
USENIX Summer Conference
June 11-15, 1990
Anaheim, California

Why Aren’t
Operating Systems

Getting Faster As
Fast as Hardware?

John K. Ousterhout − University of California at Berkeley

ABSTRACT
This paper evaluates several hardware platforms and operating systems using a set of benchmarks
that stress kernel entry/exit, file systems, and other things related to operating systems. The
overall conclusion is that operating system performance is not improving at the same rate as the
base speed of the underlying hardware. The most obvious ways to remedy this situation are to
improve memory bandwidth and reduce operating systems’ tendency to wait for disk operations to
complete.

1. Introduction

In the summer and fall of 1989 I assembled a collec-
tion of operating system benchmarks. My original intent
was to compare the performance of Sprite, a UNIX-
compatible research operating system developed at the
University of California at Berkeley [4,5], with vendor-
supported versions of UNIX running on similar hardware.
After running the benchmarks on several configurations I
noticed that the ‘‘fast’’ machines didn’t seem to be run-
ning the benchmarks as quickly as I would have guessed
from what I knew of the machines’ processor speeds. In
order to test whether this was a fluke or a general trend, I
ran the benchmarks on a large number of hardware and
software configurations at DEC’s Western Research
Laboratory, U.C. Berkeley, and Carnegie-Mellon Univer-
sity. This paper presents the results from the benchmarks.

Figure 1 summarizes the final results, which are con-
sistent with my early observations: as raw CPU power
increases, the speed of operating system functions (kernel
calls, I/O operations, data moving) does not seem to be
keeping pace. I found this to be true across a range of
hardware platforms and operating systems. Only one
‘‘fast’’ machine, the VAX 8800, was able to execute a
variety of benchmarks at speeds nearly commensurate
with its CPU power, but the 8800 is not a particularly fast
machine by today’s standards and even it did not provide
consistently good performance. Other machines ran from
10% to 10x more slowly (depending on the benchmark)
than CPU power would suggest.

The benchmarks suggest at least two possible factors
for the disappointing operating system performance:
memory bandwidth and disk I/O. RISC architectures
have allowed CPU speed to scale much faster than
memory bandwidth, with the result that memory-intensive
benchmarks do not receive the full benefit of faster CPUs.
The second problem is in file systems. UNIX file systems
require disk writes before several key operations can
complete. As a result, the performance of those opera-
tions, and the performance of the file systems in general,
are closely tied to disk speed and do not improve much
with faster CPUs.

e
c
n
a
m
r
o
f
r
e
P

e
v
i
t
a
l
e
R

MIPS

1.2

1.0

0.8

0.6

0.4

0.2

0.0
20181614121086420

Figure 1. Summary of the results: operating system speed
is not scaling at the same rate as basic hardware speed.
Each point is the geometric mean of all the MIPS-relative
performance numbers for all benchmarks on all operating
systems on a particular machine. A value of 1.0 means that
the operating system speed was commensurate with the
machine’s basic integer speed. The faster machines all have
values much less than 1.0, which means that operating sys-
tem functions ran more slowly than the machines’ basic
speeds would indicate.

The benchmarks that I ran are mostly ‘‘micro-
benchmarks’’: they measure specific features of the
hardware or operating system (such as memory-to-
memory copy speed or kernel entry-exit). Micro-
benchmarks make it easy to identify particular strengths
and weaknesses of systems, but they do not usually pro-
vide a good overall indication of system performance. I
also ran one ‘‘macro-benchmark’’ which exercises a
variety of operating system features; this benchmark
gives a better idea of overall system speed but does not
provide much information about why some platforms are
better than others. I make no guarantees that the collec-
tion of benchmarks discussed here is complete; it is

1



possible that a different set of benchmarks might yield
different results.

The rest of the paper is organized as follows. Sec-
tion 2 gives a brief description of the hardware platforms
and Section 3 introduces the operating systems that ran on
those platforms. Sections 4-11 describe the eight bench-
marks and the results of running them on various
hardware-OS combinations. Section 12 concludes with
some possible considerations for hardware and software
designers.

2. Hardware

Table 1 lists the ten hardware configurations used
for the benchmarks. It also includes an abbreviation for
each configuration, which is used in the rest of the paper,
an indication of whether the machine is based on a RISC
processor or a CISC processor, and an approximate MIPS
rating. The MIPS ratings are my own estimates; they are
intended to give a rough idea of the integer performance
provided by each platform. The main use of the MIPS
ratings is to establish an expectation level for bench-
marks. For example, if operating system performance
scales with base system performance, then a DS3100
should run the various benchmarks about 1.5 times as fast
as a Sun4 and about seven times as fast as a Sun3.
�������������������������������������������

Hardware Abbrev. Type MIPS��������������������������������������������������������������������������������������
MIPS M2000 M2000 RISC 20
DECstation 5000 DS5000 RISC 18
H-P 9000-835CHX HP835 RISC 14
DECstation 3100 DS3100 RISC 12
SPARCstation-1 SS1 RISC 10
Sun-4/280 Sun4 RISC 8
VAX 8800 8800 CISC 6
IBM RT-APC RT-APC RISC 2.5
Sun-3/75 Sun3 CISC 1.8
Microvax II MVAX2 CISC 0.9���������������������������������������������
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�

Table 1. Hardware platforms on which the benchmarks
were run. ‘‘MIPS’’ is an estimate of integer CPU perfor-
mance, where a VAX-11/780 is approximately 1.0.

