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Foreword 

Foreword 

When I found myself staring at the first draft of this book I started 
thinking that it was going to be a difficult read because I'd spent so 
many years intimately involved with the design and development of 
QNX Neutrino. But I was wrong! I found this book easy to read and 
very enjoyable because of the way Rob combines the QNX 
philosophy ("Why things are the way they are") with good habits 
applicable to any realtime programming project. This book is suitable 
for people who've never seen Neutrino before, or those who've used it 
extensively. 

For people who've never used Neutrino, the book gives an excellent 
tutorial on how to use it. Since Rob himself comes from a QNX 2 and 
QNX 4 background, his book is also great for people who've used a 
QNX operating system before, because they share a common ground. 

As for myself, I was first introduced to QNX at an insurance company 
in the mid-1980s. This insurance company primarily used an IBM 
mainframe, but they wanted to shorten the time required to calculate 
quotes on corporate insurance. To do this they used networks of 
8MHz 80286 ATs running QNX 2. They distributed their data using 
QNX native networking, allowing access to all customer data files 
from any QNX machine. This system was well-designed using the 
QNX client/server philosophy and I was hooked on QNX. 

When I joined QSSL at the start of 1991, QNX 4 had just been 
released. QNX 4 was developed to conform to the just-approved 
PO SIX l 003.1 specification which would make it easier to port public 
domain UNIX code than it was with QNX 2, and it would conform to 
a genuine standard. In a few years we started thinking about the 
next-generation operating system. The current group of less than 15 
developers started meeting to discuss anything we'd like to do 
differently and things that we'd need in the future. We wanted to 
support the newer POSIX specifications and make it easier to write 
drivers. We also didn't want to lock ourselves to the x86 processor or 
"fix" anything that wasn't broken. The ideas that Dan Dodge and 
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xvi Foreword 

Gordon Bell started out with when they created QNX are still in 
Neutrino today-- ideas like message-passing, having a small, lean 
kernel, providing fast, realtime response, etc. Complicating the design 
was the goal of Neutrino being even more modular than QNX 4 (for 
example, we wanted to provide a fully-functional kernel that you 
could link against, allowing for more deeply embedded systems than 
QNX 4). In 1994 Dan Dodge and I started working on the updated 
kernel and process manager. 

As those of you who've been using QNX products for a long time 
already know, writing device drivers for QNX 2 was a hair-raising 
experience. You had to be very careful! In fact, most developers 
started with the QSSL-supplied source for the spool device and 
carefully tweaked it to do whatever they wanted. Only a few people 
tried writing disk drivers, as this required specialized assembly 
language stubs. Because of this, almost nobody ended up writing 
drivers for QNX 2. In QNX 4, writing drivers was made much easier 
by making all I/0 operations go through a standard, well-defined, 
message-passing interface. When you did an open(), the server 
received an open message. When you did a read(), the server received 
a read message. QNX 4 capitalized on the message passing theme by 
using it to decouple clients from servers. I remember when I first saw 
the beta version 3.99 (a QNX 4 pre-release version) and thinking, 
"Wow! This is elegant!" In fact, I was so enamored with this, that I 
immediately wrote a QNX 2 read-only filesystem using the new 
message-passing interface; it was easy now! 

For Neutrino, the process manager was being designed with three 
main separate functions: pathname space management, process 
creation (attributes, destruction, etc.), and memory space 
management. It also included several sub-services (/dev/null, 

/dev/zero, image filesystem, etc.). Each of these acted 
independently, but all shared the common code for processing the 
messages. This common code was very useful, so we decided to take 
all the common code and make a cover library for it. The "Resource 
Manager" library (or, as Rob likes to pronounce it, to my utter 
dismay, rez-mugger :-)) was born. 
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We also found that most resource managers wanted to provide POSIX 
semantics for their devices or filesystems, so we wrote another layer 
on top of the resource manager layer called the iofunc*() functions. 
This lets anybody write a resource manager, and have it automatically 
inherit POSIX functionality, without any additional work. At about 
this time Rob was writing the Neutrino courses, and he wanted to 
write a completely minimal resource manager example, /dev/null. 
His main slide was, "All you have to do is provide read() and write() 
message handlers, and you have a complete /dev/null!" I took that 
as a personal challenge, and removed even that requirement - the 
resource manager library now implements /dev/null in about half a 
dozen function calls. Since this library is shipped with Neutrino, 
everyone can write fully POSIX-compatible device drivers with 
minimal effort. 

While the resource manager concept was significant in the evolution 
of Neutrino, and would indeed provide a solid base for the operating 
system, the fledgling OS needed more. Filesystems, connectivity 
(such as TCPIIP) and common devices (serial, console) were all being 
developed in parallel. After a lot of work, with lots of long hours, 
Neutrino 1.00 was released in early 1996. Over the next few years, 
more and more R&D staff were working on Neutrino. We've added 
SMP support, multiplatform support (x86, PowerPC and MIPS 
currently, with more to come), and the dispatch interface (that allows 
combining resource managers and other IPC methods), all covered in 
this book. 

In August of 1999, we released QNX Neutrino 2.00; just in time for 
Rob's book! :-) 

I think this book will be a "must have" for anyone who is writing 
programs for Neutrino. 

Peter van der Veen 
On a plane somewhere between Ottawa and San Jose 
September 1999 
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Preface 

Preface 

A few years after I started using computers, the very first IBM PC 
came out. I must have been one of the first people in Ottawa to buy 
this box, with 16kB of RAM and no video card, because the salesman 
wasn't experienced enough to point out that the machine would be 
totally useless without the video card! Although the box wasn't 
useful, it did say "IBM" on it (at the time reserved solely for 
mainframes and the like), so it was impressive on its own. When I 
finally had enough money to buy the video card, I was able to run 
BASIC on my parents' TV. To me, this was the height of technology 
-especially with a 300 baud accoustically coupled modem! So, you 
can imagine my chagrin, when my friend Paul Trunley called me up 
and said, "Hey, log in to my computer!" I thought to myself, "Where 
did he get a VAX from?" since that was the only conceivable machine 
I knew about that would fit in his parents' house and let you "log in" 
to. So I called it up. It was a PC running an obscure operating system 
called "QUNIX," with a revision number less than 1.00. It let me "log 
in." I was hooked! 

What has always struck me about the QNX family of operating 
systems is the small memory footprint, the efficiency, and the sheer 
elegance of the implementation. I would often entertain (or bore, 
more likely) dinner guests with stories about all the programs running 
concunently on my machine in the basement, as we ate. Those who 
were knowledgeable about computers would speculate about how 
huge the disk must be, how I must have near infinite memory, etc. 
After dinner, I'd drag them downstairs and show them a simple PC 
with (at the time) 8MB of RAM and a 70MB hard disk. This would 
sometimes impress them. Those who where not impressed would then 
be shown how much RAM and disk space was still available, and 
how most of the used disk space was just data I had accumulated over 
the years. 

As time passed, I've had the privilege of working at a number of 
companies, most of which were involved with some form of QNX 
development; (from telecoms, to process control, to frame grabber 
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drivers, ... ), with the single most striking characteristic being the 
simplicity of the designs and implementation. In my opinion, this is 
due to the key engineers on the projects having a good understanding 
of the QNX operating system - if you have a clean, elegant 
architecture to base your designs on, chances are that your designs 
will also end up being clean and elegant (unless the problem is really 
ugly). 

In November, 1995, I had the good fortune to work directly for QNX 
Software Systems Limited (QSSL), writing the training material for 
their two QNX Neutrino courses, and presenting them over the next 
three years. 

It's these past 19 years or so that gave me the inspiration and courage 
to write the first book, Getting Started with QNX 4- A Guide for 
Realtime Programmers, which was published in May, 1998. With this 
new book on QNX Neutrino, I hope to share some of the concepts and 
ideas I've learned, so that you can gain a good, solid understanding of 
how the QNX Neutrino OS works, and how you can use it to your 
advantage. Hopefully, as you read the book, light bulbs will turn on in 
your head, making you say "Aha! That's why they did it this way!" 

QSSL, the company that created the QNX operating system, was 
founded in 1980 by Dan Dodge and Gordon Bell (both graduates of 
the University of Waterloo in Ontario, Canada). Initially, the company 
was called Quantum Software Systems Limited, and the product was 
called "QUNIX''' ("Quantum UNIX"). After a polite letter from 
AT&T's lawyers (who owned the "UNIX" trademark at the time), the 
product's name changed to "QNX." Some time after that, the 
company's name itself changed to "QNX Software Systems Limited" 
-in those days, everyone and their dog seemed to have a company 
called "Quantum" something or other. 

The first commercially successful product was simply called "QNX" 
and ran on 8088 processors. Then, "QNX 2" (QNX version 2) came 
out in the early 1980s. It's still running in many mission-critical 
systems to this day. Around 1991, a new operating system, "QNX 4," 
was introduced, with enhanced 32-bit operations and POSIX support. 



Who this book is for 

In 1995, the latest member of the QNX family, QNX Neutrino, was 
introduced. On September 26th, 2000, the QNX Realtime Platform 
(consisting of the QNX Neutrino operating system, Photon 
windowing system, development tools and compilers, etc.) was 
released for free for noncommercial purposes. As of this second 
printing (July 2001) there have been over 1 million downloads! (Go 
to h t t:p : I I get . qnx. com/ to get your free copy.) 

Wh<> this book is for 

This book is suitable for anyone wishing to gain a good fundamental 
understanding of the key features of the QNX Neutrino OS and how it 
works. Readers with a modest computer background should still get a 
lot out of the book (although the discussion in each chapter gets more 
and more technical as the chapter progresses). Even diehard hackers 
should 1ind some interesting twists, especially with the two 
fundamental features of QNX Neutrino, the message-passing nature 
of the operating system and the way device drivers are structured. 

I've tried to explain things in an easy-to-read "conversational" style, 
anticipating some of the common questions that come up and 
answering them with examples and diagrams. Because a complete 
understanding of the C language isn't required, but is de1initely an 
asset, there are quite a few code samples sprinkled throughout. 

What's in this book? 

This book introduces you to what the QNX Neutrino operating system 
is and how it functions. It contains chapters covering process states, 
threads, scheduling algorithms, message passing, operating system 
modularity, and so on. If you've never used QNX Neutrino before, but 
are familiar with realtime operating systems, then you'll want to pay 
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Every So Often 

Interrupts 

Resource 
Managers 

xxiv Preface 

particular attention to the chapters on message passing and resource 
managers, since these are concepts fundamental to QNX Neutrino. 

An introduction to processes and threads in QNX Neutrino, realtime, 
scheduling, and prioritization. You'll learn about scheduling states 
and QNX Neutrino's scheduling algorithms, as well as the functions 
you use to control scheduling, create processes and threads, and 
modify processes and threads that are already running. You'll see how 
QNX Neutrino implements SMP (Symmetrical Multi-Processing), 
and the advantages (and pitfalls) that this brings. 

"Scheduling and the real world" discusses how threads are scheduled 
on a running system, and what sorts of things can cause a running 
thread to be rescheduled. 

An introduction to QNX Neutrino's most fundamental feature, 
message passing. You'lllearn what message passing is, how to use it 
to communicate between threads, and how to pass messages over a 
network. Priority inversion, the bane of realtime systems everywhere, 
and other advanced topics are also covered here. 

This is one of the most important chapters in this book! 

Learn all about the system clock and timers, and how to get a timer to 
send you a message. Lots of practical information here, and code 
samples galore. 

This chapter will teach you how to write interrupt handlers for QNX 
Neutrino, and how interrupt handlers affect thread scheduling. 

Learn all about QNX Neutrino resource managers (also known 
variously as "device drivers" and "1/0 managers"). You'll need to 
read and understand the Message Passing chapter before you write 
your own resource managers. The source for several complete 
resource managers is included. 



QNX 4 to QNX 
Neutrino 

Calling 911 

Glossary 

Index 

Other references 

What's in this book? 

Resource managers are another important aspect of every QNX 
Neutrino-based system. 

This i:; an invaluable guide for anyone porting their QNX 4 
application to QNX Neutrino, or having to maintain code on both 
platforms. (QNX 4 is QSSL's previous-generation operating system, 
also the subject of my previous book, Getting Started with QNX 4.) 
Even if you're designing a new application, there may be demand 
from your customer base to support it on both QNX 4 and QNX 
Neutrino- if that happens, this section will help you avoid common 
pitfalls and show you how to write code that's portable to both 
operating systems. 

Where you can turn to when you get stuck, find a bug, or need help 
with your design. 

Contains definitions of the terms used throughout this book. 

You can probably guess what this is for ... 

In addition to the custom kernel interface, QNX Neutrino implements 
a wide range of industry standards. This lets you support your favorite 
publishers when looking for information about standard functions 
from ANSI, POSIX, TCP/IP, etc. 
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Online references 

On the web: 

http://www.parse.com/ 

The PARSE Software Devices web site; you can get this book's 
errata and examples from 
http://www.parse.com/books/book_v3/index.html. 

Also, check out our onsite training services and the free 
software section. 

http://www.qnx.com/ 

QSSL's own web site; surf here for all the latest QNX Neutrino 
information. 

http://qdn.qnx.com 

The QNX Developer's Network (QDN) is QSSL's online, 
interactive technical support service. Provides a searchable 
knowledge base. 

http://www.qnxstart.com/ 

The QNXStart web site; for the QNX developer community. 
You can find lots of discussion forums, tips, and source code 
here. 

http://search.yahoo.com/bin/search?p=QNX 

Search the Yahoo! Internet index for QNX-related topics. 

ForFTP: 

ftp.parse.com 

The PARSE Software Devices FTP site. You can download the 
source code examples from this book in a convenient archive 
found on this site. 
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About Rob Krten 

Online references 

ftp.qnx.com 

Official QNX updates and a wide selection of third-party demos 
and ports. 

On USENET: 

comp.os.qnx 

The QNX operating system newsgroup (a lot of QNX Neutrino 
discussion, as well as some QNX 4 and even QNX 2 
discussions). 

PARSE Software Devices is an established research and development 
organization providing training, and contract/consulting services to 
the international R&D community. Our main capabilities are: 

• training (course presentation and development) 

• systems architecture, design, and programming services 

Contact PARSE Software Devices at info®parse. com for 
information about our training and contract services. 

Note that this book is available for OEM use, site licenses, and online 
use as well- contact books®parse. com for more information. 

Rob Krten has been doing embedded systems work, mostly on 
contract, since 1986 and systems-level programming since 1981. 
During his three year contract at QSSL, he designed and presented 
QSSL's courses on "Realtime Programming under the Neutrino 
Kernel" and "Writing a Resource Manager." He also wrote the 
prototype version of QSSL's QNX Neutrino Native Networking 
Manager (npm-qnet) software, as well as a significant portion of 
QSSL's Building Embedded Systems book. 

Both this book and his previous book, Getting Started with QNX 4 -
A Guide for Realtime Programmers, have received a Society for 
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About Chris Herborth 
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Technical Communications (STC; http: I /www. stc. org/) Award 
of Merit. 

See Rob's online resume to see where he's been lately: 
http://www.parse.com/-rk/rk_resume.html 

Rob has a wide variety of interests, from computer-generated music to 
graphics to virtual filesystems. He is also an avid PDP-series 
minicomputer collector; if you have any PDP-series minicomputer 
systems, parts, or documentation, please send him an email to 
rk®parse. com~ You can check out his homepage at 
http: I /www .parse. com/-rk/ to see what he's up to (this week 
:-) ). 

After spending almost four years working in QSSL's technical 
publications group, Chris decided it was time to strike out on his own. 
Combining his skills in technical writing, editing, and programming, 
Arcane Dragon Software was born. 

After deciding that he'd rather have a regular paycheck and benefits, 
Chris has moved on to become Texar Corporation's 
(http: I /www. texar. com/) Senior Technical Writer. 

Chris is a Be OS Masters Award winner (one of two "Outstanding 
Contributions" awards ever given), and the winner of five Society for 
Technical Communications awards (four of Merit and one of 
Excellence). He's also served as technical editor for Rob Krten's 
Getting Started with QNX 4 (PARSE), Scot Hacker's The BeOS Bible 
(Peachpit), and several books for Martin Brown: BeOS: Porting UNIX 
Applications (Morgan-Kauffman), Python: Annotated Archives 
(Osborne McGraw-Hill) and Python: The Complete Reference 
(Osborne McGraw-Hill). 
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Typographical conventions 

Throughout this book, we use certain typographical conventions to 
distinguish technical terms. In general, the conventions we use 
conform to those found in IEEE POSIX publications. The following 
table summarizes our conventions. 

Reference Example 

Code examples if( stream -- NULL ) 

Command options -lR 

Commands make 

Environment variables PATH 

File and pathnames /dev/null 

Function names exit() 

Keyboard chords Ctrl - Alt- Delete 

Keyboard input something you type 

Keyboard keys Enter 

Program output login: 

Programming constants NULL 

Programming data types unsigned short 

Programming literals OxFF, "message string" 

Variable names stdin 

~ Notes point out something important or useful. 
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MorE! on synchronization 
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threads 

Single threaded 

Multi threaded 

Process and thread fundamentals 

Process and thread fundamentals 

Before we start talking about threads, processes, time slices, and all 
the other wonderful "scheduling concepts," let's establish an analogy. 

What I want to do first is illustrate how threads and processes work. 
The best way I can think of (short of digging into the design of a 
realtime system) is to imagine our threads and processes in some kind 
of situation. 

Let's base our analogy for processes and threads using a regular, 
everyday object- a house. 

A house is really a container, with certain attributes (such as the 
amount of floor space, the number of bedrooms, and so on). 

If you look at it that way, the house really doesn't actively do anything 
on its own- it's a passive object. This is effectively what a process 
is. We'H explore this shortly. 

The people living in the house are the active objects- they're the 
ones using the various rooms, watching TV, cooking, taking showers, 
and so on. We'll soon see that's how threads behave. 

If you've ever lived on your own, then you know what this is like
you know that you can do anything you want in the house at any time, 
because there's nobody else in the house. If you want to turn on the 
stereo, use the washroom, have dinner- whatever- you just go 
ahead and do it. 

Things change dramatically when you add another person into the 
house. Let's say you get married, so now you have a spouse living 
there too. You can't just march into the washroom at any given point; 
you need to check first to make sure your spouse isn't in there! 
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Back to processes 
and threads 

If you have two responsible adults living in a house, generally you 
can be reasonably lax about "security"- you know that the other 
adult will respect your space, won't try to set the kitchen on fire 
(deliberately!), and so on. 

Now, throw a few kids into the mix and suddenly things get a lot more 
interesting. 

Just as a house occupies an area of real estate, a process occupies 
memory. And just as a house's occupants are free to go into any room 
they want, a processes' threads all have common access to that 
memory. If a thread allocates something (mom goes out and buys a 
game), all the other threads immediately have access to it (because it's 
present in the common address space- it's in the house). Likewise, 
if the process allocates memory, this new memory is available to all 
the threads as well. The trick here is to recognize whether the memory 
should be available to all the threads in the process. If it is, then you'll 
need to have all the threads synchronize their access to it. If it isn't, 
then we'll assume that it's specific to a particular thread. In that case, 
since only that thread has access to it, we can assume that no 
synchronization is required- the thread isn't going to trip itself up! 

As we know from everyday life, things aren't quite that simple. Now 
that we've seen the basic characteristics (summary: everything is 
shared), let's take a look at where things get a little more interesting, 
and why. 

The diagram below shows the way that we'll be representing threads 
and processes. The process is the circle, representing the "container" 
concept (the address space), and the three squigley lines are the 
threads. You'll see diagrams like this throughout the book. 
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Process and thread fundamentals 

A process as a container of threads. 

If you want to take a shower, and there's someone already using the 
bathroom, you'll have to wait. How does a thread handle this? 

It's done with something called mutual exclusion. It means pretty 
much what you think- a number of threads are mutually exclusive 
when it comes to a particular resource. 

If you're taking a shower, you want to have exclusive access to the 
bathroom. To do this, you would typically go into the bathroom and 
lock the door from the inside. Anyone else trying to use the bathroom 
would get stopped by the lock. When you're done, you'd unlock the 
door, allowing someone else access. 

This is just what a thread does. A thread uses an object called a mutex 
(an acronym for MUTual EXclusion). This object is like the lock on a 
door- once a thread has the mutex locked, no other thread can get 
the mutex, until the owning thread releases (unlocks) it. Just like the 
door lock, threads waiting to obtain the mutex will be barred. 

Another interesting parallel that occurs with mutexes and door locks 
is that the mutex is really an "advisory" lock. If a thread doesn't obey 
the convention of using the mutex, then the protection is useless. In 
our house analogy, this would be like someone breaking into the 
washroom through one of the walls ignoring the convention of the 
door and lock. 
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Priorities 

Semaphores 

What if the bathroom is currently locked and a number of people are 
waiting to use it? Obviously, all the people are sitting around outside, 
waiting for whoever is in the bathroom to get out. The real question 
is, "What happens when the door unlocks? Who gets to go next?" 

You'd figure that it would be "fair" to allow whoever is waiting the 
longest to go next. Or it might be "fair" to let whoever is the oldest go 
next. Or tallest. Or most important. There are any number of ways to 
determine what's "fair." 

We solve this with threads via two factors: priority and length of wait. 

Suppose two people show up at the (locked) bathroom door at the 
same time. One of them has a pressing deadline (they're already late 
for a meeting) whereas the other doesn't. Wouldn't it make sense to 
allow the person with the pressing deadline to go next? Well, of 
course it would. The only question is how you decide who's more 
"important." This can be done by assigning a priority (let's just use a 
number like Neutrino does - one is the lowest usable priority, and 63 
is the highest as of this version). The people in the house that have 
pressing deadlines would be given a higher priority, and those that 
don't would be given a lower priority. 

Same thing with threads. If a number of threads are waiting, and the 
mutex becomes unlocked, we would give the mutex to the waiting 
thread with the highest priority. Suppose, however, that both people 
have the same priority. Now what do you do? Well, in that case, it 
would be "fair" to allow the person who's been waiting the longest to 
go next. This is not only "fair," but it's also what the Neutrino kernel 
does. In the case of a bunch of threads waiting, we go primarily by 
priority, and secondarily by length of wait. 

The mutex is certainly not the only synchronization object that we'll 
encounter. Let's look at some others. 

Let's move from the bathroom into the kitchen, since that's a socially 
acceptable location to have more than one person at the same time. In 
the kitchen, you may not want to have everyone in there at once. In 
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A semaphore with a 
count of 1 

A semaphore with a 
count greater than 1 

Process and thread fundamentals 

fact, you probably want to limit the number of people you can have in 
the kitchen (too many cooks, and all that). 

Let's say you don't ever want to have more than two people in there 
simultaneously. Could you do it with a mutex? Not as we've defined 
it. Why not? This is actually a very interesting problem for our 
analogy. Let's break it down into a few steps. 

The bathroom can have one of two situations, with two states that go 
hand-in-hand with each other: 

• the door is unlocked and nobody is in the room 

• the door is locked and one person is in the room 

No other combination is possible- the door can't be locked with 
nobody in the room (how would we unlock it?), and the door can't be 
unlocked with someone in the room (how would they ensure their 
privacy?). This is an example of a semaphore with a count of one -
there can be at most only one person in that room, or one thread using 
the semaphore. 

The key here (pardon the pun) is the way we characterize the lock. In 
your typical bathroom lock, you can lock and unlock it only from the 
inside -there's no outside-accessible key. Effectively, this means 
that ownership of the mutex is an atomic operation- there's no 
chance that while you're in the process of getting the mutex some 
other thread will get it, with the result that you both own the mutex. In 
our house analogy this is less apparent, because humans are just so 
much smarter than ones and zeros. 

What we need for the kitchen is a different type of lock. 

Suppose we installed the traditional key-based lock in the kitchen. 
The way this lock works is that if you have a key, you can unlock the 
door and go in. Anyone who uses this lock agrees that when they get 
inside, they will immediately lock the door from the inside so that 
anyone on the outside will always require a key. 
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A semaphore as a 
mutex 

Well, now it becomes a simple matter to control how many people we 
want in the kitchen- hang two keys outside the door! The kitchen is 
always locked. When someone wants to go into the kitchen, they see 
if there's a key hanging outside the door. If so, they take it with them, 
unlock the kitchen door, go inside, and use the key to lock the door. 

Since the person going into the kitchen must have the key with them 
when they're in the kitchen, we're directly controlling the number of 
people allowed into the kitchen at any given point by limiting the 
number of keys available on the hook outside the door. 

With threads, this is accomplished via a semaphore. A "plain" 
semaphore works just like a mutex - you either own the mutex, in 
which case you have access to the resource, or you don't, in which 
case you don't have access. The semaphore we just described with the 
kitchen is a counting semaphore - it keeps track of the count (by the 
number of keys available to the threads). 

We just asked the question "Could you do it with a mutex?" in relation 
to implementing a lock with a count, and the answer was no. How 
about the other way around? Could we use a semaphore as a mutex? 

Yes. In fact, in some operating systems, that's exactly what they do
they don't have mutexes, only semaphores! So why bother with 
mutexes at all? 

To answer that question, look at your washroom. How did the builder 
of your house implement the "mutex"? I suspect you don't have a key 
hanging on the wall! 

Mutexes are a "special purpose" semaphore. If you want one thread 
running in a particular section of code, a mutex is by far the most 
efficient implementation. 

Later on, we'lllook at other synchronization schemes- things called 
condvars, barriers, and sleepons. 
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I&' Just so there's no confusion, realize that a mutex has other properties, 
such as priority inheritence, that differentiate it from a semaphore. 

Single CPU 

Multiple CPU 
(SMP) 

The kernel's role 

The house analogy is excellent for getting across the concept of 
synchronization, but it falls down in one major area. In our house, we 
had many threads running simultaneously. However, in a real live 
system, there's typically only one CPU, so only one "thing" can run at 
once. 

Let's look at what happens in the real world, and specifically, the 
"economy" case where we have one CPU in the system. In this case, 
since there's only one CPU present, only one thread can run at any 
given point in time. The kernel decides (using a number of rules, 
which we'll see shortly) which thread to run, and runs it. 

If you buy a system that has multiple, identical CPUs all sharing 
memory and devices, you have an SMP box (SMP stands for 
Symmetrical Multi Processor, with the "symmetrical" part indicating 
that all the CPUs in the system are identical). In this case, the number 
of threads that can run concurrently (simultaneously) is limited by the 
number of CPUs. (In reality, this was the case with the 
single-processor box too!) Since each processor can execute only one 
thread at a time, with multiple processors, multiple threads can 
execute simultaneously. 

Let's ignore the number of CPUs present for now- a useful 
abstraction is to design the system as if multiple threads really were 
running simultaneously, even if that's not the case. A little later on, in 
the "Things to watch out for when using SMP" section, we'll see 
some of the non-intuitive impacts of SMP. 
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The kernel as 
arbiter 

So who decides which thread is going to run at any given instant in 
time? That's the kernel's job. 

The kernel determines which thread should be using the CPU at a 
particular moment, and switches context to that thread. Let's examine 
what the kernel does with the CPU. 

The CPU has a number of registers (the exact number depends on the 
processor family, e.g., x86 versus MIPS, and the specific family 
member, e.g., 80486 versus Pentium). When the thread is running, 
information is stored in those registers (e.g., the current program 
location). 

When the kernel decides that another thread should run, it needs to: 

1 save the currently running thread's registers and other context 
information 

2 load the new thread's registers and context into the CPU 

But how does the kernel decide that another thread should run? It 
looks at whether or not a particular thread is capable of using the CPU 
at this point. When we talked about mutexes, for example, we 
introduced a blocking state (this occurred when one thread owned the 
mutex, and another thread wanted to acquire it as well; the second 
thread would be blocked). 

From the kernel's perspective, therefore, we have one thread that can 
consume CPU, and one that can't, because it's blocked, waiting for a 
mutex. In this case, the kernel lets the thread that can run consume 
CPU, and puts the other thread into an internal list (so that the kernel 
can track its request for the mutex). 

Obviously, that's not a very interesting situation. Suppose that a 
number of threads can use the CPU. Remember that we delegated 
access to the mutex based on priority and length of wait? The kernel 
uses a similar scheme to determine which thread is going to run next. 
There are two factors: priority and scheduling algorithm, evaluated in 
that order. 
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Scheduling algorithms 

The kernel's role 

Consider two threads capable of using the CPU. If these threads have 
different priorities, then the answer is really quite simple- the kernel 
gives the CPU to the highest priority thread. Neutrino's priorities go 
from one (the lowest usable) and up, as we mentioned when we talked 
about obtaining mutexes. Note that priority zero is reserved for the 
idle thn'~ad,- you can't use it. (If you want to know the minimum 
and maximum values for your system, use the functions 
sched_get_priority_min() and sched_get_priority_max()- they're 
prototyped in <sched.h>. In this book, we'll assume one as the 
lowest usable, and 63 as the highest.) 

If another thread with a higher priority suddenly becomes able to use 
the CPU, the kernel will immediately context-switch to the higher 
priority thread. We call this preemption- the higher-priority thread 
preempted the lower-priority thread. When the higher-priority thread 
is done .. and the kernel context-switches back to the lower-priority 
thread that was running before, we call this resumption - the kernel 
resumes running the previous thread. 

Now, suppose that two threads are capable of using the CPU and have 
the exact same priority. 

Let's assume that one ofthe threads is currently using the CPU. We'll 
examine the rules that the kernel uses to decide when to 
context-switch in this case. (Of course, this entire discussion really 
applies only to threads at the same priority- the instant that a 
higher-priority thread is ready to use the CPU it gets it; that's the 
whole point of having priorities in a realtime operating system.) 

There are two scheduling algorithms (policies) that the Neutrino 
kernel understands: Round Robin (or just "RR") and FIFO (First-In, 
First-Out). 

FIFO In the FIFO scheduling algorithm, a thread is allowed to consume 
CPU for as long as it wants. This means that if that thread is doing a 
very long mathematical calculation, and no other thread of a higher 
priority is ready, that thread could potentially runforever. What about 
threads of the same priority? They're locked out as well. (It should be 
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obvious at this point that threads of a lower priority are locked out 
too.) 

If the running thread quits or voluntarily gives up the CPU, then the 
kernel looks for other threads at the same priority that are capable of 
using the CPU. If there are no such threads, then the kernel looks for 
lower-priority threads capable of using the CPU. Note that the term 
"voluntarily gives up the CPU" can mean one of two things. If the 
thread goes to sleep, or blocks on a semaphore, etc., then yes, a 
lower-priority thread could run (as described above). But there's also 
a "special" call, sched_yield() (based on the kernel call SchedYield( )), 
which gives up CPU only to another thread of the same priority - a 
lower-priority thread would never be given a chance to run if a 
higher-priority was ready to run. If a thread does in fact call 
sched_yield( ), and no other thread at the same priority is ready to run, 
the original thread continues running. Effectively, sched_yield() is 
used to give another thread of the same priority a crack at the CPU. 

In the diagram below, we see three threads operating in two different 
processes: 

CD® 
Three threads in two different processes. 

If we assume that threads"/'\' and "B" are READY, and that thread 
"C" is blocked (perhaps waiting for a mutex), and that thread "D" (not 
shown) is currently executing, then this is what a portion of the 
READY queue that the Neutrino kernel maintains will look like: 
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Round Robin 

The rules 

The kernel's role 

[QJ (Running) 

[QJ (Blocked) 

Two threads on the READY queue, one blocked, one running. 

This shows the kernel's internal READY queue, which the kernel uses 
to decide who to schedule next. Note that thread "C" is not on the 
READY queue, because it's blocked, and thread "D" isn't on the 
READY queue either because it's running. 

The RR scheduling algorithm is identical to FIFO, except that the 
thread will not run forever if there's another thread at the same 
priority. It runs only for a predefined times/ice (which is fixed and 
cannot be changed; you can determine its value by using the function 
sched_rr _geLinterval( )). 

What happens is that the kernel starts an RR thread, and notes the 
time. If the RR thread is running for a while, the time allotted to it 
will be up (the timeslice will have expired). The kernel looks to see if 
there is another thread at the same priority that's ready. If there is, the 
kernel runs it. If not, then the kernel will continue running the RR 
thread (i.e., the kernel grants the thread another timeslice). 

Let's summarize the scheduling rules (for a single CPU), in order of 
importance: 

• On:ty one thread can run at a time. 

• The highest-priority ready thread will run. 
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• A thread will run until it blocks or exits. 

• An RR thread will run for its timeslice, and then the kernel will 
reschedule it (if required). 

The following flowchart shows the decisions that the kernel makes: 
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Reshuffle the queue so that this 
(running) thread is at the end of the 
READY queue for its priority, and 

remove the thread from the head of the 
READY queue and run it. 

Scheduling roadmap. 

The kernel's role 

Remove current thread from 
the RUNNING queue, run 

new thread instead 

Continue running this thread 
until a rescheduling event 

occurs. 

Reset the thread's timeslice 
counter 
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Kernel states 

RUNNING 

READY 

The blocked states 

For a multiple CPU system, the rules are the same, except that 
multiple CPUs can run multiple threads concurrently. The order that 
the threads run (i.e., which threads get to run on the multiple CPUs) is 
determined in the exact same way as with a single CPU - the 
highest-priority READY thread will run on a CPU. If there's another 
high-priority thread that's ready to run, and there's an available CPU, 
that thread will run on the next CPU. And so on. If there aren't 
enough threads to go around, that's no problem- the "idle" CPUs 
will run the idle thread (at priority zero, which is lower than any user 
thread can go). If there aren't enough CPUs to go around, then only 
theN-most highest-priority threads will run, where N is the number 
of CPUs available. The other threads will be ready to run, but won't 
actually be running. Note that thread scheduling on an SMP system is 
an area that's still undergoing some research, so it's possible that it 
may change in the future. 

We've been talking about "running," "ready," and "blocked" loosely 
-let's now formalize these thread states. 

Neutrino's RUNNING state simply means that the thread is now 
actively consuming the CPU. On an SMP system, there will be 
multiple threads running; on a single-processor system, there will be 
one thread running. 

The READY state means that this thread could run right now -except 
that it's not, because another thread, (at the same or higher priority), is 
running. If two threads were capable of using the CPU, one thread at 
priority 10 and one thread at priority 7, the priority 10 thread would 
be RUNNING and the priority 7 thread would be READY. 

What do we call the blocked state? The problem is, there's not just 
one blocked state. Under Neutrino, there are in fact over a dozen 
blocking states. 

Why so many? Because the kernel keeps track of why a thread is 
blocked. 
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complete list 

The kernel's role 

We saw two blocking states already - when a thread is blocked 
waiting for a mutex, the thread is in the MUTEX state. When a thread 
is blocked waiting for a semaphore, it's in the SEM state. These states 
simply indicate which queue (and which resource) the thread is 
blocked on. 

If a number of threads are blocked on a mutex (in the MUTEX blocked 
state), they get no attention from the kernel until the thread that owns 
the mutex releases it. At that point one of the blocked threads is made 
READY, and the kernel makes a rescheduling decision (if required). 

Why "if required?" The thread that just released the mutex could very 
well still have other things to do and have a higher priority than that 
of the waiting threads. In this case, we go to the second rule, which 
states, "The highest-priority ready thread will run," meaning that the 
scheduling order has not changed- the higher-priority thread 
continues to run. 

Here's the complete list of kernel blocking states, with brief 
explanations of each state. By the way, this list is available in 
<sys/neutrino. h>- you'll notice that the states are all prefixed 
with STATE_ (for example, "READY" in this table is listed in the 
header file as STATE__READY): 

If the state is: The thread is: 

CONDVAR Waiting for a condition variable to be signalled. 

DEAD Dead. Kernel is waiting to release the thread's 
resources. 

INTR 

JOIN 

MUTEX 

Waiting for an interrupt. 

Waiting for the completion of another thread. 

Waiting to acquire a mutex. 

continued ... 
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If the state is: The thread is: 

NANOSLEEP Sleeping for a period of time. 

NET _REPLY Waiting for a reply to be delivered across the 
network. 

NET _SEND Waiting for a pulse or message to be delivered 
across the network. 

READY Not running on a CPU, but is ready to run (one 
or more higher or equal priority threads are 
running). 

RECEIVE Waiting for a client to send a message. 

REPLY Waiting for a server to reply to a message. 

RUNNING Actively running on a CPU. 

SEM Waiting to acquire a semaphore. 

SEND Waiting for a server to receive a message. 

SIGSUSPEND Waiting for a signal. 

SIGWAITINFO Waiting for a signal. 

STACK Waiting for more stack to be allocated. 

STOPPED Suspended (SIGSTOP signal). 

WAITCTX Waiting for a register context (usually floating 
point) to become available (only on SMP 
systems). 

WAITPAGE Waiting for process manager to resolve a fault on 
a page. 

WAITTHREAD Waiting for a thread to be created. 

The important thing to keep in mind is that when a thread is blocked, 
regardless of which state it's blocked in, it consumes no CPU. 
Conversely, the only state in which a thread consumes CPU is in the 
RUNNING state:. 
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We'll see the SEND, RECEIVE, and REPLY blocked states in the 
Message Passing chapter. The NANOSLEEP state is used with 
functions like sleep(), which we'lllook at in the chapter on Clocks, 
Timers, and Getting a Kick Every So Often. The INTR state is used 
with InterruptWait(), which we'll take a look at in the Interrupts 
chapter. Most of the other states are discussed in this chapter. 

Threads and processes 

Let's return to our discussion of threads and processes, this time from 
the perspective of a real live system. Then, we'll take a look at the 
function calls used to deal with threads and processes. 

We know that a process can have one or more threads. (A process that 
had zero threads wouldn't be able to do anything- there'd be nobody 
home, so to speak, to actually perform any useful work.) A Neutrino 
system can have one or more processes. (The same discussion applies 
-a Neutrino system with zero processes wouldn't do anything.) 

So what do these processes and threads do? Ultimately, they form a 
system - a collection of threads and processes that performs some 
goal. 

At the highest level, the system consists of a number of processes. 
Each process is responsible for providing a service of some nature -
whether it's a filesystem, a display driver, data acquisition module, 
control module, or whatever. 

Within each process, there may be a number of threads. The number 
of threads varies. One designer using only one thread may accomplish 
the same functionality as another designer using five threads. Some 
problems lend themselves to being multi-threaded, and are in fact 
relatively simple to solve, while other processes lend themselves to 
being single-threaded, and are difficult to make multi-threaded. 

The topic of designing with threads could easily occupy another book 
-we'll just stick with the basics here. 
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Why processes? So why not just have one process with a zillion threads? While some 
OSes force you to code that way, the advantages of breaking things up 
into multiple processes are many: 

• decoupling and modularity 

• maintainability 

• reliability 

The ability to "break the problem apart" into several independent 
problems is a powerful concept. It's also at the heart of Neutrino. A 
Neutrino system consists of many independent modules, each with a 
certain responsibility. These independent modules are distinct 
processes. The people at QSSL used this trick to develop the modules 
in isolation, without the modules relying on each other. The only 
"reliance" the modules would have on each other is through a small 
number of well-defined interfaces. 

This naturally leads to enhanced maintainability, thanks to the lack of 
interdependencies. Since each module has its own particular 
definition, it's reasonably easy to fix one module- especially since 
it's not tied to any other module. 

Reliability, though, is perhaps the most important point. A process, 
just like a house, has some well-defined "borders." A person in a 
house has a pretty good idea when they're in the house, and when 
they're not. A thread has a very good idea- if it's accessing memory 
within the process, it can live. If it steps out of the bounds of the 
process's address space, it gets killed. This means that two threads, 
running in different processes, are effectively isolated from each 
other. 
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Starting a process 

Starting a process from 
the command line 

Memory protection 
barrier 

8 8 
Process 1 's Process 2's 

address space address space 

Memory protection. 

Threads and processes 

The process address space is maintained and enforced by Neutrino's 
process manager module. When a process is started, the process 
manager allocates some memory to it and starts a thread running. The 
memory is marked as being owned by that process. 

This means that if there are multiple threads in that process, and the 
kernel needs to context-switch between them, it's a very efficient 
operation- we don't have to change the address space, just which 
thread is running. If, however, we have to change to another thread in 
another process, then the process manager gets involved and causes an 
address space switch as well. Don't worry- while there's a bit more 
overhead in this additional step, under Neutrino this is still very fast. 

Let's now turn our attention to the function calls available to deal with 
threads and processes. Any thread can start a process; the only 
restrictions imposed are those that stem from basic security (file 
access, privilege restrictions, etc.). In all probability, you've already 
started other processes; either from the system startup script, the shell, 
or by having a program start another program on your behalf. 

For example, from the shell you can type: 

$ programl 

This instructs the shell to start a program called programl and to 
wait for it to finish. Or, you could type: 

Chapter 1 • Processes and Threads 21 



Threads and processes 

Starting a process from 
within a program 

$ program2 & 

This instructs the: shell to start program2 without waiting for it to 
finish. We say that program2 is running "in the background." 

If you want to adjust the priority of a program before you start it, you 
could use the ni•:::e command, just like in UNIX: 

$ nice program3 

This instructs the: shell to start program3 at a reduced priority. 

Or does it? 

If you look at what really happens, we told the shell to run a program 
called nice at the regular priority. The nice command adjusted its 
own priority to be lower (this is where the name "nice" comes from), 
and then it ran program3 at that lower priority. 

You don't usually care about the fact that the shell creates processes 
-this is a basic assumption about the shell. In some application 
designs, you'll certainly be relying on shell scripts (batches of 
commands in a file) to do the work for you, but in other cases you'll 
want to create the processes yourself. 

For example, in a large multi-process system, you may want to have 
one master program start all the other processes for your application 
based on some kind of configuration file. Another example would 
include starting up processes when certain operating conditions 
(events) have been detected. 

Let's take a look at the functions that Neutrino provides for starting 
up other processes (or transforming into a different program): 

• system() 

• exec() family of functions 

• spawn() family of functions 
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• fork() 

• vfork() 

Which function you use depends on two requirements: portability and 
functionality. As usual, there's a tradeoff between the two. 

The common thing that happens in all the calls that create a new 
process is the following. A thread in the original process calls one of 
the above functions. Eventually, the function gets the process manager 
to create an address space for a new process. Then, the kernel starts a 
thread in the new process. This thread executes a few instructions, 
and calls main(). (In the case of fork() and vfork(), of course, the new 
thread begins execution in the new process by returning from the 
fork() or vfork(); we'll see how to deal with this shortly.) 

Starting a process with the system() call 

The system() function is the simplest; it takes a command line, the 
same as you'd type it at a shell prompt, and executes it. 

In fact, system() actually starts up a shell to handle the command that 
you want to perform. 

The editor that I'm using to write this book makes use of the system() 
call. When I'm editing, I may need to "shell out," check out some 
samples, and then come back into the editor, all without losing my 
place. In this editor, I may issue the command : ! pwd for example, to 
display the current working directory. The editor runs this code for 
the : ! pwd command: 

system ("pwd"); 

Is system() suited for everything under the sun? Of course not, but it's 
useful for a lot of your process-creation requirements. 
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Starting a proces.s with the exec() and spawn() calls 

Let's look at some of the other process-creation functions. 

The next process-creation functions we should look at are the exec() 
and spawn() families. Before we go into the details, let's see what the 
differences are between these two groups of functions. 

The exec() family transforms the current process into another one. 
What I mean by t:hat is that when a process issues an exec() function 
call, that process ceases to run the current program and begins to run 
another program. The process ID doesn't change- that process 
changed into another program. What happened to all the threads in 
the process? We'll come back to that when we look at fork(). 

The spawn() family, on the other hand, doesn't do that. Calling a 
member of the spawn() family creates another process (with a new 
process ID) that corresponds to the program specified in the 
function's arguments. 

Let's look at the different variants of the spawn() and exec() functions. 
In the table that follows, you'll see which ones are POSIX and which 
aren't. Of course, for maximum portability, you'll want to use only 
the POSIX functions. 

Spawn POSIX? Exec PO SIX? 

spawn() Yes 

spawn!() No exec!() Yes 

spawnle() r...;·o execle() Yes 

spawnlp() No execlp() Yes 

spawnlpe() No execlpe() No 

spawnp() Yes 

continued ... 
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Spawn POSIX? Exec POSIX? 

spawnv() No execv() Yes 

spawnve() No execve() Yes 

spawnvp() No execvp() Yes 

spawnvpe() No execvpe() No 

While these variants might appear to be overwhelming, there is a 
pattern to their suffixes: 

A suffix of: Means: 

1 (lowercase "L'') The argument list is specified via a list of 
parameters given in the call itself, terminated 
by a NULL argument. 

e An environment is specified. 

p The PATH environment variable is used in 
case the full pathname to the program isn't 
specified. 

v The argument list is specified via a pointer to 
an argument vector. 

The argument list is a list of command-line arguments passed to the 
program. 

Also, note that in the C library, the spawnlp( ), spawnvp( ), and 
spawnlpe() functions all call spawnvpe( ), which in turn calls the 
POSIX function spawnp(). The functions spawnle(), spawnv(), and 
spawn!() all eventually call spawnve( ), which then calls the PO SIX 
function spawn(). Finally, the POSIX function spawnp() calls the 
POSIX function spawn(). So, the root of all spawning functionality is 
the spawn() call. 
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"/"suffix 

Let's now take a look at the various spawn() and exec() variants in 
detail so that you can get a feel for the various suffixes used. Then, 
we'll see the spawn() call itself. 

For example, if I want to invoke the 1s command with the arguments 
-t, -r, and -1 (meaning "sort the output by time, in reverse order, 
and show me the long version of the output"), I could specify it as 
either: 

I* To run ls and keep going: *I 
spawnl (P_WAIT, "lbinlls", "lbinlls", "-t", "-r", "-1", NULL); 

I* To transform into ls: *I 
execl ( 11 /bin/ls 11 , 11 /bin/ls", 11 -t", 11 -r 11 , "-1 11 , NULL); 

or, using the v suffix variant: 

char *argv [] = 
{ 

} ; 

"lbinlls", 
n-tn, 

"-rn, 
"-111, 

NULL 

I* To run ls and keep going: *I 
spawnv (P_WAIT, '"lbinlls", argv); 

I* To transform into ls: *I 
execv ("lbinlls", argv); 

Why the choice? It's provided as a convenience. You may have a 
parser already built into your program, and it would be convenient to 
pass around arrays of strings. In that case, I'd recommend using the 
"v" suffix variants. Or, you may be coding up a call to a program 
where you know what the parameters are. In that case, why bother 
setting up an array of strings when you know exactly what the 
arguments are? Just pass them to the "1" suffix variant. 

Note that we passed the actual pathname of the program (/bin/ls) 

and the name of the program again as the first argument. We passed 
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the name again to support programs that behave differently based on 
how they're invoked. 

For example, the GNU compression and decompression utilities 
(gzip and gunzip) are actually links to the same executable. When 
the executable starts, it looks at argv [ 0] (passed to main()) and 
decides whether it should compress or decompress. 

The "e" suffix versions pass an environment to the program. An 
environment is just that- a kind of "context" for the program to 
operate in. For example, you may have a spelling checker that has a 
dictionary of words. Instead of specifying the dictionary's location 
every time on the command line, you could provide it in the 
environment: 

$export DICTIONARY=Ihomelrkl.dict 

$ spellcheck document.l 

The export command tells the shell to create a new environment 
variable (in this case, DICTIONARY), and assign it a value 
(/home/rk/. diet). 

If you ever wanted to use a different dictionary, you'd have to alter the 
environment before running the program. This is easy from the shell: 

$export DICTIONARY=Ihomelrkl.altdict 

$ spellcheck document.l 

But how can you do this from your own programs? To use the "e" 
versions of spawn() and exec(), you specify an array of strings 
representing the environment: 

char *env [] = 
{ 

}; 

"DICTIONARY=Ihomelrkl.altdict", 
NULL 

II To start the spell-checker: 
spawnle (P_WAIT, "lusrlbinlspellcheck", "lusrlbinlspellcheck", 
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"p"suffix 

"document.!", NULL, env); 

II To transform into the spell-checker: 
execle ("lusrlbinlspellcheck", "lusrlbinlspellcheck", 

"document.!", NULL, env); 

The "p" suffix versions will search the directories in your PATH 
environment variable to find the executable. You've probably noticed 
that all the examples have a hard-coded location for the executable -
/bin/ls and /usr/bin/spellcheck. What about other 
executables? Unless you want to first find out the exact path for that 
particular program, it would be best to have the user tell your program 
all the places to search for executables. The standard PATH 
environment variable does just that. Here's the one from a minimal 
system: 

PATH=Iproclboot:lbin 

This tells the shell that when I type a command, it should first look in 
the directory /px·oc/boot, and if it can't find the command there, it 
should look in the binaries directory /bin part. PATH is a 
colon-separated list of places to look for commands. You can add as 
many elements to the PATH as you want, but keep in mind that all 
pathname components will be searched (in order) for the executable. 

If you don't know the path to the executable, then you can use the "p" 

variants. For example: 

II Using an explicit path: 
execl ( 11 /bin/ls 11 , 11 /bin/Is 11 , 11 -1 11 , "-t 11 , 11 -r 11 , NULL); 

II Search your PATH for the executable: 
execlp ( 11 18 11 , 11 1S 11 , 11 -1 11 , 11 -t 11 , "-r 11 , NULL); 

If exec!() can't find ls in /bin, it returns an error. The execlp() 
function will search all the directories specified in the PATH for ls, 

and will return an error only if it can't find ls in any of those 
directories. This is also great for multiplatform support- your 
program doesn't have to be coded to know about the different CPU 
names, it just finds the executable. 
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What if you do something like this? 

execlp ( 11 /bin/ls", 11 lS 11 , 11 -1 11 , 11 -t 11 , 11 -r 11 , NULL); 

Does it search the environment? No. You told execlp() to use an 
explicit pathname, which overrides the normal PATH searching rule. 
If it doesn't find ls in /bin that's it, no other attempts are made (this 
is identical to the way exec!() works in this case). 

Is it dangerous to mix an explicit path with a plain command name 
(e.g., the path argument /bin/ls, and the command name argument 
ls, instead of /bin/ls)? This is usually pretty safe, because: 

• a large number of programs ignore argv [ o l anyway 

• those that do care usually call basename( ), which strips off the 
directory portion of argv [ o l and returns just the name. 

The only compelling reason for specifying the full pathname for the 
first argument is that the program can print out diagnostics including 
this first argument, which can instantly tell you where the program 
was invoked from. This may be important when the program can be 
found in multiple locations along the PATH. 

The spawn() functions all have an extra parameter; in all the above 
examples, I've always specified P_WAIT. There are four flags you can 
pass to spawn() to change its behavior: 

P_WAIT 

P_NOWAIT 

P_NOWAITO 

The calling process (your program) is blocked until 
the newly created program has run to completion 
and exited. 

The calling program doesn't block while the newly 
created program runs. This allows you to start a 
program in the background, and continue running 
while the other program does its thing. 

Identical toP _NOWAIT, except that the 
SPAWN_NOZOMBIE flag is set, meaning that you 
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"plain" spawn() 

don't have to worry about doing a waitpid() to clear 
the process's exit code. 

P_OVERLAY This flag turns the spawn() call into the 
corresponding exec() call! Your program 
transforms into the specified program, with no 
change in process ID. 

It's generally clearer to use the exec() call if that's 
what you meant- it saves the maintainer of the 
software from having to look up P_OVERLAY in the 
C Library Reference! 

As we mentioned above, all spawn() functions eventually call the 
plain spawn() function. Here's the prototype for the spawn() function: 

#include <spawn.h> 

pid_t 
spawn (canst char *path, 

int fd_cowzt, 
canst int: fd...map [] , 
canst struct inheritance *inherit, 
char * cc>nst argv [] , 
char * const envp []); 

We can immediately dispense with the path, argv, and envp 
parameters- we've already seen those above as representing the 
location of the executable (the path member), the argument vector 
(argv), and the environment (envp). 

Thefd_count andfd_map parameters go together. If you specify zero 
for fd_count, thenfd_map is ignored, and it means that all file 
descriptors (except those modified by fcntl()'s FD_CLOEXEC flag) 
will be inherited in the newly created process. If the fd_count is 
non-zero, then it indicates the number of file descriptors contained in 
fdJnap; only the specified ones will be inherited. 

The inherit parameter is a pointer to a structure that contains a set of 
flags, signal masks, and so on. For more details, you should consult 
the C Library Reference. 
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Starting a process with the fork() call 

Suppose you want to create a new process that's identical to the 
currently running process and have it run concurrently. You could 
approach this with a spawn() (and the P _NOWAIT parameter), giving 
the newly created process enough information about the exact state of 
your process so it could set itself up. However, this can be extremely 
complicated; describing the "current state" of the process can involve 
lots of data. 

There is an easier way - the fork() function, which duplicates the 
current process. All the code is the same, and the data is the same as 
the creating (or parent) process's data. 

Of course, it's impossible to create a process that's identical in every 
way to the parent process. Why? The most obvious difference 
between these two processes is going to be the process ID- we can't 
create two processes with the same process ID. If you look atfork()'s 
documentation in the C Library Reference, you'll see that there is a 
list of differences between the two processes. You should read this list 
to be sure that you know these differences if you plan to use fork(). 

If both sides of a fork() look alike, how do you tell them apart? When 
you call fork(), you create another process executing the same code at 
the same location (i.e., both are about to return from the fork() call) as 
the parent process. Let's look at some sample code: 

int main (int argc, char **argv) 
{ 

} 

int retval; 

print£ ("This is most definitely the parent process\n"); 
£flush (stdout); 
retval =fork (); 
print£ ("Which process printed this?\n"); 

return (EXIT-SUCCESS); 

After the fork() call, both processes are going to execute the second 
printf() call! If you run this program, it prints something like this: 
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This is most definitely the parent process 
Which process printed this? 
Which process printed this? 

Both processes print the second line. 

The only way to tell the two processes apart is the fork() return value 
in retval. In the newly created child process, retval is zero; in the 
parent process, retval is the child's process ID. 

Clear as mud? Here's another code snippet to clarify: 

printf ("The par<mt is pid %d\n", getpid ()); 
fflush (stdout); 

if (child_pid =fork ()) { 
printf ("This is the parent, child pid is %d\n", 

chilcLpid) ; 
} else { 

} 

printf ("This is the child, pid is %d\n", 
getpid ()); 

This program will print something like: 

The parent is pid 4496 
This is the parent, child pid is 8197 
This is the child, pid is 8197 

You can tell which process you are (the parent or the child) after the 
fork() by looking atfork()'s return value. 

Starting a process with the vfork() call 

The vfork() function can be a lot less resource intensive than the plain 
fork(), because it shares the parent's address space. 

The vfork() function creates a child, but then suspends the parent 
thread until the child calls exec() or exits (via exit() and friends). 
Additionally, vfork() will work on physical memory model systems, 
whereas fork() can't- fork() needs to create the same address space, 
which just isn't possible in a physical memory model. 
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Process creation and threads 

Suppose you have a process and you haven't created any threads yet 
(i.e., you're running with one thread, the one that called main()). 
When you call fork(), another process is created, also with one thread. 
This is the simple case. 

Now suppose that in your process, you've called pthread_create() to 
create another thread. When you call fork(), it will now return 
ENOSYS (meaning that the function is not supported)! Why? 

Well, believe it or not, this is POSIX compatible- POSIX says that 
fork() can return ENOSYS. What actually happens is this: the Neutrino 
C library isn't built to handle the forking of a process with threads. 
When you call pthread_create( ), the pthread_create() function sets a 
flag, effectively saying, "Don't let this processfork(), because I'm not 
prepared to handle it." Then, in the library fork() function, this flag is 
checked, and, if set, causes fork() to return ENOSYS. 

The reason this is intentionally done has to do with threads and 
mutexes. Ifthis restriction weren't in place (and it may be lifted in a 
future release) the newly created process would have the same 
number of threads as the original process. This is what you'd expect. 
However, the complication occurs because some of the original 
threads may own mutexes. Since the newly created process has the 
identical contents of the data space of the original process, the library 
would have to keep track of which mutexes were owned by which 
threads in the original process, and then duplicate that ownership in 
the new process. This isn't impossible- there's a function called 
pthread..atfork() that allows a process to deal with this; however, the 
functionality of calling pthread..atfork() isn't being used by all the 
mutexes in the Neutrino C library as of this writing. 

So what should you use? 

Obviously, if you're porting existing code, you'll want to use 
whatever the existing code uses. For new code, you should avoid 
fork() if at all possible. Here's why: 
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Starting a thread 

• fork() doesn't work with multiple threads, as discussed above. 

• When fork() does work with multiple threads, you'll need to 
register a pthread_atfork() handler and lock every single mutex 
before you fork, complicating the design. 

• The child offork() duplicates all open file descriptors. As we'll see 
in the Resource Manager chapter later, this causes a lot of work -
most of which will be unnecessary if the child then immediately 
does an exec() and closes all the file descriptors anyway. 

The choice between vfork() and the spawn() family boils down to 
portability, and what you want the child and parent to be doing. The 
vfork() function will pause until the child calls exec() or exits, 
whereas the spawn() family of functions can allow both to run 
concurrently. The vfork() function, however, is subtly different 
between operating systems. 

Now that we've seen how to start another process, let's see how to 
start another thread. 

Any thread can create another thread in the same process; there are no 
restrictions (short of memory space, of course!). The most common 
way of doing this is via the POSIX pthread_create() call: 

#include <pthread.h> 

int 
pthread_create (pthread_t *thread, 

canst pthread_attr_t *attr, 
void * (*start_routine) (void *), 
void *arg); 

The pthread_create() function takes four arguments: 

thread 

attr 

a pointer to a pthread_t where the thread ID is 
stored 

an attributes structure 
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start_routine the routine where the thread begins 

arg an argument passed to the thread's start_routine 

Note that the thread pointer and the attributes structure (attr) are 
optional - you can pass them as NULL. 

The thread parameter can be used to store the thread ID of the newly 
created thread. You'll notice that in the examples below, we'll pass a 
NULL, meaning that we don't care what the ID is of the newly created 
thread. If we did care, we could do something like this: 

pthread_t tid; 

pthread_create (&tid, ... 
print£ ("Newly created thread id is %d\n", tid); 

This use is actually quite typical, because you'll often want to know 
which thread ID is running which piece of code. 

ll@f' A small subtle point. It's possible that the newly created thread may 
be running before the thread ID (the tid parameter) is filled. This 
means that you should be careful about using the tid as a global 
variable. The usage shown above is okay, because the 
pthread_create() call has returned, which means that the tid value is 
stuffed correctly. 

The thread attributes 
structure 

The new thread begins executing at start_routine( ), with the argument 
arg. 

When you start a new thread, it can assume some well-defined 
defaults, or you can explicitly specify its characteristics. 

Before we jump into a discussion of the thread attribute functions, 
let's look at the pthread_attr_t data type: 
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typedef struct { 
int flags; 
size_t stacksize; 

void *stackaddr; 
void (*exitfunc) (void *status); 
int policy; 
struct sched_param param; 

unsigned guardsize; 
} pthread_attr_t.; 

Basically, the fields are used as follows: 

flags Non-numerical (Boolean) characteristics (e.g., whether 
the thread should run "detached" or "joinable"). 

stacksize, stackaddr, and guardsize 

Stack specifications. 

exitfunc Function to execute at thread exit. 

policy and param 

Scheduling parameters. 

The following functions are available: 

Attribute administration 

pthread_attr ..destroy() 
pthread_attr _in it() 

Flags (Boolean characteristics) 

pthread_attr _getdetachstate() 
pthread_attr _setdetachstate() 
pthread_attr _getinheritsched() 

pthread_attr _setinheritsched() 
pthread_attr _getscope() 
pthread_attr _setscope() 
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pthread_attr _getguardsize() 
pthread_attr _setguardsize() 

pthread_attr _getstackaddr() 

pthread_attr _setstackaddr() 

pthread_attr _getstacksize() 

pthread_attr _setstacksize() 

pthread_attr _getstacklazy() 
pthread_attr _setstacklazy() 

Scheduling related 

pthread_attr _getschedparam() 

pthread_attr _setschedparam() 

pthread_attr _getschedpolicy() 

pthread_attr _setschedpolicy() 

This looks like a pretty big list (20 functions), but in reality we have 
to worry about only half of them, because they're paired: "get" and 
"set" (with the exception of pthread_attr_init() and 
pthread_attr _destroy()). 

Before we examine the attribute functions, there's one thing to note. 
You must call pthread_attr_init() to initialize the attribute structure 
before using it, set it with the appropriate pthread_attr _set*() 

function(s), and then call pthread_create() to create the thread. 
Changing the attribute structure after the thread's been created has no 
effect. 

Thread attribute administration 

The function pthread_attr _init() must be called to initialize the 
attribute structure before using it: 

pthread_attr_t attr; 

pthread_attr_init (&attr); 
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You could call pthread_attr _destroy() to "uninitialize" the thread 
attribute structure .. but almost no one ever does (unless you have 
POSIX compliant code). 

In the descriptions that follow, I've marked the default values with 
"(default)." 

The "flags" thread attribute 

The three functions, pthread_attr ...setdetachstate( ), 
pthread_attr ...setinheritsched( ), and pthread_attr ...setscope() determine 
whether the thread is created "joinable" or "detached," whether the 
thread inherits the scheduling attributes of the creating thread or uses 
the scheduling attributes specified by pthread_attr ...setschedparam() 
and pthread_attr _setschedpolicy( ), and finally whether the thread has 
a scope of "system" or "process." 

To create a "joinable" thread (meaning that another thread can 
synchronize to its termination via pthread_join()), you'd use: 

(default) 

pthread_attr_setcletachstate {&attr, PTHREAD_CREATE_JOINABLE); 

To create one that can't be joined (called a "detached" thread), you'd 
use: 

pthread_attr_setcletachstate {&attr, PTHREAD-CREATE-DETACHED); 

If you want the thread to inherit the scheduling attributes of the 
creating thread (that is, to have the same scheduling algorithm and the 
same priority), you'd use: 

(default) 

pthread_attr_setinheritsched {&attr, PTHREAD-INHERIT-SCHED); 

To create one that uses the scheduling attributes specified in the 
attribute structure itself (which you'd set using 
pthread_attr ...setschedparam() and pthread_attr ...setschedpolicy( )), 
you'd use: 
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pthread_attr_setinheritsched (&attr, PTHREAD-EXPLICIT_SCHED); 

Finally, you'd never call pthread_attr _setscope(). Why? Because 
Neutrino supports only "system" scope, and it's the default when you 
initialize the attribute. ("System" scope means that all threads in the 
system compete against each other for CPU; the other value, 
"process," means that threads compete against each other for CPU 
within the process, and the kernel schedules the processes.) 

If you do insist on calling it, you can call it only as follows: 

(default) 
pthread_attr_setscope (&attr, PTHREAD_SCOPE_SYSTEM); 

The "stack" thread attributes 

The thread attribute stack parameters are prototyped as follows: 

int 
pthread_attr_setguardsize (pthread_attr_t *clttr, size_t gsize); 

int 
pthread_attr_setstackaddr (pthread_attr_t *attr, void *addr); 

int 
pthread_attr_setstacksize (pthread_attr_t *attr, size_t ssize); 

int 
pthread_attr _setstacklazy (pthread_attr _t *attr, int lazystack) ; 

These functions all take the attribute structure as their first parameter; 
their second parameters are selected from the following: 

gsize The size of the "guard" area. 

addr The address of the stack, if you're providing one. 

ssize The size of the stack. 
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lazy stack Indicates if the stack should be allocated on demand or 
up front from physical memory. 

The guard area is a memory area immediately after the stack that the 
thread can't write to. If it does (meaning that the stack was about to 
overflow), the thread will get hit with a SIGSEGV. If the guardsize is 
0, it means that there's no guard area. This also implies that there's no 
stack overflow checking. If the guardsize is nonzero, then it's set to at 
least the system-wide default guardsize (which you can obtain with a 
call to sysconf() with the constant _SCPAGESIZE). Note that the 
guardsize will be at least as big as a "page" (for example, 4k on an 
x86 processor). Also, note that the guard page doesn't take up any 
physical memory- it's done as a virtual address (MMU) "trick." 

The addr is the address of the stack, in case you're providing it. You 
can set it to NULL meaning that the system will allocate (and will 
free!) the stack for the thread. The advantage of specifying a stack is 
that you can do postmortem stack depth analysis. This is 
accomplished by allocating a stack area, filling it with a "signature" 
(for example, the string "STACK" repeated over and over), and letting 
the thread run. When the thread has completed, you'd look at the 
stack area and see how far the thread had scribbled over your 
signature, giving you the maximum depth of the stack used during 
this particular run. 

The ssize parameter specifies how big the stack is. If you provide the 
stack in addr, then ssize should be the size of that data area. If you 
don't provide the stack in addr (meaning you passed a NULL), then 
the ssize parameter tells the system how big a stack it should allocate 
for you. If you specify a 0 for ssize, the system will select the default 
stack size for you. Obviously, it's bad practice to specify a 0 for ssize 
and specify a stack using addr- effectively you're saying "Here's a 
pointer to an object, and the object is some default size." The problem 
is that there's no binding between the object size and the passed value. 
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I@' If a stack is being provided via addr, no automatic stack overflow 
protection exists for that thread (i.e., there's no guard area). However, 
you can certainly set this up yourself using mmap() and mprotect( ). 

Finally, the lazy stack parameter indicates if the physical memory 
should be allocated as required (use the value 
PTHREAD_STACK_LAZY) or all up front (use the value 
PTHREAD_STACK_NOTLAZY). The advantage of allocating the stack 
"on demand" (as required) is that the thread won't use up more 
physical memory than it absolutely has to. The disadvantage (and 
hence the advantage of the "all up front" method) is that in a 
low-memory environment the thread won't mysteriously die some 
time during operating when it needs that extra bit of stack, and there 
isn't any memory left. If you are using PTHREAD_STACK_NOTLAZY, 
you'll most likely want to set the actual size of the stack instead of 
accepting the default, because the default is quite large. 

The "scheduling" thread attributes 

Finally, if you do specify PTHREAD__EXPLICIT _SCHED for 
pthread__attr __setinheritsched(), then you '11 need a way to specify both 
the scheduling algorithm and the priority of the thread you're about to 
create. 

This is done with the two functions: 

int 
pthread_attr_setschedparam {pthread_attr_t *attr, 

canst struct sched_param *param); 

int 
pthread_attr_setschedpolicy {pthread_attr_t *attr, 

in t policy) ; 

The policy is simple- it's one of SCHED_FIFO, SCHED_RR, or 
SCHED_OTHER. 
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I& SCHED_OTHER is currently mapped to SCHED_RR. 

The param is a structure that contains one member of relevance here: 
sched_priority. Set this value via direct assignment to the desired 
priority. 

I& A common bug to watch out for is specifying 
PTHREAD_EXPUCIT _SCHED and then setting only the scheduling 
policy. The problem is that in an initialized attribute structure, the 
value of param.sched_priority is 0. This is the same priority as the 
IDLE process, meaning that your newly created thread will be 
competing for CPU with the IDLE process. 

A few examples 

Been there, done that, got the T-shirt. :-) 

Enough people have been bitten by this that QSSL has made priority 
zero reserved for only the idle thread. You simply cannot run a thread 
at priority zero. 

Let's take a look at some examples. We'll assume that the proper 
include files (<pthread.h> and <sched.h>) have been included, 
and that the thread to be created is called new _thread() and is 
correctly prototyped and defined. 

The most common way of creating a thread is to simply let the values 
default: 

pthread_create (NULL, NULL, new_thread, NULL); 

In the above example, we've created our new thread with the defaults, 
and passed it a NULL as its one and only parameter (that's the third 
NULL in the pthread_create() call above). 

Generally, you can pass anything you want (via the arg field) to your 
new thread. Here we're passing the number 123: 
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pthread_create (NULL, NULL, new_thread, (void*) 123); 

A more complicated example is to create a non-joinable thread with 
round-robin scheduling at priority 15: 

pthread_attr_t attr; 

II initialize the attribute structure 
pthread_attr_init (&attr); 

II set the detach state to "detached" 
pthread_attr_setdetachstate (&attr, PTHREAD-CREATE-DETACHED); 

II override the default of INHERIT_SCHED 
pthread_attr_setinheritsched (&attr, PTHREAD-EXPLICIT_SCHED); 
pthread_attr_setschedpolicy (&attr, SCHED-RR); 
attr.param.sched_priority = 15; 

II finally, create the thread 
pthread_create (NULL, &attr, new_thread, NULL); 

To see what a multithreaded program "looks like," you could run the 
pidin command from the shell. Say our program was called spud. If 
we run pidin once before spud created a thread and once after spud 

created two more threads (for three total), here's what the output 
would look like (I've shortened the pidin output to show only 
spud): 

# pidin 
pid tid name prio STATE Blocked 

12301 1 spud lOr READY 

# pidin 
pid tid name prio STATE Blocked 

12301 1 spud lOr READY 
12301 2 spud lOr READY 
12301 3 spud lOr READY 

As you can see, the process spud (process ID 12301) has three threads 
(under the "tid" column). The three threads are running at priority 10 
with a scheduling algorithm of round robin (indicated by the "r" after 
the 10). All three threads are READY, meaning that they're able to use 
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Where a thread is a good 
idea 

Threads in mathematical 
operations 

CPU but aren't currently running on the CPU (another, higher-priority 
thread, is currently running). 

Now that we know all about creating threads, let's take a look at how 
and where we'd use them. 

There are two classes of problems where the application of threads is 
a good idea. 

Threads are like overloading operators in C++ - it may seem like a 
good idea (at the time) to overload every single operator with some 
interesting use, but it makes the code hard to understand. Similarly 
with threads, you could create piles of threads, but the additional 
complexity will make your code hard to understand, and therefore 
hard to maintain. Judicious use of threads, on the other hand, will 
result in code that is functionally very clean. 

Threads are great where you can parallelize operations - a number 
of mathematical problems spring to mind (graphics, digital signal 
processing, etc.). Threads are also great where you want a program to 
perform several independent functions while sharing data, such as a 
web-server that's serving multiple clients simultaneously. We'll 
examine these two classes. 

Suppose that we have a graphics program that performs ray tracing. 
Each raster line on the screen is dependent on the main database 
(which describes the actual picture being generated). The key here is 
this: each raster line is independent of the others. This immediately 
causes the problem to stand out as a threadable program. 

Here's the single-threaded version: 

int 
main (int argc, char **argv) 
{ 

int xl; 

II perform initializations 
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for (xl = 0; xl < num_x_lines; xl++) { 
do_one_line (xl); 

} 

II display results 

Here we see that the program will iterate xl over all the raster lines 
that are to be calculated. 

On an SMP system, this program will use only one of the CPUs. 
Why? Because we haven't told the operating system to do anything in 
parallel. The operating system isn't smart enough to look at the 
program and say, "Hey, hold on a second! We have 4 CPUs, and it 
looks like there are independent execution flows here. I'll run it on all 
4 CPUs!" 

So, it's up to the system designer (you) to tell Neutrino which parts 
can be run in parallel. The easiest way to do that would be: 

int 
main (int argc, char **argv) 
{ 

int xl; 

II perform initializations 

for (xl = 0; xl < num_x_lines; xl++) { 
pthread_create (NULL, NULL, do_one_line, (void*) xl); 

} 

II display results 
} 

There are a number of problems with this simplistic approach. First of 
all (and this is most minor), the do_one_line() function would have to 
be modified to take a void * instead of an int as its argument. This 
is easily remedied with a typecast. 

The second problem is a little bit trickier. Let's say that the screen 
resolution that you were computing the picture for was 1280 by 1024. 
We'd be creating 1280 threads! This is not a problem for Neutrino-
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Neutrino "limits" you to 32767 threads per process! However, each 
thread must have a unique stack. If your stack is a reasonable size 
(say 8k), you'll have used 1280 x 8k (10 megabytes!) of stack. And 
for what? There are only 4 processors in your SMP system. This 
means that only 4 of the 1280 threads will run at a time- the other 
1276 threads are waiting for a CPU. (In reality, the stack will "fault 
in," meaning that the space for it will be allocated only as required. 
Nonetheless, it's a waste- there are still other overheads.) 

A much better solution to this would be to break the problem up into 
4 pieces (one for each CPU), and start a thread for each piece: 

int num_lines_per_cpu; 
int num_cpus; 

int 
main (int argc, char **argv) 
{ 

} 

int cpu; 

II perform initializations 

II get the number of CPUs 
num_cpus = _syspage_ptr -> num_cpu; 
num_lines_per_cpu = num_x_lines I num_cpus; 
for (cpu = 0; cpu < num_cpus; cpu++) { 

pthread_create (NULL, NULL, 
do_one-hatch, (void*) cpu); 

} 

II display results 

void * 
do_one-batch (void *c) 
{ 

} 

int cpu = (int) c; 
int xl; 

for (xl = 0; xl < num_lines_per_cpu; xl++) { 
do_line_line (xl +cpu* num_lines_per_cpu); 

} 

Here we're starting only num_cpus threads. Each thread will run on 
one CPU. And since we have only a small number of threads, we're 
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not wasting memory with unnecessary stacks. Notice how we got the 
number of CPUs by dereferencing the "System Page" global variable 
..syspage_ptr. (For more information about what's in the system page, 
please consult QSSL's Building Embedded Systems book or the 
< sys I syspage. h> include file). 

Coding for SMP or single processor 

The best part about this code is that it will function just fine on a 
single-processor system- you'll create only one thread, and have it 
do all the work. The additional overhead (one stack) is well worth the 
flexibility of having the software "just work faster" on an SMP box. 

Synchronizing to the termination of a thread 

I mentioned that there were a number of problems with the simplistic 
code sample initially shown. Another problem with it is that main() 
starts up a bunch of threads and then displays the results. How does 
the function know when it's safe to display the results? 

To have the main() function poll for completion would defeat the 
purpose of a realtime operating system: 

int 
main (int argc, char **argv) 
{ 

} 

II start threads as before 

while (num_lines_completed < num_x_lines) { 
sleep (1); 

} 

Don't even consider writing code like this! 

There are two elegant solutions to this problem: pthread_join() and 
pthread__barrier _wait(). 
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Joining 

The simplest method of synchronization is to join the threads as they 
terminate. Joining really means waiting for termination. 

Joining is accomplished by one thread waiting for the termination of 
another thread. The waiting thread calls pthreadjoin(): 

#include <pthre•!l.d.h> 

int 
pthread_join (pthread_t thread, void **value_ptr); 

To use pthread_join( ), you pass it the thread ID of the thread that you 
wish to join, and an optional value_ptr, which can be used to store the 
termination return value from the joined thread. (You can pass in a 
NULL if you aren't interested in this value- we're not, in this case.) 

Where did the thread ID came from? We ignored it in the 
pthread_create()- we passed in a NULL for the first parameter. Let's 
now correct our code: 

int num_lines_per_cpu, num_cpus; 

int main (int argc, char **argv) 
{ 

} 

int cpu; 
pthread_t *thread_ids; 

I I p<!rform initializations 
thread_ids "malloc (sizeof (pthread_t) * num_cpus); 

num_lines-per_cpu = num_x_lines I num_cpus; 
for (cpu = 0; cpu < num_cpus; cpu++) { 

pthread_create (&thread_ids [cpu], NULL, 
do-one-hatch, (void*) cpu); 

} 

II synchronize to termination of all threads 
for (cpu = 0; cpu < num_cpus; cpu++) { 

pthread._join (thread_ids [cpu], NULL); 
} 

II display results 

48 Chapter 1 • Processes and Threads 



Threads and processes 

You'll notice that this time we passed the first argument to 
pthread_create() as a pointer to a pthread-t. This is where the 
thread ID of the newly created thread gets stored. After the first for 

loop finishes, we have num_cpus threads running, plus the thread 
that's running main(). We're not too concerned about the main() 
thread consuming all our CPU; it's going to spend its time waiting. 

The waiting is accomplished by doing a pthread_join() to each of our 
threads in tum. First, we wait for thread_ids [0] to finish. When it 
completes, the pthread_join() will unblock. The next iteration of the 
for loop will cause us to wait for thread_ids [I] to finish, and so on, 
for all num_cpus threads. 

A common question that arises at this point is, "What if the threads 
finish in the reverse order?" In other words, what if there are 4 CPUs, 
and, for whatever reason, the thread running on the last CPU (CPU 3) 
finishes first, and then the thread running on CPU 2 finishes next, and 
so on? Well, the beauty of this scheme is that nothing bad happens. 

The first thing that's going to happen is that the pthreadjoin() will 
block on thread_ids [0]. Meanwhile, thread_ids [ 3] finishes. This has 
absolutely no impact on the main() thread, which is still waiting for 
the first thread to finish. Then thread_ids [2} finishes. Still no impact. 
And so on, untilfinally thread_ids [0} finishes, at which point, the 
pthread_join() unblocks, and we immediately proceed to the next 
iteration of the for loop. The second iteration of the for loop 
executes a pthreadjoin() on thread_ids [I}, which will not block- it 
returns immediately. Why? Because the thread identified by 
thread_ids [I] is already finished. Therefore, our for loop will 
"whip" through the other threads, and then exit. At that point, we 
know that we've synched up with all the computational threads, so we 
can now display the results. 

Using a barrier 

When we talked about the synchronization of the main() function to 
the completion of the worker threads (in "Synchronizing to the 
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termination of a thread," above), we mentioned two methods: 
pthread_join(), which we've looked at, and a barrier. 

Returning to our house analogy, suppose that the family wanted to 
take a trip somewhere. The driver gets in the minivan and starts the 
engine. And waits. The driver waits until all the family members have 
boarded, and only then does the van leave to go on the trip- we 
can't leave anyone behind! 

This is exactly what happened with the graphics example. The main 
thread needs to wait until all the worker threads have completed, and 
only then can the next part of the program begin. 

Note an important distinction, however. With pthread_join( ), we're 
waiting for the termination of the threads. This means that the threads 
are no longer with us; they've exited. 

With the barrier, we're waiting for a certain number of threads to 
rendezvous at the barrier. Then, when the requisite number are 
present, we unblock all of them. (Note that the threads continue to 
run.) 

You first create a barrier with pthread_barrier_init(): 

#include <pthread.h> 

int 
pthread....barrier_ini t (pthread....barrier _t *barrier, 

const pthread....barrierat tr _t *attr, 
unsigned int coum) ; 

This creates a barrier object at the passed address (pointer to the 
barrier object is in barrier), with the attributes as specified by attr 
(we'll just use NULL to get the defaults). The number of threads that 
must call pthread_barrier _wait() is passed in count. 

Once the barrier is created, we then want each of the threads to call 
pthread_barrier_wait() to indicate that it has completed: 

#include <pthread.h> 

int 
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pthread..barrier_wait (pthread..barrier_t *barrier); 

When a thread calls pthread..barrier_wait(), it will block until the 
number of threads specified initially in the pthread..barrier_init() have 
called pthread..barrie r _wait() (and blocked too). When the correct 
number of threads have called pthread_barrier _wait(), all those 
threads will "simultaneously" unblock. 

Here's an example: 

I* 
* barrierl.c 

*I 

#include <Stdio.h> 
#include <time.h> 
#include <pthread.h> 
#include <syslneutrino.h> 

pthread..barrier_t barrier; 

void * 
threadl (void *not_used) 
{ 

time_t now; 

time (&now) ; 

II the barrier synch object 

printf ("threadl starting at %s", ctime (&now)); 

} 

II do the computation 
II let's just do a sleep here ... 
sleep (20); 
pthread..barrier_wait (&barrier); 
II after this point, all three threads have completed. 
time (&now) ; 
printf ("barrier in threadl() done at %s", ctime (&now)); 

void * 
thread2 (void *not-used) 
{ 

time_t now; 

time (&now) ; 
printf ("thread2 starting at %s", ctime (&now)); 

II do the computation 
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} 

II let's ju13t do a sleep here ... 
sleep (40); 
pthread..barrier_wait (&barrier); 
II after this point, all three threads have completed. 
time (&now) ; 
printf ("barrier in thread2() done at %s", ctime (&now)); 

main () II ignore arguments 
{ 

} 

time_t now;· 

II create a barrier object with a count of 3 
pthread..barrier_init (&barrier, NULL, 3); 

II start up two threads, threadl and thread2 
pthread_create (NULL, NULL, threadl, NULL); 
pthread_create (NULL, NULL, thread2, NULL); 

II at this point, threadl and thread2 are running 

II now wait for completion 
time (&now); 
printf ("main() waiting for barrier at %s", ctime (&now)); 
pthread..barrier _wait (&barrier) ; 

II after this point, all three threads have completed. 
time (&now) ; 
printf ("barrier in main () done at %s", ctime (&now)) ; 
sleep (1); 

The main thread created the barrier object and initialized it with a 
count of how many threads (including itself!) should be synchronized 
to the barrier before it "breaks through." In our sample, this was a 
count of 3 - one for the main() thread, one for thread] ( ), and one for 
thread2(). Then the graphics computational threads (thread]() and 
thread2() in our case here) are started, as before. For illustration, 
instead of showing source for graphics computations, we just stuck in 
a sleep {20}; and sleep {40}; to cause a delay, as if 
computations were occuring. To synchronize, the main thread simply 
blocks itself on the barrier, knowing that the barrier will unblock only 
after the worker threads have joined it as well. 
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As mentioned earlier, with the pthread_join() the worker threads are 
done and dead in order for the main thread to synchronize with them. 
But with the barrier, the threads are alive and well. In fact, they've 
just unblocked from the pthread_barrier _wait() when all have 
completed. The wrinkle introduced here is that you should be 
prepared to do something with these threads! In our graphics 
example, there's nothing for them to do (as we've written it). In real 
life, you may wish to start the next frame calculations. 

Multiple threads on a single CPU 

Suppose that we modify our example slightly so that we can illustrate 
why it's also sometimes a good idea to have multiple threads even on 
a single-CPU system. 

In this modified example, one node on a network is responsible for 
calculating the raster lines (same as the graphics example, above). 
However, when a line is computed, its data should be sent over the 
network to another node, which will perform the display functions. 
Here's our modified main() (from the original example, without 
threads): 

int 
main (int argc, char **argv) 

int xl; 

II perform initializations 

for (xl = 0; xl < num_x_lines; xl++) 
do-one-line {xl); // "C" in our diagram, below 
tx_one_line_wait_ack {xl); // "X" and "W" in diagram below 

You'll notice that we've eliminated the display portion and instead 
added a tx_one_line_waiLack() function. Let's further suppose that 
we're dealing with a reasonably slow network, but that the CPU 
doesn't really get involved in the transmission aspects- it fires the 
data off to some hardware that then worries about transmitting it. The 
tx_one_/ine_waiLack() uses a bit of CPU to get the data to the 
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hardware, but then uses no CPU while it's waiting for the 
acknowledgement from the far end. 

Here's a diagram showing the CPU usage (we've used "C" for the 
graphics compute part, "X" for the transmit part, and "W" for waiting 
for the acknowledgement from the far end): 

c c I xi w I c I xl w I 

Time 

Serialized, single CPU. 

Wait a minute! We're wasting precious seconds waiting for the 
hardware to do its thing! 

If we made this multithreaded, we should be able to get much better 
use of our CPU, right? 

thread1 c~ ~ ~ 

thread 2 I X I W I I X I W I I X I W I 

Time 

Multithreaded, single CPU. 

This is much better, because now, even though the second thread 
spends a bit of its time waiting, we've reduced the total overall time 
required to compute. 
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If our times were Tcompute to compute, Ttx to transmit, and T wait to 
let the hardware do its thing, in the first case our total running time 
would be: 

(Tcompute + Ttx + Twait) X num_x_lines 

whereas with the two threads it would be 

(Tcompute + Ttx) X num_x_lines + Twait 

which is shorter by 

T wait X (num_x_lines - 1) 

assuming of course that T wait ~ Tcompute· 

lfllf Note that we will ultimately be constrained by: 

T compute + Ttx x num_x_lines 

because we'll have to incurr at least one full computation, and we'll 
have to transmit the data out the hardware- while we can use 
multithreading to overlay the computation cycles, we have only one 
hardware resource for the transmit. 

Now, if we created a four-thread version and ran it on an SMP system 
with 4 CPUs, we'd end up with something that looked like this: 
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Time 

Four threads, four CPUs. 

Notice how each of the four CPUs is underutilized (as indicated by 
the empty rectangles in the "utilization" graph). There are two 
interesting areas in the figure above. When the four threads start, they 
each compute. Unfortunately, when the threads are finished each 
computation, they're contending for the transmit hardware (the "X" 
parts in the figure are offset- only one transmission may be in 
progress at a time). This gives us a small anomaly in the startup part. 
Once the threads are past this stage, they're naturally synchronized to 
the transmit hardware, since the time to transmit is much smaller than 
i of a compute cycle. Ignoring the small anomaly at the beginning, 
this system is characterized by the formula: 

(Tcompute + Ttx + T wait) x nunu;_lines I num_cpus 

56 Chapter 1 • Processes and Threads 



Threads and processes 

This formula states that using four threads on four CPU s will be 
approximately 4 times faster than the single-threaded model we 
started out with. 

By combining what we learned from simply having a multithreaded 
single-processor version, we would ideally like to have more threads 
than CPU s, so that the extra threads can "soak up" the idle CPU time 
from the transmit acknowledge waits (and the transmit slot contention 
waits) that naturally occur. In that case, we'd have something like 
this: 

thread 1 

CPU 1 utilization 

thread 5 

thread 2 

CPU 2 utilization 

thread 6 b~~~~~~ 
c xi w c xi w c xi w c 

w#dw/&~t:0/&~M 
C C C Xi W 

' 

thread 3 

CPU 3 utilization 

thread 7 

CPU4 

TotaiCPUutilization W§#$~#$/W~~M 

TXslot utilization 1;!"§$/j I:ZJ W/$@/j Wffi/#/j 

nme 

Eight threads, four CPUs. 
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This figure assumes a few things: 

• threads 5, 6, 7, and 8 are bound to processors 1, 2, 3, and 4 (for 
simplification) 

• once a transmit begins it does so at a higher priority than a 
computation 

• a transmit is a non-interruptible operation 

Notice from the diagram that even though we now have twice as many 
threads as CPUs., we still run into places where the CPUs are 
under-utilized. In the diagram, there are three such places where the 
CPU is "stalled"; these are indicated by numbers in the individual 
CPU utilization bar graphs: 

1 Thread 1 was waiting for the acknowledgement (the "W" state), 
while thread 5 had completed a calculation and was waiting for 
the transmitter. 

2 Both thread 2 and thread 6 were waiting for an 
acknowledgement. 

3 Thread 3 was waiting for the acknowledgement while thread 7 
had completed a calculation and was waiting for the transmitter. 

This example also serves as an important lesson- you can't just 
keep adding CPU s in the hopes that things will keep getting faster. 
There are limiting factors. In some cases, these limiting factors are 
simply governed by the design of the multi-CPU motherboard - how 
much memory and device contention occurs when many CPUs try to 
access the same area of memory. In our case, notice that the "TX Slot 
Utilization" bar graph was starting to become full. If we added 
enough CPUs, they would eventually run into problems because their 
threads would be stalled, waiting to transmit. 

In any event, by using "soaker" threads to "soak up" spare CPU, we 
now have much better CPU utilization. This utilization approaches: 

(Tcompute + Ttx) x num_x_lines I num_cpus 
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In the computation per se, we're limited only by the amount of CPU 
we have; we're not idling any processor waiting for 
acknowledgement. (Obviously, that's the ideal case. As you saw in 
the diagram there are a few times when we're idling one CPU 
periodically. Also, as noted above, 

Tcompute + Ttx x num_x_lines 

is our limit on how fast we can go.) 

Things to watch out for when using SMP 

While in general you can simply "ignore" whether or not you're 
running on an SMP architecture or a single processor, there are 
certain things that will bite you. Unfortunately, they may be such 
low-probability events that they won't show up during development 
but rather during testing, demos, or the worst: out in the field. Taking 
a few moments now to program defensively will save problems down 
the road. 

Here are the kinds of things that you're going to run up against on an 
SMP system: 

• Threads really can and do run concurrently- relying on things 
like FIFO scheduling or prioritization for synchronization is a 
no-no. 

• Threads and Interrupt Service Routines (ISRs) also do run 
concurrently- this means that not only will you have to protect 
the thread from the ISR, but you'll also have to protect the ISR 
from the thread. See the Interrupts chapter for more details. 

• Some operations that you'd expect to be atomic aren't, depending 
on the operation and processor. Notable operations in this list are 
things that do a read-modify-write cycle (e.g.,++,--, I=,&= etc.). 
See the include file <atomic. h> for replacements. (Note that this 
isn't purely an SMP issue; most RISC processors don't necessarily 
perform the above code in an atomic manner.) 
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Threads in independent 
situations 

As discussed above in the "Where a thread is a good idea" section, 
threads also find use where a number of independent processing 
algorithms are occurring with shared data structures. While strictly 
speaking you could have a number of processes (each with one 
thread) explicitly sharing data, in some cases it's far more convenient 
to have a number of threads in one process instead. Let's see why and 
where you'd use threads in this case. 

For our examples, we'll evolve a standard input/process/output model. 
In the most generic sense, one part of the model is responsible for 
getting input from somewhere, another part is responsible for 
processing the input to produce some form of output (or control), and 
the third part is responsible for feeding the output somewhere. 

Multiple processes 

Let's first understand the situation from a multiple process, 
one-thread-per-process outlook. In this case, we'd have three 
processes, literally an input process, a "processing" process, and an 
output process: 

System 1: Multiple operations, multiple processes. 

This is the most highly abstracted form, and also the most "loosely 
coupled." The "input" process has no real "binding" with either of the 
"processing" or "output" processes- it's simply responsible for 

60 Chapter 1 • Processes and Threads 



Threads and processes 

gathering input and somehow giving it to the next stage (the 
"processing" stage). We could say the same thing of the "processing" 
and "output" processes - they too have no real binding with each 
other. We are also assuming in this example that the communication 
path (i.e., the input-to-processing and the processing-to-output data 
flow) is accomplished over some connectioned protocol (e.g., pipes, 
POSIX message queues, native Neutrino message passing
whatever). 

Multiple processes with shared memory 

Depending on the volume of data flow, we may want to optimize the 
communication path. The easiest way of doing this is to make the 
coupling between the three processes tighter. Instead of using a 
general-purpose connectioned protocol, we now choose a shared 
memory scheme (in the diagram, the thick lines indicate data flow; the 
thin lines, control flow): 

System 2: Multiple operations, shared memory between processes. 

In this scheme, we've tightened up the coupling, resulting in faster 
and more efficient data flow. We may still use a "general-purpose" 
connectioned protocol to transfer "control" information around -
we're not expecting the control information to consume a lot of 
bandwidth. 
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Multiple threads 

The most tightly-coupled system is represented by the following 
scheme: 

data 
structure 

Input 

/ 
/ 

Processing 
data 

structure 

~ Output~ 

System 3: Multiple operations, multiple threads. 

Here we see one process with three threads. The three threads share 
the data areas implicitly. Also, the control information may be 
implemented as it was in the previous examples, or it may also be 
implemented via some of the thread synchronization primitives 
(we've seen mutexes, barriers, and semaphores; we'll see others in a 
short while). 

Comparisons 

Now, let's compare the three methods using various categories, and 
we'll also describe some of the tradeoffs. 

With system 1, we see the loosest coupling. This has the advantage 
that each of the three processes can be easily (i.e., via the command 
line, as opposed to recompile/redesign) replaced with a different 
module. This follows naturally, because the "unit of modularity" is 
the entire module itself. System 1 is also the only one that can be 
distributed among multiple nodes in a Neutrino network. Since the 
communications pathway is abstracted over some connectioned 
protocol, it's easy to see that the three processes can be executing on 
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any machine in the network. This may be a very powerful scalability 
factor for your design - you may need your system to scale up to 
having hundreds of machines distributed geographically (or in other 
ways, e.g., for peripheral hardware capability) and communicating 
with each other. 

Once we commit to a shared memory region, however, we lose the 
ability to distribute over a network. Neutrino doesn't support 
network-distributed shared memory objects. So in system 2, we've 
effectively limited ourselves to running all three processes on the 
same box. We haven't lost the ability to easily remove or change a 
component, because we still have separate processes that can be 
controlled from the command line. But we have added the constraint 
that all the removable components need to conform to the 
shared-memory model. 

In system 3, we've lost all the above abilities. We definitely can't run 
different threads from one process on multiple nodes (we can run 
them on different processors in an SMP system, though). And we've 
lost our configurability aspects - now we need to have an explicit 
mechanism to define which "input," "processing," or "output" 
algorithm we want to use (which we can solve with shared objects, 
also known as DLLs.) 

So why would I design my system to have multiple threads like 
system 3? Why not go for the maximally flexible system 1? 

Well, even though system 3 is the most inflexible, it is most likely 
going to be the fastest. There are no thread-to-thread context switches 
for threads in different processes, I don't have to set up memory 
sharing explicitly, and I don't have to use abstracted synchronization 
methods like pipes, POSIX message queues, or message passing to 
deliver the data or control information- I can use basic kernel-level 
thread-synchronization primitives. Another advantage is that when 
the system described by the one process (with the three threads) starts, 
I know that everything I need has been loaded off the storage medium 
(i.e., I'm not going to find out later that "Oops, the processing driver 
is missing from the disk!"). Finally, system 3 is also most likely going 
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Readers/writer 
locks 

to be the smallest, because we won't have three individual copies of 
"process" information (e.g., file descriptors). 

To sum up: know what the tradeoffs are, and use what works for your 
design. 

More on synchronization 

We've already seen: 

• mutexes 

• semaphores 

• barriers 

Let's now finish up our discussion of synchronization by talking 
about: 

• readers/writer locks 

• sleepon locks 

• condition variables 

• additional Neutrino services 

Readers and writer locks are used for exactly what their name implies: 
multiple readers can be using a resource, with no writers, or one 
writer can be using a resource with no other writers or readers. 

This situation occurs often enough to warrant a special kind of 
synchronization primitive devoted exclusively to that purpose. 

Often you'll have a data structure that's shared by a bunch of threads. 
Obviously, only one thread can be writing to the data structure at a 
time. If more than one thread was writing, then the threads could 
potentially overwrite each other's data. To prevent this from 
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happening, the writing thread would obtain the "rwlock" (the 
readers/writer lock) in an exclusive manner, meaning that it and only 
it has access to the data structure. Note that the exclusivity of the 
access is controlled strictly by voluntary means. It's up to you, the 
system designer, to ensure that all threads that touch the data area 
synchronize by using the rwlocks. 

The opposite occurs with readers. Since reading a data area is a 
non-destructive operation, any number of threads can be reading the 
data (even if it's the same piece of data that another thread is reading). 
An implicit point here is that no threads can be writing to the data 
area while any thread or threads are reading from it. Otherwise, the 
reading threads may be confused by reading a part of the data, getting 
preempted by a writing thread, and then, when the reading thread 
resumes, continue reading data, but from a newer "update" of the 
data. A data inconsistency would then result. 

Let's look at the calls that you'd use with rwlocks. 

The first two calls are used to initialize the library's internal storage 
areas for the rwlocks: 

int 
pthread_rwlock_init (pthread_rwlock_t *lock, 

const pthread_rwlockattr_t *attr) ; 

int 
pthread_rwlock_destroy (pthread_rwlock_t *lock) ; 

The pthread_rwlock_init() function takes the lock argument (of type 
pthread_rwlock_t) and initializes it based on the attributes 
specified by attr. We're just going to use an attribute of NULL in our 
examples, which means, "Use the defaults." For detailed information 
about the attributes, see the library reference pages for 
pthread_rwlockattr _in it(), pthread_rwlockattr _destroy(), 

pthread_rwlockattr _getpshared( ), and 
pthread_rwlockattr ...setpshared( ). 

When done with the rwlock, you'd typically call 
pthread_rwlock_destroy() to destroy the lock, which invalidates it. 
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You should never use a lock that is either destroyed or hasn't been 
initialized yet. 

Next we need to fetch a lock of the appropriate type. As mentioned 
above, there are basically two modes of locks: a reader will want 
"non-exclusive" access, and a writer will want "exclusive" access. To 
keep the names simple, the functions are named after the user of the 
locks: 

int 
pthread_rwlock_rdlock (pthread_rwlock_t *lock); 

int 
pthread_rwlock_tryrdlock (pthread_rwlock_t *lock) ; 

int 
pthread_rwlock_wrlock (pthread-rwlock_t *lock); 

int 
pthread_rwlock_trywrlock (pthread_rwlock_t *lock) ; 

There are four functions instead of the two that you may have 
expected. The "expected" functions are pthread_rwlock_rdlock() and 
pthread_rwlock_wrlock( ), which are used by readers and writers, 
respectively. These are blocking calls- if the lock isn't available for 
the selected operation, the thread will block. When the lock becomes 
available in the appropriate mode, the thread will unblock. Because 
the thread unblocked from the call, it can now assume that it's safe to 
access the resource protected by the lock. 

Sometimes, though, a thread won't want to block, but instead will 
want to see if it could get the lock. That's what the "try" versions are 
for. It's important to note that the "try" versions will obtain the lock if 
they can, but if they can't, then they won't block, but instead will just 
return an error indication. The reason they have to obtain the lock if 
they can is simple. Suppose that a thread wanted to obtain the lock for 
reading, but didn't want to wait in case it wasn't available. The thread 
calls pthreacLrwlock_tryrdlock(), and is told that it could have the 
lock. If the pthread_rwlock_tryrdlock() didn't allocate the lock, then 
bad things could happen - another thread could preempt the one that 
was told to go ahead, and the second thread could lock the resource in 
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an incompatible manner. Since the first thread wasn't actually given 
the lock, when the first thread goes to actually acquire the lock 
(because it was told it could), it would use pthread_rwlock_rdlock(), 
and now it would block, because the resource was no longer available 
in that mode. So, if we didn't lock it if we could, the thread that called 
the "try" version could still potentially block anyway! 

Finally, regardless of the way that the lock was used, we need some 
way of releasing the lock: 

int 
pthread_rwlock_unlock (pthread_rwlock_t *lock); 

Once a thread has done whatever operation it wanted to do on the 
resource, it would release the lock by calling 
pthread_rwlock_unlock(). If the lock is now available in a mode that 
corresponds to the mode requested by another waiting thread, then 
that thread would be made READY. 

Note that we can't implement this form of synchronization with just a 
mutex. The mutex acts as a single-threading agent, which would be 
okay for the writing case (where you want only one thread to be using 
the resource at a time) but would fall flat in the reading case, because 
only one reader would be allowed. A semaphore couldn't be used 
either, because there's no way to distinguish the two modes of access 
- a semaphore would allow multiple readers, but if a writer were to 
acquire the semaphore, as far as the semaphore is concerned this 
would be no different from a reader acquiring it, and now you'd have 
the ugly situation of multiple readers and one or more writers! 

Another common situation that occurs in multithreaded programs is 
the need for a thread to wait until "something happens." This 
"something" could be anything! It could be the fact that data is now 
available from a device, or that a conveyer belt has now moved to the 
proper position, or that data has been committed to disk, or whatever. 
Another twist to throw in here is that several threads may need to wait 
for the given event. 

Chapter 1 • Processes and Threads 67 



More on synchronization 

To accomplish this, we'd use either a condition variable (which we'll 
see next) or the much simpler "sleepon" lock. 

To use sleepon locks, you actually need to perform several operations. 
Let's look at the calls first, and then look at how you'd use the locks. 

int 
pthread_sleepon_lock (void) ; 

int 
pthread_sleepon_unlock (void) ; 

int 
pthread_sleepon_broadcast (void *addr); 

int 
pthread_sleepon_signal (void *addr); 

int 
pthread_sleepon_wait (void *addr); 

~ Don't be tricked by the prefix pthread_ into thinking that these are 
POSIX functions- they're not. 

As described above, a thread needs to wait for something to happen. 
The most obvious choice in the list of functions above is the 
pthread__sleepon_wait( ). But first, the thread needs to check if it really 
does have to wait. Let's set up an example. One thread is a producer 
thread that's getting data from some piece of hardware. The other 
thread is a consumer thread that's doing some form of processing on 
the data that just arrived. Let's look at the consumer first: 

volatile int data_ready = 0; 

consumer () 
{ 

} 

while (1) { 

} 

while (!data_ready) { 
II WAIT 

} 
II process data 
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The consumer is sitting in its main processing loop (the while {1) ); 

it's going to do its job forever. The first thing it does is look at the 
data_ready flag. If this flag is a o, it means there's no data ready. 
Therefore, the consumer should wait. Somehow, the producer will 
wake it up, at which point the consumer should reexamine its 
data_ready flag. Let's say that's exactly what happens, and the 
consumer looks at the flag and decides that it's a 1, meaning data is 
now available. The consumer goes off and processes the data, and 
then goes to see if there's more work to do, and so on. 

We're going to run into a problem here. How does the consumer reset 
the data_ready flag in a synchronized manner with the producer? 
Obviously, we're going to need some form of exclusive access to the 
flag so that only one of those threads is modifying it at a given time. 
The method that's used in this case is built with a mutex, but it's a 
mutex that's buried in the implementation of the sleepon library, so 
we can access it only via two functions: pthread_sleepon_lock() and 
pthread_sleepon_unlock(). Let's modify our consumer: 

consumer () 

} 

while (1) { 
pthread_sleepon_lock (); 
while (!data_ready) { 

} 

I I WAIT 

} 
II process data 
data_ready = 0; 
pthread_sleepon_unlock (); 

Now we've added the lock and unlock around the operation of the 
consumer. This means that the consumer can now reliably test the 
data_ready flag, with no race conditions, and also reliably set the flag. 

Okay, great. Now what about the "WAIT" call? As we suggested 
earlier, it's effectively the pthread_sleepon_wait() call. Here's the 
second while loop: 
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while (!data_ready) { 
pthread_sleepon_wait (&data_ready); 

} 

The pthread_sleepon_wait() actually does three distinct steps! 

1 Unlock the sleepon library mutex. 

2 Perform the waiting operation. 

3 Re-lock the sleepon library mutex. 

The reason it has to unlock and lock the sleepon library's mutex is 
simple - since the whole idea of the mutex is to ensure mutual 
exclusion to the data_ready variable, this means that we want to lock 
out the producer from touching the data_ready variable while we're 
testing it. But, if we don't do the unlock part of the operation, the 
producer would never be able to set it to tell us that data is indeed 
available! There-lock operation is done purely as a convenience; this 
way the user of the pthread_sleepon_wait() doesn't have to worry 
about the state of the lock when it wakes up. 

Let's switch over to the producer side and see how it uses the sleepon 
library. Here's the full implementation: 

producer () 
{ 

} 

while (1) { 

} 

II wait for interrupt from hardware here ... 
pthread_sleepon_lock (); 
data_ready ; 1; 
pthread_sleepon_signal (&data_ready) ; 
pthread_sleepon_unlock (); 

As you can see, the producer locks the mutex as well so that it can 
have exclusive access to the data_ready variable in order to set it. 
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~ It's not the act of writing a 1 to data_ready that awakens the client! 

Action 

consumer locks mutex 

It's the call to pthread_sleepon_signal() that does it. 

Let's examine in detail what happens. We've identified the consumer 
and producer states as: 

State Meaning 

CONDVAR waiting for the underlying condition variable 
associated with the sleepon 

MUTEX waiting for a mutex 

READY capable of using, or already using, the CPU 

INTERRUPT waiting for an interrupt from the hardware 

Mutexowner Consumer state Producer state 

consumer READY INTERRUPT 

consumer examines data_ready consumer READY INTERRUPT 

consumer calls pthread_sleepon_wait() consumer READY INTERRUPT 

pthread_sleepon_wait() unlocks mutex free READY INTERRUPT 

pthread_sleepon_wait() blocks free CONDVAR INTERRUPT 

time passes free CONDVAR INTERRUPT 

hardware generates data free CONDVAR READY 

producer locks mutex producer CONDVAR READY 

continued ... 
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Action Mutex owner Consumer state Producer state 

producer sets data_ready producer CONDVAR READY 

producer calls pthread_sleepon_signal() producer CONDVAR READY 

consumer wakes up, producer MUTE X READY 

pthread_sleepon_wait() tries to lock 
mutex 

producer releases mutex free MUTE X READY 

consumer gets mutex consumer READY READY 

consumer processes data consumer READY READY 

producer waits for more data consumer READY INTERRUPT 

time passes (consumer processing) consumer READY INTERRUPT 

consumer finishes processing, unlocks free READY INTERRUPT 

mutex 

consumer loops back to top, locks consumer READY INTERRUPT 

mutex 

The last entry in the table is a repeat of the first entry- we've gone 
around one complete cycle. 

What's the purpose of the data _ready variable? It actually serves two 
purposes: 

• It's the status flag between the consumer and the producer that 
indicates the state of the system. If it's set to a 1, it means that data 
is available for processing; if it's set to a o, it means that no data is 
available, and the consumer should block. 

• It serves as "the place where sleepon synchronization occurs." 
More formally, the address of data_ready is used as a unique 
identifier, that serves as the rendezvous object for sleepon locks. 
We just as easily could have used" (void *) 12345" instead of 
"&data-ready"- so long as the identifier is unique and used 
consistently, the sleepon library really doesn't care. Actually, 
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using the address of a variable in a process is a guaranteed way to 
generate a process-unique number - after all, no two variables in 
a process will have the same address! 

We'll defer the discussion of "What's the difference between 
pthread__sleepon__signal() and pthread__sleepon__broadcast() " to the 
discussion of condition variables next. 

Condition variables (or "condvars") are remarkably similar to the 
sleepon locks we just saw above. In fact, sleepon locks are built on 
top of condvars, which is why we had a state of CONDVAR in the 
explanation table for the sleepon example. It bears repeating that the 
pthread_cond_wait() function releases the mutex, waits, and then 
reacquires the mutex, just like the pthread__sleepon_wait() function 
did. 

Let's skip the preliminaries and redo the example of the producer and 
consumer from the sleepon section, using condvars instead. Then 
we'll discuss the calls. 

I* 
* cpl.c 

*I 

#include <stdio.h> 
#include <pthread.h> 

int data-ready = 0; 
pthread_mutex_t mutex = PTHREAD-MUTEX-INITIALIZER; 
pthread_cond_t condvar = PTHREAD_CQND_INITIALIZER; 

void * 
consumer (void *notused) 
{ 

print£ ("In consumer thread ... \n"); 
while (1) { 

pthread-mutex_lock (&mutex); 
while (!data_ready) { 

pthread_cond_wait (&condvar, &mutex); 
} 
II process data 
print£ ("consumer: got data from producer\n"); 
data_ready = 0; 
pthread_cond_signal (&condvar); 

Chapter 1 • Processes and Threads 73 



More on synchronization 

pthread-mutex_unlock (&mutex); 
} 

} 

void * 
producer (void *notused) 
{ 

} 

printf ("In producer thread ... \n"); 
while (1) { 

} 

II get data from hardware 
II we'll simulate this with a sleep (1) 
sleep (1); 
printf ("producer: got data from h/w\n"); 
pthread-mutex_lock (&mutex); 
while (data_ready) { 

pthread_cond_wait (&condvar, &mutex); 
} 
data_ready = 1; 
pthread_cond_signal (&condvar) ; 
pthread-mutex_unlock (&mutex); 

main () 
{ 

} 

printf ("Starting consumer/producer example ... \n"); 

II create the producer and consumer threads 
pthread_create (NULL, NULL, producer, NULL); 
pthread_create (NULL, NULL, consumer, NULL); 

II let the threads run for a bit 
sleep (20); 

Pretty much identical to the sleepon example we just saw, with a few 
variations (we also added some printf() functions and a main() so that 
the program would run!). Right away, the first thing that we see is a 
new data type: pthread_cond_t. This is simply the declaration of 
the condition variable; we've called ours condvar. 

Next thing we notice is that the structure of the consumer is identical 
to that of the consumer in the previous sleepon example. We've 
replaced the pthread_sleepon_lock() and pthread_sleepon_unlock() 

with the standard mutex versions (pthread_mutex_lock() and 
pthread_mutex_unlock( )). The pthread_sleepon_wait() was replaced 
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with pthread_cond_wait(). The main difference is that the sleepon 
library has a mutex buried deep within it, whereas when we use 
condvars, we explicitly pass the mutex. We get a lot more flexibility 
this way. 

Finally, we notice that we've got pthread_cond_signal() instead of 
pthread_sleepon_signal() (again with the mutex passed explicitly). 

In the sleepon section, we promised to talk about the difference 
between the pthread_sleepon_signal() and 
pthread_sleepon_broadcast() functions. In the same breath, we'll talk 
about the difference between the two condvar functions 
pthread_cond_signal() and pthread_cond_broadcast( ). 

The short story is this: the "signal" version will wake up only one 
thread. So, if there were multiple threads blocked in the "wait" 
function, and a thread did the "signal," then only one of the threads 
would wake up. Which one? The highest priority one. If there are two 
or more at the same priority, the ordering of wakeup is indeterminate. 
With the "broadcast" version, all blocked threads will wake up. 

It may seem wasteful to wake up all threads. On the other hand, it 
may seem sloppy to wake up only one (effectively random) thread. 

Therefore, we should look at where it makes sense to use one over the 
other. Obviously, if you have only one thread waiting, as we did in 
either version of the consumer program, a "signal" will do just fine -
one thread will wake up and, guess what, it'll be the only thread that's 
currently waiting. 

In a multithreaded situation, we've got to ask: "Why are these threads 
waiting?" There are usually two possible answers: 

• All the threads are considered equivalent and are effectively 
forming a "pool" of available threads that are ready to handle some 
form of request. 

Or: 
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• The threads are all unique and are each waiting for a very specific 
condition to occur. 

In the first case, we can imagine that all the threads have code that 
might look like the following: 

I* 
* cvl.c 

*I 

threadl () 
{ 

} 

for (;;) { 

} 

pthread~utex_lock (&mutex_data); 
while (data == 0) { 

pthread_cond_wait (&cv_data, &mutex_data); 
} 
II do something 
pthread~utex_unlock (&mutex_data); 

II thread2, thread3, etc have the identical code. 

In this case, it really doesn't matter which thread gets the data, 
provided that one of them gets it and does something with it. 

However, if you have something like this, things are a little different: 

I* 
* cv2.c 

*I 

threadl () 
{ 

for (;;) { 

} 
} 

thread2 
{ 

for 

pthread~utex_lock (&mutex_xy) ; 
while ((x > 7) && (y != 15)) { 

pthread_cond_wait (&cv_xy, &mutex_xy); 
} 
II do something 
pthread~utex_unlock (&mutex_xy) ; 

() 

(;;) { 
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} 

pthread~utex_lock (&mutex_xy); 
while (lisprime (x)) { 

More on synchronization 

pthread_cond_wait (&cv_xy, &mutex_xy); 
} 
II do something 
pthread~utex_unlock (&mutex_xy); 

thread3 () 
{ 

} 

for (;;) { 

} 

pthread~utex_lock (&mutex_xy); 
while (x != y) { 

pthread_cond_wait (&cv_xy, &mutex_xy); 
} 
II do something 
pthread~utex_unlock (&mutex_xy); 

In these cases, waking up one thread isn't going to cut it! We must 
wake up all three threads and have each of them check to see if its 
predicate has been satisfied or not. 

This nicely reflects the second case in our question above ("Why are 
these threads waiting?"). Since the threads are all waiting on different 
conditions (thread]() is waiting for x to be less than or equal to 7 or y 
to be 15, thread2() is waiting for x to be a prime number, and 
thread3() is waiting for x to be equal toy), we have no choice but to 
wake them all. 

Sleepons have one principal advantage over condvars. Suppose that 
you want to synchronize many objects. With condvars, you'd 
typically associate one condvar per object. Therefore, if you had M 
objects, you'd most likely have M condvars. With sleepons, the 
underlying condvars (on top of which sleepons are implemented) are 
allocated dynamically as threads wait for a particular object. 
Therefore, using sleepons with M objects and N threads blocked, 
you'd have (at most) N condvars (instead of M). 

However, condvars are more flexible than sleepons, because: 
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1 Sleepons are built on top of condvars anyway. 

2 Sleepons have the mutex buried in the library; condvars allow 
you to specify it explicitly. 

The first point might just be viewed as being argumentative. :-} The 
second point, however, is significant. When the mutex is buried in the 
library, this means that there can be only one per process
regardless of the number of threads in that process, or the number of 
different "sets" of data variables. This can be a very limiting factor, 
especially when you consider that you must use the one and only 
mutex to access any and all data variables that any thread in the 
process needs to touch! 

A much better design is to use multiple mutexes, one for each data 
set, and explicitly combine them with condition variables as required. 
The true power and danger of this approach is that there is absolutely 
no compile time or run time checking to make sure that you: 

• have locked the mutex before manipulating a variable 

• are using the correct mutex for the particular variable 

• are using the correct condvar with the appropriate mutex and 
variable 

The easiest way around these problems is to have a good design and 
design review, and also to borrow techniques from object-oriented 
programming (like having the mutex contained in a data structure, 
having routines to access the data structure, etc.). Of course, how 
much of one or both you apply depends not only on your personal 
style, but also on performance requirements. 

The key points to remember when using condvars are: 

The mutex is to be used for testing and accessing the variables. 

2 The condvar is to be used as a rendezvous point. 

llere's a picture: 
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(Used for waiting and waking) 

One-to-one mutex and condvar associations. 

One interesting note. Since there is no checking, you can do things 
like associate one set of variables with mutex "ABC," and another set 
of variables with mutex "DEF," while associating both sets of 
variables with condvar "ABCDEF:" 

(Used for access and testing) 

MutexABC MutexDEF 

(Used tor waiting and waking) 

Many-to-one mutex and condvar associations. 

This is actually quite useful. Since the mutex is always to be used for 
"access and testing," this implies that I have to choose the correct 
mutex whenever I want to look at a particular variable. Fair enough 
-if I'm examining variable "C," I obviously need to lock mutex 
"MutexABC." What if I changed variable "E"? Well, before I change 
it, I had to acquire the mutex "MutexDEF." Then I changed it, and hit 
condvar "CondvarABCDEF" to tell others about the change. Shortly 
thereafter, I would release the mutex. 
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Additional 
Neutrino services 

Pools of threads 

Now, consider what happens. Suddenly, I have a bunch of threads that 
had been waiting on "CondvarABCDEF" that now wake up (from 
their pthread_cond_wait( )). The waiting function immediately 
attempts to reacquire the mutex. The critical point here is that there 
are two mutexes to acquire. This means that on an SMP system, two 
concurrent streams of threads can run, each examining what it 
considers to be independent variables, using independent mutexes. 
Cool, eh? 

Neutrino lets you do something else that's elegant. POSIX says that a 
mutex must operate between threads in the same process, and lets a 
conforming implementation extend that. Neutrino extends this by 
allowing a mutex to operate between threads in different processes. 
To understand why this works, recall that there really are two parts to 
what's viewed as the "operating system"- the kernel, which deals 
with scheduling, and the process manager, which worries about 
memory protection and "processes" (among other things). A mutex is 
really just a synchronization object used between threads. Since the 
kernel worries only about threads, it really doesn't care that the 
threads are operating in different processes - this is an issue for the 
process manager. 

So, if you've set up a shared memory area between two processes, and 
you've initialized a mutex in that shared memory, there's nothing 
stopping you from synchronizing multiple threads in those two (or 
more!) processes via the mutex. The same pthread_mutex_lock() and 
pthread_mutex_unlock() functions will still work. 

Another thing that Neutrino has added is the concept of thread pools. 
You'll often notice in your programs that you want to be able to run a 
certain number of threads, but you also want to be able to control the 
behavior of those threads within certain limits. For example, in a 
server you may decide that initially just one thread should be blocked, 
waiting for a message from a client. When that thread gets a message 
and is off servicing a request, you may decide that it would be a good 
idea to create another thread, so that it could be blocked waiting in 
case another request arrived. This second thread would then be 
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available to handle that request. And so on. After a while, when the 
requests had been serviced, you would now have a large number of 
threads sitting around, waiting for further requests. In order to 
conserve resources, you may decide to kill off some of those "extra" 
threads. 

This is in fact a common operation, and Neutrino provides a library to 
help with this. 

IQ" In Neutrino versions before release 2.00, functionality very similar to 
this was buried inside the resource manager library, but in release 2.00 
it was moved out of the resource manager library and into its own set 
of functions. We'll see the thread pool functions again when we look 
at the Resource Managers chapter. 

It's important for the discussions that follow to realize there are really 
two distinct operations that threads (that are used in thread pools) 
perform: 

• a blocking (waiting operation) 

• a processing operation 

The blocking operation doesn't generally consume CPU. In a typical 
server, this is where the thread is waiting for a message to arrive. 
Contrast that with the processing operation, where the thread may or 
may not be consuming CPU (depending on how the process is 
structured). In the thread pool functions that we'll look at later, you'll 
see that we have the ability to control the number of threads in the 
blocking operation as well as the number of threads that are in the 
processing operations. 

Neutrino provides the following functions to deal with thread pools: 

#include <sys/dispatch.h> 

thread_pool_t * 
thread_pool_crea te ( thread_pool_a t tr _t *attr, 

unsigned flags) ; 
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int 
thread_pool_destroy (thread_pool_t *pool); 

int 
thread_pool_start (void *pool); 

int 
thread_pool_limits (thread_pool_t *pool, 

int lowater, 

int 

int hiwater, 
int maximum, 
in t increment, 
unsigned flags) ; 

thread_pool_control (thread_pool_t *pool, 
thread_pool_attr_t *attr, 
uintl6_t lower, 
uintl6_t upper, 
unsigned flags) ; 

As you can see from the functions provided, you first create a thread 
pool definition using thread_pooLcreate( ), and then start the thread 
pool via thread_pooLstart(). When you're done with the thread pool, 
you can use thread_pool_destroy() to clean up after yourself. Note that 
you might never call thread_pooLdestroy( ), as in the case where the 
program is a server that runs "forever." The thread_pooUimits() 
function is used to specify thread pool behavior and adjust attributes 
of the thread pool, and the thread_pooLcontrol() function is a 
convenience wrapper for the thread_pooUimits() function. 

So, the first function to look at is thread_pool_create( ). It takes two 
parameters, attr and .flags. The attr is an attributes structure that 
defines the operating characteristics of the thread pool (from 
<sys/dispatch. h>): 

typedef struct _thread_pool_attr { 
II thread pool functions and handle 
THREAD_FOOL....HANDLE_T *handle; 

THREAD-POOL_PARAM_T 
* (*block_func) (THREAD_PQOL_FARAM_T *ctp); 

void 
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(*unb/ock_func) (THREAD_POOL_PARAM_T *ctp); 

int 

(*handler-June) (THREAD-POOL_PARAM-T *ctp); 

THREAD_FOOL_FARAM_T 

* (*context....alloc) (THREAD_POOL...HANDLE_T *handle); 

void 
(*context-free) (THREAD-POOL_PARAM_T *ctp); 

II thread pool parameters 
pthread-attr _t *attr; 
unsigned short /o_water; 
unsigned short 

unsigned short 

unsigned short 
} thread_pool_attr_t; 

increment; 
hi-water; 
maximum; 

I've broken the thread_pool_attr _t type into two sections, one 
that contains the functions and handle for the threads in the thread 
pool, and another that contains the operating parameters for the thread 
pool. 

Let's first look at the "thread pool parameters" to see how you control 
the number and attributes of threads that will be operating in this 
thread pool. Keep in mind that we'll be talking about the "blocking 
operation" and the "processing operation" (when we look at the 
callout functions, we'll see how these relate to each other). 

The following diagram illustrates the relationship ofthe lo_water, 
hi_water, and maximum parameters: 
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create 
thread 

< lo_water 

lo_water to hi_water 

maximum 

<= hi water 

> hi water 

destroy 
thread 

Thread flow when using thread pools. 

(Note that "CN.' is the context...alloc() function, "CF" is the 
context free() function, "blocking operation" is the block.func() 
function, and "processing operation" is the handler .june().) 

attr 

lo_water 

increment 

This is the attributes structure that's used during thread 
creation. We've already discussed this structure above 
(in "The thread attributes structure"). You'll recall that 
this is the structure that controls things about the newly 
created thread like priority, stack size, and so on. 

There should always be at least lo_water threads 
sitting in the blocking operation. In a typical server, 
this would be the number of threads waiting to receive 
a message, for example. If there are less than lo_water 
threads sitting in the blocking operation (because, for 
example, we just received a message and have started 
the processing operation on that message), then more 
threads are created, according to the increment 
parameter. This is represented in the diagram by the 
first step labeled "create thread." 

Indicates how many threads should be created at once 
if the count of blocking operation threads ever drops 
under lo_water. In deciding how to choose a value for 
this, you'd most likely start with 1. This means that if 
the number of threads in the blocking operation drops 
under lo_water, exactly one more thread would be 
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created by the thread pool. To fine-tune the number 
that you've selected for increment, you could observe 
the behavior of the process and determine whether this 
number needs to be anything other than one. If, for 
example, you notice that your process gets "bursts" of 
requests, then you might decide that once you've 
dropped below lo_water blocking operation threads, 
you're probably going to encounter this "burst" of 
requests, so you might decide to request the creation 
of more than one thread at a time. 

Indicates the upper limit on the number of threads that 
should be in the blocking operation. As threads 
complete their processing operations, they will 
normally return to the blocking operation. However, 
the thread pool library keeps count of how many 
threads are currently in the blocking operation, and if 
that number ever exceeds hi_water, the thread pool 
library will kill the thread that caused the overflow 
(i.e., the thread that had just finished and was about to 
go back to the blocking operation). This is shown in 
the diagram as the "split" out of the "processing 
operation" block, with one path going to the "blocking 
operation" and the other path going to "CF" to destroy 
the thread. The combination of lo_water and hi_water, 
therefore, allows you to specify a range indicating how 
many threads should be in the blocking operation. 

Indicates the absolute maximum number of threads 
that will ever run concurrently as a result of the thread 
pool library. For example, if threads were being 
created as a result of an underflow of the lo_water 
mark, the maximum parameter would limit the total 
number of threads. 

One other key parameter to controlling the threads is the .flags 
parameter passed to the thread_pooLcreate() function. It can have one 
of the following values: 
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POOLFLAG_EXIT _SELF 

The thread_pool__.start() function will not return, nor will the 
calling thread be incorporated into the pool of threads. 

POOLFLAG_USE_SELF 

The thread_pool__.start() function will not return, but the calling 
thread will be incorporated into the pool of threads. 

0 The thread_pool_.start() function will return, with new threads 
being created as required. 

The above descriptions may seem a little dry. Let's look at an 
example. 

We'll just focus on the lo_water, hi_water, increment, and the 
maximum members of the thread pool control structure: 

/* 
* part of tpl.c 

*I 

#include <sys/dispatch.h> 

int 
main () 
{ 

thread_pool_attr_t tp_attr; 
void *tpp; 

tp_attr.lo_water 3; 
tp_attr.increment 2; 
tp_attr.hi_water 7; 
tp_attr.maximum 10; 

tpp = thread_pool_create (&tp_attr, POQL_FLAG_USE-SELF); 
if (tpp == NULL) { 

} 

fprintf (stderr, 
"%s: can't thread_pool_create, errno %s\n", 

progname, strerror (errno)); 
exit (EXIT-FAILURE); 

thread_pool_start (tpp); 
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After setting the members, we call thread_pooLcreate() to create a 
thread pool. This returns a pointer to a thread pool control structure 
(tpp), which we check against NULL (which would indicate an error). 
Finally we call thread_pooLstart() with the tpp thread pool control 
structure. 

I've specified POOLFLAG_USE_SELF which means that the thread 
that called thread_pooLstart() will be considered an available thread 
for the thread pool. So, at this point, there is only that one thread in 
the thread pool library. Since we have a lo_water value of 3, the 
library immediately creates increment number of threads (2 in this 
case). At this point, 3 threads are in the library, and all 3 of them are 
in the blocking operation. The lo_water condition is satisfied, because 
there are at least that number of threads in the blocking operation; the 
hi_water condition is satisfied, because there are less than that number 
of threads in the blocking operation; and finally, the maximum 
condition is satisfied as well, because we don't have more than that 
number of threads in the thread pool library. 

Now, one of the threads in the blocking operation unblocks (e.g., in a 
server application, a message was received). This means that now one 
of the three threads is no longer in the blocking operation (instead, 
that thread is now in the processing operation). Since the count of 
blocking threads is less than the lo_water, it trips the lo_water trigger 
and causes the library to create increment (2) threads. So now there 
are 5 threads total ( 4 in the blocking operation, and 1 in the 
processing operation). 

More threads unblock. Let's assume that none of the threads in the 
processing operation none completes any of their requests yet. Here's 
a table illustrating this, starting at the initial state (we've used "Proc 
Op" for the processing operation, and "Blk Op" for the blocking 
operation, as we did in the previous diagram, "Thread flow when 
using thread pools."): 
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Event Proc Op BlkOp Total 

Initial 0 

lo_water trip 0 3 3 

Unblock 2 3 

lo_water trip 4 5 

Unblock 2 3 5 

Unblock 3 2 5 

lo_water trip 3 4 7 

Unblock 4 3 7 

Unblock 5 2 7 

lo_water trip 5 4 9 

Unblock 6 3 9 

Unblock 7 2 9 

lo_water trip 7 3 10 

Unblock 8 2 10 

Unblock 9 10 

Unblock 10 0 10 

As you can see, the library always checks the lo_water variable and 
creates increment threads at a time until it hits the limit of the 
maximum variable (as it did when the "Total" column reached 10-
no more threads were being created, even though the count had 
undertlowed the lo_water). 

This means that at this point, there are no more threads waiting in the 
blocking operation. Let's assume that the threads are now finishing 
their requests (from the processing operation); watch what happens 
with the hi_water trigger: 
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Event Proc Op BlkOp Total 

completion 9 10 

completion 8 2 10 

completion 7 3 10 

completion 6 4 10 

completion 5 5 10 

completion 4 6 10 

completion 3 7 10 

completion 2 8 10 

hi_water trip 2 7 9 

completion 8 9 

hi_water trip 7 8 

completion 0 8 8 

hi_water trip 0 7 7 

Notice how nothing really happened during the completion of 
processing for the threads until we tripped over the hi_water trigger. 
The implementation is that as soon as the thread finishes, it looks at 
the number of receive blocked threads and decides to kill itself if there 
are too many (i.e., more than hi_water) waiting at that point. The nice 
thing about the lo_water and hi_water limits in the structures is that 
you can effectively have an "operating range" where a sufficient 
number of threads are available, and you're not unnecessarily creating 
and destroying threads. In our case, after the operations performed by 
the above tables, we now have a system that can handle up to 4 
requests simultaneously without creating more threads (7 - 4 = 3, 
which is the lo_water trip). 
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The thread pool 
functions 

Now that we have a good feel for how the number of threads is 
controlled, let's turn our attention to the other members of the thread 
pool attribute structure (from above): 

II thread pool functions and handle 

THREAD_PQOL....HANDLE_T *handle; 

THREAD_POQL_PARAM_T 

* (*b/ock...,fimc) (THREAD-POQL_PARAM_T *ctp); 

void 

( *unb/ock_jimc) (THREAD_PQOL_PARAM_T *ctp) ; 

int 

(*hand/er_jimc) (THREAD_PQOL_PARAM_T *ctp); 

THREAD_POOL_PARAM_T 

* (*colltext_al/oc) (THREAD_POOL....HANDLE_T *handle); 

void 

(*context-free) (THREAD_PQQL_PARAM_T *ctp); 

Recall from the diagram "Thread flow when using thread pools," that 
the context_alloc() function gets called for every new thread being 
created. (Similarly, the context free() function gets called for every 
thread being destroyed.) 

The handle member of the structure (above) is passed to the 
context_alloc() function as its sole parameter. The context_alloc() 
function is responsible for performing any per-thread setup required 
and for returning a context pointer (called ctp in the parameter lists). 
Note that the contents of the context pointer are entirely up to you
the library doesn't care what you put into the context pointer. 

Now that the context has been created by context_alloc(), the 
block./unc() function is called to perform the blocking operation. 
Note that the block june() function gets passed the results of the 
context_al/oc() function. Once the blockjunc() function unblocks, it 
returns a context pointer, which gets passed by the library to the 
handler june(). The handlerjunc() is responsible for performing the 
"work" -for example, in a typical server, this is where the message 
from the client is processed. The handler june() must return a zero for 
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now - non-zero values are reserved for future expansion by QSSL. 
The unblock.func() is also reserved at this time; just leave it as NULL. 
Perhaps this pseudo code sample will clear things up (it's based on the 
same flow as shown in "Thread flow when using thread pools," 
above): 

FOREVER DO 

DONE 

IF (#threads < lo_water) THEN 
IF (#threads_total < maximum) THEN 

create new thread 
context = (*context_alloc) (handle); 

END IF 
END IF 
retval = (*block_func) (context); 
(*handler_func) (retval); 
IF (#threads > hi_water) THEN 

(*context_free) (context) 
kill thread 

END IF 

Note that the above is greatly simplified; its only purpose is to show 
you the data flow of the ctp and handle parameters and to give some 
sense of the algorithms used to control the number of threads. 

Scheduling and the real world 

So far we've talked about scheduling algorithms and thread states, but 
we haven't said much yet about why and when things are rescheduled. 
There's a common misconception that rescheduling just "occurs," 
without any real causes. Actually, this is a useful abstraction during 
design! But it's important to understand the conditions that cause 
rescheduling. Recall the diagram "Scheduling roadmap" (in the "The 
kernel's role" section). 

Rescheduling occurs only because of: 

• a hardware interrupt 

• a kernel call 
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Rescheduling -
hardware 
interrupts 

Rescheduling -
kernel calls 

• a fault 

Rescheduling due to a hardware interrupt occurs in two cases: 

• timers 

• other hardware 

The realtime clock generates periodic interrupts for the kernel, 
causing time-based rescheduling. 

For example, if you issue a sleep ( 10) ; call, a number of realtime 
clock interrupts will occur; the kernel increments the time-of-day 
clock at each interrupt. When the time-of-day clock indicates that I 0 
seconds have elapsed, the kernel reschedules your thread as READY. 

(This is discussed in more detail in the Clocks, Timers, and Getting a 
Kick Every So Often chapter.) 

Other threads might wait for hardware interrupts from peripherals, 
such as the serial port, a hard disk, or an audio card. In this case, they 
are blocked in the kernel waiting for a hardware interrupt; the thread 
will be rescheduled by the kernel only after that "event" is generated. 

If the rescheduling is caused by a thread issuing a kernel call, the 
rescheduling is done immediately and can be considered 
asynchronous to the timer and other interrupts. 

For example, above we called sleep (10);. This C library function 
is eventually translated into a kernel call. At that point, the kernel 
made a rescheduling decision to take your thread off of the READY 

queue for that priority, and then schedule another thread that was 
READY. 

There are many kernel calls that cause a process to be rescheduled. 
Most of them are fairly obvious. Here are a few: 

• timer functions (e.g., sleep()) 

• messaging functions (e.g., MsgSendv()) 
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• thread primitives, (e.g., pthread_cancel(), pthread_join()) 

The final cause of rescheduling, a CPU fault, is an exception, 
somewhere between a hardware interrupt and a kernel call. It operates 
asynchronously to the kernel (like an interrupt) but operates 
synchronously with the user code that caused it (like a kernel call -
for example, a divide-by-zero exception). The same discussion as 
above (for hardware interrupts and kernel calls) applies to faults. 

Neutrino offers a rich set of scheduling options with threads, the 
primary scheduling elements. Processes are defined as a unit of 
resource ownership (e.g., a memory area) and contain one or more 
threads. 

Threads can use any of the following synchronization methods: 

• mutexes- allow only one thread to own the mutex at a given 
point in time. 

• semaphores - allow a fixed number of threads to "own" the 
semaphore. 

• sleepons - allow a number of threads to block on a number of 
objects, while allocating the underlying condvars dynamically to 
the blocked threads. 

• condvars - similar to sleepons except that the allocation of the 
condvars is controlled by the programmer. 

• joining - allows a thread to synchronize to the termination of 
another thread. 

• barriers- allows threads to wait until a number of threads have 
reached the synchronization point. 

Note that mutexes, semaphores, and condition variables can be used 
between threads in the same or different processes, but that sleepons 
can be used only between threads in the same process (because the 
library has a mutex "hidden" in the process's address space). 
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As well as synchronization, threads can be scheduled (using a priority 
and a scheduling algorithm), and they'll automatically run on a 
single-processor box or an SMP box. 

Whenever we talk about creating a "process" (mainly as a means of 
porting code from single-threaded implementations), we're really 
creating an address space with one thread running in it- that thread 
starts at main() or at fork() or vfork() depending on the function 
called. 
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In this chapter . .. 
Messaging fundamentals 
Message passing and client/server 
Network-distributed message passing 
What it means for you 
Multiple threads 
Using message passing 
Pulses 
Message passing over a network 
Priority inheritance 
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Messaging fundamentals 

In this chapter, we'lllook at the most distinctive feature of Neutrino, 
message passing. Message passing lies at the heart of the operating 
system's microkemel architecture, giving the OS its modularity. 

One of the principal advantages of Neutrino is that it's scalable. By 
"scalable" I mean that it can be tailored to work on tiny embedded 
boxes with tight memory constraints, right up to large networks of 
multiprocessor SMP boxes with almost unlimited memory. 

Neutrino achieves its scalability by making each service-providing 
component modular. This way, you can include only the components 
you need in the final system. By using threads in the design, you'll 
also help to make it scalable to SMP systems (we'll see some more 
uses for threads in this chapter). 

This is the philosophy that was used during the initial design of the 
QNX family of operating systems and has been carried through to this 
day. The key is a small microkernel architecture, with modules that 
would traditionally be incorporated into a monolithic kernel as 
optional components. 

Neutrino's modular architecture. 

You, the system architect, decide which modules you want. Do you 
need a filesystem in your project? If so, then add one. If you don't 
need one, then don't bother including one. Do you need a serial port 
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driver? Whether the answer is yes or no, this doesn't affect (nor is it 
affected by) your previous decision about the filesystem. 

At run time, you can decide which system components are included in 
the running system. You can dynamically remove components from a 
live system and reinstall them, or others, at some other time. Is there 
anything special about these "drivers"? Nope, they're just regular, 
user-level programs that happen to perform a specific job with the 
hardware. In fact, we'll see how to write them in the Resource 
Managers chapter. 

The key to accomplishing this is message passing. Instead of having 
the OS modules bound directly into the kernel, and having some kind 
of "special" arrangement with the kernel, under Neutrino the modules 
communicate via message passing among themselves. The kernel is 
basically responsible only for thread-level services (e.g., scheduling). 
In fact, message passing isn't used just for this installation and 
deinstallation trick- it's the fundamental building block for almost 
all other services (for example, memory allocation is performed by a 
message to the process manager). Of course, some services are 
provided by direct kernel calls. 

Consider opening a file and writing a block of data to it. This is 
accomplished by a number of messages sent from the application to 
an installable component of Neutrino called the filesystem. The 
message tells the filesystem to open a file, and then another message 
tells it to write some data (and contains that data). Don't worry 
though - the Neutrino operating system performs message passing 
ve1y quickly. 

Message passing and client/server 

Imagine an application reading data from the filesystem. In QNX 
lingo, the application is a client requesting the data from a server. 
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This client/server model introduces several process states associated 
with message passing (we talked about these in the Processes and 
Threads chapter). Initially, the server is waiting for a message to 
arrive from somewhere. At this point, the server is said to be 
receive-blocked (also known as the RECV state). Here's some sample 
pidin output: 

pid tid name 
4 1 devc-pty 

prio STATE 
lOr RECEIVE 

Blocked 
1 

In the above sample, the pseudo-tty server (called devc-pty) is 
process ID 4, has one thread (thread ID 1), is running at priority 10 
Round-Robin, and is receive-blocked, waiting for a message from 
channel ID 1 (we'll see all about "channels" shortly). 

State transitions of server. 

When a message is received, the server goes into the READY state, 
and is capable of running. If it happens to be the highest-priority 
READY process, it gets the CPU and can perform some processing. 
Since it's a server, it looks at the message it just got and decides what 
to do about it. At some point, the server will complete whatever job 
the message told it to do, and then will "reply" to the client. 

Let's switch over to the client. Initially the client was running along, 
consuming CPU, until it decided to send a message. The client 
changed from READY to either send-blocked or reply-blocked, 
depending on the state of the server that it sent a message to. 
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State transitions of clients. 

Generally, you'll see the reply-blocked state much more often than the 
send-blocked state. That's because the reply-blocked state means: 

The server has received the message and is now 
processing it. At some point, the server will complete 
processing and will reply to the client. The client is 
blocked waiting for this reply. 

Contrast that with the send-blocked state: 

The server hasn't yet received the message, most likely 
because it was busy handling another message first. 
When the server gets around to "receiving" your (client) 
message, then you'll go from the send-blocked state to 
the reply-blocked state. 

In practice, if you see a process that is send-blocked it means one of 
two things: 

1 You happened to take a snapshot of the system in a situation 
where the server was busy servicing a client, and a new request 
arrived for that server. 
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This is a normal situation - you can verify it by running 
pidin again to get a new snapshot. This time you'll probably 
see that the process is no longer send-blocked. 

2 The server has encountered a bug and for whatever reason isn't 
listening to requests anymore. 

When this happens, you'll see many processes that are 
send-blocked on one server. To verify this, run pidin again, 
observing that there's no change in the blocked state of the 
client processes. 

Here's a sample showing a reply-blocked client and the server it's 
blocked on: 

pid tid name prio STATE Blocked 
1 1 to/x86/sys/procnto Of READY 
1 2 to/x86/sys/procnto lOr RECEIVE 1 
1 3 to/x86/sys/procnto lOr NANOSLEEP 
1 4 to/x86/sys/procnto lOr RUNNING 
1 5 to/x86/sys/procnto 15r RECEIVE 1 

16426 1 esh lOr REPLY 1 

This shows that the program esh (the embedded shell) has sent a 
message to process number 1 (the kernel and process manager, 
procnto) and is now waiting for a reply. 

Now you know the basics of message passing in a client/server 
architecture. 

So now you might be thinking, "Do I have to write special Neutrino 
message-passing calls just to open a file or write some data?!?" 

