
Contents

Contents i

Introduction to the Toolbox 1

Introduction 1
Toolbox Application Model 4
Toolbox objects 6
Event handling 11
Resource files 14
Task initialisation and run-time information 15
Message texts and nationalisation 16
An Example object 17
Toolbox SWIs 19
SWI Toolbox_CreateObject (0x44ec0) 19
SWI Toolbox_DeleteObject (0x44ec1) 20
SWI Toolbox_ShowObject (0x44ec3) 21
SWI Toolbox_HideObject (0x44ec4) 22
SWI Toolbox_GetObjectState (0x44ec5) 23
SWI Toolbox_ObjectMiscOp (0x44ec6) 24
SWI Toolbox_SetClientHandle (0x44ec7) 25
SWI Toolbox_GetClientHandle (0x44ec8) 25
SWI Toolbox_GetObjectClass (0x44ec9) 26
SWI Toolbox_GetParent (0x44eca) 27
SWI Toolbox_GetAncestor (0x44ecb) 28
SWI Toolbox_GetTemplateName (0x44ecc) 29
SWI Toolbox_RaiseToolboxEvent (0x44ecd) 30
SWI Toolbox_GetSysInfo (0x44ece) 31
SWI Toolbox_Initialise (0x44ecf) 32
SWI Toolbox_LoadResources (0x44ed0) 34
SWI Toolbox_TemplateLookUp (0x44efb) 35
Toolbox events 36

Building an application 39
i

Guide To Hyper 39
How !Hyper was designed 41
How !Hyper was implemented 43
HyperCard Control Language 63

Colour Dialogue box class 65
User interface 65
Application Program Interface 66
Colour Dialogue methods 68
Colour Dialogue events 75
Colour Dialogue templates 77

Colour Menu class 79
User interface 79
Application Program Interface 80
Colour Menu methods 82
Colour Menu events 86
Colour Menu templates 87
Colour Menu Wimp event handling 88

Discard/Cancel/Save Dialogue box class 89
User interface 89
Application Program Interface 90
DCS methods 92
DCS events 97
DCS templates 100
DCS Wimp event handling 101

File Info Dialogue box class 103
User interface 103
Application Program Interface 104
File Info methods 106
File Info events 115
File Info templates 116
File Info Wimp event handling 117

Font Dialogue box class 119
User interface 119
Application Program Interface 120
Font Dialogue methods 123

Font Dialogue events 131
Font Dialogue Templates 133
Font Dialogue Wimp event handling 135

Font Menu class 137
User interface 137
Application Program Interface 138
Font Menu methods 140
Font Menu events 142
Font Menu templates 143
Font Menu Wimp event handling 144

Iconbar icon class 145
User interface 145
Application Program Interface 146
Iconbar icon methods 150
Iconbar icon events 162
Iconbar icon templates 163
Iconbar icon Wimp event handling 164

Menu class 165
User interface 165
Application Program Interface 166
Menu methods 173
Menu events 197
Menu Templates 199
Menu Wimp event handling 200

Print Dialogue box class 201
User interface 201
Application Program Interface 202
Print Dialogue Methods 205
Print Dialogue events 212
Print Dialogue templates 217
Print Dialogue Wimp event handling 219

Prog Info Dialogue box class 221
User interface 221
Application Program Interface 222
Prog Info methods 224

Prog Info events 230
Prog Info templates 231
Prog Info Wimp event handling 232

Quit Dialogue box class 233
User interface 233
Application Program Interface 233
Quit methods 236
Quit events 241
Quit templates 243
Quit Wimp event handling 244

SaveAs Dialogue box class 245
User interface 245
Application Program Interface 246
Save As methods 254
Save As events 265
Save As templates 268
Save As Wimp event handling 269

Scale Dialogue box class 271
User interface 271
Application Program Interface 272
Scale methods 276
Scale events 282
Scale templates 284
Scale Wimp event handling 285

Window class 287
User interface 287
Application Program Interface 288
Window methods 295
Other SWIs 313
Window events 316
Window templates 317
Window Wimp event handling 320
Toolbars 322
User interface 322
Application program interface 323

Toolbar methods 324

Gadgets 325
Application Program Interface 325
Generic gadget methods 330
Gadget Wimp event handling 338
Action buttons 339
Adjuster arrows 347
Button gadget 348
Display fields 355
Draggable gadgets 358
Labels 366
Labelled boxes 367
Number ranges 368
Option buttons 376
Pop-up menus 383
Radio buttons 387
Sliders 395
String sets 403
Writable fields 411

ResEd 417
Starting ResEd 420
The object prototypes window 421
The resource file display 422
Editing object templates in general 425
Editing the Menu class 429
Example menu 434
Editing a Window object template and gadgets 438
Gadgets 449
Editing other classes 474
Exporting and importing messages 486
Keystroke equivalents 487
Mouse behaviour 488

ResTest 491
The event log window 493

DrawFile 495

SWI DrawFile_Render 496
SWI DrawFile_BBox 497
SWI DrawFile_DeclareFonts 498

Resource File Formats 499
Resource file format 500

Support for RISC OS 3.10 505

Index 507

User Interface Toolbox

ii

Copyright © 1994 Acorn Computers Limited. All rights reserved.

Published by Acorn Computers Technical Publications Department.

No part of this publication may be reproduced or transmitted, in any form or by any
means, electronic, mechanical, photocopying, recording or otherwise, or stored in any
retrieval system of any nature, without the written permission of the copyright holder
and the publisher, application for which shall be made to the publisher.

The product described in this manual is not intended for use as a critical component in
life support devices or any system in which failure could be expected to result in
personal injury.

The product described in this manual is subject to continuous development and
improvement. All information of a technical nature and particulars of the product and its
use (including the information and particulars in this manual) are given by Acorn
Computers Limited in good faith. However, Acorn Computers Limited cannot accept
any liability for any loss or damage arising from the use of any information or
particulars in this manual.

If you have any comments on this manual, please complete the form at the back of the
manual and send it to the address given there.

Acorn supplies its products through an international distribution network. Your supplier
is available to help resolve any queries you might have.

ACORN, the ACORN logo, ARCHIMEDES and ECONET are trademarks of Acorn
Computers Limited.

UNIX is a trademark of X/Open Company Ltd.

All other trademarks are acknowledged.

. Published by Acorn Computers Limited
ISBN 1 85250 165 0
Part number 0484,231
Issue 1, December 1994

1 Introduction to the Toolbox

This chapter is intended to give the reader an overview of the RISC OS Toolbox, and

to introduce the concepts used throughout the rest of this manual.

Introduction
The Toolbox was designed with the following goals:
● to facilitate writing consistent, high-quality desktop applications under RISC OS

3.10 and later
● to encourage the writing of applications whose user interface complies with the

RISC OS 3 Style Guide
● to be easy to learn
● to be language-independent
● to make it no harder to do operations which can currently be done using the Wimp.

The Toolbox has the following characteristics:
● it is structured as a set of RISC OS relocatable modules
● it will only run on RISC OS 3.10 or later
● it does not directly call back to code in the client application
● it is SWI-driven
● it can be used from C, C++, BASIC or Assembler with equal ease
● communication back to the client application is via events
● the client application does not have direct access to data structures maintained by

the Toolbox
● it uses a new resource file format to hold templates for the user interface objects

which the application will use at run-time.

Note: The appendix Support for RISC OS 3.10 on page 505 describes support for
RISC OS 3.10 machines.

Installing C/C++
The instructions for installing Acorn C/C++ are in the chapter Installing Acorn C/C++
on page 7 of the Desktop Tools manual.
1

Introduction
Terminology
The following terms are used throughout this manual:

Term Meaning
Class A data type, together with a definition of the operations

which can be performed on that data type
Client application A piece of software which uses the Toolbox
Colours Refers either to desktop colours (in the range 0-15), or to

an RGB colour (represented by one word as 0xbbggrr00)
Dialogue box A window which contains gadgets, and which is

typically used to carry out a ‘dialogue’ with the user,
ending in the user either cancelling the dialogue, or
confirming that they want to apply the options indicated
by the current dialogue state

Method One of the operations defined for a class (it can be
thought of as a ‘function’)

Persistent dialogue box One which remains on the screen even when the menu
tree is closed down. It must be explicitly removed by
cancelling it, or by pressing Escape.

Resource file Described in Resource File Formats on page 499. It is a
file containing a sequence of templates from which to
build objects.

String A NUL-terminated sequence of ASCII characters.
Textual name (name) Can be formed of any sequence of alphanumeric

characters and underscores (‘_’). It must begin with an
alphabetic character. Special names used by the Toolbox
can begin with the underscore character (‘_’).
A name cannot be longer than 12 characters, including
the NUL terminator character.

Transient dialogue box One which appears on the screen, and is removed when
the current menu tree is closed down

User The human user of a client application
User Interface Object
(object)

A fundamental building block for windowed
applications (e.g. a menu). All objects share a set of
common methods which can be applied to them. An
object consists of a fixed size header followed
immediately in memory by a variable size body.

Word A 4-byte entity, aligned at a 4-byte address.
2

Introduction to the Toolbox
General notes
● Where a buffer holds a string, this string will be NUL-terminated on exit from a

SWI or when delivered in an event block. Strings which are given as input
parameters to a SWI should be terminated by a control character (i.e. in the range
0-31 inclusive).

● Where the size of a buffer is specified, this includes any terminating character. If the
size of buffer supplied for a string is not large enough an error is not returned;
instead the buffer is filled (including a terminating NUL), and the returned number
of bytes ‘written to the buffer’ will be the size of buffer which would be required.
Thus you may wish to check that the number of bytes written to the buffer is less
than or equal to the supplied buffer size.

● Note that all SWIs have a flags word in R0. All undefined bits in this flags word
should be 0.

● Unless otherwise stated, changes to objects which are visible on the screen are
immediate.
3

Toolbox Application Model
Toolbox Application Model
The Toolbox is intended to provide a layer of abstraction between an application and the
Wimp. In a manner analogous to the use of High Level Programming Languages, the
Toolbox allows the programmer to think more in terms of the problem to be solved
rather than the detailed mechanics of how to achieve a solution.

Traditional desktop application
In a traditional desktop application, the programmer writes code which interfaces
directly to the Window Manager (Wimp) through Wimp SWIs. Such an application uses
a ‘Templates’ file to define templates from which it can create windows at run-time, but
must create other user-interface objects from within its code (e.g. menus). The events
which are delivered to a Wimp application refer to low-level Wimp operations like
mouse clicks:

Figure 1.1 Wimp application model

Client application

Wimp SWIs

Wimp events

Wimp

Template file

Window
descriptions
4

Introduction to the Toolbox
Toolbox application
In a Toolbox desktop application, the programmer writes code which interfaces mainly
to the Toolbox through Toolbox ‘methods’, only occasionally resorting to making
low-level Wimp SWI calls. A Toolbox application uses a ‘Resources’ file to define
templates from which it can create a large number of user-interface objects including
windows, menus and iconbar icons. Events which are delivered to a Toolbox application
are at a higher level of abstraction than Wimp events.

Figure 1.2 Toolbox application model

Wimp events

The application will generally see all Wimp events, with the following exceptions:

ColourDbox will not see redraw events.
Where it has input focus you will not see keypress events.

Window object will not see Open Window Request or Close Window
Request events if the window is marked as being auto-open
or auto-close respectively.

Client application

Wimp SWIs

Wimp events

Toolbox

Resource file

Wimp

Toolbox

Toolbox
events

methods Wimp
events

‘object’
descriptions

Wimp
SWIs
5

Toolbox objects
Toolbox objects
An object is essentially one part of the user interface of a desktop application; for
example, a window or a menu or an icon on the icon bar.

At run-time, each object is identified by an object id which is allocated when the object
is created. An object id is a 32-bit integer, which should not be interpreted by the client
application. An object id of 0 is used to indicate ‘no object’.

Object classes
The type of an object is called its ‘class’, which identifies its attributes and the set of
operations which can be performed on it at run-time.

It is possible to determine the class of an object at run-time, using
SWI Toolbox_GetObjectClass.

The set of classes which are supported in this release of the Toolbox are:

The Toolbox is designed to be extensible, so this set of classes will be increased in future
releases, and can also be increased by third party developers.

Object components
An object ‘component’ defines one of a set of distinct parts which make up an object; for
example a menu entry is a component of a Menu object, and a gadget (see later) is a
component of a Window object. A component is allocated a component id by which to
identify it uniquely within its containing object; this component id is chosen by the

Class name Meaning page
Colour Menu a menu for selecting a desktop colour 79
Colour Dbox a dialogue box for selecting any colour 65
DCS a dialogue box for discard/cancel/save for unsaved data 89
File Info a dialogue box showing information on a given file 103
Font Dbox a dialogue box for selecting font characteristics 119
Font Menu a menu for selecting a font 137
Iconbar Icon an icon on the left or right of the iconbar 145
Menu a Wimp menu 165
Print Dbox a dialogue box for selecting print options 201
Prog Info a dialogue box for showing program information 221
Quit a dialogue box for handling quit with unsaved data 233
SaveAs a dialogue box for saving data by icon drag 245
Scale View a dialogue box for selecting a scale factor 271
Window a Wimp window 287
6

Introduction to the Toolbox
client application when the component is created. For menus it can have a value in the
range 0 to 0xfffffffd, and for windows a value in the range 0 to 0x7fffff. All higher
component ids are reserved for internal Toolbox use. A component id of 0xffffffff is
used to indicate ‘no component’.

Object Methods
At run-time, the client application manipulates its objects by using ‘methods’, which are
in fact implemented via Toolbox SWIs. The Toolbox will dispatch these methods to the
appropriate module which implements the class of object to which the method is being
applied.

Creating an object

An object is created using SWI Toolbox_CreateObject (see page 19). The client
application supplies either the name of a template for the object, or the address of a
block of memory containing such a template. If a name is provided, then the Toolbox
will look for the template in the application's Resource file (see later). The client
application will be passed back an object id for the newly-created object if successful.

When an object which has ‘attached’ objects is created, then the attached objects are also
created. See Attached objects on page 11 for a fuller description of this process.

Given its object id, it is possible to find out the name of the template used to create an
object using SWI Toolbox_GetTemplateName.

Deleting an object

An object is deleted using SWI Toolbox_DeleteObject (see page 20). If the object is
visible on the screen and it is deleted, then the Toolbox first hides the object.

When an object which has attached objects is deleted, then unless the ‘non-recursive’ bit
is set in this SWI’s flags word, all its attached objects are also deleted. See Attached
objects on page 11 for a fuller description of this process.

Showing an object

An object is shown on the screen using SWI Toolbox_ShowObject (see page 21).

By setting bits in the SWI’s flags word, the client may choose to show the object with
either SWI Wimp_CreateMenu semantics or SWI Wimp_CreateSubMenu semantics.
This is generally referred to as showing the object ‘transiently’, and can be used, for
example, to show transient dialogue boxes. By default, an object is shown ‘persistently’,
in other words it must be explicitly dismissed from the screen. Not all objects support
both sets of semantics.

When an object is shown, the client application chooses where the object will appear on
the screen by specifying one of three ‘show types’.
7

Toolbox objects
● A ‘default’ show type means that the object will be shown at a place determined by
the module which implements the object's class. For example, a Menu object will be
shown by default at a place 64 OS units to the left of the mouse pointer's position, to
comply with the RISC OS 3 Style Guide.

● A ‘top left’ show type means that the client application supplies the coordinates of
the top lefthand corner of where the object should be shown.

● A ‘full specification’ show type means that the client application supplies a buffer
which contains all the information needed to position the object on the screen; the
contents of this buffer is separately defined for each object class.

Hiding an object

An object is hidden using SWI Toolbox_HideObject (page 22). If the object was not
visible on the screen, then this method has no effect.

Object-specific methods

Each object class provides a number of methods which are specific to that class (for
example, a Window object's title can be set using the Window_SetTitle method). These
methods are all accessed using SWI Toolbox_ObjectMiscOp (see page 24), with an
appropriate reason code.

Shared objects
It is often useful in an application for many objects to refer to one single instance of
another object. A typical example is a multi-document editor, where a potentially large
number of Windows all refer to a single shared Menu structure.

A shared object is specified as such in its template description. Whenever an attempt is
made to create an object from such a template, the Toolbox first checks to see if there is
already a copy of the object in existence, and in which case the id of this object is
returned.

Reference counts are maintained for Shared objects. When the client tries to create such
an object the reference count is incremented, and it is decremented when the client
attempts to delete the object. The Shared object is only really deleted when its reference
count reaches zero.

Shared objects can also be used effectively in conjunction with attached objects which
are described on page 11.

Note: Sharedness is inherited by attached objects.
8

Introduction to the Toolbox
Client handles
Each object can have associated with it a one-word value called its client handle. The
value of this handle is specified entirely by the client application and is not interpreted
by the Toolbox. This mechanism is intended to allow a state to be associated with an
object by the client application (e.g. in a multi-document editor a Window object's client
handle might be a pointer to the data which must be displayed in the Window).

An object's Client Handle is set and read using SWIs Toolbox_SetClientHandle (see
page 25) and Toolbox_GetClientHandle (see page 25) respectively.

Parent and ancestor objects
When an object is shown (using SWI Toolbox_ShowObject), there are two other objects
which may be useful for the client application; these are the parent and ancestor objects.

Parent objects

The parent of an object is defined as the object (and optionally a component of that
object) which caused the object to be shown. This is represented by the parent object id
and parent component id. For example if a Window object has been displayed as the
result of a Menu selection, then that Window object has a parent with an object id given
by the Menu's id, and a parent component id given by the component id of the entry
which was selected.

When SWI Toolbox_ShowObject is called explicitly by the client, the parent object and
component ids must be specified. When this SWI is called on the client's behalf (for
example, when a Menu is shown automatically for a Window), then the Toolbox fills
this value in for the client.

Ancestor objects

It is always possible to trace the ‘parentage’ of an object by recursively requesting the
Parent of that object, thus moving ‘up’ the invocation hierarchy of objects which have
been displayed. Since this is a common operation, an object can be designated as a
potential so-called ‘Ancestor’. When an object is shown, it normally inherits the
ancestor of its parent object; however, if the parent is marked as a potential ancestor,
then the ancestor of the shown object is set to the id of the parent object.

Take the case where a multi-document editor has a document Window which has a
Menu, which has a SaveAs dialogue box as a submenu. When an event occurs for the
dialogue box, the client is probably most interested in getting the id of the document
9

Toolbox objects
Window (to get at its data and save it). By designating the document Window as an
ancestor, the client can ensure that its id is available when events occur on the SaveAs
dialogue box.

The processes in the above example are as follows:
1 When the user presses Menu over the window, a Toolbox_ShowObject is raised on

the Menu with the window as parent. As the window has been designated as
ancestor, the Menu’s ancestor will be the window.

2 When the user moves the pointer over the Save submenu arrow, the Menu module
will show the SaveAs dialogue with itself (i.e. the Menu) as the parent object, and
the Save component as the parent component. The SaveAs dialogue will inherit the
Menu’s ancestor (in this case the window).

3 Any event now raised on the SaveAs dialogue box will have the id block filled in
with the Menu as the parent and the window as the ancestor.

The parent and ancestor of an object can be obtained by calling the SWIs
Toolbox_GetParent and Toolbox_GetAncestor. Normally this will not be necessary,
since (as shown in The id block on page 12) these values are made available on every
return from Wimp_Poll.

Auto-create and Auto-show objects
In order to save on coding required, it is possible to get the Toolbox to create an object
from its template as soon as the resource file containing the template is loaded by the
application. This is achieved by setting the Auto-create bit in the object template's flags
word (see the chapter ResEd on page 417 to see how to do this). When such an object is
created, the Toolbox raises a Toolbox_ObjectAutoCreated event, to allow the
application to ascertain and store the object id of the newly-created object; the name of
the template used to create the object is reported in this event.

SaveAs dialogue

window designated as ancestor
10

Introduction to the Toolbox
It is also possible to specify that as soon as an object is created, it should be ‘shown’ on
the screen. This is achieved by setting the Auto-show bit in the object template's flags
word (see the chapter ResEd on page 417 to see how to do this). When such an object is
created, it is shown using SWI Toolbox_ShowObject in its default place, and with no
parent given.

It is also possible for an object to be auto-show but not auto-create.

Attached objects
Certain objects allow other objects to be attached to them. When an object is created, all
of its attached objects are also created, and a Toolbox_ObjectAutoCreated event is
raised for each such attached object.

An example of an attached object is the object which will be shown when a user clicks
the Select mouse button on an Iconbar Icon object. This attached object is created when
the Iconbar Icon object is created.

Such side-effects of creating a given object are described in the Application Program
Interface section in the chapter on each object class.

When an object with attached objects is deleted using SWI Toolbox_ObjectDelete,
unless the non-recursive delete bit has been set, all attached objects are also deleted.

Attached objects can also usefully be combined with Shared objects. For example, if an
application wishes the same Window to be displayed when the use clicks Select and
Adjust on an Iconbar object, this can be achieved by specifying the same Window
template name as the attached object to show for each of these mouse clicks, and
marking the Window object as shared, so that the same object id is used for both cases.

It is important to note this side-effect of creating an object. For example, a Window
object which has a complex menu tree attached to it, with many submenus and dialogue
boxes, will have considerable side-effects when it is created.

Thus, in many cases, it is only necessary to create explicitly the ‘topmost’ object, and to
allow the Toolbox to create the entire tree of attached objects.

Event handling
An important part of managing the user interface using the Toolbox is the concept of a
Toolbox event.

A Toolbox event is a Wimp event (not a message) which is delivered to the client
application with an event code of Wimp_ToolboxEvent (0x200). Each Toolbox event
has its own event code, which is a 32-bit integer defined in a similar manner to Wimp
message numbers.
11

Event handling
Toolbox events are essentially an abstraction on Wimp events, and are generated by the
Toolbox modules in response to user interaction with Toolbox objects, and also in
response to client application operations. Toolbox events are also used to warn the client
application that a particular action has been taken by the Toolbox.

For example, if a client application creates and shows a Print Dialogue Box, when the
user clicks on the Print button, a Toolbox event will be delivered to the application
indicating that a Print operation has been requested, and giving the number of pages to
be printed, the scale factor to use during printing etc.

Note that underlying events will also be received by the client.

Toolbox event Codes
Event codes are allocated by Acorn. Events which are delivered by a Toolbox module
will have codes which start at the SWI chunk base of the module.

The allocations are as follows; event codes are in the range 0 - 0x9ffff:

Format of a Toolbox event
When a Toolbox event is delivered to an application, the Wimp Poll block has the
following format:

Unless otherwise stated flags will be zero.

The id block
Whenever the client application calls SWI Wimp_Poll, the Toolbox fills in a 6-word
block of memory known as the id block, to indicate which object an event has occurred
on. However, as Wimp messages do not typically occur on an object the id block will not
be updated for a Wimp message.

Event codes Use
0x00001 - 0x0ffff Available for use by the client
0x10000 - 0x3ffff Reserved for inter-application protocols
0x40000 - 0x9ffff Reserved for Toolbox module events

Offset Contents
+ 0 size of Toolbox event block

(16 - 236 in a multiple of four bytes; i.e. words)
+ 4 unique reference number
+ 8 Toolbox event code
+12 flags
+ 16... Event-specific data
12

Introduction to the Toolbox
This block is laid out as follows:

When a Toolbox event occurs, the object id of the object on which this event occurred is
placed in the ‘self id’ field of the id block, and the ‘self component’ field is also filled in
if the event has occurred for a particular component of that object. For example, a mouse
click on an action button gadget within a Window object will result in an
ActionButton_Selected Toolbox event being raised, with the Window object's id in the
self id field of the id block, and the component id of the action button in the self
component field.

The ‘parent id’ and ‘parent component’ fields are filled in by the Toolbox using the
values which were last passed to SWI Toolbox_ShowObject. The ‘ancestor id’ and
‘ancestor component’ fields are filled in accordingly (being the ancestor of the parent).

The Toolbox uses a value of 0 as an object id to indicate ‘no object’, and a value of -1
as a component id to indicate ‘no component’.

When a Wimp event happens on an object, then the setting of the contents of the id block
is object-specific, and is described in the object events section in the chapter on each
object class.

The address of the 6-word block of client memory used as the application's id Block is
passed to the Toolbox when the application registers itself using SWI Toolbox_Initialise
(see page 32).

Note that Toolbox events are delivered to the object to which they are most appropriate,
so for example a SaveAs object will receive SaveAs_DialogueCompleted events,
whereas mouse clicks on a SaveAs object's underlying Window will be seen as being
delivered to the Window object.

This behaviour can best be seen by taking some example Resource Files and dragging
them to !ResTest, and monitoring the contents of the id Block as shown in !ResTest's log
window, as events occur on the objects created from the Resource File.

Ancestor

Parent

Self

self id

self component

parent id

parent component

ancestor id

ancestor component

+0

+4

+8

+12

+16

+20
13

Resource files
Raising a Toolbox event
A Toolbox event is raised using SWI Toolbox_RaiseToolboxEvent. Normally a client
application will not need to use this SWI directly; the client simply quotes the Toolbox
event code (or number), and associates it with a particular user action in its description
of an object in the resource file. For example, one of the attributes of a Menu object, is
the Toolbox event which is raised when a particular Menu entry is selected by the user.
The Toolbox will raise this Toolbox event on the application's behalf, whenever a Menu
Selection event is returned for that menu entry.

Resource files
A resource file contains templates for the objects which a client application will create at
run-time.

Loading resource files
An application can load a resource file at run-time using SWI Toolbox_LoadResources.
This is done on the application's behalf for a file called ‘res’ when the application calls
SWI Toolbox_Initialise as described in Task initialisation and run-time information on
page 15. SWI Toolbox_LoadResources could then be called after task start-up to load
any further Resource Files which it needs to use.

Resource file format
Resource files replace Wimp template files as the means to define templates for the user
interface objects which an application will create at run-time. Whereas Wimp template
files only allowed window descriptions to be given, a resource file will contain
templates for any kind of Toolbox object.

A resource file consists of a fixed size header, followed by a contiguous sequence of
object templates, where each template has a fixed size header, followed by an object
body.
14

Introduction to the Toolbox
A resource file format is similar to a Drawfile, and can be represented diagrammatically
as follows:

Each template has a textual name which can have no more than 12 characters (including
the terminating NUL). This name is used by the application when using a template in a
call to SWI Toolbox_CreateObject.

If a resource file is loaded which has named templates whose names clash with earlier
loaded templates, the latest loaded template will be used, and the earlier template will no
longer be accessible.

For a full description of the resource file format see the appendix Resource File Formats
on page 499.

Task initialisation and run-time information
Before it can use the Toolbox, a client application must first call SWI Toolbox_Initialise
to register itself as a Toolbox task. This has several side-effects:
● If there is a file called res in the application's resource directory then it is loaded

using SWI Toolbox_LoadResources; if such a file is not found, then the Toolbox
tries a file called res<n>, where n is the currently configured country number, to
allow for national variants.

● The application directory is searched for a Sprites file called Sprites,
Sprites22, Sprites23 or Sprites24 depending on the current screen
mode. This file is then loaded into a block of memory and will be used as the
application's sprite area.

● The application directory is searched for a file called Messages, which is then
loaded and registered with MessageTrans. If no such file is found, then a file called
Message<n> is searched for, where n is the currently configured country number.
The minimum requirement is that the Messages file should contain a message
whose tag is _TaskName, giving the name of the application.

● SWI Wimp_Initialise is then called on behalf of the application.

File Header 3 words

EOF

sequence of object templates
15

Message texts and nationalisation
When a Toolbox task has been registered with the Toolbox, the client application can
obtain the following information by calling SWI Toolbox_GetSysInfo:
● the task's name (as given by the _TaskName message in the Messages file).
● the 4-word message file descriptor returned when the task was initialised.
● the application's directory name.
● the application's Wimp task handle.
● a pointer to the sprite area used to load the application's Sprites file.

Important: Since the Toolbox uses Wimp messages, a client aplication should not call
SWI Wimp_AddMessages or SWI Wimp_RemoveMessages.

Message texts and nationalisation
When using the Toolbox, the writer of a client application should be aware of where
textual messages are held, which will need translating if the client is to be ‘nationalised’
for a particular RISC OS territory.

All of the modules contained in the Toolbox have a default set of messages and object
templates which they will use when displaying windows, reporting errors, displaying
menus etc. These are registered with ResourceFS, and are looked up using
MessageTrans. So in order to produce a nationalised Toolbox, these messages and
templates will need replacing.

In a resource file, textual messages are held in Messages Tables, and objects created at
run-time will contain pointers to these messages. These messages are the ones which
have been specified by the client of the Toolbox to be used when creating objects, and
will often consist of alternative text to use instead of the defaults provided by the
Toolbox modules themselves. These messages are not tagged messages looked up using
MessageTrans, but are actual strings.

The client application will also have a file called Messages in its application directory.
This file is automatically loaded by the Toolbox when the client calls SWI
Toolbox_Initialise. The Messages file will contain at least the name of the application
(in a message whose tag is _TaskName), and any other messages which the application
wishes to look up using MessageTrans at run-time. This will typically contain error
messages, and ones which are not associated with objects. After calling SWI
Toolbox_Initialise, the client will have a MessageTrans file descriptor to use when
looking up these Messages.

This means that in order to nationalise an application, the writer will need to provide
new Messages and new resource file messages (using Export messages in ResEd).
16

Introduction to the Toolbox
An Example object
Let us look at an example of a Toolbox object, to illustrate some of the features detailed
in earlier sections.

An Iconbar Icon object is used to place an application icon sprite (and optionally some
text) on the RISC OS icon bar. The template for such an object has the following fields,
which can be set using !ResEd (the Resource Editor):

The client application will create an Iconbar Icon object by calling SWI
Toolbox_CreateObject, supplying a template which gives values for all of the above
fields.

Field Meaning
position a negative integer giving the position of the Icon on the

Iconbar (as specified in SWI Wimp_CreateIcon)
priority the priority of this Icon on the Iconbar (as specified in SWI

Wimp_CreateIcon)
sprite name the name of the sprite to use for this Iconbar Icon
max sprite name the maximum length of sprite name to be used
text an optional string which will be used for a Text&Sprite

Iconbar Icon (ie the text that will appear underneath the Icon
on the Iconbar)

max text length if the Iconbar Icon has text, then this field gives the
maximum length of a text string which will be used for it

menu the name of the template to use to create a Menu object for
this Iconbar Icon

select event the Toolbox event code to be raised when the user clicks
Select on the Iconbar Icon (if 0 then Iconbar_Clicked is
raised)

adjust event the Toolbox event code to be raised when the user clicks
Adjust on the Iconbar Icon (if 0 then Iconbar_Clicked is
raised)

select show the name of a template to use to show an object when the
user clicks Select on the Iconbar Icon

adjust show the name of a template to use to show an object when the
user clicks Adjust on the Iconbar Icon

help message the message to respond to a help request with, instead of the
default

max help the maximum length of help message to be used
17

An Example object
As a side-effect of this creation, the Iconbar Icon's attached objects are also created (if
their templates have been provided) i.e. menu, select show and adjust show. The object
ids of these attached objects are then held within the Toolbox internal data structure
which represents the Iconbar Icon.

When the application calls SWI Toolbox_ShowObject on an Iconbar Icon, it will be
shown in a Style Guide compliant place on the Iconbar. When SWI
Toolbox_HideObject is called, the Icon will be removed from the Iconbar.

When a HelpRequest message is received, the supplied help message will automatically
be returned to the sender of the message.

When the user clicks the Select or Adjust mouse buttons on the Iconbar Icon, then if the
names of suitable object Templates have been supplied, these objects will be shown
automatically by the Toolbox.

When the user clicks the Menu button on the Iconbar Icon, then if the name of a suitable
Menu object Template has been supplied, it will be shown in a RISC OS 3 Style Guide
compliant place (i.e. 96 OS units above the bottom of the screen).

There are a number of methods which have been defined for an Iconbar Icon to allow the
client application to manipulate it at run-time; for example if it wishes to change the
sprite used on the Iconbar for this Icon, then the Iconbar_SetSprite method will be used;
if it wishes to provide a new Menu object which will be displayed when the Menu button
is clicked on the Iconbar Icon, then the Iconbar_SetMenu method will be used.
18

Introduction to the Toolbox
Toolbox SWIs

SWI Toolbox_CreateObject (0x44ec0)

On entry
R0 = flags (bit 0 set means create from memory)
R1 = pointer to name of template

(R1 = pointer to description block if bit 0 of flags word set)

On exit
R0 = id of created object
R1-R9 preserved

Use
This SWI creates an object either from a named template description which has been
loaded from the resources file or from a template description block in memory. The
exact format of the description block depends on the class of the object.

If the client application wishes to use the description block form of this SWI, then the
block should begin with a standard object header, and the body of the object should be
as specified in the Templates section of the chapter for that object. Any
StringReferences, MsgReferences, and SpriteAreaReferences should hold ‘real’
pointers, and should not require relocation; also the ‘body offset’ field should contain a
real pointer to the object body.

C veneer
extern _kernel_oserror *toolbox_create_object (unsigned int flags,
 void *name_or_template,
 ObjectId *id
);
19

SWI Toolbox_DeleteObject (0x44ec1)
SWI Toolbox_DeleteObject (0x44ec1)

On entry
R0 = flags (bit 0 set means do not delete recursively)
R1 = object id

On exit
R1 - R9 preserved

Use
This SWI deletes a given object.

By default, any objects ‘attached’ to this object are also deleted. If bit 0 of the flags word
is set, then this does not happen.

If it is a Shared object, this will result in its reference count being decremented, and it
will only be really deleted when this reaches 0.

The Toolbox raises a Toolbox_ObjectDeleted event when the object's reference count
reaches zero.

C veneer
extern _kernel_oserror *toolbox_delete_object (unsigned int flags,
 ObjectId id
);
20

Introduction to the Toolbox
SWI Toolbox_ShowObject (0x44ec3)

On entry
R0 = flags

bit 0 set means show using the semantics of Wimp_CreateMenu
bit 1 set means show using the semantics of Wimp_CreateSubMenu

R1 = object id
R2 = show ‘type’:

Type valueMeaning
0 show in the ‘default’ place. This has a different meaning

depending on the type of object shown
1 R3 points to a buffer giving full details of how to show

the object
2 R3 points to a 2-word buffer giving the screen coordinates

of the top left corner of the object to be displayed

R3 = 0
or pointer to buffer giving object-specific data for showing this object
or pointer to 2-word buffer giving coordinates of top left corner of object

R4 = Parent object id
R5 = Parent component id

On exit
R1-R9 preserved

Use
This SWI shows the given object on the screen.

R2 gives the type of ‘show’ operation which is being performed. Not all types of show
operation will be appropriate to all objects.

The buffer pointed at by R3 may hold data specific to this class of object, including
information as to where the object should appear on the screen. The exact format of the
buffer is specified separately for each object class. For example for a Window object,
the buffer will hold a block of data which can be passed to SWI Wimp_OpenWindow.

Note: some objects support a bit in their flags word specifying that a warning should be
raised before the object is shown. In this case, the SWI Toolbox_ShowObject will
return, but the object will not yet be visible on the screen. The object will be visible (at
the earliest) after the next call to Wimp_Poll after the warning is delivered.
21

SWI Toolbox_HideObject (0x44ec4)
C veneer
extern _kernel_oserror *toolbox_show_object (unsigned int flags,
 ObjectId id,
 int show_type,
 void *type,
 ObjectId parent,
 ComponentId parent_component
);

SWI Toolbox_HideObject (0x44ec4)

On entry
R0 = flags
R1 = object id

On exit
R1-R9 preserved

Use
This SWI removes the given object from the screen, if it is currently being shown.

C veneer
extern _kernel_oserror *toolbox_hide_object (unsigned int flags,
 ObjectId id
);
22

Introduction to the Toolbox
SWI Toolbox_GetObjectState (0x44ec5)

On entry
R0 = flags
R1 = object id

On exit
R0 = object state

Use
This SWI returns information regarding the current state of an object. The state is
indicated by bits in the value returned in R0. Bits 0-7 refer to all objects and bits 8-31 are
used to indicate object-specific state.

The generic state bits are:

C veneer
extern _kernel_oserror *toolbox_get_object_state (unsigned int flags,
 ObjectId id,
 unsigned int *state
);

Bit Meaning when set
0 object is currently showing
23

SWI Toolbox_ObjectMiscOp (0x44ec6)
SWI Toolbox_ObjectMiscOp (0x44ec6)

On entry
R0 = flags
R1 = object id
R2 = method code
R3-R9 contain method-specific data.

On exit
R1-R9 preserved

Use
The exact operation of this SWI depends on the class of the object being manipulated,
and on the reason code supplied.

Each object class implements a number of methods which are specific to that object (e.g.
a Window class may implement a method for adding/removing keyboard short-cuts for
a Window object).
24

Introduction to the Toolbox
SWI Toolbox_SetClientHandle (0x44ec7)

On entry
R0 = flags
R1 = object id
R2 = client handle

On exit
R1-R9 preserved

Use
This SWI sets the value of the client handle for this object.

C veneer
extern _kernel_oserror *toolbox_set_client_handle (unsigned int flags,
 ObjectId id,
 void *client_handle
);

SWI Toolbox_GetClientHandle (0x44ec8)

On entry
R0 = flags
R1 = object id

On exit
R0 = client handle for this object

Use
This SWI returns the value of the client handle for this object.

C veneer
extern _kernel_oserror *toolbox_get_client_handle (unsigned int flags,
 ObjectId id,
 void *client_handle
);
25

SWI Toolbox_GetObjectClass (0x44ec9)
SWI Toolbox_GetObjectClass (0x44ec9)

On entry
R0 = flags
R1 = object id

On exit
R0 = object class

Use
This SWI returns the class of the specified object. This is a 32-bit integer, which
identifies a given class; allocation of class identifiers is handled by Acorn.

C veneer
extern _kernel_oserror *toolbox_get_object_class (unsigned int flags,
 ObjectId id,
 ObjectClass *object_class
);
26

Introduction to the Toolbox
SWI Toolbox_GetParent (0x44eca)

On entry
R0 = flags
R1 = object id

On exit
R0 = Parent id
R1 = Parent component id

Use
This returns the value of the object id which was passed as the parent in a SWI
Toolbox_ShowObject call (even if the parent has subsequently been deleted). The
component id is for cases where the parent has a subcomponent like a Menu with a
Menu entry. An object which has not yet been shown will have a parent object id of 0
and a component id of -1.

C veneer
extern _kernel_oserror *toolbox_get_parent (unsigned int flags,
 ObjectId id,
 ObjectId *parent,
 ComponentId *parent_component
);
27

SWI Toolbox_GetAncestor (0x44ecb)
SWI Toolbox_GetAncestor (0x44ecb)

On entry
R0 = flags
R1 = object id

On exit
R0 = Ancestor id
R1 = Ancestor component id

Use
This returns the id of the Ancestor of the given object (and its component id, in the case
of an ancestor which has subcomponents like a Menu with a Menu entry). Note that the
Ancestor may have been deleted, since this object was shown. An object which has not
yet been shown will have an ancestor object id of 0 and a component id of -1.

C veneer
extern _kernel_oserror *toolbox_get_ancestor (unsigned int flags,
 ObjectId id,
 ObjectId *ancestor,
 ComponentId *ancestor_component
);
28

Introduction to the Toolbox
SWI Toolbox_GetTemplateName (0x44ecc)

On entry
R0 = flags
R1 = object id
R2 = pointer to buffer to hold template name
R3 = length of buffer

On exit
R3 = length of buffer required (if R2 was zero)

else buffer pointed at by R2 holds template name
R3 holds number of bytes written to buffer

Use
This SWI returns the name of the template used to create the object whose id is passed in
R1.

C veneer
extern _kernel_oserror *toolbox_get_template_name (unsigned int flags,
 ObjectId id,
 char *buffer,
 int buff_size,
 int *nbytes
);
29

SWI Toolbox_RaiseToolboxEvent (0x44ecd)
SWI Toolbox_RaiseToolboxEvent (0x44ecd)

On entry
R0 = flags
R1 = object id
R2 = component id
R3 = pointer to Toolbox event block

On exit
R1-R9 preserved

Use
This SWI raises the given Toolbox event. The block pointed at by R3 should have the
format described in Format of a Toolbox event on page 12. The Toolbox will put the
unique reference number into the block before exit from this SWI. The object id and
(optional) component id will be those filled in on return from Wimp_Poll; they refer to
the object on which the Toolbox event is being raised; the Toolbox does not check the
validity of these values.

C veneer
extern _kernel_oserror *toolbox_raise_toolbox_event (unsigned int flags,
 ObjectId id,
 ComponentId component,
 ToolboxEvent *event
);
30

Introduction to the Toolbox
SWI Toolbox_GetSysInfo (0x44ece)

On entry
R0 = flags

R0 ValueMeaning
0 return task name
1 return 4-word messages file descriptor
2 return name of directory passed to Toolbox_Initialise
3 return task’s Wimp task handle
4 return pointer to sprite area used

R1, R2 depends on entry value of R0 (see below)

On exit
R0

On entryOn exit

0 R2 holds size of buffer required (if R1 was 0)
else buffer pointed at by R1 holds task name

1 buffer pointed at by R1 contains a 4-word messages file
descriptor

2 R2 holds size of buffer required (if R1 was 0)
else buffer pointed at by R1 holds directory name passed to
Toolbox_Initialise

3 R0 contains task handle
4 R0 contains sprite area pointer

Use
This SWI is used to get information for the client application. The nature of the
information required is indicated by R0.

C veneer
extern _kernel_oserror *toolbox_get_sys_info (unsigned int reason_code,
 _kernel_swi_regs *regs
);
31

SWI Toolbox_Initialise (0x44ecf)
SWI Toolbox_Initialise (0x44ecf)

On entry
R0 = flags
R1 = last Wimp version number known to task * 100 (must be ≥310)
R2 = pointer to list of Wimp message numbers which the client wishes to receive,

terminated by a 0 word
If R2 points to just a 0 word, then all messages are delivered
If R2 = 0, then no messages are delivered (apart from the Quit message).

R3 = pointer to list of Toolbox event codes which the client wishes to receive,
terminated by a 0 word
If R3 points to just a 0 word, then all Toolbox events are delivered
If R3 = 0, then no Toolbox events are delivered

R4 = pointer to Directory name in which to find resources
R5 = pointer to 4-word buffer to receive messages file descriptor
R6 = pointer to buffer to hold object ids on return from Wimp_Poll (the id block)

On exit
R0 = current Wimp version number * 100
R1 = Wimp task handle for this client
R2 = Pointer to Sprite area used
Buffer pointed to by R5 is filled in with a MessageTrans file descriptor for the messages
file to be used

Use
This SWI is used by the client application before any other Toolbox SWIs.

First the Toolbox tries to load a file called res in the directory given by the string
pointed to by R4; this is done by calling SWI Toolbox_LoadResources.

If a file called res is not found, then the Toolbox tries res<n> where n is the currently
configured country number.

The application directory is searched for a Sprites file appropriate for the current mode
(i.e. called Sprites, Sprites22, or Sprites23) and if such a file exists, a sprite
area is allocated, and the file loaded into this area. A pointer to the area is returned in R2
(or 1 is returned if there was no such file found, and so the Wimp Sprite pool is used for
Sprite references in the client application).

This SWI registers a file called ‘Messages’ found in the given directory with
MessageTrans and passes back a 4-word MessageTrans file descriptor for use by the
client. SWI Wimp_Initialise is called on the client’s behalf, using the Wimp version
number passed in R1, and the messages list pointed at by R2.
32

Introduction to the Toolbox
If a file called Messages is not found, then the Toolbox tries Message<n> where n
is the currently configured country number.

The task name passed to SWI Wimp_Initialise must be given in the client’s messages
file; it should be an entry with tag ‘_TaskName’.

The buffer pointed at by R6 will be used on each call to Wimp_Poll to inform the client
which object an event occurred on, and that object’s parent and ancestor objects. On
return from Wimp_Poll this block will be filled in as follows:

R6 + 0 ancestor object id
R6 + 4 ancestor component id
R6 + 8 parent object id
R6 + 12parent component id
R6 + 16‘self’ object id
R6 + 20‘self’ component id

C veneer
extern _kernel_oserror *toolbox_initialise (unsigned int flags,
 int wimp_version,
 int *wimp_messages,
 int *toolbox_events,
 char *directory,
 MessagesFD *mfd,
 IdBlock *idb,
 int *current_wimp_version,
 int *task,
 int *sprite_area
);
33

SWI Toolbox_LoadResources (0x44ed0)
SWI Toolbox_LoadResources (0x44ed0)

On entry
R0 = flags
R1 = pointer to resource filename

On exit
R1 - R9 preserved

Use
This SWI loads the given resource file, and creates any objects which have the
auto-create bit set. When such an object is created, the Toolbox raises a
Toolbox_ObjectAutoCreated Toolbox event.

The filename of the resource file should be a full pathname.

After this SWI has been called, any templates from the resource file can be used to
create objects, by quoting the template name.

C veneer
extern _kernel_oserror *toolbox_load_resources (unsigned int flags,
 char *resources
);
34

Introduction to the Toolbox
SWI Toolbox_TemplateLookUp (0x44efb)

On entry
R0 = flags
R1 = pointer to template name (Ctrl terminated)

On exit
R0 = pointer to description block

Use
This SWI returns a pointer to a block suitable to pass to Toolbox_CreateObject or
Window_ExtractGadget.

C veneer
extern _kernel_oserror *toolbox_template_lookup (unsigned int flags,
 char *name,
 void **id,
);
35

Toolbox events
Toolbox events

Toolbox_Error (0x44ec0)

Block

+ 8 0x44ec0
+ 16 error number
+ 20... error text

Use

All Toolbox SWIs may return direct errors, with the V bit set. If any part of the Toolbox
detects an error, whilst it is not processing a SWI, it will raise a Toolbox_Error event
which the client can report when he next calls Wimp_Poll.

For example, if a client uses Toolbox_ShowObject on an object which has the bit set to
warn the client before the object is shown, the Toolbox will wait until the next call to
Wimp_Poll before actually showing the object; if there is an error when it tries to do the
show, then this will be reported through a Toolbox_Error event, since the SWI
Toolbox_ShowObject will have already returned with no error indicated.

C data type
typedef struct
{
 ToolboxEventHeader hdr;
 int errnum;
 char errmess [256-20-sizeof(ToolboxEventHeader)
 -sizeof(ObjectId)
 -sizeof(ComponentId)
 -sizeof(int)];
} ToolboxErrorEvent;
36

Introduction to the Toolbox
Toolbox_ObjectAutoCreated (0x44ec1)

Block

+ 8 0x44ec1
+ 16... Name of template from which object was created

Use

This Toolbox event is raised by the Toolbox after it creates objects from templates
which have their auto-create bit set, when the application’s resource file is loaded. This
allows the client application to get the ids of such objects for later use.

This event is also raised when an attached object is created as a side-effect of creating
the object to which it is atached.

The client can establish the object’s id by looking at the ‘self’ field of the id block which
it passed to Toolbox_Initialise (see later).

C data type
typedef struct
{
 ToolboxEventHeader hdr;
 char template_name
[256-20-sizeof(ToolboxEventHeader)-sizeof(ObjectId)-sizeof(ComponentId)];
} ToolboxObjectAutoCreatedEvent;

Toolbox_ObjectDeleted (0x44ec2)

Block

+ 8 0x44ec2

Use

This Toolbox event is raised by the Toolbox after it deletes an object. It is useful when a
‘recursive’ delete is done, resulting in other objects being deleted.

The client can establish the object's id by looking at the ‘self’ field of the id block which
it passed to Toolbox_Initialise.

C data type
typedef struct
{
 ToolboxEventHeader hdr;
} ToolboxObjectDeletedEvent;
37

Toolbox events
38

2 Building an application

This chapter describes how an application (!Hyper, which can be found in the

Examples directory) was designed with Acorn C/C++. In particular it demonstrates how
using !ResEd and !ResTest can lead to very short design times. The first section
describes how to use !Hyper, and the second section is a description of how it was
designed and implemented.

Guide To Hyper
!Hyper is a multi-document viewer for HCL files (see HyperCard Control Language on
page 63 for the syntax). HCL files define stacks of cards allowing multiple Draw objects
to be linked such that a user may click on active areas (called hot spots) of a viewer to
navigate between different cards. Only one card from a stack is visible at any time in a
viewer, although being multi-document, !Hyper may display several views onto the
same stack, each of which may be displaying a different card.

!Hyper is started by double-clicking on its application icon or by double clicking on an
HCL file (but only after !Hyper has been seen by the Filer).

Application icon menu
Clicking Menu over the application icon will display the following menu:

Info leads to a standard program information dialogue box.

Show stack allows any closed viewers to be reopened or brings to the top an already
opened one.

Delete stack will remove it from memory.

Note that if no stacks have been loaded then the show stack/delete stack will be greyed
out.

Quit will exit the application.
39

Guide To Hyper
Once a stack has been loaded, !Hyper will open a viewer displaying the ‘Home Card’ of
that stack. For example:

The user can move from one card to another by clicking on hotspots. Hot Spots will
usually be identifiable in some way, though !Hyper will change the pointer shape whilst
it is over one. It is also possible to jump to the Home Card or back to the previous card
by clicking on the action buttons in the status area at the bottom of the window.

Pressing menu over a viewer window will display the following menu:

This allows various operations to be performed on the stack being displayed:

File Info displays information about the file.

Scale View leads to a standard scale dialogue box which lets the user zoom in and out on
a card.

Find Keyword allows searching for keywords that are stored in the stack. This allows
an index type search to be applied.

Print... allows the current card to be printed.
40

Building an application
Status Line controls whether or not the status area is to be displayed at the bottom of the
viewer window.

Keyboard Short-cuts
Clicking in a viewer gives it the keyboard input focus. This then allows various
keyboard short-cuts to work. The standard keys for Find Keyword, Scale View,
File Info and Print... all work (as can be seen from the menu, pictured above) as well as
p and h for previous and home.

How !Hyper was designed
It is worth having !Hyper at hand whilst reading this section. Loading its resource file
into !ResEd and !ResTest will make it easier to see the various linkages between objects
and observe the events that are raised when interacting with the user interface. The
chapters later in this manual give full information on each of the classes involved.

Requirements
Before designing the structure of !Hyper we had to decide what it must be able to do. We
wanted to design a HyperCard-type application with the following features:
● multi-document capability
● navigation between cards (based around Draw files) using hotspots
● home/previous facility
● keyboard driven option
● suitable for range of screen modes/scalable output
● easily extendible
● easy to make a demo version
● find capability
● ability to print a card
● maintain history of all loaded cards.
41

How !Hyper was designed
Design decisions
From the required features, we made the following design decisions.

Shared objects and client handles

The multi-document support suggested the use of shared objects and the use of client
handles for maintaining what file the viewer was showing. By doing this we would
reduce memory usage (by just having one copy of the shared menus and dialogues)
without complicating the association between events on a menu and the viewer that it
was opened from.

Event driven interface

Given that we wanted to extend and modify the interface easily, we decided to make it
event driven as opposed to object driven. In other words when registering event
handlers, we register for specific event numbers, rather than a generic event (e.g.
ActionButton_Selected) on a specific component of an object. In this way we are able to
modify the interface (e.g. reorder a menu or even move menu entries off onto a
submenu) without having to change the code.

AboutToBeShown events

We also decided to take advantage of a number of features offered by the toolbox such
as the ‘About To Be Shown’ events. These made it possible to set up dialogue boxes as
they were being shown, and not have to update them constantly as other parts of the
application altered data. A less obvious benefit of this mechanism is that since the
toolbox tells us the object id of what is being shown, we do not have to remember this
ourselves, and in fact it is possible to let the toolbox automatically create such objects.

A good example of this is the Program Information box. This is created by the toolbox
as a side effect of creating the iconbar (which is created on initialisation due to it having
its AutoCreate bit set). We then just need to register for the
ProgInfo_AboutToBeShownEvent and in our handler set the version string from our
message file.

Standard objects

To be Style Guide compliant (and to make less work for ourselves) we can use the
standard PrintDbox, Scale, ProgInfo and FileInfo object templates supplied by the
Toolbox.

Keyboard short-cuts

As we want !Hyper to be keyboard drivable, we can make use of the Toolbox’s
keyboard short-cuts facility.
42

Building an application
How !Hyper was implemented
The rest of this chapter takes you through the stages involved in implementing !Hyper.
It breaks down into the following sections:
● Creating and testing a simple resource file for !Hyper (below).
● File loading on page 48 – coping with Filer_Open messages on HCL files.
● Handling views on page 50 – extending our simple resource file, redraw handlers,

implementing hotspots, linking data structures, showing and hiding views, adding
keyboard short-cuts etc.

● Modifying the interface on page 59 – changing the interface by editing the resource
file.

● Client Events on page 63 – a list of client events used in !Hyper.
● Summary on page 63 – features of the toolbox demonstrated in this chapter.

Creating and testing a simple resource file for !Hyper
The first stage in implementing !Hyper was to create and test a very simple resource file
consisting of an IconBar object template, a Menu object template for the iconbar icon,
and a ProgInfo object template.
43

How !Hyper was implemented
Creating a basic resource file
1 We began by starting the resource file editor (ResEd – described in the chapter

ResEd on page 417), and then opened a new resource file display. Next we opened
an object prototypes window and dragged an IconBar object template, menu and
ProgInfo object template to our empty resource file:

2 Next we double-clicked on the ProgInfo object template in the resource file display.
This opened its properties box and we entered the information we wanted to appear
in this box. We also switched on Deliver event Before showing:

3 Then we edited the Menu object template in the resource file display and renamed it
to IbarMenu. Next we double-clicked on IbarMenu and created two menu
entries. The first entry we named Info, and the second entry Quit.

drag the three
object prototypes
to the empty
resource file display

rename this object template to IbarMenu
44

Building an application
The Info entry we edited to include a submenu option to display the ProgInfo object
template:

The Quit entry was edited to return a particular event:

As we could choose our own events, the choice of 82a91 may seem strange.
However, this is the same event that is generated by the Quit dialogue class, hence
if we added editor features and required a quit confirmation, we could still use the
same handles.

drag the ProgInfo object to the
Show object option

1

3

open IbarMenu and create

open the properties box for2
this menu entry and switch

an Info menu entry

on Has submenu
45

How !Hyper was implemented
4 Finally we edited the Iconbar object template. We set up the sprite name, inserted
some Help text, and dragged IbarMenu to the Menu button option:

Using ResTest to check the resource file

To test out this initial design we dragged the resource file from !ResEd to !ResTest’s
iconbar icon (ResTest is described on page 491). As we had set the AutoCreate and
AutoShow options for the iconbar object template, it appeared immediately on the
iconbar. Pressing Menu over the icon opened our menu (IbarMenu) with the Quit and
Info options. Sliding the mouse pointer over the submenu arrow opened the ProgInfo
box:

drag IbarMenu to the Show object option
46

Building an application
Clicking on !ResTest’s iconbar icon opened its Event Log window. We could now see
what events were being raised when we tested the interface:

Coding

We could now start writing some code. Being event driven, we decided to use eventlib.
Our initial code merely consisted of initialising the Toolbox and eventlib and then
registering our handlers. At this point we just needed some quit handlers (for the event
generated by the Quit menu option and for the Wimp messages) and a handler to fill in
the version string on the ProgInfo box.

Note the use of wimplib to provide easy access to the Wimp SWIs.
(from main.c)

 static void app_init(void)
 {
 /* initialise as a toolbox task */
 _kernel_oserror *e;
 if ((e=toolbox_initialise(0,310, messages, tbcodes,
 “<hyper$dir>”,&mbl, &idblk,0,0,0)) != NULL) {
 wimp_report_error(e,0,0,0,0,0);
 exit(1);
 }

 /* initialise event lib */

 event_initialise(&idblk);

 /* not interested in nulls or keypresses- the toolbox
 handles all our keyboard shortcuts */

 event_set_mask(1+256);

 /* register events */

 event_register_message_handler(Wimp_MQuit,quit_handler,0);
 event_register_toolbox_handler(-1,Quit_Quit,
 tbquit_handler,NULL);

 }
47

How !Hyper was implemented
(from handler.c)

 int tbquit_handler(int event_code, ToolboxEvent *event,
 IdBlock *id_block, void *handle)

 {

 IGNORE(event);
 IGNORE(event_code);
 IGNORE(handle);
 IGNORE(id_block);

 quit =1;
 return 1;
 }

 int quit_handler(WimpMessage *message, void *handle)
 {
 IGNORE(message);
 IGNORE(handle);

 quit =1;
 return 1;
 }

 int proginfo_show(int event_code, ToolboxEvent *event,
 IdBlock *id_block, void *handle)
 {

 IGNORE(handle);
 IGNORE(event);
 IGNORE(event_code);

 proginfo_set_version(0,id_block->self_id,
 lookup_token(“Version”));

 return 1;

 }

File loading
Next we turned our attention to file loading. This involved coping with Filer_Open
messages on HCL files and files that are dragged to the iconbar icon. To do this we
registered some more Wimp message handlers.
(from main.c)

 event_register_message_handler(Wimp_MDataOpen,file_loader,0);
 event_register_message_handler(Wimp_MDataLoad,file_loader,0);

(from file.c)
48

Building an application
 int file_loader(WimpMessage *message, void *handle)
 {
 /* only interested in HCL files */
 WimpMessage msg;
 IGNORE(handle);

 if (message->data.data_open.file_type != 0xfac) return 0;

 msg = *message;

 msg.hdr.your_ref = msg.hdr.my_ref;

 load_hcl_file(msg.data.data_load_ack.leaf_name);

 if (message->hdr.action_code == Wimp_MDataLoad)
 msg.hdr.action_code = Wimp_MDataLoadAck;
 wimp_send_message(Wimp_EUserMessage,&msg, msg.hdr.sender,0,0);

 return 1;
 }
49

How !Hyper was implemented
Handling views
Now it was time to open a viewer onto a file. This involved going back to our resource
file and adding some more object templates:
● a window object template to view the files in, which we called HyperViewer
● a menu to be shown on the viewer, which we called ViewerMenu
● attached to this menu a FileInfo box, a Scale box and a PrintDbox object template.

The dialogue box for FileInfo we filled in as follows (note that we switched on Deliver
event Before showing):

The dialogue box for Print we filled in as follows:
50

Building an application
We changed the default values in the dialogue box for Scale as follows:

We then edited ViewerMenu, dragging the above three object templates to the Show
object options in the appropriate Menu entry properties boxes.

For example, the Scale View Menu entry properties box:

Having filled in all three menu entries, we then edited the HyperViewer window object
template. We dragged ViewerMenu to the Show menu field, and filled in the other
window properties boxes as appropriate.
51

How !Hyper was implemented
Note that, to receive redraw events, we switched off the Auto-redraw flag in the Other
properties dialogue in the HyperViewer window. This will affect the appearance in
!ResTest and so, for the purposes of this demonstration, is left on.

Our resource file display now looked like this:

After connecting them we dragged the resource file to !ResTest. Our icon appeared on
the iconbar as before, but now when we pressed Menu over !ResTest’s icon and looked
at the Create submenu, we saw all the new object templates that we added.

We then clicked on HyperViewer to create a viewer. This also unfaded the Show option
and allowed us to go into the Show submenu and see all the object ids that had been
created:

The Show submenu has three columns:
● the first indicates (via a tick) whether the object is showing
● the second is the unique identifier for a particular object – called the object id
● the third is the name of the template from which it was created.
52

Building an application
When we clicked on the HyperViewer entry in the Show submenu the viewer was
displayed on the screen. As a side effect of the creation the menu tree for the viewer was
created as well. Pressing Menu over the viewer displayed the menu as one would expect:

Moving the pointer over the submenu arrows displayed the File Info and Scale View
dialogue boxes:

Clicking on Print ... displayed the Print dialogue persistently:

The code to support these new features can be found in the C files under the !Hyper
directory of the examples. As with the code fragments above, they take the form of
registering a handler for a specific event in app_init (e.g. FileInfo_AboutToBeShown)
53

How !Hyper was implemented
and then handling the event elsewhere. Note that the print code is an essentially standard
print job/render loop, differing only in that it uses the DrawFile module to do the
rendering. See print.c for more information on this.

For the viewer (see view.c) we create a window object from a template (called
HyperView, as seen in the !ResTest menu) and attach various handlers to cope with
RedrawRequests and CloseWindow requests. Note that there is no need to register for
OpenWindow requests as this is done on our behalf by the toolbox (as we set the
AutoOpen bit of the window’s template). We also register for mouse click events on the
window. The relevant handler (click_viewer) sets input focus to the window and if
applicable jumps to a new card.

Redraw handler

The redraw handler (in draw.c) is a standard Wimp redraw handler that uses the
DrawFile module to render into the window. Note that the DrawFile module is a generic
renderer (i.e. not Wimp specific) and so needs absolute coordinates and a transformation
matrix. We use the latter in the simplest sense – just as a way of scaling the Draw files.

Scaling

The scaling is set whenever the user clicks scale on the Scale box. If you have the
!ResTest Event log window open with the Resource file loaded, you will see that a
‘Scale_ApplyFactor’ event is generated. We use this in a handler (in draw.c) to adjust
the transformation matrix.

The object id for the ancestor of the Scale_ApplyFactor event in this example is
&187CEF0. This equates to the object id of HyperViewer (as shown in the Show
submenu on page 52). This is because the viewer is the ancestor of this menu. The
usefulness of this becomes apparent when more than one viewer object is shown.

ancestor object id
54

Building an application
Implementing hotspots

To implement the hotspots on a view, we add gadgets (components of a Window Object)
to our viewer window. We use the simplest gadget type, a button gadget, which is quite
close in functionality to a Wimp icon (see button.c). Rather than hard code the
definition of the gadget into the code, Window_ExtractGadgetInfo is used to get the
basic gadget definition from a window template called ‘Properties’.

Linking the data structures

Not surprisingly, we link all the data structures for the loaded files together on a linked
list. However, we do not need to search down this list every time an event happens: by
using client handles (see view.c) we can attach the address of the relevant structure to
an object. In this way, when we get a redraw event, we just find out the client handle of
the viewer on which it happened and can determine what Draw files are to be rendered.

This also works for the menu tree; even though we are sharing the menu tree amongst all
the open views, the IdBlock that initialised the toolbox is filled in with the ancestor of
the tree. In Hyper, that will be a viewer (we set the Ancestor bit of the HyperView
template). So, for example, when we receive a Scale_ApplyFactor event (as in Scaling
on page 54), the ancestor is the viewer that leads to the scale object being shown. This
also applies to PrintDboxes, even though they are shown persistently.

Showing and hiding views

As we want a history of all views, we build a ‘Views’ submenu which will be off the
icon bar menu. In common with other applications we want the ability to show a view
and remove one from memory. In both cases the list of views is the same. This allows us
to take advantage of shared objects again. We just need one menu that we build up entry
by entry and make this a submenu of the ‘Remove View’ and ‘Show View’ entries that
are added to the iconbar menu. When an event happens on this menu, we just need to
find out the parent component (from the IdBlock) to determine whether we are removing
or showing a view. We can also use another useful toolbox feature, in that it is the client
that chooses the component ids. This means we can choose the address of the structure
that defines a view as its component id – allowing very easy association between the
menu entry and the view it refers to. Note that by having an about to be shown event
enabled for the iconbar menu, it was possible to fade or unfade the ‘Show view’ and
‘Remove view’ entries as required (simply by checking whether our linked list was
NULL).

Adding keyboard short-cuts

With the interface beginning to stabilise, it was possible to start adding some of the
keyboard short-cuts. These were generally decided by the Style Guide (e.g. F11 for
scale), though some aspects of the interface required keys specific to Hyper (e.g.
55

How !Hyper was implemented
previous and home) to generate events. All this was handled through !ResEd (using the
keyboard short-cuts option from the window object template menu) without any
additional code requirement.

Adding a status bar

A status bar was also provided by creating a Toolbar containing a button gadget:

This Toolbar object template was then dragged to the Toolbars dialogue box from the
HyperViewer window:

By using an internal bottom left toolbar, the parent window could be resized whilst still
allowing the status to be visible. Previous and home action buttons were added
(generating the same event codes as the keyboard short-cuts, so no additional code was
required) as well.
56

Building an application
To control the visibility of the status bar, a menu entry (and appropriate keyboard
short-cut) was added that would tick according to whether the status was showing. The
handler for this is in handler.c. Note that since the status is on a per-viewer basis, we
need to know when the viewer menu is opened (and over what viewer) to determine
whether the option should be ticked or not.

Adding a find capability

Finally, to provide a find capability, a custom dialogue was designed using !ResEd
starting from a basic Window and adding gadgets from the gadgets window:

The properties dialogues for the two action buttons were:

The Next action button was made the default and assigned a specific event code.

writable fieldlabel

action buttonsradio buttons

labelled box

gadgets window

leaving the Local options switched off results in the Toolbox
automatically closing the dialogue box when clicked on
57

How !Hyper was implemented
The Home Card radio button properties dialogue was filled in as follows (this radio
button was specified as the selected radio button):

The Current Card radio button properties dialogue was edited to be similar to the
Home Card radio button, except that it was not specified as the selected radio button.

The Keyword writable field properties dialogue was filled in as follows:

After choosing suitable components and event codes, the handler code can be written in
a self contained unit.
58

Building an application
Modifying the interface
One of the original requirements was that it should be easy to modify the interface to
!Hyper. By taking an event driven approach, it is possible to make significant changes to
the User Interface, without altering the code. Alternatively, when adding new
functionality, this can be done in a modular fashion by adding the required handlers and
registering them when required.

Adding an export DrawFile facility

As an example, consider adding an export DrawFile facility. This would allow saving
away the Draw files that make up the card on show in the viewer. The best way to
implement this would be:
● add a new submenu to the main menu, and call this new submenu File
● create two menu entries in this submenu; the first entry will replace the FileInfo

menu entry currently on the main menu; the second entry would provide an export
facility (implemented using a simple SaveAs dialogue).

This can be achieved easily by some very simple editing of the resource file:
1 Drag a Menu object template from the Object prototype window to the resource file,

and rename the object template to FileMenu.
2 Edit ViewerMenu and add a new menu entry to it:
59

How !Hyper was implemented
Now edit the new menu entry and rename it to File. Then drag the new menu
object template FileMenu to the Show object option:

3 Next double-click on the FileMenu object template. Rename the title File, and
then Shift-drag the File Info menu entry from ViewerMenu to it. To make the
copied menu entry Style Guide compliant rename it to Info:

Moving the File Info menu entry from ViewerMenu to the new File submenu is a
very simple way of relocating this menu option from one menu to another. As we
rely on the FileInfo_AboutToBeShown event, it doesn't matter where it is in the
interface; it will still work.

shift-drag the
File Info menu
entry to the new
submenu and rename
the entry Info
60

Building an application
4 Now drag a SaveAs object template from the Object prototype window to the
resource file. Edit this object template to specify that the filetype should be
DrawFile:

5 Finally return to the File menu and create an Export menu entry (by renaming the
default entry title Menu Entry to Export). Edit this entry and drag the SaveAs
object template to the Show object option:
61

How !Hyper was implemented
The final submenu should now appear as follows:

The code for the export facility would consist of registering for the various toolbox
events and then handling them in a separate area of the code.

If you now dragged the resource file to ResTest, you would see:

Other possible modifications

By this time the viewer menu could begin to get cluttered. It would then be very easy to
drag off some of the entries to a separate 'Utilities' submenu. Again, being event driven
and remembering that the handlers operate on the Ancestor of the menu tree, they will
continue to work without code alteration.

Making a demo version of Hyper could be achieved by removing or fading parts of the
interface with !ResEd.
62

Building an application
Client Events
A number of events were used in Hyper that were ‘Client specified’. These are listed
here to help understand properties and output in !ResEd and !ResTest.

Other standard events were enabled for dialogues being shown, Print etc.

Summary
This chapter has demonstrated the following features of the toolbox:

HyperCard Control Language
HyperCard Control Language (HCL) is used by !Hyper to control which draw files are
displayed to the user and when jumps should be made to new cards. It is beyond the
scope of this example to describe an editor, so the following section is provided to
describe the commands that are used.

Event
number Usage
&101 Go to Home card
&103 Go to previous card
&150 Start find operation
&151 Iconbar menu is about to be shown
&900 Viewer menu is about to be shown
&901 Toggle status bar

Toolbox feature see section/file
shared objects and client handles Shared objects and client handles on

page 42
About to be shown events AboutToBeShown events on page 42
adding and removing gadgets
at run-time

button.c
(see Implementing hotspots on page 55)

creating objects from a template view.c (see page 54)
auto creation AboutToBeShown events on page 42
the Draw file renderer draw.c (see page 54)
event handling with eventlib Coding on page 47
Menu handling Creating a basic resource file on page 44
keyboard short-cuts Adding keyboard short-cuts on page 55
client specified events and
component ids

Showing and hiding views on page 55
63

HCL commands
All card definitions are enclosed within start and end directives:

!!start name
...
!!end

where name is cardXXXXXXXX, XXXXXXXX being an 8 digit hex number.

Other commands are as follows:

There are also a number of commands that are only used by an editor. These are not
described here as they are not required by !Hyper.

Command Action
button bbox name sets up a hotspot at the given position and sets its

behaviour to go to the named card when clicked
on

clear removes all buttons and Draw files from the
viewer window

colour n sets the background colour to the given decimal
value

gosub name allows ‘inclusion’ of common functionality
goto name allows common ending of cards
keyword string sets keyword(s) for this card – allows searching

with the find dialogue box
load file loads a file into the bottom layer – overlay will

do this if it follows a clear
overlay file loads a draw file into the next available layer
stack string sets the name of this stack to the given string.

This will appear in the iconbar menu
status string changes the status line to the given string
title string sets the title bar to the given string
64

3 Colour Dialogue box class

A Colour Dialogue box object allows the user to specify a colour using a variety of

colour models.

User interface
The colour selection window can be described as follows:

● At the top is a row of radio buttons – these select which colour model is being used.
● In the middle is an area defined by the current colour model – details of this are

described overleaf.
● At the bottom of the window is the colour patch, an optional None button which

controls transparency, and the window’s action buttons.

colour model

colour patch action buttonsNone button

colour model
specific area

radio buttons
65

Application Program Interface
Application Program Interface

Attributes
A Colour Dialogue object has the following attributes which are specified in its object
template and can be manipulated at run-time by the client application:

Note that it is possible to set and read whether a Colour Dialogue has a None entry at
run-time using the following methods (described on page 74):

ColourDbox_SetNoneAvailable
ColourDbox_GetNoneAvailable

Manipulating a Colour Dialogue object

Creating and deleting a Colour Dialogue object

A Colour Dialogue object is created using SWI Toolbox_CreateObject.

When this object is created it has no attached objects (see page 11).

A Colour Dialogue object is deleted using SWI Toolbox_DeleteObject.

The setting of the non-recursive delete bit does not have a meaning for Colour Dialogue
objects.

Attributes Description
flags Bit Meaning

0 when set, this bit indicates that a
ColourDbox_AboutTobeShown event should be
raised when SWI Toolbox_ShowObject is called for
this object.

1 when set, this bit indicates that a
ColourDbox_DialogueCompleted event should be
raised when the Colour Dialogue object has been
removed from the screen.

2 when set, include a None button in the dialogue box
3 when set, select the None button when the dialogue

box is created
title this gives an alternative string to use instead of the string

‘Colour Choice’ in the title bar of the dialogue box
(0 means use default)

max title length this gives the maximum length in bytes of title text which
will be used for this object

colour an RGB value for the initial colour value
66

Colour Dialogue box class
Showing a Colour Dialogue object

When a Colour Dialogue object is displayed on the screen using SWI
Toolbox_ShowObject it has the following behaviour:

For most applications it will not be necessary to make these calls explicitly, but instead
to mark the templates with their auto-create bit set, so that a Colour Dialogue object is
created on start-up.

Before the dialogue box is shown

When the client calls Toolbox_ShowObject, a ColourDbox_AboutToBeShown Toolbox
event is raised (if the appropriate flags bit is set), allowing the client to take any last
minute action. Typically, a client will indicate which of the colours should be shown as
the currently selected one, when it receives this event.

Setting and reading the colour used in a Colour Dialogue box

It is possible for the colour which is currently selected in the dialogue box to be set by
the client application. This is independent of the colour model being used, since the
colour is specified as an RGB colour value. The client passes a ‘colour block’ to the
Colour Dialogue module which has a one-word RGB value as its first word; the
remainder of the block is intended to support any future colour models other than RGB,
CMYK and HSV. It has a size field followed by colour-model-specific data. For clients
not requiring this extensibility, the size field should be set to 0. The method for setting
the colour thus used in a Colour Dialogue is ColourDbox_SetColour.

The current colour (and colour model data) can be read using the
ColourDbox_GetColour method (described on page 71).

Setting and reading the colour model used in a Colour Dialogue

The colour model used in a Colour Dialogue is normally chosen by the user by clicking
on the appropriate radio button. The client can however set this at run-time using the
ColourDbox_SetColourModel method, passing a colour number (RGB=0, CMYK=1,
HSV=2). If any other colour model is required, then further colour-model-specific data
must also be passed to this method (none are currently supported).

The current colour model used can be read using the ColourDbox_GetColourModel
method.

Show type Position
0 (default) the underlying window is shown at the last place shown on

the screen, or the coordinates given in its template, if it has
not already been shown

2 (topleft) R3 + 0 visible area minimum x coordinate
R3 + 4 visible area minimum y coordinate
67

Colour Dialogue methods
Reacting to colour selections

When the user has found the correct colour he wants, he will click the OK button in the
Colour Dialogue box. The Colour Dialogue module delivers a
ColourDbox_ColourSelected Toolbox event to the client at this point giving the RGB
value of the colour chosen.

Completion of a Colour Dialogue

When the Colour Dialogue module has hidden its dialogue box at the end of a dialogue,
it delivers a ColourDbox_DialogueCompleted Toolbox event to the client, with an
indication of whether a colour selection occurred during the dialogue.

Colour Dialogue methods
The following methods are all invoked by calling SWI Toolbox_MiscOp with:

R0 holding a flags word
R1 being a Colour Dialogue id
R2 being the method code which distinguishes this method
R3-R9 potentially holding method-specific data

ColourDbox_GetWimpHandle 0

On entry

R0 = flags
R1 = Colour Dbox object id
R2 = 0

On exit

R0 = Wimp window handle of underlying window

Use

This method returns the Wimp window handle of the window used by the underlying
Colour Picker module to implement the Colour dialogue. The value returned is only
valid when the Colour dialogue box is showing.

C veneer
extern _kernel_oserror *colourdbox_get_wimp_handle (unsigned int flags,
 ObjectId colourdbox,
 int *wimp_handle
);
68

Colour Dialogue box class
ColourDbox_GetDialogueHandle 1

On entry

R0 = flags
R1 = Colour Dbox object id
R2 = 1

On exit

R0 = ColourPicker dialogue handle of underlying dialogue box

Usage

This method returns the handle of the dialogue box used by the underlying Colour
Picker module to reference the Colour dialogue. The value returned is only valid when
the Colour dialogue box is showing.

C veneer
extern _kernel_oserror *colourdbox_get_dialogue_handle (unsigned int flags,
 ObjectId colourdbox,
 int *dialogue_handle
);
69

Colour Dialogue methods
ColourDbox_SetColour 2

On entry

R0 = flags
bit 0 set ⇒ select the None option

R1 = Colour Dbox object id
R2 = 2
R3 = pointer to colour block

On exit

R1-R9 preserved

Use

This method sets the colour currently displayed in the Colour Dialogue (adjusting the
colour slice shown, the sliders, and the writable fields appropriately).

The colour block is defined as follows:

+0 0
+1 blue value (0, ..., &FF)
+2 green value
+3 red value
+4 size of the remainder of this block (which may be 0)
+8 colour model number
+12... other model-dependent data

Currently there are no extra colour models supported, so the size field at byte offset 4
should be set to 0.

If bit 0 of the flags word is set (select the None option) then R3 may be 0.

C veneer
extern _kernel_oserror *colourdbox_set_colour (unsigned int flags,
 ObjectId colourdbox,
 int *colour_block
);
70

Colour Dialogue box class
ColourDbox_GetColour 3

On entry

R0 = flags
R1 = Colour Dbox object id
R2 = 3
R3 = pointer to buffer for colour block
R4 = size of buffer

On exit

if bit 0 of R0 is set ⇒ None is selected

R4 = size of buffer required (if R3 was 0)
(currently fixed because no extra colour models are supported)
else buffer pointed at by R3 contains colour information
R4 holds number of bytes written to buffer.

Use

This method returns the colour currently displayed in the Colour Dialogue.

The colour block is defined as follows:

+0 0
+1 blue value (0, ..., &FF)
+2 green value
+3 red value
+4 size of the remainder of this block (which may be 0)
+8 colour model number
+12... other model-dependent data

C veneer
extern _kernel_oserror *colourdbox_get_colour (unsigned int flags,
 ObjectId colourdbox,
 int *buffer,
 int buff_size,
 int *nbytes
);
71

Colour Dialogue methods
ColourDbox_SetColourModel 4

On entry

R0 = flags
R1 = Colour Dbox object id
R2 = 4
R3 = pointer to colour model block

On exit

R1-R9 preserved

Use

This method sets the colour model currently used in the Colour Dialogue. The colour
which is being displayed will now be shown using the new colour model, and the layout
of the dialogue box will change accordingly.

The colour model block is defined as follows:

+0 size of the remainder of this block (currently only 4)
+4 colour model number
+8... other model-dependent data

The current valid colour model numbers are:

0 RGB
1 CMYK
2 HSV

Currently there are no extra colour models supported, so the size field at byte offset 0
should be set to 4 (i.e. just a colour model number).

C veneer
extern _kernel_oserror *colourdbox_set_colour_model (unsigned int flags,
 ObjectId colourdbox,
 int *colour_model_block
);
72

Colour Dialogue box class
ColourDbox_GetColourModel 5

On entry

R0 = flags
R1 = Colour Dbox object id
R2 = 5
R3 = pointer to buffer for colour block
R4 = size of buffer

On exit

R4 = size of buffer required (if R3 was 0)
(currently fixed because no extra colour models are supported)
else buffer pointed at by R3 contains colour information
R4 holds number of bytes written to buffer

Use

This method returns the number of the colour model currently used in the Colour
Dialogue.

The colour model block is defined as follows:

+0 size of the remainder of this block
+4 colour model number (currently: 0 = RGB, 1 = CMYK and 2 = HSV)
+8... other model-dependent data

C veneer
extern _kernel_oserror *colourdbox_get_colour_model (unsigned int flags,
 ObjectId colourdbox,
 int *buffer,
 int buff_size,
 int *nbytes
);
73

Colour Dialogue methods
ColourDbox_SetNoneAvailable 6

On entry

R0 = flags
R1 = Colour Dbox object id
R2 = 6
R3 = non-zero means None is available

On exit

R1-R9 preserved

Use

This method sets whether a None option appears in the Colour Dialogue.

C veneer
extern _kernel_oserror *colourdbox_set_none_available (unsigned int flags,
 ObjectId colourdbox,
 int none
);

ColourDbox_GetNoneAvailable 7

On entry

R0 = flags
R1 = Colour Dbox object id
R2 = 7

On exit

if bit 0 of R0 is set, then None is available

Use

This method returns whether the None option appears in a Colour Dialogue.

C veneer
extern _kernel_oserror *colourdbox_get_none_available (unsigned int flags,
 ObjectId colourdbox,
 int *out_flags
);
74

Colour Dialogue box class
Colour Dialogue events
There are a number of Toolbox events which are generated by the Colour Dialogue
module:

ColourDbox_AboutToBeShown (0x829c0)

Block

+ 8 0x829c0
+ 12 flags (as passed in to Toolbox_ShowObject)
+ 16 value which will be passed in R2 to ToolBox_ShowObject
+ 20... block which will be passed in R3 to ToolBox_ShowObject for the

underlying dialogue box.

Use

This Toolbox event is raised when SWI Toolbox_ShowObject has been called for a
Colour Dialogue object. It gives the application the opportunity to set fields in the
dialogue box before it actually appears on the screen.

C data type
typedef struct
{
 ToolboxEventHeader hdr;
 int show_type;
 union
 {
 TopLeft pos;
 WindowShowObjectBlock full;
 } info;
} ColourDboxAboutToBeShownEvent;
75

Colour Dialogue events
ColourDbox_DialogueCompleted (0x829c1)

Block

+ 8 0x829c1
+ 12 flags

bit 0 set means that a colour selection was done during this dialogue

Use

This Toolbox event is raised after the Colour Dialogue object has been hidden, either by
a Cancel click, or after an OK click, or by the user pressing Escape. It allows the client
to tidy up its own state associated with this dialogue.

C data type
typedef struct
{
 ToolboxEventHeader hdr;
} ColourDboxDialogueCompletedEvent;

ColourDbox_ColourSelected (0x829c2)

Block

+ 8 0x829c2
+ 12 flags bit 0 set means None was chosen
+ 16 colour block chosen

Use

This Toolbox event is raised when the user clicks OK in the dialogue box. The colour
block has the same format shown in the ColourDbox_SetColour method.

Note that event if the None button is set, a colour value is still returned, reflecting the
current state of the dialogue box.

C data type
typedef struct
{
 ToolboxEventHeader hdr;
 unsigned int colour_block[(212/4)];
} ColourDboxColourSelectedEvent;
76

Colour Dialogue box class
Colour Dialogue templates
The layout of a Colour Dialogue template is shown below. Fields which have types
MsgReference and StringReference are those which will require relocation when they
are loaded from a resource file. If the template is being constructed in memory, then
these fields should be real pointers (i.e. they do not require relocation).

For more details on relocation, see appendix Resource File Formats on page 499.

Field Size in bytes Type
flags 4 word
title 4 MsgReference
max_title 4 word
colour 4 word
77

Colour Dialogue templates
78

4 Colour Menu class

A Colour Menu object is used to show a menu giving the 16 desktop colours (and an

optional None entry), and to allow the user to select one of these colours by clicking on
its menu entry.

User interface
The Colour Menu allows the user to select from the set of available desktop colours (and
an optional None entry which appears at the bottom). The menu is displayed showing
the 16 desktop colours. Optionally any one of the colours can be shown as selected (with
a tick against it).

When a hit is received for the Colour Menu, a Toolbox event is returned to the client.
This contains the colour number of the selected colour. The selected colour is shown as
ticked in the Colour Menu, when the menu is next shown (or immediately if Adjust is
held down).
79

Application Program Interface
Application Program Interface

Attributes
A Colour Menu object has the following attributes which are specified in its object
template and can be manipulated at run-time by the client application:

Manipulating a Colour Menu object

Creating and deleting a Colour Menu

A Colour Menu object is created using SWI Toolbox_CreateObject.

When this object is created it has no attached objects (see page 11).

A Colour Menu object is deleted using SWI Toolbox_DeleteObject.

The setting of the non-recursive delete bit does not have a meaning for Colour menus.

Attribute Description
flags word Bit Meaning

0 when set, this bit indicates that a
ColourMenu_AboutToBeShown event should be raised
when SWI Toolbox_ShowObject is called for this Colour
Menu

1 when set, this bit indicates that a
ColourMenu_HasBeenHidden event should be raised
when the Menu has been removed from the screen

2 when set, include a None entry in the menu (will appear
with None as its last entry)

 menu title this gives an alternative string to use instead of the string
‘Colour’ in the title bar of the menu

max title
length

this gives the maximum length in bytes of title text which will
be used for this Colour Menu.

colour this is an indication of which colour is selected when the
Colour Menu is first created. Possible values are:
0-15 for the desktop colours
16 for ‘None’
-1 to indicate that no colour should be selected
80

Colour Menu class
Showing a Colour Menu

When a Colour menu is displayed on the screen using SWI Toolbox_ShowObject it has
the following behaviour:

Before the menu is shown

When the client calls Toolbox_ShowObject, a ColourMenu_AboutToBeShown
Toolbox event is raised (if the appropriate flags bit is set), allowing the client to take any
last minute action. Typically, a client will indicate which of the colours should be shown
as the currently selected one, when it receives this event.

Setting and getting the selected colour

For a Colour Menu, one of the colour entries can be designated the selected colour
(indicated by a tick against it in the menu). Colours within the menu are numbered like
the Wimp colours from 0-15 (with 16 meaning ‘None’, and -1 meaning ‘nothing
selected’).

The currently selected colour entry can be set and read dynamically using the
ColourMenu_SetColour/ColourMenu_GetColour methods.

Note that when the user clicks on a colour entry, that will become the selected colour
automatically without calling ColourMenu_SetColour. As will be seen later, a user click
results in a Toolbox event being delivered to the client, indicating which colour was
selected.

The client can dynamically set whether a None entry is given, by using the
ColourMenu_SetNoneAvailable method (and read whether it is available using the
ColourMenu_GetNoneAvailable method).

Processing a colour selection

Whenever the user clicks on a colour entry a ColourMenu_Selection Toolbox event is
raised to indicate which colour was chosen (one of 0-15, or 16 to indicate ‘None’).

Getting the underlying menu object id

The object id of the underlying menu object used to implement a Colour Menu can be
obtained using the ColourMenu_GetMenuID method (normally you would not need to
do this).

Show type Position
0 (default) 64 OS units to the left of the mouse pointer
1 (full spec) R3 + 0 gives x coordinate of top-left corner of Menu

R3 + 4 gives y coordinate of top-left corner of Menu
2 (topleft) R3 + 0 gives x coordinate of top-left corner of Menu

R3 + 4 gives y coordinate of top-left corner of Menu
81

Colour Menu methods
Colour Menu methods
The following methods are all invoked by calling SWI Toolbox_MiscOp with:

R0 holding a flags word
R1 being a Colour Menu id
R2 being the method code which distinguishes this method
R3-R9 potentially holding method-specific data.

ColourMenu_SetColour 0

On entry

R0 = flags
R1 = Colour Menu object id
R2 = 0
R3 = Wimp colour (0-15, or 16 for ‘None’, or -1 for ‘nothing selected’)

On exit

R1-R9 preserved

Use

This method selects a colour as being the currently selected one for this Colour Menu,
and places a tick next to it. Note that this change will only be visible when the Colour
Menu is next shown.

C veneer
extern _kernel_oserror *colourmenu_set_colour (unsigned int flags,
 ObjectId colourmenu,
 int wimp_colour
);
82

Colour Menu class
ColourMenu_GetColour 1

On entry

R0 = flags
R1 = Colour Menu object id
R2 = 1

Exit

R0 = Wimp colour selected (0-15, or 16 for ‘None’, or -1 for ‘nothing selected’)

Use

This method returns the Wimp colour which is currently selected for this Colour Menu.

C veneer
extern _kernel_oserror *colourmenu_get_colour (unsigned int flags,
 ObjectId colourmenu,
 int *wimp_colour
);

ColourMenu_SetNoneAvailable 2

On entry

R0 = flags
R1 = Colour Menu object id
R2 = 2
R3 = non-zero means allow a ‘None’ entry

On exit

R1-R9 preserved

Use

This method sets whether there is a ‘None’ entry for this Colour Menu.

C veneer
extern _kernel_oserror *colourmenu_set_none_available (unsigned int flags,
 ObjectId colourmenu,
 int none
);
83

Colour Menu methods
ColourMenu_GetNoneAvailable 3

On entry

R0 = flags
R1 = Colour Menu object id
R2 = 3

On exit

R0 = non-zero means there is a ‘None’ entry

Use

This method returns whether this Colour Menu has a ‘None’ entry.

C veneer
extern _kernel_oserror *colourmenu_get_none_available (unsigned int flags,
 ObjectId colourmenu,
 int *none
);

ColourMenu_SetTitle 4

On entry

R0 = flags
R1 = Colour Menu object id
R2 = 4
R3 = pointer to text string to use

Exit

R1-R9 preserved

Use

This method sets the text which is to be used in the title bar of the given Colour Menu.

C veneer
extern _kernel_oserror *colourmenu_set_title (unsigned int flags,
 ObjectId colourmenu,
 char *title
);
84

Colour Menu class
ColourMenu_GetTitle 5

On entry

R0 = flags
R1 = Colour Menu object id
R2 = 5
R3 = pointer to buffer to return the text in (or 0)
R4 = size of buffer

Exit

R4 = size of buffer required to hold the text (if R3 was 0)
else Buffer pointed to by R3 contains title text
R4 holds number of bytes written to buffer

Use

This method returns the text string used in a Colour Menu’s title bar.

C veneer
extern _kernel_oserror *colourmenu_get_title (unsigned int flags,
 ObjectId colourmenu,
 char *buffer,
 int buff_size,
 int *nbytes
);
85

Colour Menu events
Colour Menu events
There are a number of Toolbox Events which are generated by the Colour Menu
module:

ColourMenu_AboutToBeShown (0x82980)

Block

+ 8 0x82980
+ 12 flags (as passed in to Toolbox_ShowObject)
+ 16 value which will be passed in R2 to ToolBox_ShowObject
+ 20... block which will be passed in R3 to ToolBox_ShowObject for the

underlying Menu object

Use

This Toolbox event is raised when SWI Toolbox_ShowObject has been called for a
Colour Menu object. It gives the application the opportunity to set the selected colour
before the menu actually appears on the screen.

C data type
typedef struct
{
 ToolboxEventHeader hdr;
 int show_type;
 TopLeft pos;
} ColourMenuAboutToBeShownEvent;

ColourMenu_HasBeenHidden (0x82981)

Block

+ 8 0x82981

Use

This Toolbox Event is raised by the Toolbox when Toolbox_HideObject is called on a
Colour Menu which has the appropriate bit set in its template flags word. It enables a
client application to clear up after a menu has been closed. It is also raised when clicking
outside a menu or hitting Escape.

C data type
typedef struct
{
 ToolboxEventHeader hdr;
} ColourMenuHasBeenHiddenEvent;
86

Colour Menu class
ColourMenu_Selection (0x82982)

Block

+ 8 0x82982
+ 16 Wimp colour selected (0-15, or 16 for ‘None’)

Use

This Toolbox event is raised when the user has clicked on one of the Colour entries in
the Colour Menu. The colour value returned is in the range 0-15 for the desktop colours,
or 16 for ‘None’.

C data type
typedef struct
{
 ToolboxEventHeader hdr;
 int colour;
} ColourMenuSelectionEvent;

Colour Menu templates
The layout of a Colour Menu template is shown below. Fields which have types
MsgReference and StringReference are those which will require relocation when they
are loaded from a resource file. If the template is being constructed in memory, then
these fields should be real pointers (i.e. they do not require relocation).

For more details on relocation, see appendix Resource File Formats on page 499.

Field Size in bytes Type
flags 4 word
title 4 MsgReference
max-title 4 word
colour 4 word
87

Colour Menu Wimp event handling
Colour Menu Wimp event handling
The Colour Menu class responds to certain Wimp events and takes the actions as
described below:

Wimp event Action
Menu Selection The colour number corresponding to the menu

selection is sent back to the client via a
ColourMenu_Selection event.
If Adjust is held down, then the currently open menu
is re-opened in the same place.

User Msg Message_HelpRequest
(while the pointer is over a Colour Menu object)
If a help message is attached to this Colour Menu,
then a reply is sent on the application’s behalf.
88

5 Discard/Cancel/Save Dialogue
box class
A Discard/Cancel/Save (DCS) Dialogue box is used by the client application when
the user attempts to close a window containing modified and unsaved data.

User interface
A DCS dialogue object is used to allow the user to save data which has been modified,
usually before a document window is closed.

The dialogue box which appears on the screen has a number of components:

● a title bar (by default containing the name of the application, i.e. the message whose
tag is ‘_TaskName’)

● a message stating (by default) that there is unsaved data
● three Action Buttons: Discard, Cancel and Save (default action button).

The user sees the following behaviour (note that a click with the adjust button is treated
in the same way as a select click):
● if they click on Discard, the box is closed, the parent window is closed, and its

(new) contents discarded
● if they click outside the dialogue box (and it was opened transiently, i.e. with Menu

semantics), or click on Cancel, the box is closed, and the close on the parent
window is cancelled

title bar

message

Discard button Cancel button Save button
89

Application Program Interface
● if they click on Save or press Return, the box is closed, and either the data is saved
without further interaction (if a suitable full pathname is available), or a SaveAs
dialogue appears allowing an icon to be dragged to where the data should be saved.
When the save is complete, the parent window is closed.

Application Program Interface
When a DCS object is created, it has a number of optional components:
● an alternative title bar string instead of the client’s name
● an alternative message to use in the dialogue box
● the name of an alternative template to use for the underlying Window object.

Just before the DCS dialogue box is shown on the screen, the client is delivered a
DCS_AboutToBeShown Toolbox event if enabled by the flags word.

Once the dialogue box is displayed on the screen, the DCS module handles events for it,
and raises a number of Toolbox Events to indicate what choice the user has made. These
are DCS_Discard, DCS_Cancel and DCS_Save respectively. If the dialogue is closed,
then the client receives a DCS_DialogueCompleted event if enabled by the appropriate
bit in the flags word (see below).

Attributes
A DCS object has the following attributes which are specified in its object template and
can be manipulated at run-time by the client application:

Attributes Description
flags Bit Meaning

0 when set, this bit indicates that a
DCS_AboutTobeShown event should be raised
when SWI Toolbox_ShowObject is called for this
object.

1 when set, this bit indicates that a
DCS_DialogueCompleted event should be raised
when the DCS object has been removed from the
screen.

DCS title an alternative string for the title bar other than the client’s
name (0 means use application name)

max title length this gives the maximum length in bytes of title text which
will be used for this object

message an alternative message to use in the DCS dialogue box
(other than ‘This file has been modified’)
90

Discard/Cancel/Save Dialogue box class
Manipulating a DCS object

Creating and deleting a DCS object

A DCS object is created using SWI Toolbox_CreateObject.

When this object is created it has no attached objects (see page 11).

A DCS object is deleted using SWI Toolbox_DeleteObject.

The setting of the non-recursive delete bit does not have a meaning for DCS objects.

Showing a DCS object

When a DCS object is displayed on the screen using SWI Toolbox_ShowObject it has
the following behaviour:

Changing the DCS dialogue’s message

When a DCS dialogue object is created it has a default message warning the user that he
has unsaved data which will be lost if he closes the window.

This can be set and read dynamically using the DCS_SetMessage and DCS_GetMessage
methods (described on page 93).

max message
length

this gives the maximum length in bytes of the message
which will be used for this object

window an alternative window template to use instead of the default
one (o means use default)

Show type Position
0 (default) close to the pointer
1 (full spec) R3 + 0 visible area minimum x coordinate

R3 + 4 visible area minimum y coordinate
R3 + 8 visible area maximum x coordinate
R3 + 12 visible area maximum y coordinate
R3 + 16 scroll x offset relative to work area
R3 + 20 scroll y offset relative to work area
R3 + 24 Wimp window handle of window to open behind

-1 means top of stack
-2 means bottom of stack
-3 means the window behind the Wimp’s

backwindow
2 (topleft) R3 + 0 visible area minimum x coordinate

R3 + 4 visible area minimum y coordinate

Attributes Description
91

DCS methods
Getting the id of the underlying window for a DCS object

The window object id of the Window object used to implement the DCS Dialogue can
be obtained by using the DCS_GetWindowID method.

DCS methods
The following methods are all invoked by calling SWI Toolbox_ObjectMiscOp with:

R0 holding a flags word (which is zero unless otherwise stated)
R1 being a DCS Dialogue object id
R2 being the method code which distinguishes this method
R3-R9 potentially holding method-specific data

DCS_GetWindowID 0

On entry

R0 = flags
R1 = DCS object id
R2 = 0

On exit

R0 = Window object id for this DCS object

Use

This method returns the id of the underlying Window object used to implement this DCS
object.

C veneer
extern _kernel_oserror *dcs_get_window_id (unsigned int flags,
 ObjectId dcs,
 ObjectId *window
);
92

Discard/Cancel/Save Dialogue box class
DCS_SetMessage 1

On entry

R0 = flags
R1 = DCS object id
R2 = 1
R3 = pointer to buffer holding new message (Ctrl-terminated)

On exit

R1-R9 preserved

Use

This method sets the message used in the DCS dialogue’s window.

C veneer
extern _kernel_oserror *dcs_set_message (unsigned int flags,
 ObjectId dcs,
 char *message
);
93

DCS methods
DCS_GetMessage 2

On entry

R0 = flags
R1 = DCS object id
R2 = 2
R3 = pointer to buffer to hold message
R4 = size of buffer to hold message

On exit

R4 = size of buffer required to hold message (if R3 was 0)
else buffer pointed at by R3 holds message
R4 holds number of bytes written to buffer

Use

This method returns the current message used in a DCS object.

C veneer
extern _kernel_oserror *dcs_get_message (unsigned int flags,
 ObjectId dcs,
 char *buffer,
 int buff_size,
 int *nbytes
);
94

Discard/Cancel/Save Dialogue box class
DCS_SetTitle 3

On entry

R0 = flags
R1 = DCS object id
R2 = 3
R3 = pointer to text string to use

On exit

R1-R9 preserved

Use

This method sets the text which is to be used in the title bar of the given DCS dialogue.

C veneer
extern _kernel_oserror *dcs_set_title (unsigned int flags,
 ObjectId dcs,
 char *title
);
95

DCS methods
DCS_GetTitle 4

On entry

R0 = flags
R1 = DCS object id
R2 = 4
R3 = pointer to buffer to return the text in (or 0)
R4 = size of buffer

On exit

R4 = size of buffer required to hold the text (if R3 was 0)
else Buffer pointed to by R3 contains title text
R4 holds number of bytes written to buffer

Use

This method returns the text string used in a DCS dialogue’s title bar.

C veneer
extern _kernel_oserror *dcs_get_title (unsigned int flags,
 ObjectId dcs,
 char *buffer,
 int buff_size,
 int *nbytes
);
96

Discard/Cancel/Save Dialogue box class
DCS events
The DCS module generates the following Toolbox events:

DCS_AboutToBeShown (0x82a80)

Block

+ 8 0x82a80
+12 value which will be passed in R0 to Toolbox_ShowObject

(i.e. show flags, such as 'Show as menu')
+ 16 value which will be passed in R2 to ToolBox_ShowObject
+ 20... block which will be passed in R3 to ToolBox_ShowObject for the

underlying dialogue box.

Use

This Toolbox event is raised just before the DCS module is going to show its underlying
Window object.

C data type
typedef struct
{
ToolboxEventHeader hdr;
 int show_type;
 union
 {
 TopLeft pos;
 WindowShowObjectBlock full;
 } info;

} DCSAboutToBeShownEvent;
97

DCS events
DCS_Discard (0x82a81)

Block

+ 8 0x82a81

Use

This Toolbox event is raised when the user clicks on the Discard button.

C data type
typedef struct
{
 ToolboxEventHeader hdr;

} DCSDiscardEvent;

DCS_Save (0x82a82)

Block

+ 8 0x82a82

Use

This Toolbox event is raised when the user clicks on the Save Button or presses Return.
It is then the client’s responsibility to either save the data directly to file, or to display a
SaveAs Dialogue object.

C data type
typedef struct
{
 ToolboxEventHeader hdr;

} DCSSaveEvent;
98

Discard/Cancel/Save Dialogue box class
DCS_DialogueCompleted (0x82a83)

Block

+ 8 0x82a83

Use

This Toolbox event is raised after the DCS object has been hidden, either by a Cancel
click, a Save click or a Discard click, or by the user clicking outside the dialogue box (if
opened transiently) or pressing Escape. It allows the client to tidy up its own state
associated with this dialogue.

C data type
typedef struct
{
 ToolboxEventHeader hdr;

} DCSDialogueCompletedEvent;

DCS_Cancel (0x82a84)

Block

+ 8 0x82a84

Use

This Toolbox event is raised when the user clicks on the Cancel button or presses the
Escape key.

C data type
typedef struct
{
 ToolboxEventHeader hdr;

} DCSCancelEvent;
99

DCS templates
DCS templates
The layout of a DCS template is shown below. Fields which have types MsgReference
and StringReference are those which will require relocation when they are loaded from
a resource file. If the template is being constructed in memory, then these fields should
be real pointers (i.e. they do not require relocation).

For more details on relocation, see appendix Resource File Formats on page 499.

Underlying window template
The window object used to implement a DCS dialogue, has the following
characteristics. These must be reproduced if the Window is replaced by a
client-specified alternative Window template:

Title bar must be indirected.

Gadgets

Component ids are derived by adding to 0x82a800

Field Size in bytes Type
flags 4 word
title 4 MsgReference
max_title 4 word
message 4 MsgReference
max_message 4 word
window 4 StringReference

Component id Details
0 button gadget
1 action button (Discard)
2 action button (Cancel)

must be marked as a ‘Cancel’ action button
3 action button (Save)

must be marked as a ‘Default’ action button
100

Discard/Cancel/Save Dialogue box class
DCS Wimp event handling

* if enabled

Note that if opened transiently, DCS_DialogueCompleted may be raised without any of
DCS_Cancel, DCS_Discard or DCS_Save being raised. This could arise from the user
clicking on the backdrop or opening a menu.

Wimp event Action
Mouse Click on Discard button raise DCS_Discard Toolbox event, then a

DCS_DialogueCompleted Toolbox event*
on Cancel button raise DCS_Cancel Toolbox event,
then a DCS_DialogueCompleted Toolbox event*
on Save button raise DCS_Save Toolbox event,
then a DCS_DialogueCompleted Toolbox event*

Key Pressed on Return raise DCS_Save Toolbox event,
then a DCS_DialogueCompleted Toolbox event*
on Escape then act as if Cancel had been clicked.
101

102

6 File Info Dialogue box class

A File Info dialogue object is used to display information about a file (or a directory

or application) in a dialogue box.

User interface
A File Info dialogue has the following information held in its dialogue box:

● an indication of whether the file is modified (a textual display field with the text
‘YES’ or ‘NO’)

● a sprite representing the file type (i.e. a sprite named file_xxx where xxx is the hex
representation of the file type). If the filetype is 0x1000 a directory sprite is used,
and if 0x2000 an application sprite is used.

● the type of the file (a textual display field with the textual filetype followed by its
hex value in brackets)

● the full pathname of the file or ‘<untitled>’ (a display field)
● the size of the file in bytes (a display field giving the size of the file)
● the date the file was last written to (a textual display field showing the date in

‘*time’ format).

modified

type of file
button gadget

filename

file size

file date
103

Application Program Interface
Application Program Interface

Attributes
A File Info object has the following attributes which are specified in its object template
and can be manipulated at run-time by the client application:

Attributes Description
flags Bit Meaning

0 when set, this bit indicates that a
FileInfo_AboutToBeShown event should be raised
when SWI Toolbox_ShowObject is called for this
object.

1 when set, this bit indicates that a
FileInfo_DialogueCompleted event should be raised
when the File Info object has been removed from
the screen.

File Info title alternative title to use instead of ‘About this file’
(0 means use default title)

max title length this gives the maximum length in bytes of title text which
will be used for this object

modified an indication as to whether the file is to be marked as
modified from creation

filetype a word giving the RISC OS filetype
filename the initial filename to use in the dialogue box (if this field is

0, then the string ‘<untitled>’ is used
filesize size of the file in bytes
date a 5-byte UTC time
window the name of an alternative window template to use instead of

the default one (0 means use default)
104

File Info Dialogue box class
Manipulating a File Info object

Creating and deleting a File Info object

A File Info object is created using SWI Toolbox_CreateObject.

When this object is created it has no attached objects (see page 11).

A File Info object is deleted using SWI Toolbox_DeleteObject.

The setting of the non-recursive delete bit does not have a meaning for File Info objects.

Showing a File Info object

When a File Info object is displayed on the screen using SWI Toolbox_ShowObject it
has the following behaviour:

Before the File Info dialogue box is shown

When SWI Toolbox_ShowObject is called, a FileInfo_AboutToBeShown Toolbox
event is raised, if the appropriate bit is set in the File Info dialogue object’s flags word.
This enables the client to set any of the dialogue box’s fields before it is displayed.

Setting and reading the fields of the File Info dialogue

All of the display fields in a File Info dialogue can be set and read dynamically at
run-time. The sprite displayed in the dialogue box depends on the value of the filetype
field.

The methods used to do this are:

Show type Position
0 (default) the underlying window is shown at the last place shown on

the screen, or the coordinates given in its template, if it has
not already been shown

1 (full spec) R3 + 0 visible area minimum x coordinate
R3 + 4 visible area minimum y coordinate
R3 + 8 visible area maximum x coordinate
R3 + 12 visible area maximum y coordinate
R3 + 16 scroll x offset relative to work area
R3 + 20 scroll y offset relative to work area
R3 + 24 Wimp window handle of window to open behind

-1 means top of stack
-2 means bottom of stack
-3 means the window behind the Wimp’s

backwindow
2 (topleft) R3 + 0 visible area minimum x coordinate

R3 + 4 visible area minimum y coordinate
105

File Info methods
FileInfo_SetModifiedFileInfo_GetModified
FileInfo_SetFileTypeFileInfo_GetFileType
FileInfo_SetFileNameFileInfo_GetFileName
FileInfo_SetFileSizeFileInfo_GetFileSize
FileInfo_SetDateFileInfo_GetDate

File Info methods
The following methods are all invoked by calling SWI Toolbox_ObjectMiscOp with:

R0 holding a flags word
R1 being a File Info Dialogue object id
R2 being the method code which distinguishes this method
R3-R9 potentially holding method-specific data

FileInfo_GetWindowID 0

On entry

R0 = flags
R1 = File Info object id
R2 = 0

On exit

R0 = window object id for this File Info object

Use

This method returns the id of the underlying window object used to implement this File
Info object.

C veneer
extern _kernel_oserror *fileinfo_get_window_id (unsigned int flags,
 ObjectId fileinfo,
 ObjectId *window
);
106

File Info Dialogue box class
FileInfo_SetModified 1

On entry

R0 = flags
R1 = File Info object id
R2 = 1
R3 = value

On exit

R1-R9 preserved

Use

This method sets whether the file is to be indicated as modified or not. If the value
passed in R3 is 0, this indicates that the file is not modified; any other value in R3 means
the file is modified.

C veneer
extern _kernel_oserror *fileinfo_set_modified (unsigned int flags,
 ObjectId fileinfo,
 int modified
);

FileInfo_GetModified 2

On entry

R0 = flags
R1 = File Info object id
R2 = 2

On exit

R0 = modified state (0 ⇒ unmodified, non-0 ⇒ modified)

Use

This method returns whether the file is indicated as modified or not.

C veneer
extern _kernel_oserror *fileinfo_get_modified (unsigned int flags,
 ObjectId fileinfo,
 int *modified
);
107

File Info methods
FileInfo_SetFileType 3

On entry

R0 = flags
R1 = File Info object id
R2 = 3
R3 = file type

On exit

R1-R9 preserved

Use

This method sets the file type to be indicated in the dialogue box.

C veneer
extern _kernel_oserror *fileinfo_set_file_type (unsigned int flags,
 ObjectId fileinfo,
 int file_type
);

FileInfo_GetFileType 4

On entry

R0 = flags
R1 = File Info object id
R2 = 4

On exit

R0 = file type

Use

This method returns the file type shown in the dialogue box.

C veneer
extern _kernel_oserror *fileinfo_get_file_type (unsigned int flags,
 ObjectId fileinfo,
 int *file_type
);
108

File Info Dialogue box class
FileInfo_SetFileName 5

On entry

R0 = flags
R1 = File Info object id
R2 = 5
R3 = pointer to buffer holding filename

On exit

R1-R9 preserved

Use

This method sets the filename used in the File Info dialogue’s Window. There is a limit
of 256 characters on the filename length.

C veneer
extern _kernel_oserror *fileinfo_set_file_name (unsigned int flags,
 ObjectId fileinfo,
 char *file_name
);
109

File Info methods
FileInfo_GetFileName 6

On entry

R0 = flags
R1 = File Info object id
R2 = 6
R3 = pointer to buffer to hold filename
R4 = size of buffer to hold filename

On exit

R4 = size of buffer required to hold filename (if R3 was 0)
else buffer pointed at by R3 holds filename
R4 holds number of bytes written to buffer

Use

This method returns the current filename used in a File Info object.

C veneer
extern _kernel_oserror *fileinfo_get_file_name (unsigned int flags,
 ObjectId fileinfo,
 char *buffer,
 int buff_size,
 int *nbytes
);
110

File Info Dialogue box class
FileInfo_SetFileSize 7

On entry

R0 = flags
R1 = File Info object id
R2 = 7
R3 = file size

On exit

R1-R9 preserved

Use

This method sets the file size to be indicated in the dialogue box.

C veneer
extern _kernel_oserror *fileinfo_set_file_size (unsigned int flags,
 ObjectId fileinfo,
 int file_size
);

FileInfo_GetFileSize 8

On entry

R0 = flags
R1 = File Info object id
R2 = 8

On exit

R0 = file size

Use

This method returns the file size shown in the dialogue box.

C veneer
extern _kernel_oserror *fileinfo_get_file_size (unsigned int flags,
 ObjectId fileinfo,
 int *file_size
);
111

File Info methods
FileInfo_SetDate 9

On entry

R0 = flags
R1 = File Info object id
R2 = 9
R3 = pointer to 5-byte UTC time

On exit

R1-R9 preserved

Use

This method sets the date string used in the File Info dialogue’s window. The Territory
Manager is used to convert the UTC time into a time string.

C veneer
extern _kernel_oserror *fileinfo_set_date (unsigned int flags,
 ObjectId fileinfo,
 int *UTC
);

FileInfo_GetDate 10

On entry

R0 = flags
R1 = File Info object id
R2 = 10
R3 = pointer to buffer to hold 5-byte UTC time

On exit

R1-R9 preserved

Use

This method returns the current UTC time used in a File Info object.

C veneer
extern _kernel_oserror *fileinfo_get_date (unsigned int flags,
 ObjectId fileinfo,
 int *UTC
);
112

File Info Dialogue box class
FileInfo_SetTitle 11

On entry

R0 = flags
R1 = File Info object id
R2 = 11
R3 = pointer to text string to use

On exit

R1-R9 preserved

Use

This method sets the text which is to be used in the title bar of the given File Info
dialogue.

C veneer
extern _kernel_oserror *fileinfo_set_title (unsigned int flags,
 ObjectId fileinfo,
 char *title
);
113

File Info methods
FileInfo_GetTitle 12

On entry

R0 = flags
R1 = File Info object id
R2 = 12
R3 = pointer to buffer to return the text in (or 0)
R4 = size of buffer

On exit

R4 = size of buffer required to hold the text (if R3 was 0)
else Buffer pointed to by R3 contains title text
R4 holds number of bytes written to buffer

Use

This method returns the text string used in a File Info dialogue’s title bar.

C veneer
extern _kernel_oserror *fileinfo_get_title (unsigned int flags,
 ObjectId fileinfo,
 char *buffer,
 int buff_size,
 int *nbytes
);
114

File Info Dialogue box class
File Info events
The File Info module generates the following Toolbox events:

FileInfo_AboutToBeShown (0x82ac0)

Block

+ 8 0x82ac0
+ 12 flags (as passed in to Toolbox_ShowObject
+ 16 value which will be passed in R2 to ToolBox_ShowObject
+ 20... block which will be passed in R3 to ToolBox_ShowObject for the

underlying dialogue box

Use

This Toolbox event is raised just before the File Info module is going to show its
underlying Window object.

C data type
typedef struct
{
 ToolboxEventHeader hdr;
 int show_type;
 union
 {
 TopLeft pos;
 WindowShowObjectBlock full;
 } info;
} FileInfoAboutToBeShownEvent;
115

File Info templates
FileInfo_DialogueCompleted (0x82ac1)

Block

+ 8 0x82ac1
+ 12 flags

(none yet defined)

Use

This Toolbox event is raised after the File Info object has been hidden, either by the user
clicking outside the dialogue box or pressing Escape. It allows the client to tidy up its
own state associated with this dialogue.

C data type
typedef struct
{
 ToolboxEventHeader hdr;
} FileInfoDialogueCompletedEvent;

File Info templates
The layout of a File Info template is shown below. Fields which have types
MsgReference and StringReference are those which will require relocation when they
are loaded from a resource file. If the template is being constructed in memory, then
these fields should be real pointers (i.e. they do not require relocation).

For more details on relocation, see appendix Resource File Formats on page 499.

Field Size in bytes Type
flags 4 word
title 4 MsgReference
modified 4 word
filetype 4 word
filename 4 MsgReference
filesize 4 word
date 8 2 words
window 4 StringReference
116

File Info Dialogue box class
Underlying window template
The window object used to implement a File Info dialogue has the following
characteristics. These must be reproduced if the Window is replaced by a
client-specified alternative Window template:

Title bar must be indirected.

Gadgets

Component ids are derived by adding to 0x82ac00.

File Info Wimp event handling

Component id Details
0 Display Field (date)
1 Display Field (size in bytes)
2 Display Field (filename)
3 Display Field (filetype)
4 Display Field (modified field)
5 Button gadget (indirected sprite used to display icon for

file type)
6 Label (date)
7 Label (size)
8 Label (modified)
9 Label (type)

Wimp event Action
Open Window Request show the dialogue box
Key Click if Escape, then cancel this dialogue.
User Message Window_HasBeenHidden

hide the dialogue box
117

118

7 Font Dialogue box class

A Font Dialogue box shows font, weight and style of the currently selected font,

together with a chosen height and aspect ratio. The dialogue box also has a writable field
in which a test string in the chosen font is displayed.

User interface
The Font Dialogue box can be broken down into the following components:

● A boxed area for setting the font, which contains three labels giving the font’s
name, weight and style; with three accompanying string sets (each string set
contains a display field and a pop-up menu, which gives viable values for these
fields, based on the list of currently available fonts). The pop-up menus are built and
processed by the Toolbox, and do not require (or allow) any client intervention. The
Toolbox deals with ensuring that only valid font id’s are available to be chosen.

● Another boxed area, in which the user can set the height and aspect ratio used to plot
the selected font. There are a number of standard sizes which can be chosen by
clicking action buttons, and a number range into which a non-standard size can be
entered. The aspect ratio used is specified by the contents of another number range.

Try button Cancel button Apply button

string sets

writable field

action buttons

number ranges

labels
119

Application Program Interface
● At the bottom of the dialogue box, there is a writable field which by default contains
the string, ‘The quick brown fox jumps over the lazy dog’. When the user clicks on
the Try button, this string is rendered in the selected font (and height and aspect
ratio). The try string is limited to 64 characters long.

● The user can cancel the dialogue by clicking on the Cancel action button, or can
apply the font selection by clicking on Apply.

Note that the strings which appear in the font, weight and style display fields may be
localised for the current territory, but the strings used to communicate font selections
between the client and the Toolbox are always the ‘real’ font id of the font (e.g.
Corpus.Bold.Oblique).

Application Program Interface

Attributes
A Font Dialogue object has the following attributes which are specified in its object
template and can be manipulated at run-time by the client application:

Attributes Description
flags word Bit Meaning

0 when set, this bit indicates that a
FontDbox_AboutToBeShown event should be
raised when SWI Toolbox_ShowObject is called for
this object.

1 when set, this bit indicates that a
FontDbox_DialogueCompleted event should be
raised when the Font Dialogue object has been
removed from the screen.

2 when set, include a System font entry in the list of
fonts.

title an alternative title for the dialogue box instead of ‘Type
style’ (0 means use default title)

max title length the maximum length in bytes of title text which will be used
for this object

initial font the font id to be displayed in the dialogue box as the selected
font, on creation. If 0, the default is to display the first font
in the list of currently available fonts.

initial height the initial height value when the dialogue box is created
initial aspect the initial aspect ratio value when the dialogue box is

created
120

Font Dialogue box class
Manipulating a Font Dialogue object

Creating and deleting a Font Dialogue object

A Font Dialogue object is created using SWI Toolbox_CreateObject.

When this object is created it has no attached objects (see page 11).

A Font Dialogue object is deleted using SWI Toolbox_DeleteObject.

The setting of the non-recursive delete bit does not have a meaning for Font Dialogue
objects.

Showing a Font Dialogue object

When a Font Dialogue object is displayed on the screen using SWI
Toolbox_ShowObject it has the following behaviour:

try string an alternative string to use in the Try writable field, instead
of ‘The quick brown fox jumps over the lazy dog’

 window an alternative window template to use instead of the default
one.

Show type Position
0 (default) the underlying window is shown at the last place shown on

the screen, or the coordinates given in its template, if it has
not already been shown

1 (full spec) R3 + 0 visible area minimum x coordinate
R3 + 4 visible area minimum y coordinate
R3 + 8 visible area maximum x coordinate
R3 + 12 visible area maximum y coordinate
R3 + 16 scroll x offset relative to work area
R3 + 20 scroll y offset relative to work area
R3 + 24 Wimp window handle of window to open behind

-1 means top of stack
-2 means bottom of stack
-3 means the window behind the Wimp’s

backwindow
2 (topleft) R3 + 0 visible area minimum x coordinate

R3 + 4 visible area minimum y coordinate

Attributes Description
121

Application Program Interface
Before the Font Dialogue box is shown

When the client calls Toolbox_ShowObject, a FontDbox_AboutToBeShown Toolbox
event is raised (if the appropriate flags bit is set), allowing the client to take any last
minute action. Typically, a client will indicate which of the fonts should be shown as the
currently selected one, when it receives this event.

Setting and getting the current selection

The currently selected font id can be set and read at run-time using the
FontDbox_SetFont and FontDbox_GetFont methods. These use a font id which assumes
a <name>.<weight>.<style> structure (i.e. the first component appears in the Font field,
the second in the Weight field, and the third in the Style field).

The size (both height and aspect ratio components) are set and read using the
FontDbox_SetSize/FontDbox_GetSize methods respectively.

The Try string can be set and read using the FontDbox_SetTryString and
FontDbox_GetTryString methods.

Receiving a font selection

When the user clicks the Apply button (or presses the Return key when the Font
Dialogue box has the input focus), the client application is sent a FontDbox_ApplyFont
Toolbox event. This event gives the font id of the currently selected font.

Completing a Font Dialogue

When the dialogue box is closed, either because Apply or Cancel has been clicked, or
Escape has been pressed, a FontDbox_DialogueCompleted Toolbox event is raised for
the client, with an indication of whether a font was selected during the dialogue.
122

Font Dialogue box class
Font Dialogue methods
The following methods are all invoked by calling SWI Toolbox_MiscOp with:

R0 holding a flags word
R1 being a Font Dialogue Box id
R2 being the method code which distinguishes this method
R3-R9 potentially holding method-specific data

FontDbox_GetWindowID 0

On entry

R0 = flags
R1 = FontDbox object id
R2 = 0

On exit

R0 = Window object id for this FontDbox object

Use

This method returns the id of the underlying Window object used to implement this
FontDbox object.

C veneer
extern _kernel_oserror *fontdbox_get_window_id(unsigned int flags,
 ObjectId fontdbox,
 ObjectId *window
);
123

Font Dialogue methods
FontDbox_SetFont 1

On entry

R0 = flags
R1 = Font Dbox object id
R2 = 1
R3 = pointer to font id of font to select (0 means none)

On exit

R1-R9 preserved

Use

This method selects a font as being the currently selected one for this Font Dialogue box,
and displays its name appropriately in the Font/Weight/Style display fields.

The special font id ‘SystemFont’ is used to indicate that the System entry should be
selected.

C veneer
extern _kernel_oserror *fontdbox_set_font (unsigned int flags,
 ObjectId fontdbox,
 char *font_id
);
124

Font Dialogue box class
FontDbox_GetFont 2

On entry

R0 = flags
R1 = Font Dbox object id
R2 = 2
R3 = pointer to buffer to hold font id
R4 = buffer size for font id

On exit

R4 = size of buffer required (if R3 was 0)
else buffer pointed at by R3 holds font id
R4 holds number of bytes written to buffer

Use

This method returns the font id for the font which was last specified in a
FontDbox_SetFont call, or was last chosen by a user choice from a pop-up menu.

The special font id ‘SystemFont’ is used to indicate that the System entry is selected.

C veneer
extern _kernel_oserror *fontdbox_get_font (unsigned int flags,
 ObjectId fontdbox,
 char *buffer,
 int buff_size,
 int *nbytes
);
125

Font Dialogue methods
FontDbox_SetSize 3

On entry

R0 = flags
bit 0 set means change the height value
bit 1 set means change the aspect ratio

R1 = Font Dbox object id
R2 = 3
R3 = height value
R4 = aspect ratio value

On exit

R1-R9 preserved

Use

This method sets the height value and/or the aspect ratio displayed in the Font Dialogue
box.

C veneer
extern _kernel_oserror *fontdbox_set_size (unsigned int flags,
 ObjectId fontdbox,
 int height,
 int aspect_ratio
);
126

Font Dialogue box class
FontDbox_GetSize 4

On entry

R0 = flags
R1 = Font Dbox object id
R2 = 4

On exit

R0 = height value
R1 = aspect ratio

Use

This method returns the height value and/or aspect ratio currently displayed in the Font
Dialogue box.

C veneer
extern _kernel_oserror *fontdbox_get_size (unsigned int flags,
 ObjectId fontdbox,
 int *height,
 int *aspect_ratio
);

FontDbox_SetTryString 5

On entry

R0 = flags
R1 = Font Dbox object id
R2 = 5
R3 = pointer to ‘try’ string to use

On exit

R1-R9 preserved

Use

This method sets the string used in the Try writable field of a Font Dialogue box. If the
string is longer than 64 characters, an error is returned.

C veneer
extern _kernel_oserror *fontdbox_set_try_string (unsigned int flags,
 ObjectId fontdbox,
 char *try_string
);
127

Font Dialogue methods
FontDbox_GetTryString 6

On entry

R0 = flags
R1 = Font Dbox object id
R2 = 6
R3 = pointer to buffer to hold try string
R4 = buffer size for try string

On exit

R4 = size of buffer required (if R3 was 0)
else buffer pointed at by R3 holds try string
R4 holds number of bytes written to buffer

Use

This method returns the string currently displayed in the Try writable field of the Font
Dialogue box.

C veneer
extern _kernel_oserror *fontdbox_get_try_string (unsigned int flags,
 ObjectId fontdbox,
 char *buffer,
 int buff_size,
 int *nbytes
);
128

Font Dialogue box class
FontDbox_SetTitle 7

On entry

R0 = flags
R1 = Font Dbox object id
R2 = 7
R3 = pointer to text string to use

On exit

R1-R9 preserved

Use

This method sets the text which is to be used in the title bar of the given Font dialogue
box.

C veneer
extern _kernel_oserror *fontdbox_set_title (unsigned int flags,
 ObjectId fontdbox,
 char *title
);
129

Font Dialogue methods
FontDbox_GetTitle 8

On entry

R0 = flags
R1 = Font Dbox object id
R2 = 8
R3 = pointer to buffer to return the text in (or 0)
R4 = size of buffer

On exit

R4 = the size of buffer required to hold the text (if R3 was 0)
else Buffer pointed to by R3 contains title text
R4 holds number of bytes written to buffer

Use

This method returns the text string used in a Font dialogue’s title bar.

C veneer
extern _kernel_oserror *fontdbox_get_title (unsigned int flags,
 ObjectId fontdbox,
 char *buffer,
 int buff_size,
 int *nbytes
);
130

Font Dialogue box class
Font Dialogue events
There are a number of Toolbox events which are generated by the Font Dialogue box
module.

FontDbox_AboutToBeShown (0x82a00)

Block

+ 8 0x82a00
+ 12 flags (as passed in to Toolbox_ShowObject)
+ 16 value which will be passed in R2 to ToolBox_ShowObject
+ 20... block which will be passed in R3 to ToolBox_ShowObject for the

underlying dialogue box

Use

This Toolbox Event is raised when SWI Toolbox_ShowObject has been called for a
Font Dialogue Box object. It gives the application the opportunity to set the selected font
before the dialogue box actually appears on the screen.

C data type
typedef struct
{
 ToolboxEventHeader hdr;
 int show_type;
 union
 {
 TopLeft pos;
 WindowShowObjectBlock full;
 } info;
} FontDboxAboutToBeShownEvent;
131

Font Dialogue events
FontDbox_DialogueCompleted (0x82a01)

Block

+ 8 0x82a01
+ 12 flags

Use

This Toolbox Event is raised after the Font Dialogue object has been hidden, either by a
Cancel click, or by a click on Apply. It allows the client to tidy up its own state
associated with this dialogue.

Note that if the dialogue was cancelled, a font selection may still have been made, for
example if the user clicked Adjust on Apply, and then cancelled the dialogue.

C data type
typedef struct
{
 ToolboxEventHeader hdr;
} FontDboxDialogueCompletedEvent;

FontDbox_ApplyFont (0x82a02)

Block

+ 8 0x82a02
+ 16 font height
+ 20 aspect ratio
+ 24... font id

Use

This Toolbox Event informs the client that a Font Dialogue box selection has been
made.

The special font id SystemFont is used to indicate that the System entry is selected.

C data type
typedef struct
{
 ToolboxEventHeader hdr;
 unsigned int height;
 unsigned int aspect;
 char font[208];
} FontDboxApplyFontEvent;
132

Font Dialogue box class
Font Dialogue Templates
The layout of a Font Dialogue box template is shown below. Fields which have types
MsgReference and StringReference are those which will require relocation when they
are loaded from a resource file. If the template is being constructed in memory, then
these fields should be real pointers (i.e. they do not require relocation).

For more details on relocation, see appendix Resource File Formats on page 499.

Underlying Window template
The Window object used to implement a Font Dialogue has the following
characteristics. These must be reproduced if the Window is replaced by a
client-specified alternative Window template:

Title bar must be indirected.

Gadgets

Component ids are derived by adding to 0x82a000

Field Size in bytes Type
flags 4 word
title 4 MsgReference
max_title 4 word
initial_font 4 StringReference
initial_height 4 word
initial_aspect 4 word
try_string 4 MsgReference
window 4 StringReference

Component id Details
0 action button (Apply) must be marked as the ‘default’

action button
1 action button (Cancel) must be marked as the ‘cancel’

action button
2 action button (Try) must be marked as a ‘local’

action button
3 writable field

(Try string)
buffer must be 64 bytes

4 number range
(Aspect ratio)

5 number range (Height)
133

Font Dialogue Templates
6-15 action buttons
(Standard sizes)

these should all be local action
buttons containing the text 8, 10
12, 14, 18, 24, 28, 36, 48 72
respectively.

16 string set (Style) non-writable, with pop-up menu
17 string set (Weight) non-writable, with pop-up menu
18 string set (Font) non-writable, with pop-up menu
19 label box (Font)
20 label box (Style)
21 label (Height)
22 label (Aspect)
23 label (%)
24 label (Font)
25 label (Weight)
26 label (Style)

Component id Details
134

Font Dialogue box class
Font Dialogue Wimp event handling
The Font Dialogue box class responds to certain Wimp events and takes the actions as
described below:

Wimp event Action
Mouse Click on Apply, deliver a FontDbox_ApplyFont event

on Cancel, deliver a FontDbox_DialogueCompleted event
on one of the pop-up menu buttons, a menu is displayed
on one of the ‘standard sizes’, this size is entered into the
Height writable field
on one of the arrow keys, increment/decrement the value of its
associated writable field (either height or aspect ratio)

Key Pressed if Return then act as if Apply button had been clicked
if Escape, then act as if Cancel button had been clicked
135

Font Dialogue Wimp event handling
136

8 Font Menu class

A Font Menu is a menu which shows the currently selected font, and allows the user

to set this from a list of font names, and submenus which give styles and weights.

User interface
A typical Font Menu might look as follows:

When a hit is received for the Font Menu, it is decoded by the Font Menu module, and a
Toolbox event is returned to the client. This contains the font id of the selected font (see
SWI Font_DecodeMenu). The chosen font is shown as ticked in the font menu when the
menu is next shown (or immediately if Adjust is held down).

font menu

submenu
137

Application Program Interface
Application Program Interface
The RISC OS Font manager provides a facility of building a font menu from the current
fontlist.

A Font Menu object is an abstraction on this facility. A Font Menu is built for the client
using the Font manager.

Attributes
A Font Menu object has the following attributes which are specified in its object
template and can be manipulated at run-time by the client application:

Manipulating a Font Menu object

Creating and deleting a Font Menu object

A Font Menu object is created using SWI Toolbox_CreateObject.

When this object is created it has no attached objects (see page 11).

A Font Menu object is deleted using SWI Toolbox_DeleteObject.

The setting of the non-recursive delete bit does not have a meaning for Font Menu
objects.

Attributes Description
flags word Bit Meaning

0 when set, this bit indicates that a
FontMenu_AboutToBeShown event should be
raised when SWI Toolbox_ShowObject is called for
this object

1 when set, this bit indicates that a
FontMenu_HasBeenHidden event should be raised
when the Font Menu object has been removed from
the screen

2 when set, include a System font entry at head of
menu

ticked_font font id of the font to tick in the Font Menu when it is first
created
The special font id ‘SystemFont’ is used to indicate that the
System entry should be ticked.
138

Font Menu class
Showing a Font Menu object

When a Font Menu object is displayed on the screen using SWI Toolbox_ShowObject it
has the following behaviour:

Before the Font Menu is shown

When the client calls Toolbox_ShowObject, a FontMenu_AboutToBeShown Toolbox
event is raised (if the appropriate flags bit is set), allowing the client to take any last
minute action. Typically, a client will indicate which of the fonts should be shown as the
currently selected one, when it receives this event.

Selecting a font

The currently selected font is shown ticked in the Font Menu. The selected font can be
set using FontMenu_SetFont, and can be read using FontMenu_GetFont. Note that the
string passed to these methods is the font id, not the translated string.

Receiving a font selection

When the user makes a Font selection from the Font Menu, a FontMenu_FontSelection
Toolbox event is raised. This gives the font id of the font which has been chosen from
the Font Menu.

Show type Position
0 (default) 64 OS units to the left of the mouse pointer
1 (full spec) R3 + 0 gives x coordinate of top-left corner of Menu

R3 + 4 gives y coordinate of top-left corner of Menu
2 (topleft) R3 + 0 gives x coordinate of top-left corner of Menu

R3 + 4 gives y coordinate of top-left corner of Menu
139

Font Menu methods
Font Menu methods
The following methods are all invoked by calling SWI Toolbox_MiscOp with:

R0 holding a flags word
R1 being a Font Menu id
R2 being the method code which distinguishes this method
R3-R9 potentially holding method-specific data

FontMenu_SetFont 0

On entry

R0 = flags
R1 = Font Menu object id
R2 = 0
R3 = pointer to font id of font to select (0 means none)

On exit

R1-R9 preserved

Use

This method selects a font as being the currently selected one for this Font Menu, and
places a tick next to it. The special font id ‘SystemFont’ is used to indicate that the
System entry should be ticked.

C veneer
extern _kernel_oserror *fontmenu_set_font (unsigned int flags,
 ObjectId fontmenu,
 char *font_id
);
140

Font Menu class
FontMenu_GetFont 1

On entry

R0 = flags
R1 = Font Menu object id
R2 = 1
R3 = pointer to buffer to hold font id
R4 = buffer size for font id

On exit

R4 = size of buffer required (if R3 was 0)
else buffer pointed at by R3 holds font id
R4 holds number of bytes written to buffer

Use

This method returns the font id for the font which was last specified in a
FontMenu_SetFont call, or was last chosen by a user mouse click (i.e. the one which is
ticked). The special font id ‘SystemFont’ is used to indicate that the System entry was
last chosen.

C veneer
extern _kernel_oserror *fontmenu_get_font (unsigned int flags,
 ObjectId fontmenu,
 char *buffer,
 int buff_size,
 int *nbytes
);
141

Font Menu events
Font Menu events
There are a number of Toolbox events which are generated by the Font Menu module:

FontMenu_AboutToBeShown (0x82a40)

Block

+ 8 0x82a40
+ 12 flags (as passed in to Toolbox_ShowObject)
+ 16 value which will be passed in R2 to ToolBox_ShowObject
+ 20... block which will be passed in R3 to ToolBox_ShowObject for the

underlying Menu Object

Use

This Toolbox event is raised when SWI Toolbox_ShowObject has been called for a Font
Menu object. It gives the application the opportunity to set the selected font before the
Menu actually appears on the screen.

C data type
typedef struct
{
 ToolboxEventHeader hdr;
 int show_type;
 TopLeft pos;
} FontMenuAboutToBeShownEvent;

FontMenu_HasBeenHidden (0x82a41)

Block

+ 8 0x82a41

Use

This Toolbox Event is raised by the Toolbox when Toolbox_HideObject is called on a
Font Menu which has the appropriate bit set in its template flags word. It enables a client
application to clear up after a menu has been closed. It is also raised when clicking
outside a menu or hitting Escape.

C data type
typedef struct
{
 ToolboxEventHeader hdr;
} FontMenuHasBeenHiddenEvent;
142

Font Menu class
FontMenu_FontSelection (0x82a42)

Block

+ 8 0x82a42
+ 16... font id

Use

This Toolbox Event informs the client that a Font Menu selection has been made.

The special font id ‘SystemFont’ is used to indicate that the System entry was last
chosen.

C data type
typedef struct
{
 ToolboxEventHeader hdr;
 char font_id[216];
} FontMenuSelectionEvent;

Font Menu templates
The layout of a Font Menu template is shown below. Fields which have types
MsgReference and StringReference are those which will require relocation when they
are loaded from a resource file. If the template is being constructed in memory, then
these fields should be real pointers (i.e. they do not require relocation).

For more details on relocation, see appendix Resource File Formats on page 499.

Field Size in bytes Type
flags 4 word
ticked_font 4 StringReference
143

Font Menu Wimp event handling
Font Menu Wimp event handling
The Font Menu class responds to certain Wimp events and takes the actions as described
below:

Wimp event Action
Menu Selection The font id corresponding to the menu selection is sent

back to the client via a FontMenu_FontSelection event.
If Adjust is held down, then the currently open Menu is
re-opened in the same place.

User Msg Message_HelpRequest (while the pointer is over a Font
Menu object) A reply is sent on the application’s behalf.
144

9 Iconbar icon class

Objects of the Iconbar icon class are used to display an application icon on the

Iconbar.

User interface
An Iconbar object is normally used to show that an application is running, by placing an
icon on the RISC OS Iconbar.

An Iconbar object can either be a sprite icon or a text&sprite icon. It does not appear on
the Iconbar until the application has called Toolbox_ShowObject or if the auto-show bit
has been set in its flags word. When the Toolbox places the icon on the Iconbar, it
positions the icon in a Style Guide compliant manner, including placement of the text in
a text&sprite icon. The bounding box used for the icon is taken from the sprite used for
that icon, also taking into consideration the text used, if the iconbar object is text&sprite.
If the application supports many icons on the Iconbar this can be achieved by creating
many Iconbar objects.

The Toolbox supports handling of a Menu click over the icon, Select and Adjust clicks.

Iconbar icon

Iconbar icon’s menu
145

Application Program Interface
Application Program Interface

Attributes
An Iconbar icon object has the following attributes which are specified in its object
template and can be manipulated at run-time by the client application:

Attributes Description
flags Bit Meaning

0 when set, generate an
Iconbar_SelectAboutToBeShown event before
the object which has been associated with a Select
click is shown

1 when set, generate an
Iconbar_AdjustAboutToBeShown event before
the object which has been associated with an
Adjust click is shown

2 when set, show the select_show object as a
transient
(i.e. with the semantics of Wimp_CreateMenu)

3 when set, show the adjust_show object as a
transient
(i.e. with the semantics of Wimp_CreateMenu)

4 reserved
5 when set, generate an Iconbar_Clicked (or

client-specified) event when Select is clicked
6 when set, generate an Iconbar_Clicked (or

client-specified) event when Adjust is clicked
position a negative integer giving the position of the icon on the

Iconbar (as specified in SWI Wimp_CreateIcon)
priority gives priority of this icon on the Iconbar (as specified in

SWI Wimp_CreateIcon)
sprite name the name of the sprite to use for this Iconbar icon
max sprite name the maximum length of sprite name to be used
text an optional string which will be used for a Text&Sprite

Iconbar icon (i.e. the text that will appear underneath the
icon on the Iconbar)

max text length if the Iconbar icon has text, then this is a Text&Sprite
Iconbar icon, and this field gives the maximum length of a
text string which will be used for it
146

Iconbar icon class
Manipulating an Iconbar icon object

Creating and deleting an Iconbar icon object

An Iconbar icon object is created using SWI Toolbox_CreateObject.

When an Iconbar Icon Object is created, the following attached objects (see page 11)
will be created (if specified):
● menu
● select show
● adjust show.

See the attributes table above for an explanation of what these objects are.

An Iconbar object is deleted using SWI Toolbox_DeleteObject. If it has any attached
objects (see above), these are also deleted, unless the non-recursive bit is set for this
SWI.

menu the name of the template to use to create a Menu object for
this Iconbar icon

select event the Toolbox Event code to be raised when the user clicks
Select on the Iconbar icon
(if 0 then Iconbar_Clicked is raised)

adjust event the Toolbox event code to be raised when the user clicks
Adjust on the Iconbar icon
(if 0 then Iconbar_Clicked is raised)

select show the name of a template to use to show an object when the
user clicks Select on the Iconbar icon

adjust show the name of a template to use to show an object when the
user clicks Adjust on the Iconbar icon

help message the message to respond to a help request with, instead of
the default

max help the maximum length of help message to be used

Attributes Description
147

Application Program Interface
Showing an Iconbar icon object

When a Iconbar icon object is displayed on the screen using SWI Toolbox_ShowObject
it has the following behaviour:

If the Iconbar icon’s position is any other value than -3 or -4, then R3 should just be 0.

An Iconbar icon is hidden by using SWI Toolbox_HideObject.

The Iconbar icon’s position and priority

An Iconbar icon is created with a position and a priority. These are integer values as
specified in SWI Wimp_CreateIcon. Note that these values are fixed at create-time, but
are only used when the Iconbar icon is ‘shown’, either by explicitly calling
Toolbox_ShowObject, or by setting the auto-show bit in the object template’s flags.

The semantics of position and priority are as documented in Wimp_CreateIcon.
Applications will mostly just use a position of -1 for the right of the iconbar.

Note that positions of -3 and -4 cannot be used in conjunction with the auto-show bit.
Such an Iconbar icon must be explicitly shown using Toolbox_ShowObject to allow the
client to pass the Wimp handle of the icon to whose left/right this icon should be placed.

An Iconbar icon’s position and priority cannot be changed at run-time.

The Iconbar icon’s menu

Each Iconbar object can optionally have attached to it a Menu object. The Iconbar object
holds the object id of this Menu object.

Whenever the user of the application presses the Menu mouse button over an Iconbar
icon, the Iconbar class module opens its attached Menu object, by making a SWI
Toolbox_ShowObject passing the attached Menu’s id.

If the application wishes to perform some operations on the Menu before it is opened
(ticking some entries for example), then by setting the appropriate bit in the Menu’s
flags word, the application can request that a special Toolbox event
(Menu_AboutToBeShown) is delivered to it before the Menu is actually shown. The
precise details of this Toolbox event are described on page 197. On receipt of such a
Toolbox event, the client application is expected to make any changes it wants to the
Menu object, and then return to its SWI Wimp_Poll loop.

Show type Position
0 (default) display on the Iconbar in a place specified by the object’s

template’s position and priority fields.
1 (full spec) R3 + 0 icon handle of icon to show icon to the left (-3) or

right (-4) of its position.
148

Iconbar icon class
When an Iconbar icon is created, if the client has specified the name of a Menu template
for that Iconbar icon, then a Menu object is created from that template, and the id of that
Menu is held in the Iconbar object. This id will be used to show the Menu when the user
presses the Menu button over the Iconbar icon.

In most cases a Menu is attached to the Iconbar icon at resource editing time by entering
the name of the template to use for this Iconbar icon’s Menu. If the application wishes to
dynamically attach and detach the Menu for a given Iconbar icon, then this can be done
using the Iconbar_SetMenu method described on page 151.

The id of the Menu attached to an Iconbar icon can be read by using the
Iconbar_GetMenu method.

Select and Adjust click events

The client application can specify a Toolbox event to be raised when the user clicks
Select and/or one to be raised when the user clicks Adjust on the Iconbar icon.

This event will only be raised if the appropriate flags bits have been set for Select and
Adjust clicks.

Normally this is specified in the application’s resource file, but it can be set and read
using the Iconbar_SetEvent/Iconbar_GetEvent methods.

Help messages

Each Iconbar object can optionally have attached to it a Help Message.

Whenever the Wimp delivers a HelpRequest message to the client application for this
Iconbar icon, the attached Help Message is sent back automatically by the Toolbox.

In most cases a help message is attached to the Iconbar object at resource editing time.
An Iconbar icon’s Help Message can be set dynamically using the
Iconbar_SetHelpMessage method described on page 156.

The text of the Help Message can be read using the Iconbar_GetHelpMessage method.
149

Iconbar icon methods
Iconbar icon methods
The following methods are all invoked by calling SWI Toolbox_ObjectMiscOp with:

R0 holding a flags word
R1 being an Iconbar object id
R2 being the method code which distinguishes this method
R3-R9 potentially holding method-specific data

Iconbar_GetIconHandle 0

On entry

R0 = flags
R1 = Iconbar object id
R2 = 0

On exit

R0 = Wimp icon handle for this Iconbar object

Use

This method returns the handle of the underlying Wimp icon used to implement this
Iconbar object.

C veneer
extern _kernel_oserror *iconbar_get_icon_handle (unsigned int flags,
 ObjectId iconbar,
 int *icon_handle
);
150

Iconbar icon class
Iconbar_SetMenu 1

On entry

R0 = flags
R1 = Iconbar object id
R2 = 1
R3 = menu id

On exit

R1-R9 preserved

Use

This method is used to set the menu which will be displayed when the Menu button is
pressed over this Iconbar object. The Toolbox handles opening the menu for you.

If R3 is 0, then the menu for this Iconbar object is detached.

C veneer
extern _kernel_oserror *iconbar_set_menu (unsigned int flags,
 ObjectId iconbar,
 ObjectId menu_id
);

Iconbar_GetMenu 2

On entry

R0 = flags
R1 = Iconbar object id
R2 = 2

On exit

R0 = Menu id

Use

This method is used to get the id of the menu which will be displayed when the Menu
button is pressed over this Iconbar object.

C veneer
extern _kernel_oserror *iconbar_get_menu (unsigned int flags,
 ObjectId iconbar,
 ObjectId *menu_id
);
151

Iconbar icon methods
Iconbar_SetEvent 3

On entry

R0 = flags
bit 0 set means raise the event code specified in R3 when Select is clicked
bit 1 set means raise the event code specified in R4 when Adjust is clicked

R1 = Iconbar object id
R2 = 3
R3 = Toolbox Event code to raise for Select
R4 = Toolbox Event code to raise for Adjust

On exit

R1-R9 preserved

Use

This method specifies a Toolbox event to be raised when the user clicks Select and/or
Adjust on the Iconbar icon.

If R3 or R4 is 0, then an IconBar_Clicked Toolbox event will be raised instead.

C veneer
extern _kernel_oserror *iconbar_set_event (unsigned int flags,
 ObjectId iconbar,
 int select_event,
 int adjust_event
);
152

Iconbar icon class
Iconbar_GetEvent 4

On entry

R0 = flags
bit 0 set means return the event code which will be raised

when Select is clicked
bit 1 set means return the event code which will be raised

when Adjust is clicked
R1 = Iconbar object id
R2 = 4

On exit

R0 = Toolbox event code raised when Select is clicked on the Iconbar icon
R1 = Toolbox event code raised when Adjust is clicked on the Iconbar icon

Use

This method reads the Toolbox Event to be raised when the user clicks Select or Adjust
on the Iconbar icon.

C veneer
extern _kernel_oserror *iconbar_get_event (unsigned int flags,
 ObjectId iconbar,
 int *select_event,
 int *adjust_event
);
153

Iconbar icon methods
Iconbar_SetShow 5

On entry

R0 = flags
bit 0 set means show the object whose id is given in R3

when Select is clicked
bit 1 set means show the object whose id is given in R4

when Adjust is clicked
R1 = Iconbar object id
R2 = 5
R3 = id of object to show for Select
R4 = id of object to show for Adjust

On exit

R1-R9 preserved

Use

This method specifies an object to be shown when the user clicks Select and/or Adjust
on the Iconbar icon.

If R3 or R4 is 0, then no object will be shown.

C veneer
extern _kernel_oserror *iconbar_set_show (unsigned int flags,
 ObjectId iconbar,
 ObjectId select,
 ObjectId adjust
);
154

Iconbar icon class
Iconbar_GetShow 6

On entry

R0 = flags
bit 0 set means return the id of the object which will be

shown when Select is clicked
bit 1 set means return the id of the object which will be

shown when Adjust is clicked
R1 = Iconbar object id
R2 = 6

On exit

R0 = id of object which will be shown when Select is clicked on the Iconbar icon. R1 =
id of object which will be shown when Adjust is clicked on the Iconbar icon

Use

This method reads the ids of the objects to be shown when the user clicks Select or
Adjust on the Iconbar icon.

C veneer
extern _kernel_oserror *iconbar_get_show (unsigned int flags,
 ObjectId iconbar,
 ObjectId *select,
 ObjectId *adjust
);
155

Iconbar icon methods
Iconbar_SetHelpMessage 7

On entry

R0 = flags
R1 = Iconbar object id
R2 = 7
R3 = pointer to message text

On exit

R1-R9 preserved

Use

This method is used to set the help message which will be returned when a Help Request
message is received for this Iconbar object. The Toolbox handles the reply message for
you.

If R3 is 0, then the Help Message for this Iconbar object is detached.

C veneer
extern _kernel_oserror *iconbar_set_help_message (unsigned int flags,
 ObjectId iconbar,
 char *message_text
);
156

Iconbar icon class
Iconbar_GetHelpMessage 8

On entry

R0 = flags
R1 = Iconbar object id
R2 = 8
R3 = pointer to buffer (or 0)
R4 = size of buffer to hold message text

On exit

R4 = holds size of buffer required for message text (if R3 was 0)
else Buffer pointed at by R3 holds message text
R4 holds number of bytes written to buffer

Use

This method is used to read the help message which will be returned when a Help
Request message is received for this Iconbar object.

C veneer
extern _kernel_oserror *iconbar_get_help_message (unsigned int flags,
 ObjectId iconbar,
 char *buffer,
 int buff_size,
 int *nbytes
);
157

Iconbar icon methods
Iconbar_SetText 9

On entry

R0 = flags
R1 = Iconbar object id
R2 = 9
R3 = pointer to text string to use

On exit

R1-R9 preserved

Use

This method sets the text which is to be used in a text&sprite Iconbar object. If the text
is longer than the maximum size specified when the Iconbar icon was created, then an
error is returned.

C veneer
extern _kernel_oserror *iconbar_set_text (unsigned int flags,
 ObjectId iconbar,
 char *text
);
158

Iconbar icon class
Iconbar_GetText 10

On entry

R0 = flags
R1 = Iconbar object id
R2 = 10
R3 = pointer to buffer to return the text in (or 0)
R4 = size of buffer

On exit

R4 = the size of buffer required to hold the text (if R3 was 0)
else Buffer pointed to by R3 contains icon’s text
R4 holds number of bytes written to buffer

Use

This method is used for a text&sprite Iconbar object. It returns the text string displayed
for that object.

C veneer
extern _kernel_oserror *iconbar_get_text (unsigned int flags,
 ObjectId iconbar,
 char *buffer,
 int buff_size,
 int *nbytes
);
159

Iconbar icon methods
Iconbar_SetSprite 11

On entry

R0 = flags
R1 = Iconbar object id
R2 = 11
R3 = pointer to name of sprite to use

On exit

R1-R9 preserved

Use

This method sets the sprite which is to be used in the Iconbar object.

C veneer
extern _kernel_oserror *iconbar_set_sprite (unsigned int flags,
 ObjectId iconbar,
 char *sprite_name
);
160

Iconbar icon class
Iconbar_GetSprite 12

On entry

R0 = flags
R1 = Iconbar object id
R2 = 12
R3 = pointer to buffer to return the sprite name in (or 0)
R4 = size of buffer

On exit

R4 = holds size of buffer required for sprite name (if R3 was 0)
else Buffer pointed at by R3 holds sprite name
R4 holds number of bytes written to buffer

Use

This method returns the name of the sprite used for the Iconbar object.

C veneer
extern _kernel_oserror *iconbar_get_sprite (unsigned int flags,
 ObjectId iconbar,
 char *buffer,
 int buff_len,
 int *nbytes
);
161

Iconbar icon events
Iconbar icon events

Iconbar_Clicked (0x82900)

Block

+ 8 0x82900
+ 12 flags

bits 0, 1 and 2 show how the activation was done:
bit 0 set means Adjust was clicked
bit 1 reserved
bit 2 set means Select was clicked

Use

This Toolbox event is raised when the user clicks Select or Adjust on an Iconbar object,
and the client application has not associated any other Toolbox event with this event.

C data type
typedef struct
{
 ToolboxEventHeader hdr;
} IconbarClickedEvent;

Iconbar_SelectAboutToBeShown (0x82901)

Block

+ 8 0x82901
+ 16 object id of the object which will be shown

(note that the ‘self’ field in the id block will be for the Iconbar object).

Use

This Toolbox event is raised just before Toolbox_ShowObject is called for the object to
be shown on a Select click. Note that on receipt of this event, the client could call
Iconbar_SetShow to give the object id of a different object to be shown.

C data type
typedef struct
{
 ToolboxEventHeader hdr;
 ObjectId id;
} IconbarAboutToBeShownEvent;
162

Iconbar icon class
Iconbar_AdjustAboutToBeShown (0x82902)

Block

+ 8 0x82902
+ 16 object id of the object which will be shown

(note that the ‘self’ field in the id block will be for the Iconbar object).

Use

This Toolbox event is raised just before Toolbox_ShowObject is called for the object to
be shown on a Adjust click. Note that on receipt of this event, the client could call
Iconbar_SetShow to give the object id of a different object to be shown.

Note: This event and the Iconbar_SelectAboutToBeShown event both share the same
typedef.

C data type
typedef struct
{
 ToolboxEventHeader hdr;
 ObjectId id;
} IconbarAboutToBeShownEvent;

Iconbar icon templates
The layout of an Iconbar icon template is shown below. Fields which have types
MsgReference and StringReference are those which will require relocation when they
are loaded from a resource file. If the template is being constructed in memory, then
these fields should be real pointers (i.e. they do not require relocation).

For more details on relocation, see appendix Resource File Formats on page 499.

Field Size in bytes Type
flags 4 word
position 4 word
priority 4 word
sprite_name 4 StringReference
max_sprite_name 4 word
text 4 MsgReference
max_text_len 4 word
menu 4 StringReference
select_event 4 word
adjust_event 4 word
163

Iconbar icon Wimp event handling
Iconbar icon Wimp event handling
Certain Wimp events for an Iconbar icon are fielded by the Iconbar class, and either
acted upon for the client, or result in a Toolbox event being raised. Such events are listed
below:

select_show 4 StringReference
adjust_show 4 StringReference
help_message 4 MsgReference
max_help 4 word

Wimp event Action
Mouse Click If the Menu button has been pressed, and there is a Menu

object attached to this Iconbar icon, then the Menu is shown
using Toolbox_ShowObject.
If the Select or Adjust buttons have been pressed and this
Iconbar icon has a Toolbox event associated with this, then
that Toolbox event is raised, and any attached object is also
shown using Toolbox_ShowObject.

User Msg Message_HelpRequest (for this Iconbar icon)
If a help message is attached to this Iconbar icon, then a
reply is sent on the application’s behalf.

Field Size in bytes Type
164

10 Menu class

A menu allows the user to select an item from a list of choices using the mouse

pointer.

User interface
A menu should appear on the screen either when the user clicks the Menu mouse button,
or clicks on a Pop-up menu button. The menu will disappear again when the user clicks
outside the menu or presses Escape (or the client application hides it or the user opens
another menu).

When the user clicks on a menu entry the client application will typically perform some
task. The menu will then disappear, unless the selection was made using the Adjust
button in which case it will persist on the screen.
● A menu has a title bar with black (Wimp colour 7) text on a grey (Wimp colour 2)

background.
● Menu entries which contain text are black (7) on a white (0) background; a menu

entry may alternatively contain a sprite.
● Menu entries may optionally be separated by a dotted line, to group related items.
● A menu entry may lead to further menus, or a dialogue box, in which case a

submenu arrow is displayed at the righthand edge of the entry. When a menu entry
is unavailable it is displayed as ‘shaded’ (i.e. its text is displayed in light grey).
165

Application Program Interface
Application Program Interface
When a Menu object is created, the Toolbox deals with ensuring that the colours used
for the Menu are Style Guide compliant. Each menu entry is set with a height of 44 OS
units (or 68 if it has a dotted line separator), and the width of the menu is calculated from
details of its entries on the application's behalf.

The Menu module deals with keeping the menu tree displayed when a selection is made
with Adjust.

Attributes

Menu attributes

A Menu object has the following attributes which are specified in its object template and
can be manipulated at run-time by the client application:

Attribute Description
flags word Bit Meaning

0 when set, this bit indicates that an event should be
raised when SWI Toolbox_ShowObject is called
for this Menu.

1 when set, this bit indicates that an event should be
raised when the Menu has been removed from the
screen.

menu title gives a text string which will appear in the menu's title bar
(0 means no title, an empty string means no titlebar)

max title length gives the maximum length in bytes of title text which will
be used for this Menu.

help message when a HelpRequest message is received on this menu,
then this text message is sent in a HelpReply message.
Note that this help message is only sent if the menu entry
for which the request was received has not got a help
message of its own.

max help length gives the maximum length in bytes of help text which will
be used for this Menu.

show event this is a Toolbox event code which will be raised when
SWI Toolbox_ShowObject is called for this menu.
If its value is -1, then the default
Menu_AboutToBeShown event is raised. An event is
only raised if the appropriate bit is set in the menu's flags
word.
166

Menu class
Menu entry attributes

A Menu also has a list of ‘entries’. Each entry has its own component id which uniquely
identifies it within this menu. An entry has the following attributes:

hide event this is a Toolbox event code which will be raised when
this menu has been removed from the screen (either as a
result of an explicit call to SWI Toolbox_HideObject or
because the Wimp has removed the menu).
If its value is -1, then the default Menu_HasBeenHidden
event is raised. An event is only raised if the appropriate
bit is set in the menu's flags word.

Attribute Description
flags Bit Meaning

0 when set, this entry is ticked.
1 when set, this entry has a dotted line immediately

after it.
2-7 must be 0.
8 when set, this entry is faded.
9 when set, this entry is a sprite (default is a text

menu entry).
10 when set, this entry has a submenu (ie a submenu

arrow appears next to the entry).
11 when set, an event (either Menu_SubMenu or

client-specified) is raised when the user traverses
this entry's submenu arrow with the mouse pointer
(if bit 10 is set).

12 when set, if there is an object to be shown when this
entry is selected, then it will be shown with
Wimp_CreateMenu semantics. The default is to
show persistently.

component id identifies this entry uniquely within this menu.
-1 and -2 are invalid component ids

text depending on whether this is a text or sprite entry (as
indicated by bit 9 of the flags word), this is either:
● a text string which will appear in the menu entry
● the name of the sprite which will appear in the Menu

entry

Attribute Description
167

Application Program Interface
max length gives the maximum length in bytes of entry text or sprite
name

click show the name of the template for an object to show, when the
user clicks on this entry.
0 means there is no object to be shown

submenu show the name of the template for an object to show, when the
user moves the pointer over the submenu arrow (if the
entry has a submenu).
0 means there is no object to be shown

submenu event a Toolbox event code which will be raised when the user
moves the pointer over the submenu arrow (if the entry
has a submenu and bit 11 of the flags word is set)
if its value is 0 then the default Menu_Submenu event is
raised

click event a Toolbox event code which will be raised when the user
clicks on this entry
if its value is 0 then the default Menu_Selection event is
raised

help message when a HelpRequest message is received on this entry of
this menu then this text string is sent in a HelpReply
message
0 means that the help message for the menu will be sent (if
such exists)

max help length gives the maximum length in bytes of the entry’s help
message

Attribute Description
168

Menu class
Manipulating a Menu object
Since there can only be one Menu visible on the screen at any one time, it is usual for the
client application to mark Menu templates as ‘shared’ so that only one copy will exist in
memory. The application receives a Menu_AboutToBeShown Toolbox event just before
the Menu is shown, to allow it to set any attributes like ticks and fades, which may differ
depending on where the Menu is being shown; for example, in a multi-document editor
a single menu can be maintained for all document Windows; when the Toolbox receives
a Menu button click event from the Wimp, it will show the Menu associated with the
Window over which the mouse click occurred; when the application receives the
Menu_AboutToBeShown Toolbox event, it can tick and fade entries in the Menu
depending on the state of the document Window.

Another alternative for supporting multi-document editors is to create a Menu object for
each Window object. In this case it will not be necessary to use the
Menu_AboutToBeShown Toolbox event to make last minute changes to the menu, since
these can be made on a per-window basis as the changes occur. Whether this method is
used, or the above ‘shared’ scheme is really one of personal taste, and memory usage.

It is possible to associate a client handle with a Menu using the
Toolbox_SetClientHandle method, but normally an application will simply wish to use
the client handle of the object to which a Menu is attached (via the parent_id or the
ancestor_id in the id block).

Creating and deleting a menu

A Menu object is created using SWI Toolbox_CreateObject.

When a Menu object is created, the following attached objects (see page 11) are also
created for each menu entry for which they are defined:
● submenu show
● click show.

The Menu entry attributes table on page 167 describes these objects.

Attached objects are also created when a menu entry is added to the Menu, if they are
referenced by the menu entry (and deleted when the menu entry is removed).

A Menu object is deleted using SWI Toolbox_DeleteObject. If it has any attached
objects these are also deleted, unless the non-recursive bit is set for this SWI.

Note: Menus must not be mutually recursive (i.e. in a menu hierarchy, a menu entry may
not have, as a submenu, a menu further up the hierarchy). The menu module does not
check for such a case, so it is the client application’s responsibility to check for
correctness.
169

Application Program Interface
Showing a menu

When a menu is displayed on the screen using SWI Toolbox_ShowObject it has the
following behaviour:

The client application should not need to make this call, since it is made automatically
by the Window and Iconbar modules for objects which have a Menu attached to
them.The Window module will display the menu in its default place when the Menu
button is clicked, or in the case of a pop-up menu directly to the right of the pop-up icon;
the Iconbar module displays the menu with its base 96 OS units from the bottom of the
screen, and 64 OS units to the right of the mouse pointer.

Adding and removing menu entries

Normally the set of entries in a Menu will be specified in the application’s resource file.
If, however, the application wishes to add and remove Menu entries dynamically at
run-time, this is done using the Menu_AddEntry and Menu_RemoveEntry methods.

Changing a Menu entry

A given Menu entry can either contain text or a sprite. Normally these will be fixed
when the menu is created, but they can be set and read dynamically using the
Menu_SetEntryText, Menu_GetEntryText, Menu_SetEntrySprite, and
Menu_GetEntrySprite methods.

Ticking or fading a Menu entry

Each Menu entry can be optionally ‘ticked’ (i.e. have a tick displayed to the left of it),
and/or ‘faded’ (i.e. displayed in light grey, and unselectable).

A given Menu entry can be ticked/unticked, faded/unfaded using the
Menu_SetTick/Menu_SetFade methods.

The client can determine the state of a particular entry using the
Menu_GetTick/Menu_GetFade methods.

Show type Position
0 (default) 64 OS units to the left of the mouse pointer
1 (full spec) R3 + 0 gives x coordinate of top-left corner of Menu

R3 + 4 gives y coordinate of top-left corner of Menu
2 (topleft) R3 + 0 gives x coordinate of top-left corner of Menu

R3 + 4 gives y coordinate of top-left corner of Menu
170

Menu class
Attaching a submenu dynamically

Normally an application’s Menu structure is fully specified statically in its resource file,
but occasionally an application may wish to build a submenu at run-time, and attach it at
a particular point in the Menu tree.

This is achieved by creating the submenu object, and using the
Menu_SetSubMenuShow method already mentioned (and detailed on page 181).

Dealing with Menu hits

Each Menu entry can have a specified Toolbox event which will be raised when a menu
selection is made on that entry (i.e. the Wimp has returned a Menu Selection event to the
application).

Normally this Toolbox event is specified in the client application’s resource file, but it
can be read and set dynamically using the Menu_SetClickEvent and
Menu_GetClickEvent methods.

The client can also specify the name of a template of an object which should be shown
when the menu hit happens. The main use for this is to supply the name of the template
of a persistent dialogue box, on a Menu entry with an ellipsis (...). The object is only
shown after the ‘Menu hit event’ has been delivered to the client. The show type value
passed in R2 to Toolbox_ShowObject will be 0 (default place).

It is possible to specify at run-time the object id of an object which should be shown
when a Menu hit happens, using the Menu_SetClickShow method (and the object id can
be read using the Menu_GetClickShow method).

If neither of the above is specified, then the Toolbox raises the Menu_Selection Toolbox
event, as described on page 198. This Toolbox event reports which entry was selected.

Dealing with Adjust clicks on a Menu

When the user of the client application clicks Adjust on a Menu entry or on a Gadget in
a dialogue box which has been opened from a Menu, it is conventional for the Menu tree
to remain on the screen.

The Toolbox handles this automatically on behalf of the application, so the client does
not have to look for Adjust clicks; the client’s code just responds to the Toolbox events
raised by the user’s interaction with the Menu.

Note that the Toolbox ‘re-shows’ the Menu when the application next calls SWI
Wimp_Poll, after the Menu selection, so any ticking/fading etc of Menu entries, must be
done in response to the Toolbox event which was raised when a menu selection was
made.
171

Application Program Interface
Dealing with traversal of a submenu arrow

Each Menu entry can have a specified Toolbox event which will be raised when the user
moves the mouse pointer over the submenu arrow, which is displayed on all Menu
entries which have a submenu.

Normally this Toolbox event is specified in the client application’s resource file, but it
can be read and set dynamically using the Menu_SetSubMenuEvent and
Menu_GetSubMenuEvent methods.

The client can also specify the name of a template of an object which should be shown
when the user moves the mouse pointer over the submenu arrow. The main use for this
is to supply the name of the template of a transient dialogue box or a submenu. The
object is only shown after the Menu_SubMenu event has been delivered to the client.

It is possible to specify at run-time the object id of an object which should be shown
when the user moves the pointer over the submenu arrow, using the
Menu_SetSubMenuShow method (and the object id can be read using the
Menu_GetSubMenuShow method).

If neither of the above is specified, then the Toolbox raises the Menu_SubMenu Toolbox
event. This Toolbox event reports the entry over which the mouse pointer has moved.

Interactive help on Menus

Each Menu has an optional Help Message associated with it. When the client application
receives a HelpRequest for the Menu, the Toolbox replies automatically with this Help
Message.

Normally the Menu’s Help Message will be specified in the application’s resource file,
however the client can set and read the message dynamically using the
Menu_SetHelpMessage/Menu_GetHelpMessage methods.

Each Menu entry can also have a Help Message. If no such message is specified, then
the Toolbox will return the Menu’s Help Message instead. Normally, again, an entry’s
Help Message will have been specified in the resource file, but it can be read and set
using the Menu_SetEntryHelpMessage and Menu_GetEntryHelpMessage methods
(described on page 191).
172

Menu class
Writable menu entries

Writable menu entries as seen in older applications are not supported by the Toolbox as
these are not Style Guide compliant. Instead you should use small dialogues. For
example:

Menu methods
The following methods are all invoked by calling SWI Toolbox_MiscOp with:

R0 holding a flags word
R1 being a Menu id
R2 being the method code which distinguishes this method
R3-R9 potentially holding method-specific data

Menu_SetTick 0

On entry

R0 = flags
R1 = Menu object id
R2 = 0
R3 = component id of entry
173

Menu methods
R4 = value
0 means ‘untick’
non-zero means ‘tick’

On exit

R1-R9 preserved

Use

This method affects the tick state of a Menu entry.

C veneer

extern _kernel_oserror *menu_set_tick (unsigned int flags,
 ObjectId menu,
 ComponentId entry,
 int tick
);

Menu_GetTick 1

On entry

R0 = flags
R1 = Menu object id
R2 = 0
R3 = component id of entry

On exit

R0 = tick state
non-zero means ticked
0 means unticked

Use

This method returns the tick state of a Menu entry.

C veneer
extern _kernel_oserror *menu_get_tick (unsigned int flags,
 ObjectId menu,
 ComponentId entry,
 int *ticked
);
174

Menu class
Menu_SetFade 2

On entry

R0 = flags
R1 = Menu object id
R2 = 2
R3 = component id of entry
R4 = value

0 means unfade
non-zero means fade

On exit

R1-R9 preserved

Use

This method affects the fade state of a Menu entry.

C veneer
extern _kernel_oserror *menu_set_fade (unsigned int flags,
 ObjectId menu,
 ComponentId entry,
 int fade
);
175

Menu methods
Menu_GetFade 3

On entry

R0 = flags
R1 = Menu object id
R2 = 3
R3 = component id of entry

On exit

R0 = fade state
0 means unfaded
non-zero means faded

Use

This method returns the fade state of a Menu entry.

C veneer
extern _kernel_oserror *menu_get_fade (unsigned int flags,
 ObjectId menu,
 ComponentId entry,
 int *faded
);
176

Menu class
Menu_SetEntryText 4

On entry

R0 = flags
R1 = Menu object id
R2 = 4
R3 = component id of entry
R4 = pointer to text string to use

On exit

R1-R9 preserved

Use

This method sets the text which is to be used in the named text Menu entry.

An error is returned if the entry's text buffer is not large enough to hold the supplied text.

An error is returned if this SWI is called on an entry which is a sprite.

C veneer
extern _kernel_oserror *menu_set_entry_text (unsigned int flags,
 ObjectId menu,
 ComponentId entry,
 char *text
);
177

Menu methods
Menu_GetEntryText 5

On entry

R0 = flags
R1 = Menu object id
R2 = 5
R3 = component id of entry
R4 = pointer to buffer to return the text in (or 0)
R5 = size of buffer

On exit

R5 = the size of buffer required to hold the text (if R4 was 0)
else Buffer pointed to by R4 contains entry text
R5 holds number of bytes written to buffer

Use

This method is used for a text Menu entry. It returns the text string displayed for that
entry.

C veneer
extern _kernel_oserror *menu_get_entry_text (unsigned int flags,
 ObjectId menu,
 ComponentId entry,
 char *buffer,
 int buff_size,
 int *nbytes
);
178

Menu class
Menu_SetEntrySprite 6

On entry

R0 = flags
R1 = Menu object id
R2 = 6
R3 = component id of entry
R4 = pointer to name of sprite to use

On exit

R1-R9 preserved

Use

This method sets the sprite which is to be used in the named sprite Menu entry.

An error is returned if the entry's sprite name buffer is not large enough to hold the
supplied sprite name.

An error is returned if this SWI is called on a text entry.

C veneer
extern _kernel_oserror *menu_set_entry_sprite (unsigned int flags,
 ObjectId menu,
 ComponentId entry,
 char *sprite_name
);
179

Menu methods
Menu_GetEntrySprite 7

On entry

R0 = flags
R1 = Menu object id
R2 = 7
R3 = component id of entry
R4 = pointer to buffer to return the sprite name in (or 0)
R5 = size of buffer

On exit

R5 = the size of buffer required to hold the sprite name (if R4 was 0)
else Buffer pointed to by R4 contains sprite name
R5 holds number of bytes written to buffer

Use

This method is used for a sprite Menu entry. It returns the name of the sprite displayed
for that entry.

C veneer
extern _kernel_oserror *menu_get_entry_sprite (unsigned int flags,
 ObjectId menu,
 ComponentId entry,
 char *buffer,
 int buff_size,
 int *nbytes
);
180

Menu class
Menu_SetSubMenuShow 8

On entry

R0 = flags
R1 = Menu object id
R2 = 8
R3 = component id of entry where submenu should be attached
R4 = object id of the submenu (or 0)

On exit

R1-R9 preserved

Use

This method allows the client to specify the object id of an object to show when the user
moves the pointer over the submenu arrow.

If R4 is 0, then no object should be shown.

Calling this SWI also causes the submenu to be shown or hidden as appropriate.

C veneer
extern _kernel_oserror *menu_set_sub_menu_show (unsigned int flags,
 ObjectId menu,
 ComponentId entry,
 ObjectId sub_menu
);
181

Menu methods
Menu_GetSubMenuShow 9

On entry

R0 = flags
R1 = Menu object id
R2 = 9
R3 = component id

On exit

R0 = id of object to be shown

Use

This method returns the object id of the object which will be shown when the user moves
the pointer over the submenu arrow.

C veneer
extern _kernel_oserror *menu_get_sub_menu_show (unsigned int flags,
 ObjectId menu,
 ComponentId entry,
 ObjectId *sub_menu
);
182

Menu class
Menu_SetSubMenuEvent 10

On entry

R0 = flags
R1 = Menu object id
R2 = 10
R3 = component id of entry
R4 = Toolbox event code to raise

On exit

R1-R9 preserved

Use

This method specifies a Toolbox event to be raised when the user moves the mouse over
this entry’s submenu arrow.

If R4 is 0, then a Menu_SubMenu Toolbox event will be raised instead.

Calling this SWI also causes the submenu to be shown or hidden as appropriate.

C veneer
extern _kernel_oserror *menu_set_sub_menu_event (unsigned int flags,
 ObjectId menu,
 ComponentId entry,
 int toolbox_event
);
183

Menu methods
Menu_GetSubMenuEvent 11

On entry

R0 = flags
R1 = Menu object id
R2 = 11
R3 = component id of entry

On exit

R4 = Toolbox event code

Use

This method reads the Toolbox event to be raised when the user moves the mouse over
this entry’s submenu arrow.

If no event has been specified, then 0 is returned.

C veneer
extern _kernel_oserror *menu_get_sub_menu_event (unsigned int flags,
 ObjectId menu,
 ComponentId entry,
 int *toolbox_event
);
184

Menu class
Menu_SetClickShow 12

On entry

R0 = flags
R1 = Menu object id
R2 = 12
R3 = component id of entry
R4 = object id to show
R5 = show flags: bit 0

if clear show persistently
if set show transiently

On exit

R1-R9 preserved

Use

This method allows the client to specify the object id of an object to show when the user
selects this Menu entry. By setting bit 0 of R5 it is possible to control whether the show
is persistent or not.

If R4 is 0, then no object should be shown.

C veneer
extern _kernel_oserror *menu_set_click_show (unsigned int flags,
 ObjectId menu,
 ComponentId entry,
 ObjectId object,
 int show_flags
);
185

Menu methods
Menu_GetClickShow 13

On entry

R0 = flags
R1 = Menu object id
R2 = 13
R3 = component id

On exit

R0 = id of object to be shown
R1 = show flags

Use

This method returns the object id of the object which will be shown when the user
selects this Menu entry. If bit 0 of R1 is set on exit, it means that the object will be
shown transiently.

If no object has been specified, then 0 is returned in R0.

C veneer
extern _kernel_oserror *menu_get_click_show (unsigned int flags,
 ObjectId menu,
 ComponentId entry,
 ObjectId *object,
 int *show_flags
);
186

Menu class
Menu_SetClickEvent 14

On entry

R0 = flags
R1 = Menu object id
R2 = 14
R3 = component id of entry
R4 = Toolbox event code to raise

On exit

R1-R9 preserved

Use

This method specifies a Toolbox event to be raised when the user selects the given Menu
entry.

If R4 is 0, then a Menu_Selection Toolbox event will be raised instead.

C veneer
extern _kernel_oserror *menu_set_click_event (unsigned int flags,
 ObjectId menu,
 ComponentId entry,
 int toolbox_event
);
187

Menu methods
Menu_GetClickEvent 15

On entry

R0 = flags
R1 = Menu object id
R2 = 15
R3 = component id of entry

On exit

R4 = Toolbox event code

Use

This method reads the Toolbox event to be raised when the user selects the given Menu
entry.

If no event has been specified, then 0 is returned.

C veneer
extern _kernel_oserror *menu_get_click_event (unsigned int flags,
 ObjectId menu,
 ComponentId entry,
 int *toolbox_event
);
188

Menu class
Menu_SetHelpMessage 16

On entry

R0 = flags
R1 = Menu object id
R2 = 16
R3 = pointer to message text

On exit

R1-R9 preserved

Use

This method is used to set the help message which will be returned when a Help Request
message is received for this Menu object. The Toolbox handles the reply message for
you.

If R3 is 0, then the Help Message for this Menu is detached.

C veneer
extern _kernel_oserror *menu_set_help_message (unsigned int flags,
 ObjectId menu,
 char *help_message
);
189

Menu methods
Menu_GetHelpMessage 17

On entry

R1 = Menu object id
R2 = 17
R3 = pointer to buffer
R4 = size of buffer to hold message text

On exit

R4 = size of buffer required for message text (if R3 was 0)
else Buffer pointed at by R3 holds message text
R4 holds number of bytes written to buffer

Use

This method is used to read the help message which will be returned when a Help
Request message is received for this Menu object.

C veneer
extern _kernel_oserror *menu_get_help_message (unsigned int flags,
 ObjectId menu,
 char *buffer,
 int buff_size,
 int *nbytes
);
190

Menu class
Menu_SetEntryHelpMessage 18

On entry

R0 = flags
R1 = Menu object id
R2 = 18
R3 = component id of entry
R4 = pointer to message text

On exit

R1-R9 preserved

Use

This method is used to set the help message which will be returned when a Help Request
message is received for this Menu entry. The Toolbox handles the reply message for
you.

If R4 is 0, then the Help Message for this Menu entry is detached.

C veneer
extern _kernel_oserror *menu_set_entry_help_message (unsigned int flags,
 ObjectId menu,
 ComponentId entry,
 char *help_message
);
191

Menu methods
Menu_GetEntryHelpMessage 19

On entry

R0 = flags
R1 = Menu object id
R2 = 19
R3 = component id of entry
R4 = pointer to buffer
R5 = size of buffer to hold message text

On exit

R5 = size of buffer required for message text (if R4 was 0)
else Buffer pointed at by R4 holds message text
R5 holds number of bytes written to buffer

Use

This method is used to read the help message which will be returned when a Help
Request message is received for this Menu object.

C veneer
extern _kernel_oserror *menu_get_entry_help_message (unsigned int flags,
 ObjectId menu,
 ComponentId entry,
 char *buffer,
 int buff_size,
 int *nbytes
);
192

Menu class
Menu_AddEntry 20

On entry

R0 = flags (bit 0 set means add the entry before the specified entry)
R1 = Menu object id
R2 = 20
R3 = component id of entry after/before which to add this entry

(or -1 to mean at the beginning, -2 to mean at the end)
R4 = pointer to buffer containing a description of the new entry

On exit

R0 = component id of added entry
R1-R9 preserved

Use

This method adds a new Menu entry at the specified place in the Menu. The description
of the Menu entry should have a format as specified under the Menu Templates section.

By default the entry is added after the specified entry whose id is passed in R3, but the
client can specify that it is added before that entry, by setting bit 0 of the flags word.

If the component id in the template of the Menu entry was specified as -1, then the
Toolbox uses the lowest numbered component id available for this Menu.

C veneer
extern _kernel_oserror *menu_add_entry (unsigned int flags,
 ObjectId menu,
 ComponentId at_entry,
 char *entry_description,
 ComponentId *new_entry
);
193

Menu methods
Menu_RemoveEntry 21

On entry

R0 = flags
R1 = Menu object id
R2 = 21
R3 = component id of the entry

On exit

R1-R9 preserved

Use

This method removes a Menu entry

C veneer
extern _kernel_oserror *menu_remove_entry (unsigned int flags,
 ObjectId menu,
 ComponentId entry
);

Menu_GetHeight 22

On entry

R0 = flags
R1 = Menu object id
R2 = 22

On exit

R0 = height of menu work area in OS Units
R1-R9 preserved

Use

This method returns the height of the work area of the given Menu (in OS Units). It takes
into account whether items in the Menu have dashed line separators. This can be used to
accurately position the Menu in a call to Toolbox_ShowObject.

C veneer
extern _kernel_oserror *menu_get_height (unsigned int flags,
 ObjectId menu,
 int *height
);
194

Menu class
Menu_GetWidth 23

On entry

R0 = flags
R1 = Menu object id
R2 = 23

On exit

R0 = width of menu work area in OS Units
R1-R9 preserved

Use

This method returns the width of the work area of the given Menu (in OS Units).

C veneer
extern _kernel_oserror *menu_get_width (unsigned int flags,
 ObjectId menu,
 int *width
);

Menu_SetTitle 24

On entry

R0 = flags
R1 = Menu object id
R2 = 24
R3 = pointer to text string to use

On exit

R1-R9 preserved

Use

This method sets the text which is to be used in the title bar of the given Menu. Note that
this has no immediate effect if the Menu is currently being displayed.

C veneer
extern _kernel_oserror *menu_set_title (unsigned int flags,
 ObjectId menu,
 char *title
);
195

Menu methods
Menu_GetTitle 25

On entry

R0 = flags
R1 = Menu object id
R2 = 25
R3 = pointer to buffer to return the text in (or 0)
R4 = size of buffer

On exit

R4 = the size of buffer required to hold the text (if R3 was 0)
else Buffer pointed to by R3 contains title text
R4 holds number of bytes written to buffer

Use

This method returns the text string used in a Menu’s title bar.

C veneer
extern _kernel_oserror *menu_get_title (unsigned int flags,
 ObjectId menu,
 char *buffer,
 int buff_size,
 int *nbytes
);
196

Menu class
Menu events

Menu_AboutToBeShown (0x828c0)

Block

+ 8 0x828c0 (or client specified event – see Menu Templates on page 199)
+ 12 flags (as passed in to Toolbox_ShowObject)
+ 16 value as passed in R2 to ToolBox_ShowObject
+ 20... block as passed in R3 to ToolBox_ShowObject

Use

This Toolbox event is raised due to a call to SWI Toolbox_ShowObject on a Menu
object which has bit 0 of its flags word set. It gives the application the opportunity to
tick, fade or change the text/sprite of any Menu entries before the Menu actually appears
on the screen.

This is useful where a shared Menu is being used by many Window objects, each of
which has a state which is reflected in the Menu state.

C data type
typedef struct
{
 ToolboxEventHeader hdr;
 int show_type;
 TopLeft pos;
} MenuAboutToBeShownEvent;

Menu_HasBeenHidden (0x828c1)

Block

+ 8 0x828c1 (or client specified event – see Menu Templates on page 199)

Use

This Toolbox event is raised by the Toolbox when Toolbox_HideObject is called on a
Menu which has the appropriate bit set in its template flags word. It enables a client
application to clear up after a menu has been closed. It is also raised when clicking
outside a menu or hitting Escape.

C data type
typedef struct
{
 ToolboxEventHeader hdr;
} MenuHasBeenHiddenEvent;
197

Menu events
Menu_SubMenu (0x828c2)

Block

+ 8 0x828c2
+ 16 x coordinate where the submenu will be shown
+ 20 y coordinate where the submenu will be shown

Use

This Toolbox event is raised when the user moves the mouse over a Menu entry’s
submenu arrow, and the client application has not associated any other Toolbox event
with this event. The event is only delivered if the appropriate bit is set in the menu
entry’s flags word.

This Toolbox event is raised by the Menu class.

C data type
typedef struct
{
 ToolboxEventHeader hdr;
 TopLeft pos;
} MenuSubMenuEvent;

Menu_Selection (0x828c3)

Block:

+ 8 0x828c3

Use

This Toolbox event is raised when the user makes a selection on a Menu object, and the
client application has not associated any other Toolbox event with this event.

This Toolbox event is raised by the Menu class.

C data type
typedef struct
{
 ToolboxEventHeader hdr;
} MenuSelectionEvent;
198

Menu class
Menu Templates
The layout of a Menu template is shown below. Fields which have types MsgReference
and StringReference are those which will require relocation when they are loaded from
a resource file. If the template is being constructed in memory, then these fields should
be real pointers (i.e. they do not require relocation).

The current version for Menu templates is 102.

For more details on relocation, see appendix Resource File Formats on page 499.

Followed by a list of menu entries, where each entry is:

Field Size in bytes Type
flags 4 word
title 4 MsgReference
max_title 4 word
help_message 4 MsgReference
max_help 4 word
show_event 4 word
hide_event 4 word
num_entries 4 word

Field Size in bytes Type
flags 4 word
component_id 4 word
text 4 MsgReference or StringReference
max_text 4 word
click_show 4 StringReference
submenu_show 4 StringReference
submenu_event 4 word
click_event 4 word
help_message 4 MsgReference
max_entry_help 4 word
199

Menu Wimp event handling
Menu Wimp event handling
The Menu class responds to certain Wimp events and takes the actions as described
below:

Wimp event Action
Menu Selection If there is a click event associated with the given Menu

entry, then that Toolbox event is raised;
if there is an object to be shown for this entry then show
it;
if neither of the above then the Menu_Selection
Toolbox event is raised.

If Adjust is held down, then the currently open Menu is
re-opened in the same place.

Mouse Click (on a dialogue box attached to the Menu)
If Adjust is held down, then the currently open Menu is
re-opened in the same place.

User Msg Message_HelpRequest
(while the pointer is over a Menu object) If a help
message is attached to this Menu or Menu entry, then a
reply is sent on the application’s behalf.
Message_MenuWarning
If a submenu event is associated with the given Menu
entry, then this Toolbox event is raised;

if a submenu object has been specified for this Menu
entry, then it is shown by the Toolbox.
if neither of the above, then a Menu_SubMenu Toolbox
event is raised.

Message_MenusDeleted
The Menu which was being shown is marked as hidden
(as if Toolbox_HideObject had been called).
200

11 Print Dialogue box class

A Print dialogue object is used to allow the user to set a number of print options (e.g.

number of pages, number of copies etc), and then to request that a document be printed
given these options.

User interface
When a Print dialogue is created, it has the following components:

● a set of buttons and writable fields giving a page range to print (optional)
● a number range giving the number of copies to print (optional)
● a radio group consisting of two buttons, indicating whether the printing is to be

done Upright or Sideways (optional).
● an action button Save which saves the current print options (optional)
● an action button Set Up... which brings up a dialogue box allowing further print

options to be set (optional)
● an action button Cancel which closes the dialogue box without printing
● a default action button Print which causes a print operation to take place using

these print options
● an option button Draft indicating that draft standard printing is to be used
● a number range giving a percentage scale factor to apply during printing (optional).

Pressing Escape cancels the dialogue (as well as clicking on the Cancel button).

The title bar of the dialogue box displays the name of the currently selected printer or
‘Unknown printer’ if there is no such printer.

Print button

Draft button

number ranges

writable fields

radio groups
201

Application Program Interface
Application Program Interface
All processing of the dialogue box is handled by the Print module, and the client is
informed of any user actions via Toolbox events (PrintDbox_Print, PrintDbox_SetUp,
PrintDbox_DialogueCompleted and PrintDbox_Save).

Attributes
A Print Dialogue object has the following attributes which are specified in its object
template and can be manipulated at run-time by the client application:

Attributes Description
flags word Bit Meaning

0 when set, this bit indicates that a
PrintDbox_AboutToBeShown event should be raised
when SWI Toolbox_ShowObject is called for this
object.

1 when set, this bit indicates that a
PrintDbox_DialogueCompleted event should be raised
when the Print Dialogue object has been removed from
the screen.

2 when set, this bit indicates generate
PrintDbox_SetUpAboutToBeShown event before the
underlying SetUp object is shown

3 when set, dialogue box has the All/From/To Page
Range options

4 when set, dialogue box has the Copies writable field
5 when set, dialogue box has the Scale writable field
6 when set, dialogue box has the Orientation options (i.e.

Upright and Sideways)
7 when set, dialogue box has Save action button
8 when set, dialogue box has Set Up ... action button
9 when set, dialogue box has Draft option button
10 when set, dialogue box has From/to set from

All/From/to
11 when set, dialogue box has Sideways (and not

Upright) selected
12 when set, dialogue box has Draft selected

from initial value to put in the From writable field
to initial value to put in the to writable field
copies initial value to put in the Copies number range
202

Print Dialogue box class
Manipulating a Print Dialogue object

Creating and deleting a Print Dialogue object

A Print Dialogue object is created using SWI Toolbox_CreateObject.

When a Print Dialogue object is created, the following attached object (see page 11) will
be created (if specified):
● further options.

A Print Dialogue object is deleted using SWI Toolbox_DeleteObject. If it has any
attached objects (see above), these are also deleted, unless the non-recursive bit is set for
this SWI.

The setting of the non-recursive delete bit means that the SetUp dialogue box will not be
deleted.

Showing a Print Dialogue object

When a Print Dialogue object is displayed on the screen using SWI
Toolbox_ShowObject it has the following behaviour:

scale initial value to put in the Scale number range
further options name of the template for a Window object to be displayed

when Setup... is clicked
window name of the template for an alternative window to use instead

of the default one (0 means use default)

Show type Position
0 (default) the underlying window is shown at the last place shown on

the screen, or the coordinates given in its template, if it has
not already been shown

1 (full spec) R3 + 0 visible area minimum x coordinate
R3 + 4 visible area minimum y coordinate
R3 + 8 visible area maximum x coordinate
R3 + 12 visible area maximum y coordinate
R3 + 16 scroll x offset relative to work area
R3 + 20 scroll y offset relative to work area
R3 + 24 Wimp window handle of window to open behind

-1 means top of stack
-2 means bottom of stack
-3 means the window behind the Wimp’s

backwindow

Attributes Description
203

Application Program Interface
Before the Print Dialogue box is shown

When the client (or the Toolbox) calls Toolbox_ShowObject on a Print Dialogue object,
a PrintDbox_AboutToBeShown Toolbox event is raised before the dialogue box
becomes visible on the screen (if the appropriate flags bit is set).

This allows the client to set up the contents of the dialogue box appropriately.

Getting and setting printing options

A Print dialogue box contains many fields which are either options or writable fields.
These are:
● page range
● number of copies
● scale factor
● orientation
● draft.

Each of these components can be read and set dynamically using the following methods:

PrintDbox_SetPageRangePrintDbox_GetPageRange
PrintDbox_SetCopiesPrintDbox_GetCopies
PrintDbox_SetScalePrintDbox_GetScale
PrintDbox_SetOrientationPrintDbox_GetOrientation
PrintDbox_SetDraftPrintDbox_GetDraft

Responding to action button clicks

When the user clicks a particular action button (or presses Return or Escape), the client
receives one of the following Toolbox events:
● PrintDbox_Save if Save has been clicked.
● PrintDbox_Print if Print has been clicked or Return has been pressed.
● PrintDbox_SetUp if Set Up... has been clicked and there is no specified Window to

be shown.

Getting the Print Dialogue’s title

The string appearing in the Print Dialogue’s title bar is the currently selected printer (or
‘unknown printer’ if there is no such printer). This string can be read using the
PrintDbox_GetTitle method.

2 (topleft) R3 + 0 visible area minimum x coordinate
R3 + 4 visible area minimum y coordinate

Show type Position
204

Print Dialogue box class
If the Print Dialogue is persistent, and the currently selected Printer is changed, then the
Title Bar will change to reflect this.

Getting the id of the underlying Window object

The object id of the Window used to implement a Print Dialogue can be obtained using
the PrintDbox_GetWindowID method.

The SetUp Window

It is possible to specify the name of a template to be used for showing an object when the
SetUp... button is pressed. This object is shown in its default place persistently.

Print Dialogue Methods
The following methods are all invoked by calling SWI Toolbox_ObjectMiscOp with:

R0 holding a flags word
R1 being a Print Dialogue object id
R2 being the method code which distinguishes this method
R3-R9 potentially holding method-specific data

PrintDbox_GetWindowID 0

On entry

R0 = flags
R1 = Print Dbox object id
R2 = 0

On exit

R0 = Window object id for this Print object

Use

This method returns the id of the underlying Window object used to implement this Print
object.

C veneer
extern _kernel_oserror *printdbox_get_window_id (unsigned int flags,
 ObjectId printdbox,
 ObjectId *window
);
205

Print Dialogue Methods
PrintDbox_SetPageRange 1

On entry

R0 = flags
R1 = Print Dbox object id
R2 = 1
R3 = start of page range
R4 = end of page range

On exit

R1-R9 preserved

Use

This method is used to set the page range for a Print Dialogue.
A ‘start’ value of -1 means ‘All’.

C veneer
extern _kernel_oserror *printdbox_set_page_range (unsigned int flags,
 ObjectId printdbox,
 int start,
 int end
);

PrintDbox_GetPageRange 2

On entry

R0 = flags
R1 = Print Dbox object id
R2 = 2

On exit

R0 = start of page range (a ‘start’ value of -1 means ‘All’)
R1 = end of page range

Use

This method is used to return the page range for a Print Dialogue.

C veneer
extern _kernel_oserror *printdbox_get_page_range (unsigned int flags,
 ObjectId printdbox,
 int *start,
 int *end
);
206

Print Dialogue box class
PrintDbox_SetCopies 3

On entry

R0 = flags
R1 = Print Dbox object id
R2 = 3
R3 = number of copies

On exit

R1-R9 preserved

Use

This method is used to set the number of copies field for a Print Dialogue.

C veneer
extern _kernel_oserror *printdbox_set_copies (unsigned int flags,
 ObjectId printdbox,
 int copies
);

PrintDbox_GetCopies 4

On entry

R0 = flags
R1 = Print Dbox object id
R2 = 4

On exit

R0 = number of copies to be printed

Use

This method returns the value of the Copies field for a Print Dialogue.

C veneer
extern _kernel_oserror *printdbox_get_copies (unsigned int flags,
 ObjectId printdbox,
 int *copies
);
207

Print Dialogue Methods
PrintDbox_SetScale 5

On entry

R0 = flags
R1 = Print Dbox object id
R2 = 5
R3 = percentage value to scale by

On exit

R1-R9 preserved

Use

This method is used to set the scale factor for a Print Dialogue.

C veneer
extern _kernel_oserror *printdbox_set_scale (unsigned int flags,
 ObjectId printdbox,
 int scale_factor
);

PrintDbox_GetScale 6

On entry

R0 = flags
R1 = Print Dbox object id
R2 = 6

On exit

R0 = percentage scale factor

Use

This method returns the value of the scale factor for a Print Dialogue.

C veneer
extern _kernel_oserror *printdbox_get_scale (unsigned int flags,
 ObjectId printdbox,
 int *scale_factor
);
208

Print Dialogue box class
PrintDbox_SetOrientation 7

On entry

R0 = flags
R1 = Print Dbox object id
R2 = 7
R3 = non-zero means Sideways, 0 means Upright

On exit

R1-R9 preserved

Use

This method is used to set the orientation for a Print Dialogue.

C veneer
extern _kernel_oserror *printdbox_set_orientation (unsigned int flags,
 ObjectId printdbox,
 int orientation
);

PrintDbox_GetOrientation 8

On entry

R0 = flags
R1 = Print Dbox object id
R2 = 8

On exit

R0 = orientation non-zero means Sideways, 0 means Upright

Use

This method returns the orientation for a Print Dialogue.

C veneer
extern _kernel_oserror *printdbox_get_orientation (unsigned int flags,
 ObjectId printdbox,
 int *orientation
);
209

Print Dialogue Methods
PrintDbox_GetTitle 9

On entry

R0 = flags
R1 = Print Dbox object id
R2 = 9
R3 = pointer to buffer to hold title string
R4 = size of buffer to hold title string

On exit

R4 = size of buffer required to hold title string (if R3 was 0)
else buffer pointed at by R3 holds title string
R4 holds number of bytes written to buffer

Use

This method returns the current string used in a Print object’s title bar.

C veneer
extern _kernel_oserror *printdbox_get_title (unsigned int flags,
 ObjectId printdbox,
 char *buffer,
 int buff_size,
 int *nbytes
);
210

Print Dialogue box class
PrintDbox_SetDraft 10

On entry

R0 = flags
R1 = Print Dbox object id
R2 = 10
R3 = non-zero means Draft, 0 means ‘non-draft’

On exit

R1-R9 preserved

Use

This method is used to set whether draft printing is used for a Print Dialogue.

C veneer
extern _kernel_oserror *printdbox_set_draft (unsigned int flags,
 ObjectId printdbox,
 int draft
);

PrintDbox_GetDraft 11

On entry

R0 = flags
R1 = Print Dbox object id
R2 = 11

On exit

R0 = draft non-zero means Draft, 0 means ‘non-draft’

Use

This method returns whether draft printing is used for a Print Dialogue.

C veneer
extern _kernel_oserror *printdbox_get_draft (unsigned int flags,
 ObjectId printdbox,
 int *draft
);
211

Print Dialogue events
Print Dialogue events
The Print module generates the following Toolbox events:

PrintDbox_AboutToBeShown (0x82b00)

Block

+ 8 0x82b00
+ 12 flags (as passed in to Toolbox_ShowObject)
+ 16 value which will be passed in R2 to ToolBox_ShowObject
+ 20... block which will be passed in R3 to ToolBox_ShowObject for the

underlying dialogue box

Use

This Toolbox event is raised just before the Print module is going to show its underlying
Window object.

C data type
typedef struct
{
 ToolboxEventHeader hdr;
 int show_type;
 union
 {
 TopLeft pos;
 WindowShowObjectBlock full;
 } info;
} PrintDboxAboutToBeShownEvent;
212

Print Dialogue box class
PrintDbox_DialogueCompleted (0x82b01)

Block

+ 8 0x82b01
+ 12 flags

Use

This Toolbox event is raised after the Print object has been hidden, either by a Cancel
click, or after a successful print, or by the user clicking outside the dialogue box (if it is
transient) or pressing Escape. It allows the client to tidy up its own state associated with
this dialogue.

C data type
typedef struct
{
 ToolboxEventHeader hdr;
} PrintDboxDialogueCompletedEvent;
213

Print Dialogue events
PrintDbox_SetUpAboutToBeShown (0x82b02)

Block

+ 8 0x82b02
+ 16 object id of the object about to be shown

(note that the ‘self’ id in the id block will be for the Print Dialogue object,
not the object which will be shown)

+ 20 value which will be passed in R2 to ToolBox_ShowObject
+ 24... block which will be passed in R3 to ToolBox_ShowObject for the

underlying dialogue box

Use

This Toolbox event is raised just before the Print module is going to show its underlying
Window object.

C data type
typedef struct
{
 ToolboxEventHeader hdr;
 ObjectId object_id;
 int show_type;
 union
 {
 TopLeft pos;
 WindowShowObjectBlock full;
 } info;
} PrintDboxSetUpAboutToBeShownEvent;
214

Print Dialogue box class
PrintDbox_Save (0x82b03)

Block

+ 8 0x82b03
+ 12 flags

bit 0 set means print Sideways (default is Upright)
bit 1 set means print Draft (default is non-draft)

+ 16 page range start (-1 means All)
+ 20 page range end
+ 24 number of copies
+ 28 value to scale by (a percentage)

Use

This Toolbox event is raised when the user clicks on the Save button. The client should
save any options associated with this Print Dialogue (usually in a document which is
being edited).

C data type
typedef struct
{
 ToolboxEventHeader hdr;
 int start_page;
 int finish_page;
 int copies;
 int scale_factor;
} PrintDboxSaveEvent;

PrintDbox_SetUp (0x82b04)

Block

+ 8 0x82b04

Use

This Toolbox event is raised when the user clicks on the Set Up... button, if there is no
dialogue box associated with this button.

C data type
typedef struct
{
 ToolboxEventHeader hdr;
} PrintDboxSetUpEvent;
215

Print Dialogue events
PrintDbox_Print (0x82b05)

Block

+ 8 0x82b05
+ 12 flags

bit 0 set means print Sideways (default is Upright)
bit 1 set means print Draft (default is non-draft)

+ 16 page range start (-1 means All)
+ 20 page range end
+ 24 number of copies
+ 28 value to scale by (a percentage)

Use

This Toolbox event is raised when the user clicks on the Print button or presses Return.

C data type
typedef struct
{
 ToolboxEventHeader hdr;
 int start_page;
 int finish_page;
 int copies;
 int scale_factor;
} PrintDboxPrintEvent;
216

Print Dialogue box class
Print Dialogue templates
The layout of a Print template is shown below. Fields which have types MsgReference
and StringReference are those which will require relocation when they are loaded from
a resource file. If the template is being constructed in memory, then these fields should
be real pointers (i.e. they do not require relocation).

For more details on relocation, see appendix Resource File Formats on page 499.

Underlying window template
The Window object used to implement a Print dialogue, has the following
characteristics. These must be reproduced if the Window is replaced by a
client-specified alternative Window template:

Title bar must be indirected.

Gadgets

Component ids are derived by adding to 0x82b000.

Field Size in bytes Type
flags 4 word
from 4 word
to 4 word
copies 4 word
scale 4 word
further_options 4 StringReference
window 4 StringReference

Component id Details
0 action button (Print) this should be marked as the

‘default’ action button
1 action button (Save) this should be marked as a

‘local’ action button
2 action button (Cancel) this should be marked as the

‘cancel’ action button
3 radio button (From/To) this is selected to allow page

ranges to be printed
4 radio button (All) selected for all page print
5 & 6 writable field (From)

writable field (To)
these are used by the user to
enter a page range

7 number range (Copies) these are used by the user to
enter the number of copies
217

Print Dialogue templates
8 number range (Scale) these are used by the user to
specify a scale

9 radio button (Upright) selected for portrait
10 radio button (Sideways) selected for landscape
11 option button (Draft) selected for draft
12 action button (SetUp...) this is used to bring up a

Window of further options
13 label (To)
14 label (Copies)
15 label (Scale)
16 label (%)

Component id Details
218

Print Dialogue box class
Print Dialogue Wimp event handling
Wimp event Action
Mouse Click on Print button then raise PrintDbox_Print Toolbox event

on Cancel button then raise
PrintDbox_DialogueCompleted Toolbox event

on Save button then raise PrintDbox_Save Toolbox event
on Setup... then raise a

PrintDbox_SetUpAboutToBeShown,
then show the specified Window object, or raise a
PrintDbox_SetUp Toolbox event if there is no such
Window

on All (pages) and All is off then
set All on
set From off
and shade the writable fields

on From and From is off then
set From on
set All to off
and unshade the writable fields

on Copies or Scale up/down arrows then
increment/decrement values

on Upright then set Upright on and Sideways off
on Sideways then set Sideways on and Upright off
on Draft then toggle state of option button

Key Pressed if key is Return raise PrintDbox_Print Toolbox event
if key is Escape act as if Cancel has been clicked

User Message Window_HasBeenHidden Toolbox event
hide the dialogue box, and raise a
PrintDbox_DialogueCompleted Toolbox event
Message_HelpRequest
return help message to sender
219

Print Dialogue Wimp event handling
220

12 Prog Info Dialogue box class

A Prog Info dialogue object is used to display information about the client

application in a dialogue box.

User interface
A Prog Info Dialogue has the following information held in its dialogue box:

● the name of the application (taken from the message whose tag is ‘_TaskName’)
● the purpose of the application
● the author of the application
● the licence type of the application (optional)
● the version of the application.

All of the above are display field gadgets.

The last of these fields can be set dynamically by the client at run-time.

This gives the simplest of Prog Info Dialogue boxes. If the client wishes to use further
fields, or wishes to customise the dialogue box, then there is a facility for including the
name of a different template to use rather than the standard Prog Info one.

name
purpose

author
licence type

version
221

Application Program Interface
Application Program Interface

Attributes
A Prog Info object has the following attributes which are specified in its object template
and can be manipulated at run-time by the client application:

Manipulating a Prog Info object

Creating and deleting a Prog Info object

A Prog Info object is created using SWI Toolbox_CreateObject.

When this object is created it has no attached objects (see page 11).

A Prog Info object is deleted using SWI Toolbox_DeleteObject.

The setting of the non-recursive delete bit does not have a meaning for Prog Info objects.

Attributes Description
flags word Bit Meaning

0 when set, this bit indicates that a
ProgInfo_AboutTobeShown event should be raised
when SWI Toolbox_ShowObject is called for this
object.

1 when set, this bit indicates that a
ProgInfo_DialogueCompleted event should be
raised when the ProgInfo object has been removed
from the screen.

2 when set, include a licence type field in the dialogue
box

title alternative title bar string to ‘About this program’
(0 means use default title)

max title length this gives the maximum length in bytes of title text which
will be used for this Prog Info dialogue’s title bar

purpose a string giving the purpose of this application
author a string giving the author of this application
licence type an integer giving the licence type of the application
version a string giving version information for this application
window the name of an alternative window template to use instead of

the default one (0 means use default)
222

Prog Info Dialogue box class
Showing a Prog Info object

When a Prog Info object is displayed on the screen using SWI Toolbox_ShowObject it
has the following behaviour:

Changing the version string

Most of the fields in a Prog Info object will remain unchanged at run-time.

The client may wish to set and read the version string field at run-time. This is done
using the ProgInfo_SetVersion/ProgInfo_GetVersion methods.

Setting the licence type

If the client wishes to set and read the licence type displayed in the Prog Info dialogue
box, then it can use the ProgInfo_SetLicenceType and ProgInfo_GetLicenceType
methods (described on page 227).

Licence types are one of:
● public domain
● single user
● single machine
● site
● network
● authority.

Show type Position
0 (default) the underlying window is shown at the last place shown on

the screen, or the coordinates given in its template, if it has
not already been shown

1 (full spec) R3 + 0 visible area minimum x coordinate
R3 + 4 visible area minimum y coordinate
R3 + 8 visible area maximum x coordinate
R3 + 12 visible area maximum y coordinate
R3 + 16 scroll x offset relative to work area
R3 + 20 scroll y offset relative to work area
R3 + 24 Wimp window handle of window to open behind

-1 means top of stack
-2 means bottom of stack
-3 means the window behind the Wimp’s

backwindow
2 (topleft) R3 + 0 visible area minimum x coordinate

R3 + 4 visible area minimum y coordinate
223

Prog Info methods
Prog Info methods
The following methods are all invoked by calling SWI Toolbox_ObjectMiscOp with:

R0 holding a flags word
R1 being a Prog Info Dialogue object id
R2 being the method code which distinguishes this method
R3-R9 potentially holding method-specific data

ProgInfo_GetWindowID 0

On entry

R0 = flags
R1 = Prog Info object id
R2 = 0

On exit

R0 = Window object id for this Prog Info object

Use

This method returns the id of the underlying Window object used to implement this Prog
Info object.

C veneer
extern _kernel_oserror *proginfo_get_window_id (unsigned int flags,
 ObjectId proginfo,
 ObjectId *window
);
224

Prog Info Dialogue box class
ProgInfo_SetVersion 1

On entry

R0 = flags
R1 = Prog Info object id
R2 = 1
R3 = pointer to buffer holding version string (Ctrl-terminated)

On exit

R1-R9 preserved

Use

This method sets the version string used in the Prog Info Dialogue’s Window.

C veneer
extern _kernel_oserror *proginfo_set_version (unsigned int flags,
 ObjectId proginfo,
 char *version_string
);
225

Prog Info methods
ProgInfo_GetVersion 2

On entry

R0 = flags
R1 = Prog Info object id
R2 = 2
R3 = pointer to buffer to hold version string
R4 = size of buffer to hold version string

On exit

R4 = size of buffer required to hold version string (if R3 was 0)
else buffer pointed at by R3 holds version string
R4 holds number of bytes written to buffer

Use

This method returns the current version string used in a Prog Info object.

C veneer
extern _kernel_oserror *proginfo_get_version (unsigned int flags,
 ObjectId proginfo,
 char *buffer,
 int buff_size,
 int *nbytes
);
226

Prog Info Dialogue box class
ProgInfo_SetLicenceType 3

On entry

R0 = flags
R1 = Prog Info object id
R2 = 3
R3 = licence type

0 ⇒ public domain
1 ⇒ single user
2 ⇒ single machine
3 ⇒ site
4 ⇒ network
5 ⇒ authority

On exit

R1-R9 preserved

Use

This method sets the licence type used in the Prog Info Dialogue’s Window.

C veneer
extern _kernel_oserror *proginfo_set_licence_type (unsigned int flags,
 ObjectId proginfo,
 int licence_type
);
227

Prog Info methods
ProgInfo_GetLicenceType 4

On entry

R0 = flags
R1 = Prog Info object id
R2 = 4

On exit

R0 = licence type of application
0 ⇒ public domain
1 ⇒ single user
2 ⇒ single machine
3 ⇒ site
4 ⇒ network
5 ⇒ authority

Use

This method returns the current licence type used in a Prog Info object.

C veneer
extern _kernel_oserror *proginfo_get_licence_type (unsigned int flags,
 ObjectId proginfo,
 int *licence_type
);
228

Prog Info Dialogue box class
ProgInfo_SetTitle 5

On entry

R0 = flags
R1 = Prog Info object id
R2 = 5
R3 = pointer to text string to use

On exit

R1-R9 preserved

Use

This method sets the text which is to be used in the title bar of the given Prog Info
dialogue.

C veneer
extern _kernel_oserror *proginfo_set_title (unsigned int flags,
 ObjectId proginfo,
 char *title
);

ProgInfo_GetTitle 6

On entry

R0 = flags 6
R3 = pointer to buffer to return the text in (or 0)
R4 = size of buffer

On exit

R4 = size of buffer required to hold the text (if R3 was 0)
else Buffer pointed to by R3 contains title text
R4 holds number of bytes written to buffer

Use

This method returns the text string used in a Prog Info dialogue’s title bar.

C veneer
extern _kernel_oserror *proginfo_get_title (unsigned int flags,
 ObjectId proginfo,
 char *buffer,
 int buff_size,
 int *nbytes
);
229

Prog Info events
Prog Info events
The Prog Info module generates the following Toolbox events:

ProgInfo_AboutToBeShown (0x82b40)

Block

+ 8 0x82b40
+ 12 flags (as passed in to Toolbox_ShowObject)
+ 16 value which will be passed in R2 to ToolBox_ShowObject
+ 20... block which will be passed in R3 to ToolBox_ShowObject for the

underlying dialogue box

Use

This Toolbox event is raised just before the Prog Info module is going to show its
underlying Window object.

C data type
typedef struct
{
 ToolboxEventHeader hdr;
 int show_type;
 union
 {
 TopLeft pos;
 WindowShowObjectBlock full;
 } info;
} ProgInfoAboutToBeShownEvent;
230

Prog Info Dialogue box class
ProgInfo_DialogueCompleted (0x82b41)

Block

+ 8 0x82b41
+ 12 flags

(none yet defined)

Use

This Toolbox event is raised after the Prog Info object has been hidden, either by the
user clicking outside the dialogue box or pressing Escape. It allows the client to tidy up
its own state associated with this dialogue.

C data type
typedef struct
{
 ToolboxEventHeader hdr;
} ProgInfoDialogueCompletedEvent;

Prog Info templates
The layout of a Prog Info template is shown below. Fields which have types
MsgReference and StringReference are those which will require relocation when they
are loaded from a resource file. If the template is being constructed in memory, then
these fields should be real pointers (i.e. they do not require relocation).

For more details on relocation, see appendix Resource File Formats on page 499.

Field Size in bytes Type
flags 4 word
title 4 MsgReference
max-title 4 word
purpose 4 MsgReference
author 4 MsgReference
licence_type 4 word
version 4 MsgReference
window 4 StringReference
231

Prog Info Wimp event handling
Underlying window template
The Window object used to implement a Prog Info dialogue, has the following
characteristics. These must be reproduced if the Window is replaced by a
client-specified alternative Window template.

Title bar must be indirected.

Gadgets

Component ids are derived by adding to 0x82b400.

Prog Info Wimp event handling

Component id Details
0 display field (Name of Application)
1 display field (Purpose)
2 display field (Author)
3 display field (Licence Type)
4 display field (Version)
5 label (name)
6 label (purpose)
7 label (author)
8 label (licence)
9 label (version)

Wimp event Action
Open Window request show the dialogue box
Key Click if Escape then cancel dialogue
User Message Message_MenusDeleted

hide the dialogue box
232

13 Quit Dialogue box class

A Quit Dialogue box is used by the client application when the user attempts to quit

the application or shut down the computer whilst there is still unsaved data.

User interface
A Quit Dialogue object is used to warn the user of quitting without saving unsaved data.

The dialogue box which appears on the screen has a number of components:

● a title bar (by default containing the name of the application, i.e. the message whose
tag is ‘_TaskName’)

● a message stating (by default) that there is unsaved data
● two action buttons:

● a Cancel button (default action button)
● a Quit button.

The user sees the following behaviour:
● if they click on Quit, the application quits
● if they click on Cancel (or press Return or Escape), the application returns to normal

operation.

Application Program Interface
When a Quit object is created, it has a number of optional components:
● an alternative title bar string instead of the client’s name

title bar

Cancel buttonQuit button

message
233

Application Program Interface
● an alternative message to use in the dialogue box
● the name of an alternative template to use for the underlying Window object.

If the dialogue box is opened as a transient dialogue box, then it closes when the user
clicks outside the box.

Just before the Quit dialogue box is shown on the screen, the client is delivered a
Quit_AboutToBeShown Toolbox event (if enabled by the appropriate bit in the flags).

Once the dialogue box is displayed on the screen, the Quit module handles events for it,
and raises a number of Toolbox events to indicate what choice the user has made. These
are Quit_DialogueCompleted, Quit_Cancel and Quit_Quit (respectively).

Attributes
A Quit object has the following attributes which are specified in its object template and
can be manipulated at run-time by the client application:

Manipulating a Quit object

Creating and deleting a Quit object

A Quit object is created using SWI Toolbox_CreateObject.

When this object is created it has no attached objects (see page 11).

Attributes Description
flags word Bit Meaning

0 when set, this bit indicates that a
Quit_AboutToBeShown event should be raised
when SWI Toolbox_ShowObject is called for this
object.

1 when set, this bit indicates that a
Quit_DialogueCompleted event should be raised
when the Quit object has been removed from the
screen.

title alternative title to use instead of client’s name
(0 means default title)

max title length this gives the maximum length in bytes of title text which
will be used for this object

message the string to use as the message in the Quit dialogue box
(0 means default message)

max message maximum length of string used in dialogue’s message field
 window alternative window template to use instead of the default

one
234

Quit Dialogue box class
A Quit object is deleted using SWI Toolbox_DeleteObject.

The setting of the non-recursive delete bit does not have a meaning for Quit objects.

Showing a Quit object

When a Quit object is displayed on the screen using SWI Toolbox_ShowObject it has
the following behaviour:

Changing the Quit Dialogue’s message

When a Quit Dialogue object is created it has a default message warning the user that he
has unsaved data which will be lost if he quits the application.

This can be set and read dynamically using the Quit_SetMessage and Quit_GetMessage
methods.

Getting the id of the underlying window for a Quit Dialogue

The Window object id of the Window object used to implement the Quit Dialogue can
be obtained by using the Quit_GetWindowID method.

Show type Position
0 (default) the underlying window is shown at the last place shown on

the screen, or the coordinates given in its template, if it has
not already been shown

1 (full spec) R3 + 0 visible area minimum x coordinate
R3 + 4 visible area minimum y coordinate
R3 + 8 visible area maximum x coordinate
R3 + 12 visible area maximum y coordinate
R3 + 16 scroll x offset relative to work area
R3 + 20 scroll y offset relative to work area
R3 + 24 Wimp window handle of window to open behind

-1 means top of stack
-2 means bottom of stack
-3 means the window behind the Wimp’s

backwindow
2 (topleft) R3 + 0 visible area minimum x coordinate

R3 + 4 visible area minimum y coordinate
235

Quit methods
Quit methods
The following methods are all invoked by calling SWI Toolbox_ObjectMiscOp with:

R0 holding a flags word (which is zero unless otherwise stated)
R1 being a Quit Dialogue object id
R2 being the method code which distinguishes this method
R3-R9 potentially holding method-specific data

Quit_GetWindowID 0

On entry

R0 = flags
R1 = Quit object id
R2 = 0

On exit

R0 = Window object id for this Quit object

Use

This method returns the id of the underlying Window object used to implement this Quit
object.

C veneer
extern _kernel_oserror *quit_get_window_id (unsigned int flags,
 ObjectId quit,
 ObjectId *window
);

Quit_SetMessage 1

On entry

R0 = flags
R1 = Quit object id
R2 = 1
R3 = pointer to buffer holding new message (Ctrl-terminated)

On exit

R1-R9 preserved

Use

This method sets the message used in the Quit Dialogue’s Window.
236

Quit Dialogue box class
C veneer
extern _kernel_oserror *quit_set_message (unsigned int flags,
 ObjectId quit,
 char *message
);
237

Quit methods
Quit_GetMessage 2

On entry

R0 = flags
R1 = Quit object id
R2 = 2
R3 = pointer to buffer to hold message
R4 = size of buffer to hold message

On exit

R4 = size of buffer required to hold message (if R3 was 0)
else buffer pointed at by R3 holds message
R4 holds number of bytes written to buffer

Use

This method returns the current message used in a Quit object.

C veneer
extern _kernel_oserror *quit_get_message (unsigned int flags,
 ObjectId quit,
 char *buffer,
 int buff_size,
 int *nbytes
);
238

Quit Dialogue box class
Quit_SetTitle 3

On entry

R0 = flags
R1 = Quit object id
R2 = 3
R3 = pointer to text string to use

On exit

R1-R9 preserved

Use

This method sets the text which is to be used in the title bar of the given Quit dialogue.

C veneer
extern _kernel_oserror *quit_set_title (unsigned int flags,
 ObjectId quit,
 char *title
);
239

Quit methods
Quit_GetTitle 4

On entry

R0 = flags
R1 = Quit object id
R2 = 4
R3 = pointer to buffer to return the text in (or 0)
R4 = size of buffer

On exit

R4 = size of buffer required to hold the text (if R3 was 0)
else Buffer pointed to by R3 contains title text
R4 holds number of bytes written to buffer

Use

This method returns the text string used in a Quit dialogue’s title bar.

C veneer
extern _kernel_oserror *quit_get_title (unsigned int flags,
 ObjectId quit,
 char *buffer,
 int buff_size,
 int *nbytes
);
240

Quit Dialogue box class
Quit events
The Quit module generates the following Toolbox events:

Quit_AboutToBeShown (0x82a90)

Block

+ 8 0x82a90
+ 12 flags (as passed in to Toolbox_ShowObject)
+ 16 value which will be passed in R2 to ToolBox_ShowObject
+ 20... block which will be passed in R3 to ToolBox_ShowObject for the

underlying dialogue box

Use

This Toolbox event is raised just before the Quit module is going to show its underlying
Window object.

C data type
typedef struct
{
 ToolboxEventHeader hdr;
 int show_type;
 union
 {
 TopLeft pos;
 WindowShowObjectBlock full;
 } info;

} QuitAboutToBeShownEvent;
241

Quit events
Quit_Quit (0x82a91)

Block

+ 8 0x82a91

Use

This Toolbox event is raised when the user clicks on the Quit Button.

C data type
typedef struct
{
 ToolboxEventHeader hdr;

} QuitQuitEvent;

Quit_DialogueCompleted (0x82a92)

Block

+ 8 0x82a92
+ 12 flags

(none yet defined)

Use

This Toolbox event is raised after the Quit object has been hidden, either by a Cancel
click, or a Quit click, or by the user clicking outside the dialogue box (if it was opened
transiently) or pressing Escape. It allows the client to tidy up its own state associated
with this dialogue.

C data type
typedef struct
{
 ToolboxEventHeader hdr;

} QuitDialogueCompletedEvent;
242

Quit Dialogue box class
Quit_Cancel (0x82a93)

Block

+ 8 0x82a93

Use

This Toolbox event is raised when the user clicks on the Cancel button or presses Return
or Escape.

C data type
typedef struct
{
 ToolboxEventHeader hdr;

} QuitCancelEvent;

Quit templates
The layout of a Quit template is shown below. Fields which have types MsgReference
and StringReference are those which will require relocation when they are loaded from
a resource file. If the template is being constructed in memory, then these fields should
be real pointers (i.e. they do not require relocation).

For more details on relocation, see appendix Resource File Formats on page 499.

Field Size in bytes Type
flags 4 word
title 4 MsgReference
max_title 4 word
message 4 MsgReference
max_message 4 word
window 4 StringReference
243

Quit Wimp event handling
Underlying window template
The Window object used to implement a Quit Dialogue, has the following
characteristics. These must be reproduced if the Window is replaced by a
client-specified alternative Window template.

Title bar must be indirected.

Gadgets

Component Ids are derived by adding 0x82a900:

Quit Wimp event handling

Component id Details
0 button
1 action button (Quit)
2 action button (Cancel) must be marked as default

and Cancel action button

Wimp event Action
Mouse Click on Quit button raise Quit_Quit and

Quit_DialogueCompleted (if enabled) Toolbox event
on Cancel button raise Quit_Cancel and
Quit_DialogueCompleted (if enabled) Toolbox event

Key Pressed if key is Return raise Quit_Cancel Toolbox event
if key is Escape act as if Cancel had been pressed
244

14 SaveAs Dialogue box class

Objects of the Save As Dialogue class are used to display a standard (or customised)

Save As dialogue box, and to handle the drag of the ‘file icon’ to its destination, and to
request the client application to do the save operation. Most of the Wimp message
protocol is hidden from the client.

User interface
A Save As Dialogue object is used to allow the user to drag an icon representing a
document from a dialogue box to another application or to a directory display.

When a Save As Dialogue object is created, it has a number of components:

It is possible to specify the following:
● a default filename to use in the Save As dialogue box
● a default filetype to use in the Save As dialogue box
● a string to use in the dialogue box’s title bar, instead of ‘Save as’.
● the name of a Window template to use instead of the Save As module’s internal

Window template.

The default Save As dialogue box, has a draggable sprite to represent the data to be
saved, a writable field giving the name to save the data under, a Save (default) action
button, a Cancel action button, and an option button saying whether the whole data or
just a selection should be saved. If the client wishes to customise the dialogue box, then
the above components must be present in that dialogue box, and must have the same
component ids.

default filename

default filetype

Cancel button Save button

Selection button
(optional)

title bar string
245

Application Program Interface
If the dialogue box is opened as a transient dialogue box, then it closes when the user
clicks outside the box.

The user can interact with the Save As dialogue box in the following ways:
● clicking Cancel or pressing Escape will close the dialogue box, and cancel the Save.
● clicking Save (or pressing Return) will save the data in a file whose name is given

by the contents of the Writable Field (if it is a full pathname).
● dragging the sprite to its destination will save the data to that destination, with the

‘leaf’ part of its name.

When the Selection option button is clicked on, then the filename will change to the
string ‘Selection’.

Application Program Interface
Once the Save As dialogue box is on display, the Save As module handles much of the
messaging protocols associated with saving to another application or to a directory
display. The client no longer deals in the normal Wimp protocols for data transfer, but
instead responds to Toolbox events raised by the Save As module. In fact in the very
simplest of cases, the client does no more than just provide a pointer to the data to be
saved, and leaves the rest up to the Save As module.

Attributes
A Save As object has the following attributes which are specified in its object template
and can be manipulated at run-time by the client application:

Attributes Description
flags Bit Meaning

0 when set, this bit indicates that a
SaveAs_AboutToBeShown event should be raised
when SWI Toolbox_ShowObject is called for this
object.

1 when set, this bit indicates that a
SaveAs_DialogueCompleted event should be raised
when the Save As object has been removed from the
screen.

2 when set, do not include the Selection option button
in the dialogue box. This is used by clients where
there is no concept of a current selection.

3 when set, handle the SaveAs operation entirely in
the SaveAs module, from the supplied buffer

4 when set, client is willing to support RAM transfers
246

SaveAs Dialogue box class
Manipulating a SaveAs object

Creating and deleting a SaveAs object

A SaveAs object is created using SWI Toolbox_CreateObject.

When this object is created it has no attached objects (see page 11).

A SaveAs object is deleted using SWI Toolbox_DeleteObject.

The setting of the non-recursive delete bit does not have a meaning for SaveAs objects.

Showing a SaveAs object

When a SaveAs object is displayed on the screen using SWI Toolbox_ShowObject it has
the following behaviour:

filename a message string which gives the default filename to use in
the writable field

filetype an integer giving the RISC OS type of the file being saved
title a string to use for the Save As dialogue box title bar, instead

of ‘Save as’ (0 means use the default string)
max title length this gives the maximum length in bytes of title text which

will be used for this object
window an alternative window template to use instead of the default

one (null implies default)

Show type Position
0 (default) the underlying window is shown at the last place shown on

the screen, or the coordinates given in its template, if it has
not already been shown

1 (full spec) R3 + 0 visible area minimum x coordinate
R3 + 4 visible area minimum y coordinate
R3 + 8 visible area maximum x coordinate
R3 + 12 visible area maximum y coordinate
R3 + 16 scroll x offset relative to work area
R3 + 20 scroll y offset relative to work area
R3 + 24 Wimp window handle of window to open behind

-1 means top of stack
-2 means bottom of stack
-3 means the window behind the Wimp’s

backwindow
2 (topleft) R3 + 0 visible area minimum x coordinate

R3 + 4 visible area minimum y coordinate

Attributes Description
247

Application Program Interface
Setting the SaveAs Dialogue box’s filename and filetype

When a SaveAs Dialogue object is created, it is given the filename from its template to
use in its writable field, and a filetype which will be used to look up and use a sprite
(from the Wimp sprite pool) whose name is file_HHH, where HHH is a 3-digit hex
representation of the filetype. If such a sprite does not exist then a sprite called
file_xxx is used instead. For saving directories and applications the filetype values
0x1000 and 0x2000 should be used. In the latter case, the standard ‘App’ sprite is used.

Both of these attributes can be set and read dynamically using the
SaveAs_SetFileName/SaveAs_GetFileName and SaveAs_SetFileType/
SaveAs_GetFileType methods.

Summary of how to save data from a Toolbox client

There are essentially three sorts of application:
● Type 1 – an application which will allow the Toolbox to do data saving entirely on

its behalf.
● Type 2 – an application which needs to do the data saving itself, but is not willing to

support RAM transfers.
● Type 3 – an application which needs to do the data saving itself, and is willing to

support RAM transfers.

Let us look at how a client should react to each Toolbox event which it will receive.
Notice that these are the only events which the client needs to watch for to achieve the
SaveAs operation; there is no need to watch for user drags and window events, and no
need to watch for Message_RAMFetch events. The following is some pseudo-C
showing how a client might process Toolbox events delivered to it:

Type 1
switch(toolbox_event_code)
{
 case SaveAs_AboutToBeShown:
 /* call SaveAs_SetFileSize, SaveAs_SetFileName, SaveAs_SetFileType
 and SaveAs_SelectionAvailable if necessary.
 Also call SaveAs_SetDataAddress to tell the Toolbox
 the address and size of data to be saved.
 */
 break;

 case SaveAs_SaveCompleted:
 /* maybe mark a document as ‘unmodified’ */
 break;

 case SaveAs_DialogueCompleted:
 /* do any tidying up
 maybe delete the SaveAs object if desired
 */
 break;
248

SaveAs Dialogue box class
 default:
 break;
}

Type 2
switch(toolbox_event_code)
{
 case SaveAs_AboutToBeShown:
 /* call SaveAs_SetFileSize, SaveAs_SetFileName, SaveAs_SetFileType
 and SaveAs_SelectionAvailable if necessary
 */
 break;

 case SaveAs_SaveToFile:
 /* save the data to the given filename
 and call SaveAs_FileSaveCompleted
 */
 break;

 case SaveAs_SaveCompleted:
 /* maybe mark a document as ‘unmodified’ */
 break;

 case SaveAs_DialogueCompleted:
 /* do any tidying up
 maybe delete the SaveAs object if desired
 */
 break;

 default:
 break;
}

Type 3
switch(toolbox_event_code)
{
 case SaveAs_AboutToBeShown:
 /* SaveAs_SetFileSize, call SaveAs_SetFileName, SaveAs_SetFileType
 and SaveAs_SelectionAvailable if necessary
 */
 break;

 case SaveAs_SaveToFile:
 /* save the data to the given filename
 and call SaveAs_FileSaveCompleted
 */
 break;
249

Application Program Interface
 case SaveAs_FillBuffer:
 /* if (address of buffer == 0)
 allocate a buffer for RAM transfer
 if (more data to go)
 {
 fill buffer with data
 call SaveAs_BufferFilled
 }
 */
 break;

 case SaveAs_SaveCompleted:
 /* maybe mark a document as ‘unmodified’ */
 break;

 case SaveAs_DialogueCompleted:
 /* do any tidying up
 maybe delete the SaveAs object if desired
 */
 break;

 default:
 break;
}

Setting the File Size for the SaveAs Dialogue

In the file transfer protocol under RISC OS, the sender of a file must specify an
estimated size in bytes of the file being saved. This should be set using the
SaveAs_SetFileSize method, and can be read using the SaveAs_GetFileSize method.
This value will be used in the initial Message_DataSave message which will be sent by
the SaveAs module when the file icon is dragged to its destination.

Enabling/disabling the Selection option button

In the dialogue box used to implement the SaveAs Dialogue object, there is an option
button which is used to show whether the Save operation is to be done on the whole file
or just a selection. Handling this button is done entirely by the SaveAs module. It is,
however, the responsibility of the client to either enable or disable this option button,
depending on whether there is a selection currently in existence. This will cause the
button to appear greyed out when no selection exists.

The SaveAs module provides the method SaveAs_SelectionAvailable for this use. The
client should typically use this method in response to the SaveAs_AboutToBeShown
Toolbox event.
250

SaveAs Dialogue box class
Before the SaveAs Dialogue box is shown

Once a SaveAs dialogue has been started by using Toolbox_ShowObject on a SaveAs
Dialogue object, a SaveAs dialogue box will appear on the screen. By setting an
appropriate bit in the SaveAs Dialogue object’s flags word, the client will be sent a
SaveAs_AboutToBeShown Toolbox event before the dialogue box appears. This allows
the client to set any relevant state like a different filename, or filetype etc.

Cancelling the dialogue

If the user clicks on the Cancel button or presses Escape (or clicks outside the SaveAs
dialogue box if it was transient), then the SaveAs module delivers a
SaveAs_DialogueCompleted Toolbox event to the client application (if enabled). This
allows the client to update any of its data structures and to clean up any state associated
with this dialogue.

Saving handled entirely by the SaveAs module

If the client is able to supply the data to be saved in a contiguous block of memory (i.e.
client type 1), then by setting bit 3 in the SaveAs object’s flags word, the client can
request that the SaveAs module handles the entire Save operation itself. To do this, the
client must supply the address of the data (and its size), using the
SaveAs_SetDataAddress method. Typically the client will do this when it receives the
SaveAs_AboutToBeShown Toolbox event.

The SaveAs module will then conduct the rest of the dialogue. If it receives a
Message_RAMFetch message from the receiver, it will do a RAM transfer on behalf of
the client; otherwise it will do a scrap transfer (or save directly to file if the destination
is a filing system). All of this is transparent to the client if bit 3 is set in the SaveAs
object’s flags word.

Saving to a file

If bit 3 of the SaveAs object’s flags word is not set (thus indicating that the Toolbox
cannot do a save operation on the client’s behalf), then when the SaveAs module wants
the application to save to a file, it will deliver a SaveAs_SaveToFile Toolbox event. On
receipt of this event, the client (type 2 always and type 3 when necessary) should save its
data into the file whose name is given in the event block. The client should then use the
SaveAs_FileSaveCompleted method to inform the SaveAs module whether the Save
was successful or not. This must be done before the next call to SWI Wimp_Poll, since
the SaveAs module will assume this.

The SaveAs_SaveToFile event will be delivered if
● the user clicks on Save
● a Wimp$Scrap transfer is being used
● the user has dragged the file icon onto a directory display.
251

Application Program Interface
Saving via RAM transfer

If bit 3 of the SaveAs object’s flags word is not set (thus indicating that the Toolbox
cannot do a save operation on the client’s behalf), then the client (type 3 only) may wish
to help support RAM transfers if they are requested by the receiving task. This is
indicated by setting bit 4 of the SaveAs object’s flags word.

The client must supply a buffer, into which it places data ready for transmission to the
receiving task.

The SaveAs module will deal with all subsequent RAMFetch requests, and will call
SWI Wimp_TransferBlock to do the data transfer, and will reply to the receiver using
Message_RAMTransmit.

The client will receive SaveAs_FillBuffer Toolbox events when the buffer has been
transmitted, and on receipt of such events should fill the buffer and call the
SaveAs_BufferFilled method. If the field in the SaveAs_FillBuffer event giving the
address of the buffer is 0, then the client has not yet supplied a buffer, and they should
allocate one. Each SaveAs_FillBuffer Toolbox event contains an indication of how
many bytes have been transmitted so far during the transfer. As soon as the number of
bytes which the client writes into the buffer is less than the size of the buffer, the SaveAs
module assumes that the transfer is complete.

Successful completion of a Save operation

When a Save operation has been successfully completed (i.e. the data has been saved),
the SaveAs module will send a SaveAs_SaveCompleted Toolbox event to the client, and
will hide the SaveAs object, unless the user has clicked Adjust on the Save button.

One field in the event block passed back to the client is a one-word indication of whether
the destination was a ‘safe’ place (like a filing system) or ‘unsafe’ (like another
application). The client may choose to use this value to decide whether to mark the data
as ‘un-modified’, if the client is an editor.

If the original save operation was started by the user dragging the file icon from the
SaveAs dialogue box, then the SaveAs_SaveCompleted event block also contains the
Wimp message reference number of the Message_DataSave sent by the SaveAs module,
to allow the client to use in conjunction with any Message_DataSaved replies.

Completion of the SaveAs dialogue

When the SaveAs module has hidden its dialogue box at the end of a dialogue, it delivers
a SaveAs_DialogueCompleted Toolbox event to the client, with an indication of
whether a successful save occurred during the dialogue.
252

SaveAs Dialogue box class
Error handling

Any errors referring to the SaveAs dialogue box itself will be reported to the user by the
SaveAs module. For example, if there is only a leafname in the writable field, and the
user clicks on Save, then the SaveAs module will display an error box saying ‘To save,
drag the icon to a directory display’.

The SaveAs module will also report any errors which occur while it is carrying out a
Save operation.

The client should report (via SWI Wimp_ReportError), any errors which occur if it is
requested to save to a given filename.

Save As methods
The following methods are all invoked by calling SWI Toolbox_ObjectMiscOp with:

R0 holding a flags word
R1 being a Save As Dialogue object id
R2 being the method code which distinguishes this method
R3-R9 potentially holding method-specific data

SaveAs_GetWindowID 0

On entry

R0 = flags
R1 = Save As object id
R2 = 0

On exit

R0 = Window object id for this Save As object

Use

This method returns the id of the underlying Window object used to implement this Save
As object.

C veneer
extern _kernel_oserror *saveas_get_window_id (unsigned int flags,
 ObjectId saveas,
 ObjectId *window
);
253

Save As methods
SaveAs_SetTitle 1

On entry

R0 = flags
R1 = Save As object id
R2 = 1
R3 = pointer to text string to use

On exit

R1-R9 preserved

Use

This method sets the text which is to be used in the title bar of the given Save As
dialogue.

C veneer
extern _kernel_oserror *saveas_set_title (unsigned int flags,
 ObjectId saveas,
 char *title
);
254

SaveAs Dialogue box class
SaveAs_GetTitle 2

On entry

R0 = flags
R1 = Save As object id
R2 = 2
R3 = pointer to buffer to return the text in (or 0)
R4 = size of buffer

On exit

R4 = size of buffer required to hold the text (if R3 was 0)
else Buffer pointed to by R3 contains title text
R4 holds number of bytes written to buffer

Use

This method returns the text string used in a Save As dialogue’s title bar.

C veneer
extern _kernel_oserror *saveas_get_title (unsigned int flags,
 ObjectId saveas,
 char *buffer,
 int buff_size,
 int *nbytes
);
255

Save As methods
SaveAs_SetFileName 3

On entry

R0 = flags
R1 = Save As object id
R2 = 3
R3 = pointer to filename to use in writable field

On exit

R1-R9 preserved

Use

This method sets the filename which is to be used in the Save As object’s writable field.

C veneer
extern _kernel_oserror *saveas_set_file_name (unsigned int flags,
 ObjectId saveas,
 char *file_name
);
256

SaveAs Dialogue box class
SaveAs_GetFileName 4

On entry

R0 = flags
R1 = Save As object id
R2 = 4
R3 = pointer to buffer to return the filename in (or 0) R4 =size of buffer

On exit

R4 = size of buffer required to hold the filename (if R3 was 0)
else Buffer pointed to by R3 contains filename
R4 holds number of bytes written to buffer

Use

This method returns the filename displayed in this Save As object’s writable field.

C veneer
extern _kernel_oserror *saveas_get_file_name (unsigned int flags,
 ObjectId saveas,
 char *buffer,
 int buff_size,
 int *nbytes
);
257

Save As methods
SaveAs_SetFileType 5

On entry

R0 = flags
R1 = Save As object id
R2 = 5
R3 = filetype

On exit

R1-R9 preserved

Use

This method is used to set the filetype for this Save As object, and hence the sprite which
will be displayed in the dialogue box.

C veneer
extern _kernel_oserror *saveas_set_file_type (unsigned int flags,
 ObjectId saveas,
 int file_type
);

SaveAs_GetFileType 6

On entry

R0 = flags
R1 = Save As object id
R2 = 6

On exit

R0 = filetype

Use

This method is used to get the filetype of this Save As object.

C veneer
extern _kernel_oserror *saveas_get_file_type (unsigned int flags,
 ObjectId saveas,
 int *file_type
);
258

SaveAs Dialogue box class
SaveAs_SetFileSize 7

On entry

R0 = flags
R1 = Save As object id
R2 = 7
R3 = file size in bytes

On exit

R1-R9 preserved

Use

This method is used to set the estimated file size in bytes for this Save As Dialogue. This
will be used in a Message_DataSave message when the file icon is dragged to its
destination.

C veneer
extern _kernel_oserror *saveas_set_file_size (unsigned int flags,
 ObjectId saveas,
 int file_size
);

SaveAs_GetFileSize 8

On entry

R0 = flags
R1 = Save As object id
R2 = 8

On exit

R0 = file size

Use

This method is used to get the file size of this Save As object.

C veneer
extern _kernel_oserror *saveas_get_file_size (unsigned int flags,
 ObjectId saveas,
 int *file_size
);
259

Save As methods
SaveAs_SelectionAvailable 9

On entry

R0 = flags
R1 = Save As object id
R2 = 9
R3 = non-zero means selection is available, otherwise it is not available

On exit

R1-R9 preserved

Use

This method is used to indicate to the Save As module whether there is a current
selection in existence. If there is a selection, then the Selection option button will be
enabled (i.e. the user can click on it), if not the Selection option button will be greyed
out.

If the Save As object has no Selection option button then an error is returned.

C veneer
extern _kernel_oserror *saveas_selection_available (unsigned int flags,
 ObjectId saveas,
 int selection
);
260

SaveAs Dialogue box class
SaveAs_SetDataAddress 10

On entry

R0 = flags
R1 = Save As object id
R2 = 10
R3 = address of contiguous block of data which is to be saved
R4 = size of data
R5 = address of contiguous block of data, which is the current selection
R6 = size of selection

On exit

R1-R9 preserved

Use

This method indicates to the Save As module the address of a contiguous block of
memory containing the data to be saved. It is used if the client wishes the entire Save
operation to be carried out by the Save As module. It is typically called in response to a
SaveAs_SaveAboutToBeShown Toolbox event. If there is a current selection, then its
address and size should also be passed to this method.

Note: This method is only suitable for Type 1 clients.

C veneer
extern _kernel_oserror *saveas_set_data_address (unsigned int flags,
 ObjectId saveas,
 void *data,
 int data_size,
 void *selection,
 int selection_size
);
261

Save As methods
SaveAs_BufferFilled 11

On entry

R0 = flags
R1 = Save As object id
R2 = 11
R3 = address of buffer which has been filled
R4 = number of bytes written into buffer

On exit

R1-R9 preserved

Use

This method is used to respond to a SaveAs_FillBuffer Toolbox event; it confirms that
the requested buffer fill has taken place, and states the number of bytes written to the
buffer.

C veneer
extern _kernel_oserror *saveas_buffer_filled (unsigned int flags,
 ObjectId saveas,
 void *buffer,
 int bytes_written
);
262

SaveAs Dialogue box class
SaveAs_FileSaveCompleted 12

On entry

R0 = flags bit 0 set means that the save was successful
R1 = Save As object id
R2 = 12
R3 = filename where the client tried to save the data

On exit

R1-R9 preserved

Use

This method is used by the client to report whether an attempt to save the data to file as
a result of a SaveAs_SaveToFile Toolbox event was successful or not.

If this SWI is called with bit 0 of R0 clear, then it will return an error.

Note: This method is only suitable for Type 2 and Type 3 clients.

C veneer
extern _kernel_oserror *saveas_file_save_completed (unsigned int flags,
 ObjectId saveas,
 char *filename
);
263

Save As events
Save As events
The Save As module generates the following Toolbox events:

SaveAs_AboutToBeShown (0x82bc0)

Block

+ 8 0x82bc0
+ 12 flags (as passed in to Toolbox_ShowObject)
+ 16 value which will be passed in R2 to ToolBox_ShowObject
+ 20... block which will be passed in R3 to ToolBox_ShowObject for the

underlying dialogue box

Use

This Toolbox event is raised just before the Save As module is going to show its
underlying Window object, to enable the client to set its filename and filetype
appropriately.

C data type
typedef struct
{
 ToolboxEventHeader hdr;
 int show_type;
 union
 {
 TopLeft pos;
 WindowShowObjectBlock full;
 } info;
} SaveAsAboutToBeShownEvent;
264

SaveAs Dialogue box class
SaveAs_DialogueCompleted (0x82bc1)

Block

+ 8 0x82bc1
+ 12 flags

bit 0 set means that a successful save was done during this dialogue

Use

This Toolbox event is raised after the Save As object has been hidden, either by a Cancel
click, or after a successful save, or by the user clicking outside the dialogue box or
pressing Escape. It allows the client to tidy up its own state associated with this
dialogue.

Note that if the dialogue was cancelled, a successful save may still have been done, for
example if the user clicked Adjust on Save, and then cancelled the dialogue.

C data type
typedef struct
{
 ToolboxEventHeader hdr;
} SaveAsDialogueCompletedEvent;

SaveAs_SaveToFile (0x82bc2)

Block

+ 8 0x82bc2
+ 12 flags bit 0 set means save only the current selection
+ 16... nul-terminated filename to which the data should be saved

Use

This Toolbox event is raised by the Save As module to request that the client should save
its data to the given filename. If bit 0 of the flags word is set, then only the current
selection should be saved.

C data type
typedef struct
{
 ToolboxEventHeader hdr;
 char filename [212];
} SaveAsSaveToFileEvent;
265

Save As events
SaveAs_FillBuffer (0x82bc3)

Block

+ 8 0x82bc3
+ 12 flags

bit 0 set means a selection is being saved
+ 16 size of buffer being used
+ 20 address of buffer
+ 24 number of bytes already transmitted

Use

This Toolbox event is raised by the Save As module to request that the client should fill
the given buffer (which is the one which the client will have allocated).

If the address returned by this event is 0, then the client application needs to do one of
the following:
● reserve memory for buffering and return its address using SWI BufferFilled
● maintain a pointer to the current location in the data to be transferred.

C data type
typedef struct
{
 ToolboxEventHeader hdr;
 int size;
 char *address;
 int no_bytes;
} SaveAsFillBufferEvent;
266

SaveAs Dialogue box class
SaveAs_SaveCompleted (0x82bc4)

Block

+ 8 0x82bc4
+ 12 flags

bit 0 set means a selection was saved
bit 1 set means the destination was safe (e.g. a filing system)

+ 16 Wimp message number of original Message_DataSave
(or 0 if the save operation was not started via a drag)

+ 20... if bit 1 is set in the flags word (i.e. safe save), then this field indicates the
full pathname of the place where the save was done.

Use

This Toolbox event is raised when the Save is successfully completed. Bit 0 of the flags
word indicates whether just a selection was saved; bit 1 means that the Save was to a
place where the data is safe (e.g. it is in a real file, on a filing system).

C data type
typedef struct
{
 ToolboxEventHeader hdr;
 int wimp_message_no;
 char filename [208];
} SaveAsSaveCompletedEvent;

Save As templates
The layout of a Save As template is shown below. Fields which have types
MsgReference and StringReference are those which will require relocation when they
are loaded from a resource file. If the template is being constructed in memory, then
these fields should be real pointers (i.e. they do not require relocation).

For more details on relocation, see appendix Resource File Formats on page 499.

Field Size in bytes Type
flags 4 word
filename 4 MsgReference
filetype 4 word
title 4 MsgReference
max_title 4 word
window 4 StringReference
267

Save As Wimp event handling
Underlying Window template
The Window object used to implement a Save As dialogue, has the following
characteristics. These must be reproduced if the Window is replaced by a
client-specified alternative Window template.

Title bar must be indirected.

Gadgets

Component ids are derived by adding to 0x82bc00.

Save As Wimp event handling

Component id Details
0 draggable (file icon) must be sprite only
1 writable field (filename)
2 action button (Cancel) must be marked as a

Cancel action button
3 action button (Save) must be marked as the

Default action button
4 (if required) option button (Selection)

Wimp event Action
Mouse Click if this is a drag event on the file icon, then set up an

appropriate Wimp drag box
ActionButton_Selected on the Save button then start save operation

on the Cancel button then hide the dialogue box, and raise
a SaveAs_DialogueCompleted Toolbox event

Draggable_DragEnded
(Toolbox event)

start save operation to the destination of the drag (i.e. send
a Message_DataSave to the destination window/icon pair.

Key Pressed if dialogue box has the input focus, and the key pressed is
Return, then the Save Button is activated, and a save
operation is started
if key is Escape act as if Cancel had been pressed.
268

SaveAs Dialogue box class
User Message
User Message Recorded

Message_DataSaveAck
if (a SaveAs dialogue is in progress)
{
 if (the save can be done entirely
 by the SaveAs module)
 {
 do the save
 send Message_DataLoad to destination
 }
 else
 {
 raise a SaveAs_SaveToFile Toolbox event
 }
}

Message_DataLoadAck
if (a SaveAs dialogue is in progress)
{
 raise a SaveAs_SaveCompleted Toolbox event
 If (not an Adjust click on OK)
 (
 hide the dialogue box
 raise a SaveAs_DialogueCompleted
 Toolbox event
)
}

Message_RAMFetch
if (a SaveAs dialogue is in progress)
{
 transfer current buffer contents
 send Message_RAMTransmit to destination
 if (save cannot be done entirely by the Toolbox
 module)
 raise SaveAs_FillBuffer Toolbox event
}

Message_MenusDeleted
If (a SaveAs dialogue is in progress)
{
 raise a SaveAs_DialogueCompleted Toolbox event
}

Wimp event Action
269

Save As Wimp event handling
270

15 Scale Dialogue box class

A Scale Dialogue object is used to present the user with a dialogue box from which

he can set the scale factors for a view on a document. This scale is given as a percentage
of the original size of the document.

User interface
The Scale class provides a dialogue box from which a scale factor can be chosen:

The default Scale dialogue box has the following attributes:
● a title bar string
● a writable number range with up/down arrows and a percentage sign to the right of

the up/down arrows
● four ‘standard’ size action buttons with the values: 33%, 80%, 100%, 120% as their

text plus an optional Scale to Fit action button
● a Cancel action button
● a Scale action button.

The user can:
● type an integral value in the writable field between its lower and upper bounds or

use the up/down arrows to adjust the value currently in the field
● use one of the standard size action buttons to set the scale factor. Clicking on these

buttons only causes a value to be inserted in the writable field; it does not apply the
scale factors

● click outside the dialogue box (if it is transient) or click on Cancel, to cancel the
dialogue

title bar string

number range

Cancel button Scale button

local action buttons
271

Application Program Interface
● click on Scale or press Return to apply the scale factors
● if there is a Scale to Fit button, then clicking on it will have application-defined

behaviour (e.g. Scale to Fit window).

Application Program Interface
When a Scale object is created it has the following components:
● an optional Scale To Fit button.
● an alternative title to use instead of the default.
● alternative bounds and step size for the writable field.
● an optional list of different standard size action buttons where each gives a

percentage value to insert into the Writable Field. These will be positioned
appropriately by the Scale module in place of the default standard size buttons.
When a Scale object is shown, the client will be delivered a
Scale_DialogueAboutToBeShown Toolbox event (if enabled), just before the
dialogue box becomes visible on the screen.

When the Scale dialogue is showing, the Scale module deals with all relevant Wimp
events and reports user actions back to the client via Toolbox events. If there are any
standard size action buttons in the dialogue box, then the Scale module deals with clicks
on them, and inserts the correct percentage value into the writable field.

The client is guaranteed to receive a Scale_DialogueCompleted Toolbox event when the
dialogue is over (i.e. the user has clicked on Cancel, or clicked outside the dialogue box
(if it were transient), or clicked on Scale, or on Scale To Fit).

Attributes
A Scale object has the following attributes which are specified in its object template and
can be manipulated at run-time by the client application:

Attributes Description
flags Bit Meaning

0 when set, this bit indicates that a
Scale_AboutToBeShown event should be raised
when SWI Toolbox_ShowObject is called for this
object.

1 when set, this bit indicates that a
Scale_DialogueCompleted event should be raised
when the Scale object has been removed from the
screen.

2 when set, dialogue box has a Scale To Fit button
272

Scale Dialogue box class
Manipulating a Scale object

Creating and deleting a Scale object

A Scale object is created using SWI Toolbox_CreateObject.

When this object is created it has no attached objects (see page 11).

A Scale object is deleted using SWI Toolbox_DeleteObject.

The setting of the non-recursive delete bit does not have a meaning for Scale objects.

min val alternative minimum value for the writable field
max val alternative maximum value for the writable field
step size alternative step size for up/down arrows
Scale title alternative title for the dialogue rather than ‘Scale View’

(0 means use default)
max title length this gives the maximum length in bytes of title text which

will be used for this object
window the name of an alternative window template to use instead of

the default one (0 means use default)
std1 value value of first std scale button
std2 value value of second std scale button
std3 value value of third std scale button
std4 value value of fourth std scale button

Attributes Description
273

Application Program Interface
Showing a Scale object

When a Scale object is displayed on the screen using SWI Toolbox_ShowObject it has
the following behaviour:

Before the Scale Dialogue box is shown

When SWI Toolbox_ShowObject is called on a Scale object, the Scale Class raises a
Scale_AboutToBeShown Toolbox event (if enabled), just before it shows the underlying
Window object which implements this dialogue. This will allow the client to set an
initial suitable value in the Scale dialogue’s Writable Field.

Applying a Scale factor

When the user clicks on the Scale button, or on the Scale To Fit button if it is present,
the Scale module delivers a Scale_ApplyFactor to the client, giving the percentage
factor to apply. A special value of 0xffffffff is delivered if the Scale To Fit button is
clicked.

Cancelling a Scale dialogue

If the user clicks on the Cancel Button (or clicks outside the Scale dialogue box), then
the Scale module delivers a Scale_DialogueCompleted Toolbox event to the client
application. This allows the client to update any of its data structures and to clean up any
state associated with this dialogue.

Show type Position
0 (default) the underlying window is shown at the last place shown on

the screen, or the coordinates given in its template, if it has
not already been shown

1 (full spec) R3 + 0 visible area minimum x coordinate
R3 + 4 visible area minimum y coordinate
R3 + 8 visible area maximum x coordinate
R3 + 12 visible area maximum y coordinate
R3 + 16 scroll x offset relative to work area
R3 + 20 scroll y offset relative to work area
R3 + 24 Wimp window handle of window to open behind

-1 means top of stack
-2 means bottom of stack
-3 means the window behind the Wimp’s

backwindow
2 (topleft) R3 + 0 visible area minimum x coordinate

R3 + 4 visible area minimum y coordinate
274

Scale Dialogue box class
Completion of a Scale dialogue

When the Scale module has hidden its dialogue box at the end of a dialogue, it delivers
a Scale_DialogueCompleted Toolbox event to the client (if enabled), with an indication
of whether a scale factor was reported to the client during the dialogue.

Reading and setting the writable field

Normally a client will only need to respond to the Scale_ApplyFactor Toolbox event in
order to allow the user to set scale factors. If, however, the client wishes to read the
current value in the writable field, or to set it explicitly (to a suitable start value when the
dialogue box is first shown), then it can use the Scale_SetValue/Scale_GetValue
methods.

Reading and setting the bounds of the writable field and step size

Normally a client will specify the bounds and step size of the writable field in the
template description for the Scale object.

These can however be read and set dynamically using the Scale_SetBounds/
Scale_getBounds and Scale_GetStepSize/Scale_SetStepSize methods.
275

Scale methods
Scale methods
The following methods are all invoked by calling SWI Toolbox_ObjectMiscOp with:

R0 holding a flags word
R1 being a Scale Dialogue object id
R2 being the method code which distinguishes this method
R3-R9 potentially holding method-specific data

Scale_GetWindowID 0

On entry

R0 = flags
R1 = Scale object id
R2 = 0

On exit

R0 = Window object id for this Scale object

Use

This method returns the id of the underlying Window object used to implement this
Scale object.

C veneer
extern _kernel_oserror *scale_get_window_id (unsigned int flags,
 ObjectId scale,
 ObjectId *window
);
276

Scale Dialogue box class
Scale_SetValue 1

On entry

R0 = flags
R1 = Scale object id
R2 = 1
R3 = value

On exit

R1-R9 preserved

Use

This method is used to set the value displayed in the writable field for this Scale object.

C veneer
extern _kernel_oserror *scale_set_value (unsigned int flags,
 ObjectId scale,
 int value
);

Scale_GetValue 2

On entry

R0 = flags
R1 = Scale object id
R2 = 2

On exit

R0 = value

Use

This method returns the value in the writable field of this Scale object.

C veneer
extern _kernel_oserror *scale_get_value (unsigned int flags,
 ObjectId scale,
 int *value
);
277

Scale methods
Scale_SetBounds 3

On entry

R0 = flags
bit 0 set means set the lower bound to the given value
bit 1 set means set the upper bound to the given value
bit 2 set means set step size

R1 = Scale object id
R2 = 3
R3 = value of the lower bound
R4 = value of the upper bound
R5 = step size

On exit

R1-R9 preserved

Use

This method sets the lower and upper bounds and step size of the writable field in the
Scale object.

C veneer
extern _kernel_oserror *scale_set_bounds (unsigned int flags,
 ObjectId scale,
 int lower_bound,
 int upper_bound,
 int step_size
);
278

Scale Dialogue box class
Scale_GetBounds 4

On entry

R0 = flags
bit 0 set means return the lower bound
bit 1 set means return the upper bound
bit 2 set means return step size

R1 = Scale object id
R2 = 4

On exit

R0 = value of the lower bound
R1 = value of the upper bound
R2 = value of the step size

Use

This method returns either the lower and upper bounds and step size of the writable field
in the Scale object.

C veneer
extern _kernel_oserror *scale_get_bounds (unsigned int flags,
 ObjectId scale,
 int *lower_bound,
 int *upper_bound,
 int *step_size
);
279

Scale methods
Scale_SetTitle 5

On entry

R0 = flags
R1 = Scale object id
R2 = 5
R3 = pointer to text string to use

On exit

R1-R9 preserved

Use

This method sets the text which is to be used in the title bar of the given Scale dialogue.

C veneer
extern _kernel_oserror *scale_set_title (unsigned int flags,
 ObjectId scale,
 char *title
);
280

Scale Dialogue box class
Scale_GetTitle 6

On entry

R0 = flags
R1 = Scale object id
R2 = 6
R3 = pointer to buffer to return the text in (or 0)
R4 = size of buffer

On exit

R4 = size of buffer required to hold the text (if R3 was 0)
else Buffer pointed to by R3 contains title text
R4 holds number of bytes written to buffer

Use

This method returns the text string used in a Scale dialogue’s title bar.

C veneer
extern _kernel_oserror *scale_get_title (unsigned int flags,
 ObjectId scale,
 char *buffer,
 int buff_size,
 int *nbytes
);
281

Scale events
Scale events
The Scale module generates the following Toolbox events:

Scale_AboutToBeShown (0x82c00)

Block

+ 8 0x82c00
+ 12 flags (as passed in to Toolbox_ShowObject)
+ 16 value which will be passed in R2 to ToolBox_ShowObject
+ 20... block which will be passed in R3 to ToolBox_ShowObject for the

underlying dialogue box

Use

This Toolbox event is raised just before the Scale module is going to show its underlying
Window object, to enable the client to set its initial value appropriately.

C data type
typedef struct
{
 ToolboxEventHeader hdr;
 int show_type;
 union
 {
 TopLeft pos;
 WindowShowObjectBlock full;
 } info;
} ScaleAboutToBeShownEvent;
282

Scale Dialogue box class
Scale_DialogueCompleted (0x82c01)

Block

+ 8 0x82c01
+ 12 flags

Use

This Toolbox event is raised after the Scale object has been hidden, either by a Cancel
click, or by a click on Scale or Scale To Fit, or by the user clicking outside the dialogue
box (if it is transient). It allows the client to tidy up its own state associated with this
dialogue.

Note that if the dialogue was cancelled, a scale factor may still have been applied, for
example if the user clicked Adjust on Scale, and then cancelled the dialogue.

C data type
typedef struct
{
 ToolboxEventHeader hdr;
} ScaleDialogueCompletedEvent;

Scale_ApplyFactor (0x82c02)

Block

+ 8 0x82c02
+ 16 unsigned integer scale factor to apply

Use

This Toolbox event is raised when the user clicks on the Scale button or the Scale To Fit
button (if present), or presses Return.

The scale factor to apply is a percentage; 0xffffffff means Scale To Fit.

C data type
typedef struct
{
 ToolboxEventHeader hdr;
 unsigned int factor;
} ScaleApplyFactorEvent;
283

Scale templates
Scale templates
The layout of a Scale template is shown below. Fields which have types MsgReference
and StringReference are those which will require relocation when they are loaded from
a resource file. If the template is being constructed in memory, then these fields should
be real pointers (i.e. they do not require relocation).

For more details on relocation, see appendix Resource File Formats on page 499.

Underlying window template
The Window object used to implement a Scale dialogue, has the following
characteristics. These must be reproduced if the Window is replaced by a
client-specified alternative Window template:

Title bar must be indirected.

Gadgets

Component ids are derived by adding to 0x82c000.

Field Size in bytes Type
flags 4 word
min_val 4 word
max_val 4 word
step_size 4 word
title 4 MsgReference
max_title 4 word
window 4 StringReference
std1_value 4 word
std2_value 4 word
std3_value 4 word
std4_value 4 word

Component id Details
0 number range (Scale) must have adjuster arrows,

and be writable
1-4 action buttons

(standard scale factors)
these should have the text
33%, 80%, 100% and 120%

5 action button (Cancel) this must be marked as a
Cancel action button

6 action button (Scale) this must be marked as the
default action button
284

Scale Dialogue box class
Scale Wimp event handling

7 label (%)
8 label (Scale)
9 action button (Scale to fit)

Wimp event Action
Mouse Click on Scale or Scale to Fit buttons, then deliver a

Scale_ApplyFactor Toolbox event
on a standard size button then enter its value into
the Writable Field
on Cancel button then hide the dialogue box, and
deliver a Scale_DialogueCompleted Toolbox
event.

Key Pressed if key is Return then act as if Scale button had been
clicked
if key is Escape then act as if Cancel button had
been clicked.

User Message
User Message Recorded

Message_MenusDeleted
deliver a Scale_DialogueCompleted Toolbox
event.

Component id Details
285

286

16 Window class

Objects of the Window class are used by the client application to display its

document windows, dialogue boxes etc.

User interface
A Window is essentially an extension of a Wimp window (in fact part of the Window
object definition is a Wimp window definition):

Many Wimp events which are delivered to this Window are dealt with automatically by
the Toolbox, based on the attributes of the Window. In this chapter we give further
details of exactly what a Window consists of, and the semantics attached to Wimp
events for a Window.

The client application is always able to get the Wimp window handle of the underlying
Wimp window used to implement this Window object, and can perform all the usual
Wimp SWIs on that window (within reason, e.g. deleting an icon belonging to a gadget
may have undesirable efects).

Back icon Close icon Title bar Toggle size icon

Slider

Scroll bar

Scroll arrow

Adjust size icon
287

Application Program Interface
Application Program Interface

Attributes
A Window object has the following attributes which are specified in its object template
and can be manipulated at run-time by the client application:

Attribute Description
flags word Bit Meaning

0 when set, generate a
Window_AboutToBeShown event before
showing the underlying Wimp window

1 when set, automatically open this Window
when a Wimp OpenWindowRequest is
received
(when set the client will not see the
underlying Wimp requests)

2 when set, automatically close this Window
when a Wimp CloseWindowRequest is
received
(when set the client will not see the
underlying Wimp requests)

3 when set, generate a
Window_HasBeenHidden Event after
hiding the underlying Wimp window

4 when set, indicates that this template is of a
toolbar (see Toolbars on page 322)

help message when a HelpRequest is received for this Window,
then this text is sent in a HelpReply message.
Note that this Help message is only sent if the
gadget (see later) for which the request was
received has not got a Help message of its own, or
if the pointer is not over any gadget.

max help maximum length in bytes of help message
pointer shape this gives the name of a sprite to use as the pointer

shape, when a Pointer Entering Window event is
received for this Window (0 means do not change
the pointer shape).

max pointer shape maximum length in bytes of sprite name
pointer x hot
pointer y hot

the x and y coordinates of the pointer’s hot spot.
These are relative pixels from the top left corner
of the sprite.
288

Window class
✝ these templates must have the Toolbar bit set.

menu the name of the template to use to create a Menu
object for this Window

num keyboard shortcuts the number of keyboard short-cuts which are
associated with this Window

keyboard shortcuts the pointer to the list of keyboard short-cuts for
this Window

num gadgets the number of gadgets which are to appear in this
Window

gadgets the pointer to the list of gadgets for this Window.
default focus the Component Id of the gadget which is given

input focus when the window is shown.
If this field is -1 then no gadget will be given
input focus
if -2 then window will be given input focus (but
no caret) allowing keyboard short-cuts to work
without having any writables

window 88-byte structure is the standard block which is
passed to Wimp_CreateWindow. The window is
shown to contain no icons, since these are
implemented by gadgets.

internal_bl the window template to be used for this toolbar.
Anchored to the bottom left corner inside the
window. ✝

internal_tl the window template to be used for this toolbar.
Anchored to the top left corner inside the
window. ✝

external_bl the window template to be used for this toolbar.
Anchored to the bottom left corner outside the
window. ✝

external_tl the window template to be used for this toolbar.
Anchored to the top left corner outside the
window. ✝

show_event the event code to be raised when the window is
shown.

hide_event the event code to be raised after the window has
been hidden.

Attribute Description
289

Application Program Interface
Keyboard short-cut

The attributes of a Keyboard short-cut are as follows:

Note that because keyboard short-cuts work on Wimp key codes, certain key
combinations (such as Shift-Ctrl-P) will require the client to provide extra code.

Gadget

All gadgets have a common header, followed immediately by a body which is
gadget-specific. The header is described on page 326, and the gadget-specific bodies are
described in their own sections.

Manipulating a Window object

Creating and deleting a Window object

A Window object is created using SWI Toolbox_CreateObject.

When a Window object is created, the following attached objects (see page 11) will be
created (if specified):
● menu
● key show (for each keyboard short-cut)
● Toolbars.

See the attributes table above for an explanation of what these objects are.

There are also attached objects which are associated with gadgets in a Window (see
later):
● click show (for an action button)
● menu (for a Pop-up menu).

Attributes Description
flags word Bit Meaning

0 when set, show attached object as ‘transient’
wimp key code the key code returned by the Wimp in a Key Pressed event

block, for this keyboard short-cut
key event this is the Toolbox event to be raised when the Wimp

delivers a Key Pressed event with this Wimp key code.
0 means deliver no event

key show the name of the template for an object to create and show
when the Wimp delivers a Key Pressed event with this
Wimp key code.
0 means show no object
290

Window class
These attached objects are also created when such a gadget is added to the Window, and
deleted when the gadget is removed.

A Window object is deleted using SWI Toolbox_DeleteObject. If it has any attached
objects (see above), these are also deleted, unless the non-recursive bit is set for this
SWI.

Showing a Window

When a Window object is displayed on the screen using SWI Toolbox_ShowObject it
has the following behaviour:

The Window’s menu

Each Window object can optionally have attached to it a Menu object. The Window
object holds the unique id of this Menu object.

When a Window is created, if the client has specified the name of a Menu template for
that Window, then a Menu object is created from that template, and the id of that Menu
is held in the Window object. This id will be used to show the Menu when the user
presses the Menu button over the Window.

Whenever the user of the application presses the Menu mouse button over a Window,
the Window class module opens its attached Menu object, by making a SWI
Toolbox_ShowObject passing the attached Menu’s id.

Show type Position
0 (default) the underlying window is shown at the last place shown on

the screen, or the coordinates given in its template, if it has
not already been shown

1 (full spec) R3 + 0 visible area minimum x coordinate
R3 + 4 visible area minimum y coordinate
R3 + 8 visible area maximum x coordinate
R3 + 12 visible area maximum y coordinate
R3 + 16 scroll x offset relative to work area
R3 + 20 scroll y offset relative to work area
R3 + 24 Wimp window handle of window to open behind

-1 means top of stack
-2 means bottom of stack
-3 means the window behind the Wimp’s

backwindow
2 (topleft) R3 + 0 visible area minimum x coordinate

R3 + 4 visible area minimum y coordinate
291

Application Program Interface
If the application wishes to perform some operations on the Menu before it is opened
(ticking some entries for example), then by setting the appropriate bit in the Menu’s
flags word, the application can request that a special Toolbox event
(Menu_AboutToBeShown) is delivered to it before the Menu is actually shown. The
precise details of this Toolbox event are described in Menu events on page 197. On
receipt of such a Toolbox event, the client application is expected to make any changes
it wants to the Menu object, and then return to its SWI Wimp_Poll loop.

In most cases a Menu is attached to the Window at resource editing time by entering the
name of the template to use for this Window’s Menu. If the application wishes
dynamically to attach and detach the menu for a given Window (maybe based on a mode
of operation which is defined by the application, e.g. display mode or editing mode),
then this can be done using the Window_SetMenu method described on page 298.

The id of the Menu attached to a Window can be read by using the Window_GetMenu
method.

Window_SetMenu can only be used when a menu is not already being shown for this
Window.

Gadgets in a window

A Window object can optionally contain a number of gadgets. Typically this is used to
create dialogue boxes.

There are many kinds of gadget. The Toolbox provides facilities to allow the client
application to manipulate a particular gadget in a manner which is appropriate to that
gadget, rather than in ‘low-level’ terms like setting the state of a Wimp icon. The set of
gadgets is defined to fit in with the RISC OS 3 Style Guide, and thus to encourage a
standard look and feel across dialogue boxes.

Gadgets are normally specified as part of a Window object template, but they can be
added to and removed from Window’s dynamically at run-time using the
Window_AddGadget and Window_RemoveGadget methods respectively.

Each gadget type defines its own set of methods, and many will have a number of
Toolbox events associated with them. This allows the application to receive Toolbox
events from user actions, rather than having to deal with mouse clicks and drags on
Wimp icons. Much of the low-level Wimp operations are handled automatically by the
Toolbox.

Gadgets are described in Gadgets on page 325.
292

Window class
Keyboard short-cuts

Each Window object can optionally define a set of mappings from Wimp key codes to
Toolbox events. This is particularly useful in allowing the client application to respond
identically to a keystroke or an equivalent menu hit, by giving both the same Toolbox
event. When a given keystroke is returned by the Wimp for the Window object, the
corresponding Toolbox event is raised.

Note that Shift-Ctrl-letter combinations are not allowed.

It is also possible to provide the name of a template for an object which will be created
and shown, when a particular keystroke happens. For example the client may wish to
display a dialogue box when F4 is pressed. If bit 0 of the keyboard short-cut’s flags word
is set, then the object is shown with the ‘Show with Wimp CreateMenu semantics’ bit
set in the R0 passed to Toolbox_ShowObject.

Sets of Keyboard short-cuts will normally be defined by the client application in its
resource file, but they can also be added and removed dynamically using the
Window_AddKeyboardShortcuts (page 303) and Window_RemoveKeyboardShortcuts
(page 304) methods, passing as an argument an array of mappings.

Pointer shapes

Each Window object can optionally have a pointer shape defined, giving the name of a
sprite to use and its hot spot.

Whenever the Wimp pointer enters this Window, causing a PointerEnteringWindow
event, the Toolbox changes the pointer shape appropriately.

In most cases a pointer shape is attached to the Window at resource editing time by
entering the name of the sprite to be used, and the pointer's hot spot. If the application
wishes dynamically to change the pointer for a given Window (maybe based on a mode
of operation which is defined by the application, e.g. display mode or editing mode),
then this can be done using the Window_SetPointer method described in
Window_SetPointer 5 on page 299.

The name of the sprite used for the Window's pointer shape and its hot spot can be read
by using the Window_GetPointer method described in Window_GetPointer 6 on
page 300.

Help messages

Each Window object can optionally have attached to it a Help message.

Whenever the Wimp delivers a HelpRequest message to the client application for this
Window, the attached Help message is sent back automatically by the Toolbox.
293

Application Program Interface
In most cases a help message is attached to the Window at resource editing time. A
Window’s Help message can be set dynamically using the
Window_SetHelpMessage 7 described on page 301.

The text of the Help message can be read using the Window_GetHelpMessage method.

Changing a window’s title

One of the attributes of a Window which is specified in the template for that Window is
the text which appears in its title bar.

A Window’s title can be changed dynamically at run-time using the Window_SetTitle
method.

The current title string can be read using the Window_GetTitle method.

Getting and setting a Window’s client handle

The client handle for a Window is set and read using SWI Toolbox_SetClientHandle
and SWI Toolbox_GetClientHandle respectively.

A typical use of this client handle would be to hold a pointer to a data structure
containing the state of a document which is being displayed in this Window in a
multi-document editor.
294

Window class
Window methods
The following methods are all invoked by calling SWI Toolbox_MiscOp with:

R0 holding a flags word
R1 being a Window id
R2 being the method code which distinguishes this method
R3-R9 potentially holding method-specific data

Window_GetWimpHandle 0

On entry

R0 = flags
R1 = Window object id
R2 = 0

On exit

R0 = Wimp window handle for this window

Use

This method returns the handle of the underlying Wimp window used to implement this
Window object.

C veneer
extern _kernel_oserror *window_get_wimp_handle (unsigned int flags,
 ObjectId window,
 int *window_handle
);
295

Window methods
Window_AddGadget 1

On entry

R0 = flags
R1 = Window object id
R2 = 1
R3 = pointer to description block for gadget

On exit

R0 = component id
R1-R9 preserved

Use

This method adds a gadget to the list of gadgets for this Window object. The format of
the description block depends on the type of gadget being added.

If the Window is currently open on the screen, then the gadget will immediately be
visible in the Window.

If the gadget’s component id is specified as -1, then the Toolbox wil allocate an unused
component id.

C veneer
extern _kernel_oserror *window_add_gadget (unsigned int flags,
 ObjectId window,
 Gadget *gadget,
 ComponentId *gadget_component
);
296

Window class
Window_RemoveGadget 2

On entry

R0 = flags
R1 = Window object id
R2 = 2
R3 = component id

On exit

R1-R9 preserved

Use

This method removes a gadget from a Window object. If the Window is currently
displayed on the screen, then this removal results in a redraw of the Window by the
Toolbox.

C veneer
extern _kernel_oserror *window_remove_gadget (unsigned int flags,
 ObjectId window,
 ComponentId gadget
);
297

Window methods
Window_SetMenu 3

On entry

R0 = flags
R1 = Window object id
R2 = 3
R3 = menu object id

On exit

R1-R9 preserved

Use

This method is used to set the Menu which will be displayed when the Menu button is
pressed over this Window object. The Toolbox handles opening the Menu for you.

If R3 is 0, then the Menu for this Window is detached.

C veneer
extern _kernel_oserror *window_set_menu (unsigned int flags,
 ObjectId window,
 ObjectId menu_id
);

Window_GetMenu 4

On entry

R0 = flags
R1 = Window object id
R2 = 4

On exit

R0 = Menu id

Use

This method is used to get the id of the Menu which will be displayed when the Menu
button is pressed over this Window object.

C veneer
extern _kernel_oserror *window_get_menu (unsigned int flags,
 ObjectId window,
 ObjectId *menu_id
);
298

Window class
Window_SetPointer 5

On entry

R0 = flags
R1 = Window object id
R2 = 5
R3 = pointer to name of sprite to use for pointer
R4 = x hot spot
R5 = y hot spot

On exit

R1-R9 preserved

Use

This method is used to set the Pointer shape which will be used when the pointer enters
this Window object. The Toolbox handles setting the Wimp Pointer shape for you.

If R3 is 0, then the Pointer for this Window is detached.

C veneer
extern _kernel_oserror *window_set_pointer (unsigned int flags,
 ObjectId window,
 char *sprite_name,
 int x_hot_spot,
 int y_hot_spot
);
299

Window methods
Window_GetPointer 6

On entry

R0 = flags
R1 = Window object id
R2 = 6
R3 = pointer to buffer
R4 = size of buffer to hold sprite name
R5 = x hot spot
R6 = y hot spot

On exit

R4 = size of buffer required for sprite name (if R3 was 0)
else buffer pointed at by R3 holds sprite name
R4 holds number of bytes written to buffer

Use

This method is used to get the name of the sprite which will be used when the pointer
enters this Window object, and to get the pointer’s hot spot.

C veneer
extern _kernel_oserror *window_get_pointer (unsigned int flags,
 ObjectId window,
 char *buffer,
 int buff_size,
 int *nbytes,
 int *x_hot_spot,
 int *y_hot_spot
);
300

Window class
Window_SetHelpMessage 7

On entry

R0 = flags
R1 = Window object id
R2 = 7
R3 = pointer to message text

On exit

R1-R9 preserved

Use

This method is used to set the help message which will be returned when a Help Request
message is received for this Window object. The Toolbox handles the reply message for
you.

If R3 is 0, then the Help Message for this Window is removed.

C veneer
extern _kernel_oserror *window_set_help_message (unsigned int flags,
 ObjectId window,
 char *message_text
);
301

Window methods
Window_GetHelpMessage 8

On entry

R0 = flags
R1 = Window object id
R2 = 8
R3 = pointer to buffer
R4 = size of buffer to hold message text

On exit

R4 = size of buffer required for message text (if R3 was 0)
else Buffer pointed at by R3 holds message text
R4 holds number of bytes written to buffer

Use

This method is used to read the help message which will be returned when a Help
Request message is received for this Window object.

C veneer
extern _kernel_oserror *window_get_help_message (unsigned int flags,
 ObjectId window,
 char *buffer,
 int buff_len,
 int *nbytes
);
302

Window class
Window_AddKeyboardShortcuts 9

On entry

R0 = flags
R1 = Window object id
R2 = 9
R3 = number of short-cuts to add
R4 = pointer to memory block containing an array of description blocks for the

keyboard short-cuts. Each block is laid out in memory as described in
Window templates on page 317

On exit

R1-R9 preserved

Use

This method adds a number of keyboard short-cuts to the list of keyboard short-cuts for
this Window object. When a Key Pressed event is received for this Window, the given
Toolbox event is raised as the next Wimp event for the client application.

If any of the keyboard short-cuts are already defined for this Window, then they are
replaced by the new short-cuts.

C veneer
extern _kernel_oserror *window_add_keyboard_shortcuts (unsigned int flags,
 ObjectId window,
 int no_shortcuts,
 KeyboardShortcut *shortcuts
);
303

Window methods
Window_RemoveKeyboardShortcuts 10

On entry

R0 = flags
R1 = Window object id
R2 = 10
R3 = -1 means remove all keyboard short-cuts

or R3 = number of short-cuts to remove
R4 = pointer to an array of key short-cuts to be removed

(number given in R3)

On exit

R1-R9 preserved

Use

This method removes a number of keyboard short-cuts which have been associated with
this Window using the Window_AddKeyboardShortcuts method.

C veneer
extern _kernel_oserror *window_remove_keyboard_shortcuts (unsigned int flags,
 ObjectId window,
 int no_remove,
 KeyboardShortcut *shortcuts
);
304

Window class
Window_SetTitle 11

On entry

R0 = flags
R1 = Window object id
R2 = 11
R3 = pointer to new text for title bar

On exit

R1-R9 preserved

Use

This method changes the text in a Window’s title bar. If the string is too long for the title
bar’s buffer, an error is returned.

C veneer
extern _kernel_oserror *window_set_title (unsigned int flags,
 ObjectId window,
 char *title
);
305

Window methods
Window_GetTitle 12

On entry

R0 = flags
R1 = Window object id
R2 = 12
R3 = pointer to buffer to hold title text (or 0)
R4 = size of buffer

On exit

R4 = size of buffer required (if R3 was 0)
else Buffer pointed at by R3 holds title text
R4 holds number of bytes written to buffer

Use

This method returns the string currently used in a Window’s title bar.

C veneer
extern _kernel_oserror *window_get_title (unsigned int flags,
 ObjectId window,
 char *buffer,
 int buff_size,
 int *nbytes
);
306

Window class
Window_SetDefaultFocus 13

On entry

R0 = flags
R1 = Window object id
R2 = 13
R3 = component id

On exit

R1-R9 preserved

Use

This method sets the default focus component for a window. As with the template, a
value of -1 means no default focus, and -2 means put the focus in the window.

Note that this sets the default, i.e. only takes effect when next shown.

C veneer
extern _kernel_oserror *window_set_default_focus (unsigned int flags,
 ObjectId window,
 ComponentId focus
);

Window_GetDefaultFocus 14

On entry

R0 = flags
R1 = Window object id
R2 = 14

On exit

R0 = component id
R1-R9 preserved

Use

This method returns the default focus component of a window.

C veneer
extern _kernel_oserror *window_get_default_focus (unsigned int flags,
 ObjectId window,
 ComponentId *focus
);
307

Window methods
Window_SetExtent 15

On entry

R0 = flags
R1 = Window object id
R2 = 15
R3 = pointer to extent bounding box:

+0 minimum x coordinate
+4 minimum y coordinate
+8 maximum x coordinate
+12maximum y coordinate

On exit

R1-R9 preserved

Use

This method changes the extent of the underlying Wimp window.

C veneer
extern _kernel_oserror *window_set_extent (unsigned int flags,
 ObjectId window,
 BBox *extent
);
308

Window class
Window_GetExtent 16

On entry

R0 = flags
R1 = Window object id
R2 = 16
R3 = pointer to four word block to hold extent

On exit

R1-R9 preserved and block pointed to by R3 updated:
+0 minimum x coordinate
+4 minimum y coordinate
+8 maximum x coordinate
+12 maximum y coordinate

Use

This method returns the extent of the underlying Wimp window.

C veneer
extern _kernel_oserror *window_get_extent (unsigned int flags,
 ObjectId window,
 BBox *extent
);
309

Window methods
Window_ForceRedraw 17

On entry

R0 = flags
R1 = Window object id
R2 = 17
R3 = pointer to area to redraw:

+0 minimum x coordinate
+4 minimum y coordinate
+8 maximum x coordinate
+12maximum y coordinate

On exit

R1-R9 preserved

Use

This method forces a redraw on the area of the window given by the work area
coordinates pointed to by R3.

C veneer
extern _kernel_oserror *window_force_redraw (unsigned int flags,
 ObjectId window,
 BBox *redraw_box
);
310

Window class
Window_SetToolBars 18

On entry

R0 = mask
bit 0 set means set internal bl toolbar
bit 1 set means set internal tl toolbar
bit 2 set means set external bl toolbar
bit 3 set means set external tl toolbar

R3 = object id of internal bl toolbar
R4 = object id of internal tl toolbar
R5 = object id of external bl toolbar
R6 = object id of external tl toolbar

Use

This method sets the object ids of the toolbars that are attached to a particular window
object. If the object is showing then the new toolbars will be shown, and any toolbars of
the same type will be hidden (it is not possible to have more than one toolbar of each
type). The mask allows selective setting of toolbars.

Passing an Id of zero means that there is no toolbar of that type.

C veneer
extern _kernel_oserror *window_set_tool_bars (unsigned int flags,
 ObjectId window,
 ObjectId ibl,
 ObjectId itl,
 ObjectId ebl,
 ObjectId etl
);
311

Window methods
Window_GetToolBars 19

On entry

R0 = mask
bit 0 set means return internal bl toolbar
bit 1 set means return internal tl toolbar
bit 2 set means return external bl toolbar
bit 3 set means return external tl toolbar

On exit

R0 = object id of internal bl toolbar
R1 = object id of internal tl toolbar
R2 = object id of external bl toolbar
R3 = object id of external tl toolbar

Use

This method returns the object ids of the toolbars that are attached to a window object.
By setting the mask it is possible to control which ids are returned.

C veneer
extern _kernel_oserror *window_get_tool_bars (unsigned int flags,
 ObjectId window,
 ObjectId *ibl,
 ObjectId *itl,
 ObjectId *ebl,
 ObjectId *etl
);
312

Window class
Other SWIs

SWI Window_GetPointerInfo (0x82883)

On entry

R0 = flags

On exit

R0 = x position
R1 = y position
R2 = buttons

bit set
0 adjust
1 menu
2 select
8 not over a toolbox window

R3 = Window id, or Wimp window handle if bit 8 set in R2
R4 = component id, or icon handle if bit 8 of R2 set

Use

This SWI is analogous to Wimp_GetPointerInfo, but returns Object ids and
Component ids if the pointer is over a toolbox window.

C veneer
extern _kernel_oserror *window_get_pointer_info (unsigned int flags,
 int *x_pos,
 int *y_pos,
 int *buttons,
 ObjectId *window,
 ComponentId *component
);
313

Other SWIs
SWI Window_WimpToToolbox (0x82884)

On entry

R0 = flags
R1 = Wimp window handle
R2 = icon handle

On exit

R0 = toolbox object handle for window
R1 = component id

Use

This SWI returns the object handle and component id that contains the specified icon.

If the Wimp handle is not known by the toolbox, then the returned object id is 0.

Note that this only applies to Window objects.

C veneer
extern _kernel_oserror *window_wimp_to_toolbox (unsigned int flags,
 int window_handle,
 int icon_handle,
 ObjectId *object,
 ComponentId *component
);
314

Window class
SWI Window_ExtractGadgetInfo (0x828be)

On entry

R0 = flags
R1 = pointer window template
R2 = component id to match

On exit

R0 = pointer to Gadget
R1 = size of gadget

Use

This SWI returns a pointer to a block of memory suitable for passing to
Window_AddGadget. It is typically used in conjunction with
Toolbox_LookupTemplate and intended to be used for dynamic windows such as the
Print dialogue box, or a task manager type application.

Note that the returned area should be copied as it cannot be guaranteed to persist for the
duration of the task.

See Implementing hotspots on page 55 for an example of using this SWI.

C veneer
extern _kernel_oserror *window_extract_gadget_info (unsigned int flags,
 ObjectTemplateHeader *templ,
 ComponentId gadget,
 void **desc,
 int *size
);
315

Window events
Window events
The Window class generates the following Toolbox events:

Window_AboutToBeShown (0x82880)

Block

+ 8 0x82880
+ 12 flags (as passed in to Toolbox_ShowObject)
+ 16 value as passed in R2 to ToolBox_ShowObject
+ 20... block as passed in R3 to ToolBox_ShowObject

Use

This Toolbox event is raised by the Toolbox when Toolbox_ShowObject is called on a
Window which has the appropriate bit set in its template flags word. It enables a client
application to set any appropriate attributes of the Window, before it appears on the
screen.

C data type
typedef struct
{
 ToolboxEventHeader hdr;
 int show_type;
 union
 {
 TopLeft top_left;
 WindowShowObjectBlock full_spec;
 } info;
} WindowAboutToBeShownEvent;
316

Window class
Window_HasBeenHidden (0x82890)

Block

+ 8 0x82890

Use

This Toolbox event is raised by the Toolbox when Toolbox_HideObject is called on a
Window which has the appropriate bit set in its template flags word. It enables a client
application to clear up after a window has been closed. It is also raised when clicking a
non-local action button or clicking outside a window that was opened with 'CreateMenu'
semantics.

C data type
typedef struct
{
 ToolboxEventHeader hdr;
} WindowHasBeenHiddenEvent;

Window templates
The layout of a Window template is shown below. Fields which have types
MsgReference and StringReference are those which will require relocation when they
are loaded from a resource file. If the template is being constructed in memory, then
these fields should be real pointers (i.e. they do not require relocation). Note that the
version in the object header should be 102.

For more details on relocation, see appendix Resource File Formats on page 499.

Field Size in bytes Type
flags 4 word
help_message 4 MsgReference
max_help 4 word
pointer_shape 4 StringReference
max_pointer_shape 4 word
pointer_x_hot 4 word
pointer_y_hot 4 word
menu 4 StringReference
num_keyboard_shortcuts 4 word
keyboard_shortcuts 4 ObjectOffset
num_gadgets 4 word
gadgets 4 ObjectOffset
317

Window templates
default_focus 4 word
show_event 4 word
internal_bl 4 StringReference
internal_tl 4 StringReference
external_bl 4 StringReference
external_tl 4 StringReference
hide_event 4 word
window 88 WimpWindow
data variable array of bytes

Field Size in bytes Type
318

Window class
A WimpWindow is an 88-byte structure with the following fields:

Keyboard short-cut

Field Size in bytes Type
vis_xmin 4 word
vis_ymin 4 word
vis_xmax 4 word
vis_ymax 4 word
scroll_x 4 word
scroll_y 4 word
behind 4 word
window_flags 4 word
title_fore 1 byte
title_back 1 byte
work_fore 1 byte
work_back 1 byte
scroll_outer 1 byte
scroll_inner 1 byte
title_inputfocus 1 byte
filler 1 byte (must be 0)
work_xmin 4 word
work_ymin 4 word
work_xmax 4 word
work_ymax 4 word
title_flags 4 word
button_type 4 word
sprite_area 4 SpriteAreaReference
min_width 2 half-word
min_height 2 half-word
title_text 4 MsgReference
title_validation 4 StringReference
title_buflen 4 word
num_icons 4 word (must be zero)

Field Size in bytes Type
flags 4 word
wimp_key_code 4 word
319

Window Wimp event handling
Gadget

Window Wimp event handling
Certain Wimp events for a Window are handled by the Window class, and either acted
upon for you, or result in the raising of a Toolbox event. Such events are listed below:

key_event 4 word
key_show 4 StringReference

Field Size in bytes Type
flags 4 word
type/size 4 word
xmin 4 word
ymin 4 word
xmax 4 word
ymax 4 word
component_id 4 word
help_text 4 MsgReference
 max_help 4 word
data variable array of bytes

Wimp event Action
Open Window Request if the ‘auto-open’ bit is set for this Window

object, then Toolbox_ShowObject is called for
this Window

Close Window Request if the ‘auto-close’ bit is set for this Window
object, then Toolbox_HideObject is called for
this Window

Pointer Leaving Window if there is a pointer shape defined for this
Window, then the pointer is set back to its
default shape

Pointer Entering Window if there is a pointer shape defined for this
Window, then the pointer is set to that shape

Mouse Click if the Menu button has been pressed, and there is
a Menu object attached to this Window, then the
Menu is shown using Toolbox_ShowObject

Field Size in bytes Type
320

Window class
Key Pressed if a keyboard short-cut for the given Wimp key
code is attached to this Window, then its
Toolbox event is raised as the next Wimp event
for the client application

User Msg Message_HelpRequest
if a help message is attached to this Window,
then a reply is sent on the application’s behalf

Wimp event Action
321

Toolbars
Toolbars
Toolbars are attachments to windows, and are used mainly as tool boxes and status lines.
They cannot exist purely by themselves. By using the toolbars supplied by the Window
module, applications will have a consistent mechanism for displaying/accessing such
functionality. It is not intended that they be used for anything beyond this.

User interface
A toolbar is a restricted window object – it cannot have any window furniture (such as a
title bar), nor does it have an absolute position when shown on the screen. It is anchored
either to the bottom left or to the top left of the parent's visible area; i.e. it does not move
or scroll when the parent scrolls its work area.

A toolbar can be considered to be either internal (in which case its size will be clipped
when the parent resizes) or external (i.e. lying entirely outside the parent's visible area).
On moving a window with an external toolbar close to the extremities of the screen, the
bar will 'bounce' over the window until the window itself moves off screen.

Toolbars are displayed in a definite order:
● external toolbars will always be displayed above internal ones

internal bottom left

internal top left

external bottom left

external top left
322

Window class
● top left toolbars will always be displayed above bottom left ones.

Usually, this will only be noticed when reducing the size of a window.

For example, when moving a window to the left of the screen, the external toolbar will
be displayed above any toolbar inside the window.

Use of toolbars

Application tool box

It is anticipated that the top left variety of toolbars will be used as application tool boxes,
i.e. they will consist of gadgets that are used to control the behaviour of the application.
The decision as to whether an internal or external one is used would typically depend on
the number of ‘tools’ that are required.

Status lines

Internal bottom left toolbars are usually for status lines. For example:

The data is loading, 50% complete

and external bottom left toolbars for toolboxes that require width (e.g. because they
contain a writable) but are unlikely to be as wide as the work area (in which case they
would leave an irregular work space).

Note that if a toolbar contains a non-local action button then clicking on it will hide that
toolbar.

Application program interface

Attributes
Toolbar object attributes are described in the window attributes section on page 288.

Note that a toolbar should not have toolbars itself.
323

Toolbar methods
Manipulating a toolbar

Creating and deleting a toolbar object

Toolbar objects are created and deleted using the standard Toolbox_CreateObject and
Toolbox_DeleteObject methods.

Showing and Hiding

A toolbar can only be shown whilst its parent is showing. The only defined show type is
ShowAsDefault. This will make the window module show the toolbar in the place
appropriate for its type. It is possible to hide a toolbar without hiding its parent. If a
toolbar is hidden, then this is 'remembered' such that hiding then showing the parent will
result in the toolbar still being hidden.

When a toolbar object is displayed on the screen using SWI Toolbox_ShowObject it
behaves in the same way as shown in User interface on page 322.

Toolbar methods
Toolbars use the same methods as windows (see Window methods on page 295).
However, the behaviour of the following methods are undefined:

Window_SetTitle
Window_GetTitle
Window_SetToolBars
Window_GetToolBars
Window_AddKeyboardShortcuts
Window_RemoveKeyboardShortcuts

Getting and setting the toolbars associated with a window object are described in
Window_GetToolBars 19 on page 312 and Window_SetToolBars 18 on page 311.

Normally this would be done using ResEd.
324

Window class
Gadgets

Application Program Interface
Gadgets are not objects in their own right, but exist only as a component of a Window
object. Within that object they have unique component ids.

A gadget is essentially a part of a Window which provides functionality (for example, a
button or a slider), and is usually implemented using Wimp icons. The use of icons is
transparent to the client, who manipulates the gadgets using higher-level, abstract
methods which are appropriate to the particular gadget type.

Wherever a gadget is implemented as a set of Wimp icons, the client can access these
using low-level Wimp SWIs, but in the vast majority of cases this should not prove
necessary.

Some gadgets are 'Composite' in that they consist of gadgets themselves. These are
identifiable by the client as they have a NULL icon list. The client will receive toolbox
events on both the composite gadget and the gadgets that make them up, but will
generally only be interested in the former. Certain gadgets have methods for accessing
the component ids of the gadgets that make them up, e.g.
NumberRange_GetComponents.

Some gadgets support anti-aliased fonts in place of the system font (which may itself be
an outline font on RISC OS 3 (version 3.5). When this is the case, the Window module
handles mode changes and losing fonts on the client's behalf.

The window module reserves all component ids greater than 0xffffff. Standard
dialogues use the range 0x800000 to 0xffffff, leaving 0 to 0x7fffff free for the client.

There are many kinds of gadget. The Toolbox provides facilities to allow the client
application to manipulate a particular gadget in a manner which is appropriate to that
gadget, rather than in ‘low-level’ terms like setting the state of a Wimp icon. The set of
gadgets is defined to fit in with the RISC OS 3 Style Guide, and thus to encourage a
standard look and feel across dialogue boxes.

The available set of gadgets is currently:

Gadget See page
Action buttons 339
Adjuster arrows 347
Button gadget 348
Display fields 355
Draggable gadgets 358
Labels 366
325

Application Program Interface
Attributes
All gadgets have the following attributes which are specified in a window template, and
most can be manipulated at run-time by the client application:

Note that for the gadgets listed below, the size is 'built in' to the Window module, and so
the size can be set to zero though gadgets.h defines gadget_Type which includes the
size.

Labelled boxes 367
Number ranges 368
Option buttons 376
Pop-up menus 383
Radio buttons 387
Sliders 395
String sets 403
Writable fields 411

Attribute Description
flags word Bit Meaning

30 when set, gadget is at the back, i.e. created first
31 when set, gadget is ‘faded’

type/size this holds the size of the gadget’s template (including its
header) in its top two bytes, and the type of the gadget in
its lower two bytes. The list of currently known gadget
types is given below.

xmin the minimum x coordinate of the gadget’s bounding box
(in window work area coordinates).

ymin the minimum y coordinate of the gadget’s bounding box
(in window work area coordinates).

xmax the maximum x coordinate of the gadget’s bounding box
(in window work area coordinates).

ymax the maximum y coordinate of the gadget’s bounding box
(in window work area coordinates).

component id this identifies the gadget uniquely within this Window
help message when a HelpRequest message is received for this gadget,

then this string is sent back in a HelpReply message. If 0,
then the help message for the Window will be sent.

 max help maximum length in bytes of the gadget’s help message.

Gadget See page
326

Window class
The type of a gadget is one of:

Manipulating a Gadget
Each gadget type defines its own set of methods, and many will have a number of
Toolbox events associated with them. This allows the application to receive Toolbox
events from user actions, rather than having to deal with mouse clicks and drags on
Wimp icons. Most of the low-level Wimp operations are handled automatically by the
Toolbox.

Normally all of the gadgets in a particular Window object will be specified in the
template for that Window in the resource file, but the Toolbox provides two methods for
adding and removing gadgets from a Window object dynamically, namely
Window_AddGadget and Window_RemoveGadget.

All gadgets have standard attributes, which give the gadget’s component id in this
Window, the gadget’s bounding box, and the help message to be associated with this
gadget. These attributes are normally specified in the application’s resource file; the
Help messages can be changed and read using the methods
Gadget_SetHelpMessage/Gadget_GetHelpMessage. Sending back a help message is
automatically handled by the Toolbox.

Gadget type Type field
Action Button 128
Option Button 192
Labelled Box 256
Label 320
Radio Button 384
Display Field 448
Writable Field 512
Slider 576
Draggable 640
PopUp Menu 704
Adjuster Arrow 768
Number Range 832
String Set 896
Button 960
327

Application Program Interface
Each gadget has a flags word which defines the behaviour of that gadget; the exact list of
bit settings in this flags word depends on the type of gadget. The client can read and set
this word using the Gadget_GetFlags and Gadget_SetFlags methods. The top 8 bits of
this flags word are generic flags of relevance to all gadgets. The other 24 bits are used to
hold Gadget-specific flags. Currently the defined generic flags are:

There is a gadget method which returns a list of Wimp icon numbers for the icons used
to implement the gadget. The details of this list and the way in which icon numbers map
to the individual components of the gadget are specific to each gadget, and this mapping
is documented below for each gadget type. The method is called Gadget_GetIconList.

This is implementation specific and subject to change in future releases of the window
module:

Bit Meaning when set
30 Gadget is at the back, i.e. created first
31 Gadget is ‘faded’

Gadget type Number of icon
numbers returned

Icon list

action button 1 the icon for the action button
option button 2 the icon for the sprite

the icon for the text
labelled box 2 the icon for the label

the icon for the box
label 1 the icon for the label
radio button 2 the icon for the sprite

the icon for the text
display field 1 the icon for the display field
writable field 1 the icon for the writable field
slider 3 the icon for the ‘well’

the icon for the ‘background’
the icon for the ‘bar’

draggable 1 the icon for the draggable
pop-up menu 1 the icon for the PopUp’s button
adjuster arrow 1 the icon for the arrow
number range 0 composite
string set 0 composite
button 1
328

Window class
Composite gadgets have specific methods to get the component ids of their constituent
gadgets. In this way run time methods (e.g. the colour of a slider in a number range) may
be applied to the underlying gadgets. It is unlikely however that this will be particularly
useful and could in fact affect the behaviour of the toolbox.
329

Generic gadget methods
Generic gadget methods
In all of the methods on gadgets

R0 is used as a flags word
R1 holds the object id of this gadget’s parent Window object
R2 holds the method code
R3 holds the component id for this gadget
R4-R9 potentially holding method-specific data

The following methods can be applied to all gadgets.

Gadget_GetFlags 64

On entry

R0 = 0
R1 = Window object id
R2 = 64
R3 = Gadget component id

On exit

R0 = flags settings for this gadget

Use

This method returns the flags word for the given gadget.

C veneer
extern _kernel_oserror *gadget_get_flags (unsigned int flags,
 ObjectId window,
 ComponentId gadget,
 unsigned int *flags_settings
);
330

Window class
Gadget_SetFlags 65

On entry

R1 = Window object id
R2 = 65
R3 = Gadget component id
R4 = new flags settings

On exit

R1-R9 preserved

Use

This method sets the flags word for the given gadget. The only flags that can usefully be
changed are the faded bits. Modifying other bits is undefined.

C veneer
extern _kernel_oserror *gadget_set_flags (unsigned int flags,
 ObjectId window,
 ComponentId gadget,
 unsigned int new_flags_settings
);
331

Generic gadget methods
Gadget_SetHelpMessage 66

On entry

R0 = flags
R1 = Window object id
R2 = 66
R3 = Gadget component id
R4 = pointer to help message text

On exit

R1-R9 preserved

Use

This method sets the help message which will be returned, when a help request is
received for this gadget.

C veneer
extern _kernel_oserror *gadget_set_help_message (unsigned int flags,
 ObjectId window,
 ComponentId gadget,
 char *message_text
);
332

Window class
Gadget_GetHelpMessage 67

On entry

R0 = flags
R1 = Window object id
R2 = 67
R3 = Gadget component id
R4 = pointer to buffer
R5 = size of buffer

On exit

R5 = size of buffer required to hold help text (if R4 was 0)
else buffer pointed at by R4 holds help text
R5 gives number of bytes written to buffer

Use

This method returns the help message which will be returned, when a help request is
received for this gadget.

C veneer
extern _kernel_oserror *gadget_get_help_message (unsigned int flags,
 ObjectId window,
 ComponentId gadget,
 char *buffer,
 int buff_size,
 int *nbytes
);
333

Generic gadget methods
Gadget_GetIconList 68

On entry

R0 = flags
R1 = Window object id
R2 = 68
R3 = Gadget component id
R4 = pointer to buffer
R5 = size of buffer

On exit

R5 = size of buffer required to hold icon list (if R4 was 0)
else buffer pointed at by R4 holds list of Wimp icon numbers for this gadget
R5 holds number of bytes written to buffer

Use

This method returns a list of Wimp icon numbers (integers) for the icons used to
implement this gadget. For a composite gadget the size returned will be zero.

C veneer
extern _kernel_oserror *gadget_get_icon_list (unsigned int flags,
 ObjectId window,
 ComponentId gadget,
 int *buffer,
 int buff_size,
 int *nbytes
);

The client should not cache the results of this call, since these values may change at a
later date.
334

Window class
Gadget_SetFocus 69

On entry

R0 = flags

On exit

R1-R9 preserved

Use

This method sets the input focus to the given component of a window. Note that such a
component must be a writable field, or a composite gadget which includes a writable
field such as a number range.

C veneer
extern _kernel_oserror *gadget_set_focus (unsigned int flags,
 ObjectId window,
 ComponentId component
);

Gadget_GetType 70

On entry

R0 = 0
R1 = Window object id
R2 = 70
R3 = Gadget component id

On exit

R0 = type of this Gadget

Use

Usage:

This method returns the type of the given gadget.

C veneer
extern _kernel_oserror *gadget_get_type (unsigned int flags,
 ObjectId window,
 ComponentId gadget,
 int *type
);
335

Generic gadget methods
Gadget_MoveGadget 71

On entry

R0 = flags
R1 = Window object id
R2 = 71
R3 = Gadget component id
R4 = pointer to new bounding box

On exit

R1-R9 preserved

Use

This method moves an already created gadget within a window. Note that as a new
bounding box is given, it allows the gadget to be resized as well, though the exact
behaviour of this feature will depend on the gadget type.

C veneer
extern _kernel_oserror *gadget_move_gadget (unsigned int flags,
 ObjectId window,
 ComponentId gadget,
 BBox *new_bbox
);
336

Window class
Gadget_GetBBox 72

On entry

R0 = flags
R1 = Window object id
R2 = 72
R3 = Gadget component id
R4 = pointer to 4 word buffer

On exit

R1-R9 preserved

Use

This method copies the bounding box of a gadget into the supplied buffer.

C veneer
extern _kernel_oserror *gadget_get_bbox (unsigned int flags,
 ObjectId window,
 ComponentId gadget,
 BBox *box
);
337

Gadget Wimp event handling
Gadget Wimp event handling
Wimp event Action
Mouse Click if Select or Adjust on an action button, option button or

radio button member, then if a Toolbox event is associated
with this event, it is raised. Otherwise the appropriate
default Toolbox event is raised.
if on a pop-up menu button, then the associated Menu is
shown.
if on a draggable then a
Draggable_Click/Draggable_DoubleClick is reported.

Key Pressed This depends on the type of gadget.
For a writable field, if the keystroke is a down or up arrow,
then the caret is placed in the next or previous writable field
(using the field’s ‘before’ and ‘after’ values).
If return is pressed, then the Default action button is
activated (if present).

User Message Message_HelpRequest
if a help message is attached to the gadget, then a reply is
sent on the application’s behalf.
338

Window class
Action buttons
An action button is normally used to invoke an operation which is available from a
dialogue box (e.g. a Cancel button or an OK button):

Such a gadget contains a text string, which is specified when the gadget is created.

The above attributes can be set and read using the methods

ActionButton_SetText / ActionButton_GetText

Whenever the user clicks the Select or Adjust buttons on an action button an
ActionButton_Selected event is raised with the flags word indicating which mouse
button was used. The client can supply an alternative Toolbox event code in the template
description for the action button, and can set and read this event code at run-time using
the ActionButton_SetEvent and ActionButton_GetEvent methods.

The client can also specify an object which is to be shown when the action button is
clicked on using the Select or Adjust buttons. The name of this object can be given in the
action button template or manipulated at run-time using the
ActionButton_SetClickShow and ActionButton_GetClickShow methods.

In a dialogue box, one action button can be chosen as the Default action button. This
button is displayed with a distinctive border, and is activated when Return is pressed. An
action button is marked as Default by setting a bit in the flags word for the gadget.

One action button can also be marked as the Cancel action button, by setting a bit in its
flags word. This action button is also activated when its parent dialogue box has the
input focus, and the user presses Escape.

By default, when an action button is clicked using Select, its parent dialogue box is
closed. This behaviour can be over-ridden by setting a bit in the action button’s flags
word, to indicate that it is a ‘local’ button, whose effect is only to raise its associated
Toolbox event. This facility is generally used for buttons which only have a local effect
on the state of the dialogue box itself (e.g. a Try button in a font selector).

action buttons
339

Action buttons
Clicking Adjust on an action button, raises its Toolbox event and keeps its parent
dialogue box open (if it is marked as a Cancel action button, then the contents of any
Gadgets are returned to how they were when the parent window was last shown). The
Toolbox does not do this for you.

Bits in the flags word for an action button have the following meaning:

Action button methods

ActionButton_SetText 128

On entry

R0 = flags
R1 = Window object id
R2 = 128
R3 = Gadget component id
R4 = pointer to text to appear in button

On exit

R1-R9 preserved

Use

This method sets the text which will be displayed in this action button.

C veneer
extern _kernel_oserror *actionbutton_set_text (unsigned int flags,
 ObjectId window,
 ComponentId action_button,
 char *text
);

Bit Meaning
0 this is the Default action button
1 this is the Cancel action button
2 this is a local action button
3 if set, then the ‘click show’ object will be shown

transiently (i.e. with Wimp_CreateMenu
semantics – default is to show persistently)
340

Window class
ActionButton_GetText 129

On entry

R0 = flags
R1 = Window object id
R2 = 129
R3 = Gadget component id
R4 = pointer to buffer
R5 = size of buffer

On exit

R5 = size of buffer required to hold text (if R4 was 0)
else buffer pointed at by R4 holds text
R5 holds number of bytes written to buffer

Use

This method returns the text which is currently displayed in this action button.

C veneer
extern _kernel_oserror *actionbutton_get_text (unsigned int flags,
 ObjectId window,
 ComponentId action_button,
 char *buffer,
 int buff_size,
 int *nbytes
);
341

Action buttons
ActionButton_SetEvent 130

On entry

R0 = flags
R1 = Window object id
R2 = 130
R3 = Gadget component id
R4 = Toolbox event code

On exit

R1-R9 preserved

Use

This method sets the Toolbox event code which will be raised when this action button is
clicked. The rest of the Toolbox event block remains the same as in
ActionButton_Selected.

C veneer
extern _kernel_oserror *actionbutton_set_event (unsigned int flags,
 ObjectId window,
 ComponentId action_button,
 int event
);
342

Window class
ActionButton_GetEvent 131

On entry

R0 = flags
R1 = Window object id
R2 = 131
R3 = Gadget component id

On exit

R0 holds Toolbox event code

Use

This method returns the Toolbox event code which will be raised when this action
button is clicked.

C veneer
extern _kernel_oserror *actionbutton_get_event (unsigned int flags,
 ObjectId window,
 ComponentId action_button,
 int *event
);
343

Action buttons
ActionButton_SetClickShow 132

On entry

R0 = flags
R1 = Window object id
R2 = 132
R3 = Gadget component id
R4 = object id of the object to show (or 0)
R5 = show flags: bit 0

if clear show persistently
if set show transiently

On exit

R1-R9 preserved

Use

This method allows the client to specify the object to show when the user clicks Select
or Adjust on the action button. By setting bit 0 of R5 it is possible to control whether the
show is persistent or not.

If R4 is 0, then no object should be shown.

C veneer
extern _kernel_oserror *actionbutton_set_click_show (unsigned int flags,
 ObjectId window,
 ComponentId action_button,
 ObjectId object,
 int show_flags
);
344

Window class
ActionButton_GetClickShow 133

On entry

R0 = flags
R1 = Window object id
R2 = 133
R3 = Gadget component id

On exit

R0 = id of object to be shown
R1 = show flags

Use

This method returns the object id of the object which will be shown when the user clicks
Select or Adjust on the action button. If bit 0 of R1 is set on exit, it means that the object
will be shown transiently.

C veneer
extern _kernel_oserror *actionbutton_get_click_show (unsigned int flags,
 ObjectId window,
 ComponentId action_button,
 ObjectId *object,
 int * show_flags
);
345

Action buttons
Action button Toolbox events

ActionButton_Selected (0x82881)

Block

+ 8 0x82881
+ 12 flags

bits 0, 1 and 2 show how the activation was done:
bit 0 set means Adjust was held down
bit 1 reserved
bit 2 set means Select was held down
If bits 0-2 are all 0, then Return was pressed on a default action
button, or Escape was pressed activating the cancel action button.

bits 3, 4 and 5 indicate what type of button it is:
bit 3 set means that this is a Default action button
bit 4 set means that this is a Cancel action button
bit 5 set means that this is a local action button (i.e its parent window

has not been closed)

Use

This Toolbox event is raised when the user clicks on an action button (or in the case of a
default action button presses Return), and the client has not specified their own event to
be associated with this button (by setting the event in the template to non-zero).

The returned flags word indicates whether the action button is a default and/or a cancel
button, and also which mouse button was used to select the button.

C data type
typedef struct
{
 ToolboxEventHeader hdr;
} ActionButtonSelectedEvent;

Action button templates
Field Size in bytes Type
text 4 MsgReference
max_text_len 4 word
click_show 4 StringReference
event 4 word
346

Window class
Adjuster arrows
An adjuster arrow gadget will be displayed as an up, down, left or right arrow icon, and
clicking on the arrow will raise an Adjuster_Clicked Toolbox event, with an indication
of whether the change is up or down:

The adjuster arrow’s flags word indicates whether the adjuster is an incrementor or
decrementor. There is also a bit to indicate whether this is part of an ‘up/down’ or
‘left/right’ pair.

Bits in the flags word for an adjuster arrow have the following meaning:

Adjuster arrows Toolbox events

Adjuster_Clicked (0x8288c)

Block

+ 8 0x8288c
+ 16 (0 ⇒ down, 1 ⇒ up)

Use

This Toolbox event is raised when the user clicks the mouse on an adjuster arrow
(Adjust clicks on a down arrow are reported as ‘up’, on an up arrow as ‘down’).

C data type
typedef struct
{
 ToolboxEventHeader hdr;
 int direction;
} AdjusterClickedEvent;

Adjuster arrow templates
There are no extra fields than those in the gadget header.

Bit Meaning
0 set ⇒ ‘increment’

clear ⇒ ‘decrement’
1 set ⇒ one of an ‘up/down’ pair

clear one of a ‘left/right’ pair

adjuster arrows
347

Button gadget
Button gadget
The Button gadget is similar to a Wimp icon. The main differences are that a Button will
always have indirected data and that not all icon flags are settable:
● A Button created as sprite only cannot be made into any sort of text Button.
● A Button created as text only cannot be made into a sprite only Button.
● A sprite only Button can only refer to sprites by name and these must be in the

Wimp sprite pool or the task’s sprite area.

Bits in the flags word for a Button gadget have the following meanings:

Button methods

Button_GetFlags 960

On entry

R0 = flags
R1 = Window object id
R2 = 960
R3 = Gadget component id

On exit

R0 = icon flags
R1-R9 preserved

Use

This method returns the flags of the given button gadget. The bits have the same
meaning as those of a Wimp Icon.

C veneer
extern _kernel_oserror *button_get_flags (unsigned int flags,
 ObjectId window,
 ComponentId button,
 int *icon_flags
);

Bit Meaning
0 Use the task's sprite area (requires the window to have client sprite

area) for sprite only buttons else use the Wimp sprite pool
1 return menu clicks
348

Window class
Button_SetFlags 961

On entry

R0 = flags
R1 = Window object id
R2 = 961
R3 = Gadget component id
R4 = clear word
R5 = EOR word

On exit

R1-R9 preserved

Use

This method sets the flags of a button. The effect of the clear word and the EOR word
are analogous to those of Wimp_SetIconState, except that, as described above, not all
combinations are settable.

C veneer
extern _kernel_oserror *button_set_flags (unsigned int flags,
 ObjectId window,
 ComponentId button,
 int clear_word,
 int EOR_word
);
349

Button gadget
Button_SetValue 962

On entry

R0 = flags
R1 = Window object id
R2 = 962
R3 = Gadget component id
R4 = new value

On exit

R1-R9 preserved

Use

This method sets the value (i.e. text or sprite name) of a Button.

C veneer
extern _kernel_oserror *button_set_value (unsigned int flags,
 ObjectId window,
 ComponentId button,
 char *value
);
350

Window class
Button_GetValue 963

On entry

R0 = flags
R1 = Window object id
R2 = 963
R3 = Gadget component id
R4 = pointer to buffer to hold string
R5 = size of buffer

On exit

R5 = size of buffer required (if R4 was 0)
else buffer pointed at by R4 holds string
R5 holds number of bytes written to buffer

Use

This method returns the value of a Button.

C veneer
extern _kernel_oserror *button_get_value (unsigned int flags,
 ObjectId window,
 ComponentId button,
 char *buffer,
 int buff_size,
 int *nbytes
);
351

Button gadget
Button_SetValidation 964

On entry

R0 = flags
R1 = Window object id
R2 = 964
R3 = Gadget component id
R4 = new value

On exit

R1-R9 preserved

Use

This method sets the validation string (e.g. sprite name) of a Button.

C veneer
extern _kernel_oserror *button_set_validation (unsigned int flags,
 ObjectId window,
 ComponentId button,
 char *value
);
352

Window class
Button_GetValidation 965

On entry

R0 = flags
R1 = Window object id
R2 = 965
R3 = Gadget component id
R4 = pointer to buffer to hold string
R5 = size of buffer

On exit

R5 = size of buffer required (if R4 was 0)
else buffer pointed at by R4 holds string
R5 holds number of bytes written to buffer

Use

This method returns the validation string of a Button.

C veneer
extern _kernel_oserror *button_get_validation (unsigned int flags,
 ObjectId window,
 ComponentId button,
 char *buffer,
 int buff_size,
 int *nbytes
);
353

Button gadget
Button_SetFont 966

On entry

R0 = flags
R1 = Window object id
R2 = 966
R3 = Gadget component id
R4 = pointer to font name to use
R5 = width in 16ths of a point
R6 = height in 16ths of a point

On exit

R1-R9 preserved

Use

This method makes the Button use an anti-aliased font. If the font name is NULL, then
the field will use system font.

C veneer
extern _kernel_oserror *button_set_font (unsigned int flags,
 ObjectId window,
 ComponentId button,
 char *font_name,
 int width,
 int height
);

Button toolbox events
The button gadget does not have any toolbox events. All click or key presses are
returned as Wimp events but with the component and window id of the tasks id block
updated.

Button templates
Field Size in bytes Type
button_flags 4 Word
value 4 MsgReference
max_value 4 word
validation 4 StringReference
max_validation 4 word
354

Window class
Display fields
A display field gadget is used to display information in a ‘read-only’ manner:

The display field has a ‘slabbed in’ boxed display area in which a text string is
displayed. The contents of the display area can be set and read using the
DisplayField_SetValue and DisplayField_GetValue methods.

Bits in the flags word for a Label have the following meaning:

Display field methods

DisplayField_SetValue 448

On entry

R0 = flags
R1 = Window object id
R2 = 448
R3 = Gadget component id
R4 = pointer to text string to use

On exit

R1-R9 preserved

Use

This method sets the text string shown in a display field. The change is immediately
visible if the parent dialogue box is currently on the screen.

C veneer
extern _kernel_oserror *displayfield_set_value (unsigned int flags,
 ObjectId window,
 ComponentId display_field,
 char *text
);

Bit Meaning
1-2 justification:

0 ⇒ left-justified
1 ⇒ right-justified
2 ⇒ centred
355

Display fields
DisplayField_GetValue 449

On entry

R0 = flags
R1 = Window object id
R2 = 449
R3 = Gadget component id
R4 = pointer to buffer
R5 = size of buffer

On exit

R5 = size of buffer required else (if R4 was 0)
buffer pointed at by R4 contains text
R5 holds number of bytes written to buffer

Use

This method returns the text string shown in a display field.

C veneer
extern _kernel_oserror *displayfield_get_value (unsigned int flags,
 ObjectId window,
 ComponentId display_field,
 char *buffer,
 int buff_size,
 int *nbytes
);
356

Window class
DisplayField_SetFont 450

On entry

R0 = flags
R1 = Window object id
R2 = 450
R3 = Gadget component id
R4 = pointer to font name to use
R5 = width in 16ths of a point
R6 = height in 16ths of a point

On exit

R1-R9 preserved

Use

This method makes the display field use an anti-aliased font. If the font name is NULL,
then the field will use system font.

C veneer
extern _kernel_oserror *displayfield_set_font (unsigned int flags,
 ObjectId window,
 ComponentId display_field,
 char *font_name,
 int width,
 int height
);

Display field templates
Field Size in bytes Type
text 4 MsgReference
max_text_len 4 word
357

Draggable gadgets
Draggable gadgets
A draggable gadget consists of a sprite, text or text&sprite which appears in a dialogue
box, and can be dragged using the mouse. When the drag occurs, if this is a sprite or
text&sprite draggable, then the Toolbox will use the standard CMOS bit to decide
whether to do a ‘solid’ drag or a ‘dotted line’ drag.

Solid dragging makes use of the DragAnObject module allowing both text and sprite to
be dragged (unlike DragASprite).

If it is a sprite draggable gadget, then the sprite used can be set and read dynamically
using the Draggable_SetSprite/Draggable_GetSprite methods.

If it is a text draggable gadget, then the text used can be set and read dynamically using
the Draggable_SetText/Draggable_GetText methods.

With a draggable of type click or doubleclick, a clicks or double click on the gadget will
be returned as a Wimp mouse click event, but the toolbox id block will be updated to
reflect the component and window (i.e. no special toolbox event is returned).

When the user begins to drag a draggable, the client can choose to receive a
Draggable_DragStarted Toolbox event. When the drag ends, the client will always
receive a Draggable_DragEnded Toolbox event.

Bits in the flags word for a draggable have the following meaning:

Bit Meaning
0 warn of drag start using Draggable_DragStarted
1 draggable contains a sprite
2 draggable contains text
3-5 Draggable type:

0 ⇒ drag only
1 ⇒ click, drag, doubleclick
2 ⇒ click selects, doubleclick, drag

6 deliver drag ended events as Toolbox id's rather than Wimp
windows (if possible)

7 dragged object has a drop shadow (if solid)
8 dragged object is not dithered (if solid)
358

Window class
Draggable methods

Draggable_SetSprite 640

On entry

R0 = flags
R1 = Window object id
R2 = 640
R3 = Gadget component id
R4 = pointer to sprite name to use

On exit

R1-R9 preserved

Use

This method sets the name of the sprite which will be used for this draggable.

C veneer
extern _kernel_oserror *draggable_set_sprite (unsigned int flags,
 ObjectId window,
 ComponentId draggable,
 char *sprite_name
);
359

Draggable gadgets
Draggable_GetSprite 641

On entry

R0 = flags
R1 = Window object id
R2 = 641
R3 = Gadget component id
R4 = pointer to buffer (or 0)
R5 = size of buffer to hold sprite name

On exit

R5 = size of buffer required for message text (if R4 was 0)
else buffer pointed at by R4 holds sprite name
R5 holds number of bytes written to buffer

Use

This method returns the name of the sprite which is currently being used for this
draggable.

C veneer
extern _kernel_oserror *draggable_get_sprite (unsigned int flags,
 ObjectId window,
 ComponentId draggable,
 char *buffer,
 int buff_size,
 int *nbytes
);
360

Window class
Draggable_SetText 642

On entry

R0 = flags
R1 = Window object id
R2 = 642
R3 = Gadget component id
R4 = pointer to text to use

On exit

R1-R9 preserved

Use

This method sets the text which will be displayed in this draggable.

C veneer
extern _kernel_oserror *draggable_set_text (unsigned int flags,
 ObjectId window,
 ComponentId draggable,
 char *text
);
361

Draggable gadgets
Draggable_GetText 643

On entry

R0 = flags
R1 = Window object id
R2 = 643
R3 = Gadget component id
R4 = pointer to buffer
R5 = size of buffer

On exit

R5 = size of buffer required (if R4 was 0)
else buffer pointed at by R4 holds text
R5 holds number of bytes written to buffer

Use

This method returns the text which is currently being used for this draggable.

C veneer
extern _kernel_oserror *draggable_get_text (unsigned int flags,
 ObjectId window,
 ComponentId draggable,
 char *buffer,
 int buff_size,
 int *nbytes
);
362

Window class
Draggable_SetState 644

On entry

R0 = flags
R1 = Window object id
R2 = 644
R3 = Gadget component id
R4 = state (0 ⇒ deselected, 1 ⇒ selected).

On exit

R1-R9 preserved

Use

This method sets the Draggable's state to either selected or deselected.

C veneer
extern _kernel_oserror *draggable_set_state (unsigned int flags,
 ObjectId window,
 ComponentId draggable,
 int state
);

Draggable_GetState 645

On entry

R0 = flags
R1 = Window object id
R2 = 645
R3 = Gadget component id

On exit

R0 = state

Use

This method returns the Draggables' state (0 ⇒ deselected, 1 ⇒ selected).

C veneer
extern _kernel_oserror *draggable_get_state (unsigned int flags,
 ObjectId window,
 ComponentId draggable,
 int *state
);
363

Draggable gadgets
Draggable Toolbox events

Draggable_DragStarted (0x82887)

Block

+ 8 0x82887
+ 12 flags

bit 0 means Adjust is held down
bit 1 will be 0
bit 2 means Select is held down
bit 3 means Shift is held down
bit 4 means Ctrl is held down

Use

This Toolbox event is raised when the user starts a drag of a draggable gadget.

C data type
typedef struct
{
 ToolboxEventHeader hdr;
} DraggableDragStartedEvent;
364

Window class
Draggable_DragEnded (0x82888)

Block

+ 8 0x82888
+ 12 flags:

bit 0 clear then:
+16 Wimp window handle of end of drag
+ 20 Wimp icon handle of end of drag
or bit 0 set:
+16 Window id of end of drag
+20 component id of end of drag

+24 destination x coordinate of mouse pointer
+28 destination y coordinate of mouse pointer

Use

This Toolbox event is raised when the user ends a drag of a draggable gadget. By setting
bit 6 when the draggable is created it is possible to receive events in terms of window
object ids and gadget component ids. If the drag ended over a non-toolbox window (or
bit 6 was zero) then Wimp handles are returned.

C data type
typedef struct
{
 ToolboxEventHeader hdr;
 int window_handle;
 int icon_handle;
 int x;
 int y;
} DraggableDragEndedEvent;

Draggable templates
Field Size in bytes Type
text 4 MsgReference
max_text_len 4 word
sprite 4 StringReference
max_sprite_len 4 word
365

Labels
Labels
A label consists of some explanatory text which appears in a dialogue box. The client
application can choose whether the bounding box of the label is shown by a visible box
or not.
● a label contains text, which is unchangeable at run-time
● a label can be right-justified, left-justified, or centred, as indicated by its flags word.

Bits in the flags word for a label have the following meaning:

Label templates

Bit Meaning
0 omit bounding box
1-2 justification:

0 ⇒ left-justified
1 ⇒ right-justified
2 ⇒ centred

Field Size in bytes Type
label 4 MsgReference
366

Window class
Labelled boxes
A labelled box gadget is used for collecting together a set of related items:

The box has a label which can be either text or a sprite, and this label will appear at the
top left hand corner of the box (a bit in the flags word for the gadget indicates whether
text or a sprite is to be used). ResEd creates labelled boxes with bit 30 set so that they are
created behind other gadgets.

There are no Toolbox events or methods associated with a labelled box.

Bits in the flags word for a labelled box have the following meaning:

Labelled box templates

Bit Meaning
0 labelled box has a sprite label (default is text)
1 in the case of a sprite label, the icon is filled if this bit is set,

otherwise it is unfilled. This is because certain sprites will
sufficiently obscure the border, and may be masked so should
allow the tile sprite to show through.

Field Size in bytes Type
label 4 MsgReference or StringReference
367

Number ranges
Number ranges
A number range is a gadget used to display one of a range of possible integer or fixed
point values. The value is shown in a display area, which can either be writable (in
which case a writable field is used) or not writable (in which case a display field is used).
It is also possible to create a Number Range where there is no display area.

The value which the client gives to a Number Range Gadget (and which it receives
back) is a signed integer, to which a ‘precision’ will be applied. The precision is
essentially the power of 10 by which the value should be divided, and the number of
places which will be shown after the decimal point. For example to get the value 3.42
displayed in a Number Range the client would pass the value 342 with a precision of 2.
Normally the precision of a Number Range is specified when the Gadget is created, but
it can be set and read at run-time using the NumberRange_SetBounds and
NumberRange_GetBounds methods. A Number Range can be made to display merely
integer values by specifying a precision of 0. The maximum precision is 10, i.e. there
can be up to ten digits after the decimal point.

The value displayed in a number range gadget is set using the NumberRange_SetValue
method. The value passed is an integer which will be divided by 10^precision and will
have precision digits after the decimal point. The value of a number range is read using
the NumberRange_GetValue method; this value is an integer which should be divided
by 10^precision to get its real equivalent. A number range has a lower and upper bound
which constrains the values to which it can be set; these bounds are in ‘integer’ terms
(i.e. before the precision has been applied). For example if a number range gadget has a
precision of 3, and the client wishes to have a lower bound of 1.000 and an upper bound
of 4.999, then the lower and upper bounds of the gadget should be set to 1000 and 4999
respectively.

A number range can also be given a step size. The step size is expressed in integer terms
(i.e. before the precision is applied). For example if a number range gadget has a
precision of 2, then setting a step size of 5 will result in a ‘real’ step size of 0.05. The
bounds and step size can be set and read using the NumberRange_SetBounds and
NumberRange_GetBounds methods.

A number range can also have a pair of adjuster arrows placed 8 OS Units to the right of
its display area (either the writable or display field). When the user clicks on these
arrows, the value of the number range is either decremented or incremented by its step
size, subject to its lower and upper bounds (and displayed using its precision).

A number range can also have an associated slider. The slider is like a slider gadget,
except that it can only be positioned relative to the Number Range's display area. The
possible positionings are:
● a horizontal slider 8 OS Units to the right of the display area
● a horizontal slider 8 OS Units to the left of the display area.
368

Window class
When both a slider and adjusters are requested, then the adjusters appear at either end of
the slider, rather than the positioning outlined above.

If the Number Range is writable, then the underlying Writable Field is given a validation
string which will only permit input of numeric digits (0-9), the decimal point character
for the current territory (unless the precision field is 0) and where applicable the minus
sign. It also has ‘before’ and ‘after’ values which are used to move the caret in the same
way as described for Writable Fields. Another Writable may reference the component id
of a Number Range in its before and after fields.

Whenever the value changes in a number range gadget, the client is informed of the
change via an NumberRange_ValueChanged Toolbox event, if it has set the appropriate
bit in the gadget’s flags word.

Included in the definition of the number range is the length of the display field in OS
Units (display_length as shown in Number range templates on page 375). This is
ignored if there is no slider.

Bits in the flags word for a number range gadget have the following meanings:

Note: slider colours are in the same flag position as a Slider Gadget.

Bit Meaning when set
0 inform client of value changes using

NumberRange_ValueChanged
2 writable (default is read-only display)
3 no display area
4 has adjuster arrows
5-7 slider type:

value meaning
0 ⇒ no slider
1 ⇒ slider to the right of the display area
2 ⇒ slider to the left of the display area

8-9 justification:
0 ⇒ left-justified
1 ⇒ right-justified
2 ⇒ centred

12-15 desktop colour of slider bar
16-19 desktop colour of slider background
369

Number ranges
Number range methods

NumberRange_SetValue 832

On entry

R0 = flags
R1 = Window object id
R2 = 832
R3 = Gadget component id
R4 = new value

On exit

R1-R9 preserved

Use

This method sets the value displayed in the number range’s display area, subject to its
bound constraints. The value will be displayed taking into account its precision.

C veneer
extern _kernel_oserror *numberrange_set_value (unsigned int flags,
 ObjectId window,
 ComponentId number_range,
 int value
);
370

Window class
NumberRange_GetValue 833

On entry

R0 = flags
R1 = Window object id
R2 = 833
R3 = Gadget component id

On exit

R0 holds current value

Use

This method returns the value of the number range. Note that this is the integer form of
what is actually displayed in the display area (i.e. not taking ‘precision’ into account).

C veneer
extern _kernel_oserror *numberrange_get_value (unsigned int flags,
 ObjectId window,
 ComponentId number_range,
 int *value
);
371

Number ranges
NumberRange_SetBounds 834

On entry

R0 = flags
bit 0 set means change the lower bound
bit 1 set means change the upper bound
bit 2 set means change the step size
bit 3 set means change the precision

R1 = Window object id
R2 = 834
R3 = Gadget component id
R4 = new lower bound
R5 = new upper bound
R6 = new step size
R7 = precision

On exit

R1-R9 preserved

Use

This method is used to set the lower and upper bounds, the step size and the precision of
the number range. Note that the bounds and step size are expressed in terms of an integer
before they are transformed using the precision value.

C veneer
extern _kernel_oserror *numberrange_set_bounds (unsigned int flags,
 ObjectId window,
 ComponentId number_range,
 int lower_bound,
 int upper_bound,
 int step_size,
 int precision
);
372

Window class
NumberRange_GetBounds 835

On entry

R0 = flags
bit 0 set means return the lower bound
bit 1 set means return the upper bound
bit 2 set means return the step size
bit 3 set means return the precision

R1 = Window object id
R2 = 835
R3 = Gadget component id

On exit

R0 = lower bound
R1 = upper bound
R2 = step size
R3 = precision

Use

This method returns the lower and upper bounds, the step size and the precision of the
number range, depending on the setting of the appropriate flags bits. Note that the
bounds and step size are expressed in terms of an integer before they are transformed
using the precision value.

C veneer
extern _kernel_oserror *numberrange_get_bounds (unsigned int flags,
 ObjectId window,
 ComponentId number_range,
 int *lower_bound,
 int *upper_bound,
 int *step_size,
 int *precision
);
373

Number ranges
NumberRange_GetComponents 836

On entry

R0 = flags
bit 0 set means return the numerical field
bit 1 set means return the left adjuster
bit 2 set means return the right adjuster
bit 3 set means return the slider

R1 = Window object id
R2 = 836
R3 = Gadget component id

On exit

R0 = numeric id
R1 = left adjuster id
R2 = right adjuster id
R3 = slider id

Use

This method returns the component ids of the gadgets that make up the number range
depending on which flag bits are set. Note that the numeric id will be the component id
of the Display Field or Writable, dependent on how the Gadget was created.

C veneer
extern _kernel_oserror *numberrange_get_components (unsigned int flags,
 ObjectId window,
 ComponentId number_range,
 ComponentId *numeric_field,
 ComponentId *left_adjuster,
 ComponentId *right_adjuster,
 ComponentId *slider
);
374

Window class
Number range Toolbox events

NumberRange_ValueChanged (0x8288d)

Block

+ 8 0x8288d
+ 16 new value shown in display area

Use

This Toolbox event is raised when the value of the Number Range has changed.

C data type
typedef struct
{
 ToolboxEventHeader hdr;
 int new_value;
} NumberRangeValueChangedEvent;

Number range templates
Field Size in bytes Type
lower_bound 4 word
upper_bound 4 word
step_size 4 word
initial_value 4 word
precision 4 word
before 4 word
after 4 word
display_length 4 word
375

Option buttons
Option buttons
An option button is used to indicate whether a particular option has been chosen or not
(e.g. case-sensitive in a Find dialogue box). It has two states – on and off:

Such a gadget is displayed with a standard option icon, together with a textual label; the
textual label can be read and set at run-time using the OptionButton_SetLabel and
OptionButton_GetLabel methods.

The on/off state of the option button can be set and read using the
OptionButton_SetState/OptionButton_GetState methods.

If bit zero of the flags is set, then whenever the state of the Option Button changes, an
OptionButton_StateChanged event is raised, with the flags word indicating which
mouse button was used. The client can supply an alternative Toolbox Event code in the
template description for the Option Button, and can set and read this event code at
run-time using the OptionButton_SetEvent and OptionButton_GetEvent methods.

Bits in the flags word for Option Button have the following meaning:

Bit Meaning
0 generate a OptionButton_StateChanged when user clicks.
2 when set, this means that the Option Button is ‘On’ when first

created.
376

Window class
Option button methods

OptionButton_SetLabel 192

On entry

R0 = flags
R1 = Window object id
R2 = 192
R3 = Gadget component id
R4 = pointer to string giving label to use

On exit

R1-R9 preserved

Use

This method sets the label which will be used for this option button.

C veneer
extern _kernel_oserror *optionbutton_set_label (unsigned int flags,
 ObjectId window,
 ComponentId option_button,
 char *label
);
377

Option buttons
OptionButton_GetLabel 193

On entry

R0 = flags
R1 = Window object id
R2 = 193
R3 = Gadget component id
R4 = pointer to buffer
R5 = size of buffer

On exit

R5 = size of buffer required to hold label (if R4 was 0)
else buffer pointed at by R4 holds label
R5 holds number of bytes written to buffer

Use

This method returns the label which is currently displayed for this option button.

C veneer
extern _kernel_oserror *optionbutton_get_label (unsigned int flags,
 ObjectId window,
 ComponentId option_button,
 char *buffer,
 int buff_size,
 int *nbytes
);
378

Window class
OptionButton_SetEvent 194

On entry

R0 = flags
R1 = Window object id
R2 = 194
R3 = Gadget component id
R4 = Toolbox event code

On exit

R1-R9 preserved

Use

This method sets the Toolbox event which will be raised when the state of this option
button changes. The rest of the Toolbox event block remains the same as in
OptionButton_StateChanged.

C veneer
extern _kernel_oserror *optionbutton_set_event (unsigned int flags,
 ObjectId window,
 ComponentId option_button,
 int event
);
379

Option buttons
OptionButton_GetEvent 195

On entry

R0 = flags
R1 = Window object id
R2 = 195
R3 = Gadget component id

On exit

R0 holds Toolbox event code.

Use

This method returns the Toolbox event which will be raised when this option button’s
state changes.

C veneer
extern _kernel_oserror *optionbutton_get_event (unsigned int flags,
 ObjectId window,
 ComponentId option_button,
 int *event
);

OptionButton_SetState 196

On entry

R0 = flags
R1 = Window object id
R2 = 196
R3 = Gadget component id
R4 = state (0 ⇒ off, 1 ⇒ on)

On exit

R1-R9 preserved

Use

This method sets the option button’s state to on or off.

C veneer
extern _kernel_oserror *optionbutton_set_state (unsigned int flags,
 ObjectId window,
 ComponentId option_button,
 int state
);
380

Window class
OptionButton_GetState 197

On entry

R0 = flags
R1 = Window object id
R2 = 197
R3 = Gadget component id

On exit

R0 = state

Use

This method returns the option button’s state (0 ⇒ off, 1 ⇒ on).

C veneer
extern _kernel_oserror *optionbutton_get_state (unsigned int flags,
 ObjectId window,
 ComponentId option_button,
 int *state
);
381

Option buttons
Option button Toolbox events

OptionButton_StateChanged (0x82882)

Block

+8 0x82882
+ 12 flags

bits 0, 1 and 2 show how the activation was done:
bit 0 set means Adjust was held down
bit 1 reserved
bit 2 set means Select was held down

+ 16 new state (0 ⇒ off, 1 ⇒ on)

Use

This Toolbox event is raised when the state of an option button changes, and the client
has not specified an event to be associated with this change.

The returned flags word indicates which mouse button was used to select the button.

C data type
typedef struct
{
 ToolboxEventHeader hdr;
 int new_state;
} OptionButtonStateChangedEvent;

Option button templates
Field Size in bytes Type
flags 4 word
label 4 MsgReference
max_label_len 4 word
event 4 word
382

Window class
Pop-up menus
A pop-up menu gadget will be displayed as a ‘menu-arrow’ icon, and its associated
Menu object will be displayed when a mouse button is clicked over this icon:

The Menu to be displayed can be set and read dynamically at run-time using the
PopUp_SetMenu and PopUp_GetMenu methods. It can also be done with ResEd.

If the appropriate bit is set in the flags word, then a PopUp_AboutToBeShown Toolbox
event is delivered before the associated pop-up Menu is shown. This allows the client to
build a new Menu object and associate it with the pop-up using PopUp_SetMenu.

Note that Menu ‘hits’ will be reported for the Menu object, and not for the pop-up
gadget. The Menu will have as its parent, the dialogue box in which the pop-up exists,
and the pop-up itself as the parent component. Note also that the associated pop-up
Menu may also have its flags word bit set which requests a warning before it is shown;
this event will be delivered after the PopUp_AboutToBeShown event.

Bits in the flags word for a pop-up Menu have the following meaning:

Bit Meaning
0 warn using PopUp_AboutToBeShown before the associated

menu is shown.

pop-up menu icon

associated menu object
383

Pop-up menus
Pop-up menu methods

PopUp_SetMenu 704

On entry

R0 = flags
R1 = Window object id
R2 = 704
R3 = Gadget component id
R4 = object id of Menu to use

On exit

R1-R9 preserved

Use

This method sets the Menu object which will be shown when the pop-up button is
clicked on.

C veneer
extern _kernel_oserror *popup_set_menu (unsigned int flags,
 ObjectId window,
 ComponentId popup,
 ObjectId menu
);
384

Window class
PopUp_GetMenu 705

On entry

R0 = flags
R1 = Window object id
R2 = 705
R3 = Gadget component id

On exit

R0 = Menu object id

Use

This method returns the object id of the Menu which will be shown when the pop-up
button is clicked on.

C veneer
extern _kernel_oserror *popup_get_menu (unsigned int flags,
 ObjectId window,
 ComponentId popup,
 ObjectId *menu
);
385

Pop-up menus
Pop-up menu Toolbox events

PopUp_AboutToBeShown (0x8288b)

Block

+ 8 0x8288b
+ 16 object id of Menu object which will be shown

(note that the ‘self’ id and component fields will refer to the
parent Window’s object id and the PopUp’s component id respectively)

Use

This Toolbox event is raised when the user has clicked on a pop-up button. The Menu is
actually shown on the next call to Wimp_Poll.

C data type
typedef struct
{
 ToolboxEventHeader hdr;
 ObjectId menu_id;
}PopUpAboutToBeShownEvent;

Pop-up menu templates
Field Size in bytes Type
menu 4 StringReference
386

Window class
Radio buttons
A radio button is used for making a single choice from a set of options, and a number of
radio buttons are normally used in a ‘group’. The group to which a radio button belongs
is determined by the radio button's ‘group number’.

A radio button is displayed as a standard radio icon, together with a text label. The label
for a radio button can be set and read using the RadioButton_SetLabel and
RadioButton_GetLabel methods.

A radio button has two states: ‘On’ and ‘Off’. Only one radio button in a group is in the
on state at any one time. When the user clicks on a radio button its state is set to on.

Whenever the state of a radio button changes, a RadioButton_StateChanged event is
raised, with the flags word indicating which mouse button was used, if the appropriate
bit was set in the flags word for the radio button, requesting that a
RadioButton_StateChanged event is generated. The client can supply an alternative
Toolbox event code in the template description for the radio button, and can set and read
this event code at run-time using the RadioButton_SetEvent and RadioButton_GetEvent
methods.

Bits in the flags word for a radio button have the following meaning:

Radio button methods

RadioButton_SetLabel 384

On entry

R0 = flags
R1 = Window object id
R2 = 384
R3 = Gadget component id
R4 = pointer to string giving label to use

On exit

R1-R9 preserved

Bit Meaning
0 generate a RadioButton_StateChanged when user clicks
2 when set, means that the radio button is On when first created
387

Radio buttons
Use

This method sets the label which will be used for this radio button.

C veneer
extern _kernel_oserror *radiobutton_set_label (unsigned int flags,
 ObjectId window,
 ComponentId radio_button,
 char *label
);
388

Window class
RadioButton_GetLabel 385

On entry

R0 = flags
R1 = Window object id
R2 = 385
R3 = Gadget component id
R4 = pointer to buffer
R5 = size of buffer

On exit

R5 = size of buffer required to hold label (if R4 was 0)
else buffer pointed at by R4 holds label
R5 holds number of bytes written to buffer

Use

This method returns the label which is currently displayed for this radio button.

C veneer
extern _kernel_oserror *radiobutton_get_label (unsigned int flags,
 ObjectId window,
 ComponentId radio_button,
 char *buffer,
 int buff_size,
 int *nbytes
);
389

Radio buttons
RadioButton_SetEvent 386

On entry

R0 = flags
R1 = Window object id
R2 = 386
R3 = Gadget component id
R4 = Toolbox event code

On exit

R1-R9 preserved

Use

This method sets the Toolbox event which will be raised when the state of the radio
button changes. The rest of the Toolbox event block will be the same as for the
RadioButton_StateChanged Toolbox event.

C veneer
extern _kernel_oserror *radiobutton_set_event (unsigned int flags,
 ObjectId window,
 ComponentId radio_button,
 int event
);
390

Window class
RadioButton_GetEvent 387

On entry

R0 = flags
R1 = Window object id
R2 = 387
R3 = Gadget component id

On exit

R0 holds Toolbox event code

Use

This method returns the Toolbox event which will be raised when this radio button's
state changes.

C veneer
extern _kernel_oserror *radiobutton_get_event (unsigned int flags,
 ObjectId window,
 ComponentId radio_button,
 int *event
);
391

Radio buttons
RadioButton_SetState 388

On entry

R0 = flags
R1 = Window object id
R2 = 388
R3 = Gadget component id
R4 = state (0 ⇒ Off, 1 ⇒ On)

On exit

R1-R9 preserved

Use

This method sets the state of the radio button to On or Off. When a button which is Off
is set to On, the button which was previously On is set to Off. If by setting the radio
button to Off, this would result in no button being On in the group, then an error is
returned.

C veneer
extern _kernel_oserror *radiobutton_set_state (unsigned int flags,
 ObjectId window,
 ComponentId radio_button,
 int state
);
392

Window class
RadioButton_GetState 389

On entry

R0 = flags
R1 = Window object id
R2 = 389
R3 = Gadget component id

On exit

R0 = state (0 ⇒ Off, 1 ⇒ On)
R1 = component id of radio button which is On in the group

Use

This method returns the state of the given radio button.

The client can determine which radio button is On in a group by calling this method for
any one button in the group, since the component id of the On button is also returned (in
R1).

C veneer
extern _kernel_oserror *radiobutton_get_state (unsigned int flags,
 ObjectId window,
 ComponentId radio_button,
 int *state,
 Component Id *selected
);
393

Radio buttons
Radio button Toolbox events

RadioButton_StateChanged (0x82883)

Block

+ 8 0x82883
+ 12 flags

bits 0, 1 and 2 show how the activation was done:
bit 0 set means Adjust was held down
bit 1 is reserved
bit 2 set means Select was held down

+16 state (0 ⇒ Off, 1 ⇒ On)
+20 component id of the radio button within the group which

was On before this state change

Use

This Toolbox event is raised when the state of a radio button changes, and the client has
not specified an event to be associated with this change.

The returned flags word indicates which mouse button was used to select the radio
button.

C data type
typedef struct
{
 ToolboxEventHeader hdr;
 int state;
 ComponentId old_on_button;
} RadioButtonStateChangedEvent;

Radio button templates
Field Size in bytes Type
group_number 4 word
label 4 MsgReference
max_label_len 4 word
event 4 word
394

Window class
Sliders
A slider gadget is used to display a ‘bar’, which may be draggable by the user, displayed
in a ‘well’. Whether the slider is draggable or not is indicated by its flags word:

By setting a bit in the slider’s flags word the client can request that all changes in the
slider’s value are returned as the bar is dragged. Alternatively it may request to receive
value changes only when the bar dragging stops (i.e. when the user releases the mouse
button). Such changes are reported via the Slider_ValueChanged Toolbox event.

A slider is specified as either being ‘vertical’ or ‘horizontal’.

A slider has associated with it an initial value, a minimum value, a maximum value, and
a step size. If the slider is draggable (indicated by a flags bit), then when the user drags
the bar with the mouse, the bar moves a number of pixels commensurate with the step
size, and the bounding box of the slider.

The maximum and minimum values and the step size can be set and read dynamically
using the Slider_SetBound/Slider_GetBound methods.

A Slider also has associated with it, the colour used for its ‘bar’ – this is a Desktop
colour. This is normally specified in the resource file, but can be set and read
dynamically using the Slider_SetColour/Slider_GetColour methods.

The current value of the slider can be set and read using the
Slider_SetValue/Slider_GetValue methods.

Bits in the flags word for a slider have the following meaning:

Bit Meaning
0 if set then deliver value changes when user clicks/drags
1 if set then deliver value changes constantly whilst dragging

else just at start/end
3 if set means slider is vertical (default is horizontal)
4 if set then bar is draggable/clickable
12-15 the desktop colour of the bar
16-19 the desktop colour of the background
395

Sliders
Slider methods

Slider_SetValue 576

On entry

R0 = flags
R1 = Window object id
R2 = 576
R3 = Gadget component id
R4 = integer value

On exit

R1-R9 preserved

Use

This method sets the value of a slider. The slider’s bar is changed accordingly.

C veneer
extern _kernel_oserror *slider_set_value (unsigned int flags,
 ObjectId window,
 ComponentId slider,
 int value
);
396

Window class
Slider_GetValue 577

On entry

R0 = flags
R1 = Window object id
R2 = 577
R3 = Gadget component id

On exit

R0 = slider’s value

Use

This method returns the value of a slider.

C veneer
extern _kernel_oserror *slider_get_value (unsigned int flags,
 ObjectId window,
 ComponentId slider,
 int *value
);
397

Sliders
Slider_SetBound 58

On entry

R0 = flags
bit 0 set means set upper bound
bit 1 set means set lower bound
bit 2 set means set step size

R1 = Window object id
R2 = 578
R3 = Gadget component id
R4 = upper bound
R5 = lower bound
R6 = step size

On exit

R1-R9 preserved

Use

This method sets the lower bound, upper bound and step size of a slider gadget.

C veneer
extern _kernel_oserror *slider_set_bound (unsigned int flags,
 ObjectId window,
 ComponentId slider,
 int upper_bound,
 int lower_bound,
 int step_size
);
398

Window class
Slider_GetBound 579

On entry

R0 = flags
bit 0 set means return upper bound
bit 1 set means return lower bound
bit 2 set means return step size

R1 = Window object id
R2 = 579
R3 = Gadget component id

On exit

R0 = upper bound
R1 = lower bound
R2 = step size

Use

This method returns the lower bound, upper bound and step size of a slider gadget.

C veneer
extern _kernel_oserror *slider_get_bound (unsigned int flags,
 ObjectId window,
 ComponentId slider,
 int *upper_bound,
 int *lower_bound,
 int *step_size
);
399

Sliders
Slider_SetColour 580

On entry

R0 = flags
R1 = Window object id
R2 = 580
R3 = Gadget component id
R4 = Desktop colour value for bar
R5 = Desktop colour value for background

On exit

R1-R9 preserved

Use

This method sets the Desktop colour used in a slider.

C veneer
extern _kernel_oserror *slider_set_colour (unsigned int flags,
 ObjectId window,
 ComponentId slider,
 int bar_colour,
 int back_colour
);
400

Window class
Slider_GetColour 581

On entry

R0 = flags
R1 = Window object id
R2 = 581
R3 = Gadget component id

On exit

R0 = Desktop colour value for bar
R1 = Desktop colour value for background

Use

This method returns the Desktop colour used in a slider.

C veneer
extern _kernel_oserror *slider_get_colour (unsigned int flags,
 ObjectId window,
 ComponentId slider,
 int *bar_colour,
 int *back_colour
);
401

Sliders
Slider Toolbox events

Slider_ValueChanged (0x82886)

Block

+ 8 0x82886
+ 12 flags:

bits 0 -2:
0 means ‘start of drag or just click’
1 means ‘drag still in progress’
2 means ‘drag has ended’

+ 16 new value of slider.

Use

This Toolbox event is raised when the value of the slider has changed. This may be due
to an update caused by a user action (e.g. dragging the bar).

C data type
typedef struct
{
 ToolboxEventHeader hdr;
 int new_value;
} SliderValueChangedEvent;

Slider templates
Field Size in bytes Type
lower_bound 4 word
upper_bound 4 word
step_size 4 word
initial_value 4 word
402

Window class
String sets
A string set is a gadget used to display one of an ordered set of text strings.

The string which is shown in the display area is known as the ‘selected string’. The
display area can be either writable (in which case a writable field is used) or not writable
(in which case a display field is used).

A string set has a pop-up Menu placed 8 OS Units to the right of the display area. The
client supplies a set of available strings, and the Toolbox will display the selected string
in the string set's display area. The Toolbox will build a Menu on the client's behalf, and
display it when the pop-up menu button is clicked. The selected string will be shown as
ticked in the Menu, and hits on the Menu will result in the string corresponding to the
Menu entry text becoming the selected string.

If the string set is writable, then if the user enters a string which is not in the string set,
no entry would be shown as ticked in an associated pop-up Menu.

The set of available strings can be set at run-time using the StringSet_SetAvailable
method. The selected string is set and read using the StringSet_SetSelected and
StringSet_GetSelected methods.

Whenever the selected string changes in a string set gadget, the client is informed of the
change via a StringSet_ValueChanged Toolbox event, if it has set the appropriate bit in
the gadget’s flags word.

If a string set is writable, it can also have a set of allowable characters which the user can
type into the display area. This is identical to the ‘a’ directive used in a Wimp icon’s
validation string.

The set of allowable characters can be set at run-time using the StringSet_SetAllowable
method.

In the template description for a writable string set, the client specifies the component
ids of any writable fields which come before and after it. These are used to move the
caret between writable fields when the user presses the arrow and tab keys. A special
value of -1 indicates that there is no writable field before or after this one.

Bits in the flags word for a string set gadget have the following meanings:

Bit Meaning
0 inform client of changes to the selected string using

StringSet_ValueChanged
1 writable (default is read-only display)
3 inform client just before showing the menu
403

String sets
String set methods

StringSet_SetAvailable 896

On entry

R0 = flags
R1 = Window object id
R2 = 896
R3 = Gadget component id
R4 = pointer to block of contiguous strings which are to be used as the

available set of strings

On exit

R1-R9 preserved

Use

This method is used to set the available set of strings in a string set, and a pop-up menu
will be built from them. Strings are separated using a comma (‘,’); a comma must be
escaped using the \ character, if the client wishes it to appear in the display area. To get
the '\' character itself, '\\' should be used.

Note that there is no StringSet_GetAvailable.

C veneer
extern _kernel_oserror *stringset_set_available (unsigned int flags,
 ObjectId window,
 ComponentId string_set,
 char *strings
);

4 does not have any display field or writable
5-6 justification:

0 ⇒ left-justified
1 ⇒ right-justified
2 ⇒ centred

Bit Meaning
404

Window class
StringSet_SetSelected 898

On entry

R0 = flags
bit 0set means index of string is supplied in R4

clear means the string itself is supplied
R1 = Window object id
R2 = 898
R3 = Gadget component id
R4 = pointer to string to be selected or R4 = index of string to be selected

On exit

R1-R9 preserved

Use

This method sets which string in the string set is selected. The string can either be
specified as a text string or as an index into the array of available strings (depending on
the setting of bit 0 in the flags word). The selected string is shown in the string set’s
display area, and will be ticked in the associated pop-up Menu.

C veneer
extern _kernel_oserror *stringset_set_selected (unsigned int flags,
 ObjectId window,
 ComponentId string_set,
 char *string_to_select
);
405

String sets
StringSet_GetSelected 899

On entry

R0 = flags
bit 0 set means return index of selected string

clear means the string itself is returned
R1 = Window object id
R2 = 899
R3 = Gadget component id
R4 = index of selected string or R4 = pointer to buffer to hold selected string
R5 = size of buffer

On exit

R0 = index of selected string (if bit 0 of flags word was set)
else

if R4 was 0 then R5 holds size of buffer required
else

buffer pointed at by R4 holds selected string
R5 holds number of bytes written to buffer

Use

This method returns the currently selected string for this string set (i.e. the one shown in
the display area). This may be either an index into the set of available strings or a buffer
containing the string itself. If the selected string is not in the available set (e.g. it has
been typed into a writable string set), then the value -1 is returned if an index is
requested (by setting bit 0 of the flags word for this call).

C veneer
extern _kernel_oserror *stringset_get_selected (unsigned int flags,
 ObjectId window,
 ComponentId string_set,
 ...
);
406

Window class
StringSet_SetAllowable 900

On entry

R0 = flags
R1 = Window object id
R2 = 900
R3 = Gadget component id
R4 = pointer to string giving new set of allowable characters

On exit

R1-R9 preserved

Use

This method defines the set of allowable characters which can be typed into a writable
string set. The set is specified in the same way as a Wimp ‘a’ validation string directive
(without including the letter ‘a’).

C veneer
extern _kernel_oserror *stringset_set_allowable (unsigned int flags,
 ObjectId window,
 ComponentId string_set,
 char *allowable
);
407

String sets
StringSet_GetComponents 902

On entry

R0 = flags
bit 0 set means return the alphanumerical field
bit 1 set means return the popup menu

R1 = Window object id
R2 = 902
R3 = Gadget component id

On exit

R0 = alphanumeric id
R1 = popup id

Use

This method returns the component ids of the gadgets that make up the string set
depending on which flag bits are set. Note that the alphanumeric id will be the
component id of the Display Field or Writable, dependent on how the Gadget was
created.

C veneer
extern _kernel_oserror *stringset_get_components (unsigned int flags,
 ObjectId window,
 ComponentId string_set,
 ComponentId *alphanumeric_field,
 ComponentId *popup_menu
);
408

Window class
String set Toolbox events

StringSet_ValueChanged (0x8288e)

Block

+ 8 0x8288e
+ 12 flags

if bit 0 is set, then the text string was too long to fit into the event block
+ 16... text string shown in string set’s display area (or null string if too long to fit)

Use

This Toolbox event is raised when the value of the string set has changed. If the text
string was too long to fit into the event block, then bit 0 of the flags word is set.

C data type
typedef struct
{
 ToolboxEventHeader hdr;
 char
string[sizeof(ToolboxEvent)-sizeof(ToolboxEventHeader)];
} StringSetValueChangedEvent;

StringSet_AboutToBeShown (0x8288f)

Block

+ 8 0x8288f

Use

This Toolbox event is raised just before the string set's menu is to be shown. This allows
the client to make changes to the string set just when it is used, rather than continually.

C data type
typedef struct
{
 ToolboxEventHeader hdr;
} StringSetAboutToBeShownEvent;

String set templates
Field Size in bytes Type
string_set 4 MsgReference
initial_selected_string 4 MsgReference
409

String sets
max_selected_string_len 4 word
allowable 4 MsgReference
max_allowable 4 word
before 4 word
after 4 word

Field Size in bytes Type
410

Window class
Writable fields
The writable field has a boxed display area in which a text string is displayed and can be
edited by the user. The contents of the display area can be set and read using the
WritableField_SetValue and WritableField_GetValue methods. The user can click the
mouse in a writable field and enter its value from the keyboard:

Whenever the value in a writable field is changed, the client receives a
WritableField_ValueChanged Toolbox event, if it has set the appropriate bit in the flags
word. This will happen when the user presses a key whilst the caret is in it.

Note that it is possible to get different values from Writable_GetValue on subsequent
calls, without receiving a ValueChanged Event in between. This is because the value
represents what is actually visible in the gadget.

A writable field can also have a set of allowable characters which the user can type into
the display area. This is identical to the ‘a’ directive used in a Wimp icon’s validation
string.

The set of allowable characters can be set at run-time using the
WritableField_SetAllowable method. To allow all characters, this attribute should be
NULL.

In the template description for a writable field, the client specifies the component ids of
writable fields which come ‘before’ and ‘after’ it. These are used to move the caret
between writable fields when the user presses the arrow and tab keys. A special value of
-1 indicates that there is no writable field before or ‘after this one. The exact semantics
for the keys are as follows:

Bits in the flags word for a writable field have the following meaning:

up-arrow or shift-TAB ⇒ move the caret to the writable field before the
one which currently has the caret

down-arrow or TAB ⇒ move the caret to the writable field after the
one which currently has the caret

Bit Meaning
0 inform of value changes using WritableField_ValueChanged
2-3 justification:

0 ⇒ left-justified
1 ⇒ right-justified
2 ⇒ centred

4 do not display text, use ‘-’ for each character (password support)
411

Writable fields
Writable field methods

WritableField_SetValue 512

On entry

R0 = flags
R1 = Window object id
R2 = 512
R3 = Gadget component id
R4 = pointer to text string to use

On exit

R1-R9 preserved

Use

This method sets the text string shown in a writable field. The change is immediately
visible if the parent dialogue box is currently on the screen.

C veneer
extern _kernel_oserror *writablefield_set_value (unsigned int flags,
 ObjectId window,
 ComponentId writable,
 char *text
);
412

Window class
WritableField_GetValue 513

On entry

R0 = flags
R1 = Window object id
R2 = 513
R3 = Gadget component id
R4 = pointer to buffer
R5 = size of buffer

On exit

R5 = size of buffer required (if R4 was 0)
else buffer pointed at by R4 contains text
R5 holds number of bytes written to buffer

Use

This method returns the text string shown in a writable field.

C veneer
extern _kernel_oserror *writablefield_get_value (unsigned int flags,
 ObjectId window,
 ComponentId writable,
 char *buffer,
 int buff_size,
 int *nbytes
);
413

Writable fields
WritableField_SetAllowable 514

On entry

R0 = flags
R1 = Window object id
R2 = 514
R3 = Gadget component id
R4 = pointer to string giving new set of allowable characters

On exit

R1-R9 preserved

Use

This method defines the set of allowable characters which can be typed into a writable
field. The set is specified in the same way as a Wimp ‘a’ validation string directive
(without including the letter ‘a’). If the string is NULL, then all characters are allowable.

C veneer
extern _kernel_oserror *writablefield_set_allowable (unsigned int flags,
 ObjectId window,
 ComponentId writable,
 char *allowed
);
414

Window class
WritableField_SetFont 516

On entry

R0 = flags
R1 = Window object id
R2 = 516
R3 = Gadget component id
R4 = pointer to font name to use
R5 = width in 16ths of a point
R6 = height in 16ths of a point

On exit

R1-R9 preserved

Use

This method makes the writable field use an anti-aliased font. If the font name is NULL,
then the field will use system font.

C veneer
extern _kernel_oserror *writablefield_set_font (unsigned int flags,
 ObjectId window,
 ComponentId writable_field,
 char *font_name,
 int width,
 int height
);
415

Writable fields
Writable field Toolbox events

WritableField_ValueChanged (0x82885)

Block

+ 8 0x82885
+ 12 flags

if bit 0 is set, then the text string was too long to fit into the event block
+ 16... text string shown in writable field

Use

This Toolbox event is raised when the value of the writable field has changed. The text
string is copied into the event block, and is nul-terminated. If the text string was too long
to fit into the event block, then bit 0 of the flags word is set and a null string is supplied.

C data type
typedef struct
{
 ToolboxEventHeader hdr;
 char
string[sizeof(ToolboxEvent)-sizeof(ToolboxEventHeader)];
} WritableFieldValueChangedEvent;

Writable field templates
Field Size in bytes Type
text 4 MsgReference
max_text_len 4 word
allowable 4 MsgReference
max_allowable_len 4 word
before 4 word
after 4 word
416

17 ResEd

ResEd is the tool used to construct and edit Toolbox resource files. It provides the

following:
● A display of the object templates present in the resource file (called the resource file

display), each object template being represented by a named icon. You can drag
these icons to move and copy object templates between resource file displays (and
other co-operating applications).

● A selection of pre-defined object templates for you to drag into a resource file
display (this is the standard way to populate a resource file display with object
templates).

● A specialised editor to allow you to edit all the various classes of object templates.

To use this chapter you should have a basic understanding of the Toolbox and objects.

Overview
The process for creating, editing, and saving a resource file can be summarised as
follows:
1 Start ResEd.
2 Open a new resource file display.
3 Open an object prototypes display containing pre-defined object templates.
4 Drag the object templates you require from the object prototypes window into the

resource file display.
5 Double-click on an object template to open an editing window for it.
6 Edit the object templates.
7 Save the edited object templates into a resource file.

The following section, Creating and editing a Toolbox resource file, gives a detailed
description of the above process.
417

Creating and editing a Toolbox resource file
1 Start ResEd in a similar way to other RISC OS applications, by double-clicking on

its application icon. It loads and installs an icon on the iconbar.
2 Open a new resource file display by clicking Select on the ResEd iconbar icon or

choosing New from the ResEd menu. A new, untitled resource file display will
appear on the screen.

3 The object prototypes window allows you to drag any prototype object template
into the resource file display. To open the object prototypes window click Adjust on
the iconbar icon or choose Prototypes... from the ResEd menu.

4 Drag one or more object templates from the object prototypes window into the
resource file display.
418

ResEd
5 To edit a Window object template double-click on its icon in the resource file
display. An editing window will appear showing the object template in full:

6 When you have finished editing a window object template, close the editing
window using the close icon (some object templates are displayed for editing in
dialogue boxes, and you close these by clicking on the OK button):

7 When you have finished editing all the object templates you can save them using the
Save option from the resource file display menu. This leads to a Save as dialogue
box, which allows you to save some or all of your object templates.

double click on an
object template icon an editing window for that template is displayed
419

Starting ResEd
Starting ResEd
Start ResEd in a similar way to other RISC OS applications, by double-clicking on its
application icon. It loads and installs an icon on the iconbar. It may also be loaded by
double-clicking on a file of type Resource, in which case the file is loaded and
displayed.

Each resource file is displayed in its own resource file display. If you load a file which is
already loaded, that file’s window is raised to the top of the window stack.

Whenever a resource file is loaded, a corresponding Sprites file is sought in the same
directory. If one is found its sprites are loaded with *iconsprites and used when
displaying the resources in the resource file display. Sprite files may also be loaded by
dragging to the iconbar icon.

The iconbar icon
The iconbar icon responds to the mouse in the following ways:
● clicking Select on the icon opens an empty resource file display
● clicking Menu on the icon opens the ResEd Menu
● clicking Adjust on the icon opens the object prototypes window.

Empty resource files are opened with incrementally-unique names (Untitled1,
Untitled2 etc). Each one is opened in a slightly different position to the last.

The object prototypes window contains prototype object templates of each class. You
can drag these into the resource file display in order to populate it with object templates.
The object prototypes window is fully described in The object prototypes window on
page 421.

The iconbar menu

Clicking Menu on the iconbar icon displays the following menu:

Info displays an Info dialogue box.

New opens an empty, untitled resource file display.

Prototypes... opens the object prototypes window (described on page 421).

Quit exits the program.
420

ResEd
The object prototypes window
Resource file displays may be populated with object templates by dragging them in from
the object prototypes window. The templates are named after the classes they represent.
You can copy them into your resource file display by drag and drop, rename them as
desired, and then view and edit them by double-clicking on their icons.

The following object templates are available:

Colour DboxColour menuDCS DboxFile Info Dbox

Font DboxFont menuIconbar iconMenu

Print DboxProg Info DboxQuit DboxSave As Dbox

Scale DboxToolbarWindow

To open or raise the object prototypes window, choose Prototypes... from the iconbar
menu or click Adjust on the iconbar icon. The object prototypes window is very similar
to an ordinary resource file display, but attempts to move, rename, modify or delete
object templates within it are ignored. It is not possible to edit an object template within
the object prototypes window; instead you must first drag the object template into a
resource file display. The object prototypes window does not have a menu and only
Ctrl-Z and Ctrl-A keyboard short-cuts are available.
421

The resource file display
The resource file display
The resource file display is Filer-like, in that it contains a grid of icons, one per object
template held in the resource file. The sprite associated with each icon is a pictorial clue
as to the type of object template that icon represents; each class of object template has its
own sprite. The text associated with each icon is the name assigned to that object
template.

Icons may be selected, deselected and dragged from one resource file display to another
(as in the Filer).

Editing an object template

To edit an object template, double-click on its icon. A window will then open for that
object template. Some common features of editing object templates are described in
Editing object templates in general on page 425.

For details of editing the individual types of object templates see
● Editing the Menu class on page 429
● Editing a Window object template and gadgets on page 438
● Editing other classes on page 474.

Copying object templates

You can copy object templates between resource file displays by dragging their icons.
You can also make a copy of an object template within one resource file display by using
Shift-Drag Select.

Moving object templates

You can move an object template from one resource file display to another using
Shift-Drag Select. This will remove the object template from the source window.

Note: Copy or move operations that would result in duplicate names are resolved by the
new object templates' names being automatically disambiguated by the addition of a
unique numeric suffix (you will be warned if this happens).
422

ResEd
If you drag a selection into a different application, the result is the exporting of a
resource file containing just the selected object templates. This file is named
Selection.

If the resource file display is the target of a drag and drop or DataSave interaction from
another application, it checks the file type and rejects the file if not of type Resource or
Text (for more information on text files see Exporting and importing messages on
page 486). Resource files are imported into the resource file display and object template
names are disambiguated if necessary, as described above. Importing a file does not alter
the filename of the destination resource file display – the name of the incoming file is
simply ignored.

The resource file display menu
Clicking Menu on the resource file display shows the ResEd menu:

The File menu

Info leads to a File Info dialogue box.

Save leads to a Save as dialogue box, which includes a Selection button for saving only
the selected object templates.

Export messages leads to a Save as dialogue box allowing you to produce a text file
containing all the user-visible messages for the file (or selection, if Save selection is
set). The messages may then be edited (typically, translated into a different language)
and then re-imported by dropping the file back into the resource file display.

For more information about exporting and importing messages see Exporting and
importing messages on page 486.
423

The resource file display
The Edit menu

Copy (which is shaded unless only one object template is selected) leads to the
following dialogue box:

The name field is filled in with the name of the selected object template. To make a copy
of the object template in the same file, alter the name and click Copy.

Rename leads to a dialogue box with a writable icon for entering a new name for the
selected object template and a Rename button to accept the change:

The writable icon is initially filled in with the current name. When Rename is pressed,
the object template is renamed unless a name clash would occur, in which case an error
message is issued instead.

You can also change an object template’s name by clicking Alt-Select inside the
icon’s name, editing the string and pressing Return:

Pressing Escape or clicking outside the writable icon cancels the rename.

Delete deletes all the selected object templates.

Object flags allows you to edit the settings of the object flags for the selected object
templates. See The Object flags dialogue box on page 425 for more details.

Select all selects all the object templates in a resource file display.

Clear selection deselects all the selected object templates.

Prototypes...

This option displays the object prototypes window.

click Alt-select inside the icon’s name edit the name and press Return
424

ResEd
The Object flags dialogue box
You can edit most object template data by double-clicking on its icon. There is,
however, a 32-bit flags field in the object header. These flags are applicable to all classes
of object, and you may view the flags of an individual object template by selecting it and
entering the Object flags dialogue box. It has the following appearance:

To summarise, the flags are:

If there is one object template selected, or multiple object templates which have identical
flag values, the buttons will be set to Yes or No as appropriate. If there are multiple
selected object templates with different flag settings, then the flags which differ will be
set to As Is, indicating to the user that the flag value differs across the object templates.

You may adjust the settings as required, and on pressing OK the new flag values will be
applied to the selected object templates. Any flags which are set to As Is will not be
applied to the selected object templates; each object template will retain its existing
value for those flags. So, for example, you could change a number of object templates to
be ‘Shared’ without altering their other flags.

Editing object templates in general
Once you have dragged an object template from the Objects prototype window into the
resource file display you can edit it by double-clicking on its icon. You can then edit a
properties box for that object template specifying how you want it to appear and behave.
All the object properties boxes share the following features.

Bit Meaning when set
0 create object when resource file is loaded
1 show object as soon as it is created
2 object is shared
3 mark this as an Ancestor object
425

Editing object templates in general
Length fields

Help messages

The Window and Menu object templates, and all gadget templates, include the facility to
specify a help message:

If you switch on the Help text option you are then able to enter a help message into the
associated message field:

By default an asterisk is displayed in the Length field. This asterisk ensures that,
whatever string you enter into the message field, the exact length of that string
(including its terminator) will be passed to the Toolbox.

Alternatively you can manually change the size of the Length field to be greater than the
length of the help message itself. This is useful if you wish to alter the help message at
run-time. If you type a number into the Length field directly, then, when you click on
OK, the size of the Length field will be set to the length of the string you entered +1
(unless the number you entered is greater than the length of the string, in which case the
number will remain as you entered it).

The following are some points to bear in mind when entering help text:
● If you switch off the Help text option then any help message you entered in the

associated message field will be removed.
● If you switch on the Help text option, but leave the associated message field empty,

then the Interactive help window will go blank when the user moves the pointer
over the relevant object.

Other length fields

Some other options in object properties boxes behave in a similar manner to the above;
for example, editing the Titles of objects.

The selection model
ResEd supports some new selection techniques to improve the way you can manipulate
objects and object templates.

Selection highlighting

ResEd provides two levels of selection with two corresponding types of highlight:
426

ResEd
● a full highlight for a selection within a window that has the input focus
● a partial highlight for the previous selection in a deselected window.

For example, when you select one or more object templates in the object prototypes
window and drag them to a resource file display, the original object templates remain
partially highlighted. This allows you to return to the object prototypes window and, by
clicking on any of the object templates within the original selection, automatically select
all of the original selection. For example:

You can use this additional selection technique throughout ResEd; for example, you can
select menu entries when editing a Menu object template, and still retain them as a
selection if you temporarily need to edit a different window:

object templates remain partiallyobject templates fully highlighted
in resource file display highlighted in previous window

Window has input focus two menu entries selected
within the window

menu entries still selected
when the window no longer
has the input focus
427

Editing object templates in general
Box selection

If you use the mouse to drag a Select box around a group of object templates, you can
control whether all the objects (even those partly) within the box are selected, or just the
ones wholly within the box:

Groups of gadgets (in the Window editor) or groups of menu entries (in the Menu editor)
can be selected in a similar way.

Cancel and OK

Cancel

Clicking Cancel (or pressing Escape) will close the dialogue box without making any
changes.

Clicking Adjust Cancel (or pressing Shift-Escape) will leave the dialogue box displayed
but will remove any changes made since opening the box.

OK

Clicking OK (or pressing Return) will close the dialogue box and include any changes
in the object template.

Clicking Adjust OK (or pressing Shift-Return) will leave the dialogue box displayed
and update all changes made since opening the box (e.g. if you increased the contents of
a help message field, the Length field would then be increased automatically).

dragging a box around a group
of object templates will select any
object template partly or wholly
within the Select box

dragging a box around a group
of object templates while holding
down Shift will select only objects
wholly within the Select box

Select box
428

ResEd
Editing the Menu class
Double-clicking on a menu object template in the resource file display will display a
Menu editing window with the following appearance:

The editing window displays the menu as it will appear when displayed by the Toolbox.

The Menu editor
Clicking Menu inside the editing window displays the following menu:

Edit leads to the Edit submenu.

Delete deletes the selected menu entries.

Properties... opens the Menu entry properties dialogue box for the selected menu
entry (see Editing a Menu entry on page 430).

Select all selects all the menu entries in the menu.

Clear selection deselects all the menu entries in the menu.

Properties... displays the Menu properties dialogue box, described in Editing the Menu
on page 432.

Menu entries... displays the Menu entries window, described in Inserting a new Menu
entry on page 433.

double-click on the menu title to display the
Menu properties dialogue for the menu

double-click on a menu entry to open the
Menu entry properties dialogue for that entry

click Menu inside the editing window to
display the top-level menu
429

Editing the Menu class
Editing a Menu entry

The Menu entry properties dialogue box

This is a dialogue box for viewing and editing the characteristics of a menu entry. You
can open it by selecting a menu entry in the editing window and then selecting
Properties... from the Edit menu (or by double-clicking on a menu entry):

Component ID is a text field containing the hexadecimal component identifier of this
menu entry. Normally there is no need for you to edit this field as the component
identifiers are automatically assigned. If you wish to assign identifiers yourself, you
must ensure that they are unique within each menu.

Note: Clicking OK while any component ids are the same will elicit an error message
and the dialogue box will stay open until this is sorted out.

Text and Sprite determine the contents of the menu entry:

If you select Text, you can then enter the text and keyboard short-cut to be
displayed, and the maximum permissible length for the entry’s text to be set to at
run-time.
If you want to enter a keyboard short-cut into the Key field manually, you may have
to use !Chars to display short-cuts such as Shift F3. It is more advisable to create a
keyboard short-cut first (in the Keyboards shortcut dialogue box), and then drag this
short-cut to the menu entry properties dialogue box.
This process is fully described in Using a keyboard short-cut entry to ‘fill in’ a
menu entry on page 447.
430

ResEd
If you select Sprite, you may then enter the name of a sprite to be displayed.

Ticked displays a tick next to this entry.

Has Submenu controls whether the entry has a submenu arrow.

Faded displays this entry in grey; when the menu is shown by an application the entry
will be unselectable.

The writable field next to Help text allows you to supply a suitable interactive help
string for the Toolbox to send to !Help when the mouse pointer is over this menu. If
Help text is switched off, the Toolbox will instead supply any help text associated with
the menu as a whole – see Editing the Menu on page 432).

The Click action section specifies what happens when the user selects this menu entry.
The first thing that will happen is that the application will receive an event:

Selecting Default specifies that you will receive the default event
(Menu_Selection).

Selecting Other allows you to receive whichever event you specify in the
associated writable field (the event can be entered as a hex number, e.g. ‘&345’, or
as a decimal number).

After the event has been delivered, you can specify whether an object will be shown
automatically. You can do this by turning on the Show object option and entering the
name of the object to be shown in the associated writable field.

The Submenu action section is very similar, and specifies what should happen when
the user traverses the submenu arrow of this entry. (The section is faded unless the Has
Submenu option has been selected). The text fields have the same meanings as for menu
selection. The default event in this case is Menu_Submenu.

The two Show object name fields may be filled in by dragging an object template's icon
from the resource file display into the appropriate text entry field (or onto the
corresponding option icon if the text entry field is shaded).
431

Editing the Menu class
Editing the Menu

The Menu properties dialogue box

This is a dialogue box for editing the top-level characteristics of a menu. It is opened
from the Edit menu or by double-clicking on the menu's title:

The Title field contains the text shown at the head of the menu.

Note: If a Menu with no title is shown, the Wimp will not display a title bar. This is not
Style Guide compliant, but the Menu editor allows this so that you can set a title at
run-time.

Deliver event before showing controls the following:
● None specifies that no event should be returned.
● Default specifies that the default event (Menu_AboutTobeShown) should be

returned immediately before showing the window.
● Other allows you to specify a different event to be delivered to the application.

The associated field displays the event code in hex; you may enter event codes
in either decimal or hex (by prefixing with ‘&’).

Deliver event when hidden controls the following:
● None specifies that no event should be returned.
● Default specifies that the default event (Menu_HasBeenHidden) should be

returned immediately after the window is hidden.
● Other allows you to specify a different event to be delivered to the application.

The associated field displays the event code in hex; you may enter event codes
in either decimal or hex (by prefixing with ‘&’).

The writable field next to Help text allows you to supply a suitable interactive help
string for the Toolbox to send to !Help when the mouse pointer is over this menu (if
Help text is switched off, the Toolbox will not reply to such HelpRequest messages).
432

ResEd
Inserting a new Menu entry
You can insert new menu entries into the menu using the Menu entries window. The
Menu entries window is opened by selecting Menu entries... from the top-level menu.

The Menu entries window contains a dotted line separator and three prototype menu
entries:
● a basic menu entry
● a menu entry with a submenu arrow
● a ticked menu entry.

The menu entries in the Menu entries window may be dragged with the mouse and
dropped over the menu area to insert new menu entries and separators. The new entry is
placed between two existing entries according to the vertical position of the drop point.
If the mouse pointer is within the menu's title, it is inserted after the title; if it is dropped
after the final entry it is appended at the bottom.

Manipulating menu entries

Copying menu entries

You can copy a menu entry from one part of a menu to another using Shift-Drag Select.
The insertion point is determined as for inserting a new item. New menu entries are
automatically assigned unique component ids within the menu.

You can also use Drag Select to copy menu entries between editing windows.

Moving menu entries between different editing windows

You can move menu entries between different Menu editing windows using Shift-Drag
Select. The selected entries are deleted from the source window.

Re-ordering menu entries

You can re-order menu entries using Drag Select. The insertion point is determined as
for inserting a new item.

Note: If a copy or move operation results in a menu containing two entries with the same
component id, the editor forces the newly inserted one to have a unique id.
433

Example menu
Example menu
This example shows you how you might create the three menu entries in the following
typical menu:

Creating a submenu
The first menu entry in the above example (Pen) has an associated submenu, so the
Menu entry properties box could be filled in as follows:

The minimum sections to edit in the Menu entry properties box are
● Text – give the menu entry a unique name (e.g. ‘Pen’).
● Has submenu – switch it on.
● Show object (in the Submenu action area) – switch it on and specify the name of

the object to show if the user traverses the submenu arrow (e.g. ‘PenMenu’).

You would then create another menu object template and give it the name ‘PenMenu’.
This object would be displayed when the user traverses the submenu arrow.
434

ResEd
Displaying a dialogue box
The second menu entry in the above example (Styles...) has an associated dialogue box,
so the Menu entry properties box could be filled in as follows:

The minimum sections to edit in the Menu entry properties box are as follows:
● Text – give the menu entry a unique name (e.g. ‘Styles’). In this particular example

the ellipsis (...) signifies to the user that the dialogue box that will be displayed is a
persistent dialogue box (so the Show as transient option should not be selected).

● Show object (in the Click action area) – switch it on and specify the name of the
object to show if the user clicks on this entry (e.g. ‘StylesBox’).

You would then create a window object template for the dialogue box and give it the
name ‘StylesBox’. This object would be displayed when the user clicks on Styles...

Note: Any object (e.g. submenus and dialogue boxes) can also be built dynamically at
run-time by the client application (see Attaching a submenu dynamically on page 171).
435

Example menu
Creating a keyboard short-cut
The third menu entry in the above example (Group ⇑F3) returns an event if the user
clicks on the entry or uses a keyboard short-cut (Shift F3); this would allow the client
application to perform an appropriate action on receipt of the event.

Creating this keyboard short-cut requires two stages:
● defining the keyboard short-cut within the window object template itself.
● dragging this keyboard short-cut to the Menu entry properties box.

Defining the keyboard short-cut

The first stage is to define the keyboard short-cut within the window object template
itself. For example:

1 Click Select on the Key field and press Shift F3; the corresponding code (&193) is
automatically entered into the Key code field.

2 Specify the event code in the Deliver event box (e.g. ‘&345’).
3 Click on Update to add the new keyboard short-cut to the scrolling list.
4 Click on OK to add the new keyboard short-cut to the Window object template.

For more information on keyboard short-cuts see Keyboard short-cuts on page 445.
436

ResEd
Filling in the Menu entry properties box

The next stage is to open the third menu entry and give it a unique name (i.e. ‘Group’),
and then drag the keyboard short-cut to it. This will automatically fill in:
● the Key short-cut (e.g. Shift F3) in the Key field
● the event code to return if the user clicks on this entry (e.g. ‘&345’):

Interactive help for menu entries
The Help window gives you information about the Menu window and also displays the
component id of an individual menu entry:

If the pointer is over a menu entry
the component id of that entry will
be displayed in the help window
437

Editing a Window object template and gadgets
Editing a Window object template and gadgets
Double-clicking on a window object template in the resource file display will display an
editing window. This window displays the window object template as it will appear
(complete with gadgets) when displayed by the Toolbox. It has the following
appearance:

The Window menu
Info leads to an Info box showing the object template’s name.

Edit leads to the Edit submenu for the selected gadget(s).
See The Edit submenu on page 452.

Main properties... opens the Main window properties dialogue box. This box allows
you to specify those properties.
See The Main properties dialogue box on page 439 for more details.

Other properties... opens the Other window properties dialogue box. This box allows
you to edit those properties of a window object template that you would normally only
specify once.
See The Other properties dialogue box on page 441 for more details.

Colours... opens the Window Colours dialogue box.
See Window Colours on page 444 for more details.

Extent... opens the Window Extent dialogue box.
See Window Extent on page 444 for more details.

Key shortcuts... opens the Keyboard short-cuts dialogue box. This allows you to define
keyboard short-cuts for use inside the window.
See Keyboard short-cuts on page 445 for more details.

Toolbars... allows you to attach toolbar object templates to this window. See Toolbar
object template on page 456 for more details.

double-click Select on
the window background
to display the Main
properties dialogue box
438

ResEd
Grid leads to the Grid dialogue box. This allows you to display an optional grid of
alignment points to assist in the uniform placement of gadgets.
See The Grid on page 447 for more details.

Gadgets... opens, or brings to the front, the gadgets window. This is a selection of
gadgets which may be dragged into a Window object template to populate it with
gadgets. See The gadgets window on page 449 for more details.

Close closes the window and incorporates any changes.

The Main properties dialogue box
This dialogue box allows you to edit the main properties of a window object template.
The name of the window object template that the dialogue box refers to is displayed in
the titlebar. Choose Main properties... from the Window menu or double-click Select
on the window background to display this box:
439

Editing a Window object template and gadgets
Icons controls the following features:

Title allows you to enter the title of the window within the title bar. If you switch
this option off the window will not have a title bar.
Note: The window title is always a vertically-centred, indirected text icon in system
font; there is no facility to set a validation string.

Justify title allows you to specify the justification of the title within the title bar.

The Back, Close, Toggle, Hscroll, Vscroll and Size option buttons control whether
the Back icon, Close icon, Toggle Size icon, Horizontal scroll bar, Vertical scroll
bar and Adjust size icons are displayed.

Show Menu is an option button that controls whether the window has a menu attached
to it. If this is switched on, the associated writable field is unshaded for the menu object
template's name to be entered. Alternatively the field can be filled in by dropping a menu
object template onto it (or onto the corresponding option icon if the field itself is
shaded).

Default input focus allows you to set the characteristics of the default input focus for
the window.

None specifies that the window has no input focus and no caret.
Invisible caret specifies that the window has input focus, but no caret is displayed
until the user clicks in an appropriate area.
In gadget specifies that the window has input focus and the caret is displayed inside
a gadget. You can enter the component id of the gadget in the adjoining field or drag
a gadget to the field (or to the corresponding radio button if the field itself is
shaded).

Auto-open controls whether the Window module automatically (re-)opens the window
when a Wimp_OpenWindowRequest event is received.

Auto-close controls whether the Window module automatically closes the window
when a Wimp_CloseWindowRequest event is received.
440

ResEd
Deliver event before showing controls the following:
● Default specifies that the default event (Window_AboutTobeShown) should

be returned immediately before showing the window.
● None specifies that no event should be returned.
● Other allows you to specify a different event to be delivered to the application.

The associated field displays the event code in hex; you may enter event codes
in either decimal or hex (by prefixing with ‘&’).

Deliver event when hidden controls the following:
● Default specifies that the default event (Window_HasBeenHidden) should be

returned immediately after the window is hidden.
● None specifies that no event should be returned.
● Other allows you to specify a different event to be delivered to the application.

The associated field displays the event code in hex; you may enter event codes
in either decimal or hex (by prefixing with ‘&’).

The writable field next to Help text allows you to supply a suitable interactive help
string for the Toolbox to send to !Help when the mouse pointer is over this window (if
Help text is switched off, the Toolbox will not reply to such HelpRequest messages).

The above controls are described in the Window Manager chapter in Volume 3 of the
RISC OS 3 Programmer’s Reference Manual, and in the chapter Window class on
page 287.

The Other properties dialogue box

This dialogue box allows you to edit those properties of a window object template that
you would normally only specify once. You can only display this box by choosing
Other properties... from the Window menu:
441

Editing a Window object template and gadgets
Flags controls the following features:

Pane specifies that the window is a pane.

Moveable determines if the window is moveable, i.e. it can be dragged by the user.

Backdrop, if selected, does not allow any other windows to be opened below this
one.

Allow offscreen allows the window to be opened or dragged outside the screen area
(regardless of the Configure option settings).

Hot keys allows events to be generated for hot keys.

Auto-redraw specifies that the window can be redrawn entirely by the Wimp, i.e.
there are no user graphics in the work area.

Real colours specifies that the window colours should be treated as GCOL numbers
instead of standard Wimp colours.

Force on-screen forces the window to stay on screen.

Note: Old-style window flags are not supported (i.e. bit 31 of the window flags word is
always set).

Button type determines how the Wimp will deal with mouse movements and clicks
over the window’s background. There are 16 possible types which can be selected from
the Pop-up menu (see the RISC OS 3 Programmer’s Reference Manual entry for
Wimp_CreateIcon on page 1-93 for more details).

Extendable X ignores the right-hand extent if the Adjust size icon of the window is
dragged.

Extendable Y ignores the lower extent if the Adjust size icon of the window is dragged.

User scroll controls the Scroll_Request event:

Off does not return a Scroll_Request event.

Autorepeat returns a Scroll_Request event when a mouse button is clicked on one
of the arrow icons (with auto-repeat) or in the outer scroll bar region (no
auto-repeat).
442

ResEd
Debounced returns a Scroll_Request event when a mouse button is clicked on one
of the arrow icons (but with no auto-repeat) or in the outer scroll bar region (no
auto-repeat).

Sprite area controls whether sprites are located in the client area or the Wimp sprite
area.

Shape is an option button that controls whether the mouse pointer should change shape
when it is over the window. If this is switched on, the associated writable fields are
unshaded for the pointer sprite's name, its length, and the coordinates of its hotspot to be
entered.

Manipulating the window
You can use the icons around the window object template to manipulate the window's
size, position and scroll offsets. This information is saved with the template. The
stacking position is not saved; all templates are saved with a stacking position of -1 (top
of stack) unless the window's Backdrop flag is set, in which case the position is -2
(bottom of the stack).

Re-sizing the window

You can resize windows which have no scrollbar using Ctrl-Shift-Drag Adjust. The
window can only be resized subject to the constraints of its current work area extent.

Moving the window

You can move windows which have no title bar using Ctrl-Shift-Drag Select.

Closing the window

The window's Close icon, if present, may be used to close the window. The window may
also be closed by using the Close menu option, or by the keyboard short-cut Ctrl-F2.
443

Editing a Window object template and gadgets
Window Colours
This dialogue box allows you to edit the colours of a window:

The display fields contain the Wimp colour number of the chosen colour, and have their
backgrounds set to that colour. The menu buttons invoke a pop-up menu offering a
choice of the 16 Wimp colours. The menus for Titlebar: Foreground and Work area:
Background also offer the choice Transparent.

An alternative form of this dialogue box is displayed if the window object’s Real
colours flag has been set (see The Other properties dialogue box on page 441). In this
case the pop-up menus are not available and the colour display fields are replaced by
writable icons; values in the range 0 to 255 may be entered.

Window Extent
This dialogue box allows you to edit the extent (work area size) of a window:

upper-right corner

lower-left corner

adjuster arrows
for altering the
corner coordinates
444

ResEd
The Work area is represented by two pairs of x,y coordinates for the lower-left and
upper-right corners. You may adjust these coordinates by typing into the adjoining
writable fields, or using the adjuster arrows on the ‘adjustable square’.

Clicking on the Clip button causes the size of the work area to be made equal to the
window's current visible area on your screen.

Width and Height allow you to enter the size below which the window may not go.

Keyboard short-cuts
Each window may have a list of keyboard short-cuts associated with it. These are
programmable mappings from Wimp key codes to Toolbox events. When a keystroke
event is delivered, the Window module checks to see if it is in the list of short-cuts for
the window containing the caret. If so, it delivers the associated event to the application.
Alternatively (or additionally), a keyboard short-cut may be associated with an object
template which specifies an object to be shown when the keystroke happens.

The keyboard short-cuts assigned to a window may be created and modified using the
Keyboard shortcuts dialogue box. The name of the window that the dialogue box refers
to is displayed in the titlebar:

Existing keyboard short-cuts are displayed in the scrolling area. Double-click on one of
them to load its details into the icons below for editing; alternatively simply type in the
details of the new one.

Key is a special icon which allows you to define a key code by pressing the
corresponding key(s) on the keyboard. First click Select on the icon to activate it and
then press the key combination. The corresponding code appears in the Key code field,
and a description of the key appears in the Key field. Note that Shift-Ctrl-letter
combinations are not allowed.
445

Editing a Window object template and gadgets
Key code is the Wimp keycode for the event as described in the RISC OS 3
Programmer’s Reference Manual entry for Wimp_Poll (see page 1-112). This code is
displayed automatically when you enter a key press into the Key field, or you may
specify it yourself as a decimal number or a hex number (by preceding it with &).

Deliver event selects whether the keystroke will generate an event. The associated
writable field allows you to enter the event code as a decimal or hex number.

Show object selects whether the keystroke should show an object. The associated
writable field allows you to specify the name of the object template to be shown.

Transient causes the object to be shown with transient behaviour.

Update adds the new keyboard short-cut to the scrolling list, replacing any short-cut for
the same key already present.

Delete deletes the selected short-cuts from the list. The short-cuts listed in the scrolling
list can be selected for deleting by clicking on them (Adjust toggles whether the
short-cut is selected or not).

OK accepts the updated list of short-cuts and closes the window.

Cancel closes the window, discarding any changes.
446

ResEd
Using a keyboard short-cut entry to ‘fill in’ a menu entry

You can fill in the Key field and Click action fields (Deliver event, Show object and
Show as transient) in a menu entry by dragging a keyboard short-cut entry from the
Keyboard shortcuts scrolling area and dropping it into a Menu entry properties
dialogue box in the Menu editor:

The Grid
The Grid dialogue box can display an optional grid of alignment points to assist in the
uniform placement of gadgets:

drag the required keyboard
short-cut to the Menu entry
Properties dialogue box -
the Key field and Click action
fields and options will be filled in
447

Editing a Window object template and gadgets
The grid is represented by a matrix of dots which overlay the contents of the window.
The grid spacing is specified as a number of OS Units between grid points, this being
configurable independently for different windows.

Show grid controls whether the grid is currently displayed for this window.

If Lock to grid is selected, gadgets may only be moved or resized in units of grid
spacing. This means that if you have a group of gadgets then you can move (or resize)
them, either horizontally or vertically, in multiples of the selected grid spacing, and they
will keep their relative positions.

Note: If you drag gadgets into a window, the gadgets will not be locked to the grid in the
window until you use the Snap to grid option (see page 453).

Grid spacing controls the spacing of the grid. For maximum compatibility across
different RISC OS modes you are advised to set grid spacings to exact multiples of 8,
and to this end the adjuster arrows alter the grid spacing in steps of 8. Values that are not
a multiple of 8 may be entered from the keyboard but will be forced to be exact multiples
of 4. For example:

There is also an option that allows you to snap gadgets to grid points. This is described
in Snap to grid on page 453.
448

ResEd
Gadgets

The gadgets window
You can populate a window with gadgets by dragging them in from the gadgets window.
This is a read-only window containing a typical example of each supported gadget type.
You can display the gadgets window by choosing the Gadgets... option from a Window
menu (or by pressing Ctrl-G):

The gadgets in the gadgets window may not be moved or deleted. The gadgets window
does not have a menu, and only the keyboard short-cuts ^A and ^Z are available.

Positioning and moving gadgets
You can drag any of the gadgets from the gadgets window into your window object
template and drop them wherever is appropriate.

drag a gadget from the
Gadgets window into the
Window object template
449

Gadgets
Repositioning and copying

You can reposition one or more gadgets in your window by first selecting them and then
using Drag-Select with the pointer over one of the selected gadgets. If Lock to grid is
on, the gadgets are moved by the nearest multiple of the grid spacing. If you hold down
Shift, a copy of the gadgets is made.

Accurate positioning

There are three ways to position a gadget accurately:
● specify its coordinates in the window’s work-area coordinate system

(see The Coordinates dialogue on page 454)
● align it with one or more other gadgets using the Align menu (see page 455).
● move the gadget (or selection of gadgets) using the cursor keys. This can be done by

selecting a gadget, holding down the Select button (as if dragging), and then
pressing any of the four cursor keys.

Auto-scrolling

If you want to move a gadget beyond the visible area of the window on the screen you
must drag the gadget very slowly towards one of the sides of the window.
Auto-scrolling of the window will occur when the mouse pointer comes close to a side
of the window; scrolling is faster the closer the pointer is to the edge.

Moving gadgets between windows

You can copy gadgets between windows by dragging them from one window object
template to another (to avoid auto-scrolling you should not drag a gadget too slowly
when dragging between windows).

If you hold down Shift the gadgets are deleted from the source window.

drag a gadget slowly to any side of
the window to start auto-scrolling
450

ResEd
Moving a gadget in one direction only

You can move a gadget in one direction only using Drag-Adjust on the top, bottom, left
or right resize handles (if Lock to grid is switched on, the gadgets are moved by the
nearest multiple of the grid spacing):

Changing the size of a gadget
You can change the size of a gadget using Drag-Select on a resize handle (if Lock to
Grid is on the change in size of the gadget (or selection of gadgets) is always a multiple
of the grid spacing).

You can also change the size of one gadget, or of a selection of gadgets, using the Width
and Height options in the Coordinates dialogue box (see page 454).

Stacking
Gadgets are not intended to be stacked; so there are no facilities for placing one gadget
‘above’ another. Gadgets whose bounding boxes overlap will stack in an arbitrary order;
there is no way you can guarantee that this order will remain unchanged. The exception
to this rule is the labelled box gadget, which is always placed beneath all other gadgets.

Moving the caret between writable gadgets
You can define the order in which the caret is moved between writable gadgets (in
response to the Tab, Shift-Tab, up-arrow and down-arrow keys) by filling in the Before
and After fields of the gadget properties dialogues:

These fields contain the component ids of the two gadgets ‘before’ and ‘after’ the
gadget. To help you fill these in, you can drag gadgets into them, or more typically you
can use the Link writables option in the Edit submenu. This automatically fills in these
fields for all the selected gadgets that support caret movement (writable fields, string
sets and number ranges). The ordering imposed is left-to-right and top-to-bottom (as if
you were reading a page of text).

move vertically only

move horizontally only move horizontally only

move vertically only
451

Gadgets
The Edit submenu
If you select one or more gadgets then, depending on the gadgets selected, some of the
following edit options in the Edit submenu will be available:

Delete deletes the selection of gadgets.

Properties... opens the gadget properties dialogue box for the selected gadget. An
alternative way to open this dialogue box is to double-click Select on the gadget itself.

Snap to grid snaps selected gadgets to the window grid (see Snap to grid on page 453).
Note that this option is independent of the Lock to grid setting, and is operative even
when the grid points are not displayed.

Make radio group makes any selected radio buttons into a radio group (see
Manipulating radio groups on page 453).

Link writables links the selected writable gadgets together so that they can be traversed
with Tab, Shift-Tab, up arrow and down arrow keys (see Moving the caret between
writable gadgets on page 451).

Coordinates allows gadget coordinates to be entered from the keyboard for precise
positioning (see The Coordinates dialogue on page 454).

Align allows you to align gadgets with one another (see The Align menu on page 455).

Select all selects all the gadgets in the window.

Select leads to the Select submenu.

Radio group selects all the radio buttons in the radio group to which the selected
radio button belongs (see Manipulating radio groups on page 453).
Next writable selects the gadget that is linked after the selected gadget.
Previous writable selects the gadget that is linked before the selected gadget.
Default writable selects any gadget that is assigned as the ‘default input focus’ for
the window.
Default action selects any action button that is assigned as the default action
button.
Cancel action selects any action button that is assigned as the cancel action button.

Clear selection deselects all the gadgets in the window.
452

ResEd
Snap to grid
The Snap to grid operation on the Edit submenu makes each selected gadget move so
that its alignment point is on the nearest gridpoint.

The ‘alignment point’ of a gadget is as follows:
● the Y-coordinate is always the centre of the gadget
● the X-coordinate is normally the lefthand side of the gadget.

(the only exception is the label gadget; where the alignment point is on the lefthand
side if the label is left-justified, on the righthand side if the label is right-justified,
and in the centre if the label is centre-justified)

Snap to grid snaps each selected gadget independently (when the selection is moved
under grid-lock, the relative positions of the gadgets are preserved).

If you drag a selection of gadgets into a window they will not be snapped to the grid in
that window (even if Lock to grid were switched on). If they were snapped
automatically to the grid it would alter their relative positions to each other, and this
might not be desired. The gadgets remain selected when dragged into a window, so if
you do want to snap them to the grid then you can just press Ctrl-S (for Snap to grid).

Manipulating radio groups
When you drag radio buttons into a Window object template from the gadgets window,
each one ends up in its own new radio group. You must then select and group them
explicitly using the Make radio group option in the Edit menu.

The Make radio group option is faded unless the window's selection consists entirely
of radio buttons. When you choose this menu entry, the selected radio buttons are placed
into a single new radio group.

To select all members of a radio group, press Menu over one of them and choose Radio
group from the Select submenu in the Edit menu. This enables you to see instantly the
grouping relationship between radio buttons.

When a radio button is copied within a window by use of Shift-Drag, the copy is put into
the same group as the original. So the easiest method to create a radio group is to drag a
single radio button into the Window object template and make multiple copies of it
using Shift-Drag Select.

Dragging a group of radio buttons between window templates

Adding radio buttons to a window never adds them to a pre-existing group; but any radio
groups added to a window remain as groups.
453

Gadgets
The Coordinates dialogue
This dialogue box allows you to position or size selected gadgets by entering
coordinates (in the window's work-area coordinate system) from the keyboard:

When a single gadget is selected, all four option buttons are switched on and the four
writable fields are filled in with its position and size.

If you select more than one gadget, they are checked to see if they have common values
for any of the four attributes. Those attributes with common values are filled in, and the
corresponding option buttons switched on. Those attributes with differing values are
faded, and the corresponding option buttons switched off. You may toggle the option
buttons to alter the settings of any of the latter attributes.

When you click OK, the attributes are set from those fields with the option buttons
switched on. The attributes that have their option buttons off are left alone. Thus, it is
possible to set several gadgets to have the same X position without altering their Y
positions, and at the same time equalise the width of the selected gadgets:

... would result in this

selecting the four
gadgets below, and
setting Position and
Size as opposite ...
454

ResEd
The Align menu
The Align menu allows you to align a group of selected gadgets in a window
1 select one or more gadgets
2 decide which gadget you want to align the other gadgets to and press Menu over it

(this gadget does not need to be part of the selection)
3 go into the Align menu and click on the required type of alignment:

The gadgets are then moved to align with the nominated gadget.

If you press Menu when the pointer is not over a gadget the Align menu will be faded.
Lock to grid is ignored when aligning.

Aligning gadgets from top to bottom

The top three options control how the gadgets will be aligned from top to bottom. In the
following example the gadgets are aligned with the slider gadget:

Before aligning Top edges Centre lines Bottom edges
455

Gadgets
Aligning gadgets from left to right

The bottom three options control how the gadgets will be aligned from left to right. In
the following example the gadgets are aligned with the Labelled box gadget:

Toolbar object template
The toolbar object prototype is a window object template. Double-clicking on it inside a
resource file display will display a blank editing window:

You can then edit this window, move it round the screen (using Ctrl-Shift-Drag Select),
change its size (using Ctrl-Shift-Drag Adjust) and colour, drag gadgets into it etc, in
exactly the same way as you would edit a window object template.

Before aligning Left edges Centre lines Right edges
456

ResEd
Positioning the toolbar within a window

Once you have finished designing your toolbar you can open a window object template,
go into the window menu for that template, and select the Toolbars... option. This will
display the following box:

You can enter a toolbar object template name into a writable field after switching on the
corresponding option icon (e.g. to the right of Top left), or drop a toolbar object
template onto the writable field (or onto the associated option icon if the writable field is
faded).
457

Gadgets
Interactive help for gadgets
The Help window displays the id, size and position of a gadget in a window.

In the following example, a window has been customised as a Find dialogue box and the
pointer has been moved over two of the gadgets in the window:

The customised window shown above is described in Adding a find capability on
page 57 in the User Interface Toolbox manual.

Help displays the id, size and position
of the writable field gadget

Help displays the id, size and position
of the radio button gadget
458

ResEd
Common features in gadget properties boxes
Some features are common to several or all gadget properties boxes. These are described
here rather than repeating their descriptions in each gadget section:

● The title bar contains a string describing the type of gadget being edited.
● The first field is always a writable icon containing the gadget's Component ID.

Normally you do not have to enter anything into this field as a unique number is
automatically assigned to it. If you need to, you can change a gadget's id by typing
a new id into this icon. When OK is pressed, the gadget will be renumbered.
Duplicate component ids are not allowed within a window; any attempt to set a
component id to one already used by a gadget in the same window will be faulted.
New gadgets dragged in from the gadgets window have a new unique component id
chosen automatically.

● Next to the component id is a display field showing the name of the window object
template that the gadget belongs to.

● Many of the dialogues have a Text field allowing you to type in a string which
appears in the gadget.

● All gadgets have a Help text field. This is a writable icon for you to supply a
suitable interactive help string for the Toolbox to send to !Help when the mouse
pointer is over the gadget. If the Help text option icon is not selected, the
underlying window will respond to !Help instead.

● All gadgets have a Faded option button. Setting this fades the gadget and makes it
inactive to mouse clicks.

title bar
Component ID

name of

Help text

Faded

Length field

OK and Cancel buttons

option

window
Text field

Deliver
event
459

Gadgets
● Some string entry fields (including Help and Text) have an associated Length field.
This is a writable number range which specifies the length of the buffer used to hold
the text. For more details on how this field works see Help messages on page 426.

● Several of the dialogues feature a Deliver event section. This section allows you to
specify whether or not you want an event to be returned, and what that event should
be:
● Default specifies that the default event should be returned.
● None (if present) specifies that no event should be returned.
● Other is used to specify a user event; you may enter event codes in either

decimal or hex (by prefixing with ‘&’).
● Every gadget properties dialogue has OK and Cancel buttons (see page 428 for

more details).

Opening a gadget properties box

You can open the properties dialogue box for a gadget by double-clicking on the gadget
in the Window editor.

The following sections describe in detail the layout and extra controls of each type of
gadget properties dialogue:

Gadget see page
Action button properties 461
Adjuster arrow properties 462
Button properties 462
Display field properties 464
Draggable properties 464
Label properties 465
Labelled box properties 466
Number range properties 466
Option button properties 468
Pop-up menu properties 469
Radio button properties 469
Slider properties 470
String set properties 471
Writable field properties 473
460

ResEd
Action button properties
The action button properties box is displayed as follows:

The Show object option controls whether pressing this button should cause another
object to be shown automatically. You can enter the object template's name into the
associated writable field, or drag the object template into this field (or onto the
associated option icon if the field is faded). This mechanism may be used to make nested
dialogues.

Show as transient selects whether the object will be shown as a transient or not.

The Button section allows you to specify the operation of the action button.

Default controls whether this button is the default for the window it is in. If you
select it, the button is given a highlighted border and is activated by any presses of
the Return key within its window.

Cancel controls whether this button is the cancel button for the window it is in. If
this is selected, all clicks on the button cause the window to be closed. Also any
Escape key presses when the parent window has the caret cause the Cancel button to
be activated.

When you make an action button into the Default or Cancel button for its window,
that attribute is removed from the button that previously had it.

If you drag an action button into another window, the editor checks that the
strictures regarding Default and Cancel buttons are not violated (that there must be
at most one of each). If necessary the previous ‘owners’ of these attributes are made
into normal action buttons.
461

Gadgets
Whenever the Default attribute is added to an action button, its bounding box is
automatically enlarged to include the special border, and when the attribute is
removed, the bounding box is made correspondingly smaller.

Local makes an action button into a Local action button. Unlike a normal action
button, activating it will not cause the parent window to be closed.

Adjuster arrow properties
The adjuster arrow properties box is displayed as follows:

The Direction radio buttons control the direction that the arrow button is pointing in,
and hence whether the button will return ‘up’ or ‘down’ events.

Button properties
The Button gadget exposes most of the underlying Wimp icon, allowing you to create
custom controls. The Button properties box is displayed as follows:
462

ResEd
Text and Sprite are option buttons controlling the contents of the icon. By switching the
two buttons on or off, or just switching one of them on, you can produce four
combinations. The effects of these various combinations are described in the RISC OS 3
Programmer’s Reference Manual on page 3-101. If necessary you can then specify a
validation string in the Validation field. Note, however, that if you only switch on
Sprite, then the pointer must be to a sprite name.

Use client’s sprite area specifies that the Toolbox should first check on those areas set
up by Toolbox_Initialise, rather than using the default Wimp Sprite area.

Return menu clicks specifies that a Menu click is returned to the client application
(instead of being processed and acted upon by the Toolbox).

Button Type is a string set offering the sixteen possible Wimp button types:

0 Never8 Double/Drag
1 Always9Menu icon
2 Auto-repeat10Double/Click/drag
3 Click11 Radio
4 Release12Type 12
5 Double click13Type 13
6 Click/Drag14Write/Click/Drag
7 Release/Drag15Writeable

ESG is a writeable field for the input of the icon's Exclusive Selection Group number.
This number is constrained to be between 0 and 31.

Foreground and Background offer the choice of the sixteen standard Wimp colours
from a pop-up menu. The associated display field shows the chosen colour, as well as
the Wimp colour number in a contrasting colour.

The option buttons under Icon flags are used to set the remaining icon flag bits that are
not implicitly defined by the above settings. The correspondence between buttons and
icon flag bits is as follows (see the RISC OS 3 Programmer’s Reference Manual entry
for Wimp_CreateIcon on page 1-93 for more details):

Button Bit
Border 2
H-centred 3
V-centred 4
Filled 5
Adjust 10
Half size 11
Needs help 7
Right justified 9
463

Gadgets
There are three icon flag bits that are pre-set which you cannot change:

Display field properties
The display field properties box is displayed as follows:

The Justify radio buttons are used to choose whether the contents are positioned to the
left, right or centre of the gadget.

Draggable properties
The draggable properties box is displayed as follows:

Bit Set to
6 always set to system font
8 always indirected
21 always unselected when first displayed
464

ResEd
The Draggable gadget may have a writable text string, a sprite, or both, as chosen by
relevant option buttons. At least one of these must be on.

The Deliver event at start of drag option allows you to control delivery of the
Draggable_DragStarted event.

Use Toolbox IDs allows you to specify that object/component id pairs of the drag
destination will be reported, rather than Wimp window handle/icon handle pairs.

The Drag type radio buttons allow you to select the behaviour of the draggable.

Drag provides drag behaviour equivalent to dragging a standard Save As box.
Double/Click is equivalent to Icon button type 10.
Double/Select is equivalent to Icon button type 8.

Has drop shadow allows you to specify whether the draggable has a grey drop shadow
when dragged.

Dithered allows you to specify whether the draggable is displayed as semi-transparent
when dragged.

Label properties
The label properties box is displayed as follows:

The Justify radio buttons are used to choose whether the contents are positioned to the
left, right or centre of the gadget.

Display border controls whether the gadget's bounding box is drawn or not.
465

Gadgets
Labelled box properties
The labelled box properties box is displayed as follows:

The labelled box can have either a textual or sprite label, but not both. This is chosen
using the Text and Sprite radio buttons. The text entry field next to the unselected radio
button is faded.

Filled allows you to specify that the background to the sprite is set to grey.

Number range properties
The number range properties box is displayed as follows:
466

ResEd
Deliver events when value changes controls whether the application receives
NumberRange_ValueChanged events when the contents of the writable change.

Initial, Minimum, Maximum and Step Size are writable fields in which you specify
the main parameters of the number range. They are always specified as integers.

Precision controls the display of a decimal point; its value is the number of digits to be
displayed to the right of the point (thus if precision is 2, the value 2.34 is specified as
234). To display integers, set Precision to 0.

Has numerical display controls whether any numbers are displayed.

Display and Writable select whether the display area may be typed into. If
Writable is on, the Link to gadgets section allows you to specify which gadgets
the caret should be moved to when the Tab, Shift Tab, up-arrow and down-arrow
keys are pressed. If you drag a gadget into the Before or After writable fields (or
their associated option icons) its component id is entered into the field
automatically. Normally, however, you would use the Link writables option in the
Edit menu to determine the path taken by the caret. See Moving the caret between
writable gadgets on page 451 for more details.

The Justify radio buttons are used to choose whether the numeric value is positioned to
the left, right or centre of the numerical display field.

Display width allows you to specify the width (in multiples of 4 OS units) of the field
that displays the number (only if Has slider is switched on).

Has adjusters controls whether adjuster arrows are displayed; if selected, they will
appear as a pair of buttons to the right of the display area (or, if there is a slider, at either
end of the slider).

Has slider controls the presence and positioning of the gadget's associated slider. The
slider is always placed 8 OS units away from the display area, and may be to the left or
right of it. The slider will be interactive only if the writable radio button is selected.

The Slider colour section allows you to specify the colours of the slider:

Bar is a display field showing the colour of the slider's bar. The colour is set by
specifying a Wimp colour number from the attached pop-up menu.

Background is a display field showing the background colour of the slider's bar.
The colour is set by specifying a Wimp colour number from the attached pop-up
menu.
467

Gadgets
Altering the size of the numerical field

As well as the normal eight resize handles, number range gadgets which display a slider
and numerical display have an additional handle. You can drag this handle to the left or
right to adjust the size of the numerical display field:

Note: You can only alter the size of the numerical field on one number range gadget at a
time. If you try and resize this field on a selection of number range gadgets only the
gadget you are actually resizing will be resized.

Option button properties
The option button properties box is displayed as follows:

Selected chooses whether this button is initially switched on or not.

drag the handle to the leftdrag the handle to the right
to shorten the numerical field to lengthen the numerical field
468

ResEd
Pop-up menu properties
The pop-up menu properties box is displayed as follows:

Show menu controls whether a menu will be automatically shown when the menu
button is clicked. The template name of the menu to be attached may be filled in by
dragging a Menu object template to this field. If no Menu object template is supplied,
the application will be expected to create it at run-time in response to the
PopUp_MenuAboutToBeShown event.

Deliver event before showing controls whether the client application will receive a
PopUp_MenuAboutToBeShown event when the object is about to be shown.

Radio button properties
The radio button properties box is displayed as follows:

Each radio button is a separate gadget and belongs to a ‘radio group’, this group being
the set of radio buttons with which it is mutually exclusive. The radio group is
implemented by means of a ‘Group Number’ (see Radio buttons on page 387) in the
Toolbox data structure that describes the gadget; the group number is not the same as the
469

Gadgets
Wimp's ESG (which the Toolbox does not use). You cannot specify the group number
explicitly, instead you must use the Make radio group option in the Edit menu;
however, the group number assigned by ResEd is always displayed in the in group field.

Selected chooses whether the button is initially on or off; only one button in the group
may be on at once, and switching another on will turn off the previously-on button.

Slider properties
The slider properties box is displayed as follows:

The Type radio buttons select between a read/write slider and a read-only one.

The Orientation radio buttons select whether the slider is horizontal or vertical. When a
slider’s orientation is changed, it is rotated through 90 degrees about its centre point.

Slider colour Bar is a display field showing the colour of the slider's bar. The colour is
set by specifying a Wimp colour number from the attached pop-up menu.

Slider colour Background is a display field showing the background colour of the
slider. The colour is set by specifying a Wimp colour number from the attached pop-up
menu.

The Deliver events buttons control when the application will receive
Slider_ValueChanged events.
470

ResEd
Minimum and Maximum are the signed integer bounds of the slider's range.

The Initial value and Step size are constrained to be valid given the current minimum
and maximum settings.

String set properties
The string set properties box is displayed as follows:

To set up a string set, enter the list of available strings into the Strings writable field.
The list is comma-separated; to include a comma in one of the strings, precede it with a
backslash. To include a literal backslash, use two backslashes.

The Initial writable field is for entering the string whose value will be used as the initial
contents of the string set. This string does not have to be one of the list of available
strings.

Has display field controls whether any text is displayed.

Display and Writable select whether the display area may be typed into. If
Writable is switched on, the display area of the string set will be writable and the
user may enter any desired string into it – not just one of the predetermined choices.
Switching on Writable also enables you to fill in the Specify allowed characters
section.
471

Gadgets
The Justify radio buttons are used to choose whether the contents are positioned to the
left, right or centre of the display area.

Deliver events Value Changed controls whether the application receives
StringSet_ValueChanged events when the contents of the writable change.

Deliver events About To Be Shown controls whether the client application will receive
a StringSet_AboutToBeShown event when the object is about to be shown.

The Specify allowed characters section allows you to specify what characters may be
typed into the display area. If you do not switch on this option any character will be
accepted (before you can fill in the Specify allowed characters section you must first
switch on Writable).

Length determines the size of buffer allocated to the validation string.

Allowed characters accepts a pattern for the characters that should be allowed in
the gadget.
● The three option buttons marked a-z, A-Z and 0-9 enable you to specify the

lower-case letters a-z, the upper-case letters A-Z and the digits 0-9.
● The Other option allows you to enter a pattern as for the Wimp's icon

validation string ‘A’ command (for more information on the A command see
the RISC OS 3 Programmer’s Reference Manual entry for Wimp_CreateIcon
on page 3-102).

For example, if you wanted to specify that the only characters allowed were the
digits 0-9 and the lower-case letters a-z, except for ‘d’, ‘p’ and ‘u’, you would fill
this section in as follows:

The Link to gadgets section allows you to specify which gadgets the caret should be
moved to when the Tab, Shift Tab, up-arrow and down-arrow keys are pressed. If you
drag a gadget into the Before or After writable fields (or into the associated option icon
if the writable field is faded) its component id is entered into the field automatically.
Normally, however, you would use the Link writables option in the Edit menu to
determine the path taken by the caret. See Moving the caret between writable gadgets on
page 451 for more details.
472

ResEd
Writable field properties
The writable field properties box is displayed as follows:

The Justify radio buttons are used to choose whether the contents are positioned to the
left, right or centre of the gadget.

The Specify allowed characters section allows you to specify what characters may be
typed into the display area. Length determines the size of buffer allocated to the
validation string. Allowed characters accepts a pattern for the characters that should be
allowed in the gadget as for the Wimp's icon validation string ‘A’ command. For a full
description of allowed characters see the section on allowed characters on the previous
page.

If Password behaviour is switched on, then any characters entered will be displayed as
minus signs.

The Link to gadgets section allows you to specify which gadgets the caret should be
moved to when the Tab, Shift Tab, up-arrow and down-arrow keys are pressed. If you
drag a gadget into the Before or After writable fields (or into the associated option icon
if the writable field is faded) its component id is entered into the field automatically.
Normally, however, you would use the Link writables option in the Edit menu to
determine the path taken by the caret. See Moving the caret between writable gadgets on
page 451 for more details.

Deliver events when value changes controls whether the application receives
WritableField_ValueChanged events when the contents of the writable change.
473

Editing other classes
Editing other classes
There are three stages in editing any of the remaining object templates.
1 Display the object prototypes window and drag the required object templates from

the object prototypes window into your resource file display:

2 Edit each object template by double-clicking on its icon in the resource file display.
An editing window for that object template will then be opened.
For example, the File Info object template:

In general the editing dialogue boxes for these remaining object templates are not
WYSIWYG representations of the underlying objects.

3 Close the editing window with the OK button to confirm the changes you have
made. If you close the editing window with the Cancel button, the modified data is
discarded.

drag the required object templates
to your resource file display
474

ResEd
Common features in standard dialogue boxes and menus
Some features are common to several or all standard dialogue boxes or standard menus.
These are described here rather than repeating their descriptions in each individual
section:

● Title is the title string to appear in the title bar of the dialogue box or menu. If this
is set to Default, the module will provide a suitable default. If it is set to Other, the
accompanying writable fields are unfaded for you to specify an initial title and its
maximum length.

● Deliver event controls the following:
Before showing controls whether the client application will receive a
DialogueAboutToBeShown event when the object is about to be shown.
When hidden specifies that the client application will receive a
DialogueCompleted event when the object is hidden.

● Use alternative window is an option button which controls the availability of the
writable field next to it. If the option is switched on, you may enter the name of a
Window object template to be used as the prototype for creating the relevant object
template, instead of the standard one (alternatively you can drag a window object
template icon from the resource file display into the writable field – or into the
associated option icon if the writable field is faded). This enables any standard
dialogue or menu to be given a custom appearance. The custom window must
contain gadgets similar to those used in the default module window; see the relevant
chapter on the particular module for details.

● Every dialogue box and menu has OK and Cancel buttons.

Use

OK and Cancel buttons

Title

Deliver
event

alternative
window
475

Editing other classes
Colour Dialogue class
The Colour Dialogue object template is displayed as follows:

Include "None" button is an option button that decides whether the dialogue will allow
the choice of ‘no’ colour.

Select "None" button specifies that the None button is selected by default.

Initial colour is a display field that shows the RGB value of the selected colour. Next to
it is a pop-up button which summons a colour picker from which the initial colour may
be chosen.

Colour Menu class
The Colour Menu object template is displayed as follows:

Include "None" entry is an option button that controls the presence of an entry for ‘no
colour’ (i.e. None) on the menu.

The Initial colour display field shows the initially-ticked colour, and the pop-up menu
to the right of it is itself a colour menu enabling the initial colour to be chosen. The
option icon controls whether any value is ticked or not.
476

ResEd
DCS class
The DCS (Discard, Cancel, Save) object template is displayed as follows:

Message is a writable field for entering the message to be displayed in the centre of the
window. Its behaviour is similar to that of the Title field.

File Info class
The File Info object template is displayed as follows:

Filename is a writable field containing the initial contents of the filename display.

Filetype is a display field showing the initial filetype's name and hex value. Next to it is
a pop-up menu button which displays a list of filetypes for you to choose from. If you
want to specify a filetype not on this list you can go to the Filetype dialogue box (via the
Other menu option) and fill in the writable field with any filetype name or number. The
number must be in decimal unless preceded with '&'. The two special filetypes
‘directory’ (&1000) and ‘application’ (&2000) may also be entered.
477

Editing other classes
Note that no interface is provided for setting the ‘filesize’, ‘modified’ and ‘date’ fields of
the File Info object template because these cannot be known when the template is being
created. They must be filled in by the application at run-time.

Font Dialogue class
The Font Dialogue object template is displayed as follows:

Initial font is a writable field for you to type in the initial font name to be put into the
font dialogue. Alternatively, you can select a font from the pop-up menu next to the
writable field. Note that it is possible that the initial font will not be available at
run-time; if so, a default will be substituted by the module (as will be the case if the
option icon is not switched on).

Font height is a number range giving the initial contents of the object's font height
setting. You can change the integer value using the adjuster arrows, or type a new value
in yourself.

Aspect ratio is a number range giving the initial contents of the object's aspect ratio
setting. You can change the integer value using the adjuster arrows, or type a new value
in yourself.

Sample string is a writable field that lets you specify the test string to be displayed
when the Font Dialogue's Try button is pressed. If the option icon is not switched on, the
module will substitute a default.

The Allow system font option button controls whether System Font will be selectable
using the Font Dialogue object.
478

ResEd
Font Menu class
The Font Menu object template is displayed as follows:

Initial font is a writable field for you to type in the initial font name. Alternatively, you
can select a font from the popup menu next to the writable field. Note that it is possible
that the initial font will not be available at run-time; if so, a default will be substituted by
the module (as will be the case if the option icon is not switched on).

The Allow system font option button controls whether System Font will be on the
menu. If you switch this option on, the Initial font menu has System Font on it too.
479

Editing other classes
Iconbar icon class
The Iconbar icon object template is displayed as follows:

Position and Priority control where on the iconbar the icon will appear. You can select
the position from the adjoining pop-up menu or enter a value directly into the writable
field.

● Types -3 and -4 require a Wimp icon handle to be passed into the call to
Toolbox_ShowObject to specify which icon the position is relative to.
They are also incompatible with the object's auto-show bit being set, as they depend
on a Wimp icon handle being specified in the call to Toolbox_ShowObject. The
editor does not force this bit to be clear in these cases; the effect of setting it is
undefined.

Value
-1
-2
-3
-4
-5
-6
-7
-8
480

ResEd
● Types -5, -6, -7 and -8 require an integer Priority to be specified in the writable
field provided. The priority level is as documented in the RISC OS 3 Programmer’s
Reference Manual entry for Wimp_CreateIcon on page 1-93. The Priority field is
faded when Position is not set to one of -5 through -8. Priority is normally a
decimal integer, but a hex value may be entered by preceding it with an '&'.

Sprite name is a writable field where you can enter the name of the sprite to be
displayed in the icon. If the icon is to display text as well, you should switch on the Text
option button. This unfades the two writable fields next to it, enabling you to enter the
initial string and maximum length. Switching this option button on sets bit 0 of the
object's flags word.

Grouped under Select button and Adjust button are the controls for specifying what
should happen when the user clicks on the icon with the appropriate mouse buttons:

Deliver event is a writable field for the input of an event code to be delivered to the
application.

Show object is a writable field that takes the name of an object template to be
shown. You can enter the name of the object template by typing or by dragging an
object template into the writable field (or into the associated option icon if the
writable field is faded). It is possible to ask for both an event to be delivered and an
object to be shown.

The Transient option selects whether the object will be shown as a transient or not.

Deliver event before showing controls whether the client application will receive
an Iconbar_DialogueAboutToBeShown event when the object is about to be shown.

Show menu is a writable field for you to specify the name of a menu to be shown when
the user clicks in the icon with the Menu mouse button. If the associated option button is
turned off, the field is faded and no menu will be shown. You can enter the name of the
menu by dragging a Menu object template from the resource file display into the
writable field (or into the associated option icon if the writable field is faded).

The writable field next to Help text allows you to supply a suitable interactive help
string for the Toolbox to send to !Help when the mouse pointer is over the object. If
Help text is switched off then no help text will be sent.
481

Editing other classes
Print Dialogue class
The Print Dialogue object template is displayed as follows:

Listed under Optional features are a number of option buttons that select which of the
optional controls will be present on the dialogue box. Some of these option buttons
control the availability of further parameters.

Copies selects whether the dialogue box will allow the user to specify the number of
copies to be printed. If this is selected, the writable field to its right is unfaded for the
initial value of the number of copies to be specified.

Scale factor selects whether the dialogue box will allow the user to specify a scale
factor for the print job. If this is selected, the writable field to its right is unfaded for the
initial value of the scale factor to be specified.

Page range selects whether the dialogue box will allow the user to specify the range of
pages to be printed. If you switch this option on, the two radio buttons to its right are
unfaded for you to specify the default page range. Selecting All means that the default
will be for all pages to be printed. Selecting From means that only a specified range of
pages will be printed; this range is specified using the two writable fields (which are
faded until From is selected.)

Orientation selects whether the Print dialogue box will include a choice of Upright
(portrait) or Sideways (landscape) mode. The radio buttons to the right of it are faded
unless you switch on this option, and enable you to choose what the default orientation
will be.
482

ResEd
Draft button selects whether the Print dialogue box has a Draft option button or not.
The associated radio buttons choose the initial state of the Draft button.

Setup button selects whether the dialogue box has a Setup button. If you switch this
option on, the fields underneath and to the right are unfaded to enable the specification
of the following parameters:

Show window is the name of the Window object template to be used for the Setup
dialogue. You can enter this by typing, or by dragging a Window object template
into the writable field (or into the associated option icon if the writable field is
faded).

Deliver event before showing is an option button that controls whether a
Print_SetUpAboutToBeShown event will be delivered before the Setup dialogue is
shown.

Save button selects whether the Print dialogue box has a Save action button for saving
the current printing setup.

Prog Info class
The Prog Info object template is displayed as follows:

Purpose, Author and Version are writable fields that allow you to specify the contents
of the corresponding parts of the Prog Info dialogue box.

Include "Licence" is an option button which controls whether the Prog Info dialogue
box has a Licence type field. If you switch on this option, you can select the licence type
from the pop-up menu next to the writable field. The licence types available are Public
domain, Single user, Single machine, Site, Network and Authority.
483

Editing other classes
Quit Dialogue class
The Quit Dialogue object template is displayed as follows:

Message is a writable field that allows you to enter the message to be displayed in the
centre of the window. Its behaviour is similar to that of the Title field.

Save As class
The Save As object template is displayed as follows:

Filename is a writable field for you to enter the default filename to be displayed in the
dialogue.

Filetype is a display field showing the current filetype's name and hex value. Next to it
is a pop-up menu button which displays a list of filetypes for you to choose from. If you
want to specify a filetype not on this list you can go to the Filetype dialogue box (via the
484

ResEd
Other menu option) and fill in the writable field with any filetype name or number. The
number must be in decimal unless preceded with '&'.The two special filetypes
‘directory’ (&1000) and ‘application’ (&2000) may also be entered.

Include "Selection" Button is an option button that allows you to control the presence
or absence of the Save As dialogue's Selection option.

If the Client participates option button
● is off, the Save As module will itself handle all data saving on behalf of the client,

and the Supports RAM transfers option button remains faded.
● is on, the Save As module will involve the client in data saving, using the RAM

transfer protocol only when the Supports RAM transfers option button is on.

Scale Dialogue class
The Scale Dialogue object template is displayed as follows:

Minimum, Maximum and Step size are writable integer fields for entering the
constraints to be placed on user-specified scale factors.

Preset values is a list of four writable fields allowing you to specify the scale factors on
the preset size local action buttons.

Include "Scale to fit" button is an option button that allows you to control the presence
or absence of a Scale to fit action button in the Scale Dialogue object.
485

Exporting and importing messages
Exporting and importing messages
For some purposes, especially internationalisation, you may want to edit the user-visible
messages held in a resource file en masse. Rather than manually stepping through every
object template in the file, it is useful to be able to edit all the messages in one place.
You can do this using the Export messages menu item (see page 423). This menu item
leads to a Save as box containing a Textfile icon. If you drag this icon into a Filer
window or a text editor, ResEd generates a file of messages in MessageTrans format
(see the RISC OS 3 Programmer’s Reference Manual for details).

The file produced contains the messages from each object template in turn. Because
these do not have specific tags, a unique tag is generated automatically for each
message. These tags take the form:

<object name>|<number>:

where

<object name>is the name of the object template
<number> is the number of the message within that object

You can then edit the resulting message file, and drag it back into the resource file
display. A warning is displayed, and you must click on Import to proceed.

The messages are matched to their respective objects by use of the information stored in
the tags. So, for example, the message

SetColours|5:This is the setcolours dialogue

will replace the fifth message in the object template whose name is ‘Setcolours’. This
means that you should take extra care when editing a resource file after its messages
have been exported, and before they have been imported back again. Objects should not
be renamed, and gadgets within window object templates must not be deleted. On the
other hand it is safe to add new templates, or to add new gadgets, or move existing
gadgets within a window.

Note: it is important that you do not alter any of the tags while editing the messages.

When revised messages are imported, to an object that is currently being edited it is
forcibly re-loaded to ensure that its editor is kept up-to-date with the changes. Thus there
is potential for you to lose changes made while editing, so care should be exercised
when importing message files. Indeed, it is best, before exporting or importing
messages, to ensure that there are no unconfirmed changes in any dialogue boxes
associated with the file.
486

ResEd
Keystroke equivalents
On occasions, it can be quicker when you are working in ResEd to use the keyboard
instead of the mouse, especially when you are familiar with ResEd.

In the resource file display

In the Window editor

In the Menu editor

Keystroke Effect
Ctrl-O
F3

open the Object flags dialogue box for the selected objects
display a Save As dialogue box

Keystroke Effect
Ctrl-W
Ctrl-E
Shift-K
Ctrl-T
Ctrl-G
Ctrl-P
Shift-C
Shift-G
Ctrl-S
Ctrl-R
Ctrl-L
Ctrl-F2
Shift-R

open the Main properties dialogue box
open the Extents dialogue box
open the Keyboard shortcuts dialogue box
open the Toolbars dialogue box
open the Gadgets dialogue box
open the properties dialogue box for the selected gadget
open the Coordinates dialogue box for the selected gadget
open the Grid dialogue box
snap the selected gadgets to the grid
make the selected radio buttons into a radio group
link the selected writable gadgets together
close this window
show all members of the radio group to which the selected
radio button belongs

Keystroke Effect
Ctrl-M open the Menu properties dialogue box for editing the

top-level characteristics of a menu
Ctrl-P open the Menu entry properties dialogue box for the selected

menu entry
487

Mouse behaviour
When editing in general

Mouse behaviour
The following mouse actions work on individual menu entries, gadgets or object
templates or selections of the same.

Object prototype windows, gadget windows and menu entry windows behave in the
same manner as described below, except that, as they are non-editing windows, they do
not allow operations such as deletion or repositioning.

In the Window editor

Keystroke Effect
Ctrl-A
Ctrl-K
Ctrl-Z

select all entries, gadgets or objects
delete selected entries, gadgets or objects
clear current selection

Mouse action Effect Page
Double-click on a gadget to open its properties dialogue box 460
Drag Select on a gadget to move it around the window

or to copy it from one window to another
or on the resize handle of a gadget to resize it

450

451
Drag Adjust on the resize handle of a gadget to move it in

one direction only
451

Shift-Drag Select on a gadget to make a copy of it within the
window
or move it from one window to another
(deletes the original)

450

Ctrl-Shift-Drag Select on a window (with or without a titlebar) to
move it around the screen

443

Ctrl-Shift-Drag Adjust on a window (with or without an Adjust size
icon) to change its size

443
488

ResEd
In the Menu editor window

In the resource file display

Box selection
The mouse can be used in two ways to select a group of object templates:
● Dragging a box around a group of object templates will select any object template

partly or wholly within the Select box.
● Dragging a box around a group of object templates while holding down Shift will

select only object templates wholly within the Select box.

Groups of gadgets (in the Window editor) or groups of menu entries (in the Menu editor)
can be selected in a similar way.

Mouse action Effect Page
Double-click on a menu entry to open its properties dialogue

box
430

Drag Select on a menu entry to reposition it within the list
of menu entries
or to copy it from one menu to another

433

Shift-Drag Select on a menu entry to make a copy of it within the
list of menu entries
or move it from one menu to another (deletes
the original)

433

Mouse action Effect Page
Double-click on a window, toolbar or menu object template

to open its editor
on any other object template to open its
properties dialogue box

422

Drag Select on an object template to copy it from one
resource file display to another

422

Shift-Drag Select on an object template to make a copy of it
within the resource file display
or move it from one resource file display to
another (deletes the original)

422
489

490

18 ResTest

Having constructed a resource file you may wish to experiment with the interface to

ensure that the proper links have been made between the different objects in the file. The
resource file test application (ResTest) allows you to
● check the appearance and behaviour of all the objects in your resource file
● monitor the flow of Toolbox and Wimp event codes inside an event log window

and, if required, save this event log to a file.

Starting ResTest
Start ResTest in a similar way to other RISC OS applications, by double-clicking on its
application icon. Then drag your resource file (or a selection of object templates from
ResEd) to the ResTest iconbar icon.

ResTest will read the resource file and register it with the Toolbox. If your resource file
contains any objects marked as auto-create they will be created automatically; any
objects marked as auto-create and auto-show will be created and displayed. Thus certain
objects in the resource file may appear immediately (e.g. iconbar icons). If these objects
are linked to other objects, they will also be created, and these will be shown when you
perform the appropriate action. For example, if an iconbar icon is linked to a menu, the
menu will be shown when you press the Menu button on the icon. Then if the menu itself
is linked to submenus, these will be shown when you traverse the submenu arrows.

The iconbar menu
Once you have dragged your resource file to the ResTest icon then you can click Menu
on the iconbar icon and the ResTest menu will be displayed.

Info displays an Info dialogue box.

Create displays all the object template names in the resource file. Choosing an entry
calls Toolbox_CreateObject on that template and creates the object. Shared objects
which have already been created are shaded to indicate that they cannot be created more
than once.
491

Show displays all the objects that have been created from the object templates. If you go
to this submenu immediately after dragging your resource file to ResTest, only two
types of object will be displayed:
● those objects marked auto-create
● other objects referenced from those objects (see Attached objects on page 11).

So, for example, if the only object marked auto-create was an iconbar icon object, then
that object would be displayed, plus the menu object referenced by the iconbar icon
object, plus any objects referenced by that menu object. Other objects are added to the
Show list as you create them from the Create submenu.

Each entry shows the run-time generated object id and the name, or the object template
from which it was created. For example:

Entries which are currently showing are ticked. You can cause an unshown object to be
shown by clicking Select on its entry, and cause a shown object to be unshown by
unticking. Click with the Adjust button causes an object to be shown transiently, and the
menu tree will not stay open.

Delete displays all the objects that have been created. You can call
Toolbox_DeleteObject on an object by clicking on its entry. If the object has unshared
children then they are deleted too (a shared object will only be deleted when all its uses
are deleted – see Deleting an object on page 7).

Note: If you delete one or more objects created by a menu object (i.e. attached to the
menu object), and then try and delete the menu object itself, you may see the following
ResTest error displayed (you should not worry about this error):

Invalid Object Id (object id)

object idis the object id of the attached object that was deleted before the menu
object was deleted

So, in the example displayed of a Show menu (taken from the example application
constructed in the chapter Building an application on page 39), if the Scale object were
deleted, and then ViewerMenu were deleted (ViewerMenu is the menu object that
created the Scale object), then the above error message would be displayed and the
object id would be that of the Scale object.

object id

object
template name

currently
showing
492

ResTest
Choices displays the following dialogue box:

This box allows you to select what information is displayed in the event log window.
The options are fully described in the following section The event log window.

Quit shuts down ResTest, removes all its windows from the screen, and deletes any
objects that were created in that session.

The event log window
If you click Select on the ResTest iconbar icon, the event log window is displayed. This
window contains a log of the events received from the Toolbox. You can use this to
verify that the proper assignment of events to user actions has been made.

The output in the log window displays four sets of information, depending on what
options you have selected from the Choices box in the ResTest menu:

Toolbox event code
This displays the event code (including client-specified events) and the flags value of the
event block. It is always preceded by ‘EventCode:’
493

The event log window
Toolbox id block
This displays the contents of the id block. It is always preceded by ‘IdBlock:’

where

Event block
Once an event has occurred (e.g. DragEnded), information about that event is returned in
the event block. This information is always displayed indented by eight spaces (how
much information is displayed depends on the event):

WIMP events
This option allows you to select various types of Wimp events from the attached pop-up
menu. The information displayed is always preceded by ‘WIMP event:’.

The following example shows the Wimp events reported when Pointer in and Pointer
out have been selected from the pop-up menu:

The ResTest menu
If you click Menu in the log window the ResTest menu is displayed.

Save leads to a Save as dialogue allowing you to save the text in the log window to a
file.

Clear removes any text in the log window.

so = self object
sc = self component
po = parent object
pc = parent component
ao = ancestor object
ac = ancestor component
494

19 DrawFile

DrawFile is a module that renders Draw files.
Differences between DrawFile output and !Draw output
The following are some small differences between the output of the DrawFile module
and !Draw.

Text

A text line that uses a font which can’t be found will be rendered (in system font) at a
size to fit its bounding box.

Transformed text

Transformed text lines in system font are supported. A transformed text line that uses a
font which can’t be found will be rendered (in system font) at a size to fit its bounding
box. The transformation will be ignored.

Text areas

In a text area, if you change (for example) the margin size (\M command), the change
doesn’t take effect until the next output line. In Draw, this refers to printable characters:
but in DrawFile, it includes colour and font change commands as well (this is because
DrawFile uses the Font Manager to remember the current font and colours). This means
that line breaks can happen at slightly different places when using DrawFile.

The following commands cause output to occur:
B C U V <digits>

The following do not:
! ; A D F L M P

By preceding the former with the latter, the problem can be avoided.

Sprite colours

For a sprite without a palette, the colours used are the WIMP colours, found by using
Wimp_ReadPalette.
495

SWI DrawFile_Render
SWI DrawFile_Render

On entry
R0 = flags:

bit 0 set means render bounding boxes (as dotted red rectangles)
bit 1 set means do not render the objects themselves
bit 2 set means R5 is used as the flatness parameter

R1 = pointer to Draw file data
R2 = size of Draw file in bytes
R3 = pointer to transformation matrix

0 �≠ use identity
R4 = pointer to clipping rectangle in OS units

0 ≠ no clipping rectangle set up
R5 = flatness with which to render lines (if bit 2 of R0 set)

On exit
All registers preserved

Use
This SWI renders a Draw file at a given screen position where that position is defined as
screen position 0, 0 with the x- and y-translations as specified in the transformation
matrix. Hence to render a non-rotated 1:1 Draw file at x, y (screen coordinates in OS
units) the transformation matrix is:

The effects of calling the module with the matrix not of the form:

(which is a translation and a magnification). If R3 = 0, then unit transformation matrix is
assumed (i.e. the Draw file is rendered with its bottom left corner at screen coordinates
(0, 0)).

1 << 16

0

256*x

1 << 16

0

256*y

f
0
x

f
0

y

496

DrawFile
The clipping rectangle is typically a redraw rectangle returned by the Wimp on a redraw
window request. If R4 = 0, then the whole Draw file is rendered. If non-zero, only
objects which intersect the clipping rectangle are rendered.

C veneer
extern _kernel_oserror *drawfile_render (int flags, void *data,
 int size, Transform *trfm,
 BBox *clip,int flatness);

SWI DrawFile_BBox

On entry
R0 = flags (must be 0)
R1 = pointer to Draw file data
R2 = size of Draw file in bytes
R3 = pointer to transformation matrix

0 ≠ use identity
R4 = pointer to 4-word buffer to hold the bounding box of the Draw file

(x0, y0, x1, y1) in Draw units

On exit
All registers preserved

Buffer pointed at by R4 holds the bounding box of the Draw file (x0, y0, x1, y1) in Draw
units

Use
This SWI is used to determine the bounding box (in Draw units) of the given Draw file,
as if it were plotted with the transformation given.

C veneer
extern _kernel_oserror *drawfile_bbox (int flags, void *data,
 int size, Transform *trfm,
 BBox *box);
497

SWI DrawFile_DeclareFonts
SWI DrawFile_DeclareFonts

On entry
R0 = flags

bit 0 set means do not download font (passed to PDriver_DeclareFont)
R1 = pointer to Draw file data
R2 = size of Draw file in bytes

On exit
All registers preserved

All fonts used by the document have been declared

Use
If a printer requires font declarations, this SWI must be called for each Draw file to be
printed, between the calls to PDriver_SelectJob and PDriver_DrawPage.

All fonts are declared as ‘kerned’, since this includes the non-kerned case.

C veneer
extern _kernel_oserror *drawfile_declare_fonts (int flags, void *data,
 int size);
498

Appendix A: Resource File Formats

This appendix describes the resource file format, which is intended to replace the

Wimp Template file format, allowing you to specify the appearance of not only window
definitions, but also menu definitions and dialogue boxes.

Terminology
The following terms are used throughout this appendix:

Term Meaning
word 4 bytes stored in a file in ‘little-endian’ format; that is the

least significant byte of the word is stored first.
resource file consists of a fixed size header, followed by a contiguous set

of user interface object templates or ‘objects’. An object
consists of a fixed size header followed by the variable size
‘body’ of the object, followed by 3 tables:

string table
message table
relocations table

All object headers are word-aligned. Unless otherwise
explicitly stated, all occurrences of a ‘word’ in this appendix
are assumed also to be aligned on a 4-byte address.

string is a sequence of ASCII characters terminated by a NUL
character. There is one table per object which holds all such
strings.
A ‘string reference’ is given by its byte offset from the start
of the strings table.
A null string reference is represented by -1.
typedef int StringReference;

message is some textual information which is visible to the user. All
such messages for an object are held in its Messages Table.
A null message reference is represented by -1.
typedef int MsgReference;
499

Resource file format
Resource file format

Diagrammatic representation
Diagrammatically, a resource file is as follows:

where the file header is:

File Header
3 words

EOF

sequence of object templates

Resource File ID ‘RESF’

Version Number

Objects Offset

1 word

1 word

1 word
500

Resource File Formats
A resource file containing no objects has an objects Offset of -1 where an object
template is:

A String Table Offset of -1 is used to denote an Object Template which has no String
Table.

A Messages Table Offset of -1 is used to denote an Object Template which has no
Messages Table.

A Relocation Table Offset of -1 is used to denote an Object Template which has no
Relocation Table, and hence the nrelocs must always be > 0, if the Relocation Table
exists.

When the Resource File is loaded by the Toolbox, the body offset field is always
relocated to be a real pointer (but this is not specified as a relocation in the relocation
table).

1 wordString Table Offset

Messages Table Offset

Relocation Table Offset

Object Class

Flags

Version

Name

Object Size (in bytes)

Body Offset

Body Size (in bytes)

Body

(nul padded) /000

String Table

Messages Table

nrelocs
Relocations Table

1 word

1 word

1 word

1 word

1 word

3 words

1 word

1 word

1 word

O
bj

ec
t H

ea
de

r
O

bj
ec

t
Bo

dy
Ta

bl
es
501

Resource file format
Resource File Format Description
A resource file begins with a standard fixed size header which has the format:

 ‘RESF’ 1 word
 Version number 1 word (* 100, e.g. 109 means 1.09)
 Objects Offset 1 word

The current version number is 1.01

The objects Offset gives the byte offset from the beginning of the file where the object
templates begin.

typedef struct
{
 int file_id;
 int version_number;
 int objects_offset;

} ResF_FileHeader;

The rest of the file starts with a contiguous sequence of object templates where each
template has 3 words giving the byte offsets from the beginning of the template of each
of the string, messages and relocations tables, followed by a standard fixed size header,
followed by the body of the object, followed by its tables. All object headers are
word-aligned.

Where the object header is:

Note that the name of an object is limited to 12 bytes including a terminating NUL
character.

‘Total size’ of object refers to the total size of the object header, the object body and the
string and message tables.

‘Body size’ refers only to the size of the object’s body (i.e. without its string and
message tables).

Field Type
Class of object 1 word
Flags 1 word
Version of the class module required 1 word
Object name 3 words
Total size of object in bytes 1 word
Offset of object body from start of object header 1 word
Total size of object body in bytes 1 word
502

Resource File Formats
typedef struct
{
 int class;
 int flags;
 int version;
 char name[12];
 int total_size;
 int body_offset;
 int body_size;

} ObjectTemplateHeader;

typedef struct
{
 int string_table_offset;
 int messages_table_offset;
 int relocations_table_offset;
 ObjectTemplateHeader hdr;

} ResourceFileObjectTemplateHeader;

The use of a body_offset field is to allow expansion in the header, without losing
backwards compatibility.

Relocations at Load Time
When the resource file is loaded into memory, the relocations table for each object is
used to relocate any string, message, sprite area references and object offsets which
appear in the object’s body.

This means that the file can be loaded in one operation into memory, and when
relocation has been done, the memory can be used directly to create an object.

Table Formats
There are three tables which optionally appear at the end of an object template: strings
table, messages table, and relocations table.

Strings table

The string table contains all strings which are not visible to the user which are
referenced elsewhere in the object. A string is a sequence of ASCII characters
terminated by a NULL character.
503

Resource file format
Messages Table

The messages table contains a list of strings consisting of text strings which will be
visible to the user at run-time, and which are referred to by the object template.

Relocations Table

The first word of the relocations table gives the number of relocations in the table.

The relocations table contains entries which give the byte offset of a word in the object
which should be relocated at load time; this is an offset from the base of the object’s
body. Each entry is two words long: the byte offset, and a relocation directive. Possible
relocation directives are:

Relocation Directive Value Meaning
StringReference 1 add the address of the base of the

strings table to this word
MsgReference 2 add the address of the base of the

messages table to this word
SpriteAreaReference 3 enter the address of the Sprite area

into which the client’s Sprites file has
been loaded

ObjectOffset 4 add the address of the object's body to
this word
504

Appendix B: Support for RISC OS 3.10

This appendix describes the support provided for RISC OS 3.10.
RISC OS 3.10 support is located in System.Modules.310Support:

RISC OS 3.10 has the following restrictions which would affect Toolbox applications:
● basic 3.10 does not have 3D icons as standard (e.g. option buttons and radio

buttons)
● fading icons on 3.10 is not always consistent (e.g. text label will gain a white box

behind the text)
● deleting a window while a ‘slabbed’ button is pressed in will cause a crash.

The ThreeTen module addresses the above restrictions. It is automatically loaded by the
Window module when running on a RISC OS 3.10 machine, and also looks for a new
version of DragASprite and BorderUtils. It is able to co-exist with New Look.
505

506

Index

Button_SetValue 350
A
action buttons 339–346

editing 461
events

ActionButton_Selected 346
methods

ActionButton_GetClickShow 345
ActionButton_GetEvent 343
ActionButton_GetText 341
ActionButton_SetClickShow 344
ActionButton_SetEvent 342
ActionButton_SetText 340

templates 346
adjuster arrows 347

editing 462
events

Adjuster_Clicked 347
templates 347

ancestor objects 9
attached objects 11
auto-create 10
auto-show 10

B
button gadget 348–354

editing 462
events 354
methods

Button_GetFlags 348
Button_GetValidation 353
Button_GetValue 351
Button_SetFlags 349
Button_SetFont 354
Button_SetValidation 352

templates 354

C
class, definition 2
client application, definition 2
client handle

returning value of 25
setting and reading 9

Colour Dialogue box class 65–77
Application Program Interface 66
attributes 66
before dialogue box is shown 67
colour selections 68
completing a colour dialogue 68
creating and deleting 66
editing 476
events

ColourDbox_AboutToBeShown 75
ColourDbox_ColourSelected 76
ColourDbox_DialogueCompleted 76

methods
ColourDbox_GetColour 71
ColourDbox_GetColourModel 73
ColourDbox_GetDialogueHandle 69
ColourDbox_GetNoneAvailable 74
ColourDbox_GetWindowHandle 68
ColourDbox_SetColour 70
ColourDbox_SetColourModel 72
ColourDbox_SetNoneAvailable 74

setting and reading colour model 67
setting and reading colours 67
showing 67
templates 77
user interface 65
507

Colour Menu Class
editing 476

Colour Menu class 79–88
Application Program Interface 80
attributes 80
before menu is shown 81
colour selection processing 81
creating and deleting 80
events

ColourMenu_AboutToBeShown 86
ColourMenu_ColourSelection 87
ColourMenu_HasBeenHidden 86

getting underlying Object ID 81
methods

ColourMenu_GetColour 83
ColourMenu_GetNoneAvailable 84
ColourMenu_GetTitle 85
ColourMenu_SetColour 82
ColourMenu_SetNoneAvailable 83
ColourMenu_SetTitle 84

setting and getting selected colour 81
showing 81
templates 87
user interface 79
Wimp event handling 88

colours, definition 2
component 6

D
dialogue box, definition 2
Discard/Cancel/Save Dialogue box class 89–101

Application Program Interface 90
attributes 90
changing the DCS message 91
creating and deleting 91
editing 477
events

DCS_AboutToBeShown 97
DCS_Cancel 99
DCS_DialogueCompleted 99
DCS_Discard 98

DCS_Save 98
getting the underlying window ID 92
methods

DCS_GetMessage 94
DCS_GetTitle 96
DCS_GetWindowID 92
DCS_SetMessage 93
DCS_SetTitle 95

showing 91
templates 100
user interface 89
Wimp event handling 101
window definition 100

display fields 355–357
editing 464
methods

DisplayField_GetValue 356
DisplayField_SetFont 357
DisplayField_SetValue 355

templates 357
draggable gadgets 358–365

editing 464
events

Draggable_DragEnded 365
Draggable_DragStarted 364

methods
Draggable_GetSprite 360
Draggable_GetState 363
Draggable_GetText 362
Draggable_SetSprite 359
Draggable_SetState 363
Draggable_SetText 361

templates 365
DrawFile 495–498

example 54
specifying 61
SWIs

DrawFile_BBox 497
DrawFile_DeclareFonts 498
DrawFile_Render 496
508

Index
E
events see Toolbox event 42
example application see Hyper example 39

F
File Info Dialogue box class 103–117

Application Program Interface 104
attributes 104
before File Info box is shown 105
creating and deleting 105
editing 477
events

FileInfo_AboutToBeShown 115
FileInfo_DialogueCompleted 116

methods
FileInfo_GetDate 112
FileInfo_GetFileName 110
FileInfo_GetFileSize 111
FileInfo_GetFileType 108
FileInfo_GetModified 107
FileInfo_GetTitle 114
FileInfo_GetWindowID 106
FileInfo_SetDate 112
FileInfo_SetFileName 109
FileInfo_SetFileSize 111
FileInfo_SetFileType 108
FileInfo_SetModified 107
FileInfo_SetTitle 113

setting and reading fields 105
showing 105
templates 116
user interface 103
Wimp event handling 117
window definition 117

Font Dialogue box class 119–135
Application Program Interface 120
attributes 120
before Font box is shown 122
completing a Font dialogue 122
creating and deleting 121

current selection 122
editing 478
events

FontDbox_AboutToBeShown 131
FontDbox_ApplyFont 132
FontDbox_DialogueCompleted 132

font selection 122
methods

FontDbox_GetFont 125
FontDbox_GetSize 127
FontDbox_GetTitle 130
FontDbox_GetTryString 128
FontDbox_GetWindowID 123
FontDbox_SetFont 124
FontDbox_SetSize 126
FontDbox_SetTitle 129
FontDbox_SetTryString 127

showing 121
templates 133
user interface 119
Wimp event handling 135
Window definition 133

Font Menu class 137–144
Application Program Interface 138
attributes 138
before Font Menu is shown 139
creating and deleting 138
editing 479
events

FontMenu_AboutToBeShown 142
FontMenu_FontSelection 143
FontMenu_HasBeenHidden 142

font selection 139
receiving 139

methods
FontMenu_GetFont 141
FontMenu_SetFont 140

showing 139
templates 143
user interface 137
Wimp event handling 144
509

G
Gadgets 292, 325–338

Application Program Interface 325
attributes 326
creating and deleting 327
flags 328
hotspots 55
methods 330

Gadget_GetFlags 330
Gadget_GetHelpMessage 333
Gadget_GetIconList 334
Gadget_GetType 335
Gadget_MoveGadget 336
Gadget_SetFlags 331
Gadget_SetHelpMessage 332

Wimp event handling 338

H
Hyper example 39–64

client events 63
client handle

example of 42
coding 47, 53
component id 55
creating a basic resource file 44
description of !Hyper 39
design requirements 41
designing 41
DrawFile 54
event driven interface 42
exporting a drawfile 59
file loading 48
find box 57
handlers 47
handling views 50
HCL files 39, 63
hotspots 55
keyboard short-cuts 55
linking data structures 55
object id 54

redraw handler 54
ResTest 46
scaling 54
shared objects 42
status bar 56

I
Iconbar icon class 145–164

Adjust click events 149
Application Program Interface 146
attributes 146
creating and deleting 147, 169, 291
editing 480
events

Iconbar_AdjustAboutToBeShown 163
Iconbar_Clicked 162
Iconbar_SelectAboutToBeShown 162

Help messages 149
menu 148
methods

Iconbar_GetEvent 153
Iconbar_GetHelpMessage 157
Iconbar_GetIconHandle 150
Iconbar_GetMenu 151
Iconbar_GetShow 155
Iconbar_GetSprite 161
Iconbar_GetText 159
Iconbar_SetEvent 152
Iconbar_SetHelpMessage 156
Iconbar_SetMenu 151
Iconbar_SetShow 154
Iconbar_SetSprite 160
Iconbar_SetText 158

position and priority 148
Select click events 149
showing 148
templates 163
user interface 145
Wimp event handling 164

id block 12
510

Index
L
labelled boxes 367

editing 466
templates 367

labels 366
editing 465
templates 366

M
Menu class 165–200

adding menu entries 170
Adjust clicks on a Menu 171
Application Program Interface 166
attaching a submenu dynamically 171
attributes 166
changing a Menu entry 170
creating and deleting 169
events

Menu_AboutToBeShown 197
Menu_HasBeenHidden 197
Menu_Selection 198
Menu_SubMenu 198

fading a Menu entry 170
interactive help 172
menu attributes 166
menu entry attributes 167
Menu hits 171
methods

Menu_AddEntry 193
Menu_GetClickEvent 188
Menu_GetClickShow 186
Menu_GetEntryHelpMessage 192
Menu_GetEntrySprite 180
Menu_GetEntryText 178
Menu_GetFade 176
Menu_GetHeight 194
Menu_GetHelpMessage 190
Menu_GetSubMenuEvent 184
Menu_GetSubMenuShow 182
Menu_GetTick 174

Menu_GetTitle 196
Menu_GetWidth 195
Menu_RemoveEntry 194
Menu_SetClickEvent 187
Menu_SetClickShow 185
Menu_SetEntryHelpMessage 191
Menu_SetEntrySprite 179
Menu_SetEntryText 177
Menu_SetFade 175
Menu_SetHelpMessage 189
Menu_SetSubMenuEvent 183
Menu_SetSubMenuShow 181
Menu_SetTick 173
Menu_SetTitle 195

removing menu entries 170
showing 170
submenu arrows 172
templates 199
ticking a Menu entry 170
user interface 165
Wimp event handling 200

messages 16
exporting 486
importing 486
messages table 504

method, definition 2
methods of objects 7

N
number ranges 368–375

editing 466
events

NumberRange_ValueChanged 375
methods

NumberRange_GetBounds 373
NumberRange_GetValue 371
NumberRange_SetBounds 372
NumberRange_SetValue 370

templates 375
511

O
object

ancestor 9
returning 28

attached objects 11
auto-create 10
auto-show 10
classes 6
component 6
creating 7, 19

side effects 11
customising a dialogue box 57
definition 2
deleting 7, 20
example 17
getting class of 6
getting the template name 29
hiding 8, 22
id 6
methods 7
miscellaneous operation 24
parent 9

returning 27
returning class of 26
returning information on 23
returning value of client handle 25
setting value of client handle 25
shared 8, 42
show types 8
showing 7
showing on screen 21
template flags 425

object id 6
example 54

option buttons 376–382
editing 468
events

OptionButton_StateChanged 382
methods

OptionButton_GetEvent 380
OptionButton_GetLabel 378
OptionButton_GetState 381

OptionButton_SetEvent 379
OptionButton_SetLabel 377
OptionButton_SetState 381

templates 382

P
parent objects 9
persistent dialogue box, definition 2
pop-up menus 383–386

editing 469
events

PopUp_AboutToBeShown 386
methods

PopUp_GetMenu 385
PopUp_SetMenu 384

templates 386
Print Dialogue box class 201–219

action button clicks 204
Application Program Interface 202
attributes 202
before Print box is shown 204
creating and deleting 203
editing 482
events

Print_AboutToBeShown 212
Print_DialogueCompleted 213
Print_Print 216
Print_Save 215
Print_SetUp 215
Print_SetUpAboutToBeShown 214

getting and setting printing options 204
getting Print Dialogue’s title 204
getting underlying object ID 205
methods

Print_GetCopies 207
Print_GetDraft 211
Print_GetOrientation 209
Print_GetPageRange 206
Print_GetScale 208
Print_GetTitle 210
Print_GetWindowID 205
512

Index
Print_SetCopies 207
Print_SetDraft 211
Print_SetOrientation 209
Print_SetPageRange 206
Print_SetScale 208

printing options 204
SetUp window 205
showing 203
templates 217
user interface 201
Wimp event handling 219
Window definition 217

Prog Info Dialogue box class 221–232
Application Program Interface 222
attributes 222
creating and deleting 222
editing 483
events

ProgInfo_AboutToBeShown 230
ProgInfo_DialogueCompleted 231

licence type 223
methods

ProgInfo_GetLicenceType 228
ProgInfo_GetTitle 229
ProgInfo_GetVersion 226
ProgInfo_GetWindowID 224
ProgInfo_SetLicenceType 227
ProgInfo_SetTitle 229
ProgInfo_SetVersion 225

showing 223
templates 231
user interface 221
version string 223
Wimp event handling 232
Window definition 232

Q
Quit Dialogue box class 233–244

Application Program Interface 233
attributes 234
changing the Quit Dialogue’s message 235

creating and deleting 234
editing 484
events

Quit_AboutToBeShown 241
Quit_Cancel 243
Quit_DialogueCompleted 242
Quit_Quit 242

getting ID of underlying window 235
methods

Quit_GetMessage 238
Quit_GetTitle 240
Quit_GetWindowID 236
Quit_SetMessage 236
Quit_SetTitle 239

showing 235
templates 243
user interface 233
Wimp event handling 244
Window definition 244

R
radio buttons 387–394

editing 469
events

RadioButton_SetLabel 387
RadioButton_StateChanged 394

methods
RadioButton_GetEvent 391
RadioButton_GetLabel 389
RadioButton_GetState 393
RadioButton_SetEvent 390
RadioButton_SetState 392

templates 394
relocations table 503–504
ResEd

action button properties 461
adjuster arrow properties 462
aligning gadgets 455

faded menu 455
button properties 462
Cancel box 428
513

colour dialogue template 476
colour menu template 476
common features in gadget properties 459
common features in standard dialogue boxes

and menus 475
creating a resource file 417
DCS template 477
dialogue boxes and standard menus 474–485

common features 475
editing 474
example 435, 474

display field properties 464
draggable properties 464
editing an object template 422
example application 44
exporting messages 486
file info template 477
font dialogue template 478
font menu template 479
gadgets 449–473

Align menu 455
auto-scrolling 450
common features 459
coordinates dialogue box 454
Edit menu 452
inserting into a window 449
moving the caret between gadgets 451
positioning and moving 449
radio groups 453
re-sizing 451
snap to grid 453
stacking 451

grid in window template 447
Help

for gadgets 458
on menu entries 437, 458

help messages 426
iconbar icon template 480
importing messages 486
keyboard short-cuts 445

example 55, 436–437
label properties 465
labelled box properties 466

length fields 426
Menu class 429–435

copying menu entries 433
Edit menu 429
example 434
inserting a new menu entry 433
menu entry properties 430
menu properties 432
moving menu entries 433
re-ordering menu entries 433

messages
exporting 486
importing 486

number range properties 466
object flags 425
object prototypes window 421
object templates

box selection 428
Cancel box 428
help messages 426
Length fields 426
OK box 428
selection model 426

OK box 428
option button properties 468
pop-up menu properties 469
print dialogue template 482
prog info template 483
quit dialogue template 484
radio button properties 469
radio groups 453
ResEd iconbar icon 420
ResEd iconbar menu 420
resource file display 422–425

copying object templates 422
Edit menu 424
File menu 423
moving object templates 422
Object flags 425
saving a resource file 423

save as template 484
scale dialogue template 485
selection model for object templates 426
514

Index
slider properties 470
snap to grid 453
starting ResEd 420
string set properties 471
toolbar example 56
toolbar template 456
window objects 438–448

closing the window 443
colours in a window 444
extent of a window 444
grid 447
main properties 439
moving the window 443
other properties 441
re-sizing the window 443
Window menu 438

writable field properties 473
resource file

definition 2, 14
format 14
loading 14, 34

resource file formats 499–504
description 502
diagrammatic representation 500
messages table 504
relocations at load time 503
relocations table 504
strings table 503

ResTest 491–494
event log window

clear text in log window 494
event block 494
save text in log window 494
Toolbox event code 493
Toolbox id block 494
WIMP events 494

example session 46
iconbar menu 491

Choices 493
Create 491
Delete 492
Show 492

object ids 54

starting ResTest 491
RISC OS 3.10 support 505

S
SaveAs Dialogue box class 245–270

Application Program Interface 246
attributes 247
before dialogue box is shown 251
cancelling the dialogue 251
creating and deleting 247
dialogue completed 253
editing 484
error handling 253
events

SaveAs_AboutToBeShown 265
SaveAs_DialogueCompleted 266
SaveAs_FillBuffer 267
SaveAs_SaveCompleted 268
SaveAs_SaveToFile 266

file size, setting 251
filename and filetype, setting 248
methods

SaveAs_BufferFilled 263
SaveAs_FileSaveCompleted 264
SaveAs_GetFileName 258
SaveAs_GetFileSize 260
SaveAs_GetFileType 259
SaveAs_GetTitle 256
SaveAs_GetWindowID 254
SaveAs_SelectionAvailable 261
SaveAs_SetDataAddress 262
SaveAs_SetFileName 257
SaveAs_SetFileSize 260
SaveAs_SetFileType 259
SaveAs_SetTitle 255

save completed successfully 253
saving by the module 251
saving data from a Toolbox client 248
saving to a file 252
saving via RAM transfer 252
Selection option button 251
515

setting file size 251
setting filename and filetype 248
showing 248
templates 268
user interface 245
Wimp event handling 269
Window definition 269

Scale Dialogue box class 271–285
Application Program Interface 272
attributes 272
before Scale box is shown 274
cancelling a Scale dialogue 274
completion of a Scale dialogue 275
creating and deleting 273
editing 485
events

Scale_AboutToBeShown 282
Scale_ApplyFactor 283
Scale_DialogueCompleted 283

methods
Scale_GetBounds 279
Scale_GetTitle 281
Scale_GetValue 277
Scale_GetWindowID 276
Scale_SetBounds 278
Scale_SetTitle 280
Scale_SetValue 277

reading and setting the writable field 275
reading and setting writable field parameters

275
scale factor 274
showing 274
templates 284
user interface 271
Wimp event handling 285
Window definition 284

shared objects 8
sliders 395–402

editing 470
events

Slider_ValueChanged 402
methods

Slider_GetBound 399

Slider_GetColour 401
Slider_GetValue 397
Slider_SetBound 398
Slider_SetColour 400
Slider_SetValue 396

templates 402
string sets 403–410

editing 471
events

StringSet_AboutToBeShown 409
StringSet_ValueChanged 409

methods
StringSet_GetSelected 406
StringSet_SetAllowable 407
StringSet_SetAvailable 404
StringSet_SetSelected 405

templates 410
string, definition 2
strings table 503
support for RISC OS 3.10 505

T
task initialisation 15
template flags 425
templates

getting a template name 29
terminology used in this manual 2
textual name (name), definition 2
title, changing 294
toolbar 456

editing 456
example 56
positioning 456

Toolbox
application model 4
get information for client application 31
initialising 15, 32
loading given resource file 34
messages 16
SWIs

Toolbox_CreateObject 19
516

Index
Toolbox_DeleteObject 20
Toolbox_GetAncestor 28
Toolbox_GetClientHandle 25
Toolbox_GetObjectClass 26
Toolbox_GetObjectInfo 23
Toolbox_GetParent 27
Toolbox_GetSysInfo 31
Toolbox_GetTemplateName 29
Toolbox_HideObject 22
Toolbox_Initialise 32
Toolbox_LoadResources 34
Toolbox_ObjectMiscOp 24
Toolbox_RaiseToolboxEvent 30
Toolbox_SetClientHandle 25
Toolbox_ShowObject 21

Toolbox event 11–14
AboutToBeShown 42
definition 11
event codes 12
events

Toolbox_Error 36
Toolbox_ObjectAutoCreated 37
Toolbox_ObjectDeleted 37

format of 12
id block 12
raising an event 14
raising given event 30
redraw 55

transient dialogue box, definition 2

U
User Interface Object (object), definition 2
user, definition 2

W
Wimp

events 5
Window class 287–321

Application Program Interface 288

attributes 288
changing the title 294
events

Window_AboutToBeShown 316
Window_HasBeenHidden 317

gadgets
in a window 292
see also Gadgets

getting and setting a client handle 294
Help messages 293
keyboard short-cuts 290, 293, 319
menu 291
methods

Window_AddGadget 296
Window_AddKeyboardShortcuts 303
Window_GetHelpMessage 302
Window_GetMenu 298
Window_GetPointer 300
Window_GetTitle 306
Window_GetWimpHandle 295
Window_RemoveGadget 297
Window_RemoveKeyboardShortcuts 304
Window_SetHelpMessage 301
Window_SetMenu 298
Window_SetPointer 299
Window_SetTitle 305

pointer shapes 293
showing 291
templates 317
user interface 287
Wimp event handling 320

word, definition 2
writable fields 411–416

editing 473
events

WritableField_ValueChanged 416
methods

WritableField_GetValue 413
WritableField_SetAllowable 414
WritableField_SetFont 415
WritableField_SetValue 412

templates 416
517

518

✃

Reader’s Comment Form
User Interface Toolbox, Issue 1

0484,231

We would greatly appreciate your comments about this Manual, which will be taken into account for the next
issue:

How would you classify your experience with computers?

Did you find the information you wanted?

Do you like the way the information is presented?

General comments:

If there is not enough room for your comments, please continue overleaf

ProgrammerUsed computers before Experienced User Experienced Programmer

Cut out (or photocopy) and post to:
This information will only be used to get in touch with you in case we wish to explore your
comments further

Your name and address:

Dept RC, Technical Publications
Acorn Computers Limited
Acorn House, Vision Park
Histon, Cambridge CB4 4AE
England
519

520

	Contents
	1 Introduction to the Toolbox
	Introduction
	Toolbox Application Model
	Toolbox objects
	Event handling
	Resource files
	Task initialisation and run-time information
	Message texts and nationalisation
	An Example object
	Toolbox SWIs
	SWI Toolbox_CreateObject (0x44ec0)
	SWI Toolbox_DeleteObject (0x44ec1)
	SWI Toolbox_ShowObject (0x44ec3)
	SWI Toolbox_HideObject (0x44ec4)
	SWI Toolbox_GetObjectState (0x44ec5)
	SWI Toolbox_ObjectMiscOp (0x44ec6)
	SWI Toolbox_SetClientHandle (0x44ec7)
	SWI Toolbox_GetClientHandle (0x44ec8)
	SWI Toolbox_GetObjectClass (0x44ec9)
	SWI Toolbox_GetParent (0x44eca)
	SWI Toolbox_GetAncestor (0x44ecb)
	SWI Toolbox_GetTemplateName (0x44ecc)
	SWI Toolbox_RaiseToolboxEvent (0x44ecd)
	SWI Toolbox_GetSysInfo (0x44ece)
	SWI Toolbox_Initialise (0x44ecf)
	SWI Toolbox_LoadResources (0x44ed0)
	SWI Toolbox_TemplateLookUp (0x44efb)
	Toolbox events

	2 Building an application
	Guide To Hyper
	How !Hyper was designed
	How !Hyper was implemented
	HyperCard Control Language

	3 Colour Dialogue box class
	User interface
	Application Program Interface
	Colour Dialogue methods
	Colour Dialogue events
	Colour Dialogue templates

	4 Colour Menu class
	User interface
	Application Program Interface
	Colour Menu methods
	Colour Menu events
	Colour Menu templates
	Colour Menu Wimp event handling

	5 Discard/Cancel/Save Dialogue box class
	User interface
	Application Program Interface
	DCS methods
	DCS events
	DCS templates
	DCS Wimp event handling

	6 File Info Dialogue box class
	User interface
	Application Program Interface
	File Info methods
	File Info events
	File Info templates
	File Info Wimp event handling

	7 Font Dialogue box class
	User interface
	Application Program Interface
	Font Dialogue methods
	Font Dialogue events
	Font Dialogue Templates
	Font Dialogue Wimp event handling

	8 Font Menu class
	User interface
	Application Program Interface
	Font Menu methods
	Font Menu events
	Font Menu templates
	Font Menu Wimp event handling

	9 Iconbar icon class
	User interface
	Application Program Interface
	Iconbar icon methods
	Iconbar icon events
	Iconbar icon templates
	Iconbar icon Wimp event handling

	10 Menu class
	User interface
	Application Program Interface
	Menu methods
	Menu events
	Menu Templates
	Menu Wimp event handling

	11 Print Dialogue box class
	User interface
	Application Program Interface
	Print Dialogue Methods
	Print Dialogue events
	Print Dialogue templates
	Print Dialogue Wimp event handling

	12 Prog Info Dialogue box class
	User interface
	Application Program Interface
	Prog Info methods
	Prog Info events
	Prog Info templates
	Prog Info Wimp event handling

	13 Quit Dialogue box class
	User interface
	Application Program Interface
	Quit methods
	Quit events
	Quit templates
	Quit Wimp event handling

	14 SaveAs Dialogue box class
	User interface
	Application Program Interface
	Save As methods
	Save As events
	Save As templates
	Save As Wimp event handling

	15 Scale Dialogue box class
	User interface
	Application Program Interface
	Scale methods
	Scale events
	Scale templates
	Scale Wimp event handling

	16 Window class
	User interface
	Application Program Interface
	Window methods
	Other SWIs
	Window events
	Window templates
	Window Wimp event handling
	Toolbars
	User interface
	Application program interface
	Toolbar methods
	Gadgets
	Application Program Interface
	Generic gadget methods
	Gadget Wimp event handling
	Action buttons
	Adjuster arrows
	Button gadget
	Display fields
	Draggable gadgets
	Labels
	Labelled boxes
	Number ranges
	Option buttons
	Pop-up menus
	Radio buttons
	Sliders
	String sets
	Writable fields

	17 ResEd
	Starting ResEd
	The object prototypes window
	The resource file display
	Editing object templates in general
	Editing the Menu class
	Example menu
	Editing a Window object template and gadgets
	Gadgets
	Editing other classes
	Exporting and importing messages
	Keystroke equivalents
	Mouse behaviour

	18 ResTest
	The event log window

	19 DrawFile
	SWI DrawFile_Render
	SWI DrawFile_BBox
	SWI DrawFile_DeclareFonts

	Appendix A: Resource File Formats
	Resource file format

	Appendix B: Support for RISC OS 3.10
	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	W

