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Abstract

Given the decreasing cost of non-volatile RAM
(NVRAM), by the late 1990’s it will be feasible for most
workstations to include a megabyte or more of NVRAM,
enabling the design of higher-performance, more reliable
systems. We present the trace-driven simulation and
analysis of two uses of NVRAM to improve I/O perfor-
mance in distributed file systems: non-volatile file caches
on client workstations to reduce write traffic to file servers,
and write buffers for write-optimized file systems to reduce
server disk accesses. Our results show that a megabyte of
NVRAM on diskless clients reduces the amount of file data
written to the server by 40 to 50%. Increasing the amount
of NVRAM shows rapidly diminishing returns, and the
particular NVRAM block replacement policy makes little
difference to write traffic. Closely integrating the
NVRAM with the volatile cache provides the best total
traffic reduction. At today’s prices, volatile memory pro-
vides a better performance improvement per dollar than
NVRAM for client caching, but as volatile cache sizes
increase and NVRAM becomes cheaper, NVRAM will
become cost effective. On the server side, providing a
one-half megabyte write-buffer per file system reduces
disk accesses by about 20% on most of the measured log-
structured file systems (LFS), and by 90% on one heavily-
used file system that includes transaction-processing work-
loads.

1. Introduction

Improving I/O performance of future distributed file
systems will require improving write performance.
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Because large, main-memory file caches more effectively
reduce read traffic than write traffic, the write traffic in dis-
tributed systems will become increasingly important. A
recent study of the Sprite distributed file system [17] shows
that for the workload measured, client workstation caches
reduce read traffic from applications by 60%, but only
reduce the write traffic by 10% [1]. As file caches on both
clients and servers continue to grow and satisfy even more
read traffic, the proportion of write traffic will increase and
could potentially become a bottleneck.

The failure of caches to reduce write traffic is not
due to insufficient cache size but instead to the need to pro-
tect newly-written (dirty) data from machine failures.
Dirty data must be written from volatile cache memory to
non-volatile storage to guarantee its permanence; thus
there is a tradeoff between reducing write traffic and pro-
tecting the reliability of dirty data. The longer dirty data is
held in the cache, the more likely it is to be absorbed in the
cache by being overwritten or deleted, but at the same time
it becomes more vulnerable to machine failures such as
power outages. For this reason, systems such as UNIX and
Sprite limit the amount of time dirty data remains in the
cache. It is this eventual write-back that causes most dirty
data to be written to the server. In Sprite, for example,
data written to a cache on either a client or a file server is
written from the cache after about 30 seconds, and seventy
percent of the file data transferred from clients to the file
server is triggered by this delayed write-back from client
caches. Another 15% is forced from the client caches by
application fsync calls that immediately and synchronously
flush a file’s dirty data from the cache to the file server’s
disk [1].

Non-volatile memory (NVRAM), such as RAM with
battery backup, offers a possibility for reducing write
traffic. By storing dirty data in NVRAM, we can guarantee
its permanence without the cost of transferring it from
client cache to server cache and from server cache to disk.
Until recently, NVRAM was not economically feasible in
the general workstation environment. Today, NVRAM is
still four to six times more expensive per megabyte than
DRAM, but we expect the per-megabyte cost of NVRAM
to decrease. Many workstations today include a small
amount of RAM with battery backup for the time-of-day



clock. Because these systems already include the overhead
of the batteries, incremental additions to the amount of
memory included may not be costly. As shown in Table 1,
NVRAM is also available in separate memory components
(SIMMs) and on boards with triply redundant batteries.
While the SIMMs incur the overhead of batteries and fail-
over systems for each component, this overhead on the
boards can be amortized over more megabytes of memory.
For one-megabyte boards, the boards are 20 - 70% more
expensive than SIMMs depending on the bus, but the 16-
megabyte boards are nearly 60% less expensive than
SIMMs and only four times the cost of an equivalent
amount of DRAM.

An uninterruptible power supply (UPS) is an alterna-
tive method for providing non-volatile memory, but it is
more expensive for small amounts of memory. A UPS
with enough power to support a Sparcstation for one to two
hours costs a minimum of $800. Another alternative, flash
EEPROM, has write access times significantly slower than
RAM, can only be written a limited number of times, and
is therefore not appropriate for our purposes.

In this paper we consider using NVRAM in two dif-
ferent ways to improve write I/O performance in distri-
buted systems: as a non-volatile cache on client worksta-
tions and as a write-buffer on file servers. NVRAM’s
combination of high performance relative to disks and per-
manence relative to volatile RAM will make it worthwhile
for small caches and write buffers, even without its price
dropping to that of volatile RAM [4]. In Section 2, we
analyze the effects of the addition of a small amount of
NVRAM to the cache on client workstations to reduce
write traffic to servers. This non-volatile memory will
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Component Speed Number Price Minimum

(ns) lithium per megabyte configuration
batteries (in megabytes)����������������������������������������������������������������������������������������������������������������������������������������������

128K*9 SRAM 120 2 $328 0.5��������������������������������������������������������������
SIMMs 1M*1 SRAM 85 2 $336 32��������������������������������������������������������������

512K*8 RAM 70 1 $370 2����������������������������������������������������������������������������������������������������������������������������������������������
PC-AT Bus 70 3 $439 1

Board PC-AT Bus 70 3 $134 16
VME Bus 70 3 $634 1
VME Bus 70 3 $147 16����������������������������������������������������������������������������������������������������������������������������������������������

Volatile 1M*9 DRAM 70 0 $33 4�������������������������������������������������������������������������
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Table 1: Current NVRAM costs. This table gives the current price of some sample non-volatile memory components from
Dallas Semiconductor, some non-volatile memory boards, and a volatile memory component for comparison. The table shows
list prices for lots of 5000 or more. The column Number lithium batteries gives the number of batteries on the SIMM or board.
Most of the components have at least one extra battery in case the first battery fails. For the SIMMs, the column Minimum
configuration gives the minimum number of megabytes necessary to purchase for a 4-byte wide memory bus. For the NVRAM
boards, this column just lists configurations using different amounts of memory. The boards have a fixed overhead cost for the
batteries and assembly plus an incremental cost for memory. The Price per megabyte column shows the amortized cost for a
configuration of the size indicated in the Minimum configuration column.

allow dirty data to remain longer in the client cache
without loss of reliability, assuming that it is possible to
restart a crashed client quickly. Our results show that one
megabyte of NVRAM can potentially reduce file write
traffic from clients to servers by more than 50%. However,
at today’s prices, adding NVRAM to client caches is only
cost-effective if the cache already includes nearly sixteen
megabytes of volatile memory. Our results also show that
the NVRAM’s block replacement policy makes little
difference in overall file traffic reduction, but the extent of
its integration with the volatile cache is important.

In Section 3, we consider using a non-volatile write
buffer on the file server to reduce the number of disk
accesses. Others have reported 50% performance gains by
putting non-volatile caches on traditional UNIX file sys-
tems in the NFS environment [15][19]. Our measurements
show that some new file systems, without NFS’s require-
ment for synchronous operations, can still obtain a
significant reduction in the number of writes. Sprite’s log-
structured file system (LFS) [18] is an example of a write-
optimized file system that amortizes write cost by collect-
ing a large amount of dirty data and writing it contigu-
ously. Currently, fsync requests from clients often force
LFS to write to disk before it has accumulated much data.
Our analysis shows that using a non-volatile buffer to col-
lect a large amount of data before writing would reduce the
number of disk write accesses by 10 to 25% on most file
systems, and by as much as 90% on one heavily-used file
system.

In Section 4, we address some of the difficulties in
incorporating NVRAM into system designs. For data in
non-volatile client caches to be considered as permanent as
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data on disk, the data must reach non-volatile storage on
the server before it is removed from the client cache. This
could require some changes in client cache protocols, or
else a synchronous write from the client cache to the
server’s disk. An alternative that avoids the latency of a
disk access is to write the data into NVRAM on the server.
Finally, modified data may become unavailable if it resides
in an NVRAM cache on a crashed client. To avoid this
problem for clients that do not recover quickly, it must be
possible to move an NVRAM component to another client
and retrieve its data from the new location.

We gathered our measurements on the Sprite distri-
buted file system. Sprite is a cluster of about 40 SPARCs-
tation 1, SPARCstation 2, Sun 3, DECstation 3100, and
DECstation 5000 workstations, all diskless and most with
24 to 32 megabytes of memory. The cluster has a number
of file servers, but most of the traffic is handled by a single
Sun 4 file server with 128 Mbytes of main memory. All of
the workstations in the cluster run the Sprite network
operating system, which is largely UNIX-compatible.
Most of the applications running on the cluster are standard
UNIX applications. In addition, Sprite provides process
migration [5], allowing users to offload jobs easily to idle
machines in the cluster. The user community during the
measurement period included operating systems research-
ers, architecture researchers working on the design and
simulation of new I/O subsystems, a group of students and
faculty working on VLSI circuit design and parallel pro-
cessing, administrators, and graphics researchers. About
30 users do their day-to-day computing on Sprite, and
another 40 people use the system occasionally.

2. Non-Volatile Client File Caches

The study in [1] found that write events currently
account for about one-third of the total file bytes
transferred from clients to the file server and that most of
these writes were a result of Sprite’s 30-second delayed
write-back and cache consistency policy rather than cache
block replacement. Since most file data in Sprite is
overwritten or deleted within half an hour of its creation,
retaining file blocks in non-volatile client caches may
significantly improve system performance by reducing
server write traffic. To determine the effectiveness of
NVRAM for this purpose, we addressed the following
questions:

� How long does dirty data last before being overwrit-
ten or deleted?

� If there were infinite room in the non-volatile cache,
what percentage of dirty data would be overwritten
or deleted? How much must be written back to the
file server due to the cache consistency policy?

� Given an omniscient block replacement policy, how
much NVRAM would it take to get a significant
reduction in write traffic?

� What block replacement policies work best in the
non-volatile cache?

� How should we integrate NVRAM into the cache
organization in order to get most of the potential
benefits?

� Given current costs, does it make economic sense to
invest in NVRAM as opposed to buying more vola-
tile memory?

We addressed these questions using file system trace data
to simulate different models of non-volatile client caches,
with varying amounts of NVRAM and different block
replacement policies.

2.1. Caching Models

We considered two models for incorporating non-
volatile memory in a client file cache, write-aside and
unified, and compared them to a volatile client cache
model. The volatile model captures most of the behavior
of Sprite’s client caching except for dynamic cache sizing
and preference for dirty blocks. Sprite’s caches change in
size, according to the relative memory needs of the file sys-
tem and the virtual memory system. For simplicity, we
assumed caches of static size in this study and also did not
give dirty blocks preference in the block replacement pol-
icy. Giving dirty blocks preference helps reduce write
traffic, but at the expense of increasing read traffic.

