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About This Manual

This manual defines the requirements, mechanisms, and conventions used
in the UNIX® interface that supports procedure calls for Tru64 UNIX
for Alpha systems. The standard defines the data structures, constants,
algorithms, conventions, methods, and functional interfaces that enable a
native user-mode procedure to operate correctly in a multilanguage and
multithreaded environment on Tru64 UNIX systems operating on Alpha
hardware.

Audience

Although this manual primarily defines requirements for compiler and
debugger writers, the information applies to procedure calling for all
programmers at all levels of programming.

Organization

This document includes eight chapters:

Chapter 1 Introduces the standard and provides definitions
of terms used in the standard.

Chapter 2 Describes the fundamental concepts of the Tru64 UNIX
calling standard for Alpha systems.

Chapter 3 Describes the aspects of the standard that
deal with flow control.

Chapter 4 Discusses the passing and storage of data.

Chapter 5 Discusses how the standard relates to events outside
the normal program flow.

Chapter 6 Discusses stack limit checking in multithreaded
execution environments.

Chapter 7 Describes the mechanisms for functions that are
needed to support procedure call tracing.

Chapter 8 Discusses procedure descriptors.
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Related Documents

This Tru64 UNIX calling standard is a component of the larger Alpha
Software Architecture and depends on standards and conventions not
described in this document. These standards include:

• Object language (including link-time optimizations) and object file format

• Status values and message definition, formatting, and reporting

• Heap memory management and dynamic string management

• Multithread architecture

• Names and naming conventions

The following documents contain information related to this standard and
the standards mentioned in the previous list:

• Alpha Architecture Reference Manual

• Tru64 UNIX Programmer’s Guide

• Tru64 UNIX Assembly Language Programmer’s Guide

• Guide to DECthreads

• Compaq Portable Mathematics Library

• Tru64 UNIX POSIX Conformance Document

• Information Technology − Portable Operating System Interface (POSIX)
− Part 1: System Application Program Interface (API) [C Language]
ISO/IEC 9945-1: 1990

• American National Standard for Information Systems Programming
Language C − ANSI X3.159-1989 and its international equivalent,
ISO/IEC 9899

Icons on Tru64 UNIX Printed Books

The printed version of the Tru64 UNIX documentation uses letter icons on
the spines of the books to help specific audiences quickly find the books that
meet their needs. (You can order the printed documentation from Compaq.)
The following list describes this convention:

G Books for general users

S Books for system and network administrators

P Books for programmers

D Books for device driver writers

R Books for reference page users
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Some books in the documentation help meet the needs of several audiences.
For example, the information in some system books is also used by
programmers. Keep this in mind when searching for information on specific
topics.

The Documentation Overview provides information on all of the books in
the Tru64 UNIX documentation set.

Reader’s Comments

Compaq welcomes any comments and suggestions you have on this and
other Tru64 UNIX manuals.

You can send your comments in the following ways:

• Fax: 603-884-0120 Attn: UBPG Publications, ZKO3-3/Y32

• Internet electronic mail: readers_comment@zk3.dec.com

A Reader’s Comment form is located on your system in the following
location:

/usr/doc/readers_comment.txt

• Mail:

Compaq Computer Corporation
UBPG Publications Manager
ZKO3-3/Y32
110 Spit Brook Road
Nashua, NH 03062-2698

A Reader’s Comment form is located in the back of each printed manual.
The form is postage paid if you mail it in the United States.

Please include the following information along with your comments:

• The full title of the book and the order number. (The order number is
printed on the title page of this book and on its back cover.)

• The section numbers and page numbers of the information on which
you are commenting.

• The version of Tru64 UNIX that you are using.

• If known, the type of processor that is running the Tru64 UNIX software.

The Tru64 UNIX Publications group cannot respond to system problems
or technical support inquiries. Please address technical questions to your
local system vendor or to the appropriate Compaq technical support office.
Information provided with the software media explains how to send problem
reports to Compaq.
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Conventions

This document uses the following typographical and symbol conventions:

%

$ A percent sign represents the C shell system prompt.
A dollar sign represents the system prompt for the
Bourne, Korn, and POSIX shells.

% cat Boldface type in interactive examples indicates
typed user input.

file Italic (slanted) type indicates variable values,
placeholders, and function argument names.

[ | ]

{ | } In syntax definitions, brackets indicate items that
are optional and braces indicate items that are
required. Vertical bars separating items inside
brackets or braces indicate that you choose one item
from among those listed.

cat(1) A cross-reference to a reference page includes
the appropriate section number in parentheses.
For example, cat(1) indicates that you can find
information on the cat command in Section 1 of
the reference pages.

The following presentation conventions apply to this standard:

• Constants, data structures, and functional interfaces

Constants are represented symbolically with their values given at the
point of definition in the standard. Data structures are defined in terms
of the physical memory format of each structure. Functional interface
syntax is presented in abstract form. Concrete language bindings for
each constant, data structure, and functional interface are provided in
system definition files external to the standard.

• Algorithms

Algorithms are presented as a series of steps in standard American
English.

• Numbering
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All numbers are represented as decimal values unless otherwise
indicated. Nondecimal numbers are represented with the base name in
parentheses following the number, for example, 1B(hex).

• Memory and register layouts

Figures that represent memory or register layouts follow the convention
that increasing addresses run from top to bottom and right to left. The
most significant bits are on the left; the least significant bits are on the
right.

• Code examples

All code examples are supplied to clarify the concept under discussion.
These examples do not necessarily reflect the optimized or properly
scheduled code sequences that a compiler would generate. The assembly
language syntax follows the conventions used in the Tru64 UNIX
Assembly Language Programmer’s Guide.

• Record fields

Record fields are referred to by using the name of the record or subrecord
followed by a dot (.) and then the field name:

record-name.subrecord-name.field
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1
Introduction

This manual defines the requirements, mechanisms, and conventions used
in the Tru64 UNIX interface that supports procedure calls for Tru64 UNIX
for Alpha systems. The standard defines the data structures, constants,
algorithms, conventions, methods, and functional interfaces that enable a
native user-mode procedure to operate correctly in a multilanguage and
multithreaded environment on Tru64 UNIX systems operating on Alpha
hardware.

This standard also defines properties of the run-time environment that must
apply at various points during program execution. These properties vary in
scope and applicability. Some properties apply to all points throughout the
execution of standard-conforming user-mode code and must, therefore, be
held constant at all times. Such properties include those defined for the
stack pointer and various properties of the call-chain navigation mechanism.
Other properties apply only at certain points; for example, call conventions
that apply only at the point of transfer of control to another procedure.

Furthermore, some properties are optional, depending on circumstances. For
example, compilers are not obligated to follow the argument list conventions
when a procedure and all of its callers are in the same module, have been
analyzed by an interprocedural analyzer, or have private interfaces such as
language-support routines.

______________________ Note _______________________

The specifications in this standard are presented in an “as if”
manner; that is, all conformant code must behave as if the
specifications have been met. This standard is designed so that
additional link-time information can be utilized to optimize or
even remove instructions in critical code paths and, as such,
achieve higher performance levels.

In many cases, significant performance gains can be realized by
selective use of nonstandard calls when the safety of such calls is
known. Compiler writers are encouraged to make full use of such
optimizations, but should make sure that procedures outside the
compilation unit can proceed as if the standard were met.
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The conventions specified in this standard are intended to exploit fully the
architectural and performance advantages of the Alpha hardware. Some of
these conventions are visible to the high-level language programmer and,
therefore, might require source changes in high-level language programs
when they are ported from other environments. Users should not depend on
the properties of the Alpha architecture to achieve source-level compatibility
and portability between Tru64 UNIX for Alpha systems and other UNIX
environments, except indirectly through high-level language facilities that
are portable across architectures.

1.1 Applicability

This manual defines the rules and conventions that govern the native
user-mode run-time environment on Tru64 UNIX systems running on
Alpha hardware. The standard is applicable to all products in native user
mode on the Tru64 UNIX operating system.

This standard applies to the following:

• All externally callable interfaces written in standard system software

• All intermodule calls to major software components

• All external procedure calls generated by language processors without
benefit of interprocedural analysis or permanent private conventions,
such as those for language support run-time library routines

1.2 Architectural Level

This Tru64 UNIX calling standard defines an implementation-level
run-time software architecture for Tru64 UNIX operating systems
running on Alpha hardware.

The interfaces, methods, and conventions specified in this document are
primarily intended for use by implementors of compilers, debuggers,
other run-time tools, run-time libraries, and other base operating system
components. These specifications can be, but are not necessarily, appropriate
for use by higher-level system and software applications.

Compilers and run-time libraries may provide additional support for these
capabilities through interfaces that are more appropriate for compilers and
applications. This standard neither prohibits nor requires such additional
interfaces.
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1.3 Goals

In general, this Tru64 UNIX calling standard promotes the highest degree of
performance, portability, efficiency, and consistency in the interface between
called procedures in the Tru64 UNIX environment.

The calling standard must be applicable to all intermodule callable interfaces
in the native software system. The standard must consider the requirements
of important compiled languages, including Ada, BASIC, C, C++, COBOL,
FORTRAN, LISP, Pascal, PL/I, and calls to the operating system and library
procedures. The needs of other languages that may be supported in the
future must be met by the standard or by compatible revisions to it.

The goals of the Tru64 UNIX calling standard are to:

• Include capabilities specifically for lower-level components (such
as assembler routines) that cannot be invoked from the high-level
languages.

• Allow the calling program and called procedure to be written in different
languages. The standard is designed to reduce the need to use language
extensions for mixed-language programs.

• Contribute to the writing of error-free, modular, and maintainable
software and promote effective sharing and reuse of software modules.

• Provide the programmer with control over the fixing and reporting of
exception conditions and with management of the flow of control when
various types of exception conditions occur.

• Add no space or time overhead to procedure calls and returns that do not
establish exception handlers. The standard is designed to minimize the
time overhead for establishing handlers at the cost of increasing time
overhead when exceptions occur.

• Be optimized for newer, more complex compilation techniques, such as
interprocedural analysis and link-time code transformations. However,
the standard is designed to require no such mechanisms for correctness.

• Provide support for a multilanguage, multithreaded execution
environment.

• Provide an efficient mechanism for calling lightweight procedures that
do not need or want to pay the overhead of setting up a stack call frame.
(Procedures are referred to as lightweight because of their expedient way
of saving the call context.)

• Provide for the use of a common calling sequence to invoke lightweight
procedures that maintain only a register call frame and heavyweight
procedures that maintain a stack call frame. (Procedures that incur costs
by storing the call context in memory are referred to as heavyweight.)
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This calling standard is designed to allow a compiler to determine
whether to use a stack frame based on the complexity of the procedure
being compiled. A recompilation of a called routine that causes a change
in stack frame usage should not require a recompilation of its callers.

• Provide condition handling, traceback, and debugging for lightweight
procedures that do not have a stack frame.

• Make efficient and effective use of the Alpha hardware architecture.

• Minimize the cost of procedure calls.

• Support a 64-bit address user-mode environment.

1.4 Requirements

The Tru64 UNIX calling standard was developed with the following
requirements:

• All Alpha platforms must be able to implement the standard.

• Non-Digital compiler writers must be able to implement the standard.

• The standard must not require any complex compilation techniques
(such as link-time code movement) for correctness.

1.5 Definitions

The following terms are used in the Tru64 UNIX calling standard:

address A 64-bit value used to denote a position in memory.

argument list A vector of quadword entries that represents a
procedure parameter list and possibly a function
value.

bound procedure A type of procedure that requires knowledge at run
time of a dynamically determined larger enclosing
scope to execute correctly.

call frame The body of information that a procedure must
save to allow it to return properly to its caller. A
call frame can exist on the stack or in registers.
Optionally, a call frame can contain additional
information required by the called procedure.

condition See exception condition.
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descriptor A mechanism for passing parameters, where the
address of the descriptor is an entry in the argument
list. The descriptor contains the parameter’s
address, data type, and size as well as additional
information needed to describe fully the data passed.

exception
condition

An exceptional condition in the current hardware
and/or software state that should be noted or fixed.
The existence of this condition causes an interrupt
in program flow and forces execution of out-of-line
code. Such an event may be caused by exceptional
hardware states (for example, arithmetic overflows
or memory access control violations) or by actions
performed by software (for example, subscript range
checking, assertion checking, or asynchronous
notification of one thread by another).

While the normal control flow is interrupted by an
exception, the program flow is said to be in the
active state.

exception handler A procedure designed to handle exception conditions
when they occur during the execution of a thread.

function A procedure that returns a single value in
accordance with the standard conventions for value
returning. Additional values are returned by means
of the argument list.

hardware
exception

A category of exceptions that directly reflects an
exception condition in the current hardware state
that should be noted or fixed by the software.
Hardware exceptions can occur synchronously or
asynchronously with respect to the normal program
flow.

image A collection of compiled modules that are combined
by a linker into a form that can be loaded for
execution.

immediate value A mechanism for passing input parameters where
the actual value is provided in the argument list
entry by the calling program.
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language support
procedure

A procedure called implicitly to implement
higher-level language constructs. Such procedures
are not intended to be explicitly called from a user
program.

library procedure A procedure explicitly called using the equivalent
of a call statement or function reference. Such
procedures are usually language-dependent.

natural alignment An attribute of certain data types that refers to the
placement of the data so that the lowest addressed
byte has an address that is a multiple of the size of
the data in bytes. Natural alignment of an aggregate
data type generally refers to an alignment in which
all members of the aggregate are naturally aligned.
This standard defines five natural alignments:

• byte − Any byte address

• word − Any byte address that is a multiple of 2

• longword − Any byte address that is a multiple
of 4

• quadword − Any byte address that is a multiple
of 8

• octaword − Any byte address that is a multiple
of 16

procedure A closed sequence of instructions that is entered
from and returns control to the calling program.

procedure
descriptor

A set of information about the properties of a
procedure. This information is contained in data
structures at run time to enable exception handling
and unwinding to function properly.

procedure value An address value that represents a procedure value.
This value is the address of the first instruction of
the procedure to be executed.

process An address space containing at least one thread of
execution. Selected security and quota checks are
performed on a per-process basis.
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This standard applies to the execution of multiple
threads within a process. (An operating system that
only provides a single thread of execution per process
is considered a special case of a multithreaded
system; that is, one where the maximum number of
threads per process is 1.)

reference A mechanism for passing parameters, where the
calling program provides the parameter’s address in
the argument list.

sharable image An image that can be shared by multiple processes.
On Tru64 UNIX, a single copy of the image can be
included simultaneously at different addresses in
multiple using processes. Such an image is said to
be position-independent.

signal A POSIX-defined concept used to cause out-of-line
execution of code.

standard call A transfer of control to a procedure by any means
that presents the called procedure with the
environment defined by this standard and does not
place additional restrictions, not defined in this
standard, on the called procedure.

standard
conforming
procedure

A procedure that adheres to all the relevant rules set
forth in the Tru64 UNIX calling standard.

thread, or thread
of execution

An entity scheduled for execution on a processor.
In language terms, a thread is a computational
entity utilized by a program unit such as a task,
procedure, or loop. All threads executing within the
same process share the same address space and
other process context, but have unique per-thread
hardware contexts that include machine registers
such as program counters, process status, and stack
pointers. This standard applies only to threads
that execute within the context of a user-mode
process and are scheduled on one or more processors
according to software priority. All subsequent uses of
the term thread in this standard refer only to these
user-mode process threads.
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thread-safe code A property of code compiled in such a way as to
ensure that it will execute properly when run in a
threaded environment. Thread-safe code usually
adds extra instructions to do certain run-time checks
and requires that thread-local storage be accessed in
a particular way.

undefined Operations or behavior for which there is no
directing algorithm used across all implementations
that support the Tru64 UNIX calling standard.
Such operations may or may not be well defined
for a single implementation, but remain undefined
with reference to this standard. The actions of
undefined operations may not be required by
standard-conforming procedures.

unpredictable Any results of an operation that cannot
be guaranteed across all operating system
implementations of the Alpha architecture calling
standard. Regardless of whether these results are
well-defined for a specific implementation of the
Alpha calling standard, they remain unpredictable
with reference to all implementations of the
standard.

Therefore, all results caused by operations
defined in the Tru64 UNIX implementation of the
calling standard, but not specified as part of the
calling standard are considered unpredictable.
Standard-conforming procedures cannot depend on
unpredictable results.
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2
Tru64 UNIX Concepts

This chapter describes some fundamental concepts of the Tru64 UNIX
calling standard. The topics discussed are as follows:

• Address representation

• Procedure representation

• Register usage conventions

• Register names

• Program image layout

2.1 Address Representation

Values that represent addresses are 64 bits in size.

2.2 Procedure Representation

One of the distinguishing characteristics of any calling standard is how
procedures are represented. The term used to denote the value that uniquely
identifies a procedure is a procedure value. If the value identifies a bound
procedure, it is called a bound procedure value.

In the Tru64 UNIX calling standard, a simple (not bound) procedure value
is defined as the address of the first instruction of that procedure’s entry
code. (See Section 3.2.6.)

A bound procedure value is defined as the address of the first instruction of
an instruction sequence that establishes the correct execution context for
the bound procedure.

Procedures in the Tru64 UNIX calling standard are associated with a set
of information called a procedure descriptor. This information describes
various aspects of the procedure’s code that are required for correct and
robust exception handling. The exception processing described by this
standard is based on the assumption that any given program counter value
can be mapped to an associated procedure descriptor that describes the
currently active procedure.
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2.3 Register Usage Conventions

This section describes the usage of the Alpha hardware integer and
floating-point registers.

2.3.1 Integer Registers

Table 2–1 describes the Alpha hardware integer registers.

Table 2–1: General-Purpose Integer Registers
Register Description

$0 Function value register. In a standard call that returns a
nonfloating-point function result in a register, the result must be
returned in this register. In a standard call, this register can be
modified by the called procedure without being saved and restored.

$1 − $8 Conventional scratch registers. In a standard call, these registers can
be modified by the called procedure without being saved and restored.

$9 − $14 Conventional saved registers. If a standard-conforming procedure
modifies one of these registers, it must save and restore it.

$15 Stack frame base (FP) register. For procedures with a run-time
variable amount of stack, this register is used to point at the base of
the stack frame (fixed part of the stack). For all other procedures,
this register has no special significance. If a standard-conforming
procedure modifies this register, it must save and restore it.

$16 − $21 Argument registers. In a standard call, up to six nonfloating-point
items of the argument list are passed in these registers. In
a standard call, these registers can be modified by the called
procedure without being saved and restored.

$22 − $25 Conventional scratch registers. In a standard call, these registers can
be modified by the called procedure without being saved and restored.

$26 Return address (RA) register. In a standard call, the return
address must be passed and returned in this register.

$27 Procedure value (PV) register. In a standard call, the procedure
value of the procedure being called is passed in this register. (See
Section 2.2.) In a standard call, this register can be modified by
the called procedure without being saved and restored.

$28 Volatile scratch register. The contents of this register are always
unpredictable after any external transfer of control to or from a
procedure. This unpredictable nature applies to both standard and
nonstandard calls. This register can be used by the operating system
for external call fixing, autoloading, and exit sequences.
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Table 2–1: General-Purpose Integer Registers (cont.)

Register Description

$29 Global pointer (GP) register. For a standard-conforming procedure,
this register must contain the calling procedure’s global offset
table (GOT) segment pointer value at the time of a call and must
contain the calling procedure’s GOT segment pointer value or
the called procedure’s GOT segment pointer value upon return.
This register must be treated as scratch by the calling procedure.
(See Section 2.5 and Section 3.2.2 for details.)

$30 Stack pointer (SP) register. This register contains a pointer to
the top of the current operating stack. Aspects of its usage and
alignment are defined by the hardware architecture. See Section
3.2.1 for details about its usage and alignment.

$31 ReadAsZero/Sink register. This register is defined in the
hardware to be binary zero as a source operand or sink
(no effect) as a result operand.

2.3.2 Floating-Point Registers

Table 2–2 describes the Alpha hardware floating-point registers.

Table 2–2: Floating-Point Registers
Register Description

$f0 Floating-point function value register. In a standard call that returns
a floating-point result in a register, this register is used to return
the real part of the result. In a standard call, this register can be
modified by the called procedure without being saved and restored.

$f1 Floating-point function value register. In a standard call
that returns a complex floating-point result in registers, this
register is used to return the imaginary part of the result.
In a standard call, this register can be modified by the called
procedure without being saved and restored.

$f2 − $f9 Conventional saved registers. If a standard-conforming procedure
modifies one of these registers, it must save and restore it.

$f10 − $f15 Conventional scratch registers. In a standard call, these registers can
be modified by the called procedure without being saved and restored.

$f16 − $f21 Argument registers. In a standard call, up to six floating-point
arguments can be passed by value in these registers. In a
standard call, these registers can be modified by the called
procedure without being saved and restored.
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Table 2–2: Floating-Point Registers (cont.)

Register Description

$f22 − $f30 Conventional scratch registers. In a standard call, these registers can
be modified by the called procedure without being saved and restored.

$f31 ReadAsZero/Sink register. This register is defined in the
hardware to be binary zero as a source operand or sink
(no effect) as a result operand.

2.4 Register Names

A few special register names appear in uppercase letters. This register
naming convention is not necessarily followed by compiler or assembler tools
that are used on Tru64 UNIX systems. However, a simple name substitution
can convert from the notation used here to the appropriate convention. For
example, the following code fragment might be used in conjunction with the
standard C preprocessor as a prelude to the examples in this text:

#define FP $15
#define RA $26
#define PV $27
#define GP $29
#define SP $30

2.5 Program Image Layout

The Tru64 UNIX calling standard defines only some aspects of an executable
image. One basic concept that is defined involves program image layout,
which permits optimal access to static data.

A hardware architecture in which instructions cannot contain full virtual
addresses can be referred to as a base register architecture. The Alpha
architecture is such an architecture. In a base register architecture,
normal memory references within a limited range from a given address are
expressed by using displacements relative to the contents of some register
which contains that address (usually referred to as a base register). Base
registers for external program segments, either data or code, are usually
loaded indirectly through a program segment of address constants.

To optimize this base register access method, this standard requires each
image that makes up an executable program to have zero or one global
offset table (GOT). This global offset table can be further divided into
multiple GOT segments. Together, the linker and the compilers arrange for
various static data to be collected together into a minimal number of these
GOT segments (typically one per image). During program execution, the GP
(global pointer) register will contain a pointer into the appropriate GOT
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segment so that all references therein can utilize a single base register. (For
more information, see Section 3.2.2.)

During the compilation process, a compiler generates object language to
designate data as belonging in a GOT segment. No single procedure is
allowed to provide more than 64KB of data to a GOT segment. The linker
pools these contributions to form the GOT segments. Typically, routines in
several compilation units can share the same pointer into the GOT. In fact, if
only one GOT segment is needed and will not exceed the 64KB addressing
maximum, all routines within an image can use the same GOT pointer.
Consequently, the GP register can be loaded once and then used by many
routines to improve performance.
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3
Flow Control

This chapter contains descriptions of those aspects of the calling standard
that deal with the flow of control in a program. This chapter does not discuss
data manipulation. That topic is discussed in Chapter 4.

The following sections describe:

• Procedure types

• Transfer of control

3.1 Procedure Types

This Tru64 UNIX calling standard defines three basic procedures types. A
compiler may choose which type to generate based on the requirements of
the procedure in question. The standard procedure types are:

• Stack frame procedure

A procedure that maintains its caller’s context on the stack

• Register frame procedure

A procedure that maintains its caller’s context in registers

• Null frame procedure

A procedure that executes in the context of its caller

Some procedures maintain their call frame on the stack; others maintain
their call frame entirely in registers, although they may use the stack.
Simple procedures do not necessarily maintain any call frame, but instead
execute completely in the context of their caller. The calling procedure does
not need to distinguish among these cases.

3.1.1 Procedure Descriptor Overview

Every procedure, other than a null procedure described in Section 3.1.4,
must have a set of information associated with it that describes which type
of procedure it is and what characteristics it has. This set of information,
called a procedure descriptor, can be thought of as a single structure,
although physically it is implemented by several structures. (See Chapter 8.)
The procedure descriptor structure is used to interpret the call chain at any
point during a thread’s execution. The structure is normally built at compile
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time and is not generally accessed at run time except in support of exception
processing or other rarely used code execution.

Table 3–1 briefly summarizes the properties of a procedure that can be
determined from its associated procedure descriptor. (Some fields apply to
only certain kinds of procedures.) For a complete description of procedure
descriptors, see Section 8.1.

Table 3–1: Procedure Properties Summary
Procedure Property Description

PDSC_FLAGS_REGISTER_FRAME Indicates a register (or null) frame
procedure rather than a stack
frame procedure.

PDSC_FLAGS_BASE_REG_IS_FP Indicates that register $15 is used
as a frame pointer rather than as
a preserved register.

PDSC_FLAGS_HANDLER_VALID Indicates that there is an associated
exception handler.

PDSC_FLAGS_EXCEPTION_MODE Indicates the error-reporting
behavior expected from certain called
mathematical library routines.

PDSC_FLAGS_EXCEPTION_FRAME Indicates that an operating system
exception frame is included in
the procedure’s frame.

PDSC_FLAGS_ARITHMETIC_SPECULATION Indicates that arithmetic traps
(SIGFPE) occurring in this procedure
should not be delivered. This
procedure was compiled with
speculative execution optimization
applied to arithmetic operations.
Some arithmetic instructions have
been moved backward, preceding
conditional branches that used
to control their effects. Traps
caused by these moved instructions
should be ignored.
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Table 3–1: Procedure Properties Summary (cont.)

Procedure Property Description

PDSC_CRD_MEMORY_SPECULATION Indicates that memory traps
(SIGSEGV, SIGBUS) occurring in this
procedure should not be delivered.
This procedure was compiled with
speculative execution optimization
applied to memory reference
operations. Some memory reference
instructions have been moved
backward, preceding conditional
branches that used to control their
effects. Traps caused by these moved
instructions should be ignored.

PDSC_RPD_RSA_OFFSET Specifies an offset from the stack
pointer (SP) or frame pointer (FP)
register to the register save area.

PDSC_RPD_IMASK Indicates a bit mask for the general
registers that are saved in the stack.

PDSC_RPD_FMASK Indicates a bit mask for the
floating-point registers that are
saved in the stack.

PDSC_RPD_ENTRY_RA Indicates the register that
contains the return address at
the time of a call.

PDSC_RPD_SAVE_RA Indicates the register in which the
return address is saved when it is
not saved on the stack.

PDSC_RPD_FRAME_SIZE Specifies the size of the fixed part
of the stack frame.

PDSC_RPD_SP_SET Specifies the offset from the beginning
of the procedure to the instruction
that changes the stack pointer.

PDSC_RPD_ENTRY_LENGTH Specifies the length of the
procedure prologue.

PDSC_CRD_BEGIN_ADDRESS Specifies the address of the first
instruction and entry point of
the procedure.

PDSC_RPD_HANDLER_ADDRESS Specifies the address of an associated
exception handling procedure.

PDSC_RPD_HANDLER_DATA Specifies supplementary
per-procedure data to be passed
to an associated exception handler.
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3.1.2 Stack Frame Procedure

A stack frame procedure is one that allocates space for and saves its
caller’s context on the stack. This type of procedure is sometimes called
a “heavyweight procedure” because of the cost of storing this context in
memory. These procedures can save and restore registers and may make
standard calls to other procedures.

The stack frame of this type of procedure consists of a fixed part (the size
of which is known at compile time) and an optional variable part. Certain
optimizations can be done if the optional variable part is not present.
Compilers must be careful to recognize situations that can effectively cause
a variable part of the stack to exist in nonintuitive ways; for example, when
a called routine uses the stack as a means to return certain types of function
values. (See Section 4.1.7 for details.)

If such a situation exists, a compiler must choose to use a variable-size stack
frame procedure when compiling the caller so that any unwind operations
can be performed correctly.

3.1.2.1 Stack Frame Format

Even though the exact contents of a stack frame are determined by the
compiler, there are certain properties common to all stack frames. There are
two basic types of stack frames: fixed-size and variable-size. Some parts of
the stack frame are optional and occur only as required by the particular
procedure. In the figures, brackets ([ ]) surrounding a field’s name indicate
that the field is optional.

Figure 3–1 shows the format of the stack frame for a procedure with a fixed
amount of stack. This format uses SP as the stack base register (that is,
PDCS_FLAGS_BASE_REG_IS_FP is 0). In this case, $15 is simply another
saved register and has no special significance.
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Figure 3–1: Fixed Size Stack Frame Format

: 0  (from SP)

: PDSC_RPD_RSA_OFFSET

PDSC_RDP_FRAME_SIZE:

octaword−aligned

ZK−0859U−R

[fixed temporary locations]

register save area

[argument home area]

[arguments passed in memory]

[fixed temporary locations]

(from SP)

(from SP)

Figure 3–2 shows the format of the stack frame for a procedure with a
varying amount of stack. The format uses FP as the stack base register; that
is, PDSC_FLAGS_BASE_REG_IS_FP is 1.
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Figure 3–2: Variable Size Stack Frame Format

octaword−aligned

[stack temporary area]

ZK−0860U−R

: 0  (from FP)

: PDSC_RPD_RSA_OFFSET

PDSC_RDP_FRAME_SIZE:

[fixed temporary locations]

register save area

[argument home area]

[arguments passed in memory]

[fixed temporary locations]

(from FP)

(from FP)

: 0  (from SP)

In both cases, the portion of the stack frame designated by
PDSC_RPD_FRAME_SIZE must be allocated and initialized by the entry code
sequence of a called procedure with a stack frame.

Fixed temporary locations are optional sections of the stack frame that
contain language-specific locations required by the procedure context of some
high-level languages. These locations might include, for example, register
spill areas, language-specific exception handling contexts (such as language
dynamic exception handling information), or fixed temporary locations.

If a compiler chooses, the fixed temporary locations adjacent to the
area pointed to by the frame base register added to the value of
PDSC_RPD_FRAME_SIZE can be used for a special purpose referred to as the
argument home area.

The argument home area is a region of memory used by the called
procedure for the purpose of assembling in contiguous memory the
arguments passed in registers adjacent to the arguments passed in memory,
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so that all arguments can be addressed as a contiguous array. This area can
also be used to store arguments that are passed in registers if an address
for such an argument must be generated. Generally, 6 or 12 contiguous
quadwords of stack storage are allocated by the called procedure for this
kind of storage. (See Section 4.1.3 for details.)

The register save area is a set of consecutive quadwords where the
current procedure saves and restores registers. The register save area
begins at the location pointed to by the frame base register (as indicated
by PDSC_FLAGS_BASE_REG_IS_FP) added to the value of the contents of
PDSC_RPD_RSA_OFFSET. The result must be a quadword-aligned address.
The set of registers saved in this area contains the return address followed
by the registers specified in the procedure descriptor by PDSC_FLAGS_IMASK
and PDSC_FLAGS_FMASK. The details of how to lay out and populate the
register save area are described in Section 3.1.2.2.

A compiler can use the stack temporary area for storage of fixed local
variables, such as constant-sized data items, program state information, and
dynamically sized local variables. The stack temporary area can also be used
for dynamically sized items with a limited lifetime, such as a dynamically
sized function result or string concatenation that cannot be directly stored
in a target variable. When a procedure uses this area, the compiler must
keep track of its base and reset SP to that base in order to reclaim storage
used by temporaries.

The high-address end of the stack frame is defined by the value stored in
PDSC_RPD_FRAME_SIZE added to the contents of the SP or FP register,
as indicated by PDSC_FLAGS_BASE_REG_IS_FP. The high-address end is
used to determine the value of the SP register for the predecessor procedure
in the call chain.

3.1.2.2 Register Save Area

The layout of the frame of a stack frame procedure contains a substructure
called the register save area. This section describes how this area is
defined and populated.

All registers saved in the variable portion of the register save area must have
the corresponding bit set to 1 in the appropriate procedure descriptor register
save mask. This bit must be set to 1 even if the register is not a member of
the set of registers required to be saved across a standard call. If the bit is
not set to 1, the offsets within the save area cannot be calculated correctly.

The algorithm for packing saved registers in the quadword-aligned register
save area is as follows:

• The return address is saved at the lowest address of the register save
area, offset 0.
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• All saved integer registers ,as indicated by the corresponding bit in
PDSC_RPD_IMASK being set to 1, are stored, in register-number order, in
consecutive quadwords beginning at offset 8 of the register save area.

• All saved floating-point registers , as indicated by the corresponding bit
in PDSC_RPD_FMASK being set to 1, are stored, in register-number order,
in consecutive quadwords following the saved integer registers.

_____________________ Note _____________________

A floating-point register saved in the stack is stored as a
64-bit exact image of the register; that is, no bit reordering
is done in the process of moving the data to or from memory.
Compilers must use an stt instruction to store the register
regardless of the floating-point type.

This behavior is required so that an unwind routine can
properly restore the floating-point registers without more
complete type information.

A standard-conforming procedure that utilizes a register save area must
save the return address register at offset 0 in the register save area. There
is no corresponding bit in the register save mask for this register slot.

Figure 3–3 shows the layout of the register save area.
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Figure 3–3: Register Save Area Layout

: 0

: 8

SAVED_RETURN
($26 in a standard call)

[Preserved integer registers]

RSA quadword−aligned

ZK−0861U−R

[Preserved floating−point registers]

1

1 RSA.SAVED_RETURN is the contents of the return address register.

For example, if registers $10, $11, $14, $22, $f2, and $f3 are saved by a
standard-conforming procedure, the PDSC_RPD_IMASK value is 00404C00
(hex) and the PDSC_RPD_FMASK is 0000000C (hex). The register save area
for such a procedure is packed as shown in Figure 3–4.
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Figure 3–4: Register Save Area Example
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3.1.3 Register Frame Procedure

A register frame procedure does not maintain a call frame on the stack
and must, therefore, save its caller’s context in registers. This type of
procedure is sometimes referred to as a “lightweight procedure” because of
the relatively fast way it saves the call context.

Such a procedure cannot save and restore nonscratch registers. Because
a procedure without a stack frame must, therefore, use scratch registers
to maintain the caller’s context; such a procedure cannot make a
standard-conforming call to any other procedure.

A procedure with a register frame can have an exception handler and can
handle exceptions in the normal way. Such a procedure can also allocate local
stack storage in the normal way, although it might not necessarily do so.
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______________________ Note _______________________

Lightweight procedures have more freedom than might be
apparent. By the use of appropriate agreements with callers of
the lightweight procedure as well as with procedures that the
lightweight procedure calls, and by the use of unwind handlers, a
lightweight procedure can modify nonscratch registers and can
call other procedures.

Agreements such as these can be made by convention (as in the
case of language-support routines in the run-time library) or by
interprocedural analysis. Calls employing such agreements are,
however, not standard calls, and might not be fully supported by
a debugger because it might not be able to find the contents of the
preserved registers, for example.

Because such agreements must be permanent for upward
compatibility of object code, lightweight procedures should, in
general, follow the normal restrictions.

3.1.4 Null Frame Procedure

A null frame procedure is a simple case of a register frame procedure. The
null frame procedure has the following characteristics:

• The entry return address register is $26 (PDSC_RPD_ENTRY_RA = 26).

• The return address is not saved in any other register
(PDSC_RPD_SAVE_RA = PDSC_RDP_ENTRY_RA).

• No stack space is allocated (PDSC_RPD_SP_SET = 0 and
PDSC_RPD_FRAME_SIZE = 0).

• As a result of these characteristics, the prologue requires no instructions
(PDSC_RPD_ENTRY_LENGTH = 0).

• There is no associated exception handler (PDSC_RPD_HANDLER_ADDRESS
= 0).

This special case of a register frame procedure is of interest because it has an
associated special-case procedure descriptor representation. (See Section 8.1
for information about procedure descriptor representation.)

3.2 Transfer of Control
A standard-conforming procedure call can use any sequence of instructions
that presents the called routine with the required environment. (See
the standard call definition in Section 1.5.) However, the majority of
standard-conforming external calls is performed with a common sequence
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of instructions and conventions. This common set of call conventions is so
pervasive that it is included as part of this standard in Section 3.2.1.

This calling standard has been designed so that the same instruction
sequence can be used to call each different type of procedure; that is, the
caller does not have to know which type of procedure is being called.

3.2.1 Call Conventions

The following call conventions describe the rules and methods used
to communicate certain information between the caller and the called
procedure during invocation and return:

procedure value The calling procedure must pass the procedure value
of the called procedure to the called procedure.
This value can be a statically or dynamically bound
procedure value. To pass this value, the calling
procedure must load $27 with the procedure value
before control is transferred to the called procedure.
(See Section 2.2 for a description of procedure
values.)

When a target routine is not loaded in memory at
the beginning of execution of a main program or
shared image, the procedure value used by a caller
of that routine generally addresses some kind of
stub or jacket routine. The purpose of a stub or
jacket routine is to perform the loading of the actual
target routine. The call is completed after this load
operation.

When control actually reaches the target routine
entry point, $27 must contain the actual procedure
value of the newly loaded routine as if no
intermediate processing had occurred. Subject to
these constraints, the PV register can be used freely
by the stub/jacket code as a temporary register
during its own execution.

return address The calling procedure must pass the address to
which control must be returned to the called
procedure during a normal return from the called
procedure. In most cases, the return address is
the address of the instruction following the one
that transferred control to the called procedure.
A standard-conforming procedure must treat this
register as preserved. For a standard call, the return
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address is passed and returned in the return address
register, $26.

argument list The argument list is an ordered set of zero or more
argument items, which together include a logically
contiguous structure known as an argument item
sequence. In practice, this logically contiguous
sequence is mapped to registers and memory in a
fashion that produces a physically discontiguous
argument list. In a standard call, the first six
items are passed in registers $16 − $21 and/or
registers $f16 − $f21. (See Section 4.1.2 for details
of argument-to-register correspondence.) The
remaining items are collected in a memory argument
list that is a naturally aligned array of quadwords.
In a standard call, this list, if present, must be
passed at 0(SP).

function result If a standard-conforming procedure is a function
and the function result is returned in a register, the
result is returned in $0, $f0, or $f0 − $f1. Otherwise,
the function result is returned using the first
argument item or else dynamically, as defined in
Section 4.1.7.

stack usage The stack pointer (SP) must at all times denote
an address that has octaword alignment. (This
restriction has the side effect that the in-memory
portion of the argument list, if any, will start
on an octaword boundary.) Note that the stack
grows toward lower addresses. During a procedure
invocation, SP can never be set to a value that
is higher than the value of SP at entry to that
procedure invocation.

The contents of the stack, located above the portion
of the argument list (if any) that is passed in
memory, belong to the calling procedure. Because
they are part of the calling procedure, they should
not be read or written by the called procedure,
except as specified by indirect arguments or
language-controlled up-level references.

The SP value might be used by the hardware when
raising exceptions and asynchronous interrupts.
It must be assumed that the contents of the stack
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below the current SP value and within the stack for
the current thread are continually and unpredictably
modified, as specified in the Alpha Architecture
Reference Manual, and as a result of asynchronous
software actions.

3.2.2 Linkage

When a standard procedure is called, the caller must provide the procedure
value (code address) of the called procedure in $27 so the called procedure
can compute the address of the global offset table (GOT) segment. (See
Section 2.5 for information about the global offset table.)

If access to a GOT segment is required, two instructions in the called
procedure’s prologue will compute the GOT pointer value (GP register
contents) using ldah and lda instructions together with the passed $27
value. Because the ldah/lda pair can generate addresses only within 2 GB
of $27, the code and GOT must be within ± 2 GB of each other. Typically
these instructions are the first two in the procedure. (In certain cases, at link
time these two instructions may be replaced by nop instructions, skipped,
or removed if the linker is able to determine that they are redundant.)
The resultant pointer into the GOT segment is placed in the GP register.
This pointer can then be used by the called procedure as a base register to
address locations in the GOT.

Because a standard-conforming calling procedure must assume that the GP
register value is destroyed across a call but must itself return it with the
correct value, the code following the call must reestablish its value before
further accesses to the GOT or by the time it returns from the procedure.
(See Section 2.3.1 for information on integer registers.)

The following list describes some ways to reestablish the GP register value:

• The caller can use an ldah/lda sequence to compute the correct GP
value from $26 because a standard call returns with $26 pointing at a
known code address (the return address).

• The caller can save the GP value in a register that is preserved across
the call and move it back into the GP register after the call.

• The caller can save the GP value in its stack frame and reload it after
the call.

In summary, a standard-conforming call provides the procedure value (code
address) to the called procedure (in case it needs to compute a new GP value)
and provides its own GP value to the called procedure (in case it shares the
GOT segment). Furthermore, upon return from the called procedure, the
GP value must be restored (in case the called procedure did not share the
same GOT segment).
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3.2.3 Link-Time Optimization

The design of this calling standard assumes and expects that the normal
call conventions described here will be improved by certain optimizations
performed at link time in response to compiler-provided control information.
However, the specified calling conventions will behave correctly even in the
absence of link-time optimization.

For many calls, the called procedure shares the same GOT segment with
the caller. In these cases, the GP register is already valid for the called
procedure at the time of the call. Several optimizations are possible in these
important cases. When one procedure calls another that shares the same
GOT segment and the first two instructions of the called procedure establish
the GP, the ldah/lda pair can be skipped. Because the procedure’s code
address has no other use, the caller does not need to provide it in $27. If the
called procedure’s GP value that is returned in the GP register is shared
with the calling procedure, the caller does not need to reestablish the GP
register contents.

The following code fragment shows a typical standard call:

ldq $27,target_ptr(GP) #Load procedure value (entry address)
jsr $26,($27) #Call with return address in $26
ldah GP,fix_hi($26) #Reload GP value
lda GP,fix_lo(GP)

Note that other instructions may be scheduled among the ones shown here.

If the linker optimizes the call, it can be transformed to look like the
following code fragment:

bsr $26,target+8 #Make the call

The instructions that are no longer needed can be replaced by nop
instructions, or deleted and compressed out. Depending on the optimizations
performed and whether the ldah/lda pair at the target is moved, removed,
or reduced to just lda, the call may or may not load $27, may execute a jsr
or a bsr, and may go to target or target+8.

3.2.4 Calling Computed Addresses

Most calls are made to a fixed address whose value is already determined
by the time the program starts execution. There are, however, certain cases
that cause the exact address not to be determined until the code is actually
executed. In these cases, the procedure value representing the procedure to
be called will be computed in a register.

For example, suppose $4 contains such a computed procedure value (simple
or bound). The following code fragment calls the procedure that $4 describes:
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mov $4,$27 #Move the procedure value to $27.
jsr $26,($4) #Call the entry address.
ldah GP,fix_hi($26) #Reload the GP register.
lda GP,fix_lo(GP)

3.2.5 Bound Procedure Values

There are two distinct classes of procedures:

• Simple procedures

• Bound procedures
A simple procedure is one that does not need direct access to the stack of
its execution environment. A bound procedure is one that must have
direct access to the stack of its execution environment, typically so that
it can reference an up-level variable or perform a nonlocal goto. Simple
procedures and bound procedures have associated procedure descriptors,
as described earlier in this chapter.

Bound procedure values are designed for multilanguage use. They allow
callers of procedures to use common code to call both bound and simple
procedures.

When a bound procedure is called, the caller must pass some kind of
pointer to the called code to allow it to reference its up-level environment.
Typically, such a pointer is the frame pointer for that environment, though
many variations are possible. When the caller is itself executing within
that outer environment, it usually can make such a call directly to the code
for the nested procedure without recourse to any additional mechanism.
However, when a procedure value for the nested procedure must be passed
outside of that environment to a call site that has no knowledge of the target
procedure, a special bound procedure is created so the nested procedure can
be called in the same way as a simple procedure.

The procedure value of a bound procedure is defined as the address of the
first instruction of a sequence of instructions that establishes the proper
environment for the bound procedure and then transfers control to that
procedure.

One direct scheme for constructing a jacket to a bound procedure so it can be
called like a simple procedure is to allocate a sequence of instructions and
data on the stack and use the address of those instructions as the procedure
value. For example, suppose that a bound procedure named proc expects its
static link to be passed in $1. The following code fragment shows a suitable
sequence of instructions for the call:

ldq $1,24($27) #Fetch the up-level pointer to $1
ldq $27,16($27) #Fetch the address of the bound

# procedure code
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jmp ($27) #Transfer to the bound procedure
nop #Include a filler to align following

# data
quadword-holding-procedure-code-address
quadword-holding-static-link

Note that this sequence can only be created by code that is executing within
the context of the containing procedure so that the appropriate frame pointer
value is known and can easily be incorporated in the sequence illustrated.
The lifetime of this sequence is, of course, limited to the lifetime of the stack
frame in which it is allocated.

After creating the jacket instructions, it is necessary to execute an imb
instruction before executing them to assure instruction cache coherence, as
described in the Alpha Architecture Reference Manual. It might also be
necessary to make the stack segment executable, for example, by using the
mprotect() system call. (See the mprotect(2) reference page.)

3.2.6 Entry and Exit Code Sequences

The following sections describe the steps that must be executed in procedure
entry and exit sequences. These conventions must be followed in order for
the call chain to be well-defined at every point during thread execution.

Except as noted, the exact instruction sequences are not specified; any
instruction sequence that produces the defined effects is legal.

3.2.6.1 Entry Code Sequence

Because the value of the PC defines the currently executing procedure, all
properties of the environment specified by a procedure’s descriptor must be
valid before the first instruction after the procedure prologue (as defined by
PDSC_RPD_ENTRY_LENGTH) is executed. In addition, none of the properties
specified in the calling procedure’s descriptor may be invalidated before
the called procedure becomes current. Thus, until the procedure becomes
current, all entry code must adhere to the following rules:

• All registers specified by this standard as saved across a
standard-conforming call must contain their original (at entry) contents.

• The register designated by PDSC_RPD_ENTRY_RA ($26 in a standard
call) must contain its original (at entry) contents. This requirement also
applies to nonstandard procedures to allow for proper unwinding.

• No standard calls can be made.
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______________________ Note _______________________

If an exception is raised or an exception occurs in the prologue
of a procedure, that procedure’s exception handler, if any, will
not be invoked because the procedure is not yet current. Thus,
when a procedure has an exception handler, compilers must not
move into the procedure prologue any code that might cause an
exception which would be handled by that same handler.

When a procedure is called, the code at the entry address must do the
following:

• Synchronize, as needed, any pending exceptions caused by instructions
issued by the caller.

• Save the caller’s context.

• Make the called procedure current by executing the last instruction
of the procedure prologue.

These actions involve the following steps, performed in the specified order:

1. Compute and load the procedure’s GP value using the
passed-in-procedure (code address) value in $27. (This code can appear
elsewhere in the prologue, but provides more opportunities for linker
optimizations if it appears first.)

2. If stack space is allocated (PDSC_RPD_FRAME_SIZE is not 0), set register
SP to SP − PDSC_RPD_FRAME_SIZE.

After any necessary calculations and stack limit checks, this step
must be completed in exactly one instruction that modifies SP. This
instruction must be the one specified by PDSC_RPD_SP_SET.

3. For a stack frame procedure (PDSC_FLAGS_REGISTER_FRAME is 0), do
both of these steps. (There is no requirement as to which step occurs
first.)

– Store the registers specified by PDSC_RPD_IMASK and
PDSC_RDP_FMASK in the register save area based on
PDSC_RPD_RSA_OFFSET.

– Store the return address in the register save area.

4. For a register frame procedure (PDSC_FLAGS_REGISTER_FRAME is 1),
copy the return address to the register specified by PDSC_RPD_SAVE_RA
if the value is not already there.

5. Execute trapb, if required. (See Section 5.1.12 for details.)
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6. For a variable-size stack frame procedure
(PDSC_FLAGS_BASE_REG_IS_FP is 1), copy the SP value
to register FP.

This step must be completed in exactly one instruction that modifies the
FP and that instruction must be the last instruction in the prologue.

When these steps have been completed, the executing procedure is said to
become current for the purposes of exception handling. The handler for a
procedure will not be called except when that procedure is current.

The remainder of this section contains the following:

• A description of prologue length

• A description of frame pointer conventions

• An example of entry code for a stack frame

• An example of entry code for a register frame

3.2.6.1.1 Prologue Length

As a general rule, it is valid to include instructions in the prologue (in
addition to those that are required) in order to take advantage of available
processor cycles that are not otherwise used. However, any such additional
instructions must not cause an exception that would need to be handled by
that procedure if that exception would be raised after the procedure became
current. (An exception is considered to not be handled by a procedure if it is
known that the handler will always resignal that exception.)

3.2.6.1.2 Frame Pointer Conventions

After the procedure prologue is completed, the register indicated by
PDSC_FLAGS_BASE_REG_IS_FP must contain the frame pointer of the stack
frame. The frame pointer is the address of the lowest-addressed byte of the
fixed portion of the stack frame allocated by the procedure prologue. The
value of the frame pointer is the value of PDSC_RPD_FRAME_SIZE subtracted
from the value of the stack pointer upon procedure entry.

For fixed frame procedures, the frame pointer is the stack pointer. In
these cases, the stack pointer is not modified by that procedure after the
instruction in that procedure prologue specified by PDSC_RPD_SP_SET.

3.2.6.1.3 Entry Code Example for a Stack Frame Procedure

This section contains an entry code example for a stack frame procedure.
The example assumes the following:

• Registers $9 − $11 and $f2 − $f3 are saved and restored.

• PDSC_RPD_RSA_OFFSET is equal to 16 bytes.
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• The procedure has a static exception handler that does not re-raise
arithmetic traps.

• The procedure uses a fixed amount of stack
(PDSC_FLAGS_BASE_REG_IS_FP is 0 ).

The following example illustrates a Stack Frame Procedure.
ldah GP, off_hi($27) #Compute the correct GP value.
lda GP, off_lo(GP)
lda SP,-SIZE(SP) #Allocate space for a new stack frame.
stq $26,16(SP) #Save the return address.
stq $9,24(SP) #Save the first integer register.
stq $10,32(SP) #Save the next integer register.
stq $11,40(SP) #Save the next integer register.
stt $f2,48(SP) #Save the first floating-point register.
stt $f3,56(SP) #Save the last floating-point register.
trapb #Force any pending hardware exceptions

# to be raised.
#The called procedure is now the current procedure.

3.2.6.1.4 Entry Code Example for a Register Frame Procedure

This section contains an entry code example for a register frame procedure.
The example assumes the following:

• The called procedure has no static exception handler.

• PDSC_RPD_SAVE_RA and PDSC_RPD_ENTRY_RA specify $26.

• The procedure utilizes a fixed amount of stack storage
(PDSC_FLAGS_BASE_REG_IS_FP is 0).

The following example illustrates a Register Frame Procedure.
ldah GP, off_hi($27) #Compute the correct GP value.
lda GP, off_lo(GP)
lda SP,-SIZE(SP) #Allocate space for a new stack frame.
#The called procedure is now the current procedure.

3.2.6.2 Exit Code Sequence

The end of procedure entry code can be determined easily by using a PC
value together with the PDSC_RPD_ENTRY_LENGTH value. Because there
can be multiple return points from a procedure, detecting that a procedure
exit sequence is being executed is not as straightforward. Unwind support
routines must be able to detect if the stack pointer has been reset and if
not, know how to reset it. The exit sequence can be detected by requiring a
reserved instruction sequence.

The next sections provide the following information:

• A discussion of the reserved instruction sequence

• The steps involved in an exit code sequence

• An example of exit code for a stack frame
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• An example of exit code for a register frame

3.2.6.2.1 Reserved Instruction Sequence for a Procedure Exit

To allow the stack to be properly restored during an unwind, a reserved
instruction or sequence of instructions must be used. None of these
sequences can be used in any other way.

The following reserved instruction must appear at every exit point from any
procedure that uses the stack (PDSC_RPD_FRAME_SIZE is not 0):

ret $31,($n),0001 #Return to the caller with usage hint 0001

______________________ Note _______________________

The term usage hint, shown in the comment in the previous
example, refers to the value of the branch prediction bits encoded
in the ret instruction. The section on control instructions in the
Alpha Architecture Reference Manual documents that these bits,
<13:0> of the instruction longword, are reserved to software when
the instruction is ret or jsr_coroutine.

This calling standard further requires that these bits contain
the value 0001 (hex) for procedure returns and 0000 otherwise.
The occurrence of the usage hint value 0001 identifies a ret
instruction as one that is reserved for use only as described in the
Alpha Architecture Reference Manual. The ret instructions can
be used for other purposes, provided they contain a usage hint
value of 0000. Those ret instructions will not be recognized and
treated in a special way for the purposes of exception handling
or unwinding.

In almost all cases, the return address register ($n) used will be
$26, because it is required to be reloaded prior to the procedure
return.

For any such procedure that does not return a value on the stack, the ret
instruction must be immediately preceded by either of the two reserved
stack resetting instructions. The following examples show the two different
reserved stack-resetting instructions:

lda SP,* #Reset the stack.
ret $31,(*),0001 #Return to the caller with usage hint.

addq *,*,SP #Reset the stack.
ret $31,(*),0001 #Return to the caller with usage hint.

Thus, any lda instruction whose destination is the SP register or any addq
instruction whose destination is the SP register is interpreted as part of a
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procedure exit sequence when it is immediately followed by the reserved
procedure return instruction.

A stack-resetting instruction might not be present in the case of a procedure
that returns a result on the top of the stack. However, if such an instruction
is present, it will immediately preced the reserved ret instruction.

Furthermore, for any such procedure that has
PDSC_FLAGS_BASE_REG_IS_FP set to 1, the resulting
sequence must immediately follow the FP reloading instruction as in the
following example:

ldq FP,* #Restore the FP.
lda SP,* #Or addq *,*,SP to reset the stack.
ret $31,(*),0001 #Return to the caller with usage hint.

Thus, any ldq instruction whose destination is the FP register ($15) is
interpreted as part of a procedure exit sequence when it is immediately
followed by the reserved procedure return instruction or by a stack resetting
instruction that is in turn immediately followed by the reserved procedure
return instruction.

Procedures that do not use the stack do not need to use these reserved
instruction sequences.

The unwind support code uses the exit code sequences to make the following
assumptions about an interrupted PC value:

• If the PC points within the prologue, the registers still have their original
contents. Only SP must be reset if the PC is beyond PDSC_RPD_SP_SET.
Then the unwind can proceed.

• If the PC points at a ret $31,(*),0001 instruction, SP has already
been reset and the registers have already been restored, so the unwind
can proceed.

• If the PC points to an lda SP,* (or an addq *,*,SP) instruction that
is immediately followed by the instruction described previously, the
registers have already been restored. But SP must be incremented by
PDSC_RPD_FRAME_SIZE before the unwind can proceed.

• If the PC points to an ldq FP,* instruction that is immediately followed
by either of the instructions described previously, PDSC_FLAGS_REGIS-
TER_FRAME is 0 and PDSC_FLAGS_BASE_REG_IS_FP is 1, all registers
other than FP have been restored. FP still retains the frame base
pointer, which should be copied to SP. Then FP must be restored and SP
incremented by PDSC_RPD_FRAME_SIZE for the unwind to proceed.

• In all other cases, the registers must be restored and SP reset for the
unwind to proceed.
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When a procedure has executed the first instruction of one of these reserved
sequences, the procedure becomes no longer current for the purposes of
exception handling. The handler for a procedure will not be called in the
midst of one of these reserved instruction sequences within that procedure.

3.2.6.2.2 Exit Code Sequence Steps

When a procedure returns, the exit code must restore the caller’s context,
synchronize any pending hardware exceptions, and make the calling
procedure current by returning control to it. The following list contains the
exit code sequence steps. The program performs step 1, followed by steps 2
through 5 in any order, followed by steps 6 through 8 in exact order.

1. If the GP register has been modified or a call has been made, restore the
GP register to the GOT segment pointer of the current procedure.

2. For a variable-size stack frame procedure that does not return a value
on the top of stack (PDSC_FLAGS_BASE_REG_IS_FP is 1), copy FP to SP.

3. For a stack frame procedure (PDSC_FLAGS_REGISTER_FRAME
is 0), reload any saved registers from the register save area as
specified by PDSC_RPD_RSA_OFFSET. Note that, for a variable-size
stack frame procedure (PDSC_FLAGS_BASE_REG_IS_FP is 1), FP
is not reloaded in this step. For a fixed-size stack frame procedure
(PDSC_FLAGS_BASE_REG_IS_FP is 0), $15 is reloaded if it was saved
on entry.

4. Reload the register that held the return address on entry with the saved
return address, if necessary.

For a stack frame procedure (PDSC_FLAGS_REGISTER_FRAME is 0), load
the register designated by PDSC_RPD_ENTRY_RA ($26 in a standard
call) with the return address from the register save area as specified by
PDSC_RPD_RSA_OFFSET.

For a register frame procedure (PDSC_FLAGS_REGISTER_FRAME
is 1), copy the return address from the register specified
by PDSC_RPD_SAVE_RA to the register designated by
PDSC_RPD_ENTRY_RA.

5. Execute trapb, if required. (See Section 5.1.12 for details.)

6. For a variable-size stack frame procedure (PDSC_FLAGS_REGIS-
TER_FRAME is 0 and PDSC_FLAGS_BASE_REG_IS_FP is 1), reload $15
(FP) as would be done for any other saved register.

After any necessary calculations, this step must be completed by exactly
one instruction, as described in Section 3.2.6.1.

7. If a function value is not being returned on the stack, restore
SP to the value it had at procedure entry by adding the value in
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PDSC_RDP_FRAME_SIZE to SP. In some cases, the returning procedure
leaves SP pointing to a lower stack address than it had on entry to the
procedure, as specified in Section 4.1.7.

After any necessary calculations, this step must be completed by exactly
one instruction, as described in Section 3.2.6.1.

8. Execute the ret $31,($n),0001 instruction, as described in
Section 3.2.6.2.1, to return control to the calling procedure. In almost
all cases the $n used will be $26 (the return address register) because
its value must be restored before the call returns.

Note that the called routine does not adjust the stack to remove any
arguments passed in memory. This responsibility falls to the calling routine,
which can choose to defer removal of arguments because of optimizations or
other considerations.

3.2.6.2.3 Exit Code Example for a Stack Frame Procedure

The following example shows the return code sequence for the stack frame
procedure example in Section 3.2.6.1.3. This code fragment assumes that the
computed GP value was saved in the preserved register $11:

mov $11,GP #Restore this routine’s GP value.
ldq $26,16(SP) #Get the return address.
ldq $9,24(SP) #Restore the first integer register.
ldq $10,32(SP) #Restore the next integer register.
ldq $11,40(SP) #Restore the next integer register.
ldt $f2,48(SP) #Restore the first floating-point register.
ldt $f3,56(SP) #Restore the last floating-point register.
trapb #Force any pending hardware exceptions to be

# raised.
lda SP,SIZE(SP) #Restore the SP.
ret $31,($26),0001 #Return to the caller with the usage hint.

3.2.6.2.4 Exit Code Example for a Register Frame Procedure

The following example shows the return code sequence for the register frame
procedure example in Section 3.2.6.1.4.

lda SP,SIZE(SP) #Restore the SP.
ret $31,($26),0001 #Return to the caller with the usage hint.
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4
Data Manipulation

This chapter discusses the passing and storage of data. The topics included
are:

• Data passing

• Data allocation

4.1 Data Passing

The following sections define the calling standard conventions for passing
data between procedures in a call chain. An argument item represents
one unit of data being passed between procedures. The following topics
are covered:

• Mechanisms for passing argument items

• Normal argument list structures

• Homed memory argument list structures

• Argument lists and high-level languages

• Unused bits in passed data

• Sending data

• Returning data

4.1.1 Argument Passing Mechanisms

This Tru64 UNIX calling standard defines three classes of argument items
according to the mechanism used to pass the argument:

• Immediate value

An immediate value argument item contains the value of the data
item. The argument item, or the value contained in it, is directly
associated with a parameter.

• Reference

A reference argument item contains the address of a data item, such as
a scalar, string, array, record, or procedure. That data item is associated
with a parameter.

• Descriptor
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A descriptor argument item contains the address of a descriptor, which
contains structural information about the argument’s type (such as array
bounds) and the address of a data item. That data item is associated
with a parameter.

Note that this standard does not define a standard set of descriptors.
Consequently, descriptors cannot be used as part of a standard call.

Argument items are not self-defining; interpretation of each argument item
depends on agreement between the calling and called procedures.

This standard does not dictate which of the three mechanisms must be used
by a given language compiler. Language semantics and interoperability
considerations might require different mechanisms to be used in different
situations.

4.1.2 Normal Argument List Structure

The argument list in a Tru64 UNIX call is an ordered set of zero or more
argument items, which together comprise a logically contiguous structure
known as the argument item sequence. An argument item is represented
in 64 bits.

An argument item can be used to pass arguments by immediate value, by
reference, and by descriptor. Any combination of these mechanisms in an
argument list is permitted.

Although the argument items form a logically contiguous sequence, they are,
in practice, mapped to integer and floating-point registers and to memory
in a fashion that can produce a physically discontiguous argument list.
Registers $16 − $21 and $f16 − $f21 are used to pass the first six items of the
argument item sequence. Additional argument items must be passed in a
memory argument list that must be located at 0(SP) at the time of the call.

Table 4–1 specifies the standard locations in which argument items can be
passed.

Table 4–1: Argument Item Locations
Argument
Item

Integer
Registers

Floating-point
Registers

Stack

1 $16 $f16 -

2 $17 $f17 -

3 $18 $f18 -

4 $19 $f19 -

5 $20 $f20 -

4–2 Data Manipulation



Table 4–1: Argument Item Locations (cont.)

Argument
Item

Integer
Registers

Floating-point
Registers

Stack

6 $21 $f21 -

7 ... n 0(SP) ... (n-7)*8(SP)

The following general rules determine the location of any specific argument:

• All argument items are passed in the integer registers or on the
stack, except argument items that have floating-point data passed by
immediate value.

• Floating-point data passed by immediate value is passed in the
floating-point registers or on the stack.

• Only one location in any row in Table 4–1 can be used by any given
argument item in a list. For example, if argument item 3 is an integer
passed by value and argument item 4 is a single-precision floating-point
number passed by value, argument item 3 is assigned to $18 and
argument item 4 is assigned to $f19.

• A single- or double-precision complex value passed by immediate value
is treated as two arguments for the purpose of this standard, with the
real part coming first. For example, if the real part of a complex value is
passed as the sixth argument item in register $f21, the imaginary part
will be passed in memory as the seventh argument item.

The argument list, including the in-memory portion, as well as the portion
passed in registers, can be read from and written to by the called procedure.
Therefore, the calling procedure must not make any assumptions about the
validity of any part of the argument list after the completion of a call.

4.1.3 Homed Memory Argument List Structure

It is, in certain cases, useful to form a contiguous in-memory structure that
includes the contents of all the formal parameter values in the program; for
example, C procedures that use varying length argument lists). In nearly all
these cases, a compiler can arrange to allocate and initialize this structure
so that those parameter values passed in registers are placed adjacent to
those parameters passed on the stack, without making a copy of the stack
arguments. The storage for the parameters passed in registers is called the
argument home area. (See Figure 3–1 and Figure 3–2.) Figure 4–1 shows
the resulting in-memory homed argument list structure.
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Figure 4–1: In-Memory Homed Argument List Structure
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Generally, it is not possible to tell statically whether a particular argument
is an integer or floating-point argument. Therefore, it is necessary to store
integer and floating-point register argument contents in this structure.
However, it is sometimes possible to determine statically that there are no
floating-point arguments anywhere either in registers or on the stack. In
this case, the first six entries can be omitted. To facilitate this special case,
the address used to reference this structure is always the address of the first
integer argument position.

The C-language type va_list is used to iterate through a variable argument
list. The va_list type can be defined as follows:

typedef struct {
char *base;
int offset;
} va_list;

4–4 Data Manipulation



To load the next integer argument, the program reads the quadword
at location (base+offset) and adds 8 to offset. To load the next
floating-point argument, if offset is less than or equal to 6*8, the program
reads the quadword location (base+offset−6*8). Otherwise, the program
reads the quadword at location (base+offset). In both cases, the program
adds 8 to offset. For details, see the file /usr/include/stdarg.h.

4.1.4 Argument Lists and High-Level Languages

High-level language functional notations for procedure call arguments
are mapped into argument item sequences according to the following
requirements:

• Arguments are mapped from left to right to increasing offsets in the
argument item sequence. The $16 or $f16 register is allocated to the
first argument; the last quadword of the memory argument list (if any)
is allocated to the last argument.

• Each source language argument corresponds to one or more contiguous
Tru64 UNIX calling standard argument items.

• Each argument item has 64 bits.

• A null or omitted argument, for example CALL SUB(A,,B), is
represented by an argument item containing 0.

Arguments passed by immediate value cannot be omitted unless a
default value is supplied by the language. (This restriction makes it
possible for called procedures to distinguish an omitted immediate
argument from an immediate value argument with the value 0.)

Trailing null or omitted arguments, for example CALL SUB(A,,),
are passed by the same rules as those for embedded null or omitted
arguments.

4.1.5 Unused Bits in Passed Data

Whenever data is passed by value between two procedures in registers (as is
the case for the first six input arguments and return values) or in memory
(as is the case for arguments after the first six), the bits not used by the data
are usually sign-extended or zero-extended.

Table 4–2 defines the various data type requirements for size and their
extension to set or clear unused bits.
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Table 4–2: Unused Bits in Passed Data
Data Type Type

Designator
(bytes)

Data Size
Type

Register
Extension
Type

Memory
Extension

Byte logical BU 1 Zero64 Zero64

Word logical WU 2 Zero64 Zero64

Longword logical LU 4 Sign64 Sign64

Quadword logical QU 8 Data64 Data64

Byte integer B 1 Sign64 Sign64

Word integer W 2 Sign64 Sign64

Longword integer L 4 Sign64 Sign64

Quadword integer Q 8 Data64 Data64

F floating F 4 Hard Data32

D floating D 8 Hard Data64

G floating G 8 Hard Data64

F floating complex FC 2*4 2*Hard 2*Data32

D floating complex DC 2*8 2*Hard 2*Data64

G floating complex GC 2*8 2*Hard 2*Data64

IEEE floating single S FS 4 Hard Data32

IEEE floating double T FT 8 Hard Data64

IEEE floating extended X FX 16 n/a n/a

IEEE floating single S complex FSC 2*4 2*Hard 2*Data32

IEEE floating double T complex FTC 2*8 2*Hard 2*Data64

IEEE floating extended
X complex

FXC 2*16 n/a n/a

Structures N/A Nostd Nostd

Small arrays of 8 bytes or less N/A ≤ 8 Nostd Nostd

32-bit address N/A 4 Sign64 Sign64

64-bit address N/A 8 Data64 Data64

The following table contains the definitions for the extension type symbols
used in Table 4–2:
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Sign Extension Type Definition

Sign32 Sign-extended to 32 bits. The state of bits
<63:32> is unpredictable.

Sign64 Sign-extended to 64 bits.

Zero32 Zero-extended to 32 bits. The state of bits
<63:32> is unpredictable.

Zero64 Zero-extended to 64 bits.

Data32 Data is 32 bits. The state of bits <63:32> is unpredictable.

2 * Data32 Two single-precision parts of the complex value are
stored in memory as independent floating-point
values with each handled as Data32.

Data64 Data is 64 bits.

2 * Data64 Two double-precision parts of the complex value
are stored in memory as independent floating-point
values with each handled as Data64.

Hard Passed in the layout defined by the Alpha
Architecture Reference Manual.

2 * Hard Two double-precision parts of the complex value are
stored in a pair of registers as independent floating-point
values with each handled as Hard.

Nostd The state of all high-order bits not occupied by the data
is unpredictable across a call or return.

______________________ Note _______________________

Sign64, when applied to a longword logical, duplicates bit 31
through bits <63:32>. This duplication can cause the 64-bit
integer value to appear negative. However, careful use of 32-bit
arithmetic and 64-bit logical instructions (with no right shifts)
will preserve the 32-bit unsigned nature of the argument.

Because of the varied rules for sign extension of data when passed as
arguments, calling and called routines must agree on the data type of each
argument. No implicit data type conversions can be assumed between the
calling procedure and the called procedure.

4.1.6 Sending Data

The following sections define the calling standard requirements for
mechanisms to send data and the order of argument evaluation.
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4.1.6.1 Sending Mechanism

In Section 4.1.1, the allowable argument-passing mechanisms are
immediate value, reference, and descriptor. The following list describes the
requirements for using these mechanisms.

• By immediate value

An argument can be passed by immediate value only if the argument is
one of the following:

– One of the noncomplex scalar data types with a known size (at
compile time) of less than or equal to 64 bits

– A record whose size is known (at compile time)

– A data set, implemented as a bit vector, with a known size (at compile
time) of less than or equal to 64 bits

No form of string, array, or complex data type can be passed by
immediate value in a standard call.

A standard immediate argument item must fill all 64 bits. Therefore,
unused high-order bits of all data types (excluding records and Data32
items) must be zero-extended or sign-extended as appropriate, depending
on the data type to fill all unused bits, as specified in Table 4–2.

• Records as immediate arguments

Record values that are larger than 64 bits can be passed by immediate
value if the following conditions are met:

– The program must allocate as many fully occupied argument item
positions to the argument value as are needed to represent the
argument.

– The value of the unoccupied bits is undefined in a final, partially
occupied argument item position.

– If an argument item is passed in one of the registers, it can only be
passed in an integer register, never in a floating-point register.

• Nonstandard immediate arguments

Nonrecord argument values that are larger than 64 bits can be passed by
immediate value using nonstandard conventions, similar to those used
for passing records. Thus, for example, a 26-byte string could be passed
by value in four integer registers.

• By reference − nonparametric

Nonparametric arguments (that is, arguments for which associated
information such as string size and array bounds is not required) may be
passed by reference in a standard call.

• By reference − parametric
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Parametric arguments (that is, arguments for which associated
information such as string size and array bounds must be passed to the
caller) may be passed by reference followed by one or more immediate
arguments for the parametric values. (The parametric values do not
need to immediately follow the reference arguments to which they apply.)

_____________________ Note _____________________

This standard does not define interlanguage conventions for
calls with parametric arguments.

• By descriptor

Parametric arguments (that is, arguments for which associated
information such as string size and array bounds must be passed to the
caller) can be passed by a single descriptor.

_____________________ Note _____________________

This standard does not define a standard set of descriptors
for interlanguage use.

Note that extended floating-point values are not passed using the immediate
value mechanism. Instead, they are passed using the by-reference
mechanism. (When by-value semantics are required, however, it might be
necessary to make a copy of the actual parameter and pass a reference to
that copy to avoid improper alias effects.)

Note also that when a record is passed by immediate value, the component
types have no bearing on how the argument is aligned. The record will
always be quadword-aligned.

4.1.6.2 Order of Argument Evaluation

Because most high-level languages do not specify the order of evaluation
of arguments with respect to side effects, those language processors can
evaluate arguments in any convenient order. The choice of argument
evaluation order and code generation strategy is constrained only by the
definition of the particular language. Programs should not depend on the
order of evaluation of arguments.

4.1.7 Returning Data

A standard function must return its function value by one of the following
mechanisms:

• Immediate value
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• Reference

• Descriptor

These mechanisms are the only standard means available for returning
function values. They support the important language-independent data
types. Functions that return values by any mechanism other than those
specified here are nonstandard, language-specific functions.

The following sections describe each of the three standard mechanisms for
returning function values.

4.1.7.1 Function Value Return By Immediate Value

The following list describes the two types of immediate value function
returned:

• Nonfloating-point function value return by immediate value

A function value is returned by immediate value in register $0 if and
only if the type of function value is one of the following:

– Nonfloating-point scalar data type with size known (at compile time)
to be less than or equal to 64 bits

– Set, implemented as a bit vector, with size known (at compile time) to
be less than or equal to 64 bits

No form of string, record, or array can be returned by immediate value.
Two separate 32-bit entities cannot be returned in $0.

A function value of less than 64 bits returned in $0 must have its
unoccupied bits extended (as appropriate, depending on the data type)
to a full quadword. (See Table 4–2 for details.)

• Floating-point function value return by immediate value

A function value is returned by immediate value in register $f0 if and
only if it is a noncomplex single- or double-precision floating-point
value (F, D, G, S, or T). A function value is returned by immediate
value in registers $f0 and $f1 if and only if it is a complex single- or
double-precision floating-point value (complex F, D, G, S, or T). The real
part is in $f0 and the imaginary part is in $f1.

4.1.7.2 Function Value Return By Reference

A function value is returned by reference if and only if the function value
satisfies the following criteria:

• Its size is known to the calling procedure and the called procedure, but
the value cannot be returned by immediate value because, for example,
the function value requires more than 64 bits or the data type is a string,
record, or an array type.
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• It can be returned in a contiguous region of storage.

The actual-argument list and the formal-argument list are shifted to the
right by one argument item. The new first argument item is reserved for
the address of the function value.

The calling procedure must provide the required contiguous storage and
pass the address of the storage as the first argument. This address must
specify storage that is naturally aligned according to the data type of the
function value.

The called function must write the function value to the storage described
by the first argument.

4.1.7.3 Function Value Return By Descriptor

A function value is returned by descriptor if and only if the function value
satisfies all of the following criteria:

• It cannot be returned by immediate value because, for example, the
function value requires more than 64 bits or the data type is a string,
record, or an array type.

• Its size is not known to the calling procedure or the called procedure.

• It can be returned in a contiguous region of storage.

Function results returned by descriptor are not permitted in a standard call.

Typically, the called routine creates the return object on its stack and
leaves it there on return. This process is referred to as the stack return
mechanism. The exit code of the called routine does not restore SP to
its value before the call because, if it did, the return value would be left
unprotected in memory below SP. The calling routine must be prepared for
SP to have a different value after the call than the pointer had before the call.

4.2 Data Allocation

Data allocation refers to the method of storing data in memory. The following
sections cover these topics:

• Data alignment

• Granularity of memory access

• Record layout conventions

4.2.1 Data Alignment

In the Alpha environment, memory references to data that is not naturally
aligned can result in alignment faults. Such alignment faults can severely
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degrade the performance of all procedures that reference the unnaturally
aligned data.

To avoid such performance degradation, all data values for programs running
on Alpha systems should be naturally aligned. Moreover, global data values
shared across a standard call must be quadword aligned. Table 4–3 shows
the data alignment requirements for non-global data.

Table 4–3: Data Alignment Addresses
Data Type Alignment Starting Position

8-bit character string Byte boundary

16-bit integer Address that is a multiple of 2 (word
alignment)

32-bit integer Address that is a multiple of 4
(longword alignment)

64-bit integer Address that is a multiple of 8
(quadword alignment)

Single-precision real value Address that is a multiple of 4
(longword alignment)

Double-precision real value Address that is a multiple of 8
(quadword alignment)

Extended-precision real value Address that is a multiple of 16
(octaword alignment)

Single-precision complex value Address that is a multiple of 4
(longword alignment)

Double-precision complex value Address that is a multiple of 8
(quadword alignment)

Extended-precision complex value Address that is a multiple of 16
(octaword alignment)

Data types larger than 64 bits Quadword or greater alignment.
(Alignments larger than quadword are
language-specific or application defined)

For aggregates such as strings, arrays, and records, the data type to be
considered for purposes of alignment is not the aggregate itself, but the
elements that make up the aggregate. The alignment requirement of an
aggregate is that all elements of the aggregate be naturally aligned. Varying
8-bit character strings, for example, must start at addresses that are a
multiple of at least 2 (word alignment) because of the 16-bit count at the
beginning of the string; 32-bit integer arrays start at a longword boundary,
regardless of the extent of the array.
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Note that the rules in Section 4.1.6.1 for passing by value an argument
that is a record always provide quadword alignment of the record value
independent of the normal alignment requirement of the record. If deemed
appropriate by the implementation, normal alignment can be established
within the called procedure by making a copy of the record argument at
a suitably aligned location.

4.2.2 Granularity of Memory

Granularity of memory refers to the smallest unit in which memory can be
accessed. In the Alpha architecture, although memory is byte-addressed,
the granularity is a longword. Even for longword-sized data, it is often
expedient for execution efficiency to access memory in quadword units.
In the presence of multiple threads of execution (whether on multiple
processors or a single processor), allocation of more than one data element
within a single quadword can lead to more complicated access sequences (for
example, using ldx_l/stx_c) and/or latent and hard to diagnose errors
because of nonobvious and implicit data sharing. Therefore, it is generally
recommended that independent variables (that is, variables not combined in
a larger aggregate) be allocated on quadword boundaries.

4.2.3 Record Layout Conventions

The Tru64 UNIX calling standard record layout conventions are designed
to provide good run-time performance on all implementations of the
Alpha architecture. Only the standard record layouts may be used across
standard interfaces or between languages. Languages can support other
language-specific record layout conventions, but such other record layouts
are nonstandard.

The aligned record layout conventions ensure the following:

• All components of a record or subrecord are naturally aligned.

• Layout and alignment of record elements and subrecords are independent
of any record or subrecord in which they might be embedded.

• Layout and alignment of a subrecord are the same as if that data item
was a top-level record.

• Declaration in high-level languages of standard records for interlanguage
use is straightforward and obvious, and meets the requirements for
source-level compatibility between Tru64 UNIX environments and other
environments.

The aligned record layout is defined by the following conventions:
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• The components of a record must be laid out in memory corresponding
to the lexical order of their appearance in the high-level language
declaration of the record.

• The first bit of a record or subrecord must be directly addressable; that
is, it must be byte aligned.

• Records and subrecords must be aligned according to the largest natural
alignment requirements of the contained elements and subrecords.

• Bit fields (packed subranges of integers) are characterized by an
underlying integer type, which is a byte, word, longword, or quadword
in size, and by an allocation size in bits. A bit field is allocated at the
next available bit boundary, provided that the resulting allocation does
not cross an alignment boundary of the underlying type. If the resulting
allocation crosses an alignment boundary, the field is allocated at the next
byte boundary that is aligned as required for the underlying type. (In
this latter case, the space skipped over is left permanently unallocated.)

In addition, the alignment of the record as a whole is increased to that of
the underlying integer type, if necessary.

• Unaligned bit strings, unaligned bit arrays, and elements of unaligned
bit arrays must start at the next available bit in the record. No fill is
ever supplied preceding an unaligned bit string, unaligned bit array, or
unaligned bit array element.

• All other components of a record must start at the next available
naturally aligned address for the data type.

• The length of a record must be a multiple of its alignment. (This
requirement also holds when a record is a component of another record.)

• Strings and arrays must be aligned according to the natural alignment
requirements of the data type of which the string or array is composed.

• The length of an array element is a multiple of its alignment, even if this
designation leaves unused space at its end. The length of the complete
array is the sum of the lengths of its elements.
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5
Event Processing

This chapter discusses specifications related to events that are outside the
normal program flow. The topics covered are:

• Exception handling

• Unwinding

5.1 Exception Handling

This section discusses the following considerations involved in the
notification and handling of exceptional events during the course of normal
program execution. An exception is a condition in the current software
and/or hardware state that should be noted or fixed. The exception handler
deals with the exception condition.

The next sections cover the following topics:

• Requirements for exception handling

• An overview of exception handling

• The kinds of exceptions

• Status values and exception codes

• Exception records

• Frame-based exception handlers

• How handlers become established

• How exceptions are raised

• The search for and invocation of exception handlers

• Modification of exception records and context by handlers

• Handler completion and return value

• Exception synchronization and continuation from exceptions

• Coexistence of exception and signal handling

5.1.1 Exception Handling Requirements

This Tru64 UNIX calling standard supports the following exception handling
capabilities:
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• Reliable programmer and program control over response to exceptions
and reporting of such exceptions, as well as over the flow of control when
exceptions occur

• Orderly termination of layered applications

• Correct and predictable exception handling in a multilanguage
environment

• Construction of modular, maintainable multilanguage applications

• Parallel multithreaded application execution, including:

– Per-thread exception handling

– Handling of asynchronous exceptions

– Safe thread exit in a multithreaded environment

• Coexistence and interoperation with POSIX-defined signal handling

5.1.2 Exception Handling Overview

When an exception occurs (is raised), the following events take place:

• The normal flow of control in the current thread is interrupted.

• The current context is saved.

• Control is transferred to the exception-handling support code.

• The exception-handling support code collects the exception information
and then enters a section of the support code called the exception
dispatcher.

• The exception dispatcher searches for exception handlers and invokes
them in the proper sequence.

When a handler is invoked, it is called as a procedure with arguments that
describe the following:

• The nature of the exception

• The environment within which the exception was raised

• The environment within which the handler was established

When the handler is called, the exception is said to be delivered to the
handler.

The handler can respond to the exception in several ways, including various
combinations of the following:

• Perform some action that affects the context of the thread (such as
correcting the circumstances that led to the exception being raised).

• Modify or augment the description of the exception.

5–2 Event Processing



• Raise a nested exception, causing another exception to occur in the
context of the exception handler or in a procedure called directly or
indirectly by the handler.

When an exception handler has finished processing an exception, it must
indicate this state in one of the following ways:

• Reraise the exception.

The handler indicates that the exception handling support code should
reraise the exception and resume the search for a new handler.

• Continue the normal program flow.

The handler indicates that the exception handling support code should
continue execution of the interrupted thread at the location indicated by
the saved exception program counter.

• Unwind from the current operation.

The handler performs an unwind operation that causes the exception
handling support code to resume execution of the thread at a point other
than the point at which it was interrupted or to terminate the execution
of the thread.

All exceptions are handled using the same interfaces, data structures, and
algorithms. That is, exception handling is unified for all kinds of exceptions,
regardless of their origins. The interfaces and data structures are defined in
the file /usr/include/excpt.h.

Each exception has an exception value that identifies the type of exception,
such as subscript range violation or memory access control violation.
Exceptions can also be associated with one or more exception qualifiers
(such as the name of an array and the subscript that was out of range, or an
address associated with a memory access control violation).

5.1.3 Kinds of Exceptions

There are three kinds of exceptions:

• General exceptions − those caused by general software or hardware
notification mechanisms

• Unwind exceptions − those caused by unwind operations

• Signal exceptions − those caused in support of the POSIX 1003.1
signal() routine

5.1.3.1 General Exceptions

General exceptions are divided into two categories:

• Software-caused
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A software-caused general exception is raised when an exception-raising
procedure is invoked. This type of exception is always delivered to the
thread that made the call.

A software-caused exception can be raised at any point during
thread execution. Applications and language run-time libraries
can raise general exceptions to notify a thread of some exceptional
(noteworthy) state in the current thread context. For example, subscript
range-checking failures and assertion-checking failures can be raised as
software-caused general exceptions.

• Hardware-caused

A hardware-caused general exception occurs when a thread performs
some action that causes an exceptional state to exist in the hardware.
Such a state will cause the currently active thread to be interrupted. A
hardware-caused general exception is always delivered to the thread
that executed the instruction that caused the exception.

The following characteristics are specific to individual hardware
exceptions:

– Exactly which hardware events can result in exceptions

– The state of the machine when a hardware exception occurs

– The interpretation of the exception-related information that is
delivered to a user mode thread

– The circumstances under which execution can be continued

Hardware exceptions are fully defined in the Alpha Architecture
Reference Manual.

In the Tru64 UNIX for Alpha systems environment, hardware exceptions
that are not handled by the operating system itself are reported to user
level in the form of a POSIX signal. Such signals are then further
interpreted as exceptions and are handled as described in this calling
standard. See Section 5.1.13 for details on how this signal interpretation
is achieved.

5.1.3.2 Unwind Exceptions

Unwind exceptions result from the invocation of the unwind support
code by a thread. These exceptions are always delivered to the thread that
invoked the unwind.

Unwind exceptions are delivered as part of the notification process that an
unwind is in progress. (See Section 5.2 for details.)

5–4 Event Processing



5.1.3.3 Signal Exceptions

Signal exceptions result from the delivery of a POSIX signal. This signal is
subsequently converted into an exception that can be handled using the
capabilities defined by this calling standard.

5.1.4 Status Values and Exception Codes

A status value is a quadword that can be used as a return value from a
procedure call to indicate success, failure, or other information about the
requested operation. A status value can also be used as an exception code to
indicate the reason that an exception is being raised.

Figure 5–1 shows the components of a status value structure.

Figure 5–1: Status Value Representation

1osf_facility

f_d_2 * facility facility_dependent_1

code

quadword−aligned

ZK−0864U−R

31 28 27 16 15 0

3263
2

*  f_d_2 = facility_dependent_2

The components of this representation are as follows:

1 osf_facility

A facility code indicating the software component that defines this status
value. Only those values defined in the file /usr/include/excpt.h
can be used. This component consists of three subfields:

– facility

This field has the value ffe(hex) on Tru64 UNIX for Alpha systems to
distinguish the status value from those of other operating systems.

– facility_dependent_1

This field indicates the particular programming language or system
associated with the value.

– facility_dependent_2

This field serves the same routine as facility_dependent_1.
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2 code

This field contains a value for a particular status condition.

There are several ways for a software system or application to define its
own status values:

• It may already have status values from another operating system, such
as OpenVMS.

• It can register values for the fields facility_dependent_1 and
facility_dependent_2 with Digital. The facility field will have
the value ffe(hex). All values of the code field will be available.

• It can use the predefined osf_facility value EXC_C_USER
(ffe0009(hex)). However, these status values might conflict with status
values of other operating systems.

5.1.5 Exception Records

The fundamental data structure for describing exceptions is the exception
record. Exception records can be joined together by handlers to form a
linked list. Each record in a list describes one exception.

The first exception record in the list describes the primary exception.
Secondary exceptions can be specified by adding exception records to the
list. Secondary exceptions qualify or elaborate the primary exception. In
some cases, they are raised at the same time as the primary exception. In
other cases, a handler can add new secondary exceptions to the list before
handling or reraising the exception.

Storage for exception records can be allocated in read-only memory. The
exception record that is passed to a handler is a separate read-write copy
constructed from information in the original exception record augmented
with additional information.

Figure 5–2 shows the format of an exception record.
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Figure 5–2: Exception Record Format
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: x

ExceptionCode

ExceptionFlags

ExceptionRecord

ExceptionAddress

NumberParameters

ExceptionInformation[0]

ExceptionInformation[NumberParameters−1]

3

4

5

6

6

sizeof (EXCEPTION_RECORD)  ==  160

EXCEPTION_RECORD

1 ExceptionCode is an exception code value. (See Section 5.1.4.)

2 ExceptionFlags is a bit field of flags that further qualify the
exception. These flag bits are significant only in the primary exception
record; their state is unpredictable in secondary exception records.
ExceptionFlags bits are logically divided into two groups: detail flag
and environment flags. Detail flags provide additional information
about the exception. Environment flags provide additional information
about the environment in which the exception is being delivered.

The following ExceptionFlags bits are detail flags that give additional
details:

– EXCEPTION_NONCONTINUABLE (bit 0)
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If EXCEPTION_NONCONTINUABLE is 1, an exception handler must
not return ExceptionContinueExecution.

– EXCEPTION_EXIT_UNWIND (bit 2)

If EXCEPTION_EXIT_UNWIND is 1, the exception handler is being
invoked because of an unwind operation that will terminate
execution of the thread.

– EXCEPTION_UNWINDING (bit 1)

If EXCEPTION_UNWINDING is 1, the exception handler is being
invoked because of a general unwind operation with the semantics
of longjmp().

The following ExceptionFlags bits are environment flags that give
additional information about the environment at the time of exception
delivery:

– EXCEPTION_NESTED_CALL (bit 4)

If EXCEPTION_NESTED_CALL is 1, an exception or unwind is in
progress at the time this exception is delivered.

– EXCEPTION_STACK_INVALID (bit 3)

If EXCEPTION_STACK_INVALID is 1, the stack is invalid.

Note that this flag is for use by system software; it will never be 1 in
an exception record delivered to a normal handler.

– EXCEPTION_TARGET_UNWIND (bit 5)

If EXCEPTION_TARGET_UNWIND is 1, this frame is the target frame
of an unwind operation. (This flag can be useful in allowing a
language-specific handler to perform proper handling for the last
step of an unwind.)

– EXCEPTION_COLLIDED_UNWIND (bit 6)

If EXCEPTION_COLLIDED_UNWIND is 1, an unwind collision has
occurred. (See Section 5.2.5 for information on multiply active
unwind operations).

All FLAGS bits other than those defined in the preceding lists must
be zero.

3 ExceptionRecord is zero or contains the address of the next exception
record in the list.

4 ExceptionAddress is the address of the instruction causing the
exception.

For a hardware, signal, or asynchronous software exception, this field
contains the address of the instruction at which the hardware, signal, or
asynchronous exception interrupted execution of the thread.
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For a synchronous software exception, this field contains the address
of the call instruction that invoked the library routine for raising the
exception.

This field is significant only in primary exception records; its contents
are unpredictable in secondary exception records.

5 NumberParameters is the number of exception-specific qualifiers in
the exception record.

6 Each ExceptionInformation [n] value is a single quadword that
provides additional information specific to the exception. The quadword
can also contain information intended for display in messages.

5.1.5.1 Exception Records for General Exceptions

In the case of software-caused exceptions, the information in the exception
records for general and unwind exceptions can vary widely from a
simple single-exception value to a long chain of exceptions and exception
qualifiers. This calling standard defines the conventions for constructing
these exception records. However, a complete enumeration of all possible
combinations is beyond the scope of this document.

All Alpha hardware exceptions have exception information associated with
them. This information can be as little as the exception type and exception
PC or as much as three registers worth of additional information. The
specific information that is supplied with each exception type is defined in
the Alpha Architecture Reference Manual.

Hardware exceptions are reported to user mode in the form of POSIX
signals. See Section 5.1.5.3.

5.1.5.2 Exception Records for Unwind Exceptions

Unwind exceptions have at least one of the following flags set to 1:

• EXCEPTION_UNWINDING

• EXCEPTION_EXIT_UNWIND

• EXCEPTION_TARGET_UNWIND

The ExceptionCode for unwind exceptions contains the reason code for the
unwind along with any supplied qualifiers. This information is similar to the
contents of the ExceptionCode field for general exceptions.

5.1.5.3 Exception Records for Signal Exceptions

In exception records for signal exceptions, the value of the ExceptionCode
field includes the signal number. Any additional exception qualifiers that
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are present can further qualify the signal. These qualifiers are most useful
for hardware-generated signals.

For example, in a POSIX-conforming environment, all arithmetic exceptions
are delivered with a signal number SIGFPE. The qualifiers can indicate
whether the signal was caused by a floating underflow, integer overflow,
or other arithmetic exception. (In a POSIX-conformant environment,
no mechanism is provided for a user program to deliver a signal with a
qualifier of any kind. Thus, the presence of such a qualifier occurs because
it was produced by some system facility, such as the hardware exception
dispatching code.) See Section 5.1.13 for a discussion of exception and signal
handling coexistence.

5.1.6 Frame-Based Exception Handlers

A frame-based exception handler is established when a procedure
whose descriptor specifies an exception handler becomes current. Thus,
frame-based handlers are usually associated with a procedure at compile
time and are located at run time through the procedure descriptor. These
exception handlers are normally used to implement a particular language’s
exception handling semantics.

The frame-based exception handlers that can be invoked are those
established by active procedures, from the most current procedure to the
oldest predecessor.

An exception handler that conforms to this calling standard should not
handle any exception that its establisher did not cause, unless there is
a prior agreement between the writers of the exception handler and the
writers of the code that raised the exception.

Exceptions can be raised and unwind operations that cause exception
handlers to be called can occur when the current value of at least one
variable is in a register rather than in memory. Therefore, a handler and
any descendant procedure called directly or indirectly by a handler must
not access any variables except those explicitly passed to the procedure as
arguments or those that exist in the normal scope of the procedure.

This requirement can be violated for specific memory locations only by
agreement between the handler and all procedures that might access those
memory locations. The effects of such agreements are not specified by this
calling standard.

5.1.7 Establishing Handlers

The list of established frame-based handlers for a thread is defined by the
thread’s procedure invocation chain. (See Chapter 7 for information on
procedure invocations and call chains.)

5–10 Event Processing



A procedure descriptor for which PDSC_FLAGS_HANDLER_VALID is 1
must specify in PDSC_RPD_HANDLER_ADDRESS the procedure value of an
exception handler. The exception handler specified by a procedure descriptor
is established when the corresponding procedure is added to the invocation
chain; that is, when the procedure designated by the descriptor becomes
current.

The exception handler remains established as long as that procedure
invocation is part of the invocation chain. The handler is revoked when that
procedure is removed from the invocation chain; that is, when the procedure
invocation designated by the descriptor terminates, either by returning or
being unwound.

Thus, the set of frame-based handlers that is established at any moment is
defined by the current procedure call chain.

Dynamic activation or deactivation of exception handlers is not defined by
this calling standard (and, in fact, is not permitted within the semantics of
many language standards). If this capability is required, it must be defined
on a language-by-language basis.

Compilers that choose to support this capability can establish
language-specific static exception handlers that provide the dynamic
exception handling semantics of that language. Such static handlers would
be established by means of the procedure descriptor of the establishing
procedure. If a language compiler decides to support dynamic activation of
exception handlers, it must be prepared to recognize code that intends to use
this feature. This requirement results from the need to add appropriate
trapb instructions and other compile-time considerations necessary to make
dynamic exception handling function correctly.

______________________ Note _______________________

There can be additional protocols and conventions for dynamic
exception handling. Such protocols and conventions might be
needed, for example, to enable a debugger to perform effectively
within the language exception handling environment. Such
conventions are driven by the requirements of the languages and
the language support utilities, and are not addressed by this
calling standard.

5.1.8 Raising Exceptions

This section describes the four ways of raising exceptions.
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5.1.8.1 Raising General Exceptions

A thread can raise a general exception in its own context by calling a system
library routine defined as follows:

exc_raise_exception (ExceptionRecord)

Arguments:

ExceptionRecord The address of a primary exception record

Function Value:

None

The exc_raise_exception() routine sets ExceptionAddress to the
address of the invoking call instruction. If exc_raise_exception() detects
that the exception record passed as the first argument is not a valid exception
record, the routine raises the exception EXC_INVALID_EXCEPTION_RECORD.

5.1.8.2 Raising General Exceptions Using gentrap

The Alpha Architecture Reference Manual defines the gentrap PAL call as a
mechanism for software to raise hardware-like exceptions at minimum cost.
This mechanism is suitable for use in low levels of the operating system
or during bootstrapping when only a limited execution environment is
generally available.

In a constrained environment, gentrap can be handled directly through the
SCB vector. In a more complete environment, the gentrap parameter is
transformed into a corresponding exception code and reported as a normal
hardware exception. Low-level software can use this mechanism to report
exceptions in a way that is independent of the execution environment.
Compiled code can also use this mechanism to raise common generic
exceptions more cheaply than would be possible if the code had to make a
full procedure call to exc_raise_exception().

The gentrap PAL call is defined as follows:

gentrap (EXPT_CODE)

Argument:

EXPT_CODE Code for the exception to be raised

If the EXPT_CODE value is one of the small negative values shown in
Table 5–1, that value is mapped to the corresponding POSIX signal,
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as shown. The signal qualifier is set to EXPT_CODE. The signal can be
converted to an exception by installing exc_raise_signal_exception()
as the signal handler. (See Section 5.1.13.) The gentrap instruction sets
ExceptionAddress to the address of the PAL call.

For other values of EXPT_CODE, the behavior of gentrap is not defined
by this standard.

Note that there are no mechanisms to associate any parameters with an
exception raised using gentrap.

Table 5–1: gentrap EXPT_CODE Values
EXPT_CODE
Value

Symbol Meaning POSIX Signal

−1 GEN_INTOVF Integer overflow SIGFPE

−2 GEN_INTDIV Integer divide by zero SIGFPE

−3 GEN_FLTOVF Floating overflow SIGFPE

−4 GEN_FLTDIV Floating divide by zero SIGFPE

−5 GEN_FLTUND Floating underflow SIGFPE

−6 GEN_FLTINV Floating invalid operation SIGFPE

−7 GEN_FLTINE Floating inexact result SIGFPE

−8 GEN_DECOVF Decimal overflow SIGTRAP

−9 GEN_DECDIV Decimal divide by zero SIGTRAP

−10 GEN_DECINV Decimal invalid operand SIGTRAP

−11 GEN_ROPRAND Reserved operand SIGFPE

−12 GEN_ASSERTERR Assertion error SIGTRAP

−13 GEN_NULPTRERR Null pointer error SIGTRAP

−14 GEN_STKOVF Stack overflow SIGTRAP

−15 GEN_STRLENERR String length error SIGTRAP

−16 GEN_SUBSTRERR Substring error SIGTRAP

−17 GEN_RANGEERR Range error SIGTRAP

−18 GEN_SUBRNG Subscript range error SIGTRAP

−19 GEN_SUBRNG1 Subscript 1 range error SIGTRAP

−20 GEN_SUBRNG2 Subscript 2 range error SIGTRAP

−21 GEN_SUBRNG3 Subscript 3 range error SIGTRAP

−22 GEN_SUBRNG4 Subscript 4 range error SIGTRAP

−23 GEN_SUBRNG5 Subscript 5 range error SIGTRAP
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Table 5–1: gentrap EXPT_CODE Values (cont.)

EXPT_CODE
Value

Symbol Meaning POSIX Signal

−24 GEN_SUBRNG6 Subscript 6 range error SIGTRAP

−25 GEN_SUBRNG7 Subscript 7 range error SIGTRAP

5.1.8.3 Raising Unwind Exceptions

The mechanism used to raise an unwind exception is described in detail in
Section 5.2.

5.1.8.4 Raising Signal Exceptions

Signal exceptions can be raised asynchronously (such as, for notification of a
terminal line hangup) or synchronously. The exact circumstances that cause
an asynchronous signal exception to be raised vary widely from hardware
exception notification to software notification, as in the POSIX-defined
alarm() routine. Section 5.1.13 contains information on exception and
signal handling coexistence.

5.1.9 Search for and Invocation of Exception Handlers

The search for and subsequent invocation of an exception handler begins
with the program counter value that indicates the address at which the
exception was raised. Generally, a program counter value is associated with
a procedure descriptor. (Section 8.1 describes procedure descriptors.) The
procedure descriptor provides information needed to identify the procedure
containing the code and interpret those parts of the stack frame that are
needed to traverse the procedure call chain. (Chapter 7 discusses procedure
invocation and call chains.)

If a null frame procedure or other fragment of code does not have an
associated procedure descriptor, it is assumed that an appropriate initial
program counter value is located in the normal return address register ($26).
If there is a procedure descriptor associated with this address, the search for
an exception handler begins using that address; otherwise, a fatal exception
is raised and the executing thread is terminated.

The next sections discuss the order of invocation for exception handlers as
well as handler invocation and arguments.

5.1.9.1 Invocation Order for Exception Handlers

When an exception is raised, established exception handlers are invoked in
a specific order.
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Any frame-based handlers are invoked in order, from the handler established
by the most current procedure invocation to the handler established by the
oldest predecessor in the invocation chain.

If no frame-based handlers have been established, or if all of them reraise
the exception, the system last chance handler is invoked.

A nested exception occurs if an exception is raised while an exception
handler is active. When a nested exception occurs, the structure of the
procedure invocation chain, from the most recent procedure invocation to the
oldest predecessor, contains the following elements in the specified order:

1. The procedure invocation within which the nested exception was raised.

2. Zero or more procedures invoked indirectly or directly by the most
recently invoked (most current) handler.

3. The most current handler.

If there are zero invocations in item 2, this invocation is the same as
item 1 (the invocation in which the nested exception was raised). In this
case, items 1 and 3 count as a single invocation.

4. The procedure invocation within which the active exception that
immediately preceded the nested exception was raised, that is, the
invocation in which the exception was raised for which the most current
handler was invoked.

5. Zero or more procedure invocations. All handlers established by these
procedures have been invoked for the exception that immediately
preceded the nested exception and all have reraised that exception.

6. The establisher of the most current handler.

If there are zero invocations in item 5, this invocation is the same as
item 4 (the invocation in which the exception that immediately preceded
the nested exception was raised).

7. Zero or more procedure invocations for which no established handlers
have yet been invoked.

Figure 5–3 shows an example of a procedure invocation chain, where BB is
the most recent invocation and A is the oldest predecessor. The numbers on
the left side of the figure correspond to the elements in the previous list.
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Figure 5–3: Procedure Invocation Chain
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The following list contains the time-ordered events that gave rise to this
invocation chain:

• A calls B calls C calls D.

• An exception is raised in D.

• The handlers established by D and by C are invoked in turn and they
reraise the exception.

• B.Handler, the handler established by B, is invoked.

• B.Handler calls AA calls BB.

• A nested exception is raised in BB.

Established handlers are invoked in reverse order to the order in which their
establishers were invoked. That is, the search of stack frames for procedure
invocations that have established handlers is in the order 1 to 7.

If further nested exceptions occur, this procedure invocation chain structure
is repeated for those further nested exceptions. Frame-based handlers
are invoked according to the order previously listed; that is, from those
established by the most current procedure to those established by the oldest
predecessor.

The following pseudocode shows the steps for locating and invoking
exception handlers. Note that these steps cover only the search of stack
frames for a handler proper and do not address the mapping of a POSIX
signal to an exception.

1. Let current_invocation be the procedure invocation in which the
exception was raised.
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2. [loop]: If current_invocation does not establish a handler, go
to step [check-begin].

3. Invoke the handler established by current_invocation.

4. If the handler returns ExceptionContinueExecution or initiates
an unwind, exit from these steps.

5. [check-begin]: If current_invocation is the beginning of the
procedure invocation chain, go to step [last-chance].

6. If current_invocation is an active handler, let current_invoca-
tion be the invocation in which the exception was raised that invoked
this active handler, and go to step [loop].

7. Let current_invocation be the procedure invocation that invoked
current_invocation.

8. Go to step [loop].

9. [last-chance]: Invoke the system last chance handler.

If, during the search for and invocation of frame-based handlers, the
exception dispatcher detects that the thread’s main stack is corrupt, the
following actions occur:

• The EXCEPTION_STACK_INVALID flag is set to 1.

• The search for handlers immediately proceeds to the system last chance
handler.

5.1.9.2 Handler Invocation and Arguments

Every exception handler is invoked as a function that returns a status value.
The function call is defined as follows:

(*ExceptionHandler)
( ExceptionRecord, EstablisherFrame,

ContextRecord, DispatcherContext )

Arguments:
ExceptionRecord The address of a primary exception record.

EstablisherFrame The virtual frame pointer of the establisher
(discussed in Section 7.1).

ContextRecord The address of a sigcontext structure containing
the saved original context at the point where the
exception occurred. During an unwind, this argument
contains the address of the sigcontext structure for
the establisher. (The sigcontext structure is defined
in the file /usr/include/signal.h.)

DispatcherContext The address of a control record for the exception dispatcher.
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Function Value:
STATUS A value indicating the action to be taken upon handler

return. The valid values are ExceptionContinue-
Execution and ExceptionContinueSearch. Note:
the exception dispatcher allows additional return
values from its own exception handlers.

The control record pointed to by DispatcherContext provides
communication between the handler and the exception dispatcher (the
system routine that actually invokes the handler). This record provides
information about the establisher. The following list discusses three fields
in the record:

• ControlPC

This field contains the program counter (PC) where control left the
establisher of the exception handler; that is, the PC of the call instruction
or the instruction that caused the exception. This field can be updated
by a handler. If a nested exception occurs during unwinding while the
handler is still active, the value of the PC used for the establisher will
be the updated value of ControlPC. This mechanism can be employed
to retire nested exception handling scopes that are local to a procedure
in order to assure that each is executed only once at most (even in the
presence of a nested exception within such a handler). The ControlPC
value must, however, always be an address within the procedure whose
handler is executing.

• collide_info

This field is a quadword whose meaning is determined by the handler.
Typically, a language-specific handler will write new values into this field
as it processes nested scopes. If a colliding unwind occurs, the dispatcher
sets collide_info to the value it had for the establisher. A handler
knows to read this field when EXCEPTION_COLLIDED_UNWIND is 1. This
field can be used in the same manner as the ControlPC field to retire
nested exception scopes, but it does not have to be an address within the
current procedure.

• FunctionEntry

This field contains a pointer to the procedure descriptor for the
establisher. The field is read-only to exception handlers, except for
handlers for the exception dispatcher itself.

5.1.10 Modification of Exception Records and Context by Handlers

The exception records, exception qualifiers, invocation context blocks, and
control records that are passed to an exception handler are always allocated
in writable memory. Handlers can write to any location in these data
structures. The exception records and exception qualifiers that are passed to
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a handler are copies of the original ones. Modifications to them are seen by
other subsequently called handlers (within the limits described later) but do
not affect the original data structures.

The effects of a handler-modifying passed exception information are as
follows:

• If the EXCEPTION_NONCONTINUABLE flag in the primary exception
record is changed from 0 to 1, the exception handler that made the
modification must not return ExceptionContinueExecution,
nor can any handler subsequently invoked for the exception return
ExceptionContinueExecution.

If ExceptionContinueExecution is returned after the
EXCEPTION_NONCONTINUABLE flag has been changed from 0 to
1, a nested exception is raised with ExceptionCode equalling
EXC_STATUS_NONCONTINUABLE_EXCEPTION, indicating that an
attempt was made to continue from a noncontinuable exception. This
second exception is also noncontinuable.

• If any flags in ExceptionFlags in the primary exception record are
modified except as described in the previous item in this list, there is no
effect after the exception handler completes its operation. All handlers
subsequently invoked for the exception receive a primary exception
record with the flags unmodified.

However, an exception handler must not change the EXCEPTION_NON-
CONTINUABLE flag from 1 to 0.

• If the contents of the record specified by ContextRecord or
DispatcherContext are modified by a handler, except for ControlPC
and collide_info, the results are unpredictable and such a handler
does not conform to this calling standard.

• Except as specified in the previous items in this list, all changes made
to the exception information will be visible to handlers subsequently
invoked for the exception. Any other effects of modifying the exception
information are not defined by this calling standard.

5.1.11 Handler Completion and Return Value

When an exception handler has finished all its processing, it performs one of
the following actions:

• Reraises the exception

• Continues execution of the thread

• Initiates procedure invocation unwinding
Section 5.2 contains a complete description of the unwinding process. This
section discusses the other methods of handler completion.
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5.1.11.1 Completion by Reraising the Exception

If an exception handler determines that additional handlers should
be invoked for the exception because it could not completely handle
the exception, the handler can reraise the exception by returning
ExceptionContinueSearch.

Reraising causes the next exception handler to be invoked. (See
Section 5.1.9.1 for details.)

If all exception handlers established by the thread reraise the exception, the
system last chance handler is invoked, with system-dependent results.

5.1.11.2 Completion by Continuing Thread Execution

By returning ExceptionContinueExecution, an exception handler can
continue execution of the thread at the address specified by the continuation
PC in the ContextRecord, with the context of the interrupted procedure
restored.

If ExceptionContinueExecution is returned and the EXCEPTION_NON-
CONTINUABLE flag is 1, a nested exception is raised with ExceptionCode
equalling EXC_STATUS_NONCONTINUABLE_EXCEPTION. This second
exception is also noncontinuable.

5.1.11.3 Completion During Unwinding

When an unwind is in progress, the status returned by handlers must be
ExceptionContinueSearch. Otherwise, EXC_STATUS_INVALID_DIS-
POSITION is raised; that is, handlers cannot continue during an unwind
operation.

5.1.11.4 Completion from Signal Exceptions

The permissibility and effects of continuing from a signal exception are
governed by the underlying signal, as specified by the implementation of the
POSIX environment.

5.1.12 Other Considerations in Handling Exceptions

This section details certain aspects of the Alpha architecture that have
significant implications for exception handling. These aspects are:

• Exception synchronization

• Continuation from exceptions

The rules presented are designed to assure correct operation across all
implementations of that architecture. As with all aspects of this calling
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standard, optimization information may assure correct behavior as if these
rules were followed, without appearing to explicitly do so.

Alternative approaches that exploit implementation-specific characteristics
are also possible, but are outside the scope of this calling standard.

5.1.12.1 Exception Synchronization

The Alpha hardware architecture allows instructions to be completed in a
different order than that in which they were issued. The architecture also
allows for exceptions caused by an instruction to be raised after subsequently
issued instructions have been completed. Thus, when a hardware exception
occurs, the state of the machine cannot be assumed with precision unless it
has been guaranteed by bounding the exception range with the appropriate
insertion of trapb instructions.

The rules for bounding the exception range are as follows:

• If a procedure has an exception handler that does not simply reraise
all arithmetic traps caused by code not contained directly within that
procedure, it must issue a trapb instruction before it establishes itself
as the current procedure.

Rationale: This rule is required because a standard procedure is not
allowed to handle traps that it might not have caused.

• If a procedure has an exception handler that does not simply reraise all
arithmetic traps caused by code contained directly within that procedure
or by any procedure that might have been called while that procedure
was current, it must issue a trapb instruction in the procedure epilogue
while it is still the current procedure.

Rationale: This rule is required because handlers established by
previous invocations in the call chain might not be able to handle
exceptions from a procedure invocation that is no longer active.

• If a procedure has an exception handler that is sensitive to the invocation
depth, the procedure must issue a trapb instruction immediately before
and after any call. In addition, the handler must be able to recognize
exception PC values that represent trapb instructions immediately
after a call and adjust the depth appropriately.

These rules ensure that exceptions are detected in the context within which
exception handlers have been set up to handle them.

However, these rules do not ensure that all exceptions are detected while
the procedure within which the exception-causing instruction was issued
is current. For example, if a procedure without an exception handler is
called by a procedure that has an exception handler that is not sensitive
to invocation depth, an exception detected while that called procedure
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is current might have been caused by an instruction issued while the
caller was the current procedure. Therefore, the frame, designated by the
exception handling information, is the frame that was current when the
exception was detected, not necessarily the frame that was current when the
exception-causing instruction was issued.

5.1.12.2 Continuation from Exceptions

The Alpha architecture does not guarantee that instructions are completed in
the same order in which they were fetched from memory or that instruction
execution is strictly sequential. Continuation after some exceptions is
possible, but there are restrictions.

Software-raised general exceptions are, by definition, synchronous with
the instruction stream and can have a well-defined continuation point.
Thus, a handler has the option of requesting continuation from a software
raised exception. However, because compiler-generated code typically
relies on error-free execution of previously executed code, continuing from
a software-raised exception might produce unpredictable results and
unreliable behavior unless the handler has explicitly fixed the cause of the
exception in a way that is transparent to subsequent code.

Hardware faults on Alpha systems follow rules that, loosely paraphrased,
state the following: if the offending exception is fixed, reexecution of the
instruction (as determined from the supplied PC) will yield correct results.
This generality does not imply that no instructions following the faulting
instruction have been executed. (See the Alpha Architecture Reference
Manual for details.) Hardware faults can therefore be viewed as similar to
software-raised exceptions and can have well-defined continuation points.

Arithmetic traps cannot be restarted unless all the information required
for a restart is available. The most straightforward and reliable way for
software to guarantee the ability to continue from this type of exception is by
placing appropriate trapb instructions in the code stream. Although this
technique does allow continuation, it must be used with extreme caution
due to the negative side effects it has on application performance. A more
sophisticated technique that requires typically one trapb for each basic
block is described in the Alpha Architecture Reference Manual in the section
on imprecise software completion trap modes.

5.1.13 Exception and Signal Handling Coexistence

The procedure-based exception handling facility defined by this calling
standard coexists with a global POSIX-style signal facility. The following list
describes the features and limitations of such a coexistence.
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• The system provides a special signal handler that serves as an interface
between a signal facility and a frame-based exception handling facility.
The handler is defined as follows:
exc_raise_signal_exception

(... system-defined-arguments ...)

This special signal handler gathers the software and/or
hardware information associated with a signal into an exception
record where ExceptionCode.osf_facility is EXC_SIGNAL
(ffe0003(hex)), ExceptionCode.code is the signal value, and
ExceptionInformation[0] contains any signal qualifier. This record
is passed to the exception-handling support code in a form that can be
processed by normal exception handlers. The exception-handling code
then proceeds with its normal search and invocation of procedures as
described in Section 5.1.2.

If any handler returns with ExceptionContinueExecution (as
described in Section 5.1.2), thread execution resumes at the point where
it was interrupted by the signal.

If no exception handlers are located or if all handlers reraise the
exception, the system’s last chance handler is invoked with unpredictable
(in this case, system-dependent) results.

• When an application that utilizes procedure-based exception handling
is initialized in an environment where signals are also supported, the
language subsystem or user should install the special signal handler
exc_raise_signal_exception() for those signals that normally
result directly from the executing code stream. Those signals include
SIGFPE, SIGSEGV, SIGBUS, SIGILL, SIGEMT, SIGABRT, SIGSYS, and
SIGTRAP.

If it is useful, applications and language run-time support code can
install exc_raise_signal_exception() for other signals, such as
SIGINT. However, such actions might not be appropriate for signals that
result from external autonomous events or signals, like SIGIO, that
are used for flow control.

• When exc_raise_signal_exception() is invoked as a signal handler,
the delivered signal may be blocked, along with perhaps others that were
specified when it was installed as the handler. Subsequent occurrences
of blocked signals are held pending until they are unblocked. Unblocking
is a natural result of a procedure-based exception handler returning
ExceptionContinueExecution, or invoking an unwind operation or
siglongjmp(). Signals can be explicitly unblocked during handler
execution if the handler invokes sigsetmask() or sigprocmask().

Explicit unblocking is necessary if a handler itself might cause a blocked
signal to occur. Similarly, explicit unblocking might be needed if the same
signal is raised in two threads and must be processed by procedure-based
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exception handling at the same time; for example, when one thread
cannot wait for the other thread to complete its exception handling.

• Application developers should exercise care if their programs directly
utilize signal facility support code in any way not otherwise described by
this section for any signal having exc_raise_signal_exception()
installed as its handler. For such applications, the signal facility
mechanisms will continue to operate correctly but there might be
undefined effects on frame-based exception handling of those signals.
Some routines to avoid include: sigaction(), sigblock(), signal(),
sigpause(), sigsetmask(), sigprocmask(), and sigvec().

• The exception handling capabilities defined in this calling standard
are compatible with the use of a separate signal stack. The selection,
change, or other use of a separate signal stack is outside the scope of
this calling standard.

• Environment restrictions regarding which functions are signal reentrant
and which can safely be called from signal catching functions also apply
to exception handlers.

5.2 Unwinding
The unwinding capabilities specified in this section support the following:

• Correct and predictable nonlocal GOTOs in a multilanguage environment

• Construction of modular, maintainable multilanguage applications

This section discusses the following topics:

• Overview of unwinding

• Types of unwind operations

• Types of unwind invocation

• Unwind initiation

• Multiply active unwind operations

• Unwind completion

• Unwind coexistence with setjmp() and longjmp()

5.2.1 Overview of Unwinding

The term unwinding, or unwind operation, refers to the action of
returning from a procedure or a chain of procedures by some mechanism
other than the normal return path. Performing an unwind operation in a
thread causes a transfer of control from the location at which the unwind
operation is initiated to a target location in a target invocation. This
transfer of control results in the termination of all procedure invocations,
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including the invocation in which the unwind request was initiated, up to
the target procedure invocation. Thread execution then continues at the
target location.

Before control is transferred to the unwind target location, the unwind
support code invokes all frame-based handlers that were established by
procedure invocations which are being terminated, as well as the handler for
the target invocation.

This behavior gives each procedure invocation the chance to perform clean-up
processing before its context is lost. These handlers are invoked with an
indication that an unwind is in progress. The exception record passed to the
target invocation’s handler also has EXCEPTION_TARGET_UNWIND set to 1.

Once all the relevant frame-based handlers have been called and the
appropriate frames have been removed from existence, the target invocation’s
saved context is restored and execution is resumed at the specified location.

The results of attempting an unwind operation to any invocation previous to
the top-level procedure of a thread are undefined by this calling standard.

Unwinding does not require an exception handler to be active. Unwind
operations can be used by languages to implement nonlocal GOTOs.

5.2.2 Types of Unwind Operations

There are two types of unwind requests: general and exit. The following
sections describe each type.

5.2.2.1 General Unwind

A general unwind transfers control to a specified location in a specified
procedure invocation. The target procedure invocation is specified by a
frame pointer. (See Section 7.1 for information on procedure invocation.) The
target location is specified with an absolute PC value.

When a general unwind is completed, the registers are updated from the
invocation context for the target frame. Register $0 obtains its value from
the ReturnValue argument to the unwind operation. This action allows a
status to be returned to the target of the unwind.

5.2.2.2 Exit Unwind

It is valuable for a thread that is terminating execution to be able to clean
up its use of shared resources. In a single-threaded process, there might be
global resources, such as files, locks, or shared memory, that are shared
among processes. For multithreaded processes, global resources as well as
process-wide resources like a heap might need to be restored to a known
state.
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Because of this need to clean up shared resources, exiting by a user-mode
thread can be accomplished only by unwinding. A special type of unwind,
called an exit unwind, performs the following actions to terminate
execution:

• Invokes all established frame-based handlers, passing them an exception
record that specifies that an exit unwind is in progress.

• Terminates all procedure invocations up to the beginning of the call
chain.

• Terminates the execution of the thread.

Threads that use any mechanism for termination other than the normal
return process are not considered to be standard and their behavior is
undefined.

5.2.3 Types of Unwind Invocations

There are two types of unwind invocations: those initiated while an
exception is active and those initiated while no exception is active. This
section describes each type.

5.2.3.1 Unwind Operations with No Active Exception

An unwind that is initiated when no exception is active is usually done
to perform a nonlocal GOTO; that is, to transfer control directly to some
code location that is not part of the currently executing procedure or is
not statically known. Even this type of unwind operation must provide a
mechanism to allow clean-up operations (including restoring a consistent set
of register values) of terminated invocations to be performed. The unwind
mechanism supports such clean-up operations.

5.2.3.2 Unwind Operations During an Active Exception

By initiating an unwind operation, the handler, or any descendant procedure
called directly or indirectly by the handler, can continue execution of the
thread at a location different from the one where the exception was raised.

An unwind operation specifies a target invocation in the procedure
invocation chain and a location in that procedure. The operation terminates
all invocations up to the target invocation and continues thread execution at
the specified location in that procedure.

Before control is transferred to the target location, the unwind operation
invokes each frame-based handler that was established by any procedure
invocations being terminated, and also invokes the handler for the target
invocation.
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5.2.4 Unwind Initiation

A thread can initiate a general unwind operation by calling one of two
system library routines. The routines differ only in the way their first
argument specifies the target frame: as a virtual frame pointer or a
real frame pointer. (Section 7.1 discusses ways to refer to procedure
invocations.) These routines are defined as follows:

exc_unwind (VirtualTargetFrame, TargetPC,
ExceptionRecord, ReturnValue)

exc_unwind_rfp (RealTargetFrame, TargetPC,
ExceptionRecord, ReturnValue)

Arguments:
VirtualTargetFrame If nonzero, specifies the virtual frame pointer of the

target procedure invocation to where the unwind is
to be done. If zero, specifies that an exit unwind is
initiated and causes the EXCEPTION_EXIT_UNWIND
flag to be set to 1 in the exception record.

RealTargetFrame If nonzero, specifies the real frame pointer of the
target procedure invocation to which the unwind is
to be done. If zero, specifies that an exit unwind is
initiated and causes the EXCEPTION_EXIT_UNWIND
flag to be set to 1 in the exception record.

TargetPC Specifies the address within the target invocation
at which to continue execution. If a target frame
argument is zero, this argument is ignored.

ExceptionRecord If nonzero, specifies the address of a primary
exception record. If zero, specifies that a default
exception record should be supplied.

ReturnValue Specifies the value to use as the return value (contents
of $0) at the completion of the unwind.

Function Value:

None

If the ExceptionRecord argument is zero, exc_unwind() or
exc_unwind_rfp() supplies a default exception record. That default
exception record specifies exactly one exception record in which
ExceptionCode is EXC_STATUS_UNWIND. For an explicit or default
exception record, the EXCEPTION_UNWINDING flag is set to 1; and, if a null
target frame argument is specified, the EXCEPTION_EXIT_UNWIND flag is
set to 1. The ExceptionAddress is set to TargetPC.

If the ExceptionRecord argument is specified when the unwind is
initiated, all other properties of the exception record are determined by
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ExceptionRecord. If exc_unwind() or exc_unwind_rfp() detects that
a specified exception record is not a valid unwind record, the routine will
raise the exception of EXC_INVALID_EXCEPTION_RECORD. If the frame
corresponding to the target frame argument cannot be found, the system
last-chance handler is called because all procedures have been terminated.

Once an unwind is initiated, control never returns from the call.

5.2.5 Multiply Active Unwind Operations

Sometimes, an unwind operation is initiated while another unwind is
already active. Such a situation could occur if a handler that is invoked
during the original unwind initiates another unwind, or if an exception
is raised in the context of such a handler and a handler invoked for that
exception, in turn, initiates another unwind operation.

An unwind that is initiated while a previous unwind is active is either a
nested unwind or a colliding unwind. This section discusses both types of
multiply active unwind operations.

5.2.5.1 Nested Unwind

A nested unwind operation is an unwind that is initiated while a previous
unwind is active. For a nested unwind, the target invocation in the
procedure invocation chain is not a predecessor of the most current active
unwind handler. That is, a nested unwind does not terminate any procedure
invocation that would have been terminated by the previously active unwind.

When a nested unwind is initiated, no special rules apply. The nested unwind
operation proceeds as a normal unwind operation. When execution resumes
at the target location of the nested unwind, the nested unwind is complete
and the previous unwind is once again the most current unwind operation.

5.2.5.2 Colliding Unwind

Like the nested unwind, a colliding unwind is an unwind that is initiated
while a previous unwind is active. For a colliding unwind, the target
invocation in the procedure invocation chain is a predecessor of the most
current active unwind handler. That is, a colliding unwind terminates
one or more procedure invocations that would have been terminated by
the previously active unwind.

A colliding unwind is detected when the most current active unwind
handler is terminated. This detection of a colliding unwind is referred to
as a collision. When a collision occurs, the second (more recent) unwind
operation takes precedence and the previous unwind is abandoned.
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The next action is to reinvoke the most current established handler because
its establisher has not been unwound. The EXCEPTION_COLLIDED_UNWIND
flag is set in the exception record to indicate this situation to the handler.

5.2.6 Unwind Completion

When an unwind is completed, the following conditions are in effect:

• The target procedure invocation is the most current invocation in the
procedure invocation chain.

• The environment of the target invocation is restored to the state that
existed when that invocation was last current, except for the contents
of scratch registers.

• The GP register contains a pointer to the GOT that is appropriate to
the target procedure.

• The $0 register contains the return value that was passed by the routine
which invoked the unwind.

• Execution continues at the target location.

5.2.7 Unwinding Coexistence with setjmp and longjmp

The procedure invocation unwinding facility defined by this calling
standard can coexist and interoperate with the setjmp() and longjmp()
facilities. It is sufficient for the jmp_buf array to consist of the frame
pointer and program counter values that are needed as arguments to
exc_unwind() or exc_unwind_rfp(). A null pointer can be provided
for the ExceptionRecord argument and the value of the longjmp()
expression can be provided for the ReturnValue argument.

Any environment that conforms to this calling standard must implement
nonlocal GOTOs by using exc_unwind() or exc_unwind_rfp() (or an
equivalent means) to allow all procedures being terminated to clean up any
local or global states, as appropriate.

______________________ Note _______________________

The longjmp() routine for Tru64 UNIX does not use an unwind
operation. Therefore, in the presence of frame-based exception
handling, it is preferable to use exc_longjmp(), implemented
through an unwind operation.
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6
Stack Limits in Multithreaded Execution

Environments

This chapter discusses the following topics:

• Stack limit checking

• Stack overflow handling

The focus of these discussions is on dealing with stack limits in a
multithreaded environment; however, the same information applies to
singlethreaded environments. Although this calling standard is compatible
with a multithreaded execution environment, the detailed mechanisms, data
structures, and procedures that support this capability are not specified
in the standard.

For a multithreaded environment, the following characteristics are assumed:

• There can be one or more threads executing within a single process.

• The state of a thread is represented in a thread environment block
(TEB).

• The TEB of a thread contains information that determines a stack limit,
below which the stack pointer must not be decremented by the executing
code, except for the code that implements the multithreaded mechanism
itself.

• Exception handling is fully reentrant and multithreaded.

• There are three ways to terminate a thread correctly:

– By returning from the initial procedure in which the thread began
execution

– By a call to exc_unwind() or exc_unwind_rfp(), specifying a
null target environment

– By using some other method that includes correct thread termination
involving unwind processing for all of the active frames of that thread

6.1 Stack Limit Checking

A program that is otherwise correct can fail because of stack overflow.
A stack overflow occurs when extension of the stack (accomplished by

Stack Limits in Multithreaded Execution Environments 6–1



decrementing the stack pointer, SP) allocates addresses not currently
reserved for the current thread’s stack.

Detection of a stack overflow condition is important. If a stack overflow is
not detected, a thread that is writing into what it considered to be stack
storage could modify data allocated in that memory for some other purpose.
The results of such a situation would most likely be unpredictable and
undesirable. In some cases, the overflow could result in unreproducible
application failures.

Checking for stack overflow is a requirement for procedures that might
execute in a multithreaded environment.

6.1.1 Stack Region Definitions

The various stack regions are defined as follows:

new stack region This region of the stack extends from the old value of
SP−1 to the new value of SP.

stack guard region In a multithreaded environment, the memory
beyond the limit of each thread’s stack is protected
by contiguous guard pages, which form the stack’s
guard region.

stack reserve
region

In some cases, it is desirable to maintain a stack
reserve region. This region is a minimum-sized
region that is immediately above a thread’s guard
region. A reserve region is useful to ensure that the
following conditions exist:

• Exceptions or asynchronous signals have stack
space to execute on a thread’s stack

• The exception dispatcher and any exception
handler it might call have stack space to execute
after an invalid attempt to extend the stack has
been detected

The Tru64 UNIX calling standard does not require
a reserve region.

6.1.2 Methods for Stack Limit Checking

Because memory can be accessible at addresses lower than those occupied by
the guard region, compilers must generate code to ensure that the stack is
never extended past the guard pages into accessible memory not allocated
to the thread’s stack.

6–2 Stack Limits in Multithreaded Execution Environments



The general strategy is to access each page of memory down to, and possibly
including, the page corresponding to the intended new value for the stack
pointer (SP). If the stack is to be extended by an amount larger than the
size of a memory page, a series of accesses is required that works from
higher-addressed pages to lower-addressed pages. Any access that results
in a memory access violation indicates that the code has made an invalid
attempt to extend the stack of the current thread.

______________________ Note _______________________

An access can be performed using a load operation or a store
operation; however, care must be taken to use an instruction that
is guaranteed to make an access to memory. For example, do not
use an ldq $31,* instruction because the Alpha architecture
allows it to result in no memory access at all, rather than a
memory read access whose result is discarded because of the
$31 destination.

There are two methods for stack-limit checking: implicit and explicit. In
addition, the stack reserve region can be checked. The following sections
describe each type of checking.

6.1.2.1 Implicit Stack Limit Checking

There are two mutually exclusive strategies for implicit stack limit checking:

• If the lowest addressed byte of the new stack region is guaranteed to be
accessed prior to any further stack extension, the stack can be extended
by an increment that is equal in size to the guard region without any
further accesses.

• If some byte (not necessarily the lowest) of the new stack region is
guaranteed to be accessed prior to any further stack extension, the stack
can be extended by an increment that is equal in size to one-half the
guard region without any further accesses.

Generally, the stack frame layout (shown in Section 3.1.2) and entry code
rules (described in Section 3.2.6.1) do not make it feasible to guarantee
access to the lowest address of a new stack region without introducing an
extra access solely for that purpose. Consequently, this calling standard
uses the second strategy. Although the maximum amount of implicit stack
extension is smaller, the check is achieved at no additional cost.

This calling standard requires the minimum guard region size to be 8192
bytes, which is the size of the smallest memory protection granularity
allowed by the Alpha architecture.
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These factors are the basis for the following rule: If the stack is being
extended by an amount less than or equal to 4096 and no reserve region is
required, no explicit stack-limit checking is required.

However, because asynchronous interrupts and calls to other procedures
can also cause stack extension without explicit stack limit checking, stack
extension with implicit limit checking must follow a strict set of conventions:

• Explicit stack limit checking must be performed unless the amount by
which SP is decremented is known to be less than or equal to 4096 and
no reserve region is required.

• Some byte in the new stack region must be accessed before SP can be
decremented for a subsequent stack extension. This access can be
performed before or after SP is decremented for this stack extension, but
it must be done before SP can be decremented again.

• No standard procedure call can be made before some byte in the new
stack region is accessed.

• The system exception dispatcher ensures that the lowest addressed
byte in the new stack region is accessed if any kind of asynchronous
interrupt occurs after SP is decremented, but before the access in the
new stack region occurs.

These conventions ensure that the stack pointer will not be decremented so
far that it points to accessible storage beyond the stack limit without having
the error detected by one of the following:

• The guard region being accessed by the thread

• An explicit stack limit check failure occuring

As a matter of practice, the system can provide multiple guard pages in
the guard region. When a stack overflow is detected as a result of access
to the guard region, one or more guard pages can be unprotected for
use by the exception handling facility, and one or more guard pages can
remain protected to provide implicit stack limit checking during exception
processing. Note that the size of the guard region and the number of guard
pages is defined by the system, not by this calling standard.

6.1.2.2 Explicit Stack Limit Checking

If the stack is being extended by an amount that is unknown at compile time
or of a known size greater than the maximum implicit check size (4096), a
code sequence that follows the rules for implicit stack limit checking can be
executed in a loop to access the new stack region incrementally in segments
smaller than or equal to the minimum page size (8192 bytes). At least one
access must occur in each such segment.
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The first access must occur between SP and SP4096 because, in the absence
of more specific information, the previous guaranteed access relative to the
current stack pointer might be as much as 4096 bytes greater than the
current stack pointer address. The last access must be within 4096 bytes of
the intended new value of the stack pointer. These accesses must occur in
order, starting with the highest-addressed segment and working toward the
lowest-addressed segment.

A simple algorithm that satisfies these rules (but can result in twice the
minimum number of accesses) calls for performing a sequence of accesses in
a loop starting with the previous value of SP and then decrementing by the
minimum no-check extension size (4096) up to, but not including, the first
value that is less than the new value for the stack pointer.

The stack must not be extended incrementally in procedure prologues. A
procedure prologue that needs to extend the stack by an amount which is
unknown at compile time or of a known size greater than the minimum
implicit check size (4096) must test new stack segments (as described
previously) in a loop that does not modify SP. The procedure prologue must
then update the stack with one instruction that copies the new stack pointer
value into SP.

______________________ Note _______________________

An explicit stack limit check can be performed either by inline
code that is part of a prologue or by a run-time support routine
that is specially tailored to be called from a procedure prologue.

6.1.3 Stack Reserve Region Checking

The size of the stack reserve region, if one exists, must be included in the
increment size used for stack limit checks. However, the size is not included
in the amount by which the stack is actually extended. Depending on the
reserve size, stack reserve region checking could completely eliminate the
ability to use implicit stack limit checking.

6.2 Stack Overflow Handling
If a stack overflow is detected, one of the following conditions occurs:

• The system transparently extends the thread’s stack, resets the TEB
stack limit value appropriately, and continues execution of the thread.

• The signal SIGSEGV is generated. If exc_raise_signal_exception()
is installed as the handler for SIGSEGV, the corresponding exception
is raised. (See Section 5.1.13 for information on exception and
signal-handling coexistence.) To provide enough stack space to execute
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the exception dispatcher and handlers, specify that the sigstack be
used when SIGSEGV is delivered. (See the sigstack(2) reference page.)

Note that if a transparent stack extension is performed, a stack overflow that
occurs in a called procedure might cause the stack to be extended. Therefore,
the TEB stack limit value must be considered volatile and potentially
modified by external procedure calls as well as by the handling of exceptions.
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7
Procedure Invocations and Call Chains

This chapter discusses the library routines that support procedure call
tracing. These routines are used to:

• Refer to a given procedure invocation

• Provide the context of a procedure invocation

• Navigate (walk) the procedure call chain

The chapter also describes the data structures and procedures that these
routines require.

7.1 Referencing a Procedure Invocation

When a reference to a specific procedure invocation is made at run time, the
virtual frame pointer or the real frame pointer for that invocation can be
used. The virtual frame pointer of a procedure invocation is the contents
of the stack pointer at the entry point of the procedure. The real frame
pointer of a procedure is the contents of the stack pointer after the size of
the fixed part of the stack frame has been subtracted from the virtual frame
pointer.

Note that the virtual frame pointer of an invocation is not the value used
by the procedure itself for addressing. The contents of the SP register are
modified in the procedure prologue and the resulting real frame pointer
value is then sometimes copied into FP (as in the case of a variable size stack
frame). The real frame pointer is always used for addressing local storage
throughout the remainder of the procedure.

The real frame pointer is not, by itself, sufficient to unambiguously identify
all possible procedure invocations. For example, a null frame procedure has
the same real frame pointer as its caller because the null frame procedure
allocates no stack storage. This ambiguity is of no consequence for the
purposes of this calling standard because the real frame pointer value is
always used in combination with a program counter value that identifies an
instruction within a particular procedure.

The static link used in calling nested procedures in languages such as Pascal
and Ada is usually the virtual frame pointer or the real frame pointer value.
The choice is implementation-dependent and can vary from language to
language and release to release.
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The full context of a specific procedure invocation is provided through the
use of the sigcontext data structure. The sigcontext structure is
defined in the file /usr/include/signal.h.

7.2 Providing a Procedure Invocation Context

A thread can obtain its own context by calling a system library function
defined as follows:

exc_capture_context (ContextRecord)

Arguments:
ContextRecord Address of a sigcontext structure into which the

procedure context of the caller is written

A thread can obtain the invocation context of the procedure preceding
another procedure context by calling a system library routine defined as
follows:

exc_virtual_unwind (FunctionEntry, ContextRecord)

Arguments:
FunctionEntry Address of the function table entry for the function.

If zero, the function table entry is looked up using
the PC from ContextRecord.

ContextRecord Address of a sigcontext structure. The given
structure is updated to represent the context of
the previous (calling) frame.

Function Value:
InPrologueOrEpilogue If 1, indicates that the resulting program

counter value in the given ContextRecord is
within the prologue or the epilogue code of the
function. If zero, indicates that the program
counter is in the body of the function.

The exc_virtual_unwind() procedure takes a sigcontext structure
together with its associated procedure descriptor and updates the context to
reflect the state of the caller at the point where it made the call.

7.3 Walking the Call Chain

During program execution, it is sometimes necessary to navigate (walk) the
call chain. For example, frame-based exception handling requires call chain
navigation. Call-chain navigation is possible only in the reverse direction;
for example, latest-to-earliest procedure, or top to bottom procedure.
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There are two steps for performing call chain navigation:

1. Build a sigcontext structure when given a program state that
contains a register set.

For the current routine, an initial sigcontext structure can be
obtained by calling exc_capture_context().

2. Repeatedly call exc_virtual_unwind() until the end of the chain
is reached.

Compilers are allowed to optimize high-level language procedure calls so
that they do not appear in the call chain. For example, inline procedures
never appear in the call chain.

No assumptions should be made about the relative positions of any memory
used for procedure frame information. There is no guarantee that successive
stack frames will always appear at higher addresses.
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8
Procedure Descriptors

Procedure descriptors serve two functions. They provide:

• The means for mapping from an arbitrary program counter value to the
descriptive information associated with the code at that address.

• Information about a procedure, such as which registers are saved, where
they are saved, and the length of the prologue. This information is needed
for call-chain navigation in general and exception handling in particular.

Every procedure, except for null frame procedures, must have an associated
procedure descriptor. (Null frame procedures are discussed in Section 3.1.4.)

______________________ Note _______________________

The term procedure descriptor also appears in the chapter on
the symbol table in the Assembly Language Programmer’s Guide.
The use of the term in that manual refers to a structure defined
in the file /usr/include/sym.h and should not be confused
with procedure descriptors used for exceptions, as described in
this Tru64 UNIX calling standard.

This chapter covers the following procedure-descriptor topics:

• Representation

• Access routines

• Use with run-time generated code

8.1 Procedure Descriptor Representation

Procedure descriptors on Tru64 UNIX for Alpha systems use two kinds of
structures: code range descriptors and run-time procedure descriptors.

Code range descriptors associate a contiguous sequence of addresses with
a run-time procedure descriptor. This mapping can be many-to-one.

Run-time procedure descriptors provide descriptive information about
a procedure or part of a procedure.
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Several run-time procedure descriptors might be needed if the procedure
has multiple entry points, as in FORTRAN. In this case, each entry point
consists of the following elements:

• Prologue

• Entry-point specific code

• Branch to a common join point following the last entry point

Although the prologues might contain different code, they must all achieve
the same effect: the same registers saved at the same offset, the same frame
size, and so on. There is a run-time procedure descriptor for every entry
point, with the last entry point’s run-time procedure descriptor covering all
the common code of the procedure.

The creation of procedure descriptors involves the combined actions of
compilers and assemblers, the linker, and the loader. The sections that follow
focus solely on the result of this composite process and describe the resulting
descriptors as seen by the executing run-time environment. The figures
present the physical representation of the procedure descriptor structures.
The logical fields, which have the prefix PDSC_, present the abstract means
to access the fields of these structures. The physical representation and the
logical fields are defined in the file /usr/include/pdsc.h.

8.1.1 Code Range Descriptors

The code-range table is an array of code-range descriptors, as shown in
Figure 8–1. There are four fields for each descriptor:

PDSC_CRD_BEGIN_ADDRESS

Specifies the address of the beginning of a code range. The elements of
the array are sorted so that the portion of the address space covered
by a single element starts at the PDSC_CRD_BEGIN_ADDRESS value
contained in that element and extends to, but does not include, the
PDSC_CRD_BEGIN_ADDRESS value encoded in the next successive
element. Thus, the last array element provides the end address of the
last code range and does not start a new range.

PDSC_CRD_PRPD

Specifies the address of the associated run-time procedure descriptor.
A PDSC_CRD_PRPD value of zero indicates a null frame procedure for
which an implicit run-time procedure descriptor is assumed with the
characteristics described in Section 3.1.4.

PDSC_CRD_CONTAINS_PROLOG

Indicates whether the code range begins with a procedure prologue.
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PDSC_CRD_MEMORY_SPECULATION

Indicates that memory traps
(SIGSEGV, SIGBUS) raised in this procedure should not be delivered.

Figure 8–1: Code Range Descriptor
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rpd_offset
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3
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1 begin_address

Contains a longword that is the offset from the base of the code range
table to the starting point of the code to which the associated run-time
procedure descriptor applies. The low two bits of this longword are
reserved for use as flags; they must be masked out before the containing
longword is used as an offset.

2 rpd_offset

Contains a longword that is the self-relative offset to the associated
run-time procedure descriptor. The low two bits of this longword are
used as flags; they must be masked out before the containing longword
is used as an offset. An rpd_offset value of zero indicates a null
frame procedure for which an implicit run-time procedure descriptor is
assumed with the characteristics defined in Section 3.1.4.

3 memory_speculation (bit 1 of rpd_offset)

Indicates that memory traps (SIGSEGV, SIGBUS) occurring in this
procedure should not be delivered.

4 n (bit 0 of rpd_offset)

Specifies a flag set to indicate that the code range does not begin with
an entry point. This argument might be used for an out-of-line code
segment that is not contiguous with the main body of a procedure.
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8.1.2 Run-Time Procedure Descriptors

Run-time procedure descriptors provide information about a procedure
needed for exception handling and other tools. Table 3–1 lists this
information. There are two forms: long and short. Both forms encode
the same information. The short form is used to save space for the most
commonly occurring cases. Figure 8–2 shows the long form; Figure 8–3
shows the short form.

Each figure shows two alternative representations for the first longword.
The first representation applies to stack frame procedures and is shown in
the main part of the figure. The second representation applies to register
frame procedures and is shown as a separate longword at the end of the
figure. The PDSC_FLAGS_REGISTER_FRAME flag, which is one of the flags
common to both forms, determines which representation applies.

Descriptions of the physical fields follow the figures. These descriptions
include the calculations used to obtain the logical field from the physical
field. Most fields are common to both procedure descriptor forms. The long
form has three additional fields shown in Figure 8–2.
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Figure 8–2: Long Form Run-Time Procedure Descriptor
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Figure 8–3: Short Form Run-Time Procedure Descriptor
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1 The flags field represents PDSC_RPD_FLAGS and encodes the following
flags:

– PDSC_FLAGS_SHORT (bit 0) is 1 if and only if this structure is a
short form run-time procedure descriptor.

– PDSC_FLAGS_REGISTER_FRAME (bit 1) is 1 only for a register frame
procedure.

– PDSC_FLAGS_BASE_REG_IS_FP (bit 2) is 1 if and only if $15 is used
as the frame pointer.

– PDSC_FLAGS_HANDLER_VALID (bit 3) is 1 if and only if an exception
handler’s address and handler data are specified using the
PDSC_RPD_HANDLER and PDSC_RPD_HANDLER_DATA fields.

– PDSC_FLAGS_EXCEPTION_MODE (bits 4, 5, and 7) encodes the
caller’s desired exception reporting behavior when calling certain
mathematically oriented library routines. The 3-bit integer value
is formed with bit 7 as the MSB and bit 4 as the LSB. The possible
values for this field and the corresponding meanings are as follows:

– PDSC_EXC_SILENT(0)

Raise no exceptions and create only finite values (no infinities,
denormals, or NaNs). In this mode, the function result or the
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C language errno must be examined for any error indication.
This mode is the default.

– PDSC_EXC_SIGNAL(1)

Raise exceptions for all error conditions except for underflow,
which yields a zero result.

– PDSC_EXC_SIGNAL_ALL(2)

Raise exceptions for all error conditions (including underflows).

– PDSC_EXC_IEEE(3)

Raise no exceptions (except as controlled by separate IEEE
exception enable bits), and create infinite, denormal, and NaN
values according to the IEEE floating-point standard.

– PDSC_EXC_CALLER(4)

Perform the exception mode behavior specified by this
procedure’s caller.

• PDSC_FLAGS_EXCEPTION_FRAME (bit 6) is 1 for a frame that
includes a hardware exception context.

• PDSC_FLAGS_ARITHMETIC_SPECULATION (bit 8) is 1 if arithmetic
traps (SIGFPE) ocurring in this procedure should not be delivered.

• PDSC_FLAGS_EXTENDER (bit 10) is reserved for future indication of
an extended form of run-time procedure descriptor.

2 The entry_ra field represents PDSC_RPD_ENTRY_RA and is the number
of the register in which the return address is passed to this procedure.

3 The rsa_offset field is the signed difference in quadwords
between the stack frame base (SP or FP as indicated by
PDSC_FLAGS_BASE_REG_IS_FP) and the register save area. (See
Section 3.1.2 for information on stack frame procedures.)

PDSC_RPD_RSA_OFFSET = rsa_offset * 8

4 The sp_set field is the unsigned offset in instructions (longwords)
from the entry address of the procedure to the single instruction in the
procedure prologue that modifies the stack pointer. This offset must
be zero when there is no such instruction because the procedure has
a PDSC_RPD_FRAME_SIZE of 0.

PDSC_RPD_SP_SET = sp_set * 4

5 The entry_length field is the unsigned offset in instructions
(longwords) from the entry address to the first instruction in the
procedure code segment following the procedure prologue.

PDSC_RPD_ENTRY_LENGTH = entry_length * 4
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6 The frame_size field is the unsigned size in quadwords of the fixed
portion of the stack frame for this procedure.

PDSC_RPD_FRAME_SIZE = frame_size * 8

The value of SP at entry to this procedure can be calculated by
adding PDSC_RPD_FRAME_SIZE to the value SP or FP, as indicated
by PDSC_FLAGS_BASE_REG_IS_FP. PDSC_RPD_FRAME_SIZE cannot
be 0 for a stack frame procedure because the stack frame must include
space for the register save area.

Note: If a procedure needs a frame size that is too large to be represented
using the frame_size field, a variable-size stack frame should be
used. In this case, the FP register is used to address a fixed size area
that needs to be just large enough to include the preserved state. An
arbitrarily large stack area can then be covered by the SP register.

7 The imask field represents PDSC_RPD_IMASK and is a bit vector (0 − 31)
specifying the integer registers that are saved in the variable portion of
the register save area on entry to the procedure. The least significant bit
corresponds to register $0. Bits 31, 30, 28, and the register containing
the entry return address of this mask should never be set because $31
is the integer Read-As-Zero register, $30 is the hardware SP, $29 (GP)
is always assumed to be destroyed during a procedure call or return,
and the return address is saved at known offset zero in the register save
area in every stack frame procedure.

8 The fmask field represents PDSC_RPD_FMASK and is a bit vector (0 −
31) specifying the floating-point registers that are saved in the variable
portion of the register save area on entry to the procedure. The least
significant bit corresponds to register $f0. Bit 31 of this mask should
never be set because it corresponds to the floating-point Read-As-Zero
register.

9 The handler_address field represents PDSC_RPD_HANDLER and is an
absolute procedure value (quadword) for a run-time static exception
handling procedure. This part of the procedure descriptor is optional.
However, it must be supplied if PDSC_FLAGS_HANDLER_VALID is 1.
If PDSC_FLAGS_HANDLER_VALID is 0, the contents or existence of
PDSC_RPD_HANDLER is unpredictable.

10 The handler_data_address field represents PDSC_RPD_HAN-
DLER_DATA and is a quadword of data for the exception handler. This
part of the procedure descriptor is optional. However, it must be supplied
if PDSC_FLAGS_HANDLER_VALID is 1. If PDSC_FLAGS_HANDLER_VALID
is 0, the contents or existence of PDSC_RPD_HANDLER_DATA is
unpredictable.

11 The save_ra field represents PDSC_PRD_SAVE_RA and is the number
of the register in which the return address is maintained during the
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body of the procedure. If this procedure uses the standard calling
conventions and does not modify $26, both PDSC_RPD_ENTRY_RA and
PDSC_RPD_SAVE_RA will specify $26.

The short form run-time procedure descriptor differs from the long form
in the following ways:

• An entry_ra of $26 is assumed for the return address register in a stack
frame procedure ( PDSC_FLAGS_REGISTER_FRAME is 0).

• The rsa_offset field is limited to at most 255 quadwords (2040 bytes).

• The fmask field represents only registers $f2 through $f9.

• The imask field represents only registers $8 through $15. (Note that $8
is not normally a preserved register.)

• The frame_size field is limited to at most 65,535 quadwords (524,280
bytes).

• The sp_set offset is limited to at most 255 instructions (1020 bytes).

• The entry_length offset is limited to at most 255 instructions (1020
bytes).

If any of these restrictions cannot be satisfied, the long form run-time
procedure descriptor must be used.

8.2 Procedure Descriptor Access Routines
A thread can obtain information from the descriptor of any procedure in the
thread’s virtual address space by calling system library functions.

In the course of running and debugging a program, there are times when it is
necessary to identify which procedure is currently executing. During normal
thread execution, the current procedure must be determinable any time an
exception arises so that the proper handlers will be invoked. In addition, a
debugger must know which procedure invocation is currently executing so it
can obtain information about the current state of the execution environment.

To determine precisely the current execution context, two pieces of
information are required:

• The procedure that is currently executing

• Which instance of that procedure is currently executing

This context of the current procedure and the specific instance of that
procedure invocation are referred to as the current procedure invocation or
simply, current procedure. At any point in the execution of a thread, only
one procedure is considered to be the current procedure.

In this calling standard, the value in the PC is used to indicate the current
procedure by means of the code range table described in Section 8.1.1.
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The following system-supplied routine is used to obtain the address of the
procedure descriptor that corresponds with any given PC value within the
current address space.

exc_lookup_function_entry (ControlPC)

Arguments:
ControlPC Specifies a PC value in the current address space for

which the procedure value is to be returned.

Function Value:
PROC_DESC Specifies the address of the code range descriptor for the

procedure containing the requested PC. If the return
value is null, the PC is not currently mapped.

The following system-supplied routine is used to obtain the address of the
base of the code range array for the procedure descriptor that corresponds B
to any given PC value within the current address space.

exc_lookup_function_table (ControlPC)

Arguments:
ControlPC Specifies a PC value in the current address space for which

the code range base address is to be returned.

Function Value:
PROC_CRD Specifies the address of the base of the code range

descriptor array for the procedure descriptor of the
procedure containing the requested PC. If the return
value is null, the PC is not currently mapped.

At times, it is useful to acquire the GOT segment value for a procedure;
that is, the value of the GP register. The following system-supplied routine
is used to obtain the GP value corresponding to any given PC value within
the current address space.

exc_lookup_gp (ControlPC)

Arguments:
ControlPC Specifies a PC value in the current address space for

which the GP value is to be returned.

Function Value:
GP_VALUE Specifies a GP value for the procedure containing

the requested PC. If the return value is null, the
PC is not currently mapped.
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8.3 Run-Time Generated Code

Code generated at run time is important for applications that include:

• Interactive languages

• Software bit block transfers (for efficient support of graphic displays that
do not provide hardware bit block transfers)

• String pattern matching

• Sorting

• Interpretive execution and instruction stream modification by
programming and debugging tools

• Construction of bound procedure variables that have a representation
consistent with that of simple procedure values

To maintain stack traceability when code generated at run time is executed,
procedure descriptors must be provided for that code. Such procedure
descriptors must describe correctly the characteristics of the code and the
environment within which that code executes.

Before run-time generated code that uses any exception facilities (directly
or indirectly) can be executed, system library functions must be called to
communicate the code ranges, procedure descriptors, and GP values to the
execution environment. This communication is accomplished by calling the
following two system-supplied routines:

exc_add_pc_range_table (PROC_DESC_ADDR, LENGTH)

Arguments:
PROC_DESC_ADDR Specifies the base address of the code range array

for the procedure descriptors.

LENGTH Specifies the number of code range elements in the array.

An exception is raised if the exc_add_pc_range() operation cannot be
completed successfully.

exc_add_gp_range (BEGIN_ADDRESS, LENGTH, GP_VALUE)

Arguments:
BEGIN_ADDRESS Specifies the first address for which GP_VALUE applies.

LENGTH Specifies the number of bytes from BEGIN_ADDRESS
for which GP_VALUE applies.

GP_VALUE Specifies the GP value to be associated with
the addresses in the range BEGIN_ADDRESS ..
BEGIN_ADDRESS + LENGTH + 1.
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An exception is raised if the exc_add_gp_range() operation cannot be
completed successfully.

When procedure information is no longer valid or if the code will not be
executed again, two system library routines should be called to remove the
procedure mapping information. These system library routines are defined
as follows:

exc_remove_pc_range_table (PROC_DESC_ADDR)

Arguments:
PROC_DESC_ADDR Specifies the base address of the code range array

for the procedure descriptors.

An exception is raised if the exc_remove_pc_range_table() operation
cannot be completed successfully.

exc_remove_gp_range (BEGIN_ADDRESS)

Arguments:
BEGIN_ADDRESS Specifies the beginning address for which GP-value

information should be removed.

An exception is raised if the exc_remove_gp_range() operation cannot be
completed successfully.

The following steps show how run-time code should be constructed and
released:

1. Allocate memory for the code.

2. Write the code and any procedure descriptors to memory.

3. Call exc_add_pc_range_table() and exc_add_gp_range().

4. Invoke an imb (instruction memory barrier) operation as required by
the Alpha architecture.

5. Execute the code.

6. Call exc_remove_pc_range_table() and exc_remove_gp_range().

7. Deallocate the memory containing the code.
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by descriptor, 4–11
by immediate value, 4–10
by reference, 4–10

run-time code
construction and release of, 8–12

run-time environment, 1–2
run-time generated code, 8–11
run-time procedure descriptor

description of, 8–1
discussion of, 8–4

S
saved register

conventional, 2–2
scratch register, 3–10

conventional, 2–2
volatile, 2–2

secondary exception, 5–6
setjmp routine

with unwind operations, 5–29
sharable image

definition of, 1–7
sigaction routine, 5–24
sigblock routine, 5–24
sigcontext structure, 7–2, 7–3
siglongjmp routine, 5–23
signal

definition of, 1–7
signal exception

description of, 5–5
exception records for, 5–9
raising, 5–14

signal handler, 5–13
signal handling

coexistence with exception
handling, 5–22

signal routine, 5–3, 5–24
sigpause routine, 5–24
sigprocmask routine, 5–24
sigsetmask routine, 5–24
sigvec routine, 5–24
simple procedure

description of, 3–16
simple procedure value

definition of, 2–1
single-precision complex value, 4–3
sink register

description of, 2–2
software exception

continuation of, 5–22
description of, 5–4

stack
access by simple procedure, 3–16
contents of, 3–13
extension of, 6–3, 6–5
growth of, 3–13
guard region, 6–2
limit, 6–1
limit, checking, 6–1
limit, checking, explicit, 6–4
limit, checking, implicit, 6–3
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new region, 6–2
overflow of, 6–1, 6–5
passing of argument items in, 4–3
pointer, 6–1
reserve region, 6–2
reserve region, checking, 6–5
resetting, 3–21
usage, 3–13

stack base register, 3–4, 3–5
stack frame, 3–19

contents of, 3–4
description of, 3–4
fixed size, 3–4
variable size, 3–5

stack frame base register
description of, 2–2

stack frame procedure, 3–4
definition of, 3–1
discussion of, 3–4
entry code example, 3–19
exit code example, 3–24
format of, 3–4

stack guard region, 6–2
stack limit, 6–1

( See also stack )
checking, 6–2
checking, explicit, 6–4
checking, implicit, 6–3

stack pointer, 6–1, 6–5
contents for virtual frame pointer,

7–1
contents of, 3–13
setting for use with unwind support

routines, 3–20
used to calculate frame pointer,

3–19
with stack limit checking, 6–4

stack pointer register
description of, 2–2

stack reserve region, 6–2
checking, 6–5

stack return, 4–11
stack temporary area, 3–7

stack usage
call convention for, 3–13

standard call
definition of, 1–7

standard conforming procedure
definition of, 1–7

status value, 5–5
stub procedure

purpose of, 3–12
synchronization

of exception, 5–21

T
target invocation, 5–24
target location, 5–24
TEB

( See thread environment block )
thread, 1–7

definition of, 1–7
terminating, 6–1

thread environment block (TEB), 6–1
thread-safe code

definition of, 1–8
threads

multithreaded environment, 6–1
trapb instruction

for arithmetic traps, 5–22
for bounding exception range, 5–21
to establish current procedure,

5–21
with exception handler, 5–21
with exception handling, 5–11

U
undefined

definition of, 1–8
unpredictable

definition of, 1–8
unwind exception

description of, 5–4
exception records for, 5–9
raising, 5–14
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unwind operation
colliding, 5–28
completion of, 5–29
discussion of, 5–24
exit, 5–25
exit code sequences with, 3–22
for unblocking signals, 5–23
general, 5–25
initiating, 5–27
invoking, 5–26
multiply active, 5–28
nested, 5–28
overview, 5–24
restoring a stack during, 3–21
with longjmp routine, 5–29

with setjmp routine, 5–29
usage hint, 3–21

V
va_list, 4–4
virtual frame pointer, 7–1
volatile scratch register

description of, 2–2

W
word

definition of, 1–6
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How to Order Tru64 UNIX Documentation

You can order documentation for the Tru64 UNIX operating system and related
products at the following Web site:

http://www.businesslink.digital.com/

If you need help deciding which documentation best meets your needs, see the
Tru64 UNIX Documentation Overview or call 800-344-4825 in the United States
and Canada. In Puerto Rico, call 787-781-0505. In other countries, contact your
local Compaq subsidiary.

If you have access to Compaq’s intranet, you can place an order at the following
Web site:

http://asmorder.nqo.dec.com/

The following table provides the order numbers for the Tru64 UNIX operating system
documentation kits. For additional information about ordering this and related
documentation, see the Documentation Overview or contact Compaq.

Name Order Number

Tru64 UNIX Documentation CD-ROM QA-6ADAA-G8

Tru64 UNIX Documentation Kit QA-6ADAA-GZ

End User Documentation Kit QA-6ADAB-GZ

Startup Documentation Kit QA-6ADAC-GZ

General User Documentation Kit QA-6ADAD-GZ

System and Network Management Documentation Kit QA-6ADAE-GZ

Developer’s Documentation Kit QA-6ADAG-GZ

Reference Pages Documentation Kit QA-6ADAF-GZ





Reader’s Comments

Tru64 UNIX
Calling Standard for Alpha Systems
AA-RH9MA-TE

Compaq welcomes your comments and suggestions on this manual. Your input will help us to write
documentation that meets your needs. Please send your suggestions using one of the following methods:

• This postage-paid form

• Internet electronic mail: readers_comment@zk3.dec.com

• Fax: (603) 884-0120, Attn: UBPG Publications, ZKO3-3/Y32

If you are not using this form, please be sure you include the name of the document, the page number, and
the product name and version.

Please rate this manual:

Excellent Good Fair Poor
Accuracy (software works as manual says) � � � �

Clarity (easy to understand) � � � �

Organization (structure of subject matter) � � � �

Figures (useful) � � � �

Examples (useful) � � � �

Index (ability to find topic) � � � �

Usability (ability to access information quickly) � � � �

Please list errors you have found in this manual:

Page Description
_________ _______________________________________________________________________________________
_________ _______________________________________________________________________________________
_________ _______________________________________________________________________________________
_________ _______________________________________________________________________________________

Additional comments or suggestions to improve this manual:

___________________________________________________________________________________________________
___________________________________________________________________________________________________
___________________________________________________________________________________________________
___________________________________________________________________________________________________

What version of the software described by this manual are you using? _______________________

Name, title, department ___________________________________________________________________________
Mailing address __________________________________________________________________________________
Electronic mail ___________________________________________________________________________________
Telephone ________________________________________________________________________________________
Date _____________________________________________________________________________________________
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