S ®
% sun

microsystems

X11/NeWsS 1.0 Server Guide

NeWs X11/NeWSm,T§unViewm, XView , OpenFontsm, F3m,
and OpenWindows are trademarks of Sun Microsystems, Inc.
Sun Workstation®, Sun Microsystems®, and the Sun logo 0®
are registered trademarks of Sun Microsystems Inc.

POSTSCRIPT® is a registered trademark of Adobe Systems Inc.

Adobe owns copyrights related to the POSTSCRIPT language and the POSTSCRIPT interpreter.
The trademark POSTSCRIPT is used herein to refer to the material supplied by

Adobe or to programs written in the POSTSCRIPT language as defined by Adobe.

The X Window System is a trademark of Massachusetts Institute of Technology.

UNIx® is a rggistcred trademark of AT&T.
OPEN LOOK is a trademark of AT&T.

Times , Helvetica' , and Palatino
are trademarks of the Linotype AG and/or its subsidiaries.

Bembom, Gill Sansm, and Rockwell are trademarks of Monotype Ltd.

ITC Avant Gardem, ITC Bookmanm, ITC Zapf Chancerym, and ITC Zapf DingbatsTM
are trademarks of International Typeface Corporation.

Lucida® is a registered trademark of Bigelow and Holmes.
LaserWriter is a trademark of Apple Corporation.

All other products or services mentioned in this document are identified
by the trademarks or service marks of their respective companies
or organizations.

Copyright © 1989 Sun Microsystems, Inc. — Printed in U.S.A.

All rights reserved. No part of this work covered by copyright hereon may be reproduced in any form or by any
means — graphic, electronic, or mechanical — including photocopying, recording, taping, or storage in an information
retrieval system, without the prior written permission of the copyright owner.

Restricted rights legend: use, duplication, or disclosure by the U.S. government is subject to restrictions set forth in
subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer Software clause at DFARS 52.227-7013 and in
similar clauses in the FAR and NASA FAR Supplement.

The Sun Graphical User Interface was developed by Sun Microsystems, Inc. for its users and licensees. Sun ack-
nowledges the pioncering efforts of Xerox in rescarching and developing the concept of visual or graphical user inter-
faces for the computer industry. Sun holds a non-cxclusive license from Xerox to the Xerox Graphical User Interface,
which license also covers Sun’s licenscces.

Contents

Chapter 1 Introduction to the X11/NeWS Server
1.1. The Server Start-up Procedure
1.2. The XView and News Toolkits
1.3. Definitions of Terms

window

server-based window system
kemel-based window system

window server

client

window management

B Lih L1 L1t Lt L L W

1.4. Applications

Chapter 2 Using the NeWS Protocol
2.1. News Utilities 9
2.2. News Initialization Files ... 10

The init.ps File 10
The .startup.ps File

The .user.ps File
2.3. Modifying .startup.ps

Changing the Initial Screen Image

2.4. Modifying .user.ps

Conserving Dictionary Space
Modifying the Access List
Modifying the Root Menu

—iii=

Contents — Continued

2.3.
2.6.

2.7,
2.8.

Chapter 3 Using the X11 Protocol
3.1.
3.2.
3.3.

34.
3.5.
3.6.
3.7.
3.8

3.9,

The buildmenu(l) Utility ...

Using the Default Menu File

Replacing the Default Menu File
Modifying the Default Menu File

Abbreviations

Changing the Root Background

The UserProfile Dictionary

Running NeWs Programs
Executing POSTSCRIPT Files

Previewing POSTSCRIPT Graphics

Communicating Directly with the Server

Connecting to Remote NeWs Servers

Running Remote Clients

Compiling Source Programs
Running a NewS-Only Server

X11 Utilities

X11 Features Not Supported

Displaying POSTSCRIPT Images from X11 Clients
Using CPS

An Example Program

Connecting to Remote X11 Servers ...

Running Remote Clients .

Restricted Access to the X11/News Server

Running an X11-Only Server

X11 Idioms t0 AVOId ...

Black and White

GXset and GXclear

Pixmap Contents

Compiling Source Programs

iv

14
14
14
14
14
15
15
17
17
18
18
19
20
21
21

25
25
26
26
27
29
29
30
30
30
31
31
31
31
31
31

Contents — Continued

Chapter 4 Window Management
4.1. External Window Management

4.2. News Window Management

4.3. X11 Window Management

Using Redirection

Example

Example

The override-redirect Attribute

4.4. Window Management in X11/NeWs

4.5. Switching Window Managers

X11 Window Managers and News Windows

Restarting pswm

Starting With Other Window Managers
4.6. Problems with External Window Management

Chapter 5§ Font Support
5.1. Server-Supplied Fonts

Locating Fonts

The Core Set of Outline Fonts

Times

Helvetica

Helvetica Narrow

Symbol

Courier

New Century Schoolbook

Palatino

ITC Bookman

ITC Avant Garde

ITC Zapf Dingbats

ITC Zapf Chancery

Lucida Family

BEMDO ... ressssissnnes

ROCKWELLoorerensmsmsinsisisiimssisssssiszssssssssissnsssss

35
35
35
36
37
37
37
38
38
38
39
39
39
40

45
45
45
46
46
46
46
46
46
47
47
47
47
48
48
48
48
48

Contents — Continued

5.2.
3.3
5.4.
3.3,

5.6.
=F P
5.8

5.9.

Chapter 6 Color Support

6.1.

6.2.

6.3.

Chapter 7 Using SunView Windows

Appendix A NcwS Manual Pages

Gill Sans

The Minimum Set of Fonts for the Server
Font Families

Accessing and Scaling Fonts

Using Other Fonts

Adding Fonts ...

Adding F3 Fonts ...

Generating Bitmap Files

Converting News 1.1 Fonts for Use with the X11/News Server

Font Aliases

Fonts in the X11 Window System

Using OpenFonts with the X11 Protocol

X11 Access to News Fonts

Font Limitations

Color in the NewS Window System

Color in the X11 Window System

X11/News Visuals and Colormaps

X11/NcWS Visuals

Recommendations

X11 Programmers

NeWS Programmers ..
News Dynamic Colors

Running SunVicw Applications

Bugs in SunView/X11/NewSs Cocexistence

Inconveniences

Screen Damage

Input Mismatches

—vVi—

48
49
49
49
50
51
51
S1
52
52
52
52
53
53

57
57
57
57
58
59
59
60
60

63
63
64
64
64
64

Contents — Continued

24108.1 ... 67
bldfamily.1 ... 69
buildmenu.1 71
convertfont.1 ... 73
cps.1 75
joumnalling.1 77
kbd_mode.1 79
16} 0 81
makeafb.1 83
mkiconfont.1 85
newshost.1 89
newsserverstr.1 91
objectdiff.1 93
objectwatcher.1 ... 95
openwindemos.6 97
pageview.1 103
pam.1 105
psh.l o 107
psindent.1 109
psio.3 111
psman.l ... 117
psps.1 119
pstags.1l ... 121
xnews.1 127
Appendix B X11 Manual Pages 133
bitmap.n ... 135
ico.n 143
1070 % o KO RORT—— 145
DTAZCL, .ovvverernerecenssssomssssisssssssmusminss 147
MUNCHCT.IL .o s 149
5110 16 o SR R——— 151
DSWITLIL ... sessseesessesssss s 5 88 A 8 153

—vii—

Contents — Continued

puzzle.n

worm.n

xcalc.n

xdpr.n

xdpyinfo.n

xfd.n

xhost.n

xIsfonts.n

xIswins.n

Xxmac.n

xmag.n

xmodmap.n

Xpr.n

Xprop.n

xrdb.n

xrefresh.n

xset.n

xsetroot.n

xterm.n

xwd.n

xwininfo.n

- viii —

155
157
159
163
165
167
169
171
173
175
177
179
183
185
189
193
195
197
199
209
211
213

215

Table 2-1 UserProfile Entries 16

Table 5-1 Minimum Set of Fonts 49

47

Figure 5-1 The Core Set of Outline Fonts

—Xi—

Summary of Contents

Preface

This manual describes the X11/News server and its components. The X11/NeWs
server is a program that runs on machines sgitable for high-resolution graphics
and exchanges messages with X11 and NeWs applications, allowing them to
display windows on the screen. It forms the window system platform for the
OpenWindows environment.

The X11/News Server Guide is intended for X11 and NewS application program-
mers who are building window tools (for example, text editors or mail tools) to
run as part of the OpenWindows user environment. This manual is not a pro-
gramming guide for the X11 or NeWs protocols. Rather, it is a description of how
to run X11 and NewS programs with the X11/NeWS server.

The X11/NeWs server is based on an early version of the OPEN LOOK ™ Graph-
ical User Interface, and therefore does not necessarily implement every element
in the most recent revision of the OPEN LOOK specification.! OPEN LOOK
references in this manual thus point to software that has not yet been validated by
AT&T as fully compliant with OPEN LOOK, although full validation is
expected shortly.

Chapter 1, Introduction to the X11/NewS Server, contains general information
about the X11/NeWs server, including definitions of terms and a list of applica-
tions you can run with the server.

Chapter 2, Using the NéWs Protocol, contains an overview of the NeWs protocol,
and a discussion of how to run NeWs programs with the X11/NeWS server.

Chapter 4, Window Management, describes both NeWs and X11 window manage-
ment facilities. Wt :

Chapter 5, Font Support, describes the core set of fonts provxde with the
X11/NeWws server, and how to use and add fonts. ;

Chapter 6, Color Support, describes the differences betweeh | dling
techniques for the NeWs and X11 protocols. .

1 OPEN LOOK is a trademark of AT&T.
2 The X Window System is a trademark of the Massachusetts Institute of Technology.

— Xiii —

Preface — Continued

For More Information

Notational Conventions

Chapter 7, Using SunView Windows, describes how to run
SunView binaries on the X11/NeEWS server.

Appendix A contains News reference manual pages, and Appendix B contains
X11 reference manual pages.

For information on X11 programming, see:

0

a

Xlib Programming Manual, O’Reilly & Associates, Inc., 1988
Xlib Reference Manual, O’Reilly & Associates, Inc., 1988

For information on NeWS programming, see:

o

NeWs Programmer’s Guide

For information about the OpenWindows environment, see:

o

o

OpenWindows User’s Guide
OpenWindows Installation and Start-Up Guide

For information about the POSTSCRIPT® language3, see:

o

Adobe Systems Inc., POSTSCRIPT Language Tutorial and Cookbook,
Addison-Wesley, 1985

Adobe Systems Inc., POSTSCRIPT Language Reference Manual, Addison-
Wesley, 1985

This manual uses the following notational conventions:

o

bold listing font
This font indicates text or code typed at the keyboard.
listing font

This font indicates information displayed by the computer and the use of the
C programming language.

sans serif font

This font is used in code examples to indicate use of the POSTSCRIPT
language or NeWs extensions.

bold font

This font is used in textual passages to indicate names of system-defined
POSTSCRIPT language or NeWs objects, and to introduce important terms.

italic font

This font indicates user-specified parameters for insertion into programs or
command lines. It is also used to indicate special terms or phrases.

3 PosSTSCRIPT is a registered trademark of Adobe Systems Inc.

- Xiv —

Introduction to the X11/NeWS Server

Introduction to the X11/NeWS Server

1.1. The Server Start-up Procedure

1.2. The XView and News Toolkits

1.3. Definitions of Terms

window

server-based window system

kernel-based window system

window server

client

window management

1.4. Applications

hf it i i i Lin i L » H

Introduction to the X11/NeWS Server

The X11/NeWS server is a program that runs on a machine suitable for high-
resolution graphics. It acts as a window server, providing display capabilities and
keeping track of user input. Application programs — known as clients — send
messages to the X11/NeWs server and cause it to render images on the display.
The images rendered for the clients appear in windows on the screen. The client
programs associated with each w.ndow may reside on the same machine as the
X11/NeWs server or on another machine on the network.

The X11/NeWs server implements the client/server model of window systems,
unlike SunView, which is a kernel-based window system. In the client/server
model, client programs connect to a window server. The clients send requests to
the server to manipulate windows, display images, and communicate with other
clients. The server sends information about input devices, window manipulation,
and communication from other clients back to the client programs.

The X11/NeWs server represents a merge of the X11 and NeWS window systems —
it can handle messages from clients that follow either the X11 or the NeWs proto-
col. The X11 window system is version 11 of the X Window System developed
at MIT. It is a statically extensible window system (that is, server suppliers may
offer extensions, but clients cannot download their own extensions). It uses a
pixel-based imaging model, in which images are viewed as rectangular areas of
device-dependent pixels. (See the Xlib Reference Manual for more information
about X11.1)

News (Network extensible Window System), developed by Sun Microsystems, is
a window system based on the POSTSCRIPT page description language. Itis a
dynamically extensible window system (that is, clients can define their own func-
tions and download them to the server). It is based on a stencil/paint imaging
model, in which images are defined in device-independent user coordinates. (See
the NeWs Programmer’s Guide for more information about News.)

1 Xlib Reference Manual , O'Reilly & Associates, Inc., 1988

sun 3 Revision A, of 25 August 1989

microsystems

4 X11/News 1.0 Server Guide

1.1. The Server Start-up
Procedure

1.2. The XView and NeWwS
Toolkits

@

You start up the X11/NeWs server by invoking the program xnews. You can
invoke xnews after you log in to your workstation or you can set up your

. login file to start xnews automatically. The server locates and executes
init .ps, which loads a variety of . ps files to initialize the server. Among the
. ps files are two user-specific files: ~/ . startup.ps, which sets server-wide
defaults early in the initialization process, and ~/ .user . ps, which sets user
customizations at the end of initialization. The OpenWindows Installation and
Start-Up Guide discusses these initialization files in more detail. See also
Chapter 2, Using the NeWS Protocol, in this manual.