All of the machines were generously endowed with
memory. No significant paging occurred in any of the
benchmarks. In the file-related benchmarks, the relevant
files all fit in the main-memory buffer caches maintained
by the operating systems. The machines varied somewhat
in their disk configurations, so small differences in I/O-
intensive benchmarks should not be considered
significant. However, all measurements for a particular
machine used the same disk systems, except that the
Mach DS3100 measurements used different (slightly fas-
ter) disks than the Sprite and Ultrix DS3100 measure-
ments.

The set of machines in Table 1 reflects the resources
available to me at the time I ran the benchmarks. It is not
intended to be a complete list of all interesting machines,
but it does include a fairly broad range of manufacturers
and architectures.

3. Operating Systems

I used six operating systems for the benchmarks:
Ultrix, SunOS, RISC/os, HP-UX, Mach, and Sprite.
Ultrix and SunOS are the DEC and Sun derivatives of
Berkeley’s 4.3 BSD UNIX, and are similar in many
respects. RISC/os is MIPS Computer Systems’ operating
system for the M2000 machine. It appears to be a deriva-
tive of System V with some BSD features added. HP-UX
is Hewlett-Packard’s UNIX product and contains a com-
bination of System V and BSD features. Mach is a new
UNIX-like operating system developed at Carnegie Mel-
lon University [1]. It is compatible with UNIX, and much
of the kernel (the file system in particular) is derived from
BSD UNIX. However, many parts of the kernel, includ-
ing the virtual memory system and interprocess communi-
cation, have been re-written from scratch.

Sprite is an experimental operating system
developed at U.C. Berkeley [4,5]; although it provides the
same user interface as BSD UNIX, the kernel implemen-
tation is completely different. In particular, Sprite’s file
system is radically different from that of Ultrix and
SunOS, both in the ways it handles the network and in the
ways it handles disks. Some of the differences are visible
in the benchmark results.

The version of SunOS used for Sun4 measurements
was 4.0.3, whereas version 3.5 was used for Sun3 meas-
urements. SunOS 4.0.3 incorporates a major restructuring
of the virtual memory system and file system; for exam-
ple, it maps files into the virtual address space rather than
keeping them in a separate buffer cache. This difference
is reflected in some of the benchmark results.

4. Kernel Entry-Exit

The first benchmark measures the cost of entering
and leaving the operating system kernel. It does this by
repeatedly invoking the getpid kernel call and taking the
average time per invocation. Getpid does nothing but
return the caller’s process identifier. Table 2 shows the
average time for this call on different platforms and
operating systems.

The third column in the table is labeled ‘‘MIPS-
Relative Speed’’. This column indicates how well the
machine performed on the benchmark, relative to its
MIPS rating in Table 1 and to the MVAX2 time in Table
2. Each entry in the third column was computed by tak-
ing the ratio of the MVAX2 time to the particular
machine’s time, and dividing that by the ratio of the
machine’s MIPS rating to the MVAX2’s MIPS rating.
For example, the DS5000 time for getpid was 11
microseconds, and its MIPS rating is approximately 18.
Thus its MIPS-relative speed is (207/11)/(18/0.9) = 0.94.
A MIPS-relative speed of 1.0 means that the given
machine ran the benchmark at just the speed that would
be expected based on the MVAX2 time and the MIPS rat-
ings from Table 1. A MIPS-relative speed less than 1.0
means that the machine ran this benchmark more slowly
than would be expected from its MIPS rating, and a figure
larger than 1.0 means the machine performed better than

2



������������������������������������������
Time MIPS-RelativeConfiguration (μsec) Speed������������������������������������������������������������������������������������

DS5000 Ultrix 3.1D 11 0.94
M2000 RISC/os 4.0 18 0.52
DS3100 Mach 2.5 23 0.68
DS3100 Ultrix 3.1 25 0.62
DS3100 Sprite 26 0.60
8800 Ultrix 3.0 28 1.1
SS1 SunOS 4.0.3 31 0.60
SS1 Sprite 32 0.58
Sun4 Mach 2.5 32 0.73
Sun4 SunOS 4.0.3 32 0.73
Sun4 Sprite 32 0.73
HP835 HP-UX 45 0.30
Sun3 Sprite 92 1.1
Sun3 SunOS 3.5 108 0.96
RT-APC Mach 2.5 148 0.50
MVAX2 Ultrix 3.0 207 1.0�������������������������������������������
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

Table 2. Time for the getpid kernel call. ‘‘MIPS-Relative
Speed’’ normalizes the benchmark speed to the MIPS rat-
ings in Table 1: a MIPS-relative speed of .5 means the
machine ran the benchmark only half as fast as would be
expected by comparing the machine’s MIPS rating to the
MVAX2. The HP835 measurement is for gethostid instead
of getpid: getpid appears to cache the process id in user
space, thereby avoiding kernel calls on repeated invocations
(the time for getpid was 4.3 microseconds).

might be expected.

Although the RISC machines were generally faster
than the CISC machines on an absolute scale, they were
not as fast as their MIPS ratings would suggest: their
MIPS-relative speeds were typically in the range 0.5 to
0.8. This indicates that the cost of entering and exiting
the kernel in the RISC machines has not improved as
much as their basic computation speed.

5. Context Switching

The second benchmark is called cswitch. It meas-
ures the cost of context switching plus the time for pro-
cessing small pipe reads and writes. The benchmark
operates by forking a child process and then repeatedly
passing one byte back and forth between parent and child
using two pipes (one for each direction). Table 3 lists the
average time for each round-trip between the processes,
which includes one read and one write kernel call in each
process, plus two context switches. As with the getpid
benchmark, MIPS-relative speeds were computed by scal-
ing from the MVAX2 times and the MIPS ratings in
Table 1.

Once again, the RISC machines were generally fas-
ter than the CISC machines, but their MIPS-relative
speeds were only in the range of 0.3 to 0.5. The only
exceptions occurred with Ultrix on the DS3100, which
had a MIPS-relative speed of about 0.81, and with Ultrix
on the DS5000, which had a MIPS-relative speed of 1.02.

�����������������������������������������
Time MIPS-RelativeConfiguration (ms) Speed����������������������������������������������������������������������������������

DS5000 Ultrix 3.1D 0.18 1.02
M2000 RISC/os 4.0 0.30 0.55
DS3100 Ultrix 3.1 0.34 0.81
DS3100 Mach 2.5 0.50 0.55
DS3100 Sprite 0.51 0.54
8800 Ultrix 3.0 0.70 0.78
Sun4 Mach 2.5 0.82 0.50
Sun4 SunOS 4.0.3 1.02 0.40
SS1 SunOS 4.0.3 1.06 0.32
HP835 HP-UX 1.12 0.21
Sun4 Sprite 1.17 0.35
SS1 Sprite 1.19 0.28
Sun3 SunOS 3.5 2.36 0.78
Sun3 Sprite 2.41 0.76
RT-APC Mach 2.5 3.52 0.37
MVAX2 Ultrix 3.0 3.66 1.0������������������������������������������
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

Table 3. Context switching costs, measured as the time to
echo one byte back and forth between two processes using
pipes.

6. Select

The third benchmark exercises the select kernel call.
It creates a number of pipes, places data in some of those
pipes, and then repeatedly calls select to determine how
many of the pipes are readable. A zero timeout is used in
each select call so that the kernel call never waits. Table
4 shows how long each select call took, in microseconds,
for three configurations. Most of the commercial operat-
ing systems (SunOS, Ultrix, and RISC/os) gave perfor-
mance generally in line with the machines’ MIPS ratings,
but HP-UX and the two research operating systems
(Sprite and Mach) were somewhat slower than the others.

The M2000 numbers in Table 4 are surprisingly high
for pipes that were empty, but quite low as long as at least
one of the pipes contained data. I suspect that RISC/os’s
emulation of the select kernel call is faulty and causes the
process to wait for 10 ms even if the calling program
requests immediate timeout.

7. Block Copy

The fourth benchmark uses the bcopy procedure to
transfer large blocks of data from one area of memory to
another. It doesn’t exercise the operating system at all,
but different operating systems differ for the same
hardware because their libraries contain different bcopy
procedures. The main differences, however, are due to
the cache organizations and memory bandwidths of the
different machines.

The results are given in Table 5. For each
configuration I ran the benchmark with two different
block sizes. In the first case, I used blocks large enough
(and aligned properly) to use bcopy in the most efficient
way possible. At the same time the blocks were small
enough that both the source and destination block fit in
the cache (if any). In the second case I used a transfer

3



�������������������������������������������������������������
1 pipe 10 empty 10 full MIPS-RelativeConfiguration (μsec) (μsec) (μsec) Speed��������������������������������������������������������������������������������������������������������������������������

DS5000 Ultrix 3.1D 44 91 90 1.01
M2000 RISC/os 4.0 10000 10000 108 0.76
DS3100 Sprite 76 240 226 0.60
DS3100 Ultrix 3.1 81 153 151 0.90
DS3100 Mach 2.5 95 178 166 0.82
Sun4 SunOS 4.0.3 103 232 213 0.96
SS1 SunOS 4.0.3 110 221 204 0.80
8800 Ultrix 3.0 120 265 310 0.88
HP835 HP-UX 122 227 213 0.55
Sun4 Sprite 126 396 356 0.58
SS1 Sprite 138 372 344 0.48
Sun4 Mach 2.5 150 300 266 0.77
Sun3 Sprite 413 1840 1700 0.54
Sun3 SunOS 3.5 448 1190 1012 0.90
RT-APC Mach 2.5 701 1270 1270 0.52
MVAX2 Ultrix 3.0 740 1610 1820 1.0��������������������������������������������������������������
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

Table 4. Time to execute a select kernel call to check readability of one or more pipes. In the first column a single empty pipe was
checked. In the second column ten empty pipes were checked, and in the third column the ten pipes each contained data. The last
column contains MIPS-relative speeds computed from the ‘‘10 full’’ case.

������������������������������������������������������������������
Cached UncachedConfiguration (Mbytes/second) (Mbytes/second) Mbytes/MIPS������������������������������������������������������������������������������������������������������������������������������������

DS5000 Ultrix 3.1D 40 12.6 0.70
M2000 RISC/os 4.0 39 20 1.00
8800 Ultrix 3.0 22 16 2.7
HP835 HP-UX 17.4 6.2 0.44
Sun4 Sprite 11.1 5.0 0.55
SS1 Sprite 10.4 6.9 0.69
DS3100 Sprite 10.2 5.4 0.43
DS3100 Mach 2.5 10.2 5.1 0.39
DS3100 Ultrix 3.1 10.2 5.1 0.39
Sun4 SunOS 4.0.3 8.2 4.7 0.52
Sun4 Mach 2.5 8.1 4.6 0.56
SS1 SunOS 4.0.3 7.6 5.6 0.56
RT-APC Mach 2.5 5.9 5.9 2.4
Sun3 Sprite 5.6 5.5 3.1
MVAX2 Ultrix 3.0 3.5 3.3 3.7�������������������������������������������������������������������
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

Table 5. Throughput of the bcopy procedure when copying large blocks of data. In the first column the data all fit in the processor’s
cache (if there was one) and the times represent a ‘‘warm start’’ condition. In the second column the block being transferred was
much larger than the cache.

size larger than the cache size, so that cache misses
occurred. In each case several transfers were made
between the same source and destination, and the average
bandwidth of copying is shown in Table 5.

The last column in Table 5 is a relative figure show-
ing how well each configuration can move large uncached
blocks of memory relative to how fast it executes normal
instructions. I computed this figure by taking the number
from the second column (‘‘Uncached’’) and dividing it by
the MIPS rating from Table 1. Thus, for the 8800 the
value is (16/6) = 2.7.

The most interesting thing to notice is that the CISC
machines (8800, Sun3, and MVAX2) have normalized
ratings of 2.7-3.7, whereas all of the RISC machines
except the RT-APC have ratings of 1.0 or less. Memory-
intensive applications are not likely to scale well on these

RISC machines. In fact, the relative performance of
memory copying drops almost monotonically with faster
processors, both for RISC and CISC machines.

The relatively poor memory performance of the
RISC machines is just another way of saying that the
RISC approach permits much faster CPUs for a given
memory system. An inevitable result of this is that
memory-intensive applications will not benefit as much
from RISC architectures as non-memory-intensive appli-
cations.

8. Read from File Cache

The read benchmark opens a large file and reads the
file repeatedly in 16-kbyte blocks. For each configuration
I chose a file size that would fit in the main-memory file
cache. Thus the benchmark measures the cost of entering

4



the kernel and copying data from the kernel’s file cache
back to a buffer in the benchmark’s address space. The
file was large enough that the data to be copied in each
kernel call was not resident in any hardware cache. How-
ever, the same buffer was re-used to receive the data from
each call; in machines with caches, the receiving buffer
was likely to stay in the cache. Table 6 lists the overall
bandwidth of data transfer, averaged across a large
number of kernel calls.
����������������������������������������������

MIPS-RelativeConfiguration Mbytes/sec. Speed��������������������������������������������������������������������������������������������
M2000 RISC/os 4.0 15.6 0.31
8800 Ultrix 3.0 10.5 0.68
Sun4 SunOS 4.0.3 8.9 0.44
Sun4 Mach 2.5 6.8 0.33
Sun4 Sprite 6.8 0.33
SS1 SunOS 4.0.3 6.3 0.25
DS5000 Ultrix 3.1D 6.1 0.13
SS1 Sprite 5.9 0.23
HP835 HP-UX 5.8 0.16
DS3100 Mach 2.5 4.8 0.16
DS3100 Ultrix 3.1 4.8 0.16
DS3100 Sprite 4.4 0.14
RT-APC Mach 2.5 3.7 0.58
Sun3 Sprite 3.7 0.80
Sun3 SunOS 3.5 3.1 0.67
MVAX2 Ultrix 3.0 2.3 1.0�����������������������������������������������
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

Table 6. Throughput of the read kernel call when reading
large blocks of data from a file small enough to fit in the
main-memory file cache.

The numbers in Table 6 reflect fairly closely the
memory bandwidths from Table 5. The only noticeable
differences are for the Sun4 and the DS5000. The Sun4
does relatively better in this benchmark due to its write-
back cache. Since the receiving buffer always stays in the
cache, its contents get overwritten without ever being
flushed to memory. The other machines all had write-
through caches, which caused information in the buffer to
be flushed immediately to memory. The second differ-
ence from Table 5 is for the DS5000, which was much
slower than expected; I do not have an explanation for
this discrepancy.

9. Modified Andrew Benchmark

The only large-scale benchmark in my test suite is a
modified version of the Andrew benchmark developed by
M. Satyanarayanan for measuring the performance of the
Andrew file system [3]. The benchmark operates by
copying a directory hierarchy containing the source code
for a program, stat-ing every file in the new hierarchy,
reading the contents of every copied file, and finally com-
piling the code in the copied hierarchy.

Satyanarayanan’s original benchmark used which-
ever C compiler was present on the host machine, which
made it impossible to compare running times between
machines with different architectures or different com-
pilers. In order to make the results comparable between
different machines, I modified the benchmark so that it

always uses the same compiler, which is the GNU C com-
piler generating code for an experimental machine called
SPUR [2].

Table 7 contains the raw Andrew results. The table
lists separate times for two different phases of the bench-
mark. The ‘‘copy’’ phase consists of everything except
the compilation (all of the file copying and scanning), and
the ‘‘compile’’ phase consists of just the compilation.
The copy phase is much more I/O-intensive than the com-
pile phase, and it also makes heavy use of the mechan-
isms for process creation (for example, a separate shell
command is used to copy each file). The compile phase is
CPU-bound on the slower machines, but spends a
significant fraction of time in I/O on the faster machines.

I ran the benchmark in both local and remote
configurations. ‘‘Local’’ means that all the files accessed
by the benchmark were stored on a disk attached to the
machine running the benchmark. ‘‘Diskless’’ refers to
Sprite configurations where the machine running the
benchmark had no local disk; all files, including the pro-
gram binaries, the files in the directory tree being copied
and compiled, and temporary files were accessed over the
network using the Sprite file system protocol [4]. ‘‘NFS’’
means that the NFS protocol [7] was used to access
remote files. For the SunOS NFS measurements the
machine running the benchmark was diskless. For the
Ultrix and Mach measurements the machine running the
benchmark had a local disk that was used for temporary
files, but all other files were accessed remotely. ‘‘AFS’’
means that the Andrew file system protocol was used for
accessing remote files [3]; this configuration was similar
to NFS under Ultrix in that the machine running the
benchmark had a local disk, and temporary files were
stored on that local disk while other files were accessed
remotely. In each case the server was the same kind of
machine as the client.

Table 8 gives additional ‘‘relative’’ numbers: the
MIPS-relative speed for the local case, the MIPS-relative
speed for the remote case, and the percentage slow-down
experienced when the benchmark ran with a remote disk
instead of a local one.

There are several interesting results in Tables 7 and
8. First of all, the faster machines generally have smaller
MIPS-relative speeds than the slower machines. This is
easiest to see by comparing different machines running
the same operating system, such as Sprite on the Sun3,
Sun4 and DS3100 (1.7, 0.93, and 0.89 respectively for the
local case) or SunOS on the Sun3, Sun4, and SS1 (1.4,
0.85, 0.66 respectively for the local case) or Ultrix on the
MVAX2, 8800, and DS3100 (1.0, 0.93, and 0.50 respec-
tively for the local case).

The second overall result from Tables 7 and 8 is that
Sprite is faster than other operating systems in every case
except in comparison to Mach on the Sun4. For the local
case Sprite was generally 10-20% faster, but in the remote
case Sprite was typically 30-70% faster. On Sun-4’s and
DS3100’s, Sprite was 60-70% faster than either Ultrix,
SunOS, or Mach for the remote case. In fact, the Sprite-
DS3100 combination ran the benchmark remotely 45%

5



��������������������������������������������������������
Copy Compile TotalConfiguration (seconds) (seconds) (seconds)����������������������������������������������������������������������������������������������������������������

M2000 RISC/os 4.0 Local 13 59 72
DS3100 Sprite Local 22 98 120
DS5000 Ultrix 3.1D Local 48 76 124
DS3100 Sprite Diskless 34 93 127
DS3100 Mach 2.5 Local 29 107 136
Sun4 Mach 2.5 Local 37 122 159
Sun4 Sprite Local 44 128 172
Sun4 Sprite Diskless 56 128 184
DS5000 Ultrix 3.1D NFS 68 118 186
Sun4 SunOS 4.0.3 Local 54 133 187
SS1 SunOS 4.0.3 Local 54 139 193
DS3100 Mach 2.5 NFS 58 147 205
DS3100 Ultrix 3.1 Local 80 133 213
8800 Ultrix 3.0 Local 48 181 229
SS1 SunOS 4.0.3 NFS 76 168 244
DS3100 Ultrix 3.1 NFS 115 154 269
Sun4 SunOS 4.0.3 NFS 92 213 305
Sun3 Sprite Local 52 375 427
RT-APC Mach 2.5 Local 89 344 433
Sun3 Sprite Diskless 75 364 439
Sun3 SunOS 3.5 Local 69 406 475
RT-APC Mach 2.5 AFS 128 397 525
Sun3 SunOS 3.5 NFS 157 478 635
MVAX2 Ultrix 3.0 Local 214 1202 1416
MVAX2 Ultrix 3.0 NFS 298 1409 1707���������������������������������������������������������
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

Table 7. Elapsed time to execute a modified version of M. Satyanarayanan’s Andrew benchmark [3]. The first column gives the
total time for all of the benchmark phases except the compilation phase. The second column gives the elapsed time for compilation,
and the third column gives the total time for the benchmark. The entries in the table are ordered by total execution time.

�����������������������������������������������������������������������
MIPS-Relative MIPS-Relative Remote PenaltyConfiguration Speed (Local) Speed (Remote) (%)����������������������������������������������������������������������������������������������������������������������������������������������

M2000 RISC/os 4.O Local 0.88 -- --
8800 Ultrix 0.93 -- --
Sun-4 Mach 2.5 1.0 -- --
Sun3 Sprite 1.7 1.9 3
DS3100 Sprite 0.89 1.01 6
Sun4 Sprite 0.93 1.04 7
MVAX2 Ultrix 3.0 NFS 1.0 1.0 21
RT-APC Mach 2.5 AFS 1.2 1.2 21
DS3100 Ultrix 3.1 NFS 0.50 0.48 26
SS1 SunOS 4.0.3 NFS 0.66 0.63 26
Sun3 SunOS 3.5 NFS 1.4 1.3 34
DS3100 Mach 2.5 NFS 0.78 0.62 50
DS5000 Ultrix 3.1D NFS 0.57 0.46 50
Sun4 SunOS 4.0.3 NFS 0.85 0.63 63������������������������������������������������������������������������
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

Table 8. Relative performance of the Andrew benchmark. The first two columns give the MIPS-relative speed, both local and
remote. The first column is computed relative to the MVAX2 Ultrix 3.0 Local time and the second column is computed relative to
MVAX2 Ultrix 3.0 NFS. The third column gives the remote penalty, which is the additional time required to execute the benchmark
remotely, as a percentage of the time to execute it locally. The entries in the table are ordered by remote penalty.

faster than Ultrix-DS5000, even though the Ultrix-
DS5000 combination had about 50% more CPU power to
work with. Table 8 shows that Sprite ran the benchmark
almost as fast remotely as locally, whereas the other sys-
tems slowed down by 20-60% when running remotely
with NFS or AFS. It appears that the penalty for using
NFS is increasing as machine speeds increase: the
MVAX2 had a remote penalty of 21%, the Sun3 34%,

and the Sun4 63%.

The third interesting result of this benchmark is that
the DS3100-Ultrix-Local combination is slower than I
had expected: it is about 24% slower than DS3100-
Mach-Local and 78% slower than DS3100-Sprite-Local.
The DS3100-Ultrix combination did not experience as
great a remote penalty as other configurations, but this is
because the local time is unusually slow.

6



������������������������������������������������������������
‘‘foo’’ ‘‘a/b/c/foo’’ MIPS-RelativeConfiguration (ms) (ms) Speed������������������������������������������������������������������������������������������������������������������������

DS5000 Ultrix 3.1D Local 0.16 0.31 0.91
DS3100 Mach 2.5 Local 0.19 0.33 1.1
Sun4 SunOS 4.0.3 Local 0.25 0.38 1.3
DS3100 Ultrix 3.1 Local 0.27 0.41 0.81
Sun4 Mach 2.5 Local 0.30 0.40 1.1
SS1 SunOS 4.0.3 Local 0.31 0.44 0.84
M2000 RISC/os 4.0 Local 0.32 0.83 0.41
HP835 HP-UX Local 0.38 0.61 0.49
8800 Ultrix 3.0 Local 0.45 0.68 0.97
DS3100 Sprite Local 0.82 0.97 0.27
RT-APC Mach 2.5 Local 0.95 1.6 1.1
Sun3 SunOS 3.5 Local 1.1 2.2 1.3
Sun4 Sprite Local 1.2 1.4 0.27
RT-APC Mach 2.5 AFS 1.7 3.5 7.6
DS5000 Ultrix 3.1D NFS 2.4 2.4 0.75
MVAX2 Ultrix 3.0 Local 2.9 4.7 1.0
SS1 SunOS 4.0.3 NFS 3.4 3.5 0.95
Sun4 SunOS 4.0.3 NFS 3.5 3.7 1.2
DS3100 Mach 2.5 NFS 3.6 3.9 0.75
DS3100 Ultrix 3.1 NFS 3.8 3.9 0.71
DS3100 Sprite Diskless 4.3 4.4 0.63
Sun3 Sprite Local 4.3 5.2 0.34
Sun4 Sprite Diskless 6.1 6.4 0.67
HP835 HP-UX NFS 7.1 7.3 0.33
Sun3 SunOS 3.5 NFS 10.4 11.4 1.7
Sun3 Sprite Diskless 12.8 16.3 1.4
MVAX2 Ultrix 3.0 NFS 36.0 36.9 1.0��������������������������������������������������������������
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

Table 9. Elapsed time to open a file and then close it again, using the open and close kernel calls. The MIPS-relative speeds are for
the ‘‘foo’’ case, scaled relative to MVAX2 Ultrix 3.0 Local for local configurations and relative to MVAX2 Ultrix 3.0 NFS for
remote configurations.

10. Open-Close

The modified Andrew benchmark suggests that the
Sprite file system is faster than the other file systems, par-
ticularly for remote access, but it doesn’t identify which
file system features are responsible. I ran two other
benchmarks in an attempt to pinpoint the differences.
The first benchmark is open-close, which repeatedly
opens and closes a single file. Table 9 displays the cost of
an open-close pair for two cases: a name with only a sin-
gle element, and one with 4 elements. In both the local
and remote cases the UNIX derivatives are consistently
faster than Sprite. The remote times are dominated by the
costs of server communication: Sprite communicates
with the server on every open or close, NFS occasionally
communicates with the server (to check the consistency
of its cached naming information), and AFS virtually
never checks with the server (the server must notify the
client if any cached information becomes invalid).
Because of its ability to avoid all server interactions on
repeated access to the same file, AFS was by far the
fastest remote file system for this benchmark.

Although this benchmark shows dramatic differ-
ences in open-close costs, it does not seem to explain the
performance differences in Table 8. The MIPS-relative
speeds vary more from operating system to operating sys-
tem than from machine to machine. For example, all the

Mach and Ultrix MIPS-relative speeds were in the range
0.8 to 1.1 for the local case, whereas all the Sprite MIPS-
relative speeds were in the range 0.27 to 0.34 for the local
case.

11. Create-Delete

The last benchmark was perhaps the most interesting
in terms of identifying differences between operating sys-
tems. It also helps to explain the results in Tables 7 and
8. This benchmark simulates the creation, use, and dele-
tion of a temporary file. It opens a file, writes some
amount of data to the file, and closes the file. Then it
opens the file for reading, reads the data, closes the file,
and finally deletes the file. I tried three different amounts
of data: none, 10 kbytes, and 100 kbytes. Table 10 gives
the total time to create, use, and delete the file in each of
several hardware/operating system configurations.

