
Experience with Process Migration in Sprite�

Fred Douglis

Computer Science Division

Electrical Engineering and Computer Sciences

University of California

Berkeley� CA �����

douglis�sprite	Berkeley	EDU

Abstract

This paper reports on experience with the Sprite process migration facility� Sprite
provides transparent remote execution to support load sharing through the use of idle
workstations� Process migration is used to reclaim workstations when their owners
return� On Sun ���� workstations� the cost of selecting an idle host and invoking a
remote process is about �		 milliseconds� This time is substantially greater than the
cost of creating the same process locally� but it is much less than the typical execution
time of programs that are run remotely� such as compilations and text formatting�
The cost of migrating an active process is a function of the number of dirty pages it
has� the number of
le blocks that must be �ushed from the host�s
le cache� and the
number of open
les it has� This time ranges from 	 milliseconds to migrate a small
process with no open
les� to several seconds to migrate a process with many dirty
pages and
le blocks and several open
les� Remote execution has been used regularly
for approximately � months to perform compilations in parallel� I draw conclusions
about the usefulness of remote execution for parallel compilation� and I present lessons
we learned about process migration and system building in general�

� Introduction

By executing independent tasks in parallel on idle workstations� applications may sub�
stantially reduce turnaround time� However� the usefulness of remote execution is limited
if processes must be terminated to reclaim a workstation when its owner returns� or if
processes behave di�erently when they are run remotely� Sprite ��� provides a transparent
process migration facility to allow noninvasive access to idle workstations� An application
invokes a program remotely by performing a system call that combines migration with exec�
replacing the process	s execution image with a new program on the other host� If the owner
of the remote host returns� a daemon migrates the remote process back to its own host�
The primary client of migration in Sprite is a parallel version of make
called pmake�� which
uses idle hosts to perform compilations and other tasks in parallel� This paper discusses
the experience we have had with process migration� from experimenting with an initial
prototype in ������ to using migration daily over the past months�

�This work was supported in part by the Defense Advanced Research Projects Agency under contract

N���������C���	� and in part by the National Science Foundation under grant ECS����
�	
�

�

The next section provides some background on Sprite	s process migration facility� sum�
marizing what has appeared elsewhere ��� ��� In Section �� I discuss the history of process
migration in Sprite� from its initial implementation to its current state� We found that
migration was much harder to get working than we had expected� and even harder to keep
working as the rest of the system evolved� Once migration was in daily use� however�
changes in the system that a�ected migration were noticed immediately and corrected�

Section � analyzes the performance of remote execution and process migration using
four metrics� the time to invoke a remote program� the time to migrate a process after it
has been executing at length� the execution penalty due to transparent remote execution�
and the overall speedup of application programs using remote execution to perform tasks
in parallel�

Section � considers the lessons we have learned from implementing and using process
migration over a period of time� From an implementation standpoint� we found that �le
system bookkeeping was the hardest aspect of process migration to get right� and we found
that transparency could be provided with low overhead as long as important operations are
location�independent
particularly interactions with the �le system�� I also draw lessons
about systems in general� for example� a feature such as process migration must be used
periodically if it is to work despite changes to the system�

In Section �� I conclude the paper and discuss current and future work�

� Goals and Design

This section summarizes the goals and design of Sprite	s process migration facility� I
de�ne some terminology used throughout the paper� I then discuss the means by which
transparency is supported during remote execution� and the mechanism for migrating active
processes�

The primary goals of process migration in Sprite are transparency and noninvasiveness�
Sprite provides transparency by making processes appear in all ways to execute on a single
host throughout their lifetimes� The host on which the process appears to execute is termed
its home� and the host on which it physically executes at any given time is its physical host �
If the process	s physical host is di�erent from its home� then it is executing remotely � Sprite
provides noninvasiveness by migrating a remote process during execution if its host becomes
unavailable� leaving no residual dependencies on the remote host after migration� Finally� I
refer to the host initiating process migration as the source� and the recipient of the process
as the target �

In order to support transparent remote execution� Sprite has several relevant character�
istics�

� Shared �le system� The system has a single �le system namespace� so a �le name
refers to the same object regardless of location�
Section � below discusses the poor
performance of remote execution when the same name can refer to di�erent objects on
di�erent hosts�� Processes can access �les and devices on remote hosts transparently�

� Inter�process communication through the �le system� Communication with
other processes is performed using �le system objects such as pipes and pseudo�

devices ����� Pseudo�devices are used for system services such as the X Window
System and access to the internet� for which location transparency would otherwise

�

present a problem� By using the �le system for communication with the internet
server� processes appear to internet hosts to be on a single host throughout their
lifetime� the Sprite �le system automatically forwards communication between the
internet server and a remote process as necessary�

� Location�transparent system calls� All system calls by a remote process that
depend on its location are forwarded to its home host for evaluation� Calls that
interact with remote processes� such as sending signals� are redirected from the home
to the physical host as needed�

� Transparency to the user� A remote process appears in a listing of processes on its
home and retains the same process identi�er throughout its lifetime� The parent�child
relationships between processes are maintained regardless of where they execute� with
all synchronization of exiting processes performed on the home host� Furthermore�
the home host alone is responsible for knowing the current location of all processes
that are tied to it� this host is similar to the LOCUS �origin site�� which is the host
on which a process is created ��� However� the home host in Sprite is inherited� so
children of remote processes behave as though they were created on the same host as
their parent�

Processes are migrated by encapsulating their state on the source and transferring the
state to the target via kernel�to�kernel remote procedure calls
RPC�� The transfer cost is
typically dominated by the time to send the process	s open �les and virtual memory to the
target� To encapsulate the state of an open �le� the kernel sends information about the �le
itself
its unique identi�er� including which server stores the �le� and state depending on
the type of the �le encapsulated� and the process	s stream for the �le
e�g�� the o�set into
the �le� and the mode in which the �le is accessed�� File transfer is costly primarily because
of Sprite	s �le system cache consistency algorithm
described in detail in ����� Read�only
�les are cachable on multiple hosts simultaneously� and if a �le is read and written by only
one host then that host may cache the �le� However� any time a �le is open for writing
on one host while another host accesses the �le for reading or writing� the �le is cached
only by the server storing the �le� If a �le is cached by a host and then caching for the �le
is disabled� dirty blocks for the �le must be �ushed to the host storing the �le� and clean
blocks are discarded� When a process migrates� any �les it has open for writing are brie�y
open for writing simultaneously on multiple hosts� and caching of those �les is disabled�
Measurements of the cost of cache �ushing are presented below in Section ��

To transfer a process	s virtual memory� Sprite writes the process	s dirty pages to a
shared �le server� The pages are retrieved from the server as the process page�faults�
By comparison� Locus� V ����� and Charlotte ��� transfer the entire address space� which
may take orders of magnitude more time than transferring the rest of the process	s state�
Accent addresses the �process migration bottleneck� by transferring virtual memory in a
lazy fashion� the target of the migration retrieves memory from the source as it is referenced�
thus amortizing the cost of memory transfer over the execution of the process ����� Although
lazy virtual memory transfer makes the act of migration faster than direct memory�to�
memory transfer� it requires that the source of a migration dedicate memory to the process
after the migration has completed� When a Sprite workstation is reclaimed� all resources
used by foreign processes are relinquished as the processes are migrated back to their home
host�

�

� History of Implementation E�ort

The path to a usable migration facility was long and di�cult� but in retrospect was
worth the e�ort� Migration was �rst implemented in Sprite in ���� and we were able
to perform measurements of its performance in the ������ academic year� Our initial
measurements suggested obvious areas for improvement� most notably in the area of dis�
tinguishing between location�dependent and location�independent operations� The original
implementation forwarded nearly all system calls home� including calls that involved lo�
cating �les� because each host maintained a distinct pre�x table that mapped �le system
domains to servers ����� Rather than keeping copies of the pre�x table consistent between
multiple hosts� naming was performed on the home host using its pre�x table� Forcing nam�
ing operations to be redirected via the process	s home slowed down compilation benchmarks
by approximately ���� In fact� there was no particular reason to permit the same pre�x
on di�erent hosts to refer to di�erent domains� and we solved this performance problem by
legislating the equivalence of pre�x tables among multiple hosts�

Although migration worked well enough to perform simple tests at this point� some fea�
tures were missing� certain types of �les� such as pseudo�devices� could not be encapsulated�
there was no automatic host selection� so tools such as pmake could not yet take advantage
of migration� and there was no recovery� so the failure of a host with a foreign process could
a�ect other processes
or the kernel� on the process	s home as well� Using migration on a
regular basis had to await changes to �x these problems�

While we implemented additional functionality relating to process migration at the user
level� the �le system underwent major changes to add recovery after hosts reboot� The
changes to the internal state associated with each �le caused �le descriptor encapsulation
to become entirely unusable� Because migration was not yet in regular use� we were not
even aware that the changes presented a problem until we tried working with migration
again in the fall of ���� The �le system was about to be redesigned to �x a number of
problems� including issues relating to process migration� so process migration itself was put
on hold pending the �le system changes� Those changes were completed in late spring of
���� at which point work on process migration resumed�

Getting migration working again was di�cult� mostly due to interactions with the re�
organized �le system� Bookkeeping between �le servers and migrating processes on client
workstations proved to be extremely complicated� compared to the rest of the migration
facility� In particular� locking and updating the data structures for an open �le on multiple
hosts simultaneously provided numerous opportunities for deadlocks� race conditions� and
inconsistent reference counts�

Once the reintegration with the �le system was complete� we were able to implement
and test the other missing pieces�error recovery and host selection�and we started using
migration regularly in the fall of ���� Regular use provided the opportunity to �nd and
correct some additional problems that did not arise with simpler test cases� More impor�
tantly� the few changes to the rest of the system that impacted process migration were
detected almost immediately and corrected�

�

� Performance

Many more remote processes execute to completion than are evicted� so the user	s view of
the system is a�ected more by the overhead of remote invocation and execution than by the
time to migrate an active process� The most important measurements for remote execution
are the time to select an idle host� the time to start a program on another host� and the
performance penalty incurred by executing remotely rather than locally� The success of
remote execution may be evaluated by the overall performance improvement from parallel
execution of actual applications on idle hosts� On the other hand� the success of eviction
depends upon the degree to which Sprite meets its goal of noninvasiveness� in practice� the
time to evict all foreign processes from a workstation is on the order of a few seconds� during
which workstation owners do not appear to notice any obvious degradation in performance�
Section ��� discusses remote execution� and Section ��� discusses eviction�

��� Remote Execution

To start a program remotely in Sprite� a process obtains the use of an idle host and
then performs a remote exec to invoke the remote program� Methods of selecting hosts
for distributing load� with and without process migration� have been discussed at length in
the literature
e�g�� ��� ����� Sprite uses a shared �le that contains the load average and
idle time of each host� as well as information about the number of foreign tasks currently
using the host� To �nd an idle host� a process uses a library routine to lock the shared �le�
select a host appropriate for o�oading
low load average� idle for at least �ve minutes� and
no foreign tasks currently using it�� update the count of foreign tasks� and unlock the �le�
When the host is no longer needed� the �le is locked while the entry for the host is updated
again� Sprite currently takes approximately ��� milliseconds to select and release a host�
running on Sun ���� workstations� because all accesses to the �le require network remote
procedure calls�

State transfer for remote invocation is much like migration� except that no virtual mem�
ory is transferred� It currently takes ��� milliseconds on Sun ����	s to fork locally� exec
a process on a remote host with the standard set of three �le descriptors
standard input�
standard output� and standard error� and no dirty �le blocks� and wait for the remote pro�
cess to exit� this compares to �� milliseconds when the exec is performed locally� Additional
overhead from open �les and dirty �le blocks is discussed below in Section ����

The total time to select an idle workstation and start a program on it compares favorably
to the cost of other remote execution facilities� such as the Digital Systems Research Center
distant process
dp� facility ����� Dp takes � second on Fire�y workstations
using multiple
MicroVAX�II processors� to start a new distant process� However� dp takes � seconds to
initialize before being usable� so the SRC parallel make facility does not use dp unless
enough tasks may be o�oaded to amortize the overhead� The cost in Sprite is relatively
constant� and pmake will o�oad tasks any time idle hosts are available� even if only one
task is executed at a time� By o�oading tasks whenever possible� Sprite minimizes the
e�ect of CPU�intensive operations on interactive response�

The degradation due to remote execution depends on the ratio of location�dependent
system calls to other operations� such as computation and �le I�O� Figure � shows the
total execution time to run several programs� listed in Table �� both entirely locally and
entirely on a single remote host� One might expect remote execution to be slower than

�

Name Description

pmake�P recompile pmake source sequentially using pmake

ditro� run grap eqn ditro� on a ������word document

rcp copy a � Mbyte �le to another host using TCP

fork fork and wait for child� ���� times

gettime get the time of day ����� times

Table �� Workload for comparisons between local and remote execution�

Time (seconds)

remotelocal

Benchmark

170
160
150
140
130
120
110
100

90
80
70
60
50
40
30
20
10
0

gettimeforkrcpLaTeXpmake

Figure �� Comparison between local and remote execution of programs�

�

normalized compile
compile and link

(a) Execution Times

seconds

Number of hosts used

900
800
700
600
500
400
300
200
100

0
121086421

gremlin

kernel

pmake

TeX

ideal

Number of hosts used

Speedup

0

2

4

6

8

10

12

0 2 4 6 8 10 12

Figure �� Performance of recompiling the Sprite
le system using a varying number of hosts�

Each graph shows the measured performance and the normalized �parallelizable� performance� The

speedup is the reciprocal of the time saved� by comparison to using a single host�

local execution due to overhead from forwarding location�dependent system calls� As may
be seen in Figure �� however� applications such as compilations and text formatting show
little e�ect from remote execution� In fact� executing the ditro� pipeline was slightly faster
remotely than locally� due to di�erences in process scheduling while performing remote
procedure calls� The next benchmark� rcp� copies data using TCP� it communicates with a
user�level TCP server on the home node of the process performing the copy� so forwarding
TCP operations to the server on the home node causes rcp to perform about ��� more
slowly when run remotely than locally� It is also possible for a program to perform many
location�dependent system calls without much user�level computation� thereby su�ering a
large performance penalty from running remotely� The last two benchmarks� fork and
gettime� are contrived examples of this type of degradation�

The usefulness of process migration in our environment may be demonstrated by the
performance of the primary application that uses migration� namely pmake� Figure � shows
the total elapsed time to recompile and relink the Sprite �le system using a varying number
of machines in parallel� and the speedup obtained from using idle hosts� The benchmark
consists of � independent compilations� followed by loading the resulting object �les into
a single �le� Each migration is performed at the level of a Make�le command
i�e�� a single
compilation�� A new host is requested for each Make�le command and returned to the pool
of available hosts when the command is complete� Figure �
a� includes two curves� showing
the measured elapsed times and the same times with �xed overhead removed� starting
pmake and determining out�of�date dependencies takes about �� seconds� and loading the
object �les into a single image takes �� seconds� Figure �
b� shows the relative improvement�
for both the actual elapsed time and the portion of the compilation that could be executed
in parallel� For example� using two hosts was about twice as fast as using one host� while
using ten hosts was ��� times as fast overall as a single host� Using ten hosts showed a
��fold improvement for the portion of the compilations that could be parallelized�

Figure �
b� demonstrates that bene�ts of using a small number of hosts in parallel
adequately compensate for the combined overhead of host selection� migration� and remote

�

execution� The number of hosts that may be e�ectively used depends upon the relative
speeds of the �le server and the hosts performing the compilation� In this benchmark� the
speedup was linear for small degrees of parallelism� but with �� hosts compiling in parallel�
the marginal improvement was small and the �le server CPU was in use �� of the time�

��� Eviction

The time to evict a process depends upon the number of dirty pages it has� the number
of open �les it has� and the number of dirty �le blocks that must be �ushed� Each dirty
� Kbyte page takes approximately �� milliseconds to be transferred over the network to
memory on the shared backing store
plus additional time if the server	s cache is full and
data must be written to disk�� Sprite takes about �� milliseconds to transfer the descriptor
for each open �le� and � milliseconds to �ush each dirty � Kbyte �le block to memory on a
�le server� The total time
in milliseconds� to migrate a long�running process on Sun ����
workstations is approximated by the following formula�

time to migrate ��� ! ��s! �b! ��f

s number of dirty � Kbyte pages
b number of dirty � Kbyte �le blocks
f number of open �les

For example� to migrate a � Mbyte process with �� dirty pages� �� dirty �le blocks� and
� open �les� Sprite would take ��� seconds� If the entire � Mbyte address space were dirty�
migration would take ��� seconds�

� Lessons

As of this writing� process migration has been in regular use in Sprite for approximately
 months� We have had the opportunity to reach some conclusions regarding process mi�
gration and systems in general�

�� Distributed bookkeeping is di�cult�

�� Insulating migration from the rest of the system is di�cult�

�� Keeping the right number of idle hosts busy is di�cult�

�� Hiding remote execution simpli�es applications�

�� Global naming simpli�es transparency dramatically�

�� Migration is expensive� to be used only as a last resort�

�� Above all� �use it or lose it��

�

Distributed bookkeeping is di�cult

File system bookkeeping was by far the hardest part of the remote execution facility
to implement� Because Sprite �le servers maintain state about open �les� the server must
update its references when a stream to a �le changes hosts� The o�set with a stream may
be accessed by multiple hosts as a result of migration� so the server maintains state for
each stream
including the o�set� as well as each �le� Streams and �les have reference
counts associated with them� with one reference per host that accesses the stream or �le�
but di�erent types of �les use reference counts in slightly di�erent ways� When a descriptor
migrates� the reference count changes depending on what other references to the object
exist and on the type of the �le� Implementing the code to encapsulate and deencapsulate
�le descriptors� therefore� required intimate knowledge of the internal implementation of
the �le system and the state associated with each �le�

Insulating migration is di�cult

Sprite is not alone in �nding that process migration tends to impact the rest of the system
and vice�versa� Theimer refers to migration facilities as being �fragile�� in an environment
in which the kernel is often modi�ed� migration can break unless everyone modifying the
kernel keeps the migration facility in step with other kernel changes ����� Finkel and Artsy�
on the other hand� report that they were able to keep migration su�ciently modular to
keep changes to migration from breaking other parts of the kernel and changes elsewhere
in the kernel from breaking migration ����

Although �le encapsulation proved to be a thorn in the side of process migration for
some time� migration has evolved to be generally orthogonal to the rest of the system�
Many kernel modules in Sprite maintain state on behalf of each process� Originally� to
encapsulate the state of a process� the process migration facility called a predetermined
set of encapsulation procedures� one per module� and each module	s portion of the process
state was transferred in a separate RPC� When a new module was added to the system�
migration would break temporarily unless the state of the new module were encapsulated�
We therefore changed migration to use a set of �callbacks� into each module to encapsulate
its own portion of a process	s state� The migration facility on the source requests the size
of the encapsulated state of each module� allocates a bu�er to hold the collective state�
makes the callbacks to encapsulate the state� and transfers the state in a single RPC to the
target� New modules may be added to the system by adding an entry to the callback table�
changes to existing modules may be performed without a�ecting the migration facility itself�
by updating the module�speci�c encapsulation routine whenever the format of the process
state changes�

Separating the functionality of migration on a per�module basis proved to have a useful
side�e�ect� implementing process migration on a new architecture required only that a
small number of machine�dependent state encapsulation routines be rewritten� It took
only about half a day to implement migration on the Decstation ����� given the existing
implementation for Sun workstations�

Keeping idle hosts busy

Pmake performs unquestionably well when performing a small number of independent
tasks� but large tasks present some problems� On the one hand� the server	s CPU is a

bottleneck if too many hosts are used simultaneously� On the other� pmake sometimes has
trouble using more than a single host� While we can	t do much about the server except to
get faster and more plentiful CPU	s� getting pmake to do more in parallel could be bene�cial�
As an example� the Sprite kernel is stored hierarchically� with each module having its own
Make�le and a single Make�le at the top level of the source tree� If pmake is invoked at the
top level with a high degree of parallelism� permitting it to invoke several pmake processes
on idle hosts� then those pmakes must be careful not to use much parallelism or they will
saturate the server� If they are invoked with low parallelism� then a large module will slow
down the entire compilation when it is performed sequentially after the other modules are
completed� Currently� only one recursive pmake is ever performed at a time� so the child
pmake can use a high degree of parallelism� However� when the child hits a synchronization
point� such as loading all the object �les in a module into a single image� only one host is
used�

Ideally� we would like to be able to build the kernel in parallel with a single pmake

controlling the degree of parallelism� One module could be compiled in parallel as one or
more modules were completing their linking phase� The problem of independent modules is
most likely an artifact of the way we chose to structure the source hierarchy before parallel
compilation was available� and we have learned our lesson�

Hiding remote execution

If changing a process	s location can change the e�ects of its execution� then users must
take special care to use remote execution only when they know a priori that a program
is location�independent� For example� the V System preemptable remote execution facility
is restricted to applications that execute �only operations whose output is independent of
the location at which they are executed� ����� Although compilations and text formatting
are location�independent� many other programs are not� for example� what if rcp could
not run remotely� and a user invoked rcp from within a Make�le" In general� any program
that one can invoke from pmake should be capable of executing remotely and being evicted
when necessary� Sprite only restricts processes that map kernel memory into their address
space� and processes that are pseudo�device servers� such as the X Window System display
manager�

To the users of applications such as pmake� remote execution is invisible� The application
merely appears to execute much faster than one would expect it to on a single host� If a
set of processes is evicted from another host� they immediately start executing on the home
host� perhaps with some performance degradation due to sharing the host with other active
processes� We hope to implement a mechanism by which processes may be automatically
re�migrated to another idle host if they are evicted� but eviction happens so infrequently
that the lack of automatic re�migration does not seem to present a problem�

To a user reclaiming his or her workstation� eviction is invisible as well�or it would be
if the daemon evicting processes did not announce the eviction in the system log� We found
that messages informing the user when eviction takes place promote goodwill� because users
can see that their performance is not impacted as a result of foreign processes�

��

Global naming is a must

When process migration was �rst designed� each Sprite host was a distinct system with
its own �le system namespace and its own process identi�ers� The simplest method of guar�
anteeing location transparency was to forward nearly all system calls home� but performance
su�ered signi�cantly� Over time� Sprite shifted toward making most system calls location�
independent� �le naming operations go directly to the server for a �le system domain� since
�le names mean the same across multiple hosts� and process identi�ers include the process	s
home host� so a remote process may send a signal using the standard signalling mechanism
on its physical host� By reducing the amount of forwarding required to support remote
processes� we were able to improve the performance of remote execution while simplifying
it substantially�

Migration is expensive

Our experience with the relative costs of remote invocation and migration corroborate
the results of Eager� et al�� who used a theoretical model and simulation to compare mi�
gratory and nonmigratory load sharing� They concluded that migrating processes for load
sharing performance does not generally yield signi�cant improvement over policies with
only remote invocation� and they suggested that �costlier but simpler� migration may be
appropriate if migration is done primarily for purposes other than load sharing
such as
permitting workstation owners to reclaim their hosts� ����

Remote invocation in Sprite is inexpensive enough to provide performance improvements
for all but extremely short�lived processes� assuming that the local host is already highly
utilized� Migrating active processes� on the other hand� is often measured in seconds rather
than milliseconds� The disparity between migrating new processes and processes with many
dirty pages and �le blocks suggests that migration is unlikely to be useful for dynamic load
balancing� As a last resort to guarantee the response time to the owner of a workstation�
however� eviction has proved an appropriate use for migration�

Use it or lose it�

Our single greatest mistake when implementing process migration was to let it sit idle
while the rest of the system evolved� We did not have the manpower at the time to add the
features described in Section �� but we could have run simple test cases on a regular basis
to ensure that problems would be apparent shortly after being introduced to the system�
If we had known quickly that the changes to implement �le system recovery had a�ected
migration� the recovery support could presumably have been modi�ed in the process of
�xing other problems with it� Instead� we were not aware of a problem until well after the
changes had become �carved in stone�� The changes to support recovery� which involved
several data structures that had been designed without taking the possibility of migration
into account� would have required too much e�ort to �x�given that the entire �le system
was to be rewritten� Instead� when the �le system was redesigned� we paid careful attention
to the e�ects of migration and implemented special functionality to handle migration� This
functionality could and should have been incorporated into the system at a much earlier
point� given that it was ultimately necessary�

Since migration has been in general use� there have been several occasions when changes
elsewhere in the kernel caused problems for migration� Because migration is used frequently

��

for compilations and other tasks� in each case we quickly observed that migration had been
a�ected� By catching the problems quickly� we were able to correct them relatively easily�

� Conclusions and Future Work

Some time ago� shortly before the �le system was to be reimplemented� we had a lengthy
discussion about the future of process migration in Sprite� The consensus at the time
was that migration was probably a mistake� it was too di�cult to implement� and the
performance of a single workstation was su�cient for our needs� However� we believed that
the marginal cost to put migration into general use was small enough to justify �nishing
the implementation and giving migration a chance to prove itself�

In retrospect� I may safely say that our initial lack of faith was misplaced� Process
migration has evolved from a toy prototype to a mature� extremely useful facility� Users are
thankful not only for the signi�cant performance improvement they see when using other
hosts� but for the minimal impact other users have on their own workstations�

Our present work with process migration may be divided into three categories� basic
support� extensions� and measurement and analysis� Migration is currently usable only
on Sun �� Sun �� and Decstation ���� workstations� and only between two machines of
the same architecture� We plan to port migration to Sun � workstations� and if possible�
provide the ability to perform remote execs between machines of di�erent types� The ability
to perform heterogeneous remote execs� along the lines of the LOCUS rexec system call ���
could considerably expand the pool of idle hosts available to a single program� We would
also like to add automatic remigration after eviction to keep eviction from degrading the
performance of the home host�

Finally� we intend to instrument the process migration and host selection facilities to
evaluate more aspects of the system� such as migration overhead� host availability� and
system bottlenecks� Preliminary measurements of the rates of remote execution and eviction
suggest that eviction in practice is rare
perhaps one eviction per �� remote executions�
and takes well under a second on Sun ����	s for typical compilations� Initial measurements
of host usage indicate that about one�third of our workstations are available for migration
during the day� on average� and over the course of a weekend closer to two�thirds are
available� Server CPU utilization is the most likely bottleneck that would a�ect overall
speedup from parallel execution� but we must await faster servers before we can obtain
useful measurements of our new client workstations� for example� a Sun ����� �le server
was ��� utilized servicing requests from two Decstation ���� clients compiling in parallel�
Access to the shared �le containing host availability may also prove to be a bottleneck� and
we are exploring alternative methods for host selection that might scale better with the size
and speed of the system�

Acknowledgements

Peter Danzig� John Hartman� Mendel Rosenblum� Mark Sullivan� and Brent Welch provided
valuable comments on early drafts of this paper� John Ousterhout has been instrumental in
the design of the process migration facility� Michael Nelson and Brent Welch implemented
�le descriptor encapsulation and provided debugging assistance� Finally� I thank the referees

��

for their recommendations� which helped to improve the clarity and organization of this
paper�

References

��� Y� Artsy and R� Finkel� Simplicity� e�ciency� and functionality in designing a process
migration facility� In The �nd Israel Conference on Computer Systems� May ����

��� F� Douglis and J� Ousterhout� Process migration in the Sprite operating system� In
Proceedings of the �th International Conference on Distributed Computing Systems�
pages ��#��� Berlin� West Germany� September ���� IEEE�

��� F� Douglis and J� Ousterhout� Process migration in Sprite� A status report� IEEE

Computer Society Technical Committee on Operating Systems Newsletter� �
����#���
Winter ���

��� D� L� Eager� E� D� Lazowska� and J� Zahorjan� The limited performance bene�ts of
migrating active processes for load sharing� In ACM SIGMETRICS ��		� May ����

��� R� Finkel and Y� Artsy� The process migration mechanism of Charlotte� IEEE Com�

puter Society Technical Committee on Operating Systems Newsletter� �
�����#��� Win�
ter ���

��� P� E� Krueger� Distributed Scheduling for a Changing Environment� PhD thesis� Uni�
versity of Wisconsin� Madison� Wisconsin� June ���� Computer Sciences Technical
Report $����

��� M� Nelson� B� Welch� and J� Ousterhout� Caching in the Sprite network �le system�
ACM Transactions on Computer Systems� �
������#���� February ����

��� J� Ousterhout� A� Cherenson� F� Douglis� M� Nelson� and B� Welch� The Sprite network
operating system� IEEE Computer� ��
�����#��� February ����

�� G� J� Popek and B� J� Walker� editors� The LOCUS Distributed System Architecture�
Computer Systems Series� The MIT Press� ����

���� E� Roberts and J� Ellis� parmake and dp� Experience with a distributed� parallel imple�
mentation of make� In Proceedings from the Second Workshop on Large�Grained Par�

allelism� Software Engineering Institute� Carnegie�Mellon University� November ����
Report CMU�SEI����SR���

���� M� Theimer� Preemptable Remote Execution Facilities for Loosely�Coupled Distributed

Systems� PhD thesis� Stanford University� ����

���� B� B� Welch and J� K� Ousterhout� Pre�x tables� A simple mechanism for locating �les
in a distributed �lesystem� In Proc� of the
th International Conference on Distributed

Computing Systems� pages ���#��� Boston� Mass�� May ���� IEEE�

���� B� B� Welch and J� K� Ousterhout� Pseudo devices� User�level extensions to the Sprite
�le system� In USENIX ��		 Summer Conference� pages ��#�� San Francisco� CA�
June ����

��

���� E� Zayas� Attacking the process migration bottleneck� In Proceedings of the Eleventh

ACM Symposium on Operating Systems Principles� pages ��#��� Austin� TX� Novem�
ber ����

��

