
Process Migration in Sprite�
A Status Report

Fred Douglis John Ousterhout

Computer Science Division
Department of Electrical Engineering and Computer Sciences

University of California
Berkeley� CA �����

spriters�ginger	Berkeley	EDU

� Introduction

This article discusses the history of process migration in Sprite	 It focusses on implementation
details� describing how we provide fully transparent� preemptable remote execution	 Our limited
experience with migration suggests that we have met our original goal of sharing processor cycles
transparently while preserving response times for users	 However� this capability has come at a
much greater implementation cost than we had anticipated	 Our greatest problem resulted from
changes to the rest of the kernel breaking process migration when migration was not used regularly
enough to learn about problems as they arose	

The next section describes the goals of process migration in Sprite	 Section 
 discusses the
implementation of migration� and Section � gives a preliminary evaluation of the utility of process
migration in our environment	

� Goals

We implemented process migration with three goals in mind�

�	 Take advantage of idle processors� In a network of workstations� a number of processors
may be unused at any given time	 We wanted users to be able to improve throughput by
running programs in parallel on multiple hosts	

�	 Share cycles transparently� Just as the 
le system hides the location of 
les from users�
the kernel should hide the location of processes	 To a user taking advantage of idle machines�
nothing should be di�erent except the speed of execution	 Above all� programs should not
be aware if they are executing on a di�erent machine from one moment to the next� and
ideally no restrictions should be placed on what processes are allowed to migrate	


	 Preserve response times for users� We believed users would be reluctant to allow their
workstations to be used in their absence� if they would su�er prolonged degraded response
when they returned	

The next section describes how the implementation of process migration in Sprite addresses these
goals	

�



� Implementation

Process migration in Sprite combines transparent remote execution with eviction	 In Sprite�
each process appears to run on a single host throughout its lifetime	 This host is known as the
home node of the process	 Regardless of where the process physically executes� it appears in
listings of processes on its home node� any host�speci
c devices it opens� such as the display or
system log 
le� are from its home node� even internet connections� such as rcp or rlogin� are
performed through its home node	 Any e�ects produced by the process are done as though the
process were executing on its home node� including the extent to which it creates child processes�
thus� its descendants have the same home node as the process regardless of where they execute	 If
any process is running someplace other than its home node� and the host on which it is executing
is reclaimed�the workstation receives input from its console�then the process is immediately
evicted by migrating it back to its home node	

Sprite supports fully transparent remote execution by providing support in the kernel for
foreign processes� that is� processes that are not executing on their home node	 Sprite has a Unix�
like system call interface� in which processes trap into the kernel on the machine on which they
execute	 For foreign processes� the kernel distinguishes between location�dependent and location�
independent calls	 Location�dependent calls are system calls that may have a di�erent e�ect
depending on the host on which they are executed� for example� accessing the name of the host
or the time�of�day clock	 Location�independent calls are system calls that have the same e�ect
regardless of their location� for example� calls that access the 
le system	 Sprite kernels forward
the location�dependent system calls of a foreign process to its home node for interpretation� but
they handle location�independent calls without redirection	 As the system has matured� we have
attempted to make more and more calls location�independent in order to avoid the overhead and
complexity of forwarding calls� most of the remaining location�dependent calls deal with process
management and�or a�ect the user�s perception of executing processes� the fork � exec� exit � and
wait calls are all handled partially on a process�s home node since the home node is a party to the
creation and destruction of all processes	

Sprite supports eviction with a four�pronged policy�

�	 A daemon process on each host monitors its load average and idle time� and the daemon
initiates an eviction procedure on each foreign process on the host if it detects activity at the
workstation�s console	 �The load average is used primarily to determine when to accept new
foreign processes� if the load average is low and there has been no recent activity� foreign
processes are allowed	�

�	 The home node of a process is ultimately responsible for it	 If the process is evicted� it
is migrated back to its home node� the process may be migrated again if another host is
available	


	 The process is suspended while it is migrated	 Permitting an evicted process to execute
while its virtual memory image is transferred to disk would reduce the time during which
the process is frozen but also reduce the processing power available to the machine�s owner
while the evicted process continues to execute ���	

�	 No residual dependencies may be left on the host after eviction	 The time to migrate a
process may be reduced substantially by retrieving the memory image of a migrated process
from its previous host as pages are referenced ���	 However� copy�on�reference requires that
the former host continue to dedicate resources and service requests from the evicted process

�



for a longer period of time than would be necessary in a system that copies the memory
along with the rest of the process�s state	 We believe it is reasonable for a process�s home to
provide support for it throughout its lifetime� but another host should only need to provide
resources to a foreign process as long as the process executes on that host	

Migrating a process consists of several steps	 First� the process is signalled� at the time the
signal is handled in the kernel� the state of the process within the kernel is simple� well�de
ned�
and easily recreatable on the target host	 Second� the process state is encapsulated and sent to the
target	 This includes information such as register contents� program counter� signal masks� and so
on	 Third� the virtual address space of the process is written to swap 
les� and the page tables are
encapsulated and transferred� along with references to the swap 
les	 The process demand�pages
its virtual image from the swap 
les once it resumes execution	 Finally� the open 
les of the
process are encapsulated and transferred	

Encapsulating the state of 
les and transferring open 
les� while keeping 
le caches consistent�
was the single hardest problem we faced	 Since 
le servers keep track of which hosts are reading
or writing each 
le� migrating a process requires that 
le servers atomically update their notion
of how the process�s 
les are accessed	 For example� if a process has a 
le open for writing�
and it forks and migrates a child� the 
le would then be open for writing on two di�erent hosts�
Sprite�s cache consistency algorithm dictates that the 
le be made non�cacheable on the machines
on which the two processes are executing ���	 File management was further complicated by the
need to support shared stream o�sets� when one of those two processes writes to the 
le� the
next operation from the other process must re�ect the new o�set resulting from that write�even
though the operation takes place on another host	

� Evaluation

Because process migration has been in day�to�day use for only a few weeks as of this writing�
we have di�culty assessing its e�ectiveness	 Migration was clearly well�accepted once it was made
available to other users� despite any initial instability	 However� the real �proof of the pudding�
will come once migration has remained in regular use despite ongoing changes to the rest of the
system	 The history of process migration in Sprite is telling� although migration 
rst worked for
simple test cases as early as the fall of ����� and we presented a paper on migration in the fall of
���� ���� we only started using migration regularly in the late fall of ����	 We had trouble getting
migration to work because we were trying to hit a moving target� the rest of the system was
evolving rapidly� and before we were to put migration into general use� changes to the rest of the
system made it unusable	 As we understand it� other systems have experienced similar problems
with process migration because it interacts intimately with so many parts of the kernel ���	

In retrospect� our greatest mistake was to fail to put process migration into general use at
the 
rst opportunity� there was a window of time when we potentially could have started using
migration �if we had been prepared with suitable user�level utilities to manage such things as host
selection�	 Now that migration is used routinely for remote execution� we should discover quickly
if anything should cause it to stop working	 However� we could have avoided some poor design
decisions�from the perspective of migration�elsewhere in the system if their impact had been
apparent earlier	

Our greatest success was to put a fully transparent� preemptable form of remote execution into
general use	 Sprite�s process migration system has a number of advantages over a less transparent
form of remote execution such as rexec�






� Remote processes appear in a list of processes on the home machine� so the user need not
be aware of where the processes are physically executing	 One may perform operations on
processes regardless of their location� such as sending them signals	

� Processes may be moved at any time	 not only at speci
c times such as fork and exec �e	g	�
LOCUS �
�� 	 In an environment in which �eviction� is an issue� this generality is important	

� Migration is transparent enough to let nearly any program run on multiple hosts during
its lifetime	 �Exceptions include the X window system display server and the user�level
process that interfaces Sprite to the internet	� A process behaves in all respects as though it
executes on a single host	 Also� programs do not need to be coded specially to take advantage
of migration	

We look forward to using process migration regularly and plan to evaluate its performance
more quantitatively in the near future	

References

��� F	 Douglis and J	 Ousterhout	 Process migration in the Sprite operating system	 In Proceedings

of the �th International Conference on Distributed Computing Systems� pages ������ Berlin�
West Germany� September ����	 IEEE	

��� M	 Nelson� B	 Welch� and J	 Ousterhout	 Caching in the Sprite network 
le system	 ACM

Transactions on Computer Systems� ������
������ February ����	

�
� G	 J	 Popek and B	 J	 Walker� editors	 The LOCUS Distributed System Architecture	 Computer
Systems Series	 The MIT Press� ����	

��� M	 Theimer	 Personal communication	

��� M	 Theimer	 Preemptable Remote Execution Facilities for Loosely�Coupled Distributed Systems	
PhD thesis� Stanford University� ����	

��� E	 Zayas	 Attacking the process migration bottleneck	 In Proceedings of the Eleventh ACM

Symposium on Operating Systems Principles� pages �
���� Austin� TX� November ����	

�


