
A Trace-Driven Analysis of Name and Attribute Caching in a
Distributed System

Ken W. Shirriff
John K. Ousterhout

Computer Science Division
Electrical Engineering and Computer Sciences

University of California at Berkeley
Berkeley, CA 94720

Abstract
This paper presents the results of simulating file name and attribute caching on client machines in a distri-

buted file system. The simulation used trace data gathered on a network of about 40 workstations. Caching was
found to be advantageous: a cache on each client containing just 10 directories had a 91% hit rate on name lookups.
Entry-based name caches (holding individual directory entries) had poorer performance for several reasons, result-
ing in a maximum hit rate of about 83%. File attribute caching obtained a 90% hit rate with a cache on each
machine of the attributes for 30 files. The simulations show that maintaining cache consistency between machines
is not a significant problem; only 1 in 400 name component lookups required invalidation of a remotely cached
entry. Process migration to remote machines had little effect on caching. Caching was less successful in heavily
shared and modified directories such as /tmp, but there weren’t enough references to /tmp overall to affect the
results significantly. We estimate that adding name and attribute caching to the Sprite operating system could
reduce server load by 36% and the number of network packets by 30%.

1. Introduction
Operating systems spend much of their time performing path name lookups to convert symbolic path names

to file identifiers. In order to reduce the cost of name lookups, many systems have implemented name caching
schemes. For instance, Leffler et al [LKM84] measured performance on a single-machine system running 4.2BSD
Unix and found path name translation to be the single most expensive function performed by the kernel, requiring
19% of kernel CPU cycles. When name caching was added to 4.3BSD Unix, it reduced name translation costs by
35%.

Name lookup is an even larger problem in distributed systems, where a client machine may have to contact a
file server across the network to perform the name lookup. Most network file systems cache naming information on
client workstations as well as on servers [HBM89, HKM88, WPE83]. This allows clients to perform most name
lookups without contacting the server, which improves the speed of lookups by as much as an order of magnitude.
In addition, client-level name caching reduces the load on the server and the network. If client-level name caches
are combined with caches of file data, they may even allow a client machine to continue operating when the file
server is unavailable [KiS91].

Unfortunately, there has been little data published on the measured performance of name caches in distri-
buted file systems. Floyd et al. [Flo86, FlE89] and Sheltzer et al. [SLP86] performed trace-driven studies of name
cache performance, and both concluded that relatively small name caches produce relatively high hit ratios. How-
ever, Floyd studied a single time-shared system, and Sheltzer studied a small collection of networked time-shared
machines where many accesses were to local files. Distributed systems with large numbers of diskless workstations
have a number of characteristics that might interfere with name caching:

� In a distributed environment, the name caches on different machines must be kept consistent. This will result
in extra network messages and cost that is not needed on a single time-shared system.

� In a distributed environment, the most important overhead is the communication time involved in server
requests; the actual operations on the server often take less time than the basic network communication.



� Name caching schemes typically require a separate server request for each component that is not in the
client’s name cache, and typical path names contain several components. In contrast, a system without name
caching can pass the entire path name to the server in a single operation (i.e. there can never be more than
one server request per lookup). This means that an individual lookup operation could take substantially
longer with a client-level name cache than without one.

� A name cache is usually accompanied by a separate cache of file attributes such as permissions, file size, etc.
The entries in the attribute cache are typically managed separately from entries in the name cache, resulting
in additional server requests.

� Most implementations of name caching use a whole-directory approach, meaning they cache entire direc-
tories. However, this may not work well with load-sharing techniques where a single user spawns processes
on many machines simultaneously. If those processes work in a single directory then there may be a substan-
tial amount of overhead to keep the cached directory consistent on the multiple machines.

� Highly-shared directories such as the UNIX /tmp directory may also add to the overhead of maintaining
name cache consistency.

Because of these concerns, we performed a trace-driven analysis of name caching in a distributed environ-
ment. We collected traces of name and attribute usage in a network of about 35 diskless workstations and 5 file
servers. We then wrote simulators to analyze and compare the effectiveness of several different methods of name
and attribute caching. Our approach differs from previous work primarily in that we use diskless workstations as
the source of trace data and we examine effects such as load-sharing that were not present in previous studies.

Our study confirms previous studies that caching names and attributes is highly effective (see Table 1). We
found that a high hit rate can be obtained with a relatively small cache. For instance, caching 20 whole directories
on each client (about 20 kilobytes of storage) resulted in a 97% hit rate for pathname component lookups. An
entry-based name cache, which caches individual directory entires, had poorer performance, having a hit rate of
81%. The attribute cache had a 91% hit rate with a cache of the attributes for 40 files on each client.

We found minimal problems with maintaining cache consistency across multiple machines. To our surprise,
we found that process migration does not have a significant effect on name and attribute caching, even though
migrated processes account for an average of 19% of lookups. (Process migration is a mechanism in Sprite used to
move processes to idle machines for parallel execution [DoO91].) There was almost no difference in cache perfor-
mance between simulations with process migration and without migration. Consistency overhead was small; only a
small amount of network traffic was required to keep the caches consistent across multiple machines, as shown by
the low invalidation rate in Table 1. This is because very few operations required a remotely cached entry to be
invalidated, and most invalidations only invalidated one other machine’s copy.

The remainder of the paper is structured as follows: Section 2 describes the trace data we collected. Section
3 presents the results of the cache simulations. Section 4 consists of a discussion of the results and our conclusions.

����������������������������������������������������������
Cache type Hit rate Remote invalidation rate��������������������������������������������������������������������������������������������������������������������

Whole-directory name cache
(20 directories cached)

.97 0.0022
����������������������������������������������������������
Entry-based name cache
(40 directory entries cached)

.81 0.0004
����������������������������������������������������������
Attribute cache
(40 attributes cached)

.91 0.0005
������������������������������������������������������������
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�

Table 1: Summary of results. This shows the hit rate and the invalidation rate with client caching of
directories and attributes, for a reasonably sized cache. The hit rate is the fraction of cache accesses
that are found in the cache. The remote invalidation rate is the average number of cache entries on re-
mote machines that must be invalidated, per cache access. We performed eight traces; these results are
averages.



