
A Comparison of Two Distributed Systems�

Amoeba and Sprite

�To appear in Computing Systems ��

Fred Douglis�

douglis�mitl�com

Matsushita Information Technology Laboratory
��� Nassau Street

Princeton� NJ ��	
� USA

M� Frans Kaashoek
kaashoek�cs�vu�nl

Dept� of Math and Computer Science
Vrije Universiteit

Amsterdam� The Netherlands

John K� Ousterhout
ouster�sprite�berkeley�edu

Computer Science Division �EECS�
University of California
Berkeley� CA 

��� USA

Andrew S� Tanenbaum
ast�cs�vu�nl

Dept� of Math and Computer Science
Vrije Universiteit

Amsterdam� The Netherlands

Abstract

This paper compares two distributed operating systems� Amoeba and Sprite� Although
the systems share many goals� they diverged on two philosophical grounds� whether to
emphasize a distributed computing model or traditional UNIX�styley applications� and
whether to use a workstation�centered model of computation or a combination of terminals
and a shared processor pool� Many of the most prominent features of the systems �both
positive and negative� follow from the philosophical di�erences� For example� Amoeba
provides a high�performance user�level IPC mechanism� while Sprite	s RPC mechanism
is only available for kernel use
 Sprite	s �le access performance bene�ts from client�level
caching� while Amoeba caches �les only on servers
 and Sprite uses a process migration
model to share compute power� while Amoeba uses a centralized server to allocate pro�
cessors and distribute load automatically�

� Introduction

The shift from time�sharing computers to collections of processors connected by a local�
area network has motivated the development of numerous distributed operating systems
�Abrossimov et al� ����� Cheriton ����� Mullender et al� ���	� Ousterhout et al� ����
�

�This work was supported in part by the Netherlands Organization for Scienti�c Research �N�W�O�� under
grant NF ���		
�

yUNIX is a registered trademark of UNIX System Laboratories� Inc�



Amoeba�Sprite Comparison

This paper compares two distributed systems� Amoeba �Mullender et al� ���	� Tanenbaum
et al� ���	
 and Sprite �Nelson et al� ����� Ousterhout et al� ����
� which have taken two
substantially di�erent approaches to building distributed systems� These approaches have
developed as a result of di�erent philosophies about the role of distributed systems and the
allocation of resources within them� By comparing these two systems in the context of our
experiences with them� we draw conclusions about operating system organization that may
aid the design of future distributed systems�
We have chosen to compare Amoeba and Sprite for three reasons� First� they take di�erent

approaches toward user applications in a distributed system� Sprite is primarily intended to
run UNIX applications on a network of workstations� and it hides the distribution of the
system behind a shared 
le system� It distributes the operating system but does not provide
special support for distributed applications� Amoeba is intended as a testbed for distributed
and parallel applications� as well as traditional applications� It provides a high�performance
mechanism for user�to�user remote procedure calls �RPCs� �Birrell � Nelson ����
� as well
as a language to support parallel programming� so applications can easily take advantage of
multiple processors� At the same time� it hides the physical distribution of the system� and
processes cannot even determine where they physically execute� Second� Amoeba and Sprite
allocate processing resources in substantially di�erent fashions� Amoeba users share a single
�processor pool�� while Sprite associates users with individual workstations� Third� we have
personal experience with both systems over the course of several years� We know a good deal
about the historical development of the systems and have personal knowledge of both their
strengths and weaknesses� We also have access to both systems and are able to compare their
performance on identical hardware�
Naturally� there are many distributed systems besides Amoeba and Sprite� It would be

possible to compare several contemporary distributed systems in a survey fashion� much as
Tanenbaum and van Renesse did in ���� �Tanenbaum � van Renesse ����
� However� with
the exception of Section � below� we have chosen to restrict our comparison to two systems�
We believe that limiting the scope of this paper permits us to consider issues in greater detail
than would otherwise be possible�
The rest of this paper is organized as follows� Section � elaborates on the fundamental

design philosophies behind the two systems� Section � relates these philosophies to sev�
eral operating system issues� kernel architectures� communication� 
le systems� and process
management� Section � discusses how these issues have been addressed by other systems�
Section � brie�y reviews the development history of Amoeba and Sprite and describes their
current research directions� Finally� Section � draws several conclusions�

� Design Philosophies

The Amoeba and Sprite projects began with many similar goals� Both projects recognized
the trend towards large numbers of powerful but inexpensive processors connected by high�
speed networks� and both projects set out to build operating systems that would enhance
the power and usability of such con
gurations� Both design teams focussed on two key
issues� shared storage and shared processing power� The 
rst issue was how to implement

�



Amoeba�Sprite Comparison

a distributed 
le system that would allow secondary storage to be shared among all the
processors without degrading performance or forcing users to worry about the distributed
nature of the 
le system� The second issue was how to allow collections of processors to be
harnessed by individual users� so that applications could bene
t from the large number of
available machines�
However� in spite of their similarities� the Amoeba and Sprite projects diverged on two

philosophical grounds� The 
rst philosophical di�erence is the expected computing model�
The Amoeba designers predicted that networked systems would soon have many more proces�
sors than users� and they envisioned that future software would be designed to take advantage
of massive parallelism� One of the key goals of the Amoeba project was to develop new oper�
ating system facilities that would support parallel and distributed computations� in addition
to traditional applications� on a network with hundreds of processors� In contrast� Sprite as�
sumed a more traditional model of computation� along the lines of typical UNIX applications�
The goal of the Sprite designers was to develop new technologies for implementing UNIX�like
facilities �particularly 
le systems� on networked workstations� and they assumed that the
distributed nature of the system would not generally be visible outside the kernel�
The second philosophical di�erence is the way that processes are associated with proces�

sors� Sprite again took a more traditional approach� where each user has a �mostly private�
workstation and the user�s processes are normally executed on that workstation� Although
active users are guaranteed exclusive access to their workstations� Sprite provides a process
migration mechanism that applications can use to o�oad work to idle machines all around the
network� In contrast� Amoeba assumed that computing power would be shared equally by all
users� Users would not have personal processors� instead� computing resources would be con�
centrated in a processor pool containing a very large number of processors� Thus processing
power is managed in a much more centralized fashion in Amoeba than in Sprite�

��� Application Environment

Amoeba and Sprite di�er greatly in the applications they are intended to run and the
resulting execution environment they provide� Amoeba provides an object�based distributed
system� while Sprite runs a network operating system that is oriented around a shared 
le
system�
In Amoeba� each entity such as a process or 
le is an object� and each object is identi
ed

by a capability �Dennis � Horn ����
� The capability includes a port � which is a logical address
that has no connection to the physical address of the server managing the object� Thus� the
location of the server is hidden from any objects that interact with it�
In addition to providing a uniform communication model� Amoeba eases the task of writing

distributed applications� It provides automatic stub generation for remote procedure calls
from a procedural interface declaration �van Rossum ����
� It also supplies a programming
language� called Orca� that simpli
es writing parallel applications on a distributed system
�Bal et al� ���	
�
By comparison� Sprite is intended to ease the transition from UNIX time�sharing systems

to networked workstations� Since most of the applications running on Sprite are such things

�



Amoeba�Sprite Comparison

as compilations� editing� and text formatting� the design of Sprite has emphasized location�
transparent 
le access� consistent access to shared 
les� and high 
le system performance�
In particular� Sprite caches 
le data on client workstations in order to perform many 
le
operations without the need for network transfers �Nelson et al� ����
� On the other hand�
because applications on UNIX typically performed little or no interprocess communication
�other than pipes�� little e�ort was made to support special protocols for communication over
the network at user�level� Instead� the 
le system provides a simple but relatively ine�cient
method for location�transparent user�level IPC when it is needed�
The decision to model a new system after an existing one has both positive and negative

consequences� On the positive side� compatibility with UNIX has helped Sprite to develop
quickly into a system that many people use for all their day�to�day computing� In particular�
most UNIX applications can be run on Sprite by recompiling� On the negative side� UNIX
compatibility has restricted Sprite�s application domain� and it has complicated several as�
pects of the system �such as process migration� described below�� Compatibility with UNIX
was less of a goal for Amoeba� because Amoeba is only partially compatible with UNIX� it is
more di�cult to port existing software to it� However� it o�ers more �exibility in the design
of new software and more opportunities to do research on distributed and parallel languages
and applications�

��� Processor Allocation

Allocation of processors in a distributed system ranges from a pure �workstation� model�
in which each user executes tasks on exactly one machine� to a pure �processor pool� model�
in which all users have equal access to all processors� The workstation model makes each host
essentially autonomous� for example� each host maintains its own list of processes� which may
typically be viewed only from that host� To execute commands on another host� a user must
normally perform an explicit remote login� With the processor pool approach� the system is
more integrated� Processors are dynamically allocated to processes regardless of the location
of the user running them� and users may view the state of their processes anywhere in the
system� Amoeba and Sprite implement two system architectures that fall between these two
extremes� Amoeba�s architecture is closer to the processor pool approach� while Sprite�s is
closer to the workstation model�

�



Amoeba�Sprite Comparison

File serverTime server Directory server
Processor pool Graphics terminals

Specialized servers

Figure �� An Amoeba system consists of a processor pool� specialized servers� and graphics

terminals�

�



Amoeba�Sprite Comparison

Amoeba�s system architecture is organized around a centralized processor pool� as shown
in Figure �� Each �pool processor� has a network interface and RAM associated with it�
and these processors are dynamically allocated to processes as they are needed� However�
unlike a system with a �pure� processor pool model� Amoeba also use processors outside the
processor pool for system services� For example� the 
le server and directory server both
run on dedicated processors� This separation avoids contention between user processes and
system functions� Finally� users interact with the system using a graphics terminal� such
as an �X�terminal�� The terminal is essentially a cheap dedicated processor� a bit�mapped
display� and a network interface� Only a display server runs on the graphics terminal� all
other applications run in the processor pool�
The designers of Amoeba chose the processor pool model for three reasons� First� as

we have indicated� they assumed that as processor and memory chips continue to decrease
in price� the number of processors in future systems would greatly outnumber the users�
In their opinion� it would be easier to place hundreds of processors in racks in a machine
room than to distribute those processors equally among each user� and the addition of a new
processor would bene
t all users equally� Second� they assumed that the cost of adding a
new pool processor would be substantially less than the cost of adding a workstation� since
a pool processor would require only a processor� memory� and a network interface� a 
xed
amount of capital could make a larger increase in computing resources under the processor
pool model� Third� they wanted to make the entire distributed system appear as a single
time�sharing system� Users not only should not be concerned with the physical distribution
of the hardware� they should not be aware of it at all�

�



Amoeba�Sprite Comparison

Workstations File server

Figure �� A Sprite system consists of workstations and �le servers�

�



Amoeba�Sprite Comparison

Sprite�s processing power is distributed among a collection of personal workstations� as
shown in Figure �� but it does not implement a �pure� workstation model� Each user has
priority over one workstation� is guaranteed the full processing power of that workstation� and
executes commands on that workstation by default� However� Sprite also provides a facility
to execute commands using the processing power of idle hosts� These commands appear
to the user to run on the user�s own workstation� In keeping with the workstation model�
Sprite recognizes the preeminence of workstation owners on their own machines by migrating
�foreign� processes away from a workstation if its owner returns�
In addition to workstations� Sprite provides dedicated 
le servers that are not normally

used for application programs� It is also possible to add processing resources to the system
without associating them with individual users� For example� a rack of processors could be
used as a shared compute server� o�ering the same cost advantages as an Amoeba processor
pool�
The designers of Sprite chose a workstation�based model for three reasons� First� they

believed that workstations o�ered the opportunity to isolate system load� so that one user
would not su�er a degradation in performance due to a high load on the system from another
user� Second� they hypothesized that much of the power of newer and faster machines would
be used to provide better user interfaces� The best way to use this power would be to put it as
close to the display as possible� i�e�� in a workstation� Third� to the designers of Sprite� there
appeared to be no di�erence between a graphics terminal and a diskless workstation except
for more memory on the workstation� why not perform all computation on the workstations�
rather than just interactive tasks�

� Design Consequences

The decision of whether to organize processing resources into a shared pool or individual
workstations has a�ected the design of Amoeba and Sprite in several ways� For example�
Amoeba assigns processes to the most desirable processor in the system� achieving some
dynamic load balancing� It does not implement client 
le caching� because the e�ectiveness
of caching is decreased when the process that reads a new 
le is not likely to execute on
the processor where the 
le was just written� Sprite caches 
les on workstations� and it
implements process migration to preserve response time on workstations�
In this section� we discuss how the design philosophies described above a�ected operating

system issues such as kernel architectures� interprocess communication� 
le systems� and pro�
cess management� Amoeba and Sprite have made di�erent sets of tradeo�s and di�er both
in the functionality they provide and the performance of many operations� While the design
philosophies have a�ected both of these areas� in some cases performance has been a�ected by
low�level implementation details as well� We evaluate both functionality and performance��

�Measurements in this paper were taken on �
Mbyte Sun 	��� workstations ��� MHz Motorola �����
processors� or about 	 MIPS�� using Lance Ethernet controllers on a �� megabits�second Ethernet� The �le
server for both systems used a SCSI
	 controller and a Wren IV SCSI disk�

�



Amoeba�Sprite Comparison

distinguishing between the e�ects of design and implementation on performance when appro�
priate�

��� Kernel Architectures

One of the greatest di�erences between Amoeba and Sprite is their basic kernel architec�
tures� Sprite follows the traditional UNIX monolithic model� with all of the kernel�s func�
tionality implemented in a single privileged address space� Processes access most services
by trapping into the kernel� and each kernel provides services for those processes running on
its host� The only shared kernel�level service provided by Sprite is the 
le system� In con�
trast� Amoeba implements a �microkernel�� with a minimal set of services �most importantly�
communication and low�level process management� implemented within the kernel� Other
services� such as the 
le system and process placement� are provided by separate processes
that may be accessed directly from anywhere in the system� As a result� some services that
would be provided independently on each Sprite workstation �such as the time�of�day clock�
may be provided in Amoeba by a single network�wide server�
There were two principal reasons for the decision to use a monolithic kernel in Sprite�

First� the performance implications of microkernels were unclear at the time �even today they
are still somewhat controversial�� Communicating with user�level processes is more expensive
than just trapping into the kernel� since hardware registers �such as the virtual memory
context� typically must be modi
ed� Thus� although it is possible to minimize the overhead
of changing protection domains �Bershad et al� ����
� there are still additional costs associated
with user�level services relative to kernel�level services� Second� placing all the kernel facilities
together in a single address space made it possible for them to work together and share data
structures� For example� the 
le cache and virtual memory system work together to share the
physical memory of a machine �Nelson et al� ����
� and the process migration mechanism has
a close relationship with all the major parts of the system� Although such close cooperation
could also have been achieved in the microkernel model� shared memory would have been
precluded and additional context switches would have been incurred on each cross�module
invocation�
Amoeba�s microkernel approach was motivated by uniformity� modularity� and extensibil�

ity� Since services are obtained through RPC� both kernel�level and user�level services may
be accessed through a uniform� location�transparent interface� Users may extend or replace
standard services with their own by using di�erent capabilities� Finally� separate services
permit the functionality of the system to be distributed and replicated on multiple processors
to gain performance and fault tolerance�
In light of the advantages of the microkernel approach� one may ask whether any potential

overhead from separate server processes is signi
cant enough to detract from their design� A
comparison between the performance of Amoeba and Sprite o�ers the opportunity to answer
this question� especially since Sprite�s performance during system calls and context switching
is similar to several commercial UNIX�based systems �Ousterhout ���	
�
As one might expect� performance di�erences between Amoeba�s microkernel and Sprite�s

monolithic kernel depend on service access patterns� Since a kernel call is inherently faster
than a remote procedure call� obtaining a simple service from a di�erent process can be

�



Amoeba�Sprite Comparison

substantially slower than obtaining it from the kernel� For example� the minimum cost of a
kernel call in Sprite on a Sun ���	 workstation is about �	 microseconds� while the minimum
cost of an RPC between two distinct processes on an Amoeba processor is �		 microseconds�
Furthermore� a service may be provided by each kernel in Sprite but by a single global server in
Amoeba� Accessing a service over the Ethernet in Amoeba takes at least ��		 microseconds�
However� the overall performance of the system depends on many factors� For example�

Amoeba�s lack of swapping or paging improves performance considerably� as we describe
below� process creation and context switching are both generally faster in Amoeba than in
Sprite� Overall performance is more likely to be a�ected by system characteristics such as the
speed of communications and the use of 
le caching than by the choice between a microkernel
or monolithic kernel� If a microkernel could be tolerably e�cient for trivial operations and
at least as good as a monolithic kernel for more complicated operations� the advantages of
the microkernel approach most importantly� modularity and extensibility would appear
to outweigh any potential disadvantages in performance�

��� Communication Mechanisms

Both Amoeba and Sprite implement communication mechanisms to enable processes to
communicate with each other and to hide machine boundaries� Their mechanisms for doing
so� however� are di�erent� Amoeba presents the whole system as a collection of objects� on
each of which a set of operations can be performed using RPC� Like Amoeba� Sprite uses RPC
for kernel�to�kernel communication� Sprite has not really addressed the problems of building
distributed applications� but it does provide a mechanism that can be used to support some
kinds of client�server communication�
Considering kernel communication in isolation� Amoeba and Sprite have more in com�

mon than not� Both use RPC to communicate between kernels on di�erent machines� The
implementations vary in minor ways� Sprite uses the implicit acknowledgements of the Birrell�
Nelson design �Birrell � Nelson ����
 to avoid extra network messages when the same parties
communicate repeatedly� On the other hand� Amoeba sends an explicit acknowledgement for
the server�s reply to make it possible for the server to free its state associated with the RPC�
This simpli
es the implementation of the RPC protocol but requires an additional packet
to be built and delivered to the network� Despite this extra packet� Amoeba obtains lower
latency for the null RPC �passing no data�� it takes ��� msec to perform a null RPC in
Amoeba between kernels on two Sun ���	 workstations� compared to ��� msec in Sprite� The
di�erence is largely due to the necessity to perform a context�switch in Sprite when an RPC is
received� For large RPCs� Sprite uses a blast protocol to send many packets without individ�
ual acknowledgments� This compensates for the other overhead in the RPC system� resulting
in a slightly higher maximum kernel�to�kernel bandwidth� ��	 Kbytes�sec in Sprite compared
to ��� Kbytes�sec in Amoeba� Table ��a� summarizes the performance of kernel�to�kernel
RPC in each system�

�	



Amoeba�Sprite Comparison

Kernel�level Latency
Size

�msec�
�Bytes�

Amoeba Sprite

	 ��� ���

����� �	�	 ����

�				 ���	
�a�

User�level Latency
Size

�msec�
�Bytes�

Amoeba Sprite

	 ��� ���

����� ���	 ����

�				 ���	 ����
�b�

Table �� Communication latency in Amoeba and Sprite� Measurements were taken for transfer units

of � bytes� 
� Kbytes �the largest transfer permitted for kernel�to�kernel RPC in Sprite�� and �����

bytes �the largest transfer permitted during a single RPC in Amoeba�� Part �a� shows kernel�to�kernel

RPC performance� Amoeba provides appreciably lower latency for small RPCs but Sprite provides

better performance at its largest transfer unit� The di�erence in the performance of large transfers

arises because individual fragments in Sprite are not acknowledged� Part �b� shows the performance

of user�level IPC� Amoeba	s remote procedure calls are substantially faster than Sprite pseudo�device

operations for all data sizes� Measurements were made on two Sun ���� workstations connected by a


��Mbit Ethernet�

��



Amoeba�Sprite Comparison

User�level communication� however� di�ers greatly between the two systems� Amoeba uses
the same model for user�level as for kernel�level communications� with marginal overhead over
the kernel case� Communication in Sprite is integrated into the 
le system name space using
�pseudo�devices�� which permit synchronous and asynchronous communication between user
processes using the 
le system read � write� and I�O control kernel calls �Welch � Ouster�
hout ����
� User�level communication in Sprite is more expensive than in Amoeba for four
reasons� 
rst� Sprite�s user�level communication is layered on a kernel�to�kernel RPC that is
signi
cantly slower than Amoeba�s for small transfers and about the same performance for
large transfers� second� as a result of this layering� the Sprite calls involve additional locking
and copying that Amoeba avoids� third� all bu�ers in Amoeba are contiguous and resident
in physical memory� so no per�page checks need be performed� and fourth� Amoeba performs
context switching much faster than Sprite �see Section ����� Thus� these di�erences in perfor�
mance arise from both low�level implementation di�erences� such as contiguous bu�ers and
context�switching speeds� and the higher�level philosophical di�erences that led to Sprite�s
layered approach� Table ��b� demonstrates how Amoeba consistently outperforms Sprite at
user level�

��� File System

Both Amoeba and Sprite provide a single globally shared� location�transparent 
le system�
In either system a user can access any 
le system object from any location without being aware
of the location of the object� The design of Sprite�s 
le system was strongly in�uenced by
Sprite�s workstation environment and 
le�intensive applications� In particular� it caches data
on both clients and servers to achieve high performance� and it adjusts the size of the 
le cache
in response to demands for physical memory� Distributed applications on Amoeba are not
necessarily 
le�intensive� and each new process is typically placed on a di�erent processor� so
client caching was not as important in Amoeba as in Sprite� Instead� Amoeba has emphasized
the transparency and fault�tolerance necessary for a large distributed system�
Sprite provides a traditional UNIX open�close�read�write interface� with naming and 
le

access performed in the kernel �Welch ���	
� Processes perform kernel calls to open 
les and
obtain tokens they may use to perform further operations on the 
les� The kernel of the host
running a process� known as the client � identi
es the server for a 
le using an associative
table based on the leading characters of the 
le�s name� The client passes the 
le�s full path
name to the server� where name lookup and protection checking occur� The kernel of the 
le
server returns either a handle that may be used to perform I�O on the 
le� a new path name
to open �in the case of symbolic links�� or an error condition� Once the client has obtained a
handle for a 
le� it performs I�O operations by passing the handle to the server named in the
handle� For ordinary 
les I�O is handled by the same server that looked up the name� but
for devices the I�O server may be di�erent than the server that looks up the 
le name �this
scheme permits devices on diskless workstations to be accessed remotely�� Sprite 
le servers
support read and write operations of arbitrary size and alignment�
Sprite�s 
le system emphasizes caching and scalability� Both clients and servers cache 
les

in their main memories� reducing contention for network and disk bandwidth� and 
le�server
processors �Nelson et al� ����
� The size of the 
le cache varies dynamically as the demands

��



Amoeba�Sprite Comparison

for 
le data and virtual memory change� a variable cache size permits applications to perform
better than in systems with a 
xed partition between 
le data and virtual memory� The I�O
server is responsible for ensuring that a process reading a 
le sees the most recently written
data� in particular� it disables client caching for a 
le if one host has the 
le open for writing
while another host is accessing it� If a server crashes� or there is a network partition� clients
use an idempotent reopen protocol to reestablish the state of their open 
les with the server
and ensure that cached 
le data remains valid �Baker � Ousterhout ���	
� Sprite uses a
block�based 
le access model� Files are stored in blocks that may or may not be contiguous
on disk� and not all of a 
le need be in memory at once� A 
le is transferred to and from its
I�O server in blocks of � Kbytes�
Amoeba splits naming and access into two di�erent servers� a directory server and a 
le

server� in order to provide �exibility� The directory server translates names into capabilities�
and permits processes to create new mappings of names to capabilities and sets of capabil�
ities� It places no restrictions on the location of objects referenced by a directory� thus one
directory may contain entries for 
les on di�erent 
le servers or objects that are not 
les� �By
comparison� this would typically not be possible in a system that provided a single combined

le and directory service�� It automatically replicates directory entries as they are created�
and replicates 
les asynchronously�
The standard Amoeba 
le server� known as the Bullet Server � emphasizes network transfer

speed and simplicity �van Renesse et al� ����
� The Bullet Server provides an immutable 
le
store� which simpli
es 
le replication� The server�s principal operations are read��le� create�
�le� and delete��le� A process may create a new 
le� specifying its initial contents and receiving
a capability for it� It may then modify the contents� but the 
le may not be read until it has
been committed � Once the process has committed the 
le� it is immediately written through
to disk for reliability� �Write�through may be disabled at the option of the caller� but this
option is rarely used in practice�� At this point� the 
le may be read by anyone with the
appropriate permission� but may never be modi
ed� The only permissible operations on a
committed 
le are reading and deletion�
In addition to its goal of simplicity� the implementation of the Bullet Server has been

in�uenced by the distributed nature of Amoeba�s software architecture� Since the Bullet
Server runs on a dedicated machine� it is normally run as a collection of threads within the
kernel� but it can equally well run in user space at the cost of some additional copying between
the user process and the kernel thread that manages disks� All 
les are stored contiguously in
memory and on disk� The server alleviates fragmentation problems by compacting memory
and disks as needed� It is responsible for replicating 
les on multiple disks� while a separate
�object manager� replicates 
les on multiple instances of the Bullet Server� Because of the
distinction between the 
le service and the directory service� the Bullet Server provides a
mechanism for garbage�collecting 
les that are not referenced after a period of time� It
caches 
les� so read operations do not necessarily result in disk accesses� However� Amoeba�s
dynamic processor allocation suggested that new processes would be allocated to di�erent
processors over time� so client caching would be less bene
cial than in a workstation�based
environment� As a result� clients do not cache 
les� and each read must result in a network

��



Amoeba�Sprite Comparison

transfer� File data may be transferred in any unit up to the maximum RPC bu�er size�
Although both Amoeba and Sprite have location transparent 
le systems� they are very

di�erent� First� Amoeba permits transparent replication of 
les and directory entries� Repli�
cation of 
les is simple because they are immutable� replication of directory entries is more
complicated and trades some performance for reliability� as indicated below� Second� the
Bullet Server is simpler than Sprite�s 
le system but it enforces some restrictions� Since 
les
are immutable� some services that can be provided by Sprite�s 
le system have to be provided
in other services� For example� Amoeba needs a logging service to manage append�only 
les�
which currently result in entire 
les being copied each time data are appended� Some other
UNIX 
le semantics are similarly hard to emulate in Amoeba without substantial overhead�
for example� to emulate the write kernel call correctly without bu�ering a process that
has a 
le open for reading and writing must copy the 
le completely each time it switches
from writing the 
le to reading it� Furthermore� since 
les are required to be contiguous�
the Bullet Server cannot deal with 
les larger than the size of its physical memory� Third�
the Bullet Server does not do client caching� A 
le has be transferred across the network
each time it is accessed� When caching would otherwise have eliminated a network transfer�
the lack of caching puts more load on the network and increases latency� Fourth� unlike the
Bullet Server� a Sprite 
le server must dedicate a signi
cant amount of memory to maintain
state about open 
les� The Bullet Server only keeps track of new 
les that have not yet been
committed� and it removes any such 
le that is not accessed after a prolonged interval�

��



Amoeba�Sprite Comparison

Delay �msec�
Operation

Amoeba Sprite

foo ��� ���
open�close

a�b�c�foo ��� �	��

cache nocache
read �	 Kbytes ���	 ��� ����

�		 Kbytes ����	 ���� �����

bullet bullet�dir cache nocache
no data ���	 ����	 �	�� �	��

create�delete
�	 Kbytes ���	 ����	 ���� ����
�		 Kbytes ����	 ����	 �	��� �����

Table �� File system performance of Amoeba and Sprite� Subheadings indicate multiple mea�

surements for the purpose of distinguishing between factors a�ecting performance� The �open�close�

benchmark measures the time to open and close a �le in Sprite� or obtain a capability for a �le in

Amoeba� The �read� benchmark measures the time to read a �le on a client� The �le was not cached

on the client in Amoeba
 for Sprite� the measurement shows the measurement with client caching al�

lowed �cache�� followed by the measurement without client caching �nocache�� The �create�delete�

benchmark simulates the use of a temporary �le� creating and later deleting a �le that it transfers

data to and from� For Amoeba� the measurement shows the costs of communication only with the

Bullet server �bullet� and also with the directory server �bullet�dir�� Both measurements include

the cost of writing �les through to disk� For Sprite� the measurement again shows the performance

with and without client caching� Measurements were made on Sun ���� workstations connected by a


��Mbit Ethernet�

��



Amoeba�Sprite Comparison

We compared the performance of the 
le systems of Amoeba and Sprite� using three 
le
system benchmarks from Ousterhout�s operating system performance analysis �Ousterhout
���	
� The results of these benchmarks appear in Table �� The �open�close� benchmark� on
Sprite� measures the elapsed time to open a 
le and then close it again� In Amoeba� this
measures the time to lookup the capability in the directory server� Table � shows the time
to open and close a 
le with a name containing one element� foo� and the time for a name
containing four elements� a�b�c�foo�
The �read� benchmark measures the time to read �	 Kbytes and �		 Kbytes from a 
le

server� The measurements for Sprite show two numbers� corresponding to measurements with
and without client caching enabled� respectively� The benchmark demonstrates the e�ects of
client caching and 
le system overhead� with client caching enabled� Sprite outperforms
Amoeba� but without client caching� Sprite is slower� The latter di�erence arises because
Sprite transfers data only in ��Kbyte units� and it performs additional copying that Amoeba�s
RPC system avoids�
Finally� the �create�delete� benchmark simulates the use of a temporary 
le� It measures

the time to create a 
le� write a 
xed amount of data to it� and close it� then open the 
le�
read the data from it� and close it� and 
nally delete it� Like Ousterhout� we varied the
amount of data� transferring no data� �	 Kbytes� and �		 Kbytes� Amoeba applications can
use capabilities for temporary 
les without registering the capabilities in a directory� so the
measurements for Amoeba show 
rst the cost of creating and deleting a 
le without registering
a capability for the 
le with the directory server� and then the cost including the additional
overhead of registering a directory entry� replicating it� and removing it� In each case� the

le is written through to disk for reliability� For Sprite� in the case of non�empty 
les� the
measurement again shows the performance with and without client caching�
Table � shows that Sprite�s 
le system is slower than Amoeba�s for opening 
les� but is

much faster than Amoeba�s when client caching obviates the need for network transfers� The
bene
ts of client caching on machines with large physical memory have been shown before
�Nelson et al� ����
� and this comparison further illustrates the point� despite optimizations
to store 
les contiguously in memory and transfer them in a single operation� Amoeba�s 
le
system would bene
t from caching 
les in the memory of each processor�� Client caching of
immutable 
les could be implemented in a natural fashion in Amoeba� as in the Cedar File
System �Gi�ord et al� ����
� but caching of newly�created 
les would be more di�cult�

��� Process Management

The 
nal area of comparison is process management� Amoeba�s process model was in�
�uenced by both the distributed nature of Amoeba applications and the use of a centralized

�A higher
level comparison of the systems� such as the modi�ed Andrew benchmark �Ousterhout ������
would provide additional insights into performance di�erences� Unfortunately� however� any comparison in

volving UNIX
based programs would be a�ected more by overhead in Amoeba�s UNIX emulation than by
di�erences in their �le systems� In particular� as the next section indicates� native
Amoeba process creation is
faster than Sprite�s� but process creation that is compatible with UNIX is extremely slow�

��



Amoeba�Sprite Comparison

processor pool� Sprite provides facilities comparable to BSD UNIX� combined with a mecha�
nism to use idle workstations�

Process Model

Amoeba is designed to provide high performance communication between clients and
servers� and it has a fairly simple and e�cient process model� It provides virtual memory�
allowing processes to use the full addressing range available on the hardware� but it does not
perform swapping or demand�paging� i�e�� a process is resident in memory at all times during
its lifetime� The lack of paging helps to improve the performance of user�level RPC� because
there is no need to verify that each page of a bu�er is physically in memory� Amoeba provides
threads as a method for structuring servers� A server process can inexpensively create a new
thread of control within its address space� Multiple threads can service multiple RPCs in
parallel� and can share resources �such as the bu�er cache of a 
le server��
Process creation in Amoeba is designed to work e�ciently in an environment with a

processor pool� As described below� each new process is likely to run on a new processor� so
Amoeba is tailored for remote program invocation� A process starts a new program using
the exec �le library call� specifying the name of an executable 
le and a set of capabilities
with which to execute the program� This sequence avoids the need to copy the state of the
creating process� as in a UNIX fork call� �The Amoeba exec �le call is comparable to the run
call in LOCUS �Popek � Walker ����
��
Sprite�s process model is nearly identical to that of BSD UNIX� Sprite supports demand�

paging� but it uses a regular 
le rather than a separate paging area� This permits the system
to use the main memory on a 
le server to cache pages for clients� To execute a new program
in Sprite� as in UNIX� a process forks a copy of itself and then issues a second kernel call �exec�
to replace its virtual image� In addition� Sprite�s version of the fork kernel call optionally
permits the newly created child process to share the data segment of its parent� This option
is not commonly used in Sprite� however� it provides semantics that are similar to lightweight
threads in Amoeba� so a comparison of the two can demonstrate the performance advantage
of threads for server processes�
Table � shows the costs associated with process management� It shows the speed of

context switching� the time to create a shared�memory thread or process� the time to create
an identical process that does not share memory� and the time to invoke a program that
immediately exits� The context�switch benchmark measured the fastest possible round�trip
context switch in each system� a null RPC in Amoeba and synchronization using shared
memory and kernel�level wakeup calls in Sprite� Context switching is signi
cantly faster in
Amoeba than in Sprite� The di�erence in performance is largely a function of the overhead
of a highly layered mechanism for synchronization and scheduling in Sprite� as well as the
overhead of supporting virtual memory� The table next gives the time to create a new entity
that shares memory with its parent a thread in Amoeba or a process in Sprite� Thread
creation is faster than process creation� as one might expect� because the kernel performs
substantially less bookkeeping� By comparison� Amoeba is much slower at creating a new
process with an unshared copy of the state of its parent� This operation is expensive in
Amoeba because the only way to perform the equivalent of a UNIX fork is to communicate

��



Amoeba�Sprite Comparison

Operation
Time �msec�

Amoeba Sprite

Context switch 	�� ���

Thread creation ��� ������

fork ������� ����

Program invocation ���	 ����

Table �� Performance of context switching and process creation on Sun ���� workstations� Paren�

thesized numbers indicate operations that are not performed under normal circumstances� shared

memory forks in Sprite and UNIX�like forks in Amoeba� The �context switch� benchmark measures

the cost of round�trip communication �i�e�� two context switches�� Amoeba outperforms Sprite in

all areas but a UNIX�like fork � The high cost of creating a new Amoeba process from an existing

one is attributable to overhead relating to UNIX compatibility
 normally� this cost is avoided because

processes in Amoeba invoke programs without an intervening fork �

with a special server that will suspend the forking process and copy its state from user�level�
Finally� Table � shows the performance of creating a new process from an executable image�
and waiting for it to exit� The combination of process creation and termination in Sprite is
moderately slower than in Amoeba� The additional overhead in Sprite is due to the wasted
e�ort of creating a new address space for a child process that immediately replaces its image�
All in all� these comparisons suggest that UNIX compatibility has had a great impact on

the performance of process management in the two systems� The desire to support a wide
range of UNIX applications resulted in Sprite�s providing virtual memory� which slows context
switching� and a fork�exec paradigm� which slows process creation� In contrast� Amoeba�s
poor performance for UNIX�compatible forks arises more from an ine�cient UNIX emulation
than from a particular design decision�

Processor allocation

Since the designers of Amoeba assumed that a system would contain many processors
per user� they arranged for the system to assign processes to processors transparently� The
run server selects a processor for a new process based on factors such as processor load
and memory usage� �The only exceptions to automatic host placement are dedicated server
processes� which are explicitly placed on the specialized servers shown in Figure ��� Because
of the assumption of many processors� Amoeba makes no provisions for associating individual
users with speci
c processing resources� and instead relies on automatic distribution of load�
There is no mechanism to migrate a process atomically to a new processor once it has started
execution� though there is a facility to checkpoint the state of a process and create a new
process elsewhere with the same state�
Sprite�s basic model assumes a one�to�one mapping between users and workstations� and it

assumes that Sprite would be used mostly for traditional applications� It further assumes that
users want a guaranteed response time for interactive processes� and that most processes are
either interactive or short�lived� As a result� Sprite gives each user priority on one workstation

��



Amoeba�Sprite Comparison

and run all processes there by default� Nevertheless� there are often many idle machines in a
collection of personal workstations� so Sprite provides a mechanism to take advantage of idle
hosts transparently using process migration �Douglis � Ousterhout ����
�
Logically� a process in Sprite executes on the host of the user that invoked it �known as

its �home machine��� though it may physically migrate between machines at any time� The
fork kernel call creates a new process that physically executes on the same host as its parent�
wherever that may be� while logically executing on the parent�s home machine� The exec call
permits a process to specify a new execution site� so that the address space of the process
need not be transferred when the process migrates� Alternatively� a process may migrate at
some other time� in which case any modi
ed pages in its address space are �ushed to a shared

le server and paged in by the process�s new host� Transparency is assured by forwarding
location�dependent operations to and from a process�s home machine� using kernel�to�kernel
RPC� For example� a request by a remote process to get the time of day would be forwarded
home� the call would take about two milliseconds� compared to ��	 microseconds in the local
case�
Though Sprite could make remote execution the default case� by starting all new programs

on idle hosts� it currently starts a new program on the same host as its parent unless speci
ed
otherwise� A few system programs� such as a parallel make �Feldman ����
 facility� take
advantage of remote execution by default� A centralized daemon process called migd keeps
track of idle hosts and allocates them to processes when needed� A process such as make can
request an arbitrary number of hosts and start a command� such as a compilation� on each
host� The process can continue to use the host until it is noti
ed by the daemon that the host
has been reclaimed� A workstation is reclaimed when its owner returns� or if no additional
hosts are available and one process is using more than its fair share of hosts �Douglis �
Ousterhout ����
�

Operation
Time �msec�

Amoeba Sprite

Local �� ��

Remote �speci
ed� �� ���

Remote �unspeci
ed� �� ���

Table �� Performance of program invocation� Local program invocation is faster in Amoeba

than Sprite� as is remote invocation if a new processor must be selected� Sprite normally executes

locally or reuses the same host multiple times for remote invocation� with minimal costs of �� and 

�

milliseconds respectively� Amoeba normally selects a processor each time a program is invoked� for a

minimal cost of �� milliseconds� Measurements were made on Sun ���� workstations connected by a


��Mbit Ethernet�

Table � shows the costs of creating a new process to execute a small program that imme�
diately exits� The 
rst entry in the table corresponds to the cost of creating a local program�
from Table �� The second entry shows the cost of running the same program on a remote host
known in advance� while the third shows the cost of running it on a remote host determined

��



Amoeba�Sprite Comparison

at invocation time� The normal case in Amoeba is to select a remote host at invocation time�
while in Sprite process creation is usually local or on a predetermined remote host� The
cost of remote invocation in Sprite is additionally a�ected by the time to transfer open 
les
�Douglis � Ousterhout ����
� which in Amoeba are capabilities that require no additional
processing overhead�
In both systems� centralized scheduling has its drawbacks� Amoeba provides no support

for multiple parallel applications to cooperate and scale their parallelism to use the system
e�ciently� instead� it will let each application create as many processes as processors� and
then time�share each processor among all processes in a round�robin fashion� In Sprite�
the default of local execution means that users can overload their own workstation if they
run programs that do not execute remotely the system will not automatically spread load�
Also� an application may use another workstation only if it is idle and no other application
is already using it� This rule is based on the assumption that processes that run remotely
will be processor�bound and will not operate as e�ciently if they are multiprogrammed� As a
result� interactive applications may not use the remote execution facility without monopolizing
resources they do not fully utilize�

� Related Work

In the introduction� we noted that there are many other distributed systems� and several
of them have similar goals and functionality to Amoeba and Sprite� We brie�y describe these
systems in the context of the design philosophies we have discussed throughout this paper�
The V System �Cheriton ����
� like Amoeba� provides most system services at user�level

via messages� Those services that are internal to the kernel� such as one that provides the
current time� are accessed via a message interface as well� Unlike Amoeba� V implements
conventional 
les� using paged virtual memory to access the 
les from process address spaces�
File I�O is based on block transfers rather than whole 
le transfers or byte streams� Finally�
V implements a workstation model similar to Sprite� It uses process migration to execute
new tasks on lightly loaded workstations� but it runs �guest� tasks at a lower priority than
local ones in order to reduce their impact on interactive response� V provides multicast
communication to support distributed applications�
Chorus �Rozier et al� ����
 is based on a microkernel and message passing as well� Like

Amoeba� it implements capabilities and ports� and it runs system services in both kernel mode
and user mode� It permits the execution of multiple operating system interfaces layered on
a kernel� in particular� it supports a binary�compatible UNIX interface through the use of
user�level managers for processes� pipes� and devices� It also provides support for real�time
facilities� but provides no special support for distributed applications or load leveling�
Locus �Popek � Walker ����
 has more similarities to Sprite than to Amoeba� as it is a

UNIX�compatible system based on a monolithic kernel� It supports a transparent network�
wide 
le system with provisions for redundant data storage� It also supports remote execution
with automatic load leveling �Kiser ���	
� However� as it was designed for a small collection
of time�sharing mainframes� it has only limited support for distributed applications�

�	



Amoeba�Sprite Comparison

Mach �Accetta et al� ����
 is similar to both Amoeba and Sprite in various ways� Mach
integrates virtual memory with its message�based communication system� using memory map�
ping techniques and copy�on�write semantics to improve performance� It allows user�level pro�
cesses to service requests to read and write memory segments� Mach is compatible with BSD
UNIX and was initially implemented as a modi
cation of the BSD UNIX monolithic kernel�
Mach was later separated into a Mach microkernel and a separate user�level UNIX server pro�
cess� which o�ered comparable performance to previous monolithic versions of Mach �Golub
et al� ���	
� Mach is organized around the workstation model� each host is autonomous�
with its own processes and 
le system� However� Mach�s network�transparent communica�
tion is used by other facilities� such as Avalon �Detlefs et al� ����
� to support distributed
applications�
Finally� Plan � �Pike et al� ���	
 o�ers an interesting perspective on the subject of

processor allocation� Like Amoeba� it distinguishes between graphics terminals �with a small
amount of processing capacity� and computation�intensive processors� However� rather than
providing a large number of independent processors� Plan � centralizes its processing power
in a small number of multiprocessors� The designers of Plan � argue that this centralization
is the most cost�e�ective way to provide a large amount of processing power� Though Plan �
does not provide process migration which o�ers less bene
ts in a system with a small number
of shared processors than one with a larger number of �independently owned� workstations 
the execution environment on a graphics terminal� relative to a CPU server� is similar to
Sprite�s �home machine��

� Project Evolution

Both Amoeba and Sprite have been under development for several years� In this section
we summarize the development history of the two projects� describe the ways in which the
systems are currently used� and discuss the current directions of research for Sprite and
Amoeba�

��� Amoeba

The initial work on Amoeba began in ����� By ���� a working prototype existed and was
selected as the basis for a European�wide distributed system as part of the EEC sponsored
COST��� Mandis project� The Mandis project involved connecting sites in Holland� England�
and Norway in a transparent distributed system based on Amoeba� This experience led to
the discovery of various problems �Tanenbaum et al� ���	
 and a major redesign� leading to
the current version� Amoeba ��	�
Amoeba is currently being used in the European space industry for the transmission of of

real�time digital video over LANs� as well as other applications where high performance and
parallelism are important� Amoeba has evolved from a one student�s PhD research to a system
in in daily use by about a dozen people at the Vrije Universiteit �faculty members� students�
and sta�� for a wide variety of projects involving distributed and parallel computing� It is
also available to universities �on an �as is� basis� and to companies �on a commercial basis��

��



Amoeba�Sprite Comparison

Current research is concentrated in the following areas�

Parallel applications� The Amoeba group has designed and implemented a language for
parallel programming called Orca� which runs on Amoeba� and eases the task of write
applications that use massive parallelism� such as playing chess� Research is continuing
on the language� runtime system� and parallel applications�

Group communication� Current distributed systems� are based on a point�to�point com�
munication paradigm� usually using RPC� One project is looking at the use of group
communication in distributed computing� for example� to support replicated services
�Kaashoek � Tanenbaum ����
�

Distributed shared memory� An object�based distributed shared memory system based
on Amoeba allows programs to share data objects on machines that do not have physi�
cally shared memory� as though they did� This system attains a high degree of speedup
on certain classes of problems� Work is continuing in improving and using the dis�
tributed shared memory�

Wide�area transparent systems� With the current system� it is possible to have Amoeba
machines in di�erent countries work together completely transparently� An authorized
user logged into Amoeba at Cornell� for example� can use the processor pool and 
le
server in Amsterdam as though it were local� Research into transparent distributed com�
puting is continuing� to better understand the interaction between wide�area computing
and transparent computing�

��� Sprite

The design of Sprite began in the Fall of ����� and implementation began in ����� By
the Fall of ���� the system had su�cient functionality to support its own development� and
members of the Sprite project began using Sprite for all their day�to�day computing� Addi�
tional users began using Sprite in ����� As of the Fall of ���� the Sprite user community
numbers more than �	� of which �	!�	 do all their day�to�day computing on Sprite� Sprite
currently supports research in operating systems� computer�aided design� and computer archi�
tecture� plus a number of administative functions� Most people use Sprite as though it were
UNIX� though they implicitly take advantage of Sprite�s process migration and 
le caching�
At least one person has used Sprite to run large numbers of simulations in parallel on �	!��
idle machines� obtaining the equivalent of over �		" e�ective utilization relative to a single
machine �Douglis � Ousterhout ����
�
The original Sprite research on network 
le systems and process migration is now complete�

but a number of new research projects are underway� Most of the new projects concern high�
performance 
le systems and are being carried out as part of the RAID project �Redundant
Arrays of Inexpensive Disks� �Patterson et al� ����
� Current research includes the following
topics�

��



Amoeba�Sprite Comparison

Log�structured 	le systems 
LFS�� LFS is a new approach to disk storage management
where the only structure on disk is an append�only log� This structure allows infor�
mation to be written to disk an order of magnitude more e�ciently than previous
approaches� but it introduces interesting problems with garbage collection �Rosenblum
� Ousterhout ����
�

Striping 	les� Techniques are being investigated for improving the bandwidth of large�
le
accesses by spreading the 
les across multiple disks and even multiple 
le servers�

Bu�ering techniques� For sequential accesses to large 
les� bu�ering may make more sense
than caching� particularly with disk arrays to provide high bandwidth� The Sprite
project is studying how best to use bu�er�cache memory and how reconcile the bu�ering
and caching approaches�

Reliability� Another project is investigating the recovery of 
le system state after server
crashes� One of the project�s goals is to reduce server recovery time to only a few seconds�
so that crashes are almost invisible to the rest of the system �Baker � Ousterhout ���	
�

Mach interoperability� Micro�kernel approaches are being explored by porting the Sprite
kernel to run as a user�level server process on the Mach operating system�

� Conclusions

This paper has compared two distributed systems that share many goals but diverge on
two philosophical grounds� Their approaches toward distributed applications and resource
allocation account for many di�erences in their designs� and in their performance� The issues
addressed in this paper lead to several conclusions�
First� Amoeba helps to disprove the notion that the performance of microkernels need

be inferior to monolithic kernels� Although the cost of simple operations can be higher if
a service is delivered via RPC� many other operations are faster in Amoeba than in Sprite�
�Golub� et al�� provide even stronger support for this hypothesis� since they were able to
compare two versions of the same system rather than two distinct systems �Golub et al�
���	
�� By providing services as separate processes� accessed via RPC� the system o�ers
several advantages over a monolithic kernel� simple location transparency� extensibility� and
modularity� With a microkernel� it is possible to develop new services at user�level� test them�
and then possibly incorporate them into the kernel to obtain higher performance� Given these
advantages� we think that microkernels will be the implementation method of choice for future
distributed systems�
Second� along the same lines� Amoeba demonstrates the desirability of a uniform commu�

nication model� Whether a service is provided at user�level or within the kernel� it is accessed
via the same high�performance RPC interface� Services are completely location�transparent�
without the need for explicit forwarding of operations �as in Sprite�� Applications may take
advantage of the distributed nature of the system explicitly� using RPC� or implicitly� using
Orca� In contrast� Sprite�s organization is restrictive� Sprite does not export its relatively

��



Amoeba�Sprite Comparison

fast kernel�to�kernel RPC to user�level� and it lacks �exibility in replacing system services�
As systems become more and more distributed� fast and simple communication at user level
will be even more important�
Third� Sprite demonstrates the bene
ts of client caching� Just as communication�intensive

applications can take advantage of high�performance IPC� 
le�intensive applications obtain
signi
cantly better performance if network transfers can be avoided� Client caching also helps
to alleviate contention for networks and 
le servers �Nelson et al� ����� Satyanarayanan et al�
����
� It has not been implemented in Amoeba because of Amoeba�s processor pool model�
However� if it were combined with more sophisticated processor allocation� using the same
processor repeatedly for related but sequential applications� the performance and scalability
of Amoeba�s 
le system should improve� Like communication� client caching will become
more important as distributed systems grow larger�
Fourth� the comparison between Amoeba and Sprite shows the advantages of a hybrid

system containing both workstations and a processor pool� Dedicated personal workstations
guarantee fast interactive response� in a distributed system� it should be unacceptable for
a small number of users to monopolize the resources of the system in a way that degrades
the performance of other users beyond some threshold� Once each user has a workstation�
additional processing capacity can be shared by all� providing cost�e�ective power for parallel�
computation�intensive applications� The �exibility o�ered by this hybrid approach will be
necessary as hardware becomes cheaper and parallel programming becomes more common�
Fifth� compatibility with UNIX has been a double�edged sword� On the one hand� the

decision to make Sprite mostly compatible with BSD UNIX has helped Sprite to mature to a
�real system� in a relatively short time� Though Amoeba is easily used for some applications 
distributed programs using Orca� and simple UNIX�based programs it is not yet ready to
serve as a replacement for a system like UNIX on a day�to�day basis nor was it intended for
that use� On the other hand� UNIX compatibility is not necessarily a bed of roses� The UNIX
model of performing interprocess communication through the 
le system has hurt performance
and complicated the kernel implementation� Support for UNIX 
le system semantics� such
as shared 
le descriptors� has complicated the implementation of process migration �Douglis
� Ousterhout ����
� Supporting the UNIX process model at the lowest level of the system
can detract from the performance of normal operation �witness the cost of context switching
and program invocation in Sprite�� while supporting full UNIX semantics only with a user�
level emulation layer can be unacceptably ine�cient �for example� a fork in Amoeba�� Given
the impact of UNIX compatibility on both the performance and the application domain of a
system� one must make a conscious decision about whether to be compatible� and how�
Finally� one should consider the performance di�erences between Amoeba and Sprite in

light of their development� While some of the di�erences are attributable to fundamental
di�erences in their designs� such as the mechanism for user�level interprocess communication�
other di�erences are due at least in part to ine�ciencies in implementation� Though Amoeba
has been programmed with an eye toward high performance throughout its history� and has
undergone several substantial rewrites� its UNIX�compatibility library is especially ine�cient�
Some of its ine�ciency results from the imperfect mapping between UNIX and Amoeba

