
I

GETTING STARTED

with

QNX.
eutrino
A Guide for Realtime Programmers
by Rob Krten

Getting Started with QNX Neutrino 2
A Guide for Realtime Programmers

By Rob Krten, PARSE Software Devices

PARSE Software Devices
278 Equestrian Drive,
Kanata, Ontario
K2M IC5
CANADA

Voice: +I 613 599 8316
Toll Free (North America): +I 877 PARSESW (727-7379)
Email: book@parse. com

Web: httpo//www.parse.com/

FTP: ftpo I /ftp .parse. com/

Canadian Cataloguing in Publication Data

Krten, Rob, 1965-

Getting started with QNX Neutrino 2.00

realtime progr~ers

Includes index.
ISBN 0-9682501-1-4

a guidE! for

1. QNX (Computer operating system). I. Title.

QA76.76.063K778 1999 005.4'32

© 1999,2001 by PARSE Software Devices

All rights reserved.

C99-901275-4

No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise

without the prior written permission of PARSE Software Devices.

Although every precaution has been taken in the preparation of this book, we assume no responsibility for any errors or omissions, nor do we assume liability for damages resulting

from the use of the information contained in this book.

This book is available for site license and OEM uses: contact PARSE Software Devices for more information.

Publishing history

October, 1999

August, 200 I

First printing

Second printing with minor corrections

QNX is a registered trademark of QNX Software Systems Ltd.

All other trademarks and registered trademarks belong to their respective owners.

Written by Rob Krten
Edited by Chris Herborth
Cover art by Kim Fraser
Printed in Canada.

Chapter 1

Foreword xiii
Preface xix

A little history xxn

Who this book is for xxiii

What's in this book? xxiii

Processes and Threads xxiv

Message Passing xxiv

Contents

Clocks, Timers, and Getting a Kick Every So Often xxiv

Interrupts xxiv

Resource Managers xx1v

QNX 4 to QNX Neutrino xxv

Calling 911 xxv

Glossary xxv

Index xxv

Other references xxv

Online references xxvi

About PARSE Software Devices xxvn

Acknowledgments xxix

Typographical conventions xxx

Processes and Threads 1
Process and thread fundamentals 3

A process as a house 3

The occupants as threads 3

Contents iii

Chapter 2

iv Contents

Back to processes and threads 4

Mutual exclusion 5

Priorities 6

Semaphores 6

A semaphore as a mutex 8

The kernel's role 9

Single CPU 9

Multiple CPU (SMP) 9

The kernel as arbiter 10

Kernel states 16

Threads and processes 19

Why processes? 20

Starting a process 21

Starting a thread 34

More on synchronization 64

Readers/writer locks 64

Sleepon locks 67

Condition variables 73

Additional Neutrino services 80

Pools of threads 80

Scheduling and the real world 91

Rescheduling- hardware interrupts 92

Rescheduling - kernel calls 92

Rescheduling - exceptions 93

Summary 93

Message Passing 95
Messaging fundamentals 97

A small microkemel and message passing 97

Message passing and client/server 98

Network-distributed message passing 103

What it means for you 104

Chapter 3

The philosophy of Neutrino 105

Multiple threads 105

Server/subserver 106

Some examples 109

Using message passing Ill

Architecture & structure Ill

The client 112

The server 115

The send-hierarchy 120

Receive IDs, channels, and other parameters 121

Multipart messages 136

Pulses 144

Receiving a pulse message 145

The MsgDeliverEvent() function 149

Channel flags 151

Message passing over a network 159

Networked message passing differences 162

Some notes on NDs 165

Priority inheritance 168

So what's the trick? 171

Summary 172

Clocks, Timers, and Getting a Kick Every So
Often 175

Clocks and timers 177

Operating periodically 177

Clock interrupt sources 179

Base timing resolution 181

Timing jitter 181

Types of timers 183

Notification schemes 184

Using timers 189

Contents V

Chapter 4

Chapter 5

vi Contents

Creating a timer 190

Signal, pulse, or thread? 191

What kind of timer? 191

A server with periodic pulses 194

Timers delivering signals 204

Timers creating threads 204

Getting and setting the realtime clock and more 205

Advanced topics 208

Other clock sources 208

Kernel timeouts 213

Summary 216

Interrupts 219
Neutrino and interrupts 221

Interrupt service routine 222

Level-sensitivity versus edge-sensitivity 226

Writing interrupt handlers 230

Attaching an interrupt handler 230

Now that you've attached an interrupt 231

Detaching an interrupt handler 233

The flags parameter 234

The interrupt service routine 234

ISR functions 244

Summary 247

Resource Managers 249
What is a resource manager? 251

Examples of resource managers 251

Characteristics of resource managers 252

The client's view 253

Finding the server 253

Finding the process manager 256

Appendix A

Handling directories 256

Union'd filesystems 258

Client summary 261

The resource manager's view 262

Registering a pathname 262

Handling messages 263

The resource manager library 264

The library really does what we just talked about 267

Behind the scenes at the library 268

Writing a resource manager 270

Data structures 271

Resource manager structure 279

POSIX layer data structures 292

Handler routines 302

General notes 302

Connect functions notes 305

Alphabetical listing of connect and 1/0 functions 307

Examples 341

The basic skeleton of a resource manager 342

A simple io_read() example 345

A simple io_write() example 351

A simple io_devctl() example 356

An io_devctl() example that deals with data 359

Advanced topics 363

Extending the OCB 363

Extending the attributes structure 366

Blocking within the resource manager 367

Returning directory entries 368

Summary 381

QNX 4 to Neutrino 383
QNX 4 and Neutrino 385

Contents vii

Appendix B

viii Contents

Similarities 385

Improvements 386

Porting philosophy 391

Message passing considerations 392

Interrupt service routines 406

Summary 406

Calling 9111 409
Seeking professional help 411

So you've got a problem. . . 411

Other sources 417

qdn.qnx.com 417

www.qnxstart.com 417

comp.os.qnx 417

IRC 418

cvs. qnx. c:om 418

Third-Party Directory- products & consultants 418

Training 418

Glossary 419

Index 431

List of Figures

A process as a container of threads. 5

Three threads in two different processes. 12

Two threads on the READY queue, one blocked, one running.
13

Scheduling roadmap.

Memory protection.

Serialized, single CPU.

15

21

54

Multithreaded, single CPU. 54

Four threads, four CPUs. 56

Eight threads, four CPUs. 57

System 1: Multiple operations, multiple processes. 60

System 2: Multiple operations, shared memory between
processes. 61

System 3: Multiple operations, multiple threads. 62

One-to-one mutex and condvar associations. 79

Many-to-one mutex and condvar associations. 79

Thread flow when using thread pools. 84

Neutrino's modular architecture. 97

State transitions of server. 99

State transitions of clients. 100

Clients accessing threads in a server. 106

Server/subserver model. 107

One master, multiple workers. 110

Relationship of server channel and client connection. 116

Relationship of client and server message-passing functions.
117

List of Figures ix

X List of Figures

Message data flow. 117

Transferring less data than expected. 119

The fs-qnx4 message example, showing contiguous data view.
133

Transferring several chunks with MsgWrite(). 135

How the kernel sees a multipart message. 139

Converting contiguous data to separate buffers. 141

Confusion in a multithreaded server. 156

Message passing over a network. Notice that qnet is divided into
two sections. 160

Three threads at different priorities. 169

Blocked threads. 170

Boosting the server's priority. 171

PC clock interrupt sources. 180

Clock jitter. 182

Level-sensitive interrupt assertion. 226

Edge-sensitive interrupt assertion. 227

Sharing interrupts - one at a time. 228

Sharing interrupts - several at once. 229

Control flow with InterruptAttach(). 240

Control flow with lnterruptAttachEvent(). 241

Control flow with lnterruptAttachEvent() and unnecessary
rescheduling. 242

Control flow with lnterruptAttach() with no thread rescheduling.
242

Neutrino's namespace. 254

First stage of name resolution. 255

The _Io_coN:~ECT message. 256

Neutrino's namespace. 257

Neutrino's namespace. 258

Overlayed fi1esystems. 259

Architecture of a resource manager- the big picture. 271

A combine message. 289

The readblock() function's combine message. 291

Data structures - the big picture. 292

List of Figures xi

Foreword

Foreword xiii

Foreword

Foreword

When I found myself staring at the first draft of this book I started
thinking that it was going to be a difficult read because I'd spent so
many years intimately involved with the design and development of
QNX Neutrino. But I was wrong! I found this book easy to read and
very enjoyable because of the way Rob combines the QNX
philosophy ("Why things are the way they are") with good habits
applicable to any realtime programming project. This book is suitable
for people who've never seen Neutrino before, or those who've used it
extensively.

For people who've never used Neutrino, the book gives an excellent
tutorial on how to use it. Since Rob himself comes from a QNX 2 and
QNX 4 background, his book is also great for people who've used a
QNX operating system before, because they share a common ground.

As for myself, I was first introduced to QNX at an insurance company
in the mid-1980s. This insurance company primarily used an IBM
mainframe, but they wanted to shorten the time required to calculate
quotes on corporate insurance. To do this they used networks of
8MHz 80286 ATs running QNX 2. They distributed their data using
QNX native networking, allowing access to all customer data files
from any QNX machine. This system was well-designed using the
QNX client/server philosophy and I was hooked on QNX.

When I joined QSSL at the start of 1991, QNX 4 had just been
released. QNX 4 was developed to conform to the just-approved
PO SIX l 003.1 specification which would make it easier to port public
domain UNIX code than it was with QNX 2, and it would conform to
a genuine standard. In a few years we started thinking about the
next-generation operating system. The current group of less than 15
developers started meeting to discuss anything we'd like to do
differently and things that we'd need in the future. We wanted to
support the newer POSIX specifications and make it easier to write
drivers. We also didn't want to lock ourselves to the x86 processor or
"fix" anything that wasn't broken. The ideas that Dan Dodge and

Foreword XV

Foreword

xvi Foreword

Gordon Bell started out with when they created QNX are still in
Neutrino today-- ideas like message-passing, having a small, lean
kernel, providing fast, realtime response, etc. Complicating the design
was the goal of Neutrino being even more modular than QNX 4 (for
example, we wanted to provide a fully-functional kernel that you
could link against, allowing for more deeply embedded systems than
QNX 4). In 1994 Dan Dodge and I started working on the updated
kernel and process manager.

As those of you who've been using QNX products for a long time
already know, writing device drivers for QNX 2 was a hair-raising
experience. You had to be very careful! In fact, most developers
started with the QSSL-supplied source for the spool device and
carefully tweaked it to do whatever they wanted. Only a few people
tried writing disk drivers, as this required specialized assembly
language stubs. Because of this, almost nobody ended up writing
drivers for QNX 2. In QNX 4, writing drivers was made much easier
by making all I/0 operations go through a standard, well-defined,
message-passing interface. When you did an open(), the server
received an open message. When you did a read(), the server received
a read message. QNX 4 capitalized on the message passing theme by
using it to decouple clients from servers. I remember when I first saw
the beta version 3.99 (a QNX 4 pre-release version) and thinking,
"Wow! This is elegant!" In fact, I was so enamored with this, that I
immediately wrote a QNX 2 read-only filesystem using the new
message-passing interface; it was easy now!

For Neutrino, the process manager was being designed with three
main separate functions: pathname space management, process
creation (attributes, destruction, etc.), and memory space
management. It also included several sub-services (/dev/null,

/dev/zero, image filesystem, etc.). Each of these acted
independently, but all shared the common code for processing the
messages. This common code was very useful, so we decided to take
all the common code and make a cover library for it. The "Resource
Manager" library (or, as Rob likes to pronounce it, to my utter
dismay, rez-mugger :-)) was born.

Foreword

We also found that most resource managers wanted to provide POSIX
semantics for their devices or filesystems, so we wrote another layer
on top of the resource manager layer called the iofunc*() functions.
This lets anybody write a resource manager, and have it automatically
inherit POSIX functionality, without any additional work. At about
this time Rob was writing the Neutrino courses, and he wanted to
write a completely minimal resource manager example, /dev/null.
His main slide was, "All you have to do is provide read() and write()
message handlers, and you have a complete /dev/null!" I took that
as a personal challenge, and removed even that requirement - the
resource manager library now implements /dev/null in about half a
dozen function calls. Since this library is shipped with Neutrino,
everyone can write fully POSIX-compatible device drivers with
minimal effort.

While the resource manager concept was significant in the evolution
of Neutrino, and would indeed provide a solid base for the operating
system, the fledgling OS needed more. Filesystems, connectivity
(such as TCPIIP) and common devices (serial, console) were all being
developed in parallel. After a lot of work, with lots of long hours,
Neutrino 1.00 was released in early 1996. Over the next few years,
more and more R&D staff were working on Neutrino. We've added
SMP support, multiplatform support (x86, PowerPC and MIPS
currently, with more to come), and the dispatch interface (that allows
combining resource managers and other IPC methods), all covered in
this book.

In August of 1999, we released QNX Neutrino 2.00; just in time for
Rob's book! :-)

I think this book will be a "must have" for anyone who is writing
programs for Neutrino.

Peter van der Veen
On a plane somewhere between Ottawa and San Jose
September 1999

Foreword XVii

Preface

Preface XiX

Preface

Preface

A few years after I started using computers, the very first IBM PC
came out. I must have been one of the first people in Ottawa to buy
this box, with 16kB of RAM and no video card, because the salesman
wasn't experienced enough to point out that the machine would be
totally useless without the video card! Although the box wasn't
useful, it did say "IBM" on it (at the time reserved solely for
mainframes and the like), so it was impressive on its own. When I
finally had enough money to buy the video card, I was able to run
BASIC on my parents' TV. To me, this was the height of technology
-especially with a 300 baud accoustically coupled modem! So, you
can imagine my chagrin, when my friend Paul Trunley called me up
and said, "Hey, log in to my computer!" I thought to myself, "Where
did he get a VAX from?" since that was the only conceivable machine
I knew about that would fit in his parents' house and let you "log in"
to. So I called it up. It was a PC running an obscure operating system
called "QUNIX," with a revision number less than 1.00. It let me "log
in." I was hooked!

What has always struck me about the QNX family of operating
systems is the small memory footprint, the efficiency, and the sheer
elegance of the implementation. I would often entertain (or bore,
more likely) dinner guests with stories about all the programs running
concunently on my machine in the basement, as we ate. Those who
were knowledgeable about computers would speculate about how
huge the disk must be, how I must have near infinite memory, etc.
After dinner, I'd drag them downstairs and show them a simple PC
with (at the time) 8MB of RAM and a 70MB hard disk. This would
sometimes impress them. Those who where not impressed would then
be shown how much RAM and disk space was still available, and
how most of the used disk space was just data I had accumulated over
the years.

As time passed, I've had the privilege of working at a number of
companies, most of which were involved with some form of QNX
development; (from telecoms, to process control, to frame grabber

Preface XXi

Preface

A little history

xxii Preface

drivers, ...), with the single most striking characteristic being the
simplicity of the designs and implementation. In my opinion, this is
due to the key engineers on the projects having a good understanding
of the QNX operating system - if you have a clean, elegant
architecture to base your designs on, chances are that your designs
will also end up being clean and elegant (unless the problem is really
ugly).

In November, 1995, I had the good fortune to work directly for QNX
Software Systems Limited (QSSL), writing the training material for
their two QNX Neutrino courses, and presenting them over the next
three years.

It's these past 19 years or so that gave me the inspiration and courage
to write the first book, Getting Started with QNX 4- A Guide for
Realtime Programmers, which was published in May, 1998. With this
new book on QNX Neutrino, I hope to share some of the concepts and
ideas I've learned, so that you can gain a good, solid understanding of
how the QNX Neutrino OS works, and how you can use it to your
advantage. Hopefully, as you read the book, light bulbs will turn on in
your head, making you say "Aha! That's why they did it this way!"

QSSL, the company that created the QNX operating system, was
founded in 1980 by Dan Dodge and Gordon Bell (both graduates of
the University of Waterloo in Ontario, Canada). Initially, the company
was called Quantum Software Systems Limited, and the product was
called "QUNIX''' ("Quantum UNIX"). After a polite letter from
AT&T's lawyers (who owned the "UNIX" trademark at the time), the
product's name changed to "QNX." Some time after that, the
company's name itself changed to "QNX Software Systems Limited"
-in those days, everyone and their dog seemed to have a company
called "Quantum" something or other.

The first commercially successful product was simply called "QNX"
and ran on 8088 processors. Then, "QNX 2" (QNX version 2) came
out in the early 1980s. It's still running in many mission-critical
systems to this day. Around 1991, a new operating system, "QNX 4,"
was introduced, with enhanced 32-bit operations and POSIX support.

Who this book is for

In 1995, the latest member of the QNX family, QNX Neutrino, was
introduced. On September 26th, 2000, the QNX Realtime Platform
(consisting of the QNX Neutrino operating system, Photon
windowing system, development tools and compilers, etc.) was
released for free for noncommercial purposes. As of this second
printing (July 2001) there have been over 1 million downloads! (Go
to h t t:p : I I get . qnx. com/ to get your free copy.)

Wh<> this book is for

This book is suitable for anyone wishing to gain a good fundamental
understanding of the key features of the QNX Neutrino OS and how it
works. Readers with a modest computer background should still get a
lot out of the book (although the discussion in each chapter gets more
and more technical as the chapter progresses). Even diehard hackers
should 1ind some interesting twists, especially with the two
fundamental features of QNX Neutrino, the message-passing nature
of the operating system and the way device drivers are structured.

I've tried to explain things in an easy-to-read "conversational" style,
anticipating some of the common questions that come up and
answering them with examples and diagrams. Because a complete
understanding of the C language isn't required, but is de1initely an
asset, there are quite a few code samples sprinkled throughout.

What's in this book?

This book introduces you to what the QNX Neutrino operating system
is and how it functions. It contains chapters covering process states,
threads, scheduling algorithms, message passing, operating system
modularity, and so on. If you've never used QNX Neutrino before, but
are familiar with realtime operating systems, then you'll want to pay

Preface xxiii

What's in this book?

Processes and
Threads

Message Passing

Cloclks, Timers,
and Getting a Kick

Every So Often

Interrupts

Resource
Managers

xxiv Preface

particular attention to the chapters on message passing and resource
managers, since these are concepts fundamental to QNX Neutrino.

An introduction to processes and threads in QNX Neutrino, realtime,
scheduling, and prioritization. You'll learn about scheduling states
and QNX Neutrino's scheduling algorithms, as well as the functions
you use to control scheduling, create processes and threads, and
modify processes and threads that are already running. You'll see how
QNX Neutrino implements SMP (Symmetrical Multi-Processing),
and the advantages (and pitfalls) that this brings.

"Scheduling and the real world" discusses how threads are scheduled
on a running system, and what sorts of things can cause a running
thread to be rescheduled.

An introduction to QNX Neutrino's most fundamental feature,
message passing. You'lllearn what message passing is, how to use it
to communicate between threads, and how to pass messages over a
network. Priority inversion, the bane of realtime systems everywhere,
and other advanced topics are also covered here.

This is one of the most important chapters in this book!

Learn all about the system clock and timers, and how to get a timer to
send you a message. Lots of practical information here, and code
samples galore.

This chapter will teach you how to write interrupt handlers for QNX
Neutrino, and how interrupt handlers affect thread scheduling.

Learn all about QNX Neutrino resource managers (also known
variously as "device drivers" and "1/0 managers"). You'll need to
read and understand the Message Passing chapter before you write
your own resource managers. The source for several complete
resource managers is included.

QNX 4 to QNX
Neutrino

Calling 911

Glossary

Index

Other references

What's in this book?

Resource managers are another important aspect of every QNX
Neutrino-based system.

This i:; an invaluable guide for anyone porting their QNX 4
application to QNX Neutrino, or having to maintain code on both
platforms. (QNX 4 is QSSL's previous-generation operating system,
also the subject of my previous book, Getting Started with QNX 4.)
Even if you're designing a new application, there may be demand
from your customer base to support it on both QNX 4 and QNX
Neutrino- if that happens, this section will help you avoid common
pitfalls and show you how to write code that's portable to both
operating systems.

Where you can turn to when you get stuck, find a bug, or need help
with your design.

Contains definitions of the terms used throughout this book.

You can probably guess what this is for ...

In addition to the custom kernel interface, QNX Neutrino implements
a wide range of industry standards. This lets you support your favorite
publishers when looking for information about standard functions
from ANSI, POSIX, TCP/IP, etc.

Preface XXV

Online references

xxvi Preface

Online references

On the web:

http://www.parse.com/

The PARSE Software Devices web site; you can get this book's
errata and examples from
http://www.parse.com/books/book_v3/index.html.

Also, check out our onsite training services and the free
software section.

http://www.qnx.com/

QSSL's own web site; surf here for all the latest QNX Neutrino
information.

http://qdn.qnx.com

The QNX Developer's Network (QDN) is QSSL's online,
interactive technical support service. Provides a searchable
knowledge base.

http://www.qnxstart.com/

The QNXStart web site; for the QNX developer community.
You can find lots of discussion forums, tips, and source code
here.

http://search.yahoo.com/bin/search?p=QNX

Search the Yahoo! Internet index for QNX-related topics.

ForFTP:

ftp.parse.com

The PARSE Software Devices FTP site. You can download the
source code examples from this book in a convenient archive
found on this site.

About PARSE
Software Devices

About Rob Krten

Online references

ftp.qnx.com

Official QNX updates and a wide selection of third-party demos
and ports.

On USENET:

comp.os.qnx

The QNX operating system newsgroup (a lot of QNX Neutrino
discussion, as well as some QNX 4 and even QNX 2
discussions).

PARSE Software Devices is an established research and development
organization providing training, and contract/consulting services to
the international R&D community. Our main capabilities are:

• training (course presentation and development)

• systems architecture, design, and programming services

Contact PARSE Software Devices at info®parse. com for
information about our training and contract services.

Note that this book is available for OEM use, site licenses, and online
use as well- contact books®parse. com for more information.

Rob Krten has been doing embedded systems work, mostly on
contract, since 1986 and systems-level programming since 1981.
During his three year contract at QSSL, he designed and presented
QSSL's courses on "Realtime Programming under the Neutrino
Kernel" and "Writing a Resource Manager." He also wrote the
prototype version of QSSL's QNX Neutrino Native Networking
Manager (npm-qnet) software, as well as a significant portion of
QSSL's Building Embedded Systems book.

Both this book and his previous book, Getting Started with QNX 4 -
A Guide for Realtime Programmers, have received a Society for

Preface xxvii

Online references

About Chris Herborth

xxviii Preface

Technical Communications (STC; http: I /www. stc. org/) Award
of Merit.

See Rob's online resume to see where he's been lately:
http://www.parse.com/-rk/rk_resume.html

Rob has a wide variety of interests, from computer-generated music to
graphics to virtual filesystems. He is also an avid PDP-series
minicomputer collector; if you have any PDP-series minicomputer
systems, parts, or documentation, please send him an email to
rk®parse. com~ You can check out his homepage at
http: I /www .parse. com/-rk/ to see what he's up to (this week
:-)).

After spending almost four years working in QSSL's technical
publications group, Chris decided it was time to strike out on his own.
Combining his skills in technical writing, editing, and programming,
Arcane Dragon Software was born.

After deciding that he'd rather have a regular paycheck and benefits,
Chris has moved on to become Texar Corporation's
(http: I /www. texar. com/) Senior Technical Writer.

Chris is a Be OS Masters Award winner (one of two "Outstanding
Contributions" awards ever given), and the winner of five Society for
Technical Communications awards (four of Merit and one of
Excellence). He's also served as technical editor for Rob Krten's
Getting Started with QNX 4 (PARSE), Scot Hacker's The BeOS Bible
(Peachpit), and several books for Martin Brown: BeOS: Porting UNIX
Applications (Morgan-Kauffman), Python: Annotated Archives
(Osborne McGraw-Hill) and Python: The Complete Reference
(Osborne McGraw-Hill).

Acknowledgments

Ack:nowledgments

This book would not have been possible without the help and support
I received from the following people, who contributed numerous
suggestions and comments: Luc Bazinet, James Chang, Dan Dodge,
Dave Donohoe, Steven Dufresne, Thomas Fletcher, David Gibbs,
Marie Godfrey, Bob Hubbard, Mike Hunter, Pradeep Kathail, Steve
Marsh, Danny N. Prairie, and Andrew Vernon. (Apologies in advance
if I've missed anyone.)

I'd like to particularly thank Brian Stecher, who patiently reviewed at
least three complete drafts of this book in detail, and Peter van der
Veen, who spent many nights at my place (granted, I did bribe him
with beer and pizza), giving me insight into the detailed operations of
QNX Neutrino's resource managers.

Thanks to Kim Fraser for once again providing the cover artwork.

Additionally, my thanks goes out to John Ostrander for his excellent
grammatical suggestions and detailed proof-reading of of the book
:-)

And of course, a special thank-you goes to my editor, Chris Herborth,
for finding the time to edit this book, help out with the sometimes
obscure SGML/LaTeX tools, etc., all while doing dozens of other
things at the same time! [I told you to remind me not to do that again!
- chrish]

I'd also like to gratefully acknowledge the patience and understanding
of my wife, Christine, for putting up with me while I crawled off into
the basement and ignored her for hours on end!

Preface xxix

Typographical conventions

Typographical conventions

Throughout this book, we use certain typographical conventions to
distinguish technical terms. In general, the conventions we use
conform to those found in IEEE POSIX publications. The following
table summarizes our conventions.

Reference Example

Code examples if(stream -- NULL)

Command options -lR

Commands make

Environment variables PATH

File and pathnames /dev/null

Function names exit()

Keyboard chords Ctrl - Alt- Delete

Keyboard input something you type

Keyboard keys Enter

Program output login:

Programming constants NULL

Programming data types unsigned short

Programming literals OxFF, "message string"

Variable names stdin

~ Notes point out something important or useful.

XXX Preface

Chapter 1

Processes and Threads

In this chapter ...
Process and thread fundamentals
The .kernel's role
Threads and processes
MorE! on synchronization
SchE!duling and the real world

Chapter 1 • Processes and Threads 1

A process as a
house

The occupants as
threads

Single threaded

Multi threaded

Process and thread fundamentals

Process and thread fundamentals

Before we start talking about threads, processes, time slices, and all
the other wonderful "scheduling concepts," let's establish an analogy.

What I want to do first is illustrate how threads and processes work.
The best way I can think of (short of digging into the design of a
realtime system) is to imagine our threads and processes in some kind
of situation.

Let's base our analogy for processes and threads using a regular,
everyday object- a house.

A house is really a container, with certain attributes (such as the
amount of floor space, the number of bedrooms, and so on).

If you look at it that way, the house really doesn't actively do anything
on its own- it's a passive object. This is effectively what a process
is. We'H explore this shortly.

The people living in the house are the active objects- they're the
ones using the various rooms, watching TV, cooking, taking showers,
and so on. We'll soon see that's how threads behave.

If you've ever lived on your own, then you know what this is like
you know that you can do anything you want in the house at any time,
because there's nobody else in the house. If you want to turn on the
stereo, use the washroom, have dinner- whatever- you just go
ahead and do it.

Things change dramatically when you add another person into the
house. Let's say you get married, so now you have a spouse living
there too. You can't just march into the washroom at any given point;
you need to check first to make sure your spouse isn't in there!

Chapter 1 • Processes and Threads 3

Process and thread fundamentals

Back to processes
and threads

If you have two responsible adults living in a house, generally you
can be reasonably lax about "security"- you know that the other
adult will respect your space, won't try to set the kitchen on fire
(deliberately!), and so on.

Now, throw a few kids into the mix and suddenly things get a lot more
interesting.

Just as a house occupies an area of real estate, a process occupies
memory. And just as a house's occupants are free to go into any room
they want, a processes' threads all have common access to that
memory. If a thread allocates something (mom goes out and buys a
game), all the other threads immediately have access to it (because it's
present in the common address space- it's in the house). Likewise,
if the process allocates memory, this new memory is available to all
the threads as well. The trick here is to recognize whether the memory
should be available to all the threads in the process. If it is, then you'll
need to have all the threads synchronize their access to it. If it isn't,
then we'll assume that it's specific to a particular thread. In that case,
since only that thread has access to it, we can assume that no
synchronization is required- the thread isn't going to trip itself up!

As we know from everyday life, things aren't quite that simple. Now
that we've seen the basic characteristics (summary: everything is
shared), let's take a look at where things get a little more interesting,
and why.

The diagram below shows the way that we'll be representing threads
and processes. The process is the circle, representing the "container"
concept (the address space), and the three squigley lines are the
threads. You'll see diagrams like this throughout the book.

4 Chapter 1 • Processes and Threads

Mutual exclusion

Process and thread fundamentals

A process as a container of threads.

If you want to take a shower, and there's someone already using the
bathroom, you'll have to wait. How does a thread handle this?

It's done with something called mutual exclusion. It means pretty
much what you think- a number of threads are mutually exclusive
when it comes to a particular resource.

If you're taking a shower, you want to have exclusive access to the
bathroom. To do this, you would typically go into the bathroom and
lock the door from the inside. Anyone else trying to use the bathroom
would get stopped by the lock. When you're done, you'd unlock the
door, allowing someone else access.

This is just what a thread does. A thread uses an object called a mutex
(an acronym for MUTual EXclusion). This object is like the lock on a
door- once a thread has the mutex locked, no other thread can get
the mutex, until the owning thread releases (unlocks) it. Just like the
door lock, threads waiting to obtain the mutex will be barred.

Another interesting parallel that occurs with mutexes and door locks
is that the mutex is really an "advisory" lock. If a thread doesn't obey
the convention of using the mutex, then the protection is useless. In
our house analogy, this would be like someone breaking into the
washroom through one of the walls ignoring the convention of the
door and lock.

Chapter 1 • Processes and Threads 5

Process and thread fundamentals

Priorities

Semaphores

What if the bathroom is currently locked and a number of people are
waiting to use it? Obviously, all the people are sitting around outside,
waiting for whoever is in the bathroom to get out. The real question
is, "What happens when the door unlocks? Who gets to go next?"

You'd figure that it would be "fair" to allow whoever is waiting the
longest to go next. Or it might be "fair" to let whoever is the oldest go
next. Or tallest. Or most important. There are any number of ways to
determine what's "fair."

We solve this with threads via two factors: priority and length of wait.

Suppose two people show up at the (locked) bathroom door at the
same time. One of them has a pressing deadline (they're already late
for a meeting) whereas the other doesn't. Wouldn't it make sense to
allow the person with the pressing deadline to go next? Well, of
course it would. The only question is how you decide who's more
"important." This can be done by assigning a priority (let's just use a
number like Neutrino does - one is the lowest usable priority, and 63
is the highest as of this version). The people in the house that have
pressing deadlines would be given a higher priority, and those that
don't would be given a lower priority.

Same thing with threads. If a number of threads are waiting, and the
mutex becomes unlocked, we would give the mutex to the waiting
thread with the highest priority. Suppose, however, that both people
have the same priority. Now what do you do? Well, in that case, it
would be "fair" to allow the person who's been waiting the longest to
go next. This is not only "fair," but it's also what the Neutrino kernel
does. In the case of a bunch of threads waiting, we go primarily by
priority, and secondarily by length of wait.

The mutex is certainly not the only synchronization object that we'll
encounter. Let's look at some others.

Let's move from the bathroom into the kitchen, since that's a socially
acceptable location to have more than one person at the same time. In
the kitchen, you may not want to have everyone in there at once. In

6 Chapter 1 • Processes and Threads

A semaphore with a
count of 1

A semaphore with a
count greater than 1

Process and thread fundamentals

fact, you probably want to limit the number of people you can have in
the kitchen (too many cooks, and all that).

Let's say you don't ever want to have more than two people in there
simultaneously. Could you do it with a mutex? Not as we've defined
it. Why not? This is actually a very interesting problem for our
analogy. Let's break it down into a few steps.

The bathroom can have one of two situations, with two states that go
hand-in-hand with each other:

• the door is unlocked and nobody is in the room

• the door is locked and one person is in the room

No other combination is possible- the door can't be locked with
nobody in the room (how would we unlock it?), and the door can't be
unlocked with someone in the room (how would they ensure their
privacy?). This is an example of a semaphore with a count of one -
there can be at most only one person in that room, or one thread using
the semaphore.

The key here (pardon the pun) is the way we characterize the lock. In
your typical bathroom lock, you can lock and unlock it only from the
inside -there's no outside-accessible key. Effectively, this means
that ownership of the mutex is an atomic operation- there's no
chance that while you're in the process of getting the mutex some
other thread will get it, with the result that you both own the mutex. In
our house analogy this is less apparent, because humans are just so
much smarter than ones and zeros.

What we need for the kitchen is a different type of lock.

Suppose we installed the traditional key-based lock in the kitchen.
The way this lock works is that if you have a key, you can unlock the
door and go in. Anyone who uses this lock agrees that when they get
inside, they will immediately lock the door from the inside so that
anyone on the outside will always require a key.

Chapter 1 • Processes and Threads 7

Process and thread fundamentals

A semaphore as a
mutex

Well, now it becomes a simple matter to control how many people we
want in the kitchen- hang two keys outside the door! The kitchen is
always locked. When someone wants to go into the kitchen, they see
if there's a key hanging outside the door. If so, they take it with them,
unlock the kitchen door, go inside, and use the key to lock the door.

Since the person going into the kitchen must have the key with them
when they're in the kitchen, we're directly controlling the number of
people allowed into the kitchen at any given point by limiting the
number of keys available on the hook outside the door.

With threads, this is accomplished via a semaphore. A "plain"
semaphore works just like a mutex - you either own the mutex, in
which case you have access to the resource, or you don't, in which
case you don't have access. The semaphore we just described with the
kitchen is a counting semaphore - it keeps track of the count (by the
number of keys available to the threads).

We just asked the question "Could you do it with a mutex?" in relation
to implementing a lock with a count, and the answer was no. How
about the other way around? Could we use a semaphore as a mutex?

Yes. In fact, in some operating systems, that's exactly what they do
they don't have mutexes, only semaphores! So why bother with
mutexes at all?

To answer that question, look at your washroom. How did the builder
of your house implement the "mutex"? I suspect you don't have a key
hanging on the wall!

Mutexes are a "special purpose" semaphore. If you want one thread
running in a particular section of code, a mutex is by far the most
efficient implementation.

Later on, we'lllook at other synchronization schemes- things called
condvars, barriers, and sleepons.

8 Chapter 1 • Processes and Threads

The kernel's role

I&' Just so there's no confusion, realize that a mutex has other properties,
such as priority inheritence, that differentiate it from a semaphore.

Single CPU

Multiple CPU
(SMP)

The kernel's role

The house analogy is excellent for getting across the concept of
synchronization, but it falls down in one major area. In our house, we
had many threads running simultaneously. However, in a real live
system, there's typically only one CPU, so only one "thing" can run at
once.

Let's look at what happens in the real world, and specifically, the
"economy" case where we have one CPU in the system. In this case,
since there's only one CPU present, only one thread can run at any
given point in time. The kernel decides (using a number of rules,
which we'll see shortly) which thread to run, and runs it.

If you buy a system that has multiple, identical CPUs all sharing
memory and devices, you have an SMP box (SMP stands for
Symmetrical Multi Processor, with the "symmetrical" part indicating
that all the CPUs in the system are identical). In this case, the number
of threads that can run concurrently (simultaneously) is limited by the
number of CPUs. (In reality, this was the case with the
single-processor box too!) Since each processor can execute only one
thread at a time, with multiple processors, multiple threads can
execute simultaneously.

Let's ignore the number of CPUs present for now- a useful
abstraction is to design the system as if multiple threads really were
running simultaneously, even if that's not the case. A little later on, in
the "Things to watch out for when using SMP" section, we'll see
some of the non-intuitive impacts of SMP.

Chapter 1 • Processes and Threads 9

The kernel's role

The kernel as
arbiter

So who decides which thread is going to run at any given instant in
time? That's the kernel's job.

The kernel determines which thread should be using the CPU at a
particular moment, and switches context to that thread. Let's examine
what the kernel does with the CPU.

The CPU has a number of registers (the exact number depends on the
processor family, e.g., x86 versus MIPS, and the specific family
member, e.g., 80486 versus Pentium). When the thread is running,
information is stored in those registers (e.g., the current program
location).

When the kernel decides that another thread should run, it needs to:

1 save the currently running thread's registers and other context
information

2 load the new thread's registers and context into the CPU

But how does the kernel decide that another thread should run? It
looks at whether or not a particular thread is capable of using the CPU
at this point. When we talked about mutexes, for example, we
introduced a blocking state (this occurred when one thread owned the
mutex, and another thread wanted to acquire it as well; the second
thread would be blocked).

From the kernel's perspective, therefore, we have one thread that can
consume CPU, and one that can't, because it's blocked, waiting for a
mutex. In this case, the kernel lets the thread that can run consume
CPU, and puts the other thread into an internal list (so that the kernel
can track its request for the mutex).

Obviously, that's not a very interesting situation. Suppose that a
number of threads can use the CPU. Remember that we delegated
access to the mutex based on priority and length of wait? The kernel
uses a similar scheme to determine which thread is going to run next.
There are two factors: priority and scheduling algorithm, evaluated in
that order.

1 0 Chapter 1 • Processes and Threads

Prioritization

Scheduling algorithms

The kernel's role

Consider two threads capable of using the CPU. If these threads have
different priorities, then the answer is really quite simple- the kernel
gives the CPU to the highest priority thread. Neutrino's priorities go
from one (the lowest usable) and up, as we mentioned when we talked
about obtaining mutexes. Note that priority zero is reserved for the
idle thn'~ad,- you can't use it. (If you want to know the minimum
and maximum values for your system, use the functions
sched_get_priority_min() and sched_get_priority_max()- they're
prototyped in <sched.h>. In this book, we'll assume one as the
lowest usable, and 63 as the highest.)

If another thread with a higher priority suddenly becomes able to use
the CPU, the kernel will immediately context-switch to the higher
priority thread. We call this preemption- the higher-priority thread
preempted the lower-priority thread. When the higher-priority thread
is done .. and the kernel context-switches back to the lower-priority
thread that was running before, we call this resumption - the kernel
resumes running the previous thread.

Now, suppose that two threads are capable of using the CPU and have
the exact same priority.

Let's assume that one ofthe threads is currently using the CPU. We'll
examine the rules that the kernel uses to decide when to
context-switch in this case. (Of course, this entire discussion really
applies only to threads at the same priority- the instant that a
higher-priority thread is ready to use the CPU it gets it; that's the
whole point of having priorities in a realtime operating system.)

There are two scheduling algorithms (policies) that the Neutrino
kernel understands: Round Robin (or just "RR") and FIFO (First-In,
First-Out).

FIFO In the FIFO scheduling algorithm, a thread is allowed to consume
CPU for as long as it wants. This means that if that thread is doing a
very long mathematical calculation, and no other thread of a higher
priority is ready, that thread could potentially runforever. What about
threads of the same priority? They're locked out as well. (It should be

Chapter 1 • Processes and Threads 11

The kernel's role

obvious at this point that threads of a lower priority are locked out
too.)

If the running thread quits or voluntarily gives up the CPU, then the
kernel looks for other threads at the same priority that are capable of
using the CPU. If there are no such threads, then the kernel looks for
lower-priority threads capable of using the CPU. Note that the term
"voluntarily gives up the CPU" can mean one of two things. If the
thread goes to sleep, or blocks on a semaphore, etc., then yes, a
lower-priority thread could run (as described above). But there's also
a "special" call, sched_yield() (based on the kernel call SchedYield()),
which gives up CPU only to another thread of the same priority - a
lower-priority thread would never be given a chance to run if a
higher-priority was ready to run. If a thread does in fact call
sched_yield(), and no other thread at the same priority is ready to run,
the original thread continues running. Effectively, sched_yield() is
used to give another thread of the same priority a crack at the CPU.

In the diagram below, we see three threads operating in two different
processes:

CD®
Three threads in two different processes.

If we assume that threads"/'\' and "B" are READY, and that thread
"C" is blocked (perhaps waiting for a mutex), and that thread "D" (not
shown) is currently executing, then this is what a portion of the
READY queue that the Neutrino kernel maintains will look like:

12 Chapter 1 • Processes and Threads

Round Robin

The rules

The kernel's role

[QJ (Running)

[QJ (Blocked)

Two threads on the READY queue, one blocked, one running.

This shows the kernel's internal READY queue, which the kernel uses
to decide who to schedule next. Note that thread "C" is not on the
READY queue, because it's blocked, and thread "D" isn't on the
READY queue either because it's running.

The RR scheduling algorithm is identical to FIFO, except that the
thread will not run forever if there's another thread at the same
priority. It runs only for a predefined times/ice (which is fixed and
cannot be changed; you can determine its value by using the function
sched_rr _geLinterval()).

What happens is that the kernel starts an RR thread, and notes the
time. If the RR thread is running for a while, the time allotted to it
will be up (the timeslice will have expired). The kernel looks to see if
there is another thread at the same priority that's ready. If there is, the
kernel runs it. If not, then the kernel will continue running the RR
thread (i.e., the kernel grants the thread another timeslice).

Let's summarize the scheduling rules (for a single CPU), in order of
importance:

• On:ty one thread can run at a time.

• The highest-priority ready thread will run.

Chapter 1 • Processes and Threads 13

The kernel's role

• A thread will run until it blocks or exits.

• An RR thread will run for its timeslice, and then the kernel will
reschedule it (if required).

The following flowchart shows the decisions that the kernel makes:

14 Chapter 1 • Processes and Threads

Reshuffle the queue so that this
(running) thread is at the end of the
READY queue for its priority, and

remove the thread from the head of the
READY queue and run it.

Scheduling roadmap.

The kernel's role

Remove current thread from
the RUNNING queue, run

new thread instead

Continue running this thread
until a rescheduling event

occurs.

Reset the thread's timeslice
counter

Chapter 1 • Processes and Threads 15

The kernel's role

Kernel states

RUNNING

READY

The blocked states

For a multiple CPU system, the rules are the same, except that
multiple CPUs can run multiple threads concurrently. The order that
the threads run (i.e., which threads get to run on the multiple CPUs) is
determined in the exact same way as with a single CPU - the
highest-priority READY thread will run on a CPU. If there's another
high-priority thread that's ready to run, and there's an available CPU,
that thread will run on the next CPU. And so on. If there aren't
enough threads to go around, that's no problem- the "idle" CPUs
will run the idle thread (at priority zero, which is lower than any user
thread can go). If there aren't enough CPUs to go around, then only
theN-most highest-priority threads will run, where N is the number
of CPUs available. The other threads will be ready to run, but won't
actually be running. Note that thread scheduling on an SMP system is
an area that's still undergoing some research, so it's possible that it
may change in the future.

We've been talking about "running," "ready," and "blocked" loosely
-let's now formalize these thread states.

Neutrino's RUNNING state simply means that the thread is now
actively consuming the CPU. On an SMP system, there will be
multiple threads running; on a single-processor system, there will be
one thread running.

The READY state means that this thread could run right now -except
that it's not, because another thread, (at the same or higher priority), is
running. If two threads were capable of using the CPU, one thread at
priority 10 and one thread at priority 7, the priority 10 thread would
be RUNNING and the priority 7 thread would be READY.

What do we call the blocked state? The problem is, there's not just
one blocked state. Under Neutrino, there are in fact over a dozen
blocking states.

Why so many? Because the kernel keeps track of why a thread is
blocked.

16 Chapter 1 • Processes and Threads

Kernel states, the
complete list

The kernel's role

We saw two blocking states already - when a thread is blocked
waiting for a mutex, the thread is in the MUTEX state. When a thread
is blocked waiting for a semaphore, it's in the SEM state. These states
simply indicate which queue (and which resource) the thread is
blocked on.

If a number of threads are blocked on a mutex (in the MUTEX blocked
state), they get no attention from the kernel until the thread that owns
the mutex releases it. At that point one of the blocked threads is made
READY, and the kernel makes a rescheduling decision (if required).

Why "if required?" The thread that just released the mutex could very
well still have other things to do and have a higher priority than that
of the waiting threads. In this case, we go to the second rule, which
states, "The highest-priority ready thread will run," meaning that the
scheduling order has not changed- the higher-priority thread
continues to run.

Here's the complete list of kernel blocking states, with brief
explanations of each state. By the way, this list is available in
<sys/neutrino. h>- you'll notice that the states are all prefixed
with STATE_ (for example, "READY" in this table is listed in the
header file as STATE__READY):

If the state is: The thread is:

CONDVAR Waiting for a condition variable to be signalled.

DEAD Dead. Kernel is waiting to release the thread's
resources.

INTR

JOIN

MUTEX

Waiting for an interrupt.

Waiting for the completion of another thread.

Waiting to acquire a mutex.

continued ...

Chapter 1 • Processes and Threads 17

The kernel's role

If the state is: The thread is:

NANOSLEEP Sleeping for a period of time.

NET _REPLY Waiting for a reply to be delivered across the
network.

NET _SEND Waiting for a pulse or message to be delivered
across the network.

READY Not running on a CPU, but is ready to run (one
or more higher or equal priority threads are
running).

RECEIVE Waiting for a client to send a message.

REPLY Waiting for a server to reply to a message.

RUNNING Actively running on a CPU.

SEM Waiting to acquire a semaphore.

SEND Waiting for a server to receive a message.

SIGSUSPEND Waiting for a signal.

SIGWAITINFO Waiting for a signal.

STACK Waiting for more stack to be allocated.

STOPPED Suspended (SIGSTOP signal).

WAITCTX Waiting for a register context (usually floating
point) to become available (only on SMP
systems).

WAITPAGE Waiting for process manager to resolve a fault on
a page.

WAITTHREAD Waiting for a thread to be created.

The important thing to keep in mind is that when a thread is blocked,
regardless of which state it's blocked in, it consumes no CPU.
Conversely, the only state in which a thread consumes CPU is in the
RUNNING state:.

18 Chapter 1 • Processes and Threads

Threads and processes

We'll see the SEND, RECEIVE, and REPLY blocked states in the
Message Passing chapter. The NANOSLEEP state is used with
functions like sleep(), which we'lllook at in the chapter on Clocks,
Timers, and Getting a Kick Every So Often. The INTR state is used
with InterruptWait(), which we'll take a look at in the Interrupts
chapter. Most of the other states are discussed in this chapter.

Threads and processes

Let's return to our discussion of threads and processes, this time from
the perspective of a real live system. Then, we'll take a look at the
function calls used to deal with threads and processes.

We know that a process can have one or more threads. (A process that
had zero threads wouldn't be able to do anything- there'd be nobody
home, so to speak, to actually perform any useful work.) A Neutrino
system can have one or more processes. (The same discussion applies
-a Neutrino system with zero processes wouldn't do anything.)

So what do these processes and threads do? Ultimately, they form a
system - a collection of threads and processes that performs some
goal.

At the highest level, the system consists of a number of processes.
Each process is responsible for providing a service of some nature -
whether it's a filesystem, a display driver, data acquisition module,
control module, or whatever.

Within each process, there may be a number of threads. The number
of threads varies. One designer using only one thread may accomplish
the same functionality as another designer using five threads. Some
problems lend themselves to being multi-threaded, and are in fact
relatively simple to solve, while other processes lend themselves to
being single-threaded, and are difficult to make multi-threaded.

The topic of designing with threads could easily occupy another book
-we'll just stick with the basics here.

Chapter 1 • Processes and Threads 19

Threads and processes

Why processes? So why not just have one process with a zillion threads? While some
OSes force you to code that way, the advantages of breaking things up
into multiple processes are many:

• decoupling and modularity

• maintainability

• reliability

The ability to "break the problem apart" into several independent
problems is a powerful concept. It's also at the heart of Neutrino. A
Neutrino system consists of many independent modules, each with a
certain responsibility. These independent modules are distinct
processes. The people at QSSL used this trick to develop the modules
in isolation, without the modules relying on each other. The only
"reliance" the modules would have on each other is through a small
number of well-defined interfaces.

This naturally leads to enhanced maintainability, thanks to the lack of
interdependencies. Since each module has its own particular
definition, it's reasonably easy to fix one module- especially since
it's not tied to any other module.

Reliability, though, is perhaps the most important point. A process,
just like a house, has some well-defined "borders." A person in a
house has a pretty good idea when they're in the house, and when
they're not. A thread has a very good idea- if it's accessing memory
within the process, it can live. If it steps out of the bounds of the
process's address space, it gets killed. This means that two threads,
running in different processes, are effectively isolated from each
other.

20 Chapter 1 • Processes and Threads

Starting a process

Starting a process from
the command line

Memory protection
barrier

8 8
Process 1 's Process 2's

address space address space

Memory protection.

Threads and processes

The process address space is maintained and enforced by Neutrino's
process manager module. When a process is started, the process
manager allocates some memory to it and starts a thread running. The
memory is marked as being owned by that process.

This means that if there are multiple threads in that process, and the
kernel needs to context-switch between them, it's a very efficient
operation- we don't have to change the address space, just which
thread is running. If, however, we have to change to another thread in
another process, then the process manager gets involved and causes an
address space switch as well. Don't worry- while there's a bit more
overhead in this additional step, under Neutrino this is still very fast.

Let's now turn our attention to the function calls available to deal with
threads and processes. Any thread can start a process; the only
restrictions imposed are those that stem from basic security (file
access, privilege restrictions, etc.). In all probability, you've already
started other processes; either from the system startup script, the shell,
or by having a program start another program on your behalf.

For example, from the shell you can type:

$ programl

This instructs the shell to start a program called programl and to
wait for it to finish. Or, you could type:

Chapter 1 • Processes and Threads 21

Threads and processes

Starting a process from
within a program

$ program2 &

This instructs the: shell to start program2 without waiting for it to
finish. We say that program2 is running "in the background."

If you want to adjust the priority of a program before you start it, you
could use the ni•:::e command, just like in UNIX:

$ nice program3

This instructs the: shell to start program3 at a reduced priority.

Or does it?

If you look at what really happens, we told the shell to run a program
called nice at the regular priority. The nice command adjusted its
own priority to be lower (this is where the name "nice" comes from),
and then it ran program3 at that lower priority.

You don't usually care about the fact that the shell creates processes
-this is a basic assumption about the shell. In some application
designs, you'll certainly be relying on shell scripts (batches of
commands in a file) to do the work for you, but in other cases you'll
want to create the processes yourself.

For example, in a large multi-process system, you may want to have
one master program start all the other processes for your application
based on some kind of configuration file. Another example would
include starting up processes when certain operating conditions
(events) have been detected.

Let's take a look at the functions that Neutrino provides for starting
up other processes (or transforming into a different program):

• system()

• exec() family of functions

• spawn() family of functions

22 Chapter 1 • Processes and Threads

Threads and processes

• fork()

• vfork()

Which function you use depends on two requirements: portability and
functionality. As usual, there's a tradeoff between the two.

The common thing that happens in all the calls that create a new
process is the following. A thread in the original process calls one of
the above functions. Eventually, the function gets the process manager
to create an address space for a new process. Then, the kernel starts a
thread in the new process. This thread executes a few instructions,
and calls main(). (In the case of fork() and vfork(), of course, the new
thread begins execution in the new process by returning from the
fork() or vfork(); we'll see how to deal with this shortly.)

Starting a process with the system() call

The system() function is the simplest; it takes a command line, the
same as you'd type it at a shell prompt, and executes it.

In fact, system() actually starts up a shell to handle the command that
you want to perform.

The editor that I'm using to write this book makes use of the system()
call. When I'm editing, I may need to "shell out," check out some
samples, and then come back into the editor, all without losing my
place. In this editor, I may issue the command : ! pwd for example, to
display the current working directory. The editor runs this code for
the : ! pwd command:

system ("pwd");

Is system() suited for everything under the sun? Of course not, but it's
useful for a lot of your process-creation requirements.

Chapter 1 • Processes and Threads 23

Threads and processes

Starting a proces.s with the exec() and spawn() calls

Let's look at some of the other process-creation functions.

The next process-creation functions we should look at are the exec()
and spawn() families. Before we go into the details, let's see what the
differences are between these two groups of functions.

The exec() family transforms the current process into another one.
What I mean by t:hat is that when a process issues an exec() function
call, that process ceases to run the current program and begins to run
another program. The process ID doesn't change- that process
changed into another program. What happened to all the threads in
the process? We'll come back to that when we look at fork().

The spawn() family, on the other hand, doesn't do that. Calling a
member of the spawn() family creates another process (with a new
process ID) that corresponds to the program specified in the
function's arguments.

Let's look at the different variants of the spawn() and exec() functions.
In the table that follows, you'll see which ones are POSIX and which
aren't. Of course, for maximum portability, you'll want to use only
the POSIX functions.

Spawn POSIX? Exec PO SIX?

spawn() Yes

spawn!() No exec!() Yes

spawnle() r...;·o execle() Yes

spawnlp() No execlp() Yes

spawnlpe() No execlpe() No

spawnp() Yes

continued ...

24 Chapter 1 • Processes and Threads

Threads and processes

Spawn POSIX? Exec POSIX?

spawnv() No execv() Yes

spawnve() No execve() Yes

spawnvp() No execvp() Yes

spawnvpe() No execvpe() No

While these variants might appear to be overwhelming, there is a
pattern to their suffixes:

A suffix of: Means:

1 (lowercase "L'') The argument list is specified via a list of
parameters given in the call itself, terminated
by a NULL argument.

e An environment is specified.

p The PATH environment variable is used in
case the full pathname to the program isn't
specified.

v The argument list is specified via a pointer to
an argument vector.

The argument list is a list of command-line arguments passed to the
program.

Also, note that in the C library, the spawnlp(), spawnvp(), and
spawnlpe() functions all call spawnvpe(), which in turn calls the
POSIX function spawnp(). The functions spawnle(), spawnv(), and
spawn!() all eventually call spawnve(), which then calls the PO SIX
function spawn(). Finally, the POSIX function spawnp() calls the
POSIX function spawn(). So, the root of all spawning functionality is
the spawn() call.

Chapter 1 • Processes and Threads 25

Threads and processes

"/"suffix

Let's now take a look at the various spawn() and exec() variants in
detail so that you can get a feel for the various suffixes used. Then,
we'll see the spawn() call itself.

For example, if I want to invoke the 1s command with the arguments
-t, -r, and -1 (meaning "sort the output by time, in reverse order,
and show me the long version of the output"), I could specify it as
either:

I* To run ls and keep going: *I
spawnl (P_WAIT, "lbinlls", "lbinlls", "-t", "-r", "-1", NULL);

I* To transform into ls: *I
execl (11 /bin/ls 11 , 11 /bin/ls", 11 -t", 11 -r 11 , "-1 11 , NULL);

or, using the v suffix variant:

char *argv [] =
{

} ;

"lbinlls",
n-tn,

"-rn,
"-111,

NULL

I* To run ls and keep going: *I
spawnv (P_WAIT, '"lbinlls", argv);

I* To transform into ls: *I
execv ("lbinlls", argv);

Why the choice? It's provided as a convenience. You may have a
parser already built into your program, and it would be convenient to
pass around arrays of strings. In that case, I'd recommend using the
"v" suffix variants. Or, you may be coding up a call to a program
where you know what the parameters are. In that case, why bother
setting up an array of strings when you know exactly what the
arguments are? Just pass them to the "1" suffix variant.

Note that we passed the actual pathname of the program (/bin/ls)

and the name of the program again as the first argument. We passed

26 Chapter 1 • Processes and Threads

"e" suffix

Threads and processes

the name again to support programs that behave differently based on
how they're invoked.

For example, the GNU compression and decompression utilities
(gzip and gunzip) are actually links to the same executable. When
the executable starts, it looks at argv [0] (passed to main()) and
decides whether it should compress or decompress.

The "e" suffix versions pass an environment to the program. An
environment is just that- a kind of "context" for the program to
operate in. For example, you may have a spelling checker that has a
dictionary of words. Instead of specifying the dictionary's location
every time on the command line, you could provide it in the
environment:

$export DICTIONARY=Ihomelrkl.dict

$ spellcheck document.l

The export command tells the shell to create a new environment
variable (in this case, DICTIONARY), and assign it a value
(/home/rk/. diet).

If you ever wanted to use a different dictionary, you'd have to alter the
environment before running the program. This is easy from the shell:

$export DICTIONARY=Ihomelrkl.altdict

$ spellcheck document.l

But how can you do this from your own programs? To use the "e"
versions of spawn() and exec(), you specify an array of strings
representing the environment:

char *env [] =
{

};

"DICTIONARY=Ihomelrkl.altdict",
NULL

II To start the spell-checker:
spawnle (P_WAIT, "lusrlbinlspellcheck", "lusrlbinlspellcheck",

Chapter 1 • Processes and Threads 27

Threads and processes

"p"suffix

"document.!", NULL, env);

II To transform into the spell-checker:
execle ("lusrlbinlspellcheck", "lusrlbinlspellcheck",

"document.!", NULL, env);

The "p" suffix versions will search the directories in your PATH
environment variable to find the executable. You've probably noticed
that all the examples have a hard-coded location for the executable -
/bin/ls and /usr/bin/spellcheck. What about other
executables? Unless you want to first find out the exact path for that
particular program, it would be best to have the user tell your program
all the places to search for executables. The standard PATH
environment variable does just that. Here's the one from a minimal
system:

PATH=Iproclboot:lbin

This tells the shell that when I type a command, it should first look in
the directory /px·oc/boot, and if it can't find the command there, it
should look in the binaries directory /bin part. PATH is a
colon-separated list of places to look for commands. You can add as
many elements to the PATH as you want, but keep in mind that all
pathname components will be searched (in order) for the executable.

If you don't know the path to the executable, then you can use the "p"

variants. For example:

II Using an explicit path:
execl (11 /bin/ls 11 , 11 /bin/Is 11 , 11 -1 11 , "-t 11 , 11 -r 11 , NULL);

II Search your PATH for the executable:
execlp (11 18 11 , 11 1S 11 , 11 -1 11 , 11 -t 11 , "-r 11 , NULL);

If exec!() can't find ls in /bin, it returns an error. The execlp()
function will search all the directories specified in the PATH for ls,

and will return an error only if it can't find ls in any of those
directories. This is also great for multiplatform support- your
program doesn't have to be coded to know about the different CPU
names, it just finds the executable.

28 Chapter 1 • Processes and Threads

Threads and processes

What if you do something like this?

execlp (11 /bin/ls", 11 lS 11 , 11 -1 11 , 11 -t 11 , 11 -r 11 , NULL);

Does it search the environment? No. You told execlp() to use an
explicit pathname, which overrides the normal PATH searching rule.
If it doesn't find ls in /bin that's it, no other attempts are made (this
is identical to the way exec!() works in this case).

Is it dangerous to mix an explicit path with a plain command name
(e.g., the path argument /bin/ls, and the command name argument
ls, instead of /bin/ls)? This is usually pretty safe, because:

• a large number of programs ignore argv [o l anyway

• those that do care usually call basename(), which strips off the
directory portion of argv [o l and returns just the name.

The only compelling reason for specifying the full pathname for the
first argument is that the program can print out diagnostics including
this first argument, which can instantly tell you where the program
was invoked from. This may be important when the program can be
found in multiple locations along the PATH.

The spawn() functions all have an extra parameter; in all the above
examples, I've always specified P_WAIT. There are four flags you can
pass to spawn() to change its behavior:

P_WAIT

P_NOWAIT

P_NOWAITO

The calling process (your program) is blocked until
the newly created program has run to completion
and exited.

The calling program doesn't block while the newly
created program runs. This allows you to start a
program in the background, and continue running
while the other program does its thing.

Identical toP _NOWAIT, except that the
SPAWN_NOZOMBIE flag is set, meaning that you

Chapter 1 • Processes and Threads 29

Threads and processes

"plain" spawn()

don't have to worry about doing a waitpid() to clear
the process's exit code.

P_OVERLAY This flag turns the spawn() call into the
corresponding exec() call! Your program
transforms into the specified program, with no
change in process ID.

It's generally clearer to use the exec() call if that's
what you meant- it saves the maintainer of the
software from having to look up P_OVERLAY in the
C Library Reference!

As we mentioned above, all spawn() functions eventually call the
plain spawn() function. Here's the prototype for the spawn() function:

#include <spawn.h>

pid_t
spawn (canst char *path,

int fd_cowzt,
canst int: fd...map [] ,
canst struct inheritance *inherit,
char * cc>nst argv [] ,
char * const envp []);

We can immediately dispense with the path, argv, and envp
parameters- we've already seen those above as representing the
location of the executable (the path member), the argument vector
(argv), and the environment (envp).

Thefd_count andfd_map parameters go together. If you specify zero
for fd_count, thenfd_map is ignored, and it means that all file
descriptors (except those modified by fcntl()'s FD_CLOEXEC flag)
will be inherited in the newly created process. If the fd_count is
non-zero, then it indicates the number of file descriptors contained in
fdJnap; only the specified ones will be inherited.

The inherit parameter is a pointer to a structure that contains a set of
flags, signal masks, and so on. For more details, you should consult
the C Library Reference.

30 Chapter 1 • Processes and Threads

Threads and processes

Starting a process with the fork() call

Suppose you want to create a new process that's identical to the
currently running process and have it run concurrently. You could
approach this with a spawn() (and the P _NOWAIT parameter), giving
the newly created process enough information about the exact state of
your process so it could set itself up. However, this can be extremely
complicated; describing the "current state" of the process can involve
lots of data.

There is an easier way - the fork() function, which duplicates the
current process. All the code is the same, and the data is the same as
the creating (or parent) process's data.

Of course, it's impossible to create a process that's identical in every
way to the parent process. Why? The most obvious difference
between these two processes is going to be the process ID- we can't
create two processes with the same process ID. If you look atfork()'s
documentation in the C Library Reference, you'll see that there is a
list of differences between the two processes. You should read this list
to be sure that you know these differences if you plan to use fork().

If both sides of a fork() look alike, how do you tell them apart? When
you call fork(), you create another process executing the same code at
the same location (i.e., both are about to return from the fork() call) as
the parent process. Let's look at some sample code:

int main (int argc, char **argv)
{

}

int retval;

print£ ("This is most definitely the parent process\n");
£flush (stdout);
retval =fork ();
print£ ("Which process printed this?\n");

return (EXIT-SUCCESS);

After the fork() call, both processes are going to execute the second
printf() call! If you run this program, it prints something like this:

Chapter 1 • Processes and Threads 31

Threads and processes

This is most definitely the parent process
Which process printed this?
Which process printed this?

Both processes print the second line.

The only way to tell the two processes apart is the fork() return value
in retval. In the newly created child process, retval is zero; in the
parent process, retval is the child's process ID.

Clear as mud? Here's another code snippet to clarify:

printf ("The par<mt is pid %d\n", getpid ());
fflush (stdout);

if (child_pid =fork ()) {
printf ("This is the parent, child pid is %d\n",

chilcLpid) ;
} else {

}

printf ("This is the child, pid is %d\n",
getpid ());

This program will print something like:

The parent is pid 4496
This is the parent, child pid is 8197
This is the child, pid is 8197

You can tell which process you are (the parent or the child) after the
fork() by looking atfork()'s return value.

Starting a process with the vfork() call

The vfork() function can be a lot less resource intensive than the plain
fork(), because it shares the parent's address space.

The vfork() function creates a child, but then suspends the parent
thread until the child calls exec() or exits (via exit() and friends).
Additionally, vfork() will work on physical memory model systems,
whereas fork() can't- fork() needs to create the same address space,
which just isn't possible in a physical memory model.

32 Chapter 1 • Processes and Threads

Threads and processes

Process creation and threads

Suppose you have a process and you haven't created any threads yet
(i.e., you're running with one thread, the one that called main()).
When you call fork(), another process is created, also with one thread.
This is the simple case.

Now suppose that in your process, you've called pthread_create() to
create another thread. When you call fork(), it will now return
ENOSYS (meaning that the function is not supported)! Why?

Well, believe it or not, this is POSIX compatible- POSIX says that
fork() can return ENOSYS. What actually happens is this: the Neutrino
C library isn't built to handle the forking of a process with threads.
When you call pthread_create(), the pthread_create() function sets a
flag, effectively saying, "Don't let this processfork(), because I'm not
prepared to handle it." Then, in the library fork() function, this flag is
checked, and, if set, causes fork() to return ENOSYS.

The reason this is intentionally done has to do with threads and
mutexes. Ifthis restriction weren't in place (and it may be lifted in a
future release) the newly created process would have the same
number of threads as the original process. This is what you'd expect.
However, the complication occurs because some of the original
threads may own mutexes. Since the newly created process has the
identical contents of the data space of the original process, the library
would have to keep track of which mutexes were owned by which
threads in the original process, and then duplicate that ownership in
the new process. This isn't impossible- there's a function called
pthread..atfork() that allows a process to deal with this; however, the
functionality of calling pthread..atfork() isn't being used by all the
mutexes in the Neutrino C library as of this writing.

So what should you use?

Obviously, if you're porting existing code, you'll want to use
whatever the existing code uses. For new code, you should avoid
fork() if at all possible. Here's why:

Chapter 1 • Processes and Threads 33

Threads and processes

Starting a thread

• fork() doesn't work with multiple threads, as discussed above.

• When fork() does work with multiple threads, you'll need to
register a pthread_atfork() handler and lock every single mutex
before you fork, complicating the design.

• The child offork() duplicates all open file descriptors. As we'll see
in the Resource Manager chapter later, this causes a lot of work -
most of which will be unnecessary if the child then immediately
does an exec() and closes all the file descriptors anyway.

The choice between vfork() and the spawn() family boils down to
portability, and what you want the child and parent to be doing. The
vfork() function will pause until the child calls exec() or exits,
whereas the spawn() family of functions can allow both to run
concurrently. The vfork() function, however, is subtly different
between operating systems.

Now that we've seen how to start another process, let's see how to
start another thread.

Any thread can create another thread in the same process; there are no
restrictions (short of memory space, of course!). The most common
way of doing this is via the POSIX pthread_create() call:

#include <pthread.h>

int
pthread_create (pthread_t *thread,

canst pthread_attr_t *attr,
void * (*start_routine) (void *),
void *arg);

The pthread_create() function takes four arguments:

thread

attr

a pointer to a pthread_t where the thread ID is
stored

an attributes structure

34 Chapter 1 • Processes and Threads

Threads and processes

start_routine the routine where the thread begins

arg an argument passed to the thread's start_routine

Note that the thread pointer and the attributes structure (attr) are
optional - you can pass them as NULL.

The thread parameter can be used to store the thread ID of the newly
created thread. You'll notice that in the examples below, we'll pass a
NULL, meaning that we don't care what the ID is of the newly created
thread. If we did care, we could do something like this:

pthread_t tid;

pthread_create (&tid, ...
print£ ("Newly created thread id is %d\n", tid);

This use is actually quite typical, because you'll often want to know
which thread ID is running which piece of code.

ll@f' A small subtle point. It's possible that the newly created thread may
be running before the thread ID (the tid parameter) is filled. This
means that you should be careful about using the tid as a global
variable. The usage shown above is okay, because the
pthread_create() call has returned, which means that the tid value is
stuffed correctly.

The thread attributes
structure

The new thread begins executing at start_routine(), with the argument
arg.

When you start a new thread, it can assume some well-defined
defaults, or you can explicitly specify its characteristics.

Before we jump into a discussion of the thread attribute functions,
let's look at the pthread_attr_t data type:

Chapter 1 • Processes and Threads 35

Threads and processes

typedef struct {
int flags;
size_t stacksize;

void *stackaddr;
void (*exitfunc) (void *status);
int policy;
struct sched_param param;

unsigned guardsize;
} pthread_attr_t.;

Basically, the fields are used as follows:

flags Non-numerical (Boolean) characteristics (e.g., whether
the thread should run "detached" or "joinable").

stacksize, stackaddr, and guardsize

Stack specifications.

exitfunc Function to execute at thread exit.

policy and param

Scheduling parameters.

The following functions are available:

Attribute administration

pthread_attr ..destroy()
pthread_attr _in it()

Flags (Boolean characteristics)

pthread_attr _getdetachstate()
pthread_attr _setdetachstate()
pthread_attr _getinheritsched()

pthread_attr _setinheritsched()
pthread_attr _getscope()
pthread_attr _setscope()

36 Chapter 1 • Processes and Threads

Stack related

Threads and processes

pthread_attr _getguardsize()
pthread_attr _setguardsize()

pthread_attr _getstackaddr()

pthread_attr _setstackaddr()

pthread_attr _getstacksize()

pthread_attr _setstacksize()

pthread_attr _getstacklazy()
pthread_attr _setstacklazy()

Scheduling related

pthread_attr _getschedparam()

pthread_attr _setschedparam()

pthread_attr _getschedpolicy()

pthread_attr _setschedpolicy()

This looks like a pretty big list (20 functions), but in reality we have
to worry about only half of them, because they're paired: "get" and
"set" (with the exception of pthread_attr_init() and
pthread_attr _destroy()).

Before we examine the attribute functions, there's one thing to note.
You must call pthread_attr_init() to initialize the attribute structure
before using it, set it with the appropriate pthread_attr _set*()

function(s), and then call pthread_create() to create the thread.
Changing the attribute structure after the thread's been created has no
effect.

Thread attribute administration

The function pthread_attr _init() must be called to initialize the
attribute structure before using it:

pthread_attr_t attr;

pthread_attr_init (&attr);

Chapter 1 • Processes and Threads 37

Threads and processes

You could call pthread_attr _destroy() to "uninitialize" the thread
attribute structure .. but almost no one ever does (unless you have
POSIX compliant code).

In the descriptions that follow, I've marked the default values with
"(default)."

The "flags" thread attribute

The three functions, pthread_attr ...setdetachstate(),
pthread_attr ...setinheritsched(), and pthread_attr ...setscope() determine
whether the thread is created "joinable" or "detached," whether the
thread inherits the scheduling attributes of the creating thread or uses
the scheduling attributes specified by pthread_attr ...setschedparam()
and pthread_attr _setschedpolicy(), and finally whether the thread has
a scope of "system" or "process."

To create a "joinable" thread (meaning that another thread can
synchronize to its termination via pthread_join()), you'd use:

(default)

pthread_attr_setcletachstate {&attr, PTHREAD_CREATE_JOINABLE);

To create one that can't be joined (called a "detached" thread), you'd
use:

pthread_attr_setcletachstate {&attr, PTHREAD-CREATE-DETACHED);

If you want the thread to inherit the scheduling attributes of the
creating thread (that is, to have the same scheduling algorithm and the
same priority), you'd use:

(default)

pthread_attr_setinheritsched {&attr, PTHREAD-INHERIT-SCHED);

To create one that uses the scheduling attributes specified in the
attribute structure itself (which you'd set using
pthread_attr ...setschedparam() and pthread_attr ...setschedpolicy()),
you'd use:

38 Chapter 1 • Processes and Threads

Threads and processes

pthread_attr_setinheritsched (&attr, PTHREAD-EXPLICIT_SCHED);

Finally, you'd never call pthread_attr _setscope(). Why? Because
Neutrino supports only "system" scope, and it's the default when you
initialize the attribute. ("System" scope means that all threads in the
system compete against each other for CPU; the other value,
"process," means that threads compete against each other for CPU
within the process, and the kernel schedules the processes.)

If you do insist on calling it, you can call it only as follows:

(default)
pthread_attr_setscope (&attr, PTHREAD_SCOPE_SYSTEM);

The "stack" thread attributes

The thread attribute stack parameters are prototyped as follows:

int
pthread_attr_setguardsize (pthread_attr_t *clttr, size_t gsize);

int
pthread_attr_setstackaddr (pthread_attr_t *attr, void *addr);

int
pthread_attr_setstacksize (pthread_attr_t *attr, size_t ssize);

int
pthread_attr _setstacklazy (pthread_attr _t *attr, int lazystack) ;

These functions all take the attribute structure as their first parameter;
their second parameters are selected from the following:

gsize The size of the "guard" area.

addr The address of the stack, if you're providing one.

ssize The size of the stack.

Chapter 1 • Processes and Threads 39

Threads and processes

lazy stack Indicates if the stack should be allocated on demand or
up front from physical memory.

The guard area is a memory area immediately after the stack that the
thread can't write to. If it does (meaning that the stack was about to
overflow), the thread will get hit with a SIGSEGV. If the guardsize is
0, it means that there's no guard area. This also implies that there's no
stack overflow checking. If the guardsize is nonzero, then it's set to at
least the system-wide default guardsize (which you can obtain with a
call to sysconf() with the constant _SCPAGESIZE). Note that the
guardsize will be at least as big as a "page" (for example, 4k on an
x86 processor). Also, note that the guard page doesn't take up any
physical memory- it's done as a virtual address (MMU) "trick."

The addr is the address of the stack, in case you're providing it. You
can set it to NULL meaning that the system will allocate (and will
free!) the stack for the thread. The advantage of specifying a stack is
that you can do postmortem stack depth analysis. This is
accomplished by allocating a stack area, filling it with a "signature"
(for example, the string "STACK" repeated over and over), and letting
the thread run. When the thread has completed, you'd look at the
stack area and see how far the thread had scribbled over your
signature, giving you the maximum depth of the stack used during
this particular run.

The ssize parameter specifies how big the stack is. If you provide the
stack in addr, then ssize should be the size of that data area. If you
don't provide the stack in addr (meaning you passed a NULL), then
the ssize parameter tells the system how big a stack it should allocate
for you. If you specify a 0 for ssize, the system will select the default
stack size for you. Obviously, it's bad practice to specify a 0 for ssize
and specify a stack using addr- effectively you're saying "Here's a
pointer to an object, and the object is some default size." The problem
is that there's no binding between the object size and the passed value.

40 Chapter 1 • Processes and Threads

Threads and processes

I@' If a stack is being provided via addr, no automatic stack overflow
protection exists for that thread (i.e., there's no guard area). However,
you can certainly set this up yourself using mmap() and mprotect().

Finally, the lazy stack parameter indicates if the physical memory
should be allocated as required (use the value
PTHREAD_STACK_LAZY) or all up front (use the value
PTHREAD_STACK_NOTLAZY). The advantage of allocating the stack
"on demand" (as required) is that the thread won't use up more
physical memory than it absolutely has to. The disadvantage (and
hence the advantage of the "all up front" method) is that in a
low-memory environment the thread won't mysteriously die some
time during operating when it needs that extra bit of stack, and there
isn't any memory left. If you are using PTHREAD_STACK_NOTLAZY,
you'll most likely want to set the actual size of the stack instead of
accepting the default, because the default is quite large.

The "scheduling" thread attributes

Finally, if you do specify PTHREAD__EXPLICIT _SCHED for
pthread__attr __setinheritsched(), then you '11 need a way to specify both
the scheduling algorithm and the priority of the thread you're about to
create.

This is done with the two functions:

int
pthread_attr_setschedparam {pthread_attr_t *attr,

canst struct sched_param *param);

int
pthread_attr_setschedpolicy {pthread_attr_t *attr,

in t policy) ;

The policy is simple- it's one of SCHED_FIFO, SCHED_RR, or
SCHED_OTHER.

Chapter 1 • Processes and Threads 41

Threads and processes

I& SCHED_OTHER is currently mapped to SCHED_RR.

The param is a structure that contains one member of relevance here:
sched_priority. Set this value via direct assignment to the desired
priority.

I& A common bug to watch out for is specifying
PTHREAD_EXPUCIT _SCHED and then setting only the scheduling
policy. The problem is that in an initialized attribute structure, the
value of param.sched_priority is 0. This is the same priority as the
IDLE process, meaning that your newly created thread will be
competing for CPU with the IDLE process.

A few examples

Been there, done that, got the T-shirt. :-)

Enough people have been bitten by this that QSSL has made priority
zero reserved for only the idle thread. You simply cannot run a thread
at priority zero.

Let's take a look at some examples. We'll assume that the proper
include files (<pthread.h> and <sched.h>) have been included,
and that the thread to be created is called new _thread() and is
correctly prototyped and defined.

The most common way of creating a thread is to simply let the values
default:

pthread_create (NULL, NULL, new_thread, NULL);

In the above example, we've created our new thread with the defaults,
and passed it a NULL as its one and only parameter (that's the third
NULL in the pthread_create() call above).

Generally, you can pass anything you want (via the arg field) to your
new thread. Here we're passing the number 123:

42 Chapter 1 • Processes and Threads

Threads and processes

pthread_create (NULL, NULL, new_thread, (void*) 123);

A more complicated example is to create a non-joinable thread with
round-robin scheduling at priority 15:

pthread_attr_t attr;

II initialize the attribute structure
pthread_attr_init (&attr);

II set the detach state to "detached"
pthread_attr_setdetachstate (&attr, PTHREAD-CREATE-DETACHED);

II override the default of INHERIT_SCHED
pthread_attr_setinheritsched (&attr, PTHREAD-EXPLICIT_SCHED);
pthread_attr_setschedpolicy (&attr, SCHED-RR);
attr.param.sched_priority = 15;

II finally, create the thread
pthread_create (NULL, &attr, new_thread, NULL);

To see what a multithreaded program "looks like," you could run the
pidin command from the shell. Say our program was called spud. If
we run pidin once before spud created a thread and once after spud

created two more threads (for three total), here's what the output
would look like (I've shortened the pidin output to show only
spud):

pidin
pid tid name prio STATE Blocked

12301 1 spud lOr READY

pidin
pid tid name prio STATE Blocked

12301 1 spud lOr READY
12301 2 spud lOr READY
12301 3 spud lOr READY

As you can see, the process spud (process ID 12301) has three threads
(under the "tid" column). The three threads are running at priority 10
with a scheduling algorithm of round robin (indicated by the "r" after
the 10). All three threads are READY, meaning that they're able to use

Chapter 1 • Processes and Threads 43

Threads and processes

Where a thread is a good
idea

Threads in mathematical
operations

CPU but aren't currently running on the CPU (another, higher-priority
thread, is currently running).

Now that we know all about creating threads, let's take a look at how
and where we'd use them.

There are two classes of problems where the application of threads is
a good idea.

Threads are like overloading operators in C++ - it may seem like a
good idea (at the time) to overload every single operator with some
interesting use, but it makes the code hard to understand. Similarly
with threads, you could create piles of threads, but the additional
complexity will make your code hard to understand, and therefore
hard to maintain. Judicious use of threads, on the other hand, will
result in code that is functionally very clean.

Threads are great where you can parallelize operations - a number
of mathematical problems spring to mind (graphics, digital signal
processing, etc.). Threads are also great where you want a program to
perform several independent functions while sharing data, such as a
web-server that's serving multiple clients simultaneously. We'll
examine these two classes.

Suppose that we have a graphics program that performs ray tracing.
Each raster line on the screen is dependent on the main database
(which describes the actual picture being generated). The key here is
this: each raster line is independent of the others. This immediately
causes the problem to stand out as a threadable program.

Here's the single-threaded version:

int
main (int argc, char **argv)
{

int xl;

II perform initializations

44 Chapter 1 • Processes and Threads

}

Threads and processes

for (xl = 0; xl < num_x_lines; xl++) {
do_one_line (xl);

}

II display results

Here we see that the program will iterate xl over all the raster lines
that are to be calculated.

On an SMP system, this program will use only one of the CPUs.
Why? Because we haven't told the operating system to do anything in
parallel. The operating system isn't smart enough to look at the
program and say, "Hey, hold on a second! We have 4 CPUs, and it
looks like there are independent execution flows here. I'll run it on all
4 CPUs!"

So, it's up to the system designer (you) to tell Neutrino which parts
can be run in parallel. The easiest way to do that would be:

int
main (int argc, char **argv)
{

int xl;

II perform initializations

for (xl = 0; xl < num_x_lines; xl++) {
pthread_create (NULL, NULL, do_one_line, (void*) xl);

}

II display results
}

There are a number of problems with this simplistic approach. First of
all (and this is most minor), the do_one_line() function would have to
be modified to take a void * instead of an int as its argument. This
is easily remedied with a typecast.

The second problem is a little bit trickier. Let's say that the screen
resolution that you were computing the picture for was 1280 by 1024.
We'd be creating 1280 threads! This is not a problem for Neutrino-

Chapter 1 • Processes and Threads 45

Threads and processes

Neutrino "limits" you to 32767 threads per process! However, each
thread must have a unique stack. If your stack is a reasonable size
(say 8k), you'll have used 1280 x 8k (10 megabytes!) of stack. And
for what? There are only 4 processors in your SMP system. This
means that only 4 of the 1280 threads will run at a time- the other
1276 threads are waiting for a CPU. (In reality, the stack will "fault
in," meaning that the space for it will be allocated only as required.
Nonetheless, it's a waste- there are still other overheads.)

A much better solution to this would be to break the problem up into
4 pieces (one for each CPU), and start a thread for each piece:

int num_lines_per_cpu;
int num_cpus;

int
main (int argc, char **argv)
{

}

int cpu;

II perform initializations

II get the number of CPUs
num_cpus = _syspage_ptr -> num_cpu;
num_lines_per_cpu = num_x_lines I num_cpus;
for (cpu = 0; cpu < num_cpus; cpu++) {

pthread_create (NULL, NULL,
do_one-hatch, (void*) cpu);

}

II display results

void *
do_one-batch (void *c)
{

}

int cpu = (int) c;
int xl;

for (xl = 0; xl < num_lines_per_cpu; xl++) {
do_line_line (xl +cpu* num_lines_per_cpu);

}

Here we're starting only num_cpus threads. Each thread will run on
one CPU. And since we have only a small number of threads, we're

46 Chapter 1 • Processes and Threads

Threads and processes

not wasting memory with unnecessary stacks. Notice how we got the
number of CPUs by dereferencing the "System Page" global variable
..syspage_ptr. (For more information about what's in the system page,
please consult QSSL's Building Embedded Systems book or the
< sys I syspage. h> include file).

Coding for SMP or single processor

The best part about this code is that it will function just fine on a
single-processor system- you'll create only one thread, and have it
do all the work. The additional overhead (one stack) is well worth the
flexibility of having the software "just work faster" on an SMP box.

Synchronizing to the termination of a thread

I mentioned that there were a number of problems with the simplistic
code sample initially shown. Another problem with it is that main()
starts up a bunch of threads and then displays the results. How does
the function know when it's safe to display the results?

To have the main() function poll for completion would defeat the
purpose of a realtime operating system:

int
main (int argc, char **argv)
{

}

II start threads as before

while (num_lines_completed < num_x_lines) {
sleep (1);

}

Don't even consider writing code like this!

There are two elegant solutions to this problem: pthread_join() and
pthread__barrier _wait().

Chapter 1 • Processes and Threads 47

Threads and processes

Joining

The simplest method of synchronization is to join the threads as they
terminate. Joining really means waiting for termination.

Joining is accomplished by one thread waiting for the termination of
another thread. The waiting thread calls pthreadjoin():

#include <pthre•!l.d.h>

int
pthread_join (pthread_t thread, void **value_ptr);

To use pthread_join(), you pass it the thread ID of the thread that you
wish to join, and an optional value_ptr, which can be used to store the
termination return value from the joined thread. (You can pass in a
NULL if you aren't interested in this value- we're not, in this case.)

Where did the thread ID came from? We ignored it in the
pthread_create()- we passed in a NULL for the first parameter. Let's
now correct our code:

int num_lines_per_cpu, num_cpus;

int main (int argc, char **argv)
{

}

int cpu;
pthread_t *thread_ids;

I I p<!rform initializations
thread_ids "malloc (sizeof (pthread_t) * num_cpus);

num_lines-per_cpu = num_x_lines I num_cpus;
for (cpu = 0; cpu < num_cpus; cpu++) {

pthread_create (&thread_ids [cpu], NULL,
do-one-hatch, (void*) cpu);

}

II synchronize to termination of all threads
for (cpu = 0; cpu < num_cpus; cpu++) {

pthread._join (thread_ids [cpu], NULL);
}

II display results

48 Chapter 1 • Processes and Threads

Threads and processes

You'll notice that this time we passed the first argument to
pthread_create() as a pointer to a pthread-t. This is where the
thread ID of the newly created thread gets stored. After the first for

loop finishes, we have num_cpus threads running, plus the thread
that's running main(). We're not too concerned about the main()
thread consuming all our CPU; it's going to spend its time waiting.

The waiting is accomplished by doing a pthread_join() to each of our
threads in tum. First, we wait for thread_ids [0] to finish. When it
completes, the pthread_join() will unblock. The next iteration of the
for loop will cause us to wait for thread_ids [I] to finish, and so on,
for all num_cpus threads.

A common question that arises at this point is, "What if the threads
finish in the reverse order?" In other words, what if there are 4 CPUs,
and, for whatever reason, the thread running on the last CPU (CPU 3)
finishes first, and then the thread running on CPU 2 finishes next, and
so on? Well, the beauty of this scheme is that nothing bad happens.

The first thing that's going to happen is that the pthreadjoin() will
block on thread_ids [0]. Meanwhile, thread_ids [3] finishes. This has
absolutely no impact on the main() thread, which is still waiting for
the first thread to finish. Then thread_ids [2} finishes. Still no impact.
And so on, untilfinally thread_ids [0} finishes, at which point, the
pthread_join() unblocks, and we immediately proceed to the next
iteration of the for loop. The second iteration of the for loop
executes a pthreadjoin() on thread_ids [I}, which will not block- it
returns immediately. Why? Because the thread identified by
thread_ids [I] is already finished. Therefore, our for loop will
"whip" through the other threads, and then exit. At that point, we
know that we've synched up with all the computational threads, so we
can now display the results.

Using a barrier

When we talked about the synchronization of the main() function to
the completion of the worker threads (in "Synchronizing to the

Chapter 1 • Processes and Threads 49

Threads and processes

termination of a thread," above), we mentioned two methods:
pthread_join(), which we've looked at, and a barrier.

Returning to our house analogy, suppose that the family wanted to
take a trip somewhere. The driver gets in the minivan and starts the
engine. And waits. The driver waits until all the family members have
boarded, and only then does the van leave to go on the trip- we
can't leave anyone behind!

This is exactly what happened with the graphics example. The main
thread needs to wait until all the worker threads have completed, and
only then can the next part of the program begin.

Note an important distinction, however. With pthread_join(), we're
waiting for the termination of the threads. This means that the threads
are no longer with us; they've exited.

With the barrier, we're waiting for a certain number of threads to
rendezvous at the barrier. Then, when the requisite number are
present, we unblock all of them. (Note that the threads continue to
run.)

You first create a barrier with pthread_barrier_init():

#include <pthread.h>

int
pthread....barrier_ini t (pthread....barrier _t *barrier,

const pthread....barrierat tr _t *attr,
unsigned int coum) ;

This creates a barrier object at the passed address (pointer to the
barrier object is in barrier), with the attributes as specified by attr
(we'll just use NULL to get the defaults). The number of threads that
must call pthread_barrier _wait() is passed in count.

Once the barrier is created, we then want each of the threads to call
pthread_barrier_wait() to indicate that it has completed:

#include <pthread.h>

int

50 Chapter 1 • Processes and Threads

Threads and processes

pthread..barrier_wait (pthread..barrier_t *barrier);

When a thread calls pthread..barrier_wait(), it will block until the
number of threads specified initially in the pthread..barrier_init() have
called pthread..barrie r _wait() (and blocked too). When the correct
number of threads have called pthread_barrier _wait(), all those
threads will "simultaneously" unblock.

Here's an example:

I*
* barrierl.c

*I

#include <Stdio.h>
#include <time.h>
#include <pthread.h>
#include <syslneutrino.h>

pthread..barrier_t barrier;

void *
threadl (void *not_used)
{

time_t now;

time (&now) ;

II the barrier synch object

printf ("threadl starting at %s", ctime (&now));

}

II do the computation
II let's just do a sleep here ...
sleep (20);
pthread..barrier_wait (&barrier);
II after this point, all three threads have completed.
time (&now) ;
printf ("barrier in threadl() done at %s", ctime (&now));

void *
thread2 (void *not-used)
{

time_t now;

time (&now) ;
printf ("thread2 starting at %s", ctime (&now));

II do the computation

Chapter 1 • Processes and Threads 51

Threads and processes

}

II let's ju13t do a sleep here ...
sleep (40);
pthread..barrier_wait (&barrier);
II after this point, all three threads have completed.
time (&now) ;
printf ("barrier in thread2() done at %s", ctime (&now));

main () II ignore arguments
{

}

time_t now;·

II create a barrier object with a count of 3
pthread..barrier_init (&barrier, NULL, 3);

II start up two threads, threadl and thread2
pthread_create (NULL, NULL, threadl, NULL);
pthread_create (NULL, NULL, thread2, NULL);

II at this point, threadl and thread2 are running

II now wait for completion
time (&now);
printf ("main() waiting for barrier at %s", ctime (&now));
pthread..barrier _wait (&barrier) ;

II after this point, all three threads have completed.
time (&now) ;
printf ("barrier in main () done at %s", ctime (&now)) ;
sleep (1);

The main thread created the barrier object and initialized it with a
count of how many threads (including itself!) should be synchronized
to the barrier before it "breaks through." In our sample, this was a
count of 3 - one for the main() thread, one for thread] (), and one for
thread2(). Then the graphics computational threads (thread]() and
thread2() in our case here) are started, as before. For illustration,
instead of showing source for graphics computations, we just stuck in
a sleep {20}; and sleep {40}; to cause a delay, as if
computations were occuring. To synchronize, the main thread simply
blocks itself on the barrier, knowing that the barrier will unblock only
after the worker threads have joined it as well.

52 Chapter 1 • Processes and Threads

Threads and processes

As mentioned earlier, with the pthread_join() the worker threads are
done and dead in order for the main thread to synchronize with them.
But with the barrier, the threads are alive and well. In fact, they've
just unblocked from the pthread_barrier _wait() when all have
completed. The wrinkle introduced here is that you should be
prepared to do something with these threads! In our graphics
example, there's nothing for them to do (as we've written it). In real
life, you may wish to start the next frame calculations.

Multiple threads on a single CPU

Suppose that we modify our example slightly so that we can illustrate
why it's also sometimes a good idea to have multiple threads even on
a single-CPU system.

In this modified example, one node on a network is responsible for
calculating the raster lines (same as the graphics example, above).
However, when a line is computed, its data should be sent over the
network to another node, which will perform the display functions.
Here's our modified main() (from the original example, without
threads):

int
main (int argc, char **argv)

int xl;

II perform initializations

for (xl = 0; xl < num_x_lines; xl++)
do-one-line {xl); // "C" in our diagram, below
tx_one_line_wait_ack {xl); // "X" and "W" in diagram below

You'll notice that we've eliminated the display portion and instead
added a tx_one_line_waiLack() function. Let's further suppose that
we're dealing with a reasonably slow network, but that the CPU
doesn't really get involved in the transmission aspects- it fires the
data off to some hardware that then worries about transmitting it. The
tx_one_/ine_waiLack() uses a bit of CPU to get the data to the

Chapter 1 • Processes and Threads 53

Threads and processes

hardware, but then uses no CPU while it's waiting for the
acknowledgement from the far end.

Here's a diagram showing the CPU usage (we've used "C" for the
graphics compute part, "X" for the transmit part, and "W" for waiting
for the acknowledgement from the far end):

c c I xi w I c I xl w I

Time

Serialized, single CPU.

Wait a minute! We're wasting precious seconds waiting for the
hardware to do its thing!

If we made this multithreaded, we should be able to get much better
use of our CPU, right?

thread1 c~ ~ ~

thread 2 I X I W I I X I W I I X I W I

Time

Multithreaded, single CPU.

This is much better, because now, even though the second thread
spends a bit of its time waiting, we've reduced the total overall time
required to compute.

54 Chapter 1 • Processes and Threads

Threads and processes

If our times were Tcompute to compute, Ttx to transmit, and T wait to
let the hardware do its thing, in the first case our total running time
would be:

(Tcompute + Ttx + Twait) X num_x_lines

whereas with the two threads it would be

(Tcompute + Ttx) X num_x_lines + Twait

which is shorter by

T wait X (num_x_lines - 1)

assuming of course that T wait ~ Tcompute·

lfllf Note that we will ultimately be constrained by:

T compute + Ttx x num_x_lines

because we'll have to incurr at least one full computation, and we'll
have to transmit the data out the hardware- while we can use
multithreading to overlay the computation cycles, we have only one
hardware resource for the transmit.

Now, if we created a four-thread version and ran it on an SMP system
with 4 CPUs, we'd end up with something that looked like this:

Chapter 1 • Processes and Threads 55

Threads and processes

Time

Four threads, four CPUs.

Notice how each of the four CPUs is underutilized (as indicated by
the empty rectangles in the "utilization" graph). There are two
interesting areas in the figure above. When the four threads start, they
each compute. Unfortunately, when the threads are finished each
computation, they're contending for the transmit hardware (the "X"
parts in the figure are offset- only one transmission may be in
progress at a time). This gives us a small anomaly in the startup part.
Once the threads are past this stage, they're naturally synchronized to
the transmit hardware, since the time to transmit is much smaller than
i of a compute cycle. Ignoring the small anomaly at the beginning,
this system is characterized by the formula:

(Tcompute + Ttx + T wait) x nunu;_lines I num_cpus

56 Chapter 1 • Processes and Threads

Threads and processes

This formula states that using four threads on four CPU s will be
approximately 4 times faster than the single-threaded model we
started out with.

By combining what we learned from simply having a multithreaded
single-processor version, we would ideally like to have more threads
than CPU s, so that the extra threads can "soak up" the idle CPU time
from the transmit acknowledge waits (and the transmit slot contention
waits) that naturally occur. In that case, we'd have something like
this:

thread 1

CPU 1 utilization

thread 5

thread 2

CPU 2 utilization

thread 6 b~~~~~~
c xi w c xi w c xi w c

w#dw/&~t:0/&~M
C C C Xi W

'

thread 3

CPU 3 utilization

thread 7

CPU4

TotaiCPUutilization W§#$~#$/W~~M

TXslot utilization 1;!"§$/j I:ZJ W/$@/j Wffi/#/j

nme

Eight threads, four CPUs.

Chapter 1 • Processes and Threads 57

Threads and processes

This figure assumes a few things:

• threads 5, 6, 7, and 8 are bound to processors 1, 2, 3, and 4 (for
simplification)

• once a transmit begins it does so at a higher priority than a
computation

• a transmit is a non-interruptible operation

Notice from the diagram that even though we now have twice as many
threads as CPUs., we still run into places where the CPUs are
under-utilized. In the diagram, there are three such places where the
CPU is "stalled"; these are indicated by numbers in the individual
CPU utilization bar graphs:

1 Thread 1 was waiting for the acknowledgement (the "W" state),
while thread 5 had completed a calculation and was waiting for
the transmitter.

2 Both thread 2 and thread 6 were waiting for an
acknowledgement.

3 Thread 3 was waiting for the acknowledgement while thread 7
had completed a calculation and was waiting for the transmitter.

This example also serves as an important lesson- you can't just
keep adding CPU s in the hopes that things will keep getting faster.
There are limiting factors. In some cases, these limiting factors are
simply governed by the design of the multi-CPU motherboard - how
much memory and device contention occurs when many CPUs try to
access the same area of memory. In our case, notice that the "TX Slot
Utilization" bar graph was starting to become full. If we added
enough CPUs, they would eventually run into problems because their
threads would be stalled, waiting to transmit.

In any event, by using "soaker" threads to "soak up" spare CPU, we
now have much better CPU utilization. This utilization approaches:

(Tcompute + Ttx) x num_x_lines I num_cpus

58 Chapter 1 • Processes and Threads

Threads and processes

In the computation per se, we're limited only by the amount of CPU
we have; we're not idling any processor waiting for
acknowledgement. (Obviously, that's the ideal case. As you saw in
the diagram there are a few times when we're idling one CPU
periodically. Also, as noted above,

Tcompute + Ttx x num_x_lines

is our limit on how fast we can go.)

Things to watch out for when using SMP

While in general you can simply "ignore" whether or not you're
running on an SMP architecture or a single processor, there are
certain things that will bite you. Unfortunately, they may be such
low-probability events that they won't show up during development
but rather during testing, demos, or the worst: out in the field. Taking
a few moments now to program defensively will save problems down
the road.

Here are the kinds of things that you're going to run up against on an
SMP system:

• Threads really can and do run concurrently- relying on things
like FIFO scheduling or prioritization for synchronization is a
no-no.

• Threads and Interrupt Service Routines (ISRs) also do run
concurrently- this means that not only will you have to protect
the thread from the ISR, but you'll also have to protect the ISR
from the thread. See the Interrupts chapter for more details.

• Some operations that you'd expect to be atomic aren't, depending
on the operation and processor. Notable operations in this list are
things that do a read-modify-write cycle (e.g.,++,--, I=,&= etc.).
See the include file <atomic. h> for replacements. (Note that this
isn't purely an SMP issue; most RISC processors don't necessarily
perform the above code in an atomic manner.)

Chapter 1 • Processes and Threads 59

Threads and processes

Threads in independent
situations

As discussed above in the "Where a thread is a good idea" section,
threads also find use where a number of independent processing
algorithms are occurring with shared data structures. While strictly
speaking you could have a number of processes (each with one
thread) explicitly sharing data, in some cases it's far more convenient
to have a number of threads in one process instead. Let's see why and
where you'd use threads in this case.

For our examples, we'll evolve a standard input/process/output model.
In the most generic sense, one part of the model is responsible for
getting input from somewhere, another part is responsible for
processing the input to produce some form of output (or control), and
the third part is responsible for feeding the output somewhere.

Multiple processes

Let's first understand the situation from a multiple process,
one-thread-per-process outlook. In this case, we'd have three
processes, literally an input process, a "processing" process, and an
output process:

System 1: Multiple operations, multiple processes.

This is the most highly abstracted form, and also the most "loosely
coupled." The "input" process has no real "binding" with either of the
"processing" or "output" processes- it's simply responsible for

60 Chapter 1 • Processes and Threads

Threads and processes

gathering input and somehow giving it to the next stage (the
"processing" stage). We could say the same thing of the "processing"
and "output" processes - they too have no real binding with each
other. We are also assuming in this example that the communication
path (i.e., the input-to-processing and the processing-to-output data
flow) is accomplished over some connectioned protocol (e.g., pipes,
POSIX message queues, native Neutrino message passing
whatever).

Multiple processes with shared memory

Depending on the volume of data flow, we may want to optimize the
communication path. The easiest way of doing this is to make the
coupling between the three processes tighter. Instead of using a
general-purpose connectioned protocol, we now choose a shared
memory scheme (in the diagram, the thick lines indicate data flow; the
thin lines, control flow):

System 2: Multiple operations, shared memory between processes.

In this scheme, we've tightened up the coupling, resulting in faster
and more efficient data flow. We may still use a "general-purpose"
connectioned protocol to transfer "control" information around -
we're not expecting the control information to consume a lot of
bandwidth.

Chapter 1 • Processes and Threads 61

Threads and processes

Multiple threads

The most tightly-coupled system is represented by the following
scheme:

data
structure

Input

/
/

Processing
data

structure

~ Output~

System 3: Multiple operations, multiple threads.

Here we see one process with three threads. The three threads share
the data areas implicitly. Also, the control information may be
implemented as it was in the previous examples, or it may also be
implemented via some of the thread synchronization primitives
(we've seen mutexes, barriers, and semaphores; we'll see others in a
short while).

Comparisons

Now, let's compare the three methods using various categories, and
we'll also describe some of the tradeoffs.

With system 1, we see the loosest coupling. This has the advantage
that each of the three processes can be easily (i.e., via the command
line, as opposed to recompile/redesign) replaced with a different
module. This follows naturally, because the "unit of modularity" is
the entire module itself. System 1 is also the only one that can be
distributed among multiple nodes in a Neutrino network. Since the
communications pathway is abstracted over some connectioned
protocol, it's easy to see that the three processes can be executing on

62 Chapter 1 • Processes and Threads

Threads and processes

any machine in the network. This may be a very powerful scalability
factor for your design - you may need your system to scale up to
having hundreds of machines distributed geographically (or in other
ways, e.g., for peripheral hardware capability) and communicating
with each other.

Once we commit to a shared memory region, however, we lose the
ability to distribute over a network. Neutrino doesn't support
network-distributed shared memory objects. So in system 2, we've
effectively limited ourselves to running all three processes on the
same box. We haven't lost the ability to easily remove or change a
component, because we still have separate processes that can be
controlled from the command line. But we have added the constraint
that all the removable components need to conform to the
shared-memory model.

In system 3, we've lost all the above abilities. We definitely can't run
different threads from one process on multiple nodes (we can run
them on different processors in an SMP system, though). And we've
lost our configurability aspects - now we need to have an explicit
mechanism to define which "input," "processing," or "output"
algorithm we want to use (which we can solve with shared objects,
also known as DLLs.)

So why would I design my system to have multiple threads like
system 3? Why not go for the maximally flexible system 1?

Well, even though system 3 is the most inflexible, it is most likely
going to be the fastest. There are no thread-to-thread context switches
for threads in different processes, I don't have to set up memory
sharing explicitly, and I don't have to use abstracted synchronization
methods like pipes, POSIX message queues, or message passing to
deliver the data or control information- I can use basic kernel-level
thread-synchronization primitives. Another advantage is that when
the system described by the one process (with the three threads) starts,
I know that everything I need has been loaded off the storage medium
(i.e., I'm not going to find out later that "Oops, the processing driver
is missing from the disk!"). Finally, system 3 is also most likely going

Chapter 1 • Processes and Threads 63

More on synchronization

Readers/writer
locks

to be the smallest, because we won't have three individual copies of
"process" information (e.g., file descriptors).

To sum up: know what the tradeoffs are, and use what works for your
design.

More on synchronization

We've already seen:

• mutexes

• semaphores

• barriers

Let's now finish up our discussion of synchronization by talking
about:

• readers/writer locks

• sleepon locks

• condition variables

• additional Neutrino services

Readers and writer locks are used for exactly what their name implies:
multiple readers can be using a resource, with no writers, or one
writer can be using a resource with no other writers or readers.

This situation occurs often enough to warrant a special kind of
synchronization primitive devoted exclusively to that purpose.

Often you'll have a data structure that's shared by a bunch of threads.
Obviously, only one thread can be writing to the data structure at a
time. If more than one thread was writing, then the threads could
potentially overwrite each other's data. To prevent this from

64 Chapter 1 • Processes and Threads

More on synchronization

happening, the writing thread would obtain the "rwlock" (the
readers/writer lock) in an exclusive manner, meaning that it and only
it has access to the data structure. Note that the exclusivity of the
access is controlled strictly by voluntary means. It's up to you, the
system designer, to ensure that all threads that touch the data area
synchronize by using the rwlocks.

The opposite occurs with readers. Since reading a data area is a
non-destructive operation, any number of threads can be reading the
data (even if it's the same piece of data that another thread is reading).
An implicit point here is that no threads can be writing to the data
area while any thread or threads are reading from it. Otherwise, the
reading threads may be confused by reading a part of the data, getting
preempted by a writing thread, and then, when the reading thread
resumes, continue reading data, but from a newer "update" of the
data. A data inconsistency would then result.

Let's look at the calls that you'd use with rwlocks.

The first two calls are used to initialize the library's internal storage
areas for the rwlocks:

int
pthread_rwlock_init (pthread_rwlock_t *lock,

const pthread_rwlockattr_t *attr) ;

int
pthread_rwlock_destroy (pthread_rwlock_t *lock) ;

The pthread_rwlock_init() function takes the lock argument (of type
pthread_rwlock_t) and initializes it based on the attributes
specified by attr. We're just going to use an attribute of NULL in our
examples, which means, "Use the defaults." For detailed information
about the attributes, see the library reference pages for
pthread_rwlockattr _in it(), pthread_rwlockattr _destroy(),

pthread_rwlockattr _getpshared(), and
pthread_rwlockattr ...setpshared().

When done with the rwlock, you'd typically call
pthread_rwlock_destroy() to destroy the lock, which invalidates it.

Chapter 1 • Processes and Threads 65

More on synchronization

You should never use a lock that is either destroyed or hasn't been
initialized yet.

Next we need to fetch a lock of the appropriate type. As mentioned
above, there are basically two modes of locks: a reader will want
"non-exclusive" access, and a writer will want "exclusive" access. To
keep the names simple, the functions are named after the user of the
locks:

int
pthread_rwlock_rdlock (pthread_rwlock_t *lock);

int
pthread_rwlock_tryrdlock (pthread_rwlock_t *lock) ;

int
pthread_rwlock_wrlock (pthread-rwlock_t *lock);

int
pthread_rwlock_trywrlock (pthread_rwlock_t *lock) ;

There are four functions instead of the two that you may have
expected. The "expected" functions are pthread_rwlock_rdlock() and
pthread_rwlock_wrlock(), which are used by readers and writers,
respectively. These are blocking calls- if the lock isn't available for
the selected operation, the thread will block. When the lock becomes
available in the appropriate mode, the thread will unblock. Because
the thread unblocked from the call, it can now assume that it's safe to
access the resource protected by the lock.

Sometimes, though, a thread won't want to block, but instead will
want to see if it could get the lock. That's what the "try" versions are
for. It's important to note that the "try" versions will obtain the lock if
they can, but if they can't, then they won't block, but instead will just
return an error indication. The reason they have to obtain the lock if
they can is simple. Suppose that a thread wanted to obtain the lock for
reading, but didn't want to wait in case it wasn't available. The thread
calls pthreacLrwlock_tryrdlock(), and is told that it could have the
lock. If the pthread_rwlock_tryrdlock() didn't allocate the lock, then
bad things could happen - another thread could preempt the one that
was told to go ahead, and the second thread could lock the resource in

66 Chapter 1 • Processes and Threads

Sleepon locks

More on synchronization

an incompatible manner. Since the first thread wasn't actually given
the lock, when the first thread goes to actually acquire the lock
(because it was told it could), it would use pthread_rwlock_rdlock(),
and now it would block, because the resource was no longer available
in that mode. So, if we didn't lock it if we could, the thread that called
the "try" version could still potentially block anyway!

Finally, regardless of the way that the lock was used, we need some
way of releasing the lock:

int
pthread_rwlock_unlock (pthread_rwlock_t *lock);

Once a thread has done whatever operation it wanted to do on the
resource, it would release the lock by calling
pthread_rwlock_unlock(). If the lock is now available in a mode that
corresponds to the mode requested by another waiting thread, then
that thread would be made READY.

Note that we can't implement this form of synchronization with just a
mutex. The mutex acts as a single-threading agent, which would be
okay for the writing case (where you want only one thread to be using
the resource at a time) but would fall flat in the reading case, because
only one reader would be allowed. A semaphore couldn't be used
either, because there's no way to distinguish the two modes of access
- a semaphore would allow multiple readers, but if a writer were to
acquire the semaphore, as far as the semaphore is concerned this
would be no different from a reader acquiring it, and now you'd have
the ugly situation of multiple readers and one or more writers!

Another common situation that occurs in multithreaded programs is
the need for a thread to wait until "something happens." This
"something" could be anything! It could be the fact that data is now
available from a device, or that a conveyer belt has now moved to the
proper position, or that data has been committed to disk, or whatever.
Another twist to throw in here is that several threads may need to wait
for the given event.

Chapter 1 • Processes and Threads 67

More on synchronization

To accomplish this, we'd use either a condition variable (which we'll
see next) or the much simpler "sleepon" lock.

To use sleepon locks, you actually need to perform several operations.
Let's look at the calls first, and then look at how you'd use the locks.

int
pthread_sleepon_lock (void) ;

int
pthread_sleepon_unlock (void) ;

int
pthread_sleepon_broadcast (void *addr);

int
pthread_sleepon_signal (void *addr);

int
pthread_sleepon_wait (void *addr);

~ Don't be tricked by the prefix pthread_ into thinking that these are
POSIX functions- they're not.

As described above, a thread needs to wait for something to happen.
The most obvious choice in the list of functions above is the
pthread__sleepon_wait(). But first, the thread needs to check if it really
does have to wait. Let's set up an example. One thread is a producer
thread that's getting data from some piece of hardware. The other
thread is a consumer thread that's doing some form of processing on
the data that just arrived. Let's look at the consumer first:

volatile int data_ready = 0;

consumer ()
{

}

while (1) {

}

while (!data_ready) {
II WAIT

}
II process data

68 Chapter 1 • Processes and Threads

More on synchronization

The consumer is sitting in its main processing loop (the while {1));

it's going to do its job forever. The first thing it does is look at the
data_ready flag. If this flag is a o, it means there's no data ready.
Therefore, the consumer should wait. Somehow, the producer will
wake it up, at which point the consumer should reexamine its
data_ready flag. Let's say that's exactly what happens, and the
consumer looks at the flag and decides that it's a 1, meaning data is
now available. The consumer goes off and processes the data, and
then goes to see if there's more work to do, and so on.

We're going to run into a problem here. How does the consumer reset
the data_ready flag in a synchronized manner with the producer?
Obviously, we're going to need some form of exclusive access to the
flag so that only one of those threads is modifying it at a given time.
The method that's used in this case is built with a mutex, but it's a
mutex that's buried in the implementation of the sleepon library, so
we can access it only via two functions: pthread_sleepon_lock() and
pthread_sleepon_unlock(). Let's modify our consumer:

consumer ()

}

while (1) {
pthread_sleepon_lock ();
while (!data_ready) {

}

I I WAIT

}
II process data
data_ready = 0;
pthread_sleepon_unlock ();

Now we've added the lock and unlock around the operation of the
consumer. This means that the consumer can now reliably test the
data_ready flag, with no race conditions, and also reliably set the flag.

Okay, great. Now what about the "WAIT" call? As we suggested
earlier, it's effectively the pthread_sleepon_wait() call. Here's the
second while loop:

Chapter 1 • Processes and Threads 69

More on synchronization

while (!data_ready) {
pthread_sleepon_wait (&data_ready);

}

The pthread_sleepon_wait() actually does three distinct steps!

1 Unlock the sleepon library mutex.

2 Perform the waiting operation.

3 Re-lock the sleepon library mutex.

The reason it has to unlock and lock the sleepon library's mutex is
simple - since the whole idea of the mutex is to ensure mutual
exclusion to the data_ready variable, this means that we want to lock
out the producer from touching the data_ready variable while we're
testing it. But, if we don't do the unlock part of the operation, the
producer would never be able to set it to tell us that data is indeed
available! There-lock operation is done purely as a convenience; this
way the user of the pthread_sleepon_wait() doesn't have to worry
about the state of the lock when it wakes up.

Let's switch over to the producer side and see how it uses the sleepon
library. Here's the full implementation:

producer ()
{

}

while (1) {

}

II wait for interrupt from hardware here ...
pthread_sleepon_lock ();
data_ready ; 1;
pthread_sleepon_signal (&data_ready) ;
pthread_sleepon_unlock ();

As you can see, the producer locks the mutex as well so that it can
have exclusive access to the data_ready variable in order to set it.

70 Chapter 1 • Processes and Threads

More on synchronization

~ It's not the act of writing a 1 to data_ready that awakens the client!

Action

consumer locks mutex

It's the call to pthread_sleepon_signal() that does it.

Let's examine in detail what happens. We've identified the consumer
and producer states as:

State Meaning

CONDVAR waiting for the underlying condition variable
associated with the sleepon

MUTEX waiting for a mutex

READY capable of using, or already using, the CPU

INTERRUPT waiting for an interrupt from the hardware

Mutexowner Consumer state Producer state

consumer READY INTERRUPT

consumer examines data_ready consumer READY INTERRUPT

consumer calls pthread_sleepon_wait() consumer READY INTERRUPT

pthread_sleepon_wait() unlocks mutex free READY INTERRUPT

pthread_sleepon_wait() blocks free CONDVAR INTERRUPT

time passes free CONDVAR INTERRUPT

hardware generates data free CONDVAR READY

producer locks mutex producer CONDVAR READY

continued ...

Chapter 1 • Processes and Threads 71

More on synchronization

Action Mutex owner Consumer state Producer state

producer sets data_ready producer CONDVAR READY

producer calls pthread_sleepon_signal() producer CONDVAR READY

consumer wakes up, producer MUTE X READY

pthread_sleepon_wait() tries to lock
mutex

producer releases mutex free MUTE X READY

consumer gets mutex consumer READY READY

consumer processes data consumer READY READY

producer waits for more data consumer READY INTERRUPT

time passes (consumer processing) consumer READY INTERRUPT

consumer finishes processing, unlocks free READY INTERRUPT

mutex

consumer loops back to top, locks consumer READY INTERRUPT

mutex

The last entry in the table is a repeat of the first entry- we've gone
around one complete cycle.

What's the purpose of the data _ready variable? It actually serves two
purposes:

• It's the status flag between the consumer and the producer that
indicates the state of the system. If it's set to a 1, it means that data
is available for processing; if it's set to a o, it means that no data is
available, and the consumer should block.

• It serves as "the place where sleepon synchronization occurs."
More formally, the address of data_ready is used as a unique
identifier, that serves as the rendezvous object for sleepon locks.
We just as easily could have used" (void *) 12345" instead of
"&data-ready"- so long as the identifier is unique and used
consistently, the sleepon library really doesn't care. Actually,

72 Chapter 1 • Processes and Threads

Condition
variables

More on synchronization

using the address of a variable in a process is a guaranteed way to
generate a process-unique number - after all, no two variables in
a process will have the same address!

We'll defer the discussion of "What's the difference between
pthread__sleepon__signal() and pthread__sleepon__broadcast() " to the
discussion of condition variables next.

Condition variables (or "condvars") are remarkably similar to the
sleepon locks we just saw above. In fact, sleepon locks are built on
top of condvars, which is why we had a state of CONDVAR in the
explanation table for the sleepon example. It bears repeating that the
pthread_cond_wait() function releases the mutex, waits, and then
reacquires the mutex, just like the pthread__sleepon_wait() function
did.

Let's skip the preliminaries and redo the example of the producer and
consumer from the sleepon section, using condvars instead. Then
we'll discuss the calls.

I*
* cpl.c

*I

#include <stdio.h>
#include <pthread.h>

int data-ready = 0;
pthread_mutex_t mutex = PTHREAD-MUTEX-INITIALIZER;
pthread_cond_t condvar = PTHREAD_CQND_INITIALIZER;

void *
consumer (void *notused)
{

print£ ("In consumer thread ... \n");
while (1) {

pthread-mutex_lock (&mutex);
while (!data_ready) {

pthread_cond_wait (&condvar, &mutex);
}
II process data
print£ ("consumer: got data from producer\n");
data_ready = 0;
pthread_cond_signal (&condvar);

Chapter 1 • Processes and Threads 73

More on synchronization

pthread-mutex_unlock (&mutex);
}

}

void *
producer (void *notused)
{

}

printf ("In producer thread ... \n");
while (1) {

}

II get data from hardware
II we'll simulate this with a sleep (1)
sleep (1);
printf ("producer: got data from h/w\n");
pthread-mutex_lock (&mutex);
while (data_ready) {

pthread_cond_wait (&condvar, &mutex);
}
data_ready = 1;
pthread_cond_signal (&condvar) ;
pthread-mutex_unlock (&mutex);

main ()
{

}

printf ("Starting consumer/producer example ... \n");

II create the producer and consumer threads
pthread_create (NULL, NULL, producer, NULL);
pthread_create (NULL, NULL, consumer, NULL);

II let the threads run for a bit
sleep (20);

Pretty much identical to the sleepon example we just saw, with a few
variations (we also added some printf() functions and a main() so that
the program would run!). Right away, the first thing that we see is a
new data type: pthread_cond_t. This is simply the declaration of
the condition variable; we've called ours condvar.

Next thing we notice is that the structure of the consumer is identical
to that of the consumer in the previous sleepon example. We've
replaced the pthread_sleepon_lock() and pthread_sleepon_unlock()

with the standard mutex versions (pthread_mutex_lock() and
pthread_mutex_unlock()). The pthread_sleepon_wait() was replaced

74 Chapter 1 • Processes and Threads

Signal versus broadcast

More on synchronization

with pthread_cond_wait(). The main difference is that the sleepon
library has a mutex buried deep within it, whereas when we use
condvars, we explicitly pass the mutex. We get a lot more flexibility
this way.

Finally, we notice that we've got pthread_cond_signal() instead of
pthread_sleepon_signal() (again with the mutex passed explicitly).

In the sleepon section, we promised to talk about the difference
between the pthread_sleepon_signal() and
pthread_sleepon_broadcast() functions. In the same breath, we'll talk
about the difference between the two condvar functions
pthread_cond_signal() and pthread_cond_broadcast().

The short story is this: the "signal" version will wake up only one
thread. So, if there were multiple threads blocked in the "wait"
function, and a thread did the "signal," then only one of the threads
would wake up. Which one? The highest priority one. If there are two
or more at the same priority, the ordering of wakeup is indeterminate.
With the "broadcast" version, all blocked threads will wake up.

It may seem wasteful to wake up all threads. On the other hand, it
may seem sloppy to wake up only one (effectively random) thread.

Therefore, we should look at where it makes sense to use one over the
other. Obviously, if you have only one thread waiting, as we did in
either version of the consumer program, a "signal" will do just fine -
one thread will wake up and, guess what, it'll be the only thread that's
currently waiting.

In a multithreaded situation, we've got to ask: "Why are these threads
waiting?" There are usually two possible answers:

• All the threads are considered equivalent and are effectively
forming a "pool" of available threads that are ready to handle some
form of request.

Or:

Chapter 1 • Processes and Threads 75

More on synchronization

• The threads are all unique and are each waiting for a very specific
condition to occur.

In the first case, we can imagine that all the threads have code that
might look like the following:

I*
* cvl.c

*I

threadl ()
{

}

for (;;) {

}

pthread~utex_lock (&mutex_data);
while (data == 0) {

pthread_cond_wait (&cv_data, &mutex_data);
}
II do something
pthread~utex_unlock (&mutex_data);

II thread2, thread3, etc have the identical code.

In this case, it really doesn't matter which thread gets the data,
provided that one of them gets it and does something with it.

However, if you have something like this, things are a little different:

I*
* cv2.c

*I

threadl ()
{

for (;;) {

}
}

thread2
{

for

pthread~utex_lock (&mutex_xy) ;
while ((x > 7) && (y != 15)) {

pthread_cond_wait (&cv_xy, &mutex_xy);
}
II do something
pthread~utex_unlock (&mutex_xy) ;

()

(;;) {

76 Chapter 1 • Processes and Threads

Sleepons versus
condvars

}

pthread~utex_lock (&mutex_xy);
while (lisprime (x)) {

More on synchronization

pthread_cond_wait (&cv_xy, &mutex_xy);
}
II do something
pthread~utex_unlock (&mutex_xy);

thread3 ()
{

}

for (;;) {

}

pthread~utex_lock (&mutex_xy);
while (x != y) {

pthread_cond_wait (&cv_xy, &mutex_xy);
}
II do something
pthread~utex_unlock (&mutex_xy);

In these cases, waking up one thread isn't going to cut it! We must
wake up all three threads and have each of them check to see if its
predicate has been satisfied or not.

This nicely reflects the second case in our question above ("Why are
these threads waiting?"). Since the threads are all waiting on different
conditions (thread]() is waiting for x to be less than or equal to 7 or y
to be 15, thread2() is waiting for x to be a prime number, and
thread3() is waiting for x to be equal toy), we have no choice but to
wake them all.

Sleepons have one principal advantage over condvars. Suppose that
you want to synchronize many objects. With condvars, you'd
typically associate one condvar per object. Therefore, if you had M
objects, you'd most likely have M condvars. With sleepons, the
underlying condvars (on top of which sleepons are implemented) are
allocated dynamically as threads wait for a particular object.
Therefore, using sleepons with M objects and N threads blocked,
you'd have (at most) N condvars (instead of M).

However, condvars are more flexible than sleepons, because:

Chapter 1 • Processes and Threads 77

More on synchronization

1 Sleepons are built on top of condvars anyway.

2 Sleepons have the mutex buried in the library; condvars allow
you to specify it explicitly.

The first point might just be viewed as being argumentative. :-} The
second point, however, is significant. When the mutex is buried in the
library, this means that there can be only one per process
regardless of the number of threads in that process, or the number of
different "sets" of data variables. This can be a very limiting factor,
especially when you consider that you must use the one and only
mutex to access any and all data variables that any thread in the
process needs to touch!

A much better design is to use multiple mutexes, one for each data
set, and explicitly combine them with condition variables as required.
The true power and danger of this approach is that there is absolutely
no compile time or run time checking to make sure that you:

• have locked the mutex before manipulating a variable

• are using the correct mutex for the particular variable

• are using the correct condvar with the appropriate mutex and
variable

The easiest way around these problems is to have a good design and
design review, and also to borrow techniques from object-oriented
programming (like having the mutex contained in a data structure,
having routines to access the data structure, etc.). Of course, how
much of one or both you apply depends not only on your personal
style, but also on performance requirements.

The key points to remember when using condvars are:

The mutex is to be used for testing and accessing the variables.

2 The condvar is to be used as a rendezvous point.

llere's a picture:

78 Chapter 1 • Processes and Threads

More on synchronization

(Used for waiting and waking)

One-to-one mutex and condvar associations.

One interesting note. Since there is no checking, you can do things
like associate one set of variables with mutex "ABC," and another set
of variables with mutex "DEF," while associating both sets of
variables with condvar "ABCDEF:"

(Used for access and testing)

MutexABC MutexDEF

(Used tor waiting and waking)

Many-to-one mutex and condvar associations.

This is actually quite useful. Since the mutex is always to be used for
"access and testing," this implies that I have to choose the correct
mutex whenever I want to look at a particular variable. Fair enough
-if I'm examining variable "C," I obviously need to lock mutex
"MutexABC." What if I changed variable "E"? Well, before I change
it, I had to acquire the mutex "MutexDEF." Then I changed it, and hit
condvar "CondvarABCDEF" to tell others about the change. Shortly
thereafter, I would release the mutex.

Chapter 1 • Processes and Threads 79

More on synchronization

Additional
Neutrino services

Pools of threads

Now, consider what happens. Suddenly, I have a bunch of threads that
had been waiting on "CondvarABCDEF" that now wake up (from
their pthread_cond_wait()). The waiting function immediately
attempts to reacquire the mutex. The critical point here is that there
are two mutexes to acquire. This means that on an SMP system, two
concurrent streams of threads can run, each examining what it
considers to be independent variables, using independent mutexes.
Cool, eh?

Neutrino lets you do something else that's elegant. POSIX says that a
mutex must operate between threads in the same process, and lets a
conforming implementation extend that. Neutrino extends this by
allowing a mutex to operate between threads in different processes.
To understand why this works, recall that there really are two parts to
what's viewed as the "operating system"- the kernel, which deals
with scheduling, and the process manager, which worries about
memory protection and "processes" (among other things). A mutex is
really just a synchronization object used between threads. Since the
kernel worries only about threads, it really doesn't care that the
threads are operating in different processes - this is an issue for the
process manager.

So, if you've set up a shared memory area between two processes, and
you've initialized a mutex in that shared memory, there's nothing
stopping you from synchronizing multiple threads in those two (or
more!) processes via the mutex. The same pthread_mutex_lock() and
pthread_mutex_unlock() functions will still work.

Another thing that Neutrino has added is the concept of thread pools.
You'll often notice in your programs that you want to be able to run a
certain number of threads, but you also want to be able to control the
behavior of those threads within certain limits. For example, in a
server you may decide that initially just one thread should be blocked,
waiting for a message from a client. When that thread gets a message
and is off servicing a request, you may decide that it would be a good
idea to create another thread, so that it could be blocked waiting in
case another request arrived. This second thread would then be

80 Chapter 1 • Processes and Threads

More on synchronization

available to handle that request. And so on. After a while, when the
requests had been serviced, you would now have a large number of
threads sitting around, waiting for further requests. In order to
conserve resources, you may decide to kill off some of those "extra"
threads.

This is in fact a common operation, and Neutrino provides a library to
help with this.

IQ" In Neutrino versions before release 2.00, functionality very similar to
this was buried inside the resource manager library, but in release 2.00
it was moved out of the resource manager library and into its own set
of functions. We'll see the thread pool functions again when we look
at the Resource Managers chapter.

It's important for the discussions that follow to realize there are really
two distinct operations that threads (that are used in thread pools)
perform:

• a blocking (waiting operation)

• a processing operation

The blocking operation doesn't generally consume CPU. In a typical
server, this is where the thread is waiting for a message to arrive.
Contrast that with the processing operation, where the thread may or
may not be consuming CPU (depending on how the process is
structured). In the thread pool functions that we'll look at later, you'll
see that we have the ability to control the number of threads in the
blocking operation as well as the number of threads that are in the
processing operations.

Neutrino provides the following functions to deal with thread pools:

#include <sys/dispatch.h>

thread_pool_t *
thread_pool_crea te (thread_pool_a t tr _t *attr,

unsigned flags) ;

Chapter 1 • Processes and Threads 81

More on synchronization

int
thread_pool_destroy (thread_pool_t *pool);

int
thread_pool_start (void *pool);

int
thread_pool_limits (thread_pool_t *pool,

int lowater,

int

int hiwater,
int maximum,
in t increment,
unsigned flags) ;

thread_pool_control (thread_pool_t *pool,
thread_pool_attr_t *attr,
uintl6_t lower,
uintl6_t upper,
unsigned flags) ;

As you can see from the functions provided, you first create a thread
pool definition using thread_pooLcreate(), and then start the thread
pool via thread_pooLstart(). When you're done with the thread pool,
you can use thread_pool_destroy() to clean up after yourself. Note that
you might never call thread_pooLdestroy(), as in the case where the
program is a server that runs "forever." The thread_pooUimits()
function is used to specify thread pool behavior and adjust attributes
of the thread pool, and the thread_pooLcontrol() function is a
convenience wrapper for the thread_pooUimits() function.

So, the first function to look at is thread_pool_create(). It takes two
parameters, attr and .flags. The attr is an attributes structure that
defines the operating characteristics of the thread pool (from
<sys/dispatch. h>):

typedef struct _thread_pool_attr {
II thread pool functions and handle
THREAD_FOOL....HANDLE_T *handle;

THREAD-POOL_PARAM_T
* (*block_func) (THREAD_PQOL_FARAM_T *ctp);

void

82 Chapter 1 • Processes and Threads

Controlling the number
of threads

More on synchronization

(*unb/ock_func) (THREAD_POOL_PARAM_T *ctp);

int

(*handler-June) (THREAD-POOL_PARAM-T *ctp);

THREAD_FOOL_FARAM_T

* (*context....alloc) (THREAD_POOL...HANDLE_T *handle);

void
(*context-free) (THREAD-POOL_PARAM_T *ctp);

II thread pool parameters
pthread-attr _t *attr;
unsigned short /o_water;
unsigned short

unsigned short

unsigned short
} thread_pool_attr_t;

increment;
hi-water;
maximum;

I've broken the thread_pool_attr _t type into two sections, one
that contains the functions and handle for the threads in the thread
pool, and another that contains the operating parameters for the thread
pool.

Let's first look at the "thread pool parameters" to see how you control
the number and attributes of threads that will be operating in this
thread pool. Keep in mind that we'll be talking about the "blocking
operation" and the "processing operation" (when we look at the
callout functions, we'll see how these relate to each other).

The following diagram illustrates the relationship ofthe lo_water,
hi_water, and maximum parameters:

Chapter 1 • Processes and Threads 83

More on synchronization

create
thread

< lo_water

lo_water to hi_water

maximum

<= hi water

> hi water

destroy
thread

Thread flow when using thread pools.

(Note that "CN.' is the context...alloc() function, "CF" is the
context free() function, "blocking operation" is the block.func()
function, and "processing operation" is the handler .june().)

attr

lo_water

increment

This is the attributes structure that's used during thread
creation. We've already discussed this structure above
(in "The thread attributes structure"). You'll recall that
this is the structure that controls things about the newly
created thread like priority, stack size, and so on.

There should always be at least lo_water threads
sitting in the blocking operation. In a typical server,
this would be the number of threads waiting to receive
a message, for example. If there are less than lo_water
threads sitting in the blocking operation (because, for
example, we just received a message and have started
the processing operation on that message), then more
threads are created, according to the increment
parameter. This is represented in the diagram by the
first step labeled "create thread."

Indicates how many threads should be created at once
if the count of blocking operation threads ever drops
under lo_water. In deciding how to choose a value for
this, you'd most likely start with 1. This means that if
the number of threads in the blocking operation drops
under lo_water, exactly one more thread would be

84 Chapter 1 • Processes and Threads

hi_water

maximum

More on synchronization

created by the thread pool. To fine-tune the number
that you've selected for increment, you could observe
the behavior of the process and determine whether this
number needs to be anything other than one. If, for
example, you notice that your process gets "bursts" of
requests, then you might decide that once you've
dropped below lo_water blocking operation threads,
you're probably going to encounter this "burst" of
requests, so you might decide to request the creation
of more than one thread at a time.

Indicates the upper limit on the number of threads that
should be in the blocking operation. As threads
complete their processing operations, they will
normally return to the blocking operation. However,
the thread pool library keeps count of how many
threads are currently in the blocking operation, and if
that number ever exceeds hi_water, the thread pool
library will kill the thread that caused the overflow
(i.e., the thread that had just finished and was about to
go back to the blocking operation). This is shown in
the diagram as the "split" out of the "processing
operation" block, with one path going to the "blocking
operation" and the other path going to "CF" to destroy
the thread. The combination of lo_water and hi_water,
therefore, allows you to specify a range indicating how
many threads should be in the blocking operation.

Indicates the absolute maximum number of threads
that will ever run concurrently as a result of the thread
pool library. For example, if threads were being
created as a result of an underflow of the lo_water
mark, the maximum parameter would limit the total
number of threads.

One other key parameter to controlling the threads is the .flags
parameter passed to the thread_pooLcreate() function. It can have one
of the following values:

Chapter 1 • Processes and Threads 85

More on synchronization

POOLFLAG_EXIT _SELF

The thread_pool__.start() function will not return, nor will the
calling thread be incorporated into the pool of threads.

POOLFLAG_USE_SELF

The thread_pool__.start() function will not return, but the calling
thread will be incorporated into the pool of threads.

0 The thread_pool_.start() function will return, with new threads
being created as required.

The above descriptions may seem a little dry. Let's look at an
example.

We'll just focus on the lo_water, hi_water, increment, and the
maximum members of the thread pool control structure:

/*
* part of tpl.c

*I

#include <sys/dispatch.h>

int
main ()
{

thread_pool_attr_t tp_attr;
void *tpp;

tp_attr.lo_water 3;
tp_attr.increment 2;
tp_attr.hi_water 7;
tp_attr.maximum 10;

tpp = thread_pool_create (&tp_attr, POQL_FLAG_USE-SELF);
if (tpp == NULL) {

}

fprintf (stderr,
"%s: can't thread_pool_create, errno %s\n",

progname, strerror (errno));
exit (EXIT-FAILURE);

thread_pool_start (tpp);

86 Chapter 1 • Processes and Threads

More on synchronization

After setting the members, we call thread_pooLcreate() to create a
thread pool. This returns a pointer to a thread pool control structure
(tpp), which we check against NULL (which would indicate an error).
Finally we call thread_pooLstart() with the tpp thread pool control
structure.

I've specified POOLFLAG_USE_SELF which means that the thread
that called thread_pooLstart() will be considered an available thread
for the thread pool. So, at this point, there is only that one thread in
the thread pool library. Since we have a lo_water value of 3, the
library immediately creates increment number of threads (2 in this
case). At this point, 3 threads are in the library, and all 3 of them are
in the blocking operation. The lo_water condition is satisfied, because
there are at least that number of threads in the blocking operation; the
hi_water condition is satisfied, because there are less than that number
of threads in the blocking operation; and finally, the maximum
condition is satisfied as well, because we don't have more than that
number of threads in the thread pool library.

Now, one of the threads in the blocking operation unblocks (e.g., in a
server application, a message was received). This means that now one
of the three threads is no longer in the blocking operation (instead,
that thread is now in the processing operation). Since the count of
blocking threads is less than the lo_water, it trips the lo_water trigger
and causes the library to create increment (2) threads. So now there
are 5 threads total (4 in the blocking operation, and 1 in the
processing operation).

More threads unblock. Let's assume that none of the threads in the
processing operation none completes any of their requests yet. Here's
a table illustrating this, starting at the initial state (we've used "Proc
Op" for the processing operation, and "Blk Op" for the blocking
operation, as we did in the previous diagram, "Thread flow when
using thread pools."):

Chapter 1 • Processes and Threads 87

More on synchronization

Event Proc Op BlkOp Total

Initial 0

lo_water trip 0 3 3

Unblock 2 3

lo_water trip 4 5

Unblock 2 3 5

Unblock 3 2 5

lo_water trip 3 4 7

Unblock 4 3 7

Unblock 5 2 7

lo_water trip 5 4 9

Unblock 6 3 9

Unblock 7 2 9

lo_water trip 7 3 10

Unblock 8 2 10

Unblock 9 10

Unblock 10 0 10

As you can see, the library always checks the lo_water variable and
creates increment threads at a time until it hits the limit of the
maximum variable (as it did when the "Total" column reached 10-
no more threads were being created, even though the count had
undertlowed the lo_water).

This means that at this point, there are no more threads waiting in the
blocking operation. Let's assume that the threads are now finishing
their requests (from the processing operation); watch what happens
with the hi_water trigger:

88 Chapter 1 • Processes and Threads

More on synchronization

Event Proc Op BlkOp Total

completion 9 10

completion 8 2 10

completion 7 3 10

completion 6 4 10

completion 5 5 10

completion 4 6 10

completion 3 7 10

completion 2 8 10

hi_water trip 2 7 9

completion 8 9

hi_water trip 7 8

completion 0 8 8

hi_water trip 0 7 7

Notice how nothing really happened during the completion of
processing for the threads until we tripped over the hi_water trigger.
The implementation is that as soon as the thread finishes, it looks at
the number of receive blocked threads and decides to kill itself if there
are too many (i.e., more than hi_water) waiting at that point. The nice
thing about the lo_water and hi_water limits in the structures is that
you can effectively have an "operating range" where a sufficient
number of threads are available, and you're not unnecessarily creating
and destroying threads. In our case, after the operations performed by
the above tables, we now have a system that can handle up to 4
requests simultaneously without creating more threads (7 - 4 = 3,
which is the lo_water trip).

Chapter 1 • Processes and Threads 89

More on synchronization

The thread pool
functions

Now that we have a good feel for how the number of threads is
controlled, let's turn our attention to the other members of the thread
pool attribute structure (from above):

II thread pool functions and handle

THREAD_PQOL....HANDLE_T *handle;

THREAD_POQL_PARAM_T

* (*b/ock...,fimc) (THREAD-POQL_PARAM_T *ctp);

void

(*unb/ock_jimc) (THREAD_PQOL_PARAM_T *ctp) ;

int

(*hand/er_jimc) (THREAD_PQOL_PARAM_T *ctp);

THREAD_POOL_PARAM_T

* (*colltext_al/oc) (THREAD_POOL....HANDLE_T *handle);

void

(*context-free) (THREAD_PQQL_PARAM_T *ctp);

Recall from the diagram "Thread flow when using thread pools," that
the context_alloc() function gets called for every new thread being
created. (Similarly, the context free() function gets called for every
thread being destroyed.)

The handle member of the structure (above) is passed to the
context_alloc() function as its sole parameter. The context_alloc()
function is responsible for performing any per-thread setup required
and for returning a context pointer (called ctp in the parameter lists).
Note that the contents of the context pointer are entirely up to you
the library doesn't care what you put into the context pointer.

Now that the context has been created by context_alloc(), the
block./unc() function is called to perform the blocking operation.
Note that the block june() function gets passed the results of the
context_al/oc() function. Once the blockjunc() function unblocks, it
returns a context pointer, which gets passed by the library to the
handler june(). The handlerjunc() is responsible for performing the
"work" -for example, in a typical server, this is where the message
from the client is processed. The handler june() must return a zero for

90 Chapter 1 • Processes and Threads

Scheduling and the real world

now - non-zero values are reserved for future expansion by QSSL.
The unblock.func() is also reserved at this time; just leave it as NULL.
Perhaps this pseudo code sample will clear things up (it's based on the
same flow as shown in "Thread flow when using thread pools,"
above):

FOREVER DO

DONE

IF (#threads < lo_water) THEN
IF (#threads_total < maximum) THEN

create new thread
context = (*context_alloc) (handle);

END IF
END IF
retval = (*block_func) (context);
(*handler_func) (retval);
IF (#threads > hi_water) THEN

(*context_free) (context)
kill thread

END IF

Note that the above is greatly simplified; its only purpose is to show
you the data flow of the ctp and handle parameters and to give some
sense of the algorithms used to control the number of threads.

Scheduling and the real world

So far we've talked about scheduling algorithms and thread states, but
we haven't said much yet about why and when things are rescheduled.
There's a common misconception that rescheduling just "occurs,"
without any real causes. Actually, this is a useful abstraction during
design! But it's important to understand the conditions that cause
rescheduling. Recall the diagram "Scheduling roadmap" (in the "The
kernel's role" section).

Rescheduling occurs only because of:

• a hardware interrupt

• a kernel call

Chapter 1 • Processes and Threads 91

Scheduling and the real world

Rescheduling -
hardware
interrupts

Rescheduling -
kernel calls

• a fault

Rescheduling due to a hardware interrupt occurs in two cases:

• timers

• other hardware

The realtime clock generates periodic interrupts for the kernel,
causing time-based rescheduling.

For example, if you issue a sleep (10) ; call, a number of realtime
clock interrupts will occur; the kernel increments the time-of-day
clock at each interrupt. When the time-of-day clock indicates that I 0
seconds have elapsed, the kernel reschedules your thread as READY.

(This is discussed in more detail in the Clocks, Timers, and Getting a
Kick Every So Often chapter.)

Other threads might wait for hardware interrupts from peripherals,
such as the serial port, a hard disk, or an audio card. In this case, they
are blocked in the kernel waiting for a hardware interrupt; the thread
will be rescheduled by the kernel only after that "event" is generated.

If the rescheduling is caused by a thread issuing a kernel call, the
rescheduling is done immediately and can be considered
asynchronous to the timer and other interrupts.

For example, above we called sleep (10);. This C library function
is eventually translated into a kernel call. At that point, the kernel
made a rescheduling decision to take your thread off of the READY

queue for that priority, and then schedule another thread that was
READY.

There are many kernel calls that cause a process to be rescheduled.
Most of them are fairly obvious. Here are a few:

• timer functions (e.g., sleep())

• messaging functions (e.g., MsgSendv())

92 Chapter 1 • Processes and Threads

Rescheduling -
exceptions

Summary

Scheduling and the real world

• thread primitives, (e.g., pthread_cancel(), pthread_join())

The final cause of rescheduling, a CPU fault, is an exception,
somewhere between a hardware interrupt and a kernel call. It operates
asynchronously to the kernel (like an interrupt) but operates
synchronously with the user code that caused it (like a kernel call -
for example, a divide-by-zero exception). The same discussion as
above (for hardware interrupts and kernel calls) applies to faults.

Neutrino offers a rich set of scheduling options with threads, the
primary scheduling elements. Processes are defined as a unit of
resource ownership (e.g., a memory area) and contain one or more
threads.

Threads can use any of the following synchronization methods:

• mutexes- allow only one thread to own the mutex at a given
point in time.

• semaphores - allow a fixed number of threads to "own" the
semaphore.

• sleepons - allow a number of threads to block on a number of
objects, while allocating the underlying condvars dynamically to
the blocked threads.

• condvars - similar to sleepons except that the allocation of the
condvars is controlled by the programmer.

• joining - allows a thread to synchronize to the termination of
another thread.

• barriers- allows threads to wait until a number of threads have
reached the synchronization point.

Note that mutexes, semaphores, and condition variables can be used
between threads in the same or different processes, but that sleepons
can be used only between threads in the same process (because the
library has a mutex "hidden" in the process's address space).

Chapter 1 • Processes and Threads 93

Scheduling and the real world

As well as synchronization, threads can be scheduled (using a priority
and a scheduling algorithm), and they'll automatically run on a
single-processor box or an SMP box.

Whenever we talk about creating a "process" (mainly as a means of
porting code from single-threaded implementations), we're really
creating an address space with one thread running in it- that thread
starts at main() or at fork() or vfork() depending on the function
called.

94 Chapter 1 • Processes and Threads

Chapter2

Message Passing

In this chapter . ..
Messaging fundamentals
Message passing and client/server
Network-distributed message passing
What it means for you
Multiple threads
Using message passing
Pulses
Message passing over a network
Priority inheritance

Chapter 2 • Message Passing 95

A small
microkernel and

message passing

Messaging fundamentals

Messaging fundamentals

In this chapter, we'lllook at the most distinctive feature of Neutrino,
message passing. Message passing lies at the heart of the operating
system's microkemel architecture, giving the OS its modularity.

One of the principal advantages of Neutrino is that it's scalable. By
"scalable" I mean that it can be tailored to work on tiny embedded
boxes with tight memory constraints, right up to large networks of
multiprocessor SMP boxes with almost unlimited memory.

Neutrino achieves its scalability by making each service-providing
component modular. This way, you can include only the components
you need in the final system. By using threads in the design, you'll
also help to make it scalable to SMP systems (we'll see some more
uses for threads in this chapter).

This is the philosophy that was used during the initial design of the
QNX family of operating systems and has been carried through to this
day. The key is a small microkernel architecture, with modules that
would traditionally be incorporated into a monolithic kernel as
optional components.

Neutrino's modular architecture.

You, the system architect, decide which modules you want. Do you
need a filesystem in your project? If so, then add one. If you don't
need one, then don't bother including one. Do you need a serial port

Chapter 2 • Message Passing 97

Message passing and client/server

driver? Whether the answer is yes or no, this doesn't affect (nor is it
affected by) your previous decision about the filesystem.

At run time, you can decide which system components are included in
the running system. You can dynamically remove components from a
live system and reinstall them, or others, at some other time. Is there
anything special about these "drivers"? Nope, they're just regular,
user-level programs that happen to perform a specific job with the
hardware. In fact, we'll see how to write them in the Resource
Managers chapter.

The key to accomplishing this is message passing. Instead of having
the OS modules bound directly into the kernel, and having some kind
of "special" arrangement with the kernel, under Neutrino the modules
communicate via message passing among themselves. The kernel is
basically responsible only for thread-level services (e.g., scheduling).
In fact, message passing isn't used just for this installation and
deinstallation trick- it's the fundamental building block for almost
all other services (for example, memory allocation is performed by a
message to the process manager). Of course, some services are
provided by direct kernel calls.

Consider opening a file and writing a block of data to it. This is
accomplished by a number of messages sent from the application to
an installable component of Neutrino called the filesystem. The
message tells the filesystem to open a file, and then another message
tells it to write some data (and contains that data). Don't worry
though - the Neutrino operating system performs message passing
ve1y quickly.

Message passing and client/server

Imagine an application reading data from the filesystem. In QNX
lingo, the application is a client requesting the data from a server.

98 Chapter 2 • Message Passing

Message passing and client/server

This client/server model introduces several process states associated
with message passing (we talked about these in the Processes and
Threads chapter). Initially, the server is waiting for a message to
arrive from somewhere. At this point, the server is said to be
receive-blocked (also known as the RECV state). Here's some sample
pidin output:

pid tid name
4 1 devc-pty

prio STATE
lOr RECEIVE

Blocked
1

In the above sample, the pseudo-tty server (called devc-pty) is
process ID 4, has one thread (thread ID 1), is running at priority 10
Round-Robin, and is receive-blocked, waiting for a message from
channel ID 1 (we'll see all about "channels" shortly).

State transitions of server.

When a message is received, the server goes into the READY state,
and is capable of running. If it happens to be the highest-priority
READY process, it gets the CPU and can perform some processing.
Since it's a server, it looks at the message it just got and decides what
to do about it. At some point, the server will complete whatever job
the message told it to do, and then will "reply" to the client.

Let's switch over to the client. Initially the client was running along,
consuming CPU, until it decided to send a message. The client
changed from READY to either send-blocked or reply-blocked,
depending on the state of the server that it sent a message to.

Chapter 2 • Message Passing 99

Message passing and client/server

State transitions of clients.

Generally, you'll see the reply-blocked state much more often than the
send-blocked state. That's because the reply-blocked state means:

The server has received the message and is now
processing it. At some point, the server will complete
processing and will reply to the client. The client is
blocked waiting for this reply.

Contrast that with the send-blocked state:

The server hasn't yet received the message, most likely
because it was busy handling another message first.
When the server gets around to "receiving" your (client)
message, then you'll go from the send-blocked state to
the reply-blocked state.

In practice, if you see a process that is send-blocked it means one of
two things:

1 You happened to take a snapshot of the system in a situation
where the server was busy servicing a client, and a new request
arrived for that server.

1 00 Chapter 2 • Message Passing

Message passing and client/server

This is a normal situation - you can verify it by running
pidin again to get a new snapshot. This time you'll probably
see that the process is no longer send-blocked.

2 The server has encountered a bug and for whatever reason isn't
listening to requests anymore.

When this happens, you'll see many processes that are
send-blocked on one server. To verify this, run pidin again,
observing that there's no change in the blocked state of the
client processes.

Here's a sample showing a reply-blocked client and the server it's
blocked on:

pid tid name prio STATE Blocked
1 1 to/x86/sys/procnto Of READY
1 2 to/x86/sys/procnto lOr RECEIVE 1
1 3 to/x86/sys/procnto lOr NANOSLEEP
1 4 to/x86/sys/procnto lOr RUNNING
1 5 to/x86/sys/procnto 15r RECEIVE 1

16426 1 esh lOr REPLY 1

This shows that the program esh (the embedded shell) has sent a
message to process number 1 (the kernel and process manager,
procnto) and is now waiting for a reply.

Now you know the basics of message passing in a client/server
architecture.

So now you might be thinking, "Do I have to write special Neutrino
message-passing calls just to open a file or write some data?!?"

You don't have to write any message-passing functions, unless you
want to get "under the hood" (which I'll talk about a little later). In
fact, let me show you some client code that does message passing:

#include <fcntl.h>
#include <unistd.h>

int
main (void)
{

Chapter 2 • Message Passing 1 01

Message passing and client/server

}

int fd;

fd =open ("filename", Q_WRONLY);
write (fd, "This is message passing\n", 24);
close (fd);

return (EXIT-SUCCESS);

See? Standard C code, nothing tricky.

The message passing is done by the Neutrino C library. You simply
issue standard POSIX 1003.1 or ANSI C function calls, and the C
library does the message-passing work for you.

In the above example, we saw three functions being called and three
distinct messages being sent:

• open() sent an "open" message

• write() sent a "write" message

• close() sent a "close" message

We'll be discussing the messages themselves in a lot more detail
when we look at resource managers (in the Resource Managers
chapter), but for now all you need to know is the fact that different
types of messages were sent.

Let's step back for a moment and contrast this to the way the example
would have worked in a traditional operating system.

The client code would remain the same and the differences would be
hidden by the C library provided by the vendor. On such a system, the
open() function call would invoke a kernel function, which would
then call directly into the filesystem, which would execute some code,
and return a file descriptor. The write() and close() calls would do the
same thing.

So? Is there an advantage to doing things this way? Keep reading!

1 02 Chapter 2 • Message Passing

Network-distributed message passing

Network-distributed message
passing

Suppose we want to change our example above to talk to a different
node on the network. You might think that we'll have to invoke
special function calls to "get networked." Here's the network
version's code:

#include <fcntl.h>
#include <unistd.h>

int
main (void)

int fd;

fd = open ("/net/wintermute/home/rk/filename", Q_WRONLY);
write (fd, "This is message passing\n", 24);
close (fd);

return (EXIT-SUCCESS);
}

You're right if you think the code is almost the same in both versions.
It is.

In a traditional OS, the C library open() calls into the kernel, which
looks at the filename and says "oops, this is on a different node." The
kernel then calls into the network filesystem (NFS) code, which
figures out where /net/wintermute/home/rk/filename actually
is. Then, NFS calls into the network driver and sends a message to the
kernel on node wintermute, which then repeats the process that we
described in our original example. Note that in this case, there are
really two filesystems involved; one is the NFS client filesystem, and
one is the remote filesystem. Unfortunately, depending on the
implementation of the remote filesystem and NFS, certain operations
may not work as expected (e.g., file locking) due to incompatibilities.

Under Neutrino, the C library open() creates the same message that it
would have sent to the local filesystem and sends it to the filesystem

Chapter 2 • Message Passing 1 03

What it means for you

on node wintermute. In the local and remote cases, the exact same
filesystem is used.

This is another fundamental characteristic of Neutrino:
network-distributed operations are essentially "free," as the work to
decouple the functionality requirements of the clients from the
services provided by the servers is already done, by virtue of message
passing.

On a traditional kernel there's a "double standard" where local
services are implemented one way, and remote (network) services are
implemented in a totally different way.

What it means for you

Message passing is elegant and network-distributed. So what? What
does it buy you, the programmer?

Well, it means that your programs inherit those characteristics- they
too can become network-distributed with far less work than on other
systems. But the benefit that I find most useful is that they let you test
software in a nice, modular manner.

You've probably worked on large projects where many people have to
provide different pieces of the software. Of course, some of these
people are done sooner or later than others.

These projects often have problems at two stages: initially at project
definition time, when it's hard to decide where one person's
development effort ends and another's begins, and then at
testing/integration time, when it isn't possible to do full systems
integration testing because all the pieces aren't available.

With message passing, the individual components of a project can be
decoupled very easily, leading to a very simple design and reasonably
simple testing. If you want to think about this in terms of existing

1 04 Chapter 2 • Message Passing

The philosophy of
Neutrino

Multiple threads

paradigms, it's very similar to the concepts used in Object Oriented
Programming (OOP).

What this boils down to is that testing can be performed on a
piece-by-piece basis. You can set up a simple program that sends
messages to your server process, and since the inputs and outputs of
that server process are (or should be!) well documented, you can
determine if that process is functioning. Heck, these test cases can
even be automated and placed in a regression suite that runs
periodically!

Message passing is at the heart of the philosophy of Neutrino.
Understanding the uses and implications of message passing will be
the key to making effective use of the OS. Before we go into the
details, let's look at a little bit of theory first.

Multiple threads

Although the client/server model is easy to understand, and the most
commonly used, there are two other variations on the theme. The first
is the use of multiple threads (the topic of this section), and the
second is a model called server/subserver that's sometimes useful for
general design, but really shines in network-distributed designs. The
combination of the two can be extremely powerful, especially on a
network of SMP boxes!

As we discussed in the Processes and Threads chapter, Neutrino has
the ability to run multiple threads of execution in the same process.
How can we use this to our advantage when we combine this with
message passing?

The answer is fairly simple. We can start a pool of threads (using the
thread_pooL *() functions that we talked about in the Processes and
Threads chapter), each of which can handle a message from a client:

Chapter 2 • Message Passing 1 05

Multiple threads

Server/subserver

Clients accessing threads in a server.

This way, when a client sends us a message, we really don't care
which thread gets it, as long as the work gets done. This has a number
of advantages. The ability to service multiple clients with multiple
threads, versus servicing multiple clients with just one thread, is a
powerful concept. The main advantage is that the kernel can multitask
the server among the various clients, without the server itself having
to perform the multitasking.

On a single-processor machine, having a bunch of threads running
means that they're all competing with each other for CPU time.

But, on an SMP box, we can have multiple threads competing for
multiple CPUs, while sharing the same data area across those multiple
CPUs. This means that we're limited only by the number of available
CPUs on that particular machine.

Let's now look at the server/subserver model, and then we'll combine
it with the multiple threads model.

In this model, a server still provides a service to clients, but because
these requests may take a long time to complete, we need to be able to
start a request and still be able to handle new requests as they arrive
from other clients.

If we tried to do this with the traditional single-threaded client/server
model, once one request was received and started, we wouldn't be

1 06 Chapter 2 • Message Passing

Multiple threads

able to receive any more requests unless we periodically stopped what
we were doing, took a quick peek to see if there were any other
requests pending, put those on a work queue, and then continued on,
distributing our attention over the various jobs in the work queue. Not
very efficient. You're practically duplicating the work of the kernel by
"time slicing" between multiple jobs!

Imagine what this would look like if you were doing it. You're at your
desk, and someone walks up to you with a folder full of work. You
start working on it. As you're busy working, you notice that someone
else is standing in the doorway of your cubicle with more work of
equally high priority (of course)! Now you've got two piles of work
on your desk. You're spending a few minutes on one pile, switching
over to the other pile, and so on, all the while looking at your doorway
to see if someone else is coming around with even more work.

The server/subserver model would make a lot more sense here. In this
model, we have a server that creates several other processes (the
subservers). These subservers each send a message to the server, but
the server doesn't reply to them until it gets a request from a client.
Then it passes the client's request to one of the subservers by replying
to it with the job that it should perform. The following diagram
illustrates this. Note the direction of the arrows - they indicate the
direction of the sends!

Server/subserver model.

Chapter 2 • Message Passing 1 07

Multiple threads

If you were doing a job like this, you'd start by hiring some extra
employees. These employees would all come to you (just as the
subservers send a message to the server- hence the note about the
arrows in the diagram above), looking for work to do. Initially, you
might not have any, so you wouldn't reply to their query. When
someone comes into your office with a folder full of work, you say to
one of your employees, "Here's some work for you to do." That
employee then goes off and does the work. As other jobs come in,
you'd delegate them to the other employees.

The trick to this model is that it's reply-driven- the work starts
when you reply to your subservers. The standard client/server model
is send-driven because the work starts when you send the server a
message.

So why would the clients march into your office, and not the offices of
the employees that you hired? Why are you "arbitrating" the work?
The answer is fairly simple: you're the coordinator responsible for
performing a particular task. It's up to you to ensure that the work is
done. The clients that come to you with their work know you, but
they don't know the names or locations of your (perhaps temporary)
employees.

As you probably suspected, you can certainly mix multithreaded
servers with the server/subserver model. The main trick is going to be
determining which parts of the "problem" are best suited to being
distributed over a network (generally those parts that won't use up the
network bandwidth too much) and which parts are best suited to being
distributed over the SMP architecture (generally those parts that want
to use common data areas).

So why would we use one over the other? Using the server/subserver
approach, we can distribute the work over multiple machines on a
network. This effectively means that we're limited only by the
number of available machines on the network (and network
bandwidth, of course). Combining this with multiple threads on a
bunch of SMP boxes distributed over a network yields "clusters of

1 08 Chapter 2 • Message Passing

Some examples

Send-driven
(client/server)

Reply-driven
(server/subserver)

Multiple threads

computing," where the central "arbitrator" delegates work (via the
server/subserver model) to the SMP boxes on the network.

Now we'll consider a few examples of each method.

Filesystems, serial ports, consoles, and sound cards all use the
client/server model. A C language application program takes on the
role of the client and sends requests to these servers. The servers
perform whatever work was specified, and reply with the answer.

Some of these traditional "client/server" servers may in fact actually
be reply-driven (server/subserver) servers! This is because, to the
ultimate client, they appear as a standard server, even though the
server itself uses server/subserver methods to get the work done.
What I mean by that is, the client still sends a message to what it
thinks is the "service providing process." What actually happens is
that the "service providing process" simply delegates the client's
work to a different process (the subserver).

One of the more popular reply-driven programs is a fractal graphics
program distributed over the network. The master program divides
the screen into several areas, for example, 64 regions. At startup, the
master program is given a list of nodes that can participate in this
activity. The master program starts up worker (subserver) programs,
one on each of the nodes, and then waits for the worker programs to
send to the master.

The master then repeatedly picks "unfilled" regions (of the 64 on
screen) and delegates the fractal computation work to the worker
program on another node by replying to it. When the worker program
has completed the calculations, it sends the results back to the master,
which displays the result on the screen.

Because the worker program sent to the master, it's now up to the
master to again reply with more work. The master continues doing
this until all 64 areas on the screen have been filled.

Chapter 2 • Message Passing 1 09

Multiple threads

An important subtlety

Multi-threaded server

Because the master program is delegating work to worker programs,
the master program can't afford to become blocked on any one
program! In a traditional send-driven approach, you'd expect the
master to create a program and then send to it. Unfortunately, the
master program wouldn't be replied to until the worker program was
done, meaning that the master program couldn't send simultaneously
to another worker program, effectively negating the advantages of
having multiple worker nodes.

One master, multiple workers.

The solution to this problem is to have the worker programs start up,
and ask the master program if there's any work to do by sending it a
message. Once again, we've used the direction of the arrows in the
diagram to indicate the direction of the send. Now the worker
programs are waiting for the master to reply. When something tells
the master program to do some work, it replies to one or more of the
workers, which causes them to go off and do the work. This lets the
workers go about their business; the master program can still respond
to new requests (it's not blocked waiting for a reply from one of the
workers).

Multi-threaded servers are indistinguishable from single-threaded
servers from the client's point of view. In fact, the designer of a server
can just "turn on" multi-threading by starting another thread.

In any event, the server can still make use of multiple CPUs in an
SMP configuration, even if it is servicing only one "client." What

11 0 Chapter 2 • Message Passing

Architecture &
structure

Using message passing

does that mean? Let's revisit the fractal graphics example. When a
subserver gets a request from the server to "compute," there's
absolutely nothing stopping the subserver from starting up multiple
threads on multiple CPUs to service the one request. In fact, to make
the application scale better across networks that have some SMP
boxes and some single-CPU boxes, the server and subserver can
initially exchange a message whereby the subserver tells the server
how many CPUs it has- this lets it know how many requests it can
service simultaneously. The server would then queue up more
requests for SMP boxes, allowing the SMP boxes to do more work
than single-CPU boxes.

Using message passing

Now that we've seen the basic concepts involved in message passing,
and learned that even common everyday things like the C library use
it, let's take a look at some of the details.

We've been talking about "clients" and "servers." I've also used three
key phrases:

• "The client sends to the server."

• "The server receives from the client."

• "The server replies to the client."

I specifically used those phrases because they closely reflect the actual
function names used in Neutrino message-passing operations.

Here's the complete list of functions dealing with message passing
available under Neutrino (in alphabetical order):

• ChannelCreate(), ChannelDestroy()

• ConnectAttach(), ConnectDetach()

Chapter 2 • Message Passing 111

Using message passing

• MsgDeliverEvent()

• MsgError()

• MsgRead(), MsgReadv()

• MsgReceive(), MsgReceivePulse(), MsgReceivev()

• MsgReply(}, MsgReplyv()

• MsgSend(), MsgSendnc(), MsgSendsv(), MsgSendsvnc(),
MsgSendvs(), MsgSendvsnc(}, MsgSendv(), MsgSendvnc()

• MsgWrite(), MsgWritev()

Don't let this list overwhelm you! You can write perfectly useful
client/server applications using just a small subset of the calls from
the list- as you get used to the ideas, you'll see that some of the
other functions can be very useful in certain cases.

I@? A useful minimal set of functions is Channel Create(),
ConnectAttach(), MsgReply(), MsgSend(), and MsgReceive().

The client

We'll break our discussion up into the functions that apply on the
client side, and those that apply on the server side.

The client wants to send a request to a server, block until the server
has completed the request, and then when the request is completed
and the client is unblocked, to get at the "answer."

This implies two things: the client needs to be able to establish a
connection to the server and then to transfer data via messages - a
message from the client to the server (the "send" message) and a
message back from the server to the client (the "reply" message, the
server's reply).

112 Chapter 2 • Message Passing

Establishing a
connection

Using message passing

So, let's look at these functions in turn. The first thing we need to do
is to establish a connection. We do this with the function
ConnectAttach(), which looks like this:

#include <Sys/neutrino.h>

int ConnectAttach (int nd,
pid_t pid,
int chid,
unsigned index,
int flags) ;

ConnectAttach() is given three identifiers: the nd, which is the Node
Descriptor, the pid, which is the process ID, and the chid, which is the
channel ID. These three IDs, commonly referred to as
"ND/PID/CHID," uniquely identify the server that the client wants to
connect to. We'll ignore the index and .flags Uust set them to 0).

So, let's assume that we want to connect to process ID 77, channel ID
1 on our node. Here's the code sample to do that:

int coid;

coid = ConnectAttach (0, 77, 1, 0, 0);

As you can see, by specifying and of zero, we're telling the kernel
that we wish to make a connection on our node.

nE How did I figure out I wanted to talk to process ID 77 and channel ID
1? We'll see that shortly (see "Finding the server's ND/PID/CHID,"
below).

At this point, I have a connection ID-a small integer that uniquely
identifies a connection from my client to a specific channel on a
particular server.

I can use this connection ID when sending to the server as many times
as I like. When I'm done with it, I can destroy it via:

ConnectDetach (coid);

Chapter 2 • Message Passing 113

Using message passing

Sending messages

So let's see how I actually use it.

Message passing on the client is achieved using some variant of the
MsgSend*() function family. We'll look at the simplest member,
MsgSend():

#include <syslneutrino.h>

int MsgSend (int coid,
const void *smsg,
int sbytes,
void *nnsg,
int rbytes) ;

MsgSend()'s arguments are:

• the connection ID of the target server (coid),

• a pointer to the send message (smsg),

• the size of the send message (sbytes),

• a pointer to the reply message (rmsg), and

• the size of the reply message (rbytes).

It couldn't get any simpler than that!

Let's send a simple message to process ID 77, channel ID 1:

#include <syslneutrino.h>

char *smsg = "This is the outgoing buffer";
char rmsg [200];
int coid;

II establish a connection
coid = ConnectAttach (0, 77, l, 0, 0);
if (coid == -1) {

£print£ (stderr, "Couldn't ConnectAttach to 0177111\n");
perror (NULL);
exit (EXIT_FAILURE);

}

114 Chapter 2 • Message Passing

The server

Creating the channel

II send the message
if (MsgSend (coid,

smsg,
strlen (smsg) + 1,
rmsg,
sizeof (rmsg)) == -1) {

Using message passing

fprintf (stderr, "Error during MsgSend\n");
perror (NULL);
exit (EXIT-FAILURE);

}

if (strlen (rmsg) > 0) {
printf ("Process ID 77 returns \"%s\"\n", rmsg);

}

Let's assume that process ID 77 was an active server expecting that
particular format of message on its channel ID 1. After the server
received the message, it would process it and at some point reply with
a result. At that point, the MsgSend() would return a 0 indicating that
everything went well. If the server sends us any data in the reply, we'd
print it with the last line of code (we're assuming we're getting
NUL-terminated ASCII data back).

Now that we've seen the client, let's look at the server. The client
used ConnectAttach() to create a connection to a server, and then used
MsgSend() for all its message passing.

This implies that the server has to create a channel - this is the thing
that the client connected to when it issued the ConnectAttach()
function call. Once the channel has been created, the server usually
leaves it up forever.

The channel gets created via the Channel Create() function, and
destroyed via the Channe!Destroy() function:

#include <syslneutrino.h>

int ChannelCreate (unsigned flags);

int ChannelDestroy (int chid);

Chapter 2 • Message Passing 115

Using message passing

Message handling

We'll come back to the flags argument later (in the "Channel flags"
section, below). For now, let's just use a 0. Therefore, to create a
channel, the server issues:

int chid;

chid= ChannelCreate (0);

So we have a channel. At this point, clients could connect (via
ConnectAttach()) to this channel and start sending messages:

chid = ChannelCreate ()

coid ConnectAttach ()

Relationship of server channel and client connection.

As far as the message-passing aspects are concerned, the server
handles message passing in two stages; a "receive" stage and a
"reply" stage:

116 Chapter 2 • Message Passing

Using message passing

sts MsgSend (coid, ...)

Server

rcvid = MsgReceive (chid, ...)
II processing happens
MsgReply (rcvid, ...)

Relationship of client and server message-passing functions.

We'lllook initially at two simple versions of these functions,
MsgReceive() and MsgReply(), and then later see some of the variants.

#include <syslneutrino.h>

int MsgReceive (int chid,
void *rmsg,
int rbytes,
structmsg_info *info);

int MsgReply (int rcvid,
int status,
const void *msg,
int nbytes) ;

Let's look at how the parameters relate:

Clioo" ~ ~ M'lJSood (ooO, ,m,g, (',;"'~G) '

Server: rcv1d = MsgRece~ve (chid, rmsg, rbytes, NULL) MsgReply (rcvid, sts, smsg, sbytes)

GD~------------------------~

Message data flow.

Chapter 2 • Message Passing 117

Using message passing

Server framework

As you can see from the diagram, there are four things we need to talk
about:

1 The client issues a MsgSend() and specifies its transmit buffer
(the smsg pointer and the sbytes length). This gets transferred
into the buffer provided by the server's MsgReceive() function,
at rmsg for rbytes in length. The client is now blocked.

2 The server's MsgReceive() function unblocks, and returns with
a rcvid, which the server will use later for the reply. At this
point, the data is available for the server to use.

3 The server has completed the processing of the message, and
now uses the rcvid it got from the MsgReceive() by passing it to
the MsgReply(). Note that the MsgReply() function takes a
buffer (smsg) with a defined size (sbytes) as the location of the
data to transmit to the client. The data is now transferred by the
kernel.

4 Finally, the sts parameter is transferred by the kernel, and
shows up as the return value from the client's MsgSend(). The
client now unblocks.

You may have noticed that there are two sizes for every buffer transfer
(in the client send case, there's sbytes on the client side and rbytes on
the server side; in the server reply case, there's sbytes on the server
side and rbytes on the client side.) The two sets of sizes are present so
that the programmers of each component can specify the sizes of their
buffers. This is done for added safety.

In our example, the MsgSend() buffer's size was the same as the
message string's length. Let's look at the server and see how the size
is used there.

Here's the overall structure of a server:

#include <sys/neutrino.h>

118 Chapter 2 • Message Passing

Using message passing

void
server (void)
{

}

int rcvid; II indicates who we should reply to
int chid; II the channel ID
char message [512]; II big enough for our purposes

II create a channel
chid= ChannelCreate (0);

II this is typical of a server: it runs forever
while (1) {

}

II get the message, and print it
rcvid = MsgReceive (chid, message, sizeof (message),

NULL);

print£ ("Got a message, rcvid is %X\n", rcvid);
print£ ("Message was \"%s\".\n", message);

II now, prepare the reply. We reuse "message"
strcpy (message, "This is the reply");
MsgReply (rcvid, EOK, message, sizeof (message));

As you can see, MsgReceive() tells the kernel that it can handle
messages up to sizeof {message) (or 512 bytes). Our sample
client (above) sent only 28 bytes (the length of the string). The
following diagram illustrates:

Server

28
bytes

484
bytes
not

written

Client

I 28 I ~----11 bytes

Transferring less data than expected.

Chapter 2 • Message Passing 119

Using message passing

The kernel transfers the minimum specified by both sizes. In our case,
the kernel would transfer 28 bytes. The server would be unblocked
and print out the client's message. The remaining 484 bytes (of the
512 byte buffer) will remain unaffected.

We run into the same situation again with MsgReply(). The
MsgReply() function says that it wants to transfer 512 bytes, but our
client's MsgSend() function has specified that a maximum of 200
bytes can be transferred. So the kernel once again transfers the
minimum. In this case, the 200 bytes that the client can accept limits
the transfer size. (One interesting aspect here is that once the server
transfers the data, if the client doesn't receive all of it, as in our
example, there's no way to get the data back- it's gone forever.)

ll@f' Keep in mind that this "trimming" operation is normal and expected
behavior.

The
send-hierarchy

When we discuss message passing over a network, you'll see that
there's a tiny "gotcha" with the amount of data transferred. We'll see
this in "Networked message-passing differences," below.

One thing that's perhaps not obvious in a message-passing
environment is the need to follow a strict send-hierarchy. What this
means is that two threads should never send messages to each other;
rather, they should be organized such that each thread occupies a
"level"; all sends go from one level to a higher level, never to the
same or lower level. The problem with having two threads send
messages to each other is that eventually you'll run into the problem
of deadlock- both threads are waiting for each other to reply to their
respective messages. Since the threads are blocked, they'll never get a
chance to run and perform the reply, so you end up with two (or
more!) hung threads.

The way to assign the levels to the threads is to put the outermost
clients at the highest level, and work down from there. For example, if
you have a graphical user interface that relies on some database

120 Chapter 2 • Message Passing

Receive IDs,
channels, and

other parameters

More about channels

Using message passing

server, and the database server in turn relies on the filesystem, and the
filesystem in turn relies on a block filesystem driver, then you've got a
natural hierarchy of different processes. The sends will flow from the
outermost client (the graphical user interface) down to the lower
servers; the replies will flow in the opposite direction.

While this certainly works in the majority of cases, you will encounter
situations where you need to "break" the send hierarchy. This is never
done by simply violating the send hierarchy and sending a message
"against the flow," but rather by using the MsgDeliverEvent()
function, which we'll take a look at later.

We haven't talked about the various parameters in the examples above
so that we could focus just on the message passing. Now let's take a
look.

In the server example above, we saw that the server created just one
channel. It could certainly have created more, but generally, servers
don't do that. (The most obvious example of a server with two
channels is the qnet native network manager- definitely an "odd"
piece of software!)

As it turns out, there really isn't much need to create multiple
channels in the real world. The main purpose of a channel is to give
the server a well-defined place to "listen" for messages, and to give
the clients a well-defined place to send their messages (via a
connection). About the only time that you'd have multiple channels in
a server is if the server wanted to provide either different services, or
different classes of services, depending on which channel the message
arrived on. The second channel could be used, for example, as a place
to drop wakeup pulses - this ensures that they're treated as a
different "class" of service than messages arriving on the first
channel.

In a previous paragraph I had said that you could have a pool of
threads running in a server, ready to accept messages from clients,
and that it didn't really matter which thread got the request. This is
another aspect of the channel abstraction. Under previous versions of

Chapter 2 • Message Passing 121

Using message passing

Who sent the message?

the QNX family of operating systems (notably QNX 4), a client
would target messages at a server identified by a node ID and process
ID. Since QNX 4 is single-threaded, this means that there cannot be
confusion about "to whom" the message is being sent. However, once
you introduce threads into the picture, the design decision had to be
made as to how you would address the threads (really, the "service
providers"). Since threads are ephemeral, it really didn't make sense
to have the client connect to a particular node ID, process ID, and
thread ID. Also, what if that particular thread was busy? We'd have to
provide some method to allow a client to select a "non-busy thread
within a defined pool of service-providing threads."

Well, that's exactly what a channel is. It's the "address" of a "pool of
service-providing threads." The implication here is that a bunch of
threads can issue a MsgReceive() function call on a particular channel,
and block, with only one thread getting a message at a time.

Often a server will need to know who sent it a message. There are a
number of reasons for this:

• accounting

• access control

• context association

• class of service

• etc.

It would be cumbersome (and a security hole) to have the client
provide this information with each and every message sent. Therefore,
there's a structure filled in by the kernel whenever the MsgReceive()
function unblocks because it got a message. This structure is of type
structmsg_info, and contains the following:

struct ~sg_info
{

int nd;
int srcnd;

122 Chapter 2 • Message Passing

};

pid_t pid;
int32_t chid;
int32_t scoid;
int32_t coid;
int32_t msglen;
int32_t tid;
intl6_t priority;
intl6_t flags;
int32_t srcmsglen;
int32_t dstmsglen;

Using message passing

You pass it to the MsgReceive() function as the last argument. If you
pass a NULL, then nothing happens. (The information can be
retrieved later via the Msglnfo() call, so it's not gone forever!)

Let's look at the fields:

nd, srcnd, pid, and tid

priority

chid, coid

scoid

flags

Node Descriptors, process ID, and thread ID of the
client. (Note that nd is the receiving node's node
descriptor for the transmitting node; srcnd is the
transmitting node's node descriptor for the receiving
node. There's a very good reason for this :-),which
we'll see below in "Some notes on NDs").

The priority of the sending thread.

Channel ID that the message was sent to, and the
connection ID used.

Server Connection ID. This is an internal identifier
used by the kernel to route the message from the
server back to the client. You don't need to know
about it, except for the interesting fact that it will be a
small integer that uniquely represents the client.

Contains a variety of flag bits, _NTO_MLENDIAN_BIG,

_NTO_MLENDIAN _DIFF, _NTO_MI_NET _CRED_DIRTY,

and _NTQ_MLUNBLOCK_REQ. The
_NTO_MLENDIAN_BIG and _NTQ_MLENDIAN_DIFF

Chapter 2 • Message Passing 123

Using message passing

The receive ID (a.k.a. the
client cookie)

msglen

srcmsglen

dstmsglen

tell you about the endian-ness of the sending machine
(in case the message came over the network from a
machine with a different endian-ness),
_NTO_MLNELCRED..DIRTY is used internally; we'll
look at _NTO_MLUNBLOCK_REQ in the section
"Using the _NTO_MLUNBLOCK_REQ", below.

Number of bytes received.

The length of the source message, in bytes, as sent by
the client. This may be greater than the value in
msglen, as would be the case when receiving less data
than what was sent. Note that this member is valid
only if _NTQ_CHF_SENDER..LEN was set in the flags
argument to Channel Create() for the channel that the
message was received on.

The length of the client's reply buffer, in bytes. This
field is only valid if the _NTQ_CHF _REPLY ..LEN flag is
set in the argument to Channel Create() for the channel
that the message was received on.

In the code sample above, notice how we:

rcvid; MsgReceive (...);

MsgReply (rcvid, ...);

This is a key snippet of code, because it illustrates the binding
between receiving a message from a client, and then being able to
(sometime later) reply to that particular client. The receive ID is an
integer that acts as a "magic cookie" that you'll need to hold onto if
you want to interact with the client later. What if you lose it? It's
gone. The client will not unblock from the MsgSend() until you (the
server) die, or if the client has a timeout on the message-passing call
(and even then it's tricky; see the TimerTimeout() function in the C
library reference, and the discussion about its use in the Clocks,
Timers, and Getting A Kkk Every So Often chapter, under "Kernel
timeouts").

124 Chapter 2 • Message Passing

Using message passing

~ Don't depend on the value of the receive ID to have any particular
meaning -it may change in future versions of the operating system.
You can assume that it will be unique, in that you'll never have two
outstanding clients identified by the same receive IDs (in that case, the
kernel couldn't tell them apart either when you do the MsgReply()).

Replying to the client

Not replying to the client

Also, note that except in one special case (the MsgDeliverEvent()
function which we'll look at later), once you've done the MsgReply(),
that particular receive ID ceases to have meaning.

This brings us to the MsgReply() function.

MsgReply() accepts a receive ID, a status, a message pointer, and a
message size. We've just finished discussing the receive ID; it
identifies who the reply message should be sent to. The status variable
indicates the return status that should be passed to the client's
MsgSend() function. Finally, the message pointer and size indicate the
location and size of the optional reply message that should be sent.

The MsgReply() function may appear to be very simple (and it is), but
its applications require some examination.

There's absolutely no requirement that you reply to a client before
accepting new messages from other clients via MsgReceive()! This
can be used in a number of different scenarios.

In a typical device driver, a client may make a request that won't be
serviced for a long time. For example, the client may ask an
Analog-to-Digital Converter (ADC) device driver to "Go out and
collect 45 seconds worth of samples." In the meantime, the ADC
driver shouldn't just close up shop for 45 seconds! Other clients
might wish to have requests serviced (for example, there might be
multiple analog channels, or there might be status information that
should be available immediately, etc.).

Chapter 2 • Message Passing 125

Using message passing

Replying with no data, or
an errno

Architecturally, the ADC driver will simply queue the receive ID that
it got from the MsgReceive(), start up the 45-second accumulation
process, and go off and handle other requests. When the 45 seconds
are up and the samples have been accumulated, the ADC driver can
find the receive ID associated with the request and then reply to the
client.

You'd also want to hold off replying to a client in the case of the
reply-driven server/subserver model (where some of the "clients" are
the subservers). Since the subservers are looking for work, you'd
simply make a note of their receive IDs and store those away. When
actual work arrived, then and only then would you reply to the
subserver, thus indicating that it should do some work.

When you finally reply to the client, there's no requirement that you
transfer any data. This is used in two scenarios.

You may choose to reply with no data if the sole purpose of the reply
is to unblock the client. Let's say the client just wants to be blocked
until some particular event occurrs, but it doesn't need to know which
event. In this case, no data is required by the MsgReply() function; the
receive ID is sufficient:

MsgReply (rcvid, EOK, NULL, 0);

This unblocks the client (but doesn't return any data) and returns the
EOK "success" indication.

As a slight modification of that, you may wish to return an error status
to the client. In this case, you can't do that with MsgReply(), but
instead must use MsgError():

MsgError (rcvid, EROFS);

In the above example, the server detects that the client is attempting to
write to a read-only filesystem, and, instead of returning any actual
data, simply returns an errno of EROFS back to the client.

126 Chapter 2 • Message Passing

Finding the server's
ND/PID/CHID

Using message passing

Alternatively (and we'll look at the calls shortly), you may have
already transferred the data (via MsgWrite()), and there's no
additional data to transfer.

Why the two calls? They're subtly different. While both MsgError()
and MsgReply() will unblock the client, MsgError() will not transfer
any additional data, will cause the client's MsgSend() function to
return -1, and will cause the client to have errno set to whatever was
passed as the second argument to MsgError().

On the other hand, MsgReply() could transfer data (as indicated by the
3rd and 4th arguments), and will cause the client's MsgSend()
function to return whatever was passed as the second argument to
MsgReply(). MsgReply() has no effect on the client's errno.

Generally, if you're returning only a pass/fail indication (and no data),
you'd use MsgError(), whereas if you're returning data, you'd use
MsgReply(). Traditionally, when you do return data, the second
argument to MsgReply() will be a positive integer indicating the
number of bytes being returned.

You've noticed that in the ConnectAttach() function, we require a
Node Descriptor (ND), a process ID (PID), and a channel ID (CHID)
in order to be able to attach to a server. So far we haven't talked about
how the client finds this ND/PID/CHID information.

If one process creates the other, then it's easy- the process creation
call returns with the process ID of the newly created process. Either
the creating process can pass its own PID and CHID on the command
line to the newly created process or the newly created process can
issue the getppid() function call to get the PID of its parent and
assume a "well-known" CHID.

What if we have two perfect strangers? This would be the case if, for
example, a third party created a server and an application that you
wrote wanted to talk to that server. The real issue is, "How does a
server advertise its location?"

Chapter 2 • Message Passing 127

Using message passing

There are many ways of doing this; we'lllook at four of them, in
increasing order of programming "elegance":

1 Open a well-known filename and store the ND/PID/CHID there.
This is the traditional approach taken by UNIX-style servers,
where they open a file (for example, /etc/httpd.pid), write
their process ID there as an ASCII string, and expect that
clients will open the file and fetch the process ID.

2 Use global variables to advertise the ND/PID/CHID
information. This is typically used in multi-threaded servers
that need to send themselves messages, and is, by its nature, a
very limited case.

3 Use the QNX 4 compatibility functions (name_attach() and
name __detach(), and then the name_open() and name_close()

functions on the client side). This is recommended only for
quickly porting QNX 4 programs to Neutrino; therefore we
won't discuss this one in the text below.

4 Take over a portion of the pathname space and become a
resource manager. We'll talk about this when we look at
resource managers in the Resource Managers chapter.

The first approach is very simple, but can suffer from "pathname
pollution," where the I etc directory has all kinds of*. pid files in it.
Since files are persistent (meaning they survive after the creating
process dies and the machine reboots), there's no obvious method of
cleaning up these files, except perhaps to have a "grim reaper" task
that runs around seeing if these things are still valid.

There's another related problem. Since the process that created the
file can die without removing the file, there's no way of knowing
whether or not the process is still alive until you try to send a message
to it. Worse yet, the ND/PID/CHID specified in the file may be so
stale that it would have been reused by another program! The
message that you send to that program will at best be rejected, and at
worst may cause damage. So that approach is out.

128 Chapter 2 • Message Passing

Using message passing

The second approach, where we use global variables to advertise the
ND/PID/CHID values, is not a general solution, as it relies on the
client's being able to access the global variables. And since this
requires shared memory, it certainly won't work across a network!
This generally gets used in either tiny test case programs or in very
special cases, but always in the context of a multithreaded program.
Effectively, all that happens is that one thread in the program is the
client, and another thread is the server. The server thread creates the
channel and then places the channel ID into a global variable (the
node ID and process ID are the same for all threads in the process, so
they don't need to be advertised.) The client thread then picks up the
global channel ID and performs the ConnectAttach() to it.

The third approach, where we use the name_attach() and
name_detach() functions, should be used only for quickly porting over
QNX 4 programs.

The last approach, where the server becomes a resource manager, is
definitely the cleanest and is the recommended general-purpose
solution. The mechanics of "how" will become clear in the Resource
Managers chapter, but for now, all you need to know is that the server
registers a particular pathname as its "domain of authority," and a
client performs a simple open() of that pathname.

ltW I can't emphasize this enough:

POSIX file descriptors are implemented using connection IDs; that is,
a file descriptor is a connection ID! The beauty of this scheme is that
since the file descriptor that's returned from the open() is the
connection ID, no further work is required on the client's end to be
able to use that particular connection. For example, when the client
calls read() later, passing it the file descriptor, this translates with very
little overhead into a MsgSend() function.

Chapter 2 • Message Passing 129

Using message passing

What about priorities?

Reading and writing data

What if a low-priority process and a high-priority process send a
message to a server at the same time?

Messages are always delivered in priority order.

If two processes send a message "simultaneously," the entire message
from the higher-priority process is delivered to the server first.

If both processes are at the same priority, then the messages will be
delivered in time order (since there's no such thing as absolutely
simultaneous on a single-processor machine - even on an SMP box
there will be some ordering as the CPUs arbitrate kernel access
among themselves).

We'll come back to some of the other subtleties introduced by this
question when we look at priority inversions later in this chapter.

So far you've seen the basic message-passing primitives. As I
mentioned earlier, these are all that you need. However, there are a
few extra functions that make life much easier.

Let's consider an example using a client and server where we might
need other functions.

The client issues a MsgSend() to transfer some data to the server.
After the client issues the MsgSend() it blocks; it's now waiting for
the server to reply.

An interesting thing happens on the server side. The server has called
MsgReceive() to receive the message from the client. Depending on
the design that you choose for your messages, the server may or may
not know how big the client's message is. Why on earth would the
server not know how big the message is? Consider the filesystem
example that we've been using. Suppose the client does:

write (fd, buf, 16);

130 Chapter 2 • Message Passing

Using message passing

This works as expected if the server does a MsgReceive() and
specifies a buffer size of, say, 1024 bytes. Since our client sent only a
tiny message (28 bytes), we have no problems.

However, what if the client sends something bigger than I 024 bytes,
say 1 megabyte?

write (fd, buf, 1000000);

How is the server going to gracefully handle this? We could,
arbitrarily, say that the client isn't allowed to write more than n bytes.
Then, in the client-side C library code for write(), we could look at
this requirement and split up the write request into several requests of
n bytes each. This is awkward.

The other problem with this example would be, "How big should n
be?"

You can see that this approach has major disadvantages:

• All functions that use message transfer with a limited size will
have to be modified in the C library so that the function packetizes
the requests. This in itself can be a fair amount of work. Also, it
can have unexpected side effects for multi-threaded functions
what if the first part of the message from one thread gets sent, and
then another thread in the client preempts the current thread and
sends its own message. Where does that leave the original thread?

• All servers must now be prepared to handle the largest possible
message size that may arrive. This means that all servers will have
to have a data area that's big, or the library will have to break up
big requests into many smaller ones, thereby impacting speed.

Luckily, this problem has a fairly simple workaround that also gives
us some advantages.

Two functions, MsgRead() and MsgWrite(), are especially useful here.
The important fact to keep in mind is that the client is blocked. This
means that the client isn't going to go and change data structures
while the server is trying to examine them.

Chapter 2 • Message Passing 131

Using message passing

ll@f In a multi-threaded client, the potential exists for another thread to
mess around with the data area of a client thread that's blocked on a
server. This is considered a bug (bad design)- the server thread
assumes that it has exclusive access to a client's data area until the
server thread unblocks the client.

The MsgRead() function looks like this:

#include <sys/neutrino.h>

in t MsgRead (in t rcvid,
void *msg,
int nbytes,
int offset) ;

MsgRead() lets your server read data from the blocked client's address
space, starting offset bytes from the beginning of the client-specified
"send" buffer, into the buffer specified by msg for nbytes. The server
doesn't block, and the client doesn't unblock. MsgRead() returns the
number of bytes it actually read, or -1 if there was an error.

So let's think about how we'd use this in our write() example. The C
Library write() function constructs a message with a header that it
sends to the filesystem server, fs-qnx4. The server receives a small
portion of the message via MsgReceive(), looks at it, and decides
where it's going to put the rest of the message. The f s-qnx4 server
may decide that the best place to put the data is into some cache
buffers it's already allocated.

Let's track an example:

132 Chapter 2 • Message Passing

write (fd, buf, 4096);

header

buf _____.

>

Using message passing

•••••••••• 0

Actual data sent
to the Filesystem
Manager, fs-qnx4

The f s-qnx4 message example, showing contiguous data view.

So, the client has decided to send 4k to the filesystem. (Notice how
the C Library stuck a tiny header in front of the data so that the
filesystem could tell just what kind of request it actually was- we'll
come back to this when we look at multi-part messages, and in even
more detail when we look at resource managers.) The filesystem
reads just enough data (the header) to figure out what kind of a
message it is:

II part of the headers, fictionalized for example purposes
struct _io_write {

} ;

uintl6_t
uintl6_t
int32_t
uint32_t

type;
combine_len;
nbytes;
xtype;

typedef union {
uintl6_t type;
struct _io_read io_read;
struct _io_write io_write;

} header_t;

Chapter 2 • Message Passing 133

Using message passing

header_t header; II declare the header

rcvid = MsgReceive (chid, &header, sizeof (header), NULL);

switch (header.type) {

case _ro_WRITE:
number_of-bytes header.io_write.nbytes;

At this point, fs-qnx4 knows that 4k is sitting in the client's address
space (because the message told it in the nbytes member of the
structure) and that it should be transferred to a cache buffer. The
fs-qnx4 server could issue:

MsgRead (rcvid, cache-buffer [index] .data,
cache-buffer [index] .size, sizeof (header.io_write));

Notice that the message transfer has specified an offset of sizeof

(header. io_wri te) in order to skip the write header that was
added by the client's C library. We're assuming here that
cache-.buffer [index] . size is actually 4096 (or more) bytes.

Similarly, for writing data to the client's address space, we have:

#include <syslneutrino.h>

int MsgWrite (int rcvid,
canst void *msg,
int nbytes,
int offset) ;

MsgWrite() lets your server write data to the client's address space,
starting offset bytes from the beginning of the client-specified
"receive" buffer. This function is most useful in cases where the
server has limited space but the client wishes to get a lot of
information from the server.

For example, with a data acquisition driver, the client may specify a
4-megabyte data area and tell the driver to grab 4 megabytes of data.
The driver really shouldn't need to have a big area like this lying
around just in case someone asks for a huge data transfer.

134 Chapter 2 • Message Passing

Using message passing

The driver might have a 128k area for DMA data transfers, and then
message-pass it piecemeal into the client's address space using
MsgWrite() (incrementing the offset by 128k each time, of course).
Then, when the last piece of data has been written, the driver will
MsgReply() to the client.

128k chunk

128k chunk 128k chunk

128k chunk

Client's address space Driver's address space

Transferring several chunks with MsgWrite().

Note that Msg Write() lets you write the data components at various
places, and then either just wake up the client using MsgReply():

MsgReply (rcvid, EOK, NULL, 0);

or wake up the client after writing a header at the start of the client's
buffer:

MsgReply (rcvid, EOK, &header, sizeof (header));

This is a fairly elegant trick for writing unknown quantities of data,
where you know how much data you wrote only when you're done
writing it. If you're using this method of writing the header after the
data's been transferred, you must remember to leave room for the
header at the beginning of the client's data area!

Chapter 2 • Message Passing 135

Using message passing

Multipart
messages

Until now, we've shown only message transfers happening from one
buffer in the client's address space into another buffer in the server's
address space. (And one buffer in the server's space into another
buffer in the client's space during the reply.)

While this approach is good enough for most applications, it can lead
to inefficiencies. Recall that our write() C library code took the buffer
that you passed to it, and stuck a small header on the front of it. Using
what we've learned so far, you'd expect that the C library would
implement write() something like this (this isn't the real source):

ssize_t write (int fd, canst void *buf, size_t nbytes)
{

}

char *newbuf;
io_write_t *wptr;
int nwritten;

newbuf malloc (nbytes + sizeof (io_write_t));

II fill in the write-header at the beginning
wptr = (io_write_t *) newbuf;
wptr -> type = ...IO ...WRITE;
wptr -> nbytes = nbytes;

II store the actual data from the client
memcpy (newbuf + sizeof (io_write_t), buf, nbytes);

II send the message to the server
nwritten = MsgSend (fd,

free (newbuf);
return (nwritten);

newbuf,
nbytes + sizeof (io_write_t),
newbuf,
sizeof (io_write_t));

See what happened? A few bad things:

• The write() now has to be able to malloc() a buffer big enough for
both the client data (which can be fairly big) and the header. The
size of the header isn't the issue- in this case, it was 12 bytes.

• We had to copy the data twice: once via the memcpy(), and then
again during the message transfer.

136 Chapter 2 • Message Passing

Using message passing

• We had to establish a pointer to the io_wri te_t type and point it
to the beginning of the buffer, rather than access it natively (this is
a minor annoyance).

Since the kernel is going to copy the data anyway, it would be nice if
we could tell it that one part of the data (the header) is located at a
certain address, and that the other part (the data itself) is located
somewhere else, without the need for us to manually assemble the
buffers and to copy the data.

As luck would have it, Neutrino implements a mechanism that lets us
do just that! The mechanism is something called an IOV, standing for
"Input/Output Vector."

Let's look at some code first, then we'll discuss what happens:

#include <Syslneutrino.h>

ssize_t write (int fd, const void *buf, size_t nbytes)
{

}

io_write_t whdr;
iov_t iov [2];

II set up the IOV to point to both parts:
SETIOV (iov + 0, &whdr, sizeof (whdr));
SETIOV (iov + 1, buf, nbytes);

II fill in the io_write_t at the beginning
whdr.type = _IO_WRITE;
whdr.nbytes = nbytes;

II send the message to the server
return (MsgSendv (coid, iov, 2, iov, 1));

First of all, notice there's no malloc() and no memcpy(). Next, notice
the use of the iov _t type. This is a structure that contains an address
and length pair, and we've allocated two of them (named iov).

The iov _t type definition is automatically included by
<sys/neutrino. h>, and is defined as:

Chapter 2 • Message Passing 137

Using message passing

typedef struct iovec
{

void *iov_base;
size_t iov_/en;

} iov_t;

Given this structure, we fill the address and length pairs with the write
header (for the first part) and the data from the client (in the second
part). There's a convenience macro called SETIOV() that does the
assignments for us. It's formally defined as:

#include <sys/neutrino.h>

#define SETIOV(_iov, _addr, _len) \
((_iov) ->iov ..base = (void *) (...addr) , \
(_iov)->iov..J.en = (..J.en))

SETIOV() accepts an iov _t, and the address and length data to be
stuffed into the IOV.

Also notice that since we're creating an IOV to point to the header, we
can allocate the header on the stack without using malloc(). This can
be a blessing and a curse- it's a blessing when the header is quite
small, because you avoid the headaches of dynamic memory
allocation, but it can be a curse when the header is huge, because it
can consume a fair chunk of stack space. Generally, the headers are
quite small.

In any event, the important work is done by MsgSendv(), which takes
almost the same arguments as the MsgSend() function that we used in
the previous example:

#include <sys/neutrino.h>

int MsgSendv (int coid,
const iov_t *siov,
int sparts,
const iov_t *riov,
in t rparts) ;

Let's examine the arguments:

138 Chapter 2 • Message Passing

coid

sparts and rparts

siov and riov

Using message passing

The connection ID that we're sending to, just as
with MsgSend().

The number of send and receive parts specified by
the iov _t parameters. In our example, we set
sparts to 2 indicating that we're sending a 2-part
message, and rparts to 1 indicating that we're
receiving a 1-part reply.

The iov _t arrays indicate the address and length
pairs that we wish to send. In the above example,
we set up the 2 part siov to point to the header and
the client data, and the 1 part riov to point to just
the header.

This is how the kernel views the data:

header

data chunk

Client's address space

header and
data chunk

Kernel copying data

How the kernel sees a multipart message.

header

data chunk

Driver's address space

The kernel just copies the data seamlessly from each part of the IOV
in the client's space into the server's space (and back, for the reply).
Effectively, the kernel is performing a gather-scatter operation.

A few points to keep in mind:

• The number of parts is "limited" to 512k; however, our example of
2 is typical.

Chapter 2 • Message Passing 139

Using message passing

• The kernel simply copies the data specified in one IOV from one
address space into another.

• The source and the target IOVs don't have to be identical.

Why is the last point so important? To answer that, let's take a look at
the big picture. On the client side, let's say we issued:

write (fd, buf, 12000);

which generated a two-part IOV of:

• header (12 bytes)

• data (12000 bytes)

On the server side, (let's say it's the filesystem, fs-qnx4), we have a
number of 4k cache blocks, and we'd like to efficiently receive the
message directly into the cache blocks. Ideally, we'd like to write
some code like this:

II set up the IOV structure to receive into:
SETIOV (iov + 0, &header, sizeof (header.io_write));
SETIOV (iov + 1, &cache-buffer [37], 4096);
SETIOV (iov + 2, &cache-buffer [16], 4096);
SETIOV (iov + 3, &cache-buffer [22], 4096);
rcvid = MsgReceivev (chid, iov, 4, NULL);

This code does pretty much what you'd expect: it sets up a 4-part IOV
structure, sets the first part of the structure to point to the header, and
the next three parts to point to cache blocks 37, 16, and 22. (These
numbers represent cache blocks that just happened to be available at
that particular time.) Here's a graphical representation:

140 Chapter 2 • Message Passing

Using message passing

_I

I header (12) header (12)

l

J cache buffer [37] I I
header and
data chunk _I cache buffer [16] I data chunk I (12000)

_I cache buffer [22] 1 I

Client's address space Kernel copying data Driver's address space

Converting contiguous data to separate buffers.

Then the MsgReceivev() function is called, indicating that we'll
receive a message from the specified channel (the chid parameter) and
that we're supplying a 4-part IOV structure. This also shows the IOV
structure itself.

(Apart from its IOV functionality, MsgReceivev() operates just like
MsgReceive().)

Oops! We made the same mistake as we did before, when we
introduced the MsgReceive() function. How do we know what kind
of message we're receiving, and how much data is associated with it,
until we actually receive the message?

We can solve this the same way as before:

rcvid = MsgReceive (chid, &header, sizeof (header), NULL);
switch (header.message_type) {

case _IO-WRITE:
number_of_bytes = header.io_write.nbytes;
II allocate I find cache buffer entries
II fill 3-part IOV with cache buffers
MsgReadv (rcvid, iov, 3, sizeof (header.io_write));

Chapter 2 • Message Passing 141

Using message passing

What about the other
versions?

This does the initial MsgReceive() (note that we didn't use the IOV
form for this- there's really no need to do that with a one-part
message), figures out what kind of message it is, and then continues
reading the data out of the client's address space (starting at offset
sizeof (header. io_wri te)) into the cache buffers specified by
the 3-part IOV.

Notice that we switched from using a 4-part IOV (in the first example)
to a 3-part IOV. That's because in the first example, the first part of the
4-part IOV was the header, which we read directly using
MsgReceive(), and the last three parts of the 4-part IOV are the same
as the 3-part IOV- they specify where we'd like the data to go.

You can imagine how we'd perform the reply for a read request:

1 Find the cache entries that correspond to the requested data.

2 Fill an IOV structure with those entries.

3 Use MsgWritev() (or MsgReplyv()) to transfer the data to the
client.

Note that if the data doesn't start right at the beginning of a cache
block (or other data structure), this isn't a problem. Simply offset the
first IOV to point to where the data does start, and modify the size.

All the message-passing functions except the MsgSend*() family have
the same general form: if the function has a "v" at the end of it, it
takes an IOV and a number-of-parts; otherwise, it takes a pointer and
a length.

The MsgSend*() family has four major variations in terms of the
source and destinations for the message buffers, combined with two
variations of the kernel call itself.

Look at the following table:

142 Chapter 2 • Message Passing

Implementation

Using message passing

Function Send buffer Receive buffer

MsgSend() linear linear

MsgSendnc() linear linear

MsgSendsv() linear IOV

MsgSendsvnc() linear IOV

MsgSendvs() IOV linear

MsgSendvsnc() IOV linear

MsgSendv() IOV IOV

MsgSendvnc() IOV IOV

By "linear," I mean a single buffer of type void * is passed, along
with its length. The easy way to remember this is that the "v" stands
for "vector," and is in the same place as the appropriate parameter
first or second, referring to "send" or "receive," respectively.

Hmmm ... looks like the MsgSendsv() and MsgSendsvnc() functions
are identical, doesn't it? Well, yes, as far as their parameters go, they
indeed are. The difference lies in whether or not they are cancellation
points. The "nc" versions are not cancellation points, whereas the
non-"nc" versions are. (For more information about cancellation
points and cancelability in general, please consult the C Library
Reference, under pthread_cancel().)

You've probably already suspected that all the variants of the
MsgRead(), MsgReceive(), MsgSend(), and MsgWrite() functions are
closely related. (The only exception is MsgReceivePulse()- we'll
look at this one shortly.)

Which ones should you use? Well, that's a bit of a philosophical
debate. My own personal preference is to mix and match.

If I'm sending or receiving only one-part messages, why bother with
the complexity of setting up IOVs? The tiny amount of CPU overhead

Chapter 2 • Message Passing 143

Pulses

in setting them up is basically the same regardless of whether you set
it up yourself or let the kernel/library do it. The single-part message
approach saves the kernel from having to do address space
manipulations and is a little bit faster.

Should you use the lOY functions? Absolutely! Use them any time
you find yourself dealing with multipart messages. Never copy the
data when you can use a multipart message transfer with only a few
lines of code. This keeps the system screaming along by minimizing
the number of times data gets copied around the system; passing the
pointers is much faster than copying the data into a new buffer.

Pulses

All the messaging we've talked about so far blocks the client. It's nap
time for the client as soon as it calls MsgSend(). The client sleeps
until the server gets around to replying.

However, there are instances where the sender of a message can't
afford to block. We'll look at some examples in the Interrupts and
Clocks, Timers, and Getting a Kick Every So Often chapters, but for
now we should understand the concept.

The mechanism that implements a non-blocking send is called a
pulse. A pulse is a tiny message that:

• can carry 40 bits of payload (an 8-bit code and 32 bits of data)

• is non-blocking for the sender

• can be received just like any other message

• is queued if the receiver isn't blocked waiting for it.

144 Chapter 2 • Message Passing

Receiving a pulse
message

What's in a pulse?

Pulses

Receiving a pulse is very simple: a tiny, well-defined message is
presented to the MsgReceive(), as if a thread had sent a normal
message. The only difference is that you can't MsgReply() to this
message- after all, the whole idea of a pulse is that it's
asynchronous. In this section, we'll take a look at another function,
MsgReceivePulse(), that's useful for dealing with pulses.

The only "funny" thing about a pulse is that the receive ID that comes
back from the MsgReceive() function is zero. That's your indication
that this is a pulse, rather than a regular message from a client. You'll
often see code in servers that looks like this:

#include <syslneutrino.h>

rcvid = MsgReceive (chid, .••);
if (rcvid == 0) { II it's a pulse

II determine the type of pulse

II handle it
} else { II it's a regular message

II determine the type of message

II handle it
}

Okay, so you receive this message with a receive ID of zero. What
does it actually look like? From the <sys/neutrino.h> header file:

struct _pulse {
_uintl6
_uintl6
_int8
_uinta

};

union sigval
_int32

type;
subtype;
code;
zero [3];

value;
scoid;

Both the type and subtype members are zero (a further indication that
this is a pulse). The code and value members are set to whatever the
sender of the pulse determined. Generally, the code will be an

Chapter 2 • Message Passing 145

Pulses

indication of why the pulse was sent; the value will be a 32-bit data
value associated with the pulse. Those two fields are where the "40
bits" of content comes from; the other fields aren't user adjustable.

The kernel reserves negative values of code, leaving 127 values for
programmers to use as they see fit.

The value member is actually a union:

union sigval {

} ;

int
void

siva/_illf;
* siva/_.ptr;

Therefore (expanding on the server example above), you often see
code like:

#include <syslneutrino.h>

rcvid = MsgReceive {chid,

if {rcvid == 0) { II it's a pulse

II determine the type of pulse
switch {msg.pulse.code) {

case MY_PULSE-TIMER:
II One of your timers went off, do something
I I about it ...

break;

case MY_PULSE-HWINT:
II A hardware interrupt service routine sent
II you a pulse. There's a value in the "value"
II member that you need to examine:

val = msg.pulse.value.sival_int;

II Do something about it ...

break;

case _PULSE_CODE_UNBLOCK:
II A pulse from the kernel, indicating a client
II unblock was received, do something about it ...

146 Chapter 2 • Message Passing

The MsgReceivePulse()
function

break;

I I etc .••

} else II it's a regular message

}

II determine the type of message
II handle it

Pulses

This code assumes, of course, that you've set up your msg structure to
contain a struct _pulse pulse; member, and that the manifest
constants MY YULSE_TIMER and MY YULSE_HWINT are defined.
The pulse code YULSKCODKUNBLOCK is one of those
negative-numbered kernel pulses mentioned above. You can find a
complete list of them in <sys/neutrino. h> along with a brief
description of the value field.

The MsgReceive() and MsgReceivev() functions will receive either a
"regular" message or a pulse. There may be situations where you
want to receive only pulses. The best example of this is in a server
where you've received a request from a client to do something, but
can't complete the request just yet (perhaps you have to do a long
hardware operation). In such a design, you'd generally set up the
hardware (or a timer, or whatever) to send you a pulse whenever a
significant event occurs.

If you write your server using the classic "wait in an infinite loop for
messages" design, you might run into a situation where one client
sends you a request, and then, while you're waiting for the pulse to
come in (to signal completion of the request), another client sends
you another request. Generally, this is exactly what you want- after
all, you want to be able to service multiple clients at the same time.
However, there might be good reasons why this is not acceptable
servicing a client might be so resource-intensive that you want to limit
the number of clients.

Chapter 2 • Message Passing 147

Pulses

In that case, you now need to be able to "selectively" receive only a
pulse, and not a regular message. This is where MsgReceivePulse()
comes into play:

#include <sys/neutrino.h>

int MsgReceivePulse (int chid,
void *rmsg,
int rbytes,
structmsg_info *info);

As you can see, you use the same parameters as MsgReceive(); the
channel 10, the buffer (and its size), as well as the info parameter. (We
discussed the info parameter above, in "Who sent the message?".)
Note that the info parameter is not used in the case of a pulse; you
might ask why it's present in the parameter list. Simple answer: it was
easier to do it that way in the implementation. Just pass a NULL!

The MsgReceivePulse() function will receive nothing but pulses. So,
if you had a channel with a number of threads blocked on it via
MsgReceivePulse(), (and no threads blocked on it via MsgReceive()),
and a client attempted to send your server a message, the client would
remain SEND-blocked until a thread issued the MsgReceive() call.
Pulses would be transfered via the MsgReceivePulse() functions in the
meantime.

The only thing you can guarantee if you mix both MsgReceivePulse()
and MsgReceive() is that the MsgReceivePulse() will get pulses only.
The MsgReceive() could get pulses or messages! This is because,
generally, the use of the MsgReceivePulse() function is reserved for
the cases where you want to exclude regular message delivery to the
server.

This does introduce a bit of confusion. Since the MsgReceive()
function can receive both a message and a pulse, but the
MsgReceivePulse() function can receive only a pulse, how do you
deal with a server that makes use of both functions? Generally, the
answer here is that you'd have a pool of threads that are performing
MsgReceive(). This pool of threads (one or more threads; the number
depends on how many clients you're prepared to service concurrently)

148 Chapter 2 • Message Passing

The
MsgDeliverEvent()

function

Pulses

is responsible for handling client calls (requests for service). Since
you're trying to control the number of "service-providing threads,"
and since some of these threads may need to block, waiting for a
pulse to arrive (for example, from some hardware or from another
thread), you'd typically block the service-providing thread using
MsgReceivePulse(). This ensures that a client request won't "sneak
in" while you're waiting for the pulse (since MsgReceivePulse() will
receive only a pulse).

As mentioned above in "The send-hierarchy," there are cases when
you need to break the natural flow of sends.

Such a case might occur if you had a client that sent a message to the
server, the result might not be available for a while, and the client
didn't want to block. Of course, you could also partly solve this with
threads, by having the client simply "use up" a thread on the blocking
server call, but this may not scale well for larger systems (where you'd
be using up lots of threads to wait for many different servers). Let's
say you didn't want to use a thread, but instead wanted the server to
reply immediately to the client, "I'll get around to your request
shortly." At this point, since the server replied, the client is now free
to continue processing. Once the server has completed whatever task
the client gave it, the server now needs some way to tell the client,
"Hey, wakeup, I'm done." Obviously, as we saw in the send-hierarchy
discussion above, you can't have the server send a message to the
client, because this might cause deadlock if the client sent a message
to the server at that exact same instant. So, how does the server
"send" a message to a client without violating the send hierarchy?

It's actually a multi-step operation. Here's how it works:

1 The client creates a struct sigevent structure, and fills it
in.

2 The client sends a message to the server, effectively stating,
"Perform this specific task for me, reply right away, and by the
way, here's a struct sigevent that you should use to notify
me when the work is completed."

Chapter 2 • Message Passing 149

Pulses

3 The server receives the message (which includes the struet

sigevent), stores the struet sigevent and the receive ID
away, and replies immediately to the client.

4 The client is now running, as is the server.

5 When the server completes the work, the server uses
MsgDeliverEvent() to inform the client that the work is now
complete.

We'll take a look in detail at the struet sigevent in the Clocks,
Timers, and Getting a Kick Every So Often chapter, under "How to
fill in the s true t s igeven t." For now, just think of the s true t

sigevent as a "black box" that somehow contains the event that the
server uses to notify the client.

Since the server stored the struet sigevent and the receive ID
from the client, the server can now call MsgDeliverEvent() to deliver
the event, as selected by the client, to the client:

int
MsgDeliverEvent (int rcvid,

const struct sigevent *event) ;

Notice that the MsgDeliverEvent() function takes two parameters, the
receive ID (in rcvid) and the event to deliver in event. The server does
not modify or examine the event in any way! This point is important,
because it allows the server to deliver whatever kind of event the
client chose, without any specific processing on the server's part.
(The server can, however, verify that the event is valid by using the
MsgVerifyEvent() function.)

The rcvid is a receive ID that the server got from the client. Note that
this is indeed a special case. Generally, after the server has replied to
a client, the receive ID ceases to have any meaning (the reasoning
being that the client is unblocked, and the server couldn't unblock it
again, or read or write data from/to the client, etc.). But in this case,
the receive ID contains just enough information for the kernel to be
able to decide which client the event should be delivered to. When the

150 Chapter 2 • Message Passing

Channel flags

Pulses

server calls the MsgDeliverEvent() function, the server doesn't block
- this is a non-blocking call for the server. The client has the event
delivered to it (by the kernel), and may then perform whatever actions
are appropriate.

When we introduced the server (in "The server"), we mentioned that
the ChannelCreate() function takes ajlags parameter and that we'd
just leave it as zero.

Now it's time to explain the .flags. We'll examine only a few of the
possible flags values:

_NTO_CHF _FIXED_PRIORITY

The receiving thread will not change priority based on the
priority of the sender. (We talk more about priority issues in the
"Priority inheritance" section, below). Ordinarily (i.e., if you
don't specify this flag), the receiving thread's priority is
changed to that of the sender.

_NTO_CHF _UNBLOCK

The kernel delivers a pulse whenever a client thread attempts to
unblock. The server must reply to the client in order to allow
the client to unblock. We'll discuss this one below, because it
has some very interesting consequences, for both the client and
the server.

_NTO_CHF _THREAD _DEATH

The kernel delivers a pulse whenever a thread blocked on this
channel dies. This is useful for servers that want to maintain a
fixed "pool of threads" available to service requests at all times.

_NTO _CHF _DISCONNECT

The kernel delivers a pulse whenever all connections from a
single client have been disconnected from the server.

Chapter 2 • Message Passing 151

Pulses

_NTO_CHF _UNBLOCK

_NTO_CHF _SENDER__LEN

The kernel delivers the client's message size as part of the
information given to the server (the srcmsglen member of the
structmsg_info structure).

_NTO_CHF _REPLY _LEN

The kernel delivers the client's reply message buffer size as part
of the information given to the server (the dstmsglen member of
the structmsg_info structure).

_NTO_CHF _CQID_DISCONNECT

The kernel delivers a pulse whenever any connection owned by
this process is terminated due to the channel on the other end
going away.

Let's look at the _NTO_CHF _UNBLOCK flag; it has a few interesting
wrinkles for both the client and the server.

Normally (i.e., where the server does not specify the
_NTO_CHF_UNBLOCK flag) when a client wishes to unblock from a
MsgSend() (and related MsgSendv(), MsgSendvs(), etc. family of
functions), the client simply unblocks. The client could wish to
unblock due to receiving a signal or a kernel timeout (see the
TimerTimeout() function in the C Library Reference, and the Clocks,
Timers, and Getting a Kick Every So Often chapter). The unfortunate
aspect to this is that the server has no idea that the client has
unblocked and is no longer waiting for a reply. Note that it isn't
possible to write a reliable server with this flag off, except in very
special situations which require cooperation between the server and
all its clients.

Let's assume that you have a server with multiple threads, all blocked
on the server's MsgReceive() function. The client sends a message to
the server, and one of the server's threads receives it. At this point, the
client is blocked, and a thread in the server is actively processing the
request. Now, before the server thread has a chance to reply to the
client, the client unblocks from the MsgSend() (let's assume it was
because of a signal).

152 Chapter 2 • Message Passing

Pulses

Remember, a server thread is still processing the request on behalf of
the client. But since the client is now unblocked (the client's
MsgSend() would have returned with EINTR), the client is free to send
another request to the server. Thanks to the architecture of Neutrino
servers, another thread would receive another message from the client,
with the exact same receive ID! The server has no way to tell these
two requests apart! When the first thread completes and replies to the
client, it's really replying to the second message that the client sent,
not the first message (as the thread actually believes that it's doing).
So, the server's first thread replies to the client's second message.

This is bad enough; but let's take this one step further. Now the
server's second thread completes the request and tries to reply to the
client. But since the server's first thread already replied to the client,
the client is now unblocked and the server's second thread gets an
error from its reply.

This problem is limited to multithreaded servers, because in a
singlethreaded server, the server thread would still be busy working
on the client's first request. This means that even though the client is
now unblocked and sends again to the server, the client would now go
into the SEND-blocked state (instead of the REPLY-blocked state),
allowing the server to finish the processing, reply to the client (which
would result in an error, because the client isn't REPLY-blocked any
more), and then the server would receive the second message from the
client. The real problem here is that the server is performing useless
processing on behalf of the client (the client's first request). The
processing is useless because the client is no longer waiting for the
results of that work.

The solution (in the multithreaded server case) is to have the server
specify the _NTQ_CHF _UNBLOCK flag to its ChannelCreate() call.
This says to the kernel, "Tell me when a client tries to unblock from
me (by sending me a pulse), but don't let the client unblock! I'll
unblock the client myself."

Chapter 2 • Message Passing 153

Pulses

Action

client sends to server

client gets hit with signal

The key thing to keep in mind is that this server flag changes the
behaviour of the client by not allowing the client to unblock until the
server says it's okay to do so.
In a single-threaded server, the following happens:

Client Server

blocked processing

blocked processing

kernel sends pulse to server blocked processing (1st message)

server completes 1st request, unblocked with processing (pulse)
replies to client correct data

This didn't help the client unblock when it should have, but it did
ensure that the server didn't get confused. In this kind of example, the
server would most likely simply ignore the pulse that it got from the
kernel. This is okay to do - the assumption being made here is that
it's safe to let the client block until the server is ready with the data.

If you want the server to act on the pulse that the kernel sent, there are
two ways to do this:

• Create another thread in the server that listens for messages
(specifically, listening for the pulse from the kernel). This second
thread would be responsible for canceling the operation that's
under way in the first thread. One of the two threads would reply
to the client.

• Don't do the client's work in the thread itself, but rather queue up
the work. This is typically done in applications where the server is
going to store the client's work on a queue and the server is event
driven. Usually, one of the messages arriving at the server indicates
that the client's work is now complete, and that the server should
reply. In this case, when the kernel pulse arrives, the server cancels
the work being performed on behalf of the client and replies.

154 Chapter 2 • Message Passing

Pulses

Which method you choose depends on the type of work the server
does. In the first case, the server is actively performing the work on
behalf of the client, so you really don't have a choice- you'll have
to have a second thread that listens for unblock-pulses from the kernel
(or you could poll periodically within the thread to see if a pulse has
arrived, but polling is generally discouraged).

In the second case, the server has something else doing the work -
perhaps a piece of hardware has been commanded to "go and collect
data." In that case, the server's thread will be blocked on the
MsgReceive() function anyway, waiting for an indication from the
hardware that the command has completed.

In either case, the server must reply to the client, otherwise the client
will remain blocked.

Synchronization problem

Even if you use the _NTO_CHF _UNBLOCK flag as described above,
there's still one more synchronization problem to deal with. Suppose
that you have multiple server threads blocked on the MsgReceive()
function, waiting for messages or pulses, and the client sends you a
message. One thread goes off and begins the client's work. While
that's happening, the client wishes to unblock, so the kernel generates
the unblock pulse. Another thread in the server receives this pulse. At
this point, there's a race condition- the first thread could be just
about ready to reply to the client. If the second thread (that got the
pulse) does the reply, then there's a chance that the client would
unblock and send another message to the server, with the server's first
thread now getting a chance to run and replying to the client's second
request with the first request's data:

Chapter 2 • Message Passing 155

Pulses

::l
3
CD

Server Threads Client Thread

~T1
MsgRecei ve ~-------=------r--- MsgSend

(gets 1st message) G) (to server)

t ® Processing ...

MsgRecei ve +---~(gets hit with a
(gets unblock pulse) 8J signal here)

• @ MsgReply ---+~ client unblocks
(to unblock) from MsgSend

t
Processing

• MsgReceive ..---~ MsgSend

(gets 2nd message) ® (to server)

• Processing ...

------+-----+-... client unblocks @ MsgReply

(to 1st message) @from MsgSend

with data from
1st request!

Confusion in a multithreaded server.

Or, if the thread that got the pulse is just about to reply to the client,
and the first thread does the reply, then you have the same situation
the first thread unblocks the client, who sends another request, and the
second thread (that got the pulse) now unblocks the client's second
request.

The situation is that you have two parallel flows of execution (one
caused by the message, and one caused by the pulse). Ordinarily,
we'd immediately recognize this as a situation that requires a mutex.

156 Chapter 2 • Message Passing

Pulses

Unfortunately, this causes a problem- the mutex would have to be
acquired immediately after the MsgReceive() and released before the
MsgReply(). While this will indeed work, it defeats the whole purpose
of the unblock pulse! (The server would either get the message and
ignore the unblock pulse until after it had replied to the client, or the
server would get the unblock pulse and cancel the client's second
operation.)

A solution that looks promising (but is ultimately doomed to failure)
would be to have a fine-grained mutex. What I mean by that is a
mutex that gets locked and unlocked only around small portions of the
control flow (the way that you're supposed to use a mutex, instead of
blocking the entire processing section, as proposed above). You'd set
up a "Have we replied yet?" flag in the server, and this flag would be
cleared when you received a message and set when you replied to a
message. Just before you replied to the message, you'd check the flag.
If the flag indicates that the message has already been replied to,
you'd skip the reply. The mutex would be locked and unlocked
around the checking and setting of the flag.

Unfortunately, this won't work because we're not always dealing with
two parallel flows of execution- the client won't always get hit with
a signal during processing (causing an unblock pulse). Here's the
scenario where it breaks:

• The client sends a message to the server; the client is now blocked,
the server is now running.

• Since the server received a request from the client, the flag is reset
to 0, indicating that we still need to reply to the client.

• The server replies normally to the client (because the flag was set
to 0) and sets the flag to 1 indicating that, if an unblock-pulse
arrives, it should be ignored.

• (Problems begin here.) The client sends a second message to the
server, and almost immediately after sending it gets hit with a
signal; the kernel sends an unblock-pulse to the server.

Chapter 2 • Message Passing 157

Pulses

• The server thread that receives the message was about to acquire
the mutex in order to check the flag, but didn't quite get there (it
got preempted).

• Another server thread now gets the pulse and, because the flag is
still set to a 1 from the last time, ignores the pulse.

• Now the server's first thread gets the mutex and clears the flag.

• At this point, the unblock event has been lost.

If you refine the flag to indicate more states (such as pulse received,
pulse replied to, message received, message replied to), you'll still run
into a synchronization race condition because there's no way for you
to create an atomic binding between the flag and the receive and reply
function calls. (Fundamentally, that's where the problem lies- the
small timing windows after a MsgReceive() and before the flag is
adjusted, and after the flag is adjusted just before the MsgReply().)
The only way to get around this is to have the kernel keep track of the
flag for you.

Using the _NTO_MLUNBLOCK_REQ

Luckily, the kernel keeps track of the flag for you as a single bit in the
message info structure (the struct _msg_info that you pass as the
last parameter to MsgReceive(), or that you can fetch later, given the
receive ID, by calling Msglnfo()).

This flag is called _NTO_MLUNBLOCK_REQ and is set if the client
wishes to unblock (for example, after receiving a signal).

This means that in a multithreaded server, you'd typically have a
"worker" thread that's performing the client's work, and another
thread that's going to receive the unblock message (or some other
message; we'll just focus on the unblock message for now). When
you get the unblock message from the client, you'd set a flag to
yourself, letting your program know that the thread wishes to
unblock.

158 Chapter 2 • Message Passing

Message passing over a network

There are two cases to consider:

• the "worker" thread is blocked; or

• the "worker" thread is running.

If the worker thread is blocked, you'll need to have the thread that got
the unblock message awaken it. It might be blocked if it's waiting for
a resource, for example. When the worker thread wakes up, it should
examine the ..NTO_MLUNBLOCK_REQ flag, and, if set, reply with an
abort status. If the flag isn't set, then the thread can do whatever
normal processing it does when it wakes up.

Alternatively, if the worker thread is running, it should periodically
check the "flag to self" that the unblock thread may have set, and if
the flag is set, it should reply to the client with an abort status. Note
that this is just an optimization: in the unoptimized case, the worker
thread would constantly call "Msginfo" on the receive ID and check
the ..NTO_MLUNBLOCK_REQ bit itself.

Message passing over a network

To keep things clear, I've avoided talking about how you'd use
message passing over a network, even though this is a crucial part of
Neutrino's flexibility!

Everything you've learned so far applies to message passing over the
network.

Earlier in this chapter, I showed you an example:

#include <fcntl.h>
#include <unistd.h>

int
main (void)
{

int fd;

Chapter 2 • Message Passing 159

Message passing over a network

fd = open ("/net/wintermute/home/rk/filename", Q_WRONLY);
write (fd, "This is message passing\n", 24);
close (fd);

return (EXIT_SUCCESS);
}

At the time, I said that this was an example of "using message passing
over a network." The client creates a connection to a ND/PID/CHID
(which just happens to be on a different node), and the server
performs a MsgReceive() on its channel. The client and server are
identical in this case to the local, single-node case. You could stop
reading right here- there really isn't anything "tricky" about
message passing over the network. But for those readers who are
curious about the how of this, read on!

Now that we've seen some of the details of local message passing, we
can discuss in a little more depth how message passing over a network
works. While this discussion may seem complicated, it really boils
down to two phases: name resolution, and once that's been taken care
of, simple message passing.

Here's a diagram that illustrates the steps we'll be talking about:

magenta wintermute

@ qnet qnet
resmgr resmgr

@ @ @
qnet qnet

network network

0
handler 0 handler

Message passing over a network. Notice that qnet is divided into two

sections.

160 Chapter 2 • Message Passing

Message passing over a network

In the diagram, our node is called magenta, and, as implied by the
example, the target node is called wintermute.

Let's analyze the interactions that occur when a client program uses
qnet to access a server over the network:

The client's open() function was told to open a filename that
happened to have /net in front of it. (The name /net is the
default name manifested by qnet -consult the documentation
that came with your Neutrino development system under
npm-qnet for further details.) This client has no idea who is
responsible for that particular pathname, so it connects to the
process manager (step 1) in order to find out who actually owns
the resource. This is done regardless of whether we're passing
messages over a network and happens automatically. Since the
native Neutrino network manager, qnet, "owns" all pathnames
that begin with /net, the process manager returns information
to the client telling it to ask qnet about the pathname.

2 The client now sends a message to qnet's resource manager
thread, hoping that qnet will be able to handle the request.
However, qnet on this node isn't responsible for providing the
ultimate service that the client wants, so it tells the client that it
should actually contact the process manager on node
wintermute. (The way this is done is via a "redirect"
response, which gives the client the ND/PID/CHID of a server
that it should contact instead.) This redirect response is also
handled automatically by the client's library.

3 The client now connects to the process manager on
wintermute. This involves sending an off-node message
through qnet's network-handler thread. The qnet process on
the client's node gets the message and transports it over the
medium to the remote qnet, which delivers it to the process
manager on wintermute. The process manager there resolves
the rest of the pathname (in our example, that would be the
"/home/rk/filename" part) and sends a redirect message
back. This redirect message follows the reverse path (from the

Chapter 2 • Message Passing 161

Message passing over a network

server's qnet over the medium to the qnet on the client's
node, and finally back to the client). This redirect message now
contains the location of the server that the client wanted to
contact in the first place, that is, the ND/PID/CHID of the
server that's going to service the client's requests. (In our
example, the server was a filesystem.)

4 The client now sends the request to that server. The path
followed here is identical to the path followed in step 3 above,
except that the server is contacted directly instead of going
through the process manager.

Once steps 1 through 3 have been established, step 4 is the model for
all future communications. In our client example above, the open(),
read(), and close() messages all take path number 4. Note that the
client's open() is what triggered this sequence of events to happen in
the first place - but the actual open message flows as described
(through path number 4).

I@' For the really interested reader: I've left out one step. During step 2,
when the client asks qnet about wintermute, qnet needs to figure
out who wintermute is. This may result in qnet performing one
more network transaction to resolve the nodename. The diagram
presented above is correct if we assume that qnet already knew about
wintermute.

Networked
message passing

differences

We'll come back to the messages used for the open(), read(), and
close() (and others) in the Resource Managers chapter.

So, once the connection is established, all further messaging flows
using step 4 in the diagram above. This may lead you to the erroneous
belief that message passing over a network is identical to message
passing in the local case. Unfortunately, this is not true. Here are the
differences:

• longer delays

162 Chapter 2 • Message Passing

Longer delays

Impact on
ConnectAttach()

Impact on
MsgDeliverEvent()

Message passing over a network

• ConnectAttach() returns success regardless of whether the node is
alive or not - the real error indication happens on the first
message pass

• MsgDeliverEvent() isn't guaranteed reliable

• MsgReply(), MsgRead(), Msg Write() are now blocking calls,
whereas in the local case they are not

• MsgReceive() won't receive all the data sent by the client; the
server will need to call MsgRead() to get the rest.

Since message passing is now being done over some medium, rather
than a direct kernel-controlled memory-to-memory copy, you can
expect that the amount of time taken to transfer messages will be
significantly higher (100 MBit Ethernet versus lOOMHz 64-bit wide
DRAM is going to be an order of magnitude or two slower). Plus, on
top of this will be protocol overhead (minimal) and retries on lossy
networks.

When you call ConnectAttach(), you're specifying an ND, a PID, and
a CHID. All that happens in Neutrino is that the kernel returns a
connection ID to the qnet "network handler" thread pictured in the
diagram above. Since no message has been sent, you're not informed
as to whether the node that you've just attached to is still alive or not.
In normal use, this isn't a problem, because most clients won't be
doing their own ConnectAttach()- rather, they'll be using the
services of the library call open(), which does the ConnectAttach()
and then almost immediately sends out an "open" message. This has
the effect of indicating almost immediately if the remote node is alive
or not.

When a server calls MsgDeliverEvent() locally, it's the kernel's
responsibility to deliver the event to the target thread. With the
network, the server still calls MsgDeliverEvent(), but the kernel
delivers a "proxy" of that event to qnet, and it's up to qnet to deliver
the proxy to the other (client-side) qnet, who'll then deliver the
actual event to the client. Things can get screwed up on the server

Chapter 2 • Message Passing 163

Message passing over a network

Impact on MsgReply(),
MsgRead(), and

MsgWrite()

Impact on MsgReceive()

side, because the MsgDeliverEvent() function call is non-blocking
this means that once the server has called MsgDeliverEvent() it's
running. It's too late to turn around and say, "I hate to tell you this,
but you know that MsgDeliverEvent() that I said succeeded? Well, it
didn't!"

To prevent the problem I just mentioned with MsgDeliverEvent()
from happening with MsgReply(), MsgRead(), and MsgWrite(), these
functions were transformed into blocking calls when used over the
network. Locally they'd simply transfer the data and unblock
immediately. On the network, we have to (in the case of MsgReply())
ensure that the data has been delivered to the client or (in the case of
the other two) to actually transfer the data to or from the client over
the network.

Finally, MsgReceive() is affected as well (in the networked case). Not
all the client's data may have been transferred over the network by
qnet when the server's MsgReceive() unblocks. This is done for
performance reasons.

There are two flags in the structmsg_info that's passed as the
last parameter to MsgReceive() (we've seen this structure in detail in
"Who sent the message?" above):

msglen

srcmsglen

indicates how much data was actually transfered by
the MsgReceive() (qnet likes to transfer 8k).

indicates how much data the client wanted to transfer
(determined by the client).

So, if the client wanted to transfer 1 megabyte of data over the
network, the server's MsgReceive() would unblock and msglen would
be set to 8192 (indicating that 8192 bytes were available in the buffer),
while srcmsglen would be set to 1048576 (indicating that the client
tried to send 1 megabyte).

The server then uses MsgRead() to get the rest of the data from the
client's address space.

164 Chapter 2 • Message Passing

Some notes on
NOs

Message passing over a network

The other "funny" thing that we haven't yet talked about when it
comes to message passing is this whole business of a "node
descriptor" or just "ND" for short.

Recall that we used symbolic node names, like /net/wintermute
in our examples. Under QNX 4 (the previous version of the OS before
Neutrino), native networking was based on the concept of a node ID,
a small integer that was unique on the network. Thus, we'd talk about
"node 61 ," or "node 1 ," and this was reflected in the function calls.

Under Neutrino, all nodes are internally referred to by a 32-bit
quantity, but it's not network unique! What I mean by that is that
wintermute might think of spud as node descriptor number "7,"
while spud might think of magenta as node descriptor number "7"
as well. Let me expand that to give you a better picture. This table
shows some sample node descriptors that might be used by three
nodes, wintermute, spud, and foobar:

Node wintermute spud foobar

wintermute 0 7 4

spud 4 0 6

foobar 5 7 0

Notice how each node's node descriptor for itself is zero. Also notice
how wintermute's node descriptor for spud is "7," as is foobar's
node descriptor for spud. But wintermute's node descriptor for
foobar is "4" while spud's node descriptor for foobar is "6." As I
said, they're not unique across the network, although they are unique
on each node. You can effectively think of them as file descriptors
two processes might have the same file descriptor if they access the
same file, but they might not; it just depends on who opened which
file when.

Fortunately, you don't have to worry about node descriptors, for a
number of reasons:

Chapter 2 • Message Passing 165

Message passing over a network

1 Most of the off-node message passing you'll typically be doing
will be through higher-level function calls (like open(), as
shown in the example above).

2 Node descriptors are not to be cached- if you get one, you're
supposed to use it immediately and then forget about it.

3 There are library calls to convert a pathname (like
/net/magenta) to a node descriptor.

To work with node descriptors, you'll want to include the file
<sys/netmgr. h> because it includes a bunch of netmgr_ *()
functions.

You'd use the function netmgr __strtond() to convert a string into a node
descriptor. Once you have this node descriptor, you'd use it
immediately in the ConnectAttach() function call. Specifically, you
shouldn't ever cache it in a data structure! The reason is that the
native networking manager may decide to reuse it once all
connections to that particular node are disconnected. So, if you got a
node descriptor of "7" for /net/magenta, and you connected to it,
sent a message, and then disconnected, there's a possibility that the
native networking manager will return a node descriptor of "7" again
for a different node.

Since node descriptors aren't unique per network, the question that
arises is, "How do you pass these things around the network?"
Obviously, magenta's view of what node descriptor "7" is will be
radically different from wintermute's. There are two solutions here:

• Don't pass around node descriptors; use the symbolic names (e.g.,
/net/wintermute) instead.

• Use the netmgr _remoteJid() function.

The first is a good general-purpose solution. The second solution is
reasonably simple to use:

166 Chapter 2 • Message Passing

Message passing over a network

int
netmgr_remote...nd (int remote...nd, int local...nd);

This function takes two parameters: the remote__nd is the node
descriptor of the target machine, and local__nd is the node descriptor
(from the local machine's point of view) to be translated to the remote
machine's point of view. The result is the node descriptor that is valid
from the remote machine's point of view.

For example, let's say wintermute is our local machine. We have a
node descriptor of "7" that is valid on our local machine and points to
magenta. What we'd like to find out is what node descriptor
magenta uses to talk to us:

int remote...nd;
int magenta...nd;

magenta...nd = netmgr_strtond ("/net/magenta", NULL);
printf ("Magenta's ND is %d\n", magenta...nd);
remote...nd = netmgr_remote...nd (magenta...nd, ND_LOCAL_NODE);

printf ("From magenta's point of view, we're ND %d\n",
remote...nd) ;

This might print something similar to:

Magenta's ND is 7
From magenta's point of view, we're ND 4

This says that on magenta, the node descriptor "4" refers to our
node. (Notice the use of the special constant ND_LOCALNODE,

which is really zero, to indicate "this node.")

Now, recall that we said (in "Who sent the message?") that the
struct ...msg_info contains, among other things, two node
descriptors:

struct ...msg_info
{

int nd;
int srcnd;

} ;

Chapter 2 • Message Passing 167

Priority inheritance

We stated in the description for those two fields that:

• nd is the receiving node's node descriptor for the transmitting node

• srcnd is the transmitting node's node descriptor for the receiving
node

So, for our example above, where wintermute is the local node and
magenta is the remote node, when magenta sends a message to us
(wintermute), we'd expect that:

• nd would contain 7

• srcnd would contain 4.

Priority inheritance

One of the interesting issues in a realtime operating system is a
phenomenon known as priority inversion.

Priority inversion manifests itself as, for example, a low-priority
thread consuming all available CPU time, even though a
higher-priority thread is ready to run.

Now you're probably thinking, "Wait a minute! You said that a
higher-priority thread will always preempt a lower-priority thread!
How can this be?"

This is true- a higher-priority thread will always preempt a
lower-priority thread. But something interesting can happen. Let's
look at a scenario where we have three threads (in three different
processes, just to keep things simple), "L" is our low-priority thread,
"H" is our high-priority thread, and "S" is a server. This diagram
shows the three threads and their priorities:

168 Chapter 2 • Message Passing

Priority inheritance

Three threads at different priorities.

Currently, His running. S, a higher-priority server thread, doesn't
have anything to do right now so it's waiting for a message and is
blocked in MsgReceive(). L would like to run but is at a lower priority
than H, which is running. Everything is as you'd expect, right?

Now H has decided that it would like to go to sleep for 100
milliseconds -perhaps it needs to wait for some slow hardware. At
this point, L is running.

This is where things get interesting.

As part of its normal operation, L sends a message to the server thread
S, causing S to go READY and (because it's the highest-priority thread
that's READY) to start running. Unfortunately, the message that L sent
to S was "Compute pi to 50 decimal places."

Obviously, this takes more than 100 milliseconds. Therefore, when
H's 100 milliseconds are up and H goes READY, guess what? It won't
run, because S is READY and at a higher priority!

What happened is that a low-priority thread prevented a
higher-priority thread from running by leveraging the CPU via an
even higher-priority thread. This is priority inversion.

To fix it, we need to talk about priority inheritance. A simple fix is to
have the server, S, inherit the priority of the client thread:

Chapter 2 • Message Passing 169

Priority inheritance

SEND-blocked

REPLY -blocked

Blocked threads.

In this scenario, when H's 100 millisecond sleep has completed, it
goes READY and, because it's the highest-priority READY thread,
runs.

Not bad, but there's one more "gotcha."

Suppose that H now decides that it too would like a computation
performed. It wants to compute the 5,034th prime number, so it sends
a message to S and blocks.

However, S is still computing pi, at a priority of 5! In our example
system, there are lots of other threads running at priorities higher than
5 that are making use of the CPU, effectively ensuring that S isn't
getting much time to calculate pi.

This is another form of priority inversion. In this case, a
lower-priority thread has prevented a higher-priority thread from
getting access to a resource. Contrast this with the first form of
priority inversion, where the lower-priority thread was effectively
consuming CPU- in this case it's only preventing a higher-priority
thread from getting CPU- it's not consuming any CPU itself.

Luckily, the solution is fairly simple here too. Boost the server's
priority to be the highest of all blocked clients:

170 Chapter 2 • Message Passing

So what's the
trick?

Priority inheritance

SEND-blocked

0
READY

REPLY -blocked

Boosting the server's priority.

This way we take a minor hit by letting L's job run at a priority higher
than L, but we do ensure that H gets a fair crack at the CPU.

There's no trick! Neutrino does this automatically for you. (You can
turn off priority inheritence if you don't want it; see the
_NTO_CHF _FIXED_FRIORITY flag in the ChannelCreate() function's
documentation.)

Neutrino only does this one level deep- if a client sent to a server,
and that server sent to another server, the second server would inherit
the normal priority of the first server's thread, not the priority that the
first server's thread inherited. This means that if a higher-priority
thread blocked on the first server, only the first server's priority would
be boosted (but since it's blocked anyway on the second server, this
doesn't do much good, because the second server's priority does not
get boosted). Beware!

There's a minor design issue here, however. How do you revert the
priority to what it was before it got changed?

Your server is running along, servicing requests from clients,
adjusting its priority automagically when it unblocks from the

Chapter 2 • Message Passing 171

Priority inheritance

Summary

MsgReceive() call. But when should it adjust its priority back to what
it was before the MsgReceive() call changed it?

There are two cases to consider:

• The server performs some additional processing after it properly
services the client. This should be done at the server's priority, not
the client's.

• The server immediately does another MsgReceive() to handle the
next client request.

In the first case, it would be incorrect for the server to run at the
client's priority when it's no longer doing work for that client! The
solution is fairly simple. Use the pthread...setschedparam() function
(discussed in the Processes and Threads chapter) to revert the priority
back to what it should be.

What about the other case? The answer is subtly simple: Who cares?

Think about it. What difference does it make if the server becomes
RECEIVE-blocked when it was priority 29 versus when it was priority
2? The fact of the matter is it's RECEIVE-blocked! It isn't getting any
CPU time, so its priority is irrelevant. As soon as the MsgReceive()
function unblocks the server, the (new) client's priority is inherited by
the server and everything works as expected.

Message passing is an extremely powerful concept and is one of the
main features on which Neutrino (and indeed, all past QSSL
operating systems) is built.

With message passing, a client and a server exchange messages
(thread-to-thread in the same process, thread-to-thread in different
processes on the same node, or thread-to-thread in different processes
on different nodes in a network). The client sends a message and
blocks until the server receives the message, processes it, and replies
to the client.

The main advantages of message passing are:

172 Chapter 2 • Message Passing

Priority inheritance

• The content of a message doesn't change based on the location of
the destination (local versus networked).

• A message provides a "clean" decoupling point for clients and
servers.

• Implicit synchronization and serialization helps simplify the
design of your applications.

Chapter 2 • Message Passing 173

Chapter3

Clocks, Timers, and Getting a Kick
Every So Often

In this chapter ...
Clocks and timers
Using timers
Advanced topics

Chapter 3 • Clocks, Timers, and Getting a Kick Every So Often 175

Operating
periodically

Clocks and timers

Clocks and timers

It's time to take a look at everything related to time in Neutrino. We'll
see how and why you'd use timers and the theory behind them. Then
we'll take a look at getting and setting the realtime clock.

Let's look at a typical system, say a car. In this car, we have a bunch
of programs, most of which are running at different priorities. Some
of these need to respond to actual external events (like the brakes or
the radio tuner), while others need to operate periodically (such as the
diagnostics system).

So how does the diagnostics system "operate periodically?" You can
imagine some process in the car's CPU that does something similar to
the following:

II Diagnostics Process

int
main (void) II ignore arguments here
{

}

for (;;) {
perform_diagnostics ();
sleep (15) ;

}

II You'll never get here.
return (EXIT-SUCCESS);

Here we see that the diagnostics process runs forever. It performs one
round of diagnostics and then goes to sleep for 15 seconds, wakes up,
goes through the loop again, and again, ...

Way back in the dim, dark days of single-tasking, where one CPU was
dedicated to one user, these sorts of programs were implemented by
having the sleep (15); code do a busy-wait loop. You'd calculate
how fast your CPU was and then write your own sleep() function:

Chapter 3 • Clocks, Timers, and Getting a Kick Every So Often 177

Clocks and timers

void
sleep (int nseconds)
{

long i;

while (nseconds--) {
for (i = 0; i < CALIBRATED-VALUE; i++)

}
}

In those days, since nothing else was running on the machine, this
didn't present much of a problem, because no other process cared that
you were hogging 100% of the CPU in the sleep() function.

~ Even today, we sometimes hog 100% of the CPU to do timing
functions. Notably, the nanospin() function is used to obtain very
fine-grained timing, but it does so at the expense of burning CPU at its
priority. Use with caution!

If you did have to perform some form of "multitasking," it was
usually done via an interrupt routine that would hang off the hardware
timer or be performed within the "busy-wait" period, somewhat
affecting the calibration of the timing. This usually wasn't a concern.

Luckily we've progressed far beyond that point. Recall from
"Scheduling and the real world," in the Processes and Threads
chapter, what causes the kernel to reschedule threads:

• a hardware interrupt

• a kernel call

• a fault (exception)

In this chapter, we're concerned with the first two items on the list:
the hardware interrupt and the kernel call.

When a thread calls sleep(), the C library contains code that
eventually makes a kernel call. This call tells the kernel, "Put this

178 Chapter 3 • Clocks, Timers, and Getting a Kick Every So Often

Clock interrupt
sources

Clocks and timers

thread on hold for a fixed amount of time." The call removes the
thread from the running queue and starts a timer.

Meanwhile, the kernel has been receiving regular hardware interrupts
from the computer's clock hardware. Let's say, for argument's sake,
that these hardware interrupts occur at exactly 1 0-rnillisecond
intervals.

Let's restate: every time one of these interrupts is handled by the
kernel's clock interrupt service routine (ISR), it means that 10 ms
have gone by. The kernel keeps track of the time of day by
incrementing its time-of-day variable by an amount corresponding to
10 ms every time the ISR runs.

So when the kernel implements a 15-second timer, all it's really doing
is:

1 Setting a variable to the current time plus 15 seconds.

2 In the clock ISR, comparing this variable against the time of
day.

3 When the time of day is the same as (or greater than) the
variable, putting the thread back onto the READY queue.

When multiple timers are outstanding, as would be the case if several
threads all needed to be woken at different times, the kernel would
simply queue the requests, sorting them by time order- the nearest
one would be at the head of the queue, and so on. The variable that
the ISR looks at is the one at the head of this queue.

That's the end of the timer five-cent tour.

Actually, there's a little bit more to it than first meets the eye.

So where does the clock interrupt come from? Here's a diagram that
shows the hardware components (and some typical values for a PC)
responsible for generating these clock interrupts:

Chapter 3 • Clocks, Timers, and Getting a Kick Every So Often 179

Clocks and timers

r--

1.1931816 c ------. Apps
MHz Clock L 75

~
0
c
K

Time of 82C54 ------. Apps
+ 11931 H Day

A
N

~------. Timers Apps

E
R .__

PC clock interrupt sources.

As you can see, there's a high-speed (MHz range) clock produced by
the circuitry in the PC. This high-speed clock is then divided by a
hardware counter (the 82C54 component in the diagram), which
reduces the clock rate to the kHz or hundreds of Hz range (i.e.,
something that an ISR can actually handle). The clock ISR is a
component of the kernel and interfaces directly with the data
structures and code of the kernel itself. On non-x86 architectures
(MIPS, PowerPC), a similar sequence of events occurs; some chips
have clocks built into the processor.

Note that the high-speed clock is being divided by an integer divisor.
This means the rate isn't going to be exactly 10 ms, because the
high-speed clock's rate isn't an integer multiple of 10 ms. Therefore,
the kernel's ISR in our example above might actually be interrupted
after 9.9999296004 ms.

Big deal, right? Well, sure, it's fine for our 15-second counter. 15
seconds is 1500 timer ticks- doing the math shows that it's
approximately 106 ~-ts off the mark:

15 s- 1500 x 9.9999296004 ms

= 15000 ms- 14999.8944006 ms
= 0.1055994 ms

180 Chapter 3 • Clocks, Timers, and Getting a Kick Every So Often

Base timing
resolution

Getting more precision

Timing jitter

Clocks and timers

= 105.5994 /-lS

Unfortunately, continuing with the math, that amounts to 608 ms per
day, or about 18.5 seconds per month, or almost 3.7 minutes per year!

You can imagine that with other divisors, the error could be greater or
smaller, depending on the rounding error introduced. Luckily, the
kernel knows about this and corrects for it.

The point of this story is that regardless of the nice round value
shown, the real value is selected to be the next faster value.

Let's say that the timer tick is operating at just slightly faster than
10 ms. Can I reliably sleep for 3 milliseconds?

Nope.

Consider what happens in the kernel. You issue the C-library delay()
call to go to sleep for 3 milliseconds. The kernel has to set the variable
in the ISR to some value. If it sets it to the current time, this means the
timer has already expired and that you should wake up immediately.
If it sets it to one tick more than the current time, this means that you
should wake up on the next tick (up to 10 milliseconds away).

The moral of this story is: "Don't expect timing resolution any better
than the input timer tick rate."

Under Neutrino, a program can adjust the value of the hardware
divisor component in conjunction with the kernel (so that the kernel
knows what rate the timer tick ISR is being called at). We'lllook at
this below in the "Getting and setting the realtime clock" section.

There's one more thing you have to worry about. Let's say the timing
resolution is 10 ms and you want a 20 ms timeout.

Are you always going to get exactly 20 milliseconds worth of delay
from the time that you issue the delay() call to the time that the
function call returns?

Chapter 3 • Clocks, Timers, and Getting a Kick Every So Often 181

Clocks and timers

Absolutely not.

There are two good reasons why. The first is fairly simple: when you
block, you're taken off the running queue. This means that another
thread at your priority may now be using the CPU. When your 20
milliseconds have expired, you'll be placed at the end of the READY

queue for that priority so you'll be at the mercy of whatever thread
happens to be running. This also applies to interrupt handlers running
or higher-priority threads running- just because you are READY

doesn't mean that you're consuming the CPU.

The second reason is a bit more subtle. The following diagram will
help explain why:

10 ms

Clock jitter.

Process requests
20 ms sleep here

1

t
10 ms

Actual elapsed
time is 22 ms

10 ms

Kernel wakes up
process here

~

J
10 ms

The problem is that your request is asynchronous to the clock source.
You have no way to synchronize the hardware clock with your
request. Therefore, you'll get from just over 20 milliseconds to just
under 30 milliseconds worth of delay, depending on where in the
hardware's clock period you started your request.

182 Chapter 3 • Clocks, Timers, and Getting a Kick Every So Often

Types of timers

Clocks and timers

This is a key point. Clock jitter is a sad fact of life. The way to get
around it is to increase the system's timing resolution so your timing
is within tolerance. (We'll see how to do this in the "Getting and
setting the realtime clock" section, below.) Keep in mind that jitter
takes place only on the first tick- a 100-second delay with a
10-millisecond clock will delay for greater than 100 seconds and less
than 100.01 seconds.

The type of timer that I showed you above is a relative timer. The
timeout period selected is relative to the current time. If you want the
timer to delay your thread until January 20, 2005 at 12:04:33 EDT,
you'd have to calculate the number of seconds from "now" until then,
and set up a relative timer for that number of seconds. Because this is
a fairly common function, Neutrino implements an absolute timer that
will delay until the specified time (instead of for the specified time,
like a relative timer).

What if you want to do something while you're waiting for that date
to come around? Or, what if you want to do something and get a
"kick" every 27 seconds? You certainly couldn't afford to be asleep!

As we discussed in the Processes and Threads chapter, you could
simply start up another thread to do the work, and your thread could
take the delay. However, since we're talking about timers, we'll look
at another way of doing this.

You can do this with a periodic or one-shot timer, depending on your
objectives. A periodic timer is one that goes off periodically,
notifying the thread (over and over again) that a certain time interval
has elapsed. A one-shot timer is one that goes off just once.

The implementation in the kernel is still based on the same principle
as the delay timer that we used in our first example. The kernel takes
the absolute time (if you specified it that way) and stores it. In the
clock ISR, the stored time is compared against the time of day in the
usual manner.

Chapter 3 • Clocks, Timers, and Getting a Kick Every So Often 183

Clocks and timers

Notification
schemes

How to fill in the struct
sigevent

However, instead of your thread being removed from the running
queue when you call the kernel, your thread continues to run. When
the time of day reaches the stored time, the kernel notifies your thread
that the designated time has been reached.

How do you receive a timeout notification? With the delay timer, you
received notification by virtue of being made READY again.

With periodic and one-shot timers, you have a choice:

• send a pulse

• send a signal

• create a thread

We've talked about pulses in the Message Passing chapter; signals are
a standard UNIX-style mechanism, and we'll see the thread creation
notification type shortly.

Let's take a quick look at how you fill in the struct sigevent

structure.

Regardless of the notification scheme you choose, you'll need to fill
in a struct sigevent structure:

struct sigevent {
int

union {
int
int
int
void

};

union sigval

union {
struct {

short
short

};

sigev _jzotify;

sigev~igno;

sigev_coid;
sigev_id;

(*sigev..notify_Junction) (union sigval);

sigev _value;

sigev_code;
sigev_priority;

184 Chapter 3 • Clocks, Timers, and Getting a Kick Every So Often

Clocks and timers

pthread_a t tr _t * sigev Jlotify _attributes;
};

};

w Note that the above definition uses anonymous unions and structures.
Careful examination of the header file will show you how this trick is
implemented on compilers that don't support these features.
Basically, there's a #define that uses a named union and structure to
make it look like it's an anonymous union. Check out
< sys Is iginfo. h> for details.

The first field you have to fill in is the sigev Jiotify member. This
determines the notification type you've selected:

SIGEV _FULSE

A pulse will be sent.

SIGEV _SIGNAL, SIGEV _SIGNALCODE, or SIGEV _SIGNAL THREAD

A signal will be sent.

SIGEV _UNBLOCK

Not used in this case; used with kernel timeouts (see "Kernel
timeouts" below).

SIGEV__INTR

Not used in this case; used with interrupts (see the Interrupts
chapter).

SIGEV_THREAD

Creates a thread.

Since we're going to be using the struct sigevent with timers,
we're concerned only with the SIGEV _FULSE, SIGEV _SIGNAL* and
SIGEV _THREAD values for sigevJiotify; we'll see the other types as
mentioned in the list above.

Chapter 3 • Clocks, Timers, and Getting a Kick Every So Often 185

Clocks and timers

Pulse notification
To send a pulse when the timer fires, set the sigev _notify field to
SIGEV YULSE and provide some extra information:

Field Value and meaning

sigev _coid Send the pulse to the channel associated with this
connection ID.

sigev _value A 32-bit value that gets sent to the connection
identified in the sigev_coid field.

sigev _code An 8-bit value that gets sent to the connection
identified in the sigev_coid field.

sigev_priority The pulse's delivery priority. The value zero is not
allowed (too many people were getting bitten by
running at priority zero when they got a pulse -
priority zero is what the idle task runs at, so
effectively they were competing with Neutrino's
IDLE process and not getting much CPU time
:-}).

Note that the sigev_coid could be a connection to any channel
(usually, though not necessarily, the channel associated with the
process that's initiating the event).

Signal notification

To send a signal, set the sigev_notify field to one of:

SIGEV _SIGNAL

Send a regular signal to the process.

SIGEV _SIGNALCODE

Send a signal containing an 8-bit code to the process.

186 Chapter 3 • Clocks, Timers, and Getting a Kick Every So Often

Clocks and timers

SIGEV _SIGNAL THREAD

Send a signal containing an 8-bit code to a specific thread.
For SIGEV_SIGNAL*, the additional fields you'll have to fill are:

Field Value and meaning

sigev_signo Signal number to send (from <signal. h>, e.g.,
SIGALRM).

sigev_code An 8-bit code (if using SIGEV _SIGNALCODE or
SIGEV _SIGNAL THREAD).

Thread notification

To create a thread whenever the timer fires, set the sigev _notify field to
SIGEV _THREAD and fill these fields:

Field Value and meaning

sigev _notify .function Address of void * function that accepts
a void * to be called when the event
triggers.

sigev_value Value passed as the parameter to the
sigev _notify .function() function.

sigev_notify_attributes Thread attributes structure (see the
Processes and Threads chapter, under
"The thread attributes structure" for
details).

Chapter 3 • Clocks, Timers, and Getting a Kick Every So Often 187

Clocks and timers

I& This notification type is a little scary! You could have a whole slew of
threads created if the timer fires often enough and, if there are higher
priority threads waiting to run, this could chew up all available
resources on the system! Use with caution!

General tricks for notification

There are some convenience macros in <sys/siginfo.h> to make
filling in the notification structures easier:

SIGEV..SIGNALJNIT (eventp, signa)

Fill eventp with SIGEV _SIGNAL, and the appropriate signal
number signa.

SIGEV _5/GNALCODEJNIT (eventp, signa, value, code)

Fill eventp with SIGEV _SIGNALCODE, the signal number
signa, as well as the value and code.

SIGEV _5/GNALTHREAD JNIT (eventp, signa, value, code)

Fill eventp with SIGEV _SIGNAL THREAD, the signal number
signa, as well as the value and code.

SIGEV YULSEJNIT (eventp, coid, priority, code, value)

Fill eventp with SIGEV _SIGNALPULSE, the connection to the
channel in coid and a priority, code, and value. Note that there
is a special value for priority of SIGEV _PULSE_PRIO_INHERIT

that prevents the receiving thread's priority from changing.

SIGEV_UNBLOCKJNIT (eventp)

Fill eventp with SIGEV _UNBLOCK.

SIGEV JNTRJNIT (eventp)

Fill eventp with SIGEV _INTR.

188 Chapter 3 • Clocks, Timers, and Getting a Kick Every So Often

Pulse notification

Signal notification

Using timers

SIGEV _THREAD JNIT (eventp, June, val, attributes)

Fill eventp with the thread function (june) and the attributes
structure (attributes). The value in val is passed to the function
infunc when the thread is executed.

Suppose you're designing a server that spent most of its life RECEIVE
blocked, waiting for a message. Wouldn't it be ideal to receive a
special message, one that told you that the time you had been waiting
for finally arrived?

This scenario is exactly where you should use pulses as the
notification scheme. In the "Using timers" section below, I'll show
you some sample code that can be used to get periodic pulse
messages.

Suppose that, on the other hand, you're performing some kind of
work, but don't want that work to go on forever. For example, you
may be waiting for some function call to return, but you can't predict
how long it takes.

In this case, using a signal as the notification scheme, with perhaps a
signal handler, is a good choice (another choice we'll discuss later is
to use kernel timeouts; see _NTO_CHF _UNBLOCK in the Message
Passing chapter as well). In the "Using timers" section below, we'll
see a sample that uses signals.

Alternatively, a signal with sigwait() is cheaper than creating a
channel to receive a pulse on, if you're not going to be receiving
messages in your application anyway.

Using timers

Having looked at all this wonderful theory, let's turn our attention to
some specific code samples to see what you can do with timers.

To work with a timer, you must:

Chapter 3 • Clocks, Timers, and Getting a Kick Every So Often 189

Using timers

Creating a timer

1 Create the timer object.

2 Decide how you wish to be notified (signal, pulse, or thread
creation), and create the notification structure (the struct

sigevent).

3 Decide what kind of timer you wish to have (relative versus
absolute, and one-shot versus periodic).

4 Start it.

Let's look at these in order.

The first step is to create the timer with timer _create():

#include <time.h>
#include <sys/siginfo.h>

int
timer _create (clockid_t c/ock_id,

struct sigevent *event,
timer_t *timerid);

The clock_id argument tells the timer_create() function which time
base you're creating this timer for. This is a POSIX thing- POSIX
says that on different platforms you can have multiple time bases, but
that every platform must support at least the CLOCK_REALTIME time
base. Under Neutrino, there are three time bases to choose from:

• CLOCK_REALTIME

• CLOCK_SOFTTIME

• CLOCK_MONOTONIC

For now, we'll ignore CLOCK_SOFfTIME and CLOCK_MONOTONIC

but we will come back to them in the "Other clock sources" section,
below.

190 Chapter 3 • Clocks, Timers, and Getting a Kick Every So Often

Signal, pulse, or
thread?

What kind of
timer?

Using timers

The second parameter is a pointer to a struct sigevent data
structure. This data structure is used to inform the kernel about what
kind of event the timer should deliver whenever it "fires." We
discussed how to fill in the struct sigevent above in the
discussion of signals versus pulses versus thread creation.

So, you'd call timer_create() with CLOCK_REALTIME and a pointer to
your struct sigevent data structure, and the kernel would create
a timer object for you (which gets returned in the last argument). This
timer object is just a small integer that acts as an index into the
kernel's timer tables; think of it as a "handle."

At this point, nothing else is going to happen. You've only just
created the timer; you haven't triggered it yet.

Having created the timer, you now have to decide what kind of timer
it is. This is done by a combination of arguments to timer _settime(),

the function used to actually start the timer:

#include <time.h>

int
timer_settime (timer_t timerid,

int flags,
struct i timerspec *value,
struct itimerspec *oldvalue);

The timerid argument is the value that you got back from the
timer _create() function call -you can create a bunch of timers, and
then call timer _settime() on them individually to set and start them at
your convenience.

The flags argument is where you specify absolute versus relative.

If you pass the constant TIMER_ABSTIME, then it's absolute, pretty
much as you'd expect. You then pass the actual date and time when
you want the timer to go off.

If you pass a zero, then the timer is considered relative to the current
time.

Chapter 3 • Clocks, Timers, and Getting a Kick Every So Often 191

Using timers

Let's look at how you specify the times. Here are key portions of two
data structures (in <time. h>):

struct timespec {
long tv_\·ec,

fV-'lSec;

};

struct itimerspec {
struct timespec it_value,

it _inten,al;
} ;

There are two members instruct itimerspec:

it_ value the one-shot value

it_interval the reload value

The it_ value specifies either how long from now the timer should go
off (in the case of a relative timer), or when the timer should go off (in
the case of an absolute timer). Once the timer fires, the it_interval

value specifies a relative value to reload the timer with so that it can
trigger again. Note that specifying a value of zero for the iLinterval

makes it into a one-shot timer. You might expect that to create a
"pure" periodic timer, you'd just set the it_interval to the reload value,
and set it_ value to zero. Unfortunately, the last part of that statement
is false- setting the it_ value to zero disables the timer. If you want
to create a pure periodic timer, set it_value equal to iLinterval and
create the timer as a relative timer. This will fire once (for the it_value
delay) and then keep reloading with the iLinterval delay.

Both the it_value and iLinterval members are actually structures of
type struct timespec, another POSIX thing. The structure lets
you specify sub-second resolutions. The first member, tvsec, is the
number of seconds; the second member, tv_nsec, is the number of
nanoseconds in the current second. (What this means is that you
should never set tvJisec past the value 1 billion- this would imply
more than a one-second offset.)

192 Chapter 3 • Clocks, Timers, and Getting a Kick Every So Often

Here are some examples:

it_value.tv_sec = 5;
it_value.tv_nsec = 500000000;
it_interval.tv_sec = 0;
it_interval.tv_nsec = 0;

Using timers

This creates a one-shot timer that goes off in 5.5 seconds. (We got the
".5" because of the 500,000,000 nanoseconds value.)

We're assuming that this is used as a relative timer, because if it
weren't, then that time would have elapsed long ago (5.5 seconds past
January 1, 1970, 00:00 GMT).

Here's another example:

it_value.tv_sec = 987654321;
it_value.tv_nsec = 0;
it_interval.tv_sec = 0;
it_interval.tv_nsec = 0;

This creates a one-shot timer that goes off Thursday, April19, 2001 at
00:25:21 EDT. (There are a bunch of functions that help you convert
between the human-readable date and the "number of seconds since
January 1, 1970, 00:00:00 GMT" representation. Take a look in the C
library at time(), asctime(), ctime(), mktime(), strftime(), etc.)

For this example, we're assuming that it's an absolute timer, because
of the huge number of seconds that we'd be waiting if it were relative
(987654321 seconds is about 31.3 years).

Note that in both examples, I've said, "We're assuming that. .. "
There's nothing in the code for timer ..settime() that checks those
assumptions and does the "right" thing! You have to specify whether
the timer is absolute or relative yourself. The kernel will happily
schedule something 31.3 years into the future.

One last example:

it_value.tv_sec = 1;
it_value.tv_nsec = 0;
it_interval.tv_sec = 0;
it_interval.tv_nsec = 500000000;

Chapter 3 • Clocks, Timers, and Getting a Kick Every So Often 193

Using timers

A server with
periodic pulses

Server-maintained
timeouts

Assuming it's relative, this timer will go off in one second, and then
again every half second after that. There's absolutely no requirement
that the reload values look anything like the one-shot values.

The first thing we should look at is a server that wants to get periodic
messages. The most typical uses for this are:

• server-maintained timeouts on client requests

• periodic server maintenance cycles

Of course there are other, specialized uses for these things, such as
network "keep alive" messages that need to be sent periodically, retry
requests, etc.

In this scenario, a server is providing some kind of service to a client,
and the client has the ability to specify a timeout. There are lots of
places where this is used. For example, you may wish to tell a server,
"Get me 15 second's worth of data," or "Let me know when 10
seconds are up," or "Wait for data to show up, but if it doesn't show
up within 2 minutes, time out."

These are all examples of server-maintained timeouts. The client
sends a message to the server, and blocks. The server receives
periodic messages from a timer (perhaps once per second, perhaps
more or less often), and counts how many of those messages it's
received. When the number of timeout messages exceeds the timeout
specified by the client, the server replies to the client with some kind
of timeout indication or perhaps with the data accumulated so far- it
really depends on how the client/server relationship is structured.

Here's a complete example of a server that accepts one of two
messages from clients and a timeout message from a pulse. The first
client message type says, "Let me know if there's any data available,
but don't block me for more than 5 seconds." The second client
message type says, "Here's some data." The server should allow
multiple clients to be blocked on it, waiting for data, and must

194 Chapter 3 • Clocks, Timers, and Getting a Kick Every So Often

Declarations

Using timers

therefore associate a timeout with the clients. This is where the pulse
message comes in; it says, "One second has elapsed."

In order to keep the code sample from being one overwhelming mass,
I've included some text before each of the major sections. In the
online source code that you can get from the PARSE FTP site (visit
ftp: I /ftp .parse. com/pub/book_v3. tar. gz), this example is
kept together in one file, timel. c.

The first section of code here sets up the various manifest constants
that we'll be using, the data structures, and includes all the header
files required. We'll present this without comment. :-)

I*
* timel.c

*
* Example of a server that receives periodic messages from
* a timer, and regular messages from a client.

*
* Illustrates using the timer functions with a pulse.

*I

#include <stdio.h>
#include <stdlib.h>
#include <time.h>
#include <signal.h>
#include <errno.h>
#include <unistd.h>
#include <syslsiginfo.h>
#include <syslneutrino.h>

II message send definitions

II messages
#define MT_WAIT_DATA
#define MT_SEND-DATA

II pulses
#define CODE-TIMER

II message reply definitions

2

3

1

#define MT_OK 0
#define MT_TIMEDOUT 1

II message structure
typedef struct
{

II message from client
II message from client

II pulse from timer

II message to client
II message to client

Chapter 3 • Clocks, Timers, and Getting a Kick Every So Often 195

Using timers

main()

II contains both message to and from client
int messageType;
II optional data, depending upon message
int messageData;

} ClientMessageT;

typedef union
{

II a message can be either from a client, or a pulse
ClientMessageT mag;
struct _pulse pulse;

} MessageT;

II client table
#define MAX_CLIENT 16

struct
{

}

int in_use;
int rcvid;
int timeout;
clients [MAX_CLIENT] ;

chid;

II max# of simultaneous clients

II is this client entry in use?
II receive ID of client
II timeout left for client
II client table

II channel ID (global) int
int
char

debug = 1;
*progname =

II set debug value, l=on, O=off
11 timel .. c 11 ;

II forward prototypes
static void setupPulseAndTimer (void);
static void gotAPulse (void);
static void gotAMessage (int rcvid, ClientMessageT *mag);

This next section of code is the mainline. It's responsible for:

• creating the channel (via ChannelCreate()),

• calling the setupPulseAndTimer() routine (to set up a
once-per-second timer, with a pulse as the event delivery method),
and then

• sitting in a "do-forever" loop waiting for pulses or messages and
processing them.

Notice the check against the return value from MsgReceive()- a zero
indicates it's a pulse (and we don't do any strong checking to ensure
that it's our pulse), a non-zero indicates it's a message. The

196 Chapter 3 • Clocks, Timers, and Getting a Kick Every So Often

setupPulseAndTimer()

Using timers

processing of the pulse or message is done by gotAPulse() and
gotAMessage().

int
main (void) II ignore command-line arguments
{

}

int rcvid;
MessageT msg;

II process ID of the sender
II the message itself

if ((chid= ChannelCreate (0)) == -1) {

}

fprintf (stderr, "%s: couldn't create channel!\n",
progname);

perror (NULL) ;
exit (EXIT-FAILURE);

II set up the pulse and timer
setupPulseAndTimer ();

II receive messages
for (;;) {

}

rcvid = MsgReceive (chid, &msg, sizeof (msg), NULL);

II determine who the message came from
if (rcvid == 0) {

II production code should check "code" field ...
gotAPulse ();

} else {
gotAMessage (rcvid, &msg.msg);

}

II you'll never get here
return (EXIT-SUCCESS);

In setupPulseAndTimer() you see the code where we define the type
of timer and notification scheme. When we talked about the timer
function calls in the text above, I said that the timer could deliver a
signal, a pulse, or cause a thread to be created. That decision is made
here (in setupPulseAndTimer()). Notice that we used the macro
SIGEV _FULSEJNIT(). By using this macro, we're effectively
assigning the value SIGEV _FULSE to the sigev JZotify member. (Had
we used one of the SIGEV ..SIGNAL* JNIT() macros instead, it would
have delivered the specified signal.) Notice that, for the pulse, we set
the connection back to ourselves via the ConnectAttach() call, and

Chapter 3 • Clocks, Timers, and Getting a Kick Every So Often 197

Using timers

give it a code that uniquely identifies it (we chose the manifest
constant CODE_ TIMER; something that we defined). The final
parameter in the initialization of the event structure is the priority of
the pulse; we chose SIGEV _PULSE_PRIO.JNHERIT (the constant -I).
This tells the kernel not to change the priority of the receiving thread
when the pulse arrives.

Near the bottom of this function, we call timer_create() to create a
timer object within the kernel, and then we fill it in with data saying
that it should go off in one second (the iLvalue member) and that it
should reload with one-second repeats (the iLinterval member). Note
that the timer is activated only when we call timer __settime(), not when
we create it.

~ The SIGEV YULSE notification scheme is a Neutrino extension
POSIX has no concept of pulses.

I*
* setupPulseAndTimer

*
*
*

This routine is responsible for setting up a pulse so it
sends a message with code MT_TIMER. It then sets up a

* periodic timer that fires once per second.
*I

void
setupPulseAndTimer (void)
{

timer_t timerid;
struct sigevent event;
struct itimerspec timer;
int coid;

II timer ID for timer
II event to deliver
II the timer data struct
II connection back to us

II create a connection back to ourselves
coid = ConnectAttach (0, 0, chid, 0, 0);
if (coid == -1) {

}

fprintf (stderr, "%s: couldn't ConnectAttach!\n",
progname);

perror (NULL);
exit (EXIT_FAILURE);

II set up the kind of event that we want-- a pulse

198 Chapter 3 • Clocks, Timers, and Getting a Kick Every So Often

gotAPulse()

}

Using timers

SIGEV_PULSE_INIT {&event, coid,
SIGEV-PULSE_pRIO-INHERIT, CODE-TIMER, 0);

II create the timer, binding it to the event
if {timer_create {CLOCK-REALTIME, &event, &timerid) == -1) {

fprintf {stderr, "%s: can't timer_create, errno %d\n",
progname, errno);

perror {NULL) ;
exit {EXIT-FAILURE);

}

II setup the timer (ls delay, ls reload)
timer.it_value.tv_sec = 1;
timer.it_value.tv_nsec = 0;
timer.it_interval.tv_sec = 1;
timer.it_interval.tv_nsec = 0;

II and start it!
timer_settime {timerid, 0, &timer, NULL);

In gotAPulse(), you can see how we've implemented the server's
ability to timeout a client. We walk down the list of clients, and since
we know that the pulse is being triggered once per second, we simply
decrement the number of seconds that the client has left before a
timeout. If this value reaches zero, we reply back to that client with a
message saying, "Sorry, timed out" (the MT _TIMEDOUT message
type). You'll notice that we prepare this message ahead of time
(outside the for loop), and then send it as needed. This is just a
style/usage issue- if you expect to be doing a lot of replies, then it
might make sense to incur the setup overhead once. If you don't
expect to do a lot of replies, then it might make more sense to set it up
as needed.

If the timeout value hasn't yet reached zero, we don't do anything
about it - the client is still blocked, waiting for a message to show
up.

I*
*
*
*
*
*

gotAPulse

This routine is responsible for handling the fact that a
timeout has occurred. It runs through the list of clients
to see which client has timed-out, and replies to it with

Chapter 3 • Clocks, Timers, and Getting a Kick Every So Often 199

Using timers

gotAMessage()

* a timed-out response.

*I

void
gotAPulse (void)
{

}

ClientMessageT msg;
int i;

if (debug) {
time_t now;

time (&now) ;
print£ ("Got a Pulse at %s", ctime (&now));

}

II prepare a response message
msg.messageType = MT_TIMEDOUT;

II walk down list of clients
for (i = 0; i < MAX_CLIENT; i++) {

}

II is this entry in use?
if (clients [i] . in_use) {

}

II is it about to time out?
if (--clients [i] .timeout 0) {

}

II send a reply
MsgReply (clients [i] .rcvid, EOK, &msg,

sizeof (msg));

II entry no longer used
clients [i] .in_use = 0;

In gotAMessage(), you see the other half of the functionality, where
we add a client to the list of clients waiting for data (if it's a
MLWAILDATA message), or we match up a client with the message
that just arrived (if it's a MT _SEND _DATA message). Note that for
simplicity we didn't add a queue of clients that are waiting to send
data, but for which no receiver is yet available- that's a queue
management issue left as an exercise for the reader!

200 Chapter 3 • Clocks, Timers, and Getting a Kick Every So Often

I*
*
*
*
*
*
*
*
*

*I

Using timers

gotAMessage

This routine is called whenever a message arrives. We
look at the type of message (either a "wait for data"
message, or a "here's some data" message), and act
accordingly. For simplicity, we'll assume that there is
never any data waiting. See the text for more discussion
about this.

void
gotAMessage (int rcvid, ClientMessageT *msg)
{

int i;

II determine the kind of message that it is
switch (msg -> messageType) {

II client wants to wait for data
case MT_WAIT-DATA:

II see if we can find a blank spot in the client table
for (i = 0; i < MAX_CLIENT; i++) {

}

if (!clients [i] . in_use) {

}

II found, mark in use, save rcvid, set timeout
clients [i] .in_use = 1;
clients [i] .rcvid = rcvid;
clients [i] .timeout = 5;
return;

fprintf (stderr, "Table full, message %d ignored, "
"client blocked\n", rcvid);

break;

II client with data
case MT_SEND-DATA:

II see if we can find another client to reply to with
II this client's data
for (i = 0; i < MAX_CLIENT; i++) {

if (clients [i] . in_use) {

II found one-- reuse the incoming message
II as an outgoing message

Chapter 3 • Clocks, Timers, and Getting a Kick Every So Often 201

Using timers

Notes

}
}

}
}

msg -> messageType = MT ...JJK;

II reply to BOTH CLIENTS!
MsgReply (clients [i] .rcvid, EOK, msg,

sizeof (*msg));
MsgReply (rcvid, EOK, msg, sizeof (*msg));

clients [i] .in_use = 0;
return;

fprintf (stderr, "Table empty, message %d ignored, "
"client blocked\n", rcvid);

break;

Some general notes about the code:

• If there's no one waiting and a data message arrives, or there's no
room in the list for a new waiter client, we print a message to
standard error, but never reply to the client. This means that some
clients could be sitting there, REPLY-blocked forever- we've lost
their receive ID, so we have no way to reply to them later.

This is intentional in the design. You could modify this to add
MLNO_WAITERS and MLNO_SPACE messages, respectively,
which can be returned whenever these errors were detected.

• When a waiter client is waiting, and a data-supplying client sends
to it, we reply to both clients. This is crucial, because we want
both clients to unblock.

• We reused the data-supplying client's buffer for both replies. This
again is a style issue- in a larger application you'd probably have
to have multiple types of return values, in which case you may not
want to reuse the same buffer.

• The implementation shown here uses a "cheesy" fixed-length array
with an "in use" flag (clients [i] . in_use). Since my goal here
isn't to demonstrate owner-list tricks and techniques for singly

202 Chapter 3 • Clocks, Timers, and Getting a Kick Every So Often

Periodic server
maintenance cycles

Using timers

linked list management, I've shown the version that's the easiest to
understand. Of course, in your production code, you'd probably
use a linked list of dynamically managed storage blocks.

• When the message arrives in the MsgReceive(), our decision as to
whether it was in fact "our" pulse is done on weak checking - we
assume (as per the comments) that all pulses are the CODE_ TIMER
pulse. Again, in your production code you'd want to check the
pulse's code value and report on any anomalies.

Note that the example above shows just one way of implementing
timeouts for clients. Later in this chapter (in "Kernel timeouts"), we'll
talk about kernel timeouts, which are another way of implementing
almost the exact same thing, except that it's driven by the client,
rather than a timer.

Here we have a slightly different use for the periodic timeout
messages. The messages are purely for the internal use of the server
and generally have nothing to do with the client at all.

For example, some hardware might require that the server poll it
periodically, as might be the case with a network connection- the
server should see if the connection is still "up," regardless of any
instructions from clients.

Another case could occur if the hardware has some kind of "inactivity
shutdown" timer. For example, since keeping a piece of hardware
powered up for long periods of time may waste power, if no one has
used that hardware for, say, 10 seconds, the hardware could be
powered down. Again, this has nothing to do with the client (except
that a client request will cancel this inactivity powerdown) -it's just
something that the server has to be able to provide for its hardware.

Code-wise, this would be very similar to the example above, except
that instead of having a list of clients that are waiting, you'd have only
one timeout variable. Whenever a timer event arrives, this variable
would be decremented; if zero, it would cause the hardware to shut
down (or whatever other activity you wish to perform at that point). If
it's still greater than zero, nothing would happen.

Chapter 3 • Clocks, Timers, and Getting a Kick Every So Often 203

Using timers

Timers delivering
signals

Timers creating
threads

The only "twist" in the design would be that whenever a message
comes in from a client that uses the hardware, you'd have to reset that
timeout variable back to its full value - having someone use that
resource resets the "countdown." Conversely, the hardware may take a
certain "warm-up" time in order to recover from being powered down.
In this case, once the hardware has been powered down, you would
have to set a different timer once a request arrived from a client. The
purpose of this timer would be to delay the client's request from going
to the hardware until the hardware has been powered up again.

So far, we've seen just about all there is to see with timers, except for
one small thing. We've been delivering messages (via a pulse), but
you can also deliver POSIX signals. Let's see how this is done:

timer_create (CLOCK-REALTIME, NULL, &timerid);

This is the simplest way to create a timer that sends you a signal. This
method raises SIGALRM when the timer fires. If we had actually
supplied a struct sigevent, we could specify which signal we
actually want to get:

struct sigevent event;

SIGEV_SIGNAL-INIT (&event, SIGUSRl);
timer_create (CLOCK-REALTIME, &event, &timerid);

This hits us with SIGUSRl instead of SIGALRM.

You catch timer signals with normal signal handlers, there's nothing
special about them.

If you'd like to create a new thread every time a timer fires, then you
can do so with the struct sigevent and all the other timer stuff
we just discussed:

struct sigevent event;

SIGEV_THREAD_INIT (&event, maintenance_func, NULL);

204 Chapter 3 • Clocks, Timers, and Getting a Kick Every So Often

Getting and
setting the

realtime clock and
more

Getting and setting

Using timers

You'll want to be particularly careful with this one, because if you
specify too short an interval, you'll be flooded with new threads! This
could eat up all your CPU and memory resources!

Apart from using timers, you can also get and set the current realtime
clock, and adjust it gradually. The following functions can be used for
these purposes:

Function Type? Description

ClockAdjust() Neutrino Gradually adjust the time

ClockCycles() Neutrino High-resolution snapshot

clock_getres() PO SIX Fetch base timing resolution

clock_gettime() PO SIX Get current time of day

ClockPeriod() Neutrino Get/set base timing resolution

clock...settime() POSIX Set current time of day

Clock Time() Neutrino Get/set current time of day

The functions clock_gettime() and clock...settime() are the PO SIX
functions based on the kernel function ClockTime(). These functions
can be used to get or set the current time of day. Unfortunately, setting
this is a "hard" adjustment, meaning that whatever time you specify in
the buffer is immediately taken as the current time. This can have
startling consequences, especially when time appears to move
"backwards" because the time was ahead of the "real" time.
Generally, setting a clock using this method should be done only
during power up or when the time is very much out of
synchronization with the real time.

That said, to effect a gradual change in the current time, the function
ClockAdjust() can be used:

Chapter 3 • Clocks, Timers, and Getting a Kick Every So Often 205

Using timers

Adjusting the timebase

int
ClockAdjust (clockid_t id,

const struct _clockadjust *new,
const struct _clockadjust *old) ;

The parameters are the clock source (always use CLOCK.REALTIME),

and a new and old parameter. Both the new and old parameters are
optional, and can be NULL. The old parameter simply returns the
current adjustment. The operation of the clock adjustment is
controlled through the new parameter, which is a pointer to a structure
that contains two elements, tickJisec_inc and tick_count. Basically,
the operation of ClockAdjust() is very simple. Over the next
tick_count clock ticks, the adjustment contained in tickJisec_inc is
added to the current system clock. This means that to move the time
forward (to "catch up" with the real time), you'd specify a positive
value for tickJisec_inc. Note that you'd never move the time
backwards! Instead, if your clock was too fast, you'd specify a small
negative number to tickJisec_inc, which would cause the current time
to not advance as fast as it would. So effectively, you've slowed down
the clock until it matches reality. A rule of thumb is that you
shouldn't adjust the clock by more than 10% of the base timing
resolution of your system (as indicated by the functions we'll talk
about next, ClockPeriod() and friends).

As we've been saying throughout this chapter, the timing resolution of
everything in the system is going to be no more accurate than the
base timing resolution coming into the system. So the obvious
question is, how do you set the base timing resolution? You can use
the following function for this:

int
ClockPeriod (clockid_t ~'

const struct _clockperiod *new,
struct _clockperiod *old,
int reserved) ;

As with the ClockAdjust() function described above, the new and the
old parameters are how you get and/or set the values of the base
timing resolution. The new and old parameters are pointers to

206 Chapter 3 • Clocks, Timers, and Getting a Kick Every So Often

An accurate timestamp

Using timers

structures of struct _clockperiod, which contains two members,
nsec andfract. Currently, thefract member must be set to zero (it's
the number of femtoseconds; we probably won't use this kind of
resolution for a little while yet!) The nsec member indicates how
many nanoseconds elapse between ticks of the base timing clock. The
default is 10 milliseconds (1 millisecond on machines with CPU
speeds of greater than 40 MHz), so the nsec member (if you use the
"get" form of the call by specifying the old parameter) will show
approximately I 0 million nanoseconds. (As we discussed above, in
"Clock interrupt sources," it's not going to be exactly 10 millisecond.)

While you can certainly feel free to try to set the base timing
resolution on your system to something ridiculously small, the kernel
will step in and prevent you from doing that. Generally, you can set
most systems in the I millisecond to hundreds of microseconds range.

There is one timebase that might be available on your processor that
doesn't obey the rules of "base timing resolution" we just described.
Some processors have a high-frequency (high-accuracy) counter built
right into them, which Neutrino can let you have access to via the
ClockCycles() call. For example, on a Pentium processor running at
200 MHz, this counter increments at 200 MHz as well, so it can give
you timing samples right down to 5 nanoseconds. This is particularly
useful if you want to figure out exactly how long a piece of code takes
to execute (assuming of course, that you don't get preempted). You'd
call ClockCycles() before your code and after your code, and then
compute the delta. See the C Library reference for more details.

Chapter 3 • Clocks, Timers, and Getting a Kick Every So Often 207

Advanced topics

l@f' Note that on an SMP system, you may run into a little problem. If
your thread gets a ClockCycles() value from one CPU and then
eventually runs on another CPU, you may get inconsistent results.
This stems from the fact that the counters used by ClockCycles() are
stored in the CPU chips themselves, and are not synchronized
between CPUs. The solution to this is to use thread affinity to force
the thread to run on a particular CPU.

Advanced topics

Now that we've seen the basics of timers, we'lllook at a few
advanced topics:

the CLOCK_SOFTTIME and CLOCK_MONOTONIC timer types,
and

2 kernel timeouts.

Other clock
sources

We've seen the clock source CLOCK_REALTIME, and mentioned that
a POSIX conforming implementation may supply as many different
clock sources as it feels like, provided that it at least provides
CLOCK_REALTIME.

What is a clock source? Simply put, it's an abstract source of timing
information. If you want to put it into real life concepts, your personal
watch is a clock source; it measures how fast time goes by. Your
watch will have a different level of accuracy than someone else's
watch. You may forget to wind your watch, or get it new batteries,
and time may seem to "freeze" for a while. Or, you may adjust your
watch, and all of a sudden time seems to "jump." These are all
characteristics of a clock source.

Under Neutrino, CLOCK_REALTIME is based off of the "current time
of day" clock that Neutrino provides. (In the examples below, we refer

208 Chapter 3 • Clocks, Timers, and Getting a Kick Every So Often

Advanced topics

to this as "Neutrino Time.") This means that if the system is running,
and suddenly someone adjusts the time forward by 5 seconds, the
change may or may not adversely affect your programs (depending on
what you're doing). Let's look at a sleep (30); call:

Real Time Neutrino Time Activity

11:22:05 11:22:00 sleep (3 0) ;

11:22:15 11:22:15 clock gets adjusted to 11 :22: 15; it
was 5 seconds too slow!

11:22:35 11:22:35 sleep (3 0) ; wakes up

Beautiful! The thread did exactly what you expected: at 11:22:00 it
went to sleep for thirty seconds, and at 11:22:35 (thirty elapsed
seconds later) it woke up. Notice how the sleep() "appeared" to sleep
for 35 seconds, instead of 30; in real, elapsed time, though, only 30
seconds went by because Neutrino's clock got adjusted ahead by five
seconds (at 11:22: 15).

The kernel knows that the sleep() call is a relative timer, so it takes
care to ensure that the specified amount of "real time" elapses.

Now, what if, on the other hand, we had used an absolute timer, and at
11:22:00 in "Neutrino time" told the kernel to wake us up at 11 :22:30?

Real Time Neutrino Time Activity

11:22:05 11:22:00 wake up at 11:22:30

11:22:15 11:22:15 clockgetsadjustedasbefore

11:22:30 11:22:30 wakes up

This too is just like what you'd expect- you wanted to be woken up
at 11:22:30, and (in spite of adjusting the time) you were.

Chapter 3 • Clocks, Timers, and Getting a Kick Every So Often 209

Advanced topics

CLOCK_MQNOTONIC

However, there's a small twist here. If you take a look at the
pthread_mutex_timedlock() function, for example, you'll notice that it
takes an absolute timeout value, as opposed to a relative one:

int
pthread...mutex_timedlock (pthread...mutex_t *mutex,

const struct timespec *abs_timeout);

As you can imagine, there could be a problem if we try to implement
a mutex that times out in 30 seconds. Let's go through the steps. At
11:22:00 (Neutrino time) we decide that we're going to try and lock a
mutex, but we only want to block for a maximum of 30 seconds.
Since the pthread_mutex_timedlock() function takes an absolute time,
we perform a calculation: we add 30 seconds to the current time,
giving us 11:22:30. If we follow the example above, we would wake
up at 11:22:30, which means that we would have only locked the
mutex for 25 seconds, instead of the full 30.

The POSIX people thought about this, and the solution they came up
with was to make the pthread_mutex_timedlock() function be based on
CLOCK_MONOTONIC instead of CLOCK_REALTIME. This is built in
to the pthread_mutex_timedlock() function and isn't something that
you can change.

They way CLOCK_MONOTONIC works is that its timebase is never
adjusted. The impact of that is that regardless of what time it is in the
real world, if you base a timer in CLOCK_MONOTONIC and add 30
seconds to it (and then do whatever adjustments you want to the
time), the timer will expire in 30 elapsed seconds.

The clock source CLOCK_MONOTONIC has the following
characteristics:

• always increasing count

• based on real time

• starts at zero

21 0 Chapter 3 • Clocks, Timers, and Getting a Kick Every So Often

Advanced topics

lks1i" The important thing about the clock starting at zero is that this is a
different "epoch" (or "base") than CLOCK_REALTIME's epoch of Jan
1 1970, 00:00:00 GMT. So, even though both clocks run at the same
rate, their values are not interchangeable.

So what does
CLOCK_SOFTTIME do?

If we wanted to sort our clock sources by "hardness" we'd have the
following ordering. You can think of CLOCK..MONOTONIC as being a
freight train- it doesn't stop for anyone. Next on the list is
CLOCK_REALTIME, it can be pushed around a bit (as we saw with the
time adjustment). Finally, we have CLOCK_SOFfTIME, which we can
push around a lot.

The main use of CLOCK_SOFfTIME is for things that are "soft" -
things that aren't going to cause a critical failure if they don't get
done. CLOCK_SOFfTIME is "active" only when the CPU is running.
(Yes, this does sound obvious:-) but wait!) When the CPU is
powered down due to Power Management detecting that nothing is
going to happen for a little while, CLOCK_SOFfTIME gets powered
down as well!

Here's a timing chart showing the three clock sources:

Real Time Neutrino Time Activity

11:22:05 I 1:22:00 wake up at "now" + 00:00:30 (see
below)

11:22:15 11:22:15 clock gets adjusted as before

11:22:20 11:22:20 power management turns off
CPU

11:22:30 11:22:30 CLOCK_REALTIME wakes up

11:22:35 11:22:35 CLOCK..MONOTONIC wakes up

continued ...

Chapter 3 • Clocks, Timers, and Getting a Kick Every So Often 211

Advanced topics

Using different clock
sources

Real Time Neutrino Time Activity

11:45:07 II :45:07 power management turns on
CPU, and CLOCK_SOFTTIME

wakes up

There are a few things to note here:

• we precomputed our wakeup time as "now" plus 30 seconds and
used an absolute timer to wake us up at the computed time. This is
different than waking up in 30 seconds using a relative timer.

• Note that for convenience of putting the example on one time-line,
we've lied a little bit. If the CLOCK_REALTIME thread did indeed
wake up, (and later the same for CLOCK_MONOTONIC) it would
have caused us to exit out of power management mode at that time,
which would then cause CLOCK_SOFTTIME to wake up.

When CLOCK_SOFTTIME "over-sleeps," it wakes up as soon as it's
able- it doesn't stop "timing" while the CPU is powered down, it's
just not in a position to wake up until after the CPU powers up. Other
than that, CLOCK_SOFTTIME is just like CLOCK..REALTIME.

To specify one of the different clock source, use a POSIX timing
function that accepts a clock ID. For example:

#include <time.h>

int
clock_nanosleep (clockid_t clock_id,

int flags,
const struct timespec *rqtp,
struct timespec *rmtp);

The clock_nanosleep() function accepts the clock_id parameter (telling
it which clock source to use), a flag (which determines if the time is
relative or absolute), a "requested sleep time" parameter (rqtp), as
well as a pointer to an area where the function can fill in the amount
of time remaining (in the rmtp parameter, which can be NULL if you
don't care).

212 Chapter 3 • Clocks, Timers, and Getting a Kick Every So Often

Kernel timeouts

Advanced topics

Neutrino lets you have a timeout associated with all kernel blocking
states. We talked about the blocking states in the Processes and
Threads chapter, in the section "Kernel states." Most often, you'll
want to use this with message passing; a client will send a message to
a server, but the client won't want to wait "forever" for the server to
respond. In that case, a kernel timeout is suitable. Kernel timeouts are
also useful with the pthread_join() function. You might want to wait
for a thread to finish, but you might not want to wait too long.

Here's the definition for the TimerTimeout() function call, which is the
kernel function responsible for kernel timeouts:

#include <sys/neutrino.h>

int
TimerTimeout (clockid_t id,

int flags,
const struct sigevent *notify,
const uint64_t *lllime,
uint64_t *otime);

This says that TimerTimeout() returns an integer (a pass/fail
indication, with -1 meaning the call failed and set errno, and zero
indicating success). The time source (CLOCK_REALTIME, etc.) is
passed in id, and the flags parameter gives the relevant kernel state or
states. The notify should always be a notification event of type
SIGEV _UNBLOCK, and the ntime is the relative time when the kernel
call should timeout. The otime parameter indicates the previous value
of the timeout- it's not used in the vast majority of cases (you can
pass NULL).

Chapter 3 • Clocks, Timers, and Getting a Kick Every So Often 213

Advanced topics

Kernel timeouts with
pthread_join()

It's important to note that the timeout is armed by TimerTimeout(),
and triggered on entry into one of the kernel states specified by flags.
It is cleared upon return from any kernel call. This means that you
must re-arm the timeout before each and every kernel call that you
want to be timeout-aware. You don't have to clear the timeout after
the kernel call; this is done automagically.

The simplest case to consider is a kernel timeout used with the
pthread_join() call. Here's how you'd set it up:

I*
* part of ttl.c

*I

#include <syslneutrino.h>

II 1 billion nanoseconds in a second
#define SEC_NSEC lOOOOOOOOOLL

int
main (void) II ignore arguments
{

uint64_t timeout;
struct sigevent event;
int rval;

II set up the event-- this can be done once

II This or event.sigev_notify = SIGEV_UNBLOCK:
SIGEV-UNBLOCK-INIT (&event);

II set up for 10 second timeout
timeout = lOLL * SEC-NSEC;

TimerTimeout (CLOCK-REALTIME, _NTQ_TIMEOUT_JQIN,
&event, &timeout, NULL);

rval = pthread_join (thread_id, NULL);
if (rval == ETIMEDOUT) {

printf ("Thread %d still running after 10 secondsl\n",
thread_id);

}

214 Chapter 3 • Clocks, Timers, and Getting a Kick Every So Often

Kernel timeouts with
message passing

Advanced topics

We used the SIGEV_UNBLOCKJNIT() macro to initialize the event
structure, but we could have set the sigev_notify member to
SIGEV _UNBLOCK ourselves. Even more elegantly, we could pass
NULL as the struct sigevent- TimerTimeout() understands this
to mean that it should use a SIGEV _UNBLOCK.

If the thread (specified in thread_id) is still running after 10 seconds,
then the kernel call will be timed out- pthread_join() will return
with an erma of ETIMEDOUT.

You can use another shortcut- by specifying a NULL for the timeout
value (ntime in the formal declaration above), this tells the kernel not
to block in the given state. This can be used for polling. (While
polling is generally discouraged, you could use it quite effectively in
the case of the pthread_join()- you'd periodically poll to see if the
thread you're interested in was finished yet. If not, you could perform
other work.)

Here's a code sample showing a non-blockingpthread_join():

int
pthread_join_nb (int tid, void **rval)
{

TimerTimeout (CLOCK-REALTIME, _NTO_TIMEOUT_JOIN,
NULL, NULL, NULL);

return (pthread_join (tid, rval));

Things get a little trickier when you're using kernel timeouts with
message passing. Recall from the Message Passing chapter (in the
"Message passing and client/server" part) that the server may or may
not be waiting for a message when the client sends it. This means that
the client could be blocked in either the SEND-blocked state (if the
server hasn't received the message yet), or the REPLY-blocked state
(if the server has received the message, and hasn't yet replied). The
implication here is that you should specify both blocking states for the
flags argument to TimerTimeout(), because the client might get
blocked in either state.

Chapter 3 • Clocks, Timers, and Getting a Kick Every So Otten 215

Advanced topics

Summary

To specify multiple states, you simply OR them together:

TimerTimeout (... _NTQ_TIMEOUT_SEND I _NTQ_TIMEOUT-REPLY, ...);

This causes the timeout to be active whenever the kernel enters either
the SEND-blocked state or the REPLY-blocked state. There's nothing
special about entering the SEND-blocked state and timing out- the
server hasn't received the message yet, so the server isn't actively
doing anything on behalf of the client. This means that if the kernel
times out a SEND-blocked client, the server doesn't have to be
informed. The client's MsgSend() function returns an ETIMEDOUT
indication, and processing has completed for the timeout.

However, as was mentioned in the Message Passing chapter (under
"_NTO_CHF _UNBLOCK"), if the server has already received the
client's message, and the client wishes to unblock, there are two
choices for the server. If the server has not specified
_NTO_CHF_UNBLOCK on the channel it received the message on, then
the client will be unblocked immediately, and the server won't receive
any indication that an unblock has occurred. Most of the servers I've
seen always have the _NTO_CHF _UNBLOCK flag enabled. In that case,
the kernel delivers a pulse to the server, but the client remains blocked
until the server replies! As mentioned in the above-referenced section
of the Message Passing chapter, this is done so that the server has an
indication that it should do something about the client's unblock
request.

We've looked at Neutrino's time-based functions, including timers
and how they can be used, as well as kernel timeouts. Relative timers
provide some form of event "in a certain number of seconds," while
absolute timers provide this event "at a certain time." Timers (and,
generally speaking, the struct sigevent) can cause the delivery
of a pulse, a signal, or a thread to start.

The kernel implements timers by storing the absolute time that
represents the next "event" on a sorted queue, and comparing the
current time (as derived by the timer tick interrupt service routine)
against the head of the sorted queue. When the current time is greater

216 Chapter 3 • Clocks, Timers, and Getting a Kick Every So Often

Advanced topics

than or equal to the first member of the queue, the queue is processed
(for all matching entries) and the kernel dispatches events or threads
(depending on the type of queue entry) and (possibly) reschedules.

To provide support for power-saving features, you should disable
periodic timers when they're not needed- otherwise, the
power-saving feature won't implement power saving, because it
believes that there's something to "do" periodically. You could also
use the CLOCK_SOFTTIME clock source, unless of course you
actually wanted the timer to defeat the power saving feature.

Given the different types of clock sources, you have flexibility in
determining the basis of your clocks and timer; from "real, elapsed"
time through to time sources that are based on power management
activities.

Chapter 3 • Clocks, Timers, and Getting a Kick Every So Often 217

In this chapter ...
Neutrino and interrupts
Writing interrupt handlers
Summary

Chapter4

Interrupts

Chapter 4 • Interrupts 219

Neutrino and interrupts

Neutrino and interrupts

In this section, we'll take a look at interrupts, how we deal with them
under Neutrino, their impact on scheduling and realtime, and some
interrupt-management strategies.

The first thing we need to ask is, "What's an interrupt?"

An interrupt is exactly what it sounds like- an interruption of
whatever was going on and a diversion to another task.

For example, suppose you're sitting at your desk working on job "A."
Suddenly, the phone rings. A Very Important Customer (VIC) needs
you to immediately answer some skill-testing question. When you've
answered the question, you may go back to working on job "A," or the
VIC may have changed your priorities so that you push job "A" off to
the side and immediately start on job "B."

Now let's put that into perspective under Neutrino.

At any moment in time, the processor is busy processing the work for
the highest-priority READY thread (this will be a thread that's in the
RUNNING state). To cause an interrupt, a piece of hardware on the
computer's bus asserts an interrupt line (in our analogy, this was the
phone ringing).

As soon as the interrupt line is asserted, the kernel jumps to a piece of
code that sets up the environment to run an interrupt service routine
(ISR), a piece of software that determines what should happen when
that interrupt is detected.

The amount of time that elapses between the time that the interrupt
line is asserted by the hardware and the first instruction of the ISR
being executed is called the interrupt latency. Interrupt latency is
measured in microseconds. Different processors have different
interrupt latency times; it's a function of the processor speed, cache
architecture, memory speed, and, of course, the efficiency of the
operating system.

Chapter 4 • Interrupts 221

Neutrino and interrupts

In our analogy, if you're listening to some music in your headphones
and ignoring the ringing phone, it will take you longer to notice this
phone "interrupt." Under Neutrino, the same thing can happen; there's
a processor instruction that disables interrupts (c 1 i on the x86, for
example). The processor won't notice any interrupts until it reenables
interrupts (on the x86, this is the sti opcode).

lfs1f To avoid CPU-specific assembly language calls, Neutrino provides
four calls: InterruptEnable() and InterruptDisable(), and
InterruptLock() and Interrupt Unlock(). These take care of all the
low-level details on all supported platforms.

Interrupt service
routine

222 Chapter 4 • Interrupts

The ISR usually performs the minimum amount of work possible, and
then ends (in our analogy, this was the conversation on the telephone
with the VIC- we usually don't put the customer on hold and do
several hours of work; we just tell the customer, "Okay, I'll get right
on that!"). When the ISR ends, it can tell the kernel either that nothing
should happen (meaning the ISR has completely handled the event
and nothing else needs to be done about it) or that the kernel should
perform some action that might cause a thread to become READY.

In our analogy, telling the kernel that the interrupt was handled would
be like telling the customer the answer- we can return back to
whatever we were doing, knowing that the customer has had their
question answered.

Telling the kernel that some action needs to be performed is like
telling the customer that you'll get back to them- the telephone has
been hung up, but it could ring again.

The ISR is a piece of code that's responsible for clearing the source of
the interrupt.

This is a key point, especially in conjunction with this fact: the
interrupt runs at a priority higher than any software priority. This
means that the amount of time spent in the ISR can have a serious

Clearing the interrupt
source

Neutrino and interrupts

impact on thread scheduling. You should spend as little time as
possible in the ISR. Let's examine this in a little more depth.

The hardware device that generated the interrupt will keep the
interrupt line asserted until it's sure the software handled the interrupt.
Since the hardware can't read minds, the software must tell it when it
has responded to the cause of the interrupt. Generally, this is done by
reading a status register from a specific hardware port or a block of
data from a specific memory location.

In any event, there's usually some form of positive acknowledgement
between the hardware and the software to "de-assert" the interrupt
line. (Sometimes there isn't an acknowledgement; for example, a
piece of hardware may generate an interrupt and assume that the
software will handle it.)

Because the interrupt runs at a higher priority than any software
thread, we should spend as little time as possible in the ISR itself to
minimize the impact on scheduling. If we clear the source of the
interrupt simply by reading a register, and perhaps stuffing that value
into a global variable, then our job is simple.

This is the kind of processing done by the ISR for the serial port. The
serial port hardware generates an interrupt when a character has
arrived. The ISR handler reads a status register containing the
character, and stuffs that character into a circular buffer. Done. Total
processing time: a few microseconds. And, it must be fast. Consider
what would happen if you were receiving characters at 115k baud (a
character about every 100 llS); if you spent anywhere near 100 llS

handling the interrupt, you wouldn't have time to do anything else!

I&' Don't let me mislead you though- the serial port's interrupt service
routine could take longer to complete. This is because there's a
tail-end poll that looks to see if more characters are waiting in the
device.

Chapter 4 • Interrupts 223

Neutrino and interrupts

Clearly, minimizing the amount of time spent in the interrupt can be
perceived as "Good customer service" in our analogy - by keeping
the amount of time that we're on the phone to a minimum, we avoid
giving other customers a busy signal.

What if the handler needs to do a significant amount of work? Here
are a couple of possibilities:

• The amount of time required to clear the source of the interrupt is
short, but the amount of work required to talk to the hardware is
long (the customer asked us a short question that takes a long time
to answer).

• The amount of time required to clear the source of the interrupt is
long (the customer's description of the problem is long and
involved).

In the first case, we'd like to clear the source of the interrupt as fast as
possible and then tell the kernel to have a thread do the actual work of
talking to the slow hardware. The advantage here is that the ISR
spends just a tiny amount of time at the super-high priority, and then
the rest of the work is done based on regular thread priorities. This is
similar to your answering the phone (the super-high priority), and
delegating the real work to one of your assistants. We'lllook at how
the ISR tells the kernel to schedule someone else later in this chapter.

In the second case, things get ugly. If an ISR doesn't clear the source
of the interrupt when it exits, the kernel will immediately be
re-interrupted by the Programmable Interrupt Controller (PIC- on
the x86, this is the 8259 or equivalent) chip.

I@' For PIC fans: we'll talk about edge-sensitive and level-sensitive
interrupts shortly.

224 Chapter 4 • Interrupts

Telling a thread to do
something

Neutrino and interrupts

We'll continuously be running the ISR, without ever getting a chance
to run the thread-level code we need to properly handle the interrupt.

What kind of brain-damaged hardware requires a long time to clear
the source of the interrupt? Your basic PC floppy disk controller
keeps the interrupt asserted until you've read a number of status
register values. Unfortunately, the data in the registers isn't available
immediately, and you have to poll for this status data. This could take
milliseconds (a long time in computer terms)!

The solution to this is to temporarily mask interrupts -literally tell
the PIC to ignore interrupts from this particular source until you tell it
otherwise. In this case, even though the interrupt line is asserted from
the hardware, the PIC ignores it and doesn't tell the processor about
it. This lets your ISR schedule a thread to handle this hardware
outside the ISR. When your thread is finished transferring data from
the hardware, it can tell the PIC to unmask that interrupt. This lets
interrupts from that piece of hardware be recognized again. In our
analogy, this is like transferring the VIC's call to your assistant.

How does an ISR tell the kernel that it should now schedule a thread
to do some work? (And conversely, how does it tell the kernel that it
shouldn't do that?)

Here's some pseudo-code for a typical ISR:

FUNCTION ISR BEGIN

END

determine source of interrupt
clear source of interrupt
IF thread required to do some work THEN

RETURN (event);
ELSE

RETURN (NULL);
END IF

The trick is to return an event (of type struct sigevent, which we
talked about in the Clocks, Timers, and Getting a Kick Every So
Often chapter) instead of NULL. Note that the event that you return

Chapter 4 • Interrupts 225

Neutrino and interrupts

Level-sensitivity
versus

edge-sensitivity

Hardware interrupt
request line

Time

226 Chapter 4 • Interrupts

must be persistent after the stack frame of the ISR has been destroyed.
This means that the event must be declared outside of the ISR, or be
passed in from a persistent data area using the area parameter to the
ISR, or declared as a static within the ISR itself. Your choice. If
you return an event, the kernel delivers it to a thread when your ISR
returns. Because the event "alerts" a thread (via a pulse, as we talked
about in the Message Passing chapter, or via a signal), this can cause
the kernel to reschedule the thread that gets the CPU next. If you
return NULL from the ISR, then the kernel knows that nothing special 4

needs to be done at thread time, so it won't reschedule any threads
the thread that was running at the time that the ISR preempted it
resumes running.

There's one more piece of the puzzle we've been missing. Most PICs
can be programmed to operate in level-sensitive or edge-sensitive
mode.

In level-sensitive mode, the interrupt line is deemed to be asserted by
the PIC while it's in the "on" state. (This corresponds to label "1" in
the diagram below.)

Level-sensitive interrupt assertion.

We can see that this would cause the problem described above with
the floppy controller example. Whenever the ISR finishes, the kernel
tells the PIC, "Okay, I've handled this interrupt. Tell me the next time
that it gets activated" (step 2 in the diagram). In technical terms, the
kernel sends an End Of Interrupt (EOI) to the PIC. The PIC looks at
the interrupt line and if it's still active would immediately re-interrupt
the kernel (step 3).

Hardware interrupt
request line

Time

IS R,

p rocess

Neutrino and interrupts

We could get around this by programming the PIC into edge-sensitive
mode. In this mode, the interrupt is noticed by the PIC only on an
active-going edge.

L
CD

®
0 CD

®
1---- t-----

0 0
I

Edge-sensitive interrupt assertion.

Even if the ISR fails to clear the source of the interrupt, when the
kernel sends the EOI to the PIC (step 2 in the diagram), the PIC
wouldn't re-interrupt the kernel, because there isn't another
active-going edge transition after the EOI. In order to recognize
another interrupt on that line, the line must first go inactive (step 4),
and then active (step 1).

Well, it seems all our problems have been solved! Simply use
edge-sensitive for all interrupts.

Unfortunately, edge-sensitive mode has a problem of its own.

Suppose your ISR fails to clear the cause of the interrupt. The
hardware would still have the interrupt line asserted when the kernel
issues the EOI to the PIC. However, because the PIC is operating in
edge-sensitive mode, it never sees another interrupt from that device.

Now what kind of bozo would write an ISR that forgot to clear the
source of the interrupt? Unfortunately it isn't that cut-and-dried.
Consider a case where two devices (let's say a SCSI bus adapter and
an Ethernet card) are sharing the same interrupt line, on a hardware
bus architecture that allows that. (Now you're asking, "Who'd set up a
machine like that?!?" Well, it happens, especially if the number of

Chapter 4 • Interrupts 227

Neutrino and interrupts

Time

Hardware interrupt

interrupt sources on the PIC is in short supply!) In this case, the two
ISR routines would be attached to the same interrupt vector (this is
legal, by the way), and the kernel would call them in tum whenever it
got an interrupt from the PIC for that hardware interrupt level.

request line (composite)----'

Hardware interrupt
line for Ethernet

Hardware interrupt
line for SCSI

_j

228 Chapter 4 • Interrupts

ISRscsl

Sharing interrupts - one at a time.

In this case, because only one of the hardware devices was active
when its associated ISR ran (the SCSI device), it correctly cleared the
source of the interrupt (step 2). Note that the kernel runs the ISR for
the Ethernet device (in step 3) regardless- it doesn't know whether
the Ethernet hardware requires servicing or not as well, so it always
runs the whole chain.

But consider this case:

Hardware interrupt
request line (composite)

Hardware interrupt
line for Ethernet

Hardware interrupt
line for SCSI

Time

Neutrino and interrupts

'cv
G) 0 ® 0

ISRscsl ISREthemet

Sharing interrupts - several at once.

Here's where the problem lies.

The Ethernet device interrupted first. This caused the interrupt line to
be asserted (active-going edge was noted by the PIC), and the kernel
called the first interrupt handler in the chain (the SCSI disk driver;
step 1 in the diagram). The SCSI disk driver's ISR looked at its
hardware and said, "Nope, wasn't me. Oh well, ignore it" (step 2).
Then the kernel called the next ISR in the chain, the Ethernet ISR
(step 3). The Ethernet ISR looked at the hardware and said, "Hey!
That's my hardware that triggered the interrupt. I'm going to clear it."
Unfortunately, while it was clearing it, the SCSI device generated an
interrupt (step 4).

When the Ethernet ISR finished clearing the source of the interrupt
(step 5), the interrupt line is still asserted, thanks to the SCSI
hardware device. However, the PIC, being programmed in
edge-sensitive mode, is looking for an inactive-to-active transition (on
the composite line) before recognizing another interrupt. That isn't
going to happen because the kernel has already called both interrupt
service routines and is now waiting for another interrupt from the
PIC.

Chapter 4 • Interrupts 229

Writing interrupt handlers

Attaching an
interrupt handler

230 Chapter 4 • Interrupts

In this case, a level-sensitive solution would be appropriate because
when the Ethernet ISR finishes and the kernel issues the EOI to the
PIC, the PIC would pick up the fact that an interrupt is still active on
the bus andre-interrupt the kernel. The kernel would then run through
the chain of ISRs, and this time the SCSI driver would get a chance to
run and clear the source of the interrupt.

The selection of edge-sensitive versus level-sensitive is something
that will depend on the hardware and the startup code. Some hardware
will support only one or the other; hardware that supports either mode
will be programmed by the startup code to one or the other. You'll
have to consult the BSP (Board Support Package) documentation that
came with your system to get a definitive answer.

Writing interrupt handlers

Let's see how to set up interrupt handlers- the calls, the
characteristics, and some strategies.

To attach to an interrupt source, you'd use either InterruptAttach() or
InterruptAttachEvent().

#include <sys/neutrino.h>

int
InterruptAttachEvent (int intr,

int

const struct sigevent *event,
unsigned flags) ;

InterruptAttach (int intr,
const struct sigevent *

(*handler) (void *area, int id) ,
const void *area,
int size,
unsigned flags) ;

The intr argument specifies which interrupt you wish to attach the
specified handler to. The values passed are defined by the startup code

Attaching with
lnterruptA ttachEvent()

Attaching with
lnterruptA ttach()

Now that you've
attached an

interrupt

Writing interrupt handlers

that initialized the PIC (amongst other things) just before Neutrino
was started. (There's more information on the startup code in your
Neutrino documentation; look in the Utilities Reference under
startup-*; e.g., startup-p5064.)

At this point, the two functions InterruptAttach() and
InterruptAttachEvent() differ. Let's look at InterruptAttachEvent() as
it's simpler, first. Then we'll come back to InterruptAttach().

The InterruptAttachEvent() function takes two additional arguments:
the argument event, which is a pointer to the struct sigevent that
should be delivered, and a .flags parameter. InterruptAttachEvent()
tells the kernel that the event should be returned whenever the
interrupt is detected, and that the interrupt level should be masked off.
Note that it's the kernel that interprets the event and figures out which
thread should be made READY.

With InterruptAttach(), we're specifying a different set of parameters.
The handler parameter is the address of a function to call. As you can
see from the prototype, handler() returns a struct sigevent,

which indicates what kind of an event to return, and takes two
parameters. The first passed parameter is the area, which is simply
the area parameter that's passed to InterruptAttach() to begin with.
The second parameter, id, is the identification of the interrupt, which
is also the return value from InterruptAttach(). This is used to identify
the interrupt and to mask, unmask, lock, or unlock the interrupt. The
fourth parameter to InterruptAttach() is the size, which indicates how
big (in bytes) the data area that you passed in area is. Finally, the
flags parameter is the same as that passed for the
InterruptAttachEvent(); we'll discuss that shortly.

At this point, you've called either InterruptAttachEvent() or
InterruptAttach().

Chapter 4 • Interrupts 231

Writing interrupt handlers

KW Since attaching an interrupt isn't something you want everyone to be
able to do, Neutrino allows only threads that have "I/0 privity"
enabled to do it (see the ThreadCtl() function in your Neutrino C
Library Reference). Only threads running from the root account or
that are setuid() to root can obtain "1/0 privity"; hence we're
effectively limiting this ability to root.

232 Chapter 4 • Interrupts

Here's a code snippet that attaches an ISR to the hardware interrupt
vector, which we've identified in our code sample by the constant
HW _SERIALIRQ:

#include <sys/neutrino.h>

int interruptiD;

const struct sigevent *
intHandler (void *arg, int id)
{

}

int
main (int argc, char **argv)
{

interruptiD InterruptAttach (HW_SERIAL-IRQ,

}

if (interruptiD == -1) {

intHandler,
&:event,
sizeof (event),
0);

fprintf (stderr, 11 %s: can't attach to IRQ %d\n",
progname, HW_SERIAL-IRQ);

perror (NULL);
exit (EXIT-FAILURE);

}

return (EXIT_SUCCESS);

This creates the association between the ISR (the routine called
intHandler(); see below for details) and the hardware interrupt vector
HW _SERIALIRQ.

Detaching an
interrupt handler

Writing interrupt handlers

At this point, if an interrupt occurs on that interrupt vector, our ISR
will be dispatched. When we call InterruptAttach(), the kernel
unmasks the interrupt source at the PIC level (unless it's already
unmasked, which would be the case if multiple ISRs were sharing the
same interrupt).

When done with the ISR, we may wish to break the association
between the ISR and the interrupt vector:

int
InterruptDetach (int id) ;

I said "may" because threads that handle interrupts are generally
found in servers, and servers generally hang around forever. It's
therefore conceivable that a well-constructed server wouldn't ever
issue the InterruptDetach() function call. Also, the OS will remove
any interrupt handlers that a thread or process may have associated
with it when the thread or process dies. So, simply falling off the end
of main(), calling exit(), or exiting due to a SIGSEGV, will dissociate
your ISR from the interrupt vector, automagically. (Of course, you'll
probably want to handle this a little better, and stop your device from
generating interrupts. If another device is sharing the interrupt, then
there are no two ways about it- you must clean up, otherwise you
won't get any more interrupts if running edge-sensitive mode, or
you'll get a constant flood of ISR dispatches if running in
level-sensitive mode.)

Continuing the above example, if we want to detach, we'd use the
following code:

void
terminateinterrupts (void)
{

InterruptDetach (interruptiD);
}

If this was the last ISR associated with that interrupt vector, the kernel
would automatically mask the interrupt source at the PIC level so that
it doesn't generate interrupts.

Chapter 4 • Interrupts 233

Writing interrupt handlers

The .flags
parameter

The interrupt
service routine

Using lnterruptAttach()

234 Chapter 4 • Interrupts

The last parameter, flags, controls all kinds of things:

_NTO_INTR_FLAGS_END

Indicates that this handler should go after other handlers that
may be attached to the same interrupt source .

.NTO.JNTRYLAGS_FROCESS

Indicates that this handler is associated with the process rather
than the thread. What this boils down to is that if you specify
this flag, the interrupt handler will be automatically dissociated
from the interrupt source when the process exits. If you don't
specify this thread, the interrupt handler will be dissociated
from the interrupt source when the thread that created the
association in the first place exits .

.NTO_INTRYLAGS_ TRK.MSK

Indicates that the kernel should track the number of times the
interrupt has been masked. This causes a little more work for
the kernel, but is required to ensure an orderly unmasking of the
interrupt source should the process or thread exit.

Let's look at the ISR itself. In the first example, we'll look at using
the lnterruptAttach() function. Then, we'll see the exact same thing,
except with lnterruptAttachEvent().

Continuing our example, here's the ISR intHandler(). It looks at the
8250 serial port chip that we assume is attached to HW _SERIAL.JRQ:

/*
* part of intl.c

*I

volatile int serial~sr; // saved contents of Modem Status Reg
volatile int serial_rx; // saved contents of RX register
volatile int serial_lsr; // saved contents of Line Status Reg

const struct sigevent *
intHandler (void *arg, int id)
{

Writing interrupt handlers

int iir;
struct sigevent *event (struct sigevent *)arg;

I*
* determine the source of the interrupt
* by reading the Interrupt Identification Register

*I

iir inS (base_reg + REG-II) & IIR-MASK;

I* no interrupt? *I
if (iir & 1) {

}

I*

I* then no event *I
return (NULL);

* figure out which interrupt source caused the interrupt,
* and see if a thread needs to do something about it.
* (The constants are based on the S250 serial port's
* interrupt identification register.)

*I

switch (iir) {
case IIR-MSR:

case

case

case

serial~sr inS (base_reg + REG-MS);

I* wake up thread *I
return (event);
break;

IIR-THE:
I* do nothing *I
break;

IIR-RX:
I* note the character *I
serial_rx inS (base_reg + REG-RX);
break;

IIR-LSR:
I* note the line status reg. *I
serial_lsr =inS (base_reg + REG-LS);
break;

default:
break;

}

I* don't bother anyone *I

Chapter 4 • Interrupts 235

Writing interrupt handlers

Using
lnterruptAttachEvent()

236 Chapter 4 • Interrupts

return (NULL) ;
}

The first thing we notice is that any variable that the ISR touches must
be declared volatile. On a single-processor box, this isn't for the
ISR's benefit, but rather for the benefit of the thread-level code, which
can be interrupted at any point by the ISR. Of course, on an SMP box,
we could have the ISR running concurrently with the thread-level
code, in which case we have to be very careful about these sorts of
things.

With the volatile keyword, we're telling the compiler not to cache
the value of any of these variables, because they can change at any
point during execution.

The next thing we notice is the prototype for the interrupt service
routine itself. It's marked as const struct sigevent *·This
says that the routine intHandler returns a struct sigevent

pointer. This is standard for all interrupt service routines.

Finally, notice that the ISR decides if the thread will or won't be sent
an event. Only in the case of a Modem Status Register (MSR)
interrupt do we want the event to be delivered (the event is identified
by the variable event, which was conveniently passed to the ISR when
we attached it). In all other cases, we ignore the interrupt (and update
some global variables). In all cases, however, we clear the source of
the interrupt. This is done by reading the 1/0 port via inS().

If we were to recode the example above to use
InterruptAttachEvent(), it would look like this:

I*
*part of int2.c

*I

int
main (int argc, char **argv)
{

int intid;
int iir;
int serial~sr;

II interrupt id
II interrupt identification register
II saved contents of Modem Status Reg

Writing interrupt handlers

int serial_rx;
int serial_lsr;

II saved contents of RX register
II saved contents of Line Status Reg

II usual main() setup stuff •..

II set up the event
intid = InterruptAttachEvent (HW_SERIAL-IRQ, &event, 0);

for (; ;) {

II wait for an interrupt event
II (could use MsgReceive instead)
InterruptWait (0, NULL);

I*
* determine the source of the interrupt (and clear
* it) by reading the Interrupt Identification
* Register

*I

iir = inS (base_reg + REG-II) & IIR~SK;

II unmask the interrupt, so we can get the next event
InterruptUnmask (HW_SERIAL-IRQ, intid);

I* no interrupt? *I
if (iir & 1) {

}

I*

I* then wait again for next *I
continue;

* figure out which interrupt source caused the
* interrupt, and determine if we need to do
* something about it

*I

switch (iir) {
case

case

IIR...MSR:
serial...lllsr inS (base_reg + REG...MS);

I*
* perform whatever processing you would've done
*in the other example ..•

*I
break;

IIR_THE:
I* do nothing *I
break;

Chapter 4 • Interrupts 237

Writing interrupt handlers

238 Chapter 4 • Interrupts

}

}

case IIR-RX:
I* note the character *I
serial_rx inB (base_reg + REG-RX);
break;

case IIR__LSR:

}

I* note the line status reg. *I
serial_lsr = inB (base_reg + REG_LS);
break;

I* You won't get here. *I
return (0);

Notice that the InterruptAttachEvent() function returns an interrupt
identifier (a small integer). We've saved this into the variable intld so
that we can use it later when we go to unmask the interrupt.

After we've attached the interrupt, we then need to wait for the
interrupt to hit. Since we're using InterruptAttachEvent(), we'll get
the event that we created earlier dropped on us for every interrupt.
Contrast this with what happened when we used InterruptAttach()
in that case, our ISR determined whether or not to drop an event on
us. With InterruptAttachEvent(), the kernel has no idea whether or not
the hardware event that caused the interrupt was "significant" for us,
so it drops the event on us every time it occurs, masks the interrupt,
and lets us decide if the interrupt was significant or not.

We handled the decision in the code example for InterruptAttach()
(above) by returning either a struct sigevent to indicate that
something should happen, or by returning the constant NULL. Notice
the changes that we did to our code when we modified it for
InterruptAttachEvent():

• The "ISR" work is now done at thread time in main().

• We must always unmask the interrupt source after receiving our
event (because the kernel masks it for us).

Writing interrupt handlers

• If the interrupt is not significant to us, we don't do anything and
simply loop around again in the for statement, waiting for another
interrupt.

• If the interrupt is significant to us, we handle it directly (in the
case IIR....MSR part).

Where you decide to clear the source of the interrupt depends on your
hardware and the notification scheme you've chosen. With the
combination of SIGEV JNTR and lnterruptWait(), the kernel doesn't
"queue" more than one notification; with SIGEV _FULSE and
MsgReceive(), the kernel will queue all the notifications. If you're
using signals (and SIGEV_SIGNAL, for example), you define whether
the signals are queued or not. With some hardware schemes, you may
need to clear the source of the interrupt before you can read more data
out of the device; with other pieces of hardware, you don't have to
and can read data while the interrupt is asserted.

I& An ISR returning SIGEV _THREAD is one scenario that fills me with
absolute fear! I'd recommend avoiding this "feature" if at all possible.

lnterruptAttach() versus
lnterruptAttachEvent()

In the serial port example above, we've decided to use
lnterruptWait(), which will queue one entry. The serial port hardware
may assert another interrupt immediately after we've read the
interrupt identification register, but that's fine, because at most one
SIGEV _INTR will get queued. We'll pick up this notification on our
next iteration of the for loop.

This naturally brings us to the question, "Why would I use one over
the other?"

The most obvious advantage of lnterruptAttachEvent() is that it's
simpler to use than lnterruptAttach()- there's no ISR routine (hence
no need to debug it). Another advantage is that since there's nothing
running in kernel space (as an ISR routine would be) there's no
danger of crashing the entire system. If you do encounter a

Chapter 4 • Interrupts 239

Writing interrupt handlers

240 Chapter 4 • Interrupts

programming error, then the process will crash, rather than the whole
system. However, it may be more or less efficient than
lnterruptAttach() depending on what you're trying to achieve. This
issue is complex enough that reducing it to a few words (like "faster"
or "better") probably won't suffice. We'll need to look at a few
pictures and scenarios.

Here's what happens when we use InterruptAttach():

thread 1

Interrupt

kernel

ISR

kernel
(resched)

thread 2

Control flow with lnterruptAttach().

The thread that's currently running ("thread I") gets interrupted, and
we go into the kernel. The kernel saves the context of "thread 1." The
kernel then does a lookup to see who's responsible for handling the
interrupt and decides that "ISR 1" is responsible. At this point, the
kernel sets up the context for "ISR 1" and transfers control. "ISR 1"
looks at the hardware and decides to return a struct sigevent.

The kernel notices the return value, figures out who needs to handle it,
and makes them READY. This may cause the kernel to schedule a
different thread to run, "thread2."

Now, let's contrast that with what happens when we use
lnterruptAttachEvent():

:::! Interrupt
s::
m

thread 1

thread 2

Control flow with /nterruptAttachEvent().

Writing interrupt handlers

kernel
(resched)

In this case, the servicing path is much shorter. We made one context
switch from the currently running thread ("thread!") into the kernel.
Instead of doing another context switch into the ISR, the kernel
simply "pretended" that the ISR returned a struct sigevent and
acted on it, rescheduling "thread2" to run.

Now you're thinking, "Great! I'm going to forget all about
InterruptAttach() and just use the easier InterruptAttachEvent()."

That's not such a great idea, because you may not need to wake up for
every interrupt that the hardware generates! Go back and look at the
source example above - it returned an event only when the modem
status register on the serial port changed state, not when a character
arrived, not when a line status register changed, and not when the
transmit holding buffer was empty.

In that case, especially if the serial port was receiving characters (that
you wanted to ignore), you'd be wasting a lot of time rescheduling
your thread to run, only to have it look at the serial port and decide
that it didn't want to do anything about it anyway. In that case, things
would look like this:

Chapter 4 • Interrupts 241

Writing interrupt handlers

242 Chapter 4 • Interrupts

:j
:s:
m

Interrupt

thread 1

thread 2

thread 1

kernel
(resched)

kernel
(resched)

Control flow with lnterruptAttachEvent() and unnecessary rescheduling.

All that happens is that you incur a thread-to-thread context switch to
get into "thread2" which looks at the hardware and decides that it
doesn't need to do anything about it, costing you another
thread-to-thread context switch to get back to "threadl."

Here's how things would look if you used InterruptAttach() but didn't
want to schedule a different thread (i.e., you returned):

thread 1

Interrupt

kernel

-f
~ ISR
m

kernel
(no resched)

thread 1

Control flow with lnterruptAttach() with no thread rescheduling.

The tradeoffs

Writing interrupt handlers

The kernel knows that "thread 1" was running, and the ISR didn't tell
it to do anything, so it can just go right ahead and let "threadl"
continue after the interrupt.

Just for reference, here's what the InterruptAttachEvent() function
call does (note that this isn't the real source, because
InterruptAttachEvent() actually binds a data structure to the kernel
it isn't implemented as a discrete function that gets called!):

II the "internal" handler
static const struct sigevent *
internalHandler (void *arg, int id)
{

int

struct sigevent *event = arg;

InterruptMask (intr, id);
return (arg);

InterruptAttachEvent (int intr,

{
const struct sigevent *event, unsigne~ flags)

static struct sigevent static_event;

memcpy (&static_event, event, sizeof (static_event));

return (InterruptAttach (intr, internalHandler,
&static_event, sizeof (*event), flags));

So, which function should you use? For low-frequency interrupts, you
can almost always get away with InterruptAttachEvent(). Since the
interrupts occur infrequently, there won't be a significant impact on
overall system performance, even if you do schedule threads
unnecessarily. The only time that this can come back to haunt you is
if another device is chained off the same interrupt- in this case,
because InterruptAttachEvent() masks the source of the interrupt, it'll
effectively disable interrupts from the other device until the interrupt
source is unmasked. This is a concern only if the first device takes a
long time to be serviced. In the bigger picture, this is a hardware

Chapter 4 • Interrupts 243

Writing interrupt handlers

ISR functions

244 Chapter 4 • Interrupts

system design issue- you shouldn't chain slow-to-respond devices
on the same line as high-speed devices.

For higher-frequency interrupts, it's a toss up, and there are many
factors:

• Unnecessary interrupts- if there will be a significant number of
these, you're better off using InterruptAttach() and filtering them
out in the ISR. For example, consider the case of a serial device. A
thread may issue a command saying "Get me 64 bytes." If the ISR
is programmed with the knowledge that nothing useful will happen
until 64 bytes are received from the hardware, the ISR has
effectively filtered the interrupts. The ISR will then return an event
only after 64 bytes have been accumulated.

• Latency - if your hardware is sensitive to the amount of time that
passes between asserting the interrupt request and the execution of
the ISR, you should use InterruptAttach() to minimize this
interrupt latency. This is because the kernel is very fast at
dispatching the ISR.

• Buffering- if your hardware has buffering in it, you may be able
to get away with InterruptAttachEvent() and a single-entry
queueing mechanism like SIGEV _INTR and InterruptWait(). This
method lets the hardware interrupt as often as it wants, while
letting your thread pick the values out of the hardware's buffer
when it can. Since the hardware is buffering the data, there's no
problem with interrupt latencies.

The next issue we should tackle is the list of functions an ISR is
allowed to call.

Let me digress just a little at this point. Historically, the reason that
ISRs were so difficult to write (and still are in most other operating
systems) is that the ISR runs in a special environment.

One particular thing that complicates writing ISRs is that the ISR isn't
actually a "proper" thread as far as the kernel is concerned. It's this
weird "hardware" thread, if you want to call it that. This means that

Writing interrupt handlers

the ISR isn't allowed to do any "thread-level" things, like messaging,
synchronization, kernel calls, disk 1/0, etc.

But doesn't that make it much harder to write ISR routines? Yes it
does. The solution, therefore, is to do as little work as possible in the
ISR, and do the rest of the work at thread-level, where you have
access to all the services.

Your goals in the ISR should be:

• Fetch information that is transitory.

• Clear the source of the ISR.

• Optionally dispatch a thread to get the "real" work done.

This "architecture" hinges on the fact that Neutrino has very fast
context-switch times. You know that you can get into your ISR
quickly to do the time-critical work. You also know that when the ISR
returns an event to trigger thread-level work, that thread will start
quickly as well. It's this "don't do anything in the ISR" philosophy
that makes Neutrino ISRs so simple!

So, what calls can you use in the ISR? Here's the official list:

• atomic_*() functions (such as atomic ...set())

• mem*() functions (such as memcpy())

• most str*() functions (such as strcmp()). Beware, though, that not
all these are safe, such as strdup() - it calls malloc(), which uses a
mutex, and that's not allowed. For the string functions, you should
really consult the individual C Library References before using.

• InterruptMask()

• InterruptUnmask()

• InterruptLock()

• InterruptUnlock()

Chapter 4 • Interrupts 245

Writing interrupt handlers

246 Chapter 4 • Interrupts

• InterruptDisable()

• InterruptEnable()

• in*() and out*()

Basically, the rule of thumb is, "Don't use anything that's going to
take a huge amount of stack space or time, and don't use anything that
issues kernel calls." The stack space requirement stems from the fact
that ISRs have very limited stacks.

The list of interrupt-safe functions makes sense- you might want to
move some memory around, in which case the mem *() and str*()
functions are a good choice. You'll most likely want to read data
registers from the hardware (in order to save transitory data variables
and/or clear the source of the interrupt), so you 'II want to use the in*()
and out*() functions.

What about the bewildering choice of Interrupt*() functions? Let's
examine them in pairs:

InterruptMask() and Interrupt Unmask()

These functions are responsible for masking the interrupt source
at the PIC level; this keeps them from being passed on to the
CPU. Generally, you'd use this if you want to perform further
work in the thread and can't clear the source of the interrupt in
the ISR itself. In this case, the ISR would issue InterruptMask(),
and the thread would issue InterruptUnmask() when it had
completed whatever operation it was invoked to do.

Keep in mind that InterruptMask() and Interrupt Unmask() are
counting - you must "unmask" the same number of times that
you've "masked" in order for the interrupt source to be able to
interrupt you again.

By the way, note that the InterruptAttachEvent() performs the
InterruptMask() for you (in the kernel)- therefore you must
call InterruptUnmask() from your interrupt-handling thread.

Summary

lnterruptLock() and lnterruptUnlock()

These functions are used to disable (InterruptLock()) and enable
(InterruptUnlock()) interrupts on a single or multiprocessor
system. You'd want to disable interrupts if you needed to
protect the thread from the ISR (or additionally, on an SMP
system, the ISR from a thread). Once you've done your critical
data manipulation, you'd then enable interrupts. Note that these
functions are recommended over the "old" lnterruptDisable()
and lnterruptEnable() functions as they will operate properly on
an SMP system. There's an additional cost over the "old"
functions to perform the check on an SMP system, but in a
single processor system it's negligible, which is why I'm
recommending that you always use lnterruptLock() and
lnterruptUnlock().

lnterruptDisable() and lnterruptEnable()

These functions shouldn't be used in new designs. Historically,
they were used to invoke the x86 processor instructions eli and
sti when Neutrino was x86-only. They've since been upgraded
to handle all supported processors, but you should use
lnterruptLock() and lnterruptUnlock() (to keep SMP systems
happy).

The one thing that bears repeating is that on an SMP system, it is
possible to have both the interrupt service routine and another thread
running at the same time.

Summary

Keep the following things in mind when dealing with interrupts:

• Don't take too long in an ISR- perform the minimum amount of
work you can get away with. This helps minimize interrupt latency
and debugging.

Chapter 4 • Interrupts 247

Summary

248 Chapter 4 • Interrupts

• Use InterruptAttach() when you need to access the hardware as
soon as the interrupt occurs; otherwise, avoid it.

• Use InterruptAttachEvent() at all other times. The kernel will
schedule a thread (based on the event that you passed) to handle
the interrupt.

• Protect variables used by both the interrupt service routine (if
using InterruptAttach()) and threads by calling lnterruptLock() and
lnterruptUnlock().

• Declare variables that are going to be used between the thread and
the ISR as volatile so that the compiler isn't caching "stale"
values that have been changed by the ISR.

ChapterS

Resource Managers

In this chapter ...
What is a resource manager?
The client's view
The resource manager's view
The resource manager library
Writing a resource manager
Handler routines
Examples
Advanced topics
Summary

Chapter 5 • Resource Managers 249

Examples of
resource

managers

Serial port

What is a resource manager?

What is a resource manager?

In this chapter, we'll take a look at what you need to understand in
order to write a resource manager.

A resource manager is simply a program with some well-defined
characteristics. This program is called different things on different
operating systems - some call them "device drivers," "I/0
managers," "filesystems," "drivers," "devices," and so on. In all cases,
however, the goal of this program (which we'll just call a resource
manager) is to present an abstract view of some service.

Also, since Neutrino is a POSIX-conforming operating system, it
turns out that the abstraction is based on the POSIX specification.

Before we get carried away, let's take a look at a couple of examples
and see how they "abstract" some "service." We'll look at an actual
piece of hardware (a serial port) and something much more abstract (a
filesystem).

On a typical system, there usually exists some way for a program to
transmit output and receive input from a serial, RS-232-style
hardware interface. This hardware interface consists of a bunch of
hardware devices, including a UART (Universal Asynchronous
Receiver Transmitter) chip which knows how to convert the CPU's
parallel data stream into a serial data stream and vice versa.

In this case, the "service" being provided by the serial resource
manager is the capability for a program to send and receive characters
on a serial port.

We say that an "abstraction" occurs, because the client program (the
one ultimately using the service) doesn't know (nor does it care
about) the details of the UART chip and its implementation. All the
client program knows is that to send some characters it should call the
fprintf() function, and to receive some characters it should call the
fgets() function. Notice that we used standard, POSIX function calls
to interact with the serial port.

Chapter 5 • Resource Managers 251

What is a resource manager?

Filesystem

Characteristics of
resource

managers

As another example of a resource manager, let's examine the
filesystem. This consists of a number of cooperating modules: the
filesystem itself, the block 110 driver, and the disk driver.

The "service" being offered here is the capability for a program to
read and write characters on some medium. The "abstraction" that
occurs is the same as with the serial port example above - the client
program can still use the exact same function calls (e.g., the fprintf()
andfgets() functions) to interact with a storage medium instead of a
serial port. In fact, the client really doesn't know or need to know
which resource manager it's interacting with.

As we saw in our examples (above), the key to the flexibility of the
resource managers is that all the functionality of the resource manager
is accessed using standard POSIX function calls- we didn't use
"special" functions when talking to the serial port. But what if you
need to do something "special," something very device-specific? For
example, setting the baud rate on a serial port is an operation that's
very specific to the serial port resource manager- it's totally
meaningless to the filesystem resource manager. Likewise, setting the
file position via lseek() is useful in a filesystem, but meaningless in a
serial port. The solution POSIX chose for this is simple. Some
functions, like lseek(), simply return an error code on a device that
doesn't support them. Then there's the "catch-all" device control
function, called devctl(), that allows device-specific functionality to
be provided within a POSIX framework. Devices that don't
understand the particular devctl() command simply return an error,
just as devices that don't understand the !seek() command would.

Since we've mentioned !seek() and devctl() as two common
commands, it's worthwhile to note that pretty much all file-descriptor
(or FILE * stream) function calls are supported by resource
managers.

This naturally leads us to the conclusion that resource managers will
be dealing almost exclusively with file-descriptor based function
calls. Since Neutrino is a message-passing operating system, it
follows that the POSIX functions get translated into messages, which

252 Chapter 5 • Resource Managers

The client's view

are then sent to resource managers. It is this "POSIX-function to
message-passing" translation trick that lets us decouple clients from
resource managers. All a resource manager has to do is handle certain
well-defined messages. All a client has to do is generate the same
well-defined messages that the resource manager is expecting to
receive and handle.

I@' Since the interaction between clients and resource managers is based
on message passing, it makes sense to make this "translation layer" as
thin as possible. For example, when a client does an open() and gets
back a file descriptor, the file descriptor is in fact the connection ID!
This connection ID (file descriptor) gets used in the client's C library
functions (like read()) where a message is created and sent to the
resource manager.

Finding the server

The client's view

We've already seen a hint of what the client expects. It expects a
file-descriptor-based interface, using standard POSIX functions.

In reality, though, there are a few more things going on "under the
hood."

For example, how does the client actually connect to the appropriate
resource manager? What happens in the case of union filesystems
(where multiple filesystems are responsible for the same
"namespace")? How are directories handled?

The first thing that a client does is call open() to get a file descriptor.
(Note that if the client calls the higher-level functionfopen() instead,
the same discussion applies- fopen() eventually calls open()).

Inside the C library implementation of open(), a message is
constructed, and sent to the process manager (pro en to) component.

Chapter 5 • Resource Managers 253

The client's view

The process manager is responsible for maintaining information about
the pathname space. This information consists of a tree structure that
contains pathnames and node descriptor, process ID, channel ID, and
handle associations:

Resource Managers Pathname Space
(stored by Process Manager)

Resource Managers

(0,1,1,1) IPrpr;;;oc;ntt;;'oll--• -------1 •I fs-qnx4 I (0,4965,1,1)

(0,1,1.1) procnto I• proc _L dev ___ ____,•{l~p~ro~cn~toJI (0,1,1,1)

(0,1,1,1) procnto I•

(0,1,1,1) procnto I•

(0,1,1,1) procnto I•

Neutrino's namespace.

boot
1
j tser1 ~ (0,44,1,1)

ser2 ~ (0,44,1,2)

4965 con1~ (0,725,1,1)

!&' Note that in the diagram above and in the descriptions that follow,
I've used the designation fs-qnx4 as the name of the resource
manager that implements the QNX 4 filesystem- in reality, it's a bit
more complicated, because the filesystem drivers are based on a series
of DLLs that get bundled together. So, there's actually no executable
called fs-qnx4; we're just using it as a placeholder for the filesystem
component.

Let's say that the client calls open():

fd = open ("/dev/serl", Q_WRONLY);

In the client's C library implementation of open(), a message is
constructed and sent to the process manager. This message states, "I
want to open /dev/serl; who should I talk to?"

254 Chapter 5 • Resource Managers

The client's view

(2) Response

First stage of name resolution.

The process manager receives the request and looks through its tree
structure to see if there's a match (let's assume for now that we need
an exact match). Sure enough, the pathname "/dev/serl" matches
the request, and the process manager is able to reply to the client: "I
found /dev/serl. It's being handled by node descriptor 0, process
ID 44, channel ID 1, handle 1. Send them your request!"

Remember, we're still in the client's open() code!

So, the open() function creates another message, and a connection to
the specified node descriptor (0, meaning our node), process ID (44),
channel ID (1), stuffing the handle into the message itself. This
message is really the "connect" message- it's the message that the
client's open() library uses to establish a connection to a resource
manager (step 3 in the picture below). When the resource manager
gets the connect message, it looks at it and performs validation. For
example, you may have tried to open-for-write a resource manager
that implements a read-only filesystem, in which case you'd get back
an error (in this case, EROFS). In our example, however, the serial port
resource manager looks at the request (we specified O_WRONLY;

perfectly legal for a serial port) and replies back with an EOK (step 4
in the picture below).

Chapter 5 • Resource Managers 255

The client's view

Finding the
process manager

Handling
directories

(3) Connect

(4) Reply

The _/Q_CONNECT message.

Finally, the client's open() returns to the client with a valid file
descriptor.

Really, this file descriptor is the connection ID we just used to send a
connect message to the resource manager! Had the resource manager
not given us an EOK, we would have passed this error back to the
client (via errno and a -1 return from open()). (It's worthwhile to
note that the process manager can return the node 10, process ID and
channel ID of more than one resource manager in response to a name
resolution request. In that case, the client will try each of them in turn
until one succeeds, returns an error that's not ENOSYS, ENOENT, or
EROFS, or the client exhausts the list, in which case the open() fails.
We'll discuss this further when we look at the "before" and "after"
flags, later on.)

Now that we understand the basic steps used to find a particular
resource manager, we need to solve the mystery of, "How did we find
the process manager to begin with?" Actually, this one's easy. By
definition, the process manager has a node descriptor of 0 (meaning
this node), a process ID of 1, and a channel ID of I. So, the
ND/PID/CHID triplet 01111 always identifies the process manager.

The example we used above was that of a serial port resource
manager. We also stated an assumption: "let's assume for now that we
need an exact match." The assumption is only half-true- all the
pathname matching we'll be talking about in this chapter has to
completely match a component of the pathname, but may not have to
match the entire pathname. We'll clear this up shortly.

256 Chapter 5 • Resource Managers

The client's view

Suppose I had code that does this:

fp = fopen ("/etc/passwd", "r");

Recall thatfopen() eventually calls open(), so we have open() asking
about the pathname letclpasswd. But there isn't one in the
diagram:

Resource Managers Path name Space
(stored by Process Manager)

Resource Managers

(0,1,1,1) II PrprProc;;;-ntlc;"oli•-~~~~~~-J •I fs-qnx4 I (0,4965,1,1)

(0,1,1,1) I procnto I• proc _L dev •I procnto I (0,1,1,1)

(0,1,1,1) I procnto I• boo
1
t j t ser1 ~ (0,44,1,1)

(0,1,1,1) I procnto I• ser2 ~ (0,44,1,2)

(0,1,1,1) I procnto I• 4965 con1 ~ (0,725,1,1)

Neutrino's namespace.

We do notice, however, that fs-qnx4 has registered its association of
ND/PID/CHID at the pathname "1." Although it's not shown on the
diagram, fs-qnx4 registered itself as a directory resource manager
~it told the process manager that it'll be responsible for"!" and
below. This is something that the other, "device" resource managers
(e.g., the serial port resource manager) didn't do. By setting the
"directory" flag, fs-qnx4 is able to handle the request for
"I etclpasswd" because the first part of the request is"/"~ a
matching component!

What if we tried to do the following?

fd =open ("/dev/serl/9600.8.1.n", Q_WRONLY);

Well, since the serial port resource manager doesn't have the directory
flag set, the process manager will look at it and say "Nope, sorry, the
pathname I dev I serl is not a directory. I'm going to have to fail this
request." The request fails right then and there ~ the process

Chapter 5 • Resource Managers 257

The client's view

manager doesn't even return a ND/PID/CHID/handle that the open()
function should try.

~ Obviously, as hinted at in my choice of parameters for the open() call
above, it may be a clever idea to allow some "traditional" drivers to be
opened with additional parameters past the "usual" name. However,
the rule of thumb here is, "If you can get away with it in a design
review meeting, knock yourself out." Some of my students, upon
hearing me say that, pipe up with "But I am the design review
committee!" To which I usually reply, "You are given a gun. Shoot
yourself in the foot. : -) "

Union'd
filesystems

Take a closer look at the diagram we've been using:

Resource Managers Pathname Space
(stored by Process Manager)

Resource Managers

(0,1,1,1) I procnto I•
(0,1,1,1) I procnto I•

(0,1,1,1) I procnto I•
(0,1,1,1) I procnto I•
(0,1,1,1) I procnto I•

Neutrino's namespace.

proc

boo: j
4965

1 •I fs-qnx4 I (0,4965, 1,1)

___L dev •I procnto I (0,1,1,1) tser1 ~ (0,44,1,1)

ser2 ~ (0,44,1,2)

con1~ (0,725,1,1)

Notice how both fs-qnx4 and the process manager have registered
themselves as being responsible for"/"? This is fine, and nothing to
worry about. In fact, there are times when it's a very good idea. Let's
consider one such case.

Suppose you have a very slow network connection and you've
mounted a networked filesystem over it. You notice that you often use
certain files and wish that they were somehow magically "cached" on
your system, but alas, the designers of the network filesystem didn't
provide a way for you to do that. So, you write yourself a caching

258 Chapter 5 • Resource Managers

The client's view

filesystem (called fs-cache) that sits on top of the network
filesystem. Here's how it looks from the client's point of view:

Resource Managers Pathname Space Resource Managers
(stored by Process Manager)

I

(0,326, 1,1) I fs-cache ~1•----
I

nfs ~(0,77625,1,1)

Overlayed filesystems.

Both fs-nfs (the network filesystem) and your caching filesystem
(fs-cache) have registered themselves for the same prefix, namely
"/nfs." As we mentioned above, this is fine, normal, and legal under
Neutrino.

Let's say that the system just started up and your caching filesystem
doesn't have anything in it yet. A client program tries to open a file,
let's say /nfs/home/rk/abc. txt. Your caching filesystem is "in
front of" the network filesystem (I'll show you how to do that later,
when we discuss resource manager implementation).

At this point, the client's open() code does the usual steps:

1 Message to the process manager: "Who should I talk to about
the filename /nfs/home/rk/abc. txt?"

2 Response from the process manager: "Talk to fs-cache first,
and then fs-nfs."

Notice here that the process manager returned two sets of
ND/PID/CHID/handle; one for fs-cache and one for fs-nfs. This
is critical.

Now, the client's open() continues:

1 Message to fs-cache: "I'd like to open the file
/nfs/home/rk/abc. txt for read, please."

Chapter 5 • Resource Managers 259

The client's view

2 Response from fs-cache: "Sorry, I've never heard of this file."

At this point, the client's open() function is out of luck as far as the
fs-cache resource manager is concerned. The file doesn't exist!
However, the open() function knows that it got a list of two
ND/PID/CHID/handle tuples, so it tries the second one next:

Message to fs-nfs: "I'd like to open the file
/nfs/home/rk/abc. txt for read, please."

2 Response from fs-nfs: "Sure, no problem!"

Now that the open() function has an EOK (the "no problem"), it
returns the file descriptor. The client then performs all further
interactions with the fs-nfs resource manager.

IBf The only time that we "resolve" to a resource manager is during the
open() call. This means that once we've successfully opened a
particular resource manager, we will continue to use that resource
manager for all file descriptor calls.

So how does our fs-cache caching filesystem come into play? Well,
eventually, let's say that the user is done reading the file (they've
loaded it into a text editor). Now they want to write it out. The same
set of steps happen, with an interesting twist:

1 Message to the process manager: "Who should I talk to about
the filename /nfs/home/rk/abc. txt?"

2 Response from the process manager: "Talk to fs-cache first,
and then fs-nfs."

3 Message to fs-cache: "''d like to open the file
/nfs/home/rk/abc. txt for write, please."

4 Response from fs-cache: "Sure, no problem."

260 Chapter 5 • Resource Managers

Client summary

The client's view

Notice that this time, in step 3, we opened the file for write and not
read as we did previously. It's not surprising, therefore, that
fs-cache allowed the operation this time (in step 4).

Even more interesting, observe what happens the next time we go to
read the file:

1 Message to the process manager: "Who should I talk to about
the filename /nfs/home/rk/abc. txt?"

2 Response from the process manager: "Talk to fs-cache first,
and then fs-nfs."

3 Message to fs-cache: "I'd like to open the file
/nfs/home/rk/abc. txt for read, please."

4 Response from fs-cache: "Sure, no problem."

Sure enough, the caching filesystem handled the request for the read
this time (in step 4)!

Now, we've left out a few details, but these aren't important to getting
across the basic ideas. Obviously, the caching filesystem will need
some way of sending the data across the network to the "real" storage
medium. It should also have some way of verifying that no one else
modified the file just before it returns the file contents to the client (so
that the client doesn't get stale data). The caching filesystem could
handle the first read request itself, by loading the data from the
network filesystem on the first read into its cache. And so on.

We're done with the client side of things. The following are key
points to remember:

• The client usually triggers communication with the resource
manager via open() (or fopen()).

• Once the client's request has "resolved" to a particular resource
manager, we never change resource managers.

Chapter 5 • Resource Managers 261

The resource manager's view

Registering a
path name

• All further messages for the client's session are based on the file
descriptor (or FILE * stream), (e.g., read(), lseek(),Jgets()).

• The session is terminated (or "dissociated") when the client closes
the file descriptor or stream (or terminates for any reason).

• All client file-descriptor-based function calls are translated into
messages.

The resource manager's view

Let's look at things from the resource manager's perspective.
Basically, the resource manager needs to tell the process manager that
it'll be responsible for a certain part of the pathname space (it needs to
register itself). Then, the resource manager needs to receive messages
from clients and handle them. Obviously, things aren't quite that
simple.

Let's take a quick overview look at the functions that the resource
manager provides, and then we'lllook at the details.

The resource manager needs to tell the process manager that one or
more pathnames are now under its domain of authority- effectively,
that this particular resource manager is prepared to handle client
requests for those pathnames.

The serial port resource manager might handle (let's say) four serial
ports. In this case, it would register four different pathnames with the
process manager: /dev/serl, /dev/ser2, /dev/ser3, and
/dev/ser4. The impact of this is that there are now four distinct
entries in the process manager's pathname tree, one for each of the
serial ports. Four entries isn't too bad. But what if the serial port
resource manager handled one of those fancy multi port cards, with
256 ports on it? Registering 256 individual pathnames (i.e.,
/dev/serl through /dev/ser256) would result in 256 different
entries in the process manager's pathname tree! The process manager

262 Chapter 5 • Resource Managers

Handling
messages

The resource manager's view

isn't optimized for searching this tree; it assumes that there will be a
few entries in the tree, not hundreds.

As a rule, you shouldn't discretely register more than a few dozen
pathnames at each level - this is because a linear search is
performed. The 256 port registration is certainly beyond that. In that
case, what the multipart serial resource manager should do is register
a directory-style pathname, for example I dev /mul tiport. This
occupies only one entry in the process manager's pathname tree.
When a client opens a serial port, let's say port 57:

fp ~ fopen ("ldevlmultiportl57", "w");

The process manager resolves this to the ND/PID/CHID/handle for
the multipart serial resource manager; it's up to that resource manager
to decide if the rest of the pathname (in our case, the "57") is valid. In
this example, assuming that the variable path contains the rest of the
pathname past the mountpoint, this means that the resource manager
could do checking in a very simple manner:

devnum ~ atoi (path);
if ((devnum <~ 0) II (devnum >~ 256)) {

II bad device number specified
} else {

II good device number specified
}

This search would certainly be faster than anything the process
manager could do, because the process manager must, by design, be
much more general-purpose than our resource manager.

Once we've registered one or more pathnames, we should then be
prepared to receive messages from clients. This is done in the "usual"
way, with the MsgReceive() function call. There are fewer than 30
well-defined message types that the resource manager handles. To
simplify the discussion and implementation, however, they're broken
into two groups:

Chapter 5 • Resource Managers 263

The resource manager library

Connect messages

1/0 messages

Three groups, really

connect messages

I/0 messages

Always contain a pathname; these are either
one-shot messages or they establish a context for
further I/0 messages.

Always based on a connect message; these perform
further work.

Connect messages always contain a pathname. The open() function
that we've been using throughout our discussion is a perfect example
of a function that generates a connect message. In this case, the
handler for the connect message establishes a context for further I/0
messages. (After all, we expect to be performing things like read()

after we've done an open()).

An example of a "one-shot" connect message is the message
generated as a result of the rename() function call. No further
"context" is established- the handler in the resource manager is
expected to change the name of the specified file to the new name, and
that's it.

An I/0 message is expected only after a connect message and refers
to the context created by that connect message. As mentioned above
in the connect message discussion, open() followed by read() is a
perfect example of this.

Apart from connect and I/0 messages, there are also "other"
messages that can be received (and handled) by a resource manager.
Since they aren't "resource manager" messages proper, we'll defer
discussion of them until later.

The resource manager library

Before we get too far into all the issues surrounding resource
managers, we have to get acquainted with QSSL's resource manager

264 Chapter 5 • Resource Managers

The resource manager library

library. Note that this "library" actually consists of several distinct
pieces:

• thread pool functions (which we discussed in the Processes and
Threads chapter under "Pools of threads")

• dispatch interface

• resource manager functions

• POSIX library helper functions

While you certainly could write resource managers "from scratch" (as
was done in the QNX 4 world), that's far more hassle than it's worth.

Just to show you the utility of the library approach, here's the source
for a single-threaded version of" I dev /null":

I*
* rml.c

*
* ldevlnull using the resource manager library

*I

#include <stdio.h>
#include <stdlib.h>
#include <stddef.h>
#include <sysliofunc.h>
#include <sysldispatch.h>

int
main (int argc, char **argv)
{

dispatch_t *dpp;
resmgr_attr_t resmgr_attr;
resmgr_context_t *ctp;
resmgr_connect_funcs_t cfuncs;
resmgr_io_funcs_t ifuncs;
iofunc_attr_t attr;

II create the dispatch structure
if ((dpp = dispatch_create ()) ==NULL) {

perror ("Unable to dispatch_create\n");
exit (EXIT_FAILURE);

}

II initialize the attributes structure for the device

Chapter 5 • Resource Managers 265

The resource manager library

}

iofunc_attr_init (&attr, s_IFNAM I 0666, 0, 0);

II initialize the resource manager control structure
memset (&resmgr_attr, 0, sizeof (resmgr_attr));
resmgr_attr.nparts~ax = l;
resmgr_attr.msg~ax_size = 2048;

II bind default functions into the outcall tables
iofunc_func_init (-RESMGR_CONNECT_NFUNCS, &cfuncs,

-RESMGR_IQ_NFUNCS, &ifuncs);

II establish a name in the pathname space
if (resmgr_attach (dpp, &resmgr_attr, "ldevlnull",

_FTYPE-ANY, 0, &cfuncs, &ifuncs,
&attr) == -1) {

perror ("Unable to resmgr_attach\n");
exit (EXIT-FAILURE);

II allocate a resource manager context block
ctp = resmgr_context_alloc (dpp);

while (1) {

}

II wait here for a message
if ((ctp = resmgr_block (ctp)) ==NULL) {

perror ("Unable to resmgr_block\n");
exit (EXIT-FAILURE);

}
II handle the message
resmgr-handler (ctp);

II you'll never get here
return (EXIT-SUCCESS);

There you have it! A complete /dev/null resource manager
implemented in a few function calls!

If you were to write this from scratch, and have it support all the
functionality that this one does (e.g., stat() works, chown() and
chmod() work, and so on), you'd be looking at many hundreds if not
thousands of lines of C code.

266 Chapter 5 • Resource Managers

The library really
does what we just

talked about

The resource manager library

By way of introduction to the library, let's see (briefly) what the calls
do in the /dev/null resource manager.

dispatch_create()

Creates a dispatch structure; this will be used for blocking on
the message reception.

iofunc ..attr _in it()

Initializes the attributes structure used by the device. We'll
discuss attributes structures in more depth later, but for now, the
short story is that there's one of these per device name, and they
contain information about a particular device.

iofunc june _init()

Initializes the two data structures cfuncs and ifuncs, which
contain pointers to the connect and VO functions, respectively.
You might argue that this call has the most "magic" in it, as this
is where the actual "worker" routines for handling all the
messages got bound into a data structure. We didn't actually see
any code to handle the connect message, or the VO messages
resulting from a client read() or stat() function etc. That's
because the library is supplying default POSIX versions of
those functions for us, and it's the iofuncfunc_init() function
that binds those same default handler functions into the two
supplied tables.

resmg r ..attach()

Creates the channel that the resource manager will use for
receiving messages, and talks to the process manager to tell it
that we're going to be responsible for "/dev/null." While
there are a lot of parameters, we'll see them all in painful detail
later. For now, it's important to note that this is where the
dispatch handle (dpp), pathname (the string /dev/null), and
the connect (cfuncs) and VO (ifuncs) message handlers all get
bound together.

Chapter 5 • Resource Managers 267

The resource manager library

Behind the scenes
at the library

resmgr _context_al/oc()

Allocates a resource manager internal context block. You'll see
details of this context block later; the short story is it contains
information relevant to the message being processed.

resmgr JJlock()

This is the resource manager's blocking call; this is where we
wait for a message to arrive from a client.

resmgr _handler()

Once the message arrives from the client, this function is called
to process it.

You've seen that your code is responsible for providing the main
message receiving loop:

while (1} {

}

II wait here for a message
if ((ctp = resmgr-hlock (ctp}) ==NULL) {

perror ("Unable to resmgr-hlock\n"};
exit (EXIT_FAILURE);

}
II handle the message
resmgr-handler (ctp};

This is very convenient, for it lets you place breakpoints on the
receiving function and to intercept messages (perhaps with a
debugger) during operation.

The library implements the "magic" inside of the resmgrJzandler()

function, because that's where the message is analyzed and disposed
of through the connect and 1/0 functions tables we mentioned earlier.

In reality, the library consists of two cooperating layers: a base layer

that provides "raw" resource manager functionality, and a POSIX

layer that provides POSIX helper and default functions. We'll briefly
define the two layers, and then in "Resource manager structure,"
below, we'll pick up the details.

268 Chapter 5 • Resource Managers

The base layer

The resource manager library

The bottom-most layer consists of functions that begin with
resmgr _ *() in their names. This class of function is concerned with
the mechanics of making a resource manager work.

I'll just briefly mention the functions that are available and where
we'd use them. I'll then refer you to QSSL's documentation for
additional details on these functions.

The base layer functions consist of:

resmgr Jnsgreadv() and resmgr Jnsgread()

Reads data from the client's address space using
message passing.

resmgr Jnsgwritev() and resmgr Jnsgwrite()

Writes data to the client's address space using
message passing.

resmgr _open_bind()

Associates the context from a connect function, so
that it can be used later by an 1/0 function.

resmgr _attach() Creates a channel, associates a pathname, dispatch
handle, connect functions, 110 functions, and other
parameters together. Sends a message to the
process manager to register the pathname.

resmgr_detach() Opposite of resmgr _attach(); dissociates the
binding of the pathname and the resource
manager.

pulse _attach()

pulse _detach()

Associates a pulse code with a function. Since the
library implements the message receive loop, this
is a convenient way of "gaining control" for
handling pulses.

Dissociates a pulse code from the function.

Chapter 5 • Resource Managers 269

Writing a resource manager

In addition to the functions listed above, there are also numerous
functions dealing with the dispatch interface.

One function from the above list that deserves special mention is
resmgr _open _bind(). It associates some form of context data when the
connect message (typically as a result of the client calling open() or
fopen()) arrives, so that this data block is around when the 110
messages are being handled. Why didn't we see this in the
I dev /null handler? Because the POSIX layer default functions call
this function for us. If we're handling all the messages ourselves,
we'd certainly call this function.

I& The resmgr _open _bind() function not only sets up the context block
for further I/0 messages, but also initializes other data structures used
by the resource manager library itself.

The POSIX layer

The rest of the functions from the above list are somewhat intuitive -
we'll defer their discussion until we use them.

The second layer provided by QSSL's resource manager library is the
POSIX layer. As with the base layer, you could code a resource
manager without using it, but it would be a lot of work! Before we
can talk about the POSIX layer functions in detail, we need to look at
some of the base layer data structures, the messages that arrive from
the clients, and the overall structure and responsibilities of a resource
manager.

Writing a resource manager

Now that we've introduced the basics- how the client looks at the
world, how the resource manager looks at the world, and an overview
of the two cooperating layers in the library, it's time to focus on the
details.

270 Chapter 5 • Resource Managers

Data structures

Writing a resource manager

In this section, we'll take a look at the following topics:

• data structures

• resource manager structure

• POSIX layer data structure

• handler routines

• and of course, lots of examples

Keep in mind the following "big picture," which contains almost
everything related to a resource manager:

s /dev/path1

/dev/path2

0 thread
pool event

loop

Architecture of a resource manager- the big picture.

The first thing we need to understand is the data structures used to
control the operation of the library:

• resmgr _at tr _t control structure

• resmgr_connect_funcs_t connect table

• resmgr _io_funcs_t VOtable

And one data structure that's used internally by the library:

Chapter 5 • Resource Managers 271

Writing a resource manager

resmgr_attr_t
control structure

• resmgr _context_t internal context block

Later, we'II see the OCB, attributes structure, and mount structure
data types that are used with the POSIX layer libraries.

The control structure (type resmgr _at tr _ t) is passed to the
resmgr _start() function, which looks at the various members and
handles the main receive loop of the resource manager.

The control structure (from <sys/dispatch. h>) has the foil owing
contents:

typedef struct ... resmgr ... attr {
unsigned flags;

unsigned nparts ... max;

unsigned msg ... max__size;
int (*other ... func) (resmgr ... context ... t *ctp, void *msg);

} resmgr ... attr ... t;

The other june message handler

In general, you should avoid using this member. This member, if
non-NULL, represents a routine that wiii get caiied with the current
message received by the resource manager library when the library
doesn't recognize the message. While you could use this to
implement "private" or "custom" messages, this practice is
discouraged (use either the _IQ_DEVCTL or __IQ_MSG handlers, see
below). If you wish to handle pulses that come in, I recommend that
you use the pulse_attach() function instead.

You should leave this member with the value NULL.

The data structure sizing parameters

These two parameters are used to control various sizes of messaging
areas.

272 Chapter 5 • Resource Managers

resmgr_connect_
funcs_t connect table

Writing a resource manager

The npartsJnax parameter controls the size of the dynamically
allocated iov member in the resource manager library context block
(of type resmgr _context_t, see below). You'd typically adjust this
member if you were returning more than a one-part IOV from some of
your handling functions. Note that it has no effect on the incoming
messages- this is only used on outgoing messages.

The msg _max _size parameter controls how much buffer space the
resource manager library should set aside as a receive buffer for the
message. The resource manager library will set this value to be at
least as big as the header for the biggest message it will be receiving.
This ensures that when your handler function gets called, it will be
passed the entire header of the message. Note, however, that the data
(if any) beyond the current header is not guaranteed to be present in
the buffer, even if the msg _max _size parameter is "large enough." An
example of this is when messages are transferred over a network
using qnet. (For more details about the buffer sizes, see "The
resmgr _context_t internal context block," below.)

The flags parameter

This parameter gives additional information to the resource manager
library. For our purposes, we'll just pass a 0. You can read up about
the other values in the C Library reference under the resmgr _attach()
function.

When the resource manager library receives a message, it looks at the
type of message and sees if it can do anything with it. In the base
layer, there are two tables that affect this behavior. The
resmgr _connect_funcs_t table, which contains a list of connect
message handlers, and the resmgr _io_funcs_t table, which
contains a similar list of VO message handlers. We'll see the VO
version below.

When it comes time to fill in the connect and VO tables, we
recommend that you use the iofunc-func_init() function to load up the
tables with the POSIX layer default handler routines. Then, if you

Chapter 5 • Resource Managers 273

Writing a resource manager

need to override some of the functionality of particular message
handlers, you'd simply assign your own handler function instead of
the POSIX default routine. We'll see this in the section "Putting in
your own functions." Right now, let's look at the connect functions
table itself (this is from <sys/resmgr. h>):

typedef struct _resmgr_connect_funcs {
unsigned nfuncs;

int (*open)
(ctp, io_open_t *msg, handle, void *extra);

int (*unlink)
(ctp, io_unlink_t *msg, handle, void *reserved);

int (*rename)
(ctp, io_rename_t *msg, handle, io_rename_extra_t *extra);

int (*mknod)
(ctp, io~nod_t *msg, handle, void *reserved);

int (*readlink)
(ctp, io_readlink_t *msg, handle, void *reserved);

int (*link)
(ctp, io_link_t *msg, handle, io_link_extra_t *extra);

int (*unblock)
(ctp, io_pulse_t *msg, handle, void *reserved);

int (*mount)
(ctp, io~ount_t *msg, handle, io~ount_extra_t *extra);

} resmgr_connect_funcs_t;

Note that I've shortened the prototype down by omitting the
resmgr_context_t *type for the first member (the ctp), and the
RESMGR-HANDLE_T *type for the third member (the handle). For
example, the full prototype for open is really:

int (*open) (resmgr_context_t *ctp,
io_open_t *msg,
RESMGR...HANDLE_T *handle,
void *extra) ;

The very first member of the structure (nfuncs) indicates how big the
structure is (how many members it contains). In the above structure, it
should contain the value "8," for there are 8 members (open through
to mount). This member is mainly in place to allow QSSL to upgrade
this library without any ill effects on your code. For example, suppose

274 Chapter 5 • Resource Managers

resmgr_io_funcs_t
1/0 table

Writing a resource manager

you had compiled in a value of 8, and then QSSL upgraded the library
to have 9. Because the member only had a value of 8, the library
could say to itself, "Aha! The user of this library was compiled when
we had only 8 functions, and now we have 9. I'll provide a useful
default for the 9th function." There's a manifest constant in
< sys I resmgr. h> called _RESMGR_CONNECT _NFUNCS that has the
current number. Use this constant if manually filling in the connect
functions table (although it's best to use iofuncjunc_init()).

Notice that the function prototypes all share a common format. The
first parameter, ctp, is a pointer to a resmgr _context_t structure.
This is an internal context block used by the resource manager library,
and which you should treat as read-only (except for one field, which
we'll come back to).

The second parameter is always a pointer to the message. Because the
functions in the table are there to handle different types of messages,
the prototypes match the kind of message that each function will
handle.

The third parameter is a RESMGR-HANDLE_T structure called a handle
-it's used to identify the device that this message was targeted at.
We'll see this later as well, when we look at the attributes structure.

Finally, the last parameter is either "reserved" or an "extra" parameter
for functions that need some extra data. We'll show the extra
parameter as appropriate during our discussions of the handler
functions.

The 1/0 table is very similar in spirit to the connect functions table
just shown above. Here it is, from <sys/resmgr. h>:

typedef struct _resmgr_io_funcs {
unsigned nfuncs;
int (*read) (ctp, io_read_t *mag, ocb);
int (*write) (ctp, io_write_t *msg, ocb);
int (*close_ocb) (ctp, void *reserved, ocb);
int (*stat) (ctp, io_stat_t *mag, ocb);
int (*notify) (ctp, io..notify_t *mag, ocb);
int (*devctl) (ctp, io_devctl_t *mag, ocb);
int (*unblock) (ctp, io_pulse_t *mag, ocb);

Chapter 5 0 Resource Managers 275

Writing a resource manager

int (*pathconf) (ctp, io_pathconf_t *msg, ocb);
int (*lseek) (ctp, io_lseek_t *msg, ocb) ;
int (*chmod) (ctp, io_chmod_t *mag, ocb);
int (*chown) (ctp, io_chown_t *mag, ocb);
int (*utime) (ctp, io_utime_t *mag, ocb);
int (*openfd) (ctp, io_openfd_t *mag, ocb);
int (*fdinfo) (ctp, io_fdinfo_t *mag, ocb);
int (*lock) (ctp, io_lock_t *mag, ocb);
int (*space) (ctp, io_space_t *msg, ocb);
int (*shutdown) (ctp, io_shutdown_t *msg, ocb);
int (*mmap) (ctp, io....mmap_t *mag, ocb);
int (*msg) (ctp, io....msg_t *mag, ocb);
int (*dup) (ctp, io_dup_t *msg, ocb);

int (*close_dup) (ctp, io_close_t *msg, ocb);
int (* lock_ocb) (ctp, void *reserved, ocb);
int (*unlock_ocb) (ctp, void *reserved, ocb);
int (*sync) (ctp, io_sync_t *mag, ocb);

} resmgr_io_funcs_t;

For this structure as well, I've shortened the prototype by removing
the type of the ctp member (resmgr _context_t *)and the last
member (ocb, of type RESMGR_OCB_T *). For example, the full
prototype for read is really:

int (*read) (resmgr_context_t *ctp,
io_read_t *msg,
RESMGR_OCB_T *ocb);

The very first member of the structure (nfuncs) indicates how big the
structure is (how many members it contains). The proper manifest
constant for initialization is _RESMGRJ.O__NFUNCS.

Note that the parameter list in the 110 table is also very regular. The
first parameter is the ctp, and the second parameter is the msg, just as
they were in the connect table handlers.

The third parameter is different, however. It's an ocb, which stands
for "Open Context Block." It holds the context that was bound by the
connect message handler (e.g., as a result of the client's open() call),
and is available to the 1/0 functions.

As discussed above, when it comes time to fill in the two tables, we
recommend that you use the iofuncfunc_init() function to load up the

276 Chapter 5 • Resource Managers

The
resmgr_context_t
internal context block

Writing a resource manager

tables with the POSIX layer default handler routines. Then, if you
need to override some of the functionality of particular message
handlers, you'd simply assign your own handler function instead of
the POSIX default routine. We'll see this in the section "Putting in
your own functions."

Finally, one data structure is used by the lowest layer of the library to
keep track of information that it needs to know about. You should
view the contents of this data structure as "read-only," (except for the
iov member).

Here's the data structure (from <sys/resmgr. h>):

typedef struct _resmgr_context {
int rcvid;
struct __msg_info info;
resmgr_iomsgs_t *msg;
dispatch_t *dpp;
int id;
unsigned msg -max -l·ize;
int status;
int offset;
int si:.e;
iov_t iov [1];

} resmgr_context_t;

As with the other data structure examples, I've taken the liberty of
deleting reserved fields.

Let's look at the contents:

rcvid

info

The receive ID from the resource manager
library's MsgReceivev() function call. Indicates
who you should reply to (if you're going to do the
reply yourself).

Contains the information structure returned by
MsgReceivev() in the resource manager library's
receive loop. Useful for getting information about
the client, including things like the node descriptor,

Chapter 5 a. Resource Managers 277

Writing a resource manager

msg

dpp

id

status

offset

278 Chapter 5 • Resource Managers

process ID, thread ID, and so on. See the man
pages for MsgReceivev() for more details.

A pointer to a union of all possible message types.
This isn't very useful to you, because each of your
handler functions get passed the appropriate union
member as their second parameter.

A pointer to the dispatch structure that you passed
in to begin with. Again, not very useful to you, but
obviously useful to the resource manager library.

The identifier for the mountpoint this message was
meant for. When you did the resmgr _attach(), it
returned a small integer ID. This ID is the value of
the id member. Note that you'd most likely never
use this parameter yourself, but would instead rely
on the attributes structure passed to you in your
io _open() handler.

This contains the msg_max...size that was passed in
as the msg_max...size member of resmgr_attr _t

(given to the resmgr _attach() function) so that the
size, offset, and msg_max...size are all contained in
one handy structure/location.

This is where your handler function places the
result of the operation. Note that you should
always use the macro _RESMGR_STATUS to write
this field. For example, if you're handling the
connect message from an open(), and you're a
read-only resource manager but the client wanted
to open you for write, you'd return an EROFS
errno via (typically) _RESMGR_STATUS (ctp,

EROFS).

The current number of bytes into the client's
message buffer. Only relevant to the base layer
library when used with resmgr _msgreadv() with
combine messages (see below).

Resource manager
structure

size

iov

Writing a resource manager

This tells you how many bytes are valid in the
message area that gets passed to your handler
function. This number is important because it
indicates if more data needs to be read from the
client (for example, if not all of the client's data
was read by the resource manager base library), or
if storage needs to be allocated for a reply to the
client (for example, to reply to the client's read()

request). (Note: there's a bug in the 2.00 release
where this field does not get stuffed in the case of a
non-combine connect message. All other messages
operate correctly. The workaround in that case
(and that case only) is to use the info structure's
msglen parameter.)

The 1/0 Vector table where you can write your
return values, if returning data. For example, when
a client calls read() and your read-handling code is
invoked, you may need to return data. This data
can be set up in the iov array, and your
read-handling code can then return something like
_RESMGR_NPARTS (2) to indicate (in this
example) that both iov [OJ and iov [1]

contain data to return to the client. Note that the
iov member is defined as only having one element.
However, you'll also notice that it's conveniently
at the end of the structure. The actual number of
elements in the iov array is defined by you when
you set the nparts_max member of the control
structure above (in the section "resmgr _at tr _ t

control structure," above).

Now that we've seen the data structures, we can discuss interactions
between the parts that you'd supply to actually make your resource
manager do something.

We'lllook at:

Chapter 5 • Resource Managers 279

Writing a resource manager

The resmgr_attach()
function and its

parameters

• The resmgr_attach() function and its parameters

• Putting in your own functions

• The general flow of a resource manager

• Messages that should be connect messages but aren't

• Combine messages

As you saw in the /dev/null example above, the first thing you'll
want to do is register your chosen "mountpoint" with the process
manager. This is done via resmgr_attach(), which has the following
prototype:

int
resmgr _at tach (void * dpp,

resmgr_attr_t *resmgr_attr,

cons t char *path,
enum _file_type ji/e_type,

unsigned .flags,
const resmgr_connect_funcs_t *connect...,fimcs,

const resmgr_io_funcs_t *io...,fitllcs,

RESMGR...HANDLE_T *hand/e);

Let's examine these arguments, in order, and see what they're used
for.

dpp

resmgr_attr

path

The dispatch handle. This lets the dispatch interface
manage the message receive for your resource
manager.

Controls the resource manager characteristics, as
discussed above.

The mountpoint that you're registering. If you're
registering a discrete mountpoint (such as would be
the case, for example, with /dev/null, or
/dev/serl), then this mountpoint must be matched
exactly by the client, with no further pathname
components past the mountpoint. If you're

280 Chapter 5 • Resource Managers

file_type

flags

Writing a resource manager

registering a directory mountpoint (such as would be
the case, for example, with a network filesystem
mounted as /nfs), then the match must be exact as
well, with the added feature that pathnames past the
mountpoint are allowed; they get passed to the
connect functions stripped of the mountpoint (for
example, the pathname /nfs/etc/passwd would
match the network filesystem resource manager, and
it would get etc/passwd as the rest of the
pathname).

The class of resource manager. See below.

Additional flags to control the behavior of your
resource manager. These flags are defined below.

connect.funcs and io.funcs

handle

These are simply the list of connect functions and VO
functions that you wish to bind to the mountpoint.

This is an "extendable" data structure (aka
"attributes structure") that identifies the resource
being mounted. For example, for a serial port, you'd
extend the standard POSIX-layer attributes structure
by adding information about the base address of the
serial port, the baud rate, etc. Note that it does not
have to be an attributes structure- if you're
providing your own "open" handler, then you can
choose to interpret this field any way you wish. It's
only if you're using the default iofunc_open_default()
handler as your "open" handler that this field must be
an attributes structure.

The flags member can contain any of the following flags (or the
constant 0 if none are specified):

Chapter 5 • Resource Managers 281

Writing a resource manager

_RESMGR_FLAG_BEFORE or _RESMGR_FLAG_AFfER

These flags indicate that your resource manager wishes to be
placed before or after (respectively) other resource managers
with the same mountpoint. These two flags would be useful
with union'd (overlayed) filesystems. We'll discuss the
interactions of these flags shortly.

_RESMGR_FLAG_DIR

This flag indicates that your resource manager is taking over the
specified mountpoint and below- it's effectively a filesystem
sty Ie of resource manager, as opposed to a
discretely-manifested resource manager.

_RESMGR_FLAG_OPAQUE

If set, prevents resolving to any other manager below your
mount point except for the pathmanager. This effectively
eliminates unioning on a path.

_RESMGR_FLAG_FfYPEONLY

This ensures that only requests that have the same FTYPE_ * as
thefile_type passed to resmgr_attach() are matched.

_RESMGR_FLAG_FfYPEALL

This flag is used when a resource manager wants to catch all
client requests, even those with a different FTYPE_ *
specification than the one passed to resmgr __attach() in the
file_type argument. This can only be used in conjunction with a
registration file type of FfYPE_ALL.

_RESMGR_FLAG_SELF

Allow this resource manager to talk to itself. This really is a
"Don't try this at home, kids" kind of flag, because allowing a
resource manager to talk to itself can break the send-hierarchy
and lead to deadlock (as was discussed in the Message Passing
chapter).

You can call resmgr _attach() as many times as you wish to mount
different mountpoints. You can also call resmgr __attach() from within

282 Chapter 5 • Resource Managers

Writing a resource manager

the connect or 1/0 functions - this is kind of a neat feature that
allows you to "create" devices on the fly.

When you've decided on the mountpoint, and want to create it, you'll
need to tell the process manager if this resource manager can handle
requests from just anyone, or if it's limited to handling requests only
from clients who identify their connect messages with special tags.
For example, consider the POSIX message queue (mqueue) driver.
It's not going to allow (and certainly wouldn't know what to do with)
"regular" open() messages from any old client. It will allow messages
only from clients that use the POSIX mq_open(), mq_receive(), and so
on, function calls. To prevent the process manager from even
allowing regular requests to arrive at the mqueue resource manager,
mqueue specified _FTYPKMQUEUE as the fileJype parameter. This
means that when a client requests a name resolution from the process
manager, the process manager won't even bother considering the
resource manager during the search unless the client has specified that
it wants to talk to a resource manager that has identified itself as
_FTYPE_MQUEUE.

Unless you're doing something very special, you'll use ajile_type of
_FTYPE..ANY, which means that your resource manager is prepared to
handle requests from anyone. For the full list of _FTYPE_ * manifest
constants, take a look in <sys/ftype.h>.

With respect to the "before" and "after" flags, things get a little bit
more interesting. You can specify only one of these flags or the
constant 0.

Let's see how this works. A number of resource managers have
started, in the order given in the table. We also see the flags they
passed for the flags member. Observe the positions they're given:

Chapter 5 " Resource Managers 283

Writing a resource manager

Resmgr Flag Order

1 _RESMGR_BEFORE

2 _RESMGR.AFTER I, 2

3 0 1, 3, 2

4 _RESMGR_BEFORE 1, 4, 3, 2

5 _RESMGR_AFTER 1,4,3,5,2

6 0 1,4,6,3,5,2

As you can see, the first resource manager to actually specify a flag
always ends up in that position. (From the table, resource manager
number I was the first to specify the "before" flag; no matter who
registers, resource manager 1 is always first in the list. Likewise,
resource manager 2 was the first to specify the "after" flag; again, no
matter who else registers, it's always last.) If no flag is specified, it
effectively acts as a "middle" flag. When resource manager 3 started
with a flag of zero, it got put into the middle. As with the "before"
and "after" flags, there's a preferential ordering given to all the
"middle" resource managers, whereby newer ones are placed in front
of other, existing "middle" ones.

However, in reality, there are very few cases where you'd actually
mount more than one, and even fewer cases where you'd mount more
than two resource managers at the same mountpoint. Here's a design
tip: expose the ability to set the flags at the command line of the
resource manager so that the end-user of your resource manager is
able to specify, for example, -b to use the "before" flag, and -a to use
the "after" flag, with no command-line option specified to indicate
that a zero should be passed as the flag.

Keep in mind that this discussion applies only to resource managers
mounted with the same mountpoint. Mounting "/nfs" with a
"before" flag and "1 di sk2" with an "after" flag will have no effect on
each other; only if you were to then mount another "/nfs" or
"/disk2" would these flags (and rules) come into play.

284 Chapter 5 • Resource Managers

Putting in your own
functions

Writing a resource manager

Finally, the resmgr _attach() function returns a small integer handle on
success (or -1 for failure). This handle can then be used subsequently
to detach the pathname from the process manager's internal pathname
tables.

When designing your very first resource manager, you'll most likely
want to take an incremental design approach. It can be very
frustrating to write thousands of lines of code only to run into a
fundamental misunderstanding and then having to make the ugly
decision of whether to try to kludge (er, I mean "fix") all that code, or
scrap it and start from scratch.

The recommended approach for getting things running is to use the
iofunc-func_init() POSIX-layer default initializer function to fill the
connect and I/0 tables with the POSIX-layer default functions. This
means that you can literally write your initial cut of your resource
manager as we did above, in a few function calls.

Which function you'll want to implement first really depends on what
kind of resource manager you're writing. If it's a filesystem type of
resource manager where you're taking over a mountpoint and
everything below it, you'll most likely be best off starting with the
io_open() function. On the other hand, if it's a discretely manifested
resource manager that does "traditional" I/0 operations (i.e., you
primarily access it with client calls like read() and write()), then the
best place to start would be the io_read() and/or io_write() functions.
The third possibility is that it's a discretely manifested resource
manager that doesn't do traditional I/0 operations, but instead relies
on devctl() or ioctl() client calls to perform the majority of its
functionality. In that case, you'd start at the io_devctl() function.

Regardless of where you start, you'll want to make sure that your
functions are getting called in the expected manner. The really cool
thing about the POSIX-layer default functions is that they can be
placed directly into the connect or I/0 functions table. This means
that if you simply want to gain control, perform a printf() to say "I'm
here in the io_open!", and then "do whatever should be done," you're

Chapter 5 " Resource Managers 285

Writing a resource manager

going to have an easy time of it. Here's a portion of a resource
manager that takes over the io_open() function:

II forward reference
int io_open (resmgr_context_t * io_open_t *,

RESMGR-HANDLE_T *, void*);

int
main ()
{

II everything as before, in the ldevlnull example
II except after this line:
iofunc_func_init (-RESMGR_CONNECT-NFUNCS, &cfuncs,

-RESMGR_IO_NFUNCS, &ifuncs);

II add the following to gain control:
cfuncs.open = io_open;

Assuming that you've prototyped the io_open() function call correctly,
as in the code example, you can just use the default one from within
your own!

int
io_open (resmgr_context_t *ctp, io_open_t *msg,

RESMGR-HANDLE_T *handle, void *extra)
{

print£ ("I'm here in the io_openl\n");
return (iofunc_open_default (ctp, msg, handle, extra));

}

In this manner, you're still using the default POSIX-layer
iofunc _open_default() handler, but you've also gained control to do a
printf().

Obviously, you could do this for the io_read(), io_write(), and
io_devctl() functions as well as any others that have POSIX-layer
default functions. In fact, this is a really good idea, because it shows
you that the client really is calling your resource manager as
expected.

286 Chapter 5 • Resource Managers

The general flow of a
resource manager

Writing a resource manager

As we alluded to in the client and resource manager overview sections
above, the general flow of a resource manager begins on the client
side with the open(). This gets translated into a connect message and
ends up being received by the resource manager's io_open() outcall
connect function.

This is really key, because the io_open() outcall function is the "gate
keeper" for your resource manager. If the message causes the gate
keeper to fail the request, you will not get any I/0 requests, because
the client never got a valid file descriptor. Conversely, if the message
is accepted by the gate keeper, the client now has a valid file
descriptor and you should expect to get I/0 messages.

But the io_open() outcall function plays a greater role. Not only is it
responsible for verifying whether the client can or can't open the
particular resource, it's also responsible for:

• initializing internal library parameters

• binding a context block to this request

• binding an attribute structure to the context block.

The first two operations are performed via the base layer function
resmgr _open_bind(); the binding of the attribute structure is done via a
simple assignment.

Once the io_open() outcall function has been called, it's out of the
picture. The client may or may not send I/0 messages, but in any case
will eventually terminating the "session" with a message
corresponding to the close() function. Note that if the client suffers an
unexpected death (e.g., gets hit with SIGSEGV, or the node that it's
running on crashes), the operating system will synthesize a close()
message so that the resource manager can clean up. Therefore, you
are guaranteed to get a close() message!

Chapter 5 e Resource Managers 287

Writing a resource manager

Messages that should be
connect messages but

aren't

Here's an interesting point you may have noticed. The client's
prototype for chown() is:

int
chown {const char *path,

uid_t owner,
gid_t group) ;

Remember, a connect message always contains a pathname and is
either a one-shot message or establishes a context for further I/0
messages.

So, why isn't there a connect message for the client's chown()
function? In fact, why is there an //0 message?!? There's certainly no
file descriptor implied in the client's prototype!

The answer is, "to make your life simpler!"

Imagine if functions like chown(), chmod(), stat(), and others required
the resource manager to look up the pathname and then perform some
kind of work. (This is, by the way, the way it was implemented in
QNX 4.) The usual problems with this are:

• Each function has to call the lookup routine.

• Where file descriptor versions of these functions exist, the driver
has to provide two separate entry points; one for the pathname
version, and one for the file descriptor version.

In any event, what happens under Neutrino is that the client constructs
a combine message- really just a single message that comprises
multiple resource manager messages. Without combine messages, we
could simulate chown() with something like this:

int
chown {const char *path, uid_t owner, gid_t group)
{

int fd, sts;

if {(fd =open (path, Q_RDWR)) -1) {

return (-1);
}

288 Chapter 5 • Resource Managers

Combine messages

}

sts = fchown (fd, owner, group);
close (fd);
return (sts);

Writing a resource manager

where fchown() is the file-descriptor-based version of chown(). The
problem here is that we are now issuing three function calls (and three
separate message passing transactions), and incurring the overhead of
open() and close() on the client side.

With combine messages, under Neutrino a single message that looks
like this is constructed directly by the client's chown() library call:

_IO_CONNECT_COMBINE_CLOSE I _IO_CHOWNI

A combine message.

The message has two parts, a connect part (similar to what the client's
open() would have generated) and an VO part (the equivalent of the
message generated by the fchown()). There is no equivalent of the
close() because we implied that in our particular choice of connect
messages. We used the J:O_CONNECT _COMBINE_CLOSE message,
which effectively states "Open this pathname, use the file descriptor
you got for handling the rest of the message, and when you run off the
end or encounter an error, close the file descriptor."

The resource manager that you write doesn't have a clue that the
client called chown() or that the client did a distinct open(), followed
by anfchown(), followed by a close(). It's all hidden by the base-layer
library.

As it turns out, this concept of combine messages isn't useful just for
saving bandwidth (as in the chown() case, above). It's also critical for
ensuring atomic completion of operations.

Suppose the client process has two or more threads and one file
descriptor. One of the threads in the client does an lseek() followed by

Chapter 5 e Resource Managers 289

Writing a resource manager

a read(). Everything is as we expect it. If another thread in the client
does the same set of operations, on the same file descriptor, we'd run
into problems. Since the /seek() and read() functions don't know
about each other, it's possible that the first thread would do the
lseek(), and then get preempted by the second thread. The second
thread gets to do its /seek(), and then its read(), before giving up CPU.
The problem is that since the two threads are sharing the same file
descriptor, the first thread's /seek() offset is now at the wrong place
it's at the position given by the second thread's read() function! This
is also a problem with file descriptors that are dup()'d across
processes, let alone the network.

An obvious solution to this is to put the lseek() and read() functions
within a mutex - when the first thread obtains the mutex, we now
know that it has exclusive access to the file descriptor. The second
thread has to wait until it can acquire the mutex before it can go and
mess around with the position of the file descriptor.

Unfortunately, if someone forgot to obtain a mutexfor each and every
file descriptor operation, there'd be a possibility that such an
"unprotected" access would cause a thread to read or write data to the
wrong location.

Let's look at the C library call readblock() (from <unistd.h>):

int
readblock {int fd,

size_t blksize,
unsigned block,
in t numblks,
void *buff) ;

(The writeblock() function is similar.)

You can imagine a fairly "simplistic" implementation for readblock():

int
readblock {int fd, size_t blksize, unsigned block,

int numblks, void *buff)
{

290 Chapter 5 • Resource Managers

}

Writing a resource manager

lseek (fd, blksize *block, SEEK-SET); //get to the block
read (fd, buff, blksize * numblks);

Obviously, this implementation isn't useful in a multi-threaded
environment. We'd have to at least put a mutex around the calls:

int
readblock (int fd, size_t blksize, unsigned block,

int numblks, void *buff)
{

}

pthread~utex_lock (&block~utex);

lseek (fd, blksize *block, SEEK-SET);// get to the block
read (fd, buff, blksize * numblks);
pthread~utex_unlock (&block~utex);

(We're assuming the mutex is already initialized.)

This code is still vulnerable to "unprotected" access; if some other
thread in the process does a simple non-mutexed !seek() on the file
descriptor, we've got a bug.

The solution to this is to use a combine message, as we discussed
above for the chown() function. In this case, the C library
implementation of readblock() puts both the [seek() and the read()
operations into a single message and sends that off to the resource
manager:

IO LSEEK _IO_READ I

The readblock() function's combine message.

The reason that this works is because message passing is atomic.
From the client's point of view, either the entire message has gone to
the resource manager, or none of it has. Therefore, an intervening
"unprotected" !seek() is irrelevant- when the readblock() operation
is received by the resource manager, it's done in one shot. (Obviously,
the damage will be to the unprotected !seek(), because after the

Chapter 5 • Resource Managers 291

Writing a resource manager

POSIX layer data
structures

readblock() the file descriptor's offset is at a different place than
where the original/seek() put it.)

But what about the resource manager? How does it ensure that it
processes the entire readblock() operation in one shot? We'll see this
shortly, when we discuss the operations performed for each message
component.

There are three data structures that relate to the POSIX-layer support
routines. Note that as far as the base layer is concerned, you can use
any data structures you want; it's the POSIX layer that requires you to
conform to a certain content and layout. The benefits delivered by the
POSIX layer are well worth this tiny constraint. As we'll see later,
you can add your own content to the structures as well.

The three data structures are illustrated in the following diagram,
showing some clients using a resource manager that happens to
manifest two devices:

Data structures - the big picture.

The data structures are:

iofunc_ocb_t- OCB structure

Contains information on a per-file-descriptor basis

292 Chapter 5 • Resource Managers

The iofunc_ocb_t
OCB structure

Writing a resource manager

iofunc_attr_t- attributes structure

Contains information on a per-device basis

iofunc....mount_t- mount structure

Contains information on a per-mountpoint basis

When we talked about the I/0 and connect tables, you saw the OCB
and attributes structures- in the I/0 tables, the OCB structure was
the last parameter passed. The attributes structure was passed as the
handle in the connect table functions (third argument). The mount
structure is usually a global structure and is bound to the attributes
structure "by hand" (in the initialization code that you supply for your
resource manager).

The OCB structure contains information on a per-file-descriptor basis.
What this means is that when a client performs an open() call and gets
back a file descriptor (as opposed to an error indication), the resource
manager will have created an OCB and associated it with the client.
This OCB will be around for as long as the client has the file
descriptor open. Effectively, the OCB and the file descriptor are a
matched pair. Whenever the client calls an I/0 function, the resource
manager library will automatically associate the OCB, and pass it
along with the message to the I/0 function specified by the 1/0
function table entry. This is why the 1/0 functions all had the ocb
parameter passed to them. Finally, the client will close the file
descriptor (via close()), which will cause the resource manager to
dissociate the OCB from the file descriptor and client. Note that the
client's dup() function simply increments a reference count. In this
case, the OCB gets dissociated from the file descriptor and client only
when the reference count reaches zero (i.e., when the same number of
close()s have been called as open() and dup()s.)

As you might suspect, the OCB contains things that are important on
a per-open or per-file-descriptor basis. Here are the contents (from
<sys/iofunc. h>):

Chapter 5 • Resource Managers 293

Writing a resource manager

typedef struct _iofunc_ocb {
IOFUNC...ATTR_T *attr;
int32_t iofiag;
SEE-BELOW! I ! offset;
uintl6_t sfiag;
uintl6_t flags;

} iofunc_ocb_t;

Ignore the comment about the offset field for now; we'll come back to
it immediately after this discussion.

The iofunc_ocb_t members are:

attr A pointer to the attributes structure related to this OCB. A
common coding idiom you'll see in the 1/0 functions is
"ocb->attr," used to access a member of the attributes
structure.

iofiag

offset

sfiag

flags

294 Chapter 5 • Resource Managers

The open mode- how this resource was opened (e.g.,
read only). Note that the iofiag contains the open mode (as
passed to open() on the client side) plus one. For example,
an open mode of O_RDONLY (the value 0) will show up in
the iofiag as the value 1 (the constant _READ from
< s tdio. h>). This effectively allows the two least
significant bits of the iofiag to be treated as read and write
permissions (ioflag & _READ indicates read permission;
ioflag & _WRITE indicates write permission).

The current /seek() offset into this resource.

The sharing flag (see <share . h>) used with the client's
sopen() function call. These are the flags SH_COMPAT,

SH...DENYRW, SH...DENYWR, SH...DENYRD, and
SH...DENYNO.

System flags. The two flags currently supported are
IOFUNCOCB_pRJVILEGED, which indicates whether a
privileged process issued the connect message that resulted
in this OCB, and IOFUNCOCB_MMAP, which indicates
whether this OCB is in use by a mmap() call on the client

The iofunc_attr_t
attributes structure

Writing a resource manager

side. No other flags are defined at this time. You can use
the bits defined by IOFUNCOCB_FLAGS_PRIVATE for
your own private flags.

If you wish to store additional data along with the "normal" OCB, rest
assured that you can "extend" the OCB. We'll discuss this in the
"Advanced topics" section.

The strange case of the offset member

The offset field is, to say the least, interesting. Have a look at
<sys/iofunc .h> to see how it's implemented. Depending on what
preprocessor flags you've set, you may get one of six(!) possible
layouts for the offset area. But don't worry too much about the
implementation- there are really only two cases to consider,
depending on whether you want to support 64-bit offsets:

• yes - the offset member is 64 bits

• no (32-bit integers)- the offset member is the lower 32 bits;
another member, offsetJii, contains the upper 32 bits.

For our purposes here, unless we're specifically going to talk about 32
versus 64 bits, we'll just assume that all offsets are 64 bits, of type
ofLt, and that the platform knows how to deal with 64-bit
quantities.

Whereas the OCB was a per-open or per-file-descriptor structure, the
attributes structure is a per-device data structure. You saw that the
standard iofunc_ocb_t OCB had a member called attr that's a
pointer to the attribute structure. This was done so the OCB has
access to information about the device. Let's take a look at the
attributes structure (from <sys/ iofunc. h>):

typedef struct _iofunc_attr {
IOFUNC...MOUNT_T *mount;
uint32_t
int32_t

flags;
lock_tid;

Chapter 5 • Resource Managers 295

Writing a resource manager

uintl6_t
uintl6_t
uintl6_t
uintl6_t
uintl6_t

/ock_count;
count;
rcount;
wcount;
rlocks;

uintl6_t wlocks;
struct _iofunc....liiillap_list *mmap_/ist;
struct _iofunc_lock_list *lock_/ist;
void
uint32_t
SEE_BELOW I ! I

SEE-BELOW! ! I

uid_t
gid_t
time_t
time_t
time_t
mode_t
nlink_t
dev_t

*list;
list_size;
nbytes;
inode;
uid;
gid;
mtime;
atime;
ctime;
mode;
nlink;
rdev;

} iofunc_attr_t;

The nbytes and inode members have the same set of #ifdef

conditionals as the offset member of the OCB (see "The strange case
of the offset member" above).

Note that some of the fields of the attributes structure are useful only
to the POSIX helper routines.

Let's look at the fields individually:

mount

296 Chapter 5 • Resource Managers

A pointer to the optional iofunc....mount_t mount
structure. This is used in the same way that the
pointer from the OCB to the attribute structure was
used, except that this value can be NULL in which
case the mount structure defaults are used (see "The
iofunc....mount_t mount structure" below). As
mentioned, the mount structure is generally bound
"by hand" into the attributes structure in code that you
supply for your resource manager initialization.

flags

lock_tid

lock_count

count

rcount

wcount

rlocks

wlocks

mmap_/ist

lock_list

Writing a resource manager

Contains flags that describe the state of other
attributes structure fields. We'll discuss these shortly.

In order to prevent synchronization problems,
multiple threads using the same attributes structure
will be mutually exclusive. The lock_tid contains the
thread ID of the thread that currently has the attributes
structure locked.

Indicates how many threads are trying to use this
attributes structure. A value of zero indicates that the
structure is unlocked. A value of one or more
indicates that one or more threads are using the
structure.

Indicates the number of OCBs that have this attributes
structure open for any reason. For example, if one
client has an OCB open for read, another client has
another OCB open for read/write, and both OCBs
point to this attribute structure, then the value of count
would be 2, to indicate that two clients have this
resource open.

Count readers. In the example given for count, rcount
would also have the value 2, because two clients have
the resource open for reading.

Count writers. In the example given for count, wcount
would have the value 1, because only one of the
clients has this resource open for writing.

Indicates the number of OCBs that have read locks on
the particular resource. If zero, means there are no
read locks, but there may be write locks.

Same as rlocks but for write locks.

Used internally by POSIX iofunc..mmap_default().

Used internally by POSIX iofunc_lock_default().

Chapter 5 • Resource Managers 297

Writing a resource manager

list

lisuize

nbytes

inode

uid

gid

mtime

a time

ctime

mode

nlink

rdev

298 Chapter 5 • Resource Managers

Reserved for future use.

Size of area reserved by list.

Size of the resource, in bytes. For example, if this
resource described a particular file, and that file was
7756 bytes in size, then the nbytes member would
contain the number 7756.

Contains a file or resource serial number, that must be
unique per mountpoint. The in ode should never be
zero, because zero indicates a file that's not in use.

User ID of the owner of this resource.

Group ID of the owner of this resource.

File modification time, updated or at least invalidated
whenever a client write() is processed.

File access time, updated or at least invalidated
whenever a client read() that returns more than zero
bytes is processed.

File change time, updated or at least invalidated
whenever a client write(), chown(), or chmod() is
processed.

File's mode. These are the standardS_* values from
<sys/stat.h>, such as S_IFCHR, or in octal
representation, such as 0664 to indicate read/write
permission for owner and group, and read-only
permission for other.

Number of links to the file, returned by the client's
stat() function call.

For a character special device, this field consists of a
major and minor device code (I 0 bits minor in the
least-significant positions; next 6 bits are the major
device number). For other types of devices, contains

The iofunc....m.ount_t
mount structure

Writing a resource manager

the device number. (See below in "Of device
numbers, inodes, and our friend rdev," for more
discussion.)

As with the OCB, you can extend the "normal" attributes structure
with your own data. See the "Advanced topics" section.

The mount structure contains information that's common across
multiple attributes structures.

Here are the contents of the mount structure (from
<sys/ iofunc. h>):

typedef struct _iofunc~ount {
uint32_t
uint32_t
dev_t
int32_t

flags;
conf;
dev;
blocksize;

iofunc_funcs_t *Junes;
} iofunc~ount_t;

The flags member contains just one flag, IOFUNC_MOUNT _32BIT.

This flag indicates that offset in the OCB, and nbytes and inode in the
attributes structure, are 32-bit. Note that you can define your own
flags in flags, using any of the bits from the constant
IOFUNCMOUNT _FLAGS_PRIVATE.

The conf member contains the following flags:

IOFUNC_pc_CHOWN _RESTRICTED

Indicates if the filesystem is operating in a "chown-restricted"
manner, meaning if only root is allowed to chown a file.

IOFUNC_pC_NQ_ TRUNC

Indicates that the filesystem doesn't truncate the name.

IOFUNc_pc_sYNCJO

Indicates that the filesystem supports synchronous I/0
operations.

Chapter 5 • Resource Managers 299

Writing a resource manager

IOFUNc_pc_uNK_DIR

Indicates that linking/unlinking of directories is allowed.

The dev member contains the device number and is described below
in "Of device numbers, inodes, and our friend rdev."

The blocksize describes the native blocksize of the device in bytes.
For example, on a typical rotating-medium storage system, this would
be the value 512.

Finally, the Junes pointer points to a structure (from
<sys/iofunc .h>):

typedef struct _iofunc_funcs {
unsigned nfuncs;

IOFUNC_QCB_T * (*ocb_ca/loc)
(resmgr_context_t *ctp,
IOFUNC-ATTR_T *attr) ;

void (*ocb_free)
(IOFUNC_QCB_T *ocb);

} iofunc_funcs_t;

As with the connect and I/0 functions tables, the nfuncs member
should be stuffed with the current size of the table. Use the constant
.JOFUNc_NFUNCS for this.

The ocb_calloc and ocb-free function pointers can be filled with
addresses of functions to call whenever an OCB is to be allocated or
deallocated. We'll discuss why you'd want to use these functions later
when we talk about extending OCBs.

Of device numbers, inodes, and our friend rdev

The mount structure contains a member called dev. The attributes
structure contains two members: inode and rdev. Let's look at their
relationships by examining a traditional disk-based filesystem. The
filesystem is mounted on a block device (which is the entire disk).
This block device might be known as /dev/hdO (the first hard disk in

300 Chapter 5 • Resource Managers

Writing a resource manager

the system). On this disk, there might be a number of partitions, such
as /dev/hd0t77 (the first QNX filesystem partition on that particular
device). Finally, within that partition, there might be an arbitrary
number of files, one of which might be /hd/ spud. txt.

The dev (or "device number") member, contains a number that's
unique to the node that this resource manager is registered with. The
rdev member is the dev number of the root device. Finally, the inode
is the file serial number. (Note that you can obtain major and minor
device numbers by calling rsrcdbmgr _devno_attach(); see the Library
Reference for more details. You are limited to 64 major devices and
1024 minor devices per major device.)

Let's relate that to our disk example. The following table shows some
example numbers; after the table we'll take a look at where these
numbers came from and how they're related.

Device dev inode rdev

6 /dev/hdO

/dev/hd0t77

/hd/spud.txt 77

2

12 77

47343 n/a

For the raw block device, /dev/hdO, the process manager assigned
both the dev and inode values (the 6 and the 2 in the table above). The
resource manager picked a unique rdev value (of 1) for the device
when it started.

For the partition, I dev /hdO t 7 7, the dev value came from the raw
block device's rdev number (the 1). The inode was selected by the
resource manager as a unique number (within the rdev). This is where
the 12 came from. Finally, the rdev number was selected by the
resource manager as well - in this case, the writer of the resource
manager selected 77 because it corresponded to the partition type.

Chapter 5 • Resource Managers 301

Handler routines

General notes

Finally, for the file, /hd/ spud. txt, the dev value (77) came from the
partition's rdev value. The inode was selected by the resource
manager (in the case of a file, the number is selected to correspond to
some internal representation of the file- it doesn't matter what it is
so long as it's not zero, and it's unique within the rdev). This is where
the 4 7343 came from. For a file, the rdev field is not meaningful.

Handler routines

Not all outcalls correspond to client messages- some are
synthesized by the kernel, and some by the library.

I've organized this section into the following:

• general notes

• connect functions notes

• alphabetical listing of connect and I/0 messages

Each handler function gets passed an internal context block (the ctp
argument) which should be treated as "read-only," except for the iov
member. This context block contains a few items of interest, as
described above in "resmgr _context_t internal context block."
Also, each function gets passed a pointer to the message (in the msg
argument). You'll be using this message pointer extensively, as that
contains the parameters that the client's C library call has placed there
for your use.

The function that you supply must return a value (all functions are
prototyped as returning in int). The values are selected from the
following list:

_RESMGR_NOREPLY

Indicates to the resource manager library that it should not
perform the MsgReplyv()- the assumption is that you've

302 Chapter 5 • Resource Managers

Handler routines

either performed it yourself in your handler function, or that
you're going to do it some time later.

_RESMGR_NPARTS (n)

The resource manager library should return an n-part IOV when
it does the MsgReplyv() (the IOV is located in ctp -> iov).

Your function is responsible for filling in the iov member of the
ctp structure, and then returning _RESMGR_NPARTS with the
correct number of parts.

The iov member of ctp is allocated dynamically, so it must be big
enough to hold the number of array elements that you're writing into
the iov member! See the section "resmgr _attr _t control structure"
above, for information on setting the nparts__max member.

_RESMGR__DEFAULT

This instructs the resource manager library to perform the
low-level default function (This is not the same as the
iofunc_ *_default() functions!) You'd rarely ever use this return
value. In general, it causes the resource manager library to
return an ermo of ENOSYS to the client, which indicates that
the function is not supported.

_RESMGR_ERRNO (errno)

(Deprecated) This return value had been used to "wrap" an
ermo number as the return value of the message. For example,
if a client issued an open() request for a read-only device, it
would be appropriate to return the error value EROFS. Since this
function is deprecated, you can return the error number directly
instead of wrapping it with the _RESMGR_ERRNO macro (e.g.,
return (EROFS); instead of the more cumbersome return
(-RESMGR-ERRNO (EROFS)); .)

_RESMGR_IYfR (ctp, addr, len)

This is a convenience macro that accepts the context pointer
ctp, and fills its first IOV element to point to the address
specified by addr for the length specified by len, and then

Chapter 5 • Resource Managers 303

Handler routines

returns the equivalent of -RESMGR_NPARTS (1} to the library.
You'd generally use this if you return single-part IOVs from
your function.

Locking, unlocking, and
combine message

handling

We saw the client side of a combine message when we looked at
readblock() (in "Combine messages"). The client was able to
atomically construct a message that contained multiple resource
manager "submessages" - in the example, these were messages
corresponding to the individual functions !seek() and read(). From the
client's perspective, the two (or more) functions were at least sent
atomically (and, due to the nature of message passing, will be received
atomically by the resource manager). What we haven't yet talked
about is how we ensure that the messages are processed atomically.

This discussion applies not only to combine messages, but to all 1/0
messages received by the resource manager library (except the close
message, which we'll come back to shortly).

I@' The very first thing that the resource manager library does is to lock
the attribute structure corresponding to the resource being used by the
received message. Then, it processes one or more submessages from
the incoming message. Finally, it unlocks the attribute structure.

This ensures that the incoming messages are handled atomically, for
no other thread in the resource manager (in the case of a
multithreaded resource manager, of course) can "jump in" and modify
the resource while a thread is busy using it. Without the locking in
place, two client threads could both issue what they believe to be an
atomic combine message (say !seek() and read()). Since the resource
manager might have two different threads running in it and processing
messages, the two resource manager threads could possibly preempt
each other, and the !seek() components could interfere with each other.
With locking and unlocking, this is prevented, because each message
that accesses a resource will be completed in its entirety atomically.

304 Chapter 5 • Resource Managers

Connect functions
notes

Handler routines

Locking and unlocking the resource is handled by default helper
functions (iofunc_lock_ocb_default() and iofunc_unlock_ocb_default())
which are placed in the 1/0 table at the lock_ocb and unlock_ocb
positions. You can, of course, override these functions if you want to
perform further actions during this locking and unlocking phase.

Note that the resource is unlocked before the io_close() function is
called. This is necessary because the io_close() function will free the
OCB, which would effectively invalidate the pointer used to access
the attributes structure, which is where the lock is stored! Also note
that none of the connect functions do this locking, because the handle
that's passed to them does not have to be an attribute structure (and
the locks are stored in the attribute structure).

Before we dive into the individual messages, however, it's worth
pointing out that the connect functions all have an identical message
structure (rearranged slightly, see <sys/ iomsg. h> for the original):

struct _io_connect {
II Internal use
uintl6_t type;
uintl6_t subtype;
uint32_t fi/e_type;
uintl6_t rep/y_max;
uintl6_t entry_max;
uint32_t key;
uint32_t handle;
uin t3 2 _t iofiag;
uint32_t mode;
uintl6_t sfiag;
uintl6_t access;
uintl6_t zero;
uintS_t efiag;

} ;

II End-user parameters
uintl6_t path_/en;
uintS_t extra-type;
uintl6_t extra_len;
char path [1];

You'll notice that I've divided the struct _io_connect structure
into two areas, an "Internal use" part and an "End-user parameters"
part.

Chapter 5 • Resource Managers 305

Handler routines

Internal use part

End-user parameter part

The first part consists of fields that the resource manager library uses
to:

• determine the type of message sent from the client.

• validate (ensure that the message is not spoofed).

• track access mode (used by helper functions).

To keep things simple, I recommend that you always use the helper
functions (the iofunc_ *_default() ones) in all connect functions. These
will return a pass/fail indication, and after that point, you can then use
the "End-user parameters" members within the connect function.

The second half of the members directly concern your
implementation of the connect functions:

path_len and path

The pathname (and its length) that's the operand (i.e., the
pathname you're operating on).

extra_type and extra_len

Additional parameters (pathnames, for example) relevant to the
connect function.

To get a sense of how the path member is used as "the pathname
you're operating on," let's examine something like the rename()
function. This function takes two pathnames; the "original" pathname
and the "new" pathname. The original pathname is passed in path,
because it's the thing being worked on (it's the filename that's
undergoing the name change). The new pathname is the argument to
the operation. You'll see that the extra parameter passed to the
connect functions conveniently contains a pointer to the argument of
the operation - in this case, the new pathname.
(Implementation-wise, the new pathname is stored just past the
original pathname in the path pointer, with alignment taken into
consideration, but you don't have to do anything about this- the
extra parameter conveniently gives you the correct pointer.)

306 Chapter 5 • Resource Managers

Alphabetical
listing of connect
and 1/0 functions

io_chmod()

This section gives an alphabetical listing of the connect and 110
function entry points that you can fill in (the two tables passed to
pathname__attach()). Remember that if you simply call
iofuncfunc_init(), all these entries will be filled in with the
appropriate defaults; you'd want to modify a particular entry only if
you wish to handle that particular message. In the "Examples"
section, below, you'll see some examples of the common functions.

It may seem confusing at first, but note that there are in fact two
unblock outcalls - one is a connect function and one is an 110
function. This is correct; it's a reflection of when the unblock occurs.
The connect version of the unblock function is used when the kernel
unblocks the client immediately after the client has sent the connect
message; the 110 version of the unblock function is used when the
kernel unblocks the client immediately after the client has sent an 110
message.

In order not to confuse the client's C-library call (for example, open())
with the resource manager connect outcall that goes into that
particular slot, we've given all of our functions an "io_" prefix. For
example, the function description for the open connect outcall slot
will be under io_open().

io_chmod()

int io_chmod (resmgr_context_t *cp, io_chmod_t

*msg, RESMGR_OCB_T *ocb)

Classification: 110 function

Default handler: iofunc _chmod_default()

Helper functions: iofunc_chmod()

Client function: chmod(),fchmod()

Chapter 5 • Resource Managers 307

io_chown()

Messages: __IQ_CHMOD

Data structure:

struct _io_chmod
uintl6_t type;
uintl6_t combine_/en;
mode_t mode;

};

typedef union {
struct _io_chmod i;

} io_chmod_t;

Description: Responsible for changing the mode for the resource
identified by the passed ocb to the value specified by the mode
message member.

Returns: The status via the helper macro _RESMGR_STATUS.

io_chown()

int io_chown (resmgr_context_t *ctp, io_chown_t

*msg, RESMGR_OCB_T *ocb)

Classification: 1/0 function

Default handler: iofunc _chown_default()

Helper functions: iofunc_chown()

Client function: chown(), fchown()

Messages: _IO_CHOWN

Data structure:

struct _io_chown {
uintl6_t type;
uintl6_t combine-len;
int32_t gid;
int32_t uid;

308 Chapter 5 • Resource Managers

};

typedef union {
struct _io_chown i;

} io_chown_t;

io_c/ose_dup()

Description: Responsible for changing the user ID and group ID
fields for the resource identified by the passed ocb to uid and gid,
respectively. Note that the mount structure flag
IOFUNc_pc_cHOWN_RESTRICTED and the OCB flag field should be
examined to determine whether the filesystem allows chown() to be
performed by non-root users.

Returns: The status via the helper macro __RESMGR_STATUS.

io_c/ose_dup()

int io_close_dup (resmgr_context_t *c~, io_close_t
*msg, RESMGR_QCB_T *ocb)

Classification: 1/0 function

Default handler: iofunc _close _dup _default()

Helper functions: iofunc_close_dup()

Client function: close(),fclose()

Messages: J:O_CLOSE_DUP

Data structure:

struct _io_close {
uint16_t type;
uintl6_t combine_len;

};

typedef union {
struct _io_close i;

} io_close_t;

Chapter 5 • Resource Managers 309

io_c/ose_ocb()

Description: This is the real function handler for the client's close()
or fclose() function calls. Note that you'd almost never take over this
function; you'd leave it as iofunc_close_dup_default() in the 1/0 table.
This is because the base layer keeps track of the number of open(),
dup() and close() messages issued for a particular OCB, and will then
synthesize an io_close_ocb() outcall (see below) when the last close()

message has been received for a particular OCB. Note that the receive
IDs present in ctp->rcvid may not necessarily match up with those
passed to io_open(). However, it's guaranteed that at least one receive
ID will match the receive ID from the io_open() function. The "extra"
receive IDs are the result of (possibly internal) dup()-type

functionality.

Returns: The status via the helper macro _RESMGR_STATUS.

io_c/ose_ocb()

int io_close_ocb (resmgr_context_t *c~, void

*reserved, RESMGR_OCB_T *ocb)

Classification: 1/0 function (synthesized by library)

Default handler: iofunc_close_default()

Helper functions: none

Client function: none- synthesized by library

Messages: none- synthesized by library

Data structure:

II synthesized by library
struct _io_close {

uintl6_t type;
uin tl6 _t combine _fen;

};

typedef union {

31 0 Chapter 5 • Resource Managers

struct _io_close i;
} io_close_t;

io_devctl()

Description: This is the function that gets synthesized by the
base-layer library when the last close() has been received for a
particular OCB. This is where you'd perform any final cleanup you
needed to do before the OCB is destroyed. Note that the receive ID
present in ctp->rcvid is zero, because this function is synthesized
by the library and doesn't necessarily correspond to any particular
message.

Returns: The status via the helper macro _RESMGR_STATUS.

io_devctl()

int io_devctl {resmgr_context_t *c~, io_devctl_t

*msg, RESMGR_OCB_T *ocb)

Classification: VO

Default handler: iofunc_devctLdefault()

Helper functions: iofunc...devctl()

Client function: devctl(), ioctl()

Messages: _IQ_DEVCTL

Data structure:

struct _io_devctl {

} ;

uintl6_t type;
uin tl6 _t combine _/en;
int32_t dcmd;
int32_t nbytes;
int32_t zero;

struct _io_devctl_reply {
uint32_t zero;

Chapter 5 • Resource Managers 311

io_devctl()

};

int32_t ret_val;

int32_t nbytes;
int32_t ~em2;

typedef union {
struct _io_devctl i;
struct _io_devctl_reply o;

} io_devctl_t;

Description: Performs the device 1/0 operation as passed from the
client's devctl() in dcmd. The client encodes a direction into the top
two bits of dcmd, indicating how the devctl() is to transfer data (the
"to" field refers to the _FQSIX_DEVDIR_TO bit; the "from" field refers
to the _POSIX_DEVDIR_FROM bit):

to field from field Meaning

0 0 no data transfer

0

1 0

transfer from driver to client

transfer from client to driver

transfer bidirectionally

In the case of no data transfer, the driver is expected to simply
perform the command given in dcmd. In the case of a data transfer,
the driver is expected to transfer the data from and/or to the client,
using the helper functions resmgr _msgreadv() and
resmgr _msgwritev(). The client indicates the size of the transfer in the
nbytes member; the driver is to set the outgoing structure's nbytes
member to the number of bytes transferred.

Note that the input and output data structures are zero-padded so that
they align with each other. This means that the implicit data area
begins at the same address in the input and output structures.

If using the helper routine iofunc..devctl(), beware that it'll return the
constant _RESMGR_DEFAULT in the case where it can't do anything

312 Chapter 5 • Resource Managers

io_dup()

with the devctl() message. This return value is there to decouple
legitimate errno return values from an "unrecognized command"
return value. Upon receiving a ..RESMGR_DEFAULT, the base-layer
library will respond with an errno of ENOSYS, which the client's
devctl() library function will translate into ENOTTY (which is the
"correct" POSIX value).

It's up to your function to check the open mode against the operation;
no checking is done anywhere in either the client's devctl() library or
in the resource manager library. For example, it's possible to open a
resource manager "read-only" and then issue a devctl() to it telling it
to "format the hard disk" (which is very much a "write" operation). It
would be prudent to verify the open mode first before proceeding with
the operation.

Note that the range of dcmd values you can use is limited (OxOOOO
through OxOFFF inclusive is reserved for QSSL). Other values may be
in use; take a look through the include files that have the name
<sys/dcmd_* .h>.

Returns: The status via the helper macro ..RESMGR_STATUS and the
reply buffer (with reply data, if required).

For an example, take a look at "A simple io_devctl() example," below.

io_dup()

int io_dup (resmgr_context_t *ctp, io_dup_t *msg,

RESMGR-OCB_T *ocb)

Classification: 1/0

Default handler: NULL -handled by base layer

Helper functions: none

Client function: dup(), dup2(),fcntl(),fork(), spawn*(), vfork()

Chapter 5 • Resource Managers 313

ioJdinfo()

Messages: J:O_DUP

Data structure:

struct _io_dup {
uintl6_t rype;
uintl6_t combine_/en;
struct _msg_info info;
uint32_t reserved;
uint32_t key;

};

typedef union {
struct _io_dup i;

} io_dup_t;

Description: This is the dup() message handler. As with the
io_close_dup(), you won't likely handle this message yourself.
Instead, the base-layer library will handle it.

Returns: The status via the helper macro _R.ESMGR_STATUS.

io_fdinfo()

int io_fdinfo (resmgr_context_t *c~, io_fdinfo_t

*msg, RESMGR-OCB_T *ocb)

Classification: 110

Default handler: iofuncjdinfo__default()

Helper functions: iofuncfdinfo()

Client function: iofdinfo()

Messages: J:O_FDINFO

Data structure:

struct _io_fdinfo {
uintl6_t
uintl6_t

type;
combine _/en;

314 Chapter 5 • Resource Managers

} ;

uint32_t
int32_t
uint32_t

flags;
path_/en;
reserved;

struct _io_fdinfo_reply {
uint32_t zeiV [2];
struct _fdinfo info;

} ;

typedef union {
struct _io_fdinfo i;
struct _io_fdinfo_reply o;

} io_fdinfo_t;

io_/ink()

Description: This function is used to allow clients to retrieve
information directly about the attributes and pathname which is
associated with a file descriptor. The client-side function iofdinfo() is
used. The path string implicitly follows the struct

_io_fdinfo_reply data structure. Use of the default function is
sufficient for discretely-manifested pathname resource managers.

Returns: The length of the path string being returned is set via the
helper macro _.IQ_SET _FDINFO_LEN.

io_/ink()

int io_link (resmgr_context_t *c~, io_link_t *msg,
RESMGR_HANDLE_T *handle, io_link_extra_t *extra)

Classification: Connect

Default handler: none

Helper functions: iofunc_link()

Client function: link()

Messages: _.IQ_CONNECT with subtype _IQ_CONNECT _LINK

Data structure:

Chapter 5 • Resource Managers 315

io_/ock()

struct _io_connect {
II internal fields (as described above)
uint16_t path_/en;
uint8_t extra...type;
uint16_t extra_/en;
char path [1] ;

};

struct _io_connect_link_rep1y {
uint32_t reserved/ [2];
uint8_t ej/ag;
uint8_t resen,ed2 [3];
uint32_t umask;
uint16_t nentries;
uint16_t path_/en;

};

typedef union {
struct _io_connect connect;
struct _io_connect_1ink_reply link-reply;

} io_link_t;

typedef union _io_1ink_extra {
struct ...:msg_info
void
char
struct _io_resmgr_link_extra

} io_1ink_extra_t;

info;
*ocb;
path [1];

resmgr;

Description: Creates a new link with the name given in the path
member of msg to the already-existing pathname specified by the path
member of extra (passed to your function). For convenience, the ocb
member of extra contains a pointer to the OCB for the existing
pathname.

Returns: The status via the helper macro _RESMGR_STATUS.

io_/ock()

int io_lock (resmgr_context_t *c~, io_lock_t *msg,

RESMGR_OCB_T *ocb)

Classification: 110

316 Chapter 5 • Resource Managers

Default handler: iofuncJock_default()

Helper functions: iofunc _lock()

Client functions: fcntl(), lockf(),jlock()

Messages: J:O_LOCK

Data structure:

struct _io_lock {
uintl6_t
uintl6_t
uint32_t
int32_t

};

struct _io_lock_reply {

type;
combine _/en;
subtype;
nbytes;

uint32_t zero [3];
} ;

typedef union {
struct _io_lock i;
struct _io_lock_reply o;

} io_lock_t;

io_/ock_ocb()

Description: This provides advisory range-based file locking for a
device. The default function is most likely sufficient for most resource
managers.

Returns: The status via the helper macro _RESMGR_STATUS.

io_/ock_ocb()

int io_lock_ocb (resmgr_context_t *c~, void

*reserved, RESMGR_QCB_T *ocb)

Classification: 110 (synthesized by library)

Default handler: iofuncJock_ocb_default()

Helper functions: none

Chapter 5 • Resource Managers 317

io_/seek()

Client function: all

Messages: none- synthesized by library

Data structure: none

Description: This function is responsible for locking the attributes
structure pointed to by the OCB. This is done to ensure that only one
thread at a time is operating on both the OCB and the corresponding
attributes structure. The lock (and corresponding unlock) functions
are synthesized by the resource manager library before and after
completion of message handling. See the section on "Combine
messages" above for more details. You'll almost never use this outcall
yourself; instead, use the POSIX-layer default function.

Returns: The status via the helper macro _RESMGR_STATUS.

io_/seek()

int io_lseek {resmgr_context_t *c~, io_lseek_t

*msg, RESMGR_OCB_T *ocb}

Classification: 1/0

Default handler: iofunc _lseek__default()

Helper functions: iofunc_lseek()

Client function: [seek(),fseek(), rewinddir()

Messages: _]Q_LSEEK

Data structure:

struct _io_lseek {
uintl6_t type;
uintl6_t combine_/en;
short whence;
uintl6_t zero;
uint64_t offset;

};

318 Chapter 5 • Resource Managers

typedef union {
struct _io_lseek i;
uint64_t o;

} io_lseek-t;

io_mknod()

Description: Handles the client's !seek() function. Note that a
resource manager that handles directories will also need to interpret
the _IO_LSEEK message for directory operations. The whence and
offset parameters are passed from the client's !seek() function. The
routine should adjust the OCB's offset parameter after interpreting the
whence and offset parameters from the message and should return the
new offset or an error.

Returns: The status via the helper macro _RESMGR_STATUS, and
optionally (if no error and if not part of a combine message) the
current offset.

io_mknod()

int io-mknod (resmgr_context_t *c~~ io-mknod_t

*msg 1 RESMGR....HANDLE_T *handle I void *reserved)

Classification: Connect

Default handler: none

Helper functions: iofunCJnknod()

Client function: mknod(), mkdir(), mkfifo()

Messages: J:O_CONNECT, subtype J:O_CONNECT _MKNOD

Data structure:

struct _io_connect {
/1 internal fields (as described above)
uintl6_t path-len;
uintB_t extra_type;
uintl6_t extra_/en;

Chapter 5 • Resource Managers 319

io_mmap()

char path [1];
};

struct _io_connect_link_reply {
uint32_t reserved! [2];

};

uint8_t ejlag;

uint8_t reserved2 [3] ;
uint32_t umask;
uintl6_t nentries;
uintl6_t path_/en;

typedef union {
struct _io_connect
struct _io_connect_link_reply

} io....mknod_t;

connect;
linLreply;

Description: Creates a new filesystem entry point. The message is
issued to create a file, named by the path member, using the filetype
encoded in the mode member (from the "internal fields" part of the
struct _io_connect structure, not shown).

This is really used only for the mkfifo(), mkdir(), and mknod() client
functions.

Returns: The status via the helper macro ..RESMGR_STATUS.

io_mmap()

int io~ap (resmgr_context_t *c~, io~ap_t *msg,

RESMGR_OCB_T *ocb)

Classification: 1/0

Default handler: iofunc..mmap_default()

Helper functions: iofunc..mmap()

Client function: mmap(), munmap(), mmap...device_io(),
mmap_device..memory()

320 Chapter 5 • Resource Managers

Messages: __IQ__MMAP

Data structure:

struct _io~ap {
uintl6_t
uintl6_t
uint32_t
uint64_t

} ;

structmsg_info
uint32_t

struct _io~ap_reply {

} ;

uint32_t
uint32_t
uint64_t
int32_t
int32_t

typedef union {

type;
combine _/en;
prot;
offset;
info;
zero [6];

zero;
flags;
offset;
coid;
fd;

struct _io~ap i;
struct _io~ap_reply o;

} io~ap_t;

io_mmap()

Description: Allows the process manager to mmap() files from your
resource manager. Generally, you should not code this function
yourself (use the defaults provided by iofunc-func_init()- the default
handler), unless you specifically wish to disable the functionality (for
example, a serial port driver could choose to return ENOSYS, because
it doesn't make sense to support this operation).

Only the process manager will call this resource manager function.

Note that a side effect of the process manager's calling this function is
that an OCB will be created (i.e., iofunc_ocb_calloc() will be called),
but this should have no consequences to a properly implemented
resource manager.

Returns: The status via the helper macro ..RESMGR_STATUS.

Chapter 5 • Resource Managers 321

io_mount()

io_mount()

int io~ount (resmgr_context_t *c~ 1 io~ount_t

*msg 1 RESMGR_HANDLE_T *handle 1 io~ount_extra_t

*extra)

Classification: Connect

Default handler: none

Client function: mount(), umount()

Helper functions: none

Messages: J:O_CONNECT with the J:O_CONNECT _MOUNT subtype.

Data structure:

struct _io_connect {

};

II internal fields (as described above)
uintl6_t path_fen;
uint8_t extra_type;
uintl6_t extra_fen;
char path [1] ;

struct _io_connect_link_reply {
uint32_t reserved/ [2];
uint8_t efiag;
uint8_t reserved2 [3];
uint32_t umask;
uin t16 _t nentries;
uintl6_t path_fen;

};

typedef union {
struct _io_connect connect;
struct _io_connect_link_reply link_reply;

} io....mount_t;

Description: This function is called whenever a mount() or umount()
client function sends your resource manager a message. QSSL's
Thomas Fletcher has written an excellent article, including some very

322 Chapter 5 • Resource Managers

io_msg()

interesting code examples, that you can find at the following URLs:
http://qdn.qnx.com/articles/apr0601/index.html (the
article) and http:/ /staff.qnx.com;-thomasf/nto.html (the
code examples).

Returns: The status via the helper macro .JO_SET _CONNECT .JlliT.

io_msg()

int io~sg (resmgr_context_t *c~, io~sg_t *msg,
RESMGR_QCB_T *ocb)

Classification: 1/0

Default handler: none.

Helper functions: none.

Client function: none - manually assembled and sent via MsgSend()

Messages: .JO_MSG

Data structure:

struct _io...msg {
uintl6_t type;
uintl6_t combine_/en;
uintl6_t mgrid;
uintl6_t subtype;

typedef union {
struct _io...msg i;

} io...msg_t;

Description: The J:O_MSG interface is a more general, but less
portable, variation on the ioctl()/devctl() theme. The mgrid is used to
identify a particular manager- you should not perform actions for
requests that don't conform to your manager ID. The subtype is

Chapter 5 • Resource Managers 323

io_notify()

effectively the command that the client wishes to perform. Any data
that's transferred implicitly follows the input structure. Data that's
returned to the client is sent on its own, with the status returned via
_RESMGR_STATUS. You can get a "manager ID" from QSSL.

Returns: The status via the helper macro _RESMGR_STATUS.

io_notify()

int io_notify (resmgr_context_t *c~, io_notify_t

*msg, RESMGR_QCB-T *ocb}

Classification: 110

Default handler: none

Helper functions: iofunCJwtify(), iofunCJwtify_remove(),
iofuncJiotify_trigger()

Client function: select(), ionotify()

Messages: ..IO..NOTIFY

Data structure:

struct _io_notify {
uintl6_t
uintl6_t
int32_t
int32_t
struct sigevent

};

struct _io_notify_reply

type;
combine _/en;

action;

flags;
event;

uint32_t zero;
uint32_t flags;

} ;

typedef union {
struct _io_notify i;
struct _io_notify_reply o;

} io_notify_t;

324 Chapter 5 • Resource Managers

io_open()

Description: The handler is responsible for installing, polling, or
removing a notification handler. The action and flags determine the
kind of notification operation and conditions; the event is a struct

sigevent structure that defines the notification event (if any) that the
client wishes to be signalled with. You'd use the MsgDeliverEvent()
or iofuncJJotify_trigger() functions to deliver the event to the client.

Returns: The status via the helper macro _RESMGR_STATUS; the flags
are returned via message reply.

io_open()

int io_open (resmgr_context_t *c~, io_open_t *msg,

RESMGR-HANDLE_T *handle, void *extra)

Classification: Connect

Default handler: iofunc_open_default()

Helper functions: iofunc_open(), iofunc_ocb_attach()

Client function: open(),fopen(), sopen() (and others)

Messages: _IO_CONNECT with one of _IO_CONNECT _COMBINE,
_IO_CONNECT _COMBINE_CLOSE or _IO_CONNECT _OPEN subtypes.

Data structure:

struct _io_connect {
II internal fields (as described above)

} ;

uintl6_t path_/en;
uint8_t extra_type;
uintl6_t extra_/en;
char path [1] ;

struct _io_connect_link_reply {
uint32_t reserved] [2];
uint8_t eflag;

Chapter 5 • Resource Managers 325

io_openfd()

uint8_t reserved2 [3];
uint32_t umask;
uintl6_t nentries;
uin tl6 _t path _/en;

};

typedef union {
struct _io_connect connect;
struct _io_connect_link_reply link_reply;

} io_open_t;

Description: This is the main entry point into the resource manager. It
checks that the client indeed has the appropriate permissions to open
the file, binds the OCB to the internal library structures (via
resmgr JJind_ocb(), or iofunc_ocb_attach()), and returns an errno.
Note that not all input and output structure members are relevant for
this function.

Returns: The status via the helper macro _IO_SELCONNECLRET.

io_openfd()

int io_openfd (resmgr_context_t *c~, io_openfd_t

*msg, RESMGR_OCB-T *ocb)

Classification: 110

Default handler: iofunc _openfd_default()

Helper functions: iofunc_openfd()

Client function: openfd()

Messages: _IQ_OPENFD

Data structure:

struct _io_openfd {
uintl6_t
uintl6_t
uint32_t

type;
combine _/en;
iofiag;

326 Chapter 5 • Resource Managers

uintl6_t sflag;
uintl6_t reserved];
struct ...lllsg_info info;
uin t3 2 _t reserved2;
uint32_t key;

};

typedef union {
struct _io_openfd i;

} io_openfd_t;

io_pathconf()

Description: This function is similar to the handler provided for
io_open(), except that instead of a pathname, an already-open file
descriptor is passed (by virtue of passing you the ocb in the function
call).

Returns: The status via the helper macro _RESMGR_STATUS.

io_pathconf()

int io_pathconf (resmgr_context_t *c~,
io_pathconf_t *msg, RESMGR_QCB_T *ocb)

Classification: 110

Default handler: iofunc_pathconf-.default()

Helper functions: iofunc_pathconf()

Client function: fpathconf(), pathconf()

Messages: __lOYATHCONF

Data structure:

struct _io_pathconf {
uintl6_t type;
uintl6_t combine_len;
short name;
uintl6_t zero;

};

Chapter 5 • Resource Managers 327

io_read()

typedef union {
struct _io_pathconf i;

} io_pathconf_t;

Description: The handler for this message is responsible for returning
the value of the configurable parameter name for the resource
associated with this OCB. Use the default function and add additional
cases for the name member as appropriate for your device.

Returns: The status via the helper macro _IQ_SET _FATHCONF _VALUE

and the data via message reply.

io_read()

int io_read (resmgr_context_t *c~, io_read_t *msg,
RESMGR_OCB_T *ocb)

Classification: 110

Default handler: iofunc _read_default()

Helper functions: iofunc_read(), iofunc_read_verify()

Client function: read(), readdir()

Messages: __IQ_READ

Data structure:

struct _io_read {
uintl6_t type;
uintl6_t combine_/en;
int32_t nbytes;
uint32_t xtype;

} ;

typedef union {
struct _io_read i;

} io_read_t;

328 Chapter 5 • Resource Managers

io_read()

Description: Responsible for reading data from the resource. The
client specifies the number of bytes it's prepared to read in the nbytes
input member. You return the data, advance the offset in the OCB,
and update the appropriate time fields.

Note that the xtype member may specify a per-read-message override
flag. This should be examined. If you don't support any extended
override flags, you should return an EINVAL. We'll see the handling
of one particularly important (and tricky!) override flag called
J:O_](TYPE_OFFSET in the io_read() and io_write() examples below.

Note also that the J:O-.READ message arrives not only for regular files,
but also for reading the contents of directories. You must ensure that
you return an integral number of struct dirent members in the
directory case. For more information about returning directory
entries, see the example in the "Advanced topics" section under
"Returning directory entries."

The helper function iofunc_read_verify() should be called to ascertain
that the file was opened in a mode compatible with reading. Also, the
iofunc__sync_verify() function should be called to verify if the data
needs to be synchronized to the medium. (For a read(), that means
that the data returned is guaranteed to be on-media.)

Returns: The number of bytes read, or the status, via the helper macro
J:O_SET _READ__NBYTES, and the data itself via message reply.

For an example of returning just data, take a look at "A simple
io_read() example" below. For a more complicated example of
returning both data and directory entries, look in the "Advanced
topics" section under "Returning directory entries."

Chapter 5 • Resource Managers 329

io_readlink()

io_readlink()

int io_readlink {resmgr_context_t *c~~

io_readlink_t *msg 1 RESMGR_HANDLE_T *handle I void

*reserved)

Classification: Connect

Default handler: none

Helper functions: iofunc _readlink()

Client function: read link()

Messages: .JO_CONNECT with subtype _IQ_CONNECT _READ LINK

Data structure:

struct _io_connect {

};

II internal fields (as described above)
uintl6_t path_fen;
uint8_t extra_type;
uintl6_t extra_len;
char path [1] ;

struct _io_connect_link_reply {

uint32_t reserved/ [2];
uint8_t efiag;
uint8_t reserved2 [3];

uint32_t umask;
uintl6_t nentries;
uintl6_t path_fen;

};

typedef union {
struct _io_connect connect;
s true t _io_connec t _l ink_reply link-reply;

} io_open_t;

Description: Responsible for reading the contents of a symbolic link
as specified by the path member of the input structure. The bytes
returned are the contents of the symbolic link; the status returned is

330 Chapter 5 • Resource Managers

io_rename()

the number of bytes in the reply. A valid return should be done only
for a symbolic link; all other accesses should return an error code.

Returns: The status via the helper macro _RESMGR_STATUS and the
data via message reply.

io_rename()

int io_rename (resmgr_context_t *c~~ io_rename_t

*msg I RESMGR__HANDLE_T *handle I io_rename_extra_t

*extra)

Classification: Connect

Default handler: none

Helper functions: iofunc_rename()

Client function: rename()

Messages: _IQ_CONNECT with subtype _IQ_CONNECT _RENAME

Data structure:

struct _io_connect {
II internal fields (as described above)
uintl6_t path-len;
uint8_t extra_type;
uint16_t extra_/en;
char path [1] ;

};

struct _io_connect_link_reply {
uint32_t reserved] [2];

};

uint8_t efiag;
uintB_t reserved2 [3];
uint32-t umask;
uint16_t nentries;
uint16_t path_len;

typedef union _io_rename_extra {
char path [1] ;

Chapter 5 • Resource Managers 331

io_shutdown()

} io_rename_extra_t;

typedef union {
struct _io_connect connect;
struct _io_connect_link_reply link_rep/y;

} io_rename_t;

Description: Performs the rename operation, given the new name in
path and the original name in the path member of the passed extra
parameter. Implementation note: the pathname of the original name is
given (rather than an OCB) specifically for the case of handling a
rename of a file that's hard-linked to another file. If the OCB were
given, there would be no way to tell apart the two (or more) versions
of the hard-linked file.

This function will be called only with two filenames that are on the
same filesystem (same device). Therefore, there's no need to check
for a case where you'd return EXDEV. This doesn't prevent you from
returning EXDEV if you don't wish to perform the rename() yourself
(for example, it may be very complicated to do the rename operation
from one directory to another). In the case of returning EXDEV, the
shell utility mv will perform a cp followed by an rm (the C library
function rename() will do no such thing - it will return only an errno
ofEXDEV).

Also, all symlinks will be resolved, where applicable, before this
function is called, and the pathnames passed will be absolute and
rooted in the filesystem for which this resource manager is
responsible.

Returns: The status via the helper macro _RESMGR_STATUS.

io_shutdown()

int io_shutdown (resmgr_context_t *c~,

io_shutdown_t *msg, RESMGR_OCB_T *ocb)

332 Chapter 5 • Resource Managers

io_space()

This function is reserved by QSSL for future use. You should
initialize the VO table using iofunc june _in it() and not modify this
entry.

io_space()

int io_space (resmgr_context_t *c~, io_space_t

*msg, RESMGR_OCB_T *ocb}

Classification: VO

Default handler: none

Helper functions: iofunc....space_verify()

Client function: chsize(),fcntl(),ftruncate(), It rune()

Messages: J:O_SPACE

Data structure:

struct _io_space {
uintl6_t type;
uintl6_t combine_/en;
uintl6_t subtype;
short whence;
uint64_t nan;
uint64_t len;

} ;

typedef union {
struct _io_space i;
uint64_t a;

} io_space_t;

Description: This is used to allocate or free space occupied by the
resource. The subtype parameter indicates whether to allocate (if set
to F .ALLOCSP) or deallocate (if set to F __FREESP) storage space. The
combination of whence and start give the location where the
beginning of the allocation or deallocation should occur; the member
len indicates the size of the operation.

Chapter 5 • Resource Managers 333

io_stat()

Returns: The number of bytes (size of the resource) via the helper
macro RESMGR_STATUS.

io_stat()

int io_stat (resmgr_context_t *c~, io_stat_t *msg,
RESMGR_QCB_T *ocb)

Classification: I/0

Default handler: iofunc ...staulefault()

Helper functions: iofunc ...stat()

Client function: stat(), !stat(),fstat()

Messages: .lO_STAT

Data structure:

struct _io_stat {
uintl6_t type;
uintl6_t combine_/en;
uint32_t zero;

};

typedef union {
struct _io_stat i;

struct stat o;
} io_stat_t;

Description: Handles the message that requests information about the
resource associated with the passed OCB. Note that the attributes
structure contains all the information required to fulfill the stat()
request; the helper function iofunc...stat() fills a struct stat

structure based on the attributes structure. Also, the helper function
modifies the stored devlrdev members to be unique from a single
node's point of view (useful for performing stat() calls to files over a
network). There's almost no reason to write your own handler for this
function.

334 Chapter 5 • Resource Managers

io_sync()

Returns: The status via the helper macro .RESMGR_STATUS and the
struct stat via message reply.

io_sync()

int io_sync (resmgr_context_t *c~, io_sync_t *msg,
RESMGR_QCB_T *ocb)

Classification: 1/0

Default handler: iofunc _sync ..default()

Helper functions: iofunc_sync_verify(), iofunc_sync()

Client function: fsync(),fdatasync()

Messages: JO_SYNC

Data structure:

struct _io_sync {
uintl6_t ~pe;

uintl6_t combine_fen;
uint32_t flag;

};

typedef union {
struct _io_sync i;

} io_sync_t;

Description: This is the entry point for a flush command. The helper
function iofunc_sync() is passed the flag member from the input
message, and returns one of the following values, which indicate what
actions your resource manager must take:

• 0 - do nothing.

• O_SYNC- everything associated with the file (including the file
contents, directory structures, inodes, etc.) must be present and
recoverable from media.

Chapter 5 • Resource Managers 335

io_unb/ock() [CONNECT]

• O_DSYNC- only the data portion of the file must be present and
recoverable from media.

Note that this outcall will occur only if you've agreed to provide sync
services by setting the mount structure flag.

Returns: Returns the status via the helper macro _RESMGR_STATUS.

io_unblock() [CONNECT]

int io_unblock {resmgr_context_t *c~, io_pulse_t
*msg, RESMGR....HANDLE_T *handle, void *reserved)

Classification: Connect (synthesized by kernel, synthesized by
library)

Default handler: none

Helper functions: iofuncunblock()

Client function: none - kernel action due to signal or timeout

Messages: none- synthesized by library

Data structure: (See VO version of io_unblock(), next)

Description: This is the connect message version of the unblock
outcall, synthesized by the library as a result of a kernel pulse due to
the client's attempt to unblock during the connect message phase. See
the 1/0 version of io_unblock() for more details.

Returns: The status via the helper macro _RESMGR_STATUS.

See the section in the Message Passing chapter, titled "Using the
_NTO_MLUNBLOCK_REQ" for a detailed discussion of unblocking
strategies.

336 Chapter 5 • Resource Managers

io_unblock() [1/0]

io_unblock() [1/0]

int io_unblock (resmgr_context_t *c~, io_pulse_t

*msg, RESMGR-OCB_T *ocb)

Classification: 1/0 (synthesized by kernel, synthesized by library)

Default handler: iofunc_unblock_default()

Helper functions: iofunc_unblock()

Client function: none -kernel action due to signal or timeout

Messages: none - synthesized by library

Data structure: pointer to message structure being interrupted

Description: This is the 1/0 message version of the unblock outcall,
synthesized by the library as a result of a kernel pulse due to the
client's attempt to unblock during the 1/0 message phase. The
connect message phase io_unblock() handler is substantially the same
(see the preceding section).

Common to both unblock handlers (connect and 110) is the
characteristic that the client wishes to unblock, but is at the mercy of
the resource manager. The resource manager must reply to the client's
message in order to unblock the client. (This is discussed in the
Message Passing chapter when we looked at the Channel Create()
flags, particularly the _NTO_CHF_UNBLOCK flag).

Returns: The status via the helper macro _RESMGR_STATUS.

See the section in the Message Passing chapter, titled "Using the
_NTO_MLUNBLOCK_REQ" for a detailed discussion of unblocking
strategies.

Chapter 5 • Resource Managers 337

io_unlink()

io_unlink()

int io_unlink (resmgr_context_t *c~ 1 io_unlink_t

* msg I RESMGR_HANDLE_T *handle 1 void *reserved)

Classification: Connect

Default handler: none

Helper functions: iofunc__unlink()

Client function: unlink()

Messages: J:O_CONNECT with subtype J:O_CONNECLUNLINK

Data structure:

struct _io_connect {

};

II internal fields (as described above)
uintl6_t path_/en;
uint8_t extra_type;
uintl6_t extra_/en;
char pa~ [1];

struct _io_connect_link_reply {
uint32_t reserved] [2];
uintB_t ejiag;
uint8_t reserved2 [3];
uint32_t umask;
uintl6_t nentries;
uintl6_t path-len;

};

typedef union {
struct _io_connect connect;
struct _io_connect_link_reply link_rep/y;

} io_unlink_t;

Description: Responsible for unlinking the file whose pathname is
passed in the input message structure's path member.

Returns: The status via the helper macro _RESMGR_STATUS.

338 Chapter 5 • Resource Managers

io_un/ock_ocb()

io_unlock_ocb()

int io_unlock_ocb (resmgr_context_t *c~, void

*reserved, RESMGR_QCB_T *ocb)

Classification: 1/0 (synthesized by library)

Default handler: iofunc_unlock_ocb_default()

Helper functions: none

Client function: all

Messages: none - synthesized by library

Data structure: none

Description: Inverse of io_lock_ocb() above. That is, it's responsible
for unlocking the attributes structure pointed to by the OCB. This
operation releases the attributes structure so that other threads in the
resource manager may operate on it. See the section on "Combine
messages" above for more details.

Returns: The status via the helper macro .RESMGR_STATUS.

io_utime()

int io_utime (resmgr_context_t *c~, io_utime_t

*msg, RESMGR-OCB_T *ocb)

Classification: 1/0

Default handler: iofunc_utime_default()

Helper functions: iofunc_utime()

Client function: utime()

Messages: _ro_UTIME

Chapter 5 • Resource Managers 339

io_write()

Data structure:

struct _io_utime {
uintl6_t t\pe;

uintl6_t combine_/en;
int32_t cw·_fiag;
struct utimbuf times;

} ;

typedef union
struct _io_utime i;

} io_utime_t;

Description: Changes the access and modification times to either
"now" (if they are zero) or the specified values. Note that this message
handler may be required to modify the IOFUNCATTR_ * flags in the
attribute structure as per POSIX rules. You'll almost never use this
outcall yourself, but will instead use the POSIX-layer helper function.

Returns: The status via the helper macro _RESMGR_STATUS.

io_write()

int io_write (resmgr_context_t *c~, io_write_t

*msg, RESMGR-OCB_T *ocb)

Classification: 1/0

Default handler: iofunc_write_default()

Helper functions: iofunc_write_verify()

Client function: write(),fwrite(), etc.

Messages: _IO_WRITE

Data structure:

struct _io_write {
uintl6_t
uintl6_t

type;
combine _fen;

340 Chapter 5 • Resource Managers

} ;

int32_t
uint32_t

typedef union {

nbytes;
xtype;

struct _io_write i;
} io_write_t;

Examples

Description: This message handler is responsible for getting data that
the client wrote to the resource manager. It gets passed the number of
bytes the client is attempting to write in the nbytes member; the data
implicitly follows the input data structure (unless the xtype override is
_IQ_j(TYPE_OFFSET; see "A simple io_write() example" below!) The
implementation will need to re-read the data portion of the message
from the client, using resmgr _msgreadv() or equivalent. The return
status is the number of bytes actually written or an errno.

Note that the helper function iofunc_write_verify() should be called to
ascertain that the file was opened in a mode compatible with writing.
Also, the iofunc....sync_verify() function should be called to verify if the
data needs to be synchronized to the medium.

Returns: The status via the helper macro __IQ_SELWRITKNBYTES.

For an example, take a look at "A simple io_write() example" below.

Examples

I'm now going to show you a number of "cookbook" examples you
can cut and paste into your code, to use as a basis for your projects.
These aren't complete resource managers- you'll need to add the
thread pool and dispatch "skeleton" shown immediately below, and
ensure that your versions of the 1/0 functions are placed into the 1/0
functions table after you've done the iofunc-func_init(), in order to
override the defaults!

I'll start with a number of simple examples that show basic
functionality for the various resource manager message handlers:

Chapter 5 • Resource Managers 341

Examples

The basic skeleton
of a resource

manager

• io_read()

• io_write()

• io...devctl() (without data transfer)

• io_devctl() (with data transfer)

And then in the advanced topics section, we'lllook at an io_read()
that returns directory entries.

The following can be used as a template for a resource manager with
multiple threads. (We've already seen a template that can be used for
a single-threaded resource manager above in "The resource manager
library," when we discussed a /dev/null resource manager).

/*
* rms.c

*I

#include <stdio.h>
#include <stdlib.h>
#include <stddef.h>
#include <sys/iofunc.h>
#include <sys/dispatch.h>

static resmgr_connect_funcs_t
static resmgr_io_funcs_t
static iofunc_attr_t

connect_func;
io_func;
attr;

int
main (int argc, char **argv)
{

thread_pool_attr_t
thread_pool_t
dispatch_t
resmgr_attr_t
resmgr_context_t
int

pool_attr;
*tpp;
*dpp;
resmgr_attr;
*ctp;
id;

if ((dpp dispatch_create ()) ==NULL) {

}

fprintf (stderr, "%s: Unable to dispatch_create. \n",
argv [0]);

return (EXIT-FAILURE);

memset (&pool_attr, 0, sizeof (pool_attr));

342 Chapter 5 • Resource Managers

}

pool_attr.handle = dpp;
pool_attr.context_alloc = resmgr_context_alloc;
pool_attr.block_func = resmgr-block;
pool_attr.handler_func resmgr...handler;
pool_attr.context_free = resmgr_context_free;

II 1) set up the number of threads that you want
pool_attr.lo_water = 2;
pool_attr.hi_water = 4;
pool_attr.increment = 1;
pool_attr.maximum = 50;

Examples

tpp = thread_pool_create (&pool_attr, POOL-FLAG-EXIT-SELF);
if (tpp == NULL) {

}

fprintf (stderr, "%s: Unable to thread_pool_create.\n",
argv [0]);

return (EXIT-FAILURE);

iofunc_func_init (_RESMGR_CONNECT-NFUNCS, &connect_func,
-RESMGR_IO_NFUNCS, &io_func);

iofunc_attr_init (&attr, s_IFNAM I 0777, 0, 0);

II 2) override functions in "connect_func" and "io_func"
II as required here

memset (&resmgr_attr, 0, sizeof (resmgr_attr));
resmgr_attr.nparts~ax = 1;
resmgr_attr.msg~ax_size = 2048;

II 3) replace "ldevlwhatever" with your device name
id = resmgr_attach (dpp, &resmgr_attr, "ldevlwhatever",

_FTYPE...ANY, 0,

if (id == -1) {

&connect_func, &io_func,
&attr);

fprintf (stderr, "%s: Unable to resmgr_attach\n",
argv [0]);

return (EXIT-FAILURE);
}

II Never returns
thread_pool_start (tpp);

II so you'll never get here
return (EXIT-SUCCESS);

Chapter 5 • Resource Managers 343

Examples

Step 1

Step 2

Step3

For more information about the dispatch interface (i.e., the
dispatch_create() function), see the documentation in the C Library
Reference.

Here you'd use the thread pool functions to create a pool of threads
that will be able to service messages in your resource manager.
Generally, I recommend that you start off with a single-threaded
resource manager, as we did with the /dev/null example mentioned
above. Once you have the basic functionality running, you can then
add threads. You'd modify the lo_water, hi_water, increment, and
maximum members of the pool_attr structure as described in the
"Threads & Processes" chapter where we discuss the thread pool
functions.

Here you'd add whatever functions you want to supply. These are the
outcalls we just discussed (e.g. io_read(), io_devctl(), etc.) For
example, to add your own handler for the _IO_READ message that
points to a function supplied by you called my_io_read(), you'd add
the following line of code:

io_func.io_read = my_io_read;

This will override the POSIX-layer default function that got put into
the table by iofunc-func_init() with a pointer to your function,
my _io _read().

You probably don't want your resource manager called
/dev/whatever, so you should select an appropriate name. Note
that the resmgr _attach() function is where you bind the attributes
structure (the attr parameter) to the name- if you wish to have
multiple devices handled by your resource manager, you'd call
resmgr_attach() multiple times, with different attributes structures (so
that you could tell the different registered names apart at runtime).

344 Chapter 5 • Resource Managers

A simple io_read()
example

Data area size
considerations

Handling of EOF case

Maintenance of context
information

Examples

To illustrate how your resource manager might return data to a client,
consider a simple resource manager that always returns the constant
string ' 'Hello I world! \n 1 1 • There are a number of issues
involved, even in this very simple case:

• matching of client's data area size to data being returned

• handling of EOF case

• maintenance of context information (the lseek() index)

• updating of POSIX stat() information

In our case, the resource manager is returning a fixed string of 14
bytes - there is exactly that much data available. This is identical to
a read-only file on a disk that contains the string in question; the only
real difference is that this "file" is maintained in our C program via
the statement:

char *data_string = "Hello, world!\n";

The client, on the other hand, can issue a read() request of any size -
the client could ask for one byte, 14 bytes, or more. The impact of
this on the io_read() functionality you're going to provide is that you
must be able to match the client's requested data size with what's
available.

A natural fallout of the way you handle the client's data area size
considerations is the corner case of dealing with the End-Of-File
(EOF) on the fixed string. Once the client has read the final "\n"
character, further attempts by the client to read more data should
return EOF.

Both the "Data area size considerations" and the "Handling of EOF
case" scenarios will require that context be maintained in the OCB
passed to your io_read() function, specifically the offset member.

Chapter 5 • Resource Managers 345

Examples

Updating POSIX
information

The code

One final consideration: when data is read from a resource manager,
the POSIX access time (atime) variable needs to be updated. This is
so that a client stat() function will show that someone has indeed
accessed the device.

Here's the code that addresses all the above points. We'll go through
it step-by-step in the discussion that follows:

I*
* io_readl.c

*I

#include <stdio.h>
#include <errno.h>
#include <syslneutrino.h>
#include <sysliofunc.h>

II our data string
char *data_string "Hello, world! \n";

int
io_read (resmgr_context_t *ctp, io_read_t *msg,

iofunc_ocb_t *ocb)
{

int sts;
int nbytes;
int nleft;
int off;
int xtype;
struct ...xtype_offset *xoffset;

II 1) verify that the device is opened for read
sts = iofunc_read_verify (ctp, msg, ocb, NULL);
if (sts != EOK) {

return (sts);
}

II 2) check for and handle an XTYPE override
xtype = msg -> i.xtype & ..IO...XTYPE...MASK;
if (xtype == _ro_xTYPE_OFFSET) {

xoffset = (struct ...xtype_offset *) (&msg -> i + 1);
off = xoffset -> offset;

} else if (xtype == _ro_xTYPE_NONE) {
off = ocb -> offset;

} else { II unknown, fail it
return (ENOSYS);

}

346 Chapter 5 • Resource Managers

Step 1

Step2

}

II 3) how many bytes are left?
nleft = ocb -> attr -> nbytes - off;

II 4) how many bytes can we return to the client?
nbytes =min (nleft, msg -> i.nbytes);

II 5) if returning data, write it to client
if (nbytes) {

Examples

MsgReply (ctp -> rcvid, nbytes, data_string + off,
nbytes);

I I 6) set up POSIX stat() "a time" data
ocb -> attr -> flags I= IOFUNC .ATTR .ATIME

I IOFUNC_ATTR-DIRTY_TIME;

II 7) advance the lseek() index by the number of bytes
II read if not _ro_xTYPE_OFFSET
if (xtype == _ro_xTYPE_NONE) {

ocb -> offset += nbytes;
}

} else {

}

II 8) not returning data, just unblock client
MsgReply (ctp -> rcvid, EOK, NULL, 0);

II 9) indicate we already did the MsgReply to the library
return (_RESMGR_NOREPLY);

Here we ensured that the client's open() call had in fact specified that
the device was to be opened for reading. If the client opened the
device for writing only, and then attempted to perform a read from it,
it would be considered an error. In that case, the helper function
iofunc_read_verify() would return EBADF, and not EOK, so we'd
return that value to the library, which would then pass it along to the
client.

Here we checked to see if the client had specified an xtype-override
-a per-message override (e.g., because while the device had been
opened in non-blocking mode, this specifies for this one request that
we'd like blocking behavior). Note that the blocking aspect of the
"xtype" override can be noted by the iofunc_read_verify() function's

Chapter 5 • Resource Managers 347

Examples

Steps 3 & 4

StepS

last parameter- since we're illustrating a very simple example, we
just passed in a NULL indicating that we don't care about this aspect.

More important, however, is to see how particular "xtype" modifiers
are handled. An interesting one is the _IO_XTYPE_OFFSET modifier,
which, if present, indicates that the message passed from the client
contains an offset and that the read operation should not modify the
"current file position" of the file descriptor (this is used by the
function pre ad(), for example). If the _IQ_XTYPE_OFFSET modifier is
not present, then the read operation can go ahead and modify the
"current file position." We use the variable xtype to store the "xtype"
that we received in the message, and the variable off to represent the
current offset that we should be using during processing. You'll see
some additional handling of the .JQ_)(TYPE_OFFSET modifier below,
in step 7.

If there is a different "xtype override" than _JQ_)(TYPE_OFFSET (and
not the no-op one of .JQ_)(TYPE..NONE), we fail the request with
ENOSYS. This simply means that we don't know how to handle it,
and we therefore return the error up to the client.

To calculate how many bytes we can actually return to the client, we
perform steps 3 and 4, which figure out how many bytes are available
on the device (by taking the total device size from ocb -> attr ->

nbytes and subtracting the current offset into the device). Once we
know how many bytes are left, we take the smaller of that number and
the number of bytes that the client specified that they wish to read.
For example, we may have seven bytes left, and the client wants to
only read two. In that case, we can return only two bytes to the client.
Alternatively, if the client wanted 4096 bytes, but we had only seven
left, we could return only seven bytes.

Now that we've calculated how many bytes we're going to return to
the client, we need to do different things based on whether or not
we're returning data. If we are returning data, then after the check in
step 5, we reply to the client with the data. Notice that we use
data-string + off to return data starting at the correct offset (the

348 Chapter 5 • Resource Managers

StepS

Examples

off is calculated based on the xtype override). Also notice the second
parameter to MsgReply()- it's documented as the status argument,
but in this case we're using it to return the number of bytes. This is
because the implementation of the client's read() function knows that
the return value from its MsgSendv() (which is the status argument to
MsgReply(), by the way) is the number of bytes that were read. This
is a common convention.

Since we're returning data from the device, we know that the device
has been accessed. We set the IOFUNC.ATTR.ATIME and
IOFUNc_ATTR_DIRTy_TIME bits in the flags member of the attribute
structure. This serves as a reminder to the io_stat() function that the
access time is not valid and should be fetched from the system clock
before replying. If we really wanted to, we could have stuffed the
current time into the atime member of the attributes structure, and
cleared the IOFUNC.ATTR_DIRTy_TIME flag. But this isn't very
efficient, since we're expecting to get a lot more read() requests from
the client than stat() requests. However, your usage patterns may
dictate otherwise.

~ So which time does the client see when it finally does call stat()? The
iofunc_stat_.default() function provided by the resource manager
library will look at the flags member of the attribute structure to see if
the times are valid (the atime, ctime, and mtime fields). If they are not
(as will be the case after our io_read() has been called that returned
data), the iofunc_staule.fault() function will update the time(s) with
the current time. The real value of the time is also updated on a
close(), as you'd expect.

Step7 Now we advance the !seek() offset by the number of bytes that we
returned to the client, only if we are not processing the
IQ)(TYPE_OFFSET override modifier. This ensures that, in the
non-_IQ_)(TYPE_OFFSET case, if the client calls !seek() to get the
current position, or (more importantly) when the client calls read() to
get the next few bytes, the offset into the resource is set to the correct

Chapter 5 • Resource Managers 349

Examples

Step 8

Step 9

Effective use of other
messaging functions

value. In the case of the J:O_)\TYPE_OFFSET override, we leave the
ocb version of the offset alone.

Contrast step 6 with this step. Here we only unblock the client, we
don't perform any other functions. Notice also that there is no data
area specified to the MsgReply(), because we're not returning data.

Finally, in step 9, we perform processing that's common regardless of
whether or not we returned data to the client. Since we've already
unblocked the client via the MsgReply(), we certainly don't want the
resource manager library doing that for us, so we tell it that we've
already done that by returning .RESMGR_NOREPLY.

As you'll recall from the Message Passing chapter, we discussed a
few other message-passing functions- namely MsgWrite(),
MsgWritev(), and MsgReplyv(). The reason I'm mentioning them here
again is because your io_read() function may be in an excellent
position to use these functions. In the simple example shown above,
we were returning a contiguous array of bytes from one memory
location. In the real world, you may need to return multiple pieces of
data from various buffers that you've allocated. A classical example
of this is a ring buffer, as might be found in a serial device driver. Part
of the data may be near the end of the buffer, with the rest of it
"wrapped" to the top of the buffer. In this case, you'll want to use a
two-part lOY with MsgReplyv() to return both parts. The first part of
the lOY would contain the address (and length) of the bottom part of
the data, and the second part of the lOY would contain the address
(and length) of the top part of the data. Or, if the data is going to
arrive in pieces, you may instead choose to use MsgWrite() or
MsgWritev() to place the data into the client's address space as it
arrives and then specify a final MsgReply() or MsgReplyv() to unblock
the client. As we've seen above, there's no requirement to actually
transfer data with the MsgReply() function- you can use it to simply
unblock the client.

350 Chapter 5 • Resource Managers

A simple io_write()
example

Examples

The io_read() example was fairly simple; let's take a look at
io_write(). The major hurdle to overcome with the io_write() is to
access the data. Since the resource manager library reads in a small
portion of the message from the client, the data content that the client
sent (immediately after the _IQ_WRITE header) may have only
partially arrived at the io_write() function. To illustrate this, consider
the client writing one megabyte- only the header and a few bytes of
the data will get read by the resource manager library. The rest of the
megabyte of data is still available on the client side - the resource
manager can access it at will.

There are really two cases to consider:

• the entire contents of the client's write() message were read by the
resource manager library, or

• they were not.

The real design decision, however, is, "how much trouble is it worth
to try to save the kernel copy of the data already present?" The
answer is that it's not worth it. There are a number of reasons for this:

• Message passing (the kernel copy operation) is extremely fast.

• There is overhead required to see if the data all fits or not.

• There is additional overhead in trying to "save" the first dribble of
data that arrived, in light of the fact that more data is waiting.

I think the first two points are self-explanatory. The third point
deserves clarification. Let's say the client sent us a large chunk of
data, and we did decide that it would be a good idea to try to save the
part of the data that had already arrived. Unfortunately, that part is
very small. This means that instead of being able to deal with the
large chunk all as one contiguous array of bytes, we have to deal with
it as one small part plus the rest. Effectively, we have to "special
case" the small part, which may have an impact on the overall
efficiency of the code that deals with the data. This can lead to
headaches, so don't do this!

Chapter 5 • Resource Managers 351

Examples

The real answer, then, is to simply re-read the data into buffers that
you've prepared. In our simple io_write() example, I'm just going to
malloc() the buffer each time, read the data into the buffer, and then
release the buffer via free(). Granted, there are certainly far more
efficient ways of allocating and managing buffers!

One further wrinkle introduced in the io_write() example is the
handling of the _ro_xTYPE_OFFSET modifier (and associated data;
it's done slightly differently than in the io_read() example).

Here's the code:

I*
* io_writel.c

*I

#include <stdio.h>
#include <stdlib.h>
#include <errno.h>
#include <syslneutrino.h>
#include <sysliofunc.h>

void
process_data (int offet, void *buffer, int nbytes)
{

II do something with the data
}

int
io_write (resmgr_context_t *ctp, io_write_t *msg,

iofunc_ocb_t *ocb)
{

int sts;
int nbytes;
int off;
int doffset;
int xtype;
char *buffer;
struct ...xtype_offset *xoffset;

II verify that the device is opened for write
sts = iofunc_write_verify (ctp, msg, ocb, NULL);
if (sts I= EOK) {

return (sts);
}

II l) check for and handle an XTYPE override
xtype = msg -> i. xtype &IO ...XTYPE ...MASK;

352 Chapter 5 • Resource Managers

}

Examples

if (xtype == _ro_xTYPE_QFFSET) {
xoffset = (struct ...xtype_offset *) (&mag -> i + 1);
doffset = sizeof (mag-> i) + sizeof (*xoffset);
off = xoffset -> offset;

} else if (xtype == _ro_xTYPE_NONE) {
off = ocb -> offset;
doffset = sizeof (mag-> i);

} else { II unknown, fail it
return (ENOSYS);

}

II 2) allocate a buffer big enough for the data
nbytes = mag -> i.nbytes;
if ((buffer= malloc (nbytes)) ==NULL) {

return (ENOMEM);
}

II 3) (re-)read the data from the client
if (resmgr_msgread (ctp, buffer, nbytes, doffset)

free (buffer);
return (errno);

}

II 4) do something with the data
process_data (off, buffer, nbytes);

II 5) free the buffer
free (buffer);

II 6) set up the number of bytes for the client's
II "write" function to return
_IQ_SET_WRITE_NBYTES (ctp, nbytes);

-1) {

II 7) if any data written, update POSIX structures and
II OCB offset
if (nbytes) {

ocb -> attr -> flags I= IOFUNC .ATTR .MTIME

}

I IOFUNC_ATTR-DIRTY_TIME;
if (xtype == _ro_xTYPE_NONE) {

ocb -> offset += nbytes;
}

II 8) tell the resource manager library to do the reply,
II and that it was okay
return (EOK);

Chapter 5 • Resource Managers 353

Examples

Step 1

Step2

Step3

As you can see, a few of the initial operations performed were
identical to those done in the io_read() example- the
iofunc_write_verify() is analogous to the iofunc_read_verify() function,
and the xtype override check is the same.

Here we performed much the same processing for the "xtype
override" as we did in the io_read() example, except for the fact that
the offset is not stored as part of the incoming message structure. The
reason it's not stored there is because a common practice is to use the
size of the incoming message structure to determine the starting point
of the actual data being transferred from the client. We take special
pains to ensure the offset of the start of the data (doffset) is correct in
the xtype handling code.

Here we allocate a buffer that's big enough for the data. The number
of bytes that the client is writing is presented to us in the nbytes
member of the msg union. This is stuffed automatically by the client's
C library in the write() routine. Note that if we don't have sufficient
memory to handle the malloc() request, we return the error number
ENOMEM to the client- effectively, we're passing on the return code
to the client to let it know why its request wasn't completed.

Here we use the helper function resmgr Jllsgread() to read the entire
data content from the client directly into the newly allocated buffer. In
most cases we could have just used MsgRead(), but in the case where
this message is part of a "combine message," resmgr Jllsgread()
performs the appropriate "magic" for us (see the "Combine message"
section for more information on why we need to do this.) The
parameters to resmgr Jnsgread() are fairly straightforward; we give it
the internal context pointer (ctp), the buffer into which we want the
data placed (buffer), and the number of bytes that we wish read (the
nbytes member of the message msg union). The last parameter is the
offset into the current message, which we calculated above, in step 1.
The offset effectively skips the header information that the client's C
library implementation of write() put there, and proceeds directly to
the data. This actually brings about two interesting points:

354 Chapter 5 • Resource Managers

Step4

Examples

• We could use an arbitrary offset value to read chunks of the client's
data in any order and size we want.

• We could use resmgr _msgreadv() (note the "v") to read data from
the client into an IOV, perhaps describing various buffers, similar
to what we did with the cache buffers in the filesystem discussion
in the Message Passing chapter.

Here you'd do whatever you want with the data- I've just called a
made-up function called process ...data() and passed it the buffer and
size.

Step 5 This step is crucial! Forgetting to do it is easy, and will lead to
"memory leaks." Notice how we also took care to free the memory in
the case of a failure in step 3.

Step 6 We're using the macro J0_5ELWR/TE_NBYTES() to store the
number of bytes we've written, which will then be passed back to the
client as the return value from the client's write(). It's important to
note that you should return the actual number of bytes! The client is
depending on this.

Step 7 Now we do similar housekeeping for stat(), lseek(), and further
write() functions as we did for the io _read() routine (and again, we
modify the offset in the ocb only in the case of this not being a
J:Q_)(TYPEDFFSET type of message). Since we're writing to the
device, however, we use the IOFUNc_ATTR_MTIME constant instead
of the IOFUNc_ATTR_ATIME constant. The MTIME flag means
"modification" time, and a write() to a resource certainly "modifies"
it.

Step 8 The last step is simple: we return the constant EOK, which tells the
resource manager library that it should reply to the client. This ends
our processing. The resource manager will use the number of bytes
that we stashed away with the J0_5ET_WR/TE_NBYTES() macro in
the reply and the client will unblock; the client's C library write()

Chapter 5 • Resource Managers 355

Examples

A simple
io_devctl()

example

function will return the number of bytes that were written by our
device.

The client's devctl() call is formally defined as:

#include <sys/types.h>
#include <unistd.h>
#include <devctl.h>

int
devctl (int fd,

int dcmd,
void *dev...data_ptr,
size_t nbytes,
int *dev_info_ptr) ;

We should first understand this function before we look at the
resource manager side of things. The devctl() function is used for "out
of band" or "control" operations. For example, you may be writing
data to a sound card (the actual digital audio samples that the sound
card should convert to analog audio), and you may decide that you
need to change the number of channels from l (mono) to 2 (stereo), or
the sampling rate from the CD-standard (44.1 kHz) to the
DAT-standard (48kHz). The devctl() function is the appropriate way
to do this. When you write a resource manager, you may find that you
don't need any devctl() support at all and that you can perform all the
functionality needed simply through the standard read() and write()
functions. You may, on the other hand, find that you need to mix
devctl() calls with the read() and write() calls, or indeed that your
device uses only devctl() functions and does not use read() or write().

The devctl() function takes 5 arguments:

fd

dcmd

The file descriptor of the resource manager that
you're sending the devctl() to.

The command itself- a combination of two bits
worth of direction, and 30 bits worth of command
(see discussion below).

356 Chapter 5 • Resource Managers

Examples

dev _data_ptr A pointer to a data area that can be sent to, received
from, or both.

nbytes The size of the dev _data_ptr data area.

dev _info _ptr An extra information variable that can be set by the
resource manager.

The top two bits in the dcmd encode the direction of data transfer, if
any. For details, see the description in the I/0 reference section (under
io_devctl()).

When the _IO_DEVCTL message is received by the resource manager,
it's handled by your io_devctl() function. Here is a very simple
example, which we'll assume is used to set the number of channels
and the sampling rate for the audio device we discussed above:

I*
* io_devctl1.c

*I

int
io_devctl (resmgr_context_t *ctp, io_devctl_t *mag,

iofunc_ocb_t *ocb)
{

int sts;

II 1) see if it's a standard POSIX-supported devctl()
sts = iofunc_devctl_default (ctp, mag, ocb);
if (sts I= -RESMGR-DEFAULT) {

return (sts);
}

II 2) see which command it was, and act on it
switch (mag -> i.dcmd) {
case DCMD-AUDIO_SET_CHANNEL-MONO:

audio_set-nchannels (1);
break;

case DCMD-AUDIO_SET_CHANNEL_STEREO:
audio_set_nchannels (2);
break;

case DCMD-AUDIO-SET_SAMPLE-RATE_CD:
audio_set_samplerate (44100);
break;

case DCMD-AUDIQ_SET_SAMPLE-RATE-DAT:
audio_set-samplerate (48000);

Chapter 5 • Resource Managers 357

Examples

Step 1

Step2

}

break;

II 3) in case it's a command that we don't
II recognize, fail it
default:

return (ENOSYS);
}

II 4) tell the client it worked
memset (&msg -> o, 0, sizeof (msg -> o));
SETIOV (ctp -> iov, &msg -> o, sizeof (msg -> o));
return (-RESMGR_NPARTS (1));

In the first step, we see again the use of a helper function, this time
iofunc__devctLdefault(), which is used to perform all default
processing for the devctl() function. If you didn't supply your own
io...devctl(), and just let iofuncjunc__init() initialize the 110 and connect
functions tables for you, the iofunc _devctl...default() function is what
would get called. We include it in our io_devctl() function because we
want it to handle all the regular POSIX devctl() cases for us. We
examine the return value; if it's not _RESMGR_DEFAULT, then this
means that the iofunc...devctl...default() function "handled" the request,
so we just pass along its return value as our return value.

If the constant _RESMGR_DEFAULT is the return value, then we know
that the helper function didn't handle the request and that we should
check to see if it's one of ours.

This checking is done in step 2 via the switch/ case statement. We
simply compare the dcmd values that the client code would have
stuffed into the second argument to devctl() to see if there's a match.
Note that we call the fictitious functions audio__setJ1channels() and
audio__set__samplerate() to accomplish the actual "work" for the client.
An important note that should be mentioned here is that we've
specifically avoided touching the data area aspects of devctl()- you
may be thinking, "What if I wanted to set the sample rate to some
arbitrary number n, how would I do that?" That will be answered in
the next io_devctl() example below.

358 Chapter 5 • Resource Managers

Step3

Step4

An io_devctl()
example that deals

with data

Examples

This step is simply good defensive programming. We return an error
code of ENOSYS to tell the client that we didn't understand their
request.

Finally, we clear out the return structure and set up a one-part IOV to
point to it. Then we return a value to the resource manager library
encoded by the macro _RESMGR_NPARTS() telling it that we're
returning a one part IOV. This is then returned to the client. We could
alternatively have used the _RESMGRYTR() macro:

II instead of this
II 4) tell the client it worked
memset (&msg -> o, 0, sizeof (msg -> o));
SETIOV (ctp -> iov, &msg -> o, sizeof (msg -> o));
return (-RESMGR_NPARTS (1));

II we could have done this
II 4) tell the client it worked
memset (&msg -> o, 0, sizeof (msg -> o));
return (-RESMGR_pTR (ctp, &msg -> o, sizeof (msg -> o)));

The reason we cleared out the return structure here (and not in the
io_read() or io_write() examples) is because in this case, the return
structure has actual contents! (In the io_read() case, the only data
returned was the data itself and the number of bytes read - there was
no "return data structure," and in the io_write() case, the only data
returned was the number of bytes written.)

In the previous io_devctl() example, above, we raised the question of
how to set arbitrary sampling rates. Obviously, it's not a good solution
to create a large number of DCMD.AUDIO_SET _SAMPLE_RATE_ *
constants- we'd rapidly use up the available bits in the dcmd
member.

From the client side, we'll use the dev_data_ptr pointer to point to the
sample rate, which we'll simply pass as an integer. Therefore, the
nbytes member will simply be the number of bytes in an integer (4 on
a 32-bit machine). We'll assume that the constant
DCMD.AUDIO_SET _SAMPLKRATE is defined for this purpose.

Chapter 5 • Resource Managers 359

Examples

Also, we'd like to be able to read the current sampling rate. We'll also
use the dev_data_ptr and nbytes as described above, but in the reverse
direction - the resource manager will return data into the memory
location pointed to by dev_data_ptr (for nbytes) instead of getting data
from that memory location. Let's assume that the constant
DCMD_AUDIO_GET _SAMPLE_RATE is defined for this purpose.

Let's see what happens in the resource manager's io_devctl(), as
shown here (we won't discuss things that have already been discussed
in the previous example):

I*
* io_devctl2.c

*I

int
io_devctl (resmgr_context_t *ctp, io_devctl_t *msg,

iofunc_ocb_t *ocb)
{

int sts;
void *data;

sts = iofunc_devctl_default (ctp, msg, ocb);
if (sts != _RESMGR-DEFAULT) {

return (sts);
}

II 1) assign a pointer to the data area of the message
data = _DEVCTL-DATA (*msg);

II 2) preset the number of bytes that we'll return to zero
nbytes = 0;

II check for all commands, we'll just show the ones
II we're interested in here
switch (msg -> i.dcmd) {

II 3) process the SET command
case DCMD-AUDIO_SET_SAMPLE-RATE:

audio_set_samplerate (* (int *) data);
break;

II 4) process the GET command
case DCMD-AUDIO_GET_SAMPLE-RATE:

* (int *) data= audio_get_samplerate ();
nbytes = sizeof (int);
break;

360 Chapter 5 • Resource Managers

Step 1

Step2

Step3

}

}

II 5) return data (if any) to the client
memaet (&mag-> o, 0, aizeof (mag-> o));
mag -> o.nbytea = nbytea;

Examples

SETIOV (ctp -> iov, &mag-> o, aizeof (mag-> o) + nbytea);
return (-RESMGR-NPARTS (1));

In the declaration, we've declared a void * called data that we're
going to use as a general purpose pointer to the data area. If you refer
to the io..devctl() description above, you'll see that the data structure
consists of a union of an input and output header structure, with the
data area implicitly following that header. In step 1, the
_DEVCTL.DATA() macro returns a pointer to that data area.

Here we need to indicate how many bytes we're going to return to the
client. Simply for convenience, I've set the nbytes variable to zero
before doing any processing- this way I don't have to explicitly set
it to zero in each of the switch/ case statements.

Now for the "set" command. We call the fictitious function
audio_set_samplerate(), and we pass it the sample rate which we
obtained by dereferencing the data pointer (which we "tricked" into
being a pointer to an integer. Well, okay, we didn't trick it, we used a
standard C language typecast.) This is a key mechanism, because this
is how we "interpret" the data area (the client's dev..data_ptr)
according to the command. In a more complicated case, you may be
typecasting it to a large structure instead of just a simple integer.
Obviously, the client's and resource manager's definitions of the
structure must be identical - the best place to define the structure,
therefore, is in the . h file that contains your DCMD_ * command code
constants.

Chapter 5 • Resource Managers 361

Examples

Step4

StepS

Important note

For the "get" command in step 4, the processing is very similar (with
the typecast), except this time we're writing into the data structure
instead of reading from it. Note that we also set the nbytes variable to
correspond to the number of bytes that we want to return to the client.
For more complicated data accesses, you'd return the size of the data
area (i.e., if it's a structure, you'd return the size of the structure).

Finally, to return data to the client, we need to note that the client is
expecting a header structure, as well as the return data (if any) to
immediately follow the header structure. Therefore, in this step, we
clear out the header structure to zeros and set the number of bytes (the
nbytes member) to the number of bytes that we're returning (recall we
had pre-initialized this to zero). Then, we set up a one-part IOV with
a pointer to the header and extend the size of the header by the
number of bytes we're returning. Lastly, we simply tell the resource
manager library that we're returning a one-part IOV to the client.

Recall the discussion in the io_write() sample above, about the data
area following the header. To recap, we stated that the bytes following
the header may or may not be complete (i.e., the header may or may
not have been read in its entirety from the client), depending on how
much data was read in by the resource manager library. Then we went
on to discuss how it was inefficient to try to "save" a message pass
and to "reuse" the data area. However, things are slightly different
with devctl(), especially if the amount of data being transferred is
fairly small (as was the case in our examples). In these cases, there's a
good chance that the data has in fact been read into the data area, so it
is indeed a waste to re-read the data. There is a simple way to tell how
much space you have: the size member of ctp contains the number of
bytes that are available for you starting at the msg parameter. The size
of the data area beyond the end of the message buffer that's available
is calculated by subtracting the size of the message buffer from the
size member of ctp:

data_area_size = ctp -> size - sizeof (*mag);

362 Chapter 5 • Resource Managers

Extending the
OCB

Advanced topics

Note that this size is equally valid when you are returning data to the
client (as in the DCMD_AUDIO_GELSAMPLE_RATE command).

For anything larger than the allocated region, you'll want to perform
the same processing we did with the io_write() example (above) for
getting data from the client, and you'll want to allocate a buffer to be
used for returning data to the client.

Advanced topics

Now that we've covered the "basics" of resource managers, it's time
to look at some more complicated aspects:

• extending the OCB

• extending the attributes structure

• blocking within the resource manager

• returning directory entries

In some cases, you may find the need to extend the OCB. This is
relatively painless to do. The common uses for extending the OCB
are to add extra flags you wish to maintain on a per-open basis. One
such flag could be used with the io_unblock() handler to cache the
value of the kernel's _NTO_MLUNBLOCK_REQ flag. (See the
Message Passing chapter, under "Using the
_NTO_MLUNBLOCK_REQ" for more details.)

To extend the OCB, you'll need to provide two functions; one to
allocate (and initialize) the new OCB and one to free it. Then, you'll
need to bind these two functions into the mount structure. (Yes, this
does mean that you'll need a mount structure, if only for this one
purpose.) Finally, you'll need to define your own OCB typedef, so
that the prototypes for the code are all correct.

Let's look at the OCB typedef first, and then we'll see how to override
the functions:

Chapter 5 • Resource Managers 363

Advanced topics

#define IOFUNC_OCB_T struct my_ocb
#include <sys/iofunc.h>

This tells the included file, <sys/ iofunc. h>, that the manifest
constant IOFUNc_ocB_T now points to your new and improved OCB
structure.

~& It's very important to keep in mind that the "normal" OCB must
appear as the first entry in your extended OCB! This is because the
POSIX helper library passes around a pointer to what it expects is a
normal OCB- it doesn't know about your extended OCB, so
therefore the first data element at the pointer location must be the
normal OCB.

Here's our extended OCB:

typedef struct my_ocb
{

iofunc_ocb_t
int

} my_ocb_t;

normal...ocb;
my....extra_jlags;

Finally, here's the code that illustrates how to override the allocation
and deallocation functions in the mount structure:

II declare
iofunc_mount_t
iofunc_funcs_t

mount;
mount_funcs;

II set up the mount functions structure
II with our allocate/deallocate functions

II _IOFUNC_NFUNCS is from the .h file
mount_funcs.nfuncs = _IOFUNC_NFUNCS;

II your new OCB allocator
mount_funcs.ocb_calloc = my_ocb_calloc;

II your new OCB deallocator
mount_funcs.ocb_free = my_ocb_free;

364 Chapter 5 • Resource Managers

II set up the mount structure
memset (&mount, 0, sizeof (mount));

Advanced topics

Then all you have to do is bind the mount functions to the mount
structure, and the mount structure to the attributes structure:

mount.funcs = &mount_funcs;
attr.mount = &mount;

The my_ocb_calloc() and my_ocb-free() functions are responsible for
allocating and initializing an extended OCB and for freeing the OCB,
respectively. They are prototyped as:

IOFUNC-OCB_T *
my_ocb_calloc (resmgr_context_t *ctp, IOFUNC...ATTR_T *attr);

void
my_ocb_free (IOFUNC_QCB_T *ocb);

This means that the my_ocb_calloc() function gets passed both the
internal resource manager context and the attributes structure. The
function is responsible for returning an initialized OCB. The
my_ocb_free() function gets passed the OCB and is responsible for
releasing the storage for it.

I@" It's important to realize that the OCB may be allocated by functions
other than the normal io _open() handler - for example, the memory
manager may allocate an OCB. The impact of this is that your OCB
allocating function must be able to initialize the OCB with the attr
argument.

There are two interesting uses for these two functions (that have
nothing to do with extending the OCB):

• OCB allocation/deallocation monitor

• more efficient allocation/deallocation

Chapter 5 • Resource Managers 365

Advanced topics

OCB monitor

More efficient allocation

Extending the
attributes
structure

In this case, you can simply "tie in" to the allocator/deallocator and
monitor the usage of the OCBs (for example, you may wish to limit
the total number of OCBs outstanding at any given time). This may
prove to be a good idea if you're not taking over the io_open() outcall,
and yet still need to intercept the creation of (and possibly deletion of)
OCBs.

Another use for overriding the library's built-in OCB
allocator/deallocator is that you may wish to keep the OCBs on a free
list, instead of the library's calloc() and free() functions. If you're
allocating and deallocating OCBs at a high rate, this may prove to be
more efficient.

You may wish to extend the attributes structure in cases where you
need to store additional device information. Since the attributes
structure is associated on a "per-device" basis, this means that any
extra information you store there will be accessible to all OCBs that
reference that device (since the OCB contains a pointer to the
attributes structure). Often things like serial baud rate, etc. are stored
in extended attributes structures.

Extending the attributes structure is much simpler than dealing with
extended OCBs, simply because attributes structures are allocated and
deallocated by your code anyway.

You have to perform the same "trick" of overriding the header files
with the "new" attributes structure as we did with the extended OCB
above:

#define IOFUNC-ATTR_T struct my_attr
#include <sys/iofunc.h>

Next you actually define the contents of your extended attribute
structures. Note that the extended attribute structure must have the
"normal" attribute structure encapsulated as the very first element,
just as we did with the extended OCB (and for the same reasons).

366 Chapter 5 • Resource Managers

Blocking within
the resource

manager

Advanced topics

So far we've avoided talking about blocking within the resource
manager. We assume that you will supply an outcall function (e.g., a
handler for io_read()), and that the data will be available immediately.
What if you need to block, waiting for the data? For example,
performing a read() on the serial port might need to block until a
character arrives. Obviously, we can't predict how long this will take.

Blocking within a resource manager is based on the same principles
that we discussed in the Message Passing chapter- after all, a
resource manager is really a server that handles certain, well-defined
messages. When the message corresponding to the client's read()
request arrives, it does so with a receive ID, and the client is blocked.
If the resource manager has the data available, it will simply return
the data as we've already seen in the various examples above.
However, if the data isn't available, the resource manager will need to
keep the client blocked (if the client has indeed specified blocking
behaviour for the operation) to continue processing other messages.
What this really means is that the thread (in the resource manager)
that received the message from the client should not block, waiting for
the data. If it did block, you can imagine that this could eventually use
up a great number of threads in the resource manager, with each
thread waiting for some data from some device.

The correct solution to this is to store the receive ID that arrived with
the client's message onto a queue somewhere, and return the special
constant _RESMGR.NOREPLY from your handler. This tells the
resource manager library that processing for this message has
completed, but that the client shouldn't be unblocked yet.

Some time later, when the data arrives, you would then retrieve the
receive ID of the client that was waiting for the message, and
construct a reply message containing the data. Finally, you would
reply to the client.

You could also extend this concept to implementing timeouts within
the server, much as we did with the example in the Clocks, Timers,
and Getting a Kick Every So Often chapter (in the "Server-maintained

Chapter 5 • Resource Managers 367

Advanced topics

Returning
directory entries

Generally speaking ...

timeouts" section). To summarize, after some period of time, the
client's request was deemed to have "timed out" and the server replied
with some form of failure message to the receive ID it had stored
away.

In the example for the io_read() function above, we saw how to return
data. As mentioned in the description of the io_read() function (in the
"Alphabetical listing of Connect and I/0 functions"), the io_read()

function may return directory entries as well. Since this isn't
something that everyone will want to do, I discuss it here.

First of all, let's look at why and when you'd want to return directory
entries rather than raw data from io_read().

If you discretely manifest entries in the pathname space, and those
entries are not marked with the _RESMGR_FLAG.DIR, then you won't
have to return directory entries in io_read(). If you think about this
from a "filesystem" perspective, you're effectively creating "file"
types of objects. If, on the other hand, you do specify
_RESMGR_FLAG_DIR, then you're creating a "directory" type of
object. Nobody other than you knows what the contents of that
directory are, so you have to be the one to supply this data. That's
exactly why you'd return directory entries from your io_read()
handler.

Generally speaking, returning directory entries is just like returning
raw data, except:

• You must return an integral number of struct dirent entries.

• You must fill in the struct dirent entries.

The first point means that you cannot return, for example, seven and a
half struct dirent entries. If eight of these structures don't fit into
the alloted space, then you must return only seven.

The second point is fairly obvious; it's mentioned here only because
filling in the struct dirent can be a little tricky compared to the
"raw data" approach for a "normal" io_read().

368 Chapter 5 • Resource Managers

The struct dirent
structure and friends

Advanced topics

Let's take a look at the struct dirent structure, since that's the
data structure returned by the io_read() function in case of a directory
read. We'll also take a quick look at the client calls that deal with
directory entries, since there are some interesting relations to the
struct dirent structure.

In order for a client to work with directories, the client uses the
functions closedir(), opendir(), readdir(), rewinddir(), seekdir(), and
telldir().

Notice the similarity to the "normal" file-type functions (and the
commonality of the resource manager messages):

Directory Function File Function Message (resmgr)

closedir() close() __IO_CLOSE_DUP

opendir() open() _IO_CONNECT

readdir() read() __IO_READ

rewinddir() lseek() __IO__LSEEK

seekdir() lseek() __IO__LSEEK

telldir() tell() __IO__LSEEK

If we assume for a moment that the opendir() and closedir() functions
will be handled automatically for us, we can focus on just the
__IO__READ and __IO__LSEEK messages and related functions.

Offsets

The _IO__LSEEK message and related function is used to "seek" (or
"move") within a file. It does the exact same thing within a directory;
you can move to the "first" directory entry (by explicitly giving an
offset to seekdir() or by calling rewinddir()), or any arbitrary entry (by
using seekdir()), or you can find out the current location in the
directory entry list (by using telldir()).

Chapter 5 • Resource Managers 369

Advanced topics

The "trick" with directories, however, is that the seek offsets are
entirely up to you to define and manage. This means that you may
decide to call your directory entry offsets "0," "I," "2" and so on, or
you may instead call them "0," "64," "128" and so on. The only
important thing here is that the offsets must be consistent in both the
io_lseek() handler as well as the io_read() handler functions.

In the example below, we'll assume that we're using the simple "0,"
"1," "2" ... approach. (You might use the "0," "64," "128" ...
approach if those numbers correspond to, for example, some kind of
on-media offsets. Your choice.)

Contents

So now all that's left is to "simply" fill in the struct dirent with
the "contents" of our directory. Here's what the struct dirent

looks like (from <dirent. h>):

struct dirent {

};

ino_t eLi no;
off_t d_offset;
uintl6_t cLreclen;
uintl6_t cLnamelen;
char d...11mne [1] ;

Here's a quick explanation of the various members:

d_ino

d_offset

d_reclen

The "inode"- a mountpoint-unique serial number
that cannot be zero (zero indicates that the entry
corresponding to this inode is free/empty).

The offset into the directory we just talked about
above. In our example, this will be a simple number
like "0," "1," "2," etc.

The size of the entire struct dirent field and any
extensions that may be placed within it. The size
includes any alignment filler required.

370 Chapter 5 • Resource Managers

Example

d_namelen

d_name

Advanced topics

The number of characters in the d_name field, not
including the NUL terminator.

The name of this directory entry, which must be NUL
terminated.

When returning the struct dirent entries, the return code passed
back to the client is the number of bytes returned.

In this example, we're going to create a resource manager called
/dev/atoz that will be a directory resource manager. It's going to
manifest the "files" /devlatoz/a through to devlatoz/z, with a
cat of any of the files returning the uppercase letter corresponding to
the filename. Here's a sample command-line session to give you an
idea of how this works:

cd /dev
ls
atoz null ptyp2 socket ttypO ttyp3
enetO ptypO ptyp3 text ttyp1 zero
mem ptyp1 shmem tty ttyp2
ls -ld atoz
dr-xr-xr-x 1 root 0 26 Sep 05 07:59 atoz
cd atoz
1s
a e i m q u y

b f j n r v z
c g k 0 s w

d h 1 p t X

ls -1 e
-r--r--r-- 1 root 0 1 Sep 05 07:59 e
cat m
M# cat q

Q#

The example above illustrates that the directory a toz shows up in the
I dev directory, and that you can do an 1 s of the directory itself and
cd into it. The I dev I a toz directory has a size of "26," which is the
number that we selected in the code. Once in the a toz directory,
doing another ls shows the contents- the files a through z. Doing
an ls of a particular file, say e, shows that the file is readable by all

Chapter 5 • Resource Managers 371

Advanced topics

main() and declarations

(the -r--r--r-- part) and is one byte in size. Finally, doing a few
random eat's shows that the files indeed have the stated contents.
(Note that since the files contain only one byte, there's no linefeed
after the character is printed, which is why the prompt shows up on
the same line as the output.)

Now that we've seen the characterstics, let's take a look at the code,
which is organized into the following functions:

main() and declarations

my_open()

my _read()

Main function; this is where we initialize everything
and start the resource manager running.

The handler routine for the _IQ_CONNECT message.

The handler routine for the _IO_READ message.

my _read_dir() and my _read_file()

These two routines perform the actual work of the
my _read() function.

dirent_size() and dirent-fill()

Utility functions to deal with struct dirent
structure.

Note that while the code is broken up here into several short sections
with text, the source is present on the web site
(http: I /www. parse. com/) in the archive as a single file (atoz. c).

The first section of code presented is the main() function and some of
the declarations. There's a convenience macro, ALIGN(), that's used
for alignment by the dirent-fill() and dirent_size() functions.

The atoz_attrs array contains the attributes structures used for the
"files" in this example. We declare NUM_ENTS array members,
because we have NUM_ENTS (26) files "a" through "z." The attributes
structure used for the directory itself (i.e., the I dev/atoz directory)
is declared within main() and is called simply attr. Notice the
differences in the way the two types of attributes structures are filled:

372 Chapter 5 • Resource Managers

Advanced topics

file attribute structure

Marked as a regular file (the SJ:FREG constant) with an access
mode of 0444 (meaning everyone has read access, no one has
write access). The size is "1"- the file contains only one byte,
namely, the uppercase letter corresponding to the filename. The
inodes for these individual files are numbered "I" through "26"
inclusive (it would have been more convenient to number them
"0" through "25," but "0" is reserved).

directory attribute structure

Marked as a directory file (the SJ:FDIR constant) with an access
mode of 0555 (meaning that everyone has read and seek access,
no one has write access). The size is "26"- this is simply a
number picked based on the number of entries in the directory.
The inode is "27" - a number known not to be in use by any of
the other attributes structures.

Notice how we've overridden only the open member of the
connect june structure and the read member of the io.func structure.
We've left all the others to use the POSIX defaults.

Finally, notice how we created the name /dev/atoz using
resmgr_attach(). Most importantly, we used the flag
_RESMGRYLAG..DIR, which tells the process manager that it can
resolve requests at and below this mountpoint.

/*
* atoz.c

*
* /dev/atoz using the resource manager library

*I

#include <stdio.h>
#include <stddef.h>
#include <stdlib.h>
#include <errno.h>
#include <dirent.h>
#include <limits.h>
#include <sys/iofunc.h>
#include <sys/dispatch.h>

Chapter 5 • Resource Managers 373

Advanced topics

#define ALIGN (x} (((x} + 3} & -3}
#define NUM--ENTS 26

static iofunc_attr_t atoz_attrs [NUM--ENTS] ;

int
main (int argc, char **argv}
{

dispatch_t *dpp;
resmgr_attr_t resmgr_attr;
resmgr_context_t *ctp;
resmgr_connect_funcs_t connect_func;
resmgr_io_funcs_t io_func;
iofunc_attr_t attr;
int i;

II create the dispatch structure
if ((dpp = dispatch_create (}} ==NULL} {

perror ("Unable to dispatch_create\n"};
exit (EXIT_FAILURE};

}

II initialize the various data structures
memset (&resmgr_attr, 0, sizeof (resmgr_attr}};
resmgr_attr.nparts~ax = 1;
resmgr_attr.msg~ax_size = 2048;

II bind default functions into the outcall tables
iofunc_func_init (-RESMGR_CONNECT_NFUNCS, &connect_func,

-RESMGR_IO_NFUNCS, &io_func};

II create and initialize the attributes structure
II for the directory. Inodes 1-26 are reserved for the
II files 'a' through 'z'. The number of bytes is 26
II because that's how many entries there are.
iofunc_attr_init (&attr, s_IFDIR I 0555, 0, 0};
attr.inode = NUM--ENTS + 1;
attr.nbytes = NUM--ENTS;

II and for the "a" through "z" names
for (i = 0; i < NUM_ENTS; i++} {

iofunc_attr_init (&atoz_attrs [i],
S-IFREG I 0444, 0, 0};

atoz_attrs [i] .inode = i + 1;
atoz_attrs [i] .nbytes = 1;

}

II add our functions; we're interested only in
II io_open and io_read
connect_func.open = my_open;

374 Chapter 5 • Resource Managers

my_open()

}

Advanced topics

io_func.read = my_read;

II establish a name in the pathname space
if (resmgr_attach (dpp, &resmgr_attr, "ldevlatoz",

_FTYPE-ANY, -RESMGR-FLAG-DIR,
&connect_func, &io_func,

}

&attr) == -1) {
perror ("Unable to resmgr_attach\n");
exit (EXIT-FAILURE);

II allocate a context
ctp = resmgr_context_alloc (dpp);

II wait here forever, handling messages
while (1) {

}

if ((ctp = resmgr-hlock (ctp)) ==NULL) {
perror ("Unable to resmgr-hlock\n");
exit (EXIT_FAILURE);

}
resmgr_handler (ctp);

II you'll never get here
return (EXIT-SUCCESS);

While my_open() is very short, it has a number of crucial points.
Notice how we decide if the resource being opened is a "file" or a
"directory" based only on the pathname length. We can do this "trick"
because we know that there are no other directories in this resource
manager apart from the main one. If you want to have multiple
directories below the mountpoint, you have to do more complicated
analysis of the path member of the msg structure. For our simple
example, if there's nothing in the pathname, we know it's the
directory. Also, notice the extremely simplified pathname validation
checking: we simply compare to make sure that there's only one
character passed to us, and that the character lies within the range "a"

through "z" inclusive. Again, for more complex resource managers,
you'd be responsible for parsing the name past the registered
mountpoint.

Now, the most important feature! Notice how we used the POSIX
layer default functions to do all the work for us! The

Chapter 5 • Resource Managers 375

Advanced topics

my _read()

iofunc_open_default() function is usually installed in the connect
functions table at the same spot that our new my_open() function is
now occupying. This means that it takes the identical set of
arguments! All we have to do is decide which attributes structure we
want to have bound with the OCB that the default function is going to
create: either the directory one (in which case we pass attr), or one of
the 26 different ones for the 26 different files (in which case we pass
an appropriate element out of atoz_attrs). This is key, because the
handler that you put in the open slot in the connect functions table
acts as the gatekeeper to all further accesses to your resource manager.

static int
my_open {resmgr_context_t *ctp, io_open_t *mag,

{

}

iofunc_attr_t *attr, void *extra)

II an empty path means the directory, is that what we have?
if {mag -> connect.path [0] == 0) {

return {iofunc_open_default {ctp, mag, attr, extra));

II else check if it's a single char 'a' -> 'z'
} else if {mag -> connect.path [1] == 0 &&

{mag -> connect.path [0] >= 'a' &&
mag-> connect.path [0] <= 'z')) {

II yea, that means it's the file !ldevlatozl[a-z])
return {iofunc_open_default {ctp, mag,

atoz_attrs +mag-> connect.path [OJ -'a',
extra));

} else {
return {ENOENT);

}

In the my _read() function, to decide what kind of processing we
needed to do, we looked at the attribute structure's mode member. If
the SJSDIR() macro says that it's a directory, we call my_read__dir();
if the SJSREG() macro says that it's a file, we call my_read_file().
(Note that if we can't tell what it is, we return EBADF; this indicates
to the client that something bad happened).

The code here doesn't know anything about our special devices, nor
does it care; it simply makes a decision based on standard,
well-known data.

376 Chapter 5 • Resource Managers

my_read_dir()

Advanced topics

static int
my_read (resmgr_context_t *ctp, io_read_t *mag,

iofunc_ocb_t *ocb)
{

}

int sts;

II use the helper function to decide if valid
if ((sts = iofunc_read_verify (ctp, mag, ocb,

NULL)) 1= EOK) {
return (sts);

}

II decide if we should perform the "file" or "dir" read
if (S_ISDIR (ocb -> attr ->mode)) {

return (my_read_dir (ctp, mag, ocb));
} else if (S_ISREG (ocb -> attr ->mode)) {

return (my_read_file (ctp, mag, ocb));
} else {

return (EBADF);
}

In my_read__dir() is where the fun begins. From a high level
perspective, we allocate a buffer that's going to hold the result of this
operation (called reply_msg). We then use dp to "walk" along the
output buffer, stuffing struct dirent entries as we go along. The
helper routine dirent__size() is used to determine if we have sufficient
room in the output buffer to stuff the next entry; the helper routine
dirent_fill() is used to perform the stuffing. (Note that these routines
are not part of the resource manager library; they're discussed and
documented below.)

On first glance this code may look inefficient; we're using sprintf() to
create a two-byte filename (the filename character and a NUL
terminator) into a buffer that's _pQSJX_pATH_MAX (256) bytes long.
This was done to keep the code as generic as possible.

Finally, notice that we use the OCB's offset member to indicate to us
which particular filename we're generating the struct dirent for
at any given time. This means that we also have to update the offset
field whenever we return data.

Chapter 5 • Resource Managers 377

Advanced topics

The return of data to the client is accomplished in the "usual" way, via
MsgReply(). Note that the status field of MsgReply() is used to
indicate the number of bytes that were sent to the client.

static int
my_read_dir (resmgr_context_t *ctp, io_read_t *mag,

iofunc_ocb_t *ocb)
{

int
int
struct
char
char

nbytes;
nleft;
dirent *dp;
*reply....lllsg;
fname [_PQSIX_FATH_MAX] ;

II allocate a buffer for the reply
reply....lllsg = calloc (1, mag-> i.nbytes);
if (reply....lllsg == NULL) {

return (ENOMEM);
}

II assign output buffer
dp = (struct dirent *) reply....lllsg;

II we have "nleft" bytes left
nleft =mag -> i.nbytes;
while (ocb -> offset < NUM-ENTS) {

II create the filename
sprintf (fname, "%c", ocb ->offset+ 'a');

II see how big the result is
nbytes dirent_size (fname);

II do we have room for it?
if (nleft - nbytes >= 0) {

II fill the dirent, and advance the dirent pointer
dp = dirent_fill (dp, ocb -> offset + 1,

ocb -> offset, fname);

II move the OCB offset
ocb -> offset++;

II account for the bytes we just used up
nleft -= nbytes;

} else {

}

II don't have any more room, stop
break;

378 Chapter 5 • Resource Managers

my_readJile()

}

Advanced topics

}

II return info back to the client
MsgReply (ctp -> rcvid, (char *) dp - reply .msg,

reply--IIlsg, (char *) dp - reply...msg);

II release our buffer
free (reply--IIlsg);

II tell resource manager library we already did the reply
return (-RESMGR_NOREPLY);

In my_read_file(), we see much the same code as we saw in the simple
read example above. The only strange thing we're doing is we
"know" there's only one byte of data being returned, so if nbytes is
non-zero then it must be one (and nothing else). So, we can construct
the data to be returned to the client by stuffing the character variable
string directly. Notice how we used the inode member of the attribute
structure as the basis of which data to return. This is a common trick
used in resource managers that must deal with multiple resources.
Another trick would be to extend the attributes structure (as discussed
above in "Extending the attributes structure") and have either the data
stored there directly or a pointer to it.

static int
my_read_file (resmgr_context_t *ctp, io_read_t *msg,

iofunc_ocb_t *ocb)

{
int nbytes;
int nleft;
char string;

II we don't do any xtypes here ...
if ((msg -> i.xtype & ...IO..XTYPE....MASK) !=

_ro_xTYPE_NONE) {
return (ENOSYS);

}

II figure out how many bytes are left
nleft = ocb -> attr -> nbytes - ocb -> offset;

II and how many we can return to the client
nbytes =min (nleft, msg -> i.nbytes);

Chapter 5 e Resource Managers 379

Advanced topics

direntsize()

direnUi/1()

}

if (nbytes) {
II create the output string
string= ocb -> attr -> inode- 1 + 'A';

II return it to the client
MsgReply (ctp -> rcvid, nbytes,

&string + ocb -> offset,
nbytes);

II update flags and offset
ocb -> attr -> flags I= IOFUNC .ATTR .ATIME

I IOFUNC_ATTR-DIRTY_TIME;
ocb -> offset += nbytes;

} else {

}

II nothing to return, indicate End Of File
MsgReply (ctp -> rcvid, EOK, NULL, 0);

II already done the reply ourselves
return (-RESMGR-NOREPLY);

The helper routine dirent...size() simply calculates the number of bytes
required for the struct dirent, given the alignment constraints.
Again, this is slight overkill for our simple resource manager, because
we know how big each directory entry is going to be - all filenames
are exactly one byte in length. However, it's a useful utility routine.

int
dirent_size (char *fname)
{

return (ALIGN (sizeof (struct dirent) + strlen (fname)));
}

Finally, the helper routine dirent_jill() is used to stuff the values
passed to it (namely, the inode, offset and.fname fields) into the
directory entry also passed. As an added bonus, it returns a pointer to
where the next directory entry should begin, taking into account
alignment.

struct dirent *
dirent_fill (struct dirent *dp, int inode, int offset,

char *fname)
{

dp -> d...ino = inode;

380 Chapter 5 • Resource Managers

}

dp -> d_offset = offset;
strcpy (dp -> d_name, fname);
dp -> d_namelen = strlen (dp -> d ..name);
dp -> d-reclen = ALIGN (sizeof (struct dirent)

+ dp -> d_namelen);
return ((struct dirent *) ((char*) dp +

dp -> d-reclen));

Summary

Summary

Writing a resource manager is by far the most complicated task that
we've discussed in this book.

A resource manager is a server that receives certain, well-defined
messages. These messages fall into two broad categories:

Connect messages

VO messages

Related to pathname-based operations, these may
establish a context for further work.

Always arrive after a connect message and indicate
the actual work that the client wishes to have done
(e.g., stat()).

The operations of the resource manager are controlled by the thread
pool functions (discussed in the Processes and Threads chapter) and
the dispatch interface functions.

QSSL provides a set of PO SIX helper functions in the resource
manager library that perform much of the work of dealing with the
client's Connect and 1/0 messages that arrive.

There are a number of data structures relating to the clients and
devices manifested by the resource manager to keep in mind:

Chapter 5 • Resource Managers 381

Summary

OCB Allocated on a per-open basis, this contains the context for
the client (e.g., current lseek() position)

Attributes structure

Allocated on a per-device basis, this contains information
about the device (e.g., size of the device, permissions, etc.)

Mount structure

Allocated on a per-resource-manager basis, and contains
information about the characteristics of the entire resource
manager.

The clients communicate with the resource manager via message
passing by resolving the pathname (via the open() and other calls)
into a node descriptor, process ID, channel ID, and handle.

Finally you supply the functionality you wish to actually do in your
resource manager by overriding some of the callouts in the Connect
and 110 functions table.

382 Chapter 5 • Resource Managers

Appendix A

QNX 4 to Neutrino

In this appendix . ..
QNX 4 and Neutrino
Porting philosophy
Summary

Appendix: A • QNX 4 to Neutrino 383

Similarities

QNX 4 and Neutrino

QNX 4 and Neutrino

In this appendix, we'll take a look at QSSL's previous operating
system, QNX 4, and see how it compares to Neutrino. This appendix
will mainly be of interest if you are a current QNX 4 customer and
want to see:

• What's so great about Neutrino?

• How hard will it be when I port to Neutrino?

Or you may be developing for, or porting to, both operating systems.

Let's first start with how the two generations of operating systems are
similar:

• message passing is at the heart of the architecture

• network-distributed message passing

• realtime

• microkernel architecture

• processes are memory-protected

• POSIX compatibility

• relatively simple "device driver" model

• embeddable

Note that while some of the basic features listed above are indeed
similar, in general Neutrino has extended the support. For example,
Neutrino has more POSIX support than QNX 4, simply because a
large number of the POSIX specifications were still in draft status
when QNX 4 was released. While less of them are in draft status as of
Neutrino's release, there are still more new drafts being released as
this book is written. It's a never-ending game of catch-up.

Appendix: A • QNX 4 to Neutrino 385

QNX 4 and Neutrino

Improvements

Embeddability

Now that you've seen what's the same about the two generations of
OS, let's look at where Neutrino has improved functionality over
QNX4:

• more POSIX standards supported

• more embeddable

• kernel is more readily customizable for a variety of hardware
platforms

• thread support

• simpler device driver model

• portable architecture; currently supports MIPS, PPC, SH4 and
ARM processors as well as x86

• supports SMP

• more documentation

While some of these improvements are "free," meaning that there are
no compatibility issues (for example, POSIX pthreads weren't
supported under QNX 4), some things did require fundamental
changes. I'll briefly mention the classes of changes that were
required, and then we'lllook in detail at the compatibility issues
caused as well as suggestions on how to port to Neutrino (or keep
your code portable between the two).

Neutrino totally redesigned the way that the operating system was
embedded. Under QNX 4, in the original release, it was marginally
embeddable. Then Neutrino came along, designed to be embeddable.
As a bonus, QNX 4 underwent some changes as a result of the
experience gained in Neutrino, and now QNX 4 is vastly more
embeddable than it had been. In any event, embedding QNX 4 versus
embedding Neutrino is almost like night and day. QNX 4 has no real
support for things like:

• kernel callouts (interrupt, timer)

386 Appendix: A • QNX 4 to Neutrino

Thread support

Message passing

QNX 4 and Neutrino

• startup configurability

• image filesystem

whereas Neutrino does. The definitive book on that subject is QSSL's
Building Embedded Systems.

QNX 4 had a function called tfork() that let you use "threads" by
creating a process with its code and data segments mapped to the
same memory locations as the creating process. This gave the illusion
of a thread by creating a process, and then changing the
characteristics of the newly created process to make it look like a
thread. While there is a thread library available for QNX 4 on QSSL's
update system, the kernel itself doesn't support threads directly.

Under Neutrino, the POSIX "pthread" model is used for all threading.
This means that you'll see (and have seen in this book) familiar
function calls like pthread_create(), pthread_mutex_lock(), and others.

While the impact of threads on message passing may seem minimal, it
resulted in a fundamental change to the way message passing was
done (not to the fundamental concepts of message passing, like
SEND/RECEIVE/REPLY, but to the implementation).

Under QNX 4, messages were targeted at process IDs. To send a
message, you simply found the process ID of the target and did your
Send(). For servers to receive a message under QNX 4 they just did a
Receive(). This would block until a message arrived. The server
would then reply with the Reply() function.

Under Neutrino, message passing is identical (different function
names, though). What's changed is the mechanism. The client now
has to create a connection to a server before it can do the standard
message-passing functions. And the server has to create a channel
before it can do the standard message-passing functions.

Appendix: A • QNX 4 to Neutrino 387

QNX 4 and Neutrino

lk%' Note that the QNX 4 Creceive() function, which would do a
non-blocking Receive(), is missing from Neutrino. We generally
discourage such "polling" functions, especially when you can start a
thread, but if you really insist on performing a non-blocking
MsgReceive() you should take a look at the Clocks, Timers, and
Getting a Kick Every So Often chapter (under "Kernel timeouts") for
more information. For the short story version, here's the relevant code
sample:

TimerTimeout (CLOCK-REALTIME, _NTO_TIMEOUT-RECEIVE,
NULL, NULL, NULL};

rcvid = MsgReceive (...

Pulses and events

QNX 4 provided something called a "proxy." A proxy is best
described as a "canned" (or "fixed") message, which could be sent by
processes or kernel services (like a timer or interrupt service routine)
to the owner of the proxy. The proxy is non-blocking for the sender
and would arrive just like any other message. The way to identify a
proxy (as opposed to another process actually sending a message) was
to either look at the proxy message contents (not 100% reliable, as a
process could send something that looked like the contents of the
proxy) or to examine the process ID associated with the message. If
the process ID of the message was the same as the proxy ID, then you
could be assured it was a proxy, because proxy IDs and process IDs
were taken from the same pool of numbers (there'd be no overlap).

Neutrino extends the concept of proxies with "pulses." Pulses are still
non-blocking messages, they can still be sent from a thread to another
thread, or from a kernel service (like the timer and ISR mentioned
above for proxies) to a thread. The differences are that while proxies
were of fixed-content, Neutrino pulses are fixed-length, but the
content can be set by the sender of the pulse at any time. For example,

388 Appendix: A • QNX 4 to Neutrino

Device driver model

QNX 4 and Neutrino

an ISR could save away a key piece of data into the pulse and then
send that to a thread.

Under QNX 4, some services were able to deliver a signal or a proxy,
while other services were able to deliver only one or the other. To
complicate matters, the delivery of these services was usually done in
several different ways. For example, to deliver a signal, you'd have to
use the kill() function. To deliver a proxy or signal as a result of a
timer, you'd have to use a negative signal number (to indicate it was a
proxy) or a positive signal number (to indicate it was a signal).
Finally, an ISR could deliver only a proxy.

Under Neutrino this was abstracted into an extension of the POSIX
struct sigevent data structure. Anything that used or returned
the struct sigevent structure can use a signal or a pulse.

In fact, this has been extended further, in that the struct sigevent

can even cause a thread to be created! We talked about this in the
Clocks, Timers, and Getting a Kick Every So Often chapter (under
"Getting notified with a thread").

Under the previous-previous version of the operating system (the
QNX 2 family), writing device drivers was an arcane black art. Under
QNX 4, it was initially a mystery, but then eventually some samples
appeared. Under Neutrino, there are books and courses on the topic.
As it turns out, the Neutrino model and the QNX 4 model are, at the
highest architectural level, reasonably similar. Whereas QNX 4 had
somewhat muddled concepts of what needed to be done as a
"connect" function, and what needed to be done as an "1/0" function,
Neutrino has a very clear separation. Also, under QNX 4, you (the
device driver writer) were responsible for most of the work- you'd
supply the main message handling loop, you'd have to associate
context on each 110 message, and so on. Neutrino has simplified this
greatly with the resource manager library.

Appendix: A • QNX 4 to Neutrino 389

QNX 4 and Neutrino

MIPS, PPC, SH4, and
ARM support

One of the driving changes behind the embeddability differences
between QNX 4 and Neutrino is the fact that Neutrino supports the
MIPS, PowerPC, SH4, and ARM processors. Whereas QNX 4 was
initially "at home" on an IBM PC with a BIOS and very standard
hardware, Neutrino is equally at home on multiple processor
platforms with or without a BIOS (or ROM monitor), and with
customized hardware chosen by the manufacturer (often, it would
appear, without regard for the requirements of the OS). This means
that the Neutrino kernel had to have provision for callouts, so you
could, for example, decide what kind of interrupt controller hardware
you had, and, without having to buy a source license for the operating
system, run on that hardware.

A bunch of other changes you'll notice when you port QNX 4
applications to Neutrino, especially on these different processor
platforms, is that they're fussy about alignment issues. You can't
access anN-byte object on anything other than anN-byte multiple of
an address. Under the x86 (with the alignment flag turned off), you
could access memory willy-nilly. By modifying your code to have
properly aligned structures (for non-x86 processors), you'll also find
that your code runs faster on x86, because the x86 processor can
access aligned data faster.

Another thing that often comes to haunt people is the issue of
big-endian versus little-endian. The x86 process is a mono-endian
processor (meaning it has only one "endian-ness"), and that's
little-endian. MIPS and PPC, for example, are bi-endian processors
(meaning that the processor can operate in either big-endian or
little-endian mode). Furthermore, these non-x86 processors are
"RISC" (Reduced Instruction Set CPU) machines, meaning that
certain operations, such as a simple C language I = (bitwise set
operation) may or may not be performed in an atomic manner. This
can have startling consequences! Look at the file <atomic. h> for a
list of helper functions that ensure atomic operation.

390 Appendix: A • QNX 4 to Neutrino

SMP support

Porting philosophy

Released versions of QNX 4 are strictly single-processor, whereas
Neutrino, at the time of this second printing, has support for SMP on
the x86 and PPC architectures at least. SMP is a great feature,
especially in an operating system that supports threads, but it's also a
bigger gun that you can shoot yourself in the foot with. For example,
on a single-processor box, an ISR will preempt a thread, but never the
other way around. On a single-processor box, it's a worthwhile
abstraction to "pretend" that threads run simultaneously, when they
don't really.

On an SMP box, a thread and ISR can be running simultaneously, and
multiple threads can also be running simultaneously. Not only is an
SMP system a great workstation, it's also an excellent SQA (Software
Quality Assurance) testing tool- if you've made any "bad"
assumptions about protection in a multithreaded environment, an
SMP system will find them eventually.

~ To illustrate just how true that statement is, one of the bugs in an early
internal version of SMP had a "window" of one machine cycle! On
one processor, what was supposedly coded to be an atomic
read/modify/write operation could be interfered with by the second
processor's compare and exchange instruction.

Porting philosophy

Let's now tum our attention to the "big picture." We'lllook at:

• Message passing and clients & servers

• Interrupt Service Routines

Appendix: A • QNX 4 to Neutrino 391

Porting philosophy

Message passing
considerations

Client/server using the
global namespace

Under QNX 4, the way a client would find a server was either:

1 Use the global namespace.
Or:

2 Perform an open() on an I/0 manager.

If the client/server relationship that you're porting depended on the
global namespace, then the client used:

qnx_name_locate()

and the server would "register" its name via:

qnx_jwme_attach()

In this case, you have two choices. You can try to retain the global
namespace idiom, or you can modify your client and server to act like
a standard resource manager. If you wish to retain the global
namespace, then you should look at the name_attach() and
name_detach() functions for your server, and name_open() and
name_close() for your clients.

However, I'd recommend that you do the latter; it's "the Neutrino
way" to do everything with resource managers, rather than try to bolt
a resource manager "kludge" onto the side of a global namespace
server.

The modification is actually reasonably simple. Chances are that the
client side calls a function that returns either the process ID of the
server or uses the "VC" (Virtual Circuit) approach to create a VC
from the client's node to a remote server's node. In both cases, the
process ID or the VC to the remote process ID was found based on
calling qnx_jwme_locate(). Here, the "magic cookie" that binds the
client to the server is some form of process ID (we're considering the
VC to be a process ID, because VCs are taken from the same number

392 Appendix: A • QNX 4 to Neutrino

Porting philosophy

space, and for all intents and purposes, they look just like process
IDs).

If you were to return a connection ID instead of a process ID, you'd
have conquered the major difference. Since the QNX 4 client
probably doesn't examine the process ID in any way (what meaning
would it have, anyway? -it's just a number), you can probably trick
the QNX 4 client into performing an open() on the "global name." In
this case, however, the global name would be the pathname that the
resource manager attached as its "id." For example, the following is
typical QNX 4 client code, stolen from my caller ID (CLID) server
library:

I*
* CLID-Attach {serverName)

*
* This routine is responsible for establishing a connection to
* the CLID server.

*
* Returns the process ID or VC to the CLID server.

*I

II a place to store the name, for other library calls
static char CLID_serverName [MAX_CLID_SERVER_NAME + 1];

II a place to store the clid server id
static int clid_pid = -1;

int
CLID-Attach {char *serverName)
{

}

if {serverName == NULL) {
sprintf {CLID_serverName, "IPARSEICLID");

} else {
strcpy {CLID_serverName, serverName);

}
clid_pid = qnx_name_locate {0, CLID-serverName,

sizeof {CLID_ServeriPC), NULL);
if {c1id_pid != -1) {

CLID-IPC {CLID~sgAttach); II send it an ATTACH message
return {clid_pid);

}
return {-1);

You could change this to be:

Appendix: A • QNX 4 to Neutrino 393

Porting philosophy

/*
* CLID-Attach (serverName) Neutrino version

*I

int
CLID-Attach (char *serverName)
{

}

if (serverName == NULL) {
sprint£ (CLID_serverName, "/PARSE/CLID");

} else {
strcpy (CLID_serverName, serverName);

}
return (clid_pid =open (CLID_serverName, Q_RDWR));

and the client wouldn't even notice the difference.

!@" Two implementation notes: I've simply left the default name
"/PARSE/CLIO" as the registered name of the resource manager.
Most likely a better name would be "/dev/clid"- it's up to you
how "POSIX-Iike" you want to make things. In any event, it's a
one-line change and is only marginally related to the discussion here.

The second note is that I've still called the file descriptor clid_pid,
even though now it should really be called clidfd. Again, this is a
style issue and relates to just how much change you want to perform
between your QNX 4 version and the Neutrino one.

In any event, to be totally portable to both, you'll want to abstract the
client binding portion of the code into a function call - as I did above
with the CLID...Attach().

At some point, the client would actually perform the message pass
operation. This is where things get a little trickier. Since the
client/server relationship is not based on an 1/0 manager relationship,
the client generally creates "customized" messages. Again from the
CUD library (CLID...AddSingleNPANXX() is the client's exposed API
call; I've also included checkAttach() and CLIDJPC() to show the
actual message passing and checking logic):

394 Appendix: A • QNX 4 to Neutrino

I*
* CLID-AddSingleNPANXX (npa, nxx)

*I

int
CLID-AddSingleNPANXX (int npa, int nxx)
{

}

I*

checkAttach ();
CLID-IPCData.npa = npa;
CLID_IPCData.nxx = nxx;
CLID-IPC (CLID-MsgAddSingleNPANXX);
return (CLID-IPCData.returnValue);

* CLID_IPC (IPC message number)

*

Porting philosophy

* This routine will call the server with the global buffer
* CLID-IPCData, and will stuff in the message number passed
* as the argument.

*
* Should the server not exist, this routine will stuff the
* .returnValue field with CLID_NoServer. Otherwise, no
* fields are affected.

*I

void
CLID-IPC (IPCMessage)
int IPCMessage;
{

}

void

if (clid_pid == -1) {
CLID_IPCData.returnValue
return;

}
CLID-IPCData.serverFunction
CLID_IPCData.type = OxBOOl;
CLID-IPCData.subtype = 0;

CLID_NoServer;

IPCMessage;

if (Send (clid_pid, &CLID-IPCData, &CLID-IPCData,

}

sizeof (CLID_IPCData),
sizeof (CLID-IPCData))) {

CLID_IPCData.returnValue = CLID-IPCError;
return;

checkAt tach ()
{

if (clid_pid -1) {
CLID-Attach (NULL);

Appendix: A • QNX 4 to Neutrino 395

Porting philosophy

}
}

As you can see, the checkAttach() function is used to ensure that a
connection exists to the CLIO server. If you didn't have a connection,
it would be like calling read() with an invalid file descriptor. In my
case here, the checkAttach() automagically creates the connection. It
would be like having the read() function determine that there is no
valid file descriptor and just create one out of the blue. Another style
issue.

The customized messaging occurs in the CLIDJPC() function. It
takes the global variable CLIDJPCData and tries to send it to the
server using the QNX 4 Send() function.

The customized messages can be handled in one of two ways:

1 Functionally translate them into standard, file-descriptor-based
POSIX calls.
Or:

2 Encapsulate them into either a devctl() or a customized message
wrapper using the _lQ__MSG message type.

In both cases, you've effectively converted the client to
communicating using standard resource manager mechanisms for
communications. What? You don't have a file descriptor? You have
only a connection IO? Or vice versa? This isn't a problem! Under
Neutrino, a file descriptor is a connection ID!

Translating messages to standard file-descriptor-based POSIX calls

In the case of the CLIO server, this really isn't an option. There is no
standard POSIX file-descriptor-based call to "add an NPA/NXX pair
to a CLIO resource manager." However, there is the general devctl()
mechanism, so if your client/server relationship requires this form,
see below.

396 Appendix: A • QNX 4 to Neutrino

Porting philosophy

Now, before you write off this approach (translating to standard
fd-based messages), let's stop and think about some of the places
where this would be useful. In an audio driver, you may have used
customized QNX 4 messages to transfer the audio data to and from
the resource manager. When you really look at it, read() and write()
are probably much more suited to the task at hand- bulk data
transfer. Setting the sampling rate, on the other hand, would be much
better accomplished via the devctl() function.

Granted, not every client/server relationship will have a bulk data
transfer requirement (the CUD server is such an example).

Translating messages to devctl() or JO_MSG

So the question becomes, how do you perform control operations?
The easiest way is to use the devctl() PO SIX call. Our CUD library
example (above) now becomes:

/*
* CLID-AddSingleNPANXX (npa, nxx)

*I

int
CLID-AddSingleNPANXX (int npa, int nxx)
{

}

struct clid_addnpanxx_t mag;

checkAttach (); //keep or delete, style issue

msg.npa = npa;
msg.nxx = nxx;
return (devctl (clid_pid, DCMD_CLID_ADD-NPANXX, &mag,

sizeof (mag), NULL));

As you can see, this was a relatively painless operation. (For those
people who don't like devctl() because it forces data transfers to be
the same size in both directions, see the discussion below on the
__IQ_MSG message.) Again, if you're maintaining source that needs to
run on both operating systems, you'd abstract the message-passing
function into one common point, and then supply different versions of
a library, depending on the operating system.

Appendix: A • QNX 4 to Neutrino 397

Porting philosophy

We actually killed two birds with one stone:

1 Removed a global variable, and assembled the messages based
on a stack variable - this now makes our code thread-safe.

2 Passed only the correct-sized data structure, instead of the
maximum-sized data structure as we did in the previous (QNX
4) example.

Note that we had to define DCMD_CLID_ADD_NPANXX- we could
have also kludged around this and used the
CLID_MsgAddSingleNPANXX manifest constant (with appropriate
modification in the header file) for the same purpose. I just wanted to
highlight the fact that the two constants weren't identical.

The second point that we made in the list above (about killing birds)
was that we passed only the "correct-sized data structure." That's
actually a tiny lie. You'll notice that the devctl() has only one size
parameter (the 4th parameter, which we set to sizeof (msg)). How
does the data transfer actually occur? The 2nd parameter to devctl()

contains the device command (hence "DCMD"). Encoded within the
top two bits of the device command is the direction, which can be one
of four possibilities:

1 "00" - no data being transferred

2 "0 1" - transfer from driver to client

3 "I 0" - transfer from client to driver

4 "II"- transfer bidirectionally

If you're not transferring data (meaning that the command itself
suffices), or if you're transferring data unidirectionally, then devctl()
is fine. The interesting case is when you're transferring data
bidirectionally, because (since there's only one data size parameter to
devctl()) both data transfers (to the driver and back) will transfer the
entire data buffer! This is okay in the sub-case where the "input" and
"output" data buffer sizes are identical, but consider the case where

398 Appendix: A • QNX 4 to Neutrino

Porting philosophy

the data buffer going to the driver is a few bytes, and the data coming
back from the driver is large. Since we have only one size parameter,
we're effectively forced to transfer the entire data buffer to the driver,
even though only a few bytes were required!

This can be solved by "rolling your own" messages, using the general
"escape" mechanism provided by the _IO__MSG message.

The ..IO__MSG message is provided to allow you to add your own
message types, while not conflicting with any of the "standard"
resource manager message types- it's already a resource manager
message type.

The first thing that you must do when using ..IO__MSG is define your
particular "custom" messages. In this example, we'll define two
types, and model it after the standard resource manager messages -
one data type will be the input message, and one will be the output
message:

typedef struct
{

int data_rate;
int more_stuff;

} my_input_xyz_t;

typedef struct
{

int old_data_rate;
int new_data_rate;
int more_stuff;

} my_output_xyz_t;

typedef union
{

my_input_xyz_t i;
my_output_xyz_t o;

} my~essage_xyz_t;

Here, we've defined a union of an input and output message, and
called it my....lllessage_xyz_t. The naming convention is that this is
the message that relates to the "xyz" service, whatever that may be.
The input message is of type my _input_xyz_t, and the output
message is of type my _output_xyz_t. Note that "input" and

Appendix: A • QNX 4 to Neutrino 399

Porting philosophy

"output" are from the point of view of the resource manager
"input" is data going into the resource manager, and "output" is data
comingfrom the resource manager (back to the client).

We need to make some form of API call for the client to use - we
could just force the client to manually fill in the data structures
my_input_xyz_t and my_output_xyz_t, but I don't recommend
doing that. The reason is that the API is supposed to "decouple" the
implementation of the message being transferred from the
functionality. Let's assume this is the API for the client:

int
adjust....xyz (int *data-rate,

int *odatcLrate,
int *more_vtt!{j");

Now we have a well-documented function, adjust....xyz(), that performs
something useful from the client's point of view. Note that we've used
pointers to integers for the data transfer- this was simply an
example of implementation. Here's the source code for the
adjustxyz() function:

int
adjust....xyz (int *dr, int *odr, int *ms)
{

}

my~essage....xyz_t msg;
int sts;

msg.i.data_rate *dr;
msg.i.more_stuff = *ms;
sts = io~sg (global_fd, CoMMAND_xYz, &msg,

sizeof (msg.i),
sizeof (msg.o));

if (sts == EOK) {
*odr = msg.o.old_data_rate;
*ms = msg.o.more_stuff;

}
return (sts);

This is an example of using ioJnsg() (which we'll define shortly
it's not a standard QSSL supplied library call!). The ioJnsg() function
does the magic of assembling the _IO..MSG message. To get around

400 Appendix: A • QNX 4 to Neutrino

Porting philosophy

the problems that we discussed about devctl() having only one "size"
parameter, we've given io_msg() two size parameters, one for the
input (to the resource manager, sizeof (msg. i)) and one for the
output (from the resource manager, sizeof (msg.o)). Notice how
we update the values of *odr and *ms only if the io_msg() function
returns an EOK. This is a common trick, and is useful in this case
because the passed arguments don't get modified unless the actual
command succeeded. (This prevents the client program from having
to maintain copies of its passed data, just in case the function fails.)

One last thing that I've done in the adjust...xyz() function, is that I
depend on the global-fd variable containing the file descriptor of the
resource manager. Again, there are a number of ways that you could
handle it:

• Bury the file descriptor within the io_msg() function (this would be
useful if you wanted to avoid having to pass around the file
descriptor on each and every call; useful if you're ever going to
talk to only the one resource manager, and thus most likely not
suitable as a general purpose solution).
Or:

• Pass the file descriptor from the client itself to each function in the
API library (useful if the client's going to be responsible for
talking to the resource manager in other ways, such as the standard
POSIX file descriptor calls like read(), or if the client may be
talking to multiple resource managers).

Here's the source for io_msg():

int
io~sg (int fd, int cmd, void *mag, int isize, int osize)
{

io~sg_t io~essage;

iov_t rx_iov [2];
iov_t tx_iov [2];
int sts;

II set up the transmit IOV
SETIOV (tx_iov + 0, &io~sg.o, sizeof (io~sg.o));
SETIOV (tx_iov + 1, mag, osize);

Appendix: A • QNX 4 to Neutrino 401

Porting philosophy

}

II set up the receive IOV
SETIOV {rx_iov + 0, &io~sg.i, sizeof {io~sg.i));
SETIOV {rx_iov + 1, msg, isize);

II set up the _!0-MSG itself
memset {&io~essage, 0, sizeof {io~essage));

io~essage.type = -IO-MSG;
io~essage.mgrid = cmd;

return {MsgSendv {fd, tx_iov, 2, rx_iov, 2));

Notice a few things.

The io_msg() function used a two-part IOV to "encapsulate" the
custom message (as passed by msg) into the io_message structure.

The io_message was zeroed out and initialized with the JO_MSG

message identification type, as well as the cmd (which will be used by
the resource manager to decide what kind of message was being sent).

The MsgSendv() function's return status was used directly as the
return status of io_msg().

The only "funny" thing that we did was in the mgrid field. QSSL
reserves a range of values for this field, with a special range reserved
for "unregistered" or "prototype" drivers. These are values in the
range JOMGR_pRJVATE_BASE through to JOMGR_pRJVATE_MAX ,

respectively. If you're building a deeply embedded system where you
know that no inappropriate messages will be sent to your resource
manager, then you can go ahead and use the special range. On the
other hand, if you are building more of a "desktop" or "generic"
system, you may not have enough control over the final configuration
of the system to determine whether inappropriate messages will be
sent to your resource manager. In that case, you should contact QSSL
to obtain a mgrid value that will be reserved for you - no one else
should use that number. Consult the file < sys I iomgr. h> for the
ranges currently in use. In our example above, we could assume that
COMMAND_xyz is something based on JOMGR_pRJVATE_BASE:

402 Appendix: A • QNX 4 to Neutrino

Client/Server using an
1/0 manager

Proxies

Porting philosophy

#define COMMAND-XYZ (_IOMGR_PRIVATE-BASE + Ox0007)

Or that we've been assigned a specific number by QSSL:

#define COMMAND-XYZ (_IOMGR-ACME_CORP + Ox0007)

Now, what if the client that you're porting used an VO manager? How
would we convert that to Neutrino? Answer: we already did. Once we
establish a file-descriptor-based interface, we're using a resource
manager. Under Neutrino, you'd almost never use a "raw" message
interface. Why not?

1 You'd have to worry about the _IO_CONNECT message that
came in with the client's open() call, or you'd have to figure out
how to find the resource manager if you weren't going to use
open().

2 You'd have to figure out a way to associate a client with a
particular context block inside of the resource manager. This
isn't rocket science, but it does involve some amount of data
management.

3 You'd have to provide encapsulation of all your messages,
instead of using the standard POSIX file-descriptor-based
functions to do that for you.

4 Your resource manager won't work with stdin/stdout-based
applications. For the audio driver example, you couldn't just do
mp3 _decode spud. mp3 >I dev I audio; the open() would
most likely fail (if not, then the write() would, and so on).

Under QNX 4, the only way to send a non-blocking message was to
create a proxy via qnx_proxy..attach(). This function returns a proxy
10 (which is taken from the same number space as process IDs),
which you can then Trigger() or return from an interrupt service
routine (see below).

Appendix: A • QNX 4 to Neutrino 403

Porting philosophy

Under Neutrino, you'd set up a struct sigevent to contain a
"pulse," and either use MsgDeliverEvent() to deliver the event or bind
the event to a timer or ISR.

The usual trick under QNX 4 to detect proxy messages (via Receive()
or Creceive()) was to compare the process ID returned by the
receiving function against the proxy IDs that you're expecting. If you
got a match, you knew it was a proxy. Alternatively, you could ignore
the process ID returned by the receiving function and handle the
message as if it were a "regular" message. Unfortunately, this has
some porting complications.

Proxies for their IDs

If you're comparing the received process lD against the list of proxies
that you're expecting, then you'll usually ignore the actual contents of
the proxy. After all, since the proxy message couldn't be changed
once you've created it, what additional information would you have
gained by looking at the message once you knew it was one of your
proxies? You could argue that as a convenience you'd place a message
into the proxy that you could then look at with your standard message
decoding. If that's the case, see below, "Proxies for their contents."

Therefore, under QNX 4, you'd see code like:

pid =Receive (0, &msg, sizeof (msg));
if (pid == proxyPidTimer) {

II we got hit with the timer, do something
} else if (pid == proxyPidiSR) {

II our ISR went off, do something
} else {

}

II not one of our proxies, must have been a regular
II message for a client. Do something.

Under Neutrino, you'd replace this code with the following:

rcvid = MsgReceive (chid, &msg, sizeof (msg), NULL);
if (rcvid == 0) { II 0 indicates it was a pulse

switch (msg.pulse.code) {
case MyCodeTimer:

404 Appendix: A • QNX 4 to Neutrino

Porting philosophy

II we got hit with the timer, do something
break;

case MyCodeiSR:
II our ISR went off, do something
break;

default:
II unknown pulse code, log it, whatever.
break;

}
} else {

}

II rcvid is not zero, therefore not a pulse but a
II regular message from a client. Do something.

Note that this example would be used if you're handling all messages
yourself. Since we recommend using the resource manager library,
your code would really look more like this:

int
main (int argc, char **argv)
{

}

II do the usual initializations

pulse_attach (dpp, 0, MyCodeTimer, my_timer_pulse-handler,
NULL);

pulse-attach (dpp, 0, MyCodeiSR, my_isr_pulse-handler,
NULL);

This time, we're telling the resource manager library to put the two
checks that we showed in the previous example into its receive loop
and call our two handling functions (my_timer _pulseJwndler() and
my_isr _pulseJwndler()) whenever those codes show up. Much
simpler.

Proxies for their contents

If you're looking at proxies for their contents (you're ignoring the fact
that it's a proxy and just treating it like a message), then you already
have to deal with the fact that you can't reply to a proxy under QNX

Appendix: A • QNX 4 to Neutrino 405

Summary

Interrupt service
routines

4. Under Neutrino, you can't reply to a pulse. What this means is,
you've already got code in place that either looks at the proxy ID
returned by the receive function and determines that it shouldn't reply,
or the proxy has encoded within it special indications that this is a
message that shouldn't be replied to.

Unfortunately under Neutrino, you can't stuff arbitrary data into a
pulse. A pulse has a well-defined structure, and there's just no getting
around that fact. A clever solution would be to "simulate" the
message that you'd ordinarily receive from the proxy by using a pulse
with a table. The table would contain the equivalent messages that
would have been sent by the proxies. When a pulse arrives, you'd use
the value field in the pulse as an index into this table and "pretend"
that the given proxy message had arrived.

QNX 4's interrupt service routines had the ability to either return a
proxy ID (indicating that the proxy should be sent to its owner) or a
zero, indicating nothing further needed to be done. Under Neutrino,
this mechanism is almost identical, except that instead of returning a
proxy, you're returning a pointer to a struct sigevent. The event
that you return can be a pulse, which will give you the "closest"
analog to a proxy, or it can be a signal or the creation of a thread.
Your choice.

Also, under QNX 4 you had to have an interrupt service routine, even
if all that the ISR did was return a proxy and nothing else. Under
Neutrino, using InterruptAttachEvent(), you can bind a struct

sigevent to an interrupt vector, and that event will be delivered
every time the vector is activated.

Summary

Porting from QNX 4 to Neutrino, or maintaining a program that must
function on both, is possible, if you follow these rules:

• abstract, abstract, and abstract

406 Appendix: A • QNX 4 to Neutrino

Summary

• decouple, decouple, and decouple

The key is to not tie yourself to a particular "handle" that represents
the "connection" between the client and the server, and to not rely on
a particular mechanism for finding the server. If you abstract the
connection and the detection services into a set of function calls, you
can then conditionally compile the code for whatever platform you
wish to port to.

The exact same discussion applies to the message transport- always
abstract the client's API away from "knowing" how the messages are
transported from client to server to some generic API which can then
rely upon a single-point transport API; this single-point transport API
can then be conditionally compiled for either platform.

Porting a server from QNX 4 to Neutrino is more difficult, owing to
the fact that QNX 4 servers were generally "hand-made" and didn't
follow a rigorous structure like that imposed by the resource manager
library under Neutrino. Generally, though, if you're porting
something hardware specific (for example, a sound card driver, or a
block-level disk driver), the main "code" that you'll be porting has
nothing to do with the operating system, and everything to do with the
hardware itself. The approach I've adopted in these cases is to code a
shell "driver" structure, and provide well-defined hardware-specific
functions. The entire shell driver will be different between operating
systems, but the hardware-specific functions can be amazingly
portable.

Note also that QSSL provides a QNX 4 to Neutrino migration kit
see the online docs.

Appendix: A • QNX 4 to Neutrino 407

In this appendix . ..
Seeking professional help
Other sources

AppendixB

Calling 911

Appendix: B • Calling 911 409

So you've got a
problem ...

Seeking professional help

Seeking professional help

No matter how good a developer you are, there are times when you:

• get stuck with a problem you can't solve

• encounter a bug and wish to report it and/or find a workaround

• need assistance with your design.

In this chapter, we'lllook at the resources available when you face
these problems.

We'll talk about the first two problems together, because it's often
hard to tell which problem you're actually experiencing.

Something no longer works, or doesn't work as expected. What
should you do about it?

RTFM Read the fine manual! While this may seem like an obvious first step,
it's amazing the number of people who don't do this!

All the manuals for the Neutrino operating system are online:

• Library Reference

• System Architecture

• Technotes

• Utilities Reference

• Audio Developer's Guide

• Programmer's Guide

• DDKs

• Photon Documentation (multiple volumes)

Appendix: B • Calling 911 411

Seeking professional help

Contact technical
support

Library Reference

This is the A through Z of the C library- use this to find information
about each and every function call that's provided by Neutrino's C
library. This is the ultimate "authority" on function calls. Often in this
book, I've referred you to this library (for example, to find out more
about a particular function, such as arguments that aren't commonly
used).

System Architecture

A "top-level" architecture document, this describes the Neutrino
system from a high-level view, giving enough details about the
implementation that you can get a good idea of what the pieces are
and how they all fit together.

Tech notes

The Technotes bookset describes special features of Neutrino and may
vary from release to release. Take a look at the online version to see
what's in the release you currently have. For example, for the QNX
6.1.0 July 5th 200 I release, the following topics were in the Technotes
bookset:

• The QNX 4 Filesystem

• Compression Rules with the Flash Filesystem

Utilities Reference

This is the A through Z of the command-line utilities available. It
covers all command-line utilities such as grep, make, ls, etc.

Once you've determined to the best of your abilities that the problem
isn't some misunderstanding of the function call or utility you're
using, or a mere typo, you may enter the realm of QSSL's technical
support department. This is nothing to be afraid of- most customers

412 Appendix: B • Calling 911

Describe the problem

Seeking professional help

are extremely pleased with the level of technical support they get
from QSSL.

There are two ways of contacting QNX's technical support group: by
phone or via the web (QDN- QNX Developer's Network).

Before we talk about which method you should use, there are a few
things you can do to make the turnaround time on your bug report
much shorter.

Often customers try to fix the problems themselves by trying various
things that come to mind. This is great. Unfortunately, what tends to
happen is that customers get frustrated and post messages something
like:

I just ran the TCP/IP package connected to a Windows box
and it doesn't work.

What's going on?!?

The very next message from tech support looks like the following (I
think they should have a standard template for it, myself):

Can you describe what you mean by "doesn't work"? Do you mean
the TCP/IP on the QNX side? Do you mean the TCP/IP on the
Windows box? What part of TCP/IP doesn't work? What are you
trying to do? What versions of the OS, and TCP/IP package do
you have? What version of Windows? What TCP/IP package
were you using there?

The moral of the story: if you're having a problem, then you're
probably in a hurry for the answer. If you're in a hurry for the answer,
supply as much information as possible in your initial post so that
someone at QSSL can try right away to reproduce the problem.

Here are the things that tech support almost always asks for:

• precise descriptions of failure

• versions

Appendix: B • Calling 911 413

Seeking professional help

Precise information

Versions

• configuration

• platform (x86, PPC, etc.)

To supply this information, state what you had expected to happen,
and what actually happened. In our above example, a much better
problem description would have been:

I just ran telnet from Neutrino 2.0, patch level "A", to my
Windows box, and, immediately after the login prompt, got a
"Connection closed by foreign host".

The next thing that you should supply is the versions of the various
commands that you may have been using. This can be done by using
the ls and cksum commands. For our example above, you'll want to
tell tech support which version of the tel net command you were
using, and the version of the TCP/IP protocol stack etc.

1s -1 /usr/bin/te1net /1ib/d11/devn-ne2000.so /1ib/d11/npm-ttcpip.so
-rwxrwxr-x 1 root bin 64220 Jun 22 05:36 /usr/bin/te1net
-rwxrwxr-x 1 root
-rwxrwxr-x 1 root

bin
bin

27428 Jun 22 03:29 /1ib/d11/devn-ne2000.so
84148 Jun 22 04:15 /1ib/d11/npm-ttcpip.so

cksum /usr/bin/te1net /1ib/d11/devn-ne2000.so /1ib/d11/npm-ttcpip.so
1217616014 64220 /usr/bin/te1net

50089252
1123749911

27428 /lib/dl1/devn-ne2000.so
84148 /1ib/d11/npm-ttcpip.so

This gives tech support at least some idea of the dates, sizes, and
checksums of some of the products that might be involved in the
problem.

If you suspect your problem might be related to a platform-specific
interaction, you should of course specify the name, brand, and
relevant chipsets used on that particular platform.

Another thing that tech support usually requests, especially if they
suspect some problems with insufficient memory, licensing,
configuration, etc., is the runtime configuration of your system. You
should try to give them an idea of how much memory is installed,

414 Appendix: B • Calling 911

If you're using a beta ...

Reproduce the problem

Seeking professional help

how many processes are running, what the approximate load on the
system might be, etc.

The more information you have, the faster they can help you.

If you're using a beta version of the product (i.e., you're on QSSL's
list of beta sites), all the above information is critical, because you'll
typically be using different versions of the software than what is
released. Note, however, that the technical support department
generally doesn't handle telephone support of beta products. The only
way to get help on these is to post in the conference or, if the
developer has requested direct contact, talk to the developer. Posting
is generally the best solution anyway, because then other members of
the beta conference can see what problems are out there and can learn
what the solution is (i.e., if it's a bug, what the workaround for it is).
In any event, the above information is crucial in order to determine
which products you have from the beta release and which ones are
"stock."

Also, keep in mind that if you're talking with a developer, they often
have a million things on their plates and might not be able to get back
to you right away. Sending a friendly "ping" reminder after a few
days doesn't hurt. Sending a demanding one after 15 minutes will not
gain you any new friends!

An issue that frequently comes up with betas is that you may forget to
install an update. Due to the way that the beta process works, missing
an update may cause strange behavior on your system. Certain new
drivers or resource managers may behave differently towards their
respective client programs than they did in previous versions.

In this case, you should ensure (because the support staff will ask!)
that you have indeed installed all the beta updates in the order listed.

One of the first things that tech support usually wants to know is,
"Does it happen just once in a blue moon, or can you make it happen
on demand?"

Appendix: B a Calling 911 415

Seeking professional help

Narrow it down

They don't ask this question idly. If it's a problem that happens
infrequently, it's just as serious as a problem that happens regularly.
The point is to try to determine how to proceed.

Generally, for problems that happen infrequently, the support staff
will recommend that you configure the machine with the operating
system and components set up in such a way that when the problem
happens again, some form of log will be left around or perhaps the
debugger will be invoked so that the problem can be diagnosed later.

For a problem that's easily reproducible, they'll want to reproduce it
at QSSL so that they can show the developer on a live system. "Hey,
look! It dies when I ... "

Even if it's reproducible, tech support most likely doesn't want to see
6000 lines of C code with a problem buried in the middle of it.

In most cases that I've witnessed, a bug can usually be narrowed
down to about 20 to 30 lines of C at the most. The only cases where a
really large file is actually useful is when reporting bugs with
something where you suspect it's a size problem, rather than a library
or kernel problem. For example, some utilities may have a default
array size that may cause trouble when it needs to resize that array for
something bigger. In this case, tech support may ask you for a tar

file with everything in it. Luckily, tar files are easy to create. For
example, if you're developing your product in
/src/projects/xyzzy and they want to see everything in that
directory, you can perform the following steps:

cd /arc/projects
tar cvf xyzzy.tar xyzzy

This will "suck" everything out of the xyzzy directory (and all
subdirectories too!) into the file called xyzzy. tar. If this resulting
tar file is huge, you can save some download time and disk space by
compressing it with gzip:

gzip -9v xyzzy.tar
xyzzy.tar: 60.2% -- replaced with xyzzy.tar.gz

416 Appendix: B • Calling 911

Other sources

You'd then send the support people the xyzzy. tar. gz file
(generally by ftp rather than as an email attachment :-)).

Other sources

There are several resources other than QDN for providing help,
information, or services. This is by no means an extensive list, but
should get you started in your search for more information.

qdn. qnx. com QSSL's web site (at http: I lwww. qnx. com), has a support area at
http: I I qdn. qnx. com which is full of useful information and files.
The whole idea of the QDN is that it contains a knowledge-base of
previous questions and answers, and is searchable, so you may be
able to find answers quickly to common problems.

As an example, I found that my CD-ROM wasn't showing up in
I dev I cdO if I booted my machine without a CD present in the drive.
Searching in QDN for the string "cd rom" showed 18 matches. I read
one of them, and found the hints that I needed- basically, that I
needed to run the driver again, and it would automagically detect the
CD-ROM. Total time: 5 minutes.

The QNX Start website is an excellent place to reach the QNX
www. qnxstart. comcommunity. The website contains various active discussion groups,

pointers to source code, and so on.

comp. os. qnx There's a USENET newsgroup called comp. os. qnx on the Internet.
It was created for QNX users to talk among themselves about
problems, features, solutions, and so on.

This news group may or may not be followed by QNX staff (some
staff lurk there). Generally, it's used as a way for people who don't
have the product to ask questions. The QNX FAQ (Frequently Asked
Questions) is posted periodically to that newsgroup and provides a
good way of learning about the product.

Appendix: 8 • Calling 911 417

Other sources

If you need an answer, QDN is still your best resource.

IRC There are several IRC servers available, including

cvs.qnx.com

Third-Party
Directory
products &

consultants

Training

ire. qnxs tart. com and ire. j oher. com- join the #qnx

channel. You'll be surprised who you can find online (and at what
hours!).

QSSL provides a CVS repository for the source code to various pieces
of the QNX Realtime Platform. This is the web-based interface to it.
Eventually, most of the sourcebase will be placed online there;
although you probably won't ever find the kernel source there (QSSL
will most likely keep that proprietary), you will find things like driver
source, and resource manager library source, etc. This is particularly
helpful in gaining a deeper understanding of the internal operations of
resource managers.

QNX used to publish a Third-Party Directory that listed companies
with third-party products for QNX (e.g., multi port serial cards, X.25
hardware, software) or who provided design assistance via consulting
serv1ces.

This book has since been replaced with an online directory available
at the main QSSL website.

Finally, several companies offer training courses for QNX products
PARSE Software Devices offers onsite training, see
http: I /www .parse. com/training), and QSSL offers onsite as
well as periodic training at their facility.

418 Appendix: B • Calling 911

Glossary

Glossary 419

absolute timer

alignment

asynchronous

atomic (operation)

attribute (structure)

A timer with an expiration point defined as a fixed time, for example,
January 20, 2005 at 09:43:12 AM, EDT. Contrast with relative timer.

The characteristic that accessing an N-byte data element must be
performed only on an address that is a multiple of N. For example, to
access a 4-byte integer, the address of the integer must be a multiple
of 4 bytes (e.g., Ox23048008, and not Ox2304B009). On some CPU
architectures, an alignment fault will occur if an attempt is made to
perform a non-aligned access. On other CPU architectures (e.g., x86)
a non-aligned access is simply slower than an aligned access.

Used to indicate that a given operation is not synchronized to another
operation. For example, the timer tick interrupt that is generated by
the system's timer chip is said to be "asynchronous" to a thread that's
requesting a delay of a certain amount of time, because the thread's
request is not synchronized in any way to the arrival of the incoming
timer tick interrupt. Contrast with synchronous.

An operation that is "indivisible," that is to say, one that will not get
interrupted by any other operation. Atomic operations are critical
especially in interrupt service routines and multi-threaded programs,
as often a "test and set" sequence of events must occur in one thread
without the chance of another thread interrupting this sequence. A
sequence can be made atomic from the perspective of multiple threads
not interfering with each other through the use of mutexes or via
InterruptLock() and InterruptUnlock() when used with Interrupt
service routines. See the header file <atomic. h> as well.

A structure used within a resource manager that contains
information relating to the device that the resource manager is
manifesting in the pathname space. If the resource manager is
manifesting multiple devices in the pathname space (for example, the
serial port resource manager might manifest I dev I serl and
ldevlser2) there will be an equal number of attribute structures in
the resource manager. Contrast with OCJB.

Glossary 421

barrier (synchronization
object)

blocking

channel

client

condition variable

422 Glossary

A thread-level synchronization object with an associated count.
Threads that call the blocking barrier call (pthread_barrier _wait())

will block until the number of threads specified by the count have all
called the blocking barrier call, and then they will all be released.
Contrast this with the operation of semaphores.

A means for threads to synchronize to other threads or events. In the
blocking state (of which there are about a dozen), a thread doesn't
consume any CPU- it's waiting on a list maintained within the
kernel. When the event occurs that the thread was waiting for, the
thread is unblocked and is able to consume CPU again.

An abstract object on which a server receives a message. This is the
same object to which a client creates a connection in order to send a
message to the server. When the channel is created via
ChannelCreate(), a "channel ID" is returned. This channel ID (or
"chid" for short) is what a resource manager will advertise as part of
its registered mountpoint.

Neutrino's message-passing architecture is structured around a
client/server relationship. In the case of the client, it's the one that is
requesting services of a particular server. The client generally
accesses these services using standard file-descriptor-based function
calls (e.g., !seek()), which are synchronous, in that the client's call
doesn't return until the request is completed by the server. A thread
can be both a client and a server at the same time.

A synchronization object used between multiple threads,
characterized by acting as a rendezvous point where multiple threads
can block, waiting for a signal (not to be confused with a UNIX-style
signal). When the signal is delivered, one or more of the threads will
unblock.

connection The concept of a client being attached to a channel. A connection is
established by the client either directly by calling ConnectAttach() or
on behalf of the client by the client's C library function open(). In
either case, the connection ID returned is usable as a handle for all
communications between the client and the server.

connection ID A "handle" returned by ConnectAttach() (on the client side) and used
for all communications between the client and the server. The
connection ID is identical to the traditional C library's "file
descriptor." That is to say, when open() returns a file descriptor, it's
really returning a connection ID.

deadlock A failure condition reached when two threads are mutually blocked
on each other, with each thread waiting for the other to respond. This
condition can be generated quite easily; simply have two threads send
each other a message - at this point, both threads are waiting for
the other thread to reply to the request. Since each thread is blocked,
it will not have a chance to reply, hence deadlock. To avoid deadlock,
clients and servers should be structured around a send hierarchy (see
below). (Of course, deadlock can occur with more than two threads;
A sends to B, B sends to C, and C sends back to A, for example.)

FIFO (scheduling) In FIFO scheduling, a thread will consume CPU until a higher
priority thread is ready to run, or until the thread voluntarily gives up
CPU. If there are no higher priority threads, and the thread does not
voluntarily give up CPU, it will run forever. Contrast with round
robin scheduling.

interrupt service routine Code that gets executed (in privileged mode) by the kernel as a result
of a hardware interrupt. This code cannot perform any kernel calls
and should return as soon as possible, since it runs at a priority level
effectively higher than any other thread priority in the system.
Neutrino's interrupt service routines can return a struct sigevent

that indicates what event, if any, should be triggered.

Glossary 423

IOV (1/0 Vector)

kernel callouts

message-passing

MMU (Memory
Management Unit)

mutex

424 Glossary

A structure where each member contains a pointer and a length.
Generally used as an array of IOVs, rather than as a single IOV. When
used in the array form, this array of structures of pointers and lengths
defines a scatter/gather list, which allows the message-passing
operations to proceed much more efficiently (than would otherwise be
accomplished by copying data individually so as to form one
contiguous buffer).

The Neutrino operating system can be customized to run on various
hardware, without requiring a source license, by supplying kernel
callouts to the startup program. Kernel callouts let the developer
supply code that knows how to deal with the specifics of the
hardware. For example, how to ask an interrupt controller chip about
which interrupt fired, or how to interface to the timer chip to be able
to arrange for periodic interrupts, etc. This is documented in great
depth in the Building Embedded Systems book.

The Neutrino operating system is based on a message passing model,
where all services are provided in a synchronous manner by passing
messages around from client to server. The client will send a
message to the server and block. The server will receive a message
from the client, perform some amount of processing, and then reply
to the client's message, which will unblock the client.

A piece of hardware (usually embedded within the CPU) that provides
for virtual address to physical address translation, and can be used
to implement a virtual memory system. Under Neutrino, the primary
benefit of an MMU is the ability to detect when a thread has accessed
a virtual address that is not mapped into the process's address space.

A Mutual Exclusion object used to serialize a number of threads so
that only one thread at a time has access to the resources defined by
the mutex. By using a mutex every time (for example) that you access
a given variable, you're ensuring that only one thread at a time has
access to that variable, preventing race conditions. See also atomic
(operation).

Neutrino

OCB (open context
block)

PDP-8

Quoting from the Sudbury Neutrino Observatory web pages (found at
http: I /www. sno. phy. queensu. ca/):

Neutrinos are tiny, possibly massless, neutral elementary
particles which interact with matter via the weak nuclear
force. The weakness of the weak force gives neutrinos
the property that matter is almost transparent to them.
The sun, and all other stars, produce neutrinos copiously
due to nuclear fusion and decay processes within the
core. Since they rarely interact, these neutrinos pass
through the sun and the earth (and you) unhindered.
Other sources of neutrinos include exploding stars
(supernovae), relic neutrinos (from the birth of the
universe) and nuclear power plants (in fact a lot of the
fuel's energy is taken away by neutrinos). For example,
the sun produces over two hundred trillion trillion trillion
neutrinos every second, and a supernova blast can
unleash I 000 times more neutrinos than our sun will
produce in its 10-billion year lifetime. Billions of
neutrinos stream through your body every second, yet
only one or two of the higher energy neutrinos will
scatter from you in your lifetime.

A data structure used by a resource manager that contains
information for each client's open() call. If a client has opened
several files, there will exist a corresponding OCB for each file
descriptor that the client has in the respective resource managers.
Contrast with the attribute (structure).

An antique computer, "Programmable Data Processor," manufactured
between 1965 and the mid 1970's by Digital Equipment Corporation
(now Compaq) with the coolest front panel. Also, the first computer I
ever programmed. If you have one (particularly a PDP-811), or parts,
manuals, etc., send me an email (rk®parse. com), I collect them!
Unfortunately, this wonderful 12-bit machine does not run Neutrino
:- (!

Glossary 425

periodic timer

physical address

process

pthreads

pulse

QNX Software Systems
Limited

QSSL

receive a message

426 Glossary

See Repeating timer

An address that is emitted by the CPU onto the bus connected to the
memory subsystem. Since Neutrino runs in virtual address mode,
this means that an MMU must translate the virtual addresses used by
the threads into physical addresses usable by the memory subsystem.
Contrast with virtual address and virtual memory.

A non-schedulable entity that occupies memory, effectively acting as
a container for one or more threads.

Common name given to the set of function calls of the general form
pthread_ *(). The vast majority of these function calls are defined by
the POSIX committee, and are used with threads.

A non-blocking message which is received in a manner similar to a
regular message. It is non-blocking for the sender, and can be waited
upon by the receiver using the standard message-passing functions
MsgReceive() and MsgReceivev() or the special pulse-only receive
function MsgReceivePulse(). While most messages are typically sent
from client to server, pulses are generally sent in the opposite
direction, so as not to break the send hierarchy (breaking which
would cause deadlock). Contrast with signal.

The company responsible for the QNX 2, QNX 4, and Neutrino
operating systems.

An abbreviation for QNX Software Systems Limited.

A thread can receive a message by calling MsgReceive() or
MsgReceivev(). If there is no message available, the thread will block,
waiting for one. See Message passing. A thread that receives a
message is said to be a Server.

receive ID

relative timer

repeating timer

reply to a message

resource manager

round robin (scheduling)

When a server receives a message from a client, the server's
MsgReceive() or MsgReceivev() function returns a "receive ID" (often
abbreviated in code as rcvid). This rcvid then acts as a handle to the
blocked client, allowing the server to reply with the d.ata back to the
client, effectively unblocking the client. Once the rcvid has been used
in a reply operation, the rcvid ceases to have any meaning for all
function calls, except MsgDeliverEvent().

A timer that has an expiration point defined as an offset from the
current time, for example, 5 minutes from now. Contrast with
absolute timer.

An absolute or relative timer that, once expired, will automatically
reload with another relative interval and will keep doing that until it is
canceled. Useful for receiving periodic notifications.

A server will reply to a client's message in order to deliver the results
of the client's request back to the client.

Also abbreviated "resmgr." This is a server process which provides
certain well-defined file-descriptor-based services to arbitrary clients.
A resource manager supports a limited set of messages, which
correspond to standard client C library functions such as open(),
read(), write(), !seek(), devctl(), etc.

In Round Robin (or "RR") scheduling, a thread will consume CPU
until a higher priority thread is ready to run, until the thread
voluntarily gives up CPU, or until the thread's timeslice expires. If
there are no higher priority threads, the thread doesn't voluntarily give
up CPU, and there are no other threads at the same priority, it will run
forever. If all the above conditions are met except that a thread at the
same priority is ready to run, then this thread will give up CPU after
its timeslice expires, and the other thread will be given a chance to
run. Contrast with FIFO scheduling.

Glossary 427

scatter/gather

semaphore

send a message

send hierarchy

server

428 Glossary

Used to define the operation of message passing where a number of
different pieces of data are "gathered" by the kernel (on either the
client or server side) and then "scattered" into a (possibly) different
number of pieces of data on the other side. This is extremely useful
when, for example, a header needs to be prepended to the client's data
before it's sent to the server. The client would set up an IOV which
would contain a pointer and length of the header as the first element,
and a pointer and length of the data as the second element. The kernel
would then "gather" this data as if it were one contiguous piece and
send it to the server. The server would operate analogously.

A thread synchronization primitive characterized by having a count
associated with it. Threads may call the sem_wait() function and not
block if the count was non-zero at the time of the call. Every thread
that calls sem_wait() decrements the count. If a thread calls sem_wait()

when the count is zero, the thread will block until some other thread
calls sem_post() to increment the count. Contrast with barrier.

A thread can send a message to another thread. The MsgSend*()

series of functions are used to send the message; the sending thread
blocks until the receiving thread replies to the message. See Message
passing. A thread that sends a message is said to be a Client.

A design paradigm whereby messages sent flow in one direction, and
messages replied to flow in another direction. The primary purpose
of having a send hierarchy is to avoid deadlock. A send hierarchy is
accomplished by assigning clients and servers a "level," and ensuring
that messages that are being sent go only to a higher level. This
avoids the potential for deadlock where two threads would send to
each other, because it would violate the send hierarchy - one thread
should not have sent to the other thread, as that other thread must have
been at a lower level.

A server is a regular, user-level process that provides certain types of
functionality (usually file-descriptor-based) to clients. Servers are
typically Resource Managers, and there's an extensive library
provided by QSSL which performs much of the functionality of a

signal

synchronous

thread

unblock

virtual address

resource manager for you. The server's job is to receive messages
from clients, process them, and then reply to the messages, which
unblocks the clients. A thread can be both a client and a server at the
same time.

A mechanism dating back to early UNIX systems that is used to send
asynchronous notification of events from one thread to another.
Signals are non-blocking for the sender. The receiver of the signal
may decide to treat the signal in a synchronous manner by explicitly
waiting for it. Contrast with pulse.

Used to indicate that a given operation has some synchronization to
another operation. For example, during a message-passing
operation, when the server does a MsgReply() (to reply to the
client), the unblocking of the client is said to be synchronous to the
reply operation. Contrast with Asynchronous.

A single, schedulable, flow of execution. Threads are implemented
directly within the Neutrino kernel and correspond to the POSIX
pthread*() function calls. A thread will need to synchronize with
other threads (if any) by using various synchronization primitives
such as mutexes, condition variables, semaphores, etc. Threads are
scheduled in either FIFO or Round Robin scheduling mode.

A thread that had been blocked will be unblocked when the condition
it has been blocked on is met. For example, a thread might be blocked
waiting to receive a message. When the message is sent, the thread
will be unblocked.

An address that's not necessarily equivalent to a physical address.
Under Neutrino, all threads operate in virtual addressing mode,
where, through the magic of an MMU, the virtual addresses are
translated into physical addresses. Contrast with physical address
and virtual memory.

Glossary 429

virtual memory

430 Glossary

A "virtual memory" system is one in which the virtual address space
may not necessarily map on a one-to-one basis with the physical
address space. The typical example (which Neutrino doesn't support
as of this writing) is a "paged" system where, in the case of a lack of
RAM, certain parts of a process's address space may be swapped out
to disk. What Neutrino does support is the dynamic mapping of stack
pages.

/dev/null resource manager 265

A

absolute timer 183, 191, 216
converting time formats 193
defined 421
example 193

address space 20
adjusting time of day

abruptly 205
gradually 205

adjusting timebase 206
alignment

defined 421
anonymous union

used instruct sigevent 185
arming timeouts 214, 216
asctime() 193
asynchronous See also synchronous

defined 421
asynchronous messaging See pulses

atomic operation 59
defined 421

atomic_*() 245
atomic_set() 245
attribute structure

B

defined 421
thread 37

barrier
analogy 50
and threads 50
defined 422

base timing resolution
getting and setting 206
limits 207

base name() 29
Bell, Gordon xxii
block-func() 84, 91
blocking

defined 422

Index

in client due to message passing 99
blocking state 10

Index 431

Index

bugs
resource manager 279

c
cancellation point 143
cautions

about timers and creating threads on
trigger 205

channel
abstraction 122
as class of service 121
constants

_NTQ_CHF _UNBLOCK 337
creation by server 115
defined 422
with multiple threads 122

channel ID 113, 121, 123
how to find 127
process manager 256

Channel Create() Ill, 112, 115, 124, 151,
171, 197,337,422

example 197
flags 151

_NTQ_CHF_DISCONNECT 151
_NTQ_CHF __FIXED.YRIORITY 151
_NTQ_CHF _SENDER_LEN 152
_NTQ_CHF_THREAD_DEATH 151
_NTQ_CHF_UNBLOCK 151, 153

priority inheritence 171
Channe!Destroy() 111, 115
CHIDs

message passmg 127
chips

82C54 180

432 Index

chmod() 266
chown() 266
cksum 414
class of service

via channels 121
clearing timeouts 214
client

and not replying to them 202
assumptions about data area 131
basic operation 115
behaviour modified by

_NTQ_CHF_UNBLOCK 155
being notified by server 149
blocked during MsgSend() 118
busy server 100
connecting to server 113

diagram 116
defined 422
establishing a connection 112
informing server of unblock 216
limiting transfer size 119
multi-threaded server 110
node descriptor 123
operation of 112
reply blocked and server 101
reply-blocked state 100
send-blocked state 100
server/subserver 107
servers with mismatched buffer

sizes 131
specifying event to server 150
state

diagram 99
timeouts 194
unblocked by server 118
unblocked by timeout 152
unblocking

due to signal 152
unblocking server 118

client/server 107
analogy 107
example 109
message passing 98
problems with single threaded 107

clock
drift 181
hardware 179
how maintained 179
jitter 181, 183

diagram 182
clock tick

adjusting time gradually 206
ClockAdjust() 205

CLOCK_REALTIME 206
struct _clockadjust 205

ClockCycles() 205, 207
clock_getres() 205
clock_gettime() 205
CLOCK_MONOTONIC 190,208,210-212

characteristics 210
clockJwnosleep() 212
ClockPeriod() 205, 206

struct _clockperiod 206
CLOCK_REALTIME 190, 191, 206,

208-213
used withClockAdjust() 206

clock_settime() 205
CLOCK_SOFTTIME 190, 208, 211, 212
ClockTime() 205
close() 102, 162
CODE_TIMER 198
command

cksum 414
devc-pty 99

esh 101
export 27
fs-cache 260
fs-qnx4 132, 134, 140
grep 412
gunzip 27
gzip 27,416
ls 26,28,29,412,414
make 412
mqueue 283
nice 22

Index

npm-qnet xxvii, 121, 161-164,273
pidin 43, 99, 101
procnto 101
qnet xxvii, 121, 161-164,273
tar 416
telnet 414

condition variable See synchronization
defined 422

condvar See synchronization
ConnectAttach() 111-113, 115, 116, 127,

129, 163, 166, 198,423
example 113, 198
networked case 163

Connect Detach() III, 113
connection

defined 423
connection ID 123, 256

as equivalent to file descriptor 129
defined 423
obtaining 113
resource1nanager 253

constants
channel

_NTO_CHF _FIXED_PRIORITY 171
_NTO_CHF _REPLY _LEN 124
_NTO_CHF _SENDER_LEN 124

Index 433

Index

_NTO_CHF_UNBLOCK 152, 153,
155, 189,216,337

clock
CLOCK_MONOTONIC 190, 208,

210-212
CLOCK_REALTIME 190, 191, 206,

208-213
CLOCK_SOFTTIME 190, 208, 21 I,

212
CODE_TIMER 198
error

EINTR 153
ENOSYS 33
EOK 126, 255, 256, 260
EROFS 126,255,278
ETIMEDOUT 215, 216

FD_CLOEXEC 30
_FTYPE_ANY 283
_FTYPE_MQUEUE 283
message passing

_NTO_CHF_UNBLOCK 337
_NTO_MLUNBLOCK_REQ 336,337,

363
MLTIMEDOUT 199
ND_LOCALNODE 167
_NTO_MLENDIAN_BIG 124
_NTO_MLENDIAN_DIFF 124
_NTO_MI_NET _CRED_DIRTY 124
_NTO_MLUNBLOCK_REQ 124, 158,

!59
open mode

O_RDONLY 294
O_WRONLY 255

P _NOWAIT 30, 31
POOLFLAG_USE_SELF 87
P _OVERLAY 30
process

434 Index

SPAWN_NOZOMBIE 30
PTHREAD_EXPLICIT _SCHED 41, 42
PTHREAD_STACK.LAZY 41
PTHREAD_STACK_NOTLAZY 41
pulse

_puLSE_CODE_UNBLOCK 147
P_WAIT 29
resource manager

DCMD_AUDIO_GET _SAMPLE_RATE

360
DCMD_AUDIO_SET _SAMPLE_RATE

359
F _ALLOCSP 333
F _FREESP 333
_IO_CHMOD 308
_IO_CHOWN 308
_IO_CLOSE_DUP 309, 369
_IO_CONNECT 315, 319, 322, 325,

330,331,338,369,403
_IO_CONNECT _COMBINE 325
_IO_CONNECT _COMBINE_CLOSE

289,325
_IO_CONNECLLINK 315
_IO_CONNECT _MKNOD 319
_IO_CONNECT _MOUNT 322
_IO_CONNECT _OPEN 325
_IO_CONNECT _READ LINK 330
_IO_CONNECT _RENAME 331
_IO_CONNECT _UNLINK 338
_IO_DEVCTL 272, 311, 357
_IO_DUP 314
_IO _FDINFO 314
IOFUNc_ATTR_ATIME 349, 355
IOFUNc_ATTR_DIRTY_TIME 349
IOFUNc_ATTR_MTIME 355
IOFUNc_MOUNT _32BIT 299

IOFUNCMOUNT _FLAGS_FRIVATE

299
_IOFUNc_NFUNCS 300

IOFUNc_OCB_FLAGS_FRIVATE 295

IOFUNc_OCB__MMAP 295

IOFUNc_OCB_FRIVILEGED 295
IOFUNc_ocB_T 364

IOFUNc_pc_cHOWN_RESTRICTED

299,309
IOFUNC_FCLINK_DIR 300
IOFUNC_Fc_No_TRUNC 299
IOFUNc_pc_syNCJO 299

_IO_LSEEK 318,319,369
_IOMGR_FRIVATE_BASE 402

_IOMGR_FRIVATE__MAX 402

_IO__MMAP 321

_IO__MSG 272, 323, 324, 396, 397,
399,401,402

_IO_NOTIFY 324

_IO_OPENFD 326

_IO_FATHCONF 327
_IO_READ 328, 329, 344, 369

_IO_SET _CONNECT _RET 323, 326
_IO_SET_FDINFO_LEN 315

_IO_SET _FATHCONF _VALUE 328

_IO_SET_READ_NBYTES 329

_IO_SET_WRITE_NBYTES 341
_IO_SPACE 333
_IO_STAT 334
_IO_SYNC 335

_IO_UTIME 339
_IO_WRITE 340, 351
IO)(TYPE_NONE 348

IO)(TYPE_OFFSET 329, 348, 350,

352,355
_FOSIX_DEVDIR_FROM 312
_FOSIX_DEVDIR_ TO 312

Index

_READ 294

_RESMGR_CONNECT _NFUNCS 275

_RESMGR_DEFAULT 303, 313, 358

_RESMGR.ERRNO (errno) 303
_RESMGR_FLAG.AFTER 282

_RESMGR_FLAG_BEFORE 282

_RESMGR_FLAG_DIR 282, 368

_RESMGR_FLAG_FTYPEALL 282
_RESMGR_FLAG_FTYPEONLY 282

_RESMGR_FLAG_OPAQUE 282
_RESMGR_FLAG_SELF 282

_RESMGR_IO_NFUNCS 276

_RESMGR_NOREPLY 303, 350, 367
_RESMGR_NPARTS (n) 303
_RESMGR_FTR (ctp, addr, len) 304

_RESMGR_STATUS 278, 308-311,

313,314,316-321,324,325,327,
331,332,334-340

_WRITE 294

scheduling
SCHED_FIFO 41

SCHED_OTHER 41,42
SCHED_RR 41,42

_SC_FAGESIZE 40

sharing flags
SH_COMPAT 294
SH_DENYNO 294
SH_DENYRD 294
SH_DENYRW 294
SH_DENYWR 294

signal
SIGALRM 204
SIGEV _INTR 188, 239, 244

SIGEV _FULSE 185, 186, 198, 239
SIGEV _FULSE_FRIO_INHERIT 188,

198
SIGEV _SIGNAL 188, 239

Index 435

Index

SIGEV _SIGNAL family 185

SIGEV _SIGNALCODE 188

SIGEV _SIGNALPULSE 188

SIGEV _SIGNAL THREAD 188

SIGEV_THREAD 185, 187,239

SIGEV_UNBLOCK 188,213,215

SIGEV _UNBLOCK example 214

SIGSEGV 40

SIGUSRI 204
thread

STATE_CONDVAR 17,73

STATE_DEAD 17
STATE_INTR 17, 19

STATE_lOIN 17

STATE_MUTEX 17
STATE_NANOSLEEP 17, 19
STATE_NET _REPLY 17

STATE_NELSEND 17

STATE_READY 16, 17, 92, 99, 169,

170, 179, 182, 184,221,222,231,

240
STATE_RECEIVE 17, 19

STATE_RECV 99, 172, 189
STATE_REPLY 17, 19,153,202

STATE_RUNNING 16, 17, 221

STATE_SEM 17

STATE_SEND 17, 19, 148, 153

STATE_SIGSUSPEND 17

STATE_SIGWAITINFO 17
STATE_STACK 17

STATE_STOPPED 17
STATE_WAITCTX 17
STATE_WAITPAGE 17

STATE_WAITTHREAD 17

timer
TIMER_ABSTIME 191

consumer

436 Index

and producer 69
state analysis 71

and producer using condvars

example 73
context switch I 0, 21

context_alloc() 84, 90, 91

contextfree() 84, 90
cookbook 341

counter

high accuracy 207

high frequency 207
CPU hog 178
Creceive() (QNX 4) 388, 404

ctime() 193

D

data structure See structure

data type See structure
data types

struct _clockadjust 205
struct _clockperiod

members 207

struct itimerspec 192
struct sigevent 150,213

and SIGEV _UNBLOCK 213

shortcut initialization 215
struct sigevent example 214
struct timespec 192

DCMD_AUDIO_GET _SAMPLE_RATE 360
DCMD_AUDIO_SET _SAMPLE_RATE 359

deadlock
defined 423
with message passing 120

decoup1ing 63

via message passing 98, 104, 105
delay() 181
detaching interrupt handlers 233
devc-pty 99
devctl() 252, 396-399,401,427
JJEVCTLDATA() 361
diagram

big picture of timer chain 179
clock jitter 182
InterruptAttach() and wakeups 242
InterruptAttachEvent() and wakeups

241
interrupts and waking up only when

required 242
interrupts with unneccesary

wakups 241
server/subserver 110
using InterruptAttach() 240

disabling interrupts 222
discontinuities in time flow 205
dispatch_create() 267, 344
Dodge, Dan xxii
domain of authority 262

E

edge-sensitive interrupt 226
diagram 227

EINTR 153
message passing 153

enabling interrupts 222
en dian

server flags 124
ENOSYS 33
environment variable 27

PATH 28,29
EOK 126, 255, 256, 260
EROFS 126,255,278
errno

MsgError() 127
MsgReply() 127

esh 101
ETIMEDOUT 215, 216
event

and interrupt handlers 236
and interrupts 226
and ISRs 236

example

Index

/dev/null resource manager 265
absolute timers 193
barriers 50, 51
car using timers 177
ChannelCreate() 197
ConnectAttach() 113, 198
connecting to a server 113
creating a tar file 416
creating a thread 42, 45
demultiplexing pulse versus

message 145
demultiplexing the pulse code 146
detaching interrupt handler 233
file

timel.c 195
ttl. c 214

filling struct i timer spec 193
interrupt handler 232, 234
InterruptAttach() 232, 234
InterruptAttachEvent() 236
InterruptWait() 236
IOV 137
ISR 232,234
ISR pseudo-code 225

Index 437

Index

kernel timeout 214, 215
message passing 10 1, 114

fs-qnx4 132
multipart messages 137, 140, 141
replying with no data 126
server 118
write() 136

messages 195, 197-200
MsgReadv() 141
MsgReceive() 118, 132, 141, 197
MsgReply() 118, 199, 200
MsgSend() 114, 136
MsgSendv() 137
netmgr _remoteJJd() 167
netmgr _strtond() 167
networked message passing 103
node descriptors 167
non-blocking pthread_join() 215
one-shot timers 193
periodic timers 193
priority inversion 168
producer 70
producer and consumer 69, 73
pthread_attr_t 43
pthread_attr _in it() 43
pthread_attr _setdetachstate() 43
pthread_attr _setinheritsched() 43
pthread_attr _setschedpolicy() 43
pthread_barrier _in it() 50, 51
pthread_barrier _wait() 50, 51
pthread_cond_signal() 73
pthread_cond_wait() 73
pthread_create() 42, 43, 45, 51, 73
pthread_join() 48, 214
pthread_mutex_lock() 73
pthread_mutex_unlock() 73
pthread_sleepon_lock() 69, 70

438 Index

pthread_sleepon_signal() 70
pthread_sleepon_unlock() 69, 70
pthread_sleepon_wait() 69
pulses 195, 197-200
receive ID 118
receiving a message 145
receiving a pulse 145
relative timers 193, 195, 197-200
replying with an error code 126
replying with just EOK 126
resource manager

io_devctl() 356, 359
io_open() handler 286
io_read() 345, 346
io_write() 351
returning data to a client 345, 346

SET/OV()(macro) 140
SIGEV YULSEJNIT() (macro) 198
SIGEV_THREADJN/T() (macro) 204
struct itimerspec 198
struct sigevent 198

SIGEV_UNBLOCK 214
the pulse value 146
thread 51
thread pool 86
thread_pool_create() 86
thread_pooL~tart() 86
thread_pool_start() pseudo code 91
timeouts 195, 197-200
timer _create() 198
timer_create() and signals 204
timer _settime() 198
TimerTimeout() 214, 215

and multiple states 216
where to use pthread_cond.hroadcast()

76
where to use pthread_cond_signal() 76

where to use
pthread_sleeponJJroadcast() 76

where to use pthread_sleepon_signal()
76

exceptions and scheduling 92, 93
exec() 32, 34
exec() family 22, 24, 26, 27, 30
execl() 24, 28, 29
execle() 24
execlp() 24, 28, 29
execlpe() 24
execv() 24
execve() 24
execvp() 24
execvpe() 24
exit function 36
exit() 32, 233

and interrupts 233
export 27

F

F ..ALLOCSP 333
faults and scheduling 92, 93
fcntl() 30
FD_CLOEXEC 30
F _FREESP 333
fgets() 252, 262
FIFO scheduling 11

defined 423
FILE 252,262
file descriptor

and Resource managers 252
connection ID 129, 256
resource manager 256

Index

file stream
and Resource managers 252

filesystem
chown restricted 299
server example 130
union 259

fopen() 253, 257, 261
fork() 23, 24,31-34,94

and resource managers 34
and threads 34
avoid 33

fprintf() 252
fa-cache 260
fs-qnx4 132,134,140,254
_FfYPE..ANY 283
_FfYPE.MQUEUE 283
function

atomic
atomic_*() 245
atomic_set() 245

base name() 29
block-func() 84, 91
channel

ChannelCreate() 111, 112, 115,
124, 151, 153, 197,422

Channel Create() example 197
ChannelDestroy() 111, 115
ConnectAttach() 111-113,115,116,

129,163,166,198,423
ConnectAttach() example 198
ConnectAttach() prototype 113
ConnectDetach() 111, 113

chmod() 266
chown() 266
clockJJanosleep() 212
close() 102, 162
context_alloc() 84, 90, 91

Index 439

Index

context free() 84, 90
Creceive() 388, 404
delay() 181
devctl() 252, 396-399,401, 427
dispatch_create() 267
event related

SIGEV JNTRJN/T() (macro) 188
SIGEV YULSEJN/T() (macro) 188
SIGEV ..SIGNALCODEJN/T()

(macro) 188
S/GEV ..SIGNALJNIT() (macro)

188
SIGEV ..SIGNALTHREAD JNIT()

(macro) 188
SIGEV_THREADJN/T() (macro)

189
SIGEV_UNBLOCKJNIT() (macro)

188
exit() 32, 233
fcntl() 30
Jgets() 252, 262
fopen() 253, 257, 261
fork() 23, 24, 31-34, 94
fprintf() 252
getppid() 127
gotAMessage() 197, 200
gotAPulse() 197, 199
handler june() 84, 91
in*() 246
in8() 236
interrupt

Interrupt() family 246
InterruptAttach() 230, 231, 233,

234,238,240-242,244,248
InterruptAttach() diagram 242

440 Index

InterruptAttachEvent() 230, 231,
234,236,238,240,241,243,244,
246,248,406

InterruptAttachEvent() diagram 241
Inte rruptAttachEvent() example

236
InterruptAttachEvent() versus

InterruptAttach() 238, 239, 241
InterruptDetach() 233
InterruptDisable() 222, 246, 247
InterruptEnable() 222, 246, 247
InterruptLock() 222, 245, 247, 248,

421
InterruptMask() 245, 246
InterruptUnlock() 222, 245, 247,

248,421
InterruptUnmask() 245, 246
Interrupt Wait() 19, 236, 238, 239,

244
Interrupt Wait() example 236

io.fdinfo() 315
io_read() 345, 351

example 345
io_write() 351

example 351
ISR-safe 244

atomic() family 245
in() family 245
InterruptDisable() 245
lnterruptEnable() 245
InterruptLock() 245
InterruptMask() 245
Interrupt Unlock() 245
InterruptUnmask() 245
mem() family 245
out() family 245
str() family 245

kill() 389
!seek() 252, 262, 382, 422, 427
malloc() 136-138, 245
mem*() 245
memcpy() 136, 137, 245
message passing

ChannelCreate() 111, 112, 115,
124, 151, 153, 171,337

ChannelDestroy() 111, 115
ConnectAttach() 111-113, 115, 116,

127, 129, 163, 166
ConnectDetach() 111, 113
MsgDeliverEvent() 112, 121, 125,

149-151,163,164,325,404,427
MsgError() 112, 126, 127
Msglnfo() 123, 158
MsgRead() 112, 131, 132, 134, 143,

163, 164, 354
MsgReadv() 112
MsgReceive() 112, 117-119, 122,

123, 125, 126, 130-132, 141-143,
145, 147-149, 152, 155, 157, 158,
160,163,164,169,172,197,203,
239,263,388,426,427

MsgReceive() example 197
MsgReceivePulse() 112, 143, 145,

147-149,426
MsgReceivev() 112, 141, 147, 277,

278,426,427
MsgReply() 112, 117, 118, 120,

125-127, 135, 145, 157, 158, 163,
164,349,350

MsgReply() example 199, 200
MsgReplyv() 112, 142, 303, 350
MsgSend() 112, 114, 115, 118, 120,

124, 125, 127, 129, 130, 138, 139,
143, 144, 152, 153, 216, 323

Index

MsgSend() example 114
MsgSend() family 114, 142
MsgSendnc() 112, 143
MsgSendsv() 112, 143
MsgSendsvnc() 112, 143
MsgSendv() 92, 112, 138, 143, 152,

349,402
MsgSendvnc() 112, 143
MsgSendvs() 112, 143, 152
MsgSendvsnc() 112, 143
MsgVerifyEvent() 150
MsgWrite() 112, 127, 131, 134, 135,

143,163,164,350
MsgWritev() 112, 142, 350

message queue
mq _open() 283
mq _receive() 283

message-sending See message passing
mktime() 193
MsgVerifyEvent() 150
name__attach() 128, 392
name_close() 128, 392
name__detach() 128, 392
name_open() 128, 392
nanospin() 178
netmgr_remoteJid() 166
netmgr __strtond() 166
network

netmgr _remoteJid() 166
netmgr __strtond() 166

open() 102-104, 129, 161-163, 166,
253-261,264,276,392,393,403,
423,425,427

implementation 254
out*() 246
PO SIX

mq_open() 283

Index 441

Index

mq_receive() 283
POSIX threads 426, 429
pread() 348
printf() 31
process

exec() 32, 34
exec() family 22, 24, 26, 27, 30
exec!() 24, 28, 29
execle() 24
execlp() 24, 28, 29
execlpe() 24
execv() 24
execve() 24
execvp() 24
execvpe() 24
getppid() 127
spawn() 24-26, 30, 31
spawn() family 22, 24, 26, 27, 29,

30,34
spawn/() 24, 25
spawnle() 24, 25
spawnlp() 24, 25
spawnlpe() 24, 25
spawnp() 24, 25
spawnv() 24, 25
spawnve() 24, 25
spawnvp() 24, 25
spawnvpe() 24, 25

process creation 23-25, 31
process transformation 25
pthread_mutex_timedlock() 21 0
pulse

MsgReceive() 145
MsgReceivePulse() 145

pulse_attach() 272
pulses

pulse_attach() 269

442 Index

pulse__detach() 269
QNX4

Creceive() 388, 404
qnx_name_attach() 392
qnxJlame _locate() 392
qnx_proxy_attach() 403
Receive() 387, 388, 404
Reply() 387
Send() 387, 396
~fork() 387
Trigger() 403

read() 129, 162,253,262,264,267,
396,397,401,427

rename() 264
Reply() 387
resmgr_attach() 278
resource manager

JJEVCTLDATA() 361
dispatch_create() 344
io_chmod() 307
io_chown() 308
io_close() 305
io_close__dup() 309, 314
io_close_ocb() 310
io_devctl() 285, 286, 311, 356-361
io _dup() 3 13
io-fdinfo() 314
iofunc _attr _in it() 267
iofunc _chmod_default() 307
iofunc _chown() 308
iofunc _chown_default() 308
iofunc _close _default() 310
iofunc_close __dup() 309
iofunc_close__dup_default() 309, 310
iofunc_devctl() 311, 313
iofunc_devctLdefault() 311, 358

iofunc-func_init() 267, 274, 275,
277,285,307,315,321,333,341,
344,358

iofunc _link() 315
iofunc _lock_default() 297, 317
iofunc _lock_ocb _default() 305, 3 1 7
iofunc _[seek() 318
iofunc _lseek_default() 318
iofunc _mknod() 319
iofunc_mmap() 320
iofunc_mmap_default() 297, 320
iofuncJlotify() 324
iofunc JWtify _remove() 3 24
iofuncJlotify_trigger() 324, 325
iofunc_ocb_attach() 325, 326
iofunc _ocb _calloc() 3 21
iofunc _open() 325
iofunc_open_default() 286, 325
iofunc_openfd() 326
iofunc _openfd_default() 326
iofunc _pathconf() 327
iofunc _pathconf _default() 327
iofunc_read() 328
iofunc _read_default() 3 28
iofunc _readlink() 330
iofunc_read_verify() 328, 329, 347,

348,354
iofunc_rename() 331
iofunc_space_verify() 333
iofunc_stat() 334
iofunc ...stat _default() 334, 349
iofunc...sync() 335
iofunc...sync_default() 335
iofunc...sync_verify() 329, 335, 341
iofunc_unblock() 336, 337
iofunc_unblock_default() 337
iofunc_unlink() 338

Index

iofunc _unlock_ocb _default() 305,
339

iofunc_utime() 339
iofunc _utime _default() 339
iofunc_write_default() 340
iofunc_write _verify() 340, 341, 354
io _link() 315
io_lock() 316
io_lock_ocb() 317, 339
io_lseek() 318,370
io_mknod() 319
ioJnmap() 320
io_mount() 322
io_msg() 323
ioJwtify() 324
io_open() 278, 285-287, 307, 310,

325,327,366
io_open_default() 286
io_openfd() 326
io_pathconf() 327
io_read() 285, 286, 328, 329, 345,

349,350,352,354,355,359,
367-370

io_readlink() 330
io_rename() 331
J0_5ET_WR/TE_NBYTES() 355,

356
io_shutdown() 332
io...space() 333
io...stat() 334, 349
io...sync() 335
io_unblock() 336, 337, 363
io_unlink() 338
io_unlock_ocb() 339
io_utime() 339
io_write() 285, 286, 329, 340, 341,

352,359,363

Index 443

Index

pathname_attach() 307
resmgr _attach() 267, 269, 273, 278,

280,281,283,285,344
resmgr _bind_ocb() 326
resmgr _block() 268
resmgr _context_alloc() 268
resmgr _detach() 269
resmgr _handler() 268
resmgr _msgread() 269, 354
resmgr _msgreadv() 269, 278, 312,

341,355
resmgr _msgwrite() 269
resmgr _msgwritev() 269, 312
_RESMGKNPARTS() 359
resmgr _open_bind() 269, 270, 287
J?ESMGR_FTR() 359
resmgr _start() 272

rsrcdbmgr_devno_attach() 301
scheduling

sched_get...priority _max() 11
sched_get...priority_min() 11
sched_rr _get-interval() 13
SchedYield() 12
sched_yield() 12

SETIOV() 138
setuid() 232
setupPulseAndTimer() 197
signal

SIGEV JNTRJNIT() (macro) 188
sigev Jiotify -function() 187
SIGEV _FULSEJNIT() 198
SIGEV _FULSEJNIT() (macro) 188
SIGEV ...SIGNAL_CODEJNIT()

(macro) 188
SIGEV ...SIGNALJNIT() (macro)

188

444 Index

SIGEV ...SIGNALTHREAD JNIT()

(macro) 188
SIGEV_THREADJNIT() (macro)

189
SIGEV_UNBLOCKJNIT() (macro)

188
sigwait() 189

sleep() 19, 92, 177-179,209
bad implementation 177

stat() 266, 267, 381
strcmp() 245
strdup() 245
strftime() 193
synchronization

pthread_barrier _init()

pthread_barrier _wait()

53,422
sem...post() 428
sem_wait() 428

sysconf() 40
system() 22, 23
tfork() (QNX 4) 387
thread

50,51
47, 50, 51,

pthread_atfork() 33, 34
pthread_attr _destroy() 36-38
pthread_attr _getdetachstate() 36
pthread_attr _getguardsize() 37
pthread_attr _getinheritsched() 36
pthread_attr _getschedparam() 37
pthread_attr _getschedpolicy() 37
pthread_attr _getscope() 36
pthread_attr _getstackaddr() 37
pthread_attr _getstacklazy() 37
pthread_attr _getstacksize() 37
pthread_attr _init() 36, 37
pthread_attr _set() family 37
pthread_attr _setdetachstate() 36, 38

pthread_attr _setguardsize()
pthread_attr _setinheritsched()

38,41

37
36,

pthread_attr _setschedparam() 37,
38,41

pthread_attr _setschedpolicy() 3 7,
38,41

pthread_attr _setscope() 36, 38, 39
pthread_attr _setstackaddr() 37
pthread_attr _setstacklazy() 3 7
pthread_attr _setstacksize() 37
pthread_cancel() 93, 143
pthread_cond_broadcast() 75
pthread_cond_signal() 75
pthread_cond_wait() 73, 75, 80
pthread_create() 33, 34, 37, 42, 48,

49,387
pthread_join() 38, 47-50, 53, 93,

213-215
pthread_join() example 214
pthread_mutex_lock() 75, 80, 387
pthread_mutex_unlock() 75, 80
pthread_rwlockattr ...destroy() 65
pthread_rwlockattr _getpshared() 65
pthread_rwlockattr _init() 65
pthread_rwlockattr _setpshared() 65
pthread_rwlock_destroy() 66
pthread_rwlock_init() 65
pthread_rwlock_rdlock() 66, 67
pthread_rwlock_tryrdlock() 67
pthread_rwlock_unlock() 67
pthread_rwlock_wrlock() 66
pthread_setschedparam() 172
pthread_sleepon_broadcast() 73, 75
pthread_sleepon_lock() 69, 75
pthread_sleepon_signal() 71, 73, 75
pthread_sleepon_unlock() 69, 75

Index

pthread_sleepon_wait() 68-70,73,
75

ThreadCtl() 232
thread..pool() family 105
thread..pooLcontrol() 82
thread..pooLcreate() 82, 85, 87
thread..pooLdestroy() 82
thread..pooUimits() 82
thread..pool_start() 82, 86, 87

time
asctime() 193
ClockAdjust() 205, 206
ClockCycles() 205, 207
clock_getres() 205
clock_gettime() 205
ClockPeriod() 205
clock_settime() 205
ClockTime() 205
ctime() 193
mktime() 193
strftime() 193
time() 193
timer _create() 190, 191, 198, 204
timer _create() example 198
timer _settime() 191, 193, 198
timer _settime() example 198

timer
ClockCycles() 207
ClockPeriod() 206
delay() 181
timer _create() 190
timer _settime() 191, 193
TimerTimeout() 124, 152, 213-215,

388
TimerTimeout() example 214, 215

timing
nanospin() 178

Index 445

Index

G

sleep() 177-179
unblock _june() 91
vfork() 23, 32, 34, 94
waitpid() 30
write() 102, 131, 132, 136, 397, 403,

427

gather/scatter See scatter/gather
getppid() 127
getting help 411

beta versions 415
updates 415

comp.os.qnx 417
contacting technical support 413
describing the problem 413-415

be precise 414
narrow it down 416
QDN 413
reproduce the problem 415
RTFM 411
third-party directory 418
training 418

getting the time 205
gotAMessage() 197, 200
gotAPulse() 197, 199
grep 412
gunzip 27
gzip 27,416

446 Index

H

handler routines See resource managers,
handler routines

handler -func() 84, 91
hardware

82C54 component 180
and polling using timers 203
asynchronous nature of timers 182
changing timer rate 181
clock tick and timers 217
divider, used with timers 180
impact of integer divisor on timer 181
inactivity shutdown 203
used with timers 179
warm-up timer 204

Herborth, Chris xxviii
high accuracy counter 207
high frequency interrupts 244

110 Vector See lOY
IBM PC xxi
in*() 246
in8() 236
inactivity shutdown 203
initializing

struct sigevent 215
shortcut 215

interrupt
10 millisecond 179
8259 chip 224
analogy 221
associated thread 224-226
associating with thread or process 234

attaching handler 230, 231
BSP specific 230
causes 221
chained 229, 230
chaining 234, 244
clearing 223, 224, 239
clock

diagram 179
complex 224
context switches 241
defined 221
detach on death of thread or

process 233
disabling 222, 247

eli 222
doing nothing in the ISR 222
doing the work in a thread 224
edge-sensitive 226, 227, 229, 230

and cleanup 233
diagram 227
problems 227, 229

enabling 222, 247
sti 222

end of interrupt (EOI) 226, 227
environment 244
EOI 230
ethernet device 228, 229
events 226
exit() 233
filtering out unneccesary 244
floppy disk controller 225, 226
functions

InterruptAttach() diagram 240
InterruptAttachEvent() diagram 240
InterruptAttachEvent() example

236
InterruptWait() example 236

handlers
detaching 233
detaching the last handler 233
events 236
example 232, 234
goals 245
safe functions 244, 245
volatile 236

handling 221
hardware 92
hardware acknowledgement 223
high frequency 244
ignoring 225
impact on scheduling 223, 224
informing the kernel 222
interrupt identifier 238
InterruptAttach() 230
InterruptAttachEvent() 230
InterruptAttachEvent() versus

Index

InterruptAttach() 238, 239, 241
InterruptDetach() 233
ISRs 221, 222

detaching 233
detaching the last handler 233
events 236
example 232, 234
goals 245
pseudo-code example 225
safe functions 244, 245
volatile 236

kernel 240
kernel ISR for timer 179
latency 222
level-sensitive 226, 230

and cleanup 233
diagram 226

low frequency 244

Index 447

Index

managing 221
masking 225
masking after detaching 233
masking on detach of last handler 233
minimizing latency 244
minimizing time spent in 224
not clearing the source 224
order of processing 229
permissions required 232
PIC 224, 229, 230

edge-sensitive mode 226
edge-sensitive mode diagram 227
level-sensitive mode 226
level-sensitive mode diagram 226

priority 223
processing 225
programmable interrupt controller 224

edge-sensitive mode 226
edge-sensitive mode diagram 227
level-sensitive mode 226
level-sensitive mode diagram 226

pulses 147, 226
readying a thread 222, 224-226, 231,

236,240,241
realtime 221
realtime clock 92
relationship to thread 225
responsibilities 222
returning struct sigevent 236
role of ISR 223
scheduling 91, 92, 178, 221
SCSI device 228, 229
serial handler 223
servers 233
sharing 228-230, 233

diagram 228
problem 229

448 Index

problems 229
SIGEV _INTR 239, 244
SIGEV _SIGNAL 239
SIGEV _THREAD 239
signals 226
SMP 59,247
source 223
specifying order 234
spending a long time in ISR 225
startup code 231
struct sigevent 226,231,236,

238,239
tail-end polling 223
thread interaction 24 7
thread-level interactions 236
threads 225, 226
timing 178
tracking mask/unmasks 234
unmasking 225
unmasking when attaching 233
unneccesary wakeups

diagram 241
used for timing 179
used with timers 179
using lnterruptWait() 238
volatile 236,248
waiting in thread 238
waking up only when required 242
waking up unneccessari1y 241
writing 230

interrupt service routine See also Interrupts
defined 423

Interrupt() family 246
InterruptAttach() 230, 231, 233, 234, 238,

240-242,244,248
diagram 240, 242
example 234

flags parameter 234
InterruptAttachEvent() 230, 231, 234, 236,

238,240,241,243,244,246,248,
406

diagram 241
example 236
flags parameter 234
pseduo-code 243
returning interrupt identifier 238

InterruptAttachEvent() versus

InterruptAttach() 238, 239, 241
InterruptDetach() 233

example 233
InterruptDisable() 222, 246, 247
InterruptEnable() 222, 246, 247
InterruptLock() 222, 245, 247, 248, 421
InterruptMask() 245, 246
InterruptUnlock() 222, 245, 247, 248,421
InterruptUnmask() 245, 246
InterruptWait() 19, 236, 238, 239, 244

and SIGEV _INTR 239, 244
example 236

io_chmod_t 308
io_close_t 309,310
io_devctl_t 311
io_dup_t 314
io_link_extra_t 315
io_link_t 315
io_lock_t 317
io_lseek_t 318
io....mknod_t 319
i o _mmap _ t 321,324
io....mount_t 322
io....msg_t 323
io_open_t

io_openfd_t

325,330
326

io_pathconf_t 327

io_read_t 328
io_rename_extra_t

io_rename_t 331
io_space_t 333
io_stat_t 334
io_sync_t 335
io_unlink_t 338
io_utime_t 340
io_write_t 340
JO_CHMOD 308
io_chmod() 307
JO_CHOWN 308
io_chown() 308

331

io_close() 305
_IO_CLOSE_DUP 309, 369
io _close _dup() 309, 314
io_close_ocb() 310

Index

JO_CONNECT 315,319,322,325,330,
331,338,369,403

JO_CONNECT _COMBINE 325
JO_CONNECT _COMBINE_CLOSE 289, 325
JO_CONNECT _LINK 315
_IO_CONNECT _MKNOD 319
JO_CONNECT _MOUNT 322
JO_CONNECT _OPEN 325
JO_CONNECT _READ LINK 330
JO_CONNECT _RENAME 331
JO_CONNECT _UNLINK 338
JO_DEVCTL 272, 311, 357
io_devctl() 285, 286, 311, 356-361
JO_DUP 314
ioJiup() 313
JO_FDINFO 314
io -fdinfo() 3 14, 315
iofunc_attr_t 293,295-299
iofunc....mount_t 293,296,299,300
iofunc_ocb_t 292-295

Index 449

Index

IOFUNC.ATTR_ATIME 349, 355
IOFUNC_ATTR_DIRTY _TIME 349
iofunc _attr _in it() 267
IOFUNC_ATTR_MTIME 355
iofunc _chmod_default() 307
iofunc _chown() 308
iofunc_chown_default() 308
iofunc _close _default() 310
iofunc _close _dup() 309
iofunc_close_dup_default() 309, 310
iofunc _devctl() 311, 313
iofunc _devctl_default() 311, 358
iofunc-func_init() 267, 274, 275, 277, 285,

307,315,321,333,341,344,358
iofunc _fink() 315
iofunc _lock_default() 297, 3 17
iofunc_lock_ocb_default() 305, 317
iofunc_lseek() 318
iofunc _[seek_default() 318
iofunc _mknod() 319
iofunc_mmap() 320
iofunc_mmap_default() 297, 320
IOFUNC_MOUNT _32BIT 299
IOFUNC_MOUNT _FLAGS _pRIVATE 299
__IOFUNCNFUNCS 300
iofunCJwtify() 324
iofunc _notify _remove() 324
iofunc _notify _trigger() 324, 325
iofunc _ocb _attach() 3 25, 3 26
iofunc_ocb _calloc() 3 21
IOFUNC_GCR . .FLAGS_pRJVATE 295
IOFUNCOCB_MMAP 295
IOFUNCOCB_PRIVILEGED 295
IOFUNCOCB_T 364
iofunc_open() 325
iofunc_open_default() 286, 325
iofunc_openfd() 326

450 Index

iofunc_openfd_default() 326
iofunc_pathconf() 327
iofunc_pathconf _default() 327
IOFUNc_pc_cHOWN_RESTRICTED 299,

309
IOFUNc_pc_uNK_DIR 300
IOFUNc_pc_No_TRUNC 299
IOFUNc_pc_sYNCIO 299
iofunc_read() 328
iofunc _read_default() 3 28
iofunc _read/ink() 330
iofunc_read_verify() 328, 329, 347, 348,

354
iofunc_rename() 331
iofunc_space_verify() 333
iofunc..stat() 334
iofunc..stat_default() 334, 349
iofunc_sync() 335
iofunc_sync_default() 335
iofunc_sync_verify() 329, 335, 341
iofunc_unblock() 336, 337
iofunc_unblock_default() 337
iofunc_unlink() 338
iofunc_unlock_ocb_default() 305, 339
iofunc_utime() 339
iofunc_utime_default() 339
iofunc _write _default() 340
iofunc_write_verify() 340, 341, 354
io_link() 315
io Jock() 316
io_lock_ocb() 317,339
__IO_LSEEK 318,319,369
io_lseek() 318, 370
__IOMGR_pRJVATLBASE 402
__IOMGR_pRJVATE_MAX 402
io _mknod() 319
__IO_MMAP 321

io_mmap() 320
io_mount() 322
~O~SG 272,323,324,396,397,399,

401,402
io_msg() 323
~O_NOTIFY 324
io_notify() 324
io_open() 278,285-287,307,310,325,

327,366
io_open__default() 286
~ODPENFD 326
io_openfd() 326
~Q_pATHCONF 327
io_pathconf() 327
~O__READ 328, 329, 344, 369
io_read() 285, 286, 328, 329, 345,

349-352,354,355,359,367-370
example 345

io_readlink() 330
io_rename() 331
~O_SET _CONNECT _RET 323, 326
~O_SELFDINFO_LEN 315
~0-SET _pATHCONF _VALUE 328
~O_SET __READ_NBYTES 329
~O_SELWRITE_NBYTES 341
JOSELWR/TE_NBYTES() 355, 356
io_shutdown() 332
~O_SPACE 333
io_space() 333
~O_STAT 334
io_stat() 334, 349
~O_SYNC 335
io_sync() 335
io_unblock() 336, 337, 363
io_unlink() 338
io_unlock_ocb() 339
~O_UTIME 339

io_utime() 339
IOV . See also Message passing See

Message passing
defined 424

iov_t 137-139
defined 137

~0-WRITE 340, 351

Index

io_write() 285, 286, 329, 340, 341, 351,
352,359,363

example 351
~O_)(TYPE_NONE 348
~o_xTYPE_OFFSET 329, 348, 350, 352,

355
ISR See interrupt service routine

K

kernel
as arbiter 10
base timing resolution 207
context switch 10
context-switch 21
preempting thread 11
readying a thread 179,217
resuming thread 11
special pulse 216
suspending a thread 179
synthesizing unblock pulse 153
timeouts 213
timer implementation 179, 183, 184
view of data in message pass 139

kernel callouts
defined 424

kernel state
blocking 16

Index 451

Index

complete list 17
STATE_CONDVAR 17,73
STATKDEAD 17
STATEJ:NTR 17, 19
STATEJOIN 17
STATE_MUTEX 17
STATE_NANOSLEEP 17, 19
STATE_NET _REPLY 17
STATE _NET _SEND 17

STATE__READY 16, 17, 92, 99, 169,
170,179,182,184,221,222,231,
240

STATE __RECEIVE 17, 19
STATE__RECV 99, 172, 189

diagram 99
STATE_REPLY 17, 19, 100, 101, 153,

202,215,216

diagram 99
STATE__RUNNING 16, 17, 221
STATE_SEM 17
STATE_SEND 17, 19, 100, 148, 153,

215,216

diagram 99
when abnormal 101
when normal 101

STATE_SIGSUSPEND 17
STATE_SIGWAITINFO 17
STATE_STACK 17
STATE_STOPPED 17
STATE_WAITCTX 17
STATE_WAITPAGE 17
STATE_WAITTHREAD 17
triggering timeout 214

kernel timeout 216
arming 216
example 215
message passing 215

452 Index

_NTQ_CHF_UNBLOCK 216

servers 216
specifying multiple 216
with pthread_join() 214

kill() 389
Krten, Rob xxvii

L

latency, interrupt 222
level-sensitive interrupts 226

diagram 226
licensing this book xxvii
limits

multipart messages 139
range of pulse code values 146

local node descriptor 113
low frequency interrupts 244
ls 26,28,29,412,414
!seek() 252, 262, 382, 422, 427

M

macros
for filling struct sigevent 188

SIGEV JNTRJNIT() 188
SIGEV YULSEJNIT() 188
SIGEV __s!GNALCODEJNIT() 188
SIGEV __s!GNALJNIT() 188
SIGEV __s!GNALTHREADJNIT()

188
SIGEV_THREADJNIT() 189
SIGEV_UNBLOCKJNIT() 188

message passing

SETIOV() 138
SIGEV YULSEJNIT()

example 198
SIGEV_THREADJNIT()

example 204
SIGEV_UNBLOCKJNIT() 214, 215

example 214
make 412
malloc() 136-138, 245
masking interrupts 225, 233
meet-me synchronization See

synchronization
mem*() 245
memcpy() 136, 137, 245
memory

physical, defined 426
virtual, defined 429, 430

memory management unit See MMU
memory protection 20
message

combined 288-292
why they work 292

connect 255,264
constants

_NTO_CHF _UNBLOCK 337
_NTO_MLUNBLOCK_REQ 336,337,

363
determining if pulse or message 203
functions

Channel Create() 337
MsgDeliverEvent() 325
MsgRead() 354
MsgReply() 349, 350
MsgReplyv() 350
MsgSend() 323
MsgSendv() 349
Msg Write() 350

MsgWritev() 350
how to tell from pulses 203
110 264
not replying to client 202
other 264
receive ID, defined 427
receiving, defined 426
replying to multiple clients 202
replying, defined 427
resource manager 263

combine 304
connect 288
__IO...DEVCTL 272
_lQ_MSG 272
processing 304

send hierarchy, defined 428
sending

functions 428
message passing 98

advantages 104
as decoupling 173
as object oriented design 105

Index

as synchronization scheme 173
avoiding unneccessary copying 137
blocking client 99, 118
buffer sizes 118
cancellation points 143
channeliD 113,123
ChannelCreate() 151, 153, 171
client 112
client/server 98
confusion with timeouts 153
ConnectAttach() 163, 166
ConnectDetach() 113
connection ID 123
data flow 117
deadlock 120

Index 453

Index

dealing with large buffers 135
decoupling of design 97, 98, 104, 105
deferring data transfer 149
defined 424
diagram 117
distributing work over a network 109
done by C library 102
double standard in conventional

OS 103
establishing client to server connection

112
example 101, 103
excluding messages 148
filesystem example 132
finding a server 128

ND/PID/CHID 127
using a global variable 128
using a resource manager 128
using global variables 129
using well-known files 128

finding the server's
ND/PID/CHID 127

fs-qnx4 message example 132
handling big messages in server 131
how to handle large transfers 134
interrupts 14 7
iov_t 137
kernel timeouts 215
limiting transfer size 119, 120, 125
modularity 97
MsgDeliverEvent() 149-151, 163, 164
MsgError() versus MsgReply() 127
Msg!nfo() 158
MsgRead() 131, 132, 134, 143, 163,

164

454 Index

MsgReceive() 117, 132, 141-143, 145,
147-149, 152, 155, 157, 158, 160,
163, 164, 169, 172

MsgReceive() versus MsgReceievev()
142

MsgReceivePulse() 143, 147-149
MsgReceivev() 141, 147
MsgReply() 117, 135, 157, 158, 163,

164
MsgReplyv() 142
MsgSend() 114, 138, 139, 143, 144,

152, 153
example 114

MsgSend() family 142
MsgSendnc() 143
MsgSendsv() 143
MsgSendsvnc() 143
MsgSendv() 138, 143, 152
MsgSendvnc() 143
MsgSendvs() 143, 152
MsgSendvsnc() 143
MsgWrite() 131, 134, 135, 143, 163,

164
MsgWritev() 142
multi-threaded server 110
multipart messages 136, 137

example 137, 140, 141
IOV 137, 138, 140
kernel's view 139
limitations 139

multipart versus linear 143
multiple threads 105
ND/PID/CHIDs 127
network

detailed analysis 161
differences from local 162

network implementation 160

network transparent 173
network-distributed 103
networked 159
networked case

determining how much data should
have been transferred 164

determining how much data was
transferred 164

networked overhead 163
node descriptor 113
not replying to the client 125
notifying client 149
obtaining a connection ID 113
offsetting into the client's data 134,

135, 142
peeking into a message 132
phases 116
priority 130
process ID 113
pulse

MsgReceive() 145
MsgReceivePulse() 145
receiving 145

race condition with unblock 155
reading from the client's address space

132
readying a thread 99
receive ID 125

andreply 118
receive-blocked 99

diagram 99
receiving only pulses 147
receiving pulses only 148
REPLY-blocked 215, 216
reply-blocked 100, 101

diagram 99
reply-driven model 108, 126

example 109
important subtlety 110

replying to the client 125
replying with no data 126

example 126
resource manager 1 02
run time installability of

components 98
scatter/ gather

defined 428
SEND state

diagram 99
SEND-blocked 215, 216
send-blocked 100

diagram 99
send-driven model 108

example 109
important subtlety 110

server 117
example 118

server connection ID 123
server replying to client 118
server/subserver 105, 106

delegation of work 108
SETIOV() (macro) 138
SMP 105
STATKRECV state 99

diagram 99
STATE.R.EPLY state 100, 101

diagram 99
STATE-SEND state 100
summary 172
synthetic unblock pulse 153
<sys/neutrino.h> 138
thread and channels 122
thread pool 149
timeouts

Index

Index 455

Index

informing server 216
timeouts and _NTQ_CHF _UNBLOCK

216
timer 147
tracking owner of message 122
transmit buffer 118
transparency over network 103, 104
unblock 155
unblocking

client 152
_NTQ_MLUNBLOCK_REQ 158
server 118

unit testing 105
useful minimal set of functions 112
using IOV (vectored) functions 144
using the _NTQ_MLUNBLOCK_REQ

flag 158
validity of receive ID 125
vs. traditional OS 102, 103
with pool of threads 105
write() example 136
writing a header later 135
writing to the client's address

space 134
microkernel 97
mktime() 193
MMU 20

defined 424
modularity due to message passing 97
mountpoint

creating 280, 283
registering 280, 283

mq_open() 283
mq_receive() 283
mqueue 283
MsgDeliverEvent() 112, 121, 125, 149,

150,164,325,404,427

456 Index

breaking send hierarchy 121
networked case 163, 164
special use of receive ID 151

MsgError() 112, 126, 127
errno 127

Msglnfo() 123, 158
MsgRead() 112, 131, 132, 134, 143, 164,

354
networked case 163, 164
offset parameter 134

MsgReadv() 112
example 141

MsgReceive() 112, 117-119, 122, 123,
125, 126, 130-132, 141-143, 145,
147-149, 152, 155, 157, 158, 160,
164,169,172,197,203,239,263,
388,426,427

example 118, 132, 141, 197
networked case 163, 164
priority inheritence 172
relationship of parameters to

MsgReply() 117
MsgReceivePulse() 112, 143, 145,

147-149,426
MsgReceivev() 112, 141, 147, 277,278,

426,427
MsgReply() 112,117,118,120,125-127,

135,145,157,158,164,349,350
errno 127
example 118, 199, 200
networked case 163, 164
relationship of parameters to

MsgReceive() 117
MsgReplyv() 112, 142, 303, 350
MsgSend() 112, 114, 115, 118, 120, 124,

125, 127, 129, 130, 138, 139, 143,
144,152,153,216,323

EINTR 153
example 114, 136

MsgSend() family 114, 142
guide to variants 142

MsgSendnc() 112, 143
MsgSendsv() 112, 143
MsgSendsvnc() 112, 143
MsgSendv() 92, 112, 143, 152, 349, 402

example 137
MsgSendvnc() 112, 143
MsgSendvs() 112, 143, 152
MsgSendvsnc() 112, 143
MsgVerifyEvent() 150
MsgWrite() 112, 127, 131, 134, 135, 143,

164,350
networked case 163, 164
offset parameter 134, 135

MsgWritev() 112, 142, 350
offset parameter 142

MLTIMEDOUT 199
multipart messages See Message passing
MUTEX 17
mutex

analogy 5
defined 424

mutual exclusion See mutex

N

name space See pathname space
name_attach() 128, 392
name_close() 128, 392
name__detach() 128, 392
name_open() 128, 392
nanospin() 178

ND See node descriptor
ND_LOCALNODE 167
netmgr_remoteJid() 166

example 167
netmg r _strtond() 166

example 167
network

data transfer 120

Index

determining how much data should have
been transferred 164

determining how much data was
transferred 164

distributed architecture 63
message passing 103, 159, 160

ConnectAttach() differences 163
detailed analysis 161
differences from local 162
MsgDeliverEvent() differences 163,

164
MsgRead() differences
MsgReceive() differences
MsgReply() differences
Msg Write() differences
name resolution 161
overhead 163

163, 164
163, 164

163, 164
163, 164

remote name resolution 162
message passing transparency 103
netmgr _remoteJid() 166
netmgr _strtond() 166
node descriptor 113

of local node 113
node descriptor of client 123
of SMP systems 105
server 108
using message passing to distribute

work 109
versus shared memory 63

Index 457

Index

Neutrino
defined 425

philosophy 105
nice 22

node descripto
message passing 127

node descriptor 113
characteristics 166

contained instruct _msg_info
167

conversion from symbolic name 166

example 167

how to find 127

how to pass within network 166
obtaining remote 166
of local node 113

process manager 256

receiving node's for transmitting
node's 168

representation of remote 167

<sys/netmgr.h> 166

transmitting node's for receiving
node's 168

node ID 165

defined 165
not network unique 165

of self 165
npm-qnet xxvii, 121, 161-164, 273
_NTO_CHF_DISCONNECT 151
_NTO_CHF _FIXED_PRIORITY 151, 171
_NTO_CHF_REPLY _LEN 124

_NTO_CHF_SENDER_LEN 124, 152
_NTO_CHF_THREAD_DEATH 151

_NTO_CHF_UNBLOCK 151-153, 155, 189,

216,337
and kernel timeouts 216
modifying client's behaviour 155

458 Index

_NTO_MLENDIAN_BIG 124

_NTO _MLENDIAN _DIFF 124
_NTO_MI_NET _CRED_DIRTY 124

_NTO_MLUNBLOCK_REQ 124, 158, 159,

336,337,363

0

object oriented design via message
passing 105

OCB 276
allocating 366

defined 425

extended 364
monitoring 366

one-shot timers 183, 192

example 193

open context block See OCB
open() 102-104, 129, 161-163, 166,

253-261,264,276,392,393,403,

423,425,427

implementation 254

operating system
double standard in conventional 103

message passing vs. traditional 102,

103
microkernel 97
process

background 22
creating 22-24, 31

O.RDONLY 294
out*() 246
O_WRONLY 255

p

PARSE Software Devices xxvii
PATH 28,29
pathname

pollution 128
registering 262
resolving 255

pathname space 254
and procnto 254
defined 254

pathname _attach() 307
PDP-8

and Neutrino 425
defined 425

periodic timer 183, 192. See also repeating
timer

example 193
power saving 217
server maintenance 203
servers 194

philosophy of Neutrino 105
physical address

defined 426
pidin 43,99,101
platforms

PDP-8 425
P _NOWAIT 30, 31
polling

for completion of thread 215
timer 203

pool, threads See thread
POOL.FLAG_USE_SELF 87
PO SIX

signals 204
POSIX thread See thread
_FOSIX_DEVDIR_FROM 312

_FOSIX_DEVDIR_TO 312
P _OVERLAY 30
power saving 217
pread() 348
printf() 31
priority

boosting 170
inversion 168
message passing 130
thread analogy 6

priority inheritence 169
caveat 171
undoing 171, 172

priority inversion 168
defined 169
example 168
fixed by priority inheritence 169
solution 170
starving CPU 170

process
abstraction 60
aid to maintainability 20
aid to reliability 20
and threads 62

Index

associating with interrupt handler 234
background 22
child 32
consisting of threads 19
context-switch 21
coupling 61,62
creating 22-24, 31
creating from program 22

exec() family 22, 24
fork() 23, 31
spawn() family 22, 24
system() 22, 23
vfork() 23, 32

Index 459

Index

decoupling 63
decoupling of design 20
defined 426
distributability 63
fork() 32
in system 19
multi-threaded 3
mutex 80
network distributed 63
parent 31, 32
scalability 63
shared memory 61
single-threaded 3
starting 21
starting from shell 21
thread 3, 61

process ID I 13
getppid() 127
how to find 127
message passing 127
process manager 256

process IDs See PIDs
process manager

channel ID 256
finding 256
node descriptor 256
process ID 256

processing interrupts 225
procnto 101,254
producer

and consumer 69
state analysis 71

and consumer using condvars
example 73

pthread_attr_t 35
defined 35

pthread_cond_t 74

460 Index

pthread_rwlock_t 65
pthread_t 34,49
pthread_atfork() 33, 34
pthreacLattr _destroy() 36-38
pthread _attr _getdetachstate() 36
pthread_attr _getguardsize() 37
pthread_attr _getinheritsched() 36
pthread_attr _getschedparam() 37
pthread_attr _getschedpolicy() 37
pthread_attr _getscope() 36
pthread_attr _getstackaddr() 37
pthread_attr _getstacklazy() 37
pthread _attr _getstacksize() 37
pthread_attr_init() 36, 37
pthread_attr ...set() family 37
pthread_attr ...setdetachstate() 36, 38
pthread_attr ...setguardsize() 3 7
pthread_attr ...setinheritsched() 36, 38, 41
pthread_attr ...setschedparam() 37, 38, 41
pthreacLattr ~~etschedpolicy() 37, 38, 41
pthreacLattr ...setscope() 36, 38, 39
pthread_attr ...setstackaddr() 37
pthread_attr ...setstacklazy() 37
pthread_attr ...setstacksize() 37
pthread__barrier _in it() 50, 51

example 50, 51
pthread_barrier_wait() 47, 50, 51, 53,422

example 50, 51
pthreacLcancel() 93, 143
pthread_cond__broadcast() 75
pthread_cond...signal() 75

example 73
pthread_cond_wait() 73, 75, 80

example 73
pthreacLcreate() 33, 34, 37, 42, 48, 49, 387

example 42, 43, 45, 51, 73
PTHREAD_EXPLICIT_SCHED 41, 42

pthread_join() 38, 47-50, 53, 93, 213-215
example 48, 214
explanation 49
non-blocking 215
timeout 215
with timeout 214

pthread__mutex_lock() 75, 80, 387
example 73

pthread__mutex_timedlock() 210
pthread__mutex_unlock() 75, 80

example 73
pthread_rwlockattr _destroy() 65
pthread_rwlockattr _getpshared() 65
pthread_rwlockattr _init() 65
pthread_rwlockattr _setpshared() 65
pthread_rwlock__destroy() 66
pthread_rwlock_init() 65
pthread_rwlock_rdlock() 66, 67
pthread_rwlock_tryrdlock() 67
pthread_rwlock_unlock() 67
pthread_rwlock_wrlock() 66
pthreads, defined 426
pthread_setschedparam() 172
pthread_sleepon_broadcast() 73, 75
pthread_sleepon_lock() 69, 75

example 69, 70
pthread_sleepon_signal() 71, 73, 75

example 70
pthread_sleepon_unlock() 69, 75

example 69, 70
pthread_sleepon_wait() 68-70, 73, 75

example 69
PTHREAD_STACK__LAZY 41
PTHREAD_STACK..NOTLAZY 41
pulse

content 145
defined 144,426

example 145, 195, 197-200
excluding messages 147
functions

pulse _attach() 272
how to tell from messages 203
MsgReceive() 145
MsgReceivePulse() 145
payload content 146
POSIX 198
_PULSE_CODE_UNBLOCK 147
range of code member 146
receiving 145
receiving pulses only 148
special 216
struct sigevent 216
synthetic unblock 153
timeout example 195, 197-200
timers 184
using the code member 146
using the value member 146
versus signals 189

pulse_attach() 269, 272
_puLSE_CODE_UNBLOCK 147
pulse _detach() 269
P_WAIT 29

Q

qnet xxvii, 121, 161-164, 273
QNX

advantages of architecture xxu
anecdote xxi
applications xxii
history of xxii
on 8088 CPUs xxiii

Index

Index 461

Index

QNX 2 XXlll

QNX 4 XXlll

QNX Software Systems Limited 426
qnxJiame_attach() (QNX 4) 392
qnxJiame_/ocate() (QNX 4) 392
qnx_proxy_attach() (QNX 4) 403
QSSL, defined 426
Quantum Software Systems Ltd. xxii
queue

RUNNING 184
timer 179
timer queue 217

QUNIX xxi, xxii

R

.READ 294
read() 129, 162, 253, 262, 264, 267, 279,

396,397,401,427
readers/writer locks See synchronization
READY 16, 17
realtime

interrupts 221
priority inversion 168

realtime clock 92
getting and setting 205
interrupts 92

receive ID 118, 125
content 125
defined 427
duplication 153
example of use 118
MsgReply() 118
special use 151
when valid 125

462 Index

Receive() (QNX 4) 387, 388, 404
receive-blocked 99

diagram 99
receiving a message

defined 426
registering

pathname 262
relative timer 183, 191, 216

defined 427
example 193, 195, 197-200

rename() 264
rendezvous

and thread synchronization 50
repeating timer, defined 427
Reply() (QNX 4) 387
reply-blocked 100, 101

diagram 99
reply-driven model I 08, 126

example 109
important subtlety 110

replying to a message, defined 427
resmgr See resource manager
resmgr_attr_t 271,272,279
resmgr_connect_funcs_t 271,273
resmgr_context_t 271,273-277,302
RESMGR_HANDLE_T 274, 275
resmgr_io_funcs_t 271,273,275
RESMGR-OCB_T 276
resmgr _attach() 267, 269, 273, 278, 280,

281,283,285,344
resmgr JJind_ocb() 326
resmgr JJlock() 268
.RESMGR_CONNECT _NFUNCS 275
resmg r _context _a/lac() 268
.RESMGR_DEFAULT 303, 313, 358
resmgr..detach() 269
.RESMGR_ERRNO (errno) 303

_RESMGR_FLAG_AFTER 282
_RESMGR_FLAG_BEFORE 282
_RESMGR_FLAG_DIR 282, 368
_RESMGR_FLAG_FTYPEALL 282
_RESMGR_FLAGYTYPEONLY 282
_RESMGR_FLAG_OPAQUE 282
_RESMGR_FLAG_SELF 282
resmgr __handler() 268
_RESMGR_IO_NFUNCS 276
resmgr _msgread() 269, 354
resmgr _msgreadv() 269, 278, 312, 341, 355
resmgr _msgwrite() 269
resmgr _msgwritev() 269, 312
_RESMGR_NOREPLY 303, 350, 367
_RESMGR_NPARTS (n) 303
_RESMGR_NPARTS() 359
resmgr_open_bind() 269, 270, 287
_RESMGR_PTR (ctp, addr, len) 304
_RESMGRYTR() 359
resmgr __start() 272
_RESMGR_STATUS 278, 308-311, 313,

314,316-321,324,325,327,331,
332,334-340

resolution of timebase
adjusting 206

resource manager 251
/dev/null 265
advanced topics 363
allocating OCBs 366
andfork() 34
as a means of advertising

ND/PID/CHID 128
binding mount structure 365
blocking 268, 367
bug in 2.00 release 279
characteristics 252
client 253

summary 261
clients 253
combined messages 288-292
connecting 253
connection ID 253, 256
constants

Index

DCMD_AUDIO_GET _SAMPLE_RATE

360
DCMD_AUDIO_SET _SAMPLE_RATE

359
F _ALLOCSP 333
F _FREESP 333
_FTYPE_ANY 283
FTYPE.MQUEUE 283
_IO_CHMOD 308
_IO_CHOWN 308
_IO_CLOSE_DUP 309, 369
_IO_CONNECT 315, 319, 322, 325,

330,331,338,369
_IO_CONNECT _COMBINE 325
_IO_CONNECT _COMBINE_CLOSE

289, 325
_IO_CONNECLLINK 315
_IO_CONNECT _MKNOD 319
_IO_CONNECT _MOUNT 322
_lO_CONNECT _OPEN 325
_IO_CONNECT _READ LINK 330
_IO_CONNECT _RENAME 331
_IO_CONNECT_UNLINK 338
_IO_DEVCTL 31 1, 357
_IO_DUP 314
_I 0 _FDINFO 314
IOFUNCATTR_ATIME 349, 355
IOFUNC_ATTR_DIRTY _TIME 349
IOFUNC_ATTR_MTIME 355
IOFUNC_MOUNT _32BIT 299

Index 463

Index

IOFUNCMOUNT _FLAGS_FRIVATE

299
_IOFUNCNFUNCS 300

IOFUNCOCB_FLAGS_FRIVATE 295

IOFUNCOCB_MMAP 295

IOFUNCOCB_FRIVILEGED 295

IOFUNCOCB_T 364

IOFUNCPCCHOWN_RESTRICTED

299, 309

IOFUNCPCLINK_DIR 300

IOFUNCPCNO_TRUNC 299

IOFUNCPCSYNCJO 299
_IO_LSEEK 318,319,369

_IO_MMAP 321

_IO_MSG 323, 324

JO_NOTIFY 324

_IO_OPENFD 326

_IO_READ 328, 344, 369

_IO_SET _CONNECT _RET 323, 326

_10 _SET _FDINFO_LEN 315

_IO_SET _FATHCONF_VALUE 328

_IO_SET _READ__NBYTES 329

_IO_SELWRITE__NBYTES 341

_IO_SPACE 333

_IO_STAT 334

_IO_SYNC 335

_IO_UTIME 339

_IO_WRITE 340

_IO_XTYPE__NONE 348

_IO_XTYPE_OFFSET 329, 348, 350,

352,355

_POSIX_DEVDIR_FROM 312

_POSIX_DEVDIR_ TO 312

_READ 294

_RESMGR_AFTER 283

_RESMGRJ3EFORE 283

_RESMGR_DEFAULT 303, 313, 358

464 Index

_RESMGR__ERRNO (errno) 303

-.RESMGR_FLAG_AFfER 282

-.RESMGR_FLAGJ3EFORE 282

-.RESMGR_FLAG_DIR 282, 368

-.RESMGR_FLAG_FTYPEALL 282

-.RESMGR_FLAG_FTYPEONLY 282

-.RESMGR_FLAG_OPAQUE 282

_RESMGR_FLAG_SELF 282

-.RESMGR__NOREPLY 303, 350, 367

-.RESMGR__NPARTS (n) 303

-.RESMGR_FTR (ctp, addr, len) 304

-.RESMGR_STATUS 308-311, 313,

314,316-321,324,325,327,331,

332,334-340

SH_COMPAT 294

SH_DENYNO 294

SH_DENYRD 294

SH_DENYRW 294

SH_DENYWR 294
_WRITE 294

context blocks 270

cookbook 341

custom 270

defined 251, 427

design 258

device numbers and inodes 301, 302

domain of authority 262

example 341, 342

io__devctl() 356, 359

io_open() handler 286

io_read() 345, 346

io_write() 351

returning data to a client 345, 346

extended OCB 364

extending attributes 366

file descriptor 256

file descriptors 252

file streams 252
filesystem example 252
finding 253, 255
functions

connect 273
custom handlers 285
default 277
default handlers 274, 285
JJEVCTLJJATA() 361
dispatch_create() 344
I/0 275
io_chmod() 307
io_chown() 308
io_close() 305
io_close_dup() 309, 314
io_close_ocb() 310
io_devctl() 285, 286, 311, 356-361
io _dup() 313
io .fdinfo() 314
iofunc _chmod_default() 307
iofunc_chown() 308
iofunc_chown_default() 308
iofunc _close _default() 310
iofunc_close_dup() 309
iofunc_close _dup _default() 309, 310
iofunc _devctl() 311, 313
iofunc _devctl_default() 311, 358
iofunc.func_init() 274, 277, 285,

307,315,321,333,341,344,358
iofunc _fink() 315
iofunc _lock_default() 297, 317
iofunc _fock_ocb _default() 305, 317
iofunc _[seek() 318
iofunc _lseek_default() 318
iofunc _mknod() 319
iofunc_mmap() 320
iofunc_mmap_default() 297, 320

Index

iofunc_nofity() 324
iofunc _notify _remove() 324
iofunc _notify Jrigger() 324, 325
iofunc_ocb_attach() 325, 326
iofunc_ocb_calloc() 321
iofunc_open() 325
iofunc_open_default() 325
iofunc_openfd() 326
iofunc_openfd_default() 326
iofunc_pathconf() 327
iofunc_pathconf_default() 327
iofunc_read() 328
iofunc_read_default() 328
iofunc_readlink() 330
iofunc_read_verify() 328, 347, 348,

354
iofunc_rename() 331
iofunc _space _verify() 333
iofunc_stat() 334
iofunc_stat_default() 334, 349
iofunc_sync() 335
iofunc_sync_default() 335
iofunc_sync_verify() 335, 341
iofunc_unblock() 336, 337
iofunc_unblock_default() 337
iofunc_unlink() 338
iofunc _unlock_ocb _default() 305,

339
iofunc_utime_default() 339
iofunc_utimes() 339
iofunc_write_default() 340
iofunc_write_verify() 340, 341, 354
io_link() 315
io _lock() 316
io_lock_ocb() 317, 339
io_lseek() 318, 370
io _mknod() 319

Index 465

Index

io_mmap() 320
io_mount() 322
io_msg() 323
ioJiotify() 324
io_open() 278, 285-287, 307, 310,

325,327,366
io_openfd() 326
io_pathconf() 327
_IQ_READ 329

io_read() 285, 286, 328, 329, 345,
349,350,352,354,355,359,
367-370

io_readlink() 330
io_rename() 331
J0_5ET_WRITE_NBYTES() 355,

356
io_shutdown() 332
io_space() 333
io_stat() 334, 349
io_sync() 335
io_unblock() 336, 337, 363
io_unlnk() 338
io_unlock_ocb() 339
io_utime() 339
io_write() 285, 286, 329, 340, 341,

352,359,363
pathname_attach() 307
resgmr _open_bind() 287
resmgr_attach() 273, 278, 280-283,

285,344
resmgr _bind_ocb() 326
resmgr _msgread() 354
resmgr _msgreadv() 278, 312, 341,

355
resmgr _msgwritev() 312
_RESMGKNPARTS() 359
_RESMGRYTR() 359

466 Index

future expansion capabilities 275
gate keeper 287
handler routines 302

context 302
messages 305

handlers
connect functions 307
I/0 functions 307
unblocking 307

handling directories 256
header as first part of message 133
initializing a connection 287
internal context 268
library 265, 267, 271

baselayer 268,269
POSIX layer 268

message passing 102
messages 253, 273

combine 318
combined 304
connect 255,264,288
creating custom 272
handling 268
I/0 264
_IO_DEVCTL 272
_IO_MSG 272
other 264
processing 304

mountpoints 280, 283
multiple entries 263
OCB monitoring 366
ordering 283
ordering in pathname space 283
outcalls 287
overriding allocation functions 364
pathname 262
POSIX layer 270, 292

program flow 287
receiving messages 263
registering 262, 280, 283
resolving 260, 263
returning directory entries 368
reusing data space at end of

message 363
serial port example 251
setting the iov size 303
skeleton 342
structure 279
structures 271

io_chmod_t 308
io_chown_t 308
io_close_t
io_devctl_t

309,310
311

io_dup_t 314
io_link_extra_t 315
io_link_t 315
io_lock_t 317
io_lseek_t 318
io....rnknod_t 319
io....rnrnap_t 321
io....rnount_t 322
io....rnsg_t 323
io_notify _t 324
io_open_t 325,330
io_openfd_t 326
io_pathconf_t 327
io_read_t 328
io_rename_extra_t 331
io_rename_t 331
io_spaced_t 333
io_stat_t 334
io_sync_t 335
io_unlink_t 338
io_utime_t 340

Index

io_write_t 340
iofunc_attr_t 293,295-299
iofunc....rnounLt 293, 296, 299,

300
iofunc_ocb_t 292-295
POSIX layer 292
resmgr _at tr _t 271, 272, 278,

279
resmgr_connect_funcs_t 271,

273
resmgr_context_t 271,

273-279,302
RESMGR-HANDLE_T 274, 275
resmgr_io_funcs_t 271,273,

275
RESMGR_OCB_T 276
struct dirent 329
struct _io_chmod 308
struct _io_chown 308
struct _io_close 309,310
struct _io_connect 305, 306,

315,319,320,322,325,330,331,
338

struct
_io_connect_link_reply

315,319,322,325,330,331,338
struct _io_devctl 311
struct _io_devctl_reply 311
struct _io_dup 314
struct _io_lock 317
struct _io_lock_reply 317
struct _io_lseek 318
struct _io....rnrnap 321
struct _io....rnrnap_reply 321
struct _io....rnsg 323
struct _io_notify 324
struct _io_notify_reply 324

Index 467

Index

struct _io_openfd 326
struct _io_pathconf

struct _io_read

struct _io_space

struct _io_stat

struct _io_sync

struct _io_utime

struct _io_write

writing 270
round robin

defined 427

328
333

334
335

340
340

round-robin scheduling 11
RR See round-robin
rsrcdbmgr _devno_attach() 301
RTC

327

getting and setting values 205
synchronizing to current time of

day 205
RUNNING 16

and SMP 16

s
scalability 63

due to modularity 97
over network of SMP Ill

scatter/gather
defined 428
operation 139

SCHED_FIFO 41
sched_get_priority_max() 11
sched_get_priority _min() 11
SCHED_QTHER 41,42
SCHED_RR 41,42
sched_rr _get _interval() 13

468 Index

scheduling 91
algorithms 11

FIFO 11
RR 11

events in the future using timers 183
faults 92, 93
FIFO

defined 423
hardware interrupts 91, 92, 178
impact of interrupts 223
interrupts 92, 221
kernel calls 91, 92, 1 78
one shot events in the future 183
other hardware 92
periodic events using timers 183
priority zero 42
round robin

defined 427
SCHED_FIFO 41
SCHED_OTHER 41
SCHED_RR 41
the realtime clock 92
thread creation 36
timers 92

scheduling scope 39
SchedYield() 12
sched_yield() 12
_SCPAGESIZE 40
SEM 17
semaphore

defined 428
in analogy 7

sem_post() 428
sem_wait() 428
send hierarchy

avoiding deadlock 120
breaking 121, 149

implementation 149
with MsgDeliverEvent() 150

defined 428
designing 121
struct sigevent 149
thread 149

Send() (QNX 4) 387, 396
send-blocked 100

diagram 99
send-blocked state

when abnormal 101
when normal 101

send-driven model 108
example 109
important subtlety 110

sending a message
defined 428

server
acting on unblock pulse 154
assumptions about client data area 131
authentication of client 122
basic operation 115
being informed of client unblock 216
binding of client 124
boosting priority 170
busy 100
channels 121
class of service 122
client buffer size 130
client connecting to

diagram 116
client priority 123
clients with mismatched buffer

sizes 131
creating a channel 115
defined 429
delivering event to client 150

endian flags 124
filesystem example 130
finding 128

global variable 128
global variables 129
QNX 4 compatibility 128
resource manager 128
well-known files 128

Index

finding out who sent message 122
framework 118
general flow 124
handling big messages 131
how to handle large transfers 134
ignoring unblock pulse 154
limiting transfer size 119
logging of client 122
mixing multithreaded and

server/subserver 108
multi-threaded 110
multiple requests
network distributed

125
108

node descriptor of client 123
not replying to client 125, 202
notifying client 149
periodic timers 194
phases of message passing 116
receive ID 118
reply blocked client 101
replying to multiple clients 202
server connection ID 123
server/subserver 106, 107

delegation of work 108
SMP 108, Ill
state transition

diagram 99
state transitions 99
storing the struct sigevent 150

Index 469

Index

thread pool 81
thread pools 105
timeouts 194
unblock pulse handling 155
unblocked by client 118
unblocking

client 118
using Msglnfo() 123
using MsgReceive() 123
using pulses for timeouts 189
using signals for timeouts 189
verifying validity of event 150
writing a header later 135

server/subserver 126
analogy 108
diagram 110
example 109
implementation description 109
message passing 105

SETIOV() (macro) 138
defined 138
example 140

setting the time 205
setuid() 232
setupPulseAndTimer() 197
shared memory 61

versus network 63
sharing interrupts 228-230

diagram 228
SH_COMPAT 294
SH_DENYNO 294
SH_DENYRD 294
SH_DENYRW 294
SH_DENYWR 294
SIGALRM 204
SIGEV_INTR 188,239,244

and interrupts 239, 244

470 Index

andlnterruptWait() 239
SIGEV JNTRJN/T() (macro) 188
sigev Jlotify .function() 187
SIGEV _puLSE 185, 186, 198, 239

and struct sigevent 198
S/GEV YULSEJN/T() 198
SIGEV YULSEJN/T() (macro) 188

example 198
SIGEV _puLSE_PRIO__INHERIT 188, 198
SIGEV _SIGNAL 188, 239

and interrupts 239
SIGEV _SIGNAL family 185
SIGEV _SIGNALCODE 188
SIGEV _5/GNALCODEJN/T() (macro)

188
SIGEV _5/GNALJN/T() (macro) 188
SIGEV _SIGNAL_pULSE 188
SIGEV _SIGNAL THREAD 188
S/GEV _5/GNALTHREAD JN/T() (macro)

188
SIGEV_THREAD 185, 187, 239

and interrupts 239
SIGEV_THREADJN/T() (macro) 189

example 204
SIGEV_UNBLOCK 188,213,215

and struct sigevent 213
example 214

SIGEV_UNBLOCKJN/T() (macro) 188,
214,215

example 214
signal

defined 429
SIGALRM 204
SIGUSRl 204
struct sigevent 216
timers 184, 204
versus pulses 189

SIGSEGV 40
SIGUSRl 204
sigwait() 189
sleep() 19, 92, 177-179,209

bad implementation 177
sleepon locks See synchronization
slowing down time 206
SMP 9, 97

application 53
atomic operations 59
coding for SMP or single processor 47
concurrency 59
condvars 80
constraints 55
creating enough threads 46
in a networked system 105
interrupts 59, 247
message passing 105
multiple threads 53
scalability Ill
soaker thread 57
STATE_RUNNING 16
thread pools 106
threads 45
timing

diagram 54, 55, 57
tips 59
underutilization 58
utilization 56

soaker thread 57
spawn() 24-26, 30, 31
spawn() family 22, 24, 26, 27, 29, 30, 34
spawn!() 24, 25
spawnle() 24, 25
spawnlp() 24, 25
spawnlpe() 24, 25
SPAWN_NOZOMBIE 30

spawnp() 24, 25
spawnv() 24, 25
spawnve() 24, 25
spawnvp() 24, 25
spawnvpe() 24, 25
speeding time up 206
stack

for thread 36
postmortem analysis 40

stat() 266, 267, 381
STATE_CONDVAR 17, 73
STATEJ)EAD 17
STATEJ:NTR 17, 19
STATEJOIN 17
STATE.MUTEX 17
STATE_NANOSLEEP 17, 19
STATE_NET __REPLY 17
STATE_NET _SEND 17

Index

STATE__READY 17, 92, 99, 169, 170, 179,
182,184,221,222,231,240

STATE__READY state 99
STATE.RECEIVE 17, 19
STATE.RECV 99, 172, 189
STATE.RECV state

diagram 99
STATE.REPLY 17, 19,153,202,215,216
STATE__REPLY state 100, 101

diagram 99
STATE__RUNNING 17, 221
STATE_SEM 17
STATE_SEND 17, 19, 148, 153,215,216
STATE_SEND state 100

diagram 99
STATE_SIGSUSPEND 17
STATE_SIGWAITINFO 17
STATE_STACK 17
STATE_STOPPED 17

Index 471

Index

STATE_WAITCTX 17
STATE_WAITPAGE 17
STATE_WAITTHREAD 17
strcmp() 245
strdup() 245
stiftime() 193
struct _clockadjust 205
struct _clockperiod 206

members 207
struct dirent 329
struct _io_chmod 308
struct _io_chown 308
struct _io_close 309,310
struct _io_connect 305,306,315,

319,320,322,325,330,331,338
struct _io_connect_link_reply

315,319,322,325,330,331,338
struct _io_devctl 311
struct _io_devctl_reply 311
struct _io_dup 314
struct _io_lock 317
struct _io_lock_reply 317
struct _io_lseek 318
struct _io~ap 321
struct _io~ap_reply 321
struct _io~sg 323
struct _io_notify 324
struct _io_notify_reply 324
struct _io_openfd 326
struct _io_pathconf 327
struct _io_read 328
struct _io_space 333
struct _io_stat 334
struct _io_sync 335
struct _io_utime 340
struct _io_write 340
struct itimerspec 192

472 Index

defined 192
example 198
example of filling 193
iLinterval member 192
iLvalue member 192

struct ~sg_info 122, 158, 164
declaration 167
fields in 123
flags 164
node descriptors 167

struct _pulse 145, 147
declaration 145

struct sigevent 150, 184, 185, 190,
191,204,213,215,216,226,231,
236,238,240,241,389,404,406,
423

anonymous union 185
creating threads 204
defined 184
example 198, 214
how to initialize 184
interrupts 231, 236, 238
macros for filling 188
persistency 226
pulse 216
pulses 198
send hierarchy 149
shortcut initialization 215
sigev _code member
sigev_coid member

186, 187
186

sigevJwtify member 185, 186
sigev J1ot(fy _attributes member 187
sigevJzot(fyjunction member 187
sigev_priority member 186
SIGEY _PULSE 198
sigev __signa

and pulses 198

sigev ...signa member 187
SIGEV_UNBLOCK 213
sigev_value member 186, 187
signal 216
timers 184

struct _thread_pool_attr

defined 82
members 90

struct timespec 192
defined 192

structures
attribute

defined 421
FILE 252,262
iov_t 137-139
pthread_attr_t 35
pthread_cond_t 74
pthread_rwlock_t 65
pthread_t 34,49
resmgr_attr_t 271,272,279
resmgr_connect_funcs_t 271,

273
resmgr_context_t 271,273-277
RESMGR-HANDLE_T 274,275
resmgr_io_funcs_t 271,273,275
RESMGR_OCB_T 276
resource manager

io_chmod_t 308
io_chown_t 308
io_close_t 309, 310
io_devctl_t 311
io_dup_t 314
io_link_extra_t 315
io_link_t 315
io_lock_t 317
io_lseek_t 318
io....mknod_t 319

io....lllillap_t 321
io....mount_t 322
io....msg_t 323
io__notify_t 324
io_open_t 325, 330
io_openfd_t 326
io_pathconf_t 327
io_read_t 328
io_rename_extra_t

io_rename_t 331
io_space_t 333
io_stat_t 334
io_sync_t 335
io_unlink_t 338
io_utime_t 340

Index

331

io_wri te_t 340
iofunc_attr_t 293,295-299
iofunc....mount_t 293, 296, 299,

300
iofunc_ocb_t 292-295
resmgr_context_t 302
struct dirent 329
struct _io_chmod 308
struct _io_chown 308
struct _io_close 309,310
struct _io_connect 305, 306,

315,319,320,322,325,330,331,
338

struct
_io_connect_link_reply

315,319,322,325,330,331,338
struct _io_devctl 311
struct

struct

struct

struct

struct

_io_devctl_reply 311
_io_dup 314
_io_lock 317
_io_lock_reply 317
_io_lseek 318

Index 473

Index

struct _io~ap 321
struct _io~ap_reply 321
struct _io~sg 323
struct _io-notify 324
struct _io-notify_reply 324
struct _io_openfd 326
struct _io_pathconf 327
struct _io_read 328
struct _io_space 333
struct _io_stat 334
struct _io_sync 335
struct _io_utime 340
struct _io_write 340

struct itimerspec 192
it-interval member 192
it_value member 192

struct ~sg_info 122, 158, 164,
167

chid 123
coid 123
flags 124
msglen 124
nd 123
pid 123
priority 123
scoid 123
srcmsglen 124, 152
srcnd 123
tid 123

struct _pulse 145, 147
struct sigevent 184, 185, 190,

191,204,215,216,226,231,236,
238,240,241,389,404,406,423

struct timespec 192
thread_pool_attr_t 83
union sigval 146

sub-second timers 192

474 Index

synchronization
assocation of mutex and condvar 79
barrier 93

defined 422
condition variable 64, 73

defined 422
condvar 93

versus sleepon 75
condvar versus sleepon 77
deadlock

defined 423
joining 93
mutex 93

across process boundaries 80
defined 424

reader/writer lock 64
rendezvous 50
semaphore 93

defined 428
signal versus broadcast 75
sleepon

versus condvar 75
sleepon lock 64, 67, 93
sleepon versus condvar 77
to termination of thread 4 7, 48
using a barrier 50

synchronizing time of day 205
synchronous See also asynchronous

defined 429
<sys/netmgr.h> 166
<sys/neutrino.h> 115, 117,118, 137,

138,145,146,195,213,214
<sys/siginfo.h> 195
sysconf() 40
system

as consisting of processes and
threads 19

system() 22, 23

T

tar 416
example 416

technical support 411
beta versions 415

updates 415
comp.os.qnx 417
contacting 413
describing the problem 413

be precise 414
narrow it down 416
QDN 413
reproduce the problem 415
RTFM 411
third-party directory 418
training 418

telnet 414
termination sychronization 47, 48
tfork() 387
thread

associating with interrupt handler 234
barriers 50
blocking states I 0
concurrent 9
context switch 10
coupling 61,62
created by timer trigger 204
creating

attribute structure initialization 37
detached 36
example 45
joinable 36

on timer expiry 184
registering exit function 36
scheduling parameters 36
specifing stack 36

Index

specifying scheduling algorithm 41
creating on timer expiration 187
creating via struct sigevent 187
deadlock

defined 423
defined 429
design abstraction 9
example of creation 42
FIFO scheduling 11
fork() 34
fundamentals 3
in mathematical operations 44
in process 19
interrupt interaction 247
interrupt interactions 236
interrupts 225, 226
message passing 105, 122
multiple threads 3
mutex 5
operating periodically 177
pidin 43
polling for completion 215
pool 81, 106

analysis 87
and SMP 106
example 86
functions 83
message passing 105

POSIX 426, 429
postmortem stack analysis 40
preemption 11
priorities 6
Processes 3

Index 475

Index

processes 61, 62
pthread_join() 213-215
readers/writer locks 64
readied by timer 217
readying via message pass 99
resumption 11
RR scheduling 11
scheduling algorithm 10
scheduling algorithms 11
semaphore 7
single threads 3
SMP 45

and interrupts 59
concurrency 59
determining how many threads to

create 46
timing diagram 54, 55, 57

soaker 57
stack 41
states

receive-blocked 99
receive-blocked diagram 99
reply-blocked 100, 101
reply-blocked diagram 99
send-blocked 100
send-blocked diagram 99
STATE_READY 99
STATKRECV 99
STATE_RECV diagram 99
STATE_REPLY 100, 101
STATE_REPLY diagram 99
STATE_SEND 100
STATE_SEND diagram 99

synchronizing to termination of 4 7, 48
utilizing SMP 56
where to use 44, 60

thread pool

476 Index

message passing 149
thread_pool_attr_t 83
ThreadCtl() 232
thread _pool() family 105
thread_pooLcontrol() 82
thread_pool_create() 82, 85, 87

example 86
thread_pooLdestroy() 82
thread_pooUimits() 82
thread_pool__start() 82, 86, 87

example 86
time

adjusting forwards or backwards 206
adjusting gradually 205
discontinuities in flow 205
retarding flow of 206
synchronizing current time of day 205

time() 193
<time.h> 191, 192
timebase 206
timeout 213

and kernel states 213
arming 214, 216
clearing 214
kernel timeouts 203
pthread_join() 215
server-driven 203
server-maintained 194

example 195, 197-200
triggering 214
unblocking

client 152
with pthread_join() 214

timeout notification 184
pulse 189
signal 189

timer

I 0 millisecond 179
absolute 183, 191, 216

defined 421
example 193

accuracy 180, 181
adjusting base timing resolution 206
asynchronous nature 182
behaviour if expired 181
changing resolution 181
CLOCK.MONOTONIC 190
ClockPeriod() 206
CLOCK_REALTIME 190
CLOCK_SOFTTIME 190
converting time formats 193
creating 190
creating a thread 185, 187
creating threads on expiry 184
creating threads on trigger 204
delivering a pulse 185
delivering a signal 185
diagram showing big picture 179
drift 181
flags 191
getting and setting the realtime clock

205
hardware divider 180
hardware divisor 180
implementation 179, 183, 184, 194,

217
improving accuracy 206
inactivity shutdown 203
jitter 181, 183

diagram 182
kernel timeouts 216
limits on base timing resolution 207
one-shot 183, 192

example 193

periodic 183, 192
and server maintenance 203
and servers 194
example 193

polling 203
preemption 182
pulse versus signal 189

Index

pulses 147, 184, 186, 195, 197-200
putting a thread on hold 179
readying a thread 182, 217
relative 183, 191, 216

defined 427
example 193, 195, 197-200

repeating
defined 427

resolving 181
scheduling an event in the future 183
sending a signal 186

specifying code number 187
specifying signal number 187

setting type 191
SIGALRM 204
signals 184, 204

specifying a signal 204
SIGUSRI 204
specifying sub-second values 192
starting 191
struct itimerspec 192
struct sigevent 184
struct timespec 192
<time.h> 192
timeout notification 184

by pulse 189
by signal 189

TIMER_ABSTIME 191
timer _create() 190
timer __settime() 191

Index 477

Index

types 183, 191, 192
usage examples 194
using 189
using pulses with servers 189
warm-up timer 204

TIMER_ABSTIME 191
timer_create() 190, 191, 198

example 198
flags argument 191
signal example 204

timer .settime() 191, 193, 198
andTIMER_ABSTIME 191
example 198

TimerTimeout() 124, 152,213-215,388
and CLOCK_REALTIME 213
example 214-216
specifying multiple kernel states 216

timestamps 207
timing

tips

busy wait 178
fine grained 178
high accuracy 207
hogging CPU 1 78
using ClockCycles() 207

broadcast versus signal 75
SMP gotchas 59
when to use condvar 78
when to use sleepon 78
where to use a thread 44, 60

Trigger() (QNX 4) 403
triggering timeouts 214
Trunley, Paul xxi

478 Index

u
unblock

defined 429
using a timeout 213

unblock _june() 91
union sigval 146

declaration 146
unit testing

message passing 105

v
vfork() 23, 32, 34, 94
virtual memory

defined 430
virutal address

defined 429
volatile 236

and interrupts 236, 248

w
waitpid() 30
warm-up timer 204
_WRITE 294
write() 102, 131, 132, 136,397,403,427

A Guide for Realtime Programmers

Getting Started with QNX Neutrino 2 gives you a thorough
treatment of the ins and outs of QNX's next-generation operating
system, QNX Neutrino 2. Written in an informal, easy-to-read style,
the book allows anyone from junior programmers to seasoned system
architects to get a head start on designing and developing robust
realtime systems- from tiny embedded control applications to large
network-distributed systems.

This book features an in-depth treatment of the fundamental
components of QNX Neutrino. Here are some of the highlights:

• message passing - what it is, how to use it, and why it's key
• processes and threads - concepts, caveats, and design tips
• timers - how to schedule periodic events in your programs
• resource managers - all about how to write device drivers
• interrupts - how to handle them efficiently and effectively

This book comes with many tested code samples, explanations, and
diagrams to help you understand all the concepts involved. The author's
web site, www. parse. com, contains the code samples from the
book as well as periodic updates.

Praise for the author's previous book,
Getting Started with QNX 4:

"Getting Started with QNX 4 is an excellent reference;
I wish all OS books were written like that."
Dr. J. A. Rueda, Data Networks Management and Performance,
TRLabs, Winnipeg, Manitoba, Canada

"Even with many years of experience using QNX, and knowledge of the
subjects covered, 1 enjoyed reading the book, and no doubt learned some
finer points. 1 can highly recommend this book to anyone interested 1n th1s

subject matter."
Mitchell Schoenbrun, Micro Business Applications, San Francisco, California, USA

Society for Technical Communications "Award of Merit"- February 1999.

~piARSE SOFTWARE
~ ~ DEVICES

Providing Contract Research & Development Services

training departments.

ISBN 0-9682501-1-4

:\\~1\\\l\'ll\l\
Printed in Canada

