
Acorn Assembler

ii

Copyright © 1994 Acorn Computers Limited. All rights reserved.

Some updates and changes copyright © 2002 Castle Technology Ltd. All rights
reserved.

Some updates and changes copyright © 2011 RISC OS Open Ltd. All rights
reserved.

Issue 1 published by Acorn Computers Technical Publications Department.

Issue 2 published by Castle Technology Ltd.

Issue 3 published by RISC OS Open Ltd.

No part of this publication may be reproduced or transmitted, in any form or by
any means, electronic, mechanical, photocopying, recording or otherwise, or
stored in any retrieval system of any nature, without the written permission of the
copyright holder and the publisher, application for which shall be made to the
publisher.

The product described in this manual is not intended for use as a critical
component in life support devices or any system in which failure could be expected
to result in personal injury.

The product described in this manual is subject to continuous development and
improvement. All information of a technical nature and particulars of the product
and its use (including the information and particulars in this manual) are given by
the publisher in good faith. However, the publisher cannot accept any liability for
any loss or damage arising from the use of any information or particulars in this
manual.

All trademarks are the property of their respective owners.

.
Published by RISC OS Open Ltd.

Issue 1, December 1994 (Acorn part number 0484,233).
Issue 2, October 2002 (updates by Castle Technology Ltd).
Issue 3, July 2011 (updates by RISC OS Open Ltd).

Contents

Contents iii
Introduction 1
Assembler tools 2
This user guide 2
Conventions used in this manual 4

Part 1 – Using the assembler 7

ObjAsm 9
Starting ObjAsm 9
The SetUp dialogue box 11
The SetUp menu 14
ObjAsm output 27
ObjAsm icon bar menu 28
Example ObjAsm session 29
ObjAsm command lines 30

Part 2 – Assembly language details 39

ARM assembly language 41
General 41
Input lines 41
AREAs 41
ORG and ABS 43
Instruction sets and syntax 44
Object file format 44
Symbols 44
Labels 45
Local labels 46
Comments 47
Constants 47
The END directive 47

CPU instruction set 49
Extended range immediate constants 49
iii

The MOV32 instruction 50
The ADR instruction 50
The ADRL instruction 51
The IT instruction 51
The UND instruction 52
Literals 52
Shifts by zero 53

Floating point instructions 55
Floating point constants 56
Extended range immediate constants 58
The VMOV2 instruction 58
Register comparison instructions 59
2 x 32-bit vector zip and unzip 59
Literals 60
Right shifts by zero 61
Fixed point conversions with zero fractional bits 61
Unsigned saturation of signed numbers 61

Directives 63
Storage reservation and initialisation – DCB, DCW, DCD etc 63
Binary file inclusion – BIN and INCBIN 65
Floating point store initialisation – DCFH, DCFS and DCFD 65
Describing the layout of store – MAP and FIELD 66
Organisational directives – END, ORG, LTORG, KEEP and LEAF 66
Links to other object files – IMPORT, EXPORT, etc 67
Links to other source files – GET/INCLUDE 69
Diagnostic generation – ASSERT, ! and INFO 70
Dynamic listing options – OPT 71
Titles – TTL and SUBT 71
Miscellaneous directives – ALIGN, NOFP, RLIST and ENTRY 72

Symbolic capabilities 73
Setting constants 73
Local and global variables – GBL, LCL and SET 74
Variable substitution – $ 75
Aliases 75
Built-in variables 76

Expressions and operators 81
Unary operators 81
Binary operators 83
iv

Contents
Conditional and repetitive assembly 87
Conditional assembly 87
Repetitive assembly 90

Macros 91
Syntax 92
Local variables 93
MEXIT directive 94
Default values 94
Macro substitution method 95
Nesting macros 95
A division macro 96

Part 3 – Developing software for RISC OS 99

PSR Manipulation 101

Writing relocatable modules in assembler 103
Assembler directives 104
Example 105

Interworking assembler with C 107
Examples 107

Part 4 – Appendices 111
Changes to the assembler 113
Differences from RVDS 119
Error messages 123
Example assembler fragments 139

Using the conditional instructions 139
Pseudo-random binary sequence generator 140
Multiplication by a constant 141
Loading a word from an unknown alignment 142
Sign/zero extension of a half word 142
Setting condition codes 142
Full multiply 144

Support for AAsm source 145
The --absolute option 145

Index 147
v

vi

1 Introduction

Acorn Assembler is a development environment for producing RISC OS desktop

applications and relocatable modules written in ARM assembly language. It
consists of a number of programming tools which are RISC OS desktop
applications. These tools interact in ways designed to help your productivity,
forming an extendable environment integrated by the RISC OS desktop. Acorn
Assembler may be used with Acorn C/C++ (a part of this product) to provide an
environment for mixed C, C++ and assembler development.

This product includes tools to:

● edit program source and other text files

● search and examine text files

● examine some binary files

● assemble small assembly language programs

● assemble and construct more complex programs under the control of
makefiles, these being set up from a simple desktop interface

● squeeze finished program images to occupy less disk space

● construct linkable libraries

● debug RISC OS desktop applications interactively

● design RISC OS desktop interfaces and test their functionality

● use the Toolbox to interact with those interfaces.

Most of the tools in this product are also of general use for constructing
applications in other programming languages, such as C and C++. These
non-language-specific tools are described in the accompanying Desktop Tools guide.

Installation
Installation of Acorn Assembler is described in the chapter Installing Acorn C/C++ on
page 7 of the accompanying Desktop Tools guide.
1

Assembler tools
Assembler tools
The assembler provided includes the following features:

● full support of the ARM instruction set, for all versions up to and including
architecture 7, as used in the Cortex series of processors

● support for ARM THUMB, up to and including THUMB version 3

● global and local label capability

● powerful macro processing

● comprehensive expression handling

● conditional assembly

● repetitive assembly

● comprehensive symbol table printouts

● pseudo-opcodes to control printout.

ObjAsm
The Assembler ObjAsm creates object files which cannot be executed directly, but
must first be linked using the Link tool. It is often most efficient to construct larger
programs from several portions, assembling each portion with ObjAsm before
linking them all together with Link. Object files linked with those produced by
ObjAsm may be produced from some programming language other than
assembler, for example C.

The Link tool is described in the chapter Link on page 137 of the accompanying
Desktop Tools guide.

This user guide
This document is a reference guide to ObjAsm, which is the only tool in this
product which is not used for programming in other languages. The others are
described in the accompanying Acorn C/C++ and Desktop Tools guides. It is assumed
that you are familiar with other relevant Archimedes documentation, such as the:

● Welcome Guide supplied with your computer

● RISC OS 3 User Guide

● RISC OS 3 Programmer’s Reference Manual.
2

Introduction
Recommended Books
One or more of these books will be useful if you are writing a lot of ARM assembler.

● ARM Architecture Reference Manual, Second Edition, edited by David Seal :
Addison-Wesley, 2000, 816 pages, ISBN 0-201-73719-1.
This book is also known as the ‘ARM ARM’ and is an essential reference for
anyone working at a low level with the ARM processor, but its style makes it
unsuitable as introductory reference.
The paper version has not been re-issued since architecture 5TE, but the
electronic version receives updates a few times per year. It is available in PDF
format free of charge from ARM’s website, although you do need to register
first. The manual had a major reworking after architecture 6, when the ‘UAL’
assembler syntax was introduced, and it is now distributed in separate
editions for profile ‘M’ CPUs and other CPUs. The final pre-UAL version of the
manual is also still available. See:
ARMv7-AR Architecture Reference Manual
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ddi0406b/index.html

ARMv7-M Architecture Reference Manual
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ddi0403c/index.html

ARMv5 Architecture Reference Manual (includes pre-UAL architecture 6)
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ddi0100i/index.html

● ARM 7500FE Data Sheet, document number ARM DDI 0077B, ARM Ltd, 1996,
365 pages, and CL-PS7500FE Advance Data Book, document number 447500-001,
Cirrus Logic, 1997, 251 pages. These include the official documentation of the
final hardware implementation of the FPA, so represent the best and most
easily-obtained reference for that part of the instruction set. Note that these
instructions are not included in the ARM ARM.

● Intel XScale Core Developer’s Manual, Intel Corporation, 2004, 220 pages. The
definitive reference for the XScale coprocessor 0.

● ARM Assembly Language: Fundamentals and Techniques, William Hohl, CRC Press,
2009, 371 pages, ISBN 978-1439806104.
Despite the publication date, this reportedly only describes architectures up to
4T.

● ARM Assembly Language - an Introduction, J.R. Gibson : Lulu Enterprises, 2007, 244
pages, ISBN 978-1847536969.

● ARM System-on-Chip Architecture, 2nd Edition, Prof. Steve Furber :
Addison-Wesley, 2000, 432 pages, ISBN 978-0201675191.
By one of the original designers of the ARM, this is now showing its age, and
only covers up to architecture 5TE.
3

http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ddi0406b/index.html
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ddi0403c/index.html
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ddi0100i/index.html

Conventions used in this manual
● The ARM RISC Chip – A Programmer’s Guide, A. van Someren and C. Atack –
Wokingham, UK: Addison-Wesley, 1993, 400 pages, ISBN 0201624109.
This is a good introduction to the ARM although the book is now rather dated
and only covers up to architecture 3.

● Archimedes Assembly Language: A Dabhand Guide, second edition, M. Ginns –
Manchester, UK: Dabs Press, 1988, 368 pages, ISBN 1870336208.
Out of print and difficult to obtain, but useful as it specifically refers to using
RISC OS and the built-in BBC BASIC assembler.

● ARM Assembly Language Programming, P.J. Cockerell – Computer Concepts/MTC,
1987, ISBN 0951257900.
Out of print and difficult to obtain. Only covers architecture 2a, of historic
interest.

Note on program examples
Both general and specific examples of syntax and screen output are given, but
there are occasions where the full syntax of an instruction and its accompanying
screen appearance would obscure the specific points being made. It follows,
therefore, that not all the examples given in the text can be used directly since they
are incomplete.

Conventions used in this manual
The Assembler has its own interpretations of the punctuation symbols and special
symbols which are available from the keyboard. These are:

In order to distinguish between characters used in syntax and descriptive or
explanatory characters, typewriter style typeface is used to indicate both text which
appears on the screen and text which can be typed on the keyboard. This is so that
the position of relevant spaces is clearly indicated.

The following typographical conventions are used throughout this manual:

! “ # $ % & ^ @ ()

[] { } | : . , ; +

- / * = < > ? _

Convention Meaning

filename Text that you must replace with the name of a file, register,
variable or whatever is indicated.

&1C Hexadecimal numbers are preceded with an ampersand.
4

Introduction
«instruction» Italic guillemots «» enclose optional items in the syntax.

For example, the Assembler ObjAsm accepts a three field
source line which may be expressed in the form:

«instruction» «label» «;comment»

ALIGN Text that you type exactly as it appears in the manual. For
example:

L321 ADD Ra,Ra,Ra,LSL #1 ;multiply by 3

Convention Meaning
5

Conventions used in this manual
6

Part 1 – Using the assembler
7

8

2 ObjAsm

ObjAsm is the ARM assembler forming part of the Acorn C/C++ product. It

processes text files containing program source written in ARM assembly language
into linkable object files. Object files can be linked by the Link tool with each other
or with libraries of object files to form executable image files or relocatable
modules. ObjAsm multitasks under the RISC OS desktop, allowing other tasks to
proceed while it operates.

The sources for large programs can be split into several files, each of which only
need be re-assembled to an object file when you have altered it.

An example use of ObjAsm would be to construct a binary image file !RunImage
in a RISC OS desktop application from the two source files s.interface and
s.portable. ObjAsm processes the source files to form o.interface and
o.portable, which the Link tool processes to form !RunImage.

The controls of ObjAsm are similar to those of other non-interactive Desktop tools,
with the common features described in the chapter General features on page 99 of the
accompanying Desktop Tools guide. You adjust options for the next assembly
operation on a SetUp dialogue box and menu which by default appear when you
click Select on the main icon or drag a source file to it. Once you have set options
you click on a Run action icon and the assembly starts. While the assembly is
running output windows display any text messages from the assembler and allow
you to stop the job if you wish.

There is no file type to double click on to start ObjAsm – it owns no file type unlike,
for example, Draw.

Starting ObjAsm
Like other non-interactive Desktop tools, ObjAsm can be used under the
management of Make, with its assembly options specified by the makefile passed to
Make. For such managed use, ObjAsm is started automatically by Make; you don’t
have to load ObjAsm onto the icon bar.
9

Starting ObjAsm
To use ObjAsm directly, unmanaged by Make, first open a directory display on the
AcornC_C++.Tools directory, then double click Select on !ObjAsm. The ObjAsm
main icon appears on the icon bar:

Clicking Select on this icon or dragging an assembly language source file from a
directory display to this icon brings up the ObjAsm SetUp dialogue box:

Source will appear containing the name of the last filename entered there, or
empty if there isn’t one.

Dragging a file on to the icon will bring up the dialogue box and automatically
insert the dragged filename as the Source file.
10

ObjAsm
Clicking Menu on the SetUp dialogue box brings up the ObjAsm SetUp menu:

The SetUp dialogue box and menu specify the next assembly job to be done. You
start the next job by clicking Run on the dialogue box (or Command line menu
dialogue box). Clicking Cancel removes the SetUp dialogue box and clears any
changes you have just made to the options settings back to the state before you
brought up the SetUp box. The options last until you adjust them again or
!ObjAsm is reloaded. You can also save them for future use with an option from the
main icon menu.

The SetUp dialogue box
When the SetUp dialogue box is displayed the Source writable icon contains the
name of the source file to be assembled. The sourcefile can be specified in two
ways:

● If the SetUp box is obtained by clicking on the main ObjAsm icon, it comes up
with the source file from the previous setting. This helps you repeat a previous
assembly, as clicking on the Run action icon repeats the last job if there was
one.
11

The SetUp dialogue box
● If the SetUp box appears as a result of dragging a source file containing
assembly language text to the main icon, the source file will be the same as
the dragged source file.

When the SetUp box appears the Source icon has input focus, and can be edited in
the normal RISC OS fashion. If a further source file is selected in a directory display
and dragged to Source, its name replaces the one already there.

Include
The Include SetUp dialogue box icon adds directories to the source file search
path so that arguments to GET/INCLUDE directives (see page 146), or #include
directives if you are using the C preprocessor, do not need to be fully qualified. The
search rule used is similar to the ANSI C search rule – the current place being the
directory in which the current file was found.

The directories are searched in the order in which they are given in the Include
icon.

Options
The Throwback option switches editor throwback on (the default) or off. When
enabled, if the DDEUtils module and SrcEdit (or another throwback-enabled editor
such as StrongEd or Zap) are loaded, any assembly errors cause the editor to
display an error browser. Double clicking Select on an error line in this browser
makes the editor display the source file containing the error, with the offending
line highlighted. For more details, see the chapter SrcEdit on page 69 of the
accompanying Desktop Tools guide.

The Debug option switches on or off the production of debugging tables. When
enabled, extra information is included in the output object file which enables
source level debugging of the linked image (as long as Link’s Debug option is also
enabled) by the DDT debugger. If this option is disabled, any image file finally
produced can only be debugged at machine level. Source level debugging allows
the current execution position to be indicated as a displayed line of your source,
whereas machine level debugging only shows the position on a disassembly of
memory.

The No code generation option switches off pass 2 of the assembly, so no output
file is generated. This allows you to check the syntax of source code or directives -
the most significant omission will be range-checking of immediate constants,
since this is only done in pass 2.
12

ObjAsm
The Use C preprocessor option switches on a preprocessing pass over the source
code using the C compiler. This permits you to use C statements like #define, and
most usefully permits the sharing of header files between C and assembler.
ObjAsm understands a range of C operators, which permits simple expressions to
be included in these header files.

The Pre-UAL ARM, UAL ARM and Pre-UAL Thumb options determine the default
instruction set and syntax with which the source code is interpreted, in the
absence of a CODE32, ARM or CODE16 directive (see page 44). ARM means ARM's
traditional fixed-width 32-bit instruction set, and Thumb means ARM's
mixed-width 16-bit / 32-bit instruction set. UAL was a significant revision of the
instruction syntax which was introduced alongside architecture ARMv6T2, when
Thumb's capabilities reached a par with the ARM instruction set, and it became
desirable for it to be possible for the same source code to be assembled both as
ARM and Thumb. ObjAsm does not yet support UAL Thumb assembly. If none of
these options are selected, ObjAsm currently behaves as though Pre-UAL ARM
had been chosen.
13

The SetUp menu
The SetUp menu

The command line
The ObjAsm RISC OS desktop interface works by driving an ObjAsm tool
underneath with a command line constructed from your SetUp options. The
Command line item at the top of the SetUp menu leads to a small dialogue box in
which the command line equivalent of the current SetUp options is displayed:

The Run action icon in this dialogue box starts assembly in the same way as that in
the main SetUp box. Pressing Return in the writable icon in this box has the same
effect. Before starting assembly from the command line box, you can edit the
command line textually, although this is not normally useful.

Controlling syntax
The next few entries in the SetUp menu all control the acceptable syntax for the
Assembler.
14

ObjAsm
The first four entries are mutually exclusive options for which register names are
pre-declared by ObjAsm. If none are selected, ObjAsm behaves as though APCS
registers was chosen.

No registers specifies that no register names are pre-declared at all.

No APCS registers specifies that the following register (and coprocessor) names
are pre-declared:

● R0-R15 and r0-r15

● SP, sp, LR, lr, PC and pc

● acc0-acc7

● c0-c15

● D0-D31 and d0-d31

● F0-F7 and f0-f7

● p0-p15

● Q0-Q15 and q0-q15

● S0-S31 and s0-s31

APCS Registers additionally pre-declares register names defined by the ARM
Procedure Call Standard: a1-a4, v1-v5, fp and ip, as well as some registers
from the list v6-v8, SB, sb, SL, sl, FP and IP, depending upon the options
passed to --apcs.

All registers pre-declares all of the above, irrespective of the --apcs options.

You can specify other APCS variants using the --apcs option in the Others
writable field at the bottom of the menu; see Specifying other command line options on
page 18, and Command line options not available from the desktop on page 23.

C strings, when enabled, allows the assembler to accept C style string escapes
such as ‘\n’. C strings is enabled by default.

Upper case opcodes, when chosen, makes ObjAsm recognise instruction
mnemonics only if they are entirely in upper case. By default, Upper case
opcodes is not chosen, and ObjAsm recognises mnemonics that are entirely in
upper or lower case (but not a mixture of both).

This option is provided mainly to support old code that might have used lower
case versions of instruction mnemonics as macro names; it allows the macros to
still be recognised as such.
15

The SetUp menu
CPU sets the target ARM core or architecture version. To obtain a list of values this
can take, enter list here and run ObjAsm (no assembly will take place). If nothing
is specified here, and Device is not specified either, ObjAsm currently defaults to a
generic architecture 3 CPU. Some processor specific instructions will produce
warnings if assembled for the wrong ARM core.
16

ObjAsm
FPU sets the target floating-point unit, and optionally the APCS attributes which
flag the floating point calling standard variant in use.

To obtain a list of values this can take, enter list here and run ObjAsm (no
assembly will take place). Values containing the string SoftFPA specify a calling
standard which is compatible with software floating point libraries (floating point
arguments and results are passed in integer registers and/or the stack) and
double-precision parameters are stored using FPA endianness rules. SoftVFP is
similar, but indicates that double-precision parameters are stored using VFP
endianness rules.

The remaining part of the string determines which instructions are warned about if
you assemble them for the wrong floating point unit. If nothing is specified here,
ObjAsm will first attempt to choose the FPU which naturally accompanies the
specified CPU or Device; if neither was specified, or if only an architecture was
specified, the FPU defaults to FPE2 unless the architecture only supports the
Thumb instruction set, in which case the FPU defaults to None.
17

The SetUp menu
Device sets both the CPU and the FPU, given the name of a system-on-chip.

To obtain a list of values this can take, enter list here and run ObjAsm (no
assembly will take place).
18

ObjAsm
C preprocessor options
The C preproc options entry is available if Use C preprocessor is enabled in the
SetUp dialogue box. This permits you to specify additional command-line options
to pass to the C compiler when it is invoked by ObjAsm – mostly useful for
predefining preprocessor variables.

Any include path specified for ObjAsm is automatically passed on to the C
compiler, so there is no need to specify it again here. If you need to specify more
than one option (which would normally be achieved with a space separator on the
C command line) you must substitute a comma character.

Controlling cacheing
ObjAsm is a two pass assembler – it examines each source file twice. To avoid
reading each source file twice from disk the assembler can cache the source in
memory, reading it from disk for the first pass, then storing it in RAM for the
second. This makes very heavy use of memory, and so is unsuitable for smaller
machines.
19

The SetUp menu
The next two menu options control this cacheing:

Cache source enables cacheing when chosen. By default, cacheing is disabled.

Cache size allows you to specify the maximum amount of RAM to be used for
cacheing source files, provided that Cache source is on. The maximum cache is
specified in megabytes; the default is 8MB:

Handling warnings and errors
The next menu options control handling of warnings and errors:

ARM only will generate an error if the source file attempts to use Thumb code.

Check register lists will generate a warning if registers in lists in FLDM, FSTM,
LDM, POP, PUSH, STM, VLDn, VLDM, VPOP, VPUSH, VSTn, VSTM, VTBL or VTBX
instructions or RLIST directives are not specified in increasing numeric order.

Suppress warnings, when chosen, turns off the warning messages that ObjAsm
generates. It is off by default (i.e. warning messages are generated).
20

ObjAsm
Errors to file allows you to specify a file to which error messages are output for
later inspection:

Output options
Keep symbols forces all label definitions to be retained in the output object file.
This is equivalent in functionality to the KEEP directive.
21

The SetUp menu
Listings
The next options control whether or not a listing is produced, and its format:

The Listing option enables assembler source code to be sent to a file:

This option turns on the Assembler listing, and during assembly the source code,
object code, memory addresses and reference line numbers will be sent to the
named file. Listing is off by default.

Terse listing modifies the listing that is output such that conditionally
non-assembled parts of your program are omitted. Terse listing is on by default.
22

ObjAsm
Width sets the width, in characters, of the listing that is output:

This should be between 1 and 254. The default width is 131; a width of 76 is
suitable for a Mode 12 RISC OS window.
23

The SetUp menu
Length sets the number of lines per page for printer output. At the end of each
page ObjAsm inserts a form feed character. The default length is 60:

If you choose Cross reference, then after assembly ObjAsm outputs an
alphabetically sorted cross reference of all symbols encountered. Note that the
text output may be very large for a big program, and so this option may not
function on a machine with restricted memory. Cross reference is off by default.
24

ObjAsm
Choosing your work directory
Work directory allows you to specify the work directory:

The GET and LNK directives both result in the assembler loading source files
specified with the directive. The work directory is the place where these source files
are to be found. An example is a source file:

adfs::HardDisc4.$.Source.s.foo

containing the line:

GET s.macros

If the work directory is ^ then the file loaded is:

adfs::HardDisc4.$.Source.s.^.s.macros
(i.e. adfs::HardDisc4.$.Source.s.macros)

The work directory must be given relative to the position of the source file
containing the GET or LNK, without a trailing dot.

The default work directory is ^.
25

The SetUp menu
Specifying other command line options
The Others option on the SetUp menu leads to a writable icon in which you can
add an arbitrary extra section of text to the command line to be passed to ObjAsm:

This facility is useful if you wish to use any feature which is not supported by any of
the other entries on the SetUp dialogue box and menu. This may be because the
feature is used very little, or because it may not be supported in the future.

For a full description of command line options, see ObjAsm command lines on
page 22.
26

ObjAsm
ObjAsm output
ObjAsm outputs text messages as it proceeds. These include source listings and
symbol cross references (as described in the previous sections). By default any
such text is directed into a scrollable output window:

This window is read-only; you can scroll up and down to view progress, but you
cannot edit the text without first saving it. To indicate this, clicking Select on the
scrollable part of this window has no effect.

The contents of the window illustrated above are typical of those you see from a
successful assembly; the title line of the assembler with version number, followed
by no error messages.

Clicking Adjust on the close icon of the output window switches to the output
summary dialogue box. This presents a reminder of the tool running (ObjAsm), the
status of the task (Running, Paused, Completed or Aborted), the time when the
task was started, and the number of lines of output that have been generated (ie
those that are displayed by the output window):

Clicking Adjust on the close icon of the summary box returns to the output
window.

Both the above ObjAsm output displays follow the standard pattern of those of all
the non-interactive Desktop tools. The common features of the non-interactive
Desktop tools are covered in more detail in the chapter General features on page 99
of the accompanying Desktop Tools guide. Both ObjAsm output displays and the
27

ObjAsm icon bar menu
menus brought up by clicking Menu on them offer the standard features, which
allow you to abort, pause or continue execution (if the execution hasn’t
completed), to save output text to a file, or to repeat execution.

ObjAsm error messages appear in the output viewer, with copies in the editor error
browser when throwback is working. The appendix Error messages on page 183 of this
manual contains a list of common ObjAsm error messages together with brief
explanations.

Assembly listings and cross references appearing in the output window are often
very large for assemblies of complex source files. The scrolling of the output
window is useful to view them. To investigate them with the full facilities of the
source editor, you can save the output text straight into the editor by dragging the
output file icon to the SrcEdit main icon on the icon bar.

ObjAsm icon bar menu
The ObjAsm main icon bar menu follows the standard pattern for non-interactive
Desktop tools:

Save options saves all the current ObjAsm options, including both those set from
the SetUp dialogue box and from the Options item on this menu. When ObjAsm is
restarted it is initialised with these options rather than the defaults.

The Options submenu allows you to set the following options:

● Display specifies the output display as either a text window (default) or as a
summary box.

● If Auto run is enabled, dragging a source file to the ObjAsm main icon
immediately starts an assembly with the current options rather than
displaying the SetUp box first. Auto run is off by default.

● If Auto save is enabled output image files are saved to suitable places
automatically without producing a save dialogue box for you to drag the file
from. Auto save is off by default.
28

ObjAsm
Clicking on Help on the main ObjAsm menu displays a short text summary of the
various SetUp options, in a scrollable read-only window:

Example ObjAsm session
The programming example AcornC_C++.Examples.AsmHello is a
non-desktop free standing command line program written in assembly language. It
outputs the text ‘Hello World’.

The assembly language source is held in the s subdirectory, in the file HelloW. The
code demonstrates the ObjAsm directives needed for a free standing program;

To assemble HelloW, first run !Objasm and !Link by double clicking on them. Drag
the HelloW source text file to the ObjAsm icon. The SetUp dialogue box of
ObjAsm appears. Check that the default SetUp options are enabled:

Click on Run to proceed, and save the object file produced in the o subdirectory.
Drag the object file to the Link icon, and Run Link to produce an AIF executable
image file, the link having the HelloW object file as its only input file. Save the
image file in AcornC_C++.Examples.AsmHello.!RunImage. The command
line program is now ready for use.
29

ObjAsm command lines
To run the program under the desktop, double click on it. A window appears with
the text ‘Hello World’:

As the window instructs you to do, press the space bar or click on your mouse. The
window disappears.

ObjAsm command lines
ObjAsm, in common with the other non-interactive Desktop tools, can be driven
with a text command line without its RISC OS desktop interface appearing. This
enables ObjAsm to be driven by Make as specified in textual makefiles.

You can use ObjAsm outside the RISC OS desktop from its command line, in the
same way that it could be used in the previous Acorn Desktop Assembler product.
However, as all the useful ObjAsm features can be more conveniently used from
the RISC OS desktop there is little reason for you to do this. The desktop removes
the need for you to understand the command line syntax.

The ObjAsm RISC OS desktop interface drives the ObjAsm tool underneath by
issuing a command line constructed from your SetUp options. The Command line
SetUp menu option allows you to view the command line constructed in this way.

The Make tool allows you to construct makefiles with assembly operations
specified using the ObjAsm desktop interface (by following the Tool options item
of Make). You can therefore construct makefiles without understanding the
command line syntax of ObjAsm.

The command to invoke ObjAsm takes either of the forms:

ObjAsm «options» sourcefile objectfile
ObjAsm «options» -o objectfile sourcefile

The options are listed below, split into two sections: those for which there is a
direct equivalent in the SetUp dialogue box or menu, and those others for which
there is no equivalent. Where a long-form option takes a parameter separated from
30

ObjAsm
the option by an = character, in the short form, this should be separated by a space
character instead. Long-form options differed in syntax in previous releases of
ObjAsm; these are not shown below, but are still supported for compatibility’s
sake. Note that to understand what many of these options do it may be necessary
to refer to some of the documentation above.

Command line options available from the desktop
The table below shows the various command line options that correspond to the
options available from the SetUp dialogue box and menu, together with a
reference to the desktop equivalent, which you should see for full details of the
option.

Command line option Short
form

Desktop equivalent Page

-i dir«,dir» Include writable icon in dialogue
box

12

--throwback -tb Throwback option icon in dialogue
box

12

--debug -g Debug option icon in dialogue box 12

--no_code_gen No code generation option icon in
dialogue box

12

--cpreproc Use C preprocessor option icon in
dialogue box

13

--32 -32 Pre-UAL ARM radio icon in
dialogue box

13

--arm UAL ARM radio icon in dialogue box 13

--16 -16 Pre-UAL Thumb radio icon in
dialogue box

13

--regnames=none No registers in menu 15

--regnames=callstd plus --apcs=none
No APCS registers in menu 15

--regnames=callstd APCS registers in menu 15

--regnames=all All registers in menu 15

--no_esc -noe C strings in menu 15

--uppercase -u Upper case opcodes in menu 15

--cpu=ARMcore -cpu CPU in menu 16

--fpu=FPU FPU in menu 17

--device=device Device in menu 18

--cpreproc_opts=options C preproc options in menu 19
31

ObjAsm command lines
Command line options not available from the desktop
The table below shows those command line options for which there is no direct
equivalent in the SetUp dialogue box or menu. Should you need to use any of
these more esoteric options from the desktop, you can add them to the SetUp
menu’s Others option (see Specifying other command line options on page 18).

--no_cache -noc Cache source in menu 20

--maxcache=n -mc Cache size in menu 20

--arm_only ARM only in menu 20

--checkreglist Check register lists in menu 20

--no_warn -now Suppress warnings in menu 20

--errors=errorfile -e Errors to file in menu 21

--keep Keep symbols in menu 21

--list«=listingfile»

-list Listing in menu 22

--no_terse -not Terse listing in menu 22

--width=n -wi Width in menu 23

--length=n -l Length in menu 24

--xref -x Cross reference in menu 24

--desktop=dirname -dt Work directory in menu 25

Command line
option

Short
form

Description

--help -h Outputs a summary of the command line
options.

--via=filename -via Reads in extra command line arguments from
the given filename.

--littleend -li Assemble code suitable for a little-endian ARM.
Sets the built-in variable {ENDIAN} to
"little".

--bigend -bi Assemble code suitable for a big-endian ARM.
Sets the built-in variable {ENDIAN} to "big".

Command line option Short
form

Desktop equivalent Page
32

ObjAsm
--apcs=«option»«/qualifier»«/qualifier…»

-apcs Specifies whether the ARM Procedure Call
Standard is in use, and also specifies some
attributes of AREAs. There are three APCS
options: none, 3 and an empty string. By
default, the register names R0-R15, r0-r15,
SP, sp, LR, lr, PC and pc are pre-declared.
Unless you use option none, the following
register names are also pre-declared: a1-a4,
v1-v5, fp, and ip. If you use option 3, then
depending on the /reentrant,
/swstackcheck and /fp qualifiers, some of
sb, sl and v6-v8 are predeclared as well. If
you use an empty option string, then all the
above are predeclared, along with upper-case
names SB, SL, FP and IP.

The default behaviour is to use the
3/noropi/norwpi/32bit
/swstackcheck/fp/nointerwork
/fpa/fpe2/hardfp/nofpregargs APCS
variant used by RISC OS.

The qualifiers – which cannot be used with
option none – are as follows:

/pic or /ropi Sets the PIC attribute for any code AREAs and
sets the built-in variable {ROPI} to {TRUE}.

/nopic or /noropi Does not affect the PIC attribute for any code
AREAs. Sets the built-in variable {ROPI} to
{FALSE}. This is the default setting.

/reentrant or /reent
or /pid or /rwpi

Sets the reentrant attribute for any code AREAs,
sets the built-in variables {REENTRANT} and
{RWPI} to {TRUE}, and if option is 3,
predeclares sb (static base) in place of v6. Any
imported read-write data symbols are taken to
be relative to sb.

/nonreentrant or
/nonreent or /nopid or
/norwpi

Does not affect the reentrant attribute for any
code AREAs. Sets the built-in variables
{REENTRANT} and {RWPI} to {FALSE}, and
if option is 3, predeclares v6 in place of sb.
This is the default setting.

Command line
option

Short
form

Description
33

ObjAsm command lines
/32bit or /32 Is the default setting and informs the Linker
that the code being generated is written for
both 26 and 32 bit ARMs. The built-in variable
{CONFIG} is also set to 32.

/26bit or /26 Tells the Linker that the code is only intended
for 26 bit ARMs. The built-in variable
{CONFIG} is also set to 26.

Note that these options do not of themselves
generate particular ARM-specific code, but
allow the Linker to warn of any mismatch
between files being linked, and also allow
programs to use the standard built-in variable
{CONFIG} to determine what code to produce.

/swstackcheck or
/swst

Does not affect the no-stack-check attribute for
any code AREAs. If option is 3, predeclares sl.
This is the default setting.

/noswstackcheck or
/nosw

Sets the no-stack-check attribute for any code
AREAs. If option is 3, predeclares an additional
v-register, v6 if reentrant, v7 if not.

/fp The default setting, used when function entry
and exit use the fp register as a stack frame
pointer.

/nofp For use when you are not using a stack frame
pointer. This cannot be indicated in object files,
so the only extent to which this is enforced is
that ObjAsm warns you if you attempt to use
the FP or fp register names. If option is 3,
predeclares v8.

Command line
option

Short
form

Description
34

ObjAsm
/interwork or /inter Sets the ARM/Thumb interworking attribute for
any code AREAs. The built-in variable {INTER}
is also set to {TRUE}.

/nointerwork or
/nointer

Does not affect the ARM/Thumb interworking
attribute for any code AREAs. The built-in
variable {INTER} is also set to {FALSE}. This
is the default setting.

/fpa This is the default setting if an FPA FPU is
selected. Does not affect the VFP attribute for
any code or data AREAs. Sets FPA endianness
rules for double-precision floating point
numbers (most significant word is always
stored in lower register number or lower
address), even if a VFP FPU is selected.

/fpe2 Similar to/fpa, this is the default setting if
--fpu=fpe2 is specified.

/fpe3 Similar to /fpa, this is the default setting for
other FPA FPUs. This differs from /fpe2 in that
it sets the FP3 attribute on any code AREAs.

/vfp This is the default setting if a VFP FPU is
selected. Sets the VFP attribute for any code or
data AREAs, and sets VFP endianness rules for
double-precision floating point numbers
(endianness matches the rest of the system),
even if an FPA FPU is selected.

/softfp Sets the SoftFP attribute by default on imported
and exported code symbols. This implies a
floating point calling standard which is
compatible with software floating point
libraries (floating point arguments and results
are passed in integer registers and/or the stack).

/hardfp Does not set the SoftFP attribute by default on
imported and exported code symbols. This is
the default setting.

/fpregargs or /fpr Further qualifies /hardfp. Sets the
fp-arguments-in-fp-registers attribute by
default on imported and exported code
symbols. This is the default setting when /vfp
is specified.

Command line
option

Short
form

Description
35

ObjAsm command lines
/nofpregargs or
/nofpr

Further qualifies /hardfp. Does not set the
fp-arguments-in-fp-registers attribute by
default on imported and exported code
symbols, implying the use of a floating point
calling standard where floating point results are
passed in hardware FP registers, but floating
point arguments are passed in integer registers
and/or the stack. This is the default setting
when /fpa is specified, because of the
inefficiencies of using emulated instructions for
argument marshalling, since the majority of
CPUs use the FPEmulator.

--depend=dependfile

-d Saves source file dependency lists, which are
suitable for use with ‘make’ utilities.

-m Like --depend, but prints dependency
information to the screen instead of sending it
to a file.

--absolute -abs Accepts AAsm source code to provide some
backwards compatibility in this release. See the
appendix Support for AAsm source on page 211.

--predefine="directive"

-pd Allows you to set an initial value for an
assembler global variable. You must give a valid
variable name, followed by a SETL, SETA or
SETS directive, followed by a value. The value
may be a simple constant or a constant
expression (in ObjAsm syntax) of appropriate
type – logical, arithmetic or string for SETL,
SETA and SETS respectively – provided that its
value can be computed at the start of assembly.
The variable is set as if the directive occurs
before the start of the source; an implicit GBLL,
GBLA or GBLS directive is also executed. In the
case of SETS, quotation marks are usually
necessary around the value, since it is a string
expression.; these must be escaped by
preceding each with a backslash (‘\’).

-from filename -f Supported, for backward compatibility with
previous release.

Command line
option

Short
form

Description
36

ObjAsm
-to filename -t Supported, for backward compatibility with
previous release.

-print «listingfile»

-p Supported, for backward compatibility with
previous release.

-closeexec -c Recognised but ignored, for backward
compatibility with previous release.

-module Recognised but ignored, for backward
compatibility with previous release.

-quit -q Recognised but ignored, for backward
compatibility with previous release.

-stamp -s Recognised but ignored, for backward
compatibility with previous release.

Command line
option

Short
form

Description
37

38

Part 2 – Assembly language details
39

40

3 ARM assembly language

ARM Assembly Language is the language which ObjAsm parses and compiles to

produce object code in ARM Object Format. Information on ObjAsm command line
options are detailed in ObjAsm command lines on page 30. This chapter details ARM
Assembly Language, but does not give examples of its use.

General
Instruction mnemonics and register names may be written in upper or lower case
(but not mixed case). Directives must be written in upper case.

Input lines
The general form of assembler input lines is:

«label» «instruction» «;comment»

A space or tab should separate the label, where one is used, and the instruction. If
no label is used the line must begin with a space or tab. Any combination of these
three items will produce a valid line; empty lines are also accepted by the
assembler and can be used to improve the clarity of source code.

Assembler source lines are allowed to be up to 4095 characters long. To make
source files easier to read, a long line of source can be split onto several lines by
placing a backslash character, ‘\’, at the end of a line. The backslash must not be
followed by any other characters (including spaces or tabs). The backslash + end of
line sequence is treated by ObjAsm as white space. Note that the backslash + end
of line sequence should not be used within quoted strings.

AREAs
AREAs are the independent, named, indivisible chunks of code and data
manipulated by the Linker. The Linker places each AREA in a program image
according to the AREA placement rules (i.e. not necessarily adjacent to the AREAs
with which it was assembled or compiled).

Conventionally, an assembly, or the output of a compilation, consists of two
AREAs, one for the code (usually marked read-only), and one for the data which
may be written to. A reentrant object will generally mark its data AREA as
41

AREAs
BASED sb (see below), which means it defines relocatable address constants.
This allows the code area to be read-only, position-independent and reentrant,
making it easily ROM-able. Sometimes a third AREA will be used for data which is
initialised to zero. This is useful for reducing the binary size, since data initialisers
for such AREAs do not need to be included.

In ARM assembly language, each AREA begins with an AREA directive. If the AREA
directive is missing the assembler will generate an AREA with an unlikely name
(|$$$$$$$|) and produce a diagnostic message to this effect. This will limit the
number of spurious errors caused by the missing directive, but will not lead to a
successful assembly.

The syntax of the AREA directive is:

AREA name«,attr»«,attr»...

You may choose any name for your AREAs, but certain choices are conventional.
For example, |C$$code| is used for code AREAs produced by the C compiler, or
for code AREAs otherwise associated with the C library.

Area attributes
AREA attributes are as follows:

ABS Absolute: rooted at a fixed address.

REL Relocatable: may be relocated by the Linker (the default).

PIC Position Independent Code: will execute where loaded without
modification.

CODE Contains machine instructions.

DATA Contains data, not instructions.

READONLY This area will not be written to.

READWRITE The opposite of READONLY. This is the default setting.

COMDEF Common area definition.

COMMON Common area.

NOINIT Data AREA initialised to zero: contains only space reservation
directives, with no initialised values.

REENTRANT The code AREA is reentrant. This can also be specified using the
/reentrant switch on the --apcs command line option.
42

ARM assembly language
BASED Rn where Rn is a register, conventionally R9 or sb. Defines a data
area which is consolidated by the linker with other data areas
sharing the same base register. Any label defined within this
AREA becomes a register-relative expression which can be used
with LDR , STR, ADR and related instructions. For full details see
the appendix ARM procedure call standard on page 263 of the Desktop
Tools guide.

ALIGN=expression
The ALIGN sub-directive forces the start of the area to be aligned
on a power-of-two byte-address boundary. By default AREAs are
aligned on a 4-byte word boundary, but the expression can have
any value between 2 and 12 inclusive.

INTERWORK Specifies that the source is built for ARM/Thumb interworking.
Interworking can also be specified using the /interwork switch
on the --apcs command line option.

HALFWORD Indicates that the area is using halfword memory access. This
should not normally be needed as the assembler will detect their
use automatically.

NOSWSTACKCHECK
Indicates that a code area does not use stack limit checking. This
can also be specified using the /noswstackcheck switch on
the --apcs command line option.

VFP Double-precision floating point data, arguments and results are
stored using VFP rather than FPA endianness rules. This can also
be specified using the /vfp switch on the --apcs command line
option.

CODEALIGN Allows certain types of ALIGN directives in a code area to pad
using NOP instructions. See Miscellaneous directives – ALIGN, NOFP,
RLIST and ENTRY on page 72

ORG and ABS
ORG base-address

The ORG (origin) directive is used to set the base address and the ABS (absolute)
attribute of the containing AREA, or of the following AREA if there is no containing
AREA. In some circumstances this will create objects which cannot be linked. In
general it only makes sense to use ORG in programs consisting of one AREA, which
need to map fixed hardware addresses such as trap vector locations. Otherwise
ORG should be avoided.
43

Instruction sets and syntax
Instruction sets and syntax
ObjAsm supports ARM and Thumb instruction sets, and UAL and traditional
(pre-UAL) assembler syntax. You can control this from the command line (see
page 31) or insert one of the following directives in the source code:

Multiple such directives may be present in the same source file, allowing a mixture
of ARM and Thumb code. Note that the linker does not currently support
generation of ARM/Thumb interworking veneers, so calls to external areas must
use B, BL, BLX or BX depending on the type of the external symbol.

When you write ARM code, ObjAsm will accept either pre-UAL or UAL instructions
irrespective of which directive is in force, but will warn you if the instruction is
incorrect in the selected syntax. However, when you write Thumb code, accepting
both syntaxes like that is impossible because in many cases, the same textual
representation maps to differing instructions, and so ObjAsm requires strict
conformance to the selected syntax.

Object file format
ObjAsm supports two object file formats, AOF (the default) and a.out. This can be
set explicitly by using one of the following directives:

AOF

AOUT

on a line by itself. Only one of these directives may be present in each source file.

Symbols
Numbers, logical values, string values and addresses may be represented by
symbols. Symbols representing numbers or addresses, logical values and strings
are declared using the GBL and LCL directives, and values are assigned
immediately by SETA, SETL and SETS directives respectively (see Local and global
variables – GBL, LCL and SET on page 74). Addresses are assigned by the Assembler
as assembly proceeds, some remaining in symbolic, relocatable form until link
time.

Directive Instruction set Syntax

CODE32 ARM Pre-UAL

CODE16 Thumb Pre-UAL

ARM ARM UAL
44

ARM assembly language
Symbols must start with a letter in either upper or lower case; the assembler is
case-sensitive and treats the two forms as distinct. Numeric characters and the
underscore character may be part of the symbol name. All characters are
significant.

Symbols should not use the same name as instruction mnemonics or directives.
While the assembler can distinguish between the uses of the term through their
relative positions in the input line, a programmer may not always be able to do so.

Symbol length is limited by the 4095 character line length limit.

If there is a need to use a wider range of characters in symbols, for instance when
working with other compilers, use enclosing bars to delimit the symbol name; for
example, |C$$code|. The bars are not part of the symbol.

Labels
Labels are a special form of symbol, distinguished by their position at the start of
lines. The address represented by a label is not explicitly stated but is calculated
during assembly.

If a label appears on a line with an instruction or a data-allocating directive (like
DCD), then the label will be given a CODE or DATA attribute respectively, unless
explicitly overridden in an EXPORT directive.

In older releases of ObjAsm, labels on a line by themselves were taken to be CODE
labels in code AREAs, or DATA labels in data AREAs; the only way to override this
was by use of the DATA directive:

label DATA

This allocates a DATA label without emitting any bytes, whether it is in a code
AREA or a data AREA.

In ObjAsm 4, labels on lines by themselves default to DATA, even in code AREAs, if
they follow a directive that outputs data. For example, the label below has changed
from CODE to DATA:

DCD -1
label

MOV pc, r14

To ensure the label is exported as code in both old and new versions of ObjAsm,
either define the label on the same line as an opcode, or precede it with a ROUT
directive.
45

Local labels
Local labels
The local label, a subclass of label, begins with a number in the range 0-99. Local
labels work in conjunction with the ROUT directive and are most useful for solving
the problem of macro-generated labels. Unlike global labels, a local label may be
defined many times; the assembler uses the definition closest to the point of
reference. To begin a local label area use:

«label» ROUT

The label area will start with the next line of source, and will end with the next
ROUT directive or the end of the program.

Local labels are defined as:

number«routinename»

although routinename need not be used; if omitted, it is assumed to match the
label of the last ROUT directive. It is an error to give a routine name when no label
has been attached to the preceding ROUT directive.

References to local labels
A reference to a local label has the following syntax:

%«x»«y»n«routinename»

% introduces the reference and may be used anywhere where an ordinary label
reference is valid.

x tells the assembler where to search for the label; use B for backward or F for
forward. If no direction is specified the assembler looks both forward and
backward. However searches will never go outside the local label area (i.e. beyond
the nearest ROUT directives).

y provides the following options: A to look at all macro levels, T to look only at this
macro level, or, if y is absent, to look at all macro from the current level to the top
level.

n is the number of the local label.

routinename is optional, but if present it will be checked against the enclosing
ROUT’s label.
46

ARM assembly language
Comments
The first semi-colon on a line marks the beginning of a comment, except where the
semi-colon appears inside a string constant. A comment alone is a valid line. An
asterisk is also a valid comment character if it appears as the first character of a
line. All comments are ignored by the assembler.

Constants

Numbers
Numeric constants are accepted in three forms: decimal (e.g. 123), hexadecimal
(e.g. &7B or 0x7B), and n_xxx, where n is a base between 2 and 9, and xxx is a
number in that base.

Strings
Strings consist of opening and closing double quotes, enclosing characters and
spaces. If double quotes or dollar signs are used within a string as literal text
characters, they should be represented by a pair of the appropriate character; e.g.
$$ for $.

Boolean
The Boolean constants ‘true’ and ‘false’ should be written as {TRUE} and
{FALSE}.

The END directive
Every assembly language source must end with:

END

on a line by itself.
47

48

4 CPU instruction set

For up-to-date information on the ARM and Thumb instruction sets, we

recommend the ARM Architecture Reference Manual, see Recommended Books on
page 3.

ObjAsm understands a number of other instructions, which it translates into
appropriate basic ARM and Thumb instructions.

Extended range immediate constants

Synopsis
In the case of an instruction such as

MOV R0,#constant

ObjAsm will evaluate the expression and produce a CPU instruction to load the
value into the destination register. This may not in fact be the machine level
instruction known as MOV, but the programmer need not be aware that an
alternative instruction has been substituted. A common example is

MOV Rn,#-1

which the CPU cannot handle directly (as –1 is not a valid immediate constant).
ObjAsm will accept this syntax, but will convert it and generate object code for

MVN Rn,#0

which results in Rn containing –1. Such conversions also takes place between the
following pairs of instructions:

● BIC/AND

● ADD/SUB

● ADC/SBC

● CMP/CMN

When assembling with --cpu=6T2 or later, ObjAsm can also convert MOV and
MVN immediate instructions into MOVW instructions, to further extend the range
of supported immediate constants.
49

The MOV32 instruction
The MOV32 instruction

Assembler syntax
MOV32«cond» register,#constant

MOV32«cond» register,expression

Synopsis
This pseudo-instruction assembles to a pair of instructions, MOVW and MOVH,
both of which are available in ARMv6T2 or later. It enables an arbitrary 32-bit
number to be loaded into a register, without danger of polluting the data cache by
using a literal pool. Even relocatable expressions can be used as a parameter - the
linker knows how to rewrite the instructions when linking, and there is also support
in the relocation code it outputs for modules and relocatable AIF executables to
support load-time relocation of this pseudo-instruction.

The ADR instruction

Assembler syntax
ADR«cond» register,expression

Synopsis
This produces an address in a register. ARM does not have an explicit ‘calculate
effective address’ instruction, as this can generally be done using ADD, SUB, MOV
or MVN. To ease the construction of such instructions, ObjAsm provides an ADR
instruction.

The expression may be register-relative, program-relative or numeric:

● Register-relative: ADD|SUB register,register2,#constant

will be produced, where register2 is the register to which the expression is
relative.

● Program-relative: ADD|SUB register,PC,#constant

will be produced.

● Numeric: MOV|MVN register,#constant

will be produced. When assembling with --cpu=6T2 or later, ObjAsm may
output a MOVW instruction if the instruction cannot be accomplished using a
MOV or MVN.
50

CPU instruction set
In all three cases, an error will be generated if the immediate constant required is
out of range.

If the program has a fixed origin (that is, if the ORG directive has been used), the
distinction between program-relative and numeric values disappears. In this case,
ObjAsm will first try to treat such a value as program-relative. If this fails, it will try
to treat it as numeric. An error will only be generated if both attempts fail.

The ADRL instruction

Assembler syntax
ADR«cond»L register,expression (pre-UAL syntax)

ADRL«cond» register,expression (UAL syntax)

Synopsis
This form of ADR is provided by ADRL and allows a wider collection of effective
addresses to be produced. ADRL can be used in the same way as ADR, except that
the allowed range of constants is larger. Again program-relative, register relative
and numeric forms exist. When assembling with --cpu=6T2 or later, ObjAsm will
output a MOV32 pseudo-instruction for the numeric form if the instruction cannot
be accomplished using MOV, ADD or MVN, SUB The result produced will always be
two instructions, even if it could have been done in one. An error will be generated
if the necessary immediate constants cannot be produced.

The IT instruction

Assembler syntax
IT«T|E«T|E«T|E»»» cond

Synopsis
IT is a valid Thumb instruction in ARMv6T2 or later - see the ARM ARM for a full
description. But it can also be used in ARM code as a pseudo-instruction, in which
case it doesn't emit any code itself, but it does performs condition code checking
on the following 1-4 instructions, just as it would have done had it been used in
Thumb code.
51

The UND instruction
The UND instruction

Assembler syntax
UND«cond» «#constant»

Synopsis
This pseudo-instruction gives a way to access the instructions which have been
reserved to remain as undefined instructions in all future ARM architectures. For
ARM instructions, the constant must be in the range 0-65535 - if omitted, it
defaults to 0.

Literals

Assembler syntax
LDR«cond»B register,=expression (pre-UAL syntax)

LDRB«cond» register,=expression (UAL syntax)

LDR«cond»SB register,=expression (pre-UAL syntax)

LDRSB«cond» register,=expression (UAL syntax)

LDR«cond»H register,=expression (pre-UAL syntax)

LDRH«cond» register,=expression (UAL syntax)

LDR«cond»SH register,=expression (pre-UAL syntax)

LDRSH«cond» register,=expression (UAL syntax)

LDR register,=expression

LDR«cond»D register,=expression (pre-UAL syntax)

LDRD«cond» register,=expression (UAL syntax)

Synopsis
Literals are intended to enable the programmer to load immediate values into a
register which might be out of range as MOV/MVN arguments.

ObjAsm will take certain actions with literals. It will:

● if possible, replace the instruction with a MOV or MVN. When assembling with
--cpu=6T2 or later, ObjAsm may output a MOVW instruction if the
instruction cannot be accomplished using a MOV or MVN.
52

CPU instruction set
● otherwise, generate a program-relative load instruction, and if no such literal
already exists within the addressable range, place the literal in the next literal
pool. In the case of LDRD, the literal is allocated doubleword-aligned within
the literal pool, because some CPUs (such as the XScale) require this
alignment.

Program-relative expressions and imported symbols are also valid literals. See the
section Organisational directives – END, ORG, LTORG, KEEP and LEAF on page 66 for
further information.

Shifts by zero
All ALU instructions which specify an immediate shift of 0 are converted into
LSL #0 (i.e. unshifted) forms.
53

Shifts by zero
54

5 Floating point instructions

ARM cores supports up to 16 coprocessors, and most implementations include

one or more of them. Coprocessors are most commonly used to implement
floating point and/or SIMD instructions. A subsection of the ARM instruction set is
reserved for the use of each coprocessor, and from architecture 6T2 onwards, these
coprocessor instructions are also available in the Thumb instruction set.

The most notable coprocessors are the following:

Any instructions for a coprocessor which is not fitted take the undefined
instruction trap. This makes it possible for a software emulator to be written which
will simulate the coprocessor and allow software written for a coprocessor to
execute on a processor which lacks that coprocessor, albeit at a greatly reduced
speed. To date, this has only been done for the FPA, via the floating point emulator,
which has been incorporated into RISC OS as the FPEmulator module. Generally,
programs do not need to know whether a coprocessor is fitted; the only effective
difference is in the speed of execution. Note that there may be slight variations in
accuracy between hardware and software – refer to the instructions supplied with
the coprocessor for details of these variations.

Coprocessor Data types supported Coprocessor
number(s)

FPA single, double and extended precision
floating point

1, 2

System control - 15

Debug - 14

MaverickCrunch single and double precision floating point;
32 and 64-bit integer

4, 5, 6

XScale CP0 40-bit integer 0

Wireless MMX 64-bit integer SIMD 0, 1

VFP single and double precision floating point;
64 and 128-bit integer SIMD (status and
data transfer instructions only)

10, 11
55

Floating point constants
Despite the speed penalty, the default method of handling floating point on
RISC OS has always been to use FPA instructions and rely on this mechanism to
execute them on the majority of ARM CPUs where there is no FPA hardware. As a
result of the reliance on software emulation, FPA instructions could traditionally
only be executed from user mode. This restriction was lifted in RISC OS 4.

Coprocessor instructions can always be expressed using the generic coprocessor
instructions CDP, CDP2, LDC, LDC2, STC, STC2, MCR, MCR2, MCRR, MCRR2, MRC,
MRC2, MRRC and MRRC2. But these are usually not very human-readable, so
alternative syntaxes are usually devised which more closely reflect the instruction’s
functionality. ObjAsm has support for alternative syntaxes for the following
coprocessors:

● FPA (see the 7500FE data sheet)

● XScale coprocessor 0 (see the XScale core manual)

● VFP (see the ARM ARM), both pre-UAL and UAL syntaxes

These documents are described in Recommended Books on page 3.

This chapter also covers a few features of ObjAsm’s support for the Advanced SIMD
extension (also known as NEON, which is technically the name of ARM’s own
implementation of the extension). Although it is not, in the main part,
implemented using the coprocessor interface, its close relationship to the VFP
means that it is sensible to discuss it here.

Floating point constants
Wherever ObjAsm accepts a floating point number, any one of a variety of formats
are accepted:

● «+|-»mantissa«E|e«+|-»exponent»
The mantissa part consists of a sequence of zero or more decimal digits,
followed by an optional decimal point followed by a sequence of zero or more
decimal digits. The mantissa must contain a non-zero number of digits overall.
The exponent part consists of a sequence of one or more decimal digits. The
value generated represents the mantissa multiplied by ten to the power of the
exponent, where the exponent is taken to be zero if missing. All reading is
done to double precision, with overflows resulting in infinities, and is then
narrowed if required.

● «+|-»base_mantissa«E|e«+|-»exponent»
The base part is a single decimal digit in the range 2 to 9. The mantissa part is
similar to the mantissa for the decimal case, but may only use valid digits for
the specified base. The exponent consists of one or more decimal digits. The
value generated represents the mantissa multiplied by the base to the power
56

Floating point instructions
of the exponent, where the exponent is taken to be zero if missing. All reading
is done to double precision, with overflows resulting in infinities, and is then
narrowed if required.

● «+|-»&mantissa«P|p«+|-»exponent»
«+|-»0xmantissa«P|p«+|-»exponent»
The mantissa part is similar to the mantissa for the decimal case, but may use
any (case-insensitive) hexadecimal digit. The exponent consists of one or
more decimal digits. The value generated represents the mantissa multiplied
by two (not sixteen) to the power of the exponent, where the exponent is taken
to be zero if missing. All reading is done to double precision, with overflows
resulting in infinities, and is then narrowed if required.

● 0f_hexdigits
This method lets you specify a floating point number as an eight-digit
hexadecimal number corresponding to the number’s representation as a
single-precision floating point number. The number is widened or narrowed if
required.

● 0d_hexdigits
This method lets you specify a floating point number as an sixteen-digit
hexadecimal number corresponding to the number’s representation as a
single-precision floating point number. The number is narrowed if required.

Examples are:

1
0.2
5E9
E-2
-.7
+31.415926539E-1
2_1100.1001e+6
+8_.7
-0Xfff.fffffP-12
0F_7f7fffff
0d_FEDCBA9876543210
57

Extended range immediate constants
Extended range immediate constants

Synopsis
ObjAsm has analogous support for VFP and Advanced SIMD immediate constants
to that for ARM immediate constants (described in Extended range immediate constants
on page 49). Specifically, if

VMOV«cond».type register,#constant

cannot be expressed using any of the available immediate constant encodings,
ObjAsm will instead try to encode it using a VMVN instruction and the binary NOT
of the constant, and vice versa.

type can be any of I8, I16, I32, I64, F16, F32 or F64, except when the desitination
register is a single-precision floating point register, when only I32 or F32 are
available. constant will be interpreted and range-checked as a floating point or
integer number (and as a signed or unsigned integer if necessary) to match the
specified data type. In some cases where constant cannot be achieved using the
specified type, ObjAsm can substitute an alternative instruction which loads the
required bit pattern into the register, but expresses it using a differing combination
of type and constant that is permitted by the instruction set.

In a similar vein, type and constant can be substituted in VBIC and VORR to allow
otherwise impossible constants to be used. And although the Advanced SIMD
instruction set does not natively support variants of VAND and VORN which take
an immediate constant, ObjAsm will construct these from VBIC or VORR
respectively, again by NOTting the constant.

ObjAsm will, if necessary and possible, round single and double-precision floating
point constants to the nearest valid immediate constant. A warning is emitted if
this happens.

The VMOV2 instruction

Assembler syntax
VMOV2«cond».type Dd, #constant

VMOV2«cond».type Qd, #constant
58

Floating point instructions
Synopsis
This pseudo-instruction assembles to a pair of instructions, a combination of
VMOV or VMVN and VORR and VBIC. This enables a wider range of constants to be
loaded into all elements of the specified vector than would be possible using a
single VMOV or VMVN instruction. The same values for type are permitted as for the
VMOV (constant) instruction.

Register comparison instructions

Assembler syntax
V«A»CLE«cond».type «Dd,»Dn,Dm

V«A»CLE«cond».type «Qd,»Qn,Qm

V«A»CLT«cond».type «Dd,»Dn,Dm

V«A»CLT«cond».type «Qd,»Qn,Qm

Synopsis
The Advanced SIMD instruction set does not include these instructions natively.
Instead, ObjAsm achieves these by exchanging the source registers and encoding a
greater-than instruction in place of a less-than instruction, or a
greater-than-or-equal instruction in place of a less-than-or-equal instruction.

2 x 32-bit vector zip and unzip

Assembler syntax
VUZP«cond».32 Dd,Dm

VZIP«cond».32 Dd,Dm

Synopsis
These two instructions are equivalent in functionality, but the Advanced SIMD
instruction set does not include either of them natively. Instead, ObjAsm
assembles them both to

VTRN«cond».32 Dd,Dm

which has the same effect as you would have expected from the VUZP or VZIP
instructions.
59

Literals
Literals

Assembler syntax
LDF«cond»S Fn, =floating point constant

LDF«cond»D Fn, =floating point constant

FLDS«cond» Sn, =floating point constant

FLDD«cond» Dn, =floating point constant

VLDR«cond»«.type» Sn, =floating point or integer constant

VLDR«cond»«.type» Dn, =floating point or integer constant

Synopsis
For VLDR, type can be I8, I16, I32, I64, F16, F32 or F64, except that the 64-bit types
are not available if the destination register is 32 bits wide. Data smaller than the
register are replicated to fill the register.

Coprocessor literal handling is similar to that for the main ARM instruction set
(see Literals on page 52). ObjAsm will

● if possible, replace an LDF with an MVF or MNF

● if possible, replace an FLD/VLDR with an FCONST/VMOV

● otherwise, place the constant in the nearest literal pool if necessary, and
construct a PC-relative LDC instruction to load the destination register from
the literal pool. The endianness of any double-precision floating point value in
the literal pool is set according to the instruction which references it,
irrespective of the current --apcs /vfp flag. Because the allowed offset
range within an LDC instruction is less than that for a LDR instruction (–1020
to +1020 instead of –4095 to +4095), it may be necessary to code LTORG
directives more frequently if floating point literals are being used than would
otherwise be necessary.
60

Floating point instructions
Right shifts by zero
The Advanced SIMD instruction set includes a number of right-shift instructions,
but unlike the left-shift instructions, these cannot encode an immediate shift by 0.
If you specify such a shift, ObjAsm will instead substitute an alternative instruction
which has the same narrowing and saturation features as the shift instruction it
replaces:

Fixed point conversions with zero fractional bits
The VFP and Advanced SIMD instruction sets include instructions for conversion,
amongst other things, between single precision floating point and 32-bit fixed
point numbers (1, 2 or 4 such conversions in parallel). The number of fractional
bits in the fixed point number can normally be specified between 1 and 32.
However, you can specify 0 fractional bits, and ObjAsm will substitute the
equivalent instruction to convert to or from a 32-bit integer:

Note that conversion instructions to and from 16-bit fixed point numbers already
support 0 fractional bits natively. Note also that conversions between
double-precision floating point and 32-bit fixed point numbers cannot be
substituted in this way

Unsigned saturation of signed numbers
The Advanced SIMD instruction set includes a number of instructions which can
perform an unsigned saturation on a signed number. These are indicated by a ‘U’
flag in the opcode in standard UAL syntax. However, ObjAsm also allows you to

Instruction Replacement

V«R»SRA d,m,#0 VADD d,m

VSRI d,m,#0 VMOV d,m

V«R»SHR d,m,#0 VMOV d,m

V«R»SHRN d,m,#0 VMOVN d,m

VQ«R»SHRN d,m,#0 VQMOVN d,m

VQ«R»SHRUN d,m,#0 VQMOVUN d,m

Instruction Replacement

VCVT.F32.S32 d,m,#0 VCVT.F32.S32 d,m

VCVT.F32.U32 d,m,#0 VCVT.F32.U32 d,m

VCVT.S32.F32 d,m,#0 VCVT.S32.F32 d,m

VCVT.U32.F32 d,m,#0 VCVT.U32.F32 d,m
61

Unsigned saturation of signed numbers
specify this by using a pair of differing data type qualifiers (or, more usefully, by
using register name symbols which have been declared with those types using the
DN or QN directives).

.

Instruction Replacement

VQSHL.Usize.Ssize d,m,#imm VQSHLU.Ssize d,m,#imm

VQMOVN.Usize.Ssize d,m VQMOVUN.Ssize d,m

VQ«R»SHRN.Usize.Ssize d,m,#imm VQ«R»SHRUN.Ssize d,m,#imm
62

6 Directives

This chapter describes the directives available in the assembler, which provide a

powerful range of extra features.

Storage reservation and initialisation – DCB, DCW, DCD etc
DCB Defines one or more bytes: can be replaced by =

DCW Defines one or more half-words (16-bit numbers)

DCWU Defines one or more half-words at arbitrary alignment

DCD Defines one or more words: can be replaced by &

DCDU Defines one or more words at arbitrary alignment

DCQ Defines one or more 64-bit words

DCQU Defines one or more 64-bit words at arbitrary alignment

DCDO Defines one or more words consisting of offsets from a base
register

DCI Defines one or more words or half-words, marking them as code

SPACE Reserves a zeroed area of store: can be replaced by %

FILL Reserves an area of store with a specified initialiser

The syntax of the first eight directives is:

«label» directive expression-list

DCD can take program-relative and external expressions as well as numeric ones.

An external expression includes one or more references to symbols from another
source file or from another area of the same source file. These are achieved by the
insertion of relocations into the object file. Prior to ObjAsm 4, the allowed syntax
of external expressions was far more restrictive: you could only use a single
symbol, optionally offset by a constant expression.; the external symbol had to
come first.
63

Storage reservation and initialisation – DCB, DCW, DCD etc
In the case of DCB, the expression-list can include string expressions, the characters
of which are loaded into consecutive bytes in store. Unlike C strings, ObjAsm
strings do not contain an implicit trailing NUL, so a C string has to be fabricated
thus:

C_string DCB "C_string",0

The DCDO directive defines one or more words, like DCD, but is intended for
storing the offsets to labels in BASED AREAs from their base register. Different
relocations are output in order to instruct the linker to adjust the number to
account for the merging of all the AREAs which share the same base register. As of
ObjAsm 4, the effect of

DCD :INDEX:symbol

is equivalent to that of

DCDO symbol

and this may help you understand what it does.

The syntax of DCI is:

«label» DCI«.N|.W» expression-list

This is similar to DCW and DCD but marks the words in the object file as code
rather than data. This allows them to be correctly interpreted by disassemblers and
debuggers. The optional .N or .W suffix - this behaves like the instruction width
specifier in UAL syntax, and determines whether the instruction allocated is 16
(the default) or 32 bits wide in Thumb code. Only the .W suffix is permitted in ARM
code.

The syntax of SPACE is:

«label» SPACE size

This directive will initialise to zero the number of bytes specified by the numeric
expression size.

The syntax of FILL is:

«label» FILL size,value,width

This acts like the SPACE directive, but fills the allocated space with the specified
value. If value is omitted, it defaults to 0. width specifies the size of value in bytes, and
can take the values 1, 2, or 4; if omitted, it defaults to 1.
64

Directives
Binary file inclusion – BIN and INCBIN
The following two directives:

BIN filename

INCBIN filename

are equivalent, and serve to insert the contents of the specified file at the current
point within the object file. INCBIN is preferred, because it is also supported by
armasm.

Floating point store initialisation – DCFH, DCFS and DCFD
DCFH Defines half precision floating point values

DCFHU Defines half precision floating point values at arbitrary alignment

DCFS Defines single precision floating point values

DCFSU Defines single precision floating point values at arbitrary
alignment

DCFD Defines double precision floating point values

DCFDU Defines double precision floating point values at arbitrary
alignment

The syntax of these directives is:

«label» directive fp-constant«,fp-constant»

Half precision numbers occupy one half-word (16 bits) and are half-word aligned
by default. DCFH and DCFHU accept numbers which can be expressed either as
IEEE or VFP’s alternate half precision format and selects the appropriate format
automatically.

Single precision numbers occupy one word, and double precision numbers occupy
two; both are word aligned by default. The endianness of numbers stored by DCFD
and DCFDU depends on the --apcs /vfp option.

See Floating point constants on page 56 for the acceptable formats for fp-constant.
65

Describing the layout of store – MAP and FIELD
Describing the layout of store – MAP and FIELD
MAP Sets the origin of a storage map: can be replaced by ^

FIELD Reserves space within a storage map: can be replaced by #

The syntax of these directives is:

 MAP expression«,base-register»
«symbol» FIELD expression

The MAP directive sets the origin of a storage map at the address specified by the
expression. A storage map location counter, @, is also set to the same address. The
expression must be fully evaluable in the first pass of the assembly, but may be
program-relative or relative to a symbol in another area in the same file. If no MAP
directive is used, the @ counter is set to zero. @ can be reset any number of times
using MAP to allow many storage maps to be established.

Space within a storage map is described by the FIELD directive. Every time FIELD
is used its label (if any) is given the value of the storage location counter @, and @
is then incremented by the number of bytes reserved.

In a MAP directive with a base register, the register becomes implicit in all symbols
defined by FIELD directives which follow, until cancelled by a subsequent MAP
directive. These register-relative symbols can later be quoted in load and store
instructions. For example:

^ 0,r9
4

Lab # 4
LDR r0,Lab

is equivalent to:

LDR r0,[r9,#4]

Organisational directives – END, ORG, LTORG, KEEP and LEAF
END

The assembler stops processing a source file when it reaches the END directive. If
assembly of the file was invoked by a GET directive, the assembler returns and
continues after the GET directive (see Links to other source files – GET/INCLUDE on
page 69). If END is reached in the top-level source file during the first pass without
any errors, the second pass will begin. Failing to end a file with END is an error.
66

Directives
ORG numeric-expression

A program’s origin is determined by the ORG directive, which sets the initial value
of the program location counter. Only one ORG is allowed in an assembly and no
ARM instructions or store initialisation directives may precede it. If there is no
ORG, the program is relocatable and the program counter is initialised to 0.

LTORG

LTORG directs that the current literal pool be assembled immediately following it.
A default LTORG is executed at every END directive which is not part of a nested
assembly, but large programs may need several literal pools, each closer to where
their literals are used to avoid violating LDR’s 4KB offset limit.

KEEP «symbol»

The assembler does not by default describe local symbols (i.e. non-exported symbols;
see Links to other object files – IMPORT, EXPORT, etc on page 67) in its output object
file. However, they can be retained in the object file’s symbol table by using the
KEEP directive. If the directive is used alone all symbols are kept; if only a specific
symbol needs to be kept it can be specified by name.

LEAF symbol

ensures the AOF LEAF attribute is set on symbol. Like KEEP, it also forces symbol
to appear in the symbol table (as a local symbol) if it is not otherwise mentioned in
an EXPORT or KEEP directive.

The KEEP and LEAF directives cannot override the floating point calling standard
symbol attributes set by the --apcs qualifiers.

Links to other object files – IMPORT, EXPORT, etc
IMPORT symbol «[qualifier-list]»«,WEAK»
IMPORT symbol«,FPREGARGS»«,WEAK» (deprecated)

EXPORT symbol «[qualifier-list]»
EXPORT symbol«,symbol ...» (deprecated)

EXPORT

IMPORT provides the assembler with a name (symbol) which is not defined in this
assembly, but will be resolved at link time to a symbol defined in another, separate
object file. The EXTERN directive is similar in syntax and operation to IMPORT, but
it differs in that the symbol is only inserted into the object file as an external
reference if the symbol is actually referenced in the source file - this means it works
like the ‘C’ extern keyword.
67

Links to other object files – IMPORT, EXPORT, etc
EXPORT declares a symbol for use at link time by other, separate object files. The
GLOBAL directive is an alias for EXPORT. If EXPORT is used with no parameters, it
exports all local labels to the object file, similar to the parameter-less form of the
KEEP directive.

qualifier-list is a comma-separated list of qualifiers from the following list:

Qualifier Allowed
in

Effect

FPREGARGS Both Defines a function which expects floating point
arguments passed to it in floating point registers.

NOFPREGARGS Both Opposite of FPREGARGS. The default setting is
determined by the --apcs switch, so this may be
needed as an override.

SOFTFP Both Defines a function which follows a SoftFP floating
point calling standard.

HARDFP Both Opposite of SOFTFP. The default setting is
determined by the --apcs switch, so this may be
needed as an override.

DATA Both Defines a data location.

CODE Both Opposite of DATA. Defines a function.

ARM EXPORT Defines a function which should be entered in
ARM mode. This is the default for any code
symbols following a CODE32 or ARM directive.

THUMB EXPORT Defines a function which should be entered in
Thumb mode. This is the default for any code
symbols following a CODE16 directive.

LEAF EXPORT Defines a leaf function which calls no other
functions.

NONLEAF EXPORT The opposite of LEAF.

USESSB EXPORT Sets symbol attribute bit 10, which is not currently
used by the linker.

NOUSESSB EXPORT The opposite of USESSB.

WEAK IMPORT The linker will not fault an unresolved reference to
this symbol, but will zero the location referring to
it. This qualifier can also be placed outside the
brackets for backwards compatibility.

NOWEAK IMPORT The opposite of WEAK.

READONLY IMPORT Indicates that the symbol is from a READONLY
AREA.
68

Directives
If --apcs=/rwpi is specified, then any IMPORTed symbols with both DATA and
READWRITE attributes will automatically be treated by ObjAsm as relative to sb,
unless they also have a differing BASED attribute. This permits the same source
file to be assembled as either /rwpi or /norwpi with no code changes.

EXPORTAS symbol,alias

EXPORTAS allows a symbol symbol to be given a different name, alias, in the object
file (and therefore as seen by all other source files) from the one used within the
current source file.

REQUIRE symbol

REQUIRE inserts a reference to symbol without emitting any bytes to the current
AREA. An error is generated if the symbol is not satisfied by a local definition or an
IMPORT or EXTERN directive. This directive is most useful in conjunction with the
EXTERN directive.

STRONG symbol

STRONG both declares symbol as a strong symbol and defines the current location
as the value to which references to symbol from other object files will resolve. You
can also use IMPORT on the same symbol if you need to refer to the non-strong
occurrence of symbol earlier in the same source file, or if you want to define
additional attributes of symbol (for example the DATA attribute).

Links to other source files – GET/INCLUDE
GET filename
INCLUDE filename

GET includes a file within the file being assembled. This file may in turn use GET
directives to include further files. Once assembly of the included file is complete,
assembly continues in the including file at the line following the GET directive.
INCLUDE is a synonym for GET.

READWRITE IMPORT Indicates that the symbol is from a READWRITE
AREA.

BASED Rn IMPORT Indicates that the symbol is an offset from the
specified base register.

Qualifier Allowed
in

Effect
69

Diagnostic generation – ASSERT, ! and INFO
Diagnostic generation – ASSERT, ! and INFO
ASSERT logical-expression
! is-error, string-expression «,is-warning»
INFO is-error, string-expression «,is-warning»

ASSERT supports diagnostic generation. If the logical expression returns {FALSE}, a
diagnostic is generated during the second pass of the assembly. ASSERT can be
used both inside and outside macros.

! and INFO are related to ASSERT but are inspected on both passes of the
assembly, providing a more flexible means for creating custom error messages. The
arithmetic expression is-error is evaluated; if it does not equal zero, the string is
printed as an error diagnostic and the assembly halts after pass one.

If is-error equals zero, no action is taken during pass one, but the string is printed
during pass two. If the optional arithmetic expression is-warning is present and
evaluates to a non-zero value, then the string is printed as a warning. Otherwise,
the string is printed as a plain informational message. INFO differs slightly from !
in this last case, in that it outputs the line at which the directive was found as well.
70

Directives
Dynamic listing options – OPT
The OPT directive is used to set listing options from within the source code,
providing that listing is turned on. The default setting is to produce a normal
listing including the declaration of variables, macro expansions, call-conditioned
directives and MEND directives, but without producing a pass one listing. These
settings can be altered by adding the appropriate values from the list below, and
using them with the OPT directive as follows:

Titles – TTL and SUBT
Titles can be specified within the code using the TTL (title) and SUBT (subtitle)
directives. Each is used on all pages until a new title or subtitle is called. If more
than one appears on a page, only the latest will be used: the directives alone create
blank lines at the top of the page. The syntax is:

TTL title
SUBT subtitle

OPT n Effect

1 Turns on normal listing.

2 Turns off normal listing.

4 Page throw: issues an immediate form feed and starts a new page.

8 Resets the line number counter to zero.

16 Turns on the listing of SET, GBL and LCL directives.

32 Turns off the listing of SET, GBL and LCL directives.

64 Turns on the listing of macro expansions.

128 Turns off the listing of macro expansions.

256 Turns on the listing of macro calls.

512 Turns off the listing of macro calls.

1024 Turns on the pass one listing.

2048 Turns off the pass one listing.

4096 Turns on the listing of conditional directives.

8192 Turns off the listing of conditional directives.

16384 Turns on the listing of MEND directives.

32768 Turns off the listing of MEND directives.
71

Miscellaneous directives – ALIGN, NOFP, RLIST and ENTRY
Miscellaneous directives – ALIGN, NOFP, RLIST and ENTRY
ALIGN «power-of-two«,offset«,value«,width»»»»

After store-loading directives have been used, the program counter (PC) will not
necessarily point to a word boundary. If an instruction mnemonic is then
encountered, the assembler will insert up to three bytes of zeros to achieve
alignment. However, an intervening label may not then address the following
instruction. If this label is required, ALIGN should be used. On its own, ALIGN sets
the instruction location to the next word boundary. The optional power-of-two
parameter – which is given in bytes – can be used to align with a coarser byte
boundary, and the offset parameter to define a byte offset from that boundary.

value and width, if present, operate similarly to the FILL directive (see Storage
reservation and initialisation – DCB, DCW, DCD etc on page 63), except that width
defaults to 2 in Thumb code and 4 in ARM code. If they are omitted, and the ALIGN
follows an instruction in an AREA with the CODEALIGN attribute, and offset is an
integer multiple of the instruction width, then the space is padded with NOP
instructions.

NOFP

In some circumstances there will be no support in either target hardware or
software for floating point instructions. In these cases the NOFP directive can be
used to ensure that no floating point instructions or directives are allowed in the
code.

RLIST

The syntax of this directive is:

label RLIST list-of-registers

The RLIST (register list) directive can be used to give a name to a set of registers to
be transferred by LDM, STM, POP or PUSH. List-of-registers is a list of register names
or ranges enclosed in {}.

ENTRY

The ENTRY directive declares its offset in its containing AREA to be the unique
entry point to any program containing this AREA.
72

7 Symbolic capabilities

The assembler also has a range of symbolic capabilities, with which you can set

up symbols as constants or as variables. These are described below.

Setting constants
EQU is used to give a symbolic name to a constant or an address, which may be an
absolute address, a program-relative address, or an address within another AREA
from the same file. The * directive is an alias for EQU. The syntax is

symbol EQU expression«,attribute»

The attribute field can be present if expression is a constant expression whose value is
known in pass 1. This allows for definition of the code/data and ARM/Thumb
attributes of absolute addresses:

RN defines register names. Registers can only be referred to by name. The names
R0-R15, r0-r15, SP, sp, LR, lr, PC and pc are predefined by default. Names may
also be defined for the registers used by the ARM Procedure Call Standard; see
Controlling syntax on page 14. The syntax is:

symbol RN numeric-expression

FN defines the names of FPA floating point registers. The names F0-F7 and f0-f7
are predefined by default. The syntax is:

symbol FN numeric-expression

SN defines the names of VFP single-precision registers. The names S0-S31 and
s0-s31 are predefined by default. The syntax is:

symbol SN numeric-expression«.data-type»

where data-type is any valid Advanced SIMD data type.

Attribute Effect

ARM or CODE32 Defines an absolute ARM code label

THUMB or CODE16 Defines an absolute Thumb code label

DATA Defines an absolute data label
73

Local and global variables – GBL, LCL and SET
DN defines the names of VFP double-precision registers, 64-bit Advanced SIMD
vectors, and Advanced SIMD scalars. The names D0-D31 and d0-d31 are
predefined by default. The syntax is:

symbol DN numeric-expression«.element-type«[index]»»

where element-type is any valid Advanced SIMD data type, and index, if present,
indicates that the symbol defines a scalar consisting of that index into the vector.

QN defines the names of 128-bit Advanced SIMD vectors. The names Q0-Q15 and
q0-q15 are predefined by default. The syntax is:

symbol QN numeric-expression«.element-type»

where element-type is any valid Advanced SIMD data type.

You can omit any otherwise mandatory data type qualifiers on UAL opcodes,
provided that all of the registers it references were declared using SN, DN or QN
directives which included element-type qualifiers. This allows ObjAsm to deduce the
appropriate instruction automatically.

CP gives a name to a coprocessor number, which must be within the range 0 to 15.
The names p0-p15 are predefined by default.

CN names a coprocessor register number; c0-c15 are predefined by default. The
syntax is:

symbol CP numeric-expression
symbol CN numeric-expression

Local and global variables – GBL, LCL and SET
While most symbols have fixed values determined during assembly, variables have
values which may change as assembly proceeds. The assembler supports both
global and local variables. The scope of global variables extends across the entire
source file while that of local variables is restricted to a particular instantiation of
a macro (see the chapter Macros on page 91). Variables must be declared before use
with one of these directives.

GBLA Declares a global arithmetic variable. Values of arithmetic variables are
32-bit unsigned integers.

GBLL Declares a global logical variable

GBLS Declares a global string variable

LCLA Declares and initialises a local arithmetic variable (initial state zero)

LCLL Declares and initialises a local logical variable (initial state false)

LCLS Declares and initialises a local string variable (initial state null string)
74

Symbolic capabilities
The syntax of these directives is:

directive variable-name

The value of a variable can be altered using the relevant one of the following three
directives:

SETA Sets the value of an arithmetic variable

SETL Sets the value of a logical variable

SETS Sets the value of a string variable

The syntax of these directives is:

variable-name directive expression

where expression evaluates to the value being assigned to the variable named.

(You can also declare and set the value of global variables at assembly time; see
page 36.)

Variable substitution – $
Once a variable has been declared its name cannot be used for any other purpose,
and any attempt to do so will result in an error. However, if the $ character is
prefixed to the name, the variable’s value will be substituted before the assembler
checks the line’s syntax. Logical and arithmetic variables are replaced by the result
of performing a :STR: operation on them (see Unary operators on page 81); string
variables are replaced by their value.

Aliases
Once a symbol has been defined, you can define another symbol to have the same
value.

ALIAS symbol,alias

This defines symbol alias to the same value as symbol. symbol and alias can be
EXPORTed with differing symbol attributes.
75

Built-in variables
Built-in variables
ObjAsm provides a wide selection of built-in variables. They are:

{ARCHITECTURE} String The architecture in use. Architecture names
are currently 1, 2, 2a, 3, 3G, 3M, 4xM, 4, 4TxM,
4T, 5xM, 5, 5TxM, 5T, 5TExP, 5TE, 5TEJ, 6, 6K,
6T2, 6Z, 6-M, 6S-M, 7, 7-A, 7-R, 7-M, 7E-M.

{AREANAME} String Name of the current AREA.

{CODESIZE} Arithmetic Has the value 16 when working in Thumb
mode, and the value 32 when working in
ARM mode.

{CONFIG} Arithmetic Has the value 16 when working in Thumb
mode. In ARM mode, the value depends on
the APCS qualifiers: has the value 26 if
/26bit is used and the value 32 if /32bit
is used.

{CPU} String Name of the target CPU, or "Generic ARM"
if only an architecture was selected.

{ENDIAN} String Has the value "big" if the assembler is in
big-endian mode, and the value "little" if
it is in little-endian mode.

{FALSE} Logical Logical constant false.

{FPU} String Name of the target FPU.

{INPUTFILE} String Name of the source file currently being
processed.

{INTER} Logical {TRUE} when interworking is selected (i.e.
APCS qualifier /interwork is used).

{LINENUM} Arithmetic Line number currently being processed.

{LINENUMUP} Arithmetic When in a macro, the line number from which
the current macro was invoked, otherwise the
same as {LINENUM}.

{LINENUMUPPER} Arithmetic When in a macro, the line number from which
the outermost macro was invoked, otherwise
the same as {LINENUM}.

{OBJASM_VERSION}

Arithmetic The version of ObjAsm, multiplied by 100.

{OPT} Arithmetic Currently set listing option. The OPT directive
can be used to save the current listing option,
force a change in it or restore its original
value.
76

Symbolic capabilities
{PC} or . Arithmetic
or
program-
relative

Current value of the program location
counter.

{PCSTOREOFFSET}

Arithmetic The offset added when storing PC to memory
in the current CPU. An error s generated if
only an architecture was selected.

{REENTRANT} Logical {TRUE} if APCS qualifier /reentrant (or
one of its aliases) was used.

{ROPI} Logical {TRUE} if APCS qualifier /ropi (or one of its
aliases) was used.

{RWPI} Logical {TRUE} if APCS qualifier /rwpi (or one of its
aliases) was used.

{TARGET_ARCH_architecture}

Logical {TRUE} if specified architecture is currently
selected. Valid values for architecture are:
1, 2, 2A, 3, 3G, 3M, 4XM, 4, 4TXM, 4T, 5XM, 5,
5TXM, 5T, 5TEXP, 5TE, 5TEJ, 6, 6K, 6T2, 6Z,
6_M, 6S_M, 7, 7_A, 7_R, 7_M, 7E_M

{TARGET_ARCH_ARM}

Arithmetic Version number of the ARM instruction set
supported by the current architecture , or 0 if
only Thumb is supported.

{TARGET_ARCH_THUMB}

Arithmetic Version number of the Thumb instruction set
supported by the current architecture , or 0 if
only ARM is supported.

{TARGET_FEATURE_CLZ}

Logical {TRUE} if specified CPU supports the CLZ
instruction - i.e. it supports ARM v5 and/or
Thumb v4.

{TARGET_FEATURE_DIVIDE}

Logical {TRUE} if specified CPU supports the SDIV
and UDIV instructions - i.e. profile R or M of
architecture 7.

{TARGET_FEATURE_DOUBLEWORD}

Logical {TRUE} if specified CPU supports LDRD and
related instructions - i.e. whether it has the P
extension.
77

Built-in variables
{TARGET_FEATURE_DSPMUL}

Logical {TRUE} if specified CPU supports QADD and
related instructions - i.e. whether it has the E
extension.

{TARGET_FEATURE_EXTENSION_REGISTER_COUNT}

Arithmetic How many double-precision floating point
registers the specified VFP architecture
provides, or 0 if VFP not selected.

{TARGET_FEATURE_MULTIPLY}

Logical {TRUE} if specified CPU supports SMULL and
related instructions - i.e. whether it has the M
extension.

{TARGET_FEATURE_MULTIPROCESSING}

Logical {TRUE} if specified CPU supports the ARMv7
multiprocessing extensions.

{TARGET_FEATURE_NEON}

Logical {TRUE} if specified CPU provides any
Advanced SIMD extension.

{TARGET_FEATURE_NEON_FP16}

Logical {TRUE} if specified CPU provides the
Advanced SIMD extension, including floating
point support, including half-precision
floating point instructions.

{TARGET_FEATURE_NEON_FP32}

Logical {TRUE} if specified CPU provides the
Advanced SIMD extension, including floating
point support.

{TARGET_FEATURE_NEON_INTEGER}

Logical {TRUE} if specified CPU provides any
Advanced SIMD extension, including integer
support.

{TARGET_FEATURE_UNALIGNED}

Logical {TRUE} if specified CPU can perform
unaligned memory accesses - i.e. architecture
6 or later, excluding v6-M and v6S-M.

{TARGET_FPU_FPA}

Logical {TRUE} if a FPA-style FPU has been specified.
78

Symbolic capabilities
{TARGET_FPU_SOFTFPA}

Logical {TRUE} if a FPA-endianness SoftFP calling
standard is selected, and no hardware FP
instructions are permitted.

{TARGET_FPU_SOFTFPA_FPA}

Logical {TRUE} if a FPA-endianness SoftFP calling
standard is selected, and FPA instructions are
permitted.

{TARGET_FPU_SOFTFPA_VFP}

Logical {TRUE} if a FPA-endianness SoftFP calling
standard is selected, and VFP instructions are
permitted.

{TARGET_FPU_SOFTVFP}

Logical {TRUE} if a VFP-endianness SoftFP calling
standard is selected, and no hardware FP
instructions are permitted.

{TARGET_FPU_SOFTVFP_FPA}

Logical {TRUE} if a VFP-endianness SoftFP calling
standard is selected, and FPA instructions are
permitted.

{TARGET_FPU_SOFTVFP_VFP}

Logical {TRUE} if a VFP-endianness SoftFP calling
standard is selected, and VFP instructions are
permitted.

{TARGET_FPU_VFP}

Logical {TRUE} if a VFP-style FPU has been specified.

{TARGET_FPU_VFPV2}

Logical {TRUE} if specified FPU uses (precisely)
version 2 of the VFP architecture.

{TARGET_FPU_VFPV3}

Logical {TRUE} if specified FPU uses (precisely)
version 3 of the VFP architecture.

{TARGET_FPU_VFPV4}

Logical {TRUE} if specified FPU uses (precisely)
version 4 of the VFP architecture.

{TARGET_PROFILE_A}

Logical {TRUE} if specified CPU is of profile A of
architecture 7.
79

Built-in variables
It has never been possible to test if a given version of ObjAsm supports a given
built-in variable, and if you attempt to use one that does not exist, you get an error.
To facilitate conditional assembly based upon the available feature set, you can
use the arithmetic variable |objasm$version|, which is predefined by
ObjAsm 4 or later, and has the same value as {OBJASM_VERSION}. For example:

MACRO
WhereAmI
IF :DEF: |objasm$version|
INFO 0, "In area \"" :CC: {AREANAME} :CC: "\""
ELSE
INFO 0, "In unknown area"
ENDIF
MEND

{TARGET_PROFILE_M}

Logical {TRUE} if specified CPU is of profile M of
architecture 6 or 7.

{TARGET_PROFILE_R}

Logical {TRUE} if specified CPU is of profile R of
architecture 7.

{TRUE} Logical Logical constant true.

{UAL} Logical {TRUE} if ObjAsm is configured to expect
UAL syntax instructions.

{VAR} or @ Arithmetic,
register-
relative or
program-
relative

Current value of the storage-area location
counter.
80

8 Expressions and operators

Expressions are combinations of simple values, unary and binary operators, and

brackets. There is a strict order of precedence in their evaluation: expressions in
brackets are evaluated first, then operators are applied in precedence order.
Adjacent unary operators evaluate from right to left; binary operators of equal
precedence are evaluated from left to right.

The assembler includes an extensive set of operators for use in expressions, many
of which resemble their counterparts in high-level languages.

Single-character strings can be automatically converted to arithmetic expressions
if the context demands it.

When intra-file Thumb code addresses are used in expressions, ObjAsm will set bit
0 of the address. This facilitates Thumb interworking using load instructions (from
ARM v5) and ALU instructions (from ARM v7). Inter-file references to Thumb code
addresses are fixed up by the Linker instead.

Unary operators
Unary operators have the highest precedence (bind most tightly) so are evaluated
first. A unary operator precedes its operand, and adjacent operators are evaluated
from right to left.

Operator Usage Explanation

! !A Logical complement of A

+ +A Unary plus

- -A Unary negate.

+ and - can act on numeric, PC-relative
and register-relative expressions.

? ?A Number of bytes generated by line defining
label A.
81

Unary operators
BASE
INDEX

:BASE:A
:INDEX:A

If A has no register offsets and no
relocations, BASE produces an error and
INDEX has no effect.

If A has no register offsets and one or more
relocations (e.g. it is a label from a
non-BASED AREA), BASE returns 15 and
INDEX has no effect.

If A has a single, positive register offset
(e.g.. it is a label from a BASED AREA, or it
was defined using a FIELD directive where
the preceding MAP directive referenced a
register) and 0 or more relocations, BASE
returns the number of the offset register
and INDEX removes the register offset
from the expression, leaving any
relocations unaffected.

Otherwise, both BASE and INDEX produce
errors.

BASE and INDEX are most likely to be of
use within macros.

CC_ENCODING :CC_ENCODING:
A

Numeric value of an ARM instruction
condition field (in bits 28-31)
corresponding to the condition name
string A

CHR :CHR:A ASCII string of A

DEF :DEF:A {TRUE} if A is defined, otherwise {FALSE}

LEN :LEN:A Length of string A

LNOT :LNOT:A Logical complement of A

LOWERCASE :LOWERCASE:A String A with each constituent character
forced to lower-case.

NOT :NOT:A Bitwise complement of A

RCONST :RCONST:A A no-op in ObjAsm, and is provided for
armasm compatibility. This is because
ObjAsm still permits register names in
expressions (they are automatically
converted to the register number - this
ability has been withdrawn in armasm).

REVERSE_CC :REVERSE_CC:A Opposite condition name string to that
stated in string A.

Operator Usage Explanation
82

Expressions and operators
Binary operators
Binary operators are written between the pair of sub-expressions on which they
operate. Operators of equal precedence are evaluated in left to right order. The
binary operators are presented below in groups of equal precedence, in decreasing
precedence order.

Multiplicative operators
These are the binary operators which bind most tightly and have the highest
precedence:

These operators act only on numeric expressions.

String manipulation operators

In the two slicing operators LEFT and RIGHT, A must be a string and B must be a
numeric expression.

STR :STR:A Hexadecimal string of A. STR returns an
eight-digit hexadecimal string
corresponding to a numeric expression, or
the string T or F if used on a logical
expression.

UPPERCASE :UPPERCASE:A String A with each constituent character
forced to upper-case.

Operator Usage Explanation

% A%B A modulo B

* A*B Multiply

/ A/B Divide

MOD A:MOD:B A modulo B

Operator Usage Explanation

CC A:CC:B B concatenated on to the end of A

LEFT A:LEFT:B The leftmost B characters of A

RIGHT A:RIGHT:B The rightmost B characters of A

Operator Usage Explanation
83

Binary operators
Shift operators

The shift operators act on numeric expressions, shifting or rotating the first
operand by the amount specified by the second. Note that SHR and >> perform a
logical shift and does not propagate the sign bit.

Addition and logical operators

The bitwise operators act on numeric expressions. The operation is performed
independently on each bit of the operands to produce the result.

Operator Usage Explanation

<< A<<B Shift A left B bits

>> A>>B Shift A right B bits

ROL A:ROL:B Rotate A left B bits

ROR A:ROR:B Rotate A right B bits

SHL A:SHL:B Shift A left B bits

SHR A:SHR:B Shift A right B bits

Operator Usage Explanation

& A&B Bitwise AND of A and B

+ A+B Add A to B

— A-B Subtract B from A

^ A^B Bitwise Exclusive OR of A and B

A|B Bitwise OR of A and B

AND A:AND:B Bitwise AND of A and B

EOR A:EOR:B Bitwise Exclusive OR of A and B

OR A:OR:B Bitwise OR of A and B
84

Expressions and operators
Relational operators

The relational operators act upon two operands of the same type to produce a
logical value. Allowable types of operand are numeric, program-relative,
register-relative, and strings. Strings are sorted using ASCII ordering. String A will
be less than string B if it is either a leading substring of string B, or if the left-most
character of A in which the two strings differ is less than the corresponding
character in string B. Note that arithmetic values are unsigned, so the value of
0>-1 is {FALSE}.

Boolean operators
These are the weakest binding operators with the lowest precedence.

The Boolean operators perform the standard logical operations on their operands,
which should evaluate to {TRUE} or {FALSE}.

Operator Usage Explanation

!= A!=B A not equal to B

/= A/=B A not equal to B

< A<B A less than B

<= A<=B A less than or equal to B

<> A<>B A not equal to B

= A=B A equal to B

== A==B A equal to B

> A>B A greater than B

>< A><B A not equal to B

>= A>=B A greater than or equal to B

Operator Usage Explanation

&& A&&B Logical AND of A and B

|| A||B Logical OR of A and B

LAND A:LAND:B Logical AND of A and B

LOR A:LOR:B Logical OR of A and B

LEOR A:LEOR:B Logical Exclusive OR of A and B
85

Binary operators
86

9 Conditional and repetitive
assembly

This chapter describes the features available within the Assembler for

constructing conditional assembly statements and conditional looping
statements.

Conditional assembly
The [and] directives mark the start and finish of sections of the source file which
are to be assembled only if certain conditions are true. The basic construction is
IF… THEN… ENDIF; however, ELSE and ELIF are also supported, giving the full
IF… THEN… ELSE… ELIF… ENDIF conditional assembly.

The start of the section is known as the IF directive:

[logical_expression or IF logical_expression

This is the ELIF directive:

ELIF logical_expression

This is the ELSE directive:

| or ELSE

and this is the ENDIF directive:

] or ENDIF

A block which is being conditionally assembled can contain several [|]
directives; that is, conditional assembly can be nested.
87

Conditional assembly
Simple use of the IF and ENDIF directives
You can use the IF and ENDIF directives (without the ELSE directive) like this:

[logical_expression
..........
...code...
..........
]

The code will only be assembled if the logical expression is true; it will be skipped
if the logical expression is false.

Simple use of the IF, ELSE and ENDIF directives
You can use three directives, thus:

[logical_expression
.........................
...first piece of code...
.........................
|
..........................
...second piece of code...
..........................
]

If the logical expression is true, the first piece of code will be assembled and the
second skipped. If the expression is false, the first piece of code will be skipped and
the second assembled.

Simple use of the IF, ELIF, ELSE and ENDIF directives
Alternatively you can use all four directives, thus:

IF first_logical_expression
.........................
...first piece of code...
.........................
ELIF second_logical_expression
..........................
...second piece of code...
..........................
ELSE
.........................
...third piece of code...
.........................
ENDIF

If the first logical expression is true, the first piece of code will be assembled and
the second and third skipped, irrespective of the truth of the second expression. If
the first expression is false and the second is true, the first and third piece of code
will be skipped and the second assembled. If both the first and second expressions
88

Conditional and repetitive assembly
are false, the first and second piece of code will be skipped and the third
assembled. If the third piece of code does nothing, you can choose to omit the
ELSE directive.

Conditional assembly and the Terse listing option
Lines conditionally skipped by these directives are not listed unless ObjAsm is
switched from its default terse mode. For desktop assembly, you must deselect
Terse listing from ObjAsm’s menu (see Listings on page 22); for command line
usage, you must specify the --no_terse command line option (see page 31).

An example
An example of a notional data storage routine is given below. This routine can
either use a disc or a tape data storage system. To assemble the code for tape
operation, the programmer prepares the system by altering just one line of code,
the label SWITCH.

DISC * 0
TAPE * 1
SWITCH * DISC

...code...
. [SWITCH=TAPE

...tape interface code...
]
[SWITCH=DISC
...disc interface code...
]
...code continues...

or alternatively:

DISC * 0
TAPE * 1
SWITCH * DISC

...code...
[SWITCH=TAPE
...tape interface code...
|
...disc interface code...
]
...code continues...

The IF construction can be used inside macro expansions as easily as it is used in
the main program.
89

Repetitive assembly
Repetitive assembly
It is often useful for program segments and macros to produce tables. To do this,
they must be able to have a conditional looping statement. The Assembler has the
WHILE… WEND construction. This produces an assembly time (not runtime) loop.

The syntax is:

WHILE logical_expression

to start the repetitive block, and:

WEND

to end it.

For example:

GBLA counter
counter SETA 100

WHILE counter >0
DCD &$counter

counter SETA counter-1
WEND

produces the same result as the following (but is shorter and less prone to typing
errors):

DCD 100
DCD 99
DCD 98
DCD 97
:
DCD 2
DCD 1

Since the test for the WHILE condition is made at the top of the loop, it is possible
that the source within the loop will not generate any code at all.

Listing of conditionally skipped lines is as for conditional assembly.
90

10 Macros

Macros give you a means of placing a single instruction in your source which

will be expanded at assembly time to several assembler instructions and
directives, just as if you’d written those instructions and directives within the
source at that point.

As an example, we will define a TestAndBranch instruction. This would normally
take two ARM instructions. So we tell the Assembler, by means of a macro
definition, that whenever it meets the TestAndBranch instruction, it is to insert the
code we have given it in the macro definition. This is of course a convenience; we
could just as easily write the relevant instructions out each time, but instead we let
the Assembler do it for us.

The Assembler determines the destination of the branch with a macro parameter.
This is a piece of information specified each time the macro is coded; the macro
definition specifies how it is used. In the TestAndBranch example, we might also
make the register to be tested a parameter, and even the condition to be tested for.
Thus our macro definition might be:

MACRO
$label TestAndBranch$cc $dest,$reg ; This is called the macro prototype

; statement
$label CMP $reg,#0 ; These two lines are the ones that

B$cc $dest ; will be substituted in the source.
MEND ; This says the macro definition is

; finished

A use of the macro might be:

Test TestAndBranchNE NonZero,R0
:
:
:

NonZero

The result, as far as the Assembler is concerned, is:

Test CMP R0,#0
BNE NonZero
:
:
:

NonZero
91

Syntax
Syntax
The fact that a macro is about to be defined is given by the directive MACRO in the
instruction field:

MACRO

This is immediately followed by a macro prototype statement which takes the form:

«$label» macroname«$suffix» «$parameter»«,$parameter»…

«$label» if present, it is treated as an additional parameter.

«$suffix» if present, it is treated as an additional parameter.

«$parameter»Parameters are passed to the macro as strings and substituted
before syntax analysis. Any number of them may be given.

The purpose of the macro prototype statement is to tell the Assembler the name of
the macro being defined. The name of the macro is found in the opcode field of the
macro prototype statement.

The macro prototype statement also tells the Assembler the names of the
parameters, if any, of the macro. Parameters may occur in three places in the macro
prototype statement. A single optional parameter may occur in the label field,
shown as $label above. This is normally used if the macro expansion is to
contain a program label, and is merely an aid to clarity, as can be seen in the
TestAndBranch example. An optional suffix to the macro name, shown as
$suffix above, forms another parameter. There is no special requirement that
this is an ARM condition code, although this is what it will normally be used for.
Any number of parameters, separated by commas, may occur in the operand field.
All parameter names begin with the character $, to distinguish them from ordinary
program labels.

The macro prototype statement can also tell the Assembler the default values of
any of the parameters. This is done by following the parameter name by an equals
sign, and then giving the default value. If the default value is to begin or end with a
space then it should be placed within quotes. For example:

$reg = R0
$string = " a string "

It is not possible to give a default value for the parameters in the label or suffix
fields.
92

Macros
For example:

MACRO
$label MACRONAME $num,$string,$etc

.............

.............
$label ...lots of...

.....code....
= $num
= $string
= "the price is $etc"
= 0
MEND

● MACRONAME is the name of this particular macro and $num, $string and
$etc are its parameters. Other macros may have many more parameters, or
even none at all.

● The body of the macro follows after MACRONAME, with $label being optional
even if it was given in the macro prototype statement.

● $etc will be substituted into the string "the price is " when the macro
is used.

● The macro ends with MEND.

The macro is called by using its name and any missing parameters are indicated by
commas, or may be omitted entirely if no more parameters are to follow. Thus,
MACRONAME may be called in various ways:

MACRONAME 9,"disc",7

or:

MACRONAME 9

or:

MACRONAME ,"disc",

Local variables
Local variables are similar to global variables, but may only be referenced within
the macro expansion in which they were defined. They must be declared before
they are used. The three types of local variable are arithmetic, logical and string.
These are declared by:

Directive Local variable type Initial state

LCLA Arithmetic zero

LCLL Logical FALSE

LCLS String null string.
93

MEXIT directive
New values for local variables are assigned in precisely the same way as new
variables for global variables: that is, using the directives SETA, SETL and SETS.

Syntax: variable_name SETx expression

MEXIT directive
Normally, macro expansion terminates on encountering the MEND directive, at
which point there must be no unclosed WHILE/WEND loops or pieces of
conditional assembly. Early termination of a macro expansion can be forced by
means of the MEXIT directive, and this may occur within WHILE/WEND loops and
conditional assembly.

Default values
Macro parameters can be given default values at macro definition time, using the
syntax:

$parameter=default_value

In the example of the macro MACRONAME already used:

MACRO
$label MACRONAME $num,$string,$etc

.............

.............
$label ...lots of...

.....code....
= $num
= $string
= "the price is $etc"
= 0
MEND

you could instead write $num=10 in the macro prototype statement. Then, when
calling the macro, a vertical bar character ‘|’ will cause the default value 10 to be
used rather than the value $num. For example:

MACRONAME |,"disc",7

will be equivalent to:

MACRONAME 10,"disc",7

Directive Local variable type

SETA Arithmetic

SETL Logical

SETS String
94

Macros
Note that this default is not used when the macro argument is omitted – the value
is then empty.

Macro substitution method
Each line of a macro is scanned so it can be built up in stages before being passed
to the syntax analyser. The first stage is to substitute macro parameters throughout
the macro and then to consider the variables. If string variables, logical variables
and arithmetic variables are prefixed by the $ symbol, they are replaced by a string
equivalent. Normal syntax checking is performed upon the line after these
substitutions have been performed.

An important exception to these values is that vertical bar characters (‘|’) prevent
substitution from taking place in some circumstances. To be specific, if a line
contains vertical bars, substitution will be turned off after this first vertical bar, on
again after the second one, off again after the third, and so on. This allows the use
of dollar characters in symbols and labels (see the section Symbols on page 44 for
details).

In certain circumstances, it may be necessary to prefix a macro parameter or
variable to a label. In order to ensure that the Assembler can recognise the macro
parameter or variable, it can be terminated by a dot ‘.’ The dot will be removed
during substitution.

For example:

MACRO
$T33 MACRONAME

.............

.............
$T33.L25...lots of...

.....code....
MEND

If the dot had been omitted, the Assembler would not have related the $T33 part
of the label to the macro statement and would have accepted $T33L25 as a label
in its own right, which was not the intention.

Nesting macros
The body of a macro can contain a call to another macro; in other words, the
expansion of one macro can contain references to macros. Macro invocation may
be nested up to a depth of 255.
95

A division macro
A division macro
As a final example, the following macro does an unsigned integer division:

; A macro to do unsigned integer division. It takes four parameters, each of
; which should be a register name:
;
; $Div: The macro places the quotient of the division in this register -
; ie $Div := $Top DIV $Bot.
; $Div may be omitted if only the remainder is wanted.
; $Top: The macro expects the dividend in this register on entry and places
; the remainder in it on exit - ie $Top := $Top MOD $Bot.
; $Bot: The macro expects the divisor in this register onentry. It does not
; alter this register.
; $Temp:The macro uses this register to hold intermediate results. Its initial
; value is ignored and its final value is not useful.
;
; $Top, $Bot, $Temp and (if present) $Div must all be distinct registers.
; The macro does not check for division by zero; if there is a risk of this
; happening, it should be checked for outside the macro.

MACRO
$Label DivMod $Div,$Top,$Bot,$Temp

ASSERT $Top <> $Bot ; Produce an error if the
ASSERT $Top <> $Temp ; registers supplied are
ASSERT $Bot <> $Temp ; not all different.
["$Div" /= ""
ASSERT $Div <> $Top
ASSERT $Div <> $Bot
ASSERT $Div <> $Temp
]

$Label MOV $Temp,$Bot ; Put the divisor in $Temp
CMP $Temp,$Top,LSR #1 ; Then double it until

90 MOVLS $Temp,$Temp,LSL #1 ; 2 * $Temp > $Top.
CMP $Temp,$Top,LSR #1
BLS %b90
["$Div" /=""
MOV $Div,#0 ; Initialise the quotient.
]

91 CMP $Top,$Temp ; Can we subtract $Temp?
SUBCS $Top,$Top,$Temp ; If we can, do so.
["$Div /= ""
ADC $Div,$Div,$Div ; Double $Div & add new bit
]
MOV $Temp,$Temp,LSR #1 ; Halve $Temp,
CMP $Temp,$Bot ; and loop until we’ve gone
BHS %b91 ; past the original divisor.
MEND
96

Macros
The statement:

Divide DivMod R0,R5,R4,R2

would be expanded to:

ASSERT R5 <> R4 ; Produce an error if the
ASSERT R5 <> R2 ; registers supplied are
ASSERT R4 <> R2 ; not all different
ASSERT R0 <> R5
ASSERT R0 <> R4
ASSERT R0 <> R2

Divide MOV R2,R4 ; Put the divisor in R2.
CMP R2,R5,LSR #1 ; Then double it until

90 MOVLS R2,R2,LSL #1 ; 2 * R2 > R5.
CMP R2,R5,LSR #1
BLS %b90
MOV R0,#0 ; Initialise the quotient.

91 CMP R5,R2 ; Can we subtract R2?
SUBCS R5,R5,R2 ; If we can, do so.
ADC R0,R0,R0 ; Double R0 & add new bit.
MOV R2,R2,LSR #1 ; Halve R2,
CMP R2,R4 ; and loop until we’ve gone
BHS %b91 ; past the original divisor.

Similarly, the statement:

DivMod ,R6,R7,R8

would be expanded to:

ASSERT R6 <> R7 ; Produce an error if the
ASSERT R6 <> R8 ; registers supplied are
ASSERT R7 <> R8 ; not all different.
MOV R8,R7 ; Put the divisor in R8.
CMP R8,R6,LSR #1 ; Then double it until

90 MOVLS R8,R8,LSL #1 ; 2 * R8 > R6.
CMP R8,R6,LSR #1
BLS %b90

91 CMP R6,R8 ; Can we subtract R8?
SUBCS R6,R6,R8 ; If we can, do so.
MOV R8,R8,LSR #1 ; Halve R8,
CMP R8,R7 ; and loop until we’ve gone
BHS %b91 ; past the original divisor.

Note:

● Conditional assembly is used to reduce the size of the assembled code (and
increase its speed) in the case where only the remainder is wanted.

● Local labels are used to avoid multiply defined labels if DivMod is used more
than once in the assembler source.

● The letter ‘b’ is used in the local label references (indicating that the
Assembler should search backwards for the corresponding local labels) to
ensure that the correct local labels are found.
97

98

Part 3 – Developing software
for RISC OS
99

100

11 PSR Manipulation

This chapter discusses ways of manipulating the Processor Status Register

(PSR) which maintain compatibility across a range of processors including the
ARM2, ARM3, ARM6, ARM7, Strong ARM, XScale and Cortex-A8 processors.

To just set and clear NZCV flags you can use macros which do the right thing for the
different processor types. To actually preserve flags, you will probably be forced to
use MRS and MSR instructions. These are NOPs on pre-ARM 6 ARMs, so it is
possible to write code sequences which work on all processors from ARM2 to
Cortex-A8.

If writing code that is only for 26-bit modes or only 32-bit modes then the simple
macros supplied in Libraries.Hdr may be used. Set the logical switches
No26bitCode or No32bitCode as required, then GET Hdr:CPU.Generic26
and Hdr:CPU.Generic32. The No26bitCode switch means don't rely on 26-bit
instructions (e.g. TEQP and LDM ^) – the code will work on 32-bit systems. The
switch No32bitCode switch means don't rely on 32-bit instructions (e.g. MSR
and MRS) - the code will work on RISC OS 3.1. Setting both to {TRUE} is too much
for the macros to cope with so to achieve compatibility across the whole range of
processors from you will have to use run-time code as shown below.

The recommended general-purpose code to check whether you're in a 26-bit mode
is:

TEQ R0, R0 ; Sets Z (can be omitted if not in User mode)
TEQ PC, PC ; EQ if in a 32-bit mode, NE if 26-bit

Here is an example of calling a SWI from an IRQ routine:

 TEQ PC, PC ; EQ if in 32-bit mode
MRSEQ R8, CPSR ; Save CPSR in R8 (32-bit mode case)
MOVNE R8, PC ; Save CPSR in R8 (26-bit mode case)
ORR R9, R8, #3 ; IRQ26->SVC26, IRQ32->SVC32
MSREQ CPSR_c, R9 ; Switch to SVC32 (32-bit mode case)
TEQNEP R9, #0 ; Switch to SVC26 (26-bit mode case)
NOP ; NOP to avoid problems on ARM2
STR R14, [R13, #-4]!; faster than STMFD on some new processors
SWI XOS_AddCallBack
LDR R14, [R13], #4 ; ditto
TEQ PC, PC ; EQ if in a 32-bit mode
MSREQ CPSR_c, R8 ; Restore CPSR (32-bit mode case)
TEQNEP R8, #0 ; Restore CPSR (26-bit mode case)
NOP
101

Note it would theoretically be possible to arrange for the TEQP to occur before the
MSR and hence have the MSR be the required NOP for the ARM 2, but this would
require knowledge of what the TEQP will do to the Z flag, and it appears that the
Strong ARM has a bug invoked when TEQP is followed by MSR, even if they're not
both executed.

The complexity of the above example occurs because of the need to support
pre-ARM 6 processors that don't have the MRS and MSR instruction (i.e. RISC OS
3.1 machines). If RISC OS 3.1 support is not required, it reduces to:

 MRS R8, CPSR
ORR R9, R8, #3 ; IRQ26->SVC26, IRQ32->SVC32
MSR CPSR_c, R9
STR R14, [R13, #-4]! ; faster than STMFD on some new processors
SWI XOS_AddCallBack
LDR R14, [R13], #4 ; ditto
MSR CPSR_c, R8

This is possible because the MRS and MSR instructions are available on ARM6 and
ARM7 processors even when running in 26-bit mode.

Sometimes you may be forced to manipulate the SPSR registers. Beware with
interrupt code which will corrupt SPSR_svc if it calls a SWI. Existing interrupt
handlers know to preserve R14_svc before calling a SWI, but not SPSR_svc. Hence
you MUST disable interrupts around SPSR manipulations; the SPSR is not suitable
as a general mechanism for PSR restoration on function return.
102

12 Writing relocatable modules in
assembler

Relocatable modules are the basic building blocks of RISC OS and the means by

which RISC OS can be extended by a user.

The relocatable module system provides mechanisms suitable for

● providing device drivers

● extending the set of RISC OS *commands

● providing shared services to applications (eg the shared C library)

● implementing ‘terminate and stay resident’ (TSR) applications.

All these projects require code either to be more persistent than standard RISC OS
applications or to be used by more than one application, hence resident in the
address space of more than one application. If your program does not have these
requirements it is not recommended to put it in modules, as relocatable modules
are more persistent consumers of system resources than applications, and are also
more difficult to debug.

This chapter is not intended to provide a complete set of the technical details you
need to know to construct any relocatable module. For more information on such
details, see the RISC OS 3 Programmer’s Reference Manual. The points covered here
are intended to provide help for constructing relocatable modules specifically in
assembly language.

For more details of memory management in relocatable modules, you should
again see the RISC OS 3 Programmer’s Reference Manual.

Unlike the construction of relocatable modules in high level languages, no tools
are provided to generate substantial standard portions of code. This means that
you have to construct the module header table, workspace routines, etc. yourself.

Note that some of the relocatable module entry points are called in SVC mode.
Such routines may use SWIs implemented by other parts of RISC OS, but unlike
being in user mode, SWIs corrupt R14, so this must be stored away. Floating point
instructions can be used from SVC mode in RISC OS 4 and later.
103

Assembler directives
Assembler directives
ObjAsm can be used to assemble a module from a set of source files, a link step
being required to join the output object files to form the usable module. The
separation of routines into separately assembled files has several advantages.

It can be a good idea to construct a module with the module header and the small
routines/data associated with it in one source file, to be linked with the code
forming the body of the module.

Such a module header file must be linked so that it is placed first in the module
binary. To do this it should contain an AREA directive at its head such as:

AREA |!!!Module$$Header|, CODE, READONLY

Areas are sorted by type and name; a name beginning with ‘!’ is placed before an
alphabetic name, so the above can be used to ensure first placing.

The module header source needs to contain IMPORT directives making available
any symbols referenced in the module body. In addition, the initialisation routine
should call __RelocCode, a routine added by the linker which relocates any
absolute references to symbols when the module is initialised. If the module
header source contains the initialisation routine, it must use the IMPORT directive
to make __RelocCode available.

The module header must be preceded by the ENTRY directive:

ENTRY

Module_BaseAddr
DCD RM_Start -Module_BaseAddr
DCD RM_Init -Module_BaseAddr
DCD RM_Die -Module_BaseAddr
DCD RM_Service -Module_BaseAddr
DCD RM_Title -Module_BaseAddr
DCD RM_HelpStr -Module_BaseAddr
DCD RM_HC_Table -Module_BaseAddr
DCD RM_SWIChunk -Module_BaseAddr
DCD RM_SWIHandler -Module_BaseAddr
DCD RM_SWINames -Module_BaseAddr
DCD RM_SWIDecode -Module_BaseAddr
DCD RM_Messages -Module_BaseAddr
DCD RM_Flags -Module_BaseAddr
104

Writing relocatable modules in assembler
Example
This product is supplied with the source for an example relocatable module that
provides an extra soft screen mode: Mode 63. This has to be done via service call
handling, and to be useful must be persistent, so providing a typical use of
relocatable modules.

There are two source files held in AcornC_C++.Examples.AsmModule.s:

● The ModeExHdr file produces the module header, and may be useful for you
to copy and edit to form headers for your own modules.

● The other file, ModeExBody, is the source for the main module body.

To build the module, use ObjAsm to assemble the source. Then link the resultant
object files using Link, remembering first to set the Module option on its Setup
dialogue box.

The module is specific to VIDC1 and VIDC1a, and so will not work on Acorn
computers that are fitted with later versions of VIDC – such as the Risc PC.
105

106

13 Interworking assembler with C

Interworking assembly language and C – writing programs with both assembly

language and C parts – requires using both ObjAsm and C/C++.

Interworking assembly language and C allows you to construct top quality RISC OS
applications. Using this technique you can take advantage of many of the strong
points of both languages. Writing most of the bulk of your application in C allows
you to take advantage of the portability of C, the maintainability of a high level
language, and the power of the C libraries and language. Writing critical portions of
code in assembler allows you to take advantage of all the speed of the Archimedes
and all the features of the machine (eg the complete floating point instruction set).

The key to interworking C and assembler is writing assembly language procedures
that obey the ARM Procedure Call Standard (APCS). This is a contract between two
procedures, one calling the other. The called procedure needs to know which ARM
and floating point registers it can freely change without restoring them before
returning, and the caller needs to know which registers it can rely on not being
corrupted over a procedure call. Additionally both procedures need to know which
registers contain input arguments and return arguments, and the arrangement of
the stack has to follow a pattern that debuggers, etc. can understand. For the
specification of the APCS, see the appendix ARM procedure call standard on page 263
of the accompanying Desktop Tools guide.

Examples
The following examples are provided to demonstrate how to write programs
combining assembly language and C.

PrintLib
The directory AcornC_C++.Examples.PrintLib.s contains three source files
from which you can build a library: PrintStr, PrintHex and PrintDble.
These are the assembly language sources for three screen printing routines:
print_string, print_hex and print_double. These respectively print null
terminated strings, integers in hexadecimal, and double precision floating point
numbers in scientific format.
107

Examples
Each routine is written to obey the APCS, so it can be called from assembler, C, or
any other high level language obeying the APCS. The sources for PrintLib illustrate
several aspects of the APCS, such as the distinction between leaf and non-leaf
procedures, and how floating point arguments are passed into a procedure.

Compiling the CTestPrLib example

To show you that you can call the routines in PrintLib from C, we’ve supplied a
small C program in AcornC_C++.Examples.PrintLib.c.CTestPrLib. To
build this example, you must:

1 Build the PrintLib library; you’ll find instructions for this in the section
Assembler example on page 134 of the Desktop Tools guide.

2 Start CC if you’ve not already got it loaded.

3 Drag the CTestPrLib file to the CC icon, which will display its Setup
dialogue box with CTestPrLib already entered as the source to compile.

4 Add the full pathname of the PrintLib library to the list of Libraries on the
Setup menu.

5 Click on Run to compile and link the program.

6 Save the program to disc.

To run the program, double click on its icon in the directory display to which you
saved it. A standard RISC OS command line output window appears containing
text printed by the assembly language library routines as a result of arguments
passed from C:
108

Interworking assembler with C
Compiling and linking CTestPrLib in separate stages

If you prefer, you can instead use the Compile only option of CC to compile
CTestPrLib to an object file.

You can then use Link to link this object file with the libraries it uses. As well as the
PrintLib library, it also uses the C library, so you must link three files: the object
code for CTestPrLib, the library built from the PrintLib source, and the C library
stubs held in AcornC_C++.Libraries.clib.o.stubs.

(In the above section Compiling the CTestPrLib example, the C library stubs were linked
in because they were already in the Setup menu’s default list of Libraries.)

CStatics
The directory AcornC_C++.Examples.CStatics gives an example of
accessing C static variables from both assembler and C source code. The example
builds to form a relocatable module providing a single * Command: *CStatics.

The files in the directory are as follows:

● c.CInit is the C source code. It declares two variables: extern int var1,
which is provided by and initialised to 0 in s.AsmInit (see below), and
int var2, which it initialises as 0. It prints the values of the two variables. It
then calls the routine Asm_Change_Vars provided by s.AsmInit (see
below), which changes the values of the two variables. Finally it prints the new
values.

● cmhg.Header is the CMHG description file for the module. hdr.CVars is
an assembler source file that contains a series of macros used by s.AsmInit.
You will find these useful if you too ever need to share static data between
assembler and C.

● MakeFile is the make file for the CStatics module.

● o is an empty directory used to hold the object files created when making the
CStatics module.

● s.AsmInit is the assembler source code. It initialises the variable var1 to 0
and exports it; it also imports the variable var2. It also provides an APCS
conformant routine Asm_Change_Vars which adds 10 to var1 and
subtracts 10 from var2. All this code makes heavy use of the macros in
hdr.CVars.

To build the CStatics module, simply double click on the MakeFile.
109

Examples
When Make has completed, you can see the example in use. Load the resultant
CStatics module by double clicking on it, then type CStatics at the command
line. You will get this output:

var1 = 0
var2 = 0
var1 = 10
var1 = -10

If you repeat the *CStatics command you will see the variables change again:

var1 = 10
var2 = -10
var1 = 20
var1 = -20

and so on, every time you repeat the command.
110

Part 4 – Appendices
111

112

Appendix A: Changes to the assembler

This release of ObjAsm replaces the version previously supplied as part of the

Castle/Acorn C/C++ Development Environment, the last major release of which
was in 2002. The changes from that version are considerable:

● Apart from deprecated switches, all multi-character switches can now (and are
preferred to) be specified in GNU style: preceded by a double dash, and with
'=' between the switch and its value (if applicable). -noesc, -noterse and
-nowarn gain an underscore to become --no_esc, --no_terse and --no_warn to
match armasm.

● Support for architectures 3G, 6, 6K, 6T2, 6Z, 6-M, 6S-M, 7, 7-A, 7-R, 7-M, 7E-M
and 7-A.security

● Support for CPUs ARM600, ARM610, ARM700, ARM704, ARM710, ARM720T,
SA-110, SA-1100, SA-1110, ARM910T, ARM920T, ARM922T, ARM926EJ-S,
ARM7TM-S, ARM7TDM, ARM7TDMI-S, ARM710T, ARM740T, ARM7EJ-S,
ARM810, ARM925T, ARM940T, ARM946E-S, ARM966E-S, ARM968E-S,
ARM10E, ARM10EJ-S, ARM1020T, ARM1020E, ARM1022E, ARM1026EJ-S,
88FRxxx(.(no_)hw_divide), ARM1136J-S(-rev1), ARM1136JF-S(-rev1),
ARM1156T2(F)-S, ARM1176JZ(F)-S, MPCore(.no_vfp), Cortex-M0,
Cortex-M1(.(no_)os_extension), Cortex-M3(-rev0), SC300, Cortex-M4(.fp),
Cortex-R4(F), Cortex-A5(.vfp|.neon), Cortex-A8(.no_neon),
Cortex-A9(.no_neon(.no_vfp)), QSP(.no_neon(.no_vfp))

● --cpu=list can be used to print a list of supported CPUs

● -m is no longer the short form of -module, but has the same meaning as in
armasm, viz send dynamic dependency information to stdout

● --debug is a new alias for -g

● New command-line switches (documented elsewhere): --arm, --arm_only,
--checkreglist, --cpreproc, --cpreproc_opts, --device, --fpu, --keep, --regnames,
--no_code_gen

● The APCS version number (3) can now be omitted

● Additional APCS qualifiers are now accepted: /fp, /nonreent(rant), /softfp,
/hardfp, /(no)fpr(egargs), /fpe2, /fpe3, /fpa, /vfp, /26, /32, /(no)pic, /(no)ropi,
/(no)pid, /(no)rwpi

● All built-in variable names are now matched case-insentiviely.
113

● The following new variables are added: {AREANAME}, {CPU}, {FPU},
{INPUTFILE}, {LINENUM}, {LINENUMUP}, {LINENUMUPPER},
{OBJASM_VERSION}, {PCSTOREOFFSET}, {ROPI}, {RWPI},
{TARGET_ARCH_architecture}, {TARGET_ARCH_ARM},
{TARGET_ARCH_THUMB}, {TARGET_FEATURE_CLZ},
{TARGET_FEATURE_DIVIDE}, {TARGET_FEATURE_DOUBLEWORD},
{TARGET_FEATURE_DSPMUL},
{TARGET_FEATURE_EXTENSION_REGISTER_COUNT},
{TARGET_FEATURE_MULTIPLY}, {TARGET_FEATURE_MULTIPROCESSING},
{TARGET_FEATURE_NEON}, {TARGET_FEATURE_NEON_FP16},
{TARGET_FEATURE_NEON_FP32}, {TARGET_FEATURE_NEON_INTEGER},
{TARGET_FEATURE_UNALIGNED}, {TARGET_FPU_FPA},
{TARGET_FPU_SOFTFPA}, {TARGET_FPU_SOFTFPA_FPA},
{TARGET_FPU_SOFTFPA_VFP}, {TARGET_FPU_SOFTVFP},
{TARGET_FPU_SOFTVFP_FPA}, {TARGET_FPU_SOFTVFP_VFP},
{TARGET_FPU_VFP}, {TARGET_FPU_VFPV2}, {TARGET_FPU_VFPV3},
{TARGET_FPU_VFPV4} {TARGET_PROFILE_A}, {TARGET_PROFILE_R},
{TARGET_PROFILE_M}, {UAL}, |objasm$version|

● New area attributes: NOSWSTACKCHECK, VFP, CODEALIGN

● New pseudo-instructions: IT, MOV32, UND, VMOV2

● Added literal-loading forms of LDRSB, LDRH, LDRSH, LDRD

● MOV, MVN, ADR and literal forms of LDR etc can output MOVW

● ADRL can output MOV32

● Shifts (other than LSL) by zero are permitted as pseudo-instructions

● New directives: ALIAS, ARM, DCDU, DCFDU, DCFH, DCFHU, DCFSU, DCQ,
DCQU, DCWU, ELIF, EXPORTAS, FILL, REQUIRE

● ALIGN can now pad with nonzero values or with NOPs

● DCB now accepts values between -128 and -1

● DCI takes optional .N or .W suffix

● EQU takes a new second parameter

● EQU and MAP can reference labels in other areas of the source file

● EXPORT, IMPORT, KEEP and LEAF default qualifiers are set by --apcs
/softfp/hardfp/fpr/nofpr

● EXPORT with no arguments

● EXPORT supports additional qualifiers: NOFPREGARGS, SOFTFP, HARDFP,
CODE, NONLEAF, NOUSESSB, THUMB, ARM

● EXTERN now only outputs a symbol if it is referenced in source code

● IMPORT [WEAK] can be combined with other qualifiers inside the []
114

Changes to the assembler
● IMPORT supports additional qualifiers: NOFPREGARGS, SOFTFP, HARDFP,
DATA, CODE, NOWEAK, READONLY, READWRITE, BASED

● New third parameter to INFO and !

● INFO 0,string,0 now prints filename and line number

● MACRO names can now take an optional suffix parameter

● The following directives can now define local labels: =, &, %, DCB, DCD, DCDO,
DCDU, DCFD, DCFDU, DCFH, DCFHU, DCFS, DCFSU, DCI, DCQ, DCQU, DCW,
DCWU, FILL, SPACE

● Word-type operators (unary and binary) are now matched case-insentively

● New unary operators: !, LOWERCASE, UPPERCASE, REVERSE_CC,
CC_ENCODING, RCONST

● BASE and INDEX have been extended to be useful with external symbols and
BASED areas

● New binary operators: %, ==, !=, &, &&, ||, ^

● The following operators and their aliases can now act on external symbols and
symbols from other areas within the same file, where appropriate for the
context:
=, <>, <, <=, >=, >, +, -

● You can now use the inequality operators on logical expressions.

● New ARM instructions:

● XScale: MAR, MIA, MIABB, MIABT, MIAPH, MIATB, MIATT, MRA

● ARMv6: CPS, LDREX, MCRR2, MRRC2, PKHBT, PKHTB, QADD16, QADD8,
QADDSUBX, QASX, QSAX, QSUB16, QSUB8, QSUBADDX, REV, REV16,
REVSH, RFE, SADD16, SADD8, SADDSUBX, SASX, SEL, SETEND,
SHADD16, SHADD8, SHADDSUBX, SHASX, SHSAX, SHSUB16, SHSUB8,
SHSUBADDX, SMLAD(X), SMLALD(X), SMLSD(X), SMLSLD(X),
SMMLA(R), SMMLS(R), SMMUL(R), SMUAD(X), SMUSD(X), SRS,
SSAT(16), SSAX, SSUB16, SSUB8, SSUBADDX, STREX, SXT(A)B(16),
SXT(A)H, UADD16, UADD8, UADDSUBX, UASX, UHADD16, UHADD8,
UHADDSUBX, UHASX, UHSAX, UHSUB16, UHSUB8, UHSUBADDX,
UMAAL, UQADD16, UQADD8, UQADDSUBX, UQASX, UQSAX, UQSUB16,
UQSUB8, UQSUBADDX, USAD(A)8, USAT(16), USAX, USUB16, USUB8,
USUBADDX, UXT(A)B(16), UXT(A)H

● ARMv6K: CLREX, LDREXB, LDREXD, LDREXH, STREXB, STREXD,
STREXH

● ARMv6Z: SMC, SMI

● ARMv6T2: BFC, BFI, LDRHT, LDRSBT, LDRSHT, MLS, MOVT, MOVW, RBIT,
SBFX, STRHT, UBFX
115

● ARMv6K or ARMv6T2: DBG, SEV, WFE, WFI, YIELD

● ARMv7: DMB, DSB, ISB, PLI

● ARMv7 multiprocessing extension: PLDW

● VFPv1/v2: FABSD, FABSS, FADDD, FADDS, FCMPD, FCMPED, FCMPES,
FCMPED, FCMPEZD, FCMPEZS, FCMPS, FCMPZD, FCMPZS, FCPYD,
FCPYS, FCVTDS, FCVTSD, FDIVD, FDIVS, FLDD, FLDMDBD, FLDMDBS,
FLDMDBX, FLDMEAD, FLDMEAS, FLDMEAX, FLDMFDD, FLDMFDS,
FLDMFDX, FLDMIAD, FLDMIAS, FLDMIAX, FLDS, FMACD, FMACS,
FMDHR, FMDLR, FMDRR, FMRDH, FMRDL, FMRRD, FMRRS, FMRS,
FMRX, FMSCD, FMSCS, FMSR, FMSRR, FMSTAT, FMULD, FMULS, FMXR,
FNEGD, FNEGS, FNMACD, FNMACS, FNMSCD, FNMSCS, FNMULD,
FNMULS, FSITOD, FSITOS, FSQRTD, FSQRTS, FSTD, FSTMDBD, FSTMDBS,
FSTMDBX, FSTMEAD, FSTMEAS, FSTMEAX, FSTMFDD, FSTMFDS,
FSTMFDX, FSTMIAD, FSTMIAS, FSTMIAX, FSTS, FSUBD, FSUBS, FTOSID,
FTOSIS, FTOSIZD, FTOSIZS, FTOUID, FTOUIS, FTOUIZD, FTOUIZS,
FUITOD, FUITOS, VABS, VADD, VCMP, VCMPE, VCVT, VCVTR, VDIV, VLDM,
VLDMDB, VLDMEA, VLDMFD, VLDMIA, VLDR, VMLA, VMLS, VMOV,
VMRS, VMSR, VMUL, VNEG, VNMLA, VNMLS, VNMUL, VPOP, VPUSH,
VSQRT, VSTM, VSTMDB, VSTMEA, VSTMFD, VSTMIA, VSTR, VSUB

● VFPv3: FCONSTD, FCONSTS, FSHTOD, FSHTOS, FSLTOD, FSLTOS,
FTOSHD, FTOSHS, FTOSLD, FTOSLS, FTOUHD, FTOUHS, FTOULD,
FTOULS, FUHTOD, FUHTOS, FULTOD, FULTOS

● VFP half-precision extension: VCVTB, VCVTT

● VFPv4: VFMA, VFMS, VFNMA, VFNMS

● Advanced SIMD: VABA, VABAL, VABD, VABDL, VACGE, VACGT, VACLE,
VACLT, VADDHN, VADDL, VADDW, VAND, VBIC, VBIF, VBIT, VBSL, VCEQ,
VCGE, VCGT, VCLE, VCLS, VCLT, VCLZ, VCNT, VDUP, VEOR, VEXT,
VHADD, VHSUB, VLD1, VLD2, VLD3, VLD4, VMAX, VMIN, VMLAL, VMLSL,
VMOVL, VMOVN, VMULL, VMVN, VORN, VORR, VPADAL, VPADD,
VPADDL, VPMAX, VPMIN, VQABS, VQADD, VQDMLAL, VQDMLSL,
VQDMULH, VQDMULL, VQMOVN, VQMOVUN, VQNEG, VQRDMULH,
VQRSHL, VQRSHRN, VQRSHRUN, VQSHL, VQSHLU, VQSHRN,
VQSHRUN, VQSUB, VRADDHN, VRECPE, VRECPS, VREV16, VREV32,
VREV64, VRHADD, VRSHL, VRSHR, VRSHRN, VRSQRTE, VRSQRTS,
VRSRA, VRSUBHN, VSHL, VSHLL, VSHR, VSHRN, VSLI, VSRA, VSRI, VST1,
VST2, VST3, VST4, VSUBHN, VSUBL, VSUBW, VSWP, VTBL, VTBX, VTRN,
VTST, VUZP, VZIP

● Thumb-only instructions are errors: CBNZ, CBZ, CHKA, ENTERX,
HB(L)(P), LEAVEX, ORN, SDIV, TBB, TBH, UDIV
116

Changes to the assembler
● New Thumb instructions (all ARMv6 / Thumbv3): CPS, CPY, REV, REV16,
REVSH, SETEND, SXTB, SXTH, UXTB, UXTH

● There was some extremely old code in objasm which was designed to handle
source code written for the Unix 'as' assembler. However, this was
undocumented and had been broken for a long time. Even when it was
functional, it only supported 'a.out' format object files, not AOF. To simplify
objasm, this feature has been removed (note that it has also been removed
from armasm).

● Layout improvements have been made in the output generated by --xref

● Floating-point constants can now be expressed in new formats: “0f_” or “0d_”
prefixes, or using non-decimal bases

● Labels on a line by themselves in code areas, when inserted into the symbol
table by a KEEP or EXPORT directive, used to be marked as code unless
overridden by the EXPORT [DATA] qualifier. In line with armasm, such labels
now default to data if they follow a directive that outputs data.

● Removed the restriction that only one BASED area with a given base register
was permitted per source file.

● Expressions can now use imported symbols and symbols from other areas at
arbitrary positions, including multiple references to these types of symbols,
even if this means emitting multiple relocations for the same word (which was
never previously possible in objasm).

● ADR and ADRL can now be used on symbols from based areas.

● LDR can now be used on absolute addresses, and outputs a
PC-relative-to-absolute relocation (though this is likely to be of limited use in
practice).

● LDF, STF, LFM, SFM, LDC or STC can now be used on external or inter-area
symbols.

● When Thumb code addresses are stored as words, bit 0 is now set.

● Unconditional instructions can now be given an AL condition code

● NV instructions generate an error from ARMv5 onwards

● Several additional warnings of unpredictable behaviour on old instructions
added.

UAL differences
The assembler now supports UAL syntax. The differences this implies are:

● # is always optional
117

● # is optionally accepted before any field that accepts an immediate constant
but not an address label: the second immediate in rotator-form ALU
instructions, coprocessor instructions, BKPT, etc

● Condition codes come after other modifier characters, except for TEQP etc and
FPA opcodes

● Optional '.W' width specifier after condition code but before VFP type specifier
(if any)

● LDM, RFE, SRS and STM default to IA if addressing mode is unspecified

● LDRD/STRD quote both Rt registers

● Shifting MOV instructions have simplified aliases, e.g. RRXEQ R0,R1 (in all of
which, Rd is optional)

● Rd is optional in ADC, ADD, AND, BIC, EOR, MUL, ORR, PKHBT, PKHTB,
QADD, (Q|S|SH|U|UH|UQ)ADD8, (Q|S|SH|U|UH|UQ)ADD16, QDADD, QDSUB,
QSUB, (Q|S|SH|U|UH|UQ)SUB8, (Q|S|SH|U|UH|UQ)SUB16, RSB, RSC, SBC,
SEL, SMMUL(R), SMUAD(X), SMULxy, SMULWy, SMUSD(X), SUB,
(S|U)XT(A)B(16), (S|U)XT(A)H, USAD8

● (Q|S|SH|U|UH|UQ)ADDSUBX is renamed (Q|S|SH|U|UH|UQ)ASX and Rd is
optional

● (Q|S|SH|U|UH|UQ)SUBADDX is renamed (Q|S|SH|U|UH|UQ)SAX and Rd is
optional

● SWI is renamed SVC and SMI is renamed SMC

● POP and PUSH are aliases for LDMFD sp! and STMFD sp!, and are
automatically converted to equivalent LDR or STR instructions for
single-register lists

● CPY is an an alias for MOV unshifted-register

● NEG(S) is an alias for RSB(S) from #0

● ASL #0, ASR #0, LSL #0, LSR #0, ROR #0 are all valid and assemble to LSL #0

● In MRS and MSR, old-style PSR suffixes (_all, _flg, _ctl) are no longer
permitted

● In MRS, APSR is an alias for CPSR

● In MSR, APSR_{nzcvq}{g} is an alias for CPSR_{f}{s}, and APSR is an alias for
CPSR_f

● In MSR, CPSR and SPSR are no longer permitted without a suffix

● In MRC{2}, APSR_nzcv is used instead of PC

● SRS must quote SP (and the optional '!' is after SP, not after mode)

● For anything later than ARMv6, NOP assembles to a dedicated hint instruction
rather than MOV r0,r0
118

Appendix B: Differences from RVDS

ObjAsm shares a common heritage with the assembler included with ARM’s

SDT, ADS and RVDS toolchains, which is commonly known as armasm.
Development of ObjAsm has progressed in parallel with armasm, but some
differences have inevitably arisen. Here is a non-exhaustive list of the differences
between ObjAsm 4 and the armasm from RVDS 4.1.

● The following switches are not supported by objasm: --brief_diagnostics,
--compatible, --depend_format, --device_opt, --diag_error, --diag_remark,
--diag_style, --diag_suppress, --diag_warning, --dllexport_all, --dwarf2,
--dwarf3, --exceptions_unwind, --fpmode, --library_type, --licretry, --list=
(default filename variant), --md, --memaccess, --(no-)exceptions,
--no_exceptions_unwind, --(no-)execstack, --no_hide_all, --no_project,
--(no_)reduce_paths, --no_regs, --(no_)unaligned_access, --project,
--reinitialize_workdir, --report-if-not-wysiwyg, --show_cmdline, --split_ldm,
--thumb, --thumbx, --unsafe, --untyped_local_labels, --version_number, --vsn,
--workdir

● The following switches are not supported by armasm: objasm's deprecated
options, --object, --absolute, --desktop, --no_cache, --throwback, --uppercase

● objasm doesn't support the following --cpu values (alternative names are
available): MPCoreNoVFP Cortex-A8NoNEON

● armasm doesn't support the following --cpu values: 1, 2, 2a, 3, 3G, 3M, 4xM,
4TxM, 5xM, 5, 5TxM, 5TExP, ARM1, ARM2, ARM3, ARM6, ARM600, ARM610,
ARM7, ARM700, ARM704, ARM710, ARM710a, ARM710C, ARM7M, ARM7DM,
ARM8, StrongARM, StrongARM1, SA-1110, ARM10TDMI, ARM10E, ARM10EJ-S,
ARM1020T

● armasm doesn't support the following --fpu values: SoftFPA, SoftFPA+anything,
FPE2, FPE3, FPA10, FPA11, VFPv1-SP, VFPv1, VFPv2-SP, VFPv3-SP,
VFPv3-SP_FP16

● armasm doesn't support the following --device values: ARM250, ARM7100,
ARM7500, ARM7500FE

● armasm defaults to --cpu=ARM7TDMI while objasm has not changed its
default from --cpu=3
119

● If you select a device/cpu which doesn't have hardware floating point, armasm
effectively defaults to --fpu=SoftVFP --apcs=/softfp/vfp, whereas, for
compatibility with earlier versions, objasm defaults to --fpu=FPE2
--apcs=3/hardfp/nofpregargs/fpa/fpe2

● objasm doesn't support the following APCS qualifiers: /(no)fpic

● armasm doesn't support --apcs 3, nor any of the following APCS qualifiers:
/26(bit), /32(bit), /(non)reent(rant), /fpe2, /fpe3, /(no)fpr(egargs),
/swst(ackcheck), /nosw(stackcheck), /(no)fp, /fpa, /vfp

● Variables defined in objasm but not in armasm are {OBJASM_VERSION},
{REENTRANT}, {TARGET_ARCH_architecture} for architectures not supported by
armasm, {TARGET_FPU_FPA}, {TARGET_FPU_SOFTFPA},
{TARGET_FPU_SOFTFPA_FPA}, {TARGET_FPU_SOFTFPA_VFP},
{TARGET_FPU_SOFTVFP_FPA}, {UAL}, |objasm$version|

● Variables defined in armasm but not objasm are {ARMASM_VERSION},
{COMMANDLINE}, {FPIC}, |ads$version|

● armasm doesn't support the following AREA attributes: ABS, PIC, A32bit,
REENTRANT, FP3, BASED, HALFWORD, NOSWSTACKCHECK, VFP

● objasm doesn't support the following AREA attributes: ASSOC, COMGROUP,
FINI_ARRAY, GROUP, INIT_ARRAY, LINKORDER, MERGE, NOALLOC,
PREINIT_ARRAY, SECFLAGS, SECTYPE, STRINGS

● For integer literal access, armasm only supports LDR= (not even LDRB=)

● armasm permits relocations in DCWU and DCDU directives but objasm can't
because the linker and C library don't support unaligned relocations

● armasm has lost LEAF, STRONG and ORG directives, and has not acquired
DCFH or DCFHU

● objasm has not adopted the following armasm directives: THUMB, THUMBX,
REQUIRE8, PRESERVE8, RELOC, COMMON, FRAME, FUNCTION, PROC,
ENDFUNC, ENDP, ATTR

● objasm does not support the following IMPORT attributes: SIZE, ELFTYPE or
the ELF symbol visibility attributes

● armasm does not support the following IMPORT attributes: (NO)FPREGARGS,
SOFTFP, HARDFP, NOWEAK, READWRITE, READONLY, BASED

● objasm does not support the following EXPORT attributes: WEAK, SIZE,
ELFTYPE or the ELF symbol visibility attributes

● armasm does not support the following EXPORT attributes: (NO)FPREGARGS,
SOFTFP, HARDFP, (NON)LEAF, (NO)USESSB

● armasm doesn't implement the unary ! operator

● armasm doesn't support :INDEX: on based or external symbols
120

Differences from RVDS
● objasm automatically converts register symbols to arithmetic constants when
they are used in an expression. armasm faults the use of register symbols in
expressions except in conjunction with the :RCONST: operator.

● armasm does not support automatic narrowing or widening of "0f_" or "0d_"
style floating point constants. It also interprets floating point constants
starting "&" or "0x" like "0f_" or "0d_" values rather than as C99-style
hexadecimal floating point. If you want to ensure that a hexadecimal integer is
not interpreted by armasm in this way, you can add a ".", an exponent or a
leading "+" or "-", which are all faulted by armasm. It also does not support
floating point numbers using base 2 to base 9.

● objasm accepts half-precision floating point constants in VMOV, VMOV2 and
VLDR (literal) instructions.

● armasm does not round floating point constants in VMOV instructions.

● armasm does not support ADR or ADRL on external symbols or on constants
(except ADRL on a constant, which it incorrectly assembles as an offset from
the current area).

● The only directive that armasm can usefully used on based symbols is DCDO -
all the others generate incorrect relocations.

● armasm has dropped support for DCDO on a register-relative symbol which
was defined using the # directive.

● armasm can't do PC-relative-to-constant relocations for LDR instructions.

● armasm doesn’t support the following pseudo-instructions:
V«R»SRA d,m,#0
VSRI d,m,#0
VQSHL.Usize.Ssize d,m,#imm
VQMOVN.Usize.Ssize d,m
VQ«R»SHRN.Usize.Ssize d,m,#imm
121

122

Appendix C: Error messages

This appendix lists most of the common error messages that you may get when

using the assembler, and gives an explanation for each one of the circumstances
that may provoke the error.

Fatal errors
● A label was found which was in no AREA

An AREA directive must precede any label definition. This can happen if you
accidentally try to assemble a file which does not contain an assembler
program.

● Structure mismatch
A file included by a GET directive ended before a necessary ENDIF or WEND
directive was found.

Other fatal errors may indicate a bug in ObjAsm, and you are encouraged to report
them.

Errors
● '\' should not be used to split strings

If you need to do this, use paired quotes on each line and join the substrings
using a :CC: directive.

● ADRL can’t be used with PC
The destination register of an ADRL opcode cannot be PC.

● Area directive missing
An attempt has been made to generate code or data before the first AREA
directive.

● Area name missing
The name for the area has been omitted from an AREA directive.

● Assertion failed
The argument to an ASSERT directive evaluated to {FALSE}

● Bad absolute symbol qualifier
Did not recognise the second parameter to a * directive.

● Bad alias name
The wording of the first parameter following the ALIAS directive is syntactically
not a name.
123

● Bad alias symbol type
The symbol identified by the first parameter to an ALIAS directive is unsuitable
for being aliased.

● Bad alignment boundary
An alignment has been given which is not a power of two.

● Bad alignment pad size
An unsupported size of padding value has been specified in an ALIGN directive
(must be 1, 2 or 4).

● Bad area attribute or alignment
Unknown attribute or alignment not in the range 2-12.

● Bad based number
A digit has been given in a based number which is not less than the base, for
example: 7_8.

● Bad condition code
The parameter to an IT instruction, or a string operated on by :CC_ENCODING:
or :REVERSE_CC:, was not a valid conditional execution suffix.

● Bad exported name
The wording following the EXPORT, EXPORTAS, KEEP or LEAF directive is
syntactically not a name.

● Bad exported symbol type
The specified symbol is not suitable for being exported.

● Bad expression type
For example, a number was given when a boolean expression was expected.
Also produced if the expression requires relocations which are not allowed in
the present context.

● Bad floating point constant
The only allowed floating point immediate constants for FPA are 0, 1, 2, 3, 5, 10
and 0.5. They must be written in exactly these forms. VFP and Advanced SIMD
instructions allow any valid syntax for floating point immediate constants, but
the range of valid values varies from instruction to instruction.

● Bad fill value size
An unsupported size of padding value has been specified in a FILL directive
(must be 1, 2 or 4).

● Bad GET or INCLUDE
The specified file was not found.

● Bad global name
An incorrect character appears in the global variable name.
124

Error messages
● Bad hexadecimal number
The & or 0x introducing a hexadecimal number is not followed by a valid
hexadecimal digit.

● Bad imported name
The wording following the IMPORT, REQUIRE or STRONG directive is
syntactically not a name.

● Bad local label number
A local label number must have a leading number (conventionally, but not
necessarily, in the range 0-99).

● Bad local name
An incorrect character appears in the local variable name.

● Bad macro name
An incorrect character appears in the macro name in a macro definition.

● Bad macro parameter default value
For example, the default value has mismatched quotes.

● Bad operand type
An operator has been given one or more operands of a type it does not
support. For example, a logical value was supplied where a string was required.

● Bad operator
The name between colons is not an operator name.

● Bad or unknown attribute
The only attribute allowed after the square brackets of an IMPORT directive is
WEAK.

● Bad PSR designator
Expected CPSR, SPSR or a recognised PSR bitfield name.

● Bad register list symbol
An expression used as a register set definition (e.g. in LDM or STM) was not
understood or of the wrong type.

● Bad register name symbol
A register name is wrong.

● Bad register range
A register range from a higher to a lower register has been given; for example,
R4-R2 has been typed.

● Bad rotator
The rotator value supplied must be even and in the range 0-30.

● Bad shift name
Syntax error in shift name.
125

● Bad string escape sequence
A C style escape character sequence (beginning with ‘\’) within a string was
incorrect.

● Bad symbol
Syntax error in a symbol name.

● Bad symbol type
This will occur after a # or * directive and means that the symbol being defined
has already been assumed to be of a type which cannot be defined in this way.

● B/BL to unaligned destination
Attempt to branch to ARM code at a non-word-aligned address, using a B or
BL instruction from ARM code, or a BLX instruction from Thumb code. There is
no equivalent check for Thumb code because bit 0 is often used to indicate
that this is a Thumb address.

● Branch offset out of range
The destination of a branch is not within addressable space.

● Code generated in data area
An opcode has been found in an area which is not a code area.

● Conflicting element indexes in list
If you pass a list of Advanced SIMD scalars to VLDn or VSTn instructions, the
element index must be identical for each scalar.

● Coprocessor number out of range
The coprocessor number in a CP directive must be in the range 0-15.

● Coprocessor operation out of range
The operation fields in generic coprocessor instructions must be in the range
0-7 or 0-15.

● Coprocessor register number out of range
The coprocessor register number in a CN directive must be in the range 0-15.

● CPSR/SPSR_flg and CPSR/SPSR_ctl are illegal in MRS
This operation can only be performed on a complete PSR.

● Data transfer offset out of range
The immediate value in a data transfer opcode has limited range, and the
range varies from instruction to instruction. See ARM ARM for details.

● Decimal overflow
The number exceeds 32 bits (or 64 bits in a 64-bit expression).

● Division by zero
Could not evaluate the results of a division or modulus operator.

● Encoding not available
The specified instruction cannot be encoded using the specified instruction
set and/or instruction width.
126

Error messages
● End of input file
The END directive was not found.

● Entry address already set
This is the second or subsequent ENTRY directive.

● Error in macro parameters
The macro parameters do not match the prototype statement in some way.

● Error on code file
An error occurred while writing the output file.

● Even-numbered register required
In ARM code, Rt in LDRD and STRD instructions must be even-numbered.

● Expected required-type data type for destination
An invalid combination of Advanced SIMD data types has been specified for
this instruction.

● Expected required-type data type for first source
An invalid combination of Advanced SIMD data types has been specified for
this instruction.

● Expected required-type data type for second source
An invalid combination of Advanced SIMD data types has been specified for
this instruction.

● Expected 128-bit register symbol
Only a Q register is permitted here.

● Expected 32-bit ARM or 64-bit register or scalar symbol
Only an R or D register or a scalar is permitted here.

● Expected 32-bit ARM or VFP, 64-bit or 128-bit register
or scalar symbol
Only an R, S, D or Q register or a scalar is permitted here.

● Expected 32-bit ARM or VFP or 64-bit register or scalar
symbol
Only an R, S or D register or a scalar is permitted here.

● Expected 32-bit VFP, 64-bit or 128-bit register symbol
Only an S, D or Q register is permitted here.

● Expected 32-bit VFP or 64-bit register symbol
Only an S or D register is permitted here.

● Expected 32-bit VFP register symbol
Only an S register is permitted here.

● Expected 64-bit or 128-bit register or scalar symbol
Only a D or Q register or a scalar is permitted here.
127

● Expected 64-bit or 128-bit register symbol
Only a D or Q register is permitted here.

● Expected 64-bit register or scalar symbol
Only a D register or a scalar is permitted here.

● Expected 64-bit register symbol
Only a D register is permitted here.

● Expected constant expression
The expression was a string or boolean, or had a register or relocation
component.

● Expected constant or address expression
The expression was a string or a boolean, or had a register or relocation
component other than a relocation to the current AREA.

● Expected string expression
The expression was a number or boolean.

● Expected string or constant expression
The expression was a boolean, or had a register or relocation component.

● Floating point number not found
Missing or incorrect syntax for a floating point number.

● Floating point overflow
A number was given which was too large to express as a half-precision floating
point number. When a number is too large to express as a single or
double-precision floating point number, it is silently converted to infinity.

● Floating point register number out of range
FPA registers range from F0-F7.

● Global name already exists
This name has already been used other than as a global variable of the
specified type.

● Hexadecimal overflow
The number exceeds 32 bits (or 64 bits in a 64-bit expression).

● Illegal combination of code and zero initialised
An object file area cannot be declared both to be code and zero initialised
data.

● Illegal label parameter start in macro prototype
The label parameter must consist of a $ followed by a valid symbol name

● Illegal line start should be blank
A label has been found at the start of a line with a directive which cannot be
labelled.
128

Error messages
● Illegal parameter in macro prototype
The part of a macro parameter following the $ must be a valid symbol name.

● Illegal parameter start in macro prototype
Macro parameters must being with a $.

● Illegal shift for this instruction
The instruction used does not support all barrel shift types.

● Immediate value out of range
Specified immediate value cannot be expressed by this instruction.

● Imported name already exists
The name has already been defined or used for something else.

● Incorrect routine name
The optional name following a branch to a local label or on a local label
definition does not match the routine’s name.

● Instruction cannot be conditional in ARM instruction set
This generally means the instruction is encoded in the ‘NV’ part of the
instruction set, so there is no way to express the conditions under which it
should be executed. Usually, this instruction can be conditionally executed if
you use the Thumb instruction set instead.

● Invalid data alignment for this combination of
instruction, register list and element size
An attempt has been made to specify an unsupported alignment after the @
symbol in a VLDn or VSTn instruction.

● Invalid line start
A line may only start with a letter character (the first letter of a label), a digit
(the first character of a local label), a semi-colon or a space.

● Invalid parameter separator in macro prototype
Use a comma between macro parameters.

● Invalid register for instruction, did you mean
APSR_nzcv?
In UAL mode, MRC targeting R15 must use the name APSR_nzcv instead.

● Invalid register for this instruction
You cannot use the specified register here. Usually this is because the bitfield
used to encode that register number is also used to identify the instruction
type.

● Invalid register for Thumb instruction
Many Thumb instructions are restricted to using R0-R7.
129

● Invalid register list for this instruction
An attempt has been made to specify a combination of registers in a register
list which is not supported by the current instruction Refer to the ARM ARM for
supported lists.

● Invalid scalar for this instruction
Advanced SIMD multiply instructions are unable to access the entire pool of
scalars. The scalars available depend upon the element size.

● Label missing from line start
The absence of a label where one is required; for example, in the * directive.

● LDRD destination register cannot be used as offset
The effect of such an instruction is unpredictable.

● Line too long
Try splitting the line using \ continuation characters.

● Literal pool too distant
The instructions which load literals from literal pools have limited reach.
Insert additional LTORG directives.

● Local label not permitted for this directive
Local labels are only appropriate for directives that emit data.

● Local name already exists
A local name has been defined more than once.

● Locals not allowed outside macros
A local variable has been defined in the main body of the source file.

● Macro already exists
A macro can only be defined once.

● Macro definitions cannot be nested
A macro cannot be used to define another macro.

● Macro definition too big
Macros are currently limited to a size of 4K.

● MEND not allowed within conditionals
A MEND has been found amongst IF/ELIF/ELSE/ENDIF or WHILE/WEND
directives.

● Missing at symbol
An @ is absent.

● Missing close bracket
A missing close bracket or too many opening brackets.

● Missing close curly bracket
A } is absent.
130

Error messages
● Missing close quote
No closing quote at the end of a string constant.

● Missing close square bracket
A] is absent.

● Missing comma
Syntax error due to missing comma.

● Missing endianness option
The SETEND instruction must be followed by BE or LE

● Missing exclamation mark
A required ! is absent.

● Missing hash
The hash (#) preceding an immediate value has been forgotten in pre-UAL
syntax.

● Missing open bracket
A missing open bracket or too many closing brackets.

● Missing open curly bracket
An { is absent.

● Missing open square bracket
A [is absent.

● Missing system register name
The name of a VFP / Advanced SIMD system register is required.

● MOV32 can't be used with PC
The destination register of an MOV32 opcode cannot be PC.

● Multiply or incompatibly defined symbol
A symbol has been defined more than once.

● No current macro expansion
A MEND or MEXIT has been encountered but there is no corresponding
MACRO.

● Non-zero data within uninitialised area
All data in a NOINIT AREA must have value 0.

● No pre-declaration of substituted symbol
Attempt to substitute the value of a variable which has not been defined yet.

● Numeric overflow
A based number exceeds 32 bits (or 64 bits in a 64-bit expression).

● NV condition not permitted for targeted CPU
From ARMv5 onwards, the bit pattern which used to express the NV condition
code decodes to different or undefined instructions.
131

● {PCSTOREOFFSET} is not defined when assembling for an
architecture
Use a specific CPU or device name to enable this built-in variable.

● Register list element sizes must match if no data type
specified on instruction
Either choose register symbols which were declared using the same element
size, or use a data size qualifier on the opcode to override them.

● Register list must be in increasing register number
order
The --checkreglist option has detected a non-standard register list.

● Register name fp used in APCS /nofp mode
Either use a different register name, or use the /fp option.

● Register occurs multiply in register list
Any given register can only be used once in each list of registers.

● Registers must be contiguous
This instruction requires that there be no gaps between the specified registers.

● Registers must be contiguous in ARM code
The destination registers for LDRD and the source registers for STRD must be
consecutive register numbers, except in Thumb code.

● Registers must match
This instruction requires that the same register is specified twice.

● Register symbol already defined
A register symbol has been defined as a different type of symbol, or with a
different register number.

● Register value out of range
Register values must be in the range 0-15, except FPA registers (0-7), VFP
registers (0-31) and 64-bit Advanced SIMD vectors (0-31).

● Scalar index out of range
Scalar indexes must be in the range 0-7 for 8-bit scalars, 0-3 for 16-bit scalars,
or 0-1 for 32-bit scalars.

● Shift option out of range
The range permitted is 0-31 or 0-32 depending on the shift type.

● Specified condition is not consistent with previous IT
Correct either the condition field or the preceding IT instruction.

● Specified destination data type not allowed
An invalid Advanced SIMD data type has been specified for this instruction.

● Specified source data type not allowed
An invalid Advanced SIMD data type has been specified for this instruction.
132

Error messages
● String overflow
Concatenation has produced a string of more than 512 characters.

● String too short for operation
An attempt has been made to manipulate a string using :LEFT: or :RIGHT:
which has insufficient characters in it.

● Structure mismatch
IF/ELIF/ELSE/ENDIF must be in the correct order, and must be fully nested
within any WHILE/WEND directives, and vice versa.

● Structure stack overflow
The level of nested IF blocks, WHILE loops and GET directives is limited to
256.

● Structure stack underflow
ELIF, ELSE, ENDIF or WEND without a preceding IF or WHILE.

● Substituted line too long
During variable and macro parameter substitution the line length has
exceeded 4096 characters.

● Symbol missing
An attempt has been made to apply a ? or :DEF: operator, but the symbol was
omitted or the name found was not recognised as a symbol. Or, an attempt to
rename a symbol using an ALIAS or EXPORTAS directive was made, but the
new symbol name was omitted or not recognised.

● Syntax error following directive
An operand has been provided to a directive which cannot take one, for
example: the ‘|’ directive.

● Syntax error following label
A label can only be followed by spaces, a semi-colon or the end-of-line
symbol.

● Syntax error following local label definition
A space, comment, or end-of-line did not immediately follow the local label.

● Thumb code generation disabled
Use of Thumb code when --arm_only switch has been used.

● Too few data types specified on instruction
Add more data type specifiers to the opcode, or remove all of them and use
only register symbols which were declared with data types.

● Too late to ban floating point instructions
At least one floating point instruction has already been emitted.

● Too late to change output format
AOF and AOUT directives can only be used once, and only before any symbols
have been defined or any code or data has been output.
133

● Too late to define symbol as register list
A register list was defined for a symbol already used for another purpose.

● Too late to set origin now
The ORG must be set before the Assembler generates code.

● Too many actual parameters
A macro call is trying to pass too many parameters.

● Too many data types specified on instruction
Remove one or more data type specifier from the opcode.

● Translate not allowed in pre-indexed form
The T flag cannot be specified in pre-indexed forms of LDR and STR.

● Unable to open output file
Parent directory doesn’t exist, exists as a directory, exists but access is denied,
etc

● Undefined exported symbol
The symbol mentioned in an EXPORT, KEEP or LEAF directive must also be
defined somewhere in the source file.

● Undefined symbol
A symbol used in an expression is not defined anywhere in the source file. Or,
a symbol in an ALIAS, EXPORTAS or REQUIRE directive is not defined before
the directive.

● Unexpected characters at end of line
The line is syntactically complete, but more information is present. The
semi-colon prefixing comments may have been omitted.

● Unexpected operand
An operand has been found where a binary operator was expected.

● Unexpected operator
A non-unary operator has been found where an operand was expected.

● Unexpected unary operator
A unary operator has been found where a binary operator was expected.

● Unknown opcode
A name in the opcode field has been found which is not an opcode, a directive,
nor a macro.

● Unknown operand
An unrecognised built-in variable has been used.

● Unknown or wrong type of global/local symbol
Type mismatch, for example, attempting to set or reset the value of a local or
global symbol as logical, where it is a string variable.
134

Error messages
● Unknown shift name
Not one of the six legal shift mnemonics.

● Unmatched conditional or macro
END or LNK directive found before the necessary ENDIF/WEND directives
have been found.

● Unrecognised endianness option
The SETEND instruction must be followed by BE or LE.

● Unrecognised flags
The flags that can be affected by a CPS instruction are A, I and F.

● Unrecognised #line syntax
ObjAsm uses #line directives inserted by the C preprocessor to identify the
original file that a line came from. This indicates the #line directive is not of a
supported format.

● Unrecognised system register name
The name given for a VFP / Advanced SIMD system register is not known to
ObjAsm.

● Unspecified endianness for DCFD or DCFDU
ObjAsm does not know how to format double-precision floating point data if
you use --fpu=none.

● Useless instruction (PC can't be written back)
Writeback to PC was used on an LDC or STC instruction.

● Use of banked R8-R14 after forced user-mode LDM
This has unpredictable effects on some CPUs.

● Writeback to base not available with user mode transfer
Adjusting the base register must be done in a separate instruction for LDM^
and STM^.

Warnings
● '#' not seen before constant expression

The hash character is optional in UAL syntax, but its omission may indicate an
unintentional error.

● '\' at end of comment
A comment cannot be made to continue onto the next line in this way.

● AOF symbol attribute not recognised
An unknown attribute name was used in an IMPORT or EXPORT directive.

● ARM not supported on targeted CPU
The specified CPU only accepts Thumb instructions.
135

● Deprecated form of PSR field specifier used (use _cxsf)
Names like CPSR_cxsf are preferred to ones like CPSR_all. This is elevated to
an error in UAL mode.

● Deprecated instruction (LDM with LR and PC in register
list)

● Deprecated instruction (LDM with SP in register list)

● Deprecated instruction (LDM with writeback and base in
register list; base register is left with unknown value)

● Deprecated instruction (STM with SP or PC in register
list)

● Deprecated instruction (STM with writeback and base is
first in register list)

● Deprecated instruction (STM with writeback and base not
first in register list; value stored from base register
has unknown value)

● Directive found within IT block
Condition code checking may give incorrect results if the directive outputs
data.

● Faking declaration of area AREA |$$$$$$$|
AREA directive was missing.

● Floating point out of range for IEEE half-precision,
using alternative format
VFP alternative format half-precision floating point allows a maximum
exponent of 216, as opposed to IEEE half-precision where the maximum
exponent is 215. This permits larger normalised numbers to be expressed, at
the cost of not being able to express infinities or NaNs.

● Inexact floating point constant
The floating point immediate constant provided to a VMOV instruction is not
one of the architecturally supported values, but ObjAsm has been able to
substitute an approximation.

● Instruction not supported on targeted CPU
You have used an instruction which has no hardware support on the current
CPU.

● LDM or STM of single register is probably slower than LDR
or STR
You may wish to change your code to use the equivalent LDR or STR
instruction.
136

Error messages
● Macro ignores label parameter
When a macro was invoked, it was given a label parameter, even though its
definition does not accept one.

● Macro ignores suffix parameter
When a macro was invoked, it was given a suffix parameter, even though its
definition does not accept one.

● Missing END directive at end of file
Files are required to finish with an END directive.

● ORG base forced to word boundary
ORG addresses must be word-aligned.

● Pre-UAL syntax in UAL ARM code
May indicate an unintentional syntax error.

● Register bank wrap
A group of registers that wrap around the end of the register bank has been
specified on an instruction for which this results in unpredictable behaviour.

● Register not supported on targeted FPU
A double precision register has been referenced when the chosen variant of
the VFP only supports single precision registers, or a register in the range
D16-D31 has been referenced when the chosen variant of the VFP only
supports 16 double precision registers.

● Reserved instruction (using NV condition)
These instructions are not available in ARMv5 and later. Use NOP instructions
instead.

● Specifying a PSR field specifier is deprecated (use CPSR
or SPSR)
MRS instructions apply to the whole of a PSR, not to a field within it. This is
elevated to an error in UAL mode.

● SWP is deprecated, use LDREX/STREX instead
LDREX/CLREX is a better choice on CPUs that support those instructions.

● Thumb not supported on targeted CPU
The specified CPU only accepts ARM instructions.

● UAL syntax in pre-UAL ARM code
May indicate an unintentional syntax error.

● Undefined effect (PC-relative SWP)

● Undefined effect (Rd = Rm in MUL/MLA instruction)

● Undefined effect (use of PC/PSR)

● Unpredictable instruction (invalid processor mode)
137

● Unpredictable instruction (LDM with writeback and base
in register list)

● Unpredictable instruction (move immediate to PSR updates
do-not-modify bits or sets write-as-zero bits)

● Unpredictable instruction (PC-relative exclusive access)

● Unpredictable instruction (PC used as an operand)

● Unpredictable instruction (PC + writeback)

● Unpredictable instruction (RdLo = RdHi)

● Unpredictable instruction (Rd must differ from other
registers)

● Unpredictable instruction (Rd = PC)

● Unpredictable instruction (Rm = RdLo or RdHi)

● Unpredictable instruction (Rm = Rn with writeback)

● Unpredictable instruction (source or destination same as
written-back base)

● Unpredictable instruction (SP used as an operand in
Thumb code)

● Unpredictable instruction (SWP to or from base register)

● Unpredictable instruction (transfer of more than 16
64-bit registers)

● Unpredictable instruction (unimplemented accumulator)

● Use of banked R8-R14 after in-line mode change
This has unpredictable effects on some CPUs.

● Use of CPY between low registers is unpredictable before
ARMv6
Before ARMv6, you must use MOV(S) in Thumb code, even though it means
setting the flags.
138

Appendix D: Example assembler
fragments

The following example assembly language fragments show ways in which the

basic ARM instructions can combine to give efficient code. None of the techniques
illustrated save a great deal of execution time (although they all save some),
mostly they just save code.

Note that, when optimising code for execution speed, consideration to different
hardware bases should be given. Some changes which optimise speed on one
machine may slow the code on another. An example is unrolling loops (eg divide
loops) which speeds execution on an ARM2, but can slow execution on an ARM3,
which has a cache.

Using the conditional instructions

Using conditionals for logical OR
CMP Rn,#p ; IF Rn=p OR Rm=q THEN GOTO Label
BEQ Label
CMP Rm,#q
BEQ Label

can be replaced by:

CMP Rn,#p
CMPNE Rm,#q ; If condition not satisfied try
BEQ Label ; another test.

Absolute value
TEQ Rn,#0 ; Test sign
RSBMI Rn,Rn,#0 ; and 2’s complement if necessary.

Combining discrete and range tests
TEQ Rc,#127 ; discrete test
CMPNE Rc,#" "-1 ; range test
MOVLS Rc,#"." ; IF Rc<#" " OR Rc=CHR$127 THEN Rc:="."
139

Pseudo-random binary sequence generator
Division and remainder
; Enter with dividend in Ra, divisor in Rb.
; Divisor must not be zero.

MOV Rd,Rb ; Put the divisor in Rd.
CMP Rd,Ra,LSR #1 ; Then double it until

Div1 MOVLS Rd,Rd,LSL #1 ; 2 * Rd > divisor.
CMP Rd,Ra,LSR #1
BLS Div1
MOV Rc,#0 ; Initialise the quotient

Div2 CMP Ra,Rd ; Can we subtract Rd?
SUBCS Ra,Ra,Rd ; If we can, do so
ADC Rc,Rc,Rc ; Double quotient and add new bit
MOV Rd,Rd,LSR #1 ; Halve Rd.
CMP Rd,Rb ; And loop until we’ve gone
BHS Div2 ; past the original divisor,

; Now Ra holds remainder, Rb holds original divisor,
; Rc holds quotient and Rd holds junk.

Pseudo-random binary sequence generator
It is often necessary to generate (pseudo-) random numbers, and the most efficient
algorithms are based on shift generators with a feedback rather like a cyclic
redundancy check generator. Unfortunately, the sequence of a 32 bit generator
needs more than one feedback tap to be maximal length (that is, 232–1 cycles
before repetition). A 33 bit shift generator with taps at bits 20 and 33 is required.

The basic algorithm is:

● new bit := bit 33 EOR bit 20

● shift left the 33 bit number

● put in new bit at the bottom.

● Repeat for all the 32 new bits needed.

All this can be done in five S cycles:

; Enter with seed in Ra (32 bits),Rb (1 bit in Rb lsb)
; Uses Rc

TST Rb,Rb,LSR #1 ; top bit into carry
MOVS Rc,Ra,RRX ; 33 bit rotate right
ADC Rb,Rb,Rb ; carry into lsb of Rb
EOR Rc,Rc,Ra,LSL#12 ; (involved!)
EOR Ra,Rc,Rc,LSR#20 ; (similarly involved!)

; New seed in Ra, Rb as before
140

Example assembler fragments
Multiplication by a constant

Multiplication by 2n (1,2,4,8,16,32…)
MOV Ra,Ra,LSL #n;

Multiplication by 2n+1 (3,5,9,17…)
ADD Ra,Ra,Ra,LSL #n.

Multiplication by 2n-1 (3,7,15…)
RSB Ra,Ra,Ra,LSL #n

Multiplication by 6
ADD Ra,Ra,Ra,LSL #1 ; Multiply by 3
MOV Ra,Ra,LSL #1 ; and then by 2.

Multiply by 10 and add in extra number
AD Ra,Ra,Ra,LSL #2 ; Multiply by 5
ADD Ra,Rc,Ra,LSL #1 ; Multiply by 2 and add in next digit

General recursive method for Rb := Ra×C, C a constant
If C even, say C = 2n×D, D odd:

D=1 : MOV Rb,Ra,LSL #n
D<>1: {Rb := Ra*D}

MOV Rb,Rb,LSL #n

If C MOD 4 = 1, say C = 2n×D+1, D odd, n>1:

D=1 : ADD Rb,Ra,Ra,LSL #n
D<>1: {Rb := Ra*D}

ADD Rb,Ra,Rb,LSL #n.

If C MOD 4 = 3, say C = 2n×D–1, D odd, n>1:

D=1 : RSB Rb,Ra,Ra,LSL #n
D<>1: {Rb := Ra*D}

RSB Rb,Ra,Rb,LSL #n.
141

Loading a word from an unknown alignment
This is not quite optimal, but close. An example of its non-optimal use is multiply
by 45 which is done by:

RSB Rb,Ra,Ra,LSL #2 ; Multiply by 3
RSB Rb,Ra,Rb,LSL #2 ; Multiply by 4*3-1 = 11
ADD Rb,Ra,Rb,LSL #2 ; Multiply by 4*11+1 = 45

rather than by:

ADD Rb,Ra,Ra,LSL #3 ; Multiply by 9
ADD Rb,Rb,Rb,LSL #2 ; Multiply by 5*9 = 45

Loading a word from an unknown alignment
Before ARMv6, there was no instruction to load a word from an unknown
alignment. To do this requires some code (which can be a macro) along the
following lines:

; Enter with 32-bit address in Ra
; Uses Rb, Rc; result in Rd
; Note d must be less than c

BIC Rb,Ra,#3 ; Get word-aligned address
LDMIA Rb,{Rd,Rc} ; Get 64 bits containing answer
AND Rb,Ra,#3 ; Correction factor in bytes
MOVS Rb,Rb,LSL #3 ; ...now in bits and test if aligned
MOVNE Rd,Rd,LSR Rb ; If not aligned, produce bottom

; of result word
RSBNE Rb,Rb,#32 ; Get other shift amount
ORRNE Rd,Rd,Rc,LSL Rb ; Combine two halves to get result

Sign/zero extension of a half word
MOV Ra,Ra,LSL #16 ; Move to top,
MOV Ra,Ra,LSR #16 ; and back to bottom

; Use ASR to get sign extended version

Setting condition codes
In 26-bit modes, the PSR flags could be manipulated directly using the TEQP
instruction (or its more rarely-used relations, CMNP, CMPP, and TSTP):

CFLAG * &20000000
TEQP PC,#CFLAG

PC, when specified in the Rn position like this, had all PSR bits clear, so this had
the effect of setting C and clearing the other flags. These instructions could not
discriminate between flags and other PSR bits, so the instruction also enabled all
interrupts and entered USR mode (unless you were already in USR mode, which
isn’t privileged to make such changes).
142

Example assembler fragments
When used in a macro, a TEQP instruction like this would often have been followed
by a NOP instruction, because some CPUs had unpredictable effects if you
accessed a banked register (R8-R14) in the next instruction.

PSR flag manipulation could also be combined with procedure call return in 26-bit
modes like this:

CFLAG * &20000000
BICS PC,R14,#CFLAG ; Returns clearing C flag

; from link register
ORRCCS PC,R14,#CFLAG ; Conditionally returns setting C flag

This worked because when a procedure was entered using a BL instruction (which
it usually would have been), the R14 register contained a copy of the PSR which
was in use at the time. The same warnings about the effect on the interrupt-disable
and processor mode bits of the PSR when using such instructions from non-USR
mode apply as for TEQP.

The closest equivalent to TEQP in 32-bit modes is the MSR instruction:

CFLAG * &20000000
MSR CPSR_f,#CFLAG

This can safely be used from non-USR modes without affecting CPSR bits other
than the flags.

You can’t combine flag manipulation with a return from a procedure call in a single
instruction in 32-bit modes. You would typically replace the above example with an
MSR and a MOV PC, R14.

Some CPUs that support 26-bit mode don’t have the MSR instruction, and some
CPUs that support 32-bit mode don’t have the TEQP instruction. It is possible to
construct code sequences which will detect the mode in use and use the
appropriate instruction, but it is far more efficient to simply use the ALU to update
the flags, since such code works on all CPUs and never affects the non-flag PSR
bits. Some simple examples are given below, assuming you don’t care what
happens to the other flags:

To clear N:

TST r0, #0

To set N:

TEQ r0, #0
TEQPL r0, #&80000000

To clear Z:

TEQ pc, #0

To set Z:

TEQ r0, r0
143

Full multiply
To clear C:

CMN r0, #0

To set C:

CMP r0, #0

To clear V:

CMP r0, #0

To set V:

CMP r0, #&80000000
CMNVC r0, #&80000000

Full multiply
The ARM’s multiply instruction multiplies two 32 bit numbers together and
produces the least significant 32 bits of the result. These 32 bits are the same
regardless of whether the numbers are signed or unsigned.

To produce the full 64 bits of a product of two unsigned 32 bit numbers, the
following code can be used:

; Enter with two unsigned numbers in Ra and Rb.
MOVS Rd,Ra,LSR #16 ; Rd is ms 16 bits of Ra
BIC Ra,Ra,Rd,LSL #16 ; Ra is ls 16 bits
MOV Re,Rb,LSR #16 ; Re is ms 16 bits of Rb
BIC Rb,Rb,Re,LSL #16 ; Rb is ls 16 bits
MUL Rc,RA,Rb ; Low partial product
MUL Rb,Rd,Rb ; First middle partial product
MUL Ra,Re,Ra ; Second middle partial product
MULNE Rd,Re,Rd ; High partial product - NE

; condition reduces time taken
; if Rd is zero

ADDS Ra,Ra,Rb ; Add middle partial products -
; could not use MLA because we
; need carry

ADDCS Rd,Rd, #&10000 ; Add carry into high partial
; product

ADDS Rc,Rc,Ra,LSL #16 ; Add middle partial product
ADC Rd,Rd,Ra,LSR #16 ; sum into low and high words

; of result
; Now Rc holds the low word of the product, Rd its high word,
; and Ra, Rb and Re hold junk.

Of course, newer cores provides the Multiply Long class of instructions to perform
a 64 bit signed or unsigned multiply or multiply-accumulate.
144

Appendix E: Support for AAsm source

AAsm was an alternative variant of the assembler supplied with previous

releases of this product. It has been removed from this product, but to ease porting
source code written for AAsm, some limited support has been added to ObjAsm.
This support for AAsm may be removed in future releases of Acorn Assembler.

To enable this support you must pass the --absolute option to ObjAsm. There
is no option on the Setup menu directly corresponding to this option; the best way
to pass the option from the desktop is to include it in the Setup menu’s Others
option (see Specifying other command line options on page 26).

The --absolute option
The --absolute option makes ObjAsm accept AAsm source code. This option is
provided to simplify the use of code originally developed using AAsm. Unlike
AAsm, the output format produced is AOF, as for any ordinary assembly operation,
and this must be linked by the linker as usual, in order to create an absolute image.
However, the contents of the AOF file will be marked as having an absolute address
(if either the ORG or LEADR directive is used), and the linker, given suitable
options, can produce an image file equivalent to that previously generated directly
by AAsm. The following changes to normal ObjAsm input syntax apply:

● There is an implicit AREA declaration before the start of the source. The
normal rule that there must be an AREA directive in the source before use of
any instruction or data generating statements does not apply. The implicitly
declared area is called ABS$$BLOCK, and has the ABS attribute (see Area
attributes on page 42) implying that it must be loaded at a fixed absolute base
address.

● The directive LEADR is accepted. (Previously only AAsm implemented this;
ObjAsm did not.)

● The ORG directive, if used within the source file, will apply to the implicitly
declared current area.

● The following directives are not recognised (since they were not available with
AAsm), and may be used for any other purpose, in particular as macro names:
AOF, AOUT, AREA, ENTRY, EXPORT, EXPORTAS, EXTERN, GLOBAL, IMPORT,
KEEP, REQUIRE, STRONG .

This change is important, since ObjAsm recognises directives before it does
macro names.
145

146

Index

^ (directive) 66
Symbols
! (directive) 70
! (operator) 81
!= (operator) 85
(directive) 66
#include 12
$ (macro parameter reference) 94
$ (variable substitution) 75
% (directive) 63
% (local label reference) 46
% (operator) 83
& (directive) 63
& (operator) 84
&& (operator) 85
* (directive) 73
* (operator) 83
+ (binary operator) 84
+ (unary operator) 81
. (built-in variable) 77
/ (operator) 83
/= (operator) 85
< (operator) 85
<< (operator) 84
<= (operator) 85
<> (operator) 85
= (directive) 63
= (operator) 85
== (operator) 85
> (operator) 85
>< (operator) 85
>= (operator) 85
>> (operator) 84
? (operator) 81
@ (built-in variable) 66, 80
[(directive) 87-89
] (directive) 87-89

^ (operator) 84
__RelocCode 104
| (directive) 87-89
| (operator) 84
|| (operator) 85
|objasm$version| 80

A
AAsm 36, 145
ABS 42, 43, 145
accn see registers (names)
ADC 49
ADD 49, 50, 51
ADR 50
ADRL 51
Advanced SIMD 56, 74, 78
ALIAS 75
ALIGN 43, 72
an see registers (names)
AND 49, 84
AOF 44, 145
AOUT 44, 145
APCS 15, 17, 33, 73, 107, 108

qualifiers
/26bit 34, 76
/32bit 34, 76
/fp 33, 34
/fpa 35, 36
/fpe2 35
/fpe3 35
/fpregargs 35
/hardfp 35, 36
/interwork 35, 43, 76
/nofp 34
147

Index
/nofpregargs 36
/nointerwork 35
/nonreentrant 33
/nopic 33
/nopid 33
/noropi 33
/norwpi 33, 69
/noswstackcheck 34, 43
/pic 33
/pid 33
/reentrant 33, 42, 77
/ropi 33, 77
/rwpi 33, 69, 77
/softfp 35
/swstackcheck 33, 34
/vfp 35, 43, 60, 65

ARCHITECTURE 76
AREA 42, 104, 145
AREANAME 76
AREAs 33, 41-43, 72

|$$$$$$$| 42
|ABS$$BLOCK| 145
|C$$code| 42
attributes 42
code 41
data 41
relocatable address constants 42

ARM
configuration 34
directive 44
EQU attribute 73
EXPORT qualifier 68
versions 2, 16

ARM ARM 3
ARM Procedure Call Standard see APCS
AsmHello example 29
AsmModule example 105
assembly language 39-97

examples 139-144
ASSERT 70

B
BASE 82
BASED 69
BASED Rn 43
bibliography 3
BIC 49
booleans see constants
built-in variables 76
buttons see application (button name)

C
C language 107-110

preprocessor 12, 13
static variables 109-110
strings 64

cacheing see ObjAsm (cacheing)
case sensitivity 15, 41, 45
CC 83
CC_ENCODING 82
changes 113
CHR 82
CLZ 77
CMN 49
CMP 49
CN 74
cn see registers (names)
CODE 42, 68
CODE16

directive 44
EQU attribute 73

CODE32
directive 44
EQU attribute 73

CODEALIGN 43, 72
CODESIZE 76
COMDEF 42
comments 47
COMMON 42
condition codes 139-140, 142-144
conditional assembly 22, 87-89
148

Index
CONFIG 34, 76
constants 47, 73

immediate 49
VFP 58

conventions 4
coprocessors 55, 74
Cortex-A8 101
CP 74
CPU 76
CStatics example 109-110

D
DATA

AREA attribute 42
directive 45
EQU attribute 73
EXPORT/IMPORT qualifier 68

DCB 63
DCD 63
DCDO 63, 64
DCDU 63
DCFD 65
DCFDU 65
DCFH 65
DCFHU 65
DCFS 65
DCFSU 65
DCI 63, 64
DCQ 63
DCQU 63
DCW 63
DCWU 63
DDT 12
debugging 12

machine level 12
source level 12
tables 12

DEF 82
dependency lists 36
dialogue boxes see application (dialogue box name)
directives 41, 45, 63-72, 145

see also directive name
DN 74
Dn and dn see registers (names)

E
ELIF 87-89
ELSE 87-89
END 47, 66
ENDIAN 32, 76
ENDIF 87-89
ENTRY 72, 104, 145
EOR 84
EQU 73
errors 12, 20, 28, 70, 123-135

browser 12, 28
fatal 123

escapes 15
EXPORT 67, 145
EXPORTAS 69, 145
expressions 81-85

external 63
EXTERN 67, 145

F
FALSE 47, 76
FCONST 60
FIELD 66
FILL 63, 64
FLD 60
floating point 55-62, 72, 103

calling standard 35-36
emulator 55
number input 56

FN 73
Fn and fn see registers (names)
fp see registers (names)
FP3 35
FPA 17, 35, 55, 73, 78, 79
FPREGARGS 68
149

Index
FPU 76
frame pointer 34

G
GBL 36, 44, 74
GET 12, 25, 66, 69
GLOBAL 68, 145

H
HALFWORD 43
HARDFP 68

I
icons see application (icon name)
IF 87-89
image files 9, 12, 29
IMPORT 67, 104, 145
INCLUDE 12, 69
include file searching 12
INDEX 82
INFO directive 70
initialising memory see memory (initialising)
INPUTFILE 76
installation 1
instructions

conversions 49
single data transfer 43
software interrupt 103
undefined 55

INTER 35, 76
interrupt handlers 102
INTERWORK 43
ip see registers (names)
IT 51

K
KEEP 66, 145

L
labels 41, 45

local 46
LAND 85
layout of memory see memory (laying out)
LCL 44, 74, 93
LDC 60
LDF 60
LDM 72
LDR 52
LDRB 52
LDRD 52, 77
LDRH 52
LDRSB 52
LDRSH 52
LEADR 145
LEAF 66, 68
LEFT 83
LEN 82
LEOR 85
libraries 9
LINENUM 76
LINENUMUP 76
LINENUMUPPER 76
Link 2, 9, 34, 41

Debug 12
Module 105

listings 22-24, 89
options 71

literals 50, 52, 60, 67
LNK 25
LNOT 82
LOR 85
LOWERCASE 82
LR 103
lr see registers (names)
LTORG 60, 66
150

Index
M
MACRO 92-93
macros 89, 91-97, 145

for manipulating PSR 101
labels 46
names 15
nesting 95
parameters 92, 94-95
prototype statements 92-93

Make 9, 30, 36
MAP 66
MaverickCrunch 55
memory

initialising 63-65
laying out 66
reserving 63

MEND 71, 93
menus see application (menu name)
MEXIT 94
MNF 60
MOD 83
modules 9, 103-105
MOV 49, 50, 51, 52
MOV32 50, 51
MOVH 50
MOVW 49, 50, 52
MRS 101
MSR 101
multiplication 141-142, 144

see also instructions (multiplies)
MVF 60
MVN 49, 50, 51, 52

N
NEON 56
NOFP 72
NOFPREGARGS 68
NOINIT 42
NONLEAF 68
NOSWSTACKCHECK 43

NOT 82
NOUSESSB 68
NOWEAK 68
numbers see constants

O
ObjAsm 2, 9-37

All registers 15
APCS Registers 15
ARM only 20
Auto run 28
Auto save 28
C strings 15
Cache size 20
Cache source 20
cacheing 19
Check register lists 20
command line 26, 30-37
Command line (menu option) 14
CPU 16
Cross reference 24
Debug 12
Device 18
Display 28
Errors to file 21
FPU 17
Help 29
icon bar menu 28
Include 12
Keep symbols 21
Length 24
Listing 22
No APCS registers 15
No code generation 12
No registers 15
Options 28
Others 26
output 27-28
Pre-UAL ARM 13
Pre-UAL Thumb 13
Run 11, 14
151

Index
Save options 28
SetUp dialogue box 9, 10-12
SetUp menu 11
Source 10, 11
Suppress warnings 20
Terse listing 22, 89
Throwback 12
UAL ARM 13
Upper case opcodes 15
Use C preprocessor 13
Width 23
Work directory 25

object files 9, 29, 41, 63, 67
operators 81-85

addition and logical 84
binary 83-85
boolean 85
multiplicative 83
precedence 81, 83
relational 85
shifts 84
string manipulation 83
unary 81-83

OPT 71, 76
OR 84
ORG 43, 51, 66, 145
origin 67
output 27, 28

P
PC 72, 77
pc see registers (names)
PCSTOREOFFSET 77
PIC 42
pn see registers (names)
POP 72
PrintLib example 107-109
PSR manipulation 101
PUSH 72

Q
QADD 78
QN 74
Qn and qn see registers (names)

R
random numbers 140
RCONST 82
READONLY 42, 68
READWRITE 42, 69
REENTRANT 33, 42, 77
registers

names 15, 33, 41, 73
REL 42
relocatable modules see modules
relocations 63
repetitive assembly 90
REQUIRE 69, 145
reserving memory see memory (reserving)
REVERSE_CC 82
RIGHT 83
RISC OS 99-110
RLIST 72
RN 73
Rn and rn see registers (names)
ROL 84
ROPI 33, 77
ROR 84
ROUT 45, 46
RWPI 33, 77

S
sb see registers (names)
SBC 49
SDIV 77
SET 36, 44, 74, 94
SHL 84
SHR 84
152

Index
sign extension 142
sl see registers (names)
SMULL 78
SN 73
Sn and sn see registers (names)
SOFTFP 68
SoftFP 35, 79
SoftFPA 17
SoftVFP 17
source files 69

line length 41
sp see registers (names)
SPACE 63, 64
SrcEdit 28
stack-limit checking 34
STM 72
STR 75, 83
strings see constants
STRONG 69, 145
Strong ARM 101

bug 102
SUB 49, 50, 51
SUBT 71
summary 27, 28
SVC mode 103
SWI 103
symbols 24, 44, 53, 67, 73-76

length 45
local 67

T
TARGET_ARCH_ARM 77
TARGET_ARCH_THUMB 77
TARGET_FEATURE_CLZ 77
TARGET_FEATURE_DIVIDE 77
TARGET_FEATURE_DOUBLEWORD 77
TARGET_FEATURE_DSPMUL 78
TARGET_FEATURE_EXTENSION_REGISTER_C

OUNT 78
TARGET_FEATURE_MULTIPLY 78
TARGET_FEATURE_MULTIPROCESSING 78

TARGET_FEATURE_NEON 78
TARGET_FEATURE_NEON_FP16 78
TARGET_FEATURE_NEON_FP32 78
TARGET_FEATURE_NEON_INTEGER 78
TARGET_FEATURE_UNALIGNED 78
TARGET_FPU_FPA 78
TARGET_FPU_SOFTFPA 79
TARGET_FPU_SOFTFPA_FPA 79
TARGET_FPU_SOFTFPA_VFP 79
TARGET_FPU_SOFTVFP_FPA 79
TARGET_FPU_SOFTVFP_VFP 79
TARGET_FPU_VFP 79
TARGET_FPU_VFPV2 79
TARGET_FPU_VFPV3 79
TARGET_FPU_VFPV4 79
TARGET_PROFILE_A 79
TARGET_PROFILE_M 80
TARGET_PROFILE_R 80
throwback 28
THUMB

EQU attribute 73
EXPORT qualifier 68

Thumb
ARM/Thumb interworking 35, 43, 44

titles 71
tools 7-37

common features 9, 27
TRUE 47, 80
TTL 71
typographic conventions see conventions

U
UAL 3, 13, 44, 80
UDIV 77
UND 52
UPPERCASE 83
USESSB 68
153

Index
V
VAND 58
VAR 80
variables 36, 73-76

global 74
local 74, 93

VBIC 58, 59
VFP 17, 35, 43, 55, 73, 78, 79
VLDR 60
VMOV 58, 59, 60
VMVN 58, 59
vn see registers (names)
VORN 58
VORR 58, 59
VTRN 59
VUZP 59
VZIP 59

W
warnings 20, 135-138
WEAK 68
WEND 90, 94
WHILE 90, 94
Wireless MMX 55
work directory 25

X
XScale 53, 101
154

	Contents
	1 Introduction
	Assembler tools
	This user guide
	Conventions used in this manual

	2 ObjAsm
	Starting ObjAsm
	The SetUp dialogue box
	The SetUp menu
	ObjAsm output
	ObjAsm icon bar menu
	Example ObjAsm session
	ObjAsm command lines

	3 ARM assembly language
	General
	Input lines
	AREAs
	ORG and ABS
	Instruction sets and syntax
	Object file format
	Symbols
	Labels
	Local labels
	Comments
	Constants
	The END directive

	4 CPU instruction set
	Extended range immediate constants
	The MOV32 instruction
	The ADR instruction
	The ADRL instruction
	The IT instruction
	The UND instruction
	Literals
	Shifts by zero

	5 Floating point instructions
	Floating point constants
	Extended range immediate constants
	The VMOV2 instruction
	Register comparison instructions
	2 x 32-bit vector zip and unzip
	Literals
	Right shifts by zero
	Fixed point conversions with zero fractional bits
	Unsigned saturation of signed numbers

	6 Directives
	Storage reservation and initialisation - DCB, DCW, DCD etc
	Binary file inclusion - BIN and INCBIN
	Floating point store initialisation - DCFH, DCFS and DCFD
	Describing the layout of store - MAP and FIELD
	Organisational directives - END, ORG, LTORG, KEEP and LEAF
	Links to other object files - IMPORT, EXPORT, etc
	Links to other source files - GET/INCLUDE
	Diagnostic generation - ASSERT, ! and INFO
	Dynamic listing options - OPT
	Titles - TTL and SUBT
	Miscellaneous directives - ALIGN, NOFP, RLIST and ENTRY

	7 Symbolic capabilities
	Setting constants
	Local and global variables - GBL, LCL and SET
	Variable substitution - $
	Aliases
	Built-in variables

	8 Expressions and operators
	Unary operators
	Binary operators

	9 Conditional and repetitive assembly
	Conditional assembly
	Repetitive assembly

	10 Macros
	Syntax
	Local variables
	MEXIT directive
	Default values
	Macro substitution method
	Nesting macros
	A division macro

	11 PSR Manipulation
	12 Writing relocatable modules in assembler
	Assembler directives
	Example

	13 Interworking assembler with C
	Examples

	Appendix A: Changes to the assembler
	Appendix B: Differences from RVDS
	Appendix C: Error messages
	Appendix D: Example assembler fragments
	Using the conditional instructions
	Pseudo-random binary sequence generator
	Multiplication by a constant
	Loading a word from an unknown alignment
	Sign/zero extension of a half word
	Setting condition codes
	Full multiply

	Appendix E: Support for AAsm source
	The --absolute option

	Index
	Symbols
	A
	B
	C
	D
	E
	F
	G
	H
	I
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X

