
Virtual Memory for the Sprite Operating System

Michael N. Nelson

Computer Science Division
Electrical Engineering and Computer Sciences

University of California
Berkeley, CA 94720

Abstract

Sprite is an operating system being designed for a network of powerful personal worksta-
tions. A virtual memory system has been designed for Sprite that currently runs on the
Sun architecture. This virtual memory system has several important features. First, it al-
lows processes to share memory. Second, it allows all of the physical pages of memory
to be in use at the same time; that is, no pool of free pages is required. Third, it performs
remote paging. Finally, it speeds program startup by using free memory as a cache for
recently-used programs. †

���������������������������
† This work was supported in part by the Defense Advanced Research Projects Agency

under contract N00039-85-C-0269, in part by the National Science Foundation under grant ECS-
8351961, and in part by General Motors Corporation.



Virtual Memory for the Sprite Operating System January 5, 1993

1. Introduction

This paper describes the virtual memory system for the Sprite operating system.
Sprite’s virtual memory model is similar in many respects to Unix 4.2BSD†, but has
been redesigned to eliminate unnecessary complexity and to support three changes in
computer technology that have occurred recently or are about to occur: multiprocessing,
networks, and large physical memories. The resulting implementation is both simpler
than Unix and more powerful. In order to show the relationship between the Sprite and
Unix virtual memory systems, this paper not only provides a description of Sprite virtual
memory, but also where appropriate describes the Unix virtual memory system and com-
pares it to Sprite.

Although Sprite is being developed on Sun workstations, its eventual target is
SPUR, a new multiprocessor RISC workstation being developed at U.C. Berkeley [HILL
85]. In order to support the multiprocessor aspect of SPUR, the user-level view of virtual
memory provided by Unix has been extended in Sprite to allow processes to share writ-
able segments. Section 2 compares the Sprite and Unix virtual memory systems from the
user’s view, and Section 3 describes the internal data structures used for the implementa-
tion of writable segments.

Although Sprite provides more functionality than Unix with features such as shared
writable segments, an equally important contribution of Sprite is its reduction of com-
plexity. Unix requires that a portion of the page frames in memory be kept available to
handle page faults. These page frames are kept on a list called the free list. The problem
with the free list is that extra complexity is required to manage it and page faults are
required for processes that reference pages that are on the list. Sprite has eliminated the
need for a free list which has resulted in less complex algorithms and more efficient use
of memory. The Sprite page replacement algorithms are described in section 4.

Another major simplification in Sprite has been accomplished by taking advantage
of high-bandwidth networks like the Ethernet. These networks have influenced the
design of Sprite’s virtual memory by allowing workstations to share high-performance
file servers. As a result, most Sprite workstations will be diskless, and paging will be car-
ried out over the network. This use of file servers has allowed Sprite to use much simpler
methods than Unix for demand loading of code and managing backing store. Section 5
describes the characteristics of Sprite file servers and how they are used by the virtual
memory system, including how ordinary files, accessed over the network, are used for
backing store.

Another key aspect of modern engineering workstations that Sprite takes advantage
of is the advent of large physical memories. Typical sizes today are 4-16 Mbytes; within
a few years workstations will have hundreds of Mbytes of memory. Large physical
memories offer the opportunity for speeding program startup by using free memory as a
cache for recently-used programs; this mechanism is described in Section 6.

���������������������������
† All future references to Unix in this paper will refer to Unix 4.2BSD unless otherwise

specified.

- 1 -



Virtual Memory for the Sprite Operating System January 5, 1993

The design given here has been implemented and tested on Sun workstations. Sec-
tion 7 gives some statistics and performance measurements for the Sun implementation.

2. Shared Memory

Processes that are working together in parallel to solve a problem need an interpro-
cess communication (IPC) mechanism to allow them to synchronize and share data.
Since Sprite will eventually be ported to a multiprocessor architecture, IPC is needed to
allow users to exploit the parallelism of the multiprocessor. The traditional methods of
IPC are shared writable memory and messages. Sprite uses shared writable memory for
IPC because of considerations of efficiency and the SPUR architecture:

� Shared writable memory is at least as efficient as messages since shared writable
memory uses the lowest-level hardware primitives without any additional layers of
protocol.

� The SPUR architecture is designed to make sharing memory both simple to imple-
ment in the operating system and efficient for processes to use.

The rest of this section describes the user-level view of shared memory in both Unix and
Sprite. The user-level view of shared memory in Unix is given because the Sprite view is
just an extension of the Unix view.

2.1. Unix Sharing

In Unix the address space for a process consists of three segments: code, heap, and
stack (see Figure 1). Processes can share code segments but they cannot share heap or
stack segments. Thus writable shared memory cannot be used for IPC in Unix. There
are two system calls in Unix that allow the code sharing. One call is fork which is used
for process creation. The other call is exec which is used to overlay the calling process’s
program image with a new program image. When a process calls fork, a new process is

after code end

Highest address

Lowest address

Stack

Heap

Code
Next page boundary

Figure 1. The Unix and Sprite Address Space. The address space for a process is made
up of three segments: code, heap, and stack. The code segment begins at address 0, is of
fixed size, is read-only and contains the object code for the process. The heap segment
begins on the next page boundary after the end of the code segment and grows towards
higher addresses. It contains all statically-allocated variables and all dynamically-
allocated memory from memory allocators. The stack segment begins at the highest ad-
dress and grows towards lower addresses. Thus the stack and the heap segment grow to-
wards each other.

- 2 -



Virtual Memory for the Sprite Operating System January 5, 1993

created that shares the caller’s (parent’s) code segment and gets its own copy of the
parent’s heap and stack segments. When a process calls exec, the process will get new
stack and heap segments and will share code with any existing process that is using the
same code segment.

2.2. Sprite Sharing

In Sprite processes can share both code and heap segments. Sharing the heap seg-
ment permits processes to share writable memory. Sprite has system calls equivalent to
the Unix fork and exec that allow this sharing of code and heap. The Sprite exec is ident-
ical in functionality to the Unix exec. The Sprite fork is similar to the Unix fork except
that it will also allow a process to share the heap segment of its parent. When a process
is created by fork it is given an identical copy of its parent’s stack segment, it shares its
parent’s code segment, and it can either share its parent’s heap segment or it can get an
identical copy. Whether or not a child shares its parent’s heap is the option of the parent
when it calls fork.

3. Segment Structure

Although to the user the address spaces of Unix and Sprite look identical, the two
operating systems have different internal representations of segments. In this section the
internal segment structure of each system is described. For a description of how the seg-
ment structure is used in each system to implement shared memory on the Sun-2 and
VAX architectures see Appendix A.

3.1. Unix Segments

When a Unix process is created or overlaid, its address space is broken up into the
three segments as previously described. Associated with each process is a page table for
the code and heap segments, a page table for the stack segment, backing store for the
heap and stack segments, and a pointer to a structure that contains the backing store for
the code segment (see Figure 2). In addition, all processes that are sharing the same code
segment are linked together. Thus page tables are kept on a per-process basis rather than

Code and heap

table.

page table.

table.

page table.
Code and heap

Stack page

Pointer to code

Stack page

Pointer to code

Process A Process B
data structure. data structure.

store.
Stack backing
store.
Heap backing

Code backing
store.

Heap backing
store.
Stack backing
store.

Figure 2. The state of two Unix processes that are sharing code. Both process A and
process B have their own page tables for code, heap, and stack segments, and their own
backing store for heap and stack segments. Each points to a common data structure that
contains the backing store for the code segment. In addition the two processes are
linked together.

- 3 -



Virtual Memory for the Sprite Operating System January 5, 1993

a per-segment basis and backing store is kept on a per-segment basis. If a code segment
is being shared, then the code portion of the code and heap page table for all processes
that are sharing the segment is kept consistent. This means that when any process that is
sharing code has the code portion of its code and heap page table updated, the page tables
in all processes that are sharing the segment are updated.

3.2. Sprite Segments

Sprite has a different notion of segments than Unix. In Sprite, information about
segments is kept in a separate data structure, independent of process control blocks.
Each process contains pointers to the records describing its three segments. Each seg-
ment has its own page table and backing store. Thus segments and backing store are both
allocated on a per-segment basis. Since page tables are associated with each segment
instead of each process, processes that share code or heap segments automatically share
the same page tables. Figure 3 gives an example of two Sprite processes sharing code and
heap.

4. Page Replacement Algorithms

Several different page replacement algorithms have been developed. The most
commonly used types of algorithms are those that are based on either a least-recently-
used (LRU) page replacement policy, a first-in-first-out (FIFO) page replacement policy,
or a working set policy [DENN 68]. LRU and FIFO algorithms are used to determine
which page frame to replace when handling a page fault. In an LRU algorithm the page
that is chosen for replacement is the page that has not been referenced by a process for
the longest amount of time. In a FIFO type of algorithm, the page that is replaced is the
one that was least recently paged in. Both LRU and FIFO can be applied either to all
pages in the system (a global policy) or only those pages that are owned by the faulting
process (a local policy). Algorithms that use a global policy allow processes to have a
variable-size partition of memory whereas algorithms that use a local policy normally

Segment 4

Process B

stack segment.
Pointer to

heap segment.
Pointer to

code segment.
Pointer to

Segment 1

Segment 2

Segment 3
Page table.

Page table.

Page table.

Page table.

Process A

stack segment.
Pointer to

heap segment.
Pointer to

code segment.
Pointer to

Backing store.

Backing store.

Backing store.

Backing store.

Figure 3. The state of two Sprite processes that are sharing code and heap. All that the
process state contains is pointers to the three segments. Since process A and process B
are sharing heap and code, they point to the same heap and code segments. However,
each process has its own stack segment.

- 4 -



Virtual Memory for the Sprite Operating System January 5, 1993

give processes fixed-size memory partitions.

Unlike the LRU or FIFO page replacement policies, the working set policy does not
determine which page to replace at page fault time, but rather attempts to determine
which pages a process should have in memory to minimize the number of page faults.
The working set of a process is those pages that have been referenced in the last τ
seconds. Any pages that have not been referenced in the last τ seconds are eligible to be
used for the working sets of other processes. A process is not allowed to run unless there
is a sufficient amount of free memory to fit all of the pages in its working set in memory.

Studies of algorithms that use LRU, FIFO and working set policies have yielded the
following results:

� Algorithms that use an LRU policy have better performance (where better perfor-
mance is defined to be a lower average page fault rate) than those that use a FIFO
policy [KING 71].

� Algorithms that use global LRU have better performance than ones that use local
LRU with fixed-size memory partitions [OLIV 74].

� The global LRU and working set policies provide comparable performance [OLIV
74, BABA 81a].

These results indicate that Sprite should use either a global LRU algorithm or an algo-
rithm that uses the working set policy. In practice, these two types of algorithms are
approximated rather than being implemented exactly. The first part of this section pro-
vides a description of three operating systems that have already implemented an approxi-
mation of one of these algorithms. In addition a fourth operating system, VMS, is
presented that implements a different type of algorithm that can give an approximation to
global LRU. The second part of this section provides a description of the Sprite page
replacement algorithms.

4.1. Implementations of Page Replacement Algorithms

4.1.1. Multics

The Multics paging algorithm [CORB 69] is generally referred to as the clock algo-
rithm. The algorithm has been shown to provide a good approximation of global LRU
[GRIT 75]. In the algorithm all of the pages are arranged in a circular list. A pointer,
called the clock hand, cycles through the list looking for pages that have not been
accessed since the last sweep of the hand. When it finds unreferenced pages, it removes
them from the process that owns them and puts them onto a list of free pages. If the page
is dirty, it is written to disk before being put onto the free list. This algorithm is activated
at page fault time whenever the number of free pages falls below a lower bound. When-
ever the algorithm is activated several pages are put onto the list of free pages.

The clock algorithm is relatively simple to implement. The only hardware support
required is reference and modified bits. In fact the Unix version of the clock algorithm
was implemented without any hardware reference bits [BABA 81a, BABA 81b].

4.1.2. Tenex

There are very few examples of operating systems that have implemented algo-
rithms that use the working set policy. An example of an operating system that

- 5 -



Virtual Memory for the Sprite Operating System January 5, 1993

implements something similar to it is Tenex [BOBR 72]. There are two main differences
between the policy used by Tenex and the working set policy. First, instead of defining
the working set of a process to be those pages that have been referenced in the last τ
seconds, it is defined to be the set of pages that keeps the page fault frequency down to an
acceptable level. Second, instead of removing pages from the working set as soon as
they have been unreferenced for τ seconds, pages are only removed from the working set
at page fault time.

The actual algorithm used in Tenex is the following. Whenever a process experi-
ences a page fault, the average time between page faults is calculated. If it is greater than
PVA, a system parameter, then the process is considered to be below its working set size.
In this case the requested page is brought into memory and added to the working set. If
the page fault average is below PVA, then before loading the requested page into memory
the size of the working set is reduced by using an LRU algorithm. Since removing pages
is costly, whenever the working set is reduced all sufficiently old pages are removed.

Chu and Operbeck [CHU 76] performed some measurements of an algorithm that is
very similar to the algorithm used in Tenex. They showed that this type of algorithm is
able to produce performance comparable to that of algorithms that use Dennings working
set policy.

4.1.3. VMS

VMS uses a fixed-size memory partition policy [LEVY 82, KENA 84]. Each pro-
cess is assigned a fixed-size partition of memory called its resident set. Whenever a pro-
cess reaches the size of its resident set, the process must release a page for every page
that is added to its resident set. VMS uses a simple first-in-first-out (FIFO) policy to
select the page to release. There are two lists that contain pages that are not members of
any process’s resident set: the free list and the dirty list. Both of these lists are managed
by an LRU policy. Whenever a page is removed from a process’s resident set it is put
onto the free list if it is clean or the dirty list if it is dirty. The two lists are used when
handling a page fault. If the page that is faulted on is still on one of the lists then it is
removed from the list and added to the process’s resident set. Otherwise the page on the
head of the free list is removed, loaded with data, and added to the process’s resident set.
Once the dirty list gets too many pages on it, some are cleaned and moved to the free list.

The VMS algorithm is interesting for two reasons. First, it does not require refer-
ence bits. Second, it is an example of a hybrid between a FIFO and a LRU algorithm.
Each process’s local partition is managed FIFO but the global free list is managed LRU.
It has been shown that for a given program and a given memory size, the resident set size
can be set so as to achieve a fault rate close to that of LRU [BABA 81a]. However, the
optimal resident set size for a fixed free list size is very sensitive to changes in memory
size and the program. With a fixed sized partition for all programs it would be very
difficult to choose one partition that would be optimal for all programs. Another problem
with fixed size partitions is that programs cannot take advantage of a large amount of free
pages once they have reached their maximum partition size. More recent versions of
VMS [KENA 84] have relaxed the restriction on the size of the resident set by allowing
the resident set size to increase to a higher limit if the free and dirty lists contain a
sufficient number of pages.

- 6 -



Virtual Memory for the Sprite Operating System January 5, 1993

4.1.4. Unix

The Unix page replacement policy is based on a variant of the clock algorithm
[BABA 81b]. Unlike Multics the clock algorithm is run periodically instead of at page
fault time. The data structures used to implement the clock algorithm are the core map
and the free list (see Figure 4). The core map is a large array containing one entry for
each page frame with the entries stored in order of appearance in physical memory. It
forms the circular list of pages required by the clock algorithm. The free list is a list of
pages that is used at page fault time. It contains two types of pages: those that are not
being used by any process and those that were put onto the list by the clock algorithm.
The unused pages are at the front of the list.

The clock algorithm is simulated by a kernel process called the pageout daemon. It
is run often enough so that there are a sufficient number of pages on the free list to handle
bursts of page faults. The pageout daemon cycles through the core map looking for
pages that have not been referenced since the last time that they were looked at by the
pageout daemon. Any unreferenced pages that it finds are put onto the end of the free
list. There are four constants used to manage the pageout daemon. As long as the
number of free pages is greater than lotsfree (1/8 of memory on the Sun version of Unix)
then the pageout daemon is not run. When the number of free pages is between desfree
(at most 1/16 of memory) and lotsfree then the pageout daemon is run at a rate that
attempts to keep the number of pages on the free list acceptably high, while not taking
more than ten percent of the CPU. When the number of free pages falls below desfree
for an extended period of time then a process is swapped out. The process chosen to be
swapped out is the oldest of the nbig largest processes. Minfree is the minimum tolerable
size of the free list. If the free list has only minfree pages then every time a page is
removed from the free list the pageout daemon is awakened to add more pages to the list.

In-use pages

5

Core Map Free list

6

3

1

4

2

Unused pages
Detached pages

5

2

3

6

Figure 4. Unix page replacement data structures. In this example there are 6 pages in
physical memory. Pages 1 and 4 are currently being used by processes, pages 3 and 6
have been detached from the processes that were using them by the clock algorithm, and
pages 2 and 5 are not being used by any process. Thus pages 5, 2, 3, and 6 (in that ord-
er) are eligible to be used when a new page is needed and pages 1 and 4 are not eligible.
Pages 3 and 6 are also eligible to be reclaimed by the process that originally owned them
if the original owner faults on them.

- 7 -



Virtual Memory for the Sprite Operating System January 5, 1993

The free list is used when a page fault occurs. Like VMS, there are two ways in
which the free list is used to handle a page fault. The first is if the requested virtual page
is still on the free list. If this is the case, then the page can be reclaimed by taking it off
of the free list and giving it to the faulting process. The second way in which the free list
is used is if the requested virtual page is not currently on the free list. In this case a page
is removed from the front of the free list, it is loaded with code or data, and it is given to
the faulting process.

4.2. Sprite Page Replacement

We decided to base the Sprite page replacement algorithm on the clock algorithm
because of its inherent simplicity. However, we decided to do things differently than
Unix. The main difference is that Sprite no longer uses a free list. The free list serves an
important function by eliminating the need to activate the clock algorithm on every page
fault. However, it has the disadvantage of reducing the amount of memory that can be
referenced without causing page faults; any reference to a page on the free list requires a
page fault to reclaim the page. Sprite does not need a free list because it uses the clock
algorithm to maintain an ordered list of all pages in the system. When a page fault
occurs this ordered list of pages can be used to quickly find a page to use for the page
fault. This section describes the Sprite algorithm that maintains and uses this list.

4.2.1. Data Structures

There are three data structures that the page replacement algorithm uses: the core
map, the allocate list, and the dirty list. Diagrams of all three data structures are shown
in Figure 5. The core map is identical in form to the Unix core map. It is used by the
Sprite version of the clock algorithm to help manage the allocate list. The allocate list
contains all pages except those that are on the dirty list. All unused pages are on the
front of the list and the rest of the pages follow in approximate LRU order. The list is
used when trying to find a new page. The allocate list is managed by both a version of
the clock algorithm and the page allocation algorithm. The dirty list contains pages that
are being written to backing store. Pages are put onto the dirty list by the page allocation

Unused pages
In-use pages

Core Map Dirty List
51

2
3
4
5

1

2

3

4

Allocate List

Figure 5. Sprite page replacement data structures. Every page is present in the core
map and either the allocate list or the dirty list. In this example there are 5 pages in phy-
sical memory. Pages 1, 3, and 4 are currently being used by processes and pages 2 and 5
are unused. Of the pages in use, pages 1 and 4 are on the dirty list waiting to be cleaned.

- 8 -



Virtual Memory for the Sprite Operating System January 5, 1993

algorithm.

4.2.2. Clock Algorithm

Sprite uses a variant of the clock algorithm to keep the allocate list in approximate
LRU order. A process periodically cycles through the core map moving pages that have
their reference bit set to the end of the allocate list. All pages have their reference bit
cleared before they are moved to the end of the allocate list. Since unreferenced pages
are not moved by the clock algorithm, they will migrate towards the front of the allocate
list and referenced pages will stay near the end. The rate at which the core map is cycled
through is not known yet.

4.2.3. Page Allocation

Figure 6 summarizes the Sprite page allocation algorithm. The basic algorithm is to
remove pages from the front of the allocate list until an unreferenced, unmodified page is
found. If the frontmost page has been referenced since the last time that it was examined
by the clock algorithm, then it is moved to the end of the allocate list. If the page is
modified but not referenced since the last time that it was examined by the clock algo-
rithm, then it is moved to the dirty list. Once an unreferenced, unmodified page is found
it is used to handle the page fault. If the page that is selected to handle the page fault is
still being used by some process, the page must be detached from the process that owns it
before it can be given to the faulting process.

4.2.4. Page Cleaning

A kernel process is used to write dirty pages to backing store. It wakes up when
pages are put onto the dirty list. Before a page is written to backing store its modified bit
is cleared. After a page is written to backing store it is moved back to the front of the
allocate list.

4.2.5. How Much Does a Page Fault Cost

When a page fault occurs on Sprite there are three steps to processing the page fault:
find a page frame, detach it from the process that owns it (if any), and fill the page with
code or data. The overhead required to fill the page on a Sun-2 is between 3.6 ms for a
zero-filled page fault (see Section 8) up to as much as 30 ms to fill the page from disk.
The actual time required to the fill a page will vary with the page size. The overhead of
filling a page must be paid by any page replacement algorithm. The additional cost that
Sprite has to pay at page fault time because it does not keep a free list is searching the
allocate list for an unreferenced, unmodified page and then detaching the page from its

Take page

reference bit
and clear
of page listMove to end
ReferencedUnreferenced

Modifieddirty list
Move to

Unmodified

Figure 6. Summary of Sprite page allocation algorithm.

- 9 -



Virtual Memory for the Sprite Operating System January 5, 1993

owner.

Since the allocate list is in approximate LRU order, an unreferenced page should be
able to be found quickly. How quickly an unmodified page can be found is dependent on
the percentage of memory that is dirty. Since code pages are read-only, there must be
clean pages. If a large percentage of memory is dirty then it might take a long search on
a page fault to find a clean page. However, since all dirty pages that were found during
the search will be cleaned and then put back onto the front of the allocate list, subsequent
page faults should be able to find clean pages very quickly. Therefore in the average
case the number of pages that have to be searched to find an unreferenced, unmodified
page should be small.

The cost of detaching a page from its owner is shown in Section 8 to be 0.3 ms.
This cost combined with the cost of searching a small number of pages on the allocate
list is small in comparison to the cost of filling the page frame. Therefore the overhead
added because Sprite does not keep a free list should be small relative to the large cost of
either zero-filling a page or filling it from the file server.