Sprite’s client caches maintain two separate lists of
four-kilobyte cache blocks: the free list contains free
blocks and the LRU list contains blocks in use with the
least-recently accessed blocks first. When a block must be
read or written into the cache, a free block is chosen. If
there are no free blocks, the first clean block on the LRU
list is chosen for replacement. Files containing dirty
blocks that are less-recently accessed than the selected
clean block are scheduled to be written back to the server,
and a block cleaner is started. The block cleaner also runs
at five second intervals and writes back blocks containing
dirty data more than 30 seconds old. This produces clean
blocks that are then subject to block replacement. While
the Sprite policy gives preference to dirty blocks (a clean
block is always replaced before a dirty block, even if a
dirty block is less-recently accessed), our volatile model
does not. Instead, the least-recently accessed block is
replaced, whether clean or dirty, and is written back to the
server if necessary.

In addition to data written by the block cleaner, dirty
data is also written to the server cache due to Sprite’s
cache consistency policy. Sprite file servers maintain con-
sistency between client caches. The server keeps track of
the last client to write each file. If another client opens that
file, the server recalls any dirty data not yet flushed from
the last writer’s cache. If two or more clients have the
same file open simultaneously, and at least one of them has
it open for writing, the server disables client caching on the
file until all the clients have closed it. This is called con-
current write-sharing. During concurrent write-sharing all
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read and write requests for the file bypass the client cache
and go directly to the file server.

While all read and write requests are directed to a
single volatile cache in the volatile model, the two
NVRAM models include both volatile and non-volatile
caches, as illustrated in Figure 1. In the write-aside model,
the NVRAM is intended only to protect dirty data in the
volatile cache; it holds copies of blocks that are also
present in the volatile memory, so it is never read except
during crash recovery. This minimizes accesses to the
NVRAM and would accommodate NVRAM access times
significantly slower than volatile memory access times.
Writing data into both the volatile cache and the NVRAM
increases traffic on the memory bus. The volatile cache no
longer uses a 30-second delayed write on dirty data, and
dirty blocks, even those from files explicitly fsync’d by the
user, remain in the NVRAM until replaced by other blocks
or until flushed back to the server by Sprite’s consistency
mechanism. (For the purposes of this study, we assume
that data written to NVRAM is as permanent as data writ-
ten to disk. In a real system, it would be possible to pro-
vide a method for flushing data from the NVRAM to server
disk.) After dirty data blocks are written to the file server,
they are removed from the NVRAM but may remain as
clean blocks in the volatile cache. As in the volatile model,
block replacement is strictly LRU with respect to the vola-
tile cache. If a dirty block is replaced, it is written to the
server and then invalidated in both the volatile and non-
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NVRAM

Disk

Volatile Cache

Network

Application

Server

Client

NVRAM

Disk

Volatile Cache

Network
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Write-aside Model Unified Model

Cache Cache

Figure 1: NVRAM cache models. In the write-aside model, file data is written into both the volatile cache and the NVRAM.
The NVRAM is used only to protect the permanence of the dirty data in the volatile cache, and is otherwise not accessed except
after system failure. In the unified model, the volatile memory and NVRAM are combined into a single larger cache. An indivi-
dual block may reside in either memory (but not both), and all dirty blocks are required to be kept in the NVRAM.

volatile caches.

The unified model more closely integrates the vola-
tile and non-volatile file caches. The blocks are not dupli-
cated between the NVRAM and the volatile cache: dirty
blocks reside only in the NVRAM while clean blocks may
reside in either the volatile cache or the NVRAM. A clean
block may be put in the NVRAM if a read operation finds
the volatile cache full while the NVRAM has a free block
or contains the least-recently accessed block. Application
writes are directed only to the NVRAM, but read requests
can be satisfied from either cache. As in the write-aside
policy, there is no 30-second delayed write on dirty data;
blocks leave the NVRAM only due to the consistency
mechanism or when replaced by other blocks. The unified
model retains strict LRU semantics with respect to the
volatile cache, although we experimented with different
replacement policies (described in Section 2.5) for blocks
in the NVRAM. When an incoming write request causes a
block to be replaced in the NVRAM, the removed dirty
block is written back to the server and its access time is
compared to that of the least-recently used block in the
volatile cache. If the least-recently-used block in the vola-
tile cache is older, then it is replaced with a clean copy of
the block removed from the NVRAM.

2.2. The Simulations

We simulated client cache behavior using file system
trace data previously obtained from Sprite. The traces
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record key file system operations such as file opens, closes,
and seeks. The current file offset appears in each of these
events, making it possible to deduce the order and amount
of read and write traffic to files. However, it is not possible
to deduce the actual number or exact times of write opera-
tions or which write operations were caused by application
fsync requests. The traces also record file truncation and
deletion events that, along with overwriting, cause bytes to
die in the client caches. Sprite’s consistency protocols and
process migration also generated trace events that flush
bytes from the client caches to the server. The trace data is
broken into eight 24-hour trace runs. The traces record
similar workloads, except for traces 3 and 4 in which two
users performed long-running simulations on large files,
resulting in higher file system throughput. More detailed
information about the traces can be found in [1], and more
detailed information about the trace methodology can be
found in [16].

The simulations required several passes over the
trace data. We first processed the trace data to convert it
into read, write, delete, flush, and invalidate operations on
ranges of bytes. Given this data, the simulator kept track
of the contents of both volatile and non-volatile caches for
all client machines and maintained file sizes and block
access and modify times. Input parameters to the simulator
specify the maximum sizes of the volatile and non-volatile
caches, the NVRAM model, and the replacement policy in
the non-volatile cache. LRU replacement was used in the
volatile cache for all simulations. The simulations counted
the number of bytes read and written from applications,
and the number and ages of bytes overwritten, deleted, or
transferred to or from the file server. For most of the simu-
lations, these counts yielded the final result, but the meas-
urements of lifetimes of cached data and the simulation of
an omniscient replacement policy required a third pass
over the data. To obtain these results, we simulated a
non-volatile cache of infinite size. The simulator then pro-
duced a log of all runs of bytes overwritten, deleted, or left
remaining in the cache, along with their times of creation
and deletion. The omniscient policy simulator used this
information to choose the block with the next modify time
furthest in the future.

2.3. Byte Lifetimes

The lifetime simulation determined the fraction of
bytes that die in the NVRAM within a given write delay.
As demonstrated in Figure 2, for most of the traces 35 to
50% of written bytes die within 30 seconds, while about
60% of bytes die within a few hours. For traces 3 and 4, in
which large amounts of data were transferred, only 5 to
10% of bytes die within 30 seconds, while more than 80%
die within half an hour. In reality, more bytes will die in
the cache than suggested by Figure 2 for two reasons.
First, the traces are of finite length and we assume that all
bytes left in the NVRAM at the end of the trace are eventu-
ally written back to the server. Some of these bytes would
be overwritten or deleted, reducing the fraction that would
need to be written back to the server. Second, the

simulation started with empty caches, thereby misclassify-
ing some writes as new data rather than overwrites. The
results in Figure 2 indicate that holding dirty blocks in the
cache for longer than the traditional 30 seconds will reduce
write traffic from clients to servers.

The lifetime simulation also generated information
concerning the final fate of file bytes, given a non-volatile
cache of infinite size. With a cache of infinite size, no
bytes are ever written back to the file server due to cache
block replacement. Table 2 summarizes the fate of all
written bytes across all eight traces and also across the
‘‘typical’’ traces alone (all traces except for 3 and 4).
Across all traces, 85% of bytes written could be absorbed
by a sufficiently large NVRAM. However, if we exclude
traces 3 and 4, only 65% absorption is possible. The table
shows two categories of write traffic from the clients to the
server: Concurrent writes and Called back bytes. The con-
current writes row gives the number of bytes for which
caching was disabled due to concurrent write-sharing; this
category turns out to be minuscule. Bytes called back
include those written back to the server due to the migra-
tion of a process, and those recalled to the server after one

������������������������������������������������

Trace 1
Trace 2
Trace 3
Trace 4
Trace 5
Trace 6
Trace 7
Trace 8

0.100.01

Net write traffic (%)

Time in minutes
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0
100001000100101

Figure 2: Byte lifetimes. Net write traffic (expressed
as the percentage of bytes written to client caches that
eventually had to be written to the server) when bytes
are flushed after a fixed write-back delay from a cache
of infinite size. The X axis is a log scale. Results are
shown for all eight 24-hour traces in [1]. Traces 3 and
4 represent workloads different from the other traces
because two users performed long-running simulations
on large files, resulting in higher file system
throughput.
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Traffic type Megabytes %���������������������������������������������

All traces No 3 or 4 All traces No 3 or 4����������������������������������������������������������������������������������������������������������������������������������������������������
Never Overwritten 189 142 2.86 7.36
Leave Deleted 5,439 1,128 82.27 58.27����������������������������������������������������������������

NVRAM Total absorbed 5,629 1,271 85.13 65.63����������������������������������������������������������������������������������������������������������������������������������������������������
Cause Called back 534 321 8.07 16.56
Server Concurrent writes 27 7 0.42 0.36����������������������������������������������������������������
Traffic Total server writes 561 328 8.49 16.92����������������������������������������������������������������

�
�
�
�
�
�
�
�
�
�
�

Remaining 507 390 7.67 20.17����������������������������������������������������������������������������������������������������������������������������������������������������
Total application writes 6,612 1,936 100.00 100.00����������������������������������������������������������������������������
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Table 2: Summary of types of write traffic. This table gives the fate of all bytes written into a non-volatile cache of infinite
size. The columns labeled All traces give the results summed across all eight traces. The columns labeled No 3 or 4 give the
results summed across all traces except 3 and 4, during which large amounts of data were transferred. The row Remaining indi-
cates how many bytes were left in the cache at the end of the trace interval. The column totals exceed the Total application
writes because an application write of less than an entire block may cause a whole cache block to be written back to the server.
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client has written a file and another has opened it. The
number of bytes written back to the server due to process
migration is less than one percent of the total traffic, so the
server traffic is almost entirely due to the cache con-
sistency mechanism. Reducing write traffic beyond 10 to
17% would require choosing a cache consistency policy
more efficient than Sprite’s, such as a protocol based on
block-by-block invalidation and flushing, rather than
whole-file invalidation and flushing [21].

2.4. Small NVRAM Reduces Traffic

Figure 3 shows that in most cases a small NVRAM
significantly reduces write traffic from clients to servers.
We used the byte lifetimes derived from the processed
trace data to simulate an omniscient cache manager, using
the unified NVRAM model, that can always flush the block
in the cache whose next modify time is the furthest in the
future. These results give the possible reduction in write
traffic as a function of NVRAM cache size for each of the
eight traces. The results are optimal in terms of blocks, but
not necessarily in terms of bytes, since the block with the
next modify time furthest in the future may contain many
dirty bytes, while the block that is spared replacement may
contain only a few dirty bytes to be overwritten or deleted.
One-eighth of a megabyte of NVRAM (small in com-
parison with the average seven megabytes of volatile file
cache in Sprite) eliminates 30 to 50% of the server write
traffic for most of the traces. Figure 3 also shows that
increasing the amount of NVRAM results in rapidly dimin-
ishing returns. For most of the traces, one megabyte
reduces write traffic by 50% while eight megabytes pro-
vides less than 10% further reduction. The net traffic in
Figure 3 and all other figures in this section includes the
bytes remaining in the NVRAM at the end of the trace.
Thus, these figures present a pessimistic view of the
benefits of client NVRAM caches.

1 10 100

Trace 1
Trace 2
Trace 3
Trace 4
Trace 5
Trace 6
Trace 7
Trace 8

Net write traffic (%)

Megabytes NVRAM

100

75

50

25

0
0.100.01

Figure 3: Results of an omniscient replacement pol-
icy. The omniscient policy replaces the block with the
latest next-modify time. This figure shows the net file
write traffic to the server using this omniscient policy
for various client NVRAM cache sizes. The X axis is a
log scale. Results are shown for all eight traces.

���������������������������������������������

2.5. Replacement Policies

After observing that a small non-volatile cache with
an omniscient replacement policy significantly reduces
write traffic for most of the traces, we examined the results
of the unified NVRAM model using realistic replacement
policies: LRU and random. The LRU policy favors the
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short-lived blocks in the cache by replacing the least-
recently-used (modified or accessed) block. The random
policy chooses random blocks for replacement, thus gaug-
ing the sensitivity of write traffic reduction to the particular
replacement policy. These simulations are also more real-
istic than the omniscient policy in that they include the
effects of read traffic on cache replacement: dirty blocks
may be replaced not just to make room for other dirty
blocks, but also to make room for more recent clean
blocks.

The simulations of block replacement policies
surprised us by demonstrating only small differences
between the policy designed to favor short-lived blocks
and the random replacement policy. Figure 4 shows
insignificant differences in write traffic reduction between
the replacement policies in a typical trace (Trace 7).
Indeed, the random policy behaves almost as well as the
LRU policy. With one megabyte of NVRAM, however,
the omniscient policy performs only 10 to 15% better than
the feasible replacement policies. The difference between
the omniscient and other policies is at most 22% across all
the traces, including traces 3 and 4.

2.6. Comparison of Cache Models

To contrast the non-volatile cache models, we exam-
ined their effect on read and write traffic between clients
and servers, on client memory bus traffic, and on the
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Figure 4: Replacement policies. This figure gives the
net file write traffic achieved by three replacement pol-
icies for Trace 7. The X axis is a log scale.

frequency of NVRAM accesses.

While both non-volatile cache models do equally
well for absorbing write traffic, the unified model does
better with read traffic, by effectively increasing the overall
size of the cache. In the unified model, clean blocks can
be placed in the non-volatile cache as well as in the volatile
cache, depending on which cache contains the least-
recently accessed block. In the write-aside model, only
dirty blocks reside in the non-volatile cache, with duplicate
copies in the volatile cache, so adding NVRAM does not
increase the size of the cache for clean blocks.

Figure 5 shows the effect of the different cache
models on total (both read and write) traffic between the
clients and servers. For these simulations, we used an
LRU replacement policy in both the volatile and non-
volatile caches. All the models began with an eight-
megabyte volatile cache. The non-volatile policies were
simulated with increasing quantities of non-volatile cache,
while the volatile policy was simulated with an increasing
quantity of volatile cache. The unified model performs 8%
better than the volatile cache model with the addition of
four extra megabytes of cache memory, while the write-

������������������������������������������������
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Figure 5: Effect of cache models on net total traffic.
This figure shows the percentage of total file traffic
from clients that is read from or written to the file
server for each of the cache models using Trace 7.
Each of the models starts with eight megabytes of
volatile cache. The X axis shows the effect of adding
memory to the cache. For the volatile model, volatile
memory is added. For the unified and write-aside
models, NVRAM is added.
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aside model performs 8% worse. The unified model per-
forms better than the write-aside model because it reduces
both read traffic and write traffic, while the write-aside
model only helps reduce write traffic. With eight extra
megabytes of cache memory, the unified model performs
14% better than the volatile policy, while the write-aside
model performs 14% worse. Thus, NVRAM should be
closely integrated into the cache mechanism for best effect.

For amounts of NVRAM less than a half megabyte,
the volatile model performs better than both the NVRAM
models. In the volatile model, the pool of blocks available
for replacement for newly-written data consists of the
entire volatile cache, while it consists only of the NVRAM
for the NVRAM models. This indicates that an even more
closely integrated NVRAM model that allows dirty blocks
to be written both to the NVRAM and to the volatile cache
(subject to a 30-second delayed write-back) would provide
superior performance to the models discussed here. How-
ever, this model would allow some dirty data to be vulner-
able for at least 30 seconds in the volatile cache.

Other differences between the two NVRAM models
are the amount of traffic they generate on the memory bus
and the number of accesses they generate to the NVRAM.
Blocks are written to both the NVRAM and volatile cache
in the write-aside model, whereas blocks are written only
to the NVRAM in the unified model, thus the write-aside
model starts with twice as much memory traffic. However,
when blocks are flushed from the NVRAM in the unified
model, they may be transferred to the volatile cache. One
megabyte of NVRAM absorbs about half of the bytes writ-
ten by applications, so the unified model transfers at most
50% of the original blocks to the volatile cache. Including
this traffic transferred from the NVRAM to the volatile
cache, the unified model generates at least 25% less file
cache traffic on the the local memory bus than the write-
aside model. There is also a small amount of data
transferred from the cache to the NVRAM; this occurs
when an application updates part of a file block, rather than
overwriting the whole block. If the cache manager finds
this file block in the volatile cache, it transfers the block to
NVRAM and updates it there. Our measurements show
that this is rare and amounts to less than one percent of the
write events requested by applications.

The unified cache model generates many more
accesses to the NVRAM than does the write-aside model.
This is because blocks are written to, but not read from, the
NVRAM in the write-aside model, while both clean and
dirty blocks may be read from the NVRAM in the unified
model. For an eight-megabyte volatile memory and an
eight-megabyte NVRAM, the simulation results show that
the unified model generates from two to two-and-a-half
times as many NVRAM accesses. If NVRAM access
times were significantly slower than volatile memory
access times, this could make NVRAM less appealing.
Otherwise, the unified model seems superior to the write-
aside model in terms of total network traffic reduction and
local memory bus traffic.

2.7. Non-Volatile Versus Volatile Caches

Another question we considered is whether money is
better spent on volatile or non-volatile memory for client
caches. To examine the cost-effectiveness of NVRAM
versus volatile memory, we used Figure 6 to compare the
total file traffic reduction produced by varying amounts of
volatile and non-volatile memory, and then we weighed the
benefits against the prices. Given current costs for
NVRAM and the fact that read traffic today is the majority
of traffic between clients and servers, we expected
NVRAM to make a poor showing. The cost-effectiveness
of NVRAM, however, depends upon the amount of volatile
memory already present in the system. Given sufficient
volatile memory, NVRAM may be a cost-effective method
for reducing network write traffic even at today’s prices.

Figure 6 shows that the addition of two megabytes of
NVRAM on top of eight megabytes of volatile cache
reduces total network file traffic by the same amount as the
addition of four megabytes of volatile memory. Similarly,
adding four megabytes of NVRAM on top of eight mega-
bytes of volatile cache produces the same benefit as the
addition of eight more megabytes of volatile memory.

������������������������������������������������
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Figure 6: Benefits of additional memory. This figure
shows the percentage of total file traffic from clients
that is read from or written to the file server for the
volatile and unified cache models using Trace 7. Each
of the models starts with 8 megabytes or 16 megabytes
of volatile cache. The X axis shows the effect of ad-
ding memory to the cache. For the volatile model,
volatile memory is added. To the unified model,
NVRAM is added.
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This indicates that with only eight megabytes of volatile
cache, adding NVRAM would be the right choice if it were
less than twice as expensive as volatile memory. But at
today’s prices, with NVRAM at least four times as expen-
sive as volatile memory, the trade-off is not yet favorable
for client caching using NVRAM.

With 16 megabytes of volatile cache, NVRAM per-
forms more successfully, because the larger volatile cache
has already reduced read traffic, but is not capable of
further reducing write traffic. In this situation, just a half-
megabyte of NVRAM provides the same benefit as more
than six additional megabytes of volatile memory. Given
sufficient volatile memory, NVRAM provides better
price/performance even at today’s prices.

Finally, non-volatile caches on client workstations
make sense only for systems such as Sprite and AFS 4.0
[12] that improve performance by caching dirty data on
clients. In NFS file systems, the cache consistency
mechanism requires that dirty data be written through
almost immediately to the file server, removing any benefit
for using non-volatile memory for file caching on clients.
In these NFS systems, it makes more sense to put non-
volatile memory on the file servers, as described in the next
section.
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Figure 7: A log-structured file system. These figures show a simplified example of file allocation in LFS. In figure (a), two
files have been written, file1 and file2. Each file has a metadata block, describing the location of the file’s data blocks, that is al-
located after the file on disk. In figure (b), the middle block of file2 has been modified. A new version of it has been added to
the log, as well as a new version of its metadata. Then file3 is created, causing its blocks and metadata to be appended to the
log. Next, file1 has two more blocks appended to it. These two blocks and a new version of file1’s metadata are appended to
the log. At the end of each segment, LFS appends a summary block that describes the segment’s contents.

3. Using NVRAM as a File System Write Buffer

While the previous section showed how NVRAM
can be used to reduce write traffic between diskless clients
and the file server, this section describes how NVRAM can
be used to reduce physical writes from the server to its disk
system. Servers can also use NVRAM file caches to
absorb write traffic, producing reductions in the server-disk
traffic similar to those in the client-server traffic. Since this
use of NVRAM was covered in Section 2, we will now
consider the use of NVRAM as a write buffer in front of
the disk to reduce the number of disk write accesses.

The use of NVRAM to improve disk performance is
not new. Traditional distributed file systems, especially file
servers running the UNIX fast file system [13] in the NFS
[19] environment, have already used NVRAM to reduce
disk traffic. It is particularly beneficial for NFS file sys-
tems, since the NFS protocol requires many synchronous
write operations [11]. The Legato Systems Prestoserve
board [15] caches NFS server requests in non-volatile
memory to reduce the latency of synchronous writes to the
file system, and performance improvements of up to 50%
have been reported on systems using this board. IBM uses
four megabytes of NVRAM on the 3990-3 disk controller
in a similar fashion [10][14]. Disk writes go to this non-
volatile speed matching buffer to reduce latency. Buffer-
ing writes also allows more efficient disk utilization since
the system can sort its I/O operations to reduce disk head
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motion. Simulation results in [20] show that only 7% of
disk bandwidth is used when writing dirty data randomly to
a disk. Instead of writing blocks randomly, 1000 I/O’s,
requiring four megabyte of NVRAM, can be buffered and
sorted to utilize 40% of the disk bandwidth.

In this paper, we consider the use of NVRAM on a
file server in a more modern, write-optimized file system.
Several database and file systems use various forms of log-
ging on the file server to improve write I/O performance by
minimizing the latency of disk writes [6][7][9][12][18].
Sprite’s log-structured file system [18] (LFS) is the most
extreme example of a logging file system, because file data
and metadata are written to disk only in a log format.
Also, file metadata operations in Sprite are performed
asynchronously rather than synchronously. While we do
not see as great an improvement in performance due to
NVRAM with this write-optimized file system as with the
NFS protocol and the UNIX fast file system, we do see
some improvement. According to our measurements of
LFS disk activity, a one-half megabyte non-volatile write
buffer for a Sprite LFS would reduce the number of disk
write accesses for most file systems measured by a modest
10 to 25%, but would reduce disk write accesses by 90%
on the most heavily-used file system.

In contrast to traditional UNIX file systems, LFS is
optimized for writing rather than reading. It amortizes the
cost of writes by collecting large (one-half megabyte) seg-
ments of data before issuing contiguous disk writes. The
file system’s disk layout is a sequence of segments that
comprise a log of the system. File metadata, incorporated
into the log, describes the location of the blocks in the file
to support efficient reads. While traditional file systems
seek to a predefined disk location to update metadata or to
write different files, LFS gathers all the dirty file data and
metadata into a single segment, appends a summary block
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/user2 92 20 0.3���������������������������������������������������������������������������
/scratch4 96 0 < 0.1�����������������������������������������������������������������������������

�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�

Table 3: Percent of forced partial segments on LFS file systems. The column % total segments that are partial gives the per-
centage of segment writes that are partial segments, including both fsyncs and data written by the 30-second delay, while the
next column includes only those partial segments resulting from fsyncs. The column % segments from this file system gives the
percentage of segment writes received by the particular file system, out of the total number of segment writes across all the file
systems. This total includes both full and partial segments.

describing the segment’s contents, and writes out the whole
unit with a single seek. Figure 7 shows the allocation of
three files in a log-structured file system. Before the log
uses up all the space on disk, LFS’s garbage collector
reclaims space from old segments containing data that has
been overwritten or deleted, compacting the remaining live
data into a smaller number of new segments.

LFS is not always able to write out full segments. If
LFS must issue a disk write before a full segment’s worth
of data has accumulated, then less data is written per seek,
resulting in lower disk bandwidth utilization. There are
two causes for these partial segment writes in Sprite: a 30-
second timeout that causes data to be written from the
server’s cache to disk and fysnc requests from user applica-
tions. In the current Sprite file system, dirty data older than
30 seconds is flushed from the cache every 5 seconds. Par-
tial segments due to this flushing do not impact disk
bandwidth, because they only occur when the file system is
lightly utilized. However, fsyncs require that LFS immedi-
ately write out whatever dirty data is present, regardless of
the amount of disk traffic, and these forced synchronous
writes from applications reduce the efficiency of LFS. In
the NFS network protocol, there are even more synchro-
nous write operations, so using LFS as the storage manager
for an NFS file server would result in even more partial
segment writes.

To measure LFS disk activity, we sampled kernel
counters on the main Sprite file server every half hour over
a period of two weeks. We recorded the number and size
of disk writes and whether the writes were the result of
application fsyncs. There are eight LFS file systems on the
server. /user1, /user2, /user4 and /user6 all contain home
directories. Processes page to the /swap1 disk,
/sprite/src/kernel contains the Sprite kernel development
area, and various local programs are installed on the /local
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file system. Finally, /scratch4 is a scratch disk generally
used for storing long-lived trace data.

Table 3 shows the percentage of partial segments
due to fsyncs for each of the LFS file systems on Sprite’s
main file server. Our measurements show that for most
Sprite file systems, 10 to 25% of segments written to an
LFS disk are partial segments due to application fsyncs.
The most heavily-used file system, /user6, showed 92% of
segment writes were partial segments due to fsyncs, in part
because one of the users was executing long-running data
base benchmarks that request five fsyncs after every data-
base transaction. With a write-buffer, these disk accesses
could be avoided, because the writes would remain in the
NVRAM buffer until a whole segment accumulated [8].
For some file systems, no forced synchronous writes occur.
/swap1, for instance, saw no partial segments due to fsyncs,
because applications never write directly to the swap disk.

In addition to the disk bandwidth reductions, there is
a disk space cost associated with partial segments. To each
full or partial segment, LFS appends at least one four-
kilobyte block of metadata. In addition, LFS places a
512-byte summary block at the end of the segment to
describe its contents. The smaller the average unit of writ-
ing, the higher a percentage of disk space is occupied by
the metadata and summary blocks. The lost disk space is
not reclaimed until LFS’s garbage collector runs.

Table 4 allows us to estimate the disk space over-
head for partial segments. The table shows the average
number of kilobytes of file data (not including metadata or
summary information) written per partial segment on each
of the eight file systems. The partial segments average
from 8 kilobytes on /user6 to 55 kilobytes on
/sprite/src/kernel. On /user6, the space taken up by the
metadata and summary blocks in partial segments is about
one third of the segment. Since 97% of the segments are
partial segments on /user6, the overhead could reach
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Table 4: Average number of kilobytes written per partial segment. The column Kbytes/partial gives the average number of
kilobytes written per partial segment for the given file system. The column Kbytes/fsync partial gives the average number of ki-
lobytes written per partial segment caused by an fsync. The column % total write traffic shows the percentage of overall bytes
written to the given file system out of the total number of bytes written to all the file systems. NA means not applicable because
there were no fsyncs on the file system.

almost one third of the available disk space until the gar-
bage collector runs. On /sprite/src/kernel the overhead is
only about 8% of each partial segment. Partial segments
account for about 70% of total segment writes to
/sprite/src/kernel, so the overhead on this file system could
only reach about 5%. Using NVRAM would eliminate
partial segment writes and would therefore reduce the disk
space overhead to the less than 1% overhead for full seg-
ments. This would improve disk utilization by 5 - 33% and
reduce garbage collection load on the server CPU.

Unfortunately, because we did not have data on the
number of disk reads, we were unable to measure the ratio
of read accesses to write accesses or to determine the
overall disk traffic reduction that the NVRAM made possi-
ble. This paper has only examined minimizing the number
disk write accesses, but read latency may also be an impor-
tant parameter for some systems. Extremely large write
I/O’s can cause potentially unacceptable latency to any
synchronous read requests that queue up behind them.
Analytic results in [3] show that the optimal write size for
an LFS is approximately two disk tracks, typically 50 - 70
kilobytes. The analytic study reports that the increase in
mean read response time due to full segment writes is
sometimes as much as 37%, but typically about 14%. This
increase in response time affects only those reads that miss
in the file data cache, so further measurements are required
to compute the effect on total I/O cost.

4. Impact on System Design

While the use of NVRAM on client workstations can
improve write performance in distributed file systems, it
also creates some new system design issues. The issues
arise from the treatment of long-lived data in the client
caches and from clients crashing while their non-volatile
caches contain live data.
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Assuring the permanence of dirty data that has
remained in client caches for a significant period of time
will require a change in the protocol for writing client
cache blocks to the file server. Sprite’s block cleaning pro-
cess runs every five seconds and writes dirty data older
than 30 seconds to the server. Therefore, Sprite assumes
that about 35 seconds worth of dirty data can be lost in a
client machine crash. The data is vulnerable for another 35
seconds in the server’s cache before it is written to disk.
After approximately 70 seconds, though, applications can
assume that the data is safely stored on disk. For clients
with non-volatile caches, dirty data may remain
indefinitely in the client’s cache before being transferred to
the file server. Since data in a client’s NVRAM cache is
considered permanent, the cache write-back protocol must
ensure that data written back to the server reaches per-
manent storage there before it is flushed from the the client
cache. The cache write protocol could perform a synchro-
nous disk I/O on the server or wait until the data reaches
the disk before flushing it from the client NVRAM. A
more attractive alternative to waiting or writing synchro-
nously is to provide some NVRAM on file servers, even if
write traffic is already significantly reduced by non-volatile
caches on clients. If the client data is written to NVRAM
on the server, no synchronous disk I/O is necessary, and
the client need not wait to replace blocks in its cache. Sys-
tems need to guarantee that data resident in non-volatile
client caches is just as permanent as if it were disk-
resident.

Clients that crash while holding live file data in non-
volatile memory also pose a problem, making fast recovery
important. Data written to non-volatile caches on the
clients are unavailable to the system while the client is
down. Since systems such as Sprite guarantee perfect dis-
tributed cache consistency, clients always see the most
recent data. If a client updates a file and another client
then reads it, the Sprite file server recalls the new data from
the first client to send to the second client. If this most
recent data is in the non-volatile cache of a client that has
just crashed, the server will be unable to satisfy the read
request until either the crashed client recovers or the
NVRAM is made accessible from another machine. If the
clients can recover quickly under most circumstances, then
the data will be unavailable for only a short period of time
[2].

Although fast recovery of client machines may
alleviate many of the problems due to client crashes, it is
also important to consider that a client may never recover.
When servers are down for extended periods, it is not
uncommon to move disks between machines. Similarly, if
NVRAM is viewed as permanent storage, it must be possi-
ble to move NVRAM from a dead machine to a live
machine. By making blocks in NVRAM self identifying,
NVRAM caches may be moved from machine to machine
as easily as disks. Legato’s Prestoserve functions in this
way, permitting NVRAM and backing disk to be moved
between systems without loss of data. In this way, the
NVRAM can be made as reliable and flexible as current

disks. Additionally, for files frequently shared between
clients, it is unlikely that dirty data will remain in any one
client’s cache for a long time, since the data will be flushed
back to the server by a consistency action the next time it is
accessed by another client.

5. Conclusion

The decreasing cost of NVRAM brings new oppor-
tunities for operating systems designers to increase system
reliability and performance. While not yet cost effective, it
may be desirable to include one or two megabytes of
NVRAM in future workstations. On diskless client works-
tations, a megabyte of NVRAM makes it possible to
reduce client-server file write traffic by up to 50%. Larger
amounts of NVRAM per workstation can be applied to
other problems, such as fast recovery, but will not provide
much greater improvements in I/O performance if used for
client caching. As file caches become larger, they will
absorb more of the read traffic, but NVRAM will be
needed to absorb write traffic while still providing main-
memory access speeds. Our simulations show that the
behavior of tightly integrated non-volatile client caches is
robust. Changing either the replacement policy or increas-
ing the amount of NVRAM beyond a few megabytes made
relatively little difference to the overall file traffic reduc-
tion.

Regardless of whether future workstations include
NVRAM by default, centralizing as little as one-half mega-
byte per file system of NVRAM on file servers will
improve write performance, even on write-optimized file
systems. While this use of NVRAM does not reduce net-
work traffic or the CPU load on the file server, it does
improve disk utilization. Our measurements show that
one-half megabyte of NVRAM per file system on LFS
decreases the number of disk accesses by 20% in the usual
case, and by 90% in extreme cases. Putting NVRAM on
the file server makes sense even if client workstations
include it as well; this allows long-lived data written from
client non-volatile caches to be buffered safely in server
NVRAM without being forced immediately to disk.
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the paper. John Byers, Allen Downey, Soumen Chakra-
barti and Vikram Vij all participated in an initial study of
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non-volatile caches for Sprite clients and presented their
work in a graduate operating systems course.
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