You don't have to write any message-passing functions, unless you 
want to get "under the hood" (which I'll talk about a little later). In 
fact, let me show you some client code that does message passing: 

#include <fcntl.h> 
#include <unistd.h> 

int 
main (void) 
{ 
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} 

int fd; 

fd =open ("filename", Q_WRONLY); 
write (fd, "This is message passing\n", 24); 
close (fd); 

return (EXIT-SUCCESS); 

See? Standard C code, nothing tricky. 

The message passing is done by the Neutrino C library. You simply 
issue standard POSIX 1003.1 or ANSI C function calls, and the C 
library does the message-passing work for you. 

In the above example, we saw three functions being called and three 
distinct messages being sent: 

• open() sent an "open" message 

• write() sent a "write" message 

• close() sent a "close" message 

We'll be discussing the messages themselves in a lot more detail 
when we look at resource managers (in the Resource Managers 
chapter), but for now all you need to know is the fact that different 
types of messages were sent. 

Let's step back for a moment and contrast this to the way the example 
would have worked in a traditional operating system. 

The client code would remain the same and the differences would be 
hidden by the C library provided by the vendor. On such a system, the 
open() function call would invoke a kernel function, which would 
then call directly into the filesystem, which would execute some code, 
and return a file descriptor. The write() and close() calls would do the 
same thing. 

So? Is there an advantage to doing things this way? Keep reading! 
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Network-distributed message 
passing 

Suppose we want to change our example above to talk to a different 
node on the network. You might think that we'll have to invoke 
special function calls to "get networked." Here's the network 
version's code: 

#include <fcntl.h> 
#include <unistd.h> 

int 
main (void) 

int fd; 

fd = open ( "/net/wintermute/home/rk/filename", Q_WRONLY); 
write (fd, "This is message passing\n", 24); 
close (fd); 

return (EXIT-SUCCESS); 
} 

You're right if you think the code is almost the same in both versions. 
It is. 

In a traditional OS, the C library open() calls into the kernel, which 
looks at the filename and says "oops, this is on a different node." The 
kernel then calls into the network filesystem (NFS) code, which 
figures out where /net/wintermute/home/rk/filename actually 
is. Then, NFS calls into the network driver and sends a message to the 
kernel on node wintermute, which then repeats the process that we 
described in our original example. Note that in this case, there are 
really two filesystems involved; one is the NFS client filesystem, and 
one is the remote filesystem. Unfortunately, depending on the 
implementation of the remote filesystem and NFS, certain operations 
may not work as expected (e.g., file locking) due to incompatibilities. 

Under Neutrino, the C library open() creates the same message that it 
would have sent to the local filesystem and sends it to the filesystem 
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on node wintermute. In the local and remote cases, the exact same 
filesystem is used. 

This is another fundamental characteristic of Neutrino: 
network-distributed operations are essentially "free," as the work to 
decouple the functionality requirements of the clients from the 
services provided by the servers is already done, by virtue of message 
passing. 

On a traditional kernel there's a "double standard" where local 
services are implemented one way, and remote (network) services are 
implemented in a totally different way. 

What it means for you 

Message passing is elegant and network-distributed. So what? What 
does it buy you, the programmer? 

Well, it means that your programs inherit those characteristics- they 
too can become network-distributed with far less work than on other 
systems. But the benefit that I find most useful is that they let you test 
software in a nice, modular manner. 

You've probably worked on large projects where many people have to 
provide different pieces of the software. Of course, some of these 
people are done sooner or later than others. 

These projects often have problems at two stages: initially at project 
definition time, when it's hard to decide where one person's 
development effort ends and another's begins, and then at 
testing/integration time, when it isn't possible to do full systems 
integration testing because all the pieces aren't available. 

With message passing, the individual components of a project can be 
decoupled very easily, leading to a very simple design and reasonably 
simple testing. If you want to think about this in terms of existing 
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paradigms, it's very similar to the concepts used in Object Oriented 
Programming (OOP). 

What this boils down to is that testing can be performed on a 
piece-by-piece basis. You can set up a simple program that sends 
messages to your server process, and since the inputs and outputs of 
that server process are (or should be!) well documented, you can 
determine if that process is functioning. Heck, these test cases can 
even be automated and placed in a regression suite that runs 
periodically! 

Message passing is at the heart of the philosophy of Neutrino. 
Understanding the uses and implications of message passing will be 
the key to making effective use of the OS. Before we go into the 
details, let's look at a little bit of theory first. 

Multiple threads 

Although the client/server model is easy to understand, and the most 
commonly used, there are two other variations on the theme. The first 
is the use of multiple threads (the topic of this section), and the 
second is a model called server/subserver that's sometimes useful for 
general design, but really shines in network-distributed designs. The 
combination of the two can be extremely powerful, especially on a 
network of SMP boxes! 

As we discussed in the Processes and Threads chapter, Neutrino has 
the ability to run multiple threads of execution in the same process. 
How can we use this to our advantage when we combine this with 
message passing? 

The answer is fairly simple. We can start a pool of threads (using the 
thread_pooL *() functions that we talked about in the Processes and 
Threads chapter), each of which can handle a message from a client: 
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Clients accessing threads in a server. 

This way, when a client sends us a message, we really don't care 
which thread gets it, as long as the work gets done. This has a number 
of advantages. The ability to service multiple clients with multiple 
threads, versus servicing multiple clients with just one thread, is a 
powerful concept. The main advantage is that the kernel can multitask 
the server among the various clients, without the server itself having 
to perform the multitasking. 

On a single-processor machine, having a bunch of threads running 
means that they're all competing with each other for CPU time. 

But, on an SMP box, we can have multiple threads competing for 
multiple CPUs, while sharing the same data area across those multiple 
CPUs. This means that we're limited only by the number of available 
CPUs on that particular machine. 

Let's now look at the server/subserver model, and then we'll combine 
it with the multiple threads model. 

In this model, a server still provides a service to clients, but because 
these requests may take a long time to complete, we need to be able to 
start a request and still be able to handle new requests as they arrive 
from other clients. 

If we tried to do this with the traditional single-threaded client/server 
model, once one request was received and started, we wouldn't be 
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able to receive any more requests unless we periodically stopped what 
we were doing, took a quick peek to see if there were any other 
requests pending, put those on a work queue, and then continued on, 
distributing our attention over the various jobs in the work queue. Not 
very efficient. You're practically duplicating the work of the kernel by 
"time slicing" between multiple jobs! 

Imagine what this would look like if you were doing it. You're at your 
desk, and someone walks up to you with a folder full of work. You 
start working on it. As you're busy working, you notice that someone 
else is standing in the doorway of your cubicle with more work of 
equally high priority (of course)! Now you've got two piles of work 
on your desk. You're spending a few minutes on one pile, switching 
over to the other pile, and so on, all the while looking at your doorway 
to see if someone else is coming around with even more work. 

The server/subserver model would make a lot more sense here. In this 
model, we have a server that creates several other processes (the 
subservers). These subservers each send a message to the server, but 
the server doesn't reply to them until it gets a request from a client. 
Then it passes the client's request to one of the subservers by replying 
to it with the job that it should perform. The following diagram 
illustrates this. Note the direction of the arrows - they indicate the 
direction of the sends! 

Server/subserver model. 
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If you were doing a job like this, you'd start by hiring some extra 
employees. These employees would all come to you (just as the 
subservers send a message to the server- hence the note about the 
arrows in the diagram above), looking for work to do. Initially, you 
might not have any, so you wouldn't reply to their query. When 
someone comes into your office with a folder full of work, you say to 
one of your employees, "Here's some work for you to do." That 
employee then goes off and does the work. As other jobs come in, 
you'd delegate them to the other employees. 

The trick to this model is that it's reply-driven- the work starts 
when you reply to your subservers. The standard client/server model 
is send-driven because the work starts when you send the server a 
message. 

So why would the clients march into your office, and not the offices of 
the employees that you hired? Why are you "arbitrating" the work? 
The answer is fairly simple: you're the coordinator responsible for 
performing a particular task. It's up to you to ensure that the work is 
done. The clients that come to you with their work know you, but 
they don't know the names or locations of your (perhaps temporary) 
employees. 

As you probably suspected, you can certainly mix multithreaded 
servers with the server/subserver model. The main trick is going to be 
determining which parts of the "problem" are best suited to being 
distributed over a network (generally those parts that won't use up the 
network bandwidth too much) and which parts are best suited to being 
distributed over the SMP architecture (generally those parts that want 
to use common data areas). 

So why would we use one over the other? Using the server/subserver 
approach, we can distribute the work over multiple machines on a 
network. This effectively means that we're limited only by the 
number of available machines on the network (and network 
bandwidth, of course). Combining this with multiple threads on a 
bunch of SMP boxes distributed over a network yields "clusters of 
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computing," where the central "arbitrator" delegates work (via the 
server/subserver model) to the SMP boxes on the network. 

Now we'll consider a few examples of each method. 

Filesystems, serial ports, consoles, and sound cards all use the 
client/server model. A C language application program takes on the 
role of the client and sends requests to these servers. The servers 
perform whatever work was specified, and reply with the answer. 

Some of these traditional "client/server" servers may in fact actually 
be reply-driven (server/subserver) servers! This is because, to the 
ultimate client, they appear as a standard server, even though the 
server itself uses server/subserver methods to get the work done. 
What I mean by that is, the client still sends a message to what it 
thinks is the "service providing process." What actually happens is 
that the "service providing process" simply delegates the client's 
work to a different process (the subserver). 

One of the more popular reply-driven programs is a fractal graphics 
program distributed over the network. The master program divides 
the screen into several areas, for example, 64 regions. At startup, the 
master program is given a list of nodes that can participate in this 
activity. The master program starts up worker (subserver) programs, 
one on each of the nodes, and then waits for the worker programs to 
send to the master. 

The master then repeatedly picks "unfilled" regions (of the 64 on 
screen) and delegates the fractal computation work to the worker 
program on another node by replying to it. When the worker program 
has completed the calculations, it sends the results back to the master, 
which displays the result on the screen. 

Because the worker program sent to the master, it's now up to the 
master to again reply with more work. The master continues doing 
this until all 64 areas on the screen have been filled. 
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Because the master program is delegating work to worker programs, 
the master program can't afford to become blocked on any one 
program! In a traditional send-driven approach, you'd expect the 
master to create a program and then send to it. Unfortunately, the 
master program wouldn't be replied to until the worker program was 
done, meaning that the master program couldn't send simultaneously 
to another worker program, effectively negating the advantages of 
having multiple worker nodes. 

One master, multiple workers. 

The solution to this problem is to have the worker programs start up, 
and ask the master program if there's any work to do by sending it a 
message. Once again, we've used the direction of the arrows in the 
diagram to indicate the direction of the send. Now the worker 
programs are waiting for the master to reply. When something tells 
the master program to do some work, it replies to one or more of the 
workers, which causes them to go off and do the work. This lets the 
workers go about their business; the master program can still respond 
to new requests (it's not blocked waiting for a reply from one of the 
workers). 

Multi-threaded servers are indistinguishable from single-threaded 
servers from the client's point of view. In fact, the designer of a server 
can just "turn on" multi-threading by starting another thread. 

In any event, the server can still make use of multiple CPUs in an 
SMP configuration, even if it is servicing only one "client." What 
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does that mean? Let's revisit the fractal graphics example. When a 
subserver gets a request from the server to "compute," there's 
absolutely nothing stopping the subserver from starting up multiple 
threads on multiple CPUs to service the one request. In fact, to make 
the application scale better across networks that have some SMP 
boxes and some single-CPU boxes, the server and subserver can 
initially exchange a message whereby the subserver tells the server 
how many CPUs it has- this lets it know how many requests it can 
service simultaneously. The server would then queue up more 
requests for SMP boxes, allowing the SMP boxes to do more work 
than single-CPU boxes. 

Using message passing 

Now that we've seen the basic concepts involved in message passing, 
and learned that even common everyday things like the C library use 
it, let's take a look at some of the details. 

We've been talking about "clients" and "servers." I've also used three 
key phrases: 

• "The client sends to the server." 

• "The server receives from the client." 

• "The server replies to the client." 

I specifically used those phrases because they closely reflect the actual 
function names used in Neutrino message-passing operations. 

Here's the complete list of functions dealing with message passing 
available under Neutrino (in alphabetical order): 

• ChannelCreate(), ChannelDestroy() 

• ConnectAttach( ), ConnectDetach() 
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• MsgDeliverEvent() 

• MsgError() 

• MsgRead(), MsgReadv() 

• MsgReceive(), MsgReceivePulse(), MsgReceivev() 

• MsgReply(}, MsgReplyv() 

• MsgSend(), MsgSendnc(), MsgSendsv(), MsgSendsvnc(), 
MsgSendvs( ), MsgSendvsnc( }, MsgSendv( ), MsgSendvnc() 

• MsgWrite(), MsgWritev() 

Don't let this list overwhelm you! You can write perfectly useful 
client/server applications using just a small subset of the calls from 
the list- as you get used to the ideas, you'll see that some of the 
other functions can be very useful in certain cases. 

I@? A useful minimal set of functions is Channel Create(), 
ConnectAttach( ), MsgReply( ), MsgSend( ), and MsgReceive( ). 

The client 

We'll break our discussion up into the functions that apply on the 
client side, and those that apply on the server side. 

The client wants to send a request to a server, block until the server 
has completed the request, and then when the request is completed 
and the client is unblocked, to get at the "answer." 

This implies two things: the client needs to be able to establish a 
connection to the server and then to transfer data via messages - a 
message from the client to the server (the "send" message) and a 
message back from the server to the client (the "reply" message, the 
server's reply). 
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So, let's look at these functions in turn. The first thing we need to do 
is to establish a connection. We do this with the function 
ConnectAttach(), which looks like this: 

#include <Sys/neutrino.h> 

int ConnectAttach (int nd, 
pid_t pid, 
int chid, 
unsigned index, 
int flags) ; 

ConnectAttach() is given three identifiers: the nd, which is the Node 
Descriptor, the pid, which is the process ID, and the chid, which is the 
channel ID. These three IDs, commonly referred to as 
"ND/PID/CHID," uniquely identify the server that the client wants to 
connect to. We'll ignore the index and .flags Uust set them to 0). 

So, let's assume that we want to connect to process ID 77, channel ID 
1 on our node. Here's the code sample to do that: 

int coid; 

coid = ConnectAttach (0, 77, 1, 0, 0); 

As you can see, by specifying and of zero, we're telling the kernel 
that we wish to make a connection on our node. 

nE How did I figure out I wanted to talk to process ID 77 and channel ID 
1? We'll see that shortly (see "Finding the server's ND/PID/CHID," 
below). 

At this point, I have a connection ID-a small integer that uniquely 
identifies a connection from my client to a specific channel on a 
particular server. 

I can use this connection ID when sending to the server as many times 
as I like. When I'm done with it, I can destroy it via: 

ConnectDetach (coid); 
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Sending messages 

So let's see how I actually use it. 

Message passing on the client is achieved using some variant of the 
MsgSend*() function family. We'll look at the simplest member, 
MsgSend(): 

#include <syslneutrino.h> 

int MsgSend (int coid, 
const void *smsg, 
int sbytes, 
void *nnsg, 
int rbytes) ; 

MsgSend()'s arguments are: 

• the connection ID of the target server (coid), 

• a pointer to the send message (smsg), 

• the size of the send message (sbytes), 

• a pointer to the reply message (rmsg), and 

• the size of the reply message (rbytes). 

It couldn't get any simpler than that! 

Let's send a simple message to process ID 77, channel ID 1: 

#include <syslneutrino.h> 

char *smsg = "This is the outgoing buffer"; 
char rmsg [200]; 
int coid; 

II establish a connection 
coid = ConnectAttach (0, 77, l, 0, 0); 
if (coid == -1) { 

£print£ (stderr, "Couldn't ConnectAttach to 0177111\n"); 
perror (NULL); 
exit (EXIT_FAILURE); 

} 
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II send the message 
if (MsgSend (coid, 

smsg, 
strlen (smsg) + 1, 
rmsg, 
sizeof (rmsg)) == -1) { 

Using message passing 

fprintf (stderr, "Error during MsgSend\n"); 
perror (NULL); 
exit (EXIT-FAILURE); 

} 

if (strlen (rmsg) > 0) { 
printf ("Process ID 77 returns \"%s\"\n", rmsg); 

} 

Let's assume that process ID 77 was an active server expecting that 
particular format of message on its channel ID 1. After the server 
received the message, it would process it and at some point reply with 
a result. At that point, the MsgSend() would return a 0 indicating that 
everything went well. If the server sends us any data in the reply, we'd 
print it with the last line of code (we're assuming we're getting 
NUL-terminated ASCII data back). 

Now that we've seen the client, let's look at the server. The client 
used ConnectAttach() to create a connection to a server, and then used 
MsgSend() for all its message passing. 

This implies that the server has to create a channel - this is the thing 
that the client connected to when it issued the ConnectAttach() 
function call. Once the channel has been created, the server usually 
leaves it up forever. 

The channel gets created via the Channel Create() function, and 
destroyed via the Channe!Destroy() function: 

#include <syslneutrino.h> 

int ChannelCreate (unsigned flags); 

int ChannelDestroy (int chid); 
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Message handling 

We'll come back to the flags argument later (in the "Channel flags" 
section, below). For now, let's just use a 0. Therefore, to create a 
channel, the server issues: 

int chid; 

chid= ChannelCreate (0); 

So we have a channel. At this point, clients could connect (via 
ConnectAttach( )) to this channel and start sending messages: 

chid = ChannelCreate () 

coid ConnectAttach () 

Relationship of server channel and client connection. 

As far as the message-passing aspects are concerned, the server 
handles message passing in two stages; a "receive" stage and a 
"reply" stage: 
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sts MsgSend (coid, ... ) 

Server 

rcvid = MsgReceive (chid, ... ) 
II processing happens 
MsgReply (rcvid, ... ) 

Relationship of client and server message-passing functions. 

We'lllook initially at two simple versions of these functions, 
MsgReceive() and MsgReply( ), and then later see some of the variants. 

#include <syslneutrino.h> 

int MsgReceive (int chid, 
void *rmsg, 
int rbytes, 
struct ....msg_info *info); 

int MsgReply (int rcvid, 
int status, 
const void *msg, 
int nbytes) ; 

Let's look at how the parameters relate: 

Clioo" ~ ~ M'lJSood (ooO, ,m,g, (',;"'~G) ' 

Server: rcv1d = MsgRece~ve (chid, rmsg, rbytes, NULL) MsgReply (rcvid, sts, smsg, sbytes) 

GD~------------------------~ 

Message data flow. 
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Server framework 

As you can see from the diagram, there are four things we need to talk 
about: 

1 The client issues a MsgSend() and specifies its transmit buffer 
(the smsg pointer and the sbytes length). This gets transferred 
into the buffer provided by the server's MsgReceive() function, 
at rmsg for rbytes in length. The client is now blocked. 

2 The server's MsgReceive() function unblocks, and returns with 
a rcvid, which the server will use later for the reply. At this 
point, the data is available for the server to use. 

3 The server has completed the processing of the message, and 
now uses the rcvid it got from the MsgReceive() by passing it to 
the MsgReply( ). Note that the MsgReply() function takes a 
buffer (smsg) with a defined size (sbytes) as the location of the 
data to transmit to the client. The data is now transferred by the 
kernel. 

4 Finally, the sts parameter is transferred by the kernel, and 
shows up as the return value from the client's MsgSend(). The 
client now unblocks. 

You may have noticed that there are two sizes for every buffer transfer 
(in the client send case, there's sbytes on the client side and rbytes on 
the server side; in the server reply case, there's sbytes on the server 
side and rbytes on the client side.) The two sets of sizes are present so 
that the programmers of each component can specify the sizes of their 
buffers. This is done for added safety. 

In our example, the MsgSend() buffer's size was the same as the 
message string's length. Let's look at the server and see how the size 
is used there. 

Here's the overall structure of a server: 

#include <sys/neutrino.h> 
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void 
server (void) 
{ 

} 

int rcvid; II indicates who we should reply to 
int chid; II the channel ID 
char message [512]; II big enough for our purposes 

II create a channel 
chid= ChannelCreate (0); 

II this is typical of a server: it runs forever 
while (1) { 

} 

II get the message, and print it 
rcvid = MsgReceive (chid, message, sizeof (message), 

NULL); 

print£ ("Got a message, rcvid is %X\n", rcvid); 
print£ ("Message was \"%s\".\n", message); 

II now, prepare the reply. We reuse "message" 
strcpy (message, "This is the reply"); 
MsgReply (rcvid, EOK, message, sizeof (message)); 

As you can see, MsgReceive() tells the kernel that it can handle 
messages up to sizeof {message) (or 512 bytes). Our sample 
client (above) sent only 28 bytes (the length of the string). The 
following diagram illustrates: 

Server 

28 
bytes 

484 
bytes 
not 

written 

Client 

I 28 I ~----11 bytes 

Transferring less data than expected. 
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The kernel transfers the minimum specified by both sizes. In our case, 
the kernel would transfer 28 bytes. The server would be unblocked 
and print out the client's message. The remaining 484 bytes (of the 
512 byte buffer) will remain unaffected. 

We run into the same situation again with MsgReply( ). The 
MsgReply() function says that it wants to transfer 512 bytes, but our 
client's MsgSend() function has specified that a maximum of 200 
bytes can be transferred. So the kernel once again transfers the 
minimum. In this case, the 200 bytes that the client can accept limits 
the transfer size. (One interesting aspect here is that once the server 
transfers the data, if the client doesn't receive all of it, as in our 
example, there's no way to get the data back- it's gone forever.) 

ll@f' Keep in mind that this "trimming" operation is normal and expected 
behavior. 

The 
send-hierarchy 

When we discuss message passing over a network, you'll see that 
there's a tiny "gotcha" with the amount of data transferred. We'll see 
this in "Networked message-passing differences," below. 

One thing that's perhaps not obvious in a message-passing 
environment is the need to follow a strict send-hierarchy. What this 
means is that two threads should never send messages to each other; 
rather, they should be organized such that each thread occupies a 
"level"; all sends go from one level to a higher level, never to the 
same or lower level. The problem with having two threads send 
messages to each other is that eventually you'll run into the problem 
of deadlock- both threads are waiting for each other to reply to their 
respective messages. Since the threads are blocked, they'll never get a 
chance to run and perform the reply, so you end up with two (or 
more!) hung threads. 

The way to assign the levels to the threads is to put the outermost 
clients at the highest level, and work down from there. For example, if 
you have a graphical user interface that relies on some database 
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server, and the database server in turn relies on the filesystem, and the 
filesystem in turn relies on a block filesystem driver, then you've got a 
natural hierarchy of different processes. The sends will flow from the 
outermost client (the graphical user interface) down to the lower 
servers; the replies will flow in the opposite direction. 

While this certainly works in the majority of cases, you will encounter 
situations where you need to "break" the send hierarchy. This is never 
done by simply violating the send hierarchy and sending a message 
"against the flow," but rather by using the MsgDeliverEvent() 
function, which we'll take a look at later. 

We haven't talked about the various parameters in the examples above 
so that we could focus just on the message passing. Now let's take a 
look. 

In the server example above, we saw that the server created just one 
channel. It could certainly have created more, but generally, servers 
don't do that. (The most obvious example of a server with two 
channels is the qnet native network manager- definitely an "odd" 
piece of software!) 

As it turns out, there really isn't much need to create multiple 
channels in the real world. The main purpose of a channel is to give 
the server a well-defined place to "listen" for messages, and to give 
the clients a well-defined place to send their messages (via a 
connection). About the only time that you'd have multiple channels in 
a server is if the server wanted to provide either different services, or 
different classes of services, depending on which channel the message 
arrived on. The second channel could be used, for example, as a place 
to drop wakeup pulses - this ensures that they're treated as a 
different "class" of service than messages arriving on the first 
channel. 

In a previous paragraph I had said that you could have a pool of 
threads running in a server, ready to accept messages from clients, 
and that it didn't really matter which thread got the request. This is 
another aspect of the channel abstraction. Under previous versions of 
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Who sent the message? 

the QNX family of operating systems (notably QNX 4), a client 
would target messages at a server identified by a node ID and process 
ID. Since QNX 4 is single-threaded, this means that there cannot be 
confusion about "to whom" the message is being sent. However, once 
you introduce threads into the picture, the design decision had to be 
made as to how you would address the threads (really, the "service 
providers"). Since threads are ephemeral, it really didn't make sense 
to have the client connect to a particular node ID, process ID, and 
thread ID. Also, what if that particular thread was busy? We'd have to 
provide some method to allow a client to select a "non-busy thread 
within a defined pool of service-providing threads." 

Well, that's exactly what a channel is. It's the "address" of a "pool of 
service-providing threads." The implication here is that a bunch of 
threads can issue a MsgReceive() function call on a particular channel, 
and block, with only one thread getting a message at a time. 

Often a server will need to know who sent it a message. There are a 
number of reasons for this: 

• accounting 

• access control 

• context association 

• class of service 

• etc. 

It would be cumbersome (and a security hole) to have the client 
provide this information with each and every message sent. Therefore, 
there's a structure filled in by the kernel whenever the MsgReceive() 
function unblocks because it got a message. This structure is of type 
struct ....msg_info, and contains the following: 

struct ~sg_info 
{ 

int nd; 
int srcnd; 
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}; 

pid_t pid; 
int32_t chid; 
int32_t scoid; 
int32_t coid; 
int32_t msglen; 
int32_t tid; 
intl6_t priority; 
intl6_t flags; 
int32_t srcmsglen; 
int32_t dstmsglen; 
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You pass it to the MsgReceive() function as the last argument. If you 
pass a NULL, then nothing happens. (The information can be 
retrieved later via the Msglnfo() call, so it's not gone forever!) 

Let's look at the fields: 

nd, srcnd, pid, and tid 

priority 

chid, coid 

scoid 

flags 

Node Descriptors, process ID, and thread ID of the 
client. (Note that nd is the receiving node's node 
descriptor for the transmitting node; srcnd is the 
transmitting node's node descriptor for the receiving 
node. There's a very good reason for this :-),which 
we'll see below in "Some notes on NDs"). 

The priority of the sending thread. 

Channel ID that the message was sent to, and the 
connection ID used. 

Server Connection ID. This is an internal identifier 
used by the kernel to route the message from the 
server back to the client. You don't need to know 
about it, except for the interesting fact that it will be a 
small integer that uniquely represents the client. 

Contains a variety of flag bits, _NTO_MLENDIAN_BIG, 

_NTO_MLENDIAN _DIFF, _NTO_MI_NET _CRED_DIRTY, 

and _NTQ_MLUNBLOCK_REQ. The 
_NTO_MLENDIAN_BIG and _NTQ_MLENDIAN_DIFF 
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The receive ID (a.k.a. the 
client cookie) 

msglen 

srcmsglen 

dstmsglen 

tell you about the endian-ness of the sending machine 
(in case the message came over the network from a 
machine with a different endian-ness), 
_NTO_MLNELCRED..DIRTY is used internally; we'll 
look at _NTO_MLUNBLOCK_REQ in the section 
"Using the _NTO_MLUNBLOCK_REQ", below. 

Number of bytes received. 

The length of the source message, in bytes, as sent by 
the client. This may be greater than the value in 
msglen, as would be the case when receiving less data 
than what was sent. Note that this member is valid 
only if _NTQ_CHF_SENDER..LEN was set in the flags 
argument to Channel Create() for the channel that the 
message was received on. 

The length of the client's reply buffer, in bytes. This 
field is only valid if the _NTQ_CHF _REPLY ..LEN flag is 
set in the argument to Channel Create() for the channel 
that the message was received on. 

In the code sample above, notice how we: 

rcvid; MsgReceive ( ... ); 

MsgReply (rcvid, ... ); 

This is a key snippet of code, because it illustrates the binding 
between receiving a message from a client, and then being able to 
(sometime later) reply to that particular client. The receive ID is an 
integer that acts as a "magic cookie" that you'll need to hold onto if 
you want to interact with the client later. What if you lose it? It's 
gone. The client will not unblock from the MsgSend() until you (the 
server) die, or if the client has a timeout on the message-passing call 
(and even then it's tricky; see the TimerTimeout() function in the C 
library reference, and the discussion about its use in the Clocks, 
Timers, and Getting A Kkk Every So Often chapter, under "Kernel 
timeouts"). 
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~ Don't depend on the value of the receive ID to have any particular 
meaning -it may change in future versions of the operating system. 
You can assume that it will be unique, in that you'll never have two 
outstanding clients identified by the same receive IDs (in that case, the 
kernel couldn't tell them apart either when you do the MsgReply()). 

Replying to the client 

Not replying to the client 

Also, note that except in one special case (the MsgDeliverEvent() 
function which we'll look at later), once you've done the MsgReply(), 
that particular receive ID ceases to have meaning. 

This brings us to the MsgReply() function. 

MsgReply() accepts a receive ID, a status, a message pointer, and a 
message size. We've just finished discussing the receive ID; it 
identifies who the reply message should be sent to. The status variable 
indicates the return status that should be passed to the client's 
MsgSend() function. Finally, the message pointer and size indicate the 
location and size of the optional reply message that should be sent. 

The MsgReply() function may appear to be very simple (and it is), but 
its applications require some examination. 

There's absolutely no requirement that you reply to a client before 
accepting new messages from other clients via MsgReceive()! This 
can be used in a number of different scenarios. 

In a typical device driver, a client may make a request that won't be 
serviced for a long time. For example, the client may ask an 
Analog-to-Digital Converter (ADC) device driver to "Go out and 
collect 45 seconds worth of samples." In the meantime, the ADC 
driver shouldn't just close up shop for 45 seconds! Other clients 
might wish to have requests serviced (for example, there might be 
multiple analog channels, or there might be status information that 
should be available immediately, etc.). 
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Replying with no data, or 
an errno 

Architecturally, the ADC driver will simply queue the receive ID that 
it got from the MsgReceive(), start up the 45-second accumulation 
process, and go off and handle other requests. When the 45 seconds 
are up and the samples have been accumulated, the ADC driver can 
find the receive ID associated with the request and then reply to the 
client. 

You'd also want to hold off replying to a client in the case of the 
reply-driven server/subserver model (where some of the "clients" are 
the subservers). Since the subservers are looking for work, you'd 
simply make a note of their receive IDs and store those away. When 
actual work arrived, then and only then would you reply to the 
subserver, thus indicating that it should do some work. 

When you finally reply to the client, there's no requirement that you 
transfer any data. This is used in two scenarios. 

You may choose to reply with no data if the sole purpose of the reply 
is to unblock the client. Let's say the client just wants to be blocked 
until some particular event occurrs, but it doesn't need to know which 
event. In this case, no data is required by the MsgReply() function; the 
receive ID is sufficient: 

MsgReply (rcvid, EOK, NULL, 0); 

This unblocks the client (but doesn't return any data) and returns the 
EOK "success" indication. 

As a slight modification of that, you may wish to return an error status 
to the client. In this case, you can't do that with MsgReply(), but 
instead must use MsgError(): 

MsgError (rcvid, EROFS); 

In the above example, the server detects that the client is attempting to 
write to a read-only filesystem, and, instead of returning any actual 
data, simply returns an errno of EROFS back to the client. 
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Alternatively (and we'll look at the calls shortly), you may have 
already transferred the data (via MsgWrite()), and there's no 
additional data to transfer. 

Why the two calls? They're subtly different. While both MsgError() 
and MsgReply() will unblock the client, MsgError() will not transfer 
any additional data, will cause the client's MsgSend() function to 
return -1, and will cause the client to have errno set to whatever was 
passed as the second argument to MsgError( ). 

On the other hand, MsgReply() could transfer data (as indicated by the 
3rd and 4th arguments), and will cause the client's MsgSend() 
function to return whatever was passed as the second argument to 
MsgReply(). MsgReply() has no effect on the client's errno. 

Generally, if you're returning only a pass/fail indication (and no data), 
you'd use MsgError(), whereas if you're returning data, you'd use 
MsgReply(). Traditionally, when you do return data, the second 
argument to MsgReply() will be a positive integer indicating the 
number of bytes being returned. 

You've noticed that in the ConnectAttach() function, we require a 
Node Descriptor (ND), a process ID (PID), and a channel ID (CHID) 
in order to be able to attach to a server. So far we haven't talked about 
how the client finds this ND/PID/CHID information. 

If one process creates the other, then it's easy- the process creation 
call returns with the process ID of the newly created process. Either 
the creating process can pass its own PID and CHID on the command 
line to the newly created process or the newly created process can 
issue the getppid() function call to get the PID of its parent and 
assume a "well-known" CHID. 

What if we have two perfect strangers? This would be the case if, for 
example, a third party created a server and an application that you 
wrote wanted to talk to that server. The real issue is, "How does a 
server advertise its location?" 
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There are many ways of doing this; we'lllook at four of them, in 
increasing order of programming "elegance": 

1 Open a well-known filename and store the ND/PID/CHID there. 
This is the traditional approach taken by UNIX-style servers, 
where they open a file (for example, /etc/httpd.pid), write 
their process ID there as an ASCII string, and expect that 
clients will open the file and fetch the process ID. 

2 Use global variables to advertise the ND/PID/CHID 
information. This is typically used in multi-threaded servers 
that need to send themselves messages, and is, by its nature, a 
very limited case. 

3 Use the QNX 4 compatibility functions (name_attach() and 
name __detach(), and then the name_open() and name_close() 

functions on the client side). This is recommended only for 
quickly porting QNX 4 programs to Neutrino; therefore we 
won't discuss this one in the text below. 

4 Take over a portion of the pathname space and become a 
resource manager. We'll talk about this when we look at 
resource managers in the Resource Managers chapter. 

The first approach is very simple, but can suffer from "pathname 
pollution," where the I etc directory has all kinds of*. pid files in it. 
Since files are persistent (meaning they survive after the creating 
process dies and the machine reboots), there's no obvious method of 
cleaning up these files, except perhaps to have a "grim reaper" task 
that runs around seeing if these things are still valid. 

There's another related problem. Since the process that created the 
file can die without removing the file, there's no way of knowing 
whether or not the process is still alive until you try to send a message 
to it. Worse yet, the ND/PID/CHID specified in the file may be so 
stale that it would have been reused by another program! The 
message that you send to that program will at best be rejected, and at 
worst may cause damage. So that approach is out. 
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The second approach, where we use global variables to advertise the 
ND/PID/CHID values, is not a general solution, as it relies on the 
client's being able to access the global variables. And since this 
requires shared memory, it certainly won't work across a network! 
This generally gets used in either tiny test case programs or in very 
special cases, but always in the context of a multithreaded program. 
Effectively, all that happens is that one thread in the program is the 
client, and another thread is the server. The server thread creates the 
channel and then places the channel ID into a global variable (the 
node ID and process ID are the same for all threads in the process, so 
they don't need to be advertised.) The client thread then picks up the 
global channel ID and performs the ConnectAttach() to it. 

The third approach, where we use the name_attach() and 
name_detach() functions, should be used only for quickly porting over 
QNX 4 programs. 

The last approach, where the server becomes a resource manager, is 
definitely the cleanest and is the recommended general-purpose 
solution. The mechanics of "how" will become clear in the Resource 
Managers chapter, but for now, all you need to know is that the server 
registers a particular pathname as its "domain of authority," and a 
client performs a simple open() of that pathname. 

ltW I can't emphasize this enough: 

POSIX file descriptors are implemented using connection IDs; that is, 
a file descriptor is a connection ID! The beauty of this scheme is that 
since the file descriptor that's returned from the open() is the 
connection ID, no further work is required on the client's end to be 
able to use that particular connection. For example, when the client 
calls read() later, passing it the file descriptor, this translates with very 
little overhead into a MsgSend() function. 
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What about priorities? 

Reading and writing data 

What if a low-priority process and a high-priority process send a 
message to a server at the same time? 

Messages are always delivered in priority order. 

If two processes send a message "simultaneously," the entire message 
from the higher-priority process is delivered to the server first. 

If both processes are at the same priority, then the messages will be 
delivered in time order (since there's no such thing as absolutely 
simultaneous on a single-processor machine - even on an SMP box 
there will be some ordering as the CPUs arbitrate kernel access 
among themselves). 

We'll come back to some of the other subtleties introduced by this 
question when we look at priority inversions later in this chapter. 

So far you've seen the basic message-passing primitives. As I 
mentioned earlier, these are all that you need. However, there are a 
few extra functions that make life much easier. 

Let's consider an example using a client and server where we might 
need other functions. 

The client issues a MsgSend() to transfer some data to the server. 
After the client issues the MsgSend() it blocks; it's now waiting for 
the server to reply. 

An interesting thing happens on the server side. The server has called 
MsgReceive() to receive the message from the client. Depending on 
the design that you choose for your messages, the server may or may 
not know how big the client's message is. Why on earth would the 
server not know how big the message is? Consider the filesystem 
example that we've been using. Suppose the client does: 

write (fd, buf, 16); 
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This works as expected if the server does a MsgReceive() and 
specifies a buffer size of, say, 1024 bytes. Since our client sent only a 
tiny message (28 bytes), we have no problems. 

However, what if the client sends something bigger than I 024 bytes, 
say 1 megabyte? 

write (fd, buf, 1000000); 

How is the server going to gracefully handle this? We could, 
arbitrarily, say that the client isn't allowed to write more than n bytes. 
Then, in the client-side C library code for write(), we could look at 
this requirement and split up the write request into several requests of 
n bytes each. This is awkward. 

The other problem with this example would be, "How big should n 
be?" 

You can see that this approach has major disadvantages: 

• All functions that use message transfer with a limited size will 
have to be modified in the C library so that the function packetizes 
the requests. This in itself can be a fair amount of work. Also, it 
can have unexpected side effects for multi-threaded functions
what if the first part of the message from one thread gets sent, and 
then another thread in the client preempts the current thread and 
sends its own message. Where does that leave the original thread? 

• All servers must now be prepared to handle the largest possible 
message size that may arrive. This means that all servers will have 
to have a data area that's big, or the library will have to break up 
big requests into many smaller ones, thereby impacting speed. 

Luckily, this problem has a fairly simple workaround that also gives 
us some advantages. 

Two functions, MsgRead() and MsgWrite(), are especially useful here. 
The important fact to keep in mind is that the client is blocked. This 
means that the client isn't going to go and change data structures 
while the server is trying to examine them. 
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ll@f In a multi-threaded client, the potential exists for another thread to 
mess around with the data area of a client thread that's blocked on a 
server. This is considered a bug (bad design)- the server thread 
assumes that it has exclusive access to a client's data area until the 
server thread unblocks the client. 

The MsgRead() function looks like this: 

#include <sys/neutrino.h> 

in t MsgRead (in t rcvid, 
void *msg, 
int nbytes, 
int offset) ; 

MsgRead() lets your server read data from the blocked client's address 
space, starting offset bytes from the beginning of the client-specified 
"send" buffer, into the buffer specified by msg for nbytes. The server 
doesn't block, and the client doesn't unblock. MsgRead() returns the 
number of bytes it actually read, or -1 if there was an error. 

So let's think about how we'd use this in our write() example. The C 
Library write() function constructs a message with a header that it 
sends to the filesystem server, fs-qnx4. The server receives a small 
portion of the message via MsgReceive( ), looks at it, and decides 
where it's going to put the rest of the message. The f s-qnx4 server 
may decide that the best place to put the data is into some cache 
buffers it's already allocated. 

Let's track an example: 
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header 

buf _____. 

> 
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•••••••••• 0 

Actual data sent 
to the Filesystem 
Manager, fs-qnx4 

The f s-qnx4 message example, showing contiguous data view. 

So, the client has decided to send 4k to the filesystem. (Notice how 
the C Library stuck a tiny header in front of the data so that the 
filesystem could tell just what kind of request it actually was- we'll 
come back to this when we look at multi-part messages, and in even 
more detail when we look at resource managers.) The filesystem 
reads just enough data (the header) to figure out what kind of a 
message it is: 

II part of the headers, fictionalized for example purposes 
struct _io_write { 

} ; 

uintl6_t 
uintl6_t 
int32_t 
uint32_t 

type; 
combine_len; 
nbytes; 
xtype; 

typedef union { 
uintl6_t type; 
struct _io_read io_read; 
struct _io_write io_write; 

} header_t; 

Chapter 2 • Message Passing 133 



Using message passing 

header_t header; II declare the header 

rcvid = MsgReceive (chid, &header, sizeof (header), NULL); 

switch (header.type) { 

case _ro_WRITE: 
number_of-bytes header.io_write.nbytes; 

At this point, fs-qnx4 knows that 4k is sitting in the client's address 
space (because the message told it in the nbytes member of the 
structure) and that it should be transferred to a cache buffer. The 
fs-qnx4 server could issue: 

MsgRead (rcvid, cache-buffer [index] .data, 
cache-buffer [index] .size, sizeof (header.io_write)); 

Notice that the message transfer has specified an offset of sizeof 

(header. io_wri te) in order to skip the write header that was 
added by the client's C library. We're assuming here that 
cache-.buffer [index] . size is actually 4096 (or more) bytes. 

Similarly, for writing data to the client's address space, we have: 

#include <syslneutrino.h> 

int MsgWrite (int rcvid, 
canst void *msg, 
int nbytes, 
int offset) ; 

MsgWrite() lets your server write data to the client's address space, 
starting offset bytes from the beginning of the client-specified 
"receive" buffer. This function is most useful in cases where the 
server has limited space but the client wishes to get a lot of 
information from the server. 

For example, with a data acquisition driver, the client may specify a 
4-megabyte data area and tell the driver to grab 4 megabytes of data. 
The driver really shouldn't need to have a big area like this lying 
around just in case someone asks for a huge data transfer. 
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The driver might have a 128k area for DMA data transfers, and then 
message-pass it piecemeal into the client's address space using 
MsgWrite() (incrementing the offset by 128k each time, of course). 
Then, when the last piece of data has been written, the driver will 
MsgReply() to the client. 

128k chunk 

128k chunk 128k chunk 

128k chunk 

Client's address space Driver's address space 

Transferring several chunks with MsgWrite(). 

Note that Msg Write() lets you write the data components at various 
places, and then either just wake up the client using MsgReply( ): 

MsgReply (rcvid, EOK, NULL, 0); 

or wake up the client after writing a header at the start of the client's 
buffer: 

MsgReply (rcvid, EOK, &header, sizeof (header)); 

This is a fairly elegant trick for writing unknown quantities of data, 
where you know how much data you wrote only when you're done 
writing it. If you're using this method of writing the header after the 
data's been transferred, you must remember to leave room for the 
header at the beginning of the client's data area! 
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Multipart 
messages 

Until now, we've shown only message transfers happening from one 
buffer in the client's address space into another buffer in the server's 
address space. (And one buffer in the server's space into another 
buffer in the client's space during the reply.) 

While this approach is good enough for most applications, it can lead 
to inefficiencies. Recall that our write() C library code took the buffer 
that you passed to it, and stuck a small header on the front of it. Using 
what we've learned so far, you'd expect that the C library would 
implement write() something like this (this isn't the real source): 

ssize_t write (int fd, canst void *buf, size_t nbytes) 
{ 

} 

char *newbuf; 
io_write_t *wptr; 
int nwritten; 

newbuf malloc (nbytes + sizeof (io_write_t)); 

II fill in the write-header at the beginning 
wptr = (io_write_t *) newbuf; 
wptr -> type = ...IO ...WRITE; 
wptr -> nbytes = nbytes; 

II store the actual data from the client 
memcpy (newbuf + sizeof (io_write_t), buf, nbytes); 

II send the message to the server 
nwritten = MsgSend (fd, 

free (newbuf); 
return (nwritten); 

newbuf, 
nbytes + sizeof (io_write_t), 
newbuf, 
sizeof (io_write_t)); 

See what happened? A few bad things: 

• The write() now has to be able to malloc() a buffer big enough for 
both the client data (which can be fairly big) and the header. The 
size of the header isn't the issue- in this case, it was 12 bytes. 

• We had to copy the data twice: once via the memcpy( ), and then 
again during the message transfer. 
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• We had to establish a pointer to the io_wri te_t type and point it 
to the beginning of the buffer, rather than access it natively (this is 
a minor annoyance). 

Since the kernel is going to copy the data anyway, it would be nice if 
we could tell it that one part of the data (the header) is located at a 
certain address, and that the other part (the data itself) is located 
somewhere else, without the need for us to manually assemble the 
buffers and to copy the data. 

As luck would have it, Neutrino implements a mechanism that lets us 
do just that! The mechanism is something called an IOV, standing for 
"Input/Output Vector." 

Let's look at some code first, then we'll discuss what happens: 

#include <Syslneutrino.h> 

ssize_t write (int fd, const void *buf, size_t nbytes) 
{ 

} 

io_write_t whdr; 
iov_t iov [2]; 

II set up the IOV to point to both parts: 
SETIOV (iov + 0, &whdr, sizeof (whdr)); 
SETIOV (iov + 1, buf, nbytes); 

II fill in the io_write_t at the beginning 
whdr.type = _IO_WRITE; 
whdr.nbytes = nbytes; 

II send the message to the server 
return (MsgSendv (coid, iov, 2, iov, 1)); 

First of all, notice there's no malloc() and no memcpy( ). Next, notice 
the use of the iov _t type. This is a structure that contains an address 
and length pair, and we've allocated two of them (named iov). 

The iov _t type definition is automatically included by 
<sys/neutrino. h>, and is defined as: 

Chapter 2 • Message Passing 137 



Using message passing 

typedef struct iovec 
{ 

void *iov_base; 
size_t iov_/en; 

} iov_t; 

Given this structure, we fill the address and length pairs with the write 
header (for the first part) and the data from the client (in the second 
part). There's a convenience macro called SETIOV() that does the 
assignments for us. It's formally defined as: 

#include <sys/neutrino.h> 

#define SETIOV(_iov, _addr, _len) \ 
( ( _iov) ->iov ..base = (void *) ( ...addr) , \ 
(_iov)->iov..J.en = (..J.en)) 

SETIOV() accepts an iov _t, and the address and length data to be 
stuffed into the IOV. 

Also notice that since we're creating an IOV to point to the header, we 
can allocate the header on the stack without using malloc( ). This can 
be a blessing and a curse- it's a blessing when the header is quite 
small, because you avoid the headaches of dynamic memory 
allocation, but it can be a curse when the header is huge, because it 
can consume a fair chunk of stack space. Generally, the headers are 
quite small. 

In any event, the important work is done by MsgSendv(), which takes 
almost the same arguments as the MsgSend() function that we used in 
the previous example: 

#include <sys/neutrino.h> 

int MsgSendv (int coid, 
const iov_t *siov, 
int sparts, 
const iov_t *riov, 
in t rparts) ; 

Let's examine the arguments: 
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The connection ID that we're sending to, just as 
with MsgSend(). 

The number of send and receive parts specified by 
the iov _t parameters. In our example, we set 
sparts to 2 indicating that we're sending a 2-part 
message, and rparts to 1 indicating that we're 
receiving a 1-part reply. 

The iov _t arrays indicate the address and length 
pairs that we wish to send. In the above example, 
we set up the 2 part siov to point to the header and 
the client data, and the 1 part riov to point to just 
the header. 

This is how the kernel views the data: 

header 

data chunk 

Client's address space 

header and 
data chunk 

Kernel copying data 

How the kernel sees a multipart message. 

header 

data chunk 

Driver's address space 

The kernel just copies the data seamlessly from each part of the IOV 
in the client's space into the server's space (and back, for the reply). 
Effectively, the kernel is performing a gather-scatter operation. 

A few points to keep in mind: 

• The number of parts is "limited" to 512k; however, our example of 
2 is typical. 
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• The kernel simply copies the data specified in one IOV from one 
address space into another. 

• The source and the target IOVs don't have to be identical. 

Why is the last point so important? To answer that, let's take a look at 
the big picture. On the client side, let's say we issued: 

write (fd, buf, 12000); 

which generated a two-part IOV of: 

• header ( 12 bytes) 

• data ( 12000 bytes) 

On the server side, (let's say it's the filesystem, fs-qnx4), we have a 
number of 4k cache blocks, and we'd like to efficiently receive the 
message directly into the cache blocks. Ideally, we'd like to write 
some code like this: 

II set up the IOV structure to receive into: 
SETIOV (iov + 0, &header, sizeof (header.io_write)); 
SETIOV (iov + 1, &cache-buffer [37], 4096); 
SETIOV (iov + 2, &cache-buffer [16], 4096); 
SETIOV (iov + 3, &cache-buffer [22], 4096); 
rcvid = MsgReceivev (chid, iov, 4, NULL); 

This code does pretty much what you'd expect: it sets up a 4-part IOV 
structure, sets the first part of the structure to point to the header, and 
the next three parts to point to cache blocks 37, 16, and 22. (These 
numbers represent cache blocks that just happened to be available at 
that particular time.) Here's a graphical representation: 
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_I 

I header (12) header (12) 

l 

J cache buffer [37] I I 
header and 
data chunk _I cache buffer [16] I data chunk I (12000) 

_I cache buffer [22] 1 I 

Client's address space Kernel copying data Driver's address space 

Converting contiguous data to separate buffers. 

Then the MsgReceivev() function is called, indicating that we'll 
receive a message from the specified channel (the chid parameter) and 
that we're supplying a 4-part IOV structure. This also shows the IOV 
structure itself. 

(Apart from its IOV functionality, MsgReceivev() operates just like 
MsgReceive( ).) 

Oops! We made the same mistake as we did before, when we 
introduced the MsgReceive() function. How do we know what kind 
of message we're receiving, and how much data is associated with it, 
until we actually receive the message? 

We can solve this the same way as before: 

rcvid = MsgReceive (chid, &header, sizeof (header), NULL); 
switch (header.message_type) { 

case _IO-WRITE: 
number_of_bytes = header.io_write.nbytes; 
II allocate I find cache buffer entries 
II fill 3-part IOV with cache buffers 
MsgReadv (rcvid, iov, 3, sizeof (header.io_write)); 
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What about the other 
versions? 

This does the initial MsgReceive() (note that we didn't use the IOV 
form for this- there's really no need to do that with a one-part 
message), figures out what kind of message it is, and then continues 
reading the data out of the client's address space (starting at offset 
sizeof (header. io_wri te)) into the cache buffers specified by 
the 3-part IOV. 

Notice that we switched from using a 4-part IOV (in the first example) 
to a 3-part IOV. That's because in the first example, the first part of the 
4-part IOV was the header, which we read directly using 
MsgReceive( ), and the last three parts of the 4-part IOV are the same 
as the 3-part IOV- they specify where we'd like the data to go. 

You can imagine how we'd perform the reply for a read request: 

1 Find the cache entries that correspond to the requested data. 

2 Fill an IOV structure with those entries. 

3 Use MsgWritev() (or MsgReplyv()) to transfer the data to the 
client. 

Note that if the data doesn't start right at the beginning of a cache 
block (or other data structure), this isn't a problem. Simply offset the 
first IOV to point to where the data does start, and modify the size. 

All the message-passing functions except the MsgSend*() family have 
the same general form: if the function has a "v" at the end of it, it 
takes an IOV and a number-of-parts; otherwise, it takes a pointer and 
a length. 

The MsgSend*() family has four major variations in terms of the 
source and destinations for the message buffers, combined with two 
variations of the kernel call itself. 

Look at the following table: 
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Function Send buffer Receive buffer 

MsgSend() linear linear 

MsgSendnc() linear linear 

MsgSendsv() linear IOV 

MsgSendsvnc() linear IOV 

MsgSendvs() IOV linear 

MsgSendvsnc() IOV linear 

MsgSendv() IOV IOV 

MsgSendvnc() IOV IOV 

By "linear," I mean a single buffer of type void * is passed, along 
with its length. The easy way to remember this is that the "v" stands 
for "vector," and is in the same place as the appropriate parameter
first or second, referring to "send" or "receive," respectively. 

Hmmm ... looks like the MsgSendsv() and MsgSendsvnc() functions 
are identical, doesn't it? Well, yes, as far as their parameters go, they 
indeed are. The difference lies in whether or not they are cancellation 
points. The "nc" versions are not cancellation points, whereas the 
non-"nc" versions are. (For more information about cancellation 
points and cancelability in general, please consult the C Library 
Reference, under pthread_cancel().) 

You've probably already suspected that all the variants of the 
MsgRead(), MsgReceive(), MsgSend(), and MsgWrite() functions are 
closely related. (The only exception is MsgReceivePulse()- we'll 
look at this one shortly.) 

Which ones should you use? Well, that's a bit of a philosophical 
debate. My own personal preference is to mix and match. 

If I'm sending or receiving only one-part messages, why bother with 
the complexity of setting up IOVs? The tiny amount of CPU overhead 
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in setting them up is basically the same regardless of whether you set 
it up yourself or let the kernel/library do it. The single-part message 
approach saves the kernel from having to do address space 
manipulations and is a little bit faster. 

Should you use the lOY functions? Absolutely! Use them any time 
you find yourself dealing with multipart messages. Never copy the 
data when you can use a multipart message transfer with only a few 
lines of code. This keeps the system screaming along by minimizing 
the number of times data gets copied around the system; passing the 
pointers is much faster than copying the data into a new buffer. 

Pulses 

All the messaging we've talked about so far blocks the client. It's nap 
time for the client as soon as it calls MsgSend( ). The client sleeps 
until the server gets around to replying. 

However, there are instances where the sender of a message can't 
afford to block. We'll look at some examples in the Interrupts and 
Clocks, Timers, and Getting a Kick Every So Often chapters, but for 
now we should understand the concept. 

The mechanism that implements a non-blocking send is called a 
pulse. A pulse is a tiny message that: 

• can carry 40 bits of payload (an 8-bit code and 32 bits of data) 

• is non-blocking for the sender 

• can be received just like any other message 

• is queued if the receiver isn't blocked waiting for it. 
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What's in a pulse? 

Pulses 

Receiving a pulse is very simple: a tiny, well-defined message is 
presented to the MsgReceive( ), as if a thread had sent a normal 
message. The only difference is that you can't MsgReply() to this 
message- after all, the whole idea of a pulse is that it's 
asynchronous. In this section, we'll take a look at another function, 
MsgReceivePulse(), that's useful for dealing with pulses. 

The only "funny" thing about a pulse is that the receive ID that comes 
back from the MsgReceive() function is zero. That's your indication 
that this is a pulse, rather than a regular message from a client. You'll 
often see code in servers that looks like this: 

#include <syslneutrino.h> 

rcvid = MsgReceive (chid, .•• ); 
if (rcvid == 0) { II it's a pulse 

II determine the type of pulse 

II handle it 
} else { II it's a regular message 

II determine the type of message 

II handle it 
} 

Okay, so you receive this message with a receive ID of zero. What 
does it actually look like? From the <sys/neutrino.h> header file: 

struct _pulse { 
_uintl6 
_uintl6 
_int8 
_uinta 

}; 

union sigval 
_int32 

type; 
subtype; 
code; 
zero [3]; 

value; 
scoid; 

Both the type and subtype members are zero (a further indication that 
this is a pulse). The code and value members are set to whatever the 
sender of the pulse determined. Generally, the code will be an 
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indication of why the pulse was sent; the value will be a 32-bit data 
value associated with the pulse. Those two fields are where the "40 
bits" of content comes from; the other fields aren't user adjustable. 

The kernel reserves negative values of code, leaving 127 values for 
programmers to use as they see fit. 

The value member is actually a union: 

union sigval { 

} ; 

int 
void 

siva/_illf; 
* siva/_.ptr; 

Therefore (expanding on the server example above), you often see 
code like: 

#include <syslneutrino.h> 

rcvid = MsgReceive {chid, 

if {rcvid == 0) { II it's a pulse 

II determine the type of pulse 
switch {msg.pulse.code) { 

case MY_PULSE-TIMER: 
II One of your timers went off, do something 
I I about it ... 

break; 

case MY_PULSE-HWINT: 
II A hardware interrupt service routine sent 
II you a pulse. There's a value in the "value" 
II member that you need to examine: 

val = msg.pulse.value.sival_int; 

II Do something about it ... 

break; 

case _PULSE_CODE_UNBLOCK: 
II A pulse from the kernel, indicating a client 
II unblock was received, do something about it ... 
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break; 

I I etc .•• 

} else II it's a regular message 

} 

II determine the type of message 
II handle it 

Pulses 

This code assumes, of course, that you've set up your msg structure to 
contain a struct _pulse pulse; member, and that the manifest 
constants MY YULSE_TIMER and MY YULSE_HWINT are defined. 
The pulse code YULSKCODKUNBLOCK is one of those 
negative-numbered kernel pulses mentioned above. You can find a 
complete list of them in <sys/neutrino. h> along with a brief 
description of the value field. 

The MsgReceive() and MsgReceivev() functions will receive either a 
"regular" message or a pulse. There may be situations where you 
want to receive only pulses. The best example of this is in a server 
where you've received a request from a client to do something, but 
can't complete the request just yet (perhaps you have to do a long 
hardware operation). In such a design, you'd generally set up the 
hardware (or a timer, or whatever) to send you a pulse whenever a 
significant event occurs. 

If you write your server using the classic "wait in an infinite loop for 
messages" design, you might run into a situation where one client 
sends you a request, and then, while you're waiting for the pulse to 
come in (to signal completion of the request), another client sends 
you another request. Generally, this is exactly what you want- after 
all, you want to be able to service multiple clients at the same time. 
However, there might be good reasons why this is not acceptable
servicing a client might be so resource-intensive that you want to limit 
the number of clients. 
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In that case, you now need to be able to "selectively" receive only a 
pulse, and not a regular message. This is where MsgReceivePulse() 
comes into play: 

#include <sys/neutrino.h> 

int MsgReceivePulse (int chid, 
void *rmsg, 
int rbytes, 
struct ....msg_info *info); 

As you can see, you use the same parameters as MsgReceive( ); the 
channel 10, the buffer (and its size), as well as the info parameter. (We 
discussed the info parameter above, in "Who sent the message?".) 
Note that the info parameter is not used in the case of a pulse; you 
might ask why it's present in the parameter list. Simple answer: it was 
easier to do it that way in the implementation. Just pass a NULL! 

The MsgReceivePulse() function will receive nothing but pulses. So, 
if you had a channel with a number of threads blocked on it via 
MsgReceivePulse(), (and no threads blocked on it via MsgReceive()), 
and a client attempted to send your server a message, the client would 
remain SEND-blocked until a thread issued the MsgReceive() call. 
Pulses would be transfered via the MsgReceivePulse() functions in the 
meantime. 

The only thing you can guarantee if you mix both MsgReceivePulse() 
and MsgReceive() is that the MsgReceivePulse() will get pulses only. 
The MsgReceive() could get pulses or messages! This is because, 
generally, the use of the MsgReceivePulse() function is reserved for 
the cases where you want to exclude regular message delivery to the 
server. 

This does introduce a bit of confusion. Since the MsgReceive() 
function can receive both a message and a pulse, but the 
MsgReceivePulse() function can receive only a pulse, how do you 
deal with a server that makes use of both functions? Generally, the 
answer here is that you'd have a pool of threads that are performing 
MsgReceive( ). This pool of threads (one or more threads; the number 
depends on how many clients you're prepared to service concurrently) 

148 Chapter 2 • Message Passing 



The 
MsgDeliverEvent() 

function 

Pulses 

is responsible for handling client calls (requests for service). Since 
you're trying to control the number of "service-providing threads," 
and since some of these threads may need to block, waiting for a 
pulse to arrive (for example, from some hardware or from another 
thread), you'd typically block the service-providing thread using 
MsgReceivePulse( ). This ensures that a client request won't "sneak 
in" while you're waiting for the pulse (since MsgReceivePulse() will 
receive only a pulse). 

As mentioned above in "The send-hierarchy," there are cases when 
you need to break the natural flow of sends. 

Such a case might occur if you had a client that sent a message to the 
server, the result might not be available for a while, and the client 
didn't want to block. Of course, you could also partly solve this with 
threads, by having the client simply "use up" a thread on the blocking 
server call, but this may not scale well for larger systems (where you'd 
be using up lots of threads to wait for many different servers). Let's 
say you didn't want to use a thread, but instead wanted the server to 
reply immediately to the client, "I'll get around to your request 
shortly." At this point, since the server replied, the client is now free 
to continue processing. Once the server has completed whatever task 
the client gave it, the server now needs some way to tell the client, 
"Hey, wakeup, I'm done." Obviously, as we saw in the send-hierarchy 
discussion above, you can't have the server send a message to the 
client, because this might cause deadlock if the client sent a message 
to the server at that exact same instant. So, how does the server 
"send" a message to a client without violating the send hierarchy? 

It's actually a multi-step operation. Here's how it works: 

1 The client creates a struct sigevent structure, and fills it 
in. 

2 The client sends a message to the server, effectively stating, 
"Perform this specific task for me, reply right away, and by the 
way, here's a struct sigevent that you should use to notify 
me when the work is completed." 
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3 The server receives the message (which includes the struet 

sigevent), stores the struet sigevent and the receive ID 
away, and replies immediately to the client. 

4 The client is now running, as is the server. 

5 When the server completes the work, the server uses 
MsgDeliverEvent() to inform the client that the work is now 
complete. 

We'll take a look in detail at the struet sigevent in the Clocks, 
Timers, and Getting a Kick Every So Often chapter, under "How to 
fill in the s true t s igeven t." For now, just think of the s true t 

sigevent as a "black box" that somehow contains the event that the 
server uses to notify the client. 

Since the server stored the struet sigevent and the receive ID 
from the client, the server can now call MsgDeliverEvent() to deliver 
the event, as selected by the client, to the client: 

int 
MsgDeliverEvent (int rcvid, 

const struct sigevent *event) ; 

Notice that the MsgDeliverEvent() function takes two parameters, the 
receive ID (in rcvid) and the event to deliver in event. The server does 
not modify or examine the event in any way! This point is important, 
because it allows the server to deliver whatever kind of event the 
client chose, without any specific processing on the server's part. 
(The server can, however, verify that the event is valid by using the 
MsgVerifyEvent() function.) 

The rcvid is a receive ID that the server got from the client. Note that 
this is indeed a special case. Generally, after the server has replied to 
a client, the receive ID ceases to have any meaning (the reasoning 
being that the client is unblocked, and the server couldn't unblock it 
again, or read or write data from/to the client, etc.). But in this case, 
the receive ID contains just enough information for the kernel to be 
able to decide which client the event should be delivered to. When the 
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server calls the MsgDeliverEvent() function, the server doesn't block 
- this is a non-blocking call for the server. The client has the event 
delivered to it (by the kernel), and may then perform whatever actions 
are appropriate. 

When we introduced the server (in "The server"), we mentioned that 
the ChannelCreate() function takes ajlags parameter and that we'd 
just leave it as zero. 

Now it's time to explain the .flags. We'll examine only a few of the 
possible flags values: 

_NTO_CHF _FIXED_PRIORITY 

The receiving thread will not change priority based on the 
priority of the sender. (We talk more about priority issues in the 
"Priority inheritance" section, below). Ordinarily (i.e., if you 
don't specify this flag), the receiving thread's priority is 
changed to that of the sender. 

_NTO_CHF _UNBLOCK 

The kernel delivers a pulse whenever a client thread attempts to 
unblock. The server must reply to the client in order to allow 
the client to unblock. We'll discuss this one below, because it 
has some very interesting consequences, for both the client and 
the server. 

_NTO_CHF _THREAD _DEATH 

The kernel delivers a pulse whenever a thread blocked on this 
channel dies. This is useful for servers that want to maintain a 
fixed "pool of threads" available to service requests at all times. 

_NTO _CHF _DISCONNECT 

The kernel delivers a pulse whenever all connections from a 
single client have been disconnected from the server. 
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_NTO_CHF _UNBLOCK 

_NTO_CHF _SENDER__LEN 

The kernel delivers the client's message size as part of the 
information given to the server (the srcmsglen member of the 
struct ....msg_info structure). 

_NTO_CHF _REPLY _LEN 

The kernel delivers the client's reply message buffer size as part 
of the information given to the server (the dstmsglen member of 
the struct ....msg_info structure). 

_NTO_CHF _CQID_DISCONNECT 

The kernel delivers a pulse whenever any connection owned by 
this process is terminated due to the channel on the other end 
going away. 

Let's look at the _NTO_CHF _UNBLOCK flag; it has a few interesting 
wrinkles for both the client and the server. 

Normally (i.e., where the server does not specify the 
_NTO_CHF_UNBLOCK flag) when a client wishes to unblock from a 
MsgSend() (and related MsgSendv(), MsgSendvs(), etc. family of 
functions), the client simply unblocks. The client could wish to 
unblock due to receiving a signal or a kernel timeout (see the 
TimerTimeout() function in the C Library Reference, and the Clocks, 
Timers, and Getting a Kick Every So Often chapter). The unfortunate 
aspect to this is that the server has no idea that the client has 
unblocked and is no longer waiting for a reply. Note that it isn't 
possible to write a reliable server with this flag off, except in very 
special situations which require cooperation between the server and 
all its clients. 

Let's assume that you have a server with multiple threads, all blocked 
on the server's MsgReceive() function. The client sends a message to 
the server, and one of the server's threads receives it. At this point, the 
client is blocked, and a thread in the server is actively processing the 
request. Now, before the server thread has a chance to reply to the 
client, the client unblocks from the MsgSend() (let's assume it was 
because of a signal). 
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Remember, a server thread is still processing the request on behalf of 
the client. But since the client is now unblocked (the client's 
MsgSend() would have returned with EINTR), the client is free to send 
another request to the server. Thanks to the architecture of Neutrino 
servers, another thread would receive another message from the client, 
with the exact same receive ID! The server has no way to tell these 
two requests apart! When the first thread completes and replies to the 
client, it's really replying to the second message that the client sent, 
not the first message (as the thread actually believes that it's doing). 
So, the server's first thread replies to the client's second message. 

This is bad enough; but let's take this one step further. Now the 
server's second thread completes the request and tries to reply to the 
client. But since the server's first thread already replied to the client, 
the client is now unblocked and the server's second thread gets an 
error from its reply. 

This problem is limited to multithreaded servers, because in a 
singlethreaded server, the server thread would still be busy working 
on the client's first request. This means that even though the client is 
now unblocked and sends again to the server, the client would now go 
into the SEND-blocked state (instead of the REPLY-blocked state), 
allowing the server to finish the processing, reply to the client (which 
would result in an error, because the client isn't REPLY-blocked any 
more), and then the server would receive the second message from the 
client. The real problem here is that the server is performing useless 
processing on behalf of the client (the client's first request). The 
processing is useless because the client is no longer waiting for the 
results of that work. 

The solution (in the multithreaded server case) is to have the server 
specify the _NTQ_CHF _UNBLOCK flag to its ChannelCreate() call. 
This says to the kernel, "Tell me when a client tries to unblock from 
me (by sending me a pulse), but don't let the client unblock! I'll 
unblock the client myself." 
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Action 

client sends to server 

client gets hit with signal 

The key thing to keep in mind is that this server flag changes the 
behaviour of the client by not allowing the client to unblock until the 
server says it's okay to do so. 
In a single-threaded server, the following happens: 

Client Server 

blocked processing 

blocked processing 

kernel sends pulse to server blocked processing (1st message) 

server completes 1st request, unblocked with processing (pulse) 
replies to client correct data 

This didn't help the client unblock when it should have, but it did 
ensure that the server didn't get confused. In this kind of example, the 
server would most likely simply ignore the pulse that it got from the 
kernel. This is okay to do - the assumption being made here is that 
it's safe to let the client block until the server is ready with the data. 

If you want the server to act on the pulse that the kernel sent, there are 
two ways to do this: 

• Create another thread in the server that listens for messages 
(specifically, listening for the pulse from the kernel). This second 
thread would be responsible for canceling the operation that's 
under way in the first thread. One of the two threads would reply 
to the client. 

• Don't do the client's work in the thread itself, but rather queue up 
the work. This is typically done in applications where the server is 
going to store the client's work on a queue and the server is event 
driven. Usually, one of the messages arriving at the server indicates 
that the client's work is now complete, and that the server should 
reply. In this case, when the kernel pulse arrives, the server cancels 
the work being performed on behalf of the client and replies. 
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Which method you choose depends on the type of work the server 
does. In the first case, the server is actively performing the work on 
behalf of the client, so you really don't have a choice- you'll have 
to have a second thread that listens for unblock-pulses from the kernel 
(or you could poll periodically within the thread to see if a pulse has 
arrived, but polling is generally discouraged). 

In the second case, the server has something else doing the work -
perhaps a piece of hardware has been commanded to "go and collect 
data." In that case, the server's thread will be blocked on the 
MsgReceive() function anyway, waiting for an indication from the 
hardware that the command has completed. 

In either case, the server must reply to the client, otherwise the client 
will remain blocked. 

Synchronization problem 

Even if you use the _NTO_CHF _UNBLOCK flag as described above, 
there's still one more synchronization problem to deal with. Suppose 
that you have multiple server threads blocked on the MsgReceive() 
function, waiting for messages or pulses, and the client sends you a 
message. One thread goes off and begins the client's work. While 
that's happening, the client wishes to unblock, so the kernel generates 
the unblock pulse. Another thread in the server receives this pulse. At 
this point, there's a race condition- the first thread could be just 
about ready to reply to the client. If the second thread (that got the 
pulse) does the reply, then there's a chance that the client would 
unblock and send another message to the server, with the server's first 
thread now getting a chance to run and replying to the client's second 
request with the first request's data: 
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t ® Processing ... 

MsgRecei ve +---~(gets hit with a 
(gets unblock pulse) 8J signal here) 

• @ MsgReply ---+~ client unblocks 
(to unblock) from MsgSend 

t 
Processing 

• MsgReceive ..---~ MsgSend 

(gets 2nd message) ® (to server) 

• Processing ... 

------+-----+-... client unblocks @ MsgReply 

(to 1st message) @from MsgSend 

with data from 
1st request! 

Confusion in a multithreaded server. 

Or, if the thread that got the pulse is just about to reply to the client, 
and the first thread does the reply, then you have the same situation
the first thread unblocks the client, who sends another request, and the 
second thread (that got the pulse) now unblocks the client's second 
request. 

The situation is that you have two parallel flows of execution (one 
caused by the message, and one caused by the pulse). Ordinarily, 
we'd immediately recognize this as a situation that requires a mutex. 
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Unfortunately, this causes a problem- the mutex would have to be 
acquired immediately after the MsgReceive() and released before the 
MsgReply( ). While this will indeed work, it defeats the whole purpose 
of the unblock pulse! (The server would either get the message and 
ignore the unblock pulse until after it had replied to the client, or the 
server would get the unblock pulse and cancel the client's second 
operation.) 

A solution that looks promising (but is ultimately doomed to failure) 
would be to have a fine-grained mutex. What I mean by that is a 
mutex that gets locked and unlocked only around small portions of the 
control flow (the way that you're supposed to use a mutex, instead of 
blocking the entire processing section, as proposed above). You'd set 
up a "Have we replied yet?" flag in the server, and this flag would be 
cleared when you received a message and set when you replied to a 
message. Just before you replied to the message, you'd check the flag. 
If the flag indicates that the message has already been replied to, 
you'd skip the reply. The mutex would be locked and unlocked 
around the checking and setting of the flag. 

Unfortunately, this won't work because we're not always dealing with 
two parallel flows of execution- the client won't always get hit with 
a signal during processing (causing an unblock pulse). Here's the 
scenario where it breaks: 

• The client sends a message to the server; the client is now blocked, 
the server is now running. 

• Since the server received a request from the client, the flag is reset 
to 0, indicating that we still need to reply to the client. 

• The server replies normally to the client (because the flag was set 
to 0) and sets the flag to 1 indicating that, if an unblock-pulse 
arrives, it should be ignored. 

• (Problems begin here.) The client sends a second message to the 
server, and almost immediately after sending it gets hit with a 
signal; the kernel sends an unblock-pulse to the server. 
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• The server thread that receives the message was about to acquire 
the mutex in order to check the flag, but didn't quite get there (it 
got preempted). 

• Another server thread now gets the pulse and, because the flag is 
still set to a 1 from the last time, ignores the pulse. 

• Now the server's first thread gets the mutex and clears the flag. 

• At this point, the unblock event has been lost. 

If you refine the flag to indicate more states (such as pulse received, 
pulse replied to, message received, message replied to), you'll still run 
into a synchronization race condition because there's no way for you 
to create an atomic binding between the flag and the receive and reply 
function calls. (Fundamentally, that's where the problem lies- the 
small timing windows after a MsgReceive() and before the flag is 
adjusted, and after the flag is adjusted just before the MsgReply( ).) 
The only way to get around this is to have the kernel keep track of the 
flag for you. 

Using the _NTO_MLUNBLOCK_REQ 

Luckily, the kernel keeps track of the flag for you as a single bit in the 
message info structure (the struct _msg_info that you pass as the 
last parameter to MsgReceive( ), or that you can fetch later, given the 
receive ID, by calling Msglnfo( )). 

This flag is called _NTO_MLUNBLOCK_REQ and is set if the client 
wishes to unblock (for example, after receiving a signal). 

This means that in a multithreaded server, you'd typically have a 
"worker" thread that's performing the client's work, and another 
thread that's going to receive the unblock message (or some other 
message; we'll just focus on the unblock message for now). When 
you get the unblock message from the client, you'd set a flag to 
yourself, letting your program know that the thread wishes to 
unblock. 
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There are two cases to consider: 

• the "worker" thread is blocked; or 

• the "worker" thread is running. 

If the worker thread is blocked, you'll need to have the thread that got 
the unblock message awaken it. It might be blocked if it's waiting for 
a resource, for example. When the worker thread wakes up, it should 
examine the ..NTO_MLUNBLOCK_REQ flag, and, if set, reply with an 
abort status. If the flag isn't set, then the thread can do whatever 
normal processing it does when it wakes up. 

Alternatively, if the worker thread is running, it should periodically 
check the "flag to self" that the unblock thread may have set, and if 
the flag is set, it should reply to the client with an abort status. Note 
that this is just an optimization: in the unoptimized case, the worker 
thread would constantly call "Msginfo" on the receive ID and check 
the ..NTO_MLUNBLOCK_REQ bit itself. 

Message passing over a network 

To keep things clear, I've avoided talking about how you'd use 
message passing over a network, even though this is a crucial part of 
Neutrino's flexibility! 

Everything you've learned so far applies to message passing over the 
network. 

Earlier in this chapter, I showed you an example: 

#include <fcntl.h> 
#include <unistd.h> 

int 
main (void) 
{ 

int fd; 
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fd = open ( "/net/wintermute/home/rk/filename", Q_WRONLY); 
write (fd, "This is message passing\n", 24); 
close (fd); 

return (EXIT_SUCCESS); 
} 

At the time, I said that this was an example of "using message passing 
over a network." The client creates a connection to a ND/PID/CHID 
(which just happens to be on a different node), and the server 
performs a MsgReceive() on its channel. The client and server are 
identical in this case to the local, single-node case. You could stop 
reading right here- there really isn't anything "tricky" about 
message passing over the network. But for those readers who are 
curious about the how of this, read on! 

Now that we've seen some of the details of local message passing, we 
can discuss in a little more depth how message passing over a network 
works. While this discussion may seem complicated, it really boils 
down to two phases: name resolution, and once that's been taken care 
of, simple message passing. 

Here's a diagram that illustrates the steps we'll be talking about: 

magenta wintermute 

@ qnet qnet 
resmgr resmgr 

@ @ @ 
qnet qnet 

network network 

0 
handler 0 handler 

Message passing over a network. Notice that qnet is divided into two 

sections. 
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In the diagram, our node is called magenta, and, as implied by the 
example, the target node is called wintermute. 

Let's analyze the interactions that occur when a client program uses 
qnet to access a server over the network: 

The client's open() function was told to open a filename that 
happened to have /net in front of it. (The name /net is the 
default name manifested by qnet -consult the documentation 
that came with your Neutrino development system under 
npm-qnet for further details.) This client has no idea who is 
responsible for that particular pathname, so it connects to the 
process manager (step 1) in order to find out who actually owns 
the resource. This is done regardless of whether we're passing 
messages over a network and happens automatically. Since the 
native Neutrino network manager, qnet, "owns" all pathnames 
that begin with /net, the process manager returns information 
to the client telling it to ask qnet about the pathname. 

2 The client now sends a message to qnet's resource manager 
thread, hoping that qnet will be able to handle the request. 
However, qnet on this node isn't responsible for providing the 
ultimate service that the client wants, so it tells the client that it 
should actually contact the process manager on node 
wintermute. (The way this is done is via a "redirect" 
response, which gives the client the ND/PID/CHID of a server 
that it should contact instead.) This redirect response is also 
handled automatically by the client's library. 

3 The client now connects to the process manager on 
wintermute. This involves sending an off-node message 
through qnet's network-handler thread. The qnet process on 
the client's node gets the message and transports it over the 
medium to the remote qnet, which delivers it to the process 
manager on wintermute. The process manager there resolves 
the rest of the pathname (in our example, that would be the 
"/home/rk/filename" part) and sends a redirect message 
back. This redirect message follows the reverse path (from the 
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server's qnet over the medium to the qnet on the client's 
node, and finally back to the client). This redirect message now 
contains the location of the server that the client wanted to 
contact in the first place, that is, the ND/PID/CHID of the 
server that's going to service the client's requests. (In our 
example, the server was a filesystem.) 

4 The client now sends the request to that server. The path 
followed here is identical to the path followed in step 3 above, 
except that the server is contacted directly instead of going 
through the process manager. 

Once steps 1 through 3 have been established, step 4 is the model for 
all future communications. In our client example above, the open(), 
read(), and close() messages all take path number 4. Note that the 
client's open() is what triggered this sequence of events to happen in 
the first place - but the actual open message flows as described 
(through path number 4). 

I@' For the really interested reader: I've left out one step. During step 2, 
when the client asks qnet about wintermute, qnet needs to figure 
out who wintermute is. This may result in qnet performing one 
more network transaction to resolve the nodename. The diagram 
presented above is correct if we assume that qnet already knew about 
wintermute. 

Networked 
message passing 

differences 

We'll come back to the messages used for the open(), read(), and 
close() (and others) in the Resource Managers chapter. 

So, once the connection is established, all further messaging flows 
using step 4 in the diagram above. This may lead you to the erroneous 
belief that message passing over a network is identical to message 
passing in the local case. Unfortunately, this is not true. Here are the 
differences: 

• longer delays 
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• ConnectAttach() returns success regardless of whether the node is 
alive or not - the real error indication happens on the first 
message pass 

• MsgDeliverEvent() isn't guaranteed reliable 

• MsgReply( ), MsgRead( ), Msg Write() are now blocking calls, 
whereas in the local case they are not 

• MsgReceive() won't receive all the data sent by the client; the 
server will need to call MsgRead() to get the rest. 

Since message passing is now being done over some medium, rather 
than a direct kernel-controlled memory-to-memory copy, you can 
expect that the amount of time taken to transfer messages will be 
significantly higher (100 MBit Ethernet versus lOOMHz 64-bit wide 
DRAM is going to be an order of magnitude or two slower). Plus, on 
top of this will be protocol overhead (minimal) and retries on lossy 
networks. 

When you call ConnectAttach(), you're specifying an ND, a PID, and 
a CHID. All that happens in Neutrino is that the kernel returns a 
connection ID to the qnet "network handler" thread pictured in the 
diagram above. Since no message has been sent, you're not informed 
as to whether the node that you've just attached to is still alive or not. 
In normal use, this isn't a problem, because most clients won't be 
doing their own ConnectAttach()- rather, they'll be using the 
services of the library call open(), which does the ConnectAttach() 
and then almost immediately sends out an "open" message. This has 
the effect of indicating almost immediately if the remote node is alive 
or not. 

When a server calls MsgDeliverEvent() locally, it's the kernel's 
responsibility to deliver the event to the target thread. With the 
network, the server still calls MsgDeliverEvent( ), but the kernel 
delivers a "proxy" of that event to qnet, and it's up to qnet to deliver 
the proxy to the other (client-side) qnet, who'll then deliver the 
actual event to the client. Things can get screwed up on the server 
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Impact on MsgReply(), 
MsgRead(), and 

MsgWrite() 

Impact on MsgReceive() 

side, because the MsgDeliverEvent() function call is non-blocking
this means that once the server has called MsgDeliverEvent() it's 
running. It's too late to turn around and say, "I hate to tell you this, 
but you know that MsgDeliverEvent() that I said succeeded? Well, it 
didn't!" 

To prevent the problem I just mentioned with MsgDeliverEvent() 
from happening with MsgReply(), MsgRead(), and MsgWrite(), these 
functions were transformed into blocking calls when used over the 
network. Locally they'd simply transfer the data and unblock 
immediately. On the network, we have to (in the case of MsgReply( )) 
ensure that the data has been delivered to the client or (in the case of 
the other two) to actually transfer the data to or from the client over 
the network. 

Finally, MsgReceive() is affected as well (in the networked case). Not 
all the client's data may have been transferred over the network by 
qnet when the server's MsgReceive() unblocks. This is done for 
performance reasons. 

There are two flags in the struct ....msg_info that's passed as the 
last parameter to MsgReceive() (we've seen this structure in detail in 
"Who sent the message?" above): 

msglen 

srcmsglen 

indicates how much data was actually transfered by 
the MsgReceive() (qnet likes to transfer 8k). 

indicates how much data the client wanted to transfer 
(determined by the client). 

So, if the client wanted to transfer 1 megabyte of data over the 
network, the server's MsgReceive() would unblock and msglen would 
be set to 8192 (indicating that 8192 bytes were available in the buffer), 
while srcmsglen would be set to 1048576 (indicating that the client 
tried to send 1 megabyte). 

The server then uses MsgRead() to get the rest of the data from the 
client's address space. 
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The other "funny" thing that we haven't yet talked about when it 
comes to message passing is this whole business of a "node 
descriptor" or just "ND" for short. 

Recall that we used symbolic node names, like /net/wintermute 
in our examples. Under QNX 4 (the previous version of the OS before 
Neutrino), native networking was based on the concept of a node ID, 
a small integer that was unique on the network. Thus, we'd talk about 
"node 61 ," or "node 1 ," and this was reflected in the function calls. 

Under Neutrino, all nodes are internally referred to by a 32-bit 
quantity, but it's not network unique! What I mean by that is that 
wintermute might think of spud as node descriptor number "7," 
while spud might think of magenta as node descriptor number "7" 
as well. Let me expand that to give you a better picture. This table 
shows some sample node descriptors that might be used by three 
nodes, wintermute, spud, and foobar: 

Node wintermute spud foobar 

wintermute 0 7 4 

spud 4 0 6 

foobar 5 7 0 

Notice how each node's node descriptor for itself is zero. Also notice 
how wintermute's node descriptor for spud is "7," as is foobar's 
node descriptor for spud. But wintermute's node descriptor for 
foobar is "4" while spud's node descriptor for foobar is "6." As I 
said, they're not unique across the network, although they are unique 
on each node. You can effectively think of them as file descriptors
two processes might have the same file descriptor if they access the 
same file, but they might not; it just depends on who opened which 
file when. 

Fortunately, you don't have to worry about node descriptors, for a 
number of reasons: 
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1 Most of the off-node message passing you'll typically be doing 
will be through higher-level function calls (like open(), as 
shown in the example above). 

2 Node descriptors are not to be cached- if you get one, you're 
supposed to use it immediately and then forget about it. 

3 There are library calls to convert a pathname (like 
/net/magenta) to a node descriptor. 

To work with node descriptors, you'll want to include the file 
<sys/netmgr. h> because it includes a bunch of netmgr_ *() 
functions. 

You'd use the function netmgr __strtond() to convert a string into a node 
descriptor. Once you have this node descriptor, you'd use it 
immediately in the ConnectAttach() function call. Specifically, you 
shouldn't ever cache it in a data structure! The reason is that the 
native networking manager may decide to reuse it once all 
connections to that particular node are disconnected. So, if you got a 
node descriptor of "7" for /net/magenta, and you connected to it, 
sent a message, and then disconnected, there's a possibility that the 
native networking manager will return a node descriptor of "7" again 
for a different node. 

Since node descriptors aren't unique per network, the question that 
arises is, "How do you pass these things around the network?" 
Obviously, magenta's view of what node descriptor "7" is will be 
radically different from wintermute's. There are two solutions here: 

• Don't pass around node descriptors; use the symbolic names (e.g., 
/net/wintermute) instead. 

• Use the netmgr _remoteJid() function. 

The first is a good general-purpose solution. The second solution is 
reasonably simple to use: 
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int 
netmgr_remote...nd (int remote...nd, int local...nd); 

This function takes two parameters: the remote__nd is the node 
descriptor of the target machine, and local__nd is the node descriptor 
(from the local machine's point of view) to be translated to the remote 
machine's point of view. The result is the node descriptor that is valid 
from the remote machine's point of view. 

For example, let's say wintermute is our local machine. We have a 
node descriptor of "7" that is valid on our local machine and points to 
magenta. What we'd like to find out is what node descriptor 
magenta uses to talk to us: 

int remote...nd; 
int magenta...nd; 

magenta...nd = netmgr_strtond ("/net/magenta", NULL); 
printf ("Magenta's ND is %d\n", magenta...nd); 
remote...nd = netmgr_remote...nd (magenta...nd, ND_LOCAL_NODE); 

printf ("From magenta's point of view, we're ND %d\n", 
remote...nd) ; 

This might print something similar to: 

Magenta's ND is 7 
From magenta's point of view, we're ND 4 

This says that on magenta, the node descriptor "4" refers to our 
node. (Notice the use of the special constant ND_LOCALNODE, 

which is really zero, to indicate "this node.") 

Now, recall that we said (in "Who sent the message?") that the 
struct ...msg_info contains, among other things, two node 
descriptors: 

struct ...msg_info 
{ 

int nd; 
int srcnd; 

} ; 

Chapter 2 • Message Passing 167 



Priority inheritance 

We stated in the description for those two fields that: 

• nd is the receiving node's node descriptor for the transmitting node 

• srcnd is the transmitting node's node descriptor for the receiving 
node 

So, for our example above, where wintermute is the local node and 
magenta is the remote node, when magenta sends a message to us 
(wintermute), we'd expect that: 

• nd would contain 7 

• srcnd would contain 4. 

Priority inheritance 

One of the interesting issues in a realtime operating system is a 
phenomenon known as priority inversion. 

Priority inversion manifests itself as, for example, a low-priority 
thread consuming all available CPU time, even though a 
higher-priority thread is ready to run. 

Now you're probably thinking, "Wait a minute! You said that a 
higher-priority thread will always preempt a lower-priority thread! 
How can this be?" 

This is true- a higher-priority thread will always preempt a 
lower-priority thread. But something interesting can happen. Let's 
look at a scenario where we have three threads (in three different 
processes, just to keep things simple), "L" is our low-priority thread, 
"H" is our high-priority thread, and "S" is a server. This diagram 
shows the three threads and their priorities: 
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Three threads at different priorities. 

Currently, His running. S, a higher-priority server thread, doesn't 
have anything to do right now so it's waiting for a message and is 
blocked in MsgReceive( ). L would like to run but is at a lower priority 
than H, which is running. Everything is as you'd expect, right? 

Now H has decided that it would like to go to sleep for 100 
milliseconds -perhaps it needs to wait for some slow hardware. At 
this point, L is running. 

This is where things get interesting. 

As part of its normal operation, L sends a message to the server thread 
S, causing S to go READY and (because it's the highest-priority thread 
that's READY) to start running. Unfortunately, the message that L sent 
to S was "Compute pi to 50 decimal places." 

Obviously, this takes more than 100 milliseconds. Therefore, when 
H's 100 milliseconds are up and H goes READY, guess what? It won't 
run, because S is READY and at a higher priority! 

What happened is that a low-priority thread prevented a 
higher-priority thread from running by leveraging the CPU via an 
even higher-priority thread. This is priority inversion. 

To fix it, we need to talk about priority inheritance. A simple fix is to 
have the server, S, inherit the priority of the client thread: 

Chapter 2 • Message Passing 169 



Priority inheritance 

SEND-blocked 

REPLY -blocked 

Blocked threads. 

In this scenario, when H's 100 millisecond sleep has completed, it 
goes READY and, because it's the highest-priority READY thread, 
runs. 

Not bad, but there's one more "gotcha." 

Suppose that H now decides that it too would like a computation 
performed. It wants to compute the 5,034th prime number, so it sends 
a message to S and blocks. 

However, S is still computing pi, at a priority of 5! In our example 
system, there are lots of other threads running at priorities higher than 
5 that are making use of the CPU, effectively ensuring that S isn't 
getting much time to calculate pi. 

This is another form of priority inversion. In this case, a 
lower-priority thread has prevented a higher-priority thread from 
getting access to a resource. Contrast this with the first form of 
priority inversion, where the lower-priority thread was effectively 
consuming CPU- in this case it's only preventing a higher-priority 
thread from getting CPU- it's not consuming any CPU itself. 

Luckily, the solution is fairly simple here too. Boost the server's 
priority to be the highest of all blocked clients: 
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SEND-blocked 

0 
READY 

REPLY -blocked 

Boosting the server's priority. 

This way we take a minor hit by letting L's job run at a priority higher 
than L, but we do ensure that H gets a fair crack at the CPU. 

There's no trick! Neutrino does this automatically for you. (You can 
turn off priority inheritence if you don't want it; see the 
_NTO_CHF _FIXED_FRIORITY flag in the ChannelCreate() function's 
documentation.) 

Neutrino only does this one level deep- if a client sent to a server, 
and that server sent to another server, the second server would inherit 
the normal priority of the first server's thread, not the priority that the 
first server's thread inherited. This means that if a higher-priority 
thread blocked on the first server, only the first server's priority would 
be boosted (but since it's blocked anyway on the second server, this 
doesn't do much good, because the second server's priority does not 
get boosted). Beware! 

There's a minor design issue here, however. How do you revert the 
priority to what it was before it got changed? 

Your server is running along, servicing requests from clients, 
adjusting its priority automagically when it unblocks from the 
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MsgReceive() call. But when should it adjust its priority back to what 
it was before the MsgReceive() call changed it? 

There are two cases to consider: 

• The server performs some additional processing after it properly 
services the client. This should be done at the server's priority, not 
the client's. 

• The server immediately does another MsgReceive() to handle the 
next client request. 

In the first case, it would be incorrect for the server to run at the 
client's priority when it's no longer doing work for that client! The 
solution is fairly simple. Use the pthread...setschedparam() function 
(discussed in the Processes and Threads chapter) to revert the priority 
back to what it should be. 

What about the other case? The answer is subtly simple: Who cares? 

Think about it. What difference does it make if the server becomes 
RECEIVE-blocked when it was priority 29 versus when it was priority 
2? The fact of the matter is it's RECEIVE-blocked! It isn't getting any 
CPU time, so its priority is irrelevant. As soon as the MsgReceive() 
function unblocks the server, the (new) client's priority is inherited by 
the server and everything works as expected. 

Message passing is an extremely powerful concept and is one of the 
main features on which Neutrino (and indeed, all past QSSL 
operating systems) is built. 

With message passing, a client and a server exchange messages 
(thread-to-thread in the same process, thread-to-thread in different 
processes on the same node, or thread-to-thread in different processes 
on different nodes in a network). The client sends a message and 
blocks until the server receives the message, processes it, and replies 
to the client. 

The main advantages of message passing are: 
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• The content of a message doesn't change based on the location of 
the destination (local versus networked). 

• A message provides a "clean" decoupling point for clients and 
servers. 

• Implicit synchronization and serialization helps simplify the 
design of your applications. 
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Clocks, Timers, and Getting a Kick 
Every So Often 

In this chapter ... 
Clocks and timers 
Using timers 
Advanced topics 
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Clocks and timers 

It's time to take a look at everything related to time in Neutrino. We'll 
see how and why you'd use timers and the theory behind them. Then 
we'll take a look at getting and setting the realtime clock. 

Let's look at a typical system, say a car. In this car, we have a bunch 
of programs, most of which are running at different priorities. Some 
of these need to respond to actual external events (like the brakes or 
the radio tuner), while others need to operate periodically (such as the 
diagnostics system). 

So how does the diagnostics system "operate periodically?" You can 
imagine some process in the car's CPU that does something similar to 
the following: 

II Diagnostics Process 

int 
main (void) II ignore arguments here 
{ 

} 

for (;;) { 
perform_diagnostics (); 
sleep (15) ; 

} 

II You'll never get here. 
return (EXIT-SUCCESS); 

Here we see that the diagnostics process runs forever. It performs one 
round of diagnostics and then goes to sleep for 15 seconds, wakes up, 
goes through the loop again, and again, ... 

Way back in the dim, dark days of single-tasking, where one CPU was 
dedicated to one user, these sorts of programs were implemented by 
having the sleep (15); code do a busy-wait loop. You'd calculate 
how fast your CPU was and then write your own sleep() function: 

Chapter 3 • Clocks, Timers, and Getting a Kick Every So Often 177 



Clocks and timers 

void 
sleep (int nseconds) 
{ 

long i; 

while (nseconds--) { 
for (i = 0; i < CALIBRATED-VALUE; i++) 

} 
} 

In those days, since nothing else was running on the machine, this 
didn't present much of a problem, because no other process cared that 
you were hogging 100% of the CPU in the sleep() function. 

~ Even today, we sometimes hog 100% of the CPU to do timing 
functions. Notably, the nanospin() function is used to obtain very 
fine-grained timing, but it does so at the expense of burning CPU at its 
priority. Use with caution! 

If you did have to perform some form of "multitasking," it was 
usually done via an interrupt routine that would hang off the hardware 
timer or be performed within the "busy-wait" period, somewhat 
affecting the calibration of the timing. This usually wasn't a concern. 

Luckily we've progressed far beyond that point. Recall from 
"Scheduling and the real world," in the Processes and Threads 
chapter, what causes the kernel to reschedule threads: 

• a hardware interrupt 

• a kernel call 

• a fault (exception) 

In this chapter, we're concerned with the first two items on the list: 
the hardware interrupt and the kernel call. 

When a thread calls sleep(), the C library contains code that 
eventually makes a kernel call. This call tells the kernel, "Put this 
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thread on hold for a fixed amount of time." The call removes the 
thread from the running queue and starts a timer. 

Meanwhile, the kernel has been receiving regular hardware interrupts 
from the computer's clock hardware. Let's say, for argument's sake, 
that these hardware interrupts occur at exactly 1 0-rnillisecond 
intervals. 

Let's restate: every time one of these interrupts is handled by the 
kernel's clock interrupt service routine (ISR), it means that 10 ms 
have gone by. The kernel keeps track of the time of day by 
incrementing its time-of-day variable by an amount corresponding to 
10 ms every time the ISR runs. 

So when the kernel implements a 15-second timer, all it's really doing 
is: 

1 Setting a variable to the current time plus 15 seconds. 

2 In the clock ISR, comparing this variable against the time of 
day. 

3 When the time of day is the same as (or greater than) the 
variable, putting the thread back onto the READY queue. 

When multiple timers are outstanding, as would be the case if several 
threads all needed to be woken at different times, the kernel would 
simply queue the requests, sorting them by time order- the nearest 
one would be at the head of the queue, and so on. The variable that 
the ISR looks at is the one at the head of this queue. 

That's the end of the timer five-cent tour. 

Actually, there's a little bit more to it than first meets the eye. 

So where does the clock interrupt come from? Here's a diagram that 
shows the hardware components (and some typical values for a PC) 
responsible for generating these clock interrupts: 
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PC clock interrupt sources. 

As you can see, there's a high-speed (MHz range) clock produced by 
the circuitry in the PC. This high-speed clock is then divided by a 
hardware counter (the 82C54 component in the diagram), which 
reduces the clock rate to the kHz or hundreds of Hz range (i.e., 
something that an ISR can actually handle). The clock ISR is a 
component of the kernel and interfaces directly with the data 
structures and code of the kernel itself. On non-x86 architectures 
(MIPS, PowerPC), a similar sequence of events occurs; some chips 
have clocks built into the processor. 

Note that the high-speed clock is being divided by an integer divisor. 
This means the rate isn't going to be exactly 10 ms, because the 
high-speed clock's rate isn't an integer multiple of 10 ms. Therefore, 
the kernel's ISR in our example above might actually be interrupted 
after 9.9999296004 ms. 

Big deal, right? Well, sure, it's fine for our 15-second counter. 15 
seconds is 1500 timer ticks- doing the math shows that it's 
approximately 106 ~-ts off the mark: 

15 s- 1500 x 9.9999296004 ms 

= 15000 ms- 14999.8944006 ms 
= 0.1055994 ms 
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= 105.5994 /-lS 

Unfortunately, continuing with the math, that amounts to 608 ms per 
day, or about 18.5 seconds per month, or almost 3.7 minutes per year! 

You can imagine that with other divisors, the error could be greater or 
smaller, depending on the rounding error introduced. Luckily, the 
kernel knows about this and corrects for it. 

The point of this story is that regardless of the nice round value 
shown, the real value is selected to be the next faster value. 

Let's say that the timer tick is operating at just slightly faster than 
10 ms. Can I reliably sleep for 3 milliseconds? 

Nope. 

Consider what happens in the kernel. You issue the C-library delay() 
call to go to sleep for 3 milliseconds. The kernel has to set the variable 
in the ISR to some value. If it sets it to the current time, this means the 
timer has already expired and that you should wake up immediately. 
If it sets it to one tick more than the current time, this means that you 
should wake up on the next tick (up to 10 milliseconds away). 

The moral of this story is: "Don't expect timing resolution any better 
than the input timer tick rate." 

Under Neutrino, a program can adjust the value of the hardware 
divisor component in conjunction with the kernel (so that the kernel 
knows what rate the timer tick ISR is being called at). We'lllook at 
this below in the "Getting and setting the realtime clock" section. 

There's one more thing you have to worry about. Let's say the timing 
resolution is 10 ms and you want a 20 ms timeout. 

Are you always going to get exactly 20 milliseconds worth of delay 
from the time that you issue the delay() call to the time that the 
function call returns? 
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Absolutely not. 

There are two good reasons why. The first is fairly simple: when you 
block, you're taken off the running queue. This means that another 
thread at your priority may now be using the CPU. When your 20 
milliseconds have expired, you'll be placed at the end of the READY 

queue for that priority so you'll be at the mercy of whatever thread 
happens to be running. This also applies to interrupt handlers running 
or higher-priority threads running- just because you are READY 

doesn't mean that you're consuming the CPU. 

The second reason is a bit more subtle. The following diagram will 
help explain why: 

10 ms 

Clock jitter. 

Process requests 
20 ms sleep here 

1 

t 
10 ms 

Actual elapsed 
time is 22 ms 

10 ms 

Kernel wakes up 
process here 

~ 

J 
10 ms 

The problem is that your request is asynchronous to the clock source. 
You have no way to synchronize the hardware clock with your 
request. Therefore, you'll get from just over 20 milliseconds to just 
under 30 milliseconds worth of delay, depending on where in the 
hardware's clock period you started your request. 
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This is a key point. Clock jitter is a sad fact of life. The way to get 
around it is to increase the system's timing resolution so your timing 
is within tolerance. (We'll see how to do this in the "Getting and 
setting the realtime clock" section, below.) Keep in mind that jitter 
takes place only on the first tick- a 100-second delay with a 
10-millisecond clock will delay for greater than 100 seconds and less 
than 100.01 seconds. 

The type of timer that I showed you above is a relative timer. The 
timeout period selected is relative to the current time. If you want the 
timer to delay your thread until January 20, 2005 at 12:04:33 EDT, 
you'd have to calculate the number of seconds from "now" until then, 
and set up a relative timer for that number of seconds. Because this is 
a fairly common function, Neutrino implements an absolute timer that 
will delay until the specified time (instead of for the specified time, 
like a relative timer). 

What if you want to do something while you're waiting for that date 
to come around? Or, what if you want to do something and get a 
"kick" every 27 seconds? You certainly couldn't afford to be asleep! 

As we discussed in the Processes and Threads chapter, you could 
simply start up another thread to do the work, and your thread could 
take the delay. However, since we're talking about timers, we'll look 
at another way of doing this. 

You can do this with a periodic or one-shot timer, depending on your 
objectives. A periodic timer is one that goes off periodically, 
notifying the thread (over and over again) that a certain time interval 
has elapsed. A one-shot timer is one that goes off just once. 

The implementation in the kernel is still based on the same principle 
as the delay timer that we used in our first example. The kernel takes 
the absolute time (if you specified it that way) and stores it. In the 
clock ISR, the stored time is compared against the time of day in the 
usual manner. 
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Notification 
schemes 

How to fill in the struct 
sigevent 

However, instead of your thread being removed from the running 
queue when you call the kernel, your thread continues to run. When 
the time of day reaches the stored time, the kernel notifies your thread 
that the designated time has been reached. 

How do you receive a timeout notification? With the delay timer, you 
received notification by virtue of being made READY again. 

With periodic and one-shot timers, you have a choice: 

• send a pulse 

• send a signal 

• create a thread 

We've talked about pulses in the Message Passing chapter; signals are 
a standard UNIX-style mechanism, and we'll see the thread creation 
notification type shortly. 

Let's take a quick look at how you fill in the struct sigevent 

structure. 

Regardless of the notification scheme you choose, you'll need to fill 
in a struct sigevent structure: 

struct sigevent { 
int 

union { 
int 
int 
int 
void 

}; 

union sigval 

union { 
struct { 

short 
short 

}; 

sigev _jzotify; 

sigev~igno; 

sigev_coid; 
sigev_id; 

(*sigev..notify_Junction) (union sigval); 

sigev _value; 

sigev_code; 
sigev_priority; 
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pthread_a t tr _t * sigev Jlotify _attributes; 
}; 

}; 

w Note that the above definition uses anonymous unions and structures. 
Careful examination of the header file will show you how this trick is 
implemented on compilers that don't support these features. 
Basically, there's a #define that uses a named union and structure to 
make it look like it's an anonymous union. Check out 
< sys Is iginfo. h> for details. 

The first field you have to fill in is the sigev Jiotify member. This 
determines the notification type you've selected: 

SIGEV _FULSE 

A pulse will be sent. 

SIGEV _SIGNAL, SIGEV _SIGNALCODE, or SIGEV _SIGNAL THREAD 

A signal will be sent. 

SIGEV _UNBLOCK 

Not used in this case; used with kernel timeouts (see "Kernel 
timeouts" below). 

SIGEV__INTR 

Not used in this case; used with interrupts (see the Interrupts 
chapter). 

SIGEV_THREAD 

Creates a thread. 

Since we're going to be using the struct sigevent with timers, 
we're concerned only with the SIGEV _FULSE, SIGEV _SIGNAL* and 
SIGEV _THREAD values for sigevJiotify; we'll see the other types as 
mentioned in the list above. 
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Pulse notification 
To send a pulse when the timer fires, set the sigev _notify field to 
SIGEV YULSE and provide some extra information: 

Field Value and meaning 

sigev _coid Send the pulse to the channel associated with this 
connection ID. 

sigev _value A 32-bit value that gets sent to the connection 
identified in the sigev_coid field. 

sigev _code An 8-bit value that gets sent to the connection 
identified in the sigev_coid field. 

sigev_priority The pulse's delivery priority. The value zero is not 
allowed (too many people were getting bitten by 
running at priority zero when they got a pulse -
priority zero is what the idle task runs at, so 
effectively they were competing with Neutrino's 
IDLE process and not getting much CPU time 
:-} ). 

Note that the sigev_coid could be a connection to any channel 
(usually, though not necessarily, the channel associated with the 
process that's initiating the event). 

Signal notification 

To send a signal, set the sigev_notify field to one of: 

SIGEV _SIGNAL 

Send a regular signal to the process. 

SIGEV _SIGNALCODE 

Send a signal containing an 8-bit code to the process. 
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SIGEV _SIGNAL THREAD 

Send a signal containing an 8-bit code to a specific thread. 
For SIGEV_SIGNAL*, the additional fields you'll have to fill are: 

Field Value and meaning 

sigev_signo Signal number to send (from <signal. h>, e.g., 
SIGALRM). 

sigev_code An 8-bit code (if using SIGEV _SIGNALCODE or 
SIGEV _SIGNAL THREAD). 

Thread notification 

To create a thread whenever the timer fires, set the sigev _notify field to 
SIGEV _THREAD and fill these fields: 

Field Value and meaning 

sigev _notify .function Address of void * function that accepts 
a void * to be called when the event 
triggers. 

sigev_value Value passed as the parameter to the 
sigev _notify .function() function. 

sigev_notify_attributes Thread attributes structure (see the 
Processes and Threads chapter, under 
"The thread attributes structure" for 
details). 

Chapter 3 • Clocks, Timers, and Getting a Kick Every So Often 187 



Clocks and timers 

I& This notification type is a little scary! You could have a whole slew of 
threads created if the timer fires often enough and, if there are higher 
priority threads waiting to run, this could chew up all available 
resources on the system! Use with caution! 

General tricks for notification 

There are some convenience macros in <sys/siginfo.h> to make 
filling in the notification structures easier: 

SIGEV..SIGNALJNIT ( eventp, signa) 

Fill eventp with SIGEV _SIGNAL, and the appropriate signal 
number signa. 

SIGEV _5/GNALCODEJNIT ( eventp, signa, value, code) 

Fill eventp with SIGEV _SIGNALCODE, the signal number 
signa, as well as the value and code. 

SIGEV _5/GNALTHREAD JNIT ( eventp, signa, value, code) 

Fill eventp with SIGEV _SIGNAL THREAD, the signal number 
signa, as well as the value and code. 

SIGEV YULSEJNIT ( eventp, coid, priority, code, value) 

Fill eventp with SIGEV _SIGNALPULSE, the connection to the 
channel in coid and a priority, code, and value. Note that there 
is a special value for priority of SIGEV _PULSE_PRIO_INHERIT 

that prevents the receiving thread's priority from changing. 

SIGEV_UNBLOCKJNIT ( eventp) 

Fill eventp with SIGEV _UNBLOCK. 

SIGEV JNTRJNIT ( eventp) 

Fill eventp with SIGEV _INTR. 
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SIGEV _THREAD JNIT ( eventp, June, val, attributes) 

Fill eventp with the thread function (june) and the attributes 
structure (attributes). The value in val is passed to the function 
infunc when the thread is executed. 

Suppose you're designing a server that spent most of its life RECEIVE 
blocked, waiting for a message. Wouldn't it be ideal to receive a 
special message, one that told you that the time you had been waiting 
for finally arrived? 

This scenario is exactly where you should use pulses as the 
notification scheme. In the "Using timers" section below, I'll show 
you some sample code that can be used to get periodic pulse 
messages. 

Suppose that, on the other hand, you're performing some kind of 
work, but don't want that work to go on forever. For example, you 
may be waiting for some function call to return, but you can't predict 
how long it takes. 

In this case, using a signal as the notification scheme, with perhaps a 
signal handler, is a good choice (another choice we'll discuss later is 
to use kernel timeouts; see _NTO_CHF _UNBLOCK in the Message 
Passing chapter as well). In the "Using timers" section below, we'll 
see a sample that uses signals. 

Alternatively, a signal with sigwait() is cheaper than creating a 
channel to receive a pulse on, if you're not going to be receiving 
messages in your application anyway. 

Using timers 

Having looked at all this wonderful theory, let's turn our attention to 
some specific code samples to see what you can do with timers. 

To work with a timer, you must: 
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Creating a timer 

1 Create the timer object. 

2 Decide how you wish to be notified (signal, pulse, or thread 
creation), and create the notification structure (the struct 

sigevent). 

3 Decide what kind of timer you wish to have (relative versus 
absolute, and one-shot versus periodic). 

4 Start it. 

Let's look at these in order. 

The first step is to create the timer with timer _create(): 

#include <time.h> 
#include <sys/siginfo.h> 

int 
timer _create ( clockid_t c/ock_id, 

struct sigevent *event, 
timer_t *timerid); 

The clock_id argument tells the timer_create() function which time 
base you're creating this timer for. This is a POSIX thing- POSIX 
says that on different platforms you can have multiple time bases, but 
that every platform must support at least the CLOCK_REALTIME time 
base. Under Neutrino, there are three time bases to choose from: 

• CLOCK_REALTIME 

• CLOCK_SOFTTIME 

• CLOCK_MONOTONIC 

For now, we'll ignore CLOCK_SOFfTIME and CLOCK_MONOTONIC 

but we will come back to them in the "Other clock sources" section, 
below. 
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The second parameter is a pointer to a struct sigevent data 
structure. This data structure is used to inform the kernel about what 
kind of event the timer should deliver whenever it "fires." We 
discussed how to fill in the struct sigevent above in the 
discussion of signals versus pulses versus thread creation. 

So, you'd call timer_create() with CLOCK_REALTIME and a pointer to 
your struct sigevent data structure, and the kernel would create 
a timer object for you (which gets returned in the last argument). This 
timer object is just a small integer that acts as an index into the 
kernel's timer tables; think of it as a "handle." 

At this point, nothing else is going to happen. You've only just 
created the timer; you haven't triggered it yet. 

Having created the timer, you now have to decide what kind of timer 
it is. This is done by a combination of arguments to timer _settime( ), 

the function used to actually start the timer: 

#include <time.h> 

int 
timer_settime (timer_t timerid, 

int flags, 
struct i timerspec *value, 
struct itimerspec *oldvalue); 

The timerid argument is the value that you got back from the 
timer _create() function call -you can create a bunch of timers, and 
then call timer _settime() on them individually to set and start them at 
your convenience. 

The flags argument is where you specify absolute versus relative. 

If you pass the constant TIMER_ABSTIME, then it's absolute, pretty 
much as you'd expect. You then pass the actual date and time when 
you want the timer to go off. 

If you pass a zero, then the timer is considered relative to the current 
time. 
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Let's look at how you specify the times. Here are key portions of two 
data structures (in <time. h> ): 

struct timespec { 
long tv_\·ec, 

fV-'lSec; 

}; 

struct itimerspec { 
struct timespec it_value, 

it _inten,al; 
} ; 

There are two members instruct itimerspec: 

it_ value the one-shot value 

it_interval the reload value 

The it_ value specifies either how long from now the timer should go 
off (in the case of a relative timer), or when the timer should go off (in 
the case of an absolute timer). Once the timer fires, the it_interval 

value specifies a relative value to reload the timer with so that it can 
trigger again. Note that specifying a value of zero for the iLinterval 

makes it into a one-shot timer. You might expect that to create a 
"pure" periodic timer, you'd just set the it_interval to the reload value, 
and set it_ value to zero. Unfortunately, the last part of that statement 
is false- setting the it_ value to zero disables the timer. If you want 
to create a pure periodic timer, set it_value equal to iLinterval and 
create the timer as a relative timer. This will fire once (for the it_value 
delay) and then keep reloading with the iLinterval delay. 

Both the it_value and iLinterval members are actually structures of 
type struct timespec, another POSIX thing. The structure lets 
you specify sub-second resolutions. The first member, tv ....sec, is the 
number of seconds; the second member, tv_nsec, is the number of 
nanoseconds in the current second. (What this means is that you 
should never set tvJisec past the value 1 billion- this would imply 
more than a one-second offset.) 
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Here are some examples: 

it_value.tv_sec = 5; 
it_value.tv_nsec = 500000000; 
it_interval.tv_sec = 0; 
it_interval.tv_nsec = 0; 

Using timers 

This creates a one-shot timer that goes off in 5.5 seconds. (We got the 
".5" because of the 500,000,000 nanoseconds value.) 

We're assuming that this is used as a relative timer, because if it 
weren't, then that time would have elapsed long ago (5.5 seconds past 
January 1, 1970, 00:00 GMT). 

Here's another example: 

it_value.tv_sec = 987654321; 
it_value.tv_nsec = 0; 
it_interval.tv_sec = 0; 
it_interval.tv_nsec = 0; 

This creates a one-shot timer that goes off Thursday, April19, 2001 at 
00:25:21 EDT. (There are a bunch of functions that help you convert 
between the human-readable date and the "number of seconds since 
January 1, 1970, 00:00:00 GMT" representation. Take a look in the C 
library at time(), asctime( ), ctime( ), mktime( ), strftime( ), etc.) 

For this example, we're assuming that it's an absolute timer, because 
of the huge number of seconds that we'd be waiting if it were relative 
(987654321 seconds is about 31.3 years). 

Note that in both examples, I've said, "We're assuming that. .. " 
There's nothing in the code for timer ..settime() that checks those 
assumptions and does the "right" thing! You have to specify whether 
the timer is absolute or relative yourself. The kernel will happily 
schedule something 31.3 years into the future. 

One last example: 

it_value.tv_sec = 1; 
it_value.tv_nsec = 0; 
it_interval.tv_sec = 0; 
it_interval.tv_nsec = 500000000; 
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A server with 
periodic pulses 

Server-maintained 
timeouts 

Assuming it's relative, this timer will go off in one second, and then 
again every half second after that. There's absolutely no requirement 
that the reload values look anything like the one-shot values. 

The first thing we should look at is a server that wants to get periodic 
messages. The most typical uses for this are: 

• server-maintained timeouts on client requests 

• periodic server maintenance cycles 

Of course there are other, specialized uses for these things, such as 
network "keep alive" messages that need to be sent periodically, retry 
requests, etc. 

In this scenario, a server is providing some kind of service to a client, 
and the client has the ability to specify a timeout. There are lots of 
places where this is used. For example, you may wish to tell a server, 
"Get me 15 second's worth of data," or "Let me know when 10 
seconds are up," or "Wait for data to show up, but if it doesn't show 
up within 2 minutes, time out." 

These are all examples of server-maintained timeouts. The client 
sends a message to the server, and blocks. The server receives 
periodic messages from a timer (perhaps once per second, perhaps 
more or less often), and counts how many of those messages it's 
received. When the number of timeout messages exceeds the timeout 
specified by the client, the server replies to the client with some kind 
of timeout indication or perhaps with the data accumulated so far- it 
really depends on how the client/server relationship is structured. 

Here's a complete example of a server that accepts one of two 
messages from clients and a timeout message from a pulse. The first 
client message type says, "Let me know if there's any data available, 
but don't block me for more than 5 seconds." The second client 
message type says, "Here's some data." The server should allow 
multiple clients to be blocked on it, waiting for data, and must 
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therefore associate a timeout with the clients. This is where the pulse 
message comes in; it says, "One second has elapsed." 

In order to keep the code sample from being one overwhelming mass, 
I've included some text before each of the major sections. In the 
online source code that you can get from the PARSE FTP site (visit 
ftp: I /ftp .parse. com/pub/book_v3. tar. gz), this example is 
kept together in one file, timel. c. 

The first section of code here sets up the various manifest constants 
that we'll be using, the data structures, and includes all the header 
files required. We'll present this without comment. :-) 

I* 
* timel.c 

* 
* Example of a server that receives periodic messages from 
* a timer, and regular messages from a client. 

* 
* Illustrates using the timer functions with a pulse. 

*I 

#include <stdio.h> 
#include <stdlib.h> 
#include <time.h> 
#include <signal.h> 
#include <errno.h> 
#include <unistd.h> 
#include <syslsiginfo.h> 
#include <syslneutrino.h> 

II message send definitions 

II messages 
#define MT_WAIT_DATA 
#define MT_SEND-DATA 

II pulses 
#define CODE-TIMER 

II message reply definitions 

2 

3 

1 

#define MT_OK 0 
#define MT_TIMEDOUT 1 

II message structure 
typedef struct 
{ 

II message from client 
II message from client 

II pulse from timer 

II message to client 
II message to client 
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main() 

II contains both message to and from client 
int messageType; 
II optional data, depending upon message 
int messageData; 

} ClientMessageT; 

typedef union 
{ 

II a message can be either from a client, or a pulse 
ClientMessageT mag; 
struct _pulse pulse; 

} MessageT; 

II client table 
#define MAX_CLIENT 16 

struct 
{ 

} 

int in_use; 
int rcvid; 
int timeout; 
clients [MAX_CLIENT] ; 

chid; 

II max# of simultaneous clients 

II is this client entry in use? 
II receive ID of client 
II timeout left for client 
II client table 

II channel ID (global) int 
int 
char 

debug = 1; 
*progname = 

II set debug value, l=on, O=off 
11 timel .. c 11 ; 

II forward prototypes 
static void setupPulseAndTimer (void); 
static void gotAPulse (void); 
static void gotAMessage (int rcvid, ClientMessageT *mag); 

This next section of code is the mainline. It's responsible for: 

• creating the channel (via ChannelCreate()), 

• calling the setupPulseAndTimer() routine (to set up a 
once-per-second timer, with a pulse as the event delivery method), 
and then 

• sitting in a "do-forever" loop waiting for pulses or messages and 
processing them. 

Notice the check against the return value from MsgReceive()- a zero 
indicates it's a pulse (and we don't do any strong checking to ensure 
that it's our pulse), a non-zero indicates it's a message. The 
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processing of the pulse or message is done by gotAPulse() and 
gotAMessage( ). 

int 
main (void) II ignore command-line arguments 
{ 

} 

int rcvid; 
MessageT msg; 

II process ID of the sender 
II the message itself 

if ((chid= ChannelCreate (0)) == -1) { 

} 

fprintf (stderr, "%s: couldn't create channel!\n", 
progname); 

perror (NULL) ; 
exit (EXIT-FAILURE); 

II set up the pulse and timer 
setupPulseAndTimer (); 

II receive messages 
for (;;) { 

} 

rcvid = MsgReceive (chid, &msg, sizeof (msg), NULL); 

II determine who the message came from 
if (rcvid == 0) { 

II production code should check "code" field ... 
gotAPulse (); 

} else { 
gotAMessage (rcvid, &msg.msg); 

} 

II you'll never get here 
return (EXIT-SUCCESS); 

In setupPulseAndTimer() you see the code where we define the type 
of timer and notification scheme. When we talked about the timer 
function calls in the text above, I said that the timer could deliver a 
signal, a pulse, or cause a thread to be created. That decision is made 
here (in setupPulseAndTimer( )). Notice that we used the macro 
SIGEV _FULSEJNIT(). By using this macro, we're effectively 
assigning the value SIGEV _FULSE to the sigev JZotify member. (Had 
we used one of the SIGEV ..SIGNAL* JNIT() macros instead, it would 
have delivered the specified signal.) Notice that, for the pulse, we set 
the connection back to ourselves via the ConnectAttach() call, and 

Chapter 3 • Clocks, Timers, and Getting a Kick Every So Often 197 



Using timers 

give it a code that uniquely identifies it (we chose the manifest 
constant CODE_ TIMER; something that we defined). The final 
parameter in the initialization of the event structure is the priority of 
the pulse; we chose SIGEV _PULSE_PRIO.JNHERIT (the constant -I). 
This tells the kernel not to change the priority of the receiving thread 
when the pulse arrives. 

Near the bottom of this function, we call timer_create() to create a 
timer object within the kernel, and then we fill it in with data saying 
that it should go off in one second (the iLvalue member) and that it 
should reload with one-second repeats (the iLinterval member). Note 
that the timer is activated only when we call timer __settime( ), not when 
we create it. 

~ The SIGEV YULSE notification scheme is a Neutrino extension
POSIX has no concept of pulses. 

I* 
* setupPulseAndTimer 

* 
* 
* 

This routine is responsible for setting up a pulse so it 
sends a message with code MT_TIMER. It then sets up a 

* periodic timer that fires once per second. 
*I 

void 
setupPulseAndTimer (void) 
{ 

timer_t timerid; 
struct sigevent event; 
struct itimerspec timer; 
int coid; 

II timer ID for timer 
II event to deliver 
II the timer data struct 
II connection back to us 

II create a connection back to ourselves 
coid = ConnectAttach (0, 0, chid, 0, 0); 
if (coid == -1) { 

} 

fprintf (stderr, "%s: couldn't ConnectAttach!\n", 
progname); 

perror (NULL); 
exit (EXIT_FAILURE); 

II set up the kind of event that we want-- a pulse 
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SIGEV_PULSE_INIT {&event, coid, 
SIGEV-PULSE_pRIO-INHERIT, CODE-TIMER, 0); 

II create the timer, binding it to the event 
if {timer_create {CLOCK-REALTIME, &event, &timerid) == -1) { 

fprintf {stderr, "%s: can't timer_create, errno %d\n", 
progname, errno); 

perror {NULL) ; 
exit {EXIT-FAILURE); 

} 

II setup the timer (ls delay, ls reload) 
timer.it_value.tv_sec = 1; 
timer.it_value.tv_nsec = 0; 
timer.it_interval.tv_sec = 1; 
timer.it_interval.tv_nsec = 0; 

II and start it! 
timer_settime {timerid, 0, &timer, NULL); 

In gotAPulse(), you can see how we've implemented the server's 
ability to timeout a client. We walk down the list of clients, and since 
we know that the pulse is being triggered once per second, we simply 
decrement the number of seconds that the client has left before a 
timeout. If this value reaches zero, we reply back to that client with a 
message saying, "Sorry, timed out" (the MT _TIMEDOUT message 
type). You'll notice that we prepare this message ahead of time 
(outside the for loop), and then send it as needed. This is just a 
style/usage issue- if you expect to be doing a lot of replies, then it 
might make sense to incur the setup overhead once. If you don't 
expect to do a lot of replies, then it might make more sense to set it up 
as needed. 

If the timeout value hasn't yet reached zero, we don't do anything 
about it - the client is still blocked, waiting for a message to show 
up. 

I* 
* 
* 
* 
* 
* 

gotAPulse 

This routine is responsible for handling the fact that a 
timeout has occurred. It runs through the list of clients 
to see which client has timed-out, and replies to it with 
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* a timed-out response. 

*I 

void 
gotAPulse (void) 
{ 

} 

ClientMessageT msg; 
int i; 

if (debug) { 
time_t now; 

time (&now) ; 
print£ ("Got a Pulse at %s", ctime (&now)); 

} 

II prepare a response message 
msg.messageType = MT_TIMEDOUT; 

II walk down list of clients 
for (i = 0; i < MAX_CLIENT; i++) { 

} 

II is this entry in use? 
if (clients [i] . in_use) { 

} 

II is it about to time out? 
if (--clients [i] .timeout 0) { 

} 

II send a reply 
MsgReply (clients [i] .rcvid, EOK, &msg, 

sizeof (msg)); 

II entry no longer used 
clients [i] .in_use = 0; 

In gotAMessage( ), you see the other half of the functionality, where 
we add a client to the list of clients waiting for data (if it's a 
MLWAILDATA message), or we match up a client with the message 
that just arrived (if it's a MT _SEND _DATA message). Note that for 
simplicity we didn't add a queue of clients that are waiting to send 
data, but for which no receiver is yet available- that's a queue 
management issue left as an exercise for the reader! 
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gotAMessage 

This routine is called whenever a message arrives. We 
look at the type of message (either a "wait for data" 
message, or a "here's some data" message), and act 
accordingly. For simplicity, we'll assume that there is 
never any data waiting. See the text for more discussion 
about this. 

void 
gotAMessage (int rcvid, ClientMessageT *msg) 
{ 

int i; 

II determine the kind of message that it is 
switch (msg -> messageType) { 

II client wants to wait for data 
case MT_WAIT-DATA: 

II see if we can find a blank spot in the client table 
for (i = 0; i < MAX_CLIENT; i++) { 

} 

if (!clients [i] . in_use) { 

} 

II found, mark in use, save rcvid, set timeout 
clients [i] .in_use = 1; 
clients [i] .rcvid = rcvid; 
clients [i] .timeout = 5; 
return; 

fprintf (stderr, "Table full, message %d ignored, " 
"client blocked\n", rcvid); 

break; 

II client with data 
case MT_SEND-DATA: 

II see if we can find another client to reply to with 
II this client's data 
for (i = 0; i < MAX_CLIENT; i++) { 

if (clients [i] . in_use) { 

II found one-- reuse the incoming message 
II as an outgoing message 
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} 
} 

} 
} 

msg -> messageType = MT ...JJK; 

II reply to BOTH CLIENTS! 
MsgReply (clients [i] .rcvid, EOK, msg, 

sizeof (*msg)); 
MsgReply (rcvid, EOK, msg, sizeof (*msg)); 

clients [i] .in_use = 0; 
return; 

fprintf (stderr, "Table empty, message %d ignored, " 
"client blocked\n", rcvid); 

break; 

Some general notes about the code: 

• If there's no one waiting and a data message arrives, or there's no 
room in the list for a new waiter client, we print a message to 
standard error, but never reply to the client. This means that some 
clients could be sitting there, REPLY-blocked forever- we've lost 
their receive ID, so we have no way to reply to them later. 

This is intentional in the design. You could modify this to add 
MLNO_WAITERS and MLNO_SPACE messages, respectively, 
which can be returned whenever these errors were detected. 

• When a waiter client is waiting, and a data-supplying client sends 
to it, we reply to both clients. This is crucial, because we want 
both clients to unblock. 

• We reused the data-supplying client's buffer for both replies. This 
again is a style issue- in a larger application you'd probably have 
to have multiple types of return values, in which case you may not 
want to reuse the same buffer. 

• The implementation shown here uses a "cheesy" fixed-length array 
with an "in use" flag (clients [i] . in_use). Since my goal here 
isn't to demonstrate owner-list tricks and techniques for singly 
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linked list management, I've shown the version that's the easiest to 
understand. Of course, in your production code, you'd probably 
use a linked list of dynamically managed storage blocks. 

• When the message arrives in the MsgReceive(), our decision as to 
whether it was in fact "our" pulse is done on weak checking - we 
assume (as per the comments) that all pulses are the CODE_ TIMER 
pulse. Again, in your production code you'd want to check the 
pulse's code value and report on any anomalies. 

Note that the example above shows just one way of implementing 
timeouts for clients. Later in this chapter (in "Kernel timeouts"), we'll 
talk about kernel timeouts, which are another way of implementing 
almost the exact same thing, except that it's driven by the client, 
rather than a timer. 

Here we have a slightly different use for the periodic timeout 
messages. The messages are purely for the internal use of the server 
and generally have nothing to do with the client at all. 

For example, some hardware might require that the server poll it 
periodically, as might be the case with a network connection- the 
server should see if the connection is still "up," regardless of any 
instructions from clients. 

Another case could occur if the hardware has some kind of "inactivity 
shutdown" timer. For example, since keeping a piece of hardware 
powered up for long periods of time may waste power, if no one has 
used that hardware for, say, 10 seconds, the hardware could be 
powered down. Again, this has nothing to do with the client (except 
that a client request will cancel this inactivity powerdown) -it's just 
something that the server has to be able to provide for its hardware. 

Code-wise, this would be very similar to the example above, except 
that instead of having a list of clients that are waiting, you'd have only 
one timeout variable. Whenever a timer event arrives, this variable 
would be decremented; if zero, it would cause the hardware to shut 
down (or whatever other activity you wish to perform at that point). If 
it's still greater than zero, nothing would happen. 
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The only "twist" in the design would be that whenever a message 
comes in from a client that uses the hardware, you'd have to reset that 
timeout variable back to its full value - having someone use that 
resource resets the "countdown." Conversely, the hardware may take a 
certain "warm-up" time in order to recover from being powered down. 
In this case, once the hardware has been powered down, you would 
have to set a different timer once a request arrived from a client. The 
purpose of this timer would be to delay the client's request from going 
to the hardware until the hardware has been powered up again. 

So far, we've seen just about all there is to see with timers, except for 
one small thing. We've been delivering messages (via a pulse), but 
you can also deliver POSIX signals. Let's see how this is done: 

timer_create (CLOCK-REALTIME, NULL, &timerid); 

This is the simplest way to create a timer that sends you a signal. This 
method raises SIGALRM when the timer fires. If we had actually 
supplied a struct sigevent, we could specify which signal we 
actually want to get: 

struct sigevent event; 

SIGEV_SIGNAL-INIT (&event, SIGUSRl); 
timer_create (CLOCK-REALTIME, &event, &timerid); 

This hits us with SIGUSRl instead of SIGALRM. 

You catch timer signals with normal signal handlers, there's nothing 
special about them. 

If you'd like to create a new thread every time a timer fires, then you 
can do so with the struct sigevent and all the other timer stuff 
we just discussed: 

struct sigevent event; 

SIGEV_THREAD_INIT (&event, maintenance_func, NULL); 
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You'll want to be particularly careful with this one, because if you 
specify too short an interval, you'll be flooded with new threads! This 
could eat up all your CPU and memory resources! 

Apart from using timers, you can also get and set the current realtime 
clock, and adjust it gradually. The following functions can be used for 
these purposes: 

Function Type? Description 

ClockAdjust() Neutrino Gradually adjust the time 

ClockCycles() Neutrino High-resolution snapshot 

clock_getres() PO SIX Fetch base timing resolution 

clock_gettime() PO SIX Get current time of day 

ClockPeriod() Neutrino Get/set base timing resolution 

clock...settime() POSIX Set current time of day 

Clock Time() Neutrino Get/set current time of day 

The functions clock_gettime() and clock...settime() are the PO SIX 
functions based on the kernel function ClockTime(). These functions 
can be used to get or set the current time of day. Unfortunately, setting 
this is a "hard" adjustment, meaning that whatever time you specify in 
the buffer is immediately taken as the current time. This can have 
startling consequences, especially when time appears to move 
"backwards" because the time was ahead of the "real" time. 
Generally, setting a clock using this method should be done only 
during power up or when the time is very much out of 
synchronization with the real time. 

That said, to effect a gradual change in the current time, the function 
ClockAdjust() can be used: 
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int 
ClockAdjust (clockid_t id, 

const struct _clockadjust *new, 
const struct _clockadjust *old) ; 

The parameters are the clock source (always use CLOCK.REALTIME), 

and a new and old parameter. Both the new and old parameters are 
optional, and can be NULL. The old parameter simply returns the 
current adjustment. The operation of the clock adjustment is 
controlled through the new parameter, which is a pointer to a structure 
that contains two elements, tickJisec_inc and tick_count. Basically, 
the operation of ClockAdjust() is very simple. Over the next 
tick_count clock ticks, the adjustment contained in tickJisec_inc is 
added to the current system clock. This means that to move the time 
forward (to "catch up" with the real time), you'd specify a positive 
value for tickJisec_inc. Note that you'd never move the time 
backwards! Instead, if your clock was too fast, you'd specify a small 
negative number to tickJisec_inc, which would cause the current time 
to not advance as fast as it would. So effectively, you've slowed down 
the clock until it matches reality. A rule of thumb is that you 
shouldn't adjust the clock by more than 10% of the base timing 
resolution of your system (as indicated by the functions we'll talk 
about next, ClockPeriod() and friends). 

As we've been saying throughout this chapter, the timing resolution of 
everything in the system is going to be no more accurate than the 
base timing resolution coming into the system. So the obvious 
question is, how do you set the base timing resolution? You can use 
the following function for this: 

int 
ClockPeriod (clockid_t ~' 

const struct _clockperiod *new, 
struct _clockperiod *old, 
int reserved) ; 

As with the ClockAdjust() function described above, the new and the 
old parameters are how you get and/or set the values of the base 
timing resolution. The new and old parameters are pointers to 
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structures of struct _clockperiod, which contains two members, 
nsec andfract. Currently, thefract member must be set to zero (it's 
the number of femtoseconds; we probably won't use this kind of 
resolution for a little while yet!) The nsec member indicates how 
many nanoseconds elapse between ticks of the base timing clock. The 
default is 10 milliseconds (1 millisecond on machines with CPU 
speeds of greater than 40 MHz), so the nsec member (if you use the 
"get" form of the call by specifying the old parameter) will show 
approximately I 0 million nanoseconds. (As we discussed above, in 
"Clock interrupt sources," it's not going to be exactly 10 millisecond.) 

While you can certainly feel free to try to set the base timing 
resolution on your system to something ridiculously small, the kernel 
will step in and prevent you from doing that. Generally, you can set 
most systems in the I millisecond to hundreds of microseconds range. 

There is one timebase that might be available on your processor that 
doesn't obey the rules of "base timing resolution" we just described. 
Some processors have a high-frequency (high-accuracy) counter built 
right into them, which Neutrino can let you have access to via the 
ClockCycles() call. For example, on a Pentium processor running at 
200 MHz, this counter increments at 200 MHz as well, so it can give 
you timing samples right down to 5 nanoseconds. This is particularly 
useful if you want to figure out exactly how long a piece of code takes 
to execute (assuming of course, that you don't get preempted). You'd 
call ClockCycles() before your code and after your code, and then 
compute the delta. See the C Library reference for more details. 
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l@f' Note that on an SMP system, you may run into a little problem. If 
your thread gets a ClockCycles() value from one CPU and then 
eventually runs on another CPU, you may get inconsistent results. 
This stems from the fact that the counters used by ClockCycles() are 
stored in the CPU chips themselves, and are not synchronized 
between CPUs. The solution to this is to use thread affinity to force 
the thread to run on a particular CPU. 

Advanced topics 

Now that we've seen the basics of timers, we'lllook at a few 
advanced topics: 

the CLOCK_SOFTTIME and CLOCK_MONOTONIC timer types, 
and 

2 kernel timeouts. 

Other clock 
sources 

We've seen the clock source CLOCK_REALTIME, and mentioned that 
a POSIX conforming implementation may supply as many different 
clock sources as it feels like, provided that it at least provides 
CLOCK_REALTIME. 

What is a clock source? Simply put, it's an abstract source of timing 
information. If you want to put it into real life concepts, your personal 
watch is a clock source; it measures how fast time goes by. Your 
watch will have a different level of accuracy than someone else's 
watch. You may forget to wind your watch, or get it new batteries, 
and time may seem to "freeze" for a while. Or, you may adjust your 
watch, and all of a sudden time seems to "jump." These are all 
characteristics of a clock source. 

Under Neutrino, CLOCK_REALTIME is based off of the "current time 
of day" clock that Neutrino provides. (In the examples below, we refer 
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to this as "Neutrino Time.") This means that if the system is running, 
and suddenly someone adjusts the time forward by 5 seconds, the 
change may or may not adversely affect your programs (depending on 
what you're doing). Let's look at a sleep (30); call: 

Real Time Neutrino Time Activity 

11:22:05 11:22:00 sleep (3 0) ; 

11:22:15 11:22:15 clock gets adjusted to 11 :22: 15; it 
was 5 seconds too slow! 

11:22:35 11:22:35 sleep ( 3 0) ; wakes up 

Beautiful! The thread did exactly what you expected: at 11:22:00 it 
went to sleep for thirty seconds, and at 11:22:35 (thirty elapsed 
seconds later) it woke up. Notice how the sleep() "appeared" to sleep 
for 35 seconds, instead of 30; in real, elapsed time, though, only 30 
seconds went by because Neutrino's clock got adjusted ahead by five 
seconds (at 11:22: 15). 

The kernel knows that the sleep() call is a relative timer, so it takes 
care to ensure that the specified amount of "real time" elapses. 

Now, what if, on the other hand, we had used an absolute timer, and at 
11:22:00 in "Neutrino time" told the kernel to wake us up at 11 :22:30? 

Real Time Neutrino Time Activity 

11:22:05 11:22:00 wake up at 11:22:30 

11:22:15 11:22:15 clockgetsadjustedasbefore 

11:22:30 11:22:30 wakes up 

This too is just like what you'd expect- you wanted to be woken up 
at 11:22:30, and (in spite of adjusting the time) you were. 
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However, there's a small twist here. If you take a look at the 
pthread_mutex_timedlock() function, for example, you'll notice that it 
takes an absolute timeout value, as opposed to a relative one: 

int 
pthread...mutex_timedlock (pthread...mutex_t *mutex, 

const struct timespec *abs_timeout); 

As you can imagine, there could be a problem if we try to implement 
a mutex that times out in 30 seconds. Let's go through the steps. At 
11:22:00 (Neutrino time) we decide that we're going to try and lock a 
mutex, but we only want to block for a maximum of 30 seconds. 
Since the pthread_mutex_timedlock() function takes an absolute time, 
we perform a calculation: we add 30 seconds to the current time, 
giving us 11:22:30. If we follow the example above, we would wake 
up at 11:22:30, which means that we would have only locked the 
mutex for 25 seconds, instead of the full 30. 

The POSIX people thought about this, and the solution they came up 
with was to make the pthread_mutex_timedlock() function be based on 
CLOCK_MONOTONIC instead of CLOCK_REALTIME. This is built in 
to the pthread_mutex_timedlock() function and isn't something that 
you can change. 

They way CLOCK_MONOTONIC works is that its timebase is never 
adjusted. The impact of that is that regardless of what time it is in the 
real world, if you base a timer in CLOCK_MONOTONIC and add 30 
seconds to it (and then do whatever adjustments you want to the 
time), the timer will expire in 30 elapsed seconds. 

The clock source CLOCK_MONOTONIC has the following 
characteristics: 

• always increasing count 

• based on real time 

• starts at zero 
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lks1i" The important thing about the clock starting at zero is that this is a 
different "epoch" (or "base") than CLOCK_REALTIME's epoch of Jan 
1 1970, 00:00:00 GMT. So, even though both clocks run at the same 
rate, their values are not interchangeable. 

So what does 
CLOCK_SOFTTIME do? 

If we wanted to sort our clock sources by "hardness" we'd have the 
following ordering. You can think of CLOCK..MONOTONIC as being a 
freight train- it doesn't stop for anyone. Next on the list is 
CLOCK_REALTIME, it can be pushed around a bit (as we saw with the 
time adjustment). Finally, we have CLOCK_SOFfTIME, which we can 
push around a lot. 

The main use of CLOCK_SOFfTIME is for things that are "soft" -
things that aren't going to cause a critical failure if they don't get 
done. CLOCK_SOFfTIME is "active" only when the CPU is running. 
(Yes, this does sound obvious:-) but wait!) When the CPU is 
powered down due to Power Management detecting that nothing is 
going to happen for a little while, CLOCK_SOFfTIME gets powered 
down as well! 

Here's a timing chart showing the three clock sources: 

Real Time Neutrino Time Activity 

11:22:05 I 1:22:00 wake up at "now" + 00:00:30 (see 
below) 

11:22:15 11:22:15 clock gets adjusted as before 

11:22:20 11:22:20 power management turns off 
CPU 

11:22:30 11:22:30 CLOCK_REALTIME wakes up 

11:22:35 11:22:35 CLOCK..MONOTONIC wakes up 

continued ... 
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Real Time Neutrino Time Activity 

11:45:07 II :45:07 power management turns on 
CPU, and CLOCK_SOFTTIME 

wakes up 

There are a few things to note here: 

• we precomputed our wakeup time as "now" plus 30 seconds and 
used an absolute timer to wake us up at the computed time. This is 
different than waking up in 30 seconds using a relative timer. 

• Note that for convenience of putting the example on one time-line, 
we've lied a little bit. If the CLOCK_REALTIME thread did indeed 
wake up, (and later the same for CLOCK_MONOTONIC) it would 
have caused us to exit out of power management mode at that time, 
which would then cause CLOCK_SOFTTIME to wake up. 

When CLOCK_SOFTTIME "over-sleeps," it wakes up as soon as it's 
able- it doesn't stop "timing" while the CPU is powered down, it's 
just not in a position to wake up until after the CPU powers up. Other 
than that, CLOCK_SOFTTIME is just like CLOCK..REALTIME. 

To specify one of the different clock source, use a POSIX timing 
function that accepts a clock ID. For example: 

#include <time.h> 

int 
clock_nanosleep (clockid_t clock_id, 

int flags, 
const struct timespec *rqtp, 
struct timespec *rmtp); 

The clock_nanosleep() function accepts the clock_id parameter (telling 
it which clock source to use), a flag (which determines if the time is 
relative or absolute), a "requested sleep time" parameter (rqtp), as 
well as a pointer to an area where the function can fill in the amount 
of time remaining (in the rmtp parameter, which can be NULL if you 
don't care). 
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Neutrino lets you have a timeout associated with all kernel blocking 
states. We talked about the blocking states in the Processes and 
Threads chapter, in the section "Kernel states." Most often, you'll 
want to use this with message passing; a client will send a message to 
a server, but the client won't want to wait "forever" for the server to 
respond. In that case, a kernel timeout is suitable. Kernel timeouts are 
also useful with the pthread_join() function. You might want to wait 
for a thread to finish, but you might not want to wait too long. 

Here's the definition for the TimerTimeout() function call, which is the 
kernel function responsible for kernel timeouts: 

#include <sys/neutrino.h> 

int 
TimerTimeout (clockid_t id, 

int flags, 
const struct sigevent *notify, 
const uint64_t *lllime, 
uint64_t *otime); 

This says that TimerTimeout() returns an integer (a pass/fail 
indication, with -1 meaning the call failed and set errno, and zero 
indicating success). The time source (CLOCK_REALTIME, etc.) is 
passed in id, and the flags parameter gives the relevant kernel state or 
states. The notify should always be a notification event of type 
SIGEV _UNBLOCK, and the ntime is the relative time when the kernel 
call should timeout. The otime parameter indicates the previous value 
of the timeout- it's not used in the vast majority of cases (you can 
pass NULL). 
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Kernel timeouts with 
pthread_join() 

It's important to note that the timeout is armed by TimerTimeout(), 
and triggered on entry into one of the kernel states specified by flags. 
It is cleared upon return from any kernel call. This means that you 
must re-arm the timeout before each and every kernel call that you 
want to be timeout-aware. You don't have to clear the timeout after 
the kernel call; this is done automagically. 

The simplest case to consider is a kernel timeout used with the 
pthread_join() call. Here's how you'd set it up: 

I* 
* part of ttl.c 

*I 

#include <syslneutrino.h> 

II 1 billion nanoseconds in a second 
#define SEC_NSEC lOOOOOOOOOLL 

int 
main (void) II ignore arguments 
{ 

uint64_t timeout; 
struct sigevent event; 
int rval; 

II set up the event-- this can be done once 

II This or event.sigev_notify = SIGEV_UNBLOCK: 
SIGEV-UNBLOCK-INIT (&event); 

II set up for 10 second timeout 
timeout = lOLL * SEC-NSEC; 

TimerTimeout (CLOCK-REALTIME, _NTQ_TIMEOUT_JQIN, 
&event, &timeout, NULL); 

rval = pthread_join (thread_id, NULL); 
if (rval == ETIMEDOUT) { 

printf ("Thread %d still running after 10 secondsl\n", 
thread_id); 

} 

214 Chapter 3 • Clocks, Timers, and Getting a Kick Every So Often 



Kernel timeouts with 
message passing 

Advanced topics 

We used the SIGEV_UNBLOCKJNIT() macro to initialize the event 
structure, but we could have set the sigev_notify member to 
SIGEV _UNBLOCK ourselves. Even more elegantly, we could pass 
NULL as the struct sigevent- TimerTimeout() understands this 
to mean that it should use a SIGEV _UNBLOCK. 

If the thread (specified in thread_id) is still running after 10 seconds, 
then the kernel call will be timed out- pthread_join() will return 
with an erma of ETIMEDOUT. 

You can use another shortcut- by specifying a NULL for the timeout 
value (ntime in the formal declaration above), this tells the kernel not 
to block in the given state. This can be used for polling. (While 
polling is generally discouraged, you could use it quite effectively in 
the case of the pthread_join()- you'd periodically poll to see if the 
thread you're interested in was finished yet. If not, you could perform 
other work.) 

Here's a code sample showing a non-blockingpthread_join(): 

int 
pthread_join_nb (int tid, void **rval) 
{ 

TimerTimeout (CLOCK-REALTIME, _NTO_TIMEOUT_JOIN, 
NULL, NULL, NULL); 

return (pthread_join (tid, rval)); 

Things get a little trickier when you're using kernel timeouts with 
message passing. Recall from the Message Passing chapter (in the 
"Message passing and client/server" part) that the server may or may 
not be waiting for a message when the client sends it. This means that 
the client could be blocked in either the SEND-blocked state (if the 
server hasn't received the message yet), or the REPLY-blocked state 
(if the server has received the message, and hasn't yet replied). The 
implication here is that you should specify both blocking states for the 
flags argument to TimerTimeout(), because the client might get 
blocked in either state. 
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Summary 

To specify multiple states, you simply OR them together: 

TimerTimeout ( ... _NTQ_TIMEOUT_SEND I _NTQ_TIMEOUT-REPLY, ... ); 

This causes the timeout to be active whenever the kernel enters either 
the SEND-blocked state or the REPLY-blocked state. There's nothing 
special about entering the SEND-blocked state and timing out- the 
server hasn't received the message yet, so the server isn't actively 
doing anything on behalf of the client. This means that if the kernel 
times out a SEND-blocked client, the server doesn't have to be 
informed. The client's MsgSend() function returns an ETIMEDOUT 
indication, and processing has completed for the timeout. 

However, as was mentioned in the Message Passing chapter (under 
"_NTO_CHF _UNBLOCK"), if the server has already received the 
client's message, and the client wishes to unblock, there are two 
choices for the server. If the server has not specified 
_NTO_CHF_UNBLOCK on the channel it received the message on, then 
the client will be unblocked immediately, and the server won't receive 
any indication that an unblock has occurred. Most of the servers I've 
seen always have the _NTO_CHF _UNBLOCK flag enabled. In that case, 
the kernel delivers a pulse to the server, but the client remains blocked 
until the server replies! As mentioned in the above-referenced section 
of the Message Passing chapter, this is done so that the server has an 
indication that it should do something about the client's unblock 
request. 

We've looked at Neutrino's time-based functions, including timers 
and how they can be used, as well as kernel timeouts. Relative timers 
provide some form of event "in a certain number of seconds," while 
absolute timers provide this event "at a certain time." Timers (and, 
generally speaking, the struct sigevent) can cause the delivery 
of a pulse, a signal, or a thread to start. 

The kernel implements timers by storing the absolute time that 
represents the next "event" on a sorted queue, and comparing the 
current time (as derived by the timer tick interrupt service routine) 
against the head of the sorted queue. When the current time is greater 
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than or equal to the first member of the queue, the queue is processed 
(for all matching entries) and the kernel dispatches events or threads 
(depending on the type of queue entry) and (possibly) reschedules. 

To provide support for power-saving features, you should disable 
periodic timers when they're not needed- otherwise, the 
power-saving feature won't implement power saving, because it 
believes that there's something to "do" periodically. You could also 
use the CLOCK_SOFTTIME clock source, unless of course you 
actually wanted the timer to defeat the power saving feature. 

Given the different types of clock sources, you have flexibility in 
determining the basis of your clocks and timer; from "real, elapsed" 
time through to time sources that are based on power management 
activities. 
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Neutrino and interrupts 

In this section, we'll take a look at interrupts, how we deal with them 
under Neutrino, their impact on scheduling and realtime, and some 
interrupt-management strategies. 

The first thing we need to ask is, "What's an interrupt?" 

An interrupt is exactly what it sounds like- an interruption of 
whatever was going on and a diversion to another task. 

For example, suppose you're sitting at your desk working on job "A." 
Suddenly, the phone rings. A Very Important Customer (VIC) needs 
you to immediately answer some skill-testing question. When you've 
answered the question, you may go back to working on job "A," or the 
VIC may have changed your priorities so that you push job "A" off to 
the side and immediately start on job "B." 

Now let's put that into perspective under Neutrino. 

At any moment in time, the processor is busy processing the work for 
the highest-priority READY thread (this will be a thread that's in the 
RUNNING state). To cause an interrupt, a piece of hardware on the 
computer's bus asserts an interrupt line (in our analogy, this was the 
phone ringing). 

As soon as the interrupt line is asserted, the kernel jumps to a piece of 
code that sets up the environment to run an interrupt service routine 
(ISR), a piece of software that determines what should happen when 
that interrupt is detected. 

The amount of time that elapses between the time that the interrupt 
line is asserted by the hardware and the first instruction of the ISR 
being executed is called the interrupt latency. Interrupt latency is 
measured in microseconds. Different processors have different 
interrupt latency times; it's a function of the processor speed, cache 
architecture, memory speed, and, of course, the efficiency of the 
operating system. 
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In our analogy, if you're listening to some music in your headphones 
and ignoring the ringing phone, it will take you longer to notice this 
phone "interrupt." Under Neutrino, the same thing can happen; there's 
a processor instruction that disables interrupts ( c 1 i on the x86, for 
example). The processor won't notice any interrupts until it reenables 
interrupts (on the x86, this is the sti opcode). 

lfs1f To avoid CPU-specific assembly language calls, Neutrino provides 
four calls: InterruptEnable() and InterruptDisable(), and 
InterruptLock() and Interrupt Unlock(). These take care of all the 
low-level details on all supported platforms. 

Interrupt service 
routine 
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The ISR usually performs the minimum amount of work possible, and 
then ends (in our analogy, this was the conversation on the telephone 
with the VIC- we usually don't put the customer on hold and do 
several hours of work; we just tell the customer, "Okay, I'll get right 
on that!"). When the ISR ends, it can tell the kernel either that nothing 
should happen (meaning the ISR has completely handled the event 
and nothing else needs to be done about it) or that the kernel should 
perform some action that might cause a thread to become READY. 

In our analogy, telling the kernel that the interrupt was handled would 
be like telling the customer the answer- we can return back to 
whatever we were doing, knowing that the customer has had their 
question answered. 

Telling the kernel that some action needs to be performed is like 
telling the customer that you'll get back to them- the telephone has 
been hung up, but it could ring again. 

The ISR is a piece of code that's responsible for clearing the source of 
the interrupt. 

This is a key point, especially in conjunction with this fact: the 
interrupt runs at a priority higher than any software priority. This 
means that the amount of time spent in the ISR can have a serious 
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impact on thread scheduling. You should spend as little time as 
possible in the ISR. Let's examine this in a little more depth. 

The hardware device that generated the interrupt will keep the 
interrupt line asserted until it's sure the software handled the interrupt. 
Since the hardware can't read minds, the software must tell it when it 
has responded to the cause of the interrupt. Generally, this is done by 
reading a status register from a specific hardware port or a block of 
data from a specific memory location. 

In any event, there's usually some form of positive acknowledgement 
between the hardware and the software to "de-assert" the interrupt 
line. (Sometimes there isn't an acknowledgement; for example, a 
piece of hardware may generate an interrupt and assume that the 
software will handle it.) 

Because the interrupt runs at a higher priority than any software 
thread, we should spend as little time as possible in the ISR itself to 
minimize the impact on scheduling. If we clear the source of the 
interrupt simply by reading a register, and perhaps stuffing that value 
into a global variable, then our job is simple. 

This is the kind of processing done by the ISR for the serial port. The 
serial port hardware generates an interrupt when a character has 
arrived. The ISR handler reads a status register containing the 
character, and stuffs that character into a circular buffer. Done. Total 
processing time: a few microseconds. And, it must be fast. Consider 
what would happen if you were receiving characters at 115k baud (a 
character about every 100 llS); if you spent anywhere near 100 llS 

handling the interrupt, you wouldn't have time to do anything else! 

I&' Don't let me mislead you though- the serial port's interrupt service 
routine could take longer to complete. This is because there's a 
tail-end poll that looks to see if more characters are waiting in the 
device. 
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Clearly, minimizing the amount of time spent in the interrupt can be 
perceived as "Good customer service" in our analogy - by keeping 
the amount of time that we're on the phone to a minimum, we avoid 
giving other customers a busy signal. 

What if the handler needs to do a significant amount of work? Here 
are a couple of possibilities: 

• The amount of time required to clear the source of the interrupt is 
short, but the amount of work required to talk to the hardware is 
long (the customer asked us a short question that takes a long time 
to answer). 

• The amount of time required to clear the source of the interrupt is 
long (the customer's description of the problem is long and 
involved). 

In the first case, we'd like to clear the source of the interrupt as fast as 
possible and then tell the kernel to have a thread do the actual work of 
talking to the slow hardware. The advantage here is that the ISR 
spends just a tiny amount of time at the super-high priority, and then 
the rest of the work is done based on regular thread priorities. This is 
similar to your answering the phone (the super-high priority), and 
delegating the real work to one of your assistants. We'lllook at how 
the ISR tells the kernel to schedule someone else later in this chapter. 

In the second case, things get ugly. If an ISR doesn't clear the source 
of the interrupt when it exits, the kernel will immediately be 
re-interrupted by the Programmable Interrupt Controller (PIC- on 
the x86, this is the 8259 or equivalent) chip. 

I@' For PIC fans: we'll talk about edge-sensitive and level-sensitive 
interrupts shortly. 
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We'll continuously be running the ISR, without ever getting a chance 
to run the thread-level code we need to properly handle the interrupt. 

What kind of brain-damaged hardware requires a long time to clear 
the source of the interrupt? Your basic PC floppy disk controller 
keeps the interrupt asserted until you've read a number of status 
register values. Unfortunately, the data in the registers isn't available 
immediately, and you have to poll for this status data. This could take 
milliseconds (a long time in computer terms)! 

The solution to this is to temporarily mask interrupts -literally tell 
the PIC to ignore interrupts from this particular source until you tell it 
otherwise. In this case, even though the interrupt line is asserted from 
the hardware, the PIC ignores it and doesn't tell the processor about 
it. This lets your ISR schedule a thread to handle this hardware 
outside the ISR. When your thread is finished transferring data from 
the hardware, it can tell the PIC to unmask that interrupt. This lets 
interrupts from that piece of hardware be recognized again. In our 
analogy, this is like transferring the VIC's call to your assistant. 

How does an ISR tell the kernel that it should now schedule a thread 
to do some work? (And conversely, how does it tell the kernel that it 
shouldn't do that?) 

Here's some pseudo-code for a typical ISR: 

FUNCTION ISR BEGIN 

END 

determine source of interrupt 
clear source of interrupt 
IF thread required to do some work THEN 

RETURN (event); 
ELSE 

RETURN (NULL); 
END IF 

The trick is to return an event (of type struct sigevent, which we 
talked about in the Clocks, Timers, and Getting a Kick Every So 
Often chapter) instead of NULL. Note that the event that you return 
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must be persistent after the stack frame of the ISR has been destroyed. 
This means that the event must be declared outside of the ISR, or be 
passed in from a persistent data area using the area parameter to the 
ISR, or declared as a static within the ISR itself. Your choice. If 
you return an event, the kernel delivers it to a thread when your ISR 
returns. Because the event "alerts" a thread (via a pulse, as we talked 
about in the Message Passing chapter, or via a signal), this can cause 
the kernel to reschedule the thread that gets the CPU next. If you 
return NULL from the ISR, then the kernel knows that nothing special 4 

needs to be done at thread time, so it won't reschedule any threads
the thread that was running at the time that the ISR preempted it 
resumes running. 

There's one more piece of the puzzle we've been missing. Most PICs 
can be programmed to operate in level-sensitive or edge-sensitive 
mode. 

In level-sensitive mode, the interrupt line is deemed to be asserted by 
the PIC while it's in the "on" state. (This corresponds to label "1" in 
the diagram below.) 

Level-sensitive interrupt assertion. 

We can see that this would cause the problem described above with 
the floppy controller example. Whenever the ISR finishes, the kernel 
tells the PIC, "Okay, I've handled this interrupt. Tell me the next time 
that it gets activated" (step 2 in the diagram). In technical terms, the 
kernel sends an End Of Interrupt (EOI) to the PIC. The PIC looks at 
the interrupt line and if it's still active would immediately re-interrupt 
the kernel (step 3). 
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We could get around this by programming the PIC into edge-sensitive 
mode. In this mode, the interrupt is noticed by the PIC only on an 
active-going edge. 

L 
CD 

® 
0 CD 

® 
1---- t-----

0 0 
I 

Edge-sensitive interrupt assertion. 

Even if the ISR fails to clear the source of the interrupt, when the 
kernel sends the EOI to the PIC (step 2 in the diagram), the PIC 
wouldn't re-interrupt the kernel, because there isn't another 
active-going edge transition after the EOI. In order to recognize 
another interrupt on that line, the line must first go inactive (step 4), 
and then active (step 1). 

Well, it seems all our problems have been solved! Simply use 
edge-sensitive for all interrupts. 

Unfortunately, edge-sensitive mode has a problem of its own. 

Suppose your ISR fails to clear the cause of the interrupt. The 
hardware would still have the interrupt line asserted when the kernel 
issues the EOI to the PIC. However, because the PIC is operating in 
edge-sensitive mode, it never sees another interrupt from that device. 

Now what kind of bozo would write an ISR that forgot to clear the 
source of the interrupt? Unfortunately it isn't that cut-and-dried. 
Consider a case where two devices (let's say a SCSI bus adapter and 
an Ethernet card) are sharing the same interrupt line, on a hardware 
bus architecture that allows that. (Now you're asking, "Who'd set up a 
machine like that?!?" Well, it happens, especially if the number of 
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Time 

Hardware interrupt 

interrupt sources on the PIC is in short supply!) In this case, the two 
ISR routines would be attached to the same interrupt vector (this is 
legal, by the way), and the kernel would call them in tum whenever it 
got an interrupt from the PIC for that hardware interrupt level. 

request line (composite)----' 

Hardware interrupt 
line for Ethernet 

Hardware interrupt 
line for SCSI 

_j 

228 Chapter 4 • Interrupts 

ISRscsl 

Sharing interrupts - one at a time. 

In this case, because only one of the hardware devices was active 
when its associated ISR ran (the SCSI device), it correctly cleared the 
source of the interrupt (step 2). Note that the kernel runs the ISR for 
the Ethernet device (in step 3) regardless- it doesn't know whether 
the Ethernet hardware requires servicing or not as well, so it always 
runs the whole chain. 

But consider this case: 



Hardware interrupt 
request line (composite) 

Hardware interrupt 
line for Ethernet 

Hardware interrupt 
line for SCSI 

Time 

Neutrino and interrupts 

'cv 
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ISRscsl ISREthemet 

Sharing interrupts - several at once. 

Here's where the problem lies. 

The Ethernet device interrupted first. This caused the interrupt line to 
be asserted (active-going edge was noted by the PIC), and the kernel 
called the first interrupt handler in the chain (the SCSI disk driver; 
step 1 in the diagram). The SCSI disk driver's ISR looked at its 
hardware and said, "Nope, wasn't me. Oh well, ignore it" (step 2). 
Then the kernel called the next ISR in the chain, the Ethernet ISR 
(step 3). The Ethernet ISR looked at the hardware and said, "Hey! 
That's my hardware that triggered the interrupt. I'm going to clear it." 
Unfortunately, while it was clearing it, the SCSI device generated an 
interrupt (step 4). 

When the Ethernet ISR finished clearing the source of the interrupt 
(step 5), the interrupt line is still asserted, thanks to the SCSI 
hardware device. However, the PIC, being programmed in 
edge-sensitive mode, is looking for an inactive-to-active transition (on 
the composite line) before recognizing another interrupt. That isn't 
going to happen because the kernel has already called both interrupt 
service routines and is now waiting for another interrupt from the 
PIC. 
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In this case, a level-sensitive solution would be appropriate because 
when the Ethernet ISR finishes and the kernel issues the EOI to the 
PIC, the PIC would pick up the fact that an interrupt is still active on 
the bus andre-interrupt the kernel. The kernel would then run through 
the chain of ISRs, and this time the SCSI driver would get a chance to 
run and clear the source of the interrupt. 

The selection of edge-sensitive versus level-sensitive is something 
that will depend on the hardware and the startup code. Some hardware 
will support only one or the other; hardware that supports either mode 
will be programmed by the startup code to one or the other. You'll 
have to consult the BSP (Board Support Package) documentation that 
came with your system to get a definitive answer. 

Writing interrupt handlers 

Let's see how to set up interrupt handlers- the calls, the 
characteristics, and some strategies. 

To attach to an interrupt source, you'd use either InterruptAttach() or 
InterruptAttachEvent( ). 

#include <sys/neutrino.h> 

int 
InterruptAttachEvent (int intr, 

int 

const struct sigevent *event, 
unsigned flags) ; 

InterruptAttach (int intr, 
const struct sigevent * 

(*handler) (void *area, int id) , 
const void *area, 
int size, 
unsigned flags) ; 

The intr argument specifies which interrupt you wish to attach the 
specified handler to. The values passed are defined by the startup code 
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that initialized the PIC (amongst other things) just before Neutrino 
was started. (There's more information on the startup code in your 
Neutrino documentation; look in the Utilities Reference under 
startup-*; e.g., startup-p5064.) 

At this point, the two functions InterruptAttach() and 
InterruptAttachEvent() differ. Let's look at InterruptAttachEvent() as 
it's simpler, first. Then we'll come back to InterruptAttach( ). 

The InterruptAttachEvent() function takes two additional arguments: 
the argument event, which is a pointer to the struct sigevent that 
should be delivered, and a .flags parameter. InterruptAttachEvent() 
tells the kernel that the event should be returned whenever the 
interrupt is detected, and that the interrupt level should be masked off. 
Note that it's the kernel that interprets the event and figures out which 
thread should be made READY. 

With InterruptAttach(), we're specifying a different set of parameters. 
The handler parameter is the address of a function to call. As you can 
see from the prototype, handler() returns a struct sigevent, 

which indicates what kind of an event to return, and takes two 
parameters. The first passed parameter is the area, which is simply 
the area parameter that's passed to InterruptAttach() to begin with. 
The second parameter, id, is the identification of the interrupt, which 
is also the return value from InterruptAttach( ). This is used to identify 
the interrupt and to mask, unmask, lock, or unlock the interrupt. The 
fourth parameter to InterruptAttach() is the size, which indicates how 
big (in bytes) the data area that you passed in area is. Finally, the 
flags parameter is the same as that passed for the 
InterruptAttachEvent(); we'll discuss that shortly. 

At this point, you've called either InterruptAttachEvent() or 
InterruptAttach( ). 
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KW Since attaching an interrupt isn't something you want everyone to be 
able to do, Neutrino allows only threads that have "I/0 privity" 
enabled to do it (see the ThreadCtl() function in your Neutrino C 
Library Reference). Only threads running from the root account or 
that are setuid() to root can obtain "1/0 privity"; hence we're 
effectively limiting this ability to root. 
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Here's a code snippet that attaches an ISR to the hardware interrupt 
vector, which we've identified in our code sample by the constant 
HW _SERIALIRQ: 

#include <sys/neutrino.h> 

int interruptiD; 

const struct sigevent * 
intHandler (void *arg, int id) 
{ 

} 

int 
main (int argc, char **argv) 
{ 

interruptiD InterruptAttach (HW_SERIAL-IRQ, 

} 

if (interruptiD == -1) { 

intHandler, 
&:event, 
sizeof (event), 
0); 

fprintf (stderr, 11 %s: can't attach to IRQ %d\n", 
progname, HW_SERIAL-IRQ); 

perror (NULL); 
exit (EXIT-FAILURE); 

} 

return (EXIT_SUCCESS); 

This creates the association between the ISR (the routine called 
intHandler( ); see below for details) and the hardware interrupt vector 
HW _SERIALIRQ. 
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At this point, if an interrupt occurs on that interrupt vector, our ISR 
will be dispatched. When we call InterruptAttach(), the kernel 
unmasks the interrupt source at the PIC level (unless it's already 
unmasked, which would be the case if multiple ISRs were sharing the 
same interrupt). 

When done with the ISR, we may wish to break the association 
between the ISR and the interrupt vector: 

int 
InterruptDetach ( int id) ; 

I said "may" because threads that handle interrupts are generally 
found in servers, and servers generally hang around forever. It's 
therefore conceivable that a well-constructed server wouldn't ever 
issue the InterruptDetach() function call. Also, the OS will remove 
any interrupt handlers that a thread or process may have associated 
with it when the thread or process dies. So, simply falling off the end 
of main(), calling exit(), or exiting due to a SIGSEGV, will dissociate 
your ISR from the interrupt vector, automagically. (Of course, you'll 
probably want to handle this a little better, and stop your device from 
generating interrupts. If another device is sharing the interrupt, then 
there are no two ways about it- you must clean up, otherwise you 
won't get any more interrupts if running edge-sensitive mode, or 
you'll get a constant flood of ISR dispatches if running in 
level-sensitive mode.) 

Continuing the above example, if we want to detach, we'd use the 
following code: 

void 
terminateinterrupts (void) 
{ 

InterruptDetach (interruptiD); 
} 

If this was the last ISR associated with that interrupt vector, the kernel 
would automatically mask the interrupt source at the PIC level so that 
it doesn't generate interrupts. 
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The last parameter, flags, controls all kinds of things: 

_NTO_INTR_FLAGS_END 

Indicates that this handler should go after other handlers that 
may be attached to the same interrupt source . 

.NTO.JNTRYLAGS_FROCESS 

Indicates that this handler is associated with the process rather 
than the thread. What this boils down to is that if you specify 
this flag, the interrupt handler will be automatically dissociated 
from the interrupt source when the process exits. If you don't 
specify this thread, the interrupt handler will be dissociated 
from the interrupt source when the thread that created the 
association in the first place exits . 

.NTO_INTRYLAGS_ TRK.MSK 

Indicates that the kernel should track the number of times the 
interrupt has been masked. This causes a little more work for 
the kernel, but is required to ensure an orderly unmasking of the 
interrupt source should the process or thread exit. 

Let's look at the ISR itself. In the first example, we'll look at using 
the lnterruptAttach() function. Then, we'll see the exact same thing, 
except with lnterruptAttachEvent( ). 

Continuing our example, here's the ISR intHandler(). It looks at the 
8250 serial port chip that we assume is attached to HW _SERIAL.JRQ: 

/* 
* part of intl.c 

*I 

volatile int serial~sr; // saved contents of Modem Status Reg 
volatile int serial_rx; // saved contents of RX register 
volatile int serial_lsr; // saved contents of Line Status Reg 

const struct sigevent * 
intHandler (void *arg, int id) 
{ 
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int iir; 
struct sigevent *event (struct sigevent *)arg; 

I* 
* determine the source of the interrupt 
* by reading the Interrupt Identification Register 

*I 

iir inS (base_reg + REG-II) & IIR-MASK; 

I* no interrupt? *I 
if (iir & 1) { 

} 

I* 

I* then no event *I 
return (NULL); 

* figure out which interrupt source caused the interrupt, 
* and see if a thread needs to do something about it. 
* (The constants are based on the S250 serial port's 
* interrupt identification register.) 

*I 

switch (iir) { 
case IIR-MSR: 

case 

case 

case 

serial~sr inS (base_reg + REG-MS); 

I* wake up thread *I 
return (event); 
break; 

IIR-THE: 
I* do nothing *I 
break; 

IIR-RX: 
I* note the character *I 
serial_rx inS (base_reg + REG-RX); 
break; 

IIR-LSR: 
I* note the line status reg. *I 
serial_lsr =inS (base_reg + REG-LS); 
break; 

default: 
break; 

} 

I* don't bother anyone *I 
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return (NULL) ; 
} 

The first thing we notice is that any variable that the ISR touches must 
be declared volatile. On a single-processor box, this isn't for the 
ISR's benefit, but rather for the benefit of the thread-level code, which 
can be interrupted at any point by the ISR. Of course, on an SMP box, 
we could have the ISR running concurrently with the thread-level 
code, in which case we have to be very careful about these sorts of 
things. 

With the volatile keyword, we're telling the compiler not to cache 
the value of any of these variables, because they can change at any 
point during execution. 

The next thing we notice is the prototype for the interrupt service 
routine itself. It's marked as const struct sigevent *·This 
says that the routine intHandler returns a struct sigevent 

pointer. This is standard for all interrupt service routines. 

Finally, notice that the ISR decides if the thread will or won't be sent 
an event. Only in the case of a Modem Status Register (MSR) 
interrupt do we want the event to be delivered (the event is identified 
by the variable event, which was conveniently passed to the ISR when 
we attached it). In all other cases, we ignore the interrupt (and update 
some global variables). In all cases, however, we clear the source of 
the interrupt. This is done by reading the 1/0 port via inS(). 

If we were to recode the example above to use 
InterruptAttachEvent(), it would look like this: 

I* 
*part of int2.c 

*I 

int 
main (int argc, char **argv) 
{ 

int intid; 
int iir; 
int serial~sr; 

II interrupt id 
II interrupt identification register 
II saved contents of Modem Status Reg 
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int serial_rx; 
int serial_lsr; 

II saved contents of RX register 
II saved contents of Line Status Reg 

II usual main() setup stuff •.. 

II set up the event 
intid = InterruptAttachEvent (HW_SERIAL-IRQ, &event, 0); 

for (; ;) { 

II wait for an interrupt event 
II (could use MsgReceive instead) 
InterruptWait (0, NULL); 

I* 
* determine the source of the interrupt (and clear 
* it) by reading the Interrupt Identification 
* Register 

*I 

iir = inS (base_reg + REG-II) & IIR~SK; 

II unmask the interrupt, so we can get the next event 
InterruptUnmask (HW_SERIAL-IRQ, intid); 

I* no interrupt? *I 
if (iir & 1) { 

} 

I* 

I* then wait again for next *I 
continue; 

* figure out which interrupt source caused the 
* interrupt, and determine if we need to do 
* something about it 

*I 

switch (iir) { 
case 

case 

IIR...MSR: 
serial...lllsr inS (base_reg + REG...MS); 

I* 
* perform whatever processing you would've done 
*in the other example ..• 

*I 
break; 

IIR_THE: 
I* do nothing *I 
break; 
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} 

} 

case IIR-RX: 
I* note the character *I 
serial_rx inB (base_reg + REG-RX); 
break; 

case IIR__LSR: 

} 

I* note the line status reg. *I 
serial_lsr = inB (base_reg + REG_LS); 
break; 

I* You won't get here. *I 
return (0); 

Notice that the InterruptAttachEvent() function returns an interrupt 
identifier (a small integer). We've saved this into the variable intld so 
that we can use it later when we go to unmask the interrupt. 

After we've attached the interrupt, we then need to wait for the 
interrupt to hit. Since we're using InterruptAttachEvent(), we'll get 
the event that we created earlier dropped on us for every interrupt. 
Contrast this with what happened when we used InterruptAttach()
in that case, our ISR determined whether or not to drop an event on 
us. With InterruptAttachEvent( ), the kernel has no idea whether or not 
the hardware event that caused the interrupt was "significant" for us, 
so it drops the event on us every time it occurs, masks the interrupt, 
and lets us decide if the interrupt was significant or not. 

We handled the decision in the code example for InterruptAttach() 
(above) by returning either a struct sigevent to indicate that 
something should happen, or by returning the constant NULL. Notice 
the changes that we did to our code when we modified it for 
InterruptAttachEvent( ): 

• The "ISR" work is now done at thread time in main(). 

• We must always unmask the interrupt source after receiving our 
event (because the kernel masks it for us). 
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• If the interrupt is not significant to us, we don't do anything and 
simply loop around again in the for statement, waiting for another 
interrupt. 

• If the interrupt is significant to us, we handle it directly (in the 
case IIR....MSR part). 

Where you decide to clear the source of the interrupt depends on your 
hardware and the notification scheme you've chosen. With the 
combination of SIGEV JNTR and lnterruptWait(), the kernel doesn't 
"queue" more than one notification; with SIGEV _FULSE and 
MsgReceive( ), the kernel will queue all the notifications. If you're 
using signals (and SIGEV_SIGNAL, for example), you define whether 
the signals are queued or not. With some hardware schemes, you may 
need to clear the source of the interrupt before you can read more data 
out of the device; with other pieces of hardware, you don't have to 
and can read data while the interrupt is asserted. 

I& An ISR returning SIGEV _THREAD is one scenario that fills me with 
absolute fear! I'd recommend avoiding this "feature" if at all possible. 

lnterruptAttach() versus 
lnterruptAttachEvent() 

In the serial port example above, we've decided to use 
lnterruptWait(), which will queue one entry. The serial port hardware 
may assert another interrupt immediately after we've read the 
interrupt identification register, but that's fine, because at most one 
SIGEV _INTR will get queued. We'll pick up this notification on our 
next iteration of the for loop. 

This naturally brings us to the question, "Why would I use one over 
the other?" 

The most obvious advantage of lnterruptAttachEvent() is that it's 
simpler to use than lnterruptAttach()- there's no ISR routine (hence 
no need to debug it). Another advantage is that since there's nothing 
running in kernel space (as an ISR routine would be) there's no 
danger of crashing the entire system. If you do encounter a 
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programming error, then the process will crash, rather than the whole 
system. However, it may be more or less efficient than 
lnterruptAttach() depending on what you're trying to achieve. This 
issue is complex enough that reducing it to a few words (like "faster" 
or "better") probably won't suffice. We'll need to look at a few 
pictures and scenarios. 

Here's what happens when we use InterruptAttach(): 

thread 1 

Interrupt 

kernel 

ISR 

kernel 
(resched) 

thread 2 

Control flow with lnterruptAttach(). 

The thread that's currently running ("thread I") gets interrupted, and 
we go into the kernel. The kernel saves the context of "thread 1." The 
kernel then does a lookup to see who's responsible for handling the 
interrupt and decides that "ISR 1" is responsible. At this point, the 
kernel sets up the context for "ISR 1" and transfers control. "ISR 1" 
looks at the hardware and decides to return a struct sigevent. 

The kernel notices the return value, figures out who needs to handle it, 
and makes them READY. This may cause the kernel to schedule a 
different thread to run, "thread2." 

Now, let's contrast that with what happens when we use 
lnterruptAttachEvent( ): 



:::! Interrupt 
s:: 
m 

thread 1 

thread 2 

Control flow with /nterruptAttachEvent(). 

Writing interrupt handlers 

kernel 
(resched) 

In this case, the servicing path is much shorter. We made one context 
switch from the currently running thread ("thread!") into the kernel. 
Instead of doing another context switch into the ISR, the kernel 
simply "pretended" that the ISR returned a struct sigevent and 
acted on it, rescheduling "thread2" to run. 

Now you're thinking, "Great! I'm going to forget all about 
InterruptAttach() and just use the easier InterruptAttachEvent()." 

That's not such a great idea, because you may not need to wake up for 
every interrupt that the hardware generates! Go back and look at the 
source example above - it returned an event only when the modem 
status register on the serial port changed state, not when a character 
arrived, not when a line status register changed, and not when the 
transmit holding buffer was empty. 

In that case, especially if the serial port was receiving characters (that 
you wanted to ignore), you'd be wasting a lot of time rescheduling 
your thread to run, only to have it look at the serial port and decide 
that it didn't want to do anything about it anyway. In that case, things 
would look like this: 
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:j 
:s: 
m 

Interrupt 

thread 1 

thread 2 

thread 1 

kernel 
(resched) 

kernel 
(resched) 

Control flow with lnterruptAttachEvent() and unnecessary rescheduling. 

All that happens is that you incur a thread-to-thread context switch to 
get into "thread2" which looks at the hardware and decides that it 
doesn't need to do anything about it, costing you another 
thread-to-thread context switch to get back to "threadl." 

Here's how things would look if you used InterruptAttach() but didn't 
want to schedule a different thread (i.e., you returned): 

thread 1 

Interrupt 

kernel 

-f 
~ ISR 
m 

kernel 
(no resched) 

thread 1 

Control flow with lnterruptAttach() with no thread rescheduling. 



The tradeoffs 

Writing interrupt handlers 

The kernel knows that "thread 1" was running, and the ISR didn't tell 
it to do anything, so it can just go right ahead and let "threadl" 
continue after the interrupt. 

Just for reference, here's what the InterruptAttachEvent() function 
call does (note that this isn't the real source, because 
InterruptAttachEvent() actually binds a data structure to the kernel
it isn't implemented as a discrete function that gets called!): 

II the "internal" handler 
static const struct sigevent * 
internalHandler (void *arg, int id) 
{ 

int 

struct sigevent *event = arg; 

InterruptMask (intr, id); 
return (arg); 

InterruptAttachEvent (int intr, 

{ 
const struct sigevent *event, unsigne~ flags) 

static struct sigevent static_event; 

memcpy (&static_event, event, sizeof (static_event)); 

return (InterruptAttach (intr, internalHandler, 
&static_event, sizeof (*event), flags)); 

So, which function should you use? For low-frequency interrupts, you 
can almost always get away with InterruptAttachEvent( ). Since the 
interrupts occur infrequently, there won't be a significant impact on 
overall system performance, even if you do schedule threads 
unnecessarily. The only time that this can come back to haunt you is 
if another device is chained off the same interrupt- in this case, 
because InterruptAttachEvent() masks the source of the interrupt, it'll 
effectively disable interrupts from the other device until the interrupt 
source is unmasked. This is a concern only if the first device takes a 
long time to be serviced. In the bigger picture, this is a hardware 
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system design issue- you shouldn't chain slow-to-respond devices 
on the same line as high-speed devices. 

For higher-frequency interrupts, it's a toss up, and there are many 
factors: 

• Unnecessary interrupts- if there will be a significant number of 
these, you're better off using InterruptAttach() and filtering them 
out in the ISR. For example, consider the case of a serial device. A 
thread may issue a command saying "Get me 64 bytes." If the ISR 
is programmed with the knowledge that nothing useful will happen 
until 64 bytes are received from the hardware, the ISR has 
effectively filtered the interrupts. The ISR will then return an event 
only after 64 bytes have been accumulated. 

• Latency - if your hardware is sensitive to the amount of time that 
passes between asserting the interrupt request and the execution of 
the ISR, you should use InterruptAttach() to minimize this 
interrupt latency. This is because the kernel is very fast at 
dispatching the ISR. 

• Buffering- if your hardware has buffering in it, you may be able 
to get away with InterruptAttachEvent() and a single-entry 
queueing mechanism like SIGEV _INTR and InterruptWait(). This 
method lets the hardware interrupt as often as it wants, while 
letting your thread pick the values out of the hardware's buffer 
when it can. Since the hardware is buffering the data, there's no 
problem with interrupt latencies. 

The next issue we should tackle is the list of functions an ISR is 
allowed to call. 

Let me digress just a little at this point. Historically, the reason that 
ISRs were so difficult to write (and still are in most other operating 
systems) is that the ISR runs in a special environment. 

One particular thing that complicates writing ISRs is that the ISR isn't 
actually a "proper" thread as far as the kernel is concerned. It's this 
weird "hardware" thread, if you want to call it that. This means that 
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the ISR isn't allowed to do any "thread-level" things, like messaging, 
synchronization, kernel calls, disk 1/0, etc. 

But doesn't that make it much harder to write ISR routines? Yes it 
does. The solution, therefore, is to do as little work as possible in the 
ISR, and do the rest of the work at thread-level, where you have 
access to all the services. 

Your goals in the ISR should be: 

• Fetch information that is transitory. 

• Clear the source of the ISR. 

• Optionally dispatch a thread to get the "real" work done. 

This "architecture" hinges on the fact that Neutrino has very fast 
context-switch times. You know that you can get into your ISR 
quickly to do the time-critical work. You also know that when the ISR 
returns an event to trigger thread-level work, that thread will start 
quickly as well. It's this "don't do anything in the ISR" philosophy 
that makes Neutrino ISRs so simple! 

So, what calls can you use in the ISR? Here's the official list: 

• atomic_*() functions (such as atomic ...set()) 

• mem*() functions (such as memcpy()) 

• most str*() functions (such as strcmp()). Beware, though, that not 
all these are safe, such as strdup() - it calls malloc( ), which uses a 
mutex, and that's not allowed. For the string functions, you should 
really consult the individual C Library References before using. 

• InterruptMask() 

• InterruptUnmask() 

• InterruptLock() 

• InterruptUnlock() 
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• InterruptDisable() 

• InterruptEnable() 

• in*() and out*() 

Basically, the rule of thumb is, "Don't use anything that's going to 
take a huge amount of stack space or time, and don't use anything that 
issues kernel calls." The stack space requirement stems from the fact 
that ISRs have very limited stacks. 

The list of interrupt-safe functions makes sense- you might want to 
move some memory around, in which case the mem *() and str*() 
functions are a good choice. You'll most likely want to read data 
registers from the hardware (in order to save transitory data variables 
and/or clear the source of the interrupt), so you 'II want to use the in*() 
and out*() functions. 

What about the bewildering choice of Interrupt*() functions? Let's 
examine them in pairs: 

InterruptMask() and Interrupt Unmask() 

These functions are responsible for masking the interrupt source 
at the PIC level; this keeps them from being passed on to the 
CPU. Generally, you'd use this if you want to perform further 
work in the thread and can't clear the source of the interrupt in 
the ISR itself. In this case, the ISR would issue InterruptMask( ), 
and the thread would issue InterruptUnmask() when it had 
completed whatever operation it was invoked to do. 

Keep in mind that InterruptMask() and Interrupt Unmask() are 
counting - you must "unmask" the same number of times that 
you've "masked" in order for the interrupt source to be able to 
interrupt you again. 

By the way, note that the InterruptAttachEvent() performs the 
InterruptMask() for you (in the kernel)- therefore you must 
call InterruptUnmask() from your interrupt-handling thread. 
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lnterruptLock() and lnterruptUnlock() 

These functions are used to disable (InterruptLock( )) and enable 
(InterruptUnlock( )) interrupts on a single or multiprocessor 
system. You'd want to disable interrupts if you needed to 
protect the thread from the ISR (or additionally, on an SMP 
system, the ISR from a thread). Once you've done your critical 
data manipulation, you'd then enable interrupts. Note that these 
functions are recommended over the "old" lnterruptDisable() 
and lnterruptEnable() functions as they will operate properly on 
an SMP system. There's an additional cost over the "old" 
functions to perform the check on an SMP system, but in a 
single processor system it's negligible, which is why I'm 
recommending that you always use lnterruptLock() and 
lnterruptUnlock(). 

lnterruptDisable() and lnterruptEnable() 

These functions shouldn't be used in new designs. Historically, 
they were used to invoke the x86 processor instructions eli and 
sti when Neutrino was x86-only. They've since been upgraded 
to handle all supported processors, but you should use 
lnterruptLock() and lnterruptUnlock() (to keep SMP systems 
happy). 

The one thing that bears repeating is that on an SMP system, it is 
possible to have both the interrupt service routine and another thread 
running at the same time. 

Summary 

Keep the following things in mind when dealing with interrupts: 

• Don't take too long in an ISR- perform the minimum amount of 
work you can get away with. This helps minimize interrupt latency 
and debugging. 
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• Use InterruptAttach() when you need to access the hardware as 
soon as the interrupt occurs; otherwise, avoid it. 

• Use InterruptAttachEvent() at all other times. The kernel will 
schedule a thread (based on the event that you passed) to handle 
the interrupt. 

• Protect variables used by both the interrupt service routine (if 
using InterruptAttach( )) and threads by calling lnterruptLock() and 
lnterruptUnlock( ). 

• Declare variables that are going to be used between the thread and 
the ISR as volatile so that the compiler isn't caching "stale" 
values that have been changed by the ISR. 



ChapterS 

Resource Managers 

In this chapter ... 
What is a resource manager? 
The client's view 
The resource manager's view 
The resource manager library 
Writing a resource manager 
Handler routines 
Examples 
Advanced topics 
Summary 

Chapter 5 • Resource Managers 249 





Examples of 
resource 

managers 

Serial port 

What is a resource manager? 

What is a resource manager? 

In this chapter, we'll take a look at what you need to understand in 
order to write a resource manager. 

A resource manager is simply a program with some well-defined 
characteristics. This program is called different things on different 
operating systems - some call them "device drivers," "I/0 
managers," "filesystems," "drivers," "devices," and so on. In all cases, 
however, the goal of this program (which we'll just call a resource 
manager) is to present an abstract view of some service. 

Also, since Neutrino is a POSIX-conforming operating system, it 
turns out that the abstraction is based on the POSIX specification. 

Before we get carried away, let's take a look at a couple of examples 
and see how they "abstract" some "service." We'll look at an actual 
piece of hardware (a serial port) and something much more abstract (a 
filesystem). 

On a typical system, there usually exists some way for a program to 
transmit output and receive input from a serial, RS-232-style 
hardware interface. This hardware interface consists of a bunch of 
hardware devices, including a UART (Universal Asynchronous 
Receiver Transmitter) chip which knows how to convert the CPU's 
parallel data stream into a serial data stream and vice versa. 

In this case, the "service" being provided by the serial resource 
manager is the capability for a program to send and receive characters 
on a serial port. 

We say that an "abstraction" occurs, because the client program (the 
one ultimately using the service) doesn't know (nor does it care 
about) the details of the UART chip and its implementation. All the 
client program knows is that to send some characters it should call the 
fprintf() function, and to receive some characters it should call the 
fgets() function. Notice that we used standard, POSIX function calls 
to interact with the serial port. 
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Filesystem 

Characteristics of 
resource 

managers 

As another example of a resource manager, let's examine the 
filesystem. This consists of a number of cooperating modules: the 
filesystem itself, the block 110 driver, and the disk driver. 

The "service" being offered here is the capability for a program to 
read and write characters on some medium. The "abstraction" that 
occurs is the same as with the serial port example above - the client 
program can still use the exact same function calls (e.g., the fprintf() 
andfgets() functions) to interact with a storage medium instead of a 
serial port. In fact, the client really doesn't know or need to know 
which resource manager it's interacting with. 

As we saw in our examples (above), the key to the flexibility of the 
resource managers is that all the functionality of the resource manager 
is accessed using standard POSIX function calls- we didn't use 
"special" functions when talking to the serial port. But what if you 
need to do something "special," something very device-specific? For 
example, setting the baud rate on a serial port is an operation that's 
very specific to the serial port resource manager- it's totally 
meaningless to the filesystem resource manager. Likewise, setting the 
file position via lseek() is useful in a filesystem, but meaningless in a 
serial port. The solution POSIX chose for this is simple. Some 
functions, like lseek( ), simply return an error code on a device that 
doesn't support them. Then there's the "catch-all" device control 
function, called devctl( ), that allows device-specific functionality to 
be provided within a POSIX framework. Devices that don't 
understand the particular devctl() command simply return an error, 
just as devices that don't understand the !seek() command would. 

Since we've mentioned !seek() and devctl() as two common 
commands, it's worthwhile to note that pretty much all file-descriptor 
(or FILE * stream) function calls are supported by resource 
managers. 

This naturally leads us to the conclusion that resource managers will 
be dealing almost exclusively with file-descriptor based function 
calls. Since Neutrino is a message-passing operating system, it 
follows that the POSIX functions get translated into messages, which 
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are then sent to resource managers. It is this "POSIX-function to 
message-passing" translation trick that lets us decouple clients from 
resource managers. All a resource manager has to do is handle certain 
well-defined messages. All a client has to do is generate the same 
well-defined messages that the resource manager is expecting to 
receive and handle. 

I@' Since the interaction between clients and resource managers is based 
on message passing, it makes sense to make this "translation layer" as 
thin as possible. For example, when a client does an open() and gets 
back a file descriptor, the file descriptor is in fact the connection ID! 
This connection ID (file descriptor) gets used in the client's C library 
functions (like read()) where a message is created and sent to the 
resource manager. 

Finding the server 

The client's view 

We've already seen a hint of what the client expects. It expects a 
file-descriptor-based interface, using standard POSIX functions. 

In reality, though, there are a few more things going on "under the 
hood." 

For example, how does the client actually connect to the appropriate 
resource manager? What happens in the case of union filesystems 
(where multiple filesystems are responsible for the same 
"namespace")? How are directories handled? 

The first thing that a client does is call open() to get a file descriptor. 
(Note that if the client calls the higher-level functionfopen() instead, 
the same discussion applies- fopen() eventually calls open()). 

Inside the C library implementation of open(), a message is 
constructed, and sent to the process manager (pro en to) component. 
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The process manager is responsible for maintaining information about 
the pathname space. This information consists of a tree structure that 
contains pathnames and node descriptor, process ID, channel ID, and 
handle associations: 

Resource Managers Pathname Space 
(stored by Process Manager) 

Resource Managers 

(0,1,1,1) IPrpr;;;oc;ntt;;'oll--• -------1 •I fs-qnx4 I (0,4965,1,1) 

(0,1,1.1) procnto I• proc _L dev ___ ____,•{l~p~ro~cn~toJI (0,1,1,1) 

(0,1,1,1) procnto I• 

(0,1,1,1) procnto I• 

(0,1,1,1) procnto I• 

Neutrino's namespace. 

boot
1 
j tser1 ~ (0,44,1,1) 

ser2 ~ (0,44,1,2) 

4965 con1~ (0,725,1,1) 

!&' Note that in the diagram above and in the descriptions that follow, 
I've used the designation fs-qnx4 as the name of the resource 
manager that implements the QNX 4 filesystem- in reality, it's a bit 
more complicated, because the filesystem drivers are based on a series 
of DLLs that get bundled together. So, there's actually no executable 
called fs-qnx4; we're just using it as a placeholder for the filesystem 
component. 

Let's say that the client calls open(): 

fd = open ("/dev/serl", Q_WRONLY); 

In the client's C library implementation of open(), a message is 
constructed and sent to the process manager. This message states, "I 
want to open /dev/serl; who should I talk to?" 
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(2) Response 

First stage of name resolution. 

The process manager receives the request and looks through its tree 
structure to see if there's a match (let's assume for now that we need 
an exact match). Sure enough, the pathname "/dev/serl" matches 
the request, and the process manager is able to reply to the client: "I 
found /dev/serl. It's being handled by node descriptor 0, process 
ID 44, channel ID 1, handle 1. Send them your request!" 

Remember, we're still in the client's open() code! 

So, the open() function creates another message, and a connection to 
the specified node descriptor (0, meaning our node), process ID (44), 
channel ID (1), stuffing the handle into the message itself. This 
message is really the "connect" message- it's the message that the 
client's open() library uses to establish a connection to a resource 
manager (step 3 in the picture below). When the resource manager 
gets the connect message, it looks at it and performs validation. For 
example, you may have tried to open-for-write a resource manager 
that implements a read-only filesystem, in which case you'd get back 
an error (in this case, EROFS). In our example, however, the serial port 
resource manager looks at the request (we specified O_WRONLY; 

perfectly legal for a serial port) and replies back with an EOK (step 4 
in the picture below). 
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Finding the 
process manager 

Handling 
directories 

(3) Connect 

(4) Reply 

The _/Q_CONNECT message. 

Finally, the client's open() returns to the client with a valid file 
descriptor. 

Really, this file descriptor is the connection ID we just used to send a 
connect message to the resource manager! Had the resource manager 
not given us an EOK, we would have passed this error back to the 
client (via errno and a -1 return from open()). (It's worthwhile to 
note that the process manager can return the node 10, process ID and 
channel ID of more than one resource manager in response to a name 
resolution request. In that case, the client will try each of them in turn 
until one succeeds, returns an error that's not ENOSYS, ENOENT, or 
EROFS, or the client exhausts the list, in which case the open() fails. 
We'll discuss this further when we look at the "before" and "after" 
flags, later on.) 

Now that we understand the basic steps used to find a particular 
resource manager, we need to solve the mystery of, "How did we find 
the process manager to begin with?" Actually, this one's easy. By 
definition, the process manager has a node descriptor of 0 (meaning 
this node), a process ID of 1, and a channel ID of I. So, the 
ND/PID/CHID triplet 01111 always identifies the process manager. 

The example we used above was that of a serial port resource 
manager. We also stated an assumption: "let's assume for now that we 
need an exact match." The assumption is only half-true- all the 
pathname matching we'll be talking about in this chapter has to 
completely match a component of the pathname, but may not have to 
match the entire pathname. We'll clear this up shortly. 
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Suppose I had code that does this: 

fp = fopen ("/etc/passwd", "r"); 

Recall thatfopen() eventually calls open(), so we have open() asking 
about the pathname letclpasswd. But there isn't one in the 
diagram: 

Resource Managers Path name Space 
(stored by Process Manager) 

Resource Managers 

(0,1,1,1) II PrprProc;;;-ntlc;"oli•-~~~~~~-J •I fs-qnx4 I (0,4965,1,1) 

(0,1,1,1) I procnto I• proc _L dev •I procnto I (0,1,1,1) 

(0,1,1,1) I procnto I• boo
1
t j t ser1 ~ (0,44,1,1) 

(0,1,1,1) I procnto I• ser2 ~ (0,44,1,2) 

(0,1,1,1) I procnto I• 4965 con1 ~ (0,725,1,1) 

Neutrino's namespace. 

We do notice, however, that fs-qnx4 has registered its association of 
ND/PID/CHID at the pathname "1." Although it's not shown on the 
diagram, fs-qnx4 registered itself as a directory resource manager 
~it told the process manager that it'll be responsible for"!" and 
below. This is something that the other, "device" resource managers 
(e.g., the serial port resource manager) didn't do. By setting the 
"directory" flag, fs-qnx4 is able to handle the request for 
"I etclpasswd" because the first part of the request is"/"~ a 
matching component! 

What if we tried to do the following? 

fd =open ("/dev/serl/9600.8.1.n", Q_WRONLY); 

Well, since the serial port resource manager doesn't have the directory 
flag set, the process manager will look at it and say "Nope, sorry, the 
pathname I dev I serl is not a directory. I'm going to have to fail this 
request." The request fails right then and there ~ the process 
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manager doesn't even return a ND/PID/CHID/handle that the open() 
function should try. 

~ Obviously, as hinted at in my choice of parameters for the open() call 
above, it may be a clever idea to allow some "traditional" drivers to be 
opened with additional parameters past the "usual" name. However, 
the rule of thumb here is, "If you can get away with it in a design 
review meeting, knock yourself out." Some of my students, upon 
hearing me say that, pipe up with "But I am the design review 
committee!" To which I usually reply, "You are given a gun. Shoot 
yourself in the foot. : -) " 

Union'd 
filesystems 

Take a closer look at the diagram we've been using: 

Resource Managers Pathname Space 
(stored by Process Manager) 

Resource Managers 

(0,1,1,1) I procnto I• 
(0,1,1,1) I procnto I• 

(0,1,1,1) I procnto I• 
(0,1,1,1) I procnto I• 
(0,1,1,1) I procnto I• 

Neutrino's namespace. 

proc 

boo: j 
4965 

1 •I fs-qnx4 I (0,4965, 1,1) 

___L dev •I procnto I (0,1,1,1) tser1 ~ (0,44,1,1) 

ser2 ~ (0,44,1,2) 

con1~ (0,725,1,1) 

Notice how both fs-qnx4 and the process manager have registered 
themselves as being responsible for"/"? This is fine, and nothing to 
worry about. In fact, there are times when it's a very good idea. Let's 
consider one such case. 

Suppose you have a very slow network connection and you've 
mounted a networked filesystem over it. You notice that you often use 
certain files and wish that they were somehow magically "cached" on 
your system, but alas, the designers of the network filesystem didn't 
provide a way for you to do that. So, you write yourself a caching 
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filesystem (called fs-cache) that sits on top of the network 
filesystem. Here's how it looks from the client's point of view: 

Resource Managers Pathname Space Resource Managers 
(stored by Process Manager) 

I 

(0,326, 1,1) I fs-cache ~1•----
I 

nfs ~(0,77625,1,1) 

Overlayed filesystems. 

Both fs-nfs (the network filesystem) and your caching filesystem 
(fs-cache) have registered themselves for the same prefix, namely 
"/nfs." As we mentioned above, this is fine, normal, and legal under 
Neutrino. 

Let's say that the system just started up and your caching filesystem 
doesn't have anything in it yet. A client program tries to open a file, 
let's say /nfs/home/rk/abc. txt. Your caching filesystem is "in 
front of" the network filesystem (I'll show you how to do that later, 
when we discuss resource manager implementation). 

At this point, the client's open() code does the usual steps: 

1 Message to the process manager: "Who should I talk to about 
the filename /nfs/home/rk/abc. txt?" 

2 Response from the process manager: "Talk to fs-cache first, 
and then fs-nfs." 

Notice here that the process manager returned two sets of 
ND/PID/CHID/handle; one for fs-cache and one for fs-nfs. This 
is critical. 

Now, the client's open() continues: 

1 Message to fs-cache: "I'd like to open the file 
/nfs/home/rk/abc. txt for read, please." 
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2 Response from fs-cache: "Sorry, I've never heard of this file." 

At this point, the client's open() function is out of luck as far as the 
fs-cache resource manager is concerned. The file doesn't exist! 
However, the open() function knows that it got a list of two 
ND/PID/CHID/handle tuples, so it tries the second one next: 

Message to fs-nfs: "I'd like to open the file 
/nfs/home/rk/abc. txt for read, please." 

2 Response from fs-nfs: "Sure, no problem!" 

Now that the open() function has an EOK (the "no problem"), it 
returns the file descriptor. The client then performs all further 
interactions with the fs-nfs resource manager. 

IBf The only time that we "resolve" to a resource manager is during the 
open() call. This means that once we've successfully opened a 
particular resource manager, we will continue to use that resource 
manager for all file descriptor calls. 

So how does our fs-cache caching filesystem come into play? Well, 
eventually, let's say that the user is done reading the file (they've 
loaded it into a text editor). Now they want to write it out. The same 
set of steps happen, with an interesting twist: 

1 Message to the process manager: "Who should I talk to about 
the filename /nfs/home/rk/abc. txt?" 

2 Response from the process manager: "Talk to fs-cache first, 
and then fs-nfs." 

3 Message to fs-cache: "''d like to open the file 
/nfs/home/rk/abc. txt for write, please." 

4 Response from fs-cache: "Sure, no problem." 
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Notice that this time, in step 3, we opened the file for write and not 
read as we did previously. It's not surprising, therefore, that 
fs-cache allowed the operation this time (in step 4). 

Even more interesting, observe what happens the next time we go to 
read the file: 

1 Message to the process manager: "Who should I talk to about 
the filename /nfs/home/rk/abc. txt?" 

2 Response from the process manager: "Talk to fs-cache first, 
and then fs-nfs." 

3 Message to fs-cache: "I'd like to open the file 
/nfs/home/rk/abc. txt for read, please." 

4 Response from fs-cache: "Sure, no problem." 

Sure enough, the caching filesystem handled the request for the read 
this time (in step 4)! 

Now, we've left out a few details, but these aren't important to getting 
across the basic ideas. Obviously, the caching filesystem will need 
some way of sending the data across the network to the "real" storage 
medium. It should also have some way of verifying that no one else 
modified the file just before it returns the file contents to the client (so 
that the client doesn't get stale data). The caching filesystem could 
handle the first read request itself, by loading the data from the 
network filesystem on the first read into its cache. And so on. 

We're done with the client side of things. The following are key 
points to remember: 

• The client usually triggers communication with the resource 
manager via open() (or fopen()). 

• Once the client's request has "resolved" to a particular resource 
manager, we never change resource managers. 
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Registering a 
path name 

• All further messages for the client's session are based on the file 
descriptor (or FILE * stream), (e.g., read(), lseek(),Jgets()). 

• The session is terminated (or "dissociated") when the client closes 
the file descriptor or stream (or terminates for any reason). 

• All client file-descriptor-based function calls are translated into 
messages. 

The resource manager's view 

Let's look at things from the resource manager's perspective. 
Basically, the resource manager needs to tell the process manager that 
it'll be responsible for a certain part of the pathname space (it needs to 
register itself). Then, the resource manager needs to receive messages 
from clients and handle them. Obviously, things aren't quite that 
simple. 

Let's take a quick overview look at the functions that the resource 
manager provides, and then we'lllook at the details. 

The resource manager needs to tell the process manager that one or 
more pathnames are now under its domain of authority- effectively, 
that this particular resource manager is prepared to handle client 
requests for those pathnames. 

The serial port resource manager might handle (let's say) four serial 
ports. In this case, it would register four different pathnames with the 
process manager: /dev/serl, /dev/ser2, /dev/ser3, and 
/dev/ser4. The impact of this is that there are now four distinct 
entries in the process manager's pathname tree, one for each of the 
serial ports. Four entries isn't too bad. But what if the serial port 
resource manager handled one of those fancy multi port cards, with 
256 ports on it? Registering 256 individual pathnames (i.e., 
/dev/serl through /dev/ser256) would result in 256 different 
entries in the process manager's pathname tree! The process manager 
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isn't optimized for searching this tree; it assumes that there will be a 
few entries in the tree, not hundreds. 

As a rule, you shouldn't discretely register more than a few dozen 
pathnames at each level - this is because a linear search is 
performed. The 256 port registration is certainly beyond that. In that 
case, what the multipart serial resource manager should do is register 
a directory-style pathname, for example I dev /mul tiport. This 
occupies only one entry in the process manager's pathname tree. 
When a client opens a serial port, let's say port 57: 

fp ~ fopen ("ldevlmultiportl57", "w"); 

The process manager resolves this to the ND/PID/CHID/handle for 
the multipart serial resource manager; it's up to that resource manager 
to decide if the rest of the pathname (in our case, the "57") is valid. In 
this example, assuming that the variable path contains the rest of the 
pathname past the mountpoint, this means that the resource manager 
could do checking in a very simple manner: 

devnum ~ atoi (path); 
if ( (devnum <~ 0) II (devnum >~ 256)) { 

II bad device number specified 
} else { 

II good device number specified 
} 

This search would certainly be faster than anything the process 
manager could do, because the process manager must, by design, be 
much more general-purpose than our resource manager. 

Once we've registered one or more pathnames, we should then be 
prepared to receive messages from clients. This is done in the "usual" 
way, with the MsgReceive() function call. There are fewer than 30 
well-defined message types that the resource manager handles. To 
simplify the discussion and implementation, however, they're broken 
into two groups: 
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Connect messages 

1/0 messages 

Three groups, really 

connect messages 

I/0 messages 

Always contain a pathname; these are either 
one-shot messages or they establish a context for 
further I/0 messages. 

Always based on a connect message; these perform 
further work. 

Connect messages always contain a pathname. The open() function 
that we've been using throughout our discussion is a perfect example 
of a function that generates a connect message. In this case, the 
handler for the connect message establishes a context for further I/0 
messages. (After all, we expect to be performing things like read() 

after we've done an open()). 

An example of a "one-shot" connect message is the message 
generated as a result of the rename() function call. No further 
"context" is established- the handler in the resource manager is 
expected to change the name of the specified file to the new name, and 
that's it. 

An I/0 message is expected only after a connect message and refers 
to the context created by that connect message. As mentioned above 
in the connect message discussion, open() followed by read() is a 
perfect example of this. 

Apart from connect and I/0 messages, there are also "other" 
messages that can be received (and handled) by a resource manager. 
Since they aren't "resource manager" messages proper, we'll defer 
discussion of them until later. 

The resource manager library 

Before we get too far into all the issues surrounding resource 
managers, we have to get acquainted with QSSL's resource manager 
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library. Note that this "library" actually consists of several distinct 
pieces: 

• thread pool functions (which we discussed in the Processes and 
Threads chapter under "Pools of threads") 

• dispatch interface 

• resource manager functions 

• POSIX library helper functions 

While you certainly could write resource managers "from scratch" (as 
was done in the QNX 4 world), that's far more hassle than it's worth. 

Just to show you the utility of the library approach, here's the source 
for a single-threaded version of" I dev /null": 

I* 
* rml.c 

* 
* ldevlnull using the resource manager library 

*I 

#include <stdio.h> 
#include <stdlib.h> 
#include <stddef.h> 
#include <sysliofunc.h> 
#include <sysldispatch.h> 

int 
main (int argc, char **argv) 
{ 

dispatch_t *dpp; 
resmgr_attr_t resmgr_attr; 
resmgr_context_t *ctp; 
resmgr_connect_funcs_t cfuncs; 
resmgr_io_funcs_t ifuncs; 
iofunc_attr_t attr; 

II create the dispatch structure 
if ((dpp = dispatch_create ()) ==NULL) { 

perror ("Unable to dispatch_create\n"); 
exit (EXIT_FAILURE); 

} 

II initialize the attributes structure for the device 
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} 

iofunc_attr_init (&attr, s_IFNAM I 0666, 0, 0); 

II initialize the resource manager control structure 
memset (&resmgr_attr, 0, sizeof (resmgr_attr)); 
resmgr_attr.nparts~ax = l; 
resmgr_attr.msg~ax_size = 2048; 

II bind default functions into the outcall tables 
iofunc_func_init (-RESMGR_CONNECT_NFUNCS, &cfuncs, 

-RESMGR_IQ_NFUNCS, &ifuncs); 

II establish a name in the pathname space 
if (resmgr_attach (dpp, &resmgr_attr, "ldevlnull", 

_FTYPE-ANY, 0, &cfuncs, &ifuncs, 
&attr) == -1) { 

perror ("Unable to resmgr_attach\n"); 
exit (EXIT-FAILURE); 

II allocate a resource manager context block 
ctp = resmgr_context_alloc (dpp); 

while (1) { 

} 

II wait here for a message 
if ((ctp = resmgr_block (ctp)) ==NULL) { 

perror ("Unable to resmgr_block\n"); 
exit (EXIT-FAILURE); 

} 
II handle the message 
resmgr-handler (ctp); 

II you'll never get here 
return (EXIT-SUCCESS); 

There you have it! A complete /dev/null resource manager 
implemented in a few function calls! 

If you were to write this from scratch, and have it support all the 
functionality that this one does (e.g., stat() works, chown() and 
chmod() work, and so on), you'd be looking at many hundreds if not 
thousands of lines of C code. 
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The resource manager library 

By way of introduction to the library, let's see (briefly) what the calls 
do in the /dev/null resource manager. 

dispatch_create() 

Creates a dispatch structure; this will be used for blocking on 
the message reception. 

iofunc ..attr _in it() 

Initializes the attributes structure used by the device. We'll 
discuss attributes structures in more depth later, but for now, the 
short story is that there's one of these per device name, and they 
contain information about a particular device. 

iofunc june _init() 

Initializes the two data structures cfuncs and ifuncs, which 
contain pointers to the connect and VO functions, respectively. 
You might argue that this call has the most "magic" in it, as this 
is where the actual "worker" routines for handling all the 
messages got bound into a data structure. We didn't actually see 
any code to handle the connect message, or the VO messages 
resulting from a client read() or stat() function etc. That's 
because the library is supplying default POSIX versions of 
those functions for us, and it's the iofuncfunc_init() function 
that binds those same default handler functions into the two 
supplied tables. 

resmg r ..attach() 

Creates the channel that the resource manager will use for 
receiving messages, and talks to the process manager to tell it 
that we're going to be responsible for "/dev/null." While 
there are a lot of parameters, we'll see them all in painful detail 
later. For now, it's important to note that this is where the 
dispatch handle (dpp), pathname (the string /dev/null), and 
the connect (cfuncs) and VO (ifuncs) message handlers all get 
bound together. 
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at the library 

resmgr _context_al/oc() 

Allocates a resource manager internal context block. You'll see 
details of this context block later; the short story is it contains 
information relevant to the message being processed. 

resmgr JJlock() 

This is the resource manager's blocking call; this is where we 
wait for a message to arrive from a client. 

resmgr _handler() 

Once the message arrives from the client, this function is called 
to process it. 

You've seen that your code is responsible for providing the main 
message receiving loop: 

while (1} { 

} 

II wait here for a message 
if ((ctp = resmgr-hlock (ctp}) ==NULL) { 

perror ("Unable to resmgr-hlock\n"}; 
exit (EXIT_FAILURE); 

} 
II handle the message 
resmgr-handler (ctp}; 

This is very convenient, for it lets you place breakpoints on the 
receiving function and to intercept messages (perhaps with a 
debugger) during operation. 

The library implements the "magic" inside of the resmgrJzandler() 

function, because that's where the message is analyzed and disposed 
of through the connect and 1/0 functions tables we mentioned earlier. 

In reality, the library consists of two cooperating layers: a base layer 

that provides "raw" resource manager functionality, and a POSIX 

layer that provides POSIX helper and default functions. We'll briefly 
define the two layers, and then in "Resource manager structure," 
below, we'll pick up the details. 
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The bottom-most layer consists of functions that begin with 
resmgr _ *() in their names. This class of function is concerned with 
the mechanics of making a resource manager work. 

I'll just briefly mention the functions that are available and where 
we'd use them. I'll then refer you to QSSL's documentation for 
additional details on these functions. 

The base layer functions consist of: 

resmgr Jnsgreadv() and resmgr Jnsgread() 

Reads data from the client's address space using 
message passing. 

resmgr Jnsgwritev() and resmgr Jnsgwrite() 

Writes data to the client's address space using 
message passing. 

resmgr _open_bind() 

Associates the context from a connect function, so 
that it can be used later by an 1/0 function. 

resmgr _attach() Creates a channel, associates a pathname, dispatch 
handle, connect functions, 110 functions, and other 
parameters together. Sends a message to the 
process manager to register the pathname. 

resmgr_detach() Opposite of resmgr _attach(); dissociates the 
binding of the pathname and the resource 
manager. 

pulse _attach() 

pulse _detach() 

Associates a pulse code with a function. Since the 
library implements the message receive loop, this 
is a convenient way of "gaining control" for 
handling pulses. 

Dissociates a pulse code from the function. 

Chapter 5 • Resource Managers 269 



Writing a resource manager 

In addition to the functions listed above, there are also numerous 
functions dealing with the dispatch interface. 

One function from the above list that deserves special mention is 
resmgr _open _bind(). It associates some form of context data when the 
connect message (typically as a result of the client calling open() or 
fopen( )) arrives, so that this data block is around when the 110 
messages are being handled. Why didn't we see this in the 
I dev /null handler? Because the POSIX layer default functions call 
this function for us. If we're handling all the messages ourselves, 
we'd certainly call this function. 

I& The resmgr _open _bind() function not only sets up the context block 
for further I/0 messages, but also initializes other data structures used 
by the resource manager library itself. 

The POSIX layer 

The rest of the functions from the above list are somewhat intuitive -
we'll defer their discussion until we use them. 

The second layer provided by QSSL's resource manager library is the 
POSIX layer. As with the base layer, you could code a resource 
manager without using it, but it would be a lot of work! Before we 
can talk about the POSIX layer functions in detail, we need to look at 
some of the base layer data structures, the messages that arrive from 
the clients, and the overall structure and responsibilities of a resource 
manager. 

Writing a resource manager 

Now that we've introduced the basics- how the client looks at the 
world, how the resource manager looks at the world, and an overview 
of the two cooperating layers in the library, it's time to focus on the 
details. 
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In this section, we'll take a look at the following topics: 

• data structures 

• resource manager structure 

• POSIX layer data structure 

• handler routines 

• and of course, lots of examples 

Keep in mind the following "big picture," which contains almost 
everything related to a resource manager: 

s /dev/path1 

/dev/path2 

0 thread 
pool event 

loop 

Architecture of a resource manager- the big picture. 

The first thing we need to understand is the data structures used to 
control the operation of the library: 

• resmgr _at tr _t control structure 

• resmgr_connect_funcs_t connect table 

• resmgr _io_funcs_t VOtable 

And one data structure that's used internally by the library: 
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resmgr_attr_t 
control structure 

• resmgr _context_t internal context block 

Later, we'II see the OCB, attributes structure, and mount structure 
data types that are used with the POSIX layer libraries. 

The control structure (type resmgr _at tr _ t) is passed to the 
resmgr _start() function, which looks at the various members and 
handles the main receive loop of the resource manager. 

The control structure (from <sys/dispatch. h>) has the foil owing 
contents: 

typedef struct ... resmgr ... attr { 
unsigned flags; 

unsigned nparts ... max; 

unsigned msg ... max__size; 
int (*other ... func) (resmgr ... context ... t *ctp, void *msg); 

} resmgr ... attr ... t; 

The other june message handler 

In general, you should avoid using this member. This member, if 
non-NULL, represents a routine that wiii get caiied with the current 
message received by the resource manager library when the library 
doesn't recognize the message. While you could use this to 
implement "private" or "custom" messages, this practice is 
discouraged (use either the _IQ_DEVCTL or __IQ_MSG handlers, see 
below). If you wish to handle pulses that come in, I recommend that 
you use the pulse_attach() function instead. 

You should leave this member with the value NULL. 

The data structure sizing parameters 

These two parameters are used to control various sizes of messaging 
areas. 
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The npartsJnax parameter controls the size of the dynamically 
allocated iov member in the resource manager library context block 
(of type resmgr _context_t, see below). You'd typically adjust this 
member if you were returning more than a one-part IOV from some of 
your handling functions. Note that it has no effect on the incoming 
messages- this is only used on outgoing messages. 

The msg _max _size parameter controls how much buffer space the 
resource manager library should set aside as a receive buffer for the 
message. The resource manager library will set this value to be at 
least as big as the header for the biggest message it will be receiving. 
This ensures that when your handler function gets called, it will be 
passed the entire header of the message. Note, however, that the data 
(if any) beyond the current header is not guaranteed to be present in 
the buffer, even if the msg _max _size parameter is "large enough." An 
example of this is when messages are transferred over a network 
using qnet. (For more details about the buffer sizes, see "The 
resmgr _context_t internal context block," below.) 

The flags parameter 

This parameter gives additional information to the resource manager 
library. For our purposes, we'll just pass a 0. You can read up about 
the other values in the C Library reference under the resmgr _attach() 
function. 

When the resource manager library receives a message, it looks at the 
type of message and sees if it can do anything with it. In the base 
layer, there are two tables that affect this behavior. The 
resmgr _connect_funcs_t table, which contains a list of connect 
message handlers, and the resmgr _io_funcs_t table, which 
contains a similar list of VO message handlers. We'll see the VO 
version below. 

When it comes time to fill in the connect and VO tables, we 
recommend that you use the iofunc-func_init() function to load up the 
tables with the POSIX layer default handler routines. Then, if you 
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need to override some of the functionality of particular message 
handlers, you'd simply assign your own handler function instead of 
the POSIX default routine. We'll see this in the section "Putting in 
your own functions." Right now, let's look at the connect functions 
table itself (this is from <sys/resmgr. h> ): 

typedef struct _resmgr_connect_funcs { 
unsigned nfuncs; 

int (*open) 
(ctp, io_open_t *msg, handle, void *extra); 

int (*unlink) 
(ctp, io_unlink_t *msg, handle, void *reserved); 

int (*rename) 
(ctp, io_rename_t *msg, handle, io_rename_extra_t *extra); 

int (*mknod) 
(ctp, io~nod_t *msg, handle, void *reserved); 

int (*readlink) 
(ctp, io_readlink_t *msg, handle, void *reserved); 

int (*link) 
(ctp, io_link_t *msg, handle, io_link_extra_t *extra); 

int (*unblock) 
(ctp, io_pulse_t *msg, handle, void *reserved); 

int (*mount) 
(ctp, io~ount_t *msg, handle, io~ount_extra_t *extra); 

} resmgr_connect_funcs_t; 

Note that I've shortened the prototype down by omitting the 
resmgr_context_t *type for the first member (the ctp), and the 
RESMGR-HANDLE_T *type for the third member (the handle). For 
example, the full prototype for open is really: 

int (*open) (resmgr_context_t *ctp, 
io_open_t *msg, 
RESMGR...HANDLE_T *handle, 
void *extra) ; 

The very first member of the structure (nfuncs) indicates how big the 
structure is (how many members it contains). In the above structure, it 
should contain the value "8," for there are 8 members (open through 
to mount). This member is mainly in place to allow QSSL to upgrade 
this library without any ill effects on your code. For example, suppose 
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you had compiled in a value of 8, and then QSSL upgraded the library 
to have 9. Because the member only had a value of 8, the library 
could say to itself, "Aha! The user of this library was compiled when 
we had only 8 functions, and now we have 9. I'll provide a useful 
default for the 9th function." There's a manifest constant in 
< sys I resmgr. h> called _RESMGR_CONNECT _NFUNCS that has the 
current number. Use this constant if manually filling in the connect 
functions table (although it's best to use iofuncjunc_init()). 

Notice that the function prototypes all share a common format. The 
first parameter, ctp, is a pointer to a resmgr _context_t structure. 
This is an internal context block used by the resource manager library, 
and which you should treat as read-only (except for one field, which 
we'll come back to). 

The second parameter is always a pointer to the message. Because the 
functions in the table are there to handle different types of messages, 
the prototypes match the kind of message that each function will 
handle. 

The third parameter is a RESMGR-HANDLE_T structure called a handle 
-it's used to identify the device that this message was targeted at. 
We'll see this later as well, when we look at the attributes structure. 

Finally, the last parameter is either "reserved" or an "extra" parameter 
for functions that need some extra data. We'll show the extra 
parameter as appropriate during our discussions of the handler 
functions. 

The 1/0 table is very similar in spirit to the connect functions table 
just shown above. Here it is, from <sys/resmgr. h>: 

typedef struct _resmgr_io_funcs { 
unsigned nfuncs; 
int (*read) (ctp, io_read_t *mag, ocb); 
int (*write) (ctp, io_write_t *msg, ocb); 
int (*close_ocb) (ctp, void *reserved, ocb); 
int (*stat) (ctp, io_stat_t *mag, ocb); 
int (*notify) (ctp, io..notify_t *mag, ocb); 
int (*devctl) (ctp, io_devctl_t *mag, ocb); 
int (*unblock) (ctp, io_pulse_t *mag, ocb); 
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int (*pathconf) (ctp, io_pathconf_t *msg, ocb); 
int (*lseek) (ctp, io_lseek_t *msg, ocb) ; 
int (*chmod) (ctp, io_chmod_t *mag, ocb); 
int (*chown) (ctp, io_chown_t *mag, ocb); 
int (*utime) (ctp, io_utime_t *mag, ocb); 
int (*openfd) (ctp, io_openfd_t *mag, ocb); 
int (*fdinfo) (ctp, io_fdinfo_t *mag, ocb); 
int (*lock) (ctp, io_lock_t *mag, ocb); 
int (*space) (ctp, io_space_t *msg, ocb); 
int (*shutdown) (ctp, io_shutdown_t *msg, ocb); 
int (*mmap) (ctp, io....mmap_t *mag, ocb); 
int (*msg) (ctp, io....msg_t *mag, ocb); 
int (*dup) (ctp, io_dup_t *msg, ocb); 

int ( *close_dup) (ctp, io_close_t *msg, ocb); 
int ( * lock_ocb) (ctp, void *reserved, ocb); 
int ( *unlock_ocb) (ctp, void *reserved, ocb); 
int (*sync) (ctp, io_sync_t *mag, ocb); 

} resmgr_io_funcs_t; 

For this structure as well, I've shortened the prototype by removing 
the type of the ctp member (resmgr _context_t *)and the last 
member (ocb, of type RESMGR_OCB_T * ). For example, the full 
prototype for read is really: 

int (*read) (resmgr_context_t *ctp, 
io_read_t *msg, 
RESMGR_OCB_T *ocb); 

The very first member of the structure (nfuncs) indicates how big the 
structure is (how many members it contains). The proper manifest 
constant for initialization is _RESMGRJ.O__NFUNCS. 

Note that the parameter list in the 110 table is also very regular. The 
first parameter is the ctp, and the second parameter is the msg, just as 
they were in the connect table handlers. 

The third parameter is different, however. It's an ocb, which stands 
for "Open Context Block." It holds the context that was bound by the 
connect message handler (e.g., as a result of the client's open() call), 
and is available to the 1/0 functions. 

As discussed above, when it comes time to fill in the two tables, we 
recommend that you use the iofuncfunc_init() function to load up the 
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tables with the POSIX layer default handler routines. Then, if you 
need to override some of the functionality of particular message 
handlers, you'd simply assign your own handler function instead of 
the POSIX default routine. We'll see this in the section "Putting in 
your own functions." 

Finally, one data structure is used by the lowest layer of the library to 
keep track of information that it needs to know about. You should 
view the contents of this data structure as "read-only," (except for the 
iov member). 

Here's the data structure (from <sys/resmgr. h> ): 

typedef struct _resmgr_context { 
int rcvid; 
struct __msg_info info; 
resmgr_iomsgs_t *msg; 
dispatch_t *dpp; 
int id; 
unsigned msg -max -l·ize; 
int status; 
int offset; 
int si:.e; 
iov_t iov [1]; 

} resmgr_context_t; 

As with the other data structure examples, I've taken the liberty of 
deleting reserved fields. 

Let's look at the contents: 

rcvid 

info 

The receive ID from the resource manager 
library's MsgReceivev() function call. Indicates 
who you should reply to (if you're going to do the 
reply yourself). 

Contains the information structure returned by 
MsgReceivev() in the resource manager library's 
receive loop. Useful for getting information about 
the client, including things like the node descriptor, 
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msg 

dpp 

id 

status 

offset 
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process ID, thread ID, and so on. See the man 
pages for MsgReceivev() for more details. 

A pointer to a union of all possible message types. 
This isn't very useful to you, because each of your 
handler functions get passed the appropriate union 
member as their second parameter. 

A pointer to the dispatch structure that you passed 
in to begin with. Again, not very useful to you, but 
obviously useful to the resource manager library. 

The identifier for the mountpoint this message was 
meant for. When you did the resmgr _attach(), it 
returned a small integer ID. This ID is the value of 
the id member. Note that you'd most likely never 
use this parameter yourself, but would instead rely 
on the attributes structure passed to you in your 
io _open() handler. 

This contains the msg_max...size that was passed in 
as the msg_max...size member of resmgr_attr _t 

(given to the resmgr _attach() function) so that the 
size, offset, and msg_max...size are all contained in 
one handy structure/location. 

This is where your handler function places the 
result of the operation. Note that you should 
always use the macro _RESMGR_STATUS to write 
this field. For example, if you're handling the 
connect message from an open(), and you're a 
read-only resource manager but the client wanted 
to open you for write, you'd return an EROFS 
errno via (typically) _RESMGR_STATUS (ctp, 

EROFS). 

The current number of bytes into the client's 
message buffer. Only relevant to the base layer 
library when used with resmgr _msgreadv() with 
combine messages (see below). 



Resource manager 
structure 

size 

iov 
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This tells you how many bytes are valid in the 
message area that gets passed to your handler 
function. This number is important because it 
indicates if more data needs to be read from the 
client (for example, if not all of the client's data 
was read by the resource manager base library), or 
if storage needs to be allocated for a reply to the 
client (for example, to reply to the client's read() 

request). (Note: there's a bug in the 2.00 release 
where this field does not get stuffed in the case of a 
non-combine connect message. All other messages 
operate correctly. The workaround in that case 
(and that case only) is to use the info structure's 
msglen parameter.) 

The 1/0 Vector table where you can write your 
return values, if returning data. For example, when 
a client calls read() and your read-handling code is 
invoked, you may need to return data. This data 
can be set up in the iov array, and your 
read-handling code can then return something like 
_RESMGR_NPARTS (2) to indicate (in this 
example) that both iov [OJ and iov [1] 

contain data to return to the client. Note that the 
iov member is defined as only having one element. 
However, you'll also notice that it's conveniently 
at the end of the structure. The actual number of 
elements in the iov array is defined by you when 
you set the nparts_max member of the control 
structure above (in the section "resmgr _at tr _ t 

control structure," above). 

Now that we've seen the data structures, we can discuss interactions 
between the parts that you'd supply to actually make your resource 
manager do something. 

We'lllook at: 
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The resmgr_attach() 
function and its 

parameters 

• The resmgr_attach() function and its parameters 

• Putting in your own functions 

• The general flow of a resource manager 

• Messages that should be connect messages but aren't 

• Combine messages 

As you saw in the /dev/null example above, the first thing you'll 
want to do is register your chosen "mountpoint" with the process 
manager. This is done via resmgr_attach(), which has the following 
prototype: 

int 
resmgr _at tach (void * dpp, 

resmgr_attr_t *resmgr_attr, 

cons t char *path, 
enum _file_type ji/e_type, 

unsigned .flags, 
const resmgr_connect_funcs_t *connect...,fimcs, 

const resmgr_io_funcs_t *io...,fitllcs, 

RESMGR...HANDLE_T *hand/e); 

Let's examine these arguments, in order, and see what they're used 
for. 

dpp 

resmgr_attr 

path 

The dispatch handle. This lets the dispatch interface 
manage the message receive for your resource 
manager. 

Controls the resource manager characteristics, as 
discussed above. 

The mountpoint that you're registering. If you're 
registering a discrete mountpoint (such as would be 
the case, for example, with /dev/null, or 
/dev/serl), then this mountpoint must be matched 
exactly by the client, with no further pathname 
components past the mountpoint. If you're 
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registering a directory mountpoint (such as would be 
the case, for example, with a network filesystem 
mounted as /nfs), then the match must be exact as 
well, with the added feature that pathnames past the 
mountpoint are allowed; they get passed to the 
connect functions stripped of the mountpoint (for 
example, the pathname /nfs/etc/passwd would 
match the network filesystem resource manager, and 
it would get etc/passwd as the rest of the 
pathname). 

The class of resource manager. See below. 

Additional flags to control the behavior of your 
resource manager. These flags are defined below. 

connect.funcs and io.funcs 

handle 

These are simply the list of connect functions and VO 
functions that you wish to bind to the mountpoint. 

This is an "extendable" data structure (aka 
"attributes structure") that identifies the resource 
being mounted. For example, for a serial port, you'd 
extend the standard POSIX-layer attributes structure 
by adding information about the base address of the 
serial port, the baud rate, etc. Note that it does not 
have to be an attributes structure- if you're 
providing your own "open" handler, then you can 
choose to interpret this field any way you wish. It's 
only if you're using the default iofunc_open_default() 
handler as your "open" handler that this field must be 
an attributes structure. 

The flags member can contain any of the following flags (or the 
constant 0 if none are specified): 
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_RESMGR_FLAG_BEFORE or _RESMGR_FLAG_AFfER 

These flags indicate that your resource manager wishes to be 
placed before or after (respectively) other resource managers 
with the same mountpoint. These two flags would be useful 
with union'd (overlayed) filesystems. We'll discuss the 
interactions of these flags shortly. 

_RESMGR_FLAG_DIR 

This flag indicates that your resource manager is taking over the 
specified mountpoint and below- it's effectively a filesystem 
sty Ie of resource manager, as opposed to a 
discretely-manifested resource manager. 

_RESMGR_FLAG_OPAQUE 

If set, prevents resolving to any other manager below your 
mount point except for the pathmanager. This effectively 
eliminates unioning on a path. 

_RESMGR_FLAG_FfYPEONLY 

This ensures that only requests that have the same FTYPE_ * as 
thefile_type passed to resmgr_attach() are matched. 

_RESMGR_FLAG_FfYPEALL 

This flag is used when a resource manager wants to catch all 
client requests, even those with a different FTYPE_ * 
specification than the one passed to resmgr __attach() in the 
file_type argument. This can only be used in conjunction with a 
registration file type of FfYPE_ALL. 

_RESMGR_FLAG_SELF 

Allow this resource manager to talk to itself. This really is a 
"Don't try this at home, kids" kind of flag, because allowing a 
resource manager to talk to itself can break the send-hierarchy 
and lead to deadlock (as was discussed in the Message Passing 
chapter). 

You can call resmgr _attach() as many times as you wish to mount 
different mountpoints. You can also call resmgr __attach() from within 
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the connect or 1/0 functions - this is kind of a neat feature that 
allows you to "create" devices on the fly. 

When you've decided on the mountpoint, and want to create it, you'll 
need to tell the process manager if this resource manager can handle 
requests from just anyone, or if it's limited to handling requests only 
from clients who identify their connect messages with special tags. 
For example, consider the POSIX message queue (mqueue) driver. 
It's not going to allow (and certainly wouldn't know what to do with) 
"regular" open() messages from any old client. It will allow messages 
only from clients that use the POSIX mq_open(), mq_receive(), and so 
on, function calls. To prevent the process manager from even 
allowing regular requests to arrive at the mqueue resource manager, 
mqueue specified _FTYPKMQUEUE as the fileJype parameter. This 
means that when a client requests a name resolution from the process 
manager, the process manager won't even bother considering the 
resource manager during the search unless the client has specified that 
it wants to talk to a resource manager that has identified itself as 
_FTYPE_MQUEUE. 

Unless you're doing something very special, you'll use ajile_type of 
_FTYPE..ANY, which means that your resource manager is prepared to 
handle requests from anyone. For the full list of _FTYPE_ * manifest 
constants, take a look in <sys/ftype.h>. 

With respect to the "before" and "after" flags, things get a little bit 
more interesting. You can specify only one of these flags or the 
constant 0. 

Let's see how this works. A number of resource managers have 
started, in the order given in the table. We also see the flags they 
passed for the flags member. Observe the positions they're given: 
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Resmgr Flag Order 

1 _RESMGR_BEFORE 

2 _RESMGR.AFTER I, 2 

3 0 1, 3, 2 

4 _RESMGR_BEFORE 1, 4, 3, 2 

5 _RESMGR_AFTER 1,4,3,5,2 

6 0 1,4,6,3,5,2 

As you can see, the first resource manager to actually specify a flag 
always ends up in that position. (From the table, resource manager 
number I was the first to specify the "before" flag; no matter who 
registers, resource manager 1 is always first in the list. Likewise, 
resource manager 2 was the first to specify the "after" flag; again, no 
matter who else registers, it's always last.) If no flag is specified, it 
effectively acts as a "middle" flag. When resource manager 3 started 
with a flag of zero, it got put into the middle. As with the "before" 
and "after" flags, there's a preferential ordering given to all the 
"middle" resource managers, whereby newer ones are placed in front 
of other, existing "middle" ones. 

However, in reality, there are very few cases where you'd actually 
mount more than one, and even fewer cases where you'd mount more 
than two resource managers at the same mountpoint. Here's a design 
tip: expose the ability to set the flags at the command line of the 
resource manager so that the end-user of your resource manager is 
able to specify, for example, -b to use the "before" flag, and -a to use 
the "after" flag, with no command-line option specified to indicate 
that a zero should be passed as the flag. 

Keep in mind that this discussion applies only to resource managers 
mounted with the same mountpoint. Mounting "/nfs" with a 
"before" flag and "1 di sk2" with an "after" flag will have no effect on 
each other; only if you were to then mount another "/nfs" or 
"/disk2" would these flags (and rules) come into play. 
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Finally, the resmgr _attach() function returns a small integer handle on 
success (or -1 for failure). This handle can then be used subsequently 
to detach the pathname from the process manager's internal pathname 
tables. 

When designing your very first resource manager, you'll most likely 
want to take an incremental design approach. It can be very 
frustrating to write thousands of lines of code only to run into a 
fundamental misunderstanding and then having to make the ugly 
decision of whether to try to kludge (er, I mean "fix") all that code, or 
scrap it and start from scratch. 

The recommended approach for getting things running is to use the 
iofunc-func_init() POSIX-layer default initializer function to fill the 
connect and I/0 tables with the POSIX-layer default functions. This 
means that you can literally write your initial cut of your resource 
manager as we did above, in a few function calls. 

Which function you'll want to implement first really depends on what 
kind of resource manager you're writing. If it's a filesystem type of 
resource manager where you're taking over a mountpoint and 
everything below it, you'll most likely be best off starting with the 
io_open() function. On the other hand, if it's a discretely manifested 
resource manager that does "traditional" I/0 operations (i.e., you 
primarily access it with client calls like read() and write()), then the 
best place to start would be the io_read() and/or io_write() functions. 
The third possibility is that it's a discretely manifested resource 
manager that doesn't do traditional I/0 operations, but instead relies 
on devctl() or ioctl() client calls to perform the majority of its 
functionality. In that case, you'd start at the io_devctl() function. 

Regardless of where you start, you'll want to make sure that your 
functions are getting called in the expected manner. The really cool 
thing about the POSIX-layer default functions is that they can be 
placed directly into the connect or I/0 functions table. This means 
that if you simply want to gain control, perform a printf() to say "I'm 
here in the io_open!", and then "do whatever should be done," you're 
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going to have an easy time of it. Here's a portion of a resource 
manager that takes over the io_open() function: 

II forward reference 
int io_open (resmgr_context_t * io_open_t *, 

RESMGR-HANDLE_T *, void*); 

int 
main () 
{ 

II everything as before, in the ldevlnull example 
II except after this line: 
iofunc_func_init (-RESMGR_CONNECT-NFUNCS, &cfuncs, 

-RESMGR_IO_NFUNCS, &ifuncs); 

II add the following to gain control: 
cfuncs.open = io_open; 

Assuming that you've prototyped the io_open() function call correctly, 
as in the code example, you can just use the default one from within 
your own! 

int 
io_open (resmgr_context_t *ctp, io_open_t *msg, 

RESMGR-HANDLE_T *handle, void *extra) 
{ 

print£ ("I'm here in the io_openl\n"); 
return (iofunc_open_default (ctp, msg, handle, extra)); 

} 

In this manner, you're still using the default POSIX-layer 
iofunc _open_default() handler, but you've also gained control to do a 
printf(). 

Obviously, you could do this for the io_read( ), io_write( ), and 
io_devctl() functions as well as any others that have POSIX-layer 
default functions. In fact, this is a really good idea, because it shows 
you that the client really is calling your resource manager as 
expected. 
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As we alluded to in the client and resource manager overview sections 
above, the general flow of a resource manager begins on the client 
side with the open(). This gets translated into a connect message and 
ends up being received by the resource manager's io_open() outcall 
connect function. 

This is really key, because the io_open() outcall function is the "gate 
keeper" for your resource manager. If the message causes the gate 
keeper to fail the request, you will not get any I/0 requests, because 
the client never got a valid file descriptor. Conversely, if the message 
is accepted by the gate keeper, the client now has a valid file 
descriptor and you should expect to get I/0 messages. 

But the io_open() outcall function plays a greater role. Not only is it 
responsible for verifying whether the client can or can't open the 
particular resource, it's also responsible for: 

• initializing internal library parameters 

• binding a context block to this request 

• binding an attribute structure to the context block. 

The first two operations are performed via the base layer function 
resmgr _open_bind( ); the binding of the attribute structure is done via a 
simple assignment. 

Once the io_open() outcall function has been called, it's out of the 
picture. The client may or may not send I/0 messages, but in any case 
will eventually terminating the "session" with a message 
corresponding to the close() function. Note that if the client suffers an 
unexpected death (e.g., gets hit with SIGSEGV, or the node that it's 
running on crashes), the operating system will synthesize a close() 
message so that the resource manager can clean up. Therefore, you 
are guaranteed to get a close() message! 
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Messages that should be 
connect messages but 

aren't 

Here's an interesting point you may have noticed. The client's 
prototype for chown() is: 

int 
chown {const char *path, 

uid_t owner, 
gid_t group) ; 

Remember, a connect message always contains a pathname and is 
either a one-shot message or establishes a context for further I/0 
messages. 

So, why isn't there a connect message for the client's chown() 
function? In fact, why is there an //0 message?!? There's certainly no 
file descriptor implied in the client's prototype! 

The answer is, "to make your life simpler!" 

Imagine if functions like chown( ), chmod( ), stat(), and others required 
the resource manager to look up the pathname and then perform some 
kind of work. (This is, by the way, the way it was implemented in 
QNX 4.) The usual problems with this are: 

• Each function has to call the lookup routine. 

• Where file descriptor versions of these functions exist, the driver 
has to provide two separate entry points; one for the pathname 
version, and one for the file descriptor version. 

In any event, what happens under Neutrino is that the client constructs 
a combine message- really just a single message that comprises 
multiple resource manager messages. Without combine messages, we 
could simulate chown() with something like this: 

int 
chown {const char *path, uid_t owner, gid_t group) 
{ 

int fd, sts; 

if {(fd =open (path, Q_RDWR)) -1) { 

return (-1); 
} 
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} 

sts = fchown (fd, owner, group); 
close (fd); 
return (sts); 
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where fchown() is the file-descriptor-based version of chown(). The 
problem here is that we are now issuing three function calls (and three 
separate message passing transactions), and incurring the overhead of 
open() and close() on the client side. 

With combine messages, under Neutrino a single message that looks 
like this is constructed directly by the client's chown() library call: 

_IO_CONNECT_COMBINE_CLOSE I _IO_CHOWNI 

A combine message. 

The message has two parts, a connect part (similar to what the client's 
open() would have generated) and an VO part (the equivalent of the 
message generated by the fchown()). There is no equivalent of the 
close() because we implied that in our particular choice of connect 
messages. We used the J:O_CONNECT _COMBINE_CLOSE message, 
which effectively states "Open this pathname, use the file descriptor 
you got for handling the rest of the message, and when you run off the 
end or encounter an error, close the file descriptor." 

The resource manager that you write doesn't have a clue that the 
client called chown() or that the client did a distinct open(), followed 
by anfchown(), followed by a close(). It's all hidden by the base-layer 
library. 

As it turns out, this concept of combine messages isn't useful just for 
saving bandwidth (as in the chown() case, above). It's also critical for 
ensuring atomic completion of operations. 

Suppose the client process has two or more threads and one file 
descriptor. One of the threads in the client does an lseek() followed by 
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a read(). Everything is as we expect it. If another thread in the client 
does the same set of operations, on the same file descriptor, we'd run 
into problems. Since the /seek() and read() functions don't know 
about each other, it's possible that the first thread would do the 
lseek( ), and then get preempted by the second thread. The second 
thread gets to do its /seek(), and then its read(), before giving up CPU. 
The problem is that since the two threads are sharing the same file 
descriptor, the first thread's /seek() offset is now at the wrong place
it's at the position given by the second thread's read() function! This 
is also a problem with file descriptors that are dup()'d across 
processes, let alone the network. 

An obvious solution to this is to put the lseek() and read() functions 
within a mutex - when the first thread obtains the mutex, we now 
know that it has exclusive access to the file descriptor. The second 
thread has to wait until it can acquire the mutex before it can go and 
mess around with the position of the file descriptor. 

Unfortunately, if someone forgot to obtain a mutexfor each and every 
file descriptor operation, there'd be a possibility that such an 
"unprotected" access would cause a thread to read or write data to the 
wrong location. 

Let's look at the C library call readblock() (from <unistd.h>): 

int 
readblock {int fd, 

size_t blksize, 
unsigned block, 
in t numblks, 
void *buff) ; 

(The writeblock() function is similar.) 

You can imagine a fairly "simplistic" implementation for readblock(): 

int 
readblock {int fd, size_t blksize, unsigned block, 

int numblks, void *buff) 
{ 
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lseek (fd, blksize *block, SEEK-SET); //get to the block 
read (fd, buff, blksize * numblks); 

Obviously, this implementation isn't useful in a multi-threaded 
environment. We'd have to at least put a mutex around the calls: 

int 
readblock (int fd, size_t blksize, unsigned block, 

int numblks, void *buff) 
{ 

} 

pthread~utex_lock (&block~utex); 

lseek (fd, blksize *block, SEEK-SET);// get to the block 
read (fd, buff, blksize * numblks); 
pthread~utex_unlock (&block~utex); 

(We're assuming the mutex is already initialized.) 

This code is still vulnerable to "unprotected" access; if some other 
thread in the process does a simple non-mutexed !seek() on the file 
descriptor, we've got a bug. 

The solution to this is to use a combine message, as we discussed 
above for the chown() function. In this case, the C library 
implementation of readblock() puts both the [seek() and the read() 
operations into a single message and sends that off to the resource 
manager: 

IO LSEEK _IO_READ I 

The readblock() function's combine message. 

The reason that this works is because message passing is atomic. 
From the client's point of view, either the entire message has gone to 
the resource manager, or none of it has. Therefore, an intervening 
"unprotected" !seek() is irrelevant- when the readblock() operation 
is received by the resource manager, it's done in one shot. (Obviously, 
the damage will be to the unprotected !seek(), because after the 
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POSIX layer data 
structures 

readblock() the file descriptor's offset is at a different place than 
where the original/seek() put it.) 

But what about the resource manager? How does it ensure that it 
processes the entire readblock() operation in one shot? We'll see this 
shortly, when we discuss the operations performed for each message 
component. 

There are three data structures that relate to the POSIX-layer support 
routines. Note that as far as the base layer is concerned, you can use 
any data structures you want; it's the POSIX layer that requires you to 
conform to a certain content and layout. The benefits delivered by the 
POSIX layer are well worth this tiny constraint. As we'll see later, 
you can add your own content to the structures as well. 

The three data structures are illustrated in the following diagram, 
showing some clients using a resource manager that happens to 
manifest two devices: 

Data structures - the big picture. 

The data structures are: 

iofunc_ocb_t- OCB structure 

Contains information on a per-file-descriptor basis 
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iofunc_attr_t- attributes structure 

Contains information on a per-device basis 

iofunc....mount_t- mount structure 

Contains information on a per-mountpoint basis 

When we talked about the I/0 and connect tables, you saw the OCB 
and attributes structures- in the I/0 tables, the OCB structure was 
the last parameter passed. The attributes structure was passed as the 
handle in the connect table functions (third argument). The mount 
structure is usually a global structure and is bound to the attributes 
structure "by hand" (in the initialization code that you supply for your 
resource manager). 

The OCB structure contains information on a per-file-descriptor basis. 
What this means is that when a client performs an open() call and gets 
back a file descriptor (as opposed to an error indication), the resource 
manager will have created an OCB and associated it with the client. 
This OCB will be around for as long as the client has the file 
descriptor open. Effectively, the OCB and the file descriptor are a 
matched pair. Whenever the client calls an I/0 function, the resource 
manager library will automatically associate the OCB, and pass it 
along with the message to the I/0 function specified by the 1/0 
function table entry. This is why the 1/0 functions all had the ocb 
parameter passed to them. Finally, the client will close the file 
descriptor (via close()), which will cause the resource manager to 
dissociate the OCB from the file descriptor and client. Note that the 
client's dup() function simply increments a reference count. In this 
case, the OCB gets dissociated from the file descriptor and client only 
when the reference count reaches zero (i.e., when the same number of 
close()s have been called as open() and dup()s.) 

As you might suspect, the OCB contains things that are important on 
a per-open or per-file-descriptor basis. Here are the contents (from 
<sys/iofunc. h>): 
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typedef struct _iofunc_ocb { 
IOFUNC...ATTR_T *attr; 
int32_t iofiag; 
SEE-BELOW! I ! offset; 
uintl6_t sfiag; 
uintl6_t flags; 

} iofunc_ocb_t; 

Ignore the comment about the offset field for now; we'll come back to 
it immediately after this discussion. 

The iofunc_ocb_t members are: 

attr A pointer to the attributes structure related to this OCB. A 
common coding idiom you'll see in the 1/0 functions is 
"ocb->attr," used to access a member of the attributes 
structure. 

iofiag 

offset 

sfiag 

flags 
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The open mode- how this resource was opened (e.g., 
read only). Note that the iofiag contains the open mode (as 
passed to open() on the client side) plus one. For example, 
an open mode of O_RDONLY (the value 0) will show up in 
the iofiag as the value 1 (the constant _READ from 
< s tdio. h> ). This effectively allows the two least 
significant bits of the iofiag to be treated as read and write 
permissions (ioflag & _READ indicates read permission; 
ioflag & _WRITE indicates write permission). 

The current /seek() offset into this resource. 

The sharing flag (see <share . h>) used with the client's 
sopen() function call. These are the flags SH_COMPAT, 

SH...DENYRW, SH...DENYWR, SH...DENYRD, and 
SH...DENYNO. 

System flags. The two flags currently supported are 
IOFUNCOCB_pRJVILEGED, which indicates whether a 
privileged process issued the connect message that resulted 
in this OCB, and IOFUNCOCB_MMAP, which indicates 
whether this OCB is in use by a mmap() call on the client 
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side. No other flags are defined at this time. You can use 
the bits defined by IOFUNCOCB_FLAGS_PRIVATE for 
your own private flags. 

If you wish to store additional data along with the "normal" OCB, rest 
assured that you can "extend" the OCB. We'll discuss this in the 
"Advanced topics" section. 

The strange case of the offset member 

The offset field is, to say the least, interesting. Have a look at 
<sys/iofunc .h> to see how it's implemented. Depending on what 
preprocessor flags you've set, you may get one of six(!) possible 
layouts for the offset area. But don't worry too much about the 
implementation- there are really only two cases to consider, 
depending on whether you want to support 64-bit offsets: 

• yes - the offset member is 64 bits 

• no (32-bit integers)- the offset member is the lower 32 bits; 
another member, offsetJii, contains the upper 32 bits. 

For our purposes here, unless we're specifically going to talk about 32 
versus 64 bits, we'll just assume that all offsets are 64 bits, of type 
ofLt, and that the platform knows how to deal with 64-bit 
quantities. 

Whereas the OCB was a per-open or per-file-descriptor structure, the 
attributes structure is a per-device data structure. You saw that the 
standard iofunc_ocb_t OCB had a member called attr that's a 
pointer to the attribute structure. This was done so the OCB has 
access to information about the device. Let's take a look at the 
attributes structure (from <sys/ iofunc. h> ): 

typedef struct _iofunc_attr { 
IOFUNC...MOUNT_T *mount; 
uint32_t 
int32_t 

flags; 
lock_tid; 
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uintl6_t 
uintl6_t 
uintl6_t 
uintl6_t 
uintl6_t 

/ock_count; 
count; 
rcount; 
wcount; 
rlocks; 

uintl6_t wlocks; 
struct _iofunc....liiillap_list *mmap_/ist; 
struct _iofunc_lock_list *lock_/ist; 
void 
uint32_t 
SEE_BELOW I ! I 

SEE-BELOW! ! I 

uid_t 
gid_t 
time_t 
time_t 
time_t 
mode_t 
nlink_t 
dev_t 

*list; 
list_size; 
nbytes; 
inode; 
uid; 
gid; 
mtime; 
atime; 
ctime; 
mode; 
nlink; 
rdev; 

} iofunc_attr_t; 

The nbytes and inode members have the same set of #ifdef 

conditionals as the offset member of the OCB (see "The strange case 
of the offset member" above). 

Note that some of the fields of the attributes structure are useful only 
to the POSIX helper routines. 

Let's look at the fields individually: 

mount 
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A pointer to the optional iofunc....mount_t mount 
structure. This is used in the same way that the 
pointer from the OCB to the attribute structure was 
used, except that this value can be NULL in which 
case the mount structure defaults are used (see "The 
iofunc....mount_t mount structure" below). As 
mentioned, the mount structure is generally bound 
"by hand" into the attributes structure in code that you 
supply for your resource manager initialization. 



flags 

lock_tid 

lock_count 

count 

rcount 

wcount 

rlocks 

wlocks 

mmap_/ist 

lock_list 
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Contains flags that describe the state of other 
attributes structure fields. We'll discuss these shortly. 

In order to prevent synchronization problems, 
multiple threads using the same attributes structure 
will be mutually exclusive. The lock_tid contains the 
thread ID of the thread that currently has the attributes 
structure locked. 

Indicates how many threads are trying to use this 
attributes structure. A value of zero indicates that the 
structure is unlocked. A value of one or more 
indicates that one or more threads are using the 
structure. 

Indicates the number of OCBs that have this attributes 
structure open for any reason. For example, if one 
client has an OCB open for read, another client has 
another OCB open for read/write, and both OCBs 
point to this attribute structure, then the value of count 
would be 2, to indicate that two clients have this 
resource open. 

Count readers. In the example given for count, rcount 
would also have the value 2, because two clients have 
the resource open for reading. 

Count writers. In the example given for count, wcount 
would have the value 1, because only one of the 
clients has this resource open for writing. 

Indicates the number of OCBs that have read locks on 
the particular resource. If zero, means there are no 
read locks, but there may be write locks. 

Same as rlocks but for write locks. 

Used internally by POSIX iofunc..mmap_default(). 

Used internally by POSIX iofunc_lock_default(). 
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list 

lisuize 

nbytes 

inode 

uid 

gid 

mtime 

a time 

ctime 

mode 

nlink 

rdev 
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Reserved for future use. 

Size of area reserved by list. 

Size of the resource, in bytes. For example, if this 
resource described a particular file, and that file was 
7756 bytes in size, then the nbytes member would 
contain the number 7756. 

Contains a file or resource serial number, that must be 
unique per mountpoint. The in ode should never be 
zero, because zero indicates a file that's not in use. 

User ID of the owner of this resource. 

Group ID of the owner of this resource. 

File modification time, updated or at least invalidated 
whenever a client write() is processed. 

File access time, updated or at least invalidated 
whenever a client read() that returns more than zero 
bytes is processed. 

File change time, updated or at least invalidated 
whenever a client write(), chown( ), or chmod() is 
processed. 

File's mode. These are the standardS_* values from 
<sys/stat.h>, such as S_IFCHR, or in octal 
representation, such as 0664 to indicate read/write 
permission for owner and group, and read-only 
permission for other. 

Number of links to the file, returned by the client's 
stat() function call. 

For a character special device, this field consists of a 
major and minor device code (I 0 bits minor in the 
least-significant positions; next 6 bits are the major 
device number). For other types of devices, contains 
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the device number. (See below in "Of device 
numbers, inodes, and our friend rdev," for more 
discussion.) 

As with the OCB, you can extend the "normal" attributes structure 
with your own data. See the "Advanced topics" section. 

The mount structure contains information that's common across 
multiple attributes structures. 

Here are the contents of the mount structure (from 
<sys/ iofunc. h> ): 

typedef struct _iofunc~ount { 
uint32_t 
uint32_t 
dev_t 
int32_t 

flags; 
conf; 
dev; 
blocksize; 

iofunc_funcs_t *Junes; 
} iofunc~ount_t; 

The flags member contains just one flag, IOFUNC_MOUNT _32BIT. 

This flag indicates that offset in the OCB, and nbytes and inode in the 
attributes structure, are 32-bit. Note that you can define your own 
flags in flags, using any of the bits from the constant 
IOFUNCMOUNT _FLAGS_PRIVATE. 

The conf member contains the following flags: 

IOFUNC_pc_CHOWN _RESTRICTED 

Indicates if the filesystem is operating in a "chown-restricted" 
manner, meaning if only root is allowed to chown a file. 

IOFUNC_pC_NQ_ TRUNC 

Indicates that the filesystem doesn't truncate the name. 

IOFUNc_pc_sYNCJO 

Indicates that the filesystem supports synchronous I/0 
operations. 
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IOFUNc_pc_uNK_DIR 

Indicates that linking/unlinking of directories is allowed. 

The dev member contains the device number and is described below 
in "Of device numbers, inodes, and our friend rdev." 

The blocksize describes the native blocksize of the device in bytes. 
For example, on a typical rotating-medium storage system, this would 
be the value 512. 

Finally, the Junes pointer points to a structure (from 
<sys/iofunc .h>): 

typedef struct _iofunc_funcs { 
unsigned nfuncs; 

IOFUNC_QCB_T * ( *ocb_ca/loc) 
(resmgr_context_t *ctp, 
IOFUNC-ATTR_T *attr) ; 

void (*ocb_free) 
(IOFUNC_QCB_T *ocb); 

} iofunc_funcs_t; 

As with the connect and I/0 functions tables, the nfuncs member 
should be stuffed with the current size of the table. Use the constant 
.JOFUNc_NFUNCS for this. 

The ocb_calloc and ocb-free function pointers can be filled with 
addresses of functions to call whenever an OCB is to be allocated or 
deallocated. We'll discuss why you'd want to use these functions later 
when we talk about extending OCBs. 

Of device numbers, inodes, and our friend rdev 

The mount structure contains a member called dev. The attributes 
structure contains two members: inode and rdev. Let's look at their 
relationships by examining a traditional disk-based filesystem. The 
filesystem is mounted on a block device (which is the entire disk). 
This block device might be known as /dev/hdO (the first hard disk in 
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the system). On this disk, there might be a number of partitions, such 
as /dev/hd0t77 (the first QNX filesystem partition on that particular 
device). Finally, within that partition, there might be an arbitrary 
number of files, one of which might be /hd/ spud. txt. 

The dev (or "device number") member, contains a number that's 
unique to the node that this resource manager is registered with. The 
rdev member is the dev number of the root device. Finally, the inode 
is the file serial number. (Note that you can obtain major and minor 
device numbers by calling rsrcdbmgr _devno_attach( ); see the Library 
Reference for more details. You are limited to 64 major devices and 
1024 minor devices per major device.) 

Let's relate that to our disk example. The following table shows some 
example numbers; after the table we'll take a look at where these 
numbers came from and how they're related. 

Device dev inode rdev 

6 /dev/hdO 

/dev/hd0t77 

/hd/spud.txt 77 

2 

12 77 

47343 n/a 

For the raw block device, /dev/hdO, the process manager assigned 
both the dev and inode values (the 6 and the 2 in the table above). The 
resource manager picked a unique rdev value (of 1) for the device 
when it started. 

For the partition, I dev /hdO t 7 7, the dev value came from the raw 
block device's rdev number (the 1). The inode was selected by the 
resource manager as a unique number (within the rdev). This is where 
the 12 came from. Finally, the rdev number was selected by the 
resource manager as well - in this case, the writer of the resource 
manager selected 77 because it corresponded to the partition type. 
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Finally, for the file, /hd/ spud. txt, the dev value (77) came from the 
partition's rdev value. The inode was selected by the resource 
manager (in the case of a file, the number is selected to correspond to 
some internal representation of the file- it doesn't matter what it is 
so long as it's not zero, and it's unique within the rdev). This is where 
the 4 7343 came from. For a file, the rdev field is not meaningful. 

Handler routines 

Not all outcalls correspond to client messages- some are 
synthesized by the kernel, and some by the library. 

I've organized this section into the following: 

• general notes 

• connect functions notes 

• alphabetical listing of connect and I/0 messages 

Each handler function gets passed an internal context block (the ctp 
argument) which should be treated as "read-only," except for the iov 
member. This context block contains a few items of interest, as 
described above in "resmgr _context_t internal context block." 
Also, each function gets passed a pointer to the message (in the msg 
argument). You'll be using this message pointer extensively, as that 
contains the parameters that the client's C library call has placed there 
for your use. 

The function that you supply must return a value (all functions are 
prototyped as returning in int). The values are selected from the 
following list: 

_RESMGR_NOREPLY 

Indicates to the resource manager library that it should not 
perform the MsgReplyv()- the assumption is that you've 
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either performed it yourself in your handler function, or that 
you're going to do it some time later. 

_RESMGR_NPARTS (n) 

The resource manager library should return an n-part IOV when 
it does the MsgReplyv() (the IOV is located in ctp -> iov). 

Your function is responsible for filling in the iov member of the 
ctp structure, and then returning _RESMGR_NPARTS with the 
correct number of parts. 

The iov member of ctp is allocated dynamically, so it must be big 
enough to hold the number of array elements that you're writing into 
the iov member! See the section "resmgr _attr _t control structure" 
above, for information on setting the nparts__max member. 

_RESMGR__DEFAULT 

This instructs the resource manager library to perform the 
low-level default function (This is not the same as the 
iofunc_ *_default() functions!) You'd rarely ever use this return 
value. In general, it causes the resource manager library to 
return an ermo of ENOSYS to the client, which indicates that 
the function is not supported. 

_RESMGR_ERRNO (errno) 

(Deprecated) This return value had been used to "wrap" an 
ermo number as the return value of the message. For example, 
if a client issued an open() request for a read-only device, it 
would be appropriate to return the error value EROFS. Since this 
function is deprecated, you can return the error number directly 
instead of wrapping it with the _RESMGR_ERRNO macro (e.g., 
return (EROFS); instead of the more cumbersome return 
(-RESMGR-ERRNO (EROFS)); .) 

_RESMGR_IYfR (ctp, addr, len) 

This is a convenience macro that accepts the context pointer 
ctp, and fills its first IOV element to point to the address 
specified by addr for the length specified by len, and then 
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returns the equivalent of -RESMGR_NPARTS ( 1} to the library. 
You'd generally use this if you return single-part IOVs from 
your function. 

Locking, unlocking, and 
combine message 

handling 

We saw the client side of a combine message when we looked at 
readblock() (in "Combine messages"). The client was able to 
atomically construct a message that contained multiple resource 
manager "submessages" - in the example, these were messages 
corresponding to the individual functions !seek() and read(). From the 
client's perspective, the two (or more) functions were at least sent 
atomically (and, due to the nature of message passing, will be received 
atomically by the resource manager). What we haven't yet talked 
about is how we ensure that the messages are processed atomically. 

This discussion applies not only to combine messages, but to all 1/0 
messages received by the resource manager library (except the close 
message, which we'll come back to shortly). 

I@' The very first thing that the resource manager library does is to lock 
the attribute structure corresponding to the resource being used by the 
received message. Then, it processes one or more submessages from 
the incoming message. Finally, it unlocks the attribute structure. 

This ensures that the incoming messages are handled atomically, for 
no other thread in the resource manager (in the case of a 
multithreaded resource manager, of course) can "jump in" and modify 
the resource while a thread is busy using it. Without the locking in 
place, two client threads could both issue what they believe to be an 
atomic combine message (say !seek() and read()). Since the resource 
manager might have two different threads running in it and processing 
messages, the two resource manager threads could possibly preempt 
each other, and the !seek() components could interfere with each other. 
With locking and unlocking, this is prevented, because each message 
that accesses a resource will be completed in its entirety atomically. 
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Locking and unlocking the resource is handled by default helper 
functions (iofunc_lock_ocb_default() and iofunc_unlock_ocb_default( )) 
which are placed in the 1/0 table at the lock_ocb and unlock_ocb 
positions. You can, of course, override these functions if you want to 
perform further actions during this locking and unlocking phase. 

Note that the resource is unlocked before the io_close() function is 
called. This is necessary because the io_close() function will free the 
OCB, which would effectively invalidate the pointer used to access 
the attributes structure, which is where the lock is stored! Also note 
that none of the connect functions do this locking, because the handle 
that's passed to them does not have to be an attribute structure (and 
the locks are stored in the attribute structure). 

Before we dive into the individual messages, however, it's worth 
pointing out that the connect functions all have an identical message 
structure (rearranged slightly, see <sys/ iomsg. h> for the original): 

struct _io_connect { 
II Internal use 
uintl6_t type; 
uintl6_t subtype; 
uint32_t fi/e_type; 
uintl6_t rep/y_max; 
uintl6_t entry_max; 
uint32_t key; 
uint32_t handle; 
uin t3 2 _t iofiag; 
uint32_t mode; 
uintl6_t sfiag; 
uintl6_t access; 
uintl6_t zero; 
uintS_t efiag; 

} ; 

II End-user parameters 
uintl6_t path_/en; 
uintS_t extra-type; 
uintl6_t extra_len; 
char path [ 1]; 

You'll notice that I've divided the struct _io_connect structure 
into two areas, an "Internal use" part and an "End-user parameters" 
part. 
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Internal use part 

End-user parameter part 

The first part consists of fields that the resource manager library uses 
to: 

• determine the type of message sent from the client. 

• validate (ensure that the message is not spoofed). 

• track access mode (used by helper functions). 

To keep things simple, I recommend that you always use the helper 
functions (the iofunc_ *_default() ones) in all connect functions. These 
will return a pass/fail indication, and after that point, you can then use 
the "End-user parameters" members within the connect function. 

The second half of the members directly concern your 
implementation of the connect functions: 

path_len and path 

The pathname (and its length) that's the operand (i.e., the 
pathname you're operating on). 

extra_type and extra_len 

Additional parameters (pathnames, for example) relevant to the 
connect function. 

To get a sense of how the path member is used as "the pathname 
you're operating on," let's examine something like the rename() 
function. This function takes two pathnames; the "original" pathname 
and the "new" pathname. The original pathname is passed in path, 
because it's the thing being worked on (it's the filename that's 
undergoing the name change). The new pathname is the argument to 
the operation. You'll see that the extra parameter passed to the 
connect functions conveniently contains a pointer to the argument of 
the operation - in this case, the new pathname. 
(Implementation-wise, the new pathname is stored just past the 
original pathname in the path pointer, with alignment taken into 
consideration, but you don't have to do anything about this- the 
extra parameter conveniently gives you the correct pointer.) 
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io_chmod() 

This section gives an alphabetical listing of the connect and 110 
function entry points that you can fill in (the two tables passed to 
pathname__attach( )). Remember that if you simply call 
iofuncfunc_init(), all these entries will be filled in with the 
appropriate defaults; you'd want to modify a particular entry only if 
you wish to handle that particular message. In the "Examples" 
section, below, you'll see some examples of the common functions. 

It may seem confusing at first, but note that there are in fact two 
unblock outcalls - one is a connect function and one is an 110 
function. This is correct; it's a reflection of when the unblock occurs. 
The connect version of the unblock function is used when the kernel 
unblocks the client immediately after the client has sent the connect 
message; the 110 version of the unblock function is used when the 
kernel unblocks the client immediately after the client has sent an 110 
message. 

In order not to confuse the client's C-library call (for example, open()) 
with the resource manager connect outcall that goes into that 
particular slot, we've given all of our functions an "io_" prefix. For 
example, the function description for the open connect outcall slot 
will be under io_open(). 

io_chmod() 

int io_chmod (resmgr_context_t *cp, io_chmod_t 

*msg, RESMGR_OCB_T *ocb) 

Classification: 110 function 

Default handler: iofunc _chmod_default() 

Helper functions: iofunc_chmod() 

Client function: chmod( ),fchmod() 
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Messages: __IQ_CHMOD 

Data structure: 

struct _io_chmod 
uintl6_t type; 
uintl6_t combine_/en; 
mode_t mode; 

}; 

typedef union { 
struct _io_chmod i; 

} io_chmod_t; 

Description: Responsible for changing the mode for the resource 
identified by the passed ocb to the value specified by the mode 
message member. 

Returns: The status via the helper macro _RESMGR_STATUS. 

io_chown() 

int io_chown (resmgr_context_t *ctp, io_chown_t 

*msg, RESMGR_OCB_T *ocb) 

Classification: 1/0 function 

Default handler: iofunc _chown_default() 

Helper functions: iofunc_chown() 

Client function: chown( ), fchown() 

Messages: _IO_CHOWN 

Data structure: 

struct _io_chown { 
uintl6_t type; 
uintl6_t combine-len; 
int32_t gid; 
int32_t uid; 
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}; 

typedef union { 
struct _io_chown i; 

} io_chown_t; 

io_c/ose_dup() 

Description: Responsible for changing the user ID and group ID 
fields for the resource identified by the passed ocb to uid and gid, 
respectively. Note that the mount structure flag 
IOFUNc_pc_cHOWN_RESTRICTED and the OCB flag field should be 
examined to determine whether the filesystem allows chown() to be 
performed by non-root users. 

Returns: The status via the helper macro __RESMGR_STATUS. 

io_c/ose_dup() 

int io_close_dup (resmgr_context_t *c~, io_close_t 
*msg, RESMGR_QCB_T *ocb) 

Classification: 1/0 function 

Default handler: iofunc _close _dup _default() 

Helper functions: iofunc_close_dup() 

Client function: close( ),fclose() 

Messages: J:O_CLOSE_DUP 

Data structure: 

struct _io_close { 
uint16_t type; 
uintl6_t combine_len; 

}; 

typedef union { 
struct _io_close i; 

} io_close_t; 
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Description: This is the real function handler for the client's close() 
or fclose() function calls. Note that you'd almost never take over this 
function; you'd leave it as iofunc_close_dup_default() in the 1/0 table. 
This is because the base layer keeps track of the number of open(), 
dup() and close() messages issued for a particular OCB, and will then 
synthesize an io_close_ocb() outcall (see below) when the last close() 

message has been received for a particular OCB. Note that the receive 
IDs present in ctp->rcvid may not necessarily match up with those 
passed to io_open( ). However, it's guaranteed that at least one receive 
ID will match the receive ID from the io_open() function. The "extra" 
receive IDs are the result of (possibly internal) dup()-type 

functionality. 

Returns: The status via the helper macro _RESMGR_STATUS. 

io_c/ose_ocb() 

int io_close_ocb (resmgr_context_t *c~, void 

*reserved, RESMGR_OCB_T *ocb) 

Classification: 1/0 function (synthesized by library) 

Default handler: iofunc_close_default() 

Helper functions: none 

Client function: none- synthesized by library 

Messages: none- synthesized by library 

Data structure: 

II synthesized by library 
struct _io_close { 

uintl6_t type; 
uin tl6 _t combine _fen; 

}; 

typedef union { 
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struct _io_close i; 
} io_close_t; 

io_devctl() 

Description: This is the function that gets synthesized by the 
base-layer library when the last close() has been received for a 
particular OCB. This is where you'd perform any final cleanup you 
needed to do before the OCB is destroyed. Note that the receive ID 
present in ctp->rcvid is zero, because this function is synthesized 
by the library and doesn't necessarily correspond to any particular 
message. 

Returns: The status via the helper macro _RESMGR_STATUS. 

io_devctl() 

int io_devctl {resmgr_context_t *c~, io_devctl_t 

*msg, RESMGR_OCB_T *ocb) 

Classification: VO 

Default handler: iofunc_devctLdefault() 

Helper functions: iofunc...devctl() 

Client function: devctl(), ioctl() 

Messages: _IQ_DEVCTL 

Data structure: 

struct _io_devctl { 

} ; 

uintl6_t type; 
uin tl6 _t combine _/en; 
int32_t dcmd; 
int32_t nbytes; 
int32_t zero; 

struct _io_devctl_reply { 
uint32_t zero; 
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}; 

int32_t ret_val; 

int32_t nbytes; 
int32_t ~em2; 

typedef union { 
struct _io_devctl i; 
struct _io_devctl_reply o; 

} io_devctl_t; 

Description: Performs the device 1/0 operation as passed from the 
client's devctl() in dcmd. The client encodes a direction into the top 
two bits of dcmd, indicating how the devctl() is to transfer data (the 
"to" field refers to the _FQSIX_DEVDIR_TO bit; the "from" field refers 
to the _POSIX_DEVDIR_FROM bit): 

to field from field Meaning 

0 0 no data transfer 

0 

1 0 

transfer from driver to client 

transfer from client to driver 

transfer bidirectionally 

In the case of no data transfer, the driver is expected to simply 
perform the command given in dcmd. In the case of a data transfer, 
the driver is expected to transfer the data from and/or to the client, 
using the helper functions resmgr _msgreadv() and 
resmgr _msgwritev( ). The client indicates the size of the transfer in the 
nbytes member; the driver is to set the outgoing structure's nbytes 
member to the number of bytes transferred. 

Note that the input and output data structures are zero-padded so that 
they align with each other. This means that the implicit data area 
begins at the same address in the input and output structures. 

If using the helper routine iofunc..devctl( ), beware that it'll return the 
constant _RESMGR_DEFAULT in the case where it can't do anything 
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with the devctl() message. This return value is there to decouple 
legitimate errno return values from an "unrecognized command" 
return value. Upon receiving a ..RESMGR_DEFAULT, the base-layer 
library will respond with an errno of ENOSYS, which the client's 
devctl() library function will translate into ENOTTY (which is the 
"correct" POSIX value). 

It's up to your function to check the open mode against the operation; 
no checking is done anywhere in either the client's devctl() library or 
in the resource manager library. For example, it's possible to open a 
resource manager "read-only" and then issue a devctl() to it telling it 
to "format the hard disk" (which is very much a "write" operation). It 
would be prudent to verify the open mode first before proceeding with 
the operation. 

Note that the range of dcmd values you can use is limited (OxOOOO 
through OxOFFF inclusive is reserved for QSSL). Other values may be 
in use; take a look through the include files that have the name 
<sys/dcmd_* .h>. 

Returns: The status via the helper macro ..RESMGR_STATUS and the 
reply buffer (with reply data, if required). 

For an example, take a look at "A simple io_devctl() example," below. 

io_dup() 

int io_dup (resmgr_context_t *ctp, io_dup_t *msg, 

RESMGR-OCB_T *ocb) 

Classification: 1/0 

Default handler: NULL -handled by base layer 

Helper functions: none 

Client function: dup(), dup2(),fcntl(),fork(), spawn*(), vfork() 
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Messages: J:O_DUP 

Data structure: 

struct _io_dup { 
uintl6_t rype; 
uintl6_t combine_/en; 
struct _msg_info info; 
uint32_t reserved; 
uint32_t key; 

}; 

typedef union { 
struct _io_dup i; 

} io_dup_t; 

Description: This is the dup() message handler. As with the 
io_close_dup(), you won't likely handle this message yourself. 
Instead, the base-layer library will handle it. 

Returns: The status via the helper macro _R.ESMGR_STATUS. 

io_fdinfo() 

int io_fdinfo (resmgr_context_t *c~, io_fdinfo_t 

*msg, RESMGR-OCB_T *ocb) 

Classification: 110 

Default handler: iofuncjdinfo__default() 

Helper functions: iofuncfdinfo() 

Client function: iofdinfo() 

Messages: J:O_FDINFO 

Data structure: 

struct _io_fdinfo { 
uintl6_t 
uintl6_t 

type; 
combine _/en; 

314 Chapter 5 • Resource Managers 



} ; 

uint32_t 
int32_t 
uint32_t 

flags; 
path_/en; 
reserved; 

struct _io_fdinfo_reply { 
uint32_t zeiV [2]; 
struct _fdinfo info; 

} ; 

typedef union { 
struct _io_fdinfo i; 
struct _io_fdinfo_reply o; 

} io_fdinfo_t; 

io_/ink() 

Description: This function is used to allow clients to retrieve 
information directly about the attributes and pathname which is 
associated with a file descriptor. The client-side function iofdinfo() is 
used. The path string implicitly follows the struct 

_io_fdinfo_reply data structure. Use of the default function is 
sufficient for discretely-manifested pathname resource managers. 

Returns: The length of the path string being returned is set via the 
helper macro _.IQ_SET _FDINFO_LEN. 

io_/ink() 

int io_link (resmgr_context_t *c~, io_link_t *msg, 
RESMGR_HANDLE_T *handle, io_link_extra_t *extra) 

Classification: Connect 

Default handler: none 

Helper functions: iofunc_link() 

Client function: link() 

Messages: _.IQ_CONNECT with subtype _IQ_CONNECT _LINK 

Data structure: 
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struct _io_connect { 
II internal fields (as described above) 
uint16_t path_/en; 
uint8_t extra...type; 
uint16_t extra_/en; 
char path [1] ; 

}; 

struct _io_connect_link_rep1y { 
uint32_t reserved/ [2]; 
uint8_t ej/ag; 
uint8_t resen,ed2 [3]; 
uint32_t umask; 
uint16_t nentries; 
uint16_t path_/en; 

}; 

typedef union { 
struct _io_connect connect; 
struct _io_connect_1ink_reply link-reply; 

} io_link_t; 

typedef union _io_1ink_extra { 
struct ...:msg_info 
void 
char 
struct _io_resmgr_link_extra 

} io_1ink_extra_t; 

info; 
*ocb; 
path [1]; 

resmgr; 

Description: Creates a new link with the name given in the path 
member of msg to the already-existing pathname specified by the path 
member of extra (passed to your function). For convenience, the ocb 
member of extra contains a pointer to the OCB for the existing 
pathname. 

Returns: The status via the helper macro _RESMGR_STATUS. 

io_/ock() 

int io_lock (resmgr_context_t *c~, io_lock_t *msg, 

RESMGR_OCB_T *ocb) 

Classification: 110 
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Default handler: iofuncJock_default() 

Helper functions: iofunc _lock() 

Client functions: fcntl(), lockf(),jlock() 

Messages: J:O_LOCK 

Data structure: 

struct _io_lock { 
uintl6_t 
uintl6_t 
uint32_t 
int32_t 

}; 

struct _io_lock_reply { 

type; 
combine _/en; 
subtype; 
nbytes; 

uint32_t zero [3]; 
} ; 

typedef union { 
struct _io_lock i; 
struct _io_lock_reply o; 

} io_lock_t; 

io_/ock_ocb() 

Description: This provides advisory range-based file locking for a 
device. The default function is most likely sufficient for most resource 
managers. 

Returns: The status via the helper macro _RESMGR_STATUS. 

io_/ock_ocb() 

int io_lock_ocb (resmgr_context_t *c~, void 

*reserved, RESMGR_QCB_T *ocb) 

Classification: 110 (synthesized by library) 

Default handler: iofuncJock_ocb_default() 

Helper functions: none 
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Client function: all 

Messages: none- synthesized by library 

Data structure: none 

Description: This function is responsible for locking the attributes 
structure pointed to by the OCB. This is done to ensure that only one 
thread at a time is operating on both the OCB and the corresponding 
attributes structure. The lock (and corresponding unlock) functions 
are synthesized by the resource manager library before and after 
completion of message handling. See the section on "Combine 
messages" above for more details. You'll almost never use this outcall 
yourself; instead, use the POSIX-layer default function. 

Returns: The status via the helper macro _RESMGR_STATUS. 

io_/seek() 

int io_lseek {resmgr_context_t *c~, io_lseek_t 

*msg, RESMGR_OCB_T *ocb} 

Classification: 1/0 

Default handler: iofunc _lseek__default() 

Helper functions: iofunc_lseek() 

Client function: [seek( ),fseek( ), rewinddir() 

Messages: _]Q_LSEEK 

Data structure: 

struct _io_lseek { 
uintl6_t type; 
uintl6_t combine_/en; 
short whence; 
uintl6_t zero; 
uint64_t offset; 

}; 
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typedef union { 
struct _io_lseek i; 
uint64_t o; 

} io_lseek-t; 

io_mknod() 

Description: Handles the client's !seek() function. Note that a 
resource manager that handles directories will also need to interpret 
the _IO_LSEEK message for directory operations. The whence and 
offset parameters are passed from the client's !seek() function. The 
routine should adjust the OCB's offset parameter after interpreting the 
whence and offset parameters from the message and should return the 
new offset or an error. 

Returns: The status via the helper macro _RESMGR_STATUS, and 
optionally (if no error and if not part of a combine message) the 
current offset. 

io_mknod() 

int io-mknod (resmgr_context_t *c~~ io-mknod_t 

*msg 1 RESMGR....HANDLE_T *handle I void *reserved) 

Classification: Connect 

Default handler: none 

Helper functions: iofunCJnknod() 

Client function: mknod( ), mkdir( ), mkfifo() 

Messages: J:O_CONNECT, subtype J:O_CONNECT _MKNOD 

Data structure: 

struct _io_connect { 
/1 internal fields (as described above) 
uintl6_t path-len; 
uintB_t extra_type; 
uintl6_t extra_/en; 
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char path [1]; 
}; 

struct _io_connect_link_reply { 
uint32_t reserved! [2]; 

}; 

uint8_t ejlag; 

uint8_t reserved2 [3] ; 
uint32_t umask; 
uintl6_t nentries; 
uintl6_t path_/en; 

typedef union { 
struct _io_connect 
struct _io_connect_link_reply 

} io....mknod_t; 

connect; 
linLreply; 

Description: Creates a new filesystem entry point. The message is 
issued to create a file, named by the path member, using the filetype 
encoded in the mode member (from the "internal fields" part of the 
struct _io_connect structure, not shown). 

This is really used only for the mkfifo( ), mkdir( ), and mknod() client 
functions. 

Returns: The status via the helper macro ..RESMGR_STATUS. 

io_mmap() 

int io~ap (resmgr_context_t *c~, io~ap_t *msg, 

RESMGR_OCB_T *ocb) 

Classification: 1/0 

Default handler: iofunc..mmap_default() 

Helper functions: iofunc..mmap() 

Client function: mmap( ), munmap( ), mmap...device_io( ), 
mmap_device..memory() 
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Messages: __IQ__MMAP 

Data structure: 

struct _io~ap { 
uintl6_t 
uintl6_t 
uint32_t 
uint64_t 

} ; 

struct ....msg_info 
uint32_t 

struct _io~ap_reply { 

} ; 

uint32_t 
uint32_t 
uint64_t 
int32_t 
int32_t 

typedef union { 

type; 
combine _/en; 
prot; 
offset; 
info; 
zero [6]; 

zero; 
flags; 
offset; 
coid; 
fd; 

struct _io~ap i; 
struct _io~ap_reply o; 

} io~ap_t; 

io_mmap() 

Description: Allows the process manager to mmap() files from your 
resource manager. Generally, you should not code this function 
yourself (use the defaults provided by iofunc-func_init()- the default 
handler), unless you specifically wish to disable the functionality (for 
example, a serial port driver could choose to return ENOSYS, because 
it doesn't make sense to support this operation). 

Only the process manager will call this resource manager function. 

Note that a side effect of the process manager's calling this function is 
that an OCB will be created (i.e., iofunc_ocb_calloc() will be called), 
but this should have no consequences to a properly implemented 
resource manager. 

Returns: The status via the helper macro ..RESMGR_STATUS. 
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io_mount() 

int io~ount (resmgr_context_t *c~ 1 io~ount_t 

*msg 1 RESMGR_HANDLE_T *handle 1 io~ount_extra_t 

*extra) 

Classification: Connect 

Default handler: none 

Client function: mount(), umount() 

Helper functions: none 

Messages: J:O_CONNECT with the J:O_CONNECT _MOUNT subtype. 