As part of its start-up procedure, the server runs a shellscript named openwin-
init. The default shellscript starts a File Manager and a cmdtool. (See the
OpenWindows User’s Guide for information about these applications.) You can
override the default shellscript to start other applications. You can also start
other applications (clients of the server) from the cmdtool window or from the
root menu. The server also initializes the root menu from a file called
openwin-menu, which the user can also override.

The X11/NeWsS server runs as a single UNIX® process that listens for new connec-
tions to clients.2 If a client is running on the same machine as the server, it com-
municates with the server using streams-based IPC. If a client is running on
another machine on the network, it communicates with the server using a net-
work protocol.

The X11/News server forms the window system platform for the OpenWindows
user environment. In addition to the platform, OpenWindows contains the
XView toolkit and the NeWS toolkit, and a set of client applications based on
these toolkits. Since the toolkits support the OPEN LOOK ' User Interface
Functional Specification, the applications provided with OpenWindows and any
customer applications built on the toolkits also support OPEN LOOK.3

The XView toolkit provides an object-oriented library of routines and a frame-
work for developing X11 applications. An XView application uses procedure
calls to access XView facilities from a C program. (See the XView Reference
Manual for information about the XView toolkit.)

The NeWs toolkit provides a set of NeWs development components on which
application programs and tools may be implemented. The NeWs toolkit consists
of a set of server components, written in the News-extended POSTSCRIPT
language, and a set of client components, written in C. The server components
include OpenWindows user interface components, such as windows, panes, and
buttons, and structural components for organizing the user interface components.
The client components provide facilities for communicating between the client
and server portions of the application.

2 UNIX is a registered trademark of AT&T.
3 OPEN LOOK is a trademark of AT&T.

sunmn Revision A, of 25 August 1989

microsystems

Chapter 1 — Introduction to the X11/News Server 5

1.3. Definitions of Terms

window

server-based window system

kernel-based window system

window server

client

window management

1.4. Applications

This section describes some of the important terms used throughout this manual.

A window is an area of your terminal screen that displays the output of a client.
You can display several windows on your screen simultaneously. You can mani-
pulate and interact with each window on your screen independently of the other
windows on the screen.

A server-based window system centralizes screen access in one UNIX process, the
window server. Client programs communicate with the window server using a
reliable byte stream and therefore do not need to reside on the same machine.
They can display output in windows on another machine on the network, regard-
less of machine architecture, operating systems, display resolutions, or color
capabilities.

In a kernel-based window system, such as SunWindows, coordination of access
to the screen is done using extensions to the UNIX kemnel, and each client directly
accesses the screen.

A window server, such as the X11/NeWs server, is a program that runs on a user’s
machine and handles the display capabilities of the machine. Clients of the win-
dow server, which may run on the same machine as the server or on another
machine on the network, connect to the server and provide instructions for
rendering images. The window server creates and manages windows on the
screen for displaying clients’ images. The window server also collects input
from the user and sends it to clients. Clients process the user’s input and send
instructions to the server for updating their windows.

A client is an application program that sends requests to a window server over a
reliable byte stream to display and manipulate windows and graphics, and to
receive input. A client can run on the same machine as the window server or on
another machine on the network.

Window management is a set of functions with which a user can control the lay-
out and state of windows on the screen. The agent that implements these func-
tions is known as the window manager. The functions include moving, resizing,
opening, closing, raising, lowering, and quitting windows.

You can run the following kinds of application with the X11/NeWs server:

o All X11 applications (for example, those built with the X View user interface
package)

o NeWs applications that conform to NeWs 1.1 documented interfaces (includ-
ing Lite toolkit-based applications), or that are based on the NeWs toolkit

o SunView- and SunWindows-based applications

Q?& mS un Revision A, of 25 August 1989

icrosystems

- 3 30 3 3 3 3 3 3

Using the NeWS Protocol

Using the NewS Protocol

2.1. News Utilities

2.2. News Initialization Files

The init.ps File

The .startup.ps File

The .user.ps File

2.3. Modifying .startup.ps

Changing the Initial Screen Image

2.4. Modifying .user.ps

Conserving Dictionary Space
Modifying the Access List

Modifying the Root Menu

The buildmenu(l) Utility

Using the Default Menu File

Replacing the Default Menu File

Modifying the Default Menu File

Abbreviations

Changing the Root Background

2.5. The UserProfile Dictionary

2.6. Running NeWS Programs

Executing POSTSCRIPT Files

Previewing POSTSCRIPT Graphics

Communicating Directly with the Server

10
10
11
11
11
11
12
12
13
13
14
14
14
14
14
15
15
17
17
18
18

Connecting to Remote NeWs Servers

Running Remote Clients

2.7. Compiling Source Programs

2.8. Running a NewS-Only Server

19
20
21
21

2.1. News Utilities

Using the NeWS Protocol

NeWs is an interpreted programming language based on the POSTSCRIPT pro-
gramming language.4 The POSTSCRIPT language was developed at Adobe Sys-
tems and is used primarily for specifying the format and design of printed docu-
ments. A POSTSCRIPT program consists of operations that are sent to a
POSTSCRIPT interpreter residing within a printer; when interpreted, the opera-
tions define text, graphics, and page coordinates.

News uses POSTSCRIPT operators to display text and graphics. Programs are
interpreted and executed by the X11/NeWs server, which is resident on the user’s
graphics console. Importantly, NeWs also provides operators and types that are
extensions to the POSTSCRIPT language; many of these extensions deal with the
interactive aspects of window management that the POSTSCRIPT language does
not consider.

In addition to these operator and type extensions, which are “hard-wired” into the
server, News also contains various POSTSCRIPT language files that provide sup-
port for the NeWs programming environment; the files are loaded automatically
when the X11/News server is initialized. By modifying the files and the pro-
cedures they contain, you can customize the way in which initialization occurs.

This chapter lists the standard News utilities provided with the X11/NeWs server
and describes the server initialization process, giving examples of how you can
specify your own initialization routine by customizing POSTSCRIPT files. It also
discusses the different ways in which you can run NeWs programs.

This chapter assumes you have a basic understanding of the POSTSCRIPT
language. A complete description of both NeWS and the names and contents of
POSTSCRIPT initialization files is provided in the NeWS Programmer’s Guide.
Information on installation and start-up commands is provided in the OpenWin-
dows Installation and Start-Up Guide.

The following list contains the standard News utilities provided with the
X11/NeWs server. See the NeWs Programmer’ s Guide and the reference manual
pages in Appendix A for more information.

o bldfamily: a facility for building font family descriptions.

4 Adobe Systems Inc., POSTSCRIPT Language Reference Manual, Addison-Wesley, 1985.

un 9 Revision A, of 25 August 1989

microsystems

10 X11/News 1.0 Server Guide

2.2. News Initialization
Files

The init.ps File

[m]

cps: a facility for constructing a C-to-POSTSCRIPT interface.
convertfont: a facility for converting fonts from one format to another.
journalling: aNews event record-and-playback package.

kbd _mode: a facility for changing the translation mode of the keyboard.

mkiconfont: a facility for making an ASCII cursor or icon font from a list
of ASCII bitmap files.

newshost: a facility for controlling NeWs network security.

newsserverstr: afacility for generating a string for the NEWSSERVER
environment variable.

objectdif£: afacility for listing differences between two lists of
X11/NeWws data objects.

objectwatcher: afacility for listing data objects allocated and de-
allocated.

pageview: a POSTSCRIPT previewer for NeWws.

pam: a facility for removing “stuck” windows from the News display.

psh: the NeWS POSTSCRIPT shell.

psindent: a facility for formatting POSTSCRIPT language or NeWsS source.
psio: a News buffered input/output package.

psload: a facility for displaying the load average under NeWs.

psman: a facility for displaying and finding reference manual pages.
psps: a NeWs process lister.

pstags: a facility for creating a POSTSCRIPT language or NeWs tags file for
use with vi.

psterm: a NeWs terminal emulator.

This section describes the sequence by which X11/News initialization files are
loaded.

When you start up the X11/NcWS scrver, the server process immediately searches
for a file named NeWS/init . ps, looking in each of the following directories in
tumn:

1.
2
3

. / (the directory in which the server has been started)
~/ (the user’s home directory)

SOPENWINHOME/etc/

When the file is found, it is cxecuted. The file contains ASCII POSTSCRIPT code

that

is responsible for loading most of the other POSTSCRIPT initialization files

provided with the X11/NCWS server.

un Revision A, of 25 August 1989

microsystems

Chapter 2 — Using the News Protocol 11

The .startup.ps File

NOTE

The .user.ps File

2.3. Modifying .startup.ps

Changing the Initial Screen
Image

You can modify init .ps, thereby creating your own version of the initializa-
tion process. The modified version of the file should be placed in the directory

. /NeWs (the first directory searched by the server process) so that no other ver-
sion of init .ps is scarched for. Note, however, that the recommended pro-
cedure for customizing your initialization procedure is to leave init.ps
unchanged and create files named . startup.ps and .user.ps, which can
be used to override specifications contained in the init . ps file. These user-
created files are described in the following sections.

One of the first tasks that init . ps performs is to search for a file named
.startup.ps and, if the file is found, execute it. Note that this file exists only
if it is created by the user. The search procedure used by init.ps is identical
to that used by the server process to search for init . ps itself.

The .startup.ps file is intended to contain ASCII POSTSCRIPT code specified
by the user. Typically, such code is used to install new operators or modify
existing ones. Note, however, that since the system’s own POSTSCRIPT files have
not yet been read in when . startup.ps is loaded, system-supplied routines
that are defined by packages such as windows and cursors cannot be used in this
file. Commonly, the . startup.ps file is used to change the initialization
screen image and class variable defaults.

After loading . startup.ps, init.ps loads a standard set of POSTSCRIPT
files that define the classes, packages, and user interface for News. (These files
and the operators they contain are described in the NeWs Programmer’s Guide.)
It then starts up the News and X11 interpreters. At this point the server can
respond to client program requests to display and manipulate windows created
with the X 11 or NeWs protocols.

The systemdict contains a dictionary named UserProfile, which can be modified
in order to customize packages loaded by the server. The modifications to
UserProfile should be specified in the . startup.ps file. See the section The
UserProfile Dictionary for details.

After loading all other files, init . ps searches for a file named .user.ps.
Like .startup.ps, .user .ps exists only if it has been created by the user.
The search procedure used to locate this file is identical to that used for both
.startup.psand .init.ps. The .user.ps fileis intended to contain
ASCII POSTSCRIPT code that can be used to override default settings and modify
or create operators; thus, its role is almost identical to that of . startup.ps.
However, .user . ps can use or reference any NeWs operator or type, since all
have been loaded by the time . user . ps is itself executed.

This section demonstrates how the file . startup .ps might be modified.

You can customize the appearance of the OpenWindows root window by modi-
fying . startup.ps. The root window’s appearance is specified by a pro-
cedure named InitPaintRoot, which is executed by the server immediately after
the contents of . startup.ps have been executed. (Note that the default ver-
sion of InitPaintRoot produces the “OpenWindows Version 1.0” message that

3
éf:@ sun Revision A, of 25 August 1989

microsystems

12 X11/News 1.0 Server Guide

NOTE

2.4. Modifying .user.ps

Conserving Dictionary Space

appears when you first start up the OpenWindows environment.)

You can redefine InitPaintRoot within your . startup.ps file, thus produc-
ing a root window with a different appearance. The following example specifies
that the screen be painted red:

/InitPaintRoot {
1 0 0 setrgbcolor clippath fill
} store

The image created by InitPaintRoot remains on the screen until the server is
fully initialized, at which time the X11 root background is painted. The default
background is blue, on color screens, and is a gray stipple pattern, on mono-
chrome screens. You can set this background to be a different color, pattern, or
image by using the xsetroot (1) command. If you run the server in News-only
mode, or if you set the UsePaintRoot? flag in UserProfile, then X11 will not
paint the root background. Instead, the PaintRoot procedure is invoked to paint
the root background. PaintRoot is executed whenever any part of the root win-
dow is exposed. The following example, if added to your . startup.ps file,
redefines PaintRoot to paint the root canvas green:

/PaintRoot {
0 1 0 setrgbcolor clippath fill
} store

Sce the section Changing the Root Background for a simpler way to change the
color of the root window.

Since many system utilities have not been loaded when . startup.ps is read,
You can use only the lowest level of POSTSCRIPT rendering operations in your
.startup.ps file.

The recommended way to change the root color is to use the OpenWindows
Workspace Properties window.

This section suggests POSTSCRIPT modifications that you may wish to make to
your .user .ps file.

Any procedures that you define in your . user .ps file will be added by News to
the system dictionary, named systemdict. This dictionary has a finite amount of
room available and is shared by all NeWs processes. Therefore, it is desirable to
limit the number of cntrics within this dictionary and make sure that the new and
pre-existing entry-names do not conflict. To do this, you can create your own
dictionary from within .user . ps; the new dictionary can contain all your
extensions, thereby adding only a single entry to the system dictionary itself.
This is demonstrated by the following example:

un Revision A, of 25 August 1989

microsystems

Chapter 2 — Using the News Protocol 13

Modifying the Access List

Modifying the Root Menu

- 3
systemdict /myVDIdict known not {
systemdict /myVDldict 50 dict put
myVDldict begin
/VDlrange 34200 def
etc.
end
} if

. J

This example checks whether anything named VDIdict is already defined in the
system dictionary; if nothing is found, a new dictionary of that name is created,
adding a single entry to the system dictionary.