5. Demand Loading of Code and Backing Store Management

A virtual memory system must be able to load pages into memory from the file sys-
tem or backing store when a process faults on a page and write pages to backing store
when removing a dirty page from memory. This can be done by either using the file sys-
tem both to load pages and to provide backing store or using the file system to load pages
and using a separate mechanism for backing store. For Sprite we chose to use the file
system for both demand loading and backing store. Examples of other systems that use
the file system for backing store are Multics [ORGA 72] and Pilot [REDE 80]. An exam-
ple of a system that uses a separate mechanism for backing store is Unix. In this section
the methods that Sprite and Unix use for demand loading of pages and managing backing
store are described in detail and compared.

5.1. Lifetime of a Page

There are three different types of pages in Unix and Sprite: read-only code pages,
initialized heap pages, and uninitialized heap or stack pages (i.e. those whose initial con-
tents are all zeroes). There are also three places where these pages can live: in the file
system, in backing store, or in main memory. This section describes where the three
types of pages spend their lifetimes.

5.1.1. Lifetime of a Unix Page

Figure 7 shows the lifetime of the three types of Unix pages. Code pages can live in
three places: main memory, in an object file in the file system, and in backing store. An
object file is a file that contains the code and initialized heap pages for a program. When
the first page fault occurs for a code page, the page is read from the object file into a page
frame in memory. When the page is replaced, its contents is written to backing store
even though the page could not have been modified since code pages are read-only. Sub-
sequent reads of the code page come from backing store. Since a code page is read-only,
it only has to be written to backing store the first time that it is removed from memory.

The lifetime of an initialized heap page is almost identical to that of a code page.
Like a code page an initialized heap page is loaded from the object file when it is first

- 10 -



Virtual Memory for the Sprite Operating System January 5, 1993

Store
Backing

heap or stack

heap page

Zero filled

System
File

page

Code page

Memory

Uninitialized

Initialized

Figure 7. Lifetime of a Unix page. Code pages and initialized heap pages begin their
life in the file system. However, once they are thrown out of memory they are written to
backing store, and spend the rest of their life in memory and backing store. Uninitial-
ized heap and stack pages are filled with zeroes initially and then spend the rest of their
life in memory and backing store.

faulted on, it is written to backing store the first time that it is replaced and all faults on
the page after the first one load the page from backing store. Unlike code pages, initial-
ized heap pages can be modified. Because of this, in addition to being written to backing
store the first time that they are replaced, initialized heap pages must be written to back-
ing store if when they are replaced they have been modified.

Unlike code and initialized heap pages, uninitialized heap pages and stack pages
never exist in the file system. Their entire existence is spent in memory and in backing
store. When an uninitialized heap or stack page is first faulted in, it is filled with zeroes.
When the page is taken away from the heap or stack segment, it is written to backing
store. From this point on whenever a page fault occurs for the page, it is read from back-
ing store. Whenever the page is thrown out of memory, if it has been modified then it is
written back to backing store.

Initialized

Uninitialized

Memory

Code page

page

File
System

Zero filled

heap page

heap or stack

Backing
Store

Figure 8. Lifetime of a Sprite page. Code pages live in two places, the file system and
memory. Code pages never have to live on backing store because they are never
modified. Initialized data pages live in the file system and memory until they get
modified, and then spend the rest of their life in memory and backing store. Uninitial-
ized heap and stack pages are filled with zeroes initially and then spend the rest of their
life in memory and backing store.

- 11 -



Virtual Memory for the Sprite Operating System January 5, 1993

5.1.2. Lifetime of a Sprite Page

The lifetime of a Sprite page (see Figure 8) is very similar to the lifetime of a Unix
page. The only difference is the treatment of code pages. Unlike Unix code pages,
Sprite code pages can only live in memory and in the object file. When a page fault
occurs for a code page, the page is read from the object file into a page frame in memory.
When the page is replaced, the contents are discarded since code is read-only. Thus
whenever a page fault occurs for a code page it is always read from the object file. The
reasons why Unix writes read-only code pages to backing store and Sprite does not are
explained in the next section.

5.2. Demand Loading of Code

Unix and Sprite both initially load code and initialized heap pages from object files
in the file system. However, the method of reading these pages is different. In Sprite the
pages are read using the normal file system operations. In Unix the pages are read
directly from the disk without going through the file system. In addition after a code
page has been read in once, the object file is bypassed with all subsequent reads coming
from backing store. The reasons behind the differences between Unix and Sprite are
based on different perceptions of the performance of the file system.

The designers of Unix believed that the file system was too slow for virtual
memory. Therefore they tried to use the file system as little as possible. This is why
Unix bypasses the file system and uses absolute disk block numbers when demand-
loading code or initialized heap pages and why it writes code pages to backing store for
subsequent page faults. When a code or initialized heap segment is initially created for a
process, the virtual memory system determines the physical block numbers for each page
of virtual memory that is on disk. When a code or initialized heap page is first faulted in,
the physical address is used to determine where to read the page from. All later reads of
the code page are able to use an absolute disk address for the code page in backing store.

There are two reasons why the Unix designers believed that the Unix file system
was too slow for virtual memory. The first reason is that when performing a read through
the file system there is overhead in translating from a file offset to an absolute disk
address. Thus the Unix virtual memory system uses absolute disk addresses to eliminate
this overhead. The second reason is that the file system block size was too small. In the
original versions of Unix (prior to Unix 4.1BSD), the block size was only 512 bytes
[THOM 78]. This severely limited file system throughput [MCKU 84]. The solution
was to write code pages to backing store which, as will be explained later, is allocated in
contiguous blocks on disk. This allows many pages to be transferred at once, providing
higher throughput. Since Unix 4.2BSD uses large block sizes (4096 bytes or larger) there
is no longer any advantage for Unix to write code pages to backing store.

We believe that the Sprite file system is fast enough for the virtual memory system
to use it for all demand loading; there is no need to use absolute disk block numbers or
write code pages to backing store. The reason is that the file system will be implemented
using high-performance file servers which will be dedicated machines with local disks
and large physical memories. The Sprite file system will have the following characteris-
tics:

- 12 -



Virtual Memory for the Sprite Operating System January 5, 1993

� The large memory of the file servers will be used as a block cache. The cache size
for the present will be around 8 Mbytes. In a few years the cache size will probably
be between 50 and 100 Mbytes. It has been shown that when page caches are large
enough (several Mbytes), disk traffic can by reduced by 90% or more [OUST 85].

� Combined with the large cache will be large file block sizes (16 Kbytes or more).
This results in the fewest disk accesses [OUST 85].

� In addition to caching pages, the large memory can be used to cache file indexing
information to allow faster access to blocks within a file.

Since the file system is used for demand loading of code and initialized heap, the
normal file system operations can be used. When a code or heap segment is first created
the open operation is used to get a token to allow access to the object file for future page
faults. The close operation is used when the virtual memory system has finished with an
object file. The read operation is used to load in a page when a page fault occurs. When
a read operation is executed the file server is sent the token for the file, an offset into the
file where to read from, and a size. The file server then returns the page.

The Sprite method of using a high-performance file system has several advantages
over the Unix method of bypassing the file system. First, the virtual memory system is
simplified because it does not have to worry about the physical location of pages on disk.
This is because when demand loading a page, offsets from the beginning of the object file
are used instead of absolute disk block numbers. These offsets can be easily calculated
given any virtual address. Second, the file server’s cache can be used to increase perfor-
mance. Page reads may be able to be serviced out of the cache instead of having to go to
disk. Third, code pages do not have to be transferred to backing store.

5.3. Backing Store Management

Backing store is used to store dirty pages when they are taken away from a segment.
In Sprite each segment has its own file in the file system that it uses for backing store.
Unix on the other hand gives each CPU its own special partition of disk space which all
segments use together for backing store. The reason for the difference is once again
based on different ideas about the performance of the file systems in Unix and Sprite.

As was said before, the Unix designers believed that the Unix file system was too
slow for the virtual memory system. Because of this a special area of disk is allocated
for the virtual memory system. When each process is created, contiguous chunks of
backing store are allocated for each of its code, heap, and stack segments. As segments
outgrow the amount of backing store allocated for them, more backing store is allocated
in large contiguous chunks on disk. A table of disk addresses for the backing store is
kept for each segment. When a page is written to disk the physical address from this
table is used to determine where to write the page. If the machine has a local disk then
all backing store is allocated on its local disk. Otherwise all backing store is allocated on
a partition of the server’s disk.

Since Sprite uses a high-performance file system, all writing out of dirty pages is
done to files in the file system instead of to a special disk partition dedicated to backing
store. The first time that a segment needs to write a dirty page out, a file is opened. We
chose not to open the file until a dirty page has to be written out on the assumption that
most segments will never have any dirty pages written out. From this point on all dirty

- 13 -



Virtual Memory for the Sprite Operating System January 5, 1993

pages that need to be saved in backing store are written to the file using the normal file
write operation. This just involves taking the virtual address of the page to be written
and presenting it along with the page to the file server. All reads from backing store can
use the normal file read operation by using the virtual address of the page to be read.
When the segment is destroyed, the file is closed and removed.

There are several advantages of using files for backing store instead of using a
separate partition of disk. First, the virtual memory system can deal with virtual
addresses instead of absolute disk block numbers. This frees the virtual memory system
from having to perform bookkeeping about the location of pages on disk. Second, no
preallocated partition of disk space is required for each CPU. This can represent a major
savings in disk space. For example, under Unix each Sun workstation requires a disk
partition of approximately 16 Mbytes for backing store, most of which is rarely used.
Third, process migration - the ability to preempt a process, move its execution state to
another machine, and then resume its execution - is simplified. In Unix, backing store is
private to a machine, so the actual backing store itself would have to be transferred if a
process were migrated. In Sprite, the backing store is part of a shared file system so only
a pointer to the file used for backing store would have to be transferred. Finally, Sprite
has the potential for higher performance. Since file servers will have large physical
memories dedicated to caching pages, the virtual memory system may be able to get
pages by hitting on the cache instead of going to disk.

There is one problem with the Sprite scheme of using files. Since disk space is not
preallocated it is possible that there may be no disk space available when a dirty page
needs to be written out of memory. This will not be a problem as long as the file server’s
cache has enough room to hold all dirty pages that are written out. However, if the file
server cannot buffer all pages that are written out, then this could be a serious problem.
A solution is to create a separate partition on the server’s disk that is only used for back-
ing store files. This should still represent a savings in disk space over the Unix method
because the partition for backing store files can be shared by all workstations.

6. Fast Program Startup

In order for a program to run it must demand load in code and initialized heap
pages. These page faults are much more expensive than the initial faults for stack and
uninitialized heap pages because code and initialized heap faults require a file server
transaction whereas stack and uninitialized heap faults just cause new zero-filled pages to
be created. The section under shared memory described one method of eliminating these
code and initialized heap page faults by having a newly-created process share code with
another process that is already using the desired code segment. However this is of no use
if there is no process that is actively using the code segment that is needed. In order to
help eliminate code page faults in the case when the normal shared memory mechanism
will not work, Sprite uses memory as a cache to hold pages from code segments that
were recently in use. The use of memory for this purpose is possible because of the
advent of large physical memories and the fact that code is read-only.

Caching of code pages is implemented by saving the state of a code segment when
the last process to reference it dies. The saved state includes the page table and all pages
that are in memory. Such a code segment is called inactive. All of the pages associated
with an inactive segment will remain in memory until they are removed by the normal

- 14 -



Virtual Memory for the Sprite Operating System January 5, 1993

page replacement algorithm. When a process overlays its address space with a new pro-
gram image, if the code segment of the program corresponds to one of these inactive seg-
ments, then the process will reuse the inactive segment instead of allocating a new one.

There are two details to the algorithm for reusing inactive segments that need to be
mentioned. First, it may be the case that when a new segment is being created all seg-
ments are either inactive or in use. In this case the inactive segment that has been inac-
tive for the longest amount of time is recycled and used to create the new segment. This
entails freeing any memory resident pages that the inactive segment may have allocated
to it. Second, whenever a process overlays its address space with a new program image,
the code segment that is used needs to be from the most recent version of the object file.
This is accomplished by opening the object file for the needed code segment to get a
token that uniquely identifies the current version of the file. This token is then compared
to the tokens for all inactive code segments. A match will occur only if there is a code
segment that is from the most recent version of the object file.

The actual performance improvement from the use of inactive segments cannot be
measured until the operating system becomes fully operational. However, an indication
of the reduction in startup cost can be obtained by determining the ratio of code to initial-
ized heap in the standard Unix programs. I examined over 300 Unix programs† and
determined that on the average there was nearly three times as much code as initialized
heap. This means the elimination of all code page faults could reduce the startup cost by
as much as 75 percent. The actual improvement is dependent on how recently the pro-
gram has been used, the demand on memory and how many code and initialized heap
pages are faulted in by the program.

7. Implementation of Virtual Memory

The virtual memory system that has been described in this paper has been fully
implemented on the Sun architecture. In this section some issues related to the imple-
mentation and performance of the virtual memory system are discussed.

7.1. Hardware Dependencies

Certain portions of all virtual memory systems are inherently hardware dependent.
This includes reading and writing a page table entry and reading and writing hardware
virtual memory registers. Even if the code for a virtual memory system is written in a
high level language, it must be modified when it is made to run on different machine
architectures so that it can handle these hardware dependencies. The Sprite implementa-
tion is structured to allow these modifications to be made easily. In contrast, the Unix
implementation is not structured to allow it to be easily ported to other architectures.

The Unix virtual memory system was initially written for the VAX architecture.
The implementation contains code, algorithms, and data structures that are specifically
for the VAX architecture. Instead of being isolated in a single portion of the code, these
���������������������������

† The programs that were examined came from Sun’s version of /bin, /usr/bin, /usr/local and
/usr/ucb. The measurements were performed by using the size command on each program and
then taking the ratio of initialized code to initialized heap.

- 15 -



Virtual Memory for the Sprite Operating System January 5, 1993

hardware dependencies are strewn throughout the code. An example of what is involved
in porting the Unix code is the job that the people from Sun Microsystems did when port-
ing Unix from the VAX to the Sun. When they did the port they did three things. First,
they used the conditional compilation feature of C (the language that Unix is written in)
to separate many of the VAX and Sun hardware dependencies within the code. As a
result the code consists of a mixture of VAX and Sun code separated by ifdef statements.
Second, they wrote a separate file of hardware-dependent routines to manage the Sun vir-
tual memory hardware. Third, they left in some data structures and algorithms that are
there because the code was written for a VAX. An example of this is the simulation of
reference bits [BABA 81a, BABA 81b]. This was only necessary because the VAX does
not have reference bits. Even though the Sun does have reference bits they were not used
because it was simpler to stick with the simulation of reference bits.

Since Sprite is going to be ported to the SPUR architecture, one of my goals was to
make the virtual memory system easier to port than Unix. This involved defining a
separate set of routines that handled all hardware dependent operations. These routines
are called by the hardware-independent routines. When we port Sprite to another archi-
tecture only the hardware-dependent routines should need to be rewritten.

The result of dividing the code into hardware-dependent and hardware-independent
parts is that approximately half of the code is hardware-dependent and half hardware-
independent (the actual code size is given in Table 1). Implementation of the clock and
page replacement algorithms, handling page faults, creation of new segments, and the
management of the segment table have been done with hardware-independent code.
Reading and writing page table entries, validating and invalidating pages, mapping pages
into and out of the kernel’s address space, and managing the Sun memory mapping
hardware have all been written as hardware-dependent code. Thus only the low-level
operations have to be reimplemented when we port Sprite to another architecture.

�����������������������������������������������������������������������
Lines of C Lines of Assembler������������������������������������������������

With
Comments

Without
Comments†

With
Comments

Without
Comments

Bytes of
Compiled
Code�����������������������������������������������������������������������

2423 970 359 107 8560Machine
Dependent�����������������������������������������������������������������������

2825 1095 0 0 8484Machine
Independent�����������������������������������������������������������������������
Total 5248 2065 359 107 17044������������������������������������������������������������������������

�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

Table 1. Sprite code size. Half of the Sprite code is hardware-dependent and half is
hardware-independent. In addition almost two-thirds of the code is comments. Blank
lines are treated as comments.

- 16 -



Virtual Memory for the Sprite Operating System January 5, 1993

����������������������������������������������������������������
Lines of C Lines of Assembler�����������������������������������������������

With
Comments

Without
Comments

With
Comments

Without
Comments

Bytes of
Compiled
Code����������������������������������������������������������������

Total 5855 3833 173 125 32948�����������������������������������������������������������������
�
�
�
�

�
�
�
�
�

�
�
�
�
�

�
�
�
�

�
�
�
�
�

�
�
�
�

�
�
�
�
�

�
�
�
�
�

Table 2. Unix code size. Unix code is a mixture of hardware-dependent and hardware-
independent code. Thus unlike Table 1 there is no differentiation in this table between
hardware-dependent and hardware-independent code. Also note that only a little more
than one-third of the code is comments. Blank lines are treated as comments.

7.2. Code Size

The virtual memory systems for Sprite and Unix were both written mostly in C with
a small amount being written in assembler. Tables 1 and 2 give the sizes of the source
and object codes for both systems. There are three observations that can be made from
these two tables. First of all, the Sprite source code is much more heavily documented
than the Unix sources. This can be seen from the fact that although Unix and Sprite have
almost the same amount of C code including comments, Unix has twice as many lines of
code not including comments. The second observation is that Sprite is not as complex as
Unix. This can be seen from the fact that Unix has twice as many bytes of compiled
code as Sprite. Although code size is not an absolute measure of complexity, the fact
that Sprite requires half as much code as Unix is an approximate indication of their rela-
tive complexities. The final observation from the two tables is the small amount of
assembly code in either system. This shows that both virtual memory systems can be
written almost entirely in a high-level language.

7.3. Performance

Since the Sprite virtual memory system is currently running on the Sun architecture,
I have been able to do some preliminary performance evaluation of the virtual memory
system. All of the performance evaluation was done on a Sun-2 workstation (which uses
a Motorola 68010 microprocessor). This performance evaluation falls into two
categories. The first is the speed of simple zero-filled page faults. The second category
is the overhead of the clock algorithm. This measurement consists of determining what
percentage of the CPU is required to run the clock algorithm at different rates. Things
that were not measured include the time required to read and write pages from/to backing
store, the time required to demand load a page from an object file, and the overhead
required when memory demand is so tight that pages have to be written to backing store.
These were not measured because they are dominated by the speed of the file server and
not the speed of virtual memory. Since we are not using the high-performance file server
that we will be using in a few months, these measurements are not a good indication of
the eventual speed of the virtual memory system.

7.3.1. Simple Page Faults

Table 3 gives the times required to perform zero-filled page faults on Sprite and
Unix. These page faults occur when either an uninitialized heap page or a stack page is

- 17 -



Virtual Memory for the Sprite Operating System January 5, 1993

����������������������������������
Sprite Unix��������������������������������������������������������������������

Free Page 3.6 ms 3.5 to 4.0 ms����������������������������������
In Use Page 3.9 ----�����������������������������������

�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

Table 3. Time to zero-fill a page in milliseconds. The first row is the amount of time re-
quired when the page that is being zero-filled does not have to be detached from a pro-
cess. The second row is the amount of time required when the page must be detached
from the process that owns it. Since Unix never has to detach a page, there is no entry in
the second row for Unix.

first faulted on. These simple page faults consist of getting a page, filling it with zeroes
and giving it to the process that faulted on it. In Sprite if the page is not in use it takes
3.6 ms to zero-fill it and if it is in use it takes 3.9 ms. Thus it only takes 0.3 ms to detach
a page from a user process. Unix, which always has free pages available, varies between
3.5 and 4.0 ms for a zero-filled page fault. For both Unix and Sprite the portion of the
zero-filled page fault time that is spent writing zeroes into the page is approximately 1
ms.

��������������������������������������������������������������������������������
All Referenced All in Use None in Use����������������������������������������������������������������������

Pages per
Second

Execution
Time (sec)

Percent
Slowdown

Execution
Time (sec)

Percent
Slowdown

Execution
Time (sec)

Percent
Slowdown����������������������������������������������������������������������������������������������������������������������������������������������������������������

0 360 0 360 0 360 0��������������������������������������������������������������������������������
100 376 4 367 2 362 0.5��������������������������������������������������������������������������������
500 415 16 390 8 370 3��������������������������������������������������������������������������������
1000 475 32 415 15 384 7���������������������������������������������������������������������������������

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�

Table 4. Clock algorithm overhead. There are three different states for pages examined
by the clock algorithm: in use and referenced, in use and not referenced, and not in use.
An in-use-and-referenced page requires the most overhead because the reference bit has
to be examined and cleared, and the page moved to the end of the allocate list. An in-
use-and-not-referenced page requires the second largest overhead because the reference
bit has to be examined but it does not have to be cleared and the page does not have to
be moved. Finally, pages that are not in use require the least amount of overhead be-
cause they can be ignored. The above table shows the amount of overhead required to
execute the clock algorithm for pages of the three different types at different speeds.
The left column shows the overhead when all pages in memory are in use and referenced
(the worst case). The middle column shows the overhead when all pages in memory are
in use but none are referenced. The right column shows the overhead when no pages are
in use (the best case). The overhead was measured by executing a low priority user pro-
cess that executes a simple four instruction loop 100,000,000 times. While this process
was executing the clock algorithm was running at high priority once a second. The
overhead was measured by determining how much extra time was required by the user
process to complete while the clock algorithm executed.

- 18 -



Virtual Memory for the Sprite Operating System January 5, 1993

7.3.2. Overhead of Clock Algorithm

I was able to measure the overhead of the clock algorithm for Sprite. However, I
was unable to do similar measurements for the Unix clock algorithm. The reason is that,
whereas I was able to easily modify the Sprite kernel to give me good information, it was
unclear how to easily modify the Unix kernel to provide me with the necessary informa-
tion. As a result there is no comparison of the overheads required by the Sprite clock
algorithm and the Unix clock algorithm.

Table 4 shows the overhead required by the Sprite clock algorithm. In the worst
case, when all pages in memory are in use and being referenced, the algorithm requires
between 3 and 4 percent of the CPU for each 100 pages checked per second. In the best
case when nothing is being used, it takes around one-half of one percent of the CPU. The
significance of these numbers can be seen by determining what is the maximum rate at
which the clock must be run to give a good approximation of LRU.

In order for the clock algorithm to keep the allocate list in approximate LRU order,
pages must be scanned at a rate several times that of the page fault rate. This will
guarantee that as a page rises from the end of the allocate list to the front of the allocate
list, it will be examined multiple times by the clock algorithm giving it multiple chances
to be put back onto the end of the list. Thus pages that make it to the front of the allocate
list will not have been accessed very recently, with the exception of pages that were
accessed since the last time that the clock algorithm examined them; that is, the allocate
list will be in approximate LRU order.

Since the clock hand must move at several times the page fault rate, the maximum
clock rate can only be determined after determining the maximum page fault rate. An
upper bound on the page fault rate is the number of zero-filled page faults that can be
executed per second. At 3.6 ms per page fault, there can be 277 of these types of page
faults per second. However, this is unrealistically pessimistic. When a page is zero-
filled it is marked as dirty. Thus if all of memory is being filled by zero-filled pages, then
all of memory must be dirty. This means that whenever a zero-filled page fault is han-
dled a page must be written to the file used for backing store. Therefore the actual max-
imum sustained rate of zero-filled pages faults is the rate that pages can be written to the
file server. Since all other types of page faults require a read from the file server, the
maximum page fault rate is limited by the speed at which pages can be read or written
from/to the file server. Assuming optimistically that it only takes 10 ms to read or write a
page from/to the file server, the upper bound on the number of page faults per second is
100. Running the clock algorithm at a rate five times this maximum page fault rate
would require 500 pages to be scanned per second or a worst-case overhead of 16 per-
cent.

The page fault rate of 100 pages per second just given is a very pessimistic estimate.
There was a study done of the paging activity of several VAX computers running Unix
[NELS 84]. It measured the number of page-ins per second averaged over 5, 10, 30 and
60 second intervals when the system had an average of 8 runnable processes. The results
showed that the maximum page-in rate over a 5 second interval was 25 pages per second.
However, the page-in activity was very bursty and when averaged over longer intervals it
dropped dramatically. For example when averaged over 60 second intervals, the max-
imum page-in rate was 4 per second. The page-in rate averaged over the whole study
was less than one per second. Because of the results of this study, we expect that the

- 19 -



Virtual Memory for the Sprite Operating System January 5, 1993

actual page fault rate that we will experience will be much smaller then the upper bound
of 100 pages per second. This should result in a clock rate much lower than 500 pages
per second. In addition the overhead of the clock algorithm will not be as bad as the
worst case of 3 percent per 100 pages scanned because memory is not usually all in use
and all referenced. The combination of a lower clock rate and lower overhead should
make the actual total overhead of the clock algorithm negligible (between one and two
percent).

8. Conclusion

A virtual memory system has been presented that provides the basic functionality of
the Unix 4.2BSD virtual memory system while being simpler, avoiding some of its prob-
lems, and providing additional functionality. The simplifications come from using
remote servers for paging and a simplified page replacement algorithm. A problem with
Unix that is eliminated is the extra page faults required to reclaim pages off of the free
list. Sprite eliminates these extra page faults by replacing the free list with a list that con-
tains all of the pages in memory in approximate LRU order. The list is then used to
quickly find pages to handle page faults. The extra functionality that Sprite provides is
that it allows processes to share writable memory and it reuses old segments to allow fast
program startup. The shared writable memory allows high-speed interprocess communi-
cation between processes.

The Sprite virtual memory system as described in this paper is fully operational.
The rest of the operating system is still under development. We hope that Sprite will be
in use by the developers by the end of Summer 1986 and in use in the research commun-
ity in 1987.

9. References

[BABA 81a]
Babaoglu, O. ‘‘Virtual Storage Management in the Absence of Reference Bits.’’
Ph.D. Thesis, Computer Science Division, University of California, Berkeley,
November 1981.

[BABA 81b]
Babaoglu, O., and Joy, W.N. ‘‘Converting a Swap-based System to do Paging in an
Architecture Lacking Page-Referenced Bits.’’ Proceedings of the 8th Symposium
on Operating Systems Principles, 1981, pp. 78-86.

[BOBR 72]
Bobrow, D.G., et al. ‘‘TENEX, a Paged Time Sharing System for the PDP-10.’’
Communications of the ACM, Vol. 15, No. 3, March 1972, pp. 135-143.

[CHU 76]
Chu, W., Opderbeck, H. ‘‘Program Behavior and the Page Fault Frequency
Replacement Algorithm.’’ IEEE Computer, Nov. 1976, pp. 29-38.

[CORB 69]
Corbato, F.J. ‘‘A Paging Experiment with the Multics System.’’ In In Honor of
Philip M. Morse (edited Feshbach and Ingard), MIT Press, Cambridge, Mass., 1969,
pp. 217-228.

- 20 -



Virtual Memory for the Sprite Operating System January 5, 1993

[DENN 68]
Denning, P.J. ‘‘The Working Set Model for Program Behavior.’’ Communications
of the ACM, Vol. 11, No. 5, May 1968, pp. 323-333.

[GRIT 75]
Grit, D.H., and Kain, R.Y. ‘‘An Analysis of the Use Bit Page Replacement Algo-
rithm.’’ Proceedings of the ACM Annual Conference, Minneapolis, Minn., 1975,
pp.187-192.

[HILL 85]
Hill, M.D., et al. ‘‘SPUR: A VLSI Multiprocessor Workstation.’’ Computer Sci-
ence Division Technical Report No. UCB/CSD 86/273, University of California,
Berkeley, December 1985.

[KENA 84]
Kenah, L.J., Bate, S.F. VAX/VMS Internals and Data Structures, Digital Press,
Bedford, Mass., 1984.

[KING 71]
King, W.F. III. ‘‘Analysis of Demand Paging Algorithms.’’ Proceedings of IFIPS
Congress, Ljubljana, Yugoslavia, 1971, Vol. 1, pp. 485-490.

[LEVY 82]
Levy, H., Lipman, P. ‘‘Virtual Memory Management in the VAX/VMS Operating
System.’’ IEEE Computer, March 1982, pp. 35-41.

[MCKU 84]
McKusick, M.K., Joy, W.N., Leffler, S.J., and Fabry, R.S. ‘‘A Fast File System for
UNIX’’, ACM Transactions on Computer Systems, Vol. 2, No. 3, August 1984, pp.
181-197.

[NELS 84]
Nelson, M.N., and Duffy, J.A. ‘‘Feasibility of Network Paging and a Page Server
Design.’’ Term project, CS 262, Department of EECS, University of California,
Berkeley, May, 1984.

[ORGA 72]
Organick, E.I. The Multics System: An Examination of Its Structure, MIT Press,
Cambridge, Mass., 1972.

[OLIV 74]
Oliver, N.A. ‘‘Experimental data on page replacement algorithm.’’ Proceedings
NCC, 1974, pp. 179-184.

[OUST 85]
Ousterhout, J.K. et al. ‘‘A Trace-Driven Analysis of the 4.2 BSD UNIX File Sys-
tem.’’ Proceedings of the 10th Symposium on Operating Systems Principles, 1985,
pp. 15-24.

[REDE 80]
Redell, D.D. et al. ‘‘Pilot: An Operating System for a Personal Computer.’’ Com-
munications of the ACM, Vol. 23, No. 2, Feb. 1980, pp. 81-92.

[THOM 78]
Thompson, K. ‘‘The Unix Time-Sharing System: Unix Implementation.’’ Bell

- 21 -



Virtual Memory for the Sprite Operating System January 5, 1993

System Technical Journal, Vol. 57, No. 6, July-August 1978, pp. 1931-1946.

- 22 -



Virtual Memory for the Sprite Operating System January 5, 1993

Appendix A

Implementation of Sharing on VAX and Sun-2 Architectures

Section 3 described the internal representation of segments in Unix and Sprite. This
appendix describes how each system either uses or could use its representation of seg-
ments to implement sharing on the VAX and Sun-2 architectures. The description of the
implementation of sharing includes a description of the memory mapping hardware pro-
vided by the VAX and Sun-2 architectures.

A.1 VAX

The VAX divides the address space of each process into the two regions P0 and P1
[KENA 84]. P0 contains the code and heap and P1 contains the stack. Page tables for
each of these regions are kept in the kernel’s virtual address space. There are two regis-
ters P0BR and P1BR that point to the base of the P0 and P1 region page tables respec-
tively. These two registers must be set up correctly by the operating system whenever a
user process begins executing in order to allow virtual address translation to be per-
formed.

The Unix organization for the page tables for a process was developed on a VAX.
This explains why the page table structure described in Section 3 came about. When a
process begins execution Unix just sets the P0BR and P1BR registers to point to the
process’s page tables. Thus the Unix page table structure works very easily on the VAX

Heap

Code

Heap

Code

address space
Kernel virtual

segment 3
PT for

Process B
PT for

segment 2
PT for
segment 1
PT for

Process A
PT for

Kernel
page table

Physical
memory

1234
12
34

5
52
1

1

9
8
7
6
5
4
3
2

Figure 9. Implementing Sprite on a VAX. In this example Process A and Process B are
sharing code but not heap. The page tables for each process and each of the three seg-
ments are kept in the kernel’s virtual address space. The page tables are allocated such
that the code and heap portions each begin on a page boundary. Since Processes A and
B are sharing code, the kernel’s page table is set up so that the code portion of each
process’s page table uses the same physical pages as those used by the page table for
segment 1, the code segment that they are sharing. In addition the kernel’s page table is
set up so that the heap portion of each process’s page table uses the same physical pages
as the page table for the heap segment that they are using.

- 23 -



Virtual Memory for the Sprite Operating System January 5, 1993

but it still has the problem that the code page tables of two processes that are sharing
code must be kept consistent.

Sprite has not been implemented on a VAX. However, with a small addition to the
segment structure described in Section 3 it can be implemented quite easily (see Figure
9). Each segment is allocated a page table that begins on a page boundary. In addition
each process is allocated one page table for its code and heap which begins on a page
boundary. The heap portion of the page table also begins on a page boundary. The page
table entries in the kernel page table that map a process’s page table are set up so that the
code portion of a process’s page table uses the same physical pages as the page table for
the code segment that the process is using. Similarly the heap portion of a process’s page
table uses the same physical pages as the page table for the heap segment that the process
is using. When a process begins executing, the P0BR register is set to point to the page
table for the process and the P1BR is set to point to the page table that is associated with
the stack segment. Thus there can be multiple virtual copies of segment page tables but
only one physical copy.

The advantage of the Sprite scheme over the Unix scheme is that page tables for
processes that are sharing segments automatically remain consistent. The disadvantage is
that since the heap portion of a process’s page table begins on a page boundary, heap seg-
ments must begin on 64K byte boundaries†. Since the virtual address space for a process
is so large this should not be a problem.

A.2 Sun-2

Figure 10 shows a diagram of the memory mapping unit (MMU) provided by the
Sun-2 architecture. The memory mapping mechanism is based on the idea of contexts.
Each context is able to map the virtual address space of one process. Since there are N
contexts and one is used to map the kernel, N - 1 processes can be mapped at once.

context N
Segment
table for

table for
Segment
context 1

context 0
table for
Segment

Contexts

Segment 0

Segment 1

Segment M

Segment
Table Entry Groups

pmeg 0

pmeg 1

pmeg 2

pmeg 3

pmeg P

Page MapPMEG

Page map
entry 0
Page map
entry 1

Page map
entry Q

Figure 10. The Sun-2 memory mapping mechanism. The values for N, M, P and Q on
a Sun-2 are 8, 512, 256, and 16 respectively. The Sun-3 architecture uses the same
memory mapping mechanism as a Sun-2 with the exception that M is equal to 2048.

���������������������������
† Each VAX page is 512 bytes and each page table entry (PTE) is four bytes. This means

that there are 128 PTEs per VAX page. Since each PTE maps 512 bytes, a VAX page full of
PTEs maps 128 * 512 or 64K bytes.

- 24 -



Virtual Memory for the Sprite Operating System January 5, 1993

Before a process begins executing on the hardware a special context register is set to
indicate which context to use to translate the process’s virtual addresses. A context is
broken up into M segments of Q pages each. Each context contains a segment table with
M entries each of which points to a page map entry group (PMEG) with Q entries, one
for each page. There are a total of P PMEGs for the whole system. The following pro-
cedure is performed when translating a virtual address:

1) The context register is examined to determine which context to use.

2) The high order bits of the virtual address are used to index into the segment table
for the context to determine which of the PMEGs to use. If there is no PMEG for
the segment then a fault is generated.

3) The middle bits in the virtual address index into the PMEG to select one of the page
map entries. Each page map entry contains a valid bit, a referenced bit, a modified
bit, protection bits, and the physical page frame number. If the valid bit is not set,
then a fault is generated.

4) Finally the physical page frame number is concatenated with the remaining low
order bits of the virtual address to form the physical address.

Unlike the VAX, the Sun-2 MMU just described does not use page tables in the
kernel’s virtual address space; all of the memory mapping information is kept in
hardware. However, since there are a small number of contexts (eight) and PMEGs
(256) there is not sufficient hardware to map all processes at once. Therefore page tables
need to be kept in software to store the state of processes or software segments† when
they are not mapped in hardware. In addition the limited number of contexts and PMEGs
must be multiplexed across all processes. The page table structure used by Sprite and
Unix is just as described in Section 3. The remainder of this section describes the
methods that Unix and Sprite use to manage the contexts and PMEGS.

In Unix contexts are shared by all processes by using an LRU policy: the processes
that have contexts allocated to them are the ones that have run most recently. PMEGs
are shared by all contexts using a FIFO policy. As a process faults in pages PMEGs are
allocated to the context in order to map the pages. If multiple processes that are sharing
code are mapped in contexts at the same time, as they fault in their code pages they will
each use different PMEGs. Thus there is no attempt to share PMEGs between processes
that are sharing code. Whenever a context is taken away from one process and given to
another one any PMEGs that the context has allocated to it are freed.

In Sprite, like Unix, contexts are shared between processes by using an LRU policy
and PMEGs are managed using a FIFO policy. However, unlike Unix PMEGs are shared
between software segments instead of between contexts. When a page fault causes a
PMEG to be allocated, in addition to putting a pointer to the PMEG in the hardware seg-
ment table, a pointer to the PMEG is stored in a table that is associated with the software
segment that the page fault was in. This table of PMEGs is used to make sure that
���������������������������

For the remainder of this section, the segments that are used by the Sun hardware will be re-
ferred to as hardware segments and the code, heap, and stack segments used by Sprite will be re-
fered to as software segments.

- 25 -



Virtual Memory for the Sprite Operating System January 5, 1993

processes that are sharing a software segment will use the same PMEGs to map the
software segment. When a context is removed from one process and given to another,
instead of freeing any PMEGs in that context they remain allocated to the software seg-
ment that owns them. When a context is allocated to a process, the tables of PMEGs that
are stored with each software segment that the process uses are copied into the hardware
segment table.

The Sprite method of managing PMEGs and contexts has two advantages over the
Unix method. First, a page fault in a software segment in one process will have the
effect of validating the page for all processes that are sharing the software segment.
Second, a process that has its context stolen from it may still have PMEGs allocated to it
when it begins running again. The disadvantage of the Sprite scheme is that the
hardware segment tables of all processes that are sharing software segments have to be
kept consistent; if a PMEG is taken away from a software segment of a process in one
context it must be removed from all contexts that are sharing the software segment.

- 26 -