Data structure: 

struct _io_connect { 

}; 

II internal fields (as described above) 
uintl6_t path_fen; 
uint8_t extra_type; 
uintl6_t extra_fen; 
char path [1] ; 

struct _io_connect_link_reply { 
uint32_t reserved/ [2]; 
uint8_t efiag; 
uint8_t reserved2 [3]; 
uint32_t umask; 
uin t16 _t nentries; 
uintl6_t path_fen; 

}; 

typedef union { 
struct _io_connect connect; 
struct _io_connect_link_reply link_reply; 

} io....mount_t; 

Description: This function is called whenever a mount() or umount() 
client function sends your resource manager a message. QSSL's 
Thomas Fletcher has written an excellent article, including some very 
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interesting code examples, that you can find at the following URLs: 
http://qdn.qnx.com/articles/apr0601/index.html (the 
article) and http:/ /staff.qnx.com;-thomasf/nto.html (the 
code examples). 

Returns: The status via the helper macro .JO_SET _CONNECT .JlliT. 

io_msg() 

int io~sg (resmgr_context_t *c~, io~sg_t *msg, 
RESMGR_QCB_T *ocb) 

Classification: 1/0 

Default handler: none. 

Helper functions: none. 

Client function: none - manually assembled and sent via MsgSend() 

Messages: .JO_MSG 

Data structure: 

struct _io...msg { 
uintl6_t type; 
uintl6_t combine_/en; 
uintl6_t mgrid; 
uintl6_t subtype; 

typedef union { 
struct _io...msg i; 

} io...msg_t; 

Description: The J:O_MSG interface is a more general, but less 
portable, variation on the ioctl()/devctl() theme. The mgrid is used to 
identify a particular manager- you should not perform actions for 
requests that don't conform to your manager ID. The subtype is 
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effectively the command that the client wishes to perform. Any data 
that's transferred implicitly follows the input structure. Data that's 
returned to the client is sent on its own, with the status returned via 
_RESMGR_STATUS. You can get a "manager ID" from QSSL. 

Returns: The status via the helper macro _RESMGR_STATUS. 

io_notify() 

int io_notify (resmgr_context_t *c~, io_notify_t 

*msg, RESMGR_QCB-T *ocb} 

Classification: 110 

Default handler: none 

Helper functions: iofunCJwtify(), iofunCJwtify_remove(), 
iofuncJiotify_trigger() 

Client function: select(), ionotify() 

Messages: ..IO..NOTIFY 

Data structure: 

struct _io_notify { 
uintl6_t 
uintl6_t 
int32_t 
int32_t 
struct sigevent 

}; 

struct _io_notify_reply 

type; 
combine _/en; 

action; 

flags; 
event; 

uint32_t zero; 
uint32_t flags; 

} ; 

typedef union { 
struct _io_notify i; 
struct _io_notify_reply o; 

} io_notify_t; 
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Description: The handler is responsible for installing, polling, or 
removing a notification handler. The action and flags determine the 
kind of notification operation and conditions; the event is a struct 

sigevent structure that defines the notification event (if any) that the 
client wishes to be signalled with. You'd use the MsgDeliverEvent() 
or iofuncJJotify_trigger() functions to deliver the event to the client. 

Returns: The status via the helper macro _RESMGR_STATUS; the flags 
are returned via message reply. 

io_open() 

int io_open (resmgr_context_t *c~, io_open_t *msg, 

RESMGR-HANDLE_T *handle, void *extra) 

Classification: Connect 

Default handler: iofunc_open_default() 

Helper functions: iofunc_open(), iofunc_ocb_attach() 

Client function: open(),fopen(), sopen() (and others) 

Messages: _IO_CONNECT with one of _IO_CONNECT _COMBINE, 
_IO_CONNECT _COMBINE_CLOSE or _IO_CONNECT _OPEN subtypes. 

Data structure: 

struct _io_connect { 
II internal fields (as described above) 

} ; 

uintl6_t path_/en; 
uint8_t extra_type; 
uintl6_t extra_/en; 
char path [1] ; 

struct _io_connect_link_reply { 
uint32_t reserved] [2]; 
uint8_t eflag; 
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uint8_t reserved2 [3]; 
uint32_t umask; 
uintl6_t nentries; 
uin tl6 _t path _/en; 

}; 

typedef union { 
struct _io_connect connect; 
struct _io_connect_link_reply link_reply; 

} io_open_t; 

Description: This is the main entry point into the resource manager. It 
checks that the client indeed has the appropriate permissions to open 
the file, binds the OCB to the internal library structures (via 
resmgr JJind_ocb(), or iofunc_ocb_attach()), and returns an errno. 
Note that not all input and output structure members are relevant for 
this function. 

Returns: The status via the helper macro _IO_SELCONNECLRET. 

io_openfd() 

int io_openfd (resmgr_context_t *c~, io_openfd_t 

*msg, RESMGR_OCB-T *ocb) 

Classification: 110 

Default handler: iofunc _openfd_default() 

Helper functions: iofunc_openfd() 

Client function: openfd() 

Messages: _IQ_OPENFD 

Data structure: 

struct _io_openfd { 
uintl6_t 
uintl6_t 
uint32_t 

type; 
combine _/en; 
iofiag; 
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uintl6_t sflag; 
uintl6_t reserved]; 
struct ...lllsg_info info; 
uin t3 2 _t reserved2; 
uint32_t key; 

}; 

typedef union { 
struct _io_openfd i; 

} io_openfd_t; 

io_pathconf() 

Description: This function is similar to the handler provided for 
io_open(), except that instead of a pathname, an already-open file 
descriptor is passed (by virtue of passing you the ocb in the function 
call). 

Returns: The status via the helper macro _RESMGR_STATUS. 

io_pathconf() 

int io_pathconf (resmgr_context_t *c~, 
io_pathconf_t *msg, RESMGR_QCB_T *ocb) 

Classification: 110 

Default handler: iofunc_pathconf-.default() 

Helper functions: iofunc_pathconf() 

Client function: fpathconf( ), pathconf() 

Messages: __lOYATHCONF 

Data structure: 

struct _io_pathconf { 
uintl6_t type; 
uintl6_t combine_len; 
short name; 
uintl6_t zero; 

}; 
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typedef union { 
struct _io_pathconf i; 

} io_pathconf_t; 

Description: The handler for this message is responsible for returning 
the value of the configurable parameter name for the resource 
associated with this OCB. Use the default function and add additional 
cases for the name member as appropriate for your device. 

Returns: The status via the helper macro _IQ_SET _FATHCONF _VALUE 

and the data via message reply. 

io_read() 

int io_read (resmgr_context_t *c~, io_read_t *msg, 
RESMGR_OCB_T *ocb) 

Classification: 110 

Default handler: iofunc _read_default() 

Helper functions: iofunc_read(), iofunc_read_verify() 

Client function: read(), readdir() 

Messages: __IQ_READ 

Data structure: 

struct _io_read { 
uintl6_t type; 
uintl6_t combine_/en; 
int32_t nbytes; 
uint32_t xtype; 

} ; 

typedef union { 
struct _io_read i; 

} io_read_t; 
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Description: Responsible for reading data from the resource. The 
client specifies the number of bytes it's prepared to read in the nbytes 
input member. You return the data, advance the offset in the OCB, 
and update the appropriate time fields. 

Note that the xtype member may specify a per-read-message override 
flag. This should be examined. If you don't support any extended 
override flags, you should return an EINVAL. We'll see the handling 
of one particularly important (and tricky!) override flag called 
J:O_](TYPE_OFFSET in the io_read() and io_write() examples below. 

Note also that the J:O-.READ message arrives not only for regular files, 
but also for reading the contents of directories. You must ensure that 
you return an integral number of struct dirent members in the 
directory case. For more information about returning directory 
entries, see the example in the "Advanced topics" section under 
"Returning directory entries." 

The helper function iofunc_read_verify() should be called to ascertain 
that the file was opened in a mode compatible with reading. Also, the 
iofunc__sync_verify() function should be called to verify if the data 
needs to be synchronized to the medium. (For a read(), that means 
that the data returned is guaranteed to be on-media.) 

Returns: The number of bytes read, or the status, via the helper macro 
J:O_SET _READ__NBYTES, and the data itself via message reply. 

For an example of returning just data, take a look at "A simple 
io_read() example" below. For a more complicated example of 
returning both data and directory entries, look in the "Advanced 
topics" section under "Returning directory entries." 
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io_readlink() 

int io_readlink {resmgr_context_t *c~~ 

io_readlink_t *msg 1 RESMGR_HANDLE_T *handle I void 

*reserved) 

Classification: Connect 

Default handler: none 

Helper functions: iofunc _readlink() 

Client function: read link() 

Messages: .JO_CONNECT with subtype _IQ_CONNECT _READ LINK 

Data structure: 

struct _io_connect { 

}; 

II internal fields (as described above) 
uintl6_t path_fen; 
uint8_t extra_type; 
uintl6_t extra_len; 
char path [1] ; 

struct _io_connect_link_reply { 

uint32_t reserved/ [2]; 
uint8_t efiag; 
uint8_t reserved2 [3]; 

uint32_t umask; 
uintl6_t nentries; 
uintl6_t path_fen; 

}; 

typedef union { 
struct _io_connect connect; 
s true t _io_connec t _l ink_reply link-reply; 

} io_open_t; 

Description: Responsible for reading the contents of a symbolic link 
as specified by the path member of the input structure. The bytes 
returned are the contents of the symbolic link; the status returned is 
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the number of bytes in the reply. A valid return should be done only 
for a symbolic link; all other accesses should return an error code. 

Returns: The status via the helper macro _RESMGR_STATUS and the 
data via message reply. 

io_rename() 

int io_rename (resmgr_context_t *c~~ io_rename_t 

*msg I RESMGR__HANDLE_T *handle I io_rename_extra_t 

*extra) 

Classification: Connect 

Default handler: none 

Helper functions: iofunc_rename() 

Client function: rename() 

Messages: _IQ_CONNECT with subtype _IQ_CONNECT _RENAME 

Data structure: 

struct _io_connect { 
II internal fields (as described above) 
uintl6_t path-len; 
uint8_t extra_type; 
uint16_t extra_/en; 
char path [1] ; 

}; 

struct _io_connect_link_reply { 
uint32_t reserved] [2]; 

}; 

uint8_t efiag; 
uintB_t reserved2 [3]; 
uint32-t umask; 
uint16_t nentries; 
uint16_t path_len; 

typedef union _io_rename_extra { 
char path [1] ; 
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} io_rename_extra_t; 

typedef union { 
struct _io_connect connect; 
struct _io_connect_link_reply link_rep/y; 

} io_rename_t; 

Description: Performs the rename operation, given the new name in 
path and the original name in the path member of the passed extra 
parameter. Implementation note: the pathname of the original name is 
given (rather than an OCB) specifically for the case of handling a 
rename of a file that's hard-linked to another file. If the OCB were 
given, there would be no way to tell apart the two (or more) versions 
of the hard-linked file. 

This function will be called only with two filenames that are on the 
same filesystem (same device). Therefore, there's no need to check 
for a case where you'd return EXDEV. This doesn't prevent you from 
returning EXDEV if you don't wish to perform the rename() yourself 
(for example, it may be very complicated to do the rename operation 
from one directory to another). In the case of returning EXDEV, the 
shell utility mv will perform a cp followed by an rm (the C library 
function rename() will do no such thing - it will return only an errno 
ofEXDEV). 

Also, all symlinks will be resolved, where applicable, before this 
function is called, and the pathnames passed will be absolute and 
rooted in the filesystem for which this resource manager is 
responsible. 

Returns: The status via the helper macro _RESMGR_STATUS. 

io_shutdown() 

int io_shutdown (resmgr_context_t *c~, 

io_shutdown_t *msg, RESMGR_OCB_T *ocb) 
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This function is reserved by QSSL for future use. You should 
initialize the VO table using iofunc june _in it() and not modify this 
entry. 

io_space() 

int io_space (resmgr_context_t *c~, io_space_t 

*msg, RESMGR_OCB_T *ocb} 

Classification: VO 

Default handler: none 

Helper functions: iofunc....space_verify() 

Client function: chsize( ),fcntl( ),ftruncate( ), It rune() 

Messages: J:O_SPACE 

Data structure: 

struct _io_space { 
uintl6_t type; 
uintl6_t combine_/en; 
uintl6_t subtype; 
short whence; 
uint64_t nan; 
uint64_t len; 

} ; 

typedef union { 
struct _io_space i; 
uint64_t a; 

} io_space_t; 

Description: This is used to allocate or free space occupied by the 
resource. The subtype parameter indicates whether to allocate (if set 
to F .ALLOCSP) or deallocate (if set to F __FREESP) storage space. The 
combination of whence and start give the location where the 
beginning of the allocation or deallocation should occur; the member 
len indicates the size of the operation. 
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io_stat() 

Returns: The number of bytes (size of the resource) via the helper 
macro RESMGR_STATUS. 

io_stat() 

int io_stat (resmgr_context_t *c~, io_stat_t *msg, 
RESMGR_QCB_T *ocb) 

Classification: I/0 

Default handler: iofunc ...staulefault() 

Helper functions: iofunc ...stat() 

Client function: stat(), !stat( ),fstat() 

Messages: .lO_STAT 

Data structure: 

struct _io_stat { 
uintl6_t type; 
uintl6_t combine_/en; 
uint32_t zero; 

}; 

typedef union { 
struct _io_stat i; 

struct stat o; 
} io_stat_t; 

Description: Handles the message that requests information about the 
resource associated with the passed OCB. Note that the attributes 
structure contains all the information required to fulfill the stat() 
request; the helper function iofunc...stat() fills a struct stat 

structure based on the attributes structure. Also, the helper function 
modifies the stored devlrdev members to be unique from a single 
node's point of view (useful for performing stat() calls to files over a 
network). There's almost no reason to write your own handler for this 
function. 

334 Chapter 5 • Resource Managers 



io_sync() 

Returns: The status via the helper macro .RESMGR_STATUS and the 
struct stat via message reply. 

io_sync() 

int io_sync (resmgr_context_t *c~, io_sync_t *msg, 
RESMGR_QCB_T *ocb) 

Classification: 1/0 

Default handler: iofunc _sync ..default() 

Helper functions: iofunc_sync_verify( ), iofunc_sync() 

Client function: fsync( ),fdatasync() 

Messages: JO_SYNC 

Data structure: 

struct _io_sync { 
uintl6_t ~pe; 

uintl6_t combine_fen; 
uint32_t flag; 

}; 

typedef union { 
struct _io_sync i; 

} io_sync_t; 

Description: This is the entry point for a flush command. The helper 
function iofunc_sync() is passed the flag member from the input 
message, and returns one of the following values, which indicate what 
actions your resource manager must take: 

• 0 - do nothing. 

• O_SYNC- everything associated with the file (including the file 
contents, directory structures, inodes, etc.) must be present and 
recoverable from media. 
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io_unb/ock() [CONNECT] 

• O_DSYNC- only the data portion of the file must be present and 
recoverable from media. 

Note that this outcall will occur only if you've agreed to provide sync 
services by setting the mount structure flag. 

Returns: Returns the status via the helper macro _RESMGR_STATUS. 

io_unblock() [CONNECT] 

int io_unblock {resmgr_context_t *c~, io_pulse_t 
*msg, RESMGR....HANDLE_T *handle, void *reserved) 

Classification: Connect (synthesized by kernel, synthesized by 
library) 

Default handler: none 

Helper functions: iofuncunblock() 

Client function: none - kernel action due to signal or timeout 

Messages: none- synthesized by library 

Data structure: (See VO version of io_unblock(), next) 

Description: This is the connect message version of the unblock 
outcall, synthesized by the library as a result of a kernel pulse due to 
the client's attempt to unblock during the connect message phase. See 
the 1/0 version of io_unblock() for more details. 

Returns: The status via the helper macro _RESMGR_STATUS. 

See the section in the Message Passing chapter, titled "Using the 
_NTO_MLUNBLOCK_REQ" for a detailed discussion of unblocking 
strategies. 

336 Chapter 5 • Resource Managers 



io_unblock() [1/0] 

io_unblock() [1/0] 

int io_unblock (resmgr_context_t *c~, io_pulse_t 

*msg, RESMGR-OCB_T *ocb) 

Classification: 1/0 (synthesized by kernel, synthesized by library) 

Default handler: iofunc_unblock_default() 

Helper functions: iofunc_unblock() 

Client function: none -kernel action due to signal or timeout 

Messages: none - synthesized by library 

Data structure: pointer to message structure being interrupted 

Description: This is the 1/0 message version of the unblock outcall, 
synthesized by the library as a result of a kernel pulse due to the 
client's attempt to unblock during the 1/0 message phase. The 
connect message phase io_unblock() handler is substantially the same 
(see the preceding section). 

Common to both unblock handlers (connect and 110) is the 
characteristic that the client wishes to unblock, but is at the mercy of 
the resource manager. The resource manager must reply to the client's 
message in order to unblock the client. (This is discussed in the 
Message Passing chapter when we looked at the Channel Create() 
flags, particularly the _NTO_CHF_UNBLOCK flag). 

Returns: The status via the helper macro _RESMGR_STATUS. 

See the section in the Message Passing chapter, titled "Using the 
_NTO_MLUNBLOCK_REQ" for a detailed discussion of unblocking 
strategies. 
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io_unlink() 

io_unlink() 

int io_unlink (resmgr_context_t *c~ 1 io_unlink_t 

* msg I RESMGR_HANDLE_T *handle 1 void *reserved) 

Classification: Connect 

Default handler: none 

Helper functions: iofunc__unlink() 

Client function: unlink() 

Messages: J:O_CONNECT with subtype J:O_CONNECLUNLINK 

Data structure: 

struct _io_connect { 

}; 

II internal fields (as described above) 
uintl6_t path_/en; 
uint8_t extra_type; 
uintl6_t extra_/en; 
char pa~ [1]; 

struct _io_connect_link_reply { 
uint32_t reserved] [2]; 
uintB_t ejiag; 
uint8_t reserved2 [3]; 
uint32_t umask; 
uintl6_t nentries; 
uintl6_t path-len; 

}; 

typedef union { 
struct _io_connect connect; 
struct _io_connect_link_reply link_rep/y; 

} io_unlink_t; 

Description: Responsible for unlinking the file whose pathname is 
passed in the input message structure's path member. 

Returns: The status via the helper macro _RESMGR_STATUS. 
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io_un/ock_ocb() 

io_unlock_ocb() 

int io_unlock_ocb (resmgr_context_t *c~, void 

*reserved, RESMGR_QCB_T *ocb) 

Classification: 1/0 (synthesized by library) 

Default handler: iofunc_unlock_ocb_default() 

Helper functions: none 

Client function: all 

Messages: none - synthesized by library 

Data structure: none 

Description: Inverse of io_lock_ocb() above. That is, it's responsible 
for unlocking the attributes structure pointed to by the OCB. This 
operation releases the attributes structure so that other threads in the 
resource manager may operate on it. See the section on "Combine 
messages" above for more details. 

Returns: The status via the helper macro .RESMGR_STATUS. 

io_utime() 

int io_utime (resmgr_context_t *c~, io_utime_t 

*msg, RESMGR-OCB_T *ocb) 

Classification: 1/0 

Default handler: iofunc_utime_default() 

Helper functions: iofunc_utime() 

Client function: utime() 

Messages: _ro_UTIME 
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io_write() 

Data structure: 

struct _io_utime { 
uintl6_t t\pe; 

uintl6_t combine_/en; 
int32_t cw·_fiag; 
struct utimbuf times; 

} ; 

typedef union 
struct _io_utime i; 

} io_utime_t; 

Description: Changes the access and modification times to either 
"now" (if they are zero) or the specified values. Note that this message 
handler may be required to modify the IOFUNCATTR_ * flags in the 
attribute structure as per POSIX rules. You'll almost never use this 
outcall yourself, but will instead use the POSIX-layer helper function. 

Returns: The status via the helper macro _RESMGR_STATUS. 

io_write() 

int io_write (resmgr_context_t *c~, io_write_t 

*msg, RESMGR-OCB_T *ocb) 

Classification: 1/0 

Default handler: iofunc_write_default() 

Helper functions: iofunc_write_verify() 

Client function: write(),fwrite(), etc. 

Messages: _IO_WRITE 

Data structure: 

struct _io_write { 
uintl6_t 
uintl6_t 

type; 
combine _fen; 
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} ; 

int32_t 
uint32_t 

typedef union { 

nbytes; 
xtype; 

struct _io_write i; 
} io_write_t; 

Examples 

Description: This message handler is responsible for getting data that 
the client wrote to the resource manager. It gets passed the number of 
bytes the client is attempting to write in the nbytes member; the data 
implicitly follows the input data structure (unless the xtype override is 
_IQ_j(TYPE_OFFSET; see "A simple io_write() example" below!) The 
implementation will need to re-read the data portion of the message 
from the client, using resmgr _msgreadv() or equivalent. The return 
status is the number of bytes actually written or an errno. 

Note that the helper function iofunc_write_verify() should be called to 
ascertain that the file was opened in a mode compatible with writing. 
Also, the iofunc....sync_verify() function should be called to verify if the 
data needs to be synchronized to the medium. 

Returns: The status via the helper macro __IQ_SELWRITKNBYTES. 

For an example, take a look at "A simple io_write() example" below. 

Examples 

I'm now going to show you a number of "cookbook" examples you 
can cut and paste into your code, to use as a basis for your projects. 
These aren't complete resource managers- you'll need to add the 
thread pool and dispatch "skeleton" shown immediately below, and 
ensure that your versions of the 1/0 functions are placed into the 1/0 
functions table after you've done the iofunc-func_init(), in order to 
override the defaults! 

I'll start with a number of simple examples that show basic 
functionality for the various resource manager message handlers: 

Chapter 5 • Resource Managers 341 



Examples 

The basic skeleton 
of a resource 

manager 

• io_read() 

• io_write() 

• io...devctl() (without data transfer) 

• io_devctl() (with data transfer) 

And then in the advanced topics section, we'lllook at an io_read() 
that returns directory entries. 

The following can be used as a template for a resource manager with 
multiple threads. (We've already seen a template that can be used for 
a single-threaded resource manager above in "The resource manager 
library," when we discussed a /dev/null resource manager). 

/* 
* rms.c 

*I 

#include <stdio.h> 
#include <stdlib.h> 
#include <stddef.h> 
#include <sys/iofunc.h> 
#include <sys/dispatch.h> 

static resmgr_connect_funcs_t 
static resmgr_io_funcs_t 
static iofunc_attr_t 

connect_func; 
io_func; 
attr; 

int 
main (int argc, char **argv) 
{ 

thread_pool_attr_t 
thread_pool_t 
dispatch_t 
resmgr_attr_t 
resmgr_context_t 
int 

pool_attr; 
*tpp; 
*dpp; 
resmgr_attr; 
*ctp; 
id; 

if ((dpp dispatch_create ()) ==NULL) { 

} 

fprintf (stderr, "%s: Unable to dispatch_create. \n", 
argv [0]); 

return (EXIT-FAILURE); 

memset (&pool_attr, 0, sizeof (pool_attr)); 
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} 

pool_attr.handle = dpp; 
pool_attr.context_alloc = resmgr_context_alloc; 
pool_attr.block_func = resmgr-block; 
pool_attr.handler_func resmgr...handler; 
pool_attr.context_free = resmgr_context_free; 

II 1) set up the number of threads that you want 
pool_attr.lo_water = 2; 
pool_attr.hi_water = 4; 
pool_attr.increment = 1; 
pool_attr.maximum = 50; 

Examples 

tpp = thread_pool_create (&pool_attr, POOL-FLAG-EXIT-SELF); 
if (tpp == NULL) { 

} 

fprintf (stderr, "%s: Unable to thread_pool_create.\n", 
argv [0]); 

return (EXIT-FAILURE); 

iofunc_func_init (_RESMGR_CONNECT-NFUNCS, &connect_func, 
-RESMGR_IO_NFUNCS, &io_func); 

iofunc_attr_init (&attr, s_IFNAM I 0777, 0, 0); 

II 2) override functions in "connect_func" and "io_func" 
II as required here 

memset (&resmgr_attr, 0, sizeof (resmgr_attr)); 
resmgr_attr.nparts~ax = 1; 
resmgr_attr.msg~ax_size = 2048; 

II 3) replace "ldevlwhatever" with your device name 
id = resmgr_attach (dpp, &resmgr_attr, "ldevlwhatever", 

_FTYPE...ANY, 0, 

if (id == -1) { 

&connect_func, &io_func, 
&attr); 

fprintf (stderr, "%s: Unable to resmgr_attach\n", 
argv [0]); 

return (EXIT-FAILURE); 
} 

II Never returns 
thread_pool_start (tpp); 

II so you'll never get here 
return (EXIT-SUCCESS); 
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Examples 

Step 1 

Step 2 

Step3 

For more information about the dispatch interface (i.e., the 
dispatch_create() function), see the documentation in the C Library 
Reference. 

Here you'd use the thread pool functions to create a pool of threads 
that will be able to service messages in your resource manager. 
Generally, I recommend that you start off with a single-threaded 
resource manager, as we did with the /dev/null example mentioned 
above. Once you have the basic functionality running, you can then 
add threads. You'd modify the lo_water, hi_water, increment, and 
maximum members of the pool_attr structure as described in the 
"Threads & Processes" chapter where we discuss the thread pool 
functions. 

Here you'd add whatever functions you want to supply. These are the 
outcalls we just discussed (e.g. io_read(), io_devctl(), etc.) For 
example, to add your own handler for the _IO_READ message that 
points to a function supplied by you called my_io_read(), you'd add 
the following line of code: 

io_func.io_read = my_io_read; 

This will override the POSIX-layer default function that got put into 
the table by iofunc-func_init() with a pointer to your function, 
my _io _read(). 

You probably don't want your resource manager called 
/dev/whatever, so you should select an appropriate name. Note 
that the resmgr _attach() function is where you bind the attributes 
structure (the attr parameter) to the name- if you wish to have 
multiple devices handled by your resource manager, you'd call 
resmgr_attach() multiple times, with different attributes structures (so 
that you could tell the different registered names apart at runtime). 
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A simple io_read() 
example 

Data area size 
considerations 

Handling of EOF case 

Maintenance of context 
information 

Examples 

To illustrate how your resource manager might return data to a client, 
consider a simple resource manager that always returns the constant 
string ' 'Hello I world! \n 1 1 • There are a number of issues 
involved, even in this very simple case: 

• matching of client's data area size to data being returned 

• handling of EOF case 

• maintenance of context information (the lseek() index) 

• updating of POSIX stat() information 

In our case, the resource manager is returning a fixed string of 14 
bytes - there is exactly that much data available. This is identical to 
a read-only file on a disk that contains the string in question; the only 
real difference is that this "file" is maintained in our C program via 
the statement: 

char *data_string = "Hello, world!\n"; 

The client, on the other hand, can issue a read() request of any size -
the client could ask for one byte, 14 bytes, or more. The impact of 
this on the io_read() functionality you're going to provide is that you 
must be able to match the client's requested data size with what's 
available. 

A natural fallout of the way you handle the client's data area size 
considerations is the corner case of dealing with the End-Of-File 
(EOF) on the fixed string. Once the client has read the final "\n" 
character, further attempts by the client to read more data should 
return EOF. 

Both the "Data area size considerations" and the "Handling of EOF 
case" scenarios will require that context be maintained in the OCB 
passed to your io_read() function, specifically the offset member. 
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Examples 

Updating POSIX 
information 

The code 

One final consideration: when data is read from a resource manager, 
the POSIX access time (atime) variable needs to be updated. This is 
so that a client stat() function will show that someone has indeed 
accessed the device. 

Here's the code that addresses all the above points. We'll go through 
it step-by-step in the discussion that follows: 

I* 
* io_readl.c 

*I 

#include <stdio.h> 
#include <errno.h> 
#include <syslneutrino.h> 
#include <sysliofunc.h> 

II our data string 
char *data_string "Hello, world! \n"; 

int 
io_read (resmgr_context_t *ctp, io_read_t *msg, 

iofunc_ocb_t *ocb) 
{ 

int sts; 
int nbytes; 
int nleft; 
int off; 
int xtype; 
struct ...xtype_offset *xoffset; 

II 1) verify that the device is opened for read 
sts = iofunc_read_verify (ctp, msg, ocb, NULL); 
if (sts != EOK) { 

return (sts); 
} 

II 2) check for and handle an XTYPE override 
xtype = msg -> i.xtype & ..IO...XTYPE...MASK; 
if (xtype == _ro_xTYPE_OFFSET) { 

xoffset = (struct ...xtype_offset *) (&msg -> i + 1); 
off = xoffset -> offset; 

} else if (xtype == _ro_xTYPE_NONE) { 
off = ocb -> offset; 

} else { II unknown, fail it 
return (ENOSYS); 

} 
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Step 1 

Step2 

} 

II 3) how many bytes are left? 
nleft = ocb -> attr -> nbytes - off; 

II 4) how many bytes can we return to the client? 
nbytes =min (nleft, msg -> i.nbytes); 

II 5) if returning data, write it to client 
if (nbytes) { 

Examples 

MsgReply (ctp -> rcvid, nbytes, data_string + off, 
nbytes); 

I I 6) set up POSIX stat() "a time" data 
ocb -> attr -> flags I= IOFUNC .ATTR .ATIME 

I IOFUNC_ATTR-DIRTY_TIME; 

II 7) advance the lseek() index by the number of bytes 
II read if not _ro_xTYPE_OFFSET 
if (xtype == _ro_xTYPE_NONE) { 

ocb -> offset += nbytes; 
} 

} else { 

} 

II 8) not returning data, just unblock client 
MsgReply (ctp -> rcvid, EOK, NULL, 0); 

II 9) indicate we already did the MsgReply to the library 
return (_RESMGR_NOREPLY); 

Here we ensured that the client's open() call had in fact specified that 
the device was to be opened for reading. If the client opened the 
device for writing only, and then attempted to perform a read from it, 
it would be considered an error. In that case, the helper function 
iofunc_read_verify() would return EBADF, and not EOK, so we'd 
return that value to the library, which would then pass it along to the 
client. 

Here we checked to see if the client had specified an xtype-override 
-a per-message override (e.g., because while the device had been 
opened in non-blocking mode, this specifies for this one request that 
we'd like blocking behavior). Note that the blocking aspect of the 
"xtype" override can be noted by the iofunc_read_verify() function's 
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Examples 

Steps 3 & 4 

StepS 

last parameter- since we're illustrating a very simple example, we 
just passed in a NULL indicating that we don't care about this aspect. 

More important, however, is to see how particular "xtype" modifiers 
are handled. An interesting one is the _IO_XTYPE_OFFSET modifier, 
which, if present, indicates that the message passed from the client 
contains an offset and that the read operation should not modify the 
"current file position" of the file descriptor (this is used by the 
function pre ad(), for example). If the _IQ_XTYPE_OFFSET modifier is 
not present, then the read operation can go ahead and modify the 
"current file position." We use the variable xtype to store the "xtype" 
that we received in the message, and the variable off to represent the 
current offset that we should be using during processing. You'll see 
some additional handling of the .JQ_)(TYPE_OFFSET modifier below, 
in step 7. 

If there is a different "xtype override" than _JQ_)(TYPE_OFFSET (and 
not the no-op one of .JQ_)(TYPE..NONE), we fail the request with 
ENOSYS. This simply means that we don't know how to handle it, 
and we therefore return the error up to the client. 

To calculate how many bytes we can actually return to the client, we 
perform steps 3 and 4, which figure out how many bytes are available 
on the device (by taking the total device size from ocb -> attr -> 

nbytes and subtracting the current offset into the device). Once we 
know how many bytes are left, we take the smaller of that number and 
the number of bytes that the client specified that they wish to read. 
For example, we may have seven bytes left, and the client wants to 
only read two. In that case, we can return only two bytes to the client. 
Alternatively, if the client wanted 4096 bytes, but we had only seven 
left, we could return only seven bytes. 

Now that we've calculated how many bytes we're going to return to 
the client, we need to do different things based on whether or not 
we're returning data. If we are returning data, then after the check in 
step 5, we reply to the client with the data. Notice that we use 
data-string + off to return data starting at the correct offset (the 
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StepS 

Examples 

off is calculated based on the xtype override). Also notice the second 
parameter to MsgReply()- it's documented as the status argument, 
but in this case we're using it to return the number of bytes. This is 
because the implementation of the client's read() function knows that 
the return value from its MsgSendv() (which is the status argument to 
MsgReply( ), by the way) is the number of bytes that were read. This 
is a common convention. 

Since we're returning data from the device, we know that the device 
has been accessed. We set the IOFUNC.ATTR.ATIME and 
IOFUNc_ATTR_DIRTy_TIME bits in the flags member of the attribute 
structure. This serves as a reminder to the io_stat() function that the 
access time is not valid and should be fetched from the system clock 
before replying. If we really wanted to, we could have stuffed the 
current time into the atime member of the attributes structure, and 
cleared the IOFUNC.ATTR_DIRTy_TIME flag. But this isn't very 
efficient, since we're expecting to get a lot more read() requests from 
the client than stat() requests. However, your usage patterns may 
dictate otherwise. 

~ So which time does the client see when it finally does call stat()? The 
iofunc_stat_.default() function provided by the resource manager 
library will look at the flags member of the attribute structure to see if 
the times are valid (the atime, ctime, and mtime fields). If they are not 
(as will be the case after our io_read() has been called that returned 
data), the iofunc_staule.fault() function will update the time(s) with 
the current time. The real value of the time is also updated on a 
close(), as you'd expect. 

Step7 Now we advance the !seek() offset by the number of bytes that we 
returned to the client, only if we are not processing the 
_IQ_)(TYPE_OFFSET override modifier. This ensures that, in the 
non-_IQ_)(TYPE_OFFSET case, if the client calls !seek() to get the 
current position, or (more importantly) when the client calls read() to 
get the next few bytes, the offset into the resource is set to the correct 

Chapter 5 • Resource Managers 349 



Examples 

Step 8 

Step 9 

Effective use of other 
messaging functions 

value. In the case of the J:O_)\TYPE_OFFSET override, we leave the 
ocb version of the offset alone. 

Contrast step 6 with this step. Here we only unblock the client, we 
don't perform any other functions. Notice also that there is no data 
area specified to the MsgReply(), because we're not returning data. 

Finally, in step 9, we perform processing that's common regardless of 
whether or not we returned data to the client. Since we've already 
unblocked the client via the MsgReply(), we certainly don't want the 
resource manager library doing that for us, so we tell it that we've 
already done that by returning .RESMGR_NOREPLY. 

As you'll recall from the Message Passing chapter, we discussed a 
few other message-passing functions- namely MsgWrite(), 
MsgWritev(), and MsgReplyv(). The reason I'm mentioning them here 
again is because your io_read() function may be in an excellent 
position to use these functions. In the simple example shown above, 
we were returning a contiguous array of bytes from one memory 
location. In the real world, you may need to return multiple pieces of 
data from various buffers that you've allocated. A classical example 
of this is a ring buffer, as might be found in a serial device driver. Part 
of the data may be near the end of the buffer, with the rest of it 
"wrapped" to the top of the buffer. In this case, you'll want to use a 
two-part lOY with MsgReplyv() to return both parts. The first part of 
the lOY would contain the address (and length) of the bottom part of 
the data, and the second part of the lOY would contain the address 
(and length) of the top part of the data. Or, if the data is going to 
arrive in pieces, you may instead choose to use MsgWrite() or 
MsgWritev() to place the data into the client's address space as it 
arrives and then specify a final MsgReply() or MsgReplyv() to unblock 
the client. As we've seen above, there's no requirement to actually 
transfer data with the MsgReply() function- you can use it to simply 
unblock the client. 
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A simple io_write() 
example 

Examples 

The io_read() example was fairly simple; let's take a look at 
io_write(). The major hurdle to overcome with the io_write() is to 
access the data. Since the resource manager library reads in a small 
portion of the message from the client, the data content that the client 
sent (immediately after the _IQ_WRITE header) may have only 
partially arrived at the io_write() function. To illustrate this, consider 
the client writing one megabyte- only the header and a few bytes of 
the data will get read by the resource manager library. The rest of the 
megabyte of data is still available on the client side - the resource 
manager can access it at will. 

There are really two cases to consider: 

• the entire contents of the client's write() message were read by the 
resource manager library, or 

• they were not. 

The real design decision, however, is, "how much trouble is it worth 
to try to save the kernel copy of the data already present?" The 
answer is that it's not worth it. There are a number of reasons for this: 

• Message passing (the kernel copy operation) is extremely fast. 

• There is overhead required to see if the data all fits or not. 

• There is additional overhead in trying to "save" the first dribble of 
data that arrived, in light of the fact that more data is waiting. 

I think the first two points are self-explanatory. The third point 
deserves clarification. Let's say the client sent us a large chunk of 
data, and we did decide that it would be a good idea to try to save the 
part of the data that had already arrived. Unfortunately, that part is 
very small. This means that instead of being able to deal with the 
large chunk all as one contiguous array of bytes, we have to deal with 
it as one small part plus the rest. Effectively, we have to "special 
case" the small part, which may have an impact on the overall 
efficiency of the code that deals with the data. This can lead to 
headaches, so don't do this! 
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The real answer, then, is to simply re-read the data into buffers that 
you've prepared. In our simple io_write() example, I'm just going to 
malloc() the buffer each time, read the data into the buffer, and then 
release the buffer via free(). Granted, there are certainly far more 
efficient ways of allocating and managing buffers! 

One further wrinkle introduced in the io_write() example is the 
handling of the _ro_xTYPE_OFFSET modifier (and associated data; 
it's done slightly differently than in the io_read() example). 

Here's the code: 

I* 
* io_writel.c 

*I 

#include <stdio.h> 
#include <stdlib.h> 
#include <errno.h> 
#include <syslneutrino.h> 
#include <sysliofunc.h> 

void 
process_data (int offet, void *buffer, int nbytes) 
{ 

II do something with the data 
} 

int 
io_write (resmgr_context_t *ctp, io_write_t *msg, 

iofunc_ocb_t *ocb) 
{ 

int sts; 
int nbytes; 
int off; 
int doffset; 
int xtype; 
char *buffer; 
struct ...xtype_offset *xoffset; 

II verify that the device is opened for write 
sts = iofunc_write_verify (ctp, msg, ocb, NULL); 
if (sts I= EOK) { 

return (sts); 
} 

II l) check for and handle an XTYPE override 
xtype = msg -> i. xtype & ....IO ...XTYPE ...MASK; 
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if (xtype == _ro_xTYPE_QFFSET) { 
xoffset = (struct ...xtype_offset *) (&mag -> i + 1); 
doffset = sizeof (mag-> i) + sizeof (*xoffset); 
off = xoffset -> offset; 

} else if (xtype == _ro_xTYPE_NONE) { 
off = ocb -> offset; 
doffset = sizeof (mag-> i); 

} else { II unknown, fail it 
return (ENOSYS); 

} 

II 2) allocate a buffer big enough for the data 
nbytes = mag -> i.nbytes; 
if ((buffer= malloc (nbytes)) ==NULL) { 

return (ENOMEM); 
} 

II 3) (re-)read the data from the client 
if (resmgr_msgread (ctp, buffer, nbytes, doffset) 

free (buffer); 
return (errno); 

} 

II 4) do something with the data 
process_data (off, buffer, nbytes); 

II 5) free the buffer 
free (buffer); 

II 6) set up the number of bytes for the client's 
II "write" function to return 
_IQ_SET_WRITE_NBYTES (ctp, nbytes); 

-1) { 

II 7) if any data written, update POSIX structures and 
II OCB offset 
if (nbytes) { 

ocb -> attr -> flags I= IOFUNC .ATTR .MTIME 

} 

I IOFUNC_ATTR-DIRTY_TIME; 
if (xtype == _ro_xTYPE_NONE) { 

ocb -> offset += nbytes; 
} 

II 8) tell the resource manager library to do the reply, 
II and that it was okay 
return (EOK); 
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As you can see, a few of the initial operations performed were 
identical to those done in the io_read() example- the 
iofunc_write_verify() is analogous to the iofunc_read_verify() function, 
and the xtype override check is the same. 

Here we performed much the same processing for the "xtype 
override" as we did in the io_read() example, except for the fact that 
the offset is not stored as part of the incoming message structure. The 
reason it's not stored there is because a common practice is to use the 
size of the incoming message structure to determine the starting point 
of the actual data being transferred from the client. We take special 
pains to ensure the offset of the start of the data (doffset) is correct in 
the xtype handling code. 

Here we allocate a buffer that's big enough for the data. The number 
of bytes that the client is writing is presented to us in the nbytes 
member of the msg union. This is stuffed automatically by the client's 
C library in the write() routine. Note that if we don't have sufficient 
memory to handle the malloc() request, we return the error number 
ENOMEM to the client- effectively, we're passing on the return code 
to the client to let it know why its request wasn't completed. 

Here we use the helper function resmgr Jllsgread() to read the entire 
data content from the client directly into the newly allocated buffer. In 
most cases we could have just used MsgRead(), but in the case where 
this message is part of a "combine message," resmgr Jllsgread() 
performs the appropriate "magic" for us (see the "Combine message" 
section for more information on why we need to do this.) The 
parameters to resmgr Jnsgread() are fairly straightforward; we give it 
the internal context pointer (ctp), the buffer into which we want the 
data placed (buffer), and the number of bytes that we wish read (the 
nbytes member of the message msg union). The last parameter is the 
offset into the current message, which we calculated above, in step 1. 
The offset effectively skips the header information that the client's C 
library implementation of write() put there, and proceeds directly to 
the data. This actually brings about two interesting points: 
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• We could use an arbitrary offset value to read chunks of the client's 
data in any order and size we want. 

• We could use resmgr _msgreadv() (note the "v") to read data from 
the client into an IOV, perhaps describing various buffers, similar 
to what we did with the cache buffers in the filesystem discussion 
in the Message Passing chapter. 

Here you'd do whatever you want with the data- I've just called a 
made-up function called process ...data() and passed it the buffer and 
size. 

Step 5 This step is crucial! Forgetting to do it is easy, and will lead to 
"memory leaks." Notice how we also took care to free the memory in 
the case of a failure in step 3. 

Step 6 We're using the macro J0_5ELWR/TE_NBYTES() to store the 
number of bytes we've written, which will then be passed back to the 
client as the return value from the client's write(). It's important to 
note that you should return the actual number of bytes! The client is 
depending on this. 

Step 7 Now we do similar housekeeping for stat(), lseek( ), and further 
write() functions as we did for the io _read() routine (and again, we 
modify the offset in the ocb only in the case of this not being a 
J:Q_)(TYPEDFFSET type of message). Since we're writing to the 
device, however, we use the IOFUNc_ATTR_MTIME constant instead 
of the IOFUNc_ATTR_ATIME constant. The MTIME flag means 
"modification" time, and a write() to a resource certainly "modifies" 
it. 

Step 8 The last step is simple: we return the constant EOK, which tells the 
resource manager library that it should reply to the client. This ends 
our processing. The resource manager will use the number of bytes 
that we stashed away with the J0_5ET_WR/TE_NBYTES() macro in 
the reply and the client will unblock; the client's C library write() 
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function will return the number of bytes that were written by our 
device. 

The client's devctl() call is formally defined as: 

#include <sys/types.h> 
#include <unistd.h> 
#include <devctl.h> 

int 
devctl (int fd, 

int dcmd, 
void *dev...data_ptr, 
size_t nbytes, 
int *dev_info_ptr) ; 

We should first understand this function before we look at the 
resource manager side of things. The devctl() function is used for "out 
of band" or "control" operations. For example, you may be writing 
data to a sound card (the actual digital audio samples that the sound 
card should convert to analog audio), and you may decide that you 
need to change the number of channels from l (mono) to 2 (stereo), or 
the sampling rate from the CD-standard (44.1 kHz) to the 
DAT-standard (48kHz). The devctl() function is the appropriate way 
to do this. When you write a resource manager, you may find that you 
don't need any devctl() support at all and that you can perform all the 
functionality needed simply through the standard read() and write() 
functions. You may, on the other hand, find that you need to mix 
devctl() calls with the read() and write() calls, or indeed that your 
device uses only devctl() functions and does not use read() or write(). 

The devctl() function takes 5 arguments: 

fd 

dcmd 

The file descriptor of the resource manager that 
you're sending the devctl() to. 

The command itself- a combination of two bits 
worth of direction, and 30 bits worth of command 
(see discussion below). 
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dev _data_ptr A pointer to a data area that can be sent to, received 
from, or both. 

nbytes The size of the dev _data_ptr data area. 

dev _info _ptr An extra information variable that can be set by the 
resource manager. 

The top two bits in the dcmd encode the direction of data transfer, if 
any. For details, see the description in the I/0 reference section (under 
io_devctl()). 

When the _IO_DEVCTL message is received by the resource manager, 
it's handled by your io_devctl() function. Here is a very simple 
example, which we'll assume is used to set the number of channels 
and the sampling rate for the audio device we discussed above: 

I* 
* io_devctl1.c 

*I 

int 
io_devctl (resmgr_context_t *ctp, io_devctl_t *mag, 

iofunc_ocb_t *ocb) 
{ 

int sts; 

II 1) see if it's a standard POSIX-supported devctl() 
sts = iofunc_devctl_default (ctp, mag, ocb); 
if (sts I= -RESMGR-DEFAULT) { 

return (sts); 
} 

II 2) see which command it was, and act on it 
switch (mag -> i.dcmd) { 
case DCMD-AUDIO_SET_CHANNEL-MONO: 

audio_set-nchannels (1); 
break; 

case DCMD-AUDIO_SET_CHANNEL_STEREO: 
audio_set_nchannels (2); 
break; 

case DCMD-AUDIO-SET_SAMPLE-RATE_CD: 
audio_set_samplerate (44100); 
break; 

case DCMD-AUDIQ_SET_SAMPLE-RATE-DAT: 
audio_set-samplerate (48000); 
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} 

break; 

II 3) in case it's a command that we don't 
II recognize, fail it 
default: 

return (ENOSYS); 
} 

II 4) tell the client it worked 
memset (&msg -> o, 0, sizeof (msg -> o)); 
SETIOV (ctp -> iov, &msg -> o, sizeof (msg -> o)); 
return (-RESMGR_NPARTS (1)); 

In the first step, we see again the use of a helper function, this time 
iofunc__devctLdefault(), which is used to perform all default 
processing for the devctl() function. If you didn't supply your own 
io...devctl(), and just let iofuncjunc__init() initialize the 110 and connect 
functions tables for you, the iofunc _devctl...default() function is what 
would get called. We include it in our io_devctl() function because we 
want it to handle all the regular POSIX devctl() cases for us. We 
examine the return value; if it's not _RESMGR_DEFAULT, then this 
means that the iofunc...devctl...default() function "handled" the request, 
so we just pass along its return value as our return value. 

If the constant _RESMGR_DEFAULT is the return value, then we know 
that the helper function didn't handle the request and that we should 
check to see if it's one of ours. 

This checking is done in step 2 via the switch/ case statement. We 
simply compare the dcmd values that the client code would have 
stuffed into the second argument to devctl() to see if there's a match. 
Note that we call the fictitious functions audio__setJ1channels() and 
audio__set__samplerate() to accomplish the actual "work" for the client. 
An important note that should be mentioned here is that we've 
specifically avoided touching the data area aspects of devctl()- you 
may be thinking, "What if I wanted to set the sample rate to some 
arbitrary number n, how would I do that?" That will be answered in 
the next io_devctl() example below. 
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This step is simply good defensive programming. We return an error 
code of ENOSYS to tell the client that we didn't understand their 
request. 

Finally, we clear out the return structure and set up a one-part IOV to 
point to it. Then we return a value to the resource manager library 
encoded by the macro _RESMGR_NPARTS() telling it that we're 
returning a one part IOV. This is then returned to the client. We could 
alternatively have used the _RESMGRYTR() macro: 

II instead of this 
II 4) tell the client it worked 
memset (&msg -> o, 0, sizeof (msg -> o)); 
SETIOV (ctp -> iov, &msg -> o, sizeof (msg -> o)); 
return (-RESMGR_NPARTS (1)); 

II we could have done this 
II 4) tell the client it worked 
memset (&msg -> o, 0, sizeof (msg -> o)); 
return (-RESMGR_pTR (ctp, &msg -> o, sizeof (msg -> o))); 

The reason we cleared out the return structure here (and not in the 
io_read() or io_write() examples) is because in this case, the return 
structure has actual contents! (In the io_read() case, the only data 
returned was the data itself and the number of bytes read - there was 
no "return data structure," and in the io_write() case, the only data 
returned was the number of bytes written.) 

In the previous io_devctl() example, above, we raised the question of 
how to set arbitrary sampling rates. Obviously, it's not a good solution 
to create a large number of DCMD.AUDIO_SET _SAMPLE_RATE_ * 
constants- we'd rapidly use up the available bits in the dcmd 
member. 

From the client side, we'll use the dev_data_ptr pointer to point to the 
sample rate, which we'll simply pass as an integer. Therefore, the 
nbytes member will simply be the number of bytes in an integer (4 on 
a 32-bit machine). We'll assume that the constant 
DCMD.AUDIO_SET _SAMPLKRATE is defined for this purpose. 
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Also, we'd like to be able to read the current sampling rate. We'll also 
use the dev_data_ptr and nbytes as described above, but in the reverse 
direction - the resource manager will return data into the memory 
location pointed to by dev_data_ptr (for nbytes) instead of getting data 
from that memory location. Let's assume that the constant 
DCMD_AUDIO_GET _SAMPLE_RATE is defined for this purpose. 

Let's see what happens in the resource manager's io_devctl(), as 
shown here (we won't discuss things that have already been discussed 
in the previous example): 

I* 
* io_devctl2.c 

*I 

int 
io_devctl (resmgr_context_t *ctp, io_devctl_t *msg, 

iofunc_ocb_t *ocb) 
{ 

int sts; 
void *data; 

sts = iofunc_devctl_default (ctp, msg, ocb); 
if (sts != _RESMGR-DEFAULT) { 

return (sts); 
} 

II 1) assign a pointer to the data area of the message 
data = _DEVCTL-DATA (*msg); 

II 2) preset the number of bytes that we'll return to zero 
nbytes = 0; 

II check for all commands, we'll just show the ones 
II we're interested in here 
switch (msg -> i.dcmd) { 

II 3) process the SET command 
case DCMD-AUDIO_SET_SAMPLE-RATE: 

audio_set_samplerate (* (int *) data); 
break; 

II 4) process the GET command 
case DCMD-AUDIO_GET_SAMPLE-RATE: 

* (int *) data= audio_get_samplerate (); 
nbytes = sizeof (int); 
break; 
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} 

} 

II 5) return data (if any) to the client 
memaet (&mag-> o, 0, aizeof (mag-> o)); 
mag -> o.nbytea = nbytea; 

Examples 

SETIOV (ctp -> iov, &mag-> o, aizeof (mag-> o) + nbytea); 
return (-RESMGR-NPARTS (1)); 

In the declaration, we've declared a void * called data that we're 
going to use as a general purpose pointer to the data area. If you refer 
to the io..devctl() description above, you'll see that the data structure 
consists of a union of an input and output header structure, with the 
data area implicitly following that header. In step 1, the 
_DEVCTL.DATA() macro returns a pointer to that data area. 

Here we need to indicate how many bytes we're going to return to the 
client. Simply for convenience, I've set the nbytes variable to zero 
before doing any processing- this way I don't have to explicitly set 
it to zero in each of the switch/ case statements. 

Now for the "set" command. We call the fictitious function 
audio_set_samplerate(), and we pass it the sample rate which we 
obtained by dereferencing the data pointer (which we "tricked" into 
being a pointer to an integer. Well, okay, we didn't trick it, we used a 
standard C language typecast.) This is a key mechanism, because this 
is how we "interpret" the data area (the client's dev..data_ptr) 
according to the command. In a more complicated case, you may be 
typecasting it to a large structure instead of just a simple integer. 
Obviously, the client's and resource manager's definitions of the 
structure must be identical - the best place to define the structure, 
therefore, is in the . h file that contains your DCMD_ * command code 
constants. 
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Important note 

For the "get" command in step 4, the processing is very similar (with 
the typecast), except this time we're writing into the data structure 
instead of reading from it. Note that we also set the nbytes variable to 
correspond to the number of bytes that we want to return to the client. 
For more complicated data accesses, you'd return the size of the data 
area (i.e., if it's a structure, you'd return the size of the structure). 

Finally, to return data to the client, we need to note that the client is 
expecting a header structure, as well as the return data (if any) to 
immediately follow the header structure. Therefore, in this step, we 
clear out the header structure to zeros and set the number of bytes (the 
nbytes member) to the number of bytes that we're returning (recall we 
had pre-initialized this to zero). Then, we set up a one-part IOV with 
a pointer to the header and extend the size of the header by the 
number of bytes we're returning. Lastly, we simply tell the resource 
manager library that we're returning a one-part IOV to the client. 

Recall the discussion in the io_write() sample above, about the data 
area following the header. To recap, we stated that the bytes following 
the header may or may not be complete (i.e., the header may or may 
not have been read in its entirety from the client), depending on how 
much data was read in by the resource manager library. Then we went 
on to discuss how it was inefficient to try to "save" a message pass 
and to "reuse" the data area. However, things are slightly different 
with devctl( ), especially if the amount of data being transferred is 
fairly small (as was the case in our examples). In these cases, there's a 
good chance that the data has in fact been read into the data area, so it 
is indeed a waste to re-read the data. There is a simple way to tell how 
much space you have: the size member of ctp contains the number of 
bytes that are available for you starting at the msg parameter. The size 
of the data area beyond the end of the message buffer that's available 
is calculated by subtracting the size of the message buffer from the 
size member of ctp: 

data_area_size = ctp -> size - sizeof (*mag); 
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Note that this size is equally valid when you are returning data to the 
client (as in the DCMD_AUDIO_GELSAMPLE_RATE command). 

For anything larger than the allocated region, you'll want to perform 
the same processing we did with the io_write() example (above) for 
getting data from the client, and you'll want to allocate a buffer to be 
used for returning data to the client. 

Advanced topics 

Now that we've covered the "basics" of resource managers, it's time 
to look at some more complicated aspects: 

• extending the OCB 

• extending the attributes structure 

• blocking within the resource manager 

• returning directory entries 

In some cases, you may find the need to extend the OCB. This is 
relatively painless to do. The common uses for extending the OCB 
are to add extra flags you wish to maintain on a per-open basis. One 
such flag could be used with the io_unblock() handler to cache the 
value of the kernel's _NTO_MLUNBLOCK_REQ flag. (See the 
Message Passing chapter, under "Using the 
_NTO_MLUNBLOCK_REQ" for more details.) 

To extend the OCB, you'll need to provide two functions; one to 
allocate (and initialize) the new OCB and one to free it. Then, you'll 
need to bind these two functions into the mount structure. (Yes, this 
does mean that you'll need a mount structure, if only for this one 
purpose.) Finally, you'll need to define your own OCB typedef, so 
that the prototypes for the code are all correct. 

Let's look at the OCB typedef first, and then we'll see how to override 
the functions: 
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#define IOFUNC_OCB_T struct my_ocb 
#include <sys/iofunc.h> 

This tells the included file, <sys/ iofunc. h>, that the manifest 
constant IOFUNc_ocB_T now points to your new and improved OCB 
structure. 

~& It's very important to keep in mind that the "normal" OCB must 
appear as the first entry in your extended OCB! This is because the 
POSIX helper library passes around a pointer to what it expects is a 
normal OCB- it doesn't know about your extended OCB, so 
therefore the first data element at the pointer location must be the 
normal OCB. 

Here's our extended OCB: 

typedef struct my_ocb 
{ 

iofunc_ocb_t 
int 

} my_ocb_t; 

normal...ocb; 
my....extra_jlags; 

Finally, here's the code that illustrates how to override the allocation 
and deallocation functions in the mount structure: 

II declare 
iofunc_mount_t 
iofunc_funcs_t 

mount; 
mount_funcs; 

II set up the mount functions structure 
II with our allocate/deallocate functions 

II _IOFUNC_NFUNCS is from the .h file 
mount_funcs.nfuncs = _IOFUNC_NFUNCS; 

II your new OCB allocator 
mount_funcs.ocb_calloc = my_ocb_calloc; 

II your new OCB deallocator 
mount_funcs.ocb_free = my_ocb_free; 
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Then all you have to do is bind the mount functions to the mount 
structure, and the mount structure to the attributes structure: 

mount.funcs = &mount_funcs; 
attr.mount = &mount; 

The my_ocb_calloc() and my_ocb-free() functions are responsible for 
allocating and initializing an extended OCB and for freeing the OCB, 
respectively. They are prototyped as: 

IOFUNC-OCB_T * 
my_ocb_calloc (resmgr_context_t *ctp, IOFUNC...ATTR_T *attr); 

void 
my_ocb_free (IOFUNC_QCB_T *ocb); 

This means that the my_ocb_calloc() function gets passed both the 
internal resource manager context and the attributes structure. The 
function is responsible for returning an initialized OCB. The 
my_ocb_free() function gets passed the OCB and is responsible for 
releasing the storage for it. 

I@" It's important to realize that the OCB may be allocated by functions 
other than the normal io _open() handler - for example, the memory 
manager may allocate an OCB. The impact of this is that your OCB 
allocating function must be able to initialize the OCB with the attr 
argument. 

There are two interesting uses for these two functions (that have 
nothing to do with extending the OCB): 

• OCB allocation/deallocation monitor 

• more efficient allocation/deallocation 
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In this case, you can simply "tie in" to the allocator/deallocator and 
monitor the usage of the OCBs (for example, you may wish to limit 
the total number of OCBs outstanding at any given time). This may 
prove to be a good idea if you're not taking over the io_open() outcall, 
and yet still need to intercept the creation of (and possibly deletion of) 
OCBs. 

Another use for overriding the library's built-in OCB 
allocator/deallocator is that you may wish to keep the OCBs on a free 
list, instead of the library's calloc() and free() functions. If you're 
allocating and deallocating OCBs at a high rate, this may prove to be 
more efficient. 

You may wish to extend the attributes structure in cases where you 
need to store additional device information. Since the attributes 
structure is associated on a "per-device" basis, this means that any 
extra information you store there will be accessible to all OCBs that 
reference that device (since the OCB contains a pointer to the 
attributes structure). Often things like serial baud rate, etc. are stored 
in extended attributes structures. 

Extending the attributes structure is much simpler than dealing with 
extended OCBs, simply because attributes structures are allocated and 
deallocated by your code anyway. 

You have to perform the same "trick" of overriding the header files 
with the "new" attributes structure as we did with the extended OCB 
above: 

#define IOFUNC-ATTR_T struct my_attr 
#include <sys/iofunc.h> 

Next you actually define the contents of your extended attribute 
structures. Note that the extended attribute structure must have the 
"normal" attribute structure encapsulated as the very first element, 
just as we did with the extended OCB (and for the same reasons). 
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So far we've avoided talking about blocking within the resource 
manager. We assume that you will supply an outcall function (e.g., a 
handler for io_read()), and that the data will be available immediately. 
What if you need to block, waiting for the data? For example, 
performing a read() on the serial port might need to block until a 
character arrives. Obviously, we can't predict how long this will take. 

Blocking within a resource manager is based on the same principles 
that we discussed in the Message Passing chapter- after all, a 
resource manager is really a server that handles certain, well-defined 
messages. When the message corresponding to the client's read() 
request arrives, it does so with a receive ID, and the client is blocked. 
If the resource manager has the data available, it will simply return 
the data as we've already seen in the various examples above. 
However, if the data isn't available, the resource manager will need to 
keep the client blocked (if the client has indeed specified blocking 
behaviour for the operation) to continue processing other messages. 
What this really means is that the thread (in the resource manager) 
that received the message from the client should not block, waiting for 
the data. If it did block, you can imagine that this could eventually use 
up a great number of threads in the resource manager, with each 
thread waiting for some data from some device. 

The correct solution to this is to store the receive ID that arrived with 
the client's message onto a queue somewhere, and return the special 
constant _RESMGR.NOREPLY from your handler. This tells the 
resource manager library that processing for this message has 
completed, but that the client shouldn't be unblocked yet. 

Some time later, when the data arrives, you would then retrieve the 
receive ID of the client that was waiting for the message, and 
construct a reply message containing the data. Finally, you would 
reply to the client. 

You could also extend this concept to implementing timeouts within 
the server, much as we did with the example in the Clocks, Timers, 
and Getting a Kick Every So Often chapter (in the "Server-maintained 
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timeouts" section). To summarize, after some period of time, the 
client's request was deemed to have "timed out" and the server replied 
with some form of failure message to the receive ID it had stored 
away. 

In the example for the io_read() function above, we saw how to return 
data. As mentioned in the description of the io_read() function (in the 
"Alphabetical listing of Connect and I/0 functions"), the io_read() 

function may return directory entries as well. Since this isn't 
something that everyone will want to do, I discuss it here. 

First of all, let's look at why and when you'd want to return directory 
entries rather than raw data from io_read( ). 

If you discretely manifest entries in the pathname space, and those 
entries are not marked with the _RESMGR_FLAG.DIR, then you won't 
have to return directory entries in io_read( ). If you think about this 
from a "filesystem" perspective, you're effectively creating "file" 
types of objects. If, on the other hand, you do specify 
_RESMGR_FLAG_DIR, then you're creating a "directory" type of 
object. Nobody other than you knows what the contents of that 
directory are, so you have to be the one to supply this data. That's 
exactly why you'd return directory entries from your io_read() 
handler. 

Generally speaking, returning directory entries is just like returning 
raw data, except: 

• You must return an integral number of struct dirent entries. 

• You must fill in the struct dirent entries. 

The first point means that you cannot return, for example, seven and a 
half struct dirent entries. If eight of these structures don't fit into 
the alloted space, then you must return only seven. 

The second point is fairly obvious; it's mentioned here only because 
filling in the struct dirent can be a little tricky compared to the 
"raw data" approach for a "normal" io_read( ). 
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Let's take a look at the struct dirent structure, since that's the 
data structure returned by the io_read() function in case of a directory 
read. We'll also take a quick look at the client calls that deal with 
directory entries, since there are some interesting relations to the 
struct dirent structure. 

In order for a client to work with directories, the client uses the 
functions closedir( ), opendir( ), readdir( ), rewinddir( ), seekdir( ), and 
telldir(). 

Notice the similarity to the "normal" file-type functions (and the 
commonality of the resource manager messages): 

Directory Function File Function Message (resmgr) 

closedir() close() __IO_CLOSE_DUP 

opendir() open() _IO_CONNECT 

readdir() read() __IO_READ 

rewinddir() lseek() __IO__LSEEK 

seekdir() lseek() __IO__LSEEK 

telldir() tell() __IO__LSEEK 

If we assume for a moment that the opendir() and closedir() functions 
will be handled automatically for us, we can focus on just the 
__IO__READ and __IO__LSEEK messages and related functions. 

Offsets 

The _IO__LSEEK message and related function is used to "seek" (or 
"move") within a file. It does the exact same thing within a directory; 
you can move to the "first" directory entry (by explicitly giving an 
offset to seekdir() or by calling rewinddir( )), or any arbitrary entry (by 
using seekdir( )), or you can find out the current location in the 
directory entry list (by using telldir( )). 
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The "trick" with directories, however, is that the seek offsets are 
entirely up to you to define and manage. This means that you may 
decide to call your directory entry offsets "0," "I," "2" and so on, or 
you may instead call them "0," "64," "128" and so on. The only 
important thing here is that the offsets must be consistent in both the 
io_lseek() handler as well as the io_read() handler functions. 

In the example below, we'll assume that we're using the simple "0," 
"1," "2" ... approach. (You might use the "0," "64," "128" ... 
approach if those numbers correspond to, for example, some kind of 
on-media offsets. Your choice.) 

Contents 

So now all that's left is to "simply" fill in the struct dirent with 
the "contents" of our directory. Here's what the struct dirent 

looks like (from <dirent. h> ): 

struct dirent { 

}; 

ino_t eLi no; 
off_t d_offset; 
uintl6_t cLreclen; 
uintl6_t cLnamelen; 
char d...11mne [1] ; 

Here's a quick explanation of the various members: 

d_ino 

d_offset 

d_reclen 

The "inode"- a mountpoint-unique serial number 
that cannot be zero (zero indicates that the entry 
corresponding to this inode is free/empty). 

The offset into the directory we just talked about 
above. In our example, this will be a simple number 
like "0," "1," "2," etc. 

The size of the entire struct dirent field and any 
extensions that may be placed within it. The size 
includes any alignment filler required. 
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The number of characters in the d_name field, not 
including the NUL terminator. 

The name of this directory entry, which must be NUL 
terminated. 

When returning the struct dirent entries, the return code passed 
back to the client is the number of bytes returned. 

In this example, we're going to create a resource manager called 
/dev/atoz that will be a directory resource manager. It's going to 
manifest the "files" /devlatoz/a through to devlatoz/z, with a 
cat of any of the files returning the uppercase letter corresponding to 
the filename. Here's a sample command-line session to give you an 
idea of how this works: 

# cd /dev 
# ls 
atoz null ptyp2 socket ttypO ttyp3 
enetO ptypO ptyp3 text ttyp1 zero 
mem ptyp1 shmem tty ttyp2 
# ls -ld atoz 
dr-xr-xr-x 1 root 0 26 Sep 05 07:59 atoz 
# cd atoz 
# 1s 
a e i m q u y 

b f j n r v z 
c g k 0 s w 

d h 1 p t X 

# ls -1 e 
-r--r--r-- 1 root 0 1 Sep 05 07:59 e 
# cat m 
M# cat q 

Q# 

The example above illustrates that the directory a toz shows up in the 
I dev directory, and that you can do an 1 s of the directory itself and 
cd into it. The I dev I a toz directory has a size of "26," which is the 
number that we selected in the code. Once in the a toz directory, 
doing another ls shows the contents- the files a through z. Doing 
an ls of a particular file, say e, shows that the file is readable by all 
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main() and declarations 

(the -r--r--r-- part) and is one byte in size. Finally, doing a few 
random eat's shows that the files indeed have the stated contents. 
(Note that since the files contain only one byte, there's no linefeed 
after the character is printed, which is why the prompt shows up on 
the same line as the output.) 

Now that we've seen the characterstics, let's take a look at the code, 
which is organized into the following functions: 

main() and declarations 

my_open() 

my _read() 

Main function; this is where we initialize everything 
and start the resource manager running. 

The handler routine for the _IQ_CONNECT message. 

The handler routine for the _IO_READ message. 

my _read_dir() and my _read_file() 

These two routines perform the actual work of the 
my _read() function. 

dirent_size() and dirent-fill() 

Utility functions to deal with struct dirent 
structure. 

Note that while the code is broken up here into several short sections 
with text, the source is present on the web site 
(http: I /www. parse. com/) in the archive as a single file (atoz. c). 

The first section of code presented is the main() function and some of 
the declarations. There's a convenience macro, ALIGN(), that's used 
for alignment by the dirent-fill() and dirent_size() functions. 

The atoz_attrs array contains the attributes structures used for the 
"files" in this example. We declare NUM_ENTS array members, 
because we have NUM_ENTS (26) files "a" through "z." The attributes 
structure used for the directory itself (i.e., the I dev/atoz directory) 
is declared within main() and is called simply attr. Notice the 
differences in the way the two types of attributes structures are filled: 
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Marked as a regular file (the SJ:FREG constant) with an access 
mode of 0444 (meaning everyone has read access, no one has 
write access). The size is "1"- the file contains only one byte, 
namely, the uppercase letter corresponding to the filename. The 
inodes for these individual files are numbered "I" through "26" 
inclusive (it would have been more convenient to number them 
"0" through "25," but "0" is reserved). 

directory attribute structure 

Marked as a directory file (the SJ:FDIR constant) with an access 
mode of 0555 (meaning that everyone has read and seek access, 
no one has write access). The size is "26"- this is simply a 
number picked based on the number of entries in the directory. 
The inode is "27" - a number known not to be in use by any of 
the other attributes structures. 

Notice how we've overridden only the open member of the 
connect june structure and the read member of the io.func structure. 
We've left all the others to use the POSIX defaults. 

Finally, notice how we created the name /dev/atoz using 
resmgr_attach(). Most importantly, we used the flag 
_RESMGRYLAG..DIR, which tells the process manager that it can 
resolve requests at and below this mountpoint. 

/* 
* atoz.c 

* 
* /dev/atoz using the resource manager library 

*I 

#include <stdio.h> 
#include <stddef.h> 
#include <stdlib.h> 
#include <errno.h> 
#include <dirent.h> 
#include <limits.h> 
#include <sys/iofunc.h> 
#include <sys/dispatch.h> 
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#define ALIGN (x} ( ( (x} + 3} & -3} 
#define NUM--ENTS 26 

static iofunc_attr_t atoz_attrs [NUM--ENTS] ; 

int 
main (int argc, char **argv} 
{ 

dispatch_t *dpp; 
resmgr_attr_t resmgr_attr; 
resmgr_context_t *ctp; 
resmgr_connect_funcs_t connect_func; 
resmgr_io_funcs_t io_func; 
iofunc_attr_t attr; 
int i; 

II create the dispatch structure 
if ((dpp = dispatch_create (}} ==NULL} { 

perror ("Unable to dispatch_create\n"}; 
exit (EXIT_FAILURE}; 

} 

II initialize the various data structures 
memset (&resmgr_attr, 0, sizeof (resmgr_attr}}; 
resmgr_attr.nparts~ax = 1; 
resmgr_attr.msg~ax_size = 2048; 

II bind default functions into the outcall tables 
iofunc_func_init (-RESMGR_CONNECT_NFUNCS, &connect_func, 

-RESMGR_IO_NFUNCS, &io_func}; 

II create and initialize the attributes structure 
II for the directory. Inodes 1-26 are reserved for the 
II files 'a' through 'z'. The number of bytes is 26 
II because that's how many entries there are. 
iofunc_attr_init (&attr, s_IFDIR I 0555, 0, 0}; 
attr.inode = NUM--ENTS + 1; 
attr.nbytes = NUM--ENTS; 

II and for the "a" through "z" names 
for (i = 0; i < NUM_ENTS; i++} { 

iofunc_attr_init (&atoz_attrs [i], 
S-IFREG I 0444, 0, 0}; 

atoz_attrs [i] .inode = i + 1; 
atoz_attrs [i] .nbytes = 1; 

} 

II add our functions; we're interested only in 
II io_open and io_read 
connect_func.open = my_open; 
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io_func.read = my_read; 

II establish a name in the pathname space 
if (resmgr_attach (dpp, &resmgr_attr, "ldevlatoz", 

_FTYPE-ANY, -RESMGR-FLAG-DIR, 
&connect_func, &io_func, 

} 

&attr) == -1) { 
perror ("Unable to resmgr_attach\n"); 
exit (EXIT-FAILURE); 

II allocate a context 
ctp = resmgr_context_alloc (dpp); 

II wait here forever, handling messages 
while (1) { 

} 

if ((ctp = resmgr-hlock (ctp)) ==NULL) { 
perror ("Unable to resmgr-hlock\n"); 
exit (EXIT_FAILURE); 

} 
resmgr_handler (ctp); 

II you'll never get here 
return (EXIT-SUCCESS); 

While my_open() is very short, it has a number of crucial points. 
Notice how we decide if the resource being opened is a "file" or a 
"directory" based only on the pathname length. We can do this "trick" 
because we know that there are no other directories in this resource 
manager apart from the main one. If you want to have multiple 
directories below the mountpoint, you have to do more complicated 
analysis of the path member of the msg structure. For our simple 
example, if there's nothing in the pathname, we know it's the 
directory. Also, notice the extremely simplified pathname validation 
checking: we simply compare to make sure that there's only one 
character passed to us, and that the character lies within the range "a" 

through "z" inclusive. Again, for more complex resource managers, 
you'd be responsible for parsing the name past the registered 
mountpoint. 

Now, the most important feature! Notice how we used the POSIX 
layer default functions to do all the work for us! The 
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my _read() 

iofunc_open_default() function is usually installed in the connect 
functions table at the same spot that our new my_open() function is 
now occupying. This means that it takes the identical set of 
arguments! All we have to do is decide which attributes structure we 
want to have bound with the OCB that the default function is going to 
create: either the directory one (in which case we pass attr), or one of 
the 26 different ones for the 26 different files (in which case we pass 
an appropriate element out of atoz_attrs). This is key, because the 
handler that you put in the open slot in the connect functions table 
acts as the gatekeeper to all further accesses to your resource manager. 

static int 
my_open {resmgr_context_t *ctp, io_open_t *mag, 

{ 

} 

iofunc_attr_t *attr, void *extra) 

II an empty path means the directory, is that what we have? 
if {mag -> connect.path [0] == 0) { 

return {iofunc_open_default {ctp, mag, attr, extra)); 

II else check if it's a single char 'a' -> 'z' 
} else if {mag -> connect.path [1] == 0 && 

{mag -> connect.path [0] >= 'a' && 
mag-> connect.path [0] <= 'z')) { 

II yea, that means it's the file !ldevlatozl[a-z]) 
return {iofunc_open_default {ctp, mag, 

atoz_attrs +mag-> connect.path [OJ -'a', 
extra)); 

} else { 
return {ENOENT); 

} 

In the my _read() function, to decide what kind of processing we 
needed to do, we looked at the attribute structure's mode member. If 
the SJSDIR() macro says that it's a directory, we call my_read__dir(); 
if the SJSREG() macro says that it's a file, we call my_read_file(). 
(Note that if we can't tell what it is, we return EBADF; this indicates 
to the client that something bad happened). 

The code here doesn't know anything about our special devices, nor 
does it care; it simply makes a decision based on standard, 
well-known data. 
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static int 
my_read (resmgr_context_t *ctp, io_read_t *mag, 

iofunc_ocb_t *ocb) 
{ 

} 

int sts; 

II use the helper function to decide if valid 
if ((sts = iofunc_read_verify (ctp, mag, ocb, 

NULL)) 1= EOK) { 
return (sts); 

} 

II decide if we should perform the "file" or "dir" read 
if (S_ISDIR (ocb -> attr ->mode)) { 

return (my_read_dir (ctp, mag, ocb)); 
} else if (S_ISREG (ocb -> attr ->mode)) { 

return (my_read_file (ctp, mag, ocb)); 
} else { 

return (EBADF); 
} 

In my_read__dir() is where the fun begins. From a high level 
perspective, we allocate a buffer that's going to hold the result of this 
operation (called reply_msg). We then use dp to "walk" along the 
output buffer, stuffing struct dirent entries as we go along. The 
helper routine dirent__size() is used to determine if we have sufficient 
room in the output buffer to stuff the next entry; the helper routine 
dirent_fill() is used to perform the stuffing. (Note that these routines 
are not part of the resource manager library; they're discussed and 
documented below.) 

On first glance this code may look inefficient; we're using sprintf() to 
create a two-byte filename (the filename character and a NUL 
terminator) into a buffer that's _pQSJX_pATH_MAX (256) bytes long. 
This was done to keep the code as generic as possible. 

Finally, notice that we use the OCB's offset member to indicate to us 
which particular filename we're generating the struct dirent for 
at any given time. This means that we also have to update the offset 
field whenever we return data. 
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The return of data to the client is accomplished in the "usual" way, via 
MsgReply(). Note that the status field of MsgReply() is used to 
indicate the number of bytes that were sent to the client. 

static int 
my_read_dir (resmgr_context_t *ctp, io_read_t *mag, 

iofunc_ocb_t *ocb) 
{ 

int 
int 
struct 
char 
char 

nbytes; 
nleft; 
dirent *dp; 
*reply....lllsg; 
fname [_PQSIX_FATH_MAX] ; 

II allocate a buffer for the reply 
reply....lllsg = calloc (1, mag-> i.nbytes); 
if (reply....lllsg == NULL) { 

return (ENOMEM); 
} 

II assign output buffer 
dp = (struct dirent *) reply....lllsg; 

II we have "nleft" bytes left 
nleft =mag -> i.nbytes; 
while (ocb -> offset < NUM-ENTS) { 

II create the filename 
sprintf (fname, "%c", ocb ->offset+ 'a'); 

II see how big the result is 
nbytes dirent_size (fname); 

II do we have room for it? 
if (nleft - nbytes >= 0) { 

II fill the dirent, and advance the dirent pointer 
dp = dirent_fill (dp, ocb -> offset + 1, 

ocb -> offset, fname); 

II move the OCB offset 
ocb -> offset++; 

II account for the bytes we just used up 
nleft -= nbytes; 

} else { 

} 

II don't have any more room, stop 
break; 
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} 

II return info back to the client 
MsgReply (ctp -> rcvid, (char *) dp - reply .msg, 

reply--IIlsg, (char *) dp - reply...msg); 

II release our buffer 
free (reply--IIlsg); 

II tell resource manager library we already did the reply 
return (-RESMGR_NOREPLY); 

In my_read_file(), we see much the same code as we saw in the simple 
read example above. The only strange thing we're doing is we 
"know" there's only one byte of data being returned, so if nbytes is 
non-zero then it must be one (and nothing else). So, we can construct 
the data to be returned to the client by stuffing the character variable 
string directly. Notice how we used the inode member of the attribute 
structure as the basis of which data to return. This is a common trick 
used in resource managers that must deal with multiple resources. 
Another trick would be to extend the attributes structure (as discussed 
above in "Extending the attributes structure") and have either the data 
stored there directly or a pointer to it. 

static int 
my_read_file (resmgr_context_t *ctp, io_read_t *msg, 

iofunc_ocb_t *ocb) 

{ 
int nbytes; 
int nleft; 
char string; 

II we don't do any xtypes here ... 
if ( (msg -> i.xtype & ...IO..XTYPE....MASK) != 

_ro_xTYPE_NONE) { 
return (ENOSYS); 

} 

II figure out how many bytes are left 
nleft = ocb -> attr -> nbytes - ocb -> offset; 

II and how many we can return to the client 
nbytes =min (nleft, msg -> i.nbytes); 
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direnUi/1() 

} 

if (nbytes) { 
II create the output string 
string= ocb -> attr -> inode- 1 + 'A'; 

II return it to the client 
MsgReply (ctp -> rcvid, nbytes, 

&string + ocb -> offset, 
nbytes); 

II update flags and offset 
ocb -> attr -> flags I= IOFUNC .ATTR .ATIME 

I IOFUNC_ATTR-DIRTY_TIME; 
ocb -> offset += nbytes; 

} else { 

} 

II nothing to return, indicate End Of File 
MsgReply (ctp -> rcvid, EOK, NULL, 0); 

II already done the reply ourselves 
return (-RESMGR-NOREPLY); 

The helper routine dirent...size() simply calculates the number of bytes 
required for the struct dirent, given the alignment constraints. 
Again, this is slight overkill for our simple resource manager, because 
we know how big each directory entry is going to be - all filenames 
are exactly one byte in length. However, it's a useful utility routine. 

int 
dirent_size (char *fname) 
{ 

return (ALIGN (sizeof (struct dirent) + strlen (fname))); 
} 

Finally, the helper routine dirent_jill() is used to stuff the values 
passed to it (namely, the inode, offset and.fname fields) into the 
directory entry also passed. As an added bonus, it returns a pointer to 
where the next directory entry should begin, taking into account 
alignment. 

struct dirent * 
dirent_fill (struct dirent *dp, int inode, int offset, 

char *fname) 
{ 

dp -> d...ino = inode; 
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} 

dp -> d_offset = offset; 
strcpy (dp -> d_name, fname); 
dp -> d_namelen = strlen (dp -> d ..name); 
dp -> d-reclen = ALIGN (sizeof (struct dirent) 

+ dp -> d_namelen); 
return ((struct dirent *) ((char*) dp + 

dp -> d-reclen)); 

Summary 

Summary 

Writing a resource manager is by far the most complicated task that 
we've discussed in this book. 

A resource manager is a server that receives certain, well-defined 
messages. These messages fall into two broad categories: 

Connect messages 

VO messages 

Related to pathname-based operations, these may 
establish a context for further work. 

Always arrive after a connect message and indicate 
the actual work that the client wishes to have done 
(e.g., stat()). 

The operations of the resource manager are controlled by the thread 
pool functions (discussed in the Processes and Threads chapter) and 
the dispatch interface functions. 

QSSL provides a set of PO SIX helper functions in the resource 
manager library that perform much of the work of dealing with the 
client's Connect and 1/0 messages that arrive. 

There are a number of data structures relating to the clients and 
devices manifested by the resource manager to keep in mind: 
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OCB Allocated on a per-open basis, this contains the context for 
the client (e.g., current lseek() position) 

Attributes structure 

Allocated on a per-device basis, this contains information 
about the device (e.g., size of the device, permissions, etc.) 

Mount structure 

Allocated on a per-resource-manager basis, and contains 
information about the characteristics of the entire resource 
manager. 

The clients communicate with the resource manager via message 
passing by resolving the pathname (via the open() and other calls) 
into a node descriptor, process ID, channel ID, and handle. 

Finally you supply the functionality you wish to actually do in your 
resource manager by overriding some of the callouts in the Connect 
and 110 functions table. 
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In this appendix . .. 
QNX 4 and Neutrino 
Porting philosophy 
Summary 
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QNX 4 and Neutrino 

QNX 4 and Neutrino 

In this appendix, we'll take a look at QSSL's previous operating 
system, QNX 4, and see how it compares to Neutrino. This appendix 
will mainly be of interest if you are a current QNX 4 customer and 
want to see: 

• What's so great about Neutrino? 

• How hard will it be when I port to Neutrino? 

Or you may be developing for, or porting to, both operating systems. 

Let's first start with how the two generations of operating systems are 
similar: 

• message passing is at the heart of the architecture 

• network-distributed message passing 

• realtime 

• microkernel architecture 

• processes are memory-protected 

• POSIX compatibility 

• relatively simple "device driver" model 

• embeddable 

Note that while some of the basic features listed above are indeed 
similar, in general Neutrino has extended the support. For example, 
Neutrino has more POSIX support than QNX 4, simply because a 
large number of the POSIX specifications were still in draft status 
when QNX 4 was released. While less of them are in draft status as of 
Neutrino's release, there are still more new drafts being released as 
this book is written. It's a never-ending game of catch-up. 
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Improvements 

Embeddability 

Now that you've seen what's the same about the two generations of 
OS, let's look at where Neutrino has improved functionality over 
QNX4: 

• more POSIX standards supported 

• more embeddable 

• kernel is more readily customizable for a variety of hardware 
platforms 

• thread support 

• simpler device driver model 

• portable architecture; currently supports MIPS, PPC, SH4 and 
ARM processors as well as x86 

• supports SMP 

• more documentation 

While some of these improvements are "free," meaning that there are 
no compatibility issues (for example, POSIX pthreads weren't 
supported under QNX 4 ), some things did require fundamental 
changes. I'll briefly mention the classes of changes that were 
required, and then we'lllook in detail at the compatibility issues 
caused as well as suggestions on how to port to Neutrino (or keep 
your code portable between the two). 

Neutrino totally redesigned the way that the operating system was 
embedded. Under QNX 4, in the original release, it was marginally 
embeddable. Then Neutrino came along, designed to be embeddable. 
As a bonus, QNX 4 underwent some changes as a result of the 
experience gained in Neutrino, and now QNX 4 is vastly more 
embeddable than it had been. In any event, embedding QNX 4 versus 
embedding Neutrino is almost like night and day. QNX 4 has no real 
support for things like: 

• kernel callouts (interrupt, timer) 
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• startup configurability 

• image filesystem 

whereas Neutrino does. The definitive book on that subject is QSSL's 
Building Embedded Systems. 

QNX 4 had a function called tfork() that let you use "threads" by 
creating a process with its code and data segments mapped to the 
same memory locations as the creating process. This gave the illusion 
of a thread by creating a process, and then changing the 
characteristics of the newly created process to make it look like a 
thread. While there is a thread library available for QNX 4 on QSSL's 
update system, the kernel itself doesn't support threads directly. 

Under Neutrino, the POSIX "pthread" model is used for all threading. 
This means that you'll see (and have seen in this book) familiar 
function calls like pthread_create( ), pthread_mutex_lock( ), and others. 

While the impact of threads on message passing may seem minimal, it 
resulted in a fundamental change to the way message passing was 
done (not to the fundamental concepts of message passing, like 
SEND/RECEIVE/REPLY, but to the implementation). 

Under QNX 4, messages were targeted at process IDs. To send a 
message, you simply found the process ID of the target and did your 
Send(). For servers to receive a message under QNX 4 they just did a 
Receive(). This would block until a message arrived. The server 
would then reply with the Reply() function. 

Under Neutrino, message passing is identical (different function 
names, though). What's changed is the mechanism. The client now 
has to create a connection to a server before it can do the standard 
message-passing functions. And the server has to create a channel 
before it can do the standard message-passing functions. 
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lk%' Note that the QNX 4 Creceive() function, which would do a 
non-blocking Receive(), is missing from Neutrino. We generally 
discourage such "polling" functions, especially when you can start a 
thread, but if you really insist on performing a non-blocking 
MsgReceive() you should take a look at the Clocks, Timers, and 
Getting a Kick Every So Often chapter (under "Kernel timeouts") for 
more information. For the short story version, here's the relevant code 
sample: 

TimerTimeout (CLOCK-REALTIME, _NTO_TIMEOUT-RECEIVE, 
NULL, NULL, NULL}; 

rcvid = MsgReceive ( ... 

Pulses and events 

QNX 4 provided something called a "proxy." A proxy is best 
described as a "canned" (or "fixed") message, which could be sent by 
processes or kernel services (like a timer or interrupt service routine) 
to the owner of the proxy. The proxy is non-blocking for the sender 
and would arrive just like any other message. The way to identify a 
proxy (as opposed to another process actually sending a message) was 
to either look at the proxy message contents (not 100% reliable, as a 
process could send something that looked like the contents of the 
proxy) or to examine the process ID associated with the message. If 
the process ID of the message was the same as the proxy ID, then you 
could be assured it was a proxy, because proxy IDs and process IDs 
were taken from the same pool of numbers (there'd be no overlap). 

Neutrino extends the concept of proxies with "pulses." Pulses are still 
non-blocking messages, they can still be sent from a thread to another 
thread, or from a kernel service (like the timer and ISR mentioned 
above for proxies) to a thread. The differences are that while proxies 
were of fixed-content, Neutrino pulses are fixed-length, but the 
content can be set by the sender of the pulse at any time. For example, 
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an ISR could save away a key piece of data into the pulse and then 
send that to a thread. 

Under QNX 4, some services were able to deliver a signal or a proxy, 
while other services were able to deliver only one or the other. To 
complicate matters, the delivery of these services was usually done in 
several different ways. For example, to deliver a signal, you'd have to 
use the kill() function. To deliver a proxy or signal as a result of a 
timer, you'd have to use a negative signal number (to indicate it was a 
proxy) or a positive signal number (to indicate it was a signal). 
Finally, an ISR could deliver only a proxy. 

Under Neutrino this was abstracted into an extension of the POSIX 
struct sigevent data structure. Anything that used or returned 
the struct sigevent structure can use a signal or a pulse. 

In fact, this has been extended further, in that the struct sigevent 

can even cause a thread to be created! We talked about this in the 
Clocks, Timers, and Getting a Kick Every So Often chapter (under 
"Getting notified with a thread"). 

Under the previous-previous version of the operating system (the 
QNX 2 family), writing device drivers was an arcane black art. Under 
QNX 4, it was initially a mystery, but then eventually some samples 
appeared. Under Neutrino, there are books and courses on the topic. 
As it turns out, the Neutrino model and the QNX 4 model are, at the 
highest architectural level, reasonably similar. Whereas QNX 4 had 
somewhat muddled concepts of what needed to be done as a 
"connect" function, and what needed to be done as an "1/0" function, 
Neutrino has a very clear separation. Also, under QNX 4, you (the 
device driver writer) were responsible for most of the work- you'd 
supply the main message handling loop, you'd have to associate 
context on each 110 message, and so on. Neutrino has simplified this 
greatly with the resource manager library. 
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MIPS, PPC, SH4, and 
ARM support 

One of the driving changes behind the embeddability differences 
between QNX 4 and Neutrino is the fact that Neutrino supports the 
MIPS, PowerPC, SH4, and ARM processors. Whereas QNX 4 was 
initially "at home" on an IBM PC with a BIOS and very standard 
hardware, Neutrino is equally at home on multiple processor 
platforms with or without a BIOS (or ROM monitor), and with 
customized hardware chosen by the manufacturer (often, it would 
appear, without regard for the requirements of the OS). This means 
that the Neutrino kernel had to have provision for callouts, so you 
could, for example, decide what kind of interrupt controller hardware 
you had, and, without having to buy a source license for the operating 
system, run on that hardware. 

A bunch of other changes you'll notice when you port QNX 4 
applications to Neutrino, especially on these different processor 
platforms, is that they're fussy about alignment issues. You can't 
access anN-byte object on anything other than anN-byte multiple of 
an address. Under the x86 (with the alignment flag turned off), you 
could access memory willy-nilly. By modifying your code to have 
properly aligned structures (for non-x86 processors), you'll also find 
that your code runs faster on x86, because the x86 processor can 
access aligned data faster. 

Another thing that often comes to haunt people is the issue of 
big-endian versus little-endian. The x86 process is a mono-endian 
processor (meaning it has only one "endian-ness"), and that's 
little-endian. MIPS and PPC, for example, are bi-endian processors 
(meaning that the processor can operate in either big-endian or 
little-endian mode). Furthermore, these non-x86 processors are 
"RISC" (Reduced Instruction Set CPU) machines, meaning that 
certain operations, such as a simple C language I = (bitwise set 
operation) may or may not be performed in an atomic manner. This 
can have startling consequences! Look at the file <atomic. h> for a 
list of helper functions that ensure atomic operation. 
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Released versions of QNX 4 are strictly single-processor, whereas 
Neutrino, at the time of this second printing, has support for SMP on 
the x86 and PPC architectures at least. SMP is a great feature, 
especially in an operating system that supports threads, but it's also a 
bigger gun that you can shoot yourself in the foot with. For example, 
on a single-processor box, an ISR will preempt a thread, but never the 
other way around. On a single-processor box, it's a worthwhile 
abstraction to "pretend" that threads run simultaneously, when they 
don't really. 

On an SMP box, a thread and ISR can be running simultaneously, and 
multiple threads can also be running simultaneously. Not only is an 
SMP system a great workstation, it's also an excellent SQA (Software 
Quality Assurance) testing tool- if you've made any "bad" 
assumptions about protection in a multithreaded environment, an 
SMP system will find them eventually. 

~ To illustrate just how true that statement is, one of the bugs in an early 
internal version of SMP had a "window" of one machine cycle! On 
one processor, what was supposedly coded to be an atomic 
read/modify/write operation could be interfered with by the second 
processor's compare and exchange instruction. 

Porting philosophy 

Let's now tum our attention to the "big picture." We'lllook at: 

• Message passing and clients & servers 

• Interrupt Service Routines 
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Message passing 
considerations 

Client/server using the 
global namespace 

Under QNX 4, the way a client would find a server was either: 

1 Use the global namespace. 
Or: 

2 Perform an open() on an I/0 manager. 

If the client/server relationship that you're porting depended on the 
global namespace, then the client used: 

qnx_name_locate() 

and the server would "register" its name via: 

qnx_jwme_attach() 

In this case, you have two choices. You can try to retain the global 
namespace idiom, or you can modify your client and server to act like 
a standard resource manager. If you wish to retain the global 
namespace, then you should look at the name_attach() and 
name_detach() functions for your server, and name_open() and 
name_close() for your clients. 

However, I'd recommend that you do the latter; it's "the Neutrino 
way" to do everything with resource managers, rather than try to bolt 
a resource manager "kludge" onto the side of a global namespace 
server. 

The modification is actually reasonably simple. Chances are that the 
client side calls a function that returns either the process ID of the 
server or uses the "VC" (Virtual Circuit) approach to create a VC 
from the client's node to a remote server's node. In both cases, the 
process ID or the VC to the remote process ID was found based on 
calling qnx_jwme_locate(). Here, the "magic cookie" that binds the 
client to the server is some form of process ID (we're considering the 
VC to be a process ID, because VCs are taken from the same number 
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space, and for all intents and purposes, they look just like process 
IDs). 

If you were to return a connection ID instead of a process ID, you'd 
have conquered the major difference. Since the QNX 4 client 
probably doesn't examine the process ID in any way (what meaning 
would it have, anyway? -it's just a number), you can probably trick 
the QNX 4 client into performing an open() on the "global name." In 
this case, however, the global name would be the pathname that the 
resource manager attached as its "id." For example, the following is 
typical QNX 4 client code, stolen from my caller ID (CLID) server 
library: 

I* 
* CLID-Attach {serverName) 

* 
* This routine is responsible for establishing a connection to 
* the CLID server. 

* 
* Returns the process ID or VC to the CLID server. 

*I 

II a place to store the name, for other library calls 
static char CLID_serverName [MAX_CLID_SERVER_NAME + 1]; 

II a place to store the clid server id 
static int clid_pid = -1; 

int 
CLID-Attach {char *serverName) 
{ 

} 

if {serverName == NULL) { 
sprintf {CLID_serverName, "IPARSEICLID"); 

} else { 
strcpy {CLID_serverName, serverName); 

} 
clid_pid = qnx_name_locate {0, CLID-serverName, 

sizeof {CLID_ServeriPC), NULL); 
if {c1id_pid != -1) { 

CLID-IPC {CLID~sgAttach); II send it an ATTACH message 
return {clid_pid); 

} 
return {-1); 

You could change this to be: 
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/* 
* CLID-Attach (serverName) Neutrino version 

*I 

int 
CLID-Attach (char *serverName) 
{ 

} 

if (serverName == NULL) { 
sprint£ (CLID_serverName, "/PARSE/CLID"); 

} else { 
strcpy (CLID_serverName, serverName); 

} 
return (clid_pid =open (CLID_serverName, Q_RDWR)); 

and the client wouldn't even notice the difference. 

!@" Two implementation notes: I've simply left the default name 
"/PARSE/CLIO" as the registered name of the resource manager. 
Most likely a better name would be "/dev/clid"- it's up to you 
how "POSIX-Iike" you want to make things. In any event, it's a 
one-line change and is only marginally related to the discussion here. 

The second note is that I've still called the file descriptor clid_pid, 
even though now it should really be called clidfd. Again, this is a 
style issue and relates to just how much change you want to perform 
between your QNX 4 version and the Neutrino one. 

In any event, to be totally portable to both, you'll want to abstract the 
client binding portion of the code into a function call - as I did above 
with the CLID...Attach(). 

At some point, the client would actually perform the message pass 
operation. This is where things get a little trickier. Since the 
client/server relationship is not based on an 1/0 manager relationship, 
the client generally creates "customized" messages. Again from the 
CUD library (CLID...AddSingleNPANXX() is the client's exposed API 
call; I've also included checkAttach() and CLIDJPC() to show the 
actual message passing and checking logic): 
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I* 
* CLID-AddSingleNPANXX (npa, nxx) 

*I 

int 
CLID-AddSingleNPANXX (int npa, int nxx) 
{ 

} 

I* 

checkAttach (); 
CLID-IPCData.npa = npa; 
CLID_IPCData.nxx = nxx; 
CLID-IPC (CLID-MsgAddSingleNPANXX); 
return (CLID-IPCData.returnValue); 

* CLID_IPC (IPC message number) 

* 

Porting philosophy 

* This routine will call the server with the global buffer 
* CLID-IPCData, and will stuff in the message number passed 
* as the argument. 

* 
* Should the server not exist, this routine will stuff the 
* .returnValue field with CLID_NoServer. Otherwise, no 
* fields are affected. 

*I 

void 
CLID-IPC (IPCMessage) 
int IPCMessage; 
{ 

} 

void 

if (clid_pid == -1) { 
CLID_IPCData.returnValue 
return; 

} 
CLID-IPCData.serverFunction 
CLID_IPCData.type = OxBOOl; 
CLID-IPCData.subtype = 0; 

CLID_NoServer; 

IPCMessage; 

if (Send (clid_pid, &CLID-IPCData, &CLID-IPCData, 

} 

sizeof (CLID_IPCData), 
sizeof (CLID-IPCData))) { 

CLID_IPCData.returnValue = CLID-IPCError; 
return; 

checkAt tach () 
{ 

if (clid_pid -1) { 
CLID-Attach (NULL); 
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} 
} 

As you can see, the checkAttach() function is used to ensure that a 
connection exists to the CLIO server. If you didn't have a connection, 
it would be like calling read() with an invalid file descriptor. In my 
case here, the checkAttach() automagically creates the connection. It 
would be like having the read() function determine that there is no 
valid file descriptor and just create one out of the blue. Another style 
issue. 

The customized messaging occurs in the CLIDJPC() function. It 
takes the global variable CLIDJPCData and tries to send it to the 
server using the QNX 4 Send() function. 

The customized messages can be handled in one of two ways: 

1 Functionally translate them into standard, file-descriptor-based 
POSIX calls. 
Or: 

2 Encapsulate them into either a devctl() or a customized message 
wrapper using the _lQ__MSG message type. 

In both cases, you've effectively converted the client to 
communicating using standard resource manager mechanisms for 
communications. What? You don't have a file descriptor? You have 
only a connection IO? Or vice versa? This isn't a problem! Under 
Neutrino, a file descriptor is a connection ID! 

Translating messages to standard file-descriptor-based POSIX calls 

In the case of the CLIO server, this really isn't an option. There is no 
standard POSIX file-descriptor-based call to "add an NPA/NXX pair 
to a CLIO resource manager." However, there is the general devctl() 
mechanism, so if your client/server relationship requires this form, 
see below. 
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Now, before you write off this approach (translating to standard 
fd-based messages), let's stop and think about some of the places 
where this would be useful. In an audio driver, you may have used 
customized QNX 4 messages to transfer the audio data to and from 
the resource manager. When you really look at it, read() and write() 
are probably much more suited to the task at hand- bulk data 
transfer. Setting the sampling rate, on the other hand, would be much 
better accomplished via the devctl() function. 

Granted, not every client/server relationship will have a bulk data 
transfer requirement (the CUD server is such an example). 

Translating messages to devctl() or JO_MSG 

So the question becomes, how do you perform control operations? 
The easiest way is to use the devctl() PO SIX call. Our CUD library 
example (above) now becomes: 

/* 
* CLID-AddSingleNPANXX (npa, nxx) 

*I 

int 
CLID-AddSingleNPANXX (int npa, int nxx) 
{ 

} 

struct clid_addnpanxx_t mag; 

checkAttach (); //keep or delete, style issue 

msg.npa = npa; 
msg.nxx = nxx; 
return (devctl (clid_pid, DCMD_CLID_ADD-NPANXX, &mag, 

sizeof (mag), NULL)); 

As you can see, this was a relatively painless operation. (For those 
people who don't like devctl() because it forces data transfers to be 
the same size in both directions, see the discussion below on the 
__IQ_MSG message.) Again, if you're maintaining source that needs to 
run on both operating systems, you'd abstract the message-passing 
function into one common point, and then supply different versions of 
a library, depending on the operating system. 
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We actually killed two birds with one stone: 

1 Removed a global variable, and assembled the messages based 
on a stack variable - this now makes our code thread-safe. 

2 Passed only the correct-sized data structure, instead of the 
maximum-sized data structure as we did in the previous (QNX 
4) example. 

Note that we had to define DCMD_CLID_ADD_NPANXX- we could 
have also kludged around this and used the 
CLID_MsgAddSingleNPANXX manifest constant (with appropriate 
modification in the header file) for the same purpose. I just wanted to 
highlight the fact that the two constants weren't identical. 

The second point that we made in the list above (about killing birds) 
was that we passed only the "correct-sized data structure." That's 
actually a tiny lie. You'll notice that the devctl() has only one size 
parameter (the 4th parameter, which we set to sizeof (msg) ). How 
does the data transfer actually occur? The 2nd parameter to devctl() 

contains the device command (hence "DCMD"). Encoded within the 
top two bits of the device command is the direction, which can be one 
of four possibilities: 

1 "00" - no data being transferred 

2 "0 1" - transfer from driver to client 

3 "I 0" - transfer from client to driver 

4 "II"- transfer bidirectionally 

If you're not transferring data (meaning that the command itself 
suffices), or if you're transferring data unidirectionally, then devctl() 
is fine. The interesting case is when you're transferring data 
bidirectionally, because (since there's only one data size parameter to 
devctl( )) both data transfers (to the driver and back) will transfer the 
entire data buffer! This is okay in the sub-case where the "input" and 
"output" data buffer sizes are identical, but consider the case where 
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the data buffer going to the driver is a few bytes, and the data coming 
back from the driver is large. Since we have only one size parameter, 
we're effectively forced to transfer the entire data buffer to the driver, 
even though only a few bytes were required! 

This can be solved by "rolling your own" messages, using the general 
"escape" mechanism provided by the _IO__MSG message. 

The ..IO__MSG message is provided to allow you to add your own 
message types, while not conflicting with any of the "standard" 
resource manager message types- it's already a resource manager 
message type. 

The first thing that you must do when using ..IO__MSG is define your 
particular "custom" messages. In this example, we'll define two 
types, and model it after the standard resource manager messages -
one data type will be the input message, and one will be the output 
message: 

typedef struct 
{ 

int data_rate; 
int more_stuff; 

} my_input_xyz_t; 

typedef struct 
{ 

int old_data_rate; 
int new_data_rate; 
int more_stuff; 

} my_output_xyz_t; 

typedef union 
{ 

my_input_xyz_t i; 
my_output_xyz_t o; 

} my~essage_xyz_t; 

Here, we've defined a union of an input and output message, and 
called it my....lllessage_xyz_t. The naming convention is that this is 
the message that relates to the "xyz" service, whatever that may be. 
The input message is of type my _input_xyz_t, and the output 
message is of type my _output_xyz_t. Note that "input" and 
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"output" are from the point of view of the resource manager
"input" is data going into the resource manager, and "output" is data 
comingfrom the resource manager (back to the client). 

We need to make some form of API call for the client to use - we 
could just force the client to manually fill in the data structures 
my_input_xyz_t and my_output_xyz_t, but I don't recommend 
doing that. The reason is that the API is supposed to "decouple" the 
implementation of the message being transferred from the 
functionality. Let's assume this is the API for the client: 

int 
adjust....xyz (int *data-rate, 

int *odatcLrate, 
int *more_vtt!{j"); 

Now we have a well-documented function, adjust....xyz(), that performs 
something useful from the client's point of view. Note that we've used 
pointers to integers for the data transfer- this was simply an 
example of implementation. Here's the source code for the 
adjust ....xyz() function: 

int 
adjust....xyz (int *dr, int *odr, int *ms) 
{ 

} 

my~essage....xyz_t msg; 
int sts; 

msg.i.data_rate *dr; 
msg.i.more_stuff = *ms; 
sts = io~sg (global_fd, CoMMAND_xYz, &msg, 

sizeof (msg.i), 
sizeof (msg.o)); 

if (sts == EOK) { 
*odr = msg.o.old_data_rate; 
*ms = msg.o.more_stuff; 

} 
return (sts); 

This is an example of using ioJnsg() (which we'll define shortly
it's not a standard QSSL supplied library call!). The ioJnsg() function 
does the magic of assembling the _IO..MSG message. To get around 
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the problems that we discussed about devctl() having only one "size" 
parameter, we've given io_msg() two size parameters, one for the 
input (to the resource manager, sizeof (msg. i)) and one for the 
output (from the resource manager, sizeof (msg.o) ). Notice how 
we update the values of *odr and *ms only if the io_msg() function 
returns an EOK. This is a common trick, and is useful in this case 
because the passed arguments don't get modified unless the actual 
command succeeded. (This prevents the client program from having 
to maintain copies of its passed data, just in case the function fails.) 

One last thing that I've done in the adjust...xyz() function, is that I 
depend on the global-fd variable containing the file descriptor of the 
resource manager. Again, there are a number of ways that you could 
handle it: 

• Bury the file descriptor within the io_msg() function (this would be 
useful if you wanted to avoid having to pass around the file 
descriptor on each and every call; useful if you're ever going to 
talk to only the one resource manager, and thus most likely not 
suitable as a general purpose solution). 
Or: 

• Pass the file descriptor from the client itself to each function in the 
API library (useful if the client's going to be responsible for 
talking to the resource manager in other ways, such as the standard 
POSIX file descriptor calls like read(), or if the client may be 
talking to multiple resource managers). 

Here's the source for io_msg(): 

int 
io~sg (int fd, int cmd, void *mag, int isize, int osize) 
{ 

io~sg_t io~essage; 

iov_t rx_iov [2]; 
iov_t tx_iov [2]; 
int sts; 

II set up the transmit IOV 
SETIOV (tx_iov + 0, &io~sg.o, sizeof (io~sg.o)); 
SETIOV (tx_iov + 1, mag, osize); 
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} 

II set up the receive IOV 
SETIOV {rx_iov + 0, &io~sg.i, sizeof {io~sg.i)); 
SETIOV {rx_iov + 1, msg, isize); 

II set up the _!0-MSG itself 
memset {&io~essage, 0, sizeof {io~essage)); 

io~essage.type = -IO-MSG; 
io~essage.mgrid = cmd; 

return {MsgSendv {fd, tx_iov, 2, rx_iov, 2)); 

Notice a few things. 

The io_msg() function used a two-part IOV to "encapsulate" the 
custom message (as passed by msg) into the io_message structure. 

The io_message was zeroed out and initialized with the JO_MSG 

message identification type, as well as the cmd (which will be used by 
the resource manager to decide what kind of message was being sent). 

The MsgSendv() function's return status was used directly as the 
return status of io_msg(). 

The only "funny" thing that we did was in the mgrid field. QSSL 
reserves a range of values for this field, with a special range reserved 
for "unregistered" or "prototype" drivers. These are values in the 
range JOMGR_pRJVATE_BASE through to JOMGR_pRJVATE_MAX , 

respectively. If you're building a deeply embedded system where you 
know that no inappropriate messages will be sent to your resource 
manager, then you can go ahead and use the special range. On the 
other hand, if you are building more of a "desktop" or "generic" 
system, you may not have enough control over the final configuration 
of the system to determine whether inappropriate messages will be 
sent to your resource manager. In that case, you should contact QSSL 
to obtain a mgrid value that will be reserved for you - no one else 
should use that number. Consult the file < sys I iomgr. h> for the 
ranges currently in use. In our example above, we could assume that 
COMMAND_xyz is something based on JOMGR_pRJVATE_BASE: 
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#define COMMAND-XYZ (_IOMGR_PRIVATE-BASE + Ox0007) 

Or that we've been assigned a specific number by QSSL: 

#define COMMAND-XYZ (_IOMGR-ACME_CORP + Ox0007) 

Now, what if the client that you're porting used an VO manager? How 
would we convert that to Neutrino? Answer: we already did. Once we 
establish a file-descriptor-based interface, we're using a resource 
manager. Under Neutrino, you'd almost never use a "raw" message 
interface. Why not? 

1 You'd have to worry about the _IO_CONNECT message that 
came in with the client's open() call, or you'd have to figure out 
how to find the resource manager if you weren't going to use 
open(). 

2 You'd have to figure out a way to associate a client with a 
particular context block inside of the resource manager. This 
isn't rocket science, but it does involve some amount of data 
management. 

3 You'd have to provide encapsulation of all your messages, 
instead of using the standard POSIX file-descriptor-based 
functions to do that for you. 

4 Your resource manager won't work with stdin/stdout-based 
applications. For the audio driver example, you couldn't just do 
mp3 _decode spud. mp3 >I dev I audio; the open() would 
most likely fail (if not, then the write() would, and so on). 

Under QNX 4, the only way to send a non-blocking message was to 
create a proxy via qnx_proxy..attach(). This function returns a proxy 
10 (which is taken from the same number space as process IDs), 
which you can then Trigger() or return from an interrupt service 
routine (see below). 
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Under Neutrino, you'd set up a struct sigevent to contain a 
"pulse," and either use MsgDeliverEvent() to deliver the event or bind 
the event to a timer or ISR. 

The usual trick under QNX 4 to detect proxy messages (via Receive() 
or Creceive( )) was to compare the process ID returned by the 
receiving function against the proxy IDs that you're expecting. If you 
got a match, you knew it was a proxy. Alternatively, you could ignore 
the process ID returned by the receiving function and handle the 
message as if it were a "regular" message. Unfortunately, this has 
some porting complications. 

Proxies for their IDs 

If you're comparing the received process lD against the list of proxies 
that you're expecting, then you'll usually ignore the actual contents of 
the proxy. After all, since the proxy message couldn't be changed 
once you've created it, what additional information would you have 
gained by looking at the message once you knew it was one of your 
proxies? You could argue that as a convenience you'd place a message 
into the proxy that you could then look at with your standard message 
decoding. If that's the case, see below, "Proxies for their contents." 

Therefore, under QNX 4, you'd see code like: 

pid =Receive (0, &msg, sizeof (msg)); 
if (pid == proxyPidTimer) { 

II we got hit with the timer, do something 
} else if (pid == proxyPidiSR) { 

II our ISR went off, do something 
} else { 

} 

II not one of our proxies, must have been a regular 
II message for a client. Do something. 

Under Neutrino, you'd replace this code with the following: 

rcvid = MsgReceive (chid, &msg, sizeof (msg), NULL); 
if (rcvid == 0) { II 0 indicates it was a pulse 

switch (msg.pulse.code) { 
case MyCodeTimer: 
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II we got hit with the timer, do something 
break; 

case MyCodeiSR: 
II our ISR went off, do something 
break; 

default: 
II unknown pulse code, log it, whatever. 
break; 

} 
} else { 

} 

II rcvid is not zero, therefore not a pulse but a 
II regular message from a client. Do something. 

Note that this example would be used if you're handling all messages 
yourself. Since we recommend using the resource manager library, 
your code would really look more like this: 

int 
main (int argc, char **argv) 
{ 

} 

II do the usual initializations 

pulse_attach (dpp, 0, MyCodeTimer, my_timer_pulse-handler, 
NULL); 

pulse-attach (dpp, 0, MyCodeiSR, my_isr_pulse-handler, 
NULL); 

This time, we're telling the resource manager library to put the two 
checks that we showed in the previous example into its receive loop 
and call our two handling functions (my_timer _pulseJwndler() and 
my_isr _pulseJwndler( )) whenever those codes show up. Much 
simpler. 

Proxies for their contents 

If you're looking at proxies for their contents (you're ignoring the fact 
that it's a proxy and just treating it like a message), then you already 
have to deal with the fact that you can't reply to a proxy under QNX 
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Interrupt service 
routines 

4. Under Neutrino, you can't reply to a pulse. What this means is, 
you've already got code in place that either looks at the proxy ID 
returned by the receive function and determines that it shouldn't reply, 
or the proxy has encoded within it special indications that this is a 
message that shouldn't be replied to. 

Unfortunately under Neutrino, you can't stuff arbitrary data into a 
pulse. A pulse has a well-defined structure, and there's just no getting 
around that fact. A clever solution would be to "simulate" the 
message that you'd ordinarily receive from the proxy by using a pulse 
with a table. The table would contain the equivalent messages that 
would have been sent by the proxies. When a pulse arrives, you'd use 
the value field in the pulse as an index into this table and "pretend" 
that the given proxy message had arrived. 

QNX 4's interrupt service routines had the ability to either return a 
proxy ID (indicating that the proxy should be sent to its owner) or a 
zero, indicating nothing further needed to be done. Under Neutrino, 
this mechanism is almost identical, except that instead of returning a 
proxy, you're returning a pointer to a struct sigevent. The event 
that you return can be a pulse, which will give you the "closest" 
analog to a proxy, or it can be a signal or the creation of a thread. 
Your choice. 

Also, under QNX 4 you had to have an interrupt service routine, even 
if all that the ISR did was return a proxy and nothing else. Under 
Neutrino, using InterruptAttachEvent(), you can bind a struct 

sigevent to an interrupt vector, and that event will be delivered 
every time the vector is activated. 

Summary 

Porting from QNX 4 to Neutrino, or maintaining a program that must 
function on both, is possible, if you follow these rules: 

• abstract, abstract, and abstract 
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• decouple, decouple, and decouple 

The key is to not tie yourself to a particular "handle" that represents 
the "connection" between the client and the server, and to not rely on 
a particular mechanism for finding the server. If you abstract the 
connection and the detection services into a set of function calls, you 
can then conditionally compile the code for whatever platform you 
wish to port to. 

The exact same discussion applies to the message transport- always 
abstract the client's API away from "knowing" how the messages are 
transported from client to server to some generic API which can then 
rely upon a single-point transport API; this single-point transport API 
can then be conditionally compiled for either platform. 

Porting a server from QNX 4 to Neutrino is more difficult, owing to 
the fact that QNX 4 servers were generally "hand-made" and didn't 
follow a rigorous structure like that imposed by the resource manager 
library under Neutrino. Generally, though, if you're porting 
something hardware specific (for example, a sound card driver, or a 
block-level disk driver), the main "code" that you'll be porting has 
nothing to do with the operating system, and everything to do with the 
hardware itself. The approach I've adopted in these cases is to code a 
shell "driver" structure, and provide well-defined hardware-specific 
functions. The entire shell driver will be different between operating 
systems, but the hardware-specific functions can be amazingly 
portable. 

Note also that QSSL provides a QNX 4 to Neutrino migration kit
see the online docs. 
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So you've got a 
problem ... 

Seeking professional help 

Seeking professional help 

No matter how good a developer you are, there are times when you: 

• get stuck with a problem you can't solve 

• encounter a bug and wish to report it and/or find a workaround 

• need assistance with your design. 

In this chapter, we'lllook at the resources available when you face 
these problems. 

We'll talk about the first two problems together, because it's often 
hard to tell which problem you're actually experiencing. 

Something no longer works, or doesn't work as expected. What 
should you do about it? 

RTFM Read the fine manual! While this may seem like an obvious first step, 
it's amazing the number of people who don't do this! 

All the manuals for the Neutrino operating system are online: 

• Library Reference 

• System Architecture 

• Technotes 

• Utilities Reference 

• Audio Developer's Guide 

• Programmer's Guide 

• DDKs 

• Photon Documentation (multiple volumes) 
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Contact technical 
support 

Library Reference 

This is the A through Z of the C library- use this to find information 
about each and every function call that's provided by Neutrino's C 
library. This is the ultimate "authority" on function calls. Often in this 
book, I've referred you to this library (for example, to find out more 
about a particular function, such as arguments that aren't commonly 
used). 

System Architecture 

A "top-level" architecture document, this describes the Neutrino 
system from a high-level view, giving enough details about the 
implementation that you can get a good idea of what the pieces are 
and how they all fit together. 

Tech notes 

The Technotes bookset describes special features of Neutrino and may 
vary from release to release. Take a look at the online version to see 
what's in the release you currently have. For example, for the QNX 
6.1.0 July 5th 200 I release, the following topics were in the Technotes 
bookset: 

• The QNX 4 Filesystem 

• Compression Rules with the Flash Filesystem 

Utilities Reference 

This is the A through Z of the command-line utilities available. It 
covers all command-line utilities such as grep, make, ls, etc. 

Once you've determined to the best of your abilities that the problem 
isn't some misunderstanding of the function call or utility you're 
using, or a mere typo, you may enter the realm of QSSL's technical 
support department. This is nothing to be afraid of- most customers 
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Describe the problem 

Seeking professional help 

are extremely pleased with the level of technical support they get 
from QSSL. 

There are two ways of contacting QNX's technical support group: by 
phone or via the web (QDN- QNX Developer's Network). 

Before we talk about which method you should use, there are a few 
things you can do to make the turnaround time on your bug report 
much shorter. 

Often customers try to fix the problems themselves by trying various 
things that come to mind. This is great. Unfortunately, what tends to 
happen is that customers get frustrated and post messages something 
like: 

I just ran the TCP/IP package connected to a Windows box 
and it doesn't work. 

What's going on?!? 

The very next message from tech support looks like the following (I 
think they should have a standard template for it, myself): 

Can you describe what you mean by "doesn't work"? Do you mean 
the TCP/IP on the QNX side? Do you mean the TCP/IP on the 
Windows box? What part of TCP/IP doesn't work? What are you 
trying to do? What versions of the OS, and TCP/IP package do 
you have? What version of Windows? What TCP/IP package 
were you using there? 

The moral of the story: if you're having a problem, then you're 
probably in a hurry for the answer. If you're in a hurry for the answer, 
supply as much information as possible in your initial post so that 
someone at QSSL can try right away to reproduce the problem. 

Here are the things that tech support almost always asks for: 

• precise descriptions of failure 

• versions 
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Precise information 

Versions 

• configuration 

• platform (x86, PPC, etc.) 

To supply this information, state what you had expected to happen, 
and what actually happened. In our above example, a much better 
problem description would have been: 

I just ran telnet from Neutrino 2.0, patch level "A", to my 
Windows box, and, immediately after the login prompt, got a 
"Connection closed by foreign host". 

The next thing that you should supply is the versions of the various 
commands that you may have been using. This can be done by using 
the ls and cksum commands. For our example above, you'll want to 
tell tech support which version of the tel net command you were 
using, and the version of the TCP/IP protocol stack etc. 

# 1s -1 /usr/bin/te1net /1ib/d11/devn-ne2000.so /1ib/d11/npm-ttcpip.so 
-rwxrwxr-x 1 root bin 64220 Jun 22 05:36 /usr/bin/te1net 
-rwxrwxr-x 1 root 
-rwxrwxr-x 1 root 

bin 
bin 

27428 Jun 22 03:29 /1ib/d11/devn-ne2000.so 
84148 Jun 22 04:15 /1ib/d11/npm-ttcpip.so 

# cksum /usr/bin/te1net /1ib/d11/devn-ne2000.so /1ib/d11/npm-ttcpip.so 
1217616014 64220 /usr/bin/te1net 

50089252 
1123749911 

27428 /lib/dl1/devn-ne2000.so 
84148 /1ib/d11/npm-ttcpip.so 

This gives tech support at least some idea of the dates, sizes, and 
checksums of some of the products that might be involved in the 
problem. 

If you suspect your problem might be related to a platform-specific 
interaction, you should of course specify the name, brand, and 
relevant chipsets used on that particular platform. 

Another thing that tech support usually requests, especially if they 
suspect some problems with insufficient memory, licensing, 
configuration, etc., is the runtime configuration of your system. You 
should try to give them an idea of how much memory is installed, 
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Reproduce the problem 

Seeking professional help 

how many processes are running, what the approximate load on the 
system might be, etc. 

The more information you have, the faster they can help you. 

If you're using a beta version of the product (i.e., you're on QSSL's 
list of beta sites), all the above information is critical, because you'll 
typically be using different versions of the software than what is 
released. Note, however, that the technical support department 
generally doesn't handle telephone support of beta products. The only 
way to get help on these is to post in the conference or, if the 
developer has requested direct contact, talk to the developer. Posting 
is generally the best solution anyway, because then other members of 
the beta conference can see what problems are out there and can learn 
what the solution is (i.e., if it's a bug, what the workaround for it is). 
In any event, the above information is crucial in order to determine 
which products you have from the beta release and which ones are 
"stock." 

Also, keep in mind that if you're talking with a developer, they often 
have a million things on their plates and might not be able to get back 
to you right away. Sending a friendly "ping" reminder after a few 
days doesn't hurt. Sending a demanding one after 15 minutes will not 
gain you any new friends! 

An issue that frequently comes up with betas is that you may forget to 
install an update. Due to the way that the beta process works, missing 
an update may cause strange behavior on your system. Certain new 
drivers or resource managers may behave differently towards their 
respective client programs than they did in previous versions. 

In this case, you should ensure (because the support staff will ask!) 
that you have indeed installed all the beta updates in the order listed. 

One of the first things that tech support usually wants to know is, 
"Does it happen just once in a blue moon, or can you make it happen 
on demand?" 
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Seeking professional help 

Narrow it down 

They don't ask this question idly. If it's a problem that happens 
infrequently, it's just as serious as a problem that happens regularly. 
The point is to try to determine how to proceed. 

Generally, for problems that happen infrequently, the support staff 
will recommend that you configure the machine with the operating 
system and components set up in such a way that when the problem 
happens again, some form of log will be left around or perhaps the 
debugger will be invoked so that the problem can be diagnosed later. 

For a problem that's easily reproducible, they'll want to reproduce it 
at QSSL so that they can show the developer on a live system. "Hey, 
look! It dies when I ... " 

Even if it's reproducible, tech support most likely doesn't want to see 
6000 lines of C code with a problem buried in the middle of it. 

In most cases that I've witnessed, a bug can usually be narrowed 
down to about 20 to 30 lines of C at the most. The only cases where a 
really large file is actually useful is when reporting bugs with 
something where you suspect it's a size problem, rather than a library 
or kernel problem. For example, some utilities may have a default 
array size that may cause trouble when it needs to resize that array for 
something bigger. In this case, tech support may ask you for a tar 

file with everything in it. Luckily, tar files are easy to create. For 
example, if you're developing your product in 
/src/projects/xyzzy and they want to see everything in that 
directory, you can perform the following steps: 

# cd /arc/projects 
# tar cvf xyzzy.tar xyzzy 

This will "suck" everything out of the xyzzy directory (and all 
subdirectories too!) into the file called xyzzy. tar. If this resulting 
tar file is huge, you can save some download time and disk space by 
compressing it with gzip: 

# gzip -9v xyzzy.tar 
xyzzy.tar: 60.2% -- replaced with xyzzy.tar.gz 
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You'd then send the support people the xyzzy. tar. gz file 
(generally by ftp rather than as an email attachment :-) ). 

Other sources 

There are several resources other than QDN for providing help, 
information, or services. This is by no means an extensive list, but 
should get you started in your search for more information. 

qdn. qnx. com QSSL's web site (at http: I lwww. qnx. com), has a support area at 
http: I I qdn. qnx. com which is full of useful information and files. 
The whole idea of the QDN is that it contains a knowledge-base of 
previous questions and answers, and is searchable, so you may be 
able to find answers quickly to common problems. 

As an example, I found that my CD-ROM wasn't showing up in 
I dev I cdO if I booted my machine without a CD present in the drive. 
Searching in QDN for the string "cd rom" showed 18 matches. I read 
one of them, and found the hints that I needed- basically, that I 
needed to run the driver again, and it would automagically detect the 
CD-ROM. Total time: 5 minutes. 

The QNX Start website is an excellent place to reach the QNX 
www. qnxstart. comcommunity. The website contains various active discussion groups, 

pointers to source code, and so on. 

comp. os. qnx There's a USENET newsgroup called comp. os. qnx on the Internet. 
It was created for QNX users to talk among themselves about 
problems, features, solutions, and so on. 

This news group may or may not be followed by QNX staff (some 
staff lurk there). Generally, it's used as a way for people who don't 
have the product to ask questions. The QNX FAQ (Frequently Asked 
Questions) is posted periodically to that newsgroup and provides a 
good way of learning about the product. 
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If you need an answer, QDN is still your best resource. 

IRC There are several IRC servers available, including 

cvs.qnx.com 

Third-Party 
Directory
products & 

consultants 

Training 

ire. qnxs tart. com and ire. j oher. com- join the #qnx 

channel. You'll be surprised who you can find online (and at what 
hours!). 

QSSL provides a CVS repository for the source code to various pieces 
of the QNX Realtime Platform. This is the web-based interface to it. 
Eventually, most of the sourcebase will be placed online there; 
although you probably won't ever find the kernel source there (QSSL 
will most likely keep that proprietary), you will find things like driver 
source, and resource manager library source, etc. This is particularly 
helpful in gaining a deeper understanding of the internal operations of 
resource managers. 

QNX used to publish a Third-Party Directory that listed companies 
with third-party products for QNX (e.g., multi port serial cards, X.25 
hardware, software) or who provided design assistance via consulting 
serv1ces. 

This book has since been replaced with an online directory available 
at the main QSSL website. 

Finally, several companies offer training courses for QNX products
PARSE Software Devices offers onsite training, see 
http: I /www .parse. com/training), and QSSL offers onsite as 
well as periodic training at their facility. 
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absolute timer 

alignment 

asynchronous 

atomic (operation) 

attribute (structure) 

A timer with an expiration point defined as a fixed time, for example, 
January 20, 2005 at 09:43:12 AM, EDT. Contrast with relative timer. 

The characteristic that accessing an N-byte data element must be 
performed only on an address that is a multiple of N. For example, to 
access a 4-byte integer, the address of the integer must be a multiple 
of 4 bytes (e.g., Ox23048008, and not Ox2304B009). On some CPU 
architectures, an alignment fault will occur if an attempt is made to 
perform a non-aligned access. On other CPU architectures (e.g., x86) 
a non-aligned access is simply slower than an aligned access. 

Used to indicate that a given operation is not synchronized to another 
operation. For example, the timer tick interrupt that is generated by 
the system's timer chip is said to be "asynchronous" to a thread that's 
requesting a delay of a certain amount of time, because the thread's 
request is not synchronized in any way to the arrival of the incoming 
timer tick interrupt. Contrast with synchronous. 

An operation that is "indivisible," that is to say, one that will not get 
interrupted by any other operation. Atomic operations are critical 
especially in interrupt service routines and multi-threaded programs, 
as often a "test and set" sequence of events must occur in one thread 
without the chance of another thread interrupting this sequence. A 
sequence can be made atomic from the perspective of multiple threads 
not interfering with each other through the use of mutexes or via 
InterruptLock() and InterruptUnlock() when used with Interrupt 
service routines. See the header file <atomic. h> as well. 

A structure used within a resource manager that contains 
information relating to the device that the resource manager is 
manifesting in the pathname space. If the resource manager is 
manifesting multiple devices in the pathname space (for example, the 
serial port resource manager might manifest I dev I serl and 
ldevlser2) there will be an equal number of attribute structures in 
the resource manager. Contrast with OCJB. 
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barrier (synchronization 
object) 

blocking 

channel 

client 

condition variable 

422 Glossary 

A thread-level synchronization object with an associated count. 
Threads that call the blocking barrier call (pthread_barrier _wait()) 

will block until the number of threads specified by the count have all 
called the blocking barrier call, and then they will all be released. 
Contrast this with the operation of semaphores. 

A means for threads to synchronize to other threads or events. In the 
blocking state (of which there are about a dozen), a thread doesn't 
consume any CPU- it's waiting on a list maintained within the 
kernel. When the event occurs that the thread was waiting for, the 
thread is unblocked and is able to consume CPU again. 

An abstract object on which a server receives a message. This is the 
same object to which a client creates a connection in order to send a 
message to the server. When the channel is created via 
ChannelCreate(), a "channel ID" is returned. This channel ID (or 
"chid" for short) is what a resource manager will advertise as part of 
its registered mountpoint. 

Neutrino's message-passing architecture is structured around a 
client/server relationship. In the case of the client, it's the one that is 
requesting services of a particular server. The client generally 
accesses these services using standard file-descriptor-based function 
calls (e.g., !seek()), which are synchronous, in that the client's call 
doesn't return until the request is completed by the server. A thread 
can be both a client and a server at the same time. 

A synchronization object used between multiple threads, 
characterized by acting as a rendezvous point where multiple threads 
can block, waiting for a signal (not to be confused with a UNIX-style 
signal). When the signal is delivered, one or more of the threads will 
unblock. 



connection The concept of a client being attached to a channel. A connection is 
established by the client either directly by calling ConnectAttach() or 
on behalf of the client by the client's C library function open(). In 
either case, the connection ID returned is usable as a handle for all 
communications between the client and the server. 

connection ID A "handle" returned by ConnectAttach() (on the client side) and used 
for all communications between the client and the server. The 
connection ID is identical to the traditional C library's "file 
descriptor." That is to say, when open() returns a file descriptor, it's 
really returning a connection ID. 

deadlock A failure condition reached when two threads are mutually blocked 
on each other, with each thread waiting for the other to respond. This 
condition can be generated quite easily; simply have two threads send 
each other a message - at this point, both threads are waiting for 
the other thread to reply to the request. Since each thread is blocked, 
it will not have a chance to reply, hence deadlock. To avoid deadlock, 
clients and servers should be structured around a send hierarchy (see 
below). (Of course, deadlock can occur with more than two threads; 
A sends to B, B sends to C, and C sends back to A, for example.) 

FIFO (scheduling) In FIFO scheduling, a thread will consume CPU until a higher 
priority thread is ready to run, or until the thread voluntarily gives up 
CPU. If there are no higher priority threads, and the thread does not 
voluntarily give up CPU, it will run forever. Contrast with round 
robin scheduling. 

interrupt service routine Code that gets executed (in privileged mode) by the kernel as a result 
of a hardware interrupt. This code cannot perform any kernel calls 
and should return as soon as possible, since it runs at a priority level 
effectively higher than any other thread priority in the system. 
Neutrino's interrupt service routines can return a struct sigevent 

that indicates what event, if any, should be triggered. 
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IOV (1/0 Vector) 

kernel callouts 

message-passing 

MMU (Memory 
Management Unit) 

mutex 
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A structure where each member contains a pointer and a length. 
Generally used as an array of IOVs, rather than as a single IOV. When 
used in the array form, this array of structures of pointers and lengths 
defines a scatter/gather list, which allows the message-passing 
operations to proceed much more efficiently (than would otherwise be 
accomplished by copying data individually so as to form one 
contiguous buffer). 

The Neutrino operating system can be customized to run on various 
hardware, without requiring a source license, by supplying kernel 
callouts to the startup program. Kernel callouts let the developer 
supply code that knows how to deal with the specifics of the 
hardware. For example, how to ask an interrupt controller chip about 
which interrupt fired, or how to interface to the timer chip to be able 
to arrange for periodic interrupts, etc. This is documented in great 
depth in the Building Embedded Systems book. 

The Neutrino operating system is based on a message passing model, 
where all services are provided in a synchronous manner by passing 
messages around from client to server. The client will send a 
message to the server and block. The server will receive a message 
from the client, perform some amount of processing, and then reply 
to the client's message, which will unblock the client. 

A piece of hardware (usually embedded within the CPU) that provides 
for virtual address to physical address translation, and can be used 
to implement a virtual memory system. Under Neutrino, the primary 
benefit of an MMU is the ability to detect when a thread has accessed 
a virtual address that is not mapped into the process's address space. 

A Mutual Exclusion object used to serialize a number of threads so 
that only one thread at a time has access to the resources defined by 
the mutex. By using a mutex every time (for example) that you access 
a given variable, you're ensuring that only one thread at a time has 
access to that variable, preventing race conditions. See also atomic 
(operation). 



Neutrino 

OCB (open context 
block) 

PDP-8 

Quoting from the Sudbury Neutrino Observatory web pages (found at 
http: I /www. sno. phy. queensu. ca/): 

Neutrinos are tiny, possibly massless, neutral elementary 
particles which interact with matter via the weak nuclear 
force. The weakness of the weak force gives neutrinos 
the property that matter is almost transparent to them. 
The sun, and all other stars, produce neutrinos copiously 
due to nuclear fusion and decay processes within the 
core. Since they rarely interact, these neutrinos pass 
through the sun and the earth (and you) unhindered. 
Other sources of neutrinos include exploding stars 
(supernovae), relic neutrinos (from the birth of the 
universe) and nuclear power plants (in fact a lot of the 
fuel's energy is taken away by neutrinos). For example, 
the sun produces over two hundred trillion trillion trillion 
neutrinos every second, and a supernova blast can 
unleash I 000 times more neutrinos than our sun will 
produce in its 10-billion year lifetime. Billions of 
neutrinos stream through your body every second, yet 
only one or two of the higher energy neutrinos will 
scatter from you in your lifetime. 

A data structure used by a resource manager that contains 
information for each client's open() call. If a client has opened 
several files, there will exist a corresponding OCB for each file 
descriptor that the client has in the respective resource managers. 
Contrast with the attribute (structure). 

An antique computer, "Programmable Data Processor," manufactured 
between 1965 and the mid 1970's by Digital Equipment Corporation 
(now Compaq) with the coolest front panel. Also, the first computer I 
ever programmed. If you have one (particularly a PDP-811), or parts, 
manuals, etc., send me an email (rk®parse. com), I collect them! 
Unfortunately, this wonderful 12-bit machine does not run Neutrino 
:- (! 
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physical address 

process 

pthreads 

pulse 

QNX Software Systems 
Limited 

QSSL 

receive a message 
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See Repeating timer 

An address that is emitted by the CPU onto the bus connected to the 
memory subsystem. Since Neutrino runs in virtual address mode, 
this means that an MMU must translate the virtual addresses used by 
the threads into physical addresses usable by the memory subsystem. 
Contrast with virtual address and virtual memory. 

A non-schedulable entity that occupies memory, effectively acting as 
a container for one or more threads. 

Common name given to the set of function calls of the general form 
pthread_ *( ). The vast majority of these function calls are defined by 
the POSIX committee, and are used with threads. 

A non-blocking message which is received in a manner similar to a 
regular message. It is non-blocking for the sender, and can be waited 
upon by the receiver using the standard message-passing functions 
MsgReceive() and MsgReceivev() or the special pulse-only receive 
function MsgReceivePulse(). While most messages are typically sent 
from client to server, pulses are generally sent in the opposite 
direction, so as not to break the send hierarchy (breaking which 
would cause deadlock). Contrast with signal. 

The company responsible for the QNX 2, QNX 4, and Neutrino 
operating systems. 

An abbreviation for QNX Software Systems Limited. 

A thread can receive a message by calling MsgReceive() or 
MsgReceivev( ). If there is no message available, the thread will block, 
waiting for one. See Message passing. A thread that receives a 
message is said to be a Server. 



receive ID 

relative timer 

repeating timer 

reply to a message 

resource manager 

round robin (scheduling) 

When a server receives a message from a client, the server's 
MsgReceive() or MsgReceivev() function returns a "receive ID" (often 
abbreviated in code as rcvid). This rcvid then acts as a handle to the 
blocked client, allowing the server to reply with the d.ata back to the 
client, effectively unblocking the client. Once the rcvid has been used 
in a reply operation, the rcvid ceases to have any meaning for all 
function calls, except MsgDeliverEvent(). 

A timer that has an expiration point defined as an offset from the 
current time, for example, 5 minutes from now. Contrast with 
absolute timer. 

An absolute or relative timer that, once expired, will automatically 
reload with another relative interval and will keep doing that until it is 
canceled. Useful for receiving periodic notifications. 

A server will reply to a client's message in order to deliver the results 
of the client's request back to the client. 

Also abbreviated "resmgr." This is a server process which provides 
certain well-defined file-descriptor-based services to arbitrary clients. 
A resource manager supports a limited set of messages, which 
correspond to standard client C library functions such as open(), 
read(), write(), !seek(), devctl(), etc. 

In Round Robin (or "RR") scheduling, a thread will consume CPU 
until a higher priority thread is ready to run, until the thread 
voluntarily gives up CPU, or until the thread's timeslice expires. If 
there are no higher priority threads, the thread doesn't voluntarily give 
up CPU, and there are no other threads at the same priority, it will run 
forever. If all the above conditions are met except that a thread at the 
same priority is ready to run, then this thread will give up CPU after 
its timeslice expires, and the other thread will be given a chance to 
run. Contrast with FIFO scheduling. 
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Used to define the operation of message passing where a number of 
different pieces of data are "gathered" by the kernel (on either the 
client or server side) and then "scattered" into a (possibly) different 
number of pieces of data on the other side. This is extremely useful 
when, for example, a header needs to be prepended to the client's data 
before it's sent to the server. The client would set up an IOV which 
would contain a pointer and length of the header as the first element, 
and a pointer and length of the data as the second element. The kernel 
would then "gather" this data as if it were one contiguous piece and 
send it to the server. The server would operate analogously. 

A thread synchronization primitive characterized by having a count 
associated with it. Threads may call the sem_wait() function and not 
block if the count was non-zero at the time of the call. Every thread 
that calls sem_wait() decrements the count. If a thread calls sem_wait() 

when the count is zero, the thread will block until some other thread 
calls sem_post() to increment the count. Contrast with barrier. 

A thread can send a message to another thread. The MsgSend*() 

series of functions are used to send the message; the sending thread 
blocks until the receiving thread replies to the message. See Message 
passing. A thread that sends a message is said to be a Client. 

A design paradigm whereby messages sent flow in one direction, and 
messages replied to flow in another direction. The primary purpose 
of having a send hierarchy is to avoid deadlock. A send hierarchy is 
accomplished by assigning clients and servers a "level," and ensuring 
that messages that are being sent go only to a higher level. This 
avoids the potential for deadlock where two threads would send to 
each other, because it would violate the send hierarchy - one thread 
should not have sent to the other thread, as that other thread must have 
been at a lower level. 

A server is a regular, user-level process that provides certain types of 
functionality (usually file-descriptor-based) to clients. Servers are 
typically Resource Managers, and there's an extensive library 
provided by QSSL which performs much of the functionality of a 



signal 

synchronous 

thread 

unblock 

virtual address 

resource manager for you. The server's job is to receive messages 
from clients, process them, and then reply to the messages, which 
unblocks the clients. A thread can be both a client and a server at the 
same time. 

A mechanism dating back to early UNIX systems that is used to send 
asynchronous notification of events from one thread to another. 
Signals are non-blocking for the sender. The receiver of the signal 
may decide to treat the signal in a synchronous manner by explicitly 
waiting for it. Contrast with pulse. 

Used to indicate that a given operation has some synchronization to 
another operation. For example, during a message-passing 
operation, when the server does a MsgReply() (to reply to the 
client), the unblocking of the client is said to be synchronous to the 
reply operation. Contrast with Asynchronous. 

A single, schedulable, flow of execution. Threads are implemented 
directly within the Neutrino kernel and correspond to the POSIX 
pthread*() function calls. A thread will need to synchronize with 
other threads (if any) by using various synchronization primitives 
such as mutexes, condition variables, semaphores, etc. Threads are 
scheduled in either FIFO or Round Robin scheduling mode. 

A thread that had been blocked will be unblocked when the condition 
it has been blocked on is met. For example, a thread might be blocked 
waiting to receive a message. When the message is sent, the thread 
will be unblocked. 

An address that's not necessarily equivalent to a physical address. 
Under Neutrino, all threads operate in virtual addressing mode, 
where, through the magic of an MMU, the virtual addresses are 
translated into physical addresses. Contrast with physical address 
and virtual memory. 
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A "virtual memory" system is one in which the virtual address space 
may not necessarily map on a one-to-one basis with the physical 
address space. The typical example (which Neutrino doesn't support 
as of this writing) is a "paged" system where, in the case of a lack of 
RAM, certain parts of a process's address space may be swapped out 
to disk. What Neutrino does support is the dynamic mapping of stack 
pages. 
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