This benchmark highlights a basic difference
between Sprite and the UNIX derivatives. In Sprite,
short-lived files can be created, used, and deleted without
any data ever being written to disk. Information only
goes to disk after it has lived at least 30 seconds. Sprite
requires only a single disk I/O for each iteration of the
benchmark, to write out the file’s i-node after it has been
deleted. Thus in the best case (DS3100’s) each iteration
takes one disk rotation, or about 16 ms. Even this one I/O

7



�����������������������������������������������������������������������
No data 10 kbytes 100 kbytes MIPS-RelativeConfiguration (ms) (ms) (ms) Speed����������������������������������������������������������������������������������������������������������������������������������������������

DS3100 Sprite Local 17 34 69 0.44
Sun4 Sprite Local 18 33 67 0.63
DS3100 Sprite Remote 33 34 68 0.67
Sun3 Sprite Local 33 47 130 1.5
M2000 RISC/os 4.0 Local 33 51 116 0.12
Sun4 Sprite Remote 34 50 71 0.98
8800 Ultrix 3.0 Local 49 100 294 0.31
DS5000 Ultrix 3.1D Local 50 86 389 0.09
Sun4 Mach 2.5 Local 50 83 317 0.23
DS3100 Mach 2.5 Local 50 100 317 0.15
HP835 HP-UX Local 50 115 263 0.13
RT-APC Mach 2.5 Local 53 121 706 0.68
Sun3 Sprite Remote 61 73 129 2.42
SS1 SunOS 4.0.3 Local 65 824 503 0.14
Sun4 SunOS 4.0.3 Local 67 842 872 0.17
Sun3 SunOS 3.5 Local 67 105 413 0.75
DS3100 Ultrix 3.1 Local 80 146 548 0.09
SS1 SunOS 4.0.3 NFS 82 214 1102 0.32
DS5000 Ultrix 3.1D NFS 83 216 992 0.18
DS3100 Mach 2.5 NFS 89 233 1080 0.25
Sun4 SunOS 4.0.3 NFS 97 336 2260 0.34
MVAX2 Ultrix 3.0 Local 100 197 841 1.0
DS3100 Ultrix 3.1 NFS 116 370 3028 0.19
RT-APC Mach 2.5 AFS 120 303 1615 0.89
Sun3 SunOS 3.5 NFS 152 300 1270 0.97
HP835 HP-UX NFS 180 376 1050 0.11
MVAX2 Ultrix 3.0 NFS 295 634 2500 1.0�������������������������������������������������������������������������
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

Table 10. Elapsed time to create a file, write some number of bytes to it, close the file, then re-open the file, read it, close it, and
delete it. This benchmark simulates the use of a temporary file. The Mach-AFS combination showed great variability: times as high
as 460ms/721ms/2400ms were as common as the times reported above (the times in the table were the lowest ones seen). MIPS-
relative speeds were computed using the ‘‘No Data’’ times in comparison to the MVAX2 local or NFS time. The table is sorted in
order of ‘‘No Data’’ times.

is an historical artifact that is no longer necessary; a
newer version of the Sprite file system eliminates it,
resulting in a benchmark time of only 4 ms for the
DS3100-Local-No-Data case.

UNIX and its derivatives are all much more disk-
bound than Sprite. When files are created and deleted,
several pieces of information must be forced to disk and
the operations cannot be completed until the I/O is com-
plete. Even with no data in the file, the UNIX derivatives
all required 35-100 ms to create and delete the file. This
suggests that information like the file’s i-node, the entry
in the containing directory, or the directory’s i-node is
being forced to disk. In the NFS-based remote systems,
newly-written data must be transferred over the network
to the file server and then to disk before the file may be
closed. Furthermore, NFS forces each block to disk
independently, writing the file’s i-node and any dirty
indirect blocks once for each block in the file. This
results in up to 3 disk I/O’s for each block in the file. In
AFS, modified data is returned to the file server as part of
the close operation. The result of all these effects is that
the performance of the create-delete benchmark under
UNIX (and the performance of temporary files under
UNIX) are determined more by the speed of the disk than
by the speed of the CPU.

The create-delete benchmark helps to explain the
poor performance of DS3100 Ultrix on the Andrew
benchmark. The basic time for creating an empty file is
60% greater in DS3100-Ultrix-Local than in 8800-
Ultrix-Local, even though the DS3100 CPU is twice as
fast as the 8800 CPU. The time for a 100-kbyte file in
DS3100-Ultrix-NFS is 45 times as long as for DS3100-
Sprite-Diskless! The poor performance relative to the
8800 may be due in part to slower disks (RZ55’s on the
DS3100’s). However, Ultrix’s poor remote performance
is only partially due to NFS’s flush-on-close policy:
DS3100-Ultrix-NFS achieves a write bandwidth of only
about 30 kbytes/sec on 100 Kbyte files, which is almost
twice as slow as I measured on the same hardware run-
ning an earlier version of Ultrix (3.0) and three times
slower than Mach. I suspect that Ultrix could be tuned to
provide substantially better file system performance.

Lastly, Table 10 exposes some surprising behavior
in SunOS 4.0.3. The benchmark time for a file with no
data is 67 ms, but the time for 10 kbytes is 842 ms, which
is almost an order of magnitude slower than SunOS 3.5
running on a Sun3! This was so surprising that I also
tried data sizes of 2-9 kbytes at 1-kbyte intervals. The
SunOS 4.0.3 time stayed in the 60-80ms range until the
file size increased from 8 kbytes to 9 kbytes; at this point

8



it jumped up to about 800 ms. This anomaly is not
present in other UNIX derivatives, or even in earlier ver-
sions of SunOS. Since the jump occurs at a file size equal
to the page size, I hypothesize that it is related to the
implementation of mapped files in SunOS 4.0.3.

12. Conclusions

For almost every benchmark the faster machines ran
more slowly than I would have guessed from raw proces-
sor speed. Although it is dangerous to draw far-reaching
conclusions from a small set of benchmarks, I think that
the benchmarks point out four potential problem areas,
two for hardware designers and two for operating system
developers.

12.1 Hardware Issues
The first hardware-related issue is memory

bandwidth: the benchmarks suggest that it is not keeping
up with CPU speed. Part of this is due to the 3-4x differ-
ence in CPU speed relative to memory bandwidth in
newer RISC architectures versus older CISC architec-
tures; this is a one-time-only effect that occurred in the
shift from RISC to CISC. However, I believe it will be
harder for system designers to improve memory perfor-
mance as fast as they improve processor performance in
the years to come. In particular, workstations impose
severe cost constraints that may encourage designers to
skimp on memory system performance. If memory
bandwidth does not improve dramatically in future
machines, some classes of applications may be limited by
memory performance.

A second hardware-related issue is context switch-
ing. The getpid and cswitch benchmarks suggest that
context switching, both for kernel calls and for process
switches, is about 2x more expensive in RISC machines
than in CISC machines. I don’t have a good explanation
for this result, since the extra registers in the RISC
machines cannot account for the difference all by them-
selves. A 2x degradation may not be serious, as long as
the relative performance of context switching doesn’t
degrade any more in future machines.

12.2 Software Issues
In my view, one of the greatest challenges for

operating system developers is to decouple file system
performance from disk performance. Operating systems
derived from UNIX use caches to speed up reads, but
they require synchronous disk I/O for operations that
modify files. If this coupling isn’t eliminated, a large
class of file-intensive programs will receive little or no
benefit from faster hardware. Of course, delaying disk
writes may result in information loss during crashes; the
challenge for operating system designers is to maintain an
acceptable level of reliability while decoupling perfor-
mance.

One approach that is gaining in popularity is to use
non-volatile memory as a buffer between main memory
and disk. Information can be written immediately (and
efficiently) to the non-volatile memory so that it will

survive crashes; long-lived information can eventually be
written to disk. This approach involves extra complexity
and overhead to move information first to non-volatile
memory and then to disk, but it may result in better
overall performance than writing immediately to disk.
Another new approach is to use log-structured file sys-
tems, which decouple file system performance from disk
performance and make disk I/O’s more efficient. See [6]
for details.

A final consideration is in the area of network proto-
cols. In my opinion, the assumptions inherent in NFS
(statelessness and write-through-on-close, in particular)
represent a fundamental performance limitation. If users
are to benefit from faster machines, either NFS must be
scrapped (my first choice), or NFS must be changed to be
less disk-intensive.

13. Code Availability

The source code for all of these benchmarks is avail-
able via public FTP from ucbvax.berkeley.edu. The file
pub/mab.tar.Z contains the modified Andrew bench-
mark and pub/bench.tar.Z contains all of the other
benchmarks.

14. Acknowledgments

M. Satyanarayanan developed the original Andrew
benchmark and provided me with access to an IBM RT-
APC running Mach. Jay Kistler resolved the incompati-
bilities that initially prevented the modified Andrew
benchmark from running under Mach. Jeff Mogul and
Paul Vixie helped me get access to DEC machines and
kernels for testing, and explained the intricacies of
configuring NFS. Rick Rashid provided me with bench-
mark results for Mach running on DS3100’s and Sun4’s.
Joel McCormack and David Wall provided helpful com-
ments on earlier drafts of this paper.

15. References

[1] Accetta, M., et al. ‘‘Mach: A New Kernel Founda-
tion for UNIX Development.’’ Proceedings of the
USENIX 1986 Summer Conference, July 1986, pp.
93-113.

[2] Hill, M., et al. ‘‘Design Decisions in SPUR.’’ IEEE
Computer, Vol. 19, No. 11, November 1986, pp. 8-
22.

[3] Howard, J., et al. ‘‘Scale and Performance in a Dis-
tributed File System.’’ ACM Transactions on Com-
puter Systems, Vol. 6, No. 1, February 1988, pp. 51-
81.

[4] Nelson, M., Welch, B., and Ousterhout, J. ‘‘Caching
in the Sprite Network File System.’’ ACM Transac-
tions on Computer Systems, Vol. 6, No. 1, February
1988, pp. 134-154.

[5] Ousterhout, J., et al. ‘‘The Sprite Network Operating
System.’’ IEEE Computer, Vol. 21, No. 2, February
1988, pp. 23-36.

[6] Rosenblum, M., and Ousterhout, J. ‘‘The LFS

9



Storage Manager.’’ Proceedings of the USENIX 1990
Summer Conference, June 1990.

[7] Sandberg, R., et al. ‘‘Design and Implementation of
the Sun Network Filesystem.’’ Proceedings of the
USENIX 1985 Summer Conference, June 1985, pp.
119-130.

John K. Ousterhout is a Professor in the Department
of Electrical Engineering and Computer Sciences at the
University of California, Berkeley. His interests include
operating systems, distributed systems, user interfaces,
and computer-aided design. He is currently leading the
development of Sprite, a network operating system for
high-performance workstations. In the past, he and his
students developed several widely-used programs for
computer-aided design, including Magic, Caesar, and
Crystal. Ousterhout is a recipient of the ACM Grace
Murray Hopper Award, the National Science Foundation
Presidential Young Investigator Award, the National
Academy of Sciences Award for Initiatives in Research,
the IEEE Browder J. Thompson Award, and the UCB
Distinguished Teaching Award. He received a B.S.
degree in Physics from Yale University in 1975 and a
Ph.D. in Computer Science from Carnegie Mellon
University in 1980.

10