2. Collection of data

2.1. The Sprite system
We performed our name and attribute cache tracing on Sprite, a network-based operating system [OCD88].

Sprite provides a Unix-like environment in a network of about 40 workstations. Files are stored on one of several
file servers and may be cached on the clients, with full consistency maintained among the cached copies. One
important aspect of Sprite with respect to this study is that Sprite encourages sharing, both of files and of proces-
sors. We wished to examine the effect of this sharing on name and attribute caching.

Sprite provides a process migration facility, which allows processes to be moved across the network to idle
machines [DoO91]. This permits users to take advantage of the processing power of several machines at once.
There are currently two main uses of process migration in Sprite: parallel compilation and large simulations. We
suspected that process migration and name caching were incompatible; contention among shared directories would
cause name caching to perform poorly, we thought. As will be shown in Section 3.6, these concerns were
unfounded.

In order to judge the applicability of our results to other systems, it is important to understand our computa-
tional environment and workload. Our measurements were taken on a Sprite system with about 50 users using Suns
and DECstations. The users were distributed among several different academic research groups and engaged in
various office/engineering tasks. Significant applications included electronic communication, typesetting, editing,
software development and compilation, VLSI circuit design, graphics, and simulations.

2.2. The trace data
We collected eight one-day traces of activity on the Sprite system. These traces consisted of log records of

file system activity, collected on our file servers. More information on the trace data is available in [BHK91].
Table 2 gives an overview of the trace data we used for this study.

There were three types of trace records used in this study. The most important was the lookup record, which
logged a path name lookup. Each lookup record contained the file identifier of each examined component of the
path name. The record also included the client machine requesting the lookup, migration information (if the request
was from a migrated process), the operation responsible for the lookup, and whether or not the lookup succeeded.
The second type of trace record traced opens and closes and was used to keep track of what files were open. The
third type of record traced operations to get and set file attributes (e.g., fstat, fchmod).

Some interesting statistics on the traces are available from Table 2. On average, there were 16 name lookups
per second. The number of name component accesses was a factor of 3.2 higher; this resulted from the multiple
name component accesses required for each name lookup. An average of 19% of the lookups resulted from
migrated processes, although this was much higher in some traces (the last trace had 48% migrated lookups). We
also found that there were very few operations that resulted in modifications of names or attributes.

Table 3 shows statistics about the kernel calls that result in name lookups. Note that open and stat
operations account for most of the lookup operations. This is fortunate since these operations benefit most from
successful name caching. The other operations modify the file system, and thus will likely contact the file server
regardless of the name lookup. Table 3 shows that a significant fraction of path name lookups terminate with an
invalid name (i.e., a ‘‘file not found’’ error). (Besides typographical errors, one major source of invalid names is
search paths, which search through multiple directories for commands or include files.) About 14% of the lookup
operations in Table 3 resulted from lookups being repeated on multiple file servers, due to a characteristic of Sprite
file server operations called redirects. Since the file system is partitioned across several file servers, name lookups
occasionally pass from the part of name space stored on one server to another server (usually due to a symbolic
link). In this case, a redirect occurs and the client must submit the remaining part of the lookup to the new server.

We also measured the distribution of directory sizes in order to estimate the storage requirements for the
whole-directory cache. Figure 1 shows the static distribution of directory sizes, obtained from a scan of the file sys-
tem after one trace had completed. The distribution of directory sizes is important in estimating how much memory
is required to cache directories. Since the average directory requires about 1 kilobyte of storage, the memory
requirements for directory caching are quite modest, with a 20 directory cache taking around 20 kilobytes, if it



20 40 60 80 100 120 140

20

40

60

80

100

Percent of directories
Percent of entries

Pe
rc

en
t

0
 Entries in directory

Figure 1: Static size distribution of directories. This graph shows the static distribution of directory
sizes, calculated over all directories in the file system. The directory size is the number of entries in the
directory (excluding ‘‘.’’ and ‘‘..’’). The upper curve shows the cumulative percentage of directories
of each size. The lower curve shows the directory size distribution weighted by the number of entries
in the directory. This shows what cumulative percentage of files and subdirectories are in directories of
the specified size. (For example, the circled points show that about 93% of all directories had fewer
than 25 entries, but these directories held under 50% of all directory entries.) Our measurements also
showed that the average number of entries per directory was 8.9 and the average size of a directory was
1.1 1-Kbyte blocks.

����������������������������������������������������������������������������������������������

holds average-sized directories. (Admittedly, the cached directories could be much larger than average. However,
an examination of some common directories shows them to be only a few kilobytes.) The size of a directory cache
is noteworthy in comparison to file system data caches in Sprite, which may hold several megabytes of data. Our
measurements correlate well with those in [FlE89], which found a 10 directory cache was equivalent to about 14
kilobytes.

3. Simulations of name and attribute caching

3.1. About the simulator
We constructed a simulator that used the trace data to estimate the effectiveness of various caching schemes

for file names and attributes. The client caches were assumed to have a least-recently-used (LRU) replacement pol-
icy: a cache of n directories holds the n most recently accessed directories. The simulator functioned by taking the
trace data, determining the resulting low-level name operations, and simulating the effects of these operations on
the client caches. Each trace record corresponded to several low-level operations; these operations were: look up a
name in a directory, look up an attribute, modify a name, modify an attribute, remove a name and attribute, create a
name and attribute, and read a directory. Each low-level operation caused an access to some of the cache LRU
lists. When a cache entry was accessed, it was moved to the front of the appropriate machine’s LRU list. When an
entry was modified, it was invalidated from the caches of all other machines.

We used several techniques to keep the simulation to a reasonable size and run time. The simulator used a
stack-based model [Hil87] in order to simulate multiple cache sizes in one simulation run. To keep the simulation
state from growing excessively, we pruned the LRU lists at regular intervals. The simulator scanned all the LRU
lists, discarding idle entries. (We defined an entry as idle if it had not been used in the past 10 minutes and it was



more than 20 entries down on the LRU list.) Measurements on smaller trace files showed that this pruning of LRU
lists had little effect on the simulation results.

3.2. Name caching simulations
We simulated two types of name cache: a whole-directory cache and an entry-based name cache. For the

whole-directory cache, each machine cached a fixed number of directories. The cache used the directory identifier
as a key and returned the entire directory. With an entry-based cache, machines cached individual directory entries
instead of whole directories. That is, the cache used the parent directory identifier and a symbolic component name
as a key and returned the file identifier of the component.

There are several potential advantages of an entry-based cache over a whole-directory cache. One advantage
of the entry-based cache is that cache performance may be better in a directory with a high update rate (such as
/tmp). With a whole-directory cache, any change to any entry in the directory will result in the entire directory
being invalidated from the cache on other machines. However, in an entry-based cache, only the modified entry
will be invalidated; all other cached entries will remain valid. Another advantage to an entry-based cache over a
whole-directory cache is that only the directory entries being used need to be cached. This may result in a higher
hit rate for an entry-based cache than for a similarly sized whole-directory cache.

The entry-based name cache also has several disadvantages compared to the whole-directory cache. A major
disadvantage is that it does not distinguish between cache misses and nonexistent entries. As shown in Table 3, a
significant fraction of lookups try to access a nonexistent file or directory. With the entry-based name cache, when
a path name component is not found in the cache the server must be contacted to determine if the component does
not exist or if it is just not present in the cache. (One could cache invalid names as well as valid names. However,
depending on the reference patterns of invalid names, this might not be effective. It would also add complexity to
maintaining consistency, since an invalid name must be removed from the cache in the event that the corresponding
file is later created.) A second disadvantage of the entry-based cache is that the cache doesn’t help the performance
of whole-directory reads. Some operations, such as listing a directory’s contents, require reading the entire direc-
tory. These operations can benefit from a whole-directory cache, but not from an entry-based cache. Finally, an
entry-based cache won’t benefit from locality of directory accesses as much as the whole-directory cache will. If
there are many references to different entries in a directory, a entry-based cache will have a miss for each entry.
On the other hand, a whole-directory cache would load the directory once and subsequent references to entries
would be hits.

We assumed that the name and attribute caches were kept strongly consistent. That is, the caches never were
allowed to contain stale data. We simulated a callback mechanism similar to the one used in Andrew [HKM88] to
maintain consistency. For the callback mechanism, the server keeps a record of what data is cached on each client.
When another client modifies data, it must inform the server, which then calls back all clients with cached copies of
that data. The clients then invalidate their stale data.

Several other cache consistency mechanisms are possible. For instance, consistency can be loosened, allow-
ing clients to have inconsistent cached data. In the Echo system, on the upper levels (close to the root) of the file
system, clients invalidate cached name data after several hours. Until the data is invalidated, clients can access
inconsistent data. As another alternative, some NFS implementations [SGK85] uses a probabilistic scheme, in
which cached names and attributes are considered invalid after a certain length of time. This time varies between 3
and 60 seconds, and is selected based on prior reference patterns of the file.

In our cache simulations, each name component that was found in the client’s cache was counted as a cache
hit. If the component was not found, it was counted as a miss. We divided misses into several categories (based on
the categories used in [HeP90]):

� Compulsory misses are misses that would occur in an arbitrarily large cache: the first access to each direc-
tory or entry causes a compulsory miss.

� Capacity misses are name references that are misses due to the size of the cache; they would have been hits in
a suitably large cache.

� Consistency misses consist of names that were in the cache, but had to be invalidated due to modification on
other machines.



5 10 15 20 25 30 35 40

20

40

60

80

100

Capacity misses
Hits

Pe
rc

en
t

0
 Number cached

Figure 2: Whole-directory name cache performance. This graph shows the hit rate and capacity
miss rate for accesses to the directory cache. There are separate lines for each of the eight traces. The
X axis shows the number of directories cached on each client. The Y axis shows the percent of cache
references that were hits or capacity misses. For instance, the circled points show that with 20 cached
directories, the hit rate was about 97% and the capacity miss rate was about 2%. Capacity misses are
misses that occur due to the cache size. There are two other types of misses which aren’t graphed:
compulsory misses and consistency misses. Compulsory misses occur the first time a directory is refer-
enced, and cause the directory to be loaded into the cache. Consistency misses result from references
that would have hit in the cache, except the entries were invalidated because they were modified on
another machine. The compulsory miss rate for the different traces was between 0.6% and 0.9%. The
consistency miss rate was between 0% and 0.3%. Note that the compulsory miss rate is constant for all
cache sizes, while the consistency miss rate varies.

����������������������������������������������������������������������������������������������

� Invalid-file misses are references to nonexistent files or directories. These count as misses in the entry-based
cache, since, as explained above the entry-based cache does not distinguish between entries that are not
cached and entries that don’t exist. These references are not necessarily misses in the whole-directory name
cache or attribute cache measurements.

3.3. Whole-directory name cache results
According to the measurements shown in Figure 2, whole-directory name caching is highly effective. A

cache of 10 directories had a hit rate of 91%. Caching 20 directories increased the hit rate to about 97%. About
0.7% of the misses were compulsory misses, resulting from entries that were never referenced before. We found a
low rate of consistency misses (about 0.2%), which shows that it is very rare to have contention due to
modifications to a shared directory. We expect this is because users tend to work in different directories, and don’t
usually modify shared directories (with a few exceptions, such as /tmp, described in Section 3.8).

One question we had was how the component hit rate compared to the hit rate for entire paths. (An entire
path is counted as a hit if every component in the path is in the cache.) If cache misses were uniformly distributed,
the hit rate for entire paths would be much lower than the component hit rate, since an n-component path would
have a hit rate equal to the component hit rate raised to the nth power. However, Figure 3 shows that the hit rate for
entire paths is higher than would be predicted from the component hit rate, and in fact is close to the component hit
rate. One explanation is that the component hit rate is significantly higher for short paths than for long paths. This
biases the entire path hit rate to be better than would be expected, since long path names are more likely to have
multiple component misses that only account for a single path miss.



5 10 15 20 25 30 35 40

20

40

60

80

100

Component hit rate
Entire path hit rate
Predicted path hit ratePe

rc
en

t

0
 Number cached

Figure 3: Entire path hit rate. This graph shows the measured name component hit rate, the meas-
ured entire path hit rate, and the entire path hit rate predicted from the component hit rate. The entire
path hit rate is the fraction of paths that have every path component in the cache. The predicted hit rate
is derived from the assumption that the component misses are uniformly distributed. This graph shows
that the entire path hit rate was significantly better than predicted, especially for small cache sizes. For
instance, the circled points show that for a 10 element cache, the hit rate for each component was 91%.
Assuming this hit rate applies equally to all components, the average path would have a 75% chance of
being entirely in the cache. However, the average path actually had 82% chance of being entirely in
the cache. This graph shows averages over all eight traces.

����������������������������������������������������������������������������������������������

Our name cache performance results are close to those of other papers, even though our computing environ-
ment is different. For instance, Floyd et al. [FlE89] found an 85% hit rate with a 10 directory cache, and a 95% hit
rate on a 30 directory cache. These hit rates are close to ours, even though their measurements were on a single,
multi-user machine. Sheltzer et al. [SLP86] found a 15-directory cache reduced the whole-path miss ratio from
71% to 11%. (Even without caching, many of the path name lookups could be completed locally because each
machine in the 15-site VAX network stored part of the file system.) The hit ratio with 40 cached directories ranged
from 87% to 96%.

3.4. Entry-based name cache results
The second type of cache we simulated was an entry-based name cache, which caches individual directory

entries as opposed to whole directories. Cache results for the entry-based name cache are given in Figure 4. Note
that the entry-based cache has poorer performance than the whole-directory cache. One reason is that each item in
the whole-directory cache corresponds to several directory entries in the entry-based cache. (Figure 1 shows about
8.9 entries per directory.) However, even after scaling the cache sizes by this value, the entry-based name cache
still has poorer performance than the whole-directory cache. There are several reasons for this. The entry-based
cache has a much higher compulsory miss rate, because each referenced entry in a directory requires a separate
cache miss to be loaded into the cache. On the other hand, the first whole-directory cache miss loads the entire
directory into the cache. There appears to be substantial locality of access within a directory, so the whole-
directory approach provides a significant performance advantage.

A second reason for the poorer performance of the entry-based cache is that it can’t handle invalid names,
since the entry-based cache can’t distinguish between a name that isn’t in the cache and a name that doesn’t exist in
the file system. These references are described in Figure 4 as ‘‘invalid-file misses’’.



5 10 15 20 25 30 35 40

20

40

60

80

100

Capacity misses
Hits

Pe
rc

en
t

0
 Number cached

Figure 4: Entry-based name cache performance. This shows the hit rate for accesses to the com-
ponent name cache, where the directory holds individual components. This graph has a separate line
for each of the eight traces. A reference to a nonexistent path name component is called an invalid-file
miss; this reference will result in a miss in the entry cache. The compulsory miss rate was 7.6% ± 2%;
the invalid-file miss rate was 6.3% ± 3%; the consistency miss rate was negligible. Note that the com-
pulsory and invalid-file miss rates do not depend on the cache size.

����������������������������������������������������������������������������������������������

The entry-based name cache has another disadvantage besides its lower hit rate: read operations on direc-
tories can be satisfied by the whole-directory cache. (The contents of a directory are directly read by commands
such as ls.) We measured the rate of these operations and found that read operations on directories are very com-
mon. On average, directories are opened for reading about 3000 times per hour. If the whole-directory cache stores
the directory data in a suitable format (by storing the raw directory data, as opposed to a hash table of the entries,
for instance), the whole-directory cache can provide the data for these read requests. Since an entry-based cache
only holds parts of a directory, it can’t satisfy directory reads.

3.5. Attribute cache results
We simulated an entry-based attribute cache, in which each client caches the attributes for a number of files.

The entry-based attribute cache used the file (or directory) identifier as the key and returned the attributes (such as
permissions, owner, size, and modify time). Table 4 provides a summary of the measurements of operations using
and modifying attributes.

One problem with caching Unix-style attributes is that they include the access time attribute, indicating the
last time the file was accessed; and the modify time attribute, indicating the last time the file was modified. For an
open file, these attributes may change with each access to the file. Because of this, remote caching of Unix-style
attributes will be expensive on files that are open on other workstations. Each read of the file will change the access
time of the file. Each write to the file will change the access and modify times, as well as, usually, the size. To
cache these attributes correctly would require the cached attributes to be updated on every read and write operation.
Because of the high consistency cost this would entail, we assumed in this study that attributes of open files were
not cached on remote machines. (This could be done by invalidating cached attributes for a file if the file is opened
or by not guaranteeing consistency while the file is open.) We also assumed that the access time attribute was not
used (that is, we didn’t invalidate cached attributes each time another machine accessed the file). Another possibil-
ity for maintaining consistency of attributes, used in Andrew, is to propagate a file’s attributes only when the file is
closed. Under this model, consistency is loosened, since other remote machines may have the old attributes cached
while the file is open and the attributes are changing. In any case, Table 4 shows that accesses to the attributes of



5 10 15 20 25 30 35 40

20

40

60

80

100

Capacity misses
Hits

Pe
rc

en
t

0
 Number cached

Figure 6: Whole-directory name cache performance for migrated processes. This graph shows
the performance of name cache references for migrated processes (i.e. processes executed on a remote
machine). This graph is analogous to Figure 2, but restricted to lookups from migrated processes. To
generate this graph, the simulator used all name cache references, but only references from migrated
processes are graphed. The compulsory miss rate was 0.7% ± 0.2%; the consistency miss rate was 0%
to 0.2%.

����������������������������������������������������������������������������������������������

an open file are very rare.

The results for attribute caches are generally similar to those for the name caches. Figure 5 shows the perfor-
mance of the attribute caches. A cache of just 10 attributes had an average 76% hit rate, while a cache of 20 attri-
butes raised the hit rate to 88%. The attribute cache had a relatively high compulsory miss rate of about 6%, since
there are many distinct attributes used, and a miss is necessary to load each attribute into the cache. There were
almost no consistency misses in the attribute caches.

It is not surprising that the attribute cache performance is similar to the name cache performance considering
the close relationship between the name cache and the attribute cache: each name lookup requires an access of the
corresponding attributes to check permissions, and most attribute operations require a name lookup to determine the
file. However, since the attribute cache miss rates are much higher than the whole-directory name cache miss rates,
the attribute cache may be the limiting factor in overall performance of the name and attribute caches.

3.6. The effects of process migration
Because we think some form of load sharing is likely to be an important part of distributed operating systems,

we were concerned about the effects of process migration on client name caching. Since Table 2 shows that
migrated processes accounted for an average of 19% of name lookups, these processes could have a significant
effect on overall cache results. We had several reasons to suspect that name caching might perform poorly in the
presence of process migration. A typical application of process migration, such as parallel compilation, involves
several processes sharing a small collection of files and directories and modifying files in a shared directory. This
group of migrated processes is likely to have good name and file reference locality. Migrating the processes to
multiple machines eliminates the benefits of this locality. Also, since these processes may be modifying shared
directories, we expected heavy consistency traffic for the shared directories.

To determine the effect of process migration on cache behavior, we made two kinds of measurements. First,
we ran simulations in which we attempted to eliminate the effects of process migration. Second, we examined
migrated processes separately to see if they had different characteristics from ordinary processes.



5 10 15 20 25 30 35 40

20

40

60

80

100

Capacity misses
Hits

Pe
rc

en
t

0
 Number cached

Figure 7: Attribute cache performance for migrated processes. This graph shows the performance
of attribute cache references due to migrated processes. This graph is analogous to Figure 5, but res-
tricted to migrated processes. The compulsory miss rate was 6.1 ± 2%. The consistency miss rate was
under 0.08%.

����������������������������������������������������������������������������������������������

We estimated the effects of eliminating process migration by treating all name and attribute requests as if
they came from the home machine (the source of the migrated process) instead of the migrated machine (the
machine on which the migrated processes were actually running). The results of these simulations were almost
indistinguishable from the results with process migration (Figures 2, 4, and 5), so the results are not graphed. We
found that if migrated processes ran on the home machine, the overall hit rate would be about 0.2% higher, and the
capacity and consistency miss rate would be lower. Thus, process migration makes name cache performance
worse, but the difference is very slight. Process migration had a similar effect on attribute cache performance.

For a closer look at process migration we examined migrated processes alone. Figure 6 shows the whole-
directory name cache performance, considering only references from migrated processes, and Figure 7 shows the
attribute cache performance. In these measurements, the name cache simulation used all the name requests to
update the cache, but only the lookups from migrated processes were used to compute the hit and miss rates. Com-
paring these graphs to Figure 2 and Figure 5 shows that the behavior of migrated processes is very similar to that of
regular processes.

3.7. The costs of cache consistency
An important aspect of distributed caching is the amount of overhead required to maintain consistency of the

caches. Using a callback scheme, when a client modifies cached data, the server must call back all other clients
with a cached copy so the clients can invalidate the stale data. We refer to these server callbacks as remote invali-
dations. Figure 8 show the average number of remote invalidations per cache access, for a whole-directory cache,
entry-based directory cache, and attribute cache. Note that the invalidation rate was very low. For an average 20
entry whole-directory cache, there are about 2 invalidations of a remote machine per thousand cache accesses. For
an average 40 entry entry-based directory cache, the rate is much lower: 0.3 remote invalidations per thousand
accesses. This is not surprising, since individual directory entries are not modified very often, and it is even rarer
for these entries to be shared by multiple machines. For attributes, an average 40 entry cache had 0.9 remote invali-
dations per thousand accesses. Since these invalidation rates are all very low, the cost of remote invalidations will
probably not be an important consideration in cache design.

We looked at the effect of process migration on the remote invalidation rates by treating all requests as if they
came from the home machine instead of the migrated machine. As expected, we found that fewer remote



�����������������������������������������������
Fraction of name accesses to /tmp 0.6% ± 0.5%����������������������������������������������������������������������������������������������
Name cache�����������������������������������������������
Hit rate 87% ± 4%
Compulsory miss rate 0.2% ± 0.1%
Capacity miss rate 3.4% ± 1.5%
Consistency miss rate 9.7% ± 3.6%����������������������������������������������������������������������������������������������
Entry-based name cache�����������������������������������������������
Hit rate 32% ± 8%
Compulsory miss rate 25% ± 7%
Invalid miss rate 24% ± 12%
Capacity miss rate 18% ± 25%
Consistency miss rate 0%����������������������������������������������������������������������������������������������
Attribute cache�����������������������������������������������
Hit rate 83% ± 4%
Compulsory miss rate 14% ± 3%
Capacity miss rate 3.4% ± 1.3%
Consistency miss rate 0%������������������������������������������������

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

Table 6: Statistics on /tmp accesses. The hit and miss rates are all given for a cache of 20 entries.
The name cache results are for the /tmp directory. The entry-based name cache and attribute cache
results are for entries in the /tmp directory. Measurements of /tmp were recorded for the first six
traces; the figures presented are the average and standard deviation across these traces.

����������������������������������������������������������������������������������������������

invalidations are required if we eliminate process migration in this way. We found that for a 20 element name
cache, the number of remote invalidations would be about 40% lower. For a 40 element attribute cache, the
number of remote invalidations would be an average of 17% lower without migration.

One other aspect of consistency overhead that we examined was how many remote machines were invali-
dated when a potential invalidation occurred. The results are shown in Table 5. The results show that for whole-
directory and entry-based name caches, about 88% and 92% (respectively) of the time that an entry was modified,
no remote machine was invalidated and only the locally cached copy was updated. For the remainder of the time,
usually only one remote machine needs to be invalidated. For the attribute cache, a remote machine needed to be
invalidated about 21% of the time.

These consistency overhead measurements are similar to those found on Locus by Sheltzer et al. [SLP86].
Sheltzer found that with a 60-directory cache, only 0.051% of the references required cache invalidation. This
invalidation rate is about a fifth of the rate we measured on our system. The probable cause is that since we have
40 machines, compared to 15 in [SLP86], we have a higher chance of requiring invalidation. Sheltzer also found
7% of invalidations resulted in more than a single invalidation, compared to our rate of 11% of whole-directory
name cache modifications affecting more than the locally cached copy.

3.8. Other results
Another concern we had with whole-directory name caching was that heavily shared and modified directories

would result in a high invalidation rate. In particular, Sprite has a single /tmp directory shared among all
machines, so we expected there would be a high rate of contention and invalidation for this directory. Table 6
shows that this is true; the whole-directory name cache has a 9.7% consistency miss rate. However, the table also
shows that the fraction of accesses to /tmp was very low, so the contention in /tmp had minimal influence on
overall name cache performance. Table 6 also shows that since there was essentially no sharing of files in /tmp,
the entry-based name cache and attribute cache didn’t have any consistency problems. However, these caches had
a high compulsory miss rate.



10 100

20

40

60

80

100

Whole-directory name cache
Attribute cache
Entry-based name cachePe

rc
en

t

1
 Seconds

Figure 9: Idle time of cached entries when accessed. This cumulative graph shows (on a logarithm-
ic scale) the time between accesses to cached attributes, averaged over all references that hit the cache.
For instance, the circled point shows that 78% of hits in the attribute cache were to entries previously
referenced less than 10 seconds ago. There are jumps at 15, 30, and 60 seconds due to programs that
access files periodically. Whole-directory name cache entries had the shortest inter-reference times,
followed by attributes. Entry-based name cache entries had the longest inter-reference times. The
graph shows that the majority of all references to an entry were within a second of the previous refer-
ence. This graph shows the average across all eight traces. Individual traces varied about 10% from
the average at the left and about 2% from the average at the right.

����������������������������������������������������������������������������������������������

The entry-based name cache had very poor performance on accesses to /tmp; we believe that the typical
use of /tmp accounts for this. A standard sequence of operations for using a temporary file is to generate a new
filename in /tmp, stat the filename to ensure that it is unused, open the file, use the file, and remove the file. The
stat and open will result in misses if the file does not exist. The remove will result in a hit if the filename is still in
the cache after being opened. However, if there are many operations before the remove, the entry may have left the
cache, resulting in a miss. The result of this sequence of events is two misses and a hit, or three misses if the
remove reference results in a miss.

Since some name cache designs, such as NFS, use a timeout scheme to maintain consistency, an important
question is how long should entries be kept in the cache. Figure 9 shows the inter-reference time for the whole-
directory name cache, entry-based name cache, and attribute-based name cache. This graph shows the time since
the last reference, for references to items in the cache. For all three cache types, the majority of references to
cached entries happened no more than a second after the previous reference. This corresponds well with the
single-machine results in [FlE89], which found that half of the inter-reference times were under 1/4 second. Cache
entries no older than a minute accounted for over 90% of the cache hits. Note the effect of programs that run at
regular intervals, such as cron and xbiff: there are jumps in the reference curves at 15, 30, and 60 seconds.
Figure 9 also shows that timing out cache entries can result in a significant loss of cache performance. For instance,
consider a whole-directory cache with a 95% hit rate. Figure 9 shows that 9% of the cache entries used are older
than 30 seconds. Thus, invalidating entries after 30 seconds would reduce the hit rate to 86%, which almost triples
the miss rate.

One final question is the effect name and attribute caching will have on the network and file server load. We
did kernel name lookup timing measurements, which show that about 20% of the time the file server spent in the
kernel was spent handling name lookups. (This corresponds well with the single-machine measurements in
[LKM84], which found the kernel spends 19% of its time performing name lookups.) We estimate that another
20% of the time was spent handling file opens. Given a relatively small name and attribute cache on each client, we



could eliminate 90% of name lookups and file opens. Combining these figures, we estimate that total file server
kernel load could be reduced by 36%. Caching would also reduce network traffic. A previous study of Sprite net-
work traffic [KhL90] found that about 1/3 of Sprite remote procedure call (RPC) packets were for open, stat,
and fstat operations. If we assume a 90% reduction in these packets due to name and attribute caching, we con-
clude that caching could reduce the number of RPC network packets by 30%. (However, since most of the bytes
transferred across the network result from reads and writes, the decrease in RPC network bytes from name and
attribute caching is not as significant.) Based on these rough calculations, we expect name caching would result in
a significant decrease in server load and network traffic. Earlier measurements of Sprite’s performance in [Nel88],
estimated that server utilization and network utilization in Sprite could be reduced by a factor of 2 with local name
caching. However, since that estimate was an upper bound based on performance measurements on a set of bench-
marks, we believe the figures here to be more realistic.

4. Conclusions
We have presented the results of simulating name and attribute caches on clients in a distributed operating

system. This simulation used trace data we collected on a network of about 40 workstations running the Sprite
operating system.

The simulations showed several significant results. High hit rates can be obtained even with small client
caches. Very little memory is required on each client for these caches; a cache of 20 directories will likely require
only 20 to 40 kilobytes per machine. We found that caching just 10 directories resulted in a name hit rate of 91%.
The entry-based cache was less successful than the whole-directory cache, mainly because the entry-based cache
requires more misses than the whole-directory cache in order to fill it, and also because the entry-based cache can-
not handle nonexistent filenames. Attribute caching obtained a hit rate of 88% by caching 20 attributes on each
client.

There are minimal problems with maintaining cache consistency. The invalidation rate for remotely cached
data is very low, indicating very little network traffic is required to maintain cache consistency. The consistency
miss rate, due to modifications on shared directories, is correspondingly low.

Process migration does not have a significant impact on cache behavior. We found that there was hardly any
difference in performance between migrated and non-migrated processes. Sharing due to migrated processes is
responsible for a large fraction of consistency invalidations.

Based on our caching data and measurements of server load, we estimate that client name and attribute cach-
ing could reduce server load by 36% and could reduce the number of remote procedure call network packets by
30%.

5. Acknowledgements
We would like to thank Mary Baker, Fred Douglis, John Hartman, Jim Mott-Smith, Mike Kupfer, and Men-

del Rosenblum for their helpful comments on this paper. This research was supported by an IBM Graduate Fellow-
ship, NASA and the Defense Advanced Research Projects Agency under Contract No. NAG2-591, and by the
National Science Foundation under Grant No. CCR-8900029.

6. References

[BHK91] M. Baker, J. Hartman, M. Kupfer, K. Shirriff and J. Ousterhout, Measurements of a Distributed File
System, Proceedings of the 13th Symposium on Operating System Principles, Oct. 1991, 198-212.

[DoO91] F. Douglis and J. Ousterhout, Transparent Process Migration: Design Alternatives and the Sprite
Implementation, Software—Practice & Experience 21, 8 (Aug. 1991), 757-785.

[Flo86] R. Floyd, Directory Reference Patterns in a UNIX environment, Technical Report 179, Computer
Science Department, The University of Rochester, Rochester, NY, Aug. 1986.

[FlE89] R. Floyd and C. Ellis, Directory Reference Patterns in Hierarchical File Systems, IEEE Transactions
on Knowledge and Data Engineering 1, 2 (June 1989), 238-247.



[HeP90] J. Hennessy and D. Patterson, Computer Architecture: A Quantitative Approach, Morgan Kaufmann
Publishers, Inc., San Mateo, CA, 1990.

[Hil87] M. Hill, Aspects of Cache Memory and Instruction Buffer Performance, Report No. UCB/CSD 87/381,
PhD Thesis, Computer Science Division, UC Berkeley, Berkeley, CA, Nov. 1987.

[HBM89] A. Hisgen, A. Birrell, T. Mann, M. Schroeder and G. Swart, Availability and Consistency Tradeoffs in
the Echo Distributed File System, Proceedings of the Second Workshop on Workstation Operating
Systems (WWOS-II), Sep. 1989, 49-54.

[HKM88] J. Howard, M. Kazar, S. Menees, D. Nichols, M. Satyanarayanan, R. Sidebotham and M. West, Scale
and Performance in a Distributed File System, ACM Transactions on Computer Systems 6, 1 (Feb.
1988), 51-81.

[KhL90] D. Khorramabadi and C. Lowery, Analysis of Network Traffic in the Sprite Remote Procedure Call
System, Computer Science 262 Project Report, Computer Science Division, UC Berkeley, Berkeley,
CA, May 1990.

[KiS91] J. Kistler and M. Satyanarayanan, Disconnected Operation in the Coda File System, Proceedings of the
13th Symposium on Operating System Principles, Oct. 1991, 213-225.

[LKM84] S. Leffler, M. Karels and M. McKusick, Measuring and Improving the Performance of 4.2BSD,
Proceedings of the 1984 USENIX Summer Conference, June 1984, 237-252.

[Nel88] M. Nelson, Physical Memory Management in a Network Operating System, Report No. UCB/CSD
88/471, PhD Thesis, Computer Science Division, UC Berkeley, Berkeley, CA, Nov. 1988.

[OCD88] J. Ousterhout, A. Cherenson, F. Douglis, M. Nelson and B. Welch, The Sprite Network Operating
System, IEEE Computer 21, 2 (Feb. 1988), 23-36.

[SGK85] R. Sandberg, D. Goldberg, S. Kleiman, D. Walsh and B. Lyon, Design and Implementation of the Sun
Network Filesystem, Proceedings of the 1985 USENIX Summer Conference, June 1985, 119-130.

[SLP86] A. Sheltzer, R. Lindell and G. Popek, Name Service Locality and Cache Design in a Distributed
Operating System, Proceedings of the 6th International Conference on Distributed Computing
Systems, May 1986, 515-522.

[WPE83] B. Walker, G. Popek, R. English, C. Kline and G. Thiel, The LOCUS Distributed Operating System,
Operating Systems Review 17, 5 (Oct. 1983), 49-70.

Ken Shirriff is a Ph.D. candidate in the Department of Electrical Engineering and Computer Sciences at the
University of California at Berkeley. He is currently a member of the Sprite network operating system project. His
interests include operating systems and computer architecture. He received a B.Math. degree from the University
of Waterloo in 1987 and a M.S. in computer science from UC Berkeley in 1990. Ken Shirriff can be reached at
shirriff@sprite.berkeley.edu.

John K. Ousterhout is a Professor in the Department of Electrical Engineering and Computer Sciences at the
University of California at Berkeley. His interests include operating systems, distributed systems, user interfaces,
and computer-aided design. He is currently leading the development of Sprite, a network operating system for
high-performance workstations, and Tcl/Tk, a programming system for graphical user interfaces. In the past, he
and his students developed several widely-used programs for computer-aided design, including Magic, Caesar, and
Crystal. Ousterhout is a recipient of the ACM Grace Murray Hopper Award, the National Science Foundation
Presidential Young Investigator Award, the National Academy of Sciences Award for Initiatives in Research, the
IEEE Browder J. Thompson Award, and the UCB Distinguished Teaching Award. He received a B.S. degree in
Physics from Yale University in 1975 and a Ph.D. in Computer Science from Carnegie Mellon University in 1980.



���������������������������������������������������������������������������������������������
Trace 1 2 3 4 5 6 7 8������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������
Date 1/24/91 1/25/91 5/10/91 5/11/91 5/14/91 5/15/91 6/26/91 6/27/91���������������������������������������������������������������������������������������������
Trace duration (hours) 24 23.8 24 24 24 24 24 24���������������������������������������������������������������������������������������������
Different users 44 48 47 33 48 50 46 36���������������������������������������������������������������������������������������������
Users of migration 6 6 11 8 7 11 9 9������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������
Lookups 1235794 1466012 998926 838399 1252421 1668730 987767 2256783
Migrated lookups 131262 120022 122528 94210 28968 187599 232488 1081116���������������������������������������������������������������������������������������������

Name accesses 4295413 4914596 2638298 2198843 4406272 5753149 2750424 7549488
Modifications 56354 68547 59765 42703 65638 81159 43596 54006���������������������������������������������������������������������������������������������

Attribute accesses 5078731 5944852 3148932 2601814 5166216 6726354 3153794 8452390
Modifications 34661 73237 44956 35190 43222 54365 30574 41392����������������������������������������������������������������������������������������������

�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

Table 2: Statistics on the trace data collected. ‘‘Different users’’ is the number of different users
who used the system during the trace. ‘‘Users of migration’’ is the number of different users who used
process migration during the trace. ‘‘Lookups’’ is the number of path name lookup operations during
the trace. ‘‘Migrated lookups’’ is the number of these lookups that resulted from migrated processes.
‘‘Name accesses’’ is the number of name component lookups; this is larger than the number of lookups
because each path name lookup may result in multiple component lookups. ‘‘Modifications’’ is the
number of component lookups that resulted in modification of a name component. ‘‘Attribute
accesses’’ is the number of file or directory attributes that were accessed.

�������������������������������������������������������������
Operation Percent of total Percent successful Percent not found�������������������������������������������������������������
Stat 53.5 ± 8 75 ± 9 9 ± 5
Open 42.0 ± 8 54 ± 12 32 ± 12
Unlink 3.1 ± 0.7 70 ± 3 6 ± 2
SetAttr 0.7 ± 0.8 89 ± 9 3 ± 2
Link 0.4 ± 0.2 89 ± 4 0.2 ± 0.2
Link(2) 0.3 ± 0.08 97 ± 2 0
Rmdir 0.03 ± 0.04 70 ± 30 0.3 ± 0.6
Mkdir 0.02 ± 0.01 63 ± 12 3 ± 8�������������������������������������������������������������
Totals 100 66 ± 11 19 ± 10��������������������������������������������������������������

�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�

Table 3: Operation breakdown. This table shows the breakdown of name lookup operations and the
results of the operations. The first column of this table lists the system calls that are responsible for
pathname lookups. The ‘‘Percent of total’’ column shows the breakdown of name lookup operations.
The ‘‘Percent successful’’ column shows for each operation type, the percent of lookups that complet-
ed successfully. The ‘‘Percent not found’’ column shows for each operation the percentage of lookups
that failed because one of the path name components did not exist. (There are other sources of failure,
such as lack of proper permissions, which are not shown.) The numbers are given as an average over
the eight traces, followed by the standard deviation. The ‘‘SetAttr’’ row includes functions such as
chmod, utimes, and chown, which change a file’s attributes. The ‘‘Link’’ and ‘‘Link(2)’’ rows
count the two separate pathname lookups required for the hard link operation. The ‘‘Total’’ row shows
the percent of all operations that completed successfully and the percent that failed because of a miss-
ing component.



���������������������������������������
Category Average Number������������������������������������������������������������������������������
Stat 710000
SetAttr 9900���������������������������������������
Fstat 79000
FsetAttr 1700���������������������������������������
Permission accesses 4300000���������������������������������������
Stats of read-open files 1500
Stats of write-open files 2700����������������������������������������

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�

Table 4: Operations affecting attributes. This table gives the number of operations per trace, aver-
aged over the eight traces. ‘‘Stat’’ counts the number of stat operations, which obtain file attributes
from a pathname. The label ‘‘SetAttr’’ combines operations such as chown and chmod that set file
attributes given a path. ‘‘Fstat’’ counts fstat operations, which obtain file attributes using a token
for an open file rather than a textual path name. ‘‘FsetAttr’’ combines operations such as fchown
and fchmod that set file attributes of an open file. ‘‘Permission accesses’’ is the number of path
name component lookups that required examining a file or directory’s permission attributes. ‘‘Stats of
read-open files’’ indicates the number of attribute accesses that were performed on a file while some
process had the file open for reading. ‘‘Stats of write-open files’’ indicates the number of attribute
accesses that were performed on a file while it was open for writing.

5 10 15 20 25 30 35 40

20

40

60

80

100

Capacity misses
Hits

Pe
rc

en
t

0
 Number cached

Figure 5: Attribute cache performance. This shows the hit rate for accesses to the attribute cache.
The X axis shows the size of the cache in entries. The Y axis shows the percent of accesses that result-
ed in cache hits or capacity misses. For instance, the circled points show that with 20 cached attributes,
the hit rate was about 88% and the capacity miss rate was about 5%. Accesses are divided up as hits,
capacity misses, consistency misses, and compulsory misses. The compulsory miss rate was 6.2% ±
1.8%. Consistency misses were under 0.07%.



10 20 30 40 50 60

0.0005

0.001

0.0015

0.002

0.0025

0.003
Whole-directory name cache

In
va

lid
at

io
ns

 p
er

 r
ef

er
en

ce

0
 Number cached

10 20 30 40 50 60

0.0005

0.001

0.0015

0.002

0.0025

0.003
Entry-based name cache

In
va

lid
at

io
ns

 p
er

 r
ef

er
en

ce

0
 Number cached

10 20 30 40 50 60

0.0005

0.001

0.0015

0.002

0.0025

0.003
Attribute cache

In
va

lid
at

io
ns

 p
er

 r
ef

er
en

ce

0
 Number cached

Figure 8: Number of remote invalidations per reference vs. cache size. These graphs show how
cache size influences the number of invalidations required. The upper left graph shows results for the
whole-directory name cache, the upper right graph shows the entry-based name cache, and the lower
graph shows the attribute cache. These graphs have a separate line for each trace. For instance, the
circled point shows that in one trace, a 20 element name cache required 2 invalidations of remotely
cached directories per thousand cache references.

��������������������������������������������������������������
Number of invalidations

Cache type
0 1 ≥2����������������������������������������������������������������������������������������������������������������������������

Whole-directory name cache 88% ± 5% 9% ± 3% 2% ± 2%��������������������������������������������������������������
Entry-based name cache 92% ± 6% 7% ± 5% 0.5% ± .4%��������������������������������������������������������������
Attribute cache 84% ± 3% 16% ± 3% 0.4% ± 0.1%���������������������������������������������������������������

�
�
�
�
�
�

�
�
�
�
�
�
�

��
�
�
�
�

��
�
�
�
�

�
�
�
�
�
�
�

Table 5: Number of invalidations. This graph shows how many remote machines were invalidated
when names or attributes were modified. This table shows that usually only the local copy was updat-
ed. For a minority of modifications, a remotely cached copy had to be invalidated. It was rare for a
modification to require invalidation of more than one remotely cached copy. Averages and standard
deviations are over the eight traces.