��



Amoeba�Sprite Comparison

operations� but the performance of the compatibility library could be signi
cantly improved�
given time� Similarly� Sprite has several important components �especially with respect to
context�switching and scheduling� that have barely changed since its inception� Thus� we
have used performance as an obvious metric for comparison� but di�erences in performance
should be considered in the context of design versus implementation�
Amoeba and Sprite continue to evolve� We hope that the issues addressed in this paper

will result in positive changes to the implementation of these two systems and the design of
future distributed systems�

Availability

Amoeba and Sprite are both available� For information about Amoeba� please contact Andrew
S� Tanenbaum �email� ast#cs�vu�nl or FAX $�� �	 �����	��� To get more information about
Sprite� please contact the Sprite group by email �sprite�request#sprite�berkeley�edu��

Acknowledgments

Erik Baalbergen� Henri Bal� Arnold Geels� Dick Grune� Mike Kupfer� Darrell Long� Sape
Mullender� Mike Nelson� Robbert van Renesse� Guido van Rossum� Greg Sharp� Kees Ver�
stoep� and Brent Welch provided comments on early drafts of this paper� which improved its
content and presentation substantially� We also wish to thank the referees for their input�
which further helped to improve the paper�

References

V� Abrossimov� M� Rozier� � M� Shapiro� Generic virtual memory management for operating system
kernels� In Proceedings of the ��th ACM Symposium on Operating System Principles� pages 
���

��� December 
����

M� Accetta� R� Baron� W� Bolosky� D� Golub� R� Rashid� A� Tevanian� � M� Young� Mach� A new
kernel foundation for UNIX development� In Proceedings of the USENIX ���� Summer Conference�
July 
����

M� Baker � J� Ousterhout� Availability in the Sprite distributed �le system� In Proceedings of the

Fourth ACM SIGOPS European Workshop� Bologna� Italy� September 
����

H�E� Bal� M�F� Kaashoek� � A�S� Tanenbaum� Experience with distributed programming in Orca�
IEEE CS Int� Conf� on Computer Languages� pages ������ March 
����

B� N� Bershad� T� E� Anderson� E� D� Lazowska� � H� M� Levy� Lightweight remote procedure
call� In Proceedings of the ��th ACM Symposium on Operating System Principles� pages 
���

��
December 
����

A� D� Birrell � B� J� Nelson� Implementing remote procedure calls� ACM Transactions on Computer

Systems� ��
�������� February 
����

D� R� Cheriton� The V distributed system� Communications of the ACM� �
�����
������ March 
����

J� Dennis � E� Van Horn� Programming semantics for multiprogrammed computation� Communica�
tions of the ACM� ��
���
��� March 
����

D�L� Detlefs� M�P� Herlihy� � J�M� Wing� Inheritance of synchronization and recovery properties in
Avalon�C��� IEEE Computer� �
�
��� December 
����

��



Amoeba�Sprite Comparison

F� Douglis � J� Ousterhout� Transparent process migration� Design alternatives and the Sprite
implementation� Software	Practice and Experience� �
������������ August 
��
�

S� I� Feldman� Make � a program for maintaining computer programs� Software	Practice and

Experience� ������������� April 
����

D� Gi�ord� R� Needham� � M� Schroeder� The Cedar �le system� Communications of the ACM�
�
������������ March 
����

D� Golub� R� Dean� A� Forin� � R� Rashid� Unix as an application program� In Usenix ���
 Summer

Conference� pages ������ June 
����

M�F� Kaashoek � A�S� Tanenbaum� Group communication in the Amoeba distributed operating
systems� In Proceedings of the ��th International Conference on Distributed Computing Systems�
Arlington� TX� May 
��
� To appear�

S� Kiser� Personal communication� 
����

S� Mullender� G� van Rossum� A� Tanenbaum� R� van Renesse� � H� van Staveren� Amoeba� A
distributed operating system for the 
���s� IEEE Computer� ������������ May 
����

M� Nelson� B� Welch� � J� Ousterhout� Caching in the Sprite network �le system� ACM Transactions

on Computer Systems� ��
��
���
��� February 
����

J� K� Ousterhout� A� R� Cherenson� F� Douglis� M� N� Nelson� � B� B� Welch� The Sprite network
operating system� IEEE Computer� �
���������� February 
����

J� K� Ousterhout� Why aren	t operating systems getting faster as fast as hardware� In Usenix ���


Summer Conference� pages �������� June 
����

D� Patterson� G� Gibson� � R� Katz� A case for redundant arrays of inexpensive disks �RAID�� In
ACM SIGMOD ��� pages 
���

�� Chicago� June 
����

R� Pike� D� Presotto� K� Thompson� � H� Trickey� Plan � from Bell Labs� In UKUUG Summer ���


Conference Proceedings� pages 
��� London� England� July 
����

G� J� Popek � B� J� Walker� editors� The LOCUS Distributed System Architecture� Computer Systems
Series� The MIT Press� 
����

M� Rosenblum � J� K� Ousterhout� The design and implementation of a log�structured �le system��
ACM Transactions on Computer Systems� 
��
�� February 
���� To appear� Also appears in
Proceedings of the 
�th Symposium on Operating Systems Principles� October 
��
�

M� Rozier et al� Chorus distributed operating systems� Computing Systems� 
���� 
����

M� Satyanarayanan� J� Howard� D� Nichols� R� Sidebotham� A� Spector� � M� West� The ITC dis�
tributed �le system� Principles and design� In Proceedings of the �
th Symposium on Operating

System Principles� pages ������ Orcas Island� WA� December 
���� ACM�

A� S� Tanenbaum � R� van Renesse� Distributed operating systems� ACM Computing Surveys�

������
������ December 
����

A� S� Tanenbaum� R� van Renesse� H� van Staveren� G� Sharp� S� Mullender� A� Jansen� � G� van
Rossum� Experiences with the Amoeba distributed operating system� Communications of the

ACM� ���
��������� December 
����

R� van Renesse� A� S� Tanenbaum� � A� Wilschut� The design of a high�performance �le server� Proc�
of the �th Int� Conf� on Distr� Computing Systems� pages ������ June 
����

G� van Rossum� AIL � a class�oriented stub generator for Amoeba� In Proceedings of the Workshop

on Experience with Distributed Systems� Springer Verlag� 
����

B� B� Welch � J� K� Ousterhout� Pseudo devices� User�level extensions to the Sprite �le system� In
USENIX ���� Summer Conference� pages ������ San Francisco� CA� June 
����

��



Amoeba�Sprite Comparison

B� B� Welch� Naming� State Management� and User�Level Extensions in the Sprite Distributed File

System� PhD thesis� University of California� Berkeley� CA ������ February 
���� Available as
Technical Report UCB�CSD �������

��


