincled, (caddr_t)none); 1
.
.
.

1 Shows that the untimeout routine takes two arguments:

• The first argument specifies a pointer to the routine to be removed
from the timer queue. In the example, untimeout removes the
noneincled routine from the timer queue. This routine was placed
on the timer queue in a previous call to the timeout routine.
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• The second argument specifies a single argument to be passed to
the called routine. In the example, this argument is the pointer to
the NONE device’s none_unit data structure. It matches the
parameter that was passed in a previous call to timeout. Because
the data types of the arguments are different, the code fragment
performs a type-casting operation that converts the argument type
to be of type caddr_t.

The two arguments are used to uniquely identify which timeout entry
to remove. This is useful if more than one thread has called timeout
with the same routine argument.

5.3.6 Setting the Interrupt Priority Mask

To set the interrupt priority level (IPL) mask to a specified level, call one of
the spl routines. Table 5–1 summarizes the uses for the different spl
routines.

Table 5–1: Uses for spl Routines

spl Routine Meaning

splextreme Highest priority; blocks everything
except halt interrupts (for example,
realtime devices, machine checks, and so
forth).

splrt Blocks realtime devices (performs
everything except machine checks and
halt interrupts).

splclock Masks all hardware clock interrupts.

splhigh Masks all interrupts except realtime
devices, machine checks, and halt
interrupts.

spldevhigh Masks all device and software
interrupts.

splbio Masks all disk and tape controller
interrupts.

splimp Masks all LAN hardware interrupts.

splvm Masks all virtual memory clock
interrupts.

splnet Masks all network software interrupts.

splsoftclock Masks all software clock interrupts.
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Table 5–1: Uses for spl Routines (cont.)

spl Routine Meaning

splx Resets the CPU proirity to the level
specified by the argument.

splnone Unmasks (enables) all interrupts.

The spl routines set the CPU priority to various interrupt levels. The
current CPU priority level determines which types of interrupts are masked
(disabled) and which are unmasked (enabled). Historically, seven levels of
interrupts were supported, with eight different spl routines to handle the
possible cases. For example, calling spl0 would unmask all interrupts and
calling spl7 would mask all interrupts. Calling an spl routine between 0
and 7 would mask all interrupts at that level and at all lower levels.

Specific interrupt levels were assigned for different device types. For
example, before handling a given interrupt, a kernel module would set the
CPU priority level to mask all other interrupts of the same level or lower.
This setting meant that the kernel module could be interrupted only by
interrupt requests from devices of a higher priority.

The operating system currently supports the naming of spl routines to
indicate the associated device types. Named spl routines make it easier to
determine which routine you should use to set the priority level for a given
device type.

The following code fragment shows the use of spl routines as part of a disk
strategy routine:

.

.

.
int s;
.
.
.
s = splbio(); 1
.
.
.
[Code to deal with data that can be modified by the disk interrupt
code]
splx(s); 2
.
.
.

1 Calls the splbio routine to mask (disable) all disk interrupts. This
routine does not take an argument.

2 Calls the splx routine to reset the CPU priority to the level specified
by the s argument. Note that the one argument associated with splx
is a CPU priority level, which in the example is the value returned by
splbio. (The splx routine is the only one of the spl routines that
takes an argument.) Upon successful completion, each spl routine
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returns an integer value that represents the CPU priority level that
existed before it was changed by a call to the specified spl routine.

5.3.7 Allocating Memory

A kernel module may need to declare a significant number of data
structures to contain a large amount of data. For example, a kernel module
that is a device driver may need to support a large number of disks and
controllers. Statically allocating the maximum number of data structures
would be a waste of space. Dynamically allocating memory for the required
data structures is a better use of system resources. This is especially the
case when working with temporary or transient data.

To dynamically allocate memory, you need to:

• Use the MALLOC macro to allocate the data structures

• Use the FREE macro to free up the dynamically allocated data structures

The following sections describe these steps.

5.3.7.1 Allocating Data Structures with MALLOC

Use the MALLOC macro to dynamically allocate a variable-size section of
kernel virtual memory. The MALLOC macro maintains a pool of preallocated
memory for quick allocation and returns the address of the allocated
memory. The MALLOC macro is actually a wrapper that calls malloc. A
kernel module should not directly call the malloc routine.

The syntax for the MALLOC macro is as follows:

MALLOC(
addr,
cast,
u_long size,
int type,
int flags );

Call the MALLOC macro with the following parameters:

addr

Specifies the memory location that points to the allocated memory.
You specify the addr argument’s data type in the cast argument.

cast

Specifies the data type of the addr argument and the type of the
memory pointer returned by MALLOC.
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size

Specifies the size in bytes of the memory to allocate. Typically, you
pass the size as a constant to speed up the memory allocation.

type

Specifies the purpose for which the memory is being allocated. The
memory types are defined in the file sys/malloc.h. Typically, kernel
modules use the constant M_DEVBUF to indicate that kernel module
memory is being allocated (or freed).

flags

Specifies one of the following flag constants defined in
/usr/sys/include/sys/malloc.h:

M_WAITOK Allocates memory from the virtual memory
subsystem if there is not enough memory in
the preallocated pool. This constant signifies
that MALLOC can block.

M_NOWAIT Does not allocate memory from the virtual
memory subsystem if there is not enough
memory in the preallocated pool. This
constant signifies that MALLOC cannot block.
M_NOWAIT must be used when calling MALLOC
from an interrupt context or if the caller is
holding a simple lock. Otherwise, a system
panic will occur.

M_ZERO Allocates zero-filled memory. You pass this bit
value to M_WAITOK or M_NOWAIT.

The following example illustrates how to allocate memory using the
MALLOC macro:

struct foo *foo1;
struct foo *foo2;
struct bar *bar[];
.
.
.
MALLOC(foo1, struct foo *, sizeof(struct foo),
M_DEVBUF, M_NOWAIT|M_ZERO); 1

if (!foo1) {
.
.
.
return; 2
}
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.

.

.
MALLOC(foo2, struct foo *,

nfoo * sizeof(struct foo), M_DEVBUF,
M_WAITOK|M_ZERO); 3

.

.

.
MALLOC(bar, struct bar **,

nbar * sizeof(struct bar *), M_DEVBUF,
M_WAITOK|M_ZERO); 4

.

.

.
MALLOC(bar[1], struct bar *, sizeof(struct bar),

M_DEVBUF, M_WAITOK|M_ZERO); 5

1 Allocates a single data structure.

2 Because M_NOWAIT is specified, checks the return value to see if the
allocation failed.

3 Allocates an array of structures with nfoo elements.

4 Allocates an array of pointers to structures.

5 Allocates a structure to the second element of bar.

5.3.7.2 Freeing Up Dynamically Allocated Memory

When a block of memory allocated through MALLOC is no longer needed it,
free it back to the system using the FREE macro. The FREE macro takes two
arguments:

• The first argument specifies the memory pointer that points to the
allocated memory to be freed. You must have previously set this
argument in the call to MALLOC.

• The second argument specifies the purpose for which the memory is
being allocated. The memory types are defined in the file
/usr/sys/include/sys/malloc.h. Typically, kernel modules that
are device drivers use the constant M_DEVBUF to indicate that memory
is being allocated (or freed).

The following example shows how to use the FREE macro:

FREE(foo1, M_DEVBUF);

/*
* Free the second element from the array of pointers
*/
FREE(bar[1], M_DEVBUF);
bar[1] = NULL;

5.4 Working with System Time
This section describes considerations for working with system time.
Information in this section explains the following concepts:

Kernel-Mode Capabilities 5–21



• Understanding system time concepts

• Fetching time

• Modifying a timestamp

• Enabling an application to convert time to a string

• Delaying a routine a specified number of microseconds

5.4.1 Understanding System Time Concepts

This section discusses concepts for working with system time:

• How a kernel module fetches or modifies time

• How time is created

5.4.1.1 How a Kernel Module Uses Time

Kernel modules can save timestamps that can be passed to applications on
request for many purposes. For example:

• When a bus was last scanned

• When the last error on a disk occurred

• When the last interrupt for the some device (for example, a line printer)
occurred

• When the system booted

• When the file system was mounted on a particular disk

The application then needs to print the date and time. Your kernel module
code must determine several things for each timestamp it wants to
preserve:

• When it needs to fetch time

• Whether or not the time value that was fetched needs modification to
reflect accurate time

• How to pass the time value to the application

5.4.1.2 How Is System Time Created?

System time, which is platform-dependent, is defined as ticks of the system
clock, measured as units of hertz (hz). The operating system makes system
time available to kernel modules. The representation of system time is not
based on the current calender time of day because the actual time value
does not become available to the operating system until you are partially
through the boot sequence.
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From the beginning of a boot sequence to dispatch point
CFG_PT_TOPOLOGY_CONF, the operating system time value is 0 (zero). In
Tru64 UNIX, zero is equivalent to January 1, 1970, 00:00:00, UTC. At
dispatch point CFG_PT_TOPOLOGY_CONF, the operating system begins
incrementing system time from zero. Later, at the dispatch point
CFG_PT_ROOT_FS_AVAIL, system time is set to the actual time of day.

The time between CFG_PT_TOPOLOGY_CONF and CFG_PT_ROOT_FS_AVAIL
is called the boot delta. Figure 5–9 illustrates these concepts.

Figure 5–9: When Time Becomes Available During a System Boot

CFG_PT_TOPOLOGY_CONF CFG_PT_ROOT_FS_AVAIL

ZK-1566U-AI

1 2 3

Boot Timeline

Boot Delta

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 2 3 4 5 6 ...

1 At the start of a boot sequence, the value is 0 (zero).
2 At CFG_PT_TOPOLOGY_CONF, the kernel starts incrementing time. The

initial date and time is recorded as 00:00:00 UTC 1 Jan 1970 (the
Epoch).

3 At CFG_PT_ROOT_FS_AVAIL, the kernel sets the time to the correct
calendar date and time.

If your kernel module fetches time before CFG_PT_ROOT_FS_AVAIL is
reached, the time value it fetches is incorrect and you will need to modify
that timestamp later on (see Section 5.4.3).

5.4.2 Fetching System Time

A kernel module decides when to fetch system time. When it performs a
fetch operation, it also needs a way to fetch system time. The TIME_READ
macro provides a way for your kernel module to fetch the current time. The
following code fragment shows how to use this macro in your kernel module:

#include <sys/time.h> 1
.
.
.
extern struct timeval time; 2
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.

.

.
{ struct timeval my_time; 3

.

.

.
TIME_READ(my_time); 4

1 Includes the time.h header file.

2 Declares the global time variable as external.

3 Declares your own storage for your timestamp.

4 Fetches the current time and stores it in your own time variable using
the TIME_READ macro. TIME_READ takes one parameter, which
specifies the memory location to store the current time. Its type is
struct timeval.

5.4.3 Modifying a Timestamp

If your kernel module fetches time prior to the operating system setting the
current time at CFG_PT_ROOT_FS_AVAIL, you must modify the timestamp
you fetched and stored. For example, assume your kernel module keeps
track of when it last scanned the bus. Because scanning the bus takes
place prior to CFG_PT_ROOT_FS_AVAIL, the fetched time is interpreted as
approximately Jan. 1, 1970, 00:00:00. (This is because time was not set to
the proper value when you fetched it.) The global variable bootdelta
keeps track of how many seconds and microseconds have been counted
between the two configuration points.

Perform these steps to modify a timestamp:

1. Register a callback for CFG_PT_ROOT_FS_AVAIL in your kernel
module.

2. Use the following algorithm to modify the timestamp:

• Subtract the number of seconds (tv_sec) and microseconds
(tv_usec) that were counted before time was set to the actual time.

• Add the number of seconds and microseconds that were counted to
the point where the kernel module fetched time.

The following code example subtracts bootdelta seconds and adds
my_time seconds:

#include <sys/time.h>
.
.
.
extern struct timeval bootdelta;
.
.
.
struct timeval temp_time;
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TIME_READ(temp_time); 1
.
.
.

temp_time.tv_sec -= (bootdelta.tv_sec - my_time.tv_sec); 2

if (bootdelta.tv_usec > temp_time.tv_usec) {
temp_time.tv_usec = 1000000 -

(bootdelta.tv_usec - temp_time.tv_usec);
temp_time.tv_sec--;

} else {
temp_time.tv_usec -= bootdelta.tv_usec; 3

}
.
.
.

temp_time.tv_usec += my_time.tv_usec; 4

if (temp_time.tv_usec >= 1000000) {
temp_time.tv_usec -= 1000000;
temp_time.tv_sec++; 5

}
.
.
.
my_time = temp_time; 6

1 Obtains the current time, which should be set to the actual time of day.

2 Subtracts bootdelta seconds from the current time and adds the
number of seconds in the timestamp.

3 Subtracts bootdelta microseconds; make sure its value is not
negative.

4 Adds my_time microseconds.

5 Fixes any microseconds that may have wrapped.

6 Stores the results into the time variable.

5.4.4 Enabling Applications to Convert a Kernel Timestamp to a
String

A user application can receive a timestamp from a kernel module in a
variety of ways. The standard way is for a kernel module to pass a
timestamp to the application as a struct timeval.

For an application to convert the timestamp it received from the kernel
module, it uses the ctime function defined in
/usr/include/sys/time.h. This function converts time values between
tm structures, time_t type variables, and strings.

The ctime function expresses time in units by converting the time_t
variable pointed to by the timer parameter into a string with the 5-field
format. The time_t variable, also defined in /usr/include/sys/time.h,
contains the number of seconds since the Epoch, 00:00:00 UTC 1 Jan 1970.
For example:

Tue Nov 9 15:37:29 1998
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For more information on converting timestamps to strings, see the
reference page for ctime(3).

5.4.5 Delaying the Calling Routine a Specified Number of
Microseconds

To delay the calling routine a specified number of microseconds, use the
DELAY macro. The following code fragment shows how to use this macro:

.

.

.
DELAY(10000) 1
.
.
.

1 Shows that the DELAY macro takes one argument: the number of
microseconds for the calling thread to spin.

The DELAY macro delays the routine a specified number of
microseconds. DELAY spins, waiting for the specified number of
microseconds to pass before continuing execution. The example shows
a 10000-microsecond (10-millisecond) delay. The range of delays is
system dependent, due to its relation to the granularity of the system
clock. The system defines the number of clock ticks per second in the
hz variable. Specifying any value smaller than 1/hz to the DELAY
macro results in an unpredictable delay. For any delay value, the
actual delay may vary by plus or minus one clock tick.

Using the DELAY macro is discouraged because the processor will be
consumed for the specified time interval and therefore is unavailable
to service other threads. In cases where kernel modules need timing
mechanisms, you should use the sleep and timeout routines instead
of the DELAY macro. The most common usage of the DELAY macro is in
the system boot path. Using DELAY in the boot timeline is often
acceptable because there are no other threads in contention for the
processor.

5.5 Using Kernel Threads
A kernel thread is a single sequential flow of control within a kernel
module or other systems-based program. The kernel module or other
systems-based program makes use of the routines (instead of a threads
library package such as DECthreads) to start, terminate, and delete
threads, and perform other kernel thread operations.

Kernel threads execute within (and share) a single address space.
Therefore, kernel threads read and write to the same memory locations.

You use kernel threads to improve the performance of a kernel module.
Multiple kernel threads are useful in a multiprocessor environment, where
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kernel threads run concurrently on separate CPUs. However, multiple
kernel threads also improve kernel module performance on single-processor
systems by permitting the overlap of input, output, or other slow
operations with computational operations.

Kernel threads allow kernel modules to perform other useful work while
waiting for a device to produce its next event, such as the completion of a
disk transfer or the receipt of a packet from the network. For more
information on using kernel threads, see Chapter 9.

5.6 Using Locks
In a single-processor environment, kernel modules need not protect the
integrity of a resource from activities resulting from the actions of another
CPU. However, in a symmetric multiprocessing (SMP) environment, the
kernel module must protect (lock) the resource from multiple CPU access to
prevent corruption. A resource, from the kernel module’s standpoint, is
data that more than one kernel thread can manipulate. Locks are the
mechanism for sharing resources in an SMP enviroment.

See Chapter 6 for an overview of symmetric multiprocessing and the two
locking methods you can use when your kernel modules execute in an SMP
environment. Chapter 7 provides information for using simple locks in your
kernel module. Chapter 8 provides information for using complex locks.
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6
Symmetric Multiprocessing and Locking

Methods

Symmetric multiprocessing (SMP) describes a computer environment that
uses two or more central processing units (CPUs). In an SMP environment,
software applications and the associated kernel modules can operate on two
or more of these CPUs. To ensure the integrity of the data manipulated by
kernel modules in this multiprocessor environment, you must perform
additional design and implementation tasks beyond those discussed in
Writing Device Drivers. One of these tasks involves choosing a locking
method. Tru64 UNIX provides you with two methods to write SMP-safe
kernel modules: simple locks and complex locks.

This chapter discusses the information you need to decide which items
(variables, data structures, and code blocks) must be locked in the kernel
module and to choose the appropriate method (simple locks or complex
locks). Specifically, the chapter describes the following topics associated
with designing and developing a kernel module that can operate safely in
an SMP environment:

• Understanding hardware issues related to synchronization

• Understanding the need for locking in an SMP environment

• Comparing simple locks and complex locks

• Choosing a locking method

• Choosing the resources to lock in a kernel module

The following sections discuss each of these topics. You do not need an
intimate understanding of kernel threads to learn about writing kernel
modules in an SMP environment. Chapter 9 of this book discusses kernel
threads and the associated routines that kernel modules use to create and
manipulate them.

6.1 Understanding Hardware Issues Related to
Synchronization

Alpha CPUs provide several features to assist with hardware-level
synchronization. Even though all instructions that access memory are
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noninterruptible, no single one performs an atomic read-modify-write
operation. A kernel-mode thread of execution can raise the interrupt
priority level (IPL) in order to block other kernel threads on that CPU
while it performs a read-modify-write sequence or while it executes any
other group of instructions. Code that runs in any access mode can execute
a sequence of instructions that contains load-locked (LDx_L) and
store-conditional (STx_C) instructions to perform a read-modify-write
sequence that appears atomic to other kernel threads of execution.

Memory barrier instructions order a CPU’s memory reads and writes from
the viewpoint of other CPUs and I/O processors. The locking mechanisms
(simple and complex locks) provided in the operating system take care of
the idiosyncracies related to read-modify-write sequences and memory
barriers on Alpha CPUs. Therefore, you need not be concerned about these
hardware issues when implementing SMP-safe kernel modules that use
simple and complex locks.

The rest of this section describes the following hardware-related issues:

• Atomicity

• Alignment

• Granularity

6.1.1 Atomicity

Software synchronization refers to the coordination of events in such a
way that only one event happens at a time. This kind of synchronization is
a serialization or sequencing of events. Serialized events are assigned an
order and processed one at a time in that order. While a serialized event is
being processed, no other event in the series is allowed to disrupt it.

By imposing order on events, software synchronization allows reading and
writing of several data items indivisibly, or atomically, to obtain a
consistent set of data. For example, all of process A’s writes to shared data
must happen before or after process B’s writes or reads, but not during
process B’s writes or reads. In this case, all of process A’s writes must
happen indivisibly for the operation to be correct. This includes process A’s
updates — reading of a data item, modifying it, and writing it back
(read-modify-write sequence). Other synchronization techniques ensure the
completion of an asynchronous system service before the caller tries to use
the results of the service.

Atomicity is a type of serialization that refers to the indivisibility of a
small number of actions, such as those occurring during the execution of a
single instruction or a small number of instructions. With more than one
action, no single action can occur by itself. If one action occurs, then all the
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actions occur. Atomicity must be qualified by the viewpoint from which the
actions appear indivisible: an operation that is atomic for kernel threads
running on the same CPU can appear as multiple actions to a kernel
thread of execution running on a different CPU.

An atomic memory reference results in one indivisible read or write of a
data item in memory. No other access to any part of that data can occur
during the course of the atomic reference. Atomic memory references are
important for synchronizing access to a data item that is shared by
multiple writers or by one writer and multiple readers. References need not
be atomic to a data item that is not shared or to one that is shared but is
only read.

6.1.2 Alignment

Alignment refers to the placement of a data item in memory. For a data
item to be naturally aligned, its lowest-addressed byte must reside at an
address that is a multiple of the size of the data item (in bytes). For
example, a naturally aligned longword has an address that is a multiple of
4. The term naturally aligned is usually shortened to ‘‘aligned.’’

An Alpha CPU allows atomic access only to an aligned longword or an
aligned quadword. Reading or writing an aligned longword or quadword of
memory is atomic with respect to any other kernel thread of execution on
the same CPU or on other CPUs.

6.1.3 Granularity

The phrase granularity of data access refers to the size of neighboring
units of memory that can be written independently and atomically by
multiple CPUs. Regardless of the order in which the two units are written,
the results must be identical.

Alpha systems have longword and quadword granularity. That is, only
adjacent aligned longwords or quadwords can be written independently.
Because Alpha systems support only instructions that load or store
longword-sized and quadword-sized memory data, the manipulation of
byte-sized and word-sized data on Alpha systems requires that the entire
longword or quadword that contains the byte- or word-sized item be
manipulated. Thus, simply because of its proximity to an explicitly shared
data item, neighboring data might become shared unintentionally.
Manipulation of byte-sized and word-sized data on Alpha systems requires
multiple instructions that:

1. Fetch the longword or quadword that contains the byte or word

2. Mask the nontargeted bytes
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3. Manipulate the target byte or word

4. Store the entire longword or quadword

Because this sequence is interruptible, operations on byte and word data
are not atomic on Alpha systems. Also, this change in the granularity of
memory access can affect the determination of which data is actually
shared when a byte or word is accessed.

The absence of byte and word granularity on Alpha systems has important
implications for access to shared data. In effect, any memory write of a
data item other than an aligned longword or quadword must be done as a
multiple-instruction read-modify-write sequence. Also, because the amount
of data read and written is an entire longword or quadword, you must
ensure that all accesses to fields within the longword or quadword are
synchronized with each other.

6.2 Locking in a Symmetric Multiprocessing Environment
In a single-processor environment, kernel modules need not protect the
integrity of a resource from activities resulting from the actions of another
CPU. However, in an SMP environment, the kernel module must protect
the resource from multiple CPU access to prevent corruption. A resource,
from the kernel module’s standpoint, is data that more than one kernel
thread can manipulate. You can store the resource in variables (global) and
in data structure fields. The top half of Figure 6–1 shows a typical problem
that could occur in an SMP environment. The figure shows that the
resource called i is a global variable whose initial value is 1.

Furthermore, the figure shows that the kernel threads emanating from
CPU1 and CPU2 increment resource i. A kernel thread is a single
sequential flow of control within a kernel module or other systems-based
program. The kernel module or other systems-based program makes use of
the routines (instead of a threads library package such as DECthreads) to
start, terminate, delete, and perform other kernel threads–related
operations. These kernel threads cannot increment this resource
simultaneously. Without some way to lock the global variable when one
kernel thread is incrementing it, the integrity of the data stored in this
resource is compromised in the SMP environment.

To protect the integrity of the data, you must enforce order on the accesses
of the data by multiple CPUs. One way to establish the order of CPU
access to the resource is to establish a lock. As the bottom half of the figure
shows, the kernel thread emanating from CPU1 locks access to resource i,
thus preventing access by kernel threads emanating from CPU2. This
guarantees the integrity of the value stored in this resource.
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Figure 6–1: Why Locking Is Needed in an SMP Environment
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The vertical line in the bottom half of the figure represents a barrier that
prevents the kernel thread emanating from CPU2 from accessing resource
i until the kernel thread emanating from CPU1 unlocks it. For simple
locks, this barrier indicates that the lock is exclusive. That is, no other
kernel thread can gain access to the lock until the kernel thread currently
controlling it has released (unlocked) it.

For complex write locks, this barrier represents a wait hash queue that
collects all of the kernel threads waiting to gain write access to a resource.
With complex read locks, all kernel threads have read-only access to the
same resource at the same time.

6.3 Comparing Simple Locks and Complex Locks
The operating system provides two ways to lock specific resources (global
variables and data structures) referenced in code blocks in the kernel
module: simple locks and complex locks. Simple and complex locks allow
kernel modules to:
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• Synchronize access to a resource or resources. This means kernel
threads emanating from multiple CPUs can safely update the count of
global variables, add elements to or delete elements from linked lists,
and update or read time elements.

• Ensure a consistent view of state transitions (run to block and block to
run) across multiple CPUs.

• Make the operating system behave as though it were running on a
single CPU.

The following sections briefly describe simple locks and complex locks.

6.3.1 Simple Locks

A simple lock is a general-purpose mechanism for protecting resources in
an SMP environment. Figure 6–2 shows that simple locks are spin locks.
That is, the routines used to implement the simple lock do not return until
the lock has been obtained.

As the figure shows, the CPU1 kernel thread obtains a simple lock on
resource i. Once the CPU1 kernel thread obtains the simple lock, it has
exclusive access over the resource to perform read and write operations on
the resource. The figure also shows that the CPU2 kernel thread spins
while waiting for the CPU1 kernel thread to unlock (free) the simple lock.

Figure 6–2: Simple Locks Are Spin Locks
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You need to understand the tradeoffs in performance and realtime
preemption latency associated with simple locks before you use them.
However, sometimes kernel modules must use simple locks. For example,
kernel modules must use simple locks and spl routines to synchronize
with interrupt service routines. Section 6.4 provides guidelines to help you
choose between simple locks and complex locks.

Table 6–1 lists the data structure and routines associated with simple
locks. Chapter 7 discusses how to use the data structure and routines to
implement simple locks in a kernel module.

Table 6–1: Data Structure and Routines Associated with Simple Locks

Structure/Routines Description

slock Contains simple lock–specific information.

decl_simple_lock_data Declares a simple lock structure.

simple_lock Asserts a simple lock.

simple_lock_init Initializes a simple lock structure.

simple_lock_terminate Terminates, using a simple lock.

simple_lock_try Tries to assert a simple lock.

simple_unlock Releases a simple lock.
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6.3.2 Complex Locks

A complex lock is a mechanism for protecting resources in an SMP
environment. A complex lock achieves the same results as a simple lock.
However, kernel modules should use complex locks (not simple locks) if
there are blocking conditions.

The routines that implement complex locks synchronize access to kernel
data between multiple kernel threads. The following describes
characteristics associated with complex locks:

• Multiple reader access

• Thread blocking (sleeping) if the write lock is asserted

Figure 6–3 shows that complex locks are not spin locks, but blocking
(sleeping) locks. That is, the routines that implement the complex lock block
(sleep) until the lock is released. Thus, unlike simple locks, you should not
use complex locks to synchronize with interrupt service routines. Because of
the blocking characteristic of complex locks, they are active on both single
and multiple CPUs to serialize access to data between kernel threads.

As the figure shows, the CPU1 kernel thread asserts a complex lock with
write access on resource i. The CPU2 kernel thread also asserts a complex
lock with write access on resource i. Because the CPU1 kernel thread
asserts the write complex lock on resource i first, the CPU2 kernel thread
blocks, waiting until the CPU1 kernel thread unlocks (frees) the complex
write lock.

Figure 6–3: Complex Locks Are Blocking Locks
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Like simple locks, complex locks present tradeoffs in performance and
realtime preemption latency that you should understand before you use
them. However, sometimes kernel modules must use complex locks. For
example, kernel modules must use complex locks when there are blocking
conditions in the code block. On the other hand, you must not take a
complex lock while holding a simple lock or when using the timeout
routine. Section 6.4 provides guidelines to help you choose between simple
locks and complex locks.

Table 6–2 lists the data structure and routines associated with complex
locks. Chapter 8 discusses how to use the data structure and routines to
implement complex locks in a kernel module.

Table 6–2: Data Structure and Routines Associated with Complex Locks

Structure/Routines Description

lock Contains complex lock–specific
information.

lock_done Releases a complex lock.

lock_init Initializes a complex lock.

lock_read Asserts a complex lock with read-only
access.

lock_terminate Terminates, using a complex lock.

lock_try_read Tries to assert a complex lock with
read-only access.

lock_try_write Tries to assert a complex lock with write
access.

lock_write Asserts a complex lock with write access.

6.4 Choosing a Locking Method
You can make your kernel modules SMP-safe by implementing a simple or
complex locking method.

This section provides guidelines to help you choose the appropriate locking
method (simple or complex). In choosing a locking method, consider the
following SMP characteristics:

• Who has access to a particular resource

• Prevention of access to the resource while a kernel thread sleeps

• Length of time the lock is held

• Execution speed
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• Size of code blocks

The following sections discuss each of these characteristics. See
Section 6.4.6 for a summary comparison table of the locking methods that
you can use to determine which items to lock in your kernel modules.

6.4.1 Who Has Access to a Particular Resource

To choose the appropriate lock method, you must understand the entity
that has access to a particular resource. Possible entities that can access a
resource are kernel threads, interrupt service routines, and exceptions. If
you need a lock for resources accessed by multiple kernel threads, use
simple or complex locks. Use a combination of spl routines and simple locks
to lock resources that kernel threads and interrupt service routines access.

For exceptions, use complex locks if the exception involves blocking
conditions. If the exception does not involve blocking conditions, you can
use simple locks.

6.4.2 Prevention of Access to a Resource While a Kernel Thread
Sleeps

You must determine if it is necessary to prevent access to the resource
while a kernel thread blocks (sleeps). One example is waiting for disk I/O
to a buffer. If you need a lock to prevent access to the resource while a
kernel thread blocks (sleeps) and there are no blocking conditions, use
simple or complex locks. Otherwise, if there are blocking conditions, use
complex locks.

6.4.3 Length of Time the Lock Is Held

You must estimate the length of time the lock is held to determine the
appropriate lock method. In general, use simple locks when the entity
accesses are bounded and small. One example of a bounded and small
access is some entity accessing a system time variable. Use complex locks
when the entity accesses could take a long time or a variable amount of
time. One example of a variable amount of time is some entity scanning
linked lists.
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6.4.4 Execution Speed

You must account for execution speed in choosing the appropriate lock
method. The following factors influence execution speed:

• The way complex locks work

Complex locks are slightly more than twice as expensive (in terms of
execution speed) as simple locks. The reason for this is that complex
locks use the simple lock routines to implement the lock. Thus, it takes
two lock and unlock pairs to protect a resource or code block with a
complex lock as opposed to one pair for the simple lock.

• Memory space used

Complex locks use more memory space than simple locks. The reason
for this is that the complex lock structure, lock, contains a pointer to a
simple lock structure in addition to other data to implement the
complex lock.

• Busy wait time

Busy wait time is the amount of CPU time expended on waiting for a
simple lock to become free. If the kernel module initiates a simple lock
on a resource and the code block is long (or there are numerous
interrupts), a lot of CPU time could be wasted waiting for the simple
lock to become free. If this is the case, use complex locks to allow the
current kernel thread to block (sleep) on the busy resource. This action
allows the CPU to execute a different kernel thread.

• Realtime preemption

Realtime preemption cannot occur when a simple lock is held. Use of
complex locks (which can block) improves the performance associated
with realtime preemption.

6.4.5 Size of Code Blocks

In general, use complex locks for resources contained in long code blocks.
Also, use complex locks in cases where the resource must be prevented
from changing when a kernel thread blocks (sleeps).

Use simple locks for resources contained in short, nonblocking code blocks
or when synchronizing with interrupt service routines.

6.4.6 Summary of Locking Methods

Table 6–3 summarizes the SMP characteristics for choosing the appropriate
lock method to make your kernel module SMP safe. The first column of the
table presents an SMP characteristic and the second and third columns
present the lock methods.
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The following list describes the possible entities that can appear in the
second and third columns:

• Yes — Indicates that the lock method is suitable for the characteristic.

• No — Indicates that the lock method is not suitable for the
characteristic.

• Better — Indicates that this lock method is the most suitable for the
characteristic.

• Worse — Indicates that this lock method is not the most suitable for
the characteristic.

(The numbers before each Characteristic item appear for easy reference in
later descriptions.)

Table 6–3: SMP Characteristics for Locking

Characteristic
Simple
Lock

Complex
Lock

1. Kernel threads will access this resource. Yes Yes

2. Interrupt service routines will access this resource. Yes No

3. Exceptions will access this resource. Yes Yes

4. Need to prevent access to this resource while a kernel
thread blocks and there are no blocking conditions.

Yes Yes

5. Need to prevent access to this resource while a kernel
thread blocks and there are blocking conditions.

No Yes

6. Need to protect resource between kernel threads and
interrupt service routines.

Yes No

7. Need to have maximum execution speed for this kernel
module.

Yes No

8. The module references and updates this resource in
long code blocks (implying that the length of time the
lock is held on this resource is not bounded and long).

Worse Better

9. The module references and updates this resource in
short nonblocking code blocks (implying that the length
of time the lock is held on this resource is bounded and
short).

Better Worse

10. Need to minimize memory usage by the lock-specific
data structures.

Yes No

11. Need to synchronize with interrupt service routines. Yes No
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Table 6–3: SMP Characteristics for Locking (cont.)

Characteristic
Simple
Lock

Complex
Lock

12. The module can afford busy wait time. Yes No

13. The module implements realtime preemption. Worse Better

Use the following steps to analyze your kernel module to determine which
items to lock and which locking method to choose:

1. Identify all of the resources in your kernel module that you could
potentially lock. Section 6.5 discusses some of these resources.

2. Identify all of the code blocks in your kernel module that manipulate
the resource.

3. Determine which locking method is appropriate. Use Table 6–3 as a
guide to help you choose the locking method. Section 6.5.5 shows how
to use this table for choosing a locking method for the example device
register offset definition resources.

4. Determine the granularity of the lock. Section 6.5.5 shows how to
determine the granularity of the locks for the example device register
offset definitions.

6.5 Choosing the Resources to Lock in the Module
Section 6.4 presents the SMP characteristics you must consider when
choosing a locking method. You need to analyze each section of the kernel
module (in device drivers, for example, the open and close device section,
the read and write device section, and so forth) and apply those SMP
characteristics to the following resource categories:

• Read-only resources

• Device control status register (CSR) addresses

• Module-specific global resources

• System-specific global resources

The following sections discuss each of these categories. See Section 6.5.5 for
an example that walks you through the steps for analyzing a kernel
module to determine which resources to lock.

6.5.1 Read-Only Resources

Analyze each section of your kernel module to determine if the access to a
resource is read only. In this case, resource refers to module and system
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data stored in global variables or data structure fields. You do not need to
lock resources that are read only because there is no way to corrupt the
data in a read-only operation.

6.5.2 Device Control Status Register Addresses

Analyze each section of your kernel module to determine accesses to a
device’s control status register (CSR) addresses. Many kernel modules
based on the UNIX operating system use the direct method; that is, they
access a device’s CSR addresses directly through a device register
structure. This method involves declaring a device register structure that
describes the device’s characteristics, which include a device’s control status
register. After declaring the device register structure, the kernel module
accesses the device’s CSR addresses through the field that maps to it.

Some CPU architectures do not allow you to access the device CSR
addresses directly. Kernel modules that need to operate on these types of
CPUs should use the indirect method. In fact, kernel modules operating on
Alpha systems must use the indirect method. Thus, the discussion of
locking a device’s CSR addresses focuses on the indirect method.

The indirect method involves defining device register offset definitions
(instead of a device register structure) that describe the device’s
characteristics, which include a device’s control status register. The method
also includes the use of the following categories of routines:

• CSR I/O access routines

read_io_port – Reads data from a device register
write_io_port – Writes data to a device register

• I/O copy routines

io_copyin – Copies data from bus address space to system memory
io_copyio – Copies data from bus address space to bus address
space
io_copyout – Copies data from system memory to bus address
space

Using these routines makes your kernel module more portable across
different bus architectures, different CPU architectures, and different CPU
types within the same architecture. For examples of how to use these
routines when writing device drivers, see Writing Device Drivers. The
following example shows the device register offset definitions that some xx
kernel module defines for some XX device:
.
.
.
#define XX_ADDER 0x0 /* 32-bit read/write DMA address register */
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#define XX_DATA 0x4 /* 32-bit read/write data register */
#define XX_CSR 0x8 /* 16-bit read/write CSR/LED register */
#define XX_TEST 0xc /* Go bit register. Write sets. Read clears */
.
.
.

6.5.3 Module-Specific Global Resources

Analyze the declarations and definitions sections of your kernel module to
identify the following global resources:

• Module-specific global variables

• Module-specific data structures

Module-specific global variables can store a variety of information,
including flag values that control execution of code blocks and status
information. The following example shows the declaration and initialization
of some typical module-specific global variables. Use this example to help
you locate similar module-specific global variables in your kernel module.

.

.

.

int num_xx = 0;
.
.
.

int xx_is_dynamic = 0;
.
.
.

Module-specific data structures contain fields that can store such
information as whether a device is attached, whether it is opened, the
read/write mode, and so forth. The following example shows the declaration
and initialization of some typical module-specific data structures. Use this
example to help you locate similar module-specific data structures in your
kernel modules.
.
.
.
struct driver xxdriver = {
.
.
.
};
.
.
.
cfg_subsys_attr_t xx_attributes[] = {
.
.
.
};
.
.
.
};
.
.
.
struct xx_kern_str {
.
.
.
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} xx_kern_str[NXX];
.
.
.
struct cdevsw xx_cdevsw_entry = {
.
.
.
};

After you identify the module-specific global variables and module-specific
data structures, locate the code blocks in which the kernel module
references them. Use Table 6–3 to determine which locking method is
appropriate. Also, determine the granularity of the lock.

6.5.4 System-Specific Global Resources

Analyze the declarations and definitions sections of your kernel module to
identify the following global resources:

• System-specific global variables

• System-specific data structures

System-specific variables include the global variables hz, cpu, and lbolt.
The following example shows the declaration of one system-specific global
variable:
.
.
.
extern int hz;
.
.
.

System-specific data structures include controller, buf, and
ihandler_t. The following example shows the declaration of some
system-specific data structures:

.

.

.
struct controller *info[NXX];
.
.
.
struct buf cbbuf[NCB];
.
.
.

After you identify the system-specific global variables and system-specific
data structures, locate the code blocks in which the module references
them. Use Table 6–3 to determine which locking method is appropriate.
Also, determine the granularity of the lock.
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_______________________ Note _______________________

To lock buf structure resources, use the BUF_LOCK and
BUF_UNLOCK routines instead of the simple and complex lock
routines. For descriptions of these routines, see the
BUF_LOCK(9) and BUF_UNLOCK(9) reference pages.

6.5.5 How to Determine the Resources to Lock

Use the following steps to determine which resources to lock in your kernel
modules:

1. Identify all resources that you might lock.

2. Identify all of the code blocks in the kernel module that manipulate
each resource.

3. Determine which locking method is appropriate.

4. Determine the granularity of the lock.

The following example walks you through an analysis of which resources to
lock for the xx module.

Step 1: Identify All Resources That You Might Lock

Table 6–4 summarizes the resources that you might lock in your kernel
module according to the following categories:

• Device control status register (CSR) addresses

• Module-specific global variables

• Module-specific data structures

• System-specific global variables

• System-specific global data structures

Table 6–4: Kernel Module Resources for Locking

Category Associated Resources

Device control status register (CSR)
addresses.

N/A

Module-specific global variables. Variables that store flag values to
control execution of code blocks.
Variables that store status information.
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Table 6–4: Kernel Module Resources for Locking (cont.)

Category Associated Resources

Module-specific global data structures. dsent, cfg_subsys_attr_t, driver,
and the kernel module’s kern_str
structure.

System-specific global variables cpu, hz, lbolt, and page_size.

System-specific global data structures controller and buf.

One resource that the xx module must lock is the device CSR addresses.
This module also needs to lock the hz global variable. The example analysis
focuses on the following device register offset definitions for the xx module:

.

.

.
#define XX_ADDER 0x0 /* 32-bit read/write DMA address register */
#define XX_DATA 0x4 /* 32-bit read/write data register */
#define XX_CSR 0x8 /* 16-bit read/write CSR/LED register */
#define XX_TEST 0xc /* Go bit register. Write sets. Read clears */
.
.
.

Step 2: Identify All of the Code Blocks in the Module That Manipulate the
Resource

Identify all of the code blocks that manipulate the resource. If the code block
accesses the resource read only, you may not need to lock the resources that
it references. However, if the code block writes to the resource, you need to
lock the resource by calling the simple or complex lock routines.

The xx module accesses the device register offset definition resources in the
open and close device section and the read and write device section.

Step 3: Determine Which Locking Method Is Appropriate

Table 6–5 shows how to analyze the locking method that is most suitable
for the device register offset definitions for some xx module. (The numbers
before each Characteristic item appear for easy reference in later
descriptions.)
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Table 6–5: Locking Device Register Offset Definitions

Characteristic
Applies to
This Module

Simple
Lock

Complex
Lock

1. Kernel threads will access this resource. Yes Yes Yes

2. Interrupt service routines will access this
resource.

No N/A N/A

3. Exceptions will access this resource. No N/A N/A

4. Need to prevent access to this resource
while a kernel thread blocks and there are
no blocking conditions.

Yes Yes Yes

5. Need to prevent access to this resource
while a kernel thread blocks and there are
blocking conditions.

No N/A N/A

6. Need to protect resource between kernel
threads and interrupt service routines.

Yes Yes No

7. Need to have maximum execution speed
for this kernel module.

Yes Yes No

8. The module references and updates this
resource in long code blocks (implying that
the length of time the lock is held on this
resource is not bounded and long).

No N/A N/A

9. The module references and updates this
resource in short nonblocking code blocks
(implying that the length of time the lock is
held on this resource is bounded and short).

Yes Better Worse

10. Need to minimize memory usage by the
lock-specific data structures.

Yes Yes No

11. Need to synchronize with interrupt
service routines.

No N/A N/A

12. The module can afford busy wait time. Yes Yes No

13. The module implements realtime
preemption.

No N/A N/A

The locking analysis table for the device register offset definitions shows
the following:

• Seven of the SMP characteristics (numbers 1, 4, 6, 7, 9, 10, and 12)
apply to the xx module.

• Simple and complex locks are suitable for SMP characteristics 1 and 4.
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• Simple locks are better suited than complex locks for SMP
characteristic 9.

• Simple locks (not complex locks) are suitable for SMP characteristics 6,
7, 10, and 12.

Based on the previous analysis, the xx module uses the simple lock method.

Step 4: Determine the Granularity of the Lock

After choosing the appropriate locking method for the resource, determine
the granularity of the lock. For example, in the case of the device register
offset resource, you can determine the granularity by answering the
following questions:

1. Is a simple lock needed for each device register offset definition?

2. Is one simple lock needed for all of the device register offset definitions?

Table 6–5 shows that the need to minimize memory usage is important to
the xx module; therefore, creating one simple lock for all of the device
register offset definitions would save the most memory. The following code
fragment shows how to declare a simple lock for all of the device register
offset definitions:
.
.
.
#include <kern/lock.h>
.
.
.
decl_simple_lock_data( , slk_xxdevoffset);
.
.
.

If the preservation of memory were not important to the xx module,
declaring a simple lock for each device register offset definition might be
more appropriate. The following code fragment shows how to declare a
simple lock structure for each of the example device register offset
definitions:
.
.
.
#include <kern/lock.h>
.
.
.
decl_simple_lock_data( , slk_xxaddr);
decl_simple_lock_data( , slk_xxdata);
decl_simple_lock_data( , slk_xxcsr);
decl_simple_lock_data( , slk_xxtest);
.
.
.

After declaring a simple lock structure for an associated resource, you must
initialize it (only once) by calling simple_lock_init. You then use the
simple lock routines in code blocks that access the resource. Chapter 7
discusses the simple lock–related routines.
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7
Simple Lock Routines

After you decide that the simple lock method is the appropriate method for
locking specific resources, you use the simple lock routines to accomplish
the locking. To use simple locks in a kernel module, perform the following
tasks:

• Declare a simple lock data structure

• Initialize a simple lock

• Assert exclusive access on a resource

• Release a previously asserted simple lock

• Try to obtain a simple lock

• Terminate a simple lock

• Use the spl routines with simple locks

To illustrate the use of these routines, the chapter uses code from an
example kernel module called xx that operates on some XX device. This
example module locks a kern_str structure resource called xx_kern_str.

7.1 Declaring a Simple Lock Data Structure
Before using a simple lock, declare a simple lock data structure for the
resource you want to lock by using the decl_simple_lock_data routine.
The following code fragment shows a call to decl_simple_lock_data in
the xx kernel module:
.
.
.
#include <kern/lock.h> 1
.
.
.
struct xx_kern_str {
int sc_openf; /* Open flag */
int sc_count; /* Count of characters written to device */
decl_simple_lock_data( , lk_xx_kern_str); /* SMP lock for xx_kern_str */

}xx_kern_str[NNONE]; 2
.
.
.

1 Includes the header file /usr/sys/include/kern/lock.h. The
lock.h file defines the simple spin lock and complex lock structures
that kernel modules use for synchronization on single-processor and
multiprocessor systems.
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2 Declares an array of kern_str structures and calls it xx_kern_str.
The xx module uses the decl_simple_lock_data routine to declare
a simple lock structure as a field of the xx_kern_str structure.

The decl_simple_lock_data routine declares a simple lock
structure, slock, of the specified name. You declare a simple lock
structure to protect kernel module data structures and device register
access. You use decl_simple_lock_data to declare a simple lock
structure and then pass it to the following simple lock-specific
routines: simple_lock_init, simple_lock, simple_lock_try,
simple_unlock, and simple_lock_terminate.

The decl_simple_lock_data routine can take two arguments:

• The first argument (not passed in this call) specifies the class of the
declaration. For example, you pass the keyword extern if you
want to declare the simple lock structure as an external structure.
This argument would be specified in this call if lk_xx_kern_str
was declared in another program module.

• The second argument specifies the name you want the
decl_simple_lock_data routine to assign to the declaration of
the simple lock structure. In this call to the routine, the name for
the simple lock structure is lk_xx_kern_str.

You can also declare a simple lock structure by using the typedef
simple_lock_data_t, as in the following example:

.

.

.
struct xx_kern_str {
int sc_openf; /* Open flag */
int sc_count; /* Count of characters written to device */
simple_lock_data_t lk_xx_kern_str; /* SMP lock for xx_kern_str */

}xx_kern_str[NNONE]; 1

1 Declares an array of kern_str structures and calls it xx_kern_str.
The xx module declares a simple lock structure as a field of the
xx_kern_str structure to protect the integrity of the data stored in
the sc_openf and sc_count fields. A kernel module’s kern_str
structure is one resource that often requires protection in an SMP
environment because kernel module routines use it to share data. It is
possible that more than one kernel thread might need to access the
fields of an xx_kern_str structure.

7.2 Initializing a Simple Lock
After declaring the simple lock data structure, you initialize it by calling
the simple_lock_init routine. The following code fragment shows a call
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to simple_lock_init by the xx kernel module’s xxcattach routine. The
xxcattach routine performs the tasks necessary to establish
communication with the actual device. One of these tasks is to initialize
any global data structures. Thus, the xxcattach routine initializes the
simple lock structure lk_xx_kern_str.

The code fragment also shows the declaration of the simple lock structure
in the xx_kern_str structure.

.

.

.
#include <kern/lock.h> 1
.
.
.
struct xx_kern_str {
int sc_openf; /* Open flag */
int sc_count; /* Count of characters written to device */
simple_lock_data_t lk_xx_kern_str; /* SMP lock for xx_kern_str */

}xx_kern_str[NNONE]; 2
.
.
.
xxcattach(struct controller *ctlr)
{
register struct xx_kern_str *sc = &xx_kern_str[ctlr->ctlr_num];

/* Tasks to perform controller-specific initialization */
.
.
.
simple_lock_init(&sc->lk_xx_kern_str); 3
.
.
.
/* Perform any other controller-specific initialization tasks */

}

1 Includes the header file /usr/sys/include/kern/lock.h. The
lock.h file defines the simple spin lock and complex lock structures
that kernel modules use for synchronization on single-processor and
multiprocessor systems.

2 Declares an array of kern_str structures and calls it xx_kern_str.
The xx kernel module declares a simple lock structure as a field of the
xx_kern_str structure to protect the integrity of the data stored in
the sc_openf and sc_count fields. A kernel module’s kern_str
structure is one resource that often requires protection in an SMP
environment because kernel module routines use it to share data. It is
possible that more than one kernel thread might need to access the
fields of an xx_kern_str structure.

3 Calls the simple_lock_init routine to initialize the simple lock
structure called lk_xx_kern_str.

The simple_lock_init routine takes one argument: a pointer to a
simple lock structure. You can declare this simple lock structure by
using the decl_simple_lock_data routine. In this call, the
xxcattach routine passes the address of the lk_xx_kern_str field of
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the xx_kern_str structure pointer. You need to initialize the simple
lock structure only once.

7.3 Asserting Exclusive Access on a Resource
After declaring and initializing the simple lock data structure, you can
assert exclusive access by calling the simple_lock routine. The following
code fragment shows a call to simple_lock by the xx kernel module’s
xxopen routine.

The xxopen routine is called as the result of an open system call.

The xxopen routine performs the following tasks:

• Checks to ensure that the open is unique

• Marks the device as open

• Returns the value 0 (zero) to the open system call to indicate success

The code fragment also shows the declaration of the simple lock structure
in the xx_kern_str structure and the initialization of the simple lock
structure by thel module’s xxcattach routine. See Section 7.2 for
explanations of these tasks.

.

.

.
#include <kern/lock.h>
.
.
.
struct xx_kern_str {
int sc_openf; /* Open flag */
int sc_count; /* Count of characters written to device */
simple_lock_data_t lk_xx_kern_str; /* SMP lock for xx_kern_str */

}xx_kern_str[NXX];
.
.
.
xxcattach(struct controller *ctlr)
{
register struct xx_kern_str *sc = &xx_kern_str[ctlr->ctlr_num];

/* Tasks to perform controller-specific initialization */
.
.
.
simple_lock_init(&sc->lk_xx_kern_str);
.
.
.
}
.
.
.
xxopen(dev, flag, format)
dev_t dev;
int flag;
int format;

register int unit = minor(dev);
struct controller *ctlr = xxinfo[unit];
struct xx_kern_str *sc = &xx_kern_str[unit];
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if(unit >= NXX)
return ENODEV; 1

simple_lock(&sc->lk_xx_kern_str); 2
if (sc->sc_openf == DN_OPEN)
{

.

.

.
}

1 If the number of device units on the system is greater than NXX,
returns the error code ENODEV, which indicates that no such device
exists on the system. This example test is used to ensure that a valid
device exists.

2 Calls the simple_lock routine to assert an exclusive access on the
following code block.

The simple_lock routine takes one argument: a pointer to a simple
lock structure. You can declare this simple lock structure by using the
decl_simple_lock_data routine. In this call, the xxopen routine
passes the address of the lk_xx_kern_str field of the xx_kern_str
structure pointer.

Figure 7–1 shows what happens when two instances of the xx kernel
module execute on two CPUs. As the figure shows, the kernel thread
emanating from CPU1 obtains the simple lock on the code block that
follows item 2 in the code fragment before the kernel thread
emanating from CPU2. The reason for locking this code block is to
prevent data corruption of any future writes to the xx_kern_str
structure. The CPU2 kernel thread spins while waiting for the CPU1
kernel thread to free the simple lock.
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Figure 7–1: Two Instances of the xx Module Asserting an Exclusive Lock
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7.4 Releasing a Previously Asserted Simple Lock
After asserting a simple lock (with exclusive access), you must release the
lock by calling the simple_unlock routine. The following code fragment
shows calls to simple_unlock by the xx kernel module’s xxopen routine.

The xxopen routine is called as the result of an open system call.

The xxopen routine performs the following tasks:

• Checks to ensure that the open is unique

• Marks the device as open

• Returns the value 0 (zero) to the open system call to indicate success

The code fragment also shows the declaration of the simple lock structure
in the xx_kern_str structure and the initialization of the simple lock
structure by the kernel module’s xxcattach routine.
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.

.

.
#include <kern/lock.h>
.
.
.
struct xx_kern_str {
int sc_openf; /* Open flag */
int sc_count; /* Count of characters written to device */
simple_lock_data_t lk_xx_kern_str; /* SMP lock for xx_kern_str */

}xx_kern_str[NXX];
.
.
.
xxcattach(struct controller *ctlr)
{
register struct xx_kern_str *sc = &xx_kern_str[ctlr->ctlr_num];

/* Tasks to perform controller-specific initialization */
.
.
.
simple_lock_init(&sc->lk_xx_kern_str);
.
.
.
}
.
.
.
xxopen(dev, flag, format)
dev_t dev;
int flag;
int format;

register int unit = minor(dev);
struct controller *ctlr = xxinfo[unit];
struct xx_kern_str *sc = &xx_kern_str[unit];

if(unit >= NXX)
return ENODEV; 1

simple_lock(&sc->lk_xx_kern_str); 2
if (sc->sc_openf == DN_OPEN) 3
{

simple_unlock(&sc->lk_xx_kern_str);
return (EBUSY);

}
if ((ctlr !=0) && (ctlr->alive & ALV_ALIVE)) 4
{

sc->sc_openf = DN_OPEN;
simple_unlock(&sc->lk_xx_kern_str);
return(0);

}
else 5
{

simple_unlock(&sc->lk_xx_kern_str);
return(ENXIO);

}
}
.
.
.

1 If the number of device units on the system is greater than NXX,
returns the error code ENODEV, which indicates that no such device
exists on the system. This example test is used to ensure that a valid
device exists.

2 Calls the simple_lock routine to assert an exclusive access on the
following code block.
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The simple_lock routine takes one argument: a pointer to a simple
lock structure. You can declare this simple lock structure by using the
decl_simple_lock_data routine. In this call, the xxopen routine
passes the address of the lk_xx_kern_str field of the xx_kern_str
structure pointer.

3 If the sc_openf field of the sc pointer is equal to DN_OPEN, calls the
simple_unlock routine and returns the error code EBUSY, which
indicates that the NONE device has already been opened. This example
test is used to ensure that only one unit of the kernel module can be
opened at a time. This type of open is referred to as an exclusive access
open.

The simple_unlock routine releases a simple lock for the resource
associated with the specified simple lock structure pointer. This simple
lock was previously asserted by calling the simple_lock or
simple_lock_try routine. In this call, the locked resource is
referenced in the code block beginning with item 3.

The simple_unlock routine takes one argument: a pointer to a
simple lock structure. You can declare this simple lock structure by
using the decl_simple_lock_data routine. In this call, the xxopen
routine passes the address of the lk_xx_kern_str field of the
xx_kern_str structure pointer.

4 If the ctlr pointer is not equal to 0 (zero) and the alive field of ctlr
has the ALV_ALIVE bit set, then the device exists. If this is the case,
the xxopen routine sets the sc_openf field of the sc pointer to the
open bit DN_OPEN, calls simple_unlock to free the lock, and returns
the value 0 (zero) to indicate a successful open.

5 If the device does not exist, xxopen calls simple_unlock to free the
lock and returns the error code ENXIO, which indicates that the device
does not exist.

Figure 7–2 shows what happens when one instance of the xx kernel
module releases a previously asserted exclusive lock on the code block
that opens the device. In Figure 7–1, the CP1 kernel thread obtained
the simple lock on the code block that opens the device. The CP2
kernel thread spun while waiting for the simple lock to be freed. After
CPU 1 released the simple lock, CPU2 obtained the lock. In
Figure 7–2, the CPU1 kernel thread makes another attempt to lock
the code block that opens the device. This time it spins until the CPU2
kernel thread releases the simple lock.
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Figure 7–2: One Instance of the xx Module Releasing an Exclusive Lock

CPU1 

Obtains simple lock

Spins while waiting for kernel module
executing on CPU2 to free simple lock 

xx.mod xx.mod

simple_lock(&sc->lk_xx_kern_str);

/*code to open device

...

CPU2

simple_unlock(&sc->lk_xx_kern_str);

of the xx_kern_str structure*/
reads and writes to members

...

ZK-0963U-AI

7.5 Trying to Obtain a Simple Lock
In addition to explicitly asserting a simple lock, you can also try to assert
the simple lock by calling the simple_lock_try routine. The main
difference between simple_lock and simple_lock_try is that
simple_lock_try returns immediately if the resource is already locked,
while simple_lock spins until the lock has been obtained. Thus, call
simple_lock_try when you need a simple lock but the code cannot spin
until the lock is obtained.

The following code fragment shows a call to simple_lock_try by the xx
kernel module’s xxopen routine.

The xxopen routine is called as the result of an open system call.

The xxopen routine performs the following tasks:

• Checks to ensure that the open is unique

• Marks the device as open

• Returns the value 0 (zero) to the open system call to indicate success

The code fragment also shows the declaration of the simple lock structure
in the xx_kern_str structure and the initialization of the simple lock
structure by the kernel module’s xxcattach routine.
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.

.

.
#include <kern/lock.h>
.
.
.
struct xx_kern_str {
int sc_openf; /* Open flag */
int sc_count; /* Count of characters written to device */
simple_lock_data_t lk_xx_kern_str; /* SMP lock for xx_kern_str */

}xx_kern_str[NXX];
.
.
.
xxcattach(struct controller *ctlr)
{
register struct xx_kern_str *sc = &xx_kern_str[ctlr->ctlr_num];

/* Tasks to perform controller-specific initialization */
.
.
.
simple_lock_init(&sc->lk_xx_kern_str);
.
.
.
}
.
.
.
xxopen(dev, flag, format)
dev_t dev;
int flag;
int format;

register int unit = minor(dev);
struct controller *ctlr = xxinfo[unit];
struct xx_kern_str *sc = &xx_kern_str[unit];
boolean_t try_ret_val; 1

if(unit >= NXX)
return ENODEV; 2

try_ret_val = simple_lock_try(&sc->lk_xx_kern_str); 3
if (try_ret_val == TRUE) 4
{

if (sc->sc_openf == DN_OPEN)
.
.
.
else

/* Perform some other tasks if simple_lock_try fails *
* to assert an exclusive access */
.
.
.
}

1 Declares a variable to store the return value from the
simple_lock_try routine.

The simple_lock_try routine returns one of the following values:

TRUE The simple_lock_try routine successfully
asserted the simple lock.

FALSE The simple_lock_try routine failed to assert
the simple lock.
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2 If the number of device units on the system is greater than NXX,
returns the error code ENODEV, which indicates that no such device
exists on the system. This example test is used to ensure that a valid
device exists.

3 Calls the simple_lock_try routine to try to assert an exclusive
access on the following code block.

The simple_lock_try routine takes one argument: a pointer to a
simple lock structure. You can declare this simple lock structure by
using the decl_simple_lock_data routine. In this call, the xxopen
routine passes the address of the lk_xx_kern_str field of the
xx_kern_str structure pointer.

4 If the return from simple_lock_try is TRUE, checks the sc_openf
field to determine if this is a unique open. Otherwise, if the return
from simple_lock_try is FALSE, performs some other tasks.

Figure 7–3 shows what happens when two instances of the xx kernel
module try to assert an exclusive lock on the code block that opens the
device. As the figure shows, the CPU1 and CPU2 kernel threads try to
assert an exclusive lock on the code block that opens the device. In this
case, the CPU1 kernel thread successfully obtains the lock. To indicate
this success, simple_lock_try returns the value TRUE. At the same
time, the CPU2 kernel thread fails to obtain the lock and
simple_lock_try immediately returns the value FALSE to indicate
this.
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Figure 7–3: The xx Module Trying to Assert an Exclusive Lock
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7.6 Terminating a Simple Lock
After unlocking a simple lock (with exclusive access) and knowing that you
are finished using the lock for this resource, you can terminate the lock by
calling the simple_lock_terminate routine. Typically, you terminate any
locks in the kernel module’s controller (or device) unattach routine. These
routines are associated with loadable modules (for example, drivers). One
task associated with a controller or device unattach routine is to
terminate any locks initialized in the kernel module’s unattach routine.

The following code fragment shows a call to simple_lock_terminate by
the xx kernel module’s xx_ctlr_unattach routine. The code fragment
also shows the declaration of the simple lock structure in the xx_kern_str
structure, the initialization of the simple lock structure by the kernel
module’s xxcattach routine, and the unlocking of the simple lock
structure by the module’s xxopen routine.

.

.

.
#include <kern/lock.h> 1
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.

.

.
struct xx_kern_str {
int sc_openf; /* Open flag */
int sc_count; /* Count of characters written to device */
simple_lock_data_t lk_xx_kern_str; /* SMP lock for xx_kern_str */

}xx_kern_str[NXX]; 2
.
.
.
xxcattach(struct controller *ctlr)
{
register struct xx_kern_str *sc = &xx_kern_str[ctlr->ctlr_num];

/* Tasks to perform controller-specific initialization */
.
.
.
simple_lock_init(&sc->lk_xx_kern_str); 3
.
.
.
}
.
.
.
xxopen(dev, flag, format)
dev_t dev;
int flag;
int format;

register int unit = minor(dev);
struct controller *ctlr = xxinfo[unit];
struct xx_kern_str *sc = &xx_kern_str[unit];

if(unit >= NXX)
return ENODEV; 4

simple_lock(&sc->lk_xx_kern_str); 5
if (sc->sc_openf == DN_OPEN) 6
{

simple_unlock(&sc->lk_xx_kern_str);
return (EBUSY);

}
if ((ctlr !=0) && (ctlr->alive & ALV_ALIVE)) 7
{

sc->sc_openf = DN_OPEN;
simple_unlock(&sc->lk_xx_kern_str);
return(0);

}
else 8
{

simple_unlock(&sc->lk_xx_kern_str);
return(ENXIO);

}
}
.
.
.
xx_ctlr_unattach(bus, ctlr)
struct bus *bus;
struct controller *ctlr;

{
register int unit = ctlr->ctlr_num;

if ((unit > num_xx) || (unit < 0) {
return(1);

}

if (xx_is_dynamic == 0) {
return(1);
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}
/* Performs controller unattach tasks */
.
.
.

simple_lock_terminate(&sc->lk_xx_kern_str); 9

1 Includes the header file /usr/sys/include/kern/lock.h. The
lock.h file defines the simple spin lock and complex lock structures
that kernel modules use for synchronization on single-processor and
multiprocessor systems.

2 Declares an array of kern_str structures and calls it xx_kern_str.
The xx kernel module declares a simple lock structure as a field of the
xx_kern_str structure to protect the integrity of the data stored in
the sc_openf and sc_count fields. A kernel module’s kern_str
structure is one resource that often requires protection in an SMP
environment because kernel module routines use it to share data. It is
possible that more than one kernel thread might need to access the
fields of an xx_kern_str structure.

3 Calls the simple_lock_init routine to initialize the simple lock
structure called lk_xx_kern_str.

The simple_lock_init routine takes one argument: a pointer to a
simple lock structure. You can declare this simple lock structure by
using the decl_simple_lock_data routine. In this call, the
xxcattach routine passes the address of the lk_xx_kern_str field of
the xx_kern_str structure pointer. You need to initialize the simple
lock structure only once. After initializing a simple lock structure,
kernel modules can call simple_lock to assert exclusive access on the
associated resource or simple_lock_try to attempt to assert
exclusive access on the associated resource.

4 If the number of device units on the system is greater than NXX,
returns the error code ENODEV, which indicates that no such device
exists on the system. This example test is used to ensure that a valid
device exists.

5 Calls the simple_lock routine to assert an exclusive access on the
following code block.

The simple_lock routine takes one argument: a pointer to a simple
lock structure. You can declare this simple lock structure by using the
decl_simple_lock_data routine. In this call, the xxopen routine
passes the address of the lk_xx_kern_str field of the xx_kern_str
structure pointer.

6 If the sc_openf field of the sc pointer is equal to DN_OPEN, calls the
simple_unlock routine and returns the error code EBUSY, which
indicates that the NONE device has already been opened. This example
test is used to ensure that only one unit of the module can be opened
at a time. This type of open is referred to as an exclusive access open.
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The simple_unlock routine releases a simple lock for the resource
associated with the specified simple lock structure pointer. This simple
lock was previously asserted by calling the simple_lock or
simple_lock_try routine. In this call, the locked resource is
referenced in the code block beginning with item 6.

The simple_unlock routine takes one argument: a pointer to a
simple lock structure. You can declare this simple lock structure by
using the decl_simple_lock_data routine. In this call, the xxopen
routine passes the address of the lk_xx_kern_str field of the
xx_kern_str structure pointer.

7 If the ctlr pointer is not equal to 0 (zero) and the alive field of ctlr
has the ALV_ALIVE bit set, then the device exists. If this is the case,
the xxopen routine sets the sc_openf field of the sc pointer to the
open bit DN_OPEN, calls simple_unlock to free the lock, and returns
the value 0 (zero) to indicate a successful open.

8 If the device does not exist, xxopen calls simple_unlock to free the
lock and returns the error code ENXIO, which indicates that the device
does not exist.

9 Calls the simple_lock_terminate routine to determine that the xx
module is permanently done using this simple lock.

The simple_lock_terminate routine takes one argument: a pointer
to a simple lock structure. You can declare this simple lock structure
by using the decl_simple_lock_data routine. In this call, the
xx_ctlr_unattach routine passes the address of the
lk_xx_kern_str field of the xx_kern_str structure pointer. In
calling simple_lock_terminate, the xx kernel module must not
reference this simple lock again.

7.7 Using the spl Routines with Simple Locks
The spl routines block out asynchronous events on the CPU on which the
spl call is performed. Simple locks block out other CPUs. You need to use
both the spl routines and the simple lock routines when synchronizing
with kernel threads and interrupt service routines. The following code
fragment shows calls to the spl and simple lock routines:

.

.

.
#include <kern/lock.h> 1
.
.
.
struct tty_kern_str {
.
.
.
decl_simple_lock_data( , lk_tty_kern_str); /* SMP lock for tty_kern_str */

.

.

.
}tty_kern_str[NSOMEDEVICE]; 2
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.

.

.
simple_lock_init(&sc->lk_tty_kern_str);
.
.
.
s = spltty(); 3
simple_lock(&lk_tty_kern_str); 4
.
.
.
/* Manipulate resource */
.
.
.
simple_unlock(&lk_tty_kern_str); 5
splx(s); 6
.
.
.

1 Includes the header file /usr/sys/include/kern/lock.h. The
lock.h file defines the simple spin lock and complex lock structures
that kernel modules use for synchronization on single-processor and
multiprocessor systems.

2 Declares an array of kern_str structures and calls it
lk_tty_kern_str. This example module uses the
decl_simple_lock_data routine to declare a simple lock structure
as a field of the tty_kern_str structure.

3 Calls the spltty routine to mask out all tty (terminal device)
interrupts.

The spltty routine takes no arguments.

The spltty routine returns an integer value that represents the CPU
priority level that existed before the call. Note that the routine masks
out all tty interrupts on the CPU on which it is called.

4 Calls the simple_lock routine to assert a lock with exclusive access
for the resource associated with the slock structure pointer, which in
this example is lk_tty_kern_str. Note that the routine ensures that
no other kernel thread running on other CPUs can gain access to this
resource. This contrasts with the spl routines, which block out kernel
threads running on this CPU.

5 After manipulating the resource, calls simple_unlock to release the
simple lock. This makes the resource available to kernel threads
running on other CPUs.

6 Calls the splx routine to reset the CPU priority to the level specified
by the value returned by spltty.

The splx routine takes one argument: a CPU priority level. This level
must be a value returned by a previous call to one of the spl routines,
in this example spltty. Calling splx releases the priority on this
CPU.
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8
Complex Lock Routines

After you decide that the complex lock method is the appropriate method
for locking specific resources, you use the complex lock routines to
accomplish the locking. To use complex locks in a kernel module, perform
the following tasks:

• Declare a complex lock data structure

• Initialize a complex lock

• Perform access operations on a complex lock

• Terminate a complex lock

To illustrate the use of these routines, the chapter uses code from an
example kernel module called if_fta, which operates on some FTA device.

8.1 Declaring a Complex Lock Data Structure
Before using a complex lock, declare a complex lock data structure for the
resource you want to lock. The following code fragment shows how to
declare a complex lock data structure for a specific field of the
fta_kern_str structure:

#include <kern/lock.h> 1
.
struct cmd_buf {

u_long *req_buf;
u_long *rsp_buf;
short timeout;
struct cmd_buf *next;

}; 2
.
.
.
struct fta_kern_str {
.
struct cmd_buf *q_first; /* first in the request queue */
struct cmd_buf *q_last; /* last in the request queue */
lock_data_t cmd_buf_q_lock; /* lock for the command */

/* request queue */
.
.
.
}; 3
.
.
.

1 Includes the header file /usr/sys/include/kern/lock.h. The
lock.h file defines the simple spin lock and complex lock structures
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that kernel modules use for synchronization on single-processor and
multiprocessor systems.

2 Defines a cmd_buf data structure. The fta_kern_str structure
declares two instances of cmd_buf. This structure describes a
command queue and is a candidate for locking in a symmetric
multiprocessing (SMP) environment. It is necessary to protect the
integrity of the data stored in the command queue from multiple
writes by more than one kernel thread.

3 Defines an fta_kern_str data structure. The example shows only
those fields related to the discussion of complex locks.

In this example, the fta_kern_str structure contains the following
fields:

• q_first

Specifies a pointer to a cmd_buf data structure. This field
represents the first command queue in the linked list.

• q_last

Specifies a pointer to a cmd_buf data structure. This field
represents the last command queue in the linked list.

• cmd_buf_q_lock

Declares a lock structure called cmd_buf_q_lock. The purpose of
this lock is to protect the integrity of the data stored in the linked
list of cmd_buf data structures. Note that the alternate name
lock_data_t is used to declare the complex lock structure.
Embedding the complex lock in the fta_kern_str structure
protects the cmd_buf structure for any number of instances.

8.2 Initializing a Complex Lock
After declaring the complex lock data structure, you initialize it by calling
the lock_init routine. The following code fragment shows a call to
lock_init by the if_fta module’s ftaattach routine. The ftaattach
routine performs the tasks necessary to establish communication with the
actual device. One of these tasks is to initialize any global data structures.
Thus, the ftaattach routine initializes the complex lock data structure
cmd_buf_q_lock.

The code fragment also shows the include file associated with complex
locks, definitions of the cmd_buf and fta_kern_str structures, and the
declaration of the complex lock.

.

.

.

#include <kern/lock.h> 1
.
.
.struct cmd_buf {
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u_long *req_buf;
u_long *rsp_buf;
short timeout;
struct cmd_buf *next;

}; 2
.
.
.
struct fta_kern_str {
.
.
.
struct cmd_buf *q_first; /* first in the request queue */
struct cmd_buf *q_last; /* last in the request queue */
lock_data_t cmd_buf_q_lock; /* lock for the command */

/* request queue */
.
.
.
}; 3
.
.
.
ftaattach(struct controller *ctlr)
{

struct fta_kern_str *sc = &fta_kern_str[ctlr->ctlr_num];
.
.
.
/* Tasks to perform controller-specific initialization */

.

.

.
lock_init(&sc->cmd_buf_q_lock, TRUE); 4
.
.
.
/* Perform other tasks */

}

1 Includes the header file /usr/sys/include/kern/lock.h. The
lock.h file defines the simple spin lock and complex lock structures
that kernel modules use for synchronization on single-processor and
multiprocessor systems.

2 Defines a cmd_buf data structure. The fta_kern_str structure
declares two instances of cmd_buf. This structure describes a
command queue and is a candidate for locking in an SMP environment.
It is necessary to protect the integrity of the data stored in the
command queue from multiple writes by more than one kernel thread.

3 Defines an fta_kern_str data structure. The example shows only
those fields related to the discussion of complex locks.

In this example, the fta_kern_str structure contains the following
fields:

• q_first

Specifies a pointer to a cmd_buf data structure. This field
represents the first command queue in the linked list.

• q_last

Specifies a pointer to a cmd_buf data structure. This field
represents the last command queue in the linked list.

• cmd_buf_q_lock
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Declares a lock structure called cmd_buf_q_lock. The purpose of
this lock is to protect the integrity of the data stored in the linked
list of cmd_buf data structures. Note that the alternate name
lock_data_t is used to declare the complex lock structure.
Embedding the complex lock in the fta_kern_str structure
protects the cmd_buf structure for any number of instances.

4 Calls the lock_init routine to initialize the simple lock structure
called cmd_buf_q_lock.

The lock_init routine takes two arguments:

• The first argument specifies a pointer to the complex lock
structure. In this call, the ftaattach routine passes the address
of the cmd_buf_q_lock field of the fta_kern_str structure
pointer. You need to initialize the complex lock structure only once.

• The second argument specifies a Boolean value that indicates
whether to allow kernel threads to block (sleep) if the complex lock
is asserted. You can pass to this argument only the value TRUE
(allow kernel threads to block if the lock is asserted).

8.3 Performing Access Operations on a Complex Lock
After declaring and initializing the complex lock data structure, you can
perform the following access operations on the complex lock:

• Assert a complex lock

• Release a previously asserted complex lock

• Try to assert a complex lock

Each of these tasks is discussed in the following sections.

8.3.1 Asserting a Complex Lock

After declaring and initializing the complex lock data structure, you can
assert a complex lock with read-only access or a complex lock with write
access by calling the lock_read or lock_write routine. The following
sections describe how to use these routines.

8.3.1.1 Asserting a Complex Lock with Read-Only Access

The lock_read routine asserts a lock with read-only access for the
resource associated with the specified lock structure pointer. The following
code fragment shows a call to lock_read by the if_fta module’s
ftaioctl routine.

The ftaioctl routine is called as the result of an ioctl system call.
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The ftaioctl routine performs the following tasks:

• Determines the type of request

• Executes the request

• Returns data

• Returns the value 0 (zero) to the ioctl system call to indicate success

The code fragment also shows the include file associated with complex
locks, definitions of the cmd_buf and fta_kern_str structures, the
declaration of the complex lock structure in the fta_kern_str structure,
and the initialization of the complex lock structure by the kernel module’s
ftaattach routine. Section 8.2 provides descriptions of these tasks.

#include <kern/lock.h>
.
.
.
struct cmd_buf {

u_long *req_buf;
u_long *rsp_buf;
short timeout;
struct cmd_buf *next;

};
.
.
.
struct fta_kern_str {
.
.
.
struct cmd_buf *q_first; /* first in the request queue */
struct cmd_buf *q_last; /* last in the request queue */
lock_data_t cmd_buf_q_lock; /* lock for the command */

/* request queue */
.
.
.
};
.
.
.
ftaattach(struct controller *ctlr)
{

struct fta_kern_str *sc = &fta_kern_str[ctlr->ctlr_num];
.
.
.
/* Tasks to perform controller-specific initialization */

.

.

.
lock_init(&sc->cmd_buf_q_lock, TRUE);
.
.
.
/* Perform other tasks */

}
.
.
.
ftaioctl(register struct ifnet *ifp,

unsigned int cmd,
caddr_t dataifp)

{
struct fta_kern_str *sc = &fta_kern_str[ifp->if_unit];

.

.

.
switch (cmd) {

case SIOCENABLBACK: {
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.

.

.
if (ifp->if_flags & IFF_RUNNING) { 1

lock_read(&sc->cmd_buf_q_lock);

/* Performs read operation on the resource */
if(sc->q_first->req_buf = (u_long*)(data);

.

.

.
}

1 Calls the lock_read routine if the IFF_RUNNING bit flag is set in the
if_flags field of the ifp structure pointer.

The lock_read routine takes one argument: a pointer to the complex
lock structure lock. This is the lock structure associated with the
resource on which you want to assert a complex lock with read-only
access. The ftaioctl routine passes the address of the
cmd_buf_q_lock field of the fta_kern_str structure pointer.

Figure 8–1 shows what happens when multiple instances of the
if_fta kernel module assert a read-only complex lock on the specified
code block. As the figure shows, kernel threads from the if_fta
kernel module executing on CPU1, CPU2, and CPU3 assert read-only
complex locks on the specified code block. The lock_read routine
allows multiple kernel threads to have read-only access to the resource
at the same time. When a read lock is asserted, the protected resource
is guaranteed not to change. In this case, the cmd_buf resource is
guaranteed not to change.
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Figure 8–1: Three Instances of the if_fta Module Asserting a Read-Only
Complex Lock
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8.3.1.2 Asserting a Complex Lock with Write Access

The lock_write routine asserts a lock with exclusive write access for the
resource associated with the specified lock structure pointer. This means
that once a write lock is asserted, no other kernel thread can gain read or
write access to the resource until it is released.

The following code fragment shows a call to lock_write by the if_fta
module’s ftaioctl routine.

The ftaioctl routine is called as the result of an ioctl system call.

The ftaioctl routine performs the following tasks:

• Determines the type of request

• Executes the request
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• Returns data

• Returns the value 0 (zero) to the ioctl system call to indicate success

The code fragment also shows the include file associated with complex
locks, definitions of the cmd_buf and fta_kern_str structures, the
declaration of the complex lock structure in the fta_kern_str structure,
and the initialization of the complex lock structure by the kernel module’s
ftaattach routine. Section 8.2 provides descriptions of these tasks.

#include <kern/lock.h>
.
.
.
struct cmd_buf {

u_long *req_buf;
u_long *rsp_buf;
short timeout;
struct cmd_buf *next;

};
.
.
.
struct fta_kern_str {
.
struct cmd_buf *q_first; /* first in the request queue */
struct cmd_buf *q_last; /* last in the request queue */
lock_data_t cmd_buf_q_lock; /* lock for the command /*

/* request queue */
.
.
.
};
.
.
.
ftaattach(struct controller *ctlr)
{

struct fta_kern_str *sc = &fta_kern_str[ctlr->ctlr_num];
.
.
.
/* Tasks to perform controller-specific initialization */

.

.

.
lock_init(&sc->cmd_buf_q_lock, TRUE);
.
.
.
/* Perform other tasks */

}
.
.
.
ftaioctl(register struct ifnet *ifp,

unsigned int cmd,
caddr_t data)

{
struct fta_kern_str *sc = &fta_kern_str[ifp->if_unit];

.

.

.
switch (cmd) {

case SIOCENABLBACK: {
.
.
.

if (ifp->if_flags & IFF_RUNNING) { 1
lock_write(&sc->cmd_buf_q_lock);
sc->q_first->req_buf = (u_long*) (data);
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1 Calls the lock_write routine if the IFF_RUNNING bit flag is set in the
if_flags field of the ifp structure pointer.

The lock_write routine takes one argument: a pointer to the complex
lock structure lock. This is the lock structure associated with the
resource on which you want to assert a complex lock with write access.
The ftaioctl routine passes the address of the cmd_buf_q_lock
field of the fta_kern_str structure pointer.

Figure 8–2 shows what happens when multiple instances of the
if_fta kernel module assert a write complex lock on the specified
code block. As the figure shows, kernel threads from the if_fta
module executing on CPU1, CPU2, and CPU3 assert write complex
locks on the specified code block. The kernel thread emanating from
CPU3 asserts the write complex lock before the kernel threads
emanating from CPU1 and CPU2. The kernel thread emanating from
CPU3 writes to the req_buf field.

The lock_write routine blocks (puts to sleep) the kernel threads
emanating from CPU1 and CPU2 by placing the requests on a lock
queue. This shows that once lock_write successfully asserts a
complex write lock, no other kernel thread can gain read or write
access to the resource until the resource is released.
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Figure 8–2: Three Instances of the if_fta Module Asserting a Write
Complex Lock
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8.3.2 Releasing a Previously Asserted Complex Lock

After you finish manipulating the resource associated with the complex
lock, you need to release the lock. To release a complex lock that you
previously asserted with a call to lock_read or lock_write, call the
lock_done routine. The following code fragment shows a call to
lock_done by the if_fta kernel module’s ftaioctl routine.

The ftaioctl routine is called as the result of an ioctl system call.

The ftaioctl routine performs the following tasks:

• Determines the type of request

• Executes the request

• Returns data

• Returns the value 0 (zero) to the ioctl system call to indicate success
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The code fragment also shows the include file associated with complex
locks, definitions of the cmd_buf and fta_kern_str structures, the
declaration of the complex lock structure in the fta_kern_str structure,
the initialization of the complex lock structure by the module’s ftaattach
routine, and the assertion of a complex write lock on the code block by the
kernel module’s ftaioctl routine. Section 8.2 and Section 8.3.1.2 provide
descriptions of these tasks.

.

.

.
#include <kern/lock.h>
.
.
.
struct cmd_buf {

u_long *req_buf;
u_long *rsp_buf;
short timeout;
struct cmd_buf *next;

};
.
.
.
struct fta_kern_str {
.
.
.
struct cmd_buf *q_first; /* first in the request queue */
struct cmd_buf *q_last; /* last in the request queue */
lock_data_t cmd_buf_q_lock; /* lock for the command */

/* request queue */
.
.
.
};
.
.
.
ftaattach(struct controller *ctlr)
{

struct fta_kern_str *sc = &fta_kern_str[ctlr->ctlr_num];
.
.
.
/* Tasks to perform controller-specific initialization */

.

.

.
lock_init(&sc->cmd_buf_q_lock, TRUE);
.
.
.
/* Perform other tasks */

}
.
.
.
ftaioctl(register struct ifnet *ifp,

unsigned int cmd,
caddr_t data)

{
struct fta_kern_str *sc = &fta_kern_str[ifp->if_unit];

.

.

.
switch (cmd) {

case SIOCENABLBACK: {
.
.
.

if (ifp->if_flags & IFF_RUNNING) {
lock_write(&sc->cmd_buf_q_lock);
sc->q_first->req_buf = (u_long*) (data);
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.

.

.
lock_done(&sc->cmd_buf_q_lock); 1

.

.

.
}

1 Calls the lock_done routine to release the complex write lock
previously asserted by lock_write.

The lock_done routine takes one argument: a pointer to the complex
lock structure lock. This is the lock structure associated with the
resource on which you want to assert a complex lock with write access.
The ftaioctl routine passes the address of the cmd_buf_q_lock
field of the fta_kern_str structure pointer.

Figure 8–3 shows what happens when one instance of the if_fta
module releases a previously asserted complex write lock on the code
block that writes to the command buffer queue. As the figure shows,
the CPU3 kernel thread releases the complex write lock on the code
block that writes to the command buffer queue. The CPU1 and CPU2
kernel threads are blocked, waiting on the wait queue for the complex
write lock to be freed. Because the CPU1 kernel thread is first on the
wait queue, it now obtains the complex write lock. Furthermore, the
figure shows that the CPU3 kernel thread makes another attempt to
assert a complex write lock on the code block. This time lock_write
blocks (puts to sleep) the CPU3 kernel thread by placing it on the wait
queue behind the CPU2 kernel thread.
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Figure 8–3: One Instance of the if_fta Module Releasing a Complex Write
Lock
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lock_write(&sc->cmd_buf_q_lock);
   /*Code that writes to member
    of cmd_buf struct        *\
sc->q_first->req_buf=(u_long*) (data);
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8.3.3 Trying to Assert a Complex Lock

After declaring and initializing the complex lock data structure, you can try
to assert a complex lock with read-only access or a complex lock with write
access by calling the lock_try_read or lock_try_write routine. Unlike
the lock_read or lock_write routines, the lock_try_read and
lock_try_write routines do not block if the lock associated with the
resource is owned by another kernel thread.

The following sections describe how to use these routines.
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8.3.3.1 Trying to Assert a Complex Lock with Read-Only Access

To try to assert a complex lock with read-only access, call the
lock_try_read routine. The lock_try_read routine tries to assert a
complex lock (without blocking) with read-only access for the resource
associated with the specified lock structure pointer.

The following code fragment shows a call to lock_try_read by the
if_fta module’s ftaioctl routine. The code fragment also shows the
include file associated with complex locks, definitions of the cmd_buf and
fta_kern_str structures, the declaration of the complex lock structure in
the fta_kern_str structure, and the initialization of the complex lock
structure by the module’s ftaattach routine. Section 8.2 provides
descriptions of these tasks. In addition, the code fragment shows a call to
lock_done if the complex read-only lock is successfully asserted.
.
.
.
#include <kern/lock.h>
.
.
.
struct cmd_buf {

u_long *req_buf;
u_long *rsp_buf;
short timeout;
struct cmd_buf *next;

};
.
.
.
struct fta_kern_str {
.
.
.
struct cmd_buf *q_first; /* first in the request queue */
struct cmd_buf *q_last; /* last in the request queue */
lock_data_t cmd_buf_q_lock; /* lock for the command */

/* request queue */
.
.
.
};
.
.
.
ftaattach(struct controller *ctlr)
{

struct fta_kern_str *sc = &fta_kern_str[ctlr->ctlr_num];
.
.
.
/* Tasks to perform controller-specific initialization */

.

.

.
lock_init(&sc->cmd_buf_q_lock, TRUE);
.
.
.
/* Perform other tasks */

}
.
.
.
ftaioctl(register struct ifnet *ifp,

unsigned int cmd,
caddr_t data)

{
struct fta_kern_str *sc = &fta_kern_str[ifp->if_unit];
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boolean_t try_ret_val; 1
.
.
.

switch (cmd) {
case SIOCENABLBACK: {

.

.

.
if (ifp->if_flags & IFF_RUNNING) { 2

try_ret_val = lock_try_read(&sc->cmd_buf_q_lock);
if (try_ret_val == TRUE) { 3

if (sc->q_first->req_buf == (u_long*) (data)) {
.
.
.

lock_done(&sc->cmd_buf_q_lock); 4
}

}
}

.

.

.
else 5

.

.

.
/* Code that executes when try_ret_val == FALSE */

.

.

.
}

.

.

.
}

.

.

.
}

1 Declares a variable to store one of the following return values from the
lock_try_read routine:

TRUE The attempt to acquire the read-only complex
lock was successful.

FALSE The attempt to acquire the read-only complex
lock was unsuccessful.

2 Calls the lock_try_read routine if the IFF_RUNNING bit flag is set in
the if_flags field of the ifp structure pointer.

The lock_try_read routine takes one argument: a pointer to the
complex lock structure lock. This is the lock structure associated with
the resource on which you want to try to assert a complex lock with
read-only access. The ftaioctl routine passes the address of the
cmd_buf_q_lock field of the fta_kern_str structure pointer.

3 If the return from lock_try_read is TRUE, obtains the read-only
complex lock on the code block that performs the read operation.

4 After completing the read operation, releases the read-only complex
lock by calling lock_done.
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5 If the return from lock_try_read is FALSE, did not obtain the
read-only complex lock on the code block that performs the read
operation. In this case, it is not necessary to call lock_done.

Figure 8–4 shows what happens when two instances of the if_fta
module attempt to assert a read-only complex lock on the code block
that performs a read operation on the resource. As the figure shows,
both the CPU1 and CPU2 kernel threads try to assert a read-only
complex lock on the code block that performs a read operation on the
command buffer queue. Because this is a read-only operation, the
CPU1 and CPU2 kernel threads obtain the read-only complex lock,
and as a result, lock_try_read returns the value TRUE in both cases.

Figure 8–4: The if_fta Module Trying to Assert a Complex Read-Only Lock
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lock_done(&sc->cmd_buf_q_lock);

CPU2

Tries to obtain
complex read-only
lock and is successful

...

...

...

else

Tries to obtain
complex read-only
lock and is successful

ZK-0976U-AI

Returns
TRUE

Returns
TRUE

8.3.3.2 Trying to Assert a Complex Lock with Write Access

To try to assert a complex lock with write access, call the lock_try_write
routine. The lock_try_write routine tries to assert a complex lock
(without blocking) with write access for the resource associated with the
specified lock structure pointer.
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The following code fragment shows a call to lock_try_write by the
if_fta module’s ftaioctl routine. The code fragment also shows the
include file associated with complex locks, definitions of the cmd_buf and
fta_kern_str structures, the declaration of the complex lock structure in
the fta_kern_str structure, and the initialization of the complex lock
structure by the module’s ftaattach routine. Section 8.2 provides
descriptions of these tasks. In addition, the code fragment shows a call to
lock_done if the complex write lock is successfully asserted.

.

.

.
#include <kern/lock.h>
.
.
.
struct cmd_buf {

u_long *req_buf;
u_long *rsp_buf;
short timeout;
struct cmd_buf *next;

};
.
.
.
struct fta_kern_str {
.
.
.
struct cmd_buf *q_first; /* first in the request queue */
struct cmd_buf *q_last; /* last in the request queue */
lock_data_t cmd_buf_q_lock; /* lock for the command */

/* request queue */
.
.
.
};
.
.
.
ftaattach(struct controller *ctlr)
{

struct fta_kern_str *sc = &fta_kern_str[ctlr->ctlr_num];
.
.
.
/* Tasks to perform controller-specific initialization */

.

.

.
lock_init(&sc->cmd_buf_q_lock, TRUE);
.
.
.
/* Perform other tasks */

}
.
.
.
ftaioctl(register struct ifnet *ifp,

unsigned int cmd,
caddr_t data)

{
struct fta_kern_str *sc = &fta_kern_str[ifp->if_unit];
boolean_t try_ret_val; 1

.

.

.
switch (cmd) {

case SIOCENABLBACK: {
.
.
.

if (ifp->if_flags & IFF_RUNNING) { 2
try_ret_val = lock_try_write(&sc->cmd_buf_q_lock);
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if (try_ret_val == TRUE) { 3
sc->q_first->req_buf = (u_long*) (data);

.

.

.
lock_done(&sc->cmd_buf_q_lock); 4

}
.
.
.

else 5
.
.
.

/* Code that executes when try_ret_val == FALSE */
.
.
.

}
.
.
.

}
.
.
.
}

1 Declares a variable to store one of the following return values from the
lock_try_write routine:

TRUE The attempt to acquire the write complex lock
was successful.

FALSE The attempt to acquire the write complex lock
was unsuccessful.

2 Calls the lock_try_write routine if the IFF_RUNNING bit flag is set
in the if_flags field of the ifp structure pointer.

The lock_try_write routine takes one argument: a pointer to the
complex lock structure lock. This is the lock structure associated with
the resource on which you want to try to assert write access. The
ftaioctl routine passes the address of the cmd_buf_q_lock field of
the fta_kern_str structure pointer.

3 If the return from lock_try_write is TRUE, obtains the write
complex lock on the code block that performs the write operation.

4 After completing the write operation, releases the write complex lock
by calling lock_done.

5 If the return from lock_try_write is FALSE, did not obtain the write
complex lock on the code block that performs the write operation. In
this case, it is not necessary to call lock_done.

Figure 8–5 shows what happens when two instances of the if_fta
module attempt to assert a write complex lock on the code block that
performs a write operation on the resource. As the figure shows, both
the CPU1 and CPU2 kernel threads try to assert a write complex lock
on the code block that performs a write operation on the command
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buffer queue. The CPU1 kernel thread obtains the write complex lock
first and as a result lock_try_write returns the value TRUE.
Because the CPU2 kernel thread was not successful in obtaining the
write complex lock, lock_try_write immediately returns (does not
block the kernel thread) the value FALSE.

Figure 8–5: The if_fta Module Trying to Assert a Complex Write Lock
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try_ret_val=lock_try_write(&sc->cmd_buf_q_lock);
if(try_ret_val=TRUE)

(sc->q_first->req_buf=(u_long*)(data);
lock_done(&sc->cmd_buf_q_lock);
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8.4 Terminating a Complex Lock
After unlocking a complex read or write lock and knowing that you are
finished using the lock for this resource, you can terminate the lock by
calling the lock_terminate routine. Typically, you terminate any locks in
the kernel module’s controller (or device) unattach routine. These routines
are associated with loadable kernel modules. One task associated with a
controller or device unattach routine is to terminate any locks initialized
in the kernel module’s attach routine.

The following code fragment shows a call to lock_terminate by the
if_fta module’s fta_ctlr_unattach routine. The code fragment also
shows the include file associated with complex locks, definitions of the
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cmd_buf and fta_kern_str structures, the declaration of the complex
lock structure in the fta_kern_str structure, and the initialization of the
complex lock structure by the kernel module’s ftaattach routine.
Section 8.2 provides descriptions of these tasks. In addition, the code
fragment shows calls to lock_write and lock_done.

.

.

.
#include <kern/lock.h>
.
.
.
struct cmd_buf {

u_long *req_buf;
u_long *rsp_buf;
short timeout;
struct cmd_buf *next;

};
.
.
.
struct fta_kern_str {
.
.
.
struct cmd_buf *q_first; /* first in the request queue */
struct cmd_buf *q_last; /* last in the request queue */
lock_data_t cmd_buf_q_lock; /* lock for the command */

/* request queue */
.
.
.
};
.
.
.
ftaattach(struct controller *ctlr)
{

struct fta_kern_str *sc = &fta_kern_str[ctlr->ctlr_num];
.
.
.
/* Tasks to perform controller-specific initialization */

.

.

.
lock_init(&sc->cmd_buf_q_lock, TRUE);
.
.
.
/* Perform other tasks */

}
.
.
.
ftaioctl(register struct ifnet *ifp,

unsigned int cmd,
caddr_t data)

{
struct fta_kern_str *sc = &fta_kern_str[ifp->if_unit];

.

.

.
switch (cmd) {

case SIOCENABLBACK: {
.
.
.

if (ifp->if_flags & IFF_RUNNING) {
lock_write(&sc->cmd_buf_q_lock);
sc->q_first->req_buf = (u_long*) (data);

.

.

.
lock_done(&sc->cmd_buf_q_lock);
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.

.

.
}
.
.
.
fta_ctlr_unattach(struct bus *bus,

struct controller *ctlr)
{

register int unit = ctlr->ctlr_num;

if ((unit > num_fta) || (unit < 0) {
return(1);

}

if (fta_is_dynamic == 0) {
return(1);

}
/* Performs controller unattach tasks */
.
.
.

lock_terminate(&sc->cmd_buf_q_lock); 1
.
.
.
}

1 Calls the lock_terminate routine to determine that the if_fta
module is permanently done using this complex lock.

The lock_terminate routine takes one argument: a pointer to the
complex lock structure lock. In this call, the fta_ctlr_unattach
routine passes the address of the cmd_buf_q_lock field of the
fta_kern_str structure pointer. In calling lock_terminate, the
if_fta module must not reference this complex lock again.
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9
Kernel Threads

This chapter discusses the following topics associated with kernel threads:

• The advantages of using kernel threads

• Kernel threads execution

• Issues related to using kernel threads

• Kernel threads operations

• The thread and task data structures

In addition, this chapter discusses the routines that allow you to perform
kernel thread operations. Specifically, these routines allow you to:

• Create and start a kernel thread

• Block (put to sleep) a kernel thread

• Unblock (wake up) kernel threads

• Terminate a kernel thread

• Set a timer for the current kernel thread

• Obtain the current kernel thread

9.1 Using Kernel Threads in Kernel Modules
A thread is a single, sequential flow of control within a program. Within a
single thread is a single point of execution. Applications use threads to
improve their performance (throughput, computational speed, and
responsiveness). To start, terminate, delete, and perform other operations
on threads, the application programmer calls the routines that the
DECthreads product provides.

The term kernel thread distinguishes between the threads that applications
use. A kernel thread is a single sequential flow of control within a kernel
module or other systems-based program. The kernel module or other
systems-based program uses the routines (instead of a threads library
package such as DECthreads) to start, terminate, delete, and perform other
kernel thread operations.
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Kernel threads execute within (and share) a single address space.
Therefore, kernel threads read from and write to the same memory
locations.

You use kernel threads to improve the performance of a kernel module.
Multiple kernel threads are useful in a multiprocessor environment, where
kernel threads run concurrently on separate CPUs. However, multiple
kernel threads also improve kernel module performance on single-processor
systems by permitting the overlap of input, output, or other slow
operations with computational operations.

Kernel threads allow kernel modules to perform other useful work while
waiting for a device to produce its next event, such as the completion of a
disk transfer or the receipt of a packet from the network.

Typically, you use kernel threads in kernel modules when:

• The kernel module must perform a long operation

One example of a long operation is the reset sequences associated with
a multistep device.

One reason for creating a kernel thread to perform a long operation is
to prevent the kernel module from running at a high interrupt priority
level (IPL) for long periods of time.

• The resource or resources associated with that operation are not
available

This situation refers to allocating memory or accessing address space
that might cause a page fault.

• The operation performed on the resource (for example, blocking) is
illegal.

One example of this operation is that access to a data item is not
allowed at an elevated IPL, for example, the proc structure.

Figure 9–1 shows one example of the previously described situations. As
the figure shows, a kernel module must check a number of device state
changes. One of these device state changes checks for an adapter fatal
error condition. If the fatal error condition occurs, the kernel module must
reset the adapter. The code that resets the adapter must block to
accomplish the adapter reset operation. Furthermore, the only time this
error can occur is during a device interrupt. It is not legal to block in an
interrupt service routine. Therefore, the figure shows that the interrupt
service routine for the kernel module calls an xxstate routine that
handles all of the state changes. This routine creates a kernel thread called
xxerr that starts up when the adapter becomes operational. The job of this
kernel thread is to reset the adapter when a fatal error occurs. Note that it
is legal for this kernel thread to perform blocking operations.

9–2 Kernel Threads



Figure 9–1: Using Kernel Threads in a Kernel Module
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9.1.1 Kernel Threads Execution

You can view multiple kernel threads in a program as executing
simultaneously. However, you cannot make any assumptions about the
relative start or finish times of kernel threads or the sequence in which
they execute. You can influence the scheduling of kernel threads by setting
scheduling and policy priority.

Each kernel thread has its own unique thread identifier. This thread
identifier is a pointer to the thread data structure associated with the
kernel thread. The kernel threads creation routines return this thread
data structure pointer to the kernel module after they successfully create
and start the kernel thread. Kernel modules use this pointer as a handle to
a specific kernel thread in calls to other kernel thread routines.

A kernel thread changes states during the course of its execution and is
always in one of the following states:

• Waiting

The kernel thread is not eligible to execute because it is synchronizing
with another kernel thread or with an external event, such as I/O.

• Ready

The kernel thread is eligible to be executed by a CPU.

• Running

The kernel thread is currently being executed by a CPU.

• Terminated

The kernel thread has completed all of its work.
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9.1.2 Issues Related to Using Kernel Threads

When you design and code a kernel module that uses the kernel thread
routines, consider the following issues:

• Interplay among kernel threads

Using kernel threads can simplify the coding and designing of a kernel
module. However, you need to be sure that the synchronization and
interplay among kernel threads is correct. You use simple and complex
locks to synchronize access to data.

• Race conditions

A race condition is a programming error that causes unpredictable and
erroneous program behavior. Specifically, the error occurs when two or
more kernel threads perform an operation and the result of the
operation depends on unpredictable timing factors, for example, when
each kernel thread executes and waits and when each kernel thread
completes the operation.

• Deadlocks

A deadlock is a programming error that causes two or more kernel
threads to be blocked indefinitely. Specifically, the error occurs when a
kernel thread holds a resource while waiting for a resource held by
another kernel thread and that kernel thread is also waiting for the
first kernel thread’s resource.

• Priority inversion

Priority inversion occurs when the interaction among three or more
kernel threads blocks the highest-priority kernel thread from executing.
For example, a high-priority kernel thread waits for a resource locked
by a low-priority kernel thread, and the low-priority kernel thread
waits while a middle-priority kernel thread executes. The high-priority
kernel thread is made to wait while a kernel thread of lower priority
(the middle-priority kernel thread) executes.

To avoid priority inversion, associate a priority with each resource that
is at least as high as the highest-priority kernel thread that will use it,
and force any kernel thread using that object to first raise its priority to
that associated with the object.

9.1.3 Kernel Threads Operations

Table 9–1 lists the routines associated with kernel threads and describes
the operations they perform.
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Table 9–1: Summary of Operations That Kernel Thread Routines Perform

Routines Description

Creating kernel threads

kernel_isrthread Starts a fixed-priority kernel thread
dedicated to interrupt service.

kernel_thread_w_arg Starts a kernel thread with a calling
argument passed in.

Blocking kernel threads

assert_wait_mesg Asserts that the current kernel thread is
about to block (sleep).

thread_block Blocks (puts to sleep) the current kernel
thread.

Unblocking kernel threads

thread_wakeup Wakes up all kernel threads waiting for
the specified event.

thread_wakeup_one Wakes up the first kernel thread waiting
on a channel.

Terminating kernel threads

thread_terminate Prepares to stop or stops execution of
the specified kernel thread.

thread_halt_self Handles asynchronous traps for
self-terminating kernel threads.

Miscellaneous

current_task Returns a pointer to the task structure
associated with the currently running
kernel thread.

thread_set_timeout Sets a timer for the current kernel
thread.

9.2 Using the thread and task Data Structures
This section discusses the two data structures that kernel thread routines
use: thread and task. The thread data structure contains kernel thread
information. Kernel modules typically use the wait_result field (along
with the current_thread routine) to check for the result of the wait. The
header file /usr/sys/include/kern/thread.h shows a typedef
statement that assigns the alternate name thread_t for a pointer to the
thread structure. Many of the kernel thread routines operate on these
pointers to thread structures.
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The thread structure is an opaque data structure; that is, all of its
associated fields (except for the wait_result field) are referenced and
manipulated by the operating system and not by the user of kernel threads.

The task data structure contains task-related information. The header file
/usr/sys/include/kern/task.h shows a typedef statement that
assigns the alternate name task_t for a pointer to the task structure.
Some of the kernel thread routines require that you pass a pointer to the
task structure.

The task structure is an opaque data structure; that is, all of its associated
fields are referenced and manipulated by the operating system and not by
the user of kernel threads.

9.3 Creating and Starting a Kernel Thread

You can create and start a kernel thread with the following routines:

• kernel_thread_w_arg

Starts a kernel thread with a calling argument passed in.

• kernel_isrthread

Starts a fixed-priority kernel thread dedicated to interrupt service.

The following sections describe each of these routines.

9.3.1 Creating and Starting a Kernel Thread at a Specified Entry
Point

To create and start a kernel thread at a specified entry point and with a
specified argument, call the kernel_thread_w_arg routine. The
kernel_thread_w_arg routine creates and starts a kernel thread in the
specified task at the specified entry point with a specified argument. The
kernel_thread_w_arg routine passes the specified argument to the
newly created kernel thread. The kernel_thread_w_arg routine creates
and starts a kernel thread with timeshare scheduling. A kernel thread
created with timeshare scheduling means that its priority degrades if it
consumes an inordinate amount of CPU resources. A kernel module should
call kernel_thread_w_arg only for long-running tasks. A kernel module
should always attach a kernel thread to the first task.

The kernel_thread_w_arg routine is actually a convenience wrapper for
the thread_create routine (which creates the kernel thread) and the
thread_start routine (which starts the newly created kernel thread).
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The following code fragment shows a call to kernel_thread_w_arg by the
if_fta module’s fta_transition_state routine. The
fta_transition_state routine changes the state of the kernel module
by performing certain fixed functions for any given state.

#include <kern/thread.h> 1
.
.
.
#define ADAP "fta"
.
.
.
extern task_t first_task; 2
.
.
.
struct fta_kern_str {
.
.
.
short reinit_thread_started; /* reinit thread running? */
.
.
.
}; 3
.
.
.
struct ifnet {
.
.
.
short if_unit; /* subunit for lower-level driver */
.
.
.
};
.
.
.
fta_transition_state(struct fta_kern_str *sc,

short unit,
short state)

{
.
.
.

switch(state) {
.
.
.

case PI_OPERATIONAL: {
int s;
NODATA_CMD *req_buff;
thread_t thread; 4

if (sc->reinit_thread_started == FALSE) { 5

thread = kernel_thread_w_arg(first_task,
fta_error_recovery,
(void *)sc); 6

if (thread == NULL) { 7
printf("%s%d: Cannot start error recovery thread.\n",

ADAP, ifp->if_unit);
}
sc->reinit_thread_started = TRUE;

}
}

1 Includes the header file /usr/sys/include/kern/thread.h. The
thread.h file defines structures that kernel thread routines use.
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2 Declares a pointer to a task structure and calls it first_task. Every
kernel thread must be part of a task. You pass this pointer to the
kernel_thread_w_arg routine.

3 Defines an fta_kern_str data structure. The example shows only the
field related to the discussion of the kernel_thread_w_arg routine.

4 Declares a pointer to a thread structure and calls it thread. This
variable stores the thread structure pointer returned by
kernel_thread_w_arg.

5 If the reinitialized kernel thread evaluates to FALSE (the reinit kernel
thread is not running), calls the kernel_thread_w_arg routine.

6 Calls the kernel_thread_w_arg routine.

The kernel_thread_w_arg routine takes three arguments:

• The first argument specifies a pointer to a task structure. This
pointer identifies the task in which the kernel_thread_w_arg
routine starts the newly created kernel thread. In this call, the
fta_transition_state routine passes a task structure called
first_task.

• The second argument specifies a pointer to a routine that is the
entry point for the newly created kernel thread. In this call, the
entry point for the newly created kernel thread is the
fta_error_recovery routine. The fta_error_recovery
routine is a kernel thread that starts up when the adapter becomes
operational. This kernel thread is responsible for resetting the
adapter in the event of a fatal error.

• The third argument specifies an argument that
kernel_thread_w_arg passes to the entry point specified in the
second argument. In this call, the fta_transition_state
routine passes a pointer to the fta_kern_str structure. The
fta_error_recovery routine performs a variety of tasks that
require the fta_kern_str structure.

7 Upon successful completion, kernel_thread_w_arg returns a pointer
to the thread structure associated with the kernel thread started at
the specified entry point. Kernel modules can use this pointer as a
handle to a specific kernel thread in calls to other kernel thread
routines.

The fta_transition_state routine checks the return. If the return
is NULL, kernel_thread_w_arg did not create the error recovery
kernel thread. The fta_transition_state routine calls printf to
display an appropriate message on the console terminal. If the return
is not NULL, fta_transition_state sets the
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reinit_thread_started field to the value TRUE to indicate that the
error recovery kernel thread is started.

9.3.2 Creating and Starting a Fixed-Priority Kernel Thread Dedicated
to Interrupt Service

To create and start a fixed-priority kernel thread dedicated to interrupt
service, call the kernel_isrthread routine. The kernel_isrthread
routine creates and starts a kernel thread at the specified entry point. This
kernel thread handles only interrupt service requests in the specified task
and at the specified priority level. A kernel module should always attach a
kernel thread to the first task.

The following code fragment shows a call to kernel_isrthread by the
if_fta module’s ftaprobe routine. The ftaprobe routine determines if
the adapter exists, fills in a variety of register values, and initializes a
variety of descriptors.

.

.

.
#include <kern/thread.h> 1
.
.
.
extern task_t first_task; 2
.
.
.
ftaprobe(io_handle_t reg,

struct controller *ctlr)
{
.
.
.

thread = kernel_isrthread(first_task,
fta_rec_intr,
BASEPRI_SYSTEM); 3

.

.

.
}

1 Includes the header file /usr/sys/include/kern/thread.h. The
thread.h file defines structures that kernel thread routines use.

2 Declares a pointer to a task structure and calls it first_task. Every
kernel thread must be part of a task. You pass this pointer to the
kernel_isrthread routine.

3 Calls the kernel_isrthread routine.

The kernel_isrthread routine takes three arguments:

• The first argument specifies a pointer to a task structure. This
pointer identifies the task in which the kernel_isrthread
routine starts the newly created kernel thread dedicated to
interrupt service handling. In this call, the ftaprobe routine
passes a task structure called first_task.
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• The second argument specifies a pointer to a routine that is the
entry point for the newly created kernel thread. In this call, the
entry point for the newly created kernel thread is the
fta_rec_intr routine. The fta_rec_intr routine is a kernel
thread that starts up when the kernel module discovers a receive
type device interrupt. This kernel thread is responsible for
handling the receive type interrupt.

• The third argument specifies the scheduling priority level for the
newly created kernel thread.

The following priority usage table describes the possible scheduling
priorities. The first column shows a range of priorities. The second
column shows an associated scheduling priority constant defined in
<src/kernel/kern/sched.h> (if applicable). The third column
describes the usage of the priority ranges. To specify a scheduling
priority of 38, you pass the constant BASEPRI_SYSTEM, as shown
in the example. To specify a scheduling priority of 33, you can pass
the following: BASEPRI_HIGHEST + 1.

Priority Constant Usage

0—31 N/A Realtime kernel
threads

32—38 BASEPRI_HIGHEST — BASEPRI_SYSTEM Operating system
kernel threads

44—64 BASEPRI_USER — BASEPRI_LOWEST User kernel threads

9.4 Blocking (Putting to Sleep) a Kernel Thread
The routines you use to block (put to sleep) a kernel thread depend on
whether or not the block (sleep) can be interrupted. For interruptable sleep
(that is, the kernel thread can take asynchronous signals), you must call
the symmetric multiprocessor (SMP) sleep call, mpsleep (see Section 9.4.2).

For uninterruptable sleep, use one of the following routines:

• assert_wait_mesg

Call this routine to assert that the current kernel thread is about to
block until some specified event occurs. You use this routine with the
thread_block routine, which actually blocks (puts to sleep) the
current kernel thread.

• thread_block

Call this routine to block the current kernel thread and select the next
kernel thread to start.

These routines are described in the following sections.

9–10 Kernel Threads



9.4.1 Asserting That the Current Kernel Thread Is About to Block
Until the Specified Event Occurs

To assert that the current kernel thread is about to block until some
specified event occurs, call the assert_wait_mesg routine. To actually
block (put to sleep) the current kernel thread, call thread_block.

The following code fragment shows a call to assert_wait_mesg and
thread_block by the if_fta module’s fta_error_recovery routine.
The fta_error_recovery routine is a kernel thread that starts up when
the adapter becomes operational. This kernel thread resets the adapter if a
fatal error occurs. The code fragment also shows the code that contains the
call to kernel_thread_w_arg, which calls fta_error_recovery.

.

.

.
#include <kern/thread.h> 1
.
.
.
#define ADAP "fta"
.
.
.
extern task_t first_task; 2
.
.
.
struct fta_kern_str {
.
.
.
short reinit_thread_started; /* reinit thread running? */
.
.
.
short error_recovery_flag; /* flag to wake up a process */
.
.
.
}; 3
.
.
.
struct ifnet {
.
.
.
short if_unit; /* subunit for lower-level driver */
.
.
.
};
.
.
.
fta_transition_state(struct fta_kern_str *sc,

short unit,
short state)

{
.
.
.

switch(state) {
.
.
.

case PI_OPERATIONAL: {
int s;
NODATA_CMD *req_buff;
thread_t thread; 4

if (sc->reinit_thread_started == FALSE) { 5
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thread = kernel_thread_w_arg(first_task,
fta_error_recovery,
(void *)sc); 6

if (thread == NULL) { 7
printf("%s%d: Cannot start error recovery thread.\n",

ADAP, ifp->if_unit);
}
sc->reinit_thread_started = TRUE;

}
.
.
.
void fta_error_recovery(struct fta_kern_str *sc) 8
{

struct ifnet *ifp;

/*
* Collect the argument left by the kernel_thread_w_arg().
*/

ifp = &sc->is_if;

for(;;) { 9
assert_wait_mesg((vm_offset_t)&sc->error_recovery_flag,

TRUE,"ftaerr"); 10
thread_block(); 11

/* Performs tasks to reset the adapter */
.
.
.
}
.
.
.
}

1 Includes the header file /usr/sys/include/kern/thread.h. The
thread.h file defines structures that kernel thread routines use.

2 Declares a pointer to a task structure and calls it first_task. Every
kernel thread must be part of a task. You pass this pointer to the
kernel_thread_w_arg routine.

3 Defines an fta_kern_str data structure. The example shows only the
fields related to the discussion of the kernel_thread_w_arg,
assert_wait_mesg, and thread_block routines.

4 Declares a pointer to a thread structure and calls it thread. This
variable stores the thread structure pointer returned by
kernel_thread_w_arg.

5 If the reinitialized kernel thread evaluates to FALSE (the reinit kernel
thread is not running), calls the kernel_thread_w_arg routine.

6 Calls the kernel_thread_w_arg routine.

The kernel_thread_w_arg routine takes three arguments:

• The first argument specifies a pointer to a task structure. This
pointer identifies the task in which the kernel_thread_w_arg
routine starts the newly created kernel thread. In this call, the
fta_transition_state routine passes a task structure called
first_task.
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• The second argument specifies a pointer to a routine that is the
entry point for the newly created kernel thread. In this call, the
entry point for the newly created kernel thread is the
fta_error_recovery routine. The fta_error_recovery
routine is a kernel thread that starts up when the adapter becomes
operational. This kernel thread is responsible for resetting the
adapter in the event of a fatal error.

• The third argument specifies an argument that
kernel_thread_w_arg passes to the entry point specified in the
second argument. In this call, the fta_transition_state
routine passes a pointer to the fta_kern_str structure. The
fta_error_recovery routine performs a variety of tasks that
require the fta_kern_str structure.

7 Upon successful completion, kernel_thread_w_arg returns a pointer
to the thread structure associated with the kernel thread started at
the specified entry point. Kernel modules can use this pointer as a
handle to a specific kernel thread in calls to other kernel thread
routines.

The fta_transition_state routine checks the return. If the return
is NULL, kernel_thread_w_arg did not create the error recovery
kernel thread. The fta_transition_state routine calls printf to
display an appropriate message on the console terminal. If the return
is not NULL, fta_transition_state sets the
reinit_thread_started field to the value TRUE to indicate that the
error recovery kernel thread is started.

8 The fta_error_recovery routine is a kernel thread that starts up
when the adapter becomes operational. This kernel thread resets the
adapter if a fatal error occurs.

A fatal error requires resetting the adapter; this error is discovered
during a device interrrupt. It is necessary to block in the interrupt
service routine while resetting the adapter. Because it is not legal to
block in an interrupt service routine, the fta_transition_state
calls this kernel thread to perform the reset operation on the adapter.

The kernel_thread_w_arg routine passes the kern_str structure
pointer to fta_error_recovery.

9 Sets up an infinite loop that executes when the adapter becomes
operational.

10 Calls the assert_wait_mesg routine to assert that the current kernel
thread is about to block (sleep).

The assert_wait_mesg routine takes three arguments:
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• The first argument specifies the event associated with the current
kernel thread. In this call, the event associated with the current
kernel thread is stored in the error_recovery_flag field.

• The second argument specifies a Boolean value that indicates how
the kernel thread is awakened. You can pass one of the following
values:

TRUE The current kernel thread is interruptible.
This value means that a signal can awaken
the current kernel thread.

FALSE The current kernel thread is not
interruptible. This value means that only
the specified event can awaken the current
kernel thread.

In this call, the value TRUE is passed.

• The third argument specifies a mnemonic for the type of wait. The
/bin/ps command uses this mnemonic to print out more
meaningful messages about a process. In this call, the
fta_error_recovery routine passes the string ftaerr.

The assert_wait_mesg routine does not return a value.
11 Calls the thread_block routine. The thread_block routine blocks

(puts to sleep) the current kernel thread and selects the next kernel
thread to start (run). The routine schedules the next kernel thread
onto this CPU.

The thread_block routine does not return a value.

9.4.2 Using the Symmetric Multiprocessor Sleep Routine

To block the current kernel thread, call the mpsleep routine—the
symmetric multiprocessor (SMP) sleep call. The following code fragment
shows a call to mpsleep by the if_fta module’s fta_error_recovery
routine. The fta_error_recovery routine is a kernel thread that starts
up when the adapter becomes operational. This kernel thread resets the
adapter if a fatal error occurs. The code fragment also shows the use of a
simple lock with the mpsleep routine.

.

.

.
struct fta_kern_str {
.
.
.
short error_recovery_flag; /* flag to wake up a process */
.
.
.
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int is_state; 1
simple_lock_data_t lk_fta_kern_str; 2
.
.
.
};
.
.
.
void fta_error_recovery(struct fta_kern_str *sc)
{

struct ifnet *ifp;

/*
* Collect the argument left by the kernel_thread_w_arg().
*/

ifp = &sc->is_if;
simple_lock (&sc->lk_fta_kern_str); 3
while (sc->is_state == RUN_NOT) { 4

for(;;) { 5
mpsleep ((vm_offset_t)&sc->error_recovery_flag, PCATCH,

"ftaerr", 0, &sc->lk_fta_kern_str,
MS_LOCK_SIMPLE | MS_LOCK_ON_ERROR)) 6

/* Performs tasks to reset the adapter */
.
.
.

}
}

}
.
.
.

1 Declares a field to hold state flags.

2 Declares a simple lock structure pointer as a field of the
fta_kern_str structure to protect the integrity of the data stored in
the fields of this structure. Assume that this simple lock was
initialized in the example kernel module’s attach routine. The
fta_error_recovery routine passes this simple lock structure
pointer to the mpsleep routine.

3 Calls the simple_lock routine to assert an exclusive access on the
following code block.

4 While the is_state flag is equal to the RUN_NOT flag, execute the for
loop.

5 Sets up an infinite loop that executes when the is_state flag is equal
to the RUN_NOT flag.

6 Calls the mpsleep routine to block (put to sleep) the current kernel
thread.

The mpsleep routine takes six arguments:

• A channel argument

The channel argument specifies an address associated with the
calling kernel thread to be put to sleep. In this call, the address (or
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event) associated with the current kernel thread is stored in the
error_recovery_flag field.

• A pri argument

The pri argument specifies whether the sleep request is
interruptible. Setting this argument to the PCATCH flag causes the
process to sleep in an interruptible state (that is, the kernel thread
can take asynchronous signals). Not setting the PCATCH flag causes
the process to sleep in an uninterruptible state (that is, the kernel
thread cannot take asynchronous signals).

In this call, fta_error_recovery passes the value PCATCH.

• A wmesg argument

The wmesg argument specifies the wait message.

In this call, fta_error_recovery passes the string ftaerr.

• A timo argument

The timo argument specifies the maximum amount of time the
kernel thread should block (sleep). If you pass the value 0 (zero),
mpsleep assumes there is no timeout.

In this call, fta_error_recovery passes the value 0 (zero) to
indicate there is no timeout.

• A lockp argument

The lockp argument specifies a pointer to a simple or complex lock
structure. You pass a simple or complex lock structure pointer if
you want to release the lock. If you do not want to release a lock,
pass the value 0 (zero).

In this call, fta_error_recovery passes the address of the
simple lock.

• A flags argument

The flags argument specifies the lock type. You can pass the
bitwise inclusive OR of the valid lock bits defined in
/usr/sys/include/sys/param.h.

In this call, fta_error_recovery passes the bitwise inclusive OR
of the lock bits MS_LOCK_SIMPLE (calls mpsleep with a simple
lock asserted) and MS_LOCK_ON_ERROR (forces mpsleep to relock
the lock on failure). You would specify these bits only if you pass a
simple or complex lock.

The mpsleep routine blocks (puts to sleep) the current kernel thread
until a wakeup is issued on the address you specified in the channel
argument. The kernel thread blocks a maximum of timo divided by hz
seconds. The value 0 (zero) means there is no timeout.
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If you pass the PCATCH flag to the pri argument, mpsleep checks
signals before and after blocking. Otherwise, mpsleep does not check
signals.

The mpsleep routine allows you to specify a pointer to a simple or
complex lock structure that is associated with some resource. This
routine unlocks this resource prior to blocking. The flags argument
specifies the lock type. The mpsleep routine releases the lock when
the current kernel thread successfully performs an assert wait on the
specified channel.

The mpsleep routine returns the value 0 (zero) if awakened (success)
and EWOULDBLOCK if the timeout specified in the timo argument
expires (failure). On success, mpsleep relocks the lock if you did not
set MS_LOCK_NO_RELOCK in flags. On failure, it leaves the lock
unlocked. If you set the flags argument to MS_LOCK_ON_ERROR,
mpsleep relocks the lock on failures.

9.5 Unblocking (Awakening) Kernel Threads
You can unblock (awaken) a kernel thread with the following routines:

• thread_wakeup_one

Call this routine to unblock the first kernel thread on the specified
event.

• thread_wakeup

Call this routine to unblock all kernel threads on the specified event.

The following code fragment compares the calls to thread_wakeup_one
and thread_wakeup by the if_fta module’s ftaintr routine:

ftaintr(int unit)
{
.
.
.

fta_transition_state(sc, unit, PI_OPERATIONAL); 1
.
.
.
/*******************************************************
* Code fragment 1: Shows call to thread_wakeup_one *
*******************************************************/
.
.
.

thread_wakeup_one((vm_offset_t)&sc->error_recovery_flag); 2
}

1 This code fragment shows the call to fta_transition_state. The
fta_transition_state routine changes the state of the kernel
module by performing certain fixed functions for any given state.
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After fta_transition_state performs its tasks, it returns to
ftaintr, which calls thread_wakeup_one. This routine takes an
event as the first argument.

2 The code fragment shows that the first argument for each of the
routines specifies the event associated with the current kernel thread.
It passes the address of the value stored in the
error_recovery_flag field.

The kernel module’s fta_error_recovery routine is the kernel
thread created and started to perform error recovery tasks. The
fta_error_recovery routine blocked on the event stored in the
error_recovery_flag field.

ftaintr(int unit)
{
.
.
.

fta_transition_state(sc, unit, PI_OPERATIONAL); 1
.
.
.
/*******************************************************
* Code fragment 2: Shows call to thread_wakeup *
*******************************************************/
.
.
.

thread_wakeup((vm_offset_t)&sc->error_recovery_flag); 2
}

1 This code fragments shows the call to fta_transition_state. The
fta_transition_state routine changes the state of the kernel
module by performing certain fixed functions for any given state.

After fta_transition_state performs its tasks, it returns to
ftaintr, which calls thread_wakeup. This routine takes an event
as the first argument.

2 The code fragment shows that the first argument for each of the
routines specifies the event associated with the current kernel thread.
It passes the address of the value stored in the
error_recovery_flag field.

The kernel module’s fta_error_recovery routine is the kernel
thread created and started to perform error recovery tasks. The
fta_error_recovery routine blocked on the event stored in the
error_recovery_flag field.

The thread_wakeup_one routine wakes up only the first kernel thread in
the hash chain waiting for the event specified in the event argument. This
routine is actually a convenience wrapper for the thread_wakeup_prim
routine with the one_thread argument set to TRUE (wake up only the first
kernel thread) and the result argument set to THREAD_AWAKENED
(wakeup is normal).
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The thread_wakeup routine wakes up all kernel threads waiting for the
event specified in the event argument. This routine is actually a
convenience wrapper for the thread_wakeup_prim routine with the
one_thread argument set to FALSE (wake up all kernel threads) and the
result argument set to THREAD_AWAKENED (wakeup is normal).

9.6 Terminating a Kernel Thread
To terminate a kernel thread, call the thread_terminate routine. The
thread_terminate routine prepares to stop or permanently stops
execution of the specified kernel thread. You created and started this
kernel thread in a previous call to the kernel_isrthread or
kernel_thread_w_arg routine. These routines return a pointer to the
thread structure associated with the newly created and started kernel
thread. Kernel modules use this pointer as a handle to identify the specific
kernel thread that thread_terminate stops executing.

Typically, a kernel thread terminates itself. However, one kernel thread can
terminate another kernel thread. A kernel thread that terminates itself
must call thread_halt_self immediately after the call to
thread_terminate. The reason for this is that thread_terminate only
prepares the self-terminating kernel thread to stop execution. The
thread_halt_self routine completes the work needed to stop execution
by performing the appropriate cleanup work of the self-terminating kernel
thread.

You do not need to terminate every kernel thread that you create. You
should not terminate a kernel thread that is waiting for some event. The
basic rule is that you should terminate only those kernel threads that you
do not need anymore. For example, if a dynamically configured kernel
module uses kernel threads, you should terminate them in the
CFG_OP_UNCONFIGURE entry point of the loadable kernel module’s
configure routine. The kernel threads are no longer needed after the
kernel module is unconfigured.

Note that the thread_terminate routine (for kernel threads that
terminate other kernel threads) not only permanently stops execution of
the specified kernel thread, but it also frees any resources associated with
that kernel thread; thus, this kernel thread can no longer be used.

The following code fragment shows you how the if_fta kernel module’s
fta_error_recovery kernel thread terminates itself by calling
thread_terminate and thread_halt_self.

The fta_error_recovery routine is a kernel thread that starts up when
the adapter becomes operational. This kernel thread resets the adapter if a
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fatal error occurs. The code fragment also shows the code that contains the
call to kernel_thread_w_arg, which calls fta_error_recovery.

.

.

.
#include <kern/thread.h>
.
.
.
#define ADAP "fta"
.
.
.
extern task_t first_task;
.
.
.
struct fta_kern_str {
.
.
.
short reinit_thread_started; /* reinit thread running? */
.
.
.
short error_recovery_flag; /* flag to wake up a process */
.
.
.
};
.
.
.
struct ifnet {
.
.
.
short if_unit; /* subunit for lower-level driver */
.
.
.
};
.
.
.
fta_transition_state(struct fta_kern_str *sc,

short unit,
short state)

{
.
.
.

switch(state) {
.
.
.

case PI_OPERATIONAL: {
int s;
NODATA_CMD *req_buff;
thread_t err_recov_thread;

if (sc->reinit_thread_started == FALSE) {

err_recov_thread = kernel_thread_w_arg(first_task,
fta_error_recovery,
(void *)sc);

if (err_recov_thread == NULL) {
printf("%s%d: Cannot start error recovery thread.\n",

ADAP, ifp->if_unit);
}
sc->reinit_thread_started = TRUE;

}
.
.
.
/* Perform other cases */
.
.
.
void fta_error_recovery(struct fta_kern_str *sc)
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{
struct ifnet *ifp;
int ret_val;

/*
* Collect the argument left by the kernel_thread_w_arg().
*/

ifp = &sc->is_if;

for(;;) {
assert_wait_mesg((vm_offset_t)&sc->error_recovery_flag,

TRUE,"ftaerr");
thread_block();
if (current_thread()->wait_result == THREAD_SHOULD_TERMINATE) { 1
ret_val = thread_terminate(err_recov_thread); 2
thread_halt_self(); 3
}

}
.
.
.

/* Performs tasks to reset the adapter */
.
.
.
}

1 If the wait_result field of the thread structure pointer associated
with the current kernel thread is set to the
THREAD_SHOULD_TERMINATE constant, there is no need to keep this
error recovery kernel thread. The fta_error_recovery routine uses
the current_thread routine to obtain the pointer to the currently
running kernel thread.

The current_thread routine is a pointer to the currently running
kernel thread. Typically, kernel modules use this routine to reference
the wait_result field of the thread structure pointer associated
with the currently running kernel thread. A kernel module calls
current_thread after calls to assert_wait_mesg and
thread_block. If the kernel module needs to set a timeout, then it
calls current_thread after calls to assert_wait_mesg,
thread_set_timeout, and thread_block.

2 Calls the thread_terminate routine to terminate the error recovery
kernel thread.

The thread_terminate routine takes a thread_to_terminate
argument, which is a pointer to the thread structure associated with
the kernel thread that you want to terminate. This pointer was
returned in a previous call to the kernel_isrthread or
kernel_thread_w_arg routine.

The kernel_thread_w_arg routine returns this pointer to the
err_recov_thread variable. This variable is passed to
thread_terminate.
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Upon successfully terminating the specified kernel thread,
thread_terminate returns the constant KERN_SUCCESS. If the
thread structure pointer passed to the thread_to_terminate
argument does not identify a valid kernel thread, thread_terminate
returns the constant KERN_INVALID_ARGUMENT. On any other error,
thread_terminate returns the constant KERN_FAILURE.

3 A kernel thread that terminates itself must call thread_halt_self
immediately after the call to thread_terminate. The reason for this
is that thread_terminate only prepares the self-terminating kernel
thread to stop execution. The thread_halt_self routine completes
the work needed to stop execution of the self-terminating kernel
thread by performing the appropriate cleanup work.

The following code fragment shows you how the if_fta module’s
fta_transition_state routine terminates another kernel thread (in this
example, the error recovery kernel thread) by calling only
thread_terminate. The fta_transition_state routine changes the
state of the kernel module by performing certain fixed tasks for a given
state.

.

.

.
#include <kern/thread.h>
.
.
.
#define ADAP "fta"
.
.
.
extern task_t first_task;
.
.
.
struct fta_kern_str {
.
.
.
short reinit_thread_started; /* reinit thread running? */
.
.
.
short error_recovery_flag; /* flag to wake up a process */
.
.
.
};
.
.
.
struct ifnet {
.
.
.
short if_unit; /* subunit for lower-level driver */
.
.
.
};
.
.
.
fta_transition_state(struct fta_kern_str *sc,

short unit,
short state)

{
.
.
.
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int ret_val;
.
.
.

switch(state) {
.
.
.

case PI_OPERATIONAL: {
int s;
NODATA_CMD *req_buff;
thread_t err_recov_thread;

if (sc->reinit_thread_started == FALSE) {

err_recov_thread = kernel_thread_w_arg(first_task,
fta_error_recovery,
(void *)sc);

if (err_recov_thread == NULL) {
printf("%s%d: Cannot start error recovery thread.\n",

ADAP, ifp->if_unit);
}
sc->reinit_thread_started = TRUE;

}
.
.
.
/* Perform other cases */
.
.
.
/* After performing all other cases, no more need for the */
/* kernel thread */

case PI_SHUTDOWN: { 1

ret_val = thread_terminate(err_recov_thread); 2
.
.
.
void fta_error_recovery(sc)

struct fta_kern_str *sc;
{

struct ifnet *ifp;

/*
* Collect the argument left by the kernel_thread_w_arg().
*/

ifp = &sc->is_if;

for(;;) {
assert_wait_mesg((vm_offset_t)&sc->error_recovery_flag,

TRUE,"ftaerr");
thread_block();

/* Performs tasks to reset the adapter */
.
.
.
}
.
.
.
}

1 After the fta_error_recovery routine completes its work and
returns to fta_transition_state, there is no need to keep this
error recovery kernel thread. The fta_transition_state routine
sets up a case statement to handle the termination of the error
recovery kernel thread.
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2 Calls the thread_terminate routine to terminate the error recovery
kernel thread.

The thread_terminate routine takes a thread_to_terminate
argument, which is a pointer to the thread structure associated with
the kernel thread that you want to terminate. This pointer was
returned in a previous call to the kernel_isrthread or
kernel_thread_w_arg routine.

The kernel_thread_w_arg routine returns this pointer to the
err_recov_thread variable. This variable is passed to
thread_terminate.

Upon successfully terminating the specified kernel thread,
thread_terminate returns the constant KERN_SUCCESS. If the
thread structure pointer passed to the thread_to_terminate
argument does not identify a valid kernel thread, thread_terminate
returns the constant KERN_INVALID_ARGUMENT. On any other error,
thread_terminate returns the constant KERN_FAILURE.

9.7 Setting a Timer for the Current Kernel Thread
To set a time delay on the current kernel thread, call the
thread_set_timeout routine.

You must call the thread_set_timeout routine as follows:

1. Lock the resource.

2. Call assert_wait_mesg to assert that the current kernel thread is
about to block.

3. Unlock the resource.

4. Call thread_set_timeout to set the time of delay for the current
kernel thread.

5. Call thread_block to block (put to sleep) the current kernel thread.

The following code fragment shows a call to thread_set_timeout by the
if_fta module’s fta_cmd_req routine. This routine puts a DMA request
onto the request queue of the adapter.

.

.

.
#include <kern/thread.h> 1
.
.
.
struct fta_kern_str {
.
.
.
struct cmd_buf *q_first; /* first in the request queue */
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struct cmd_buf *q_last; /* last in the request queue */
lock_data_t cmd_buf_q_lock; /* lock for the cmdreq queue */
.
.
.
}; 2
.
.
.
short fta_cmd_req(cmdbuf, sc, command)
struct cmd_buf *cmdbuf;
struct fta_kern_str *sc;
short command;
{
.
.
.

lock_write(&sc->cmd_buf_q_lock); 3
.
.
.

assert_wait_mesg((vm_offset_t)cmdbuf, TRUE, "dmareq"); 4
lock_done(&sc->cmd_buf_q_lock); 5
thread_set_timeout(hz * 2); 6
thread_block(); 7

.

.

.
}

1 Includes the header file /usr/sys/include/kern/thread.h. The
thread.h file defines structures that kernel thread routines use.

2 Defines an fta_kern_str data structure.

In this example, the fta_kern_str structure contains the following
fields:

• q_first

Specifies a pointer to a cmd_buf data structure. This field
represents the first command queue in the linked list.

• q_last

Specifies a pointer to a cmd_buf data structure. This field
represents the last command queue in the linked list.

• cmd_buf_q_lock

Declares a lock structure called cmd_buf_q_lock. The purpose of
this lock is to protect the integrity of the data stored in the linked
list of cmd_buf data structures. Note that the alternate name
lock_data_t is used to declare the complex lock structure.
Embedding the complex lock in the fta_kern_str structure
protects the cmd_buf structure for any number of instances.

3 Calls the lock_write routine to lock the command request queue.

The lock_write routine takes one argument: a pointer to the complex
lock structure lock. This is the lock structure associated with the
resource on which you want to assert a complex lock with write access.
The fta_cmd_req routine passes the address of the cmd_buf_q_lock
field of the fta_kern_str structure pointer.
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4 Calls the assert_wait_mesg routine to assert that the current kernel
thread is about to block.

The assert_wait_mesg routine takes three arguments:

• The first argument specifies the event associated with the current
kernel thread. In this call, the event associated with the current
kernel thread is the cmdbuf structure pointer.

• The second argument specifies a Boolean value that indicates how
the kernel thread is awakened. You can pass one of the following
values:

TRUE The current kernel thread is interruptible.
This value means that a signal can awaken
the current kernel thread.

FALSE The current kernel thread is not
interruptible. This value means that only
the specified event can awaken the current
kernel thread.

The code fragment shows that fta_cmd_req passes the value
TRUE.

• The third argument specifies a mnemonic for the type of wait. The
/bin/ps command uses this mnemonic to print out more
meaningful messages about a process. The code fragment shows
that fta_cmd_req passes the string dmareq.

5 Calls the lock_done routine to unlock the command request queue.

The lock_done routine takes one argument: a pointer to the complex
lock structure lock. The fta_cmd_req routine passes the address of
the cmd_buf_q_lock field of the fta_kern_str structure pointer.

6 Calls the thread_set_timeout routine to set a timer for the current
kernel thread.

The thread_set_timeout routine takes one argument: the amount of
time to wait for an event. The time is used in conjunction with the
assert_wait routine. The fta_cmd_req routine passes the value hz
* 2.

The time you specify to wait for the event is automatically canceled
when the kernel thread awakes.

The thread_set_timeout routine does not return a value.
7 Calls the thread_block routine to block (put to sleep) the current

kernel thread.
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10
Building and Testing a Kernel Module

This chapter discusses how to build and test a kernel module:

• Section 10.1 describes how to produce a single binary module from your
source code.

• Section 10.2 describes how to load and configure a kernel module.

• Section 10.3 describes how to prepare a kernel module to go off line
(unconfiguration) and how to unload it.

• Section 10.4 describes how to statically configure a kernel module.

• Section 10.5 describes how to dynamically configure a kernel module.

• Section 10.6 describes how to create the sysconfigtab file fragment.

• Section 10.7 describes how to change attribute values at run time.

• Section 10.8 describes how to test a kernel module.

10.1 Producing a Single Binary Module
Before you can statically or dynamically load a kernel module, you must
produce the single binary module. A single binary module is the executable
image of the kernel module that can be statically or dynamically brought
into the kernel. A single binary module has a file extension of .mod. To
produce the single binary module, perform the steps described in the
following sections.

10.1.1 Step 1: Create a Directory to Contain Kernel Module Files

Use the mkdir command to create a directory to contain the kernel module
files:

# mkdir /usr/sys/ExampMod

In this example, the kernel module writer creates the directory called
/usr/sys/ExampMod to contain the files related to the example kernel
module. Note that the writer performs the work at the superuser prompt.

When you create your directory, replace ExampMod with a directory that
reflects a name specific to your organization or company.
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10.1.2 Step 2: Copy Kernel Module Files

Use the cp command to copy the files to the directory you created in
Section 10.1.1:

# cd /usr/sys/ExampMod 1

# cp /usr/sys/mydevelopment/example.c . 2

# cp /usr/sys/mydevelopment/files .

# cp /usr/sys/mydevelopment/sysconfigtab .

1 Change to the directory (in this example, the /usr/sys/ExampMod
directory), into which you will copy the kernel module files.

2 Copy the example.c source file associated with your kernel module to
the directory you specified in Section 10.1.1 (in this example, the
/usr/sys/ExampMod directory). The /usr/sys/mydevelopment
directory is where the kernel module writer initially created the
example.c file.

You should have implemented the module’s configure routine to
follow the single binary module model (that is, your module is both
static and dynamic).

10.1.3 Step 3: Create a BINARY.list File

Use an editor such as vi to create a BINARY.list file:

# cd /usr/sys/conf 1
# vi BINARY.list 2

1 Change to the /usr/sys/conf directory.
2 Use the vi or another editor to create the BINARY.list file.

The following example shows the contents of the BINARY.list file that the
kernel module writer creates:

/usr/sys/ExampMod:

The contents is the directory path where you placed the kernel module files
(see Section 10.1.1). For this example, the directory is:

/usr/sys/ExampMod:

Replace the path and source file name with the path and source file name
associated with your kernel module. You must follow the path and source
file name with a colon (:), as shown in the example.

10.1.4 Step 4: Run the sourceconfig Program

Run the sourceconfig program from the /usr/sys/conf directory:
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# cd /usr/sys/conf 1
# ./sourceconfig BINARY 2

1 Change to the /usr/sys/conf directory before running the
sourceconfig program.

2 Invoke the sourceconfig program followed by the BINARY
configuration file name. This generates a new Makefile in the
/usr/sys/BINARY directory. This Makefile contains the information
necessary to compile the single binary module or modules defined in
the BINARY.list file and the files file fragment. Section 10.1.3 tells
you how to create a BINARY.list file in the /usr/sys/conf directory.

Your files file fragment resides in the directory that you created in
Section 10.1.1.

10.1.5 Step 5: Run the make Program

Run the make program from the /usr/sys/BINARY directory:

# cd /usr/sys/BINARY 1

# make example.mod 2

1 Change to the /usr/sys/BINARY directory before running the make
program.

2 Invoke the make program followed by the name of your kernel module
plus the .mod extension. This step creates the single binary module in
the /usr/sys/BINARY directory. In the example, example.mod is the
single binary module for the example module, created in the
/usr/sys/BINARY directory. This step also creates a link from the
/usr/sys/BINARY directory to the directory you created in
Section 10.1.1.

Invoke the make program for each module you want to compile. The
appropriate links are created as described in the previous paragraph.

10.1.6 Step 6: Create a Kernel Configuration Development Area

Use an editor such as vi to create a sysconfigtab file fragment (see
Section 10.6).

Run the doconfig program from the /usr/sys/conf directory to create a
kernel configuration development area:

# cd /usr/sys/conf 1
# doconfig 2

1 Change to the /usr/sys/conf directory.

2 Invoke the doconfig program.
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Enter the name of the target configuration file at the following prompt:

*** KERNEL CONFIGURATION AND BUILD PROCEDURE ***
Enter a name for the kernel configuration file. [CONRAD]: EXAMPMOD

In order to test your kernel module, enter a new name for the target
configuration file. In this example, the kernel module writer enters the
target configuration file name EXAMPMOD. Giving the doconfig program a
new target configuration file name allows your existing target configuration
file to remain on the system. You can then use the new target configuration
file to configure a system that contains the kernel module you are testing.

Select the option from the menu that indicates you are adding no new
kernel options.

Indicate that you do not want to edit the target configuration file in
response to the following prompt:

Do you want to edit the configuration file? (y/n) [n] no

10.1.7 Step 7: Run the sysconfigdb Utility

Run the sysconfigdb utility to configure the single binary module’s
attributes:

# cd /usr/sys/ExampMod 1
# sysconfigdb -a -f sysconfigtab example 2

1 Change to the the directory that you created in Section 10.1.1 (in this
example, the /usr/sys/ExampMod directory).

2 Invoke the sysconfigdb utility. In this example, the sysconfigdb
utility is invoked with the following flags:

• The -a flag

Specifies that sysconfigdb add the kernel module entry to the
/etc/sysconfigtab database.

• The -f flag

Specifies the flag that precedes the sysconfigtab file fragment
whose device driver entry is to be added to the
/etc/sysconfigtab database. This flag is used with the -a flag.

• The kernel module name

Specifies the name of the kernel module, example.

You should replace example with the name of your kernel module.
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10.2 Loading and Configuring a Kernel Module

Kernel module configuration consists of the tasks necessary to incorporate
modules into the kernel to make them available to other resources.
Chapter 2 described two methods of kernel module configuration:

• Static configuration consists of the tasks and tools necessary to load a
single binary kernel module (that is, a .mod file created from your
source .c file) directly into the kernel at kernel build time (see
Section 10.2.1).

• Dynamic configuration consists of the tasks and tools necessary to load
a single binary kernel module directly into the kernel at any point in
time (see Section 10.2.2).

Section 10.1 describes how to create a single binary module and then how to
statically and dynamically configure the kernel module into the kernel. This
section discusses the following module configuration and loading operations:

• Loading a module into the kernel image, which makes the module’s
binary code part of the kernel (see Section 10.2.1).

• Loading a kernel module dynamically (see Section 10.2.2).

Configuring the kernel module, which initializes the attribute table and
registers the module’s entry points, is described in Chapter 2 and
Chapter 3.

10.2.1 Loading a Module into the Kernel Image

You can statically load a single binary module into the kernel as follows:

• By running the doconfig program

This program generates a bootable kernel (/vmunix), which consists of
either a list of modules or a binary image. This method is used for
devices that are required at system startup, such as the console
terminal, disks, and graphics devices.

• By running the osfboot program

This program loads the kernel at system startup. If the kernel is a
binary image, osfboot simply boots the image. If the kernel is a list of
modules, osfboot links the modules, then boots the new kernel image.
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10.2.2 Loading a Kernel Module Dynamically

You can dynamically load a single binary module into the kernel as follows:

1. Make sure your single binary module exists in the/sys/BINARY
directory.

2. Log in as superuser (the root user).

3. Run the sysconfig -c module_name command, where
module_name is the name of your kernel module.

10.3 Unconfiguring and Unloading Kernel Modules
The module framework defines the rules for preparing a kernel module to
go off line (unconfiguration) and for unloading. As described in
Section 2.2.2, when a kernel module’s configure routine receives the
CFG_OP_UNCONFIGURE request from the module framework, it prepares
the module for unconfiguration and unloading. These tasks are part of the
same process that initiates when the CFG_OP_UNCONFIGURE request is
received. However, the results of unconfiguring and unloading are different,
depending on whether your kernel module was statically loaded or
dynamically loaded.

Unconfiguration can occur both at single-user and at multiuser time and
only at the user’s request. Only dynamically loaded kernel modules are
completely removed from the system—that is, the module image is removed
from the kernel. Statically loaded kernel modules are taken off line and
made unavailable to other modules and system resources. When the user
unconfigures and unloads a static kernel module, the module is not
removed from the kernel image. In this sense, it is not really unloaded the
way dynamic modules are.

Use the following command to unconfigure and unload (in the case of
dynamic modules) a kernel module. Note that you must be a superuser to
perform this task.

# sysconfig -u example

10.4 Statically Configuring a Single Binary Module
After creating a single binary module, you can statically configure it into
the kernel as follows:

• Statically configure a single binary module into a /vmunix kernel

• Statically configure a single binary module into a /sysconfigtab
boot-link kernel

The following sections describe the steps for each of these tasks.
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10.4.1 Statically Configuring a Single Binary Module into a /vmunix
Kernel

To statically configure a single binary module into a /vmunix kernel, you
perform the following steps.

10.4.1.1 Step 1: Edit or Create the NAME.list File

Section 10.1.6 instructs you to create a kernel configuration development
area. If your system has a /usr/sys/conf/.product.list file, then the
system creates a NAME.list file. Use an editor such as vi to edit or create
a NAME.list file in the /usr/sys/conf directory:

# cd /usr/sys/conf 1
# vi example.list 2

1 Change to the /usr/sys/conf directory.

2 Use the vi or another editor to create a NAME.list file (called
example.list in this example).

You replace NAME with the name you specified for the target
configuration file in Section 10.1.6.

The following example shows the contents of the example.list file the
kernel module writer creates:

/usr/sys/ExampMod:

The contents of your NAME.list file is the directory you created in
Section 10.1.1. You must follow the path and file name with a colon (:), as
shown in the example.

10.4.1.2 Step 2: Run the doconfig Program

Run the doconfig program from the /usr/sys/conf directory to rebuild
the kernel. You previously created this kernel (and associated configuration
development area) in Section 10.1.6.

# cd /usr/sys/conf 1
# doconfig -c EXAMPMOD 2

1 Change to the /usr/sys/conf directory.

2 Invoke doconfig with the -c option and replace EXAMPMOD with the
name of your target configuration file.

Enter the name of the target configuration file at the following prompt:

*** KERNEL CONFIGURATION AND BUILD PROCEDURE ***
Enter a name for the kernel configuration file. [CONRAD]: EXAMPMOD
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In order to test your kernel module, enter a new name for the target
configuration file. In the example, the writer enters the target configuration
file name EXAMPMOD. Giving the doconfig program a new target
configuration file name allows your existing target configuration file to
remain on the system. You can then use the existing target configuration
file to configure a system that omits the kernel module you are testing.

Select the option from the Kernel Option Selection menu that indicates you
are adding no new kernel options.

In response to the following prompt, indicate that you do not want to edit
the target configuration file:
Do you want to edit the configuration file? (y/n) [n] no

10.4.1.3 Step 3: Copy the New Kernel to the Root Directory

Copy the new /vmunix kernel into the root directory:
# cd / 1
# cp /usr/sys/EXAMPMOD/vmunix /vmunix.example 2

1 Change to the root directory.
2 Copy the new /vmunix kernel to the root directory. You should

perform a similar copy operation, replacing example with the target
configuration file name you specified in Section 10.4.1.2.

Note that the kernel module writer specifies the name
vmunix.example as the name for the new kernel. This is typically
done when testing the module. You should replace the name example
in vmunix.example with some other appropriate name.

10.4.1.4 Step 4: Shut Down and Boot the System

Shut down and boot the system:
# shutdown -h now 1
>>> boot -fi "vmunix.example" 2

1 Specify the shutdown command with the -h option to shut down the
system.

2 Specify the boot command followed by the -fi options and the name
of the new kernel, replacing vmunix.example with the name of the
kernel you copied to the root directory in Section 10.4.1.3.

The kernel module product (single binary module) is now part of this
new kernel. You can test it with the appropriate utilities.

10.5 Dynamically Configuring a Single Binary Module
This section describes the procedure to dynamically configure a single
binary module into the kernel.
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10.5.1 Step 1: Link to the Single Binary Module

Run the ln command to link the single binary module attributes:

# cd /var/subsys 1
# ln -s /usr/sys/BINARY/example.mod example.mod 2

1 Change to the /var/subsys directory.
2 Create a symbolic link. In this example, the source of the link is

/usr/sys/BINARY/example.mod and the destination is
example.mod.

You should also create a symbolic link by replacing example with the
name of your kernel module.

10.5.2 Step 2: Link to the Method File

Run the ln command to link to the method file:

# pwd 1
/var/subsys
# ln -s /subsys/device.mth example.mth 2

1 Use the pwd command to make sure the working directory is
/var/subsys. The pwd command displays /var/subsys, the
directory you changed to in Section 10.5.1.

2 Create a symbolic link. In this example, the source of the link is
/subsys/device.mth and the destination is example.mth.

You should also create a symbolic link by replacing example with the
name of your kernel module.

10.5.3 Step 3: Run the sysconfig Utility

Use the sysconfig utility with the -c option to load the single binary
module:

# sysconfig -c example

Replace example with the name of your kernel module. The -c option
configures the single binary module into the kernel and creates the device
special files (for device driver modules).

10.6 Creating the sysconfigtab File Fragment
Users can configure attributes at run time. Any configurable attributes, or
attributes that users can query, are defined in /etc/sysconfigtab.

You should supply initial values for your kernel module’s configurable
attributes in a sysconfigtab file fragment. The sysconfigtab file
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fragment is an ASCII file. The sysconfigdb utility appends the
sysconfigtab file fragment to the customer’s /etc/sysconfigtab file
when the kernel module is installed on the system. Using sysconfigdb
ensures that users never manually edit the etc/sysconfigtab file.

Figure 10–1 shows the format of the entries in the sysconfigtab file
fragment.

Figure 10–1: Format of the sysconfigtab File Fragment

none:

#The following illustrates a sysconfigtab entry

Module_Config_Name = none

terminate with
colon (:)

comment

attribute1_name equal sign 
as separator

attribute1_value

trailing blanks

entry_name

new line to terminate
attribute name and value pair

ZK-0566U-AI

Each entry contains the following information:

• Comments

A number sign (#) at the beginning of a line indicates a comment. You
can include comments at the beginning or the end of a kernel module
sysconfigtab entry. Comments are not allowed within the body of the
sysconfigtab entry.

• Blank spaces

Tabs are allowed at the beginning or end of lines, and trailing blanks
are allowed at the end of lines.

• entry_name

Specifies the name of the kernel module, followed by a colon (:).
Typically, each module contains a separate sysconfigtab file entry.
The entry_name must match the Module_Config_Name defined in the
module attribute table.

• attribute_name = attribute_value
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Specifies an attribute and its value. A valid sysconfigtab entry
consists of a attribute name, an equal sign (=), and one or more values.
Each attribute name and value pair should appear on a separate line.

The following restrictions apply to sysconfigtab file fragments:

• An individual sysconfigtab entry can be a maximum of 40960 bytes
long. The system ignores all bytes in excess of this limit.

• An individual line (attribute) within a sysconfigtab entry cannot
exceed 1548 bytes.

• An individual sysconfigtab entry cannot consist of over 2048 lines.

• At least one blank line is required between sysconfigtab entries.

Example 10–1 shows the sysconfigtab file fragment for a device driver
kernel module (in this example, temp driver). The development tool
generates all of the necessary attribute entries; only the
TEMP_Developer_Debug attribute was added to the file. The
sysconfigtab file fragment does not specify a value for the Device_Dir
attribute. Therefore, the device special file for the temp module resides in
the /dev directory.

Example 10–1: A sysconfigtab File Fragment

# /usr/sys/io/TEMP/sysconfigtab
# sysconfigtab file fragment for temp driver
temp: 1

Module_Config_Name = temp 2
3 PCI_Option = PCI_SE_Rev - 0x210, Vendor_Id - 0x1002, Device_Id -

0x4354, Rev - 0, Base - 0, Sub - 0, Pif - 0 Sub_Vid - 0, Sub_Did - 0, Vid_Mo_Flag -
1, Did_Mo_Flag - 1, Rev_Mo_Flag - 0, Base_Mo_Flag - 0, Sub_Mo_Flag -
0, Pif_Mo_Flag - 0, Sub_Vid_Mo_Flag - 0, Sub_Did_Mo_Flag - 0, Driver_Name -
temp, Type - C, Adpt_Config - N

ISA_Option = Board_Id - Null, Function_Name - ’TEMP’ , Driver_Name -
temp, Type - C, Adpt_Config - N

EISA_Option = Board_Id - TEMP, Function_Name - Null, Driver_Name -
temp, Type - C, Adpt_Config - N
#
# Initialize driver-specific attributes
#

TEMP_Developer_Debug = 1 4

1 Indicates that the attributes that follow belong to the temp module.
2 Initializes the Module_Config_Name attribute to temp. This is the

string that the module framework uses to identify the configure
routine and attribute table for the kernel module.

3 Initializes the bus option data for the PCI, ISA, and EISA buses. The
driver in this example is designed to operate on these three types of
buses.
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4 Initializes the TEMP_Developer_Debug attirbute to 1, which turns on
debugging messages.

10.7 Changing Attribute Values at Run Time

Users, especially system administrators, may sometimes want to change
attributes. You may also need to change an attribute value during kernel
module development to test features of the kernel module. The sysconfig
program allows you and your users to reconfigure a kernel module with
new attribute values.

For example, the temp kernel module from Section 10.6 initializes the
TEMP_Developer_Debug attribute to 1 by default, which turns debugging
messages on. To turn the messages off, call the sysconfig program as
follows:

# sysconfig -r temp TEMP_Developer_Debug=0

Not all attributes can be changed with sysconfig. To allow an attribute to
change at run time, you must assign the CFG_OP_RECONFIGURE constant
to the operation member of the attribute’s cfg_subsys_attr_t data
structure. The sysconfig program returns an error if you try to change
an attribute that does not have this operation value.

The sysconfig program calls the module framework to change the value
stored in memory. The module framework then calls the kernel module’s
configure entry point to perform any other operations required to
reconfigure the module.

10.8 Testing a Kernel Module
After you have statically or dynamically configured your module into the
kernel, you should test it. There are many ways to test the functioning of
your kernel module that depend on the purpose and function of your kernel
module. If your module is a device driver, see Writing Device Drivers for
specific information on testing device drivers. The following list provides
some general suggestions for testing kernel modules:

• Include printf statements in your module code that may be removed
later. When you run your module, verify that each part of the
processing succeeds.

• If your module is an application program interface (API), write a
program to test it.
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Glossary

alignment
The placement of a data item in memory. For a data item to be aligned, its
lowest-addressed byte must reside at an address that is a multiple of the
size of the data item (in bytes).

API
Application programming interface.

argument
See parameter.

atomicity
A type of serialization that refers to the indivisibility of a small number of
actions, such as those occurring during the execution of a single instruction
or a small number of instructions.

attribute table
An array of the cfg_subsys_attr_t data structure, where each instance
of cfg_subsys_attr_t represents one table entry defining some data
item for the kernel module.

boot timeline
The series of events and dispatch points that occur as the system boots. For
example, at dispatch point CFG_PT_VM_AVAIL virtual memory is available.
See also dispatch point.

class/port driver
The class/port driver comprises two drivers. The class driver supports user
interfaces while the port driver supports the hardware and handles
interrupts. The driver model is always made of more than one module and
it can have multiple class drivers, multiple port drivers, and some common
code in a middle layer. The structure of this driver eliminates code
duplication.

complex lock
A mechanism for protecting resources in an SMP environment. A complex
lock achieves the same result as a simple lock but is used when there are
blocking conditions. Routines that implement complex locks synchronize
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access to kernel data between multiple kernel threads. See also simple
lock.

device driver
A kernel module that supports one or more hardware components. There
are two driver models: the monolithic driver and the class/port driver.

dispatch point
Points along the boot timeline and post-boot that mark when certain
resources or capabilities are available. Dispatch points initiated from user
space can occur in any order. In kernel mode, these points are in strict
chronological order. For example, the dispatch point indicating that virtual
memory is available (CFG_PT_VM_AVAIL) always occurs before locks are
available (CFG_PT_LOCKAVAIL).

dynamic mode
The ability to add or remove software or hardware while the system is
operational. For example, dynamic hardware configuration and dynamic
module loading occur late in the boot timeline once these features are
enabled. Contrast with static mode.

entry point
The address of a routine.

granularity
The size of neighboring units of memory that can be written independently
and atomically by multiple CPUs. See also atomicity.

initialization
The tasks that incorporate a kernel module into the kernel after it has
been loaded and make it available for use by the system.

interface
A collection of routine definitions and data structures that perform related
functions. There are kernel interfaces and user interfaces. For example, the
kernel set management (KSM) interface consists of a variety of
cfg_ksm_xxx library routines that allow applications to manage the
kernel sets. See also routine.

kernel module
The code and data structures in a .mod file, either statically linked into
/vmunix or dynamically loaded as part of the kernel.

kernel thread
A single, sequential flow of control within a program.
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load
The process of bringing a kernel module into memory and calling its
configure routine with the CFG_OP_CONFIGURE request code.

lock
A means of protecting a resource from multiple CPU access in an SMP
environment. See also simple lock and complex lock.

module
See kernel module.

module framework
The subsystem in the kernel that loads, unloads, makes other management
requests, and generally keeps track of modules in the kernel.

monolithic driver
Kernel module code that is all-inclusive; supporting everything from user
requests to processing interrupts from hardware.

parameter
A variable or constant associated with some value that is passed to a
routine. Also called an argument.

pseudodevice driver
A driver, such as the pty terminal driver, structured like other drivers but
not operating on a bus and not controlling hardware. A pseudodevice driver
does not register itself in the hardware topology (system configuration
tree). Instead, it relies on the device driver method of the cfgmgr
framework to create the associated device special files.

routine
Code that can be called to perform a function. See also interface.

scan
The process of looking for hardware components for the purpose of
configuring hardware that is not currently configured.

simple lock
A general-purpose mechanism for protecting resources in an SMP
environment. A simple lock is a spin lock. That is, routines that implement
simple locks do not return until the lock has been returned. See also
complex lock.

single binary image
A single .mod file that can be statically loaded as part of /vmunix or
dynamically loaded into the kernel any time after a system boots.
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SMP
Symmetric multiprocessing.

software synchronization
The coordination of events in such a way that only one event happens at a
time.

static mode
The permanent and nonremovable parts of the kernel. Contrast with
dynamic mode.

string
An array of characters terminated by a null character.

subsystem
A collection of code that provides one or more interfaces or performs one or
more functions.

symmetric multiprocessing
A computer environment that uses two or more central processing units
(CPUs). Software applications and the associated kernel modules can
operate on two or more of these CPUs.

thread
See kernel thread.
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understanding, 4–1

buf data structure, 6–16
BUF_LOCK routine, 6–17
BUF_UNLOCK routine, 6–17
building a kernel module, 10–1
busy wait time, 6–11
byte string

copying bcopy routine, 5–7
bzero routine

explanation of code fragment,
5–9

C
callback, 1–6

coding, 4–4, 4–7
deregistering, 4–8
dispatch point, 4–1
nesting, 4–8
using, 4–2
writing, 4–7

calling process
putting to sleep, 5–14

cfg_attr_t routine, 3–1
CFG_OP_CONFIGURE, 2–3, 2–5
CFG_OP_QUERY, 2–3
CFG_OP_RECONFIGURE, 2–3
CFG_OP_UNCONFIGURE, 2–3,

2–7
cfg_subsys_attr_t routine, 3–2
code block

choosing lock method by size of,
6–11

identifying those that
manipulate resource, 6–18

complex lock, 6–8, 8–1
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access operations, 8–4
asserting, 8–4

read-only access, 8–4
write access, 8–7

choosing when to use, 6–9
declaring data structure, 8–1
execution speed, 6–11
initializing, 8–2
releasing previously asserted,

8–10
terminating, 8–19
trying to assert, 8–13

read-only access, 8–14
write access, 8–16

complex lock data structure, 6–9
declaring, 8–1
initializing, 8–2

complex lock routine, 6–9, 8–1
configuration point

( See dispatch point )
configure routine, 2–1, 2–3, 2–4,

3–3, 3–4, 4–2
parameters, 2–2

console
printing text to, 5–13

control status register
( See CSR )

controller data structure, 6–16
convenience wrapper

for thread_create and
thread_start routines, 9–6

copyin routine
explanation of code fragment,

5–9
results of example call, 5–10

copyout routine
explanation of code fragment,

5–11
results of example call, 5–11

cpu global variable, 6–16
CSR

access methods, 6–14
CSR I/O access routines

read_io_port, 6–14
write_io_port, 6–14

ctime function, 5–25

D
data

granularity, 6–3
integrity, 6–4
natural alignment, 6–3

data copying routines, 5–7
data structure

allocating memory, 2–7
buf, 6–16
controller, 6–16
ihandler_t, 6–16
kernel thread, 9–6
module-specific, 6–15
simple lock, 7–1
task, 9–6
thread, 9–3
used by kernel thread routines,

9–5
data type

attribute, 3–3
deadlock

and kernel threads, 9–4
decl_simple_lock_data routine, 7–1
DECthreads software, 9–1
DELAY macro

explanation of code fragment,
5–26

deregistering callbacks, 4–8
device control status register

( See CSR )
device register offset definitions

locking, 6–19t
direct method

accessing CSR addresses, 6–14
dispatch point, 1–5

along boot timeline, 4–3
callback, 4–1
CFG_PT_ENTER_SUSER, 4–3
CFG_PT_GLROOTFS_AVAIL,

4–3
CFG_PT_HAL_INIT, 4–3
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CFG_PT_LOCK_AVAIL, 4–2,
4–3

CFG_PT_OLD_CONF_ALL, 4–3
CFG_PT_POSTCONFIG, 4–3
CFG_PT_PRECONFIG, 4–3
CFG_PT_ROOTFS_WR, 4–2
CFG_PT_TOPOLOGY_CONF,

4–3
CFG_PT_VM_AVAIL, 2–7, 4–1,

4–2, 4–3
defining in a kernel module, 4–8
definitions, 4–3
developer-defined, 4–8

dispatch point callback, 4–1
dynamic kernel module, 2–5

E
error logger

printing text to, 5–13

F
fetching time, 5–23

G
global resource

module-specific, 6–15
system-specific, 6–16

global variable
cpu, 6–16
hz, 6–16
lbolt, 6–16
module-specific, 6–15
system-specific, 6–16

granularity, 6–3
of data access, 6–3
of lock, 6–20

H
hardware issues, 6–1
hz global variable, 6–16

I
I/O copy routines, 6–14

io_copyin, 6–14
io_copyio, 6–14
io_copyout, 6–14

ihandler_t data structure, 6–16
indata parameter, 2–2
indatalen parameter, 2–2
indirect method

accessing CSR addresses, 6–14
initialization, 1–6, 2–1

kernel module, 2–4
initializing a timer queue element,

5–15
interrupt priority level

( See IPL )
interrupt priority mask

setting, 5–17
interrupt service routine

using simple lock to
synchronize with, 6–7

IPL, 5–17

K
kernel address space

copying from with copyout
routine, 5–11

kernel mode capabilities, 5–1
kernel module, 1–1

attributes, 3–1
building and testing, 10–1
choosing resources to lock, 6–13
defining new dispatch point, 4–8
designing, 1–5
developing, 1–6
dynamically loaded, 2–5
environment, 1–2
initializing, 1–6, 2–1, 2–4
introduction, 1–1
kernel mode capabilities, 5–1
loading into the kernel image,

10–5
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making safe in SMP
environment

using complex locks, 8–1
using simple locks, 7–1

multithreaded programming,
9–1

producing a single binary
module, 10–1

purpose of, 1–2
required tasks for writing, 1–6
statically loaded, 2–5
testing, 10–12
unconfiguring, 10–6
unloading, 10–6
working with time, 5–22

kernel thread, 6–4
advantages of using, 9–1
blocking, 9–10

asserting current is about to
block, 9–11

mpsleep routine, 9–14
creating and starting, 9–6

at a specified entry point, 9–6
fixed-priority dedicated to

interrupt service, 9–9
distinguishing between threads

applications use, 9–1
execution, 9–3
issues related to using, 9–4
operations, 9–4
setting a timer for current, 9–24
states, 9–3
summary of routine operations,

9–4t
terminating, 9–19
unblocking, 9–17
using, 5–26

kernel thread routine, 9–1
( See also kernel thread )
data structures, 9–5

task, 9–6
thread, 9–6

operations, 9–1
kernel thread sleep

prevention of access to
resource, 6–10

kernel_isrthread routine, 9–9
kernel_thread_w_arg routine, 9–6

as convenience wrapper, 9–6

L
lbolt global variable, 6–16
libcfg.a library, 3–4, 3–6
lock, 6–4

complex, 6–8, 8–1
simple, 6–6, 7–1

lock_done routine, 8–10
lock_init routine, 8–2
lock_read routine, 8–4
lock_terminate routine, 8–19
lock_try_read routine, 8–14
lock_try_write routine, 8–16
lock_write routine, 8–7
locking, 5–27

access to a resource, 6–10
choosing method, 6–9
choosing resources, 6–13
kernel module resources for, 6–17
length of time held, 6–10
SMP characteristics, 6–12

locking device register offset
definitions, 6–19t

locking methods
choosing, 6–9
comparing simple and complex

locks, 6–5
complex lock, 6–1
simple lock, 6–1
summary of, 6–11

M
memory

allocating, 2–7, 5–19
zeroing with bzero routine, 5–9

memory block
zeroing a, 5–9
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memory space
used by locks, 6–11

modifying a timestamp, 5–24
module attribute table

( See attribute table )
module framework, 3–3
module initialization, 2–1
mpsleep routine, 5–14, 9–14
multithreaded programming, 9–1

N
nesting callbacks, 4–8
null-terminated character string,

5–4
comparing with strcmp routine,

5–1
copying with strcpy routine, 5–4
copying with strncpy routine,

5–5
returning with strlen routine,

5–6
null-terminated string routine, 5–1

O
op parameter, 2–2
outdata parameter, 2–2
outdatalen parameter, 2–2

P
parameters

for configure routine, 2–2
printf routine, 5–13

explanation of code fragment,
5–14

printing text to the console, 5–13
priority inversion

and kernel threads, 9–4
process

waking up a sleeping, 5–15
producing a single binary module,

10–1

R
race condition

and kernel threads, 9–4
realtime preemption, 6–11
register_callback routine, 4–4, 4–5

parameters, 4–6
request code, 2–3

CFG_OP_CONFIGURE, 2–3,
2–5, 2–6, 3–3

CFG_OP_QUERY, 2–3, 3–3, 3–4
CFG_OP_RECONFIGURE,

2–3, 3–3, 3–6
CFG_OP_UNCONFIGURE,

2–3, 2–7
resource, 6–4

asserting exclusive access on,
7–4

choosing to lock in a module, 6–13
determining which to lock, 6–17
global, 6–15

module-specific, 6–15
system-specific, 6–16

locking, 6–5
read-only, 6–13

return status values, 2–4
routine, 9–1

assert_wait_mesg, 9–11
associated with complex locks,

6–9
BUF_LOCK, 6–17
BUF_UNLOCK, 6–17
callback, 4–7
commonly used by kernel

modules, 5–1
complex lock, 8–1
CSR I/O access, 6–14
data copying, 5–7
decl_simple_lock_data, 7–1
delaying a calling, 5–26
I/O copy, 6–14
kernel thread

summary of operations, 9–4t
kernel-related, 5–13
kernel_isrthread, 9–9
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kernel_thread_w_arg, 9–6
lock_done, 8–10
lock_init, 8–2
lock_read, 8–4
lock_terminate, 8–19
lock_try_read, 8–14
lock_try_write, 8–16
lock_write, 8–7
mpsleep, 5–14, 9–14
register_callback, 4–4, 4–5
simple_lock, 7–4
simple_lock_init, 7–2
simple_lock_terminate, 7–12
simple_lock_try, 7–9
simple_unlock, 7–6
spltty, 7–16
splx, 7–16
string, 5–1
thread_block, 9–11
thread_create, 9–6
thread_halt_self, 9–19
thread_set_timeout, 9–24
thread_start, 9–6
thread_terminate, 9–19
thread_wakeup, 9–17
thread_wakeup_one, 9–17

S
serialization, 6–2
shared data

access to, 6–4
simple lock, 6–6, 7–1

asserting exclusive access on
resource, 7–4

choosing when to use, 6–9
declaring data structure, 7–1
execution speed, 6–11
initializing, 7–2
releasing previously asserted,

7–6
terminating, 7–12
trying to obtain, 7–9
using spl routines, 7–15

simple lock data structure, 6–7t

declaring
decl_simple_lock_data, 7–1
simple_lock_data_t, 7–2

initializing, 7–2
reason for declaring, 7–2

simple lock routines, 6–7t, 7–1
simple_lock routine, 7–4
simple_lock_init routine, 7–2
simple_lock_terminate routine, 7–12
simple_lock_try routine, 7–9
simple_unlock routine, 7–6
single binary image, 4–2
sleeping lock

( See blocking lock )
SMP environment, 6–1

characteristics of, 6–12t
locking, 5–27, 6–4, 6–9
making kernel module safe

using complex locks, 8–1
using simple locks, 7–1

putting a calling process to
sleep, 5–14

sleep call, 9–14
software synchronization, 6–2
spin lock

( See simple lock )
spl routines

splbio routine, 5–17
splclock routines, 5–17
spldevhigh routine, 5–17
splextreme routine, 5–17
splhigh routine, 5–17
splimp routine, 5–17
splnet routine, 5–17
splnone routine, 5–17
splrt routine, 5–17
splsoftclock routine, 5–17
spltty routine, 7–16
splvm routine, 5–17
splx routine, 5–17, 7–16
summarized list of, 5–18
uses for, 5–17
using, 7–15

splbio routine
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explanation of code fragment,
5–18

spltty routine, 7–16
splx routine, 7–16

explanation of code fragment,
5–18

static kernel module, 2–5
status

return values, 2–4
strcmp routine, 5–1

explanation of code fragment,
5–2

results of example calls, 5–2
strcpy routine, 5–4

explanation of code fragment,
5–4

results of example call, 5–5
string operation

comparing null-terminated
character string using
strcmp routine, 5–1

comparing two strings using
strmcmp routine, 5–3

copying null-terminated
character string using
strcpy routine, 5–4

copying null-terminated
character string using
strncpy routine, 5–5

returning number of characters
using strlen routine, 5–6

string routine
comparing two null-terminated,

5–1
comparing two strings, 5–3
copying a null-terminated

character, 5–4
copying with specified limit, 5–5
returning the number of

characters using strlen, 5–6
using, 5–1

strlen routine, 5–6
explanation of code fragment,

5–6
results of example call, 5–7

strncmp routine, 5–3
explanation of code fragment,

5–3
results of example calls, 5–3

strncpy routine, 5–5
explanation of code fragment,

5–5
results of example call, 5–6

structure
( See data structure )

symmetric multiprocessing
environment

( See SMP environment )
synchronization, 6–1

hardware issues related to, 6–1
sysconfigtab file fragment

creating, 10–9
system time

concepts, 5–22
creating, 5–22
fetching, 5–23
how a kernel module uses, 5–22
working with, 5–21

T
task data structure, 9–6
testing a kernel module, 10–1
thread

( See kernel thread )
thread data structure, 9–3, 9–6
thread_block routine, 9–11
thread_create routine, 9–6
thread_halt_self routine, 9–19
thread_set_timeout routine, 9–24
thread_start routine, 9–6
thread_terminate routine, 9–19
thread_wakeup routine, 9–17
thread_wakeup_one routine, 9–17
time

( See system time )
TIME_READ macro, 5–23, 5–24
timeout routine, 5–15

explanation of code fragment,
5–16
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timer queue
removing scheduled routine

from, 5–16
timer queue element

initializing, 5–15
timestamp

converting to a string, 5–25
modifying, 5–24

U
uiomove routine

explanation of code fragment,
5–12

untimeout routine, 5–16
explanation of code fragment,

5–16

user address space
copying from, with copyin

routine, 5–9

V
virtual space

moving data between user and
system with uiomove
routine, 5–12

/vmunix, 2–5, 4–2

W
wakeup routine, 5–15

explanation of code fragment,
5–15
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How to Order Tru64 UNIX Documentation

You can order documentation for the Tru64 UNIX operating system and related
products at the following Web site:

http://www.businesslink.digital.com/

If you need help deciding which documentation best meets your needs, see the Tru64
UNIX Documentation Overview or call 800-344-4825 in the United States and
Canada. In Puerto Rico, call 787-781-0505. In other countries, contact your local
Compaq subsidiary.

If you have access to Compaq’s intranet, you can place an order at the following Web
site:

http://asmorder.nqo.dec.com/

The following table provides the order numbers for the Tru64 UNIX operating
system documentation kits. For additional information about ordering this and
related documentation, see the Documentation Overview or contact Compaq.

Name Order Number

Tru64 UNIX Documentation CD-ROM QA-6ADAA-G8

Tru64 UNIX Documentation Kit QA-6ADAA-GZ

End User Documentation Kit QA-6ADAB-GZ

Startup Documentation Kit QA-6ADAC-GZ

General User Documentation Kit QA-6ADAD-GZ

System and Network Management Documentation Kit QA-6ADAE-GZ

Developer’s Documentation Kit QA-6ADAG-GZ

Reference Pages Documentation Kit QA-6ADAF-GZ
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Compaq welcomes your comments and suggestions on this manual. Your input will help us to write
documentation that meets your needs. Please send your suggestions using one of the following methods:

• This postage-paid form
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• Fax: (603) 884-0120, Attn: UBPG Publications, ZKO3-3/Y32
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