You can access the new dictionary’s contents as follows:

myVDldict begin
VDIrange 4 mul
etc.

end

Alternatively, you can use the get, store, and put primitives.

NeWs can access the control list of all hosts permitted to establish connections
with the server. The list is kept in the RemoteHostRegistry dictionary in sys-
temdict and can be accessed like any other POSTSCRIPT dictionary. The access
control variable NetSecurityWanted is initialized to true, and RemoteHostRe-
gistry contains entries for the local host and all its aliases. If you want to allow
constant access to a particular machine, add the following POSTSCRIPT code to
your .user .ps file:

RemoteHostRegistry begin
/neighbor true def
end

This code enables all connections emanating from a machine named “neighbor”.
You can also change the variable NetSecurityWanted in your .user.ps file to
enable or disable all network access. For example, to allow access to the server
from any remote machine, usc the following code:

(/NetSecurityWanted false def]

OpenWindows allows you to change the contents of your root menu. You need
to create a SunView menu file that contains the menu entries you wish to appear
in your OpenWindows root menu. You can then use the OpenWindows utility
buildmenu(l) to translate the contents of the SunView menu file into NeWS
toolkit code; this code builds the specified menu within OpenWindows.

S u n Revision A, of 25 August 1989

microsystems

14 X11/News 1.0 Server Guide

The buildmenu(l) Utility

Using the Default Menu File

The buildmenu(l) utility builds an OpenWindows menu from a SunView
menu file. The utility can be used either from a start-up file or from the shell
prompt. See the reference manual page provided in Appendix A for more infor-
mation.

OpenWindows provides a default menu file named
SOPENWINHOME/1lib/openwin-menu. Unless you specify otherwise, this
file is used by the init . ps initialization file to create the OpenWindows root
menu. Use the following call to buildmenu:

Replacing the Default Menu
File

Modifying the Default Menu
File

If you wish to create your own menu file, proceed as follows:

1. Copy the file SOPENWINHOME/lib/openwin-menu to
~/ .openwin-menu.

2. Make the appropriate modifications to ~/ . openwin-menu. See the
buildmenu(l) reference manual page for details.

When the server is initialized, init . ps searches for ~/ .openwin-menu
before it searches for SOPENWINHOME/lib/openwin-menu. If

~/ .openwin-menu exists, it is used as the menufile argument to build-
menu.

Note that if the user-created menu file ~/ . openwin-menu does exist, the
default menu file, SOPENWINHOME/1ib/openwin-menu, is not used.

If you wish to use the default menu provided with the server, but wish to add a
submenu of your own, proceed as follows:

1. Make sure that ~/ . openwin-menu does not exist. (This ensures that the
default menu file, SOPENWINHOME/1ib/openwin-menu, is used.)

2. Create a SunView menu file containing the submenu information.

3. Insertin your ~/.openwin-init file a call to buildmenu that includes
the submenu within the default menu. For example:

Abbreviations

If you often type NeWS commands directly to the server (see the section Running
NeWs Programs below) you may wish to define abbreviated versions of the com-
mands you use most frequently. Note that you should never include these shor-
tened names in client programs, since the definitions will only exist in the
environment of your .user.ps file.

Sunmn Revision A, of 25 August 1989

microsystems

Chapter 2 — Using the News Protocol 15

Changing the Root
Background

2.5. The UserProfile
Dictionary

NOTE

The following code can be added to .user.ps to redefine several common
commands:

— 3
Ips {pstack} def % Alias redefinitions.
/cds {countdictstack =} def
/dbe {dbgbreakenter} def % Debugger redefinitions.
/dbx {dbgbreakexit} def

/dc {dbgcontinue} def
/dib {dbglistbreaks} def
/dwb {dbgwherebreak]} def

If you are running in NeWs-only mode, or if you have defined UsePaintRoot? in
your UserProfile, the PaintRoot procedure will be called to paint exposed areas
of the root window. You can completely redefine the PaintRoot procedure in
your . startup.ps file, but there is an easier way. The default PaintRoot pro-
cedure fills exposed areas of the root window with the color RootColor. You
can change this color by putting lines such as the following in your .user.ps
file:

/RootColor .5 dup dup rgbcolor store
#or
/RootColor ColorDict /MediumVioletRed get store

Note that the file SOPENWINHOME/etc/NeWS/colors.ps contains a list of
all defined color names that you can use.

The recommended way to change the root color is to use the OpenWindows
Workspace Properties window.

Some packages can be customized by the user. These packages look for a dic-
tionary named UserProfile in systemdict. You can modify the contents of
UserProfile in order to customize these packages. The packages typically
inspect UserProfile only at server startup time; thus, you should modify
UserProfile in your . startup.ps file. This ensures that your changes are
present before packages look for them. It is not an error if values are missing
from UserProfile. If a package looks for a value there and does not find it, the
package uses a predefined default value.

Two examples of packages that use the UserProfile dictionary are repeating keys
and input focus. The following entries are inspected:

Revision A, of 25 August 1989

16

X11/News 1.0 Server Guide

Table 2-1

NOTE

UserProfile Entries
Key Value
FocusStyle [CursorFocus for focus-follows-mouse or /ClickFocus for

click-to-type.

KeyRepeatThresh Length of time you have to hold down a key after which
it starts repeating (in minutes).

KeyRepeatTime Period with which a repeating key repeats (in minutes).

UsePaintRoot? If true, you should disregard the X11 root background
and call PaintRoot to paint exposed areas of the root
window.

For example, putting the following code in your . startup.ps causes the
server to wait 1/2 second before starting to repeat keys; it causes keys to repeat
ten times per second (repeat period equals 1/10 of a second); it makes focus-
Jfollows-mouse the default focus style; and it causes PaintRoot to be called to
paint the root background instead of using the X11 background:
r A
UserProfile begin

/KeyRepeatThresh 1 60 div 2 div def

/KeyRepeatTime 1 60 div 10 div def

/FocusStyle /CursorFocus def

/UsePaintRoot? true def
end
_ J

The recommended way to change the focus style and key repeat threshold is to
use the OpenWindows Workspace Properties window.

Another important use of the UserProfile dictionary is for customization of
classes. Whenever a class is created, the class code looks in UserProfile for an
entry whose key equals the name of the class. If the key exists and its value is a
procedure, the procedure is run. The procedure can modify any of the variables
or methods of the newly created class. The procedure should expect to find the
class name and the class object on the operand stack and, after being executed, it
should leave the class name and the presumably modified class object on the
stack.

For example, suppose we have a class that knows how to draws stars. (Note that
this example works only if the number of points in the star is odd.)

Revision A, of 25 August 1989

Chapter 2 — Using the News Protocol 17

2.6. Running NewsS
Programs

Executing POSTSCRIPT
Language Files

>

/Star [Object] [] classbegin
/LineWidth 5 def

/draw { Dnxy=>-
gsave
LineWidth setlinewidth newpath moveto
180 1 index div 180 sub
exch 1 sub { 100 0 rlineto dup rotate } repeat
pop closepath stroke
grestore
} def

classend def

5 600 400 /draw Star send % This draws the star.
y p,

This class draws a five-pointed star at location (600,400). The line width is set
from a class variable, LineWidth. Suppose we want to customize this class so
that its default line width is ten instead of five. We can add the following to the
.startup.ps file:

UserProfile begin
/Star { % name class => name class
dup /LineWidth 10 put
} def
end

When the Star class is read in and built, the class package finds a procedure
named Star in UserProfile. It calls this procedure with the class on the stack.
The procedure modifies the name and class (in this case by changing a class vari-
able) and returns the name and class on the stack.

This section describes some of the ways in which you can run NeWS programs.

To execute a file that contains POSTSCRIPT language operators and NeWs exten-
sions, use the psh(1) command (a manual page is provided for this command in
$OPENWINHOME/share/man and in Appendix A).

The command establishes a connection to the X11/NeWs server and sends it the
POSTSCRIPT files that you specify. (Note that this command can be used only if
your program does not need to communicate with a C client side.) The com-
mand is demonstrated by the following example:

Sun Revision A, of 25 August 1989

microsystems

18 x11/News 1.0 Server Guide

Previewing POSTSCRIPT
Graphics

Communicating Directly with
the Server

The psh command causes the file test . ps to be executed: a canvas is mapped
to the screen and removed after approximately a six-second pause.

You can preview a POSTSCRIPT file using the pageview(1) command.
pageview renders the file, a page at a time, into an off-screen bitmap, which
may be of arbitrary size, resolution, and orientation. You can adjust the size of
the viewing window to see as much of the page as you want. You can also posi-
tion the page within the window. See the pageview reference manual page in
Appendix A for more information.

The News side of the X11/NeWs server is a POSTSCRIPT interpreter with which you
can communicate directly; this is particularly useful when you wish to debug
existing code. To connect with the server, type psh to the shell prompt, then
type executive in order to start an interactive session with the server. This is
demonstrated by the following example:

Revision A, of 25 August 1989

Chapter 2 — Using the News Protocol 19

Connecting to Remote NeWs
Servers

4ysun

Once you have startcd an executive session, you can enter any POSTSCRIPT com-
mand:
()
340 1024 mul =
348160
/Celsius{
32 sub 5 mul 9 div
} def
70 Celsius=
21.1111
32 Celsius=
0
currentcanvas =
canvas (width, height, root)
100 100 moveto
/Times-ltalic findfont 24 scalefont setfont
(Hello world!) show

% Prints string to root window.

10 setlinewidth
newpath
15020050900 arc
stroke

% Prints arc to root window.

NeWS is a network-based window system that allows you to connect to remote
News servers and display output on them. Note that according to NeWs terminol-
ogy, the server runs on the machine with the display and keyboard, effectively
providing the display and keyboard as resources for the client program. The
environment variable NEWSSERVER specifies the NeWs server to which local
clicnt programs conncct. By default, they connect to the server on the local
machine.

To display the output of a local client program on a remote machine, proceed as
follows:

1. Request the owner/user of the remote machine to give your local machine
permission to have a NeWs connection to the NeWS server on the remote
machine. For example, if your local machine is “paper” and the remote
machine is “neighbor”, the owner of “neighbor” can execute the following
command:

Revision A, of 25 August 1989

microsystems

20 X11/News 1.0 Server Guide

Running Remote Clients

2. Set the environment variable NEWSSERVER on your local machine to be the
NeWws scrver on the remote machine. To perform this operation, you use the
utility program newsserverstxr(1l), which can be found in
SOPENWINHOME/bin and returns the correct setting of NEWSSERVER for
a given host. For example:

When you now run a NeWS program on paper, the output is displayed on neigh-
bor.

To display the output of local programs on your local machine again, you need to
reset NEWSSERVER, or unset the variable using unsetenv.

It is more common (o run a client program remotely and display its output locally
than to run the client locally and display its output on a remote machine. The
following list shows two ways to run a remote client. In each case, you must first
make sure the remote machine permits a NeWS connection to the local machine.
See the newshost (1) command above.

o Use rlogin tologin to the remote machine, set the environment variable
NEWSSERVER on the remote machine to be the server on the local machine,
and run the client program on the remote machine. The client program can
be an executable NeWs program or a file containing POSTSCRIPT operators
and News extensions, which you run using psh(1). (See Executing
POSTSCRIPT Files.)

o Use the on(1) remote execution service, which preserves environment vari-
ables like NEWSSERVER.

7 SU I Revision A, of 25 August 1989

microsystems

Chapter 2 — Using the News Protocol 21

2.7. Compiling Source
Programs

2.8. Running a NewS-Only
Server

S
@

If you are sharing a single copy of OpenWindows with other users, you should
make a private copy of the sample source before trying to compile it. If your
copy of OpenWindows is not writable by you, then you must make a private

copy.

The following commands copy the sample source into $HOME/ junk and com-
pile it:

You can run the X11/News server in News-only mode, if the environment variable
NEWSONLY is defined when you start the server. The NeWs-only server does not
listen for X11 client connections, does not start up the X11 window manager, and
does not offer X11-based applications for selection from the root and demo
menus. X11 programs are unable to run in this environment. (See the OpenWin-
dows Installation and Start-Up Guide for information about starting the server in
News-only mode.)

sun Revision A, of 25 August 1989

microsystems

Using the X11 Protocol

Using the X11 Protocol

3.1. X11 Utilities

3.2. X11 Features Not Supported

3.3. Displaying POSTSCRIPT Images from X11 Clients
Using CPS

An Example Program

3.4. Connecting to Remote X11 Servers
3.5. Running Remote Clients

3.6. Restricted Access to the X11/NeWws Server

3.7. Running an X11-Only Server

3.8. X11 Idioms to Avoid

Black and White

GXset and GXclear

Pixmap Contents

Visuals

3.9. Compiling Source Programs .,

25

25
26
26
27
29
29
30
30
30
31
31
31
31
31
31

3.1. x11 Utilities

Using the X11 Protocol

The X11/NeWs server supports both the X11 and NeWs protocols; thus, it allows
you to run applications written in either language. This chapter describes how
the server supports X11 applications; it describes some of the standard X11 utili-
ties, explains how to add X11 extensions to the server, and provides miscellane-
ous notes on using the X11 protocol. For more information on X11 programming,
see the Xlib Reference Manual 3

The X11/NeWws distribution contains many of the standard utilities provided with
the MIT X11 sample server. These utilities all cooperate with other X11 applica-
tions; however, not all of them cooperate with NeWsS applications.

The following list contains some of the supported X11 utilities and indicates
equivalent News utilities that may also be used:

o bitmap: a bitmap editor. This produces code fragments for generating bit-
maps in X11 programs. Note that you can use the XView program
iconedit to create bitmaps for other XView programs.

o xcalc: acalculator.
o x£d: afont displayer.

o xhost: a server access control program. The NeWs shell script newshost
gives the same control.

o xlsfonts: afont lister, which lists all fonts in the server.

o xmodmap: a keyboard modifier, which allows you to specify the mapping of
keystations to keycodes. This can also be achieved by modifying
POSTSCRIPT initialization files; for information, see the NeWS Programmer’s
Guide and Chapter 1 of this manual.

o xpr: a facility for printing a window dump.

o xprop: aproperty displayer. This utility is useful only with X11 windows,
since News windows do not have X11 properties associated with them.

o xrdb: an X resource database utility.

5 Xlib Reference Manual, O'Reilly & Associates, Inc., 1988

sun 25 Revision A, of 25 August 1989

microsystems

26 X11/News 1.0 Server Guide

3.2. x11 Features Not
Supported

3.3. Displaying
POSTSCRIPT Images
from X11 Clients

o xrefresh: afacility for refreshing the screen.

o xset: a facility for cstablishing user preferences. This can also be achieved
by customizing POSTSCRIPT initialization files.

o xsetroot: the root window parameters utility.

o xwd: a facility for dumping a window-image. Note that the XView utility
snapshot(1) can be used to dump screen regions; however, the X11 and
Sun dump files are of different raster formats.

o0 xwud: animage displayer for X11. Note that the SunOS utility screen-
load(1) can be used to load a Sun rasterfile onto the screen. The NeWs util-
ity showimage(1) can also be used to display a Sun rasterfile. As indicated
above, X11 and Sun rasterfiles are of different formats.

o xwininfo: a window information facility. Note that this does not display
information about NeWs windows and canvases; if you attempt to use itin
this way, it displays information on the root canvas only.

The following applications and libraries, all of which are available from MIT, run
on the X11/News server but are not supported by Sun Microsystems, Inc.

o Uncommon Xlib-based applications

o The X toolkit and X toolkit applications (such as xbiff, xclock, xedit,
xload, x1logo, and xmh)

o Andrew
o The uwm and wm window managers

o The CLX Common Lisp interface

The X11/News server allows X11 programs to perform POSTSCRIPT imaging inside
X11 windows. The current implementation of this facility is preliminary and will
be replaced by a standard interface when one is adopted by the X Consortium.

To display POSTSCRIPT images, an X11 client must have not only the normal X11
connection, but also a NeWs connection through the CPS interface. (See the News
Programmer’s Guide.) POSTSCRIPT language code is sent through the NeWS con-
nection, and X11 requests are sent through the X11 connection.

This method works for most graphics operations. However, the following points
should be noted:

o Since POSTSCRIPT and X11 requests are being sent through different com-
munication channels, synchronization can be a problem. All NeWs calls
must be flushed with psio flush PostScript () to ensure that
POSTSCRIPT graphics become visible. (See the NeWS Programmer’s Guide.)
Note that X11 graphics do not usually need to be flushed, since the programs
in which they are defined normally use some form of event looping that
flushes the graphics requests while waiting for the next event. However, if
the results of executing some POSTSCRIPT language code depend on comple-
tion of some X11 requests, a call to XSync () is required to flush the X

éﬁ:@ sun Revision A, of 25 August 1989

icrosystems

Chapter 3 — Using the X11 Protocol 27

buffers and confirm that the operation has completed.

o Since X11 uses an upper-left origin, and NeWs uses a lower-left origin by
default, the default transforms cause graphic images to be displayed upside-
down. Therefore, when drawing an X11 canvas, you can solve this problem
by resetting the current transformation. This is demonstrated by the follow-

ing example:
e)
clippath pathbbox 0 exch translate pop pop pop
% Move the origin to upper
% left.
1 -1 scale % Reverse coordinate
% system so that increasing
L % Y is down.
J

o Some NeWsS operations are inappropriate for X11 windows (for example,
operations that make a window round) and can have unpredictable results, as
X11 may not comprehend them.

o Windows are the only resources NewS and X11 should need to share.
Attempts to share other resources may have unforseen consequences and are
likely to fail.

o The NeWs canvastype dictionary automatically assumes several keys when
the X11 components of the server are present; however, if these components
are not present, the extra keys disappear. Therefore, before attempting to
use the keys, ensure that the X11 interpreter is present.

o Do not attempt to use NeWs to send input to an X11 client.
Using CPS Before attempting to use CPS to specify NeWs graphics in your X11 program, note
the following requirements:

o The following macros enable the client to send resource IDs down the NeWs
connection.

/* client is in top twelve bits,

* 13th is reserved for the server,

* object uses lower 19 bits

*/

#define client_id(x) ((int)(((x) & 0xfff00000) >> 20))
#define object_id(x) ((x) & 0x0007ifff)

As shown, the client ID is stored in the top twelve bits in any X11 resource
ID; the object ID is the lower 19 bits (this is true for any X11 object that is a
resource).

o The News code that you specify needs to know which X11 window you wish
to draw in. Thus, it must access the X11 resource database for the X11 client
application and retrieve IDs from it. Access to the X11 resource database is

S
éf:\&f sun Revision A, of 25 August 1989

microsystems

28 X11/News 1.0 Server Guide

/new

Example
/XLookupClient

Example
/XConstructID
/XLookupID

in the form of the News class XResource. (Information on the News class
system is provided in the NeWS Programmer’s Guide.)

The following XResource methods can be used to notify NeWs code of an X11
window:

— /new dict
Returns a new instance of the X resource database.

% get a new instance of X11 resource DB
finitresDB { % — => —

/resDB /new XResource send def
} def

XclientID /XLookupClient -

Generally set to class XResource itself; gets the given X client’s resource data-
base, in which you can look up any of its windows. It takes an X client ID,
which can be pulled out of an X Window ID by using thie client_id(Xwin)
macro above.

% get this client’ s resource DB
finitclientDB { % XclientlD => -

/clientDB exch /XLookupClient XResource send def
} def

XobjectlD /XConstructlD reallD

Retumns a reallD for the given XobjectID. The reallD here is a combination of
the clientID and the objectID. It takes an X Window ID, which is generated
using the object id (Xwin) macro above. Due to a limitation in the way
NeWS represents intcgers, the upper three bits are lost in transmission. That is,
only 16 of the 19 objectID bits may be used by News.

XobjectID /XLookupIlD any
Given an X11 realID, this returns the NeWs object for it.

% SUIN Revision A, of 25 August 1989

4

microsystems

Chapter 3 — Using the X11 Protocol 29

Example

An Example Program

3.4. Connecting to Remote
X11 Servers

Using this together with /XConstructID you can define an operator to return the
NeWws object for a given X11 object ID:

% finds given id and leaves on stack
/getoby { % XobjectID => obj

/XConstructID clientDB send % reallD
/XLookupID clientDB send % object
} def

The ‘Logos’ program in $OPENWINHOME/demo draws using X11 calls and the
POSTSCRIPT language in the same window. Its source is in
SOPENWINHOME/share/src/xnews/client/X11/logo{.c, .cps}.

This section describes how to run a client program locally and display its output
on a remote machine. The following section describes the more common opera-
tion of running a client program remotely and displaying its output on your local
machine.

The environment variable DISPLAY specifies the X11 server to which client pro-
grams conncct. By default, they connect to the server on the same machine they
run on. To display the output of a local client program on a remote machine,
proceed as follows:

1. Request the owner/user of the remote machine to use the xhost(1) com-
mand to give your local machine permission to have anX11 connection to
the X11/NeWs server on the remote machine. For example, if your local
machine is “paper’” and the remote machine is “neighbor”, the owner should
execute the following command:

2. Set the environment variable DISPLAY on your local machine to be the X11
server on the remote machine. For example:

When you now run an X11 program on paper, the output is displayed on neigh-
bor.

To display the output of local programs on your local machine again, you need to
reset DISPLAY.

y Ul Revision A, of 25 August 1989

30 X11/News 1.0 Server Guide

3.5. Running Remote
Clients

3.6. Restricted Access to
the X11/NewsS Server

3.7. Running an X11-Only
Server

The following list shows three ways to run a remote client. In each case, you
must first make sure the remote machine permits an X11 connection to the local
machine. See the xhost(1) command above.

o Use rlogin tologin to the remote machine, set the environment variable
DISPLAY on the remote machine to be the server on the local machine, and
run the client program on the remote machine.

o Use rsh(1) to perform the same task.

o Use the on(1) remote execution service, which preserves environment vari-
ables like DISPLAY.

The X11 protocol supports an access control list of all hosts permitted to establish
connections with the server. This list is manipulated by the XAddHost (),
XAddHosts (), XRemoveHost (), and XRemoveHosts () callsin X1ib.
Access checking is turned on and off by the XDisableAccessControl ()
and XEnableAccessControl () calls. The xhost(l) program is anX11
client that changes the access control list.

In the X11/News server, the X11 routines and xhost use the same
RemoteHostRegistry dictionary. If a host is allowed access to the server from
X11, it is also permitted to access the server using News protocol. See the Modi-
fying the Access List section in Chapter 2, for more information on access lists.

The X11/NeWs server can be run in X11-only mode. If the environment variable
X11ONLY is defined when you start the server, the server initializes itself as an
X11-only server. This means that the server does not listen for NeWs connections
and does not start the X11/News window manager. (See the OpenWindows Instal-
lation and Start-Up Guide for information on starting the server in X11-only
mode.) NeWs programs are unable to run in this environment.

If you run the server in X11-only mode, you must start your own window
manager. The server configuration file . openwin-init continues to be
sourced in X11-only mode, and is the suggested location from which to start your
X11 window manager. To allow the window manager time to initialize itself, you
should put a ten-second sleep in . openwin-init immediately after starting

sun Revision A, of 25 August 1989

microsystems

Chapter 3 — Using the X11 Protocol 31

3.8. Xx11 Idioms to Avoid

Black and White

GXset and GXclear

Pixmap Contents

Visuals

3.9. Compiling Source
Programs

the window manager and before starting any client program.

If you set the USE_MIT_ VISUALS environment variable, the X11/NEWS server
exposes a PseudoColor visual and colormap as the default on color displays (as
does the MIT X11 sample server). As a result, many X11 programs using non-
portable color will work, but the News color model will break.

The implementation of X11 in X11/NeWs conforms to the X11 protocol.® Note,
however, that the specification leaves some leeway in implementation, and not
all servers offer the same design decisions. Specifically, programs that assume
the MIT sample implementation may break. This section indicates some of the
problems that may be encountered.

In X11/NeWs, the colors black and white are not defined as 0 and 1 (or vice
versa). To specify black and white, clients should always use the X11 macros
BlackPixel () and WhitePixel ().

GXset and GXclear are two of the possible RasterOp function codes that you
can set in X11 graphics contexts. GXclear sets the destination pixels to 0,
GXset sets all bits of the destination pixels to 1. InX11/NeWS, GXclear clears
to whatever the color is in the first slot of the colormap; GXset sets to whatever
the color is in the last slot. Consequently, these two RasterOp modes must be
used with care.

The contents of an X11 pixmap are undefined when it is first created. X11/News
does not clear it to black or white at creation; thus, the pixmap contains whatever
random pattern was in the memory that was allocated to it by X11/News.

The X11/News server uses a different collection of visuals than the MIT sample
server. See the Color Support chapter of this guide for more information.

If you are sharing a single copy of OpenWindows with other users, you should
make a private copy of the sample source before trying to compile it. If your
copy of OpenWindows is not writable by you, then you must make a private

copy.

The following commands copy the sample source into $HOME / junk and com-
pile it:

6 The x11 protocol is defined in X Window System Protocol, Release 3 by Robert W. Scheifler.

Revision A, of 25 August 1989

Window Management

Window Management

4.1.
4.2.
4.3.

44.
4.5.

4.6.

External Window Management

News Window Management

X11 Window Management

Using Redirection

Example
Example

The override-redirect Attribute

Window Management in X11/NeWS

Switching Window Managers

X11 Window Managers and NewS Windows

Restarting pswm
Starting With Other Window Managers

Problems with External Window Management

35

35
33
36
37
37
37
38
38
38
39
39
39
40

4.1. External Window
Management

4.2. NewS Window
Management

Window Management

Window management is a set of functions with which a user can control the
appearance of windows on the screen. The agent that implements these functions
is called the window manager. The functions include moving, resizing, opening,
closing, raising, lowering, and quitting windows. Other functions of window
managers include setting input focus, installing color maps, and starting up new
applications.

A window manager typically provides these functions by placing decorations
around the application’s windows. Typical decorations are a window’s header
(or namestripe) and its resize and close symbols; most window managers provide
pop-up menus for additional functions. Usually, the window manager also pro-
vides a pop-up menu that is available over the root window. This menu allows
the user to display other windows and applications.

The X11 and NeWs windowing environments support the concept of external win-
dow management. In this concept, certain window management functions are
implemented separately from any application. This contrasts with SunWindows,
for example, where window management functions are built into every applica-
tion. In News, the window management functions reside in the NeWs toolkit’s
class hierarchy. InX11, they are implemented by a special client named the win-
dow manager. This client manages the windows that other X11 clients create.

Since the X11 window manager is merely a client, it can be replaced by a dif-
ferent window manager. This can even be done dynamically, by killing the
current window manager and starting another.

To create a window in News, you must create an instance of ClassCanvas and
send this instance to ClassFrame as a parameter of the /newdefault message.
This creates a new frame object, which wraps itself around the client canvas and
starts managing it. The frame and client canvases together form the window.
(See the NeWsS Programmer’s Guide for a discussion of classes in News.)

The following programming example creates an instance of ClassBaseFrame,
which manages an instance of a subclass of ClassCanvas named MyCanvas.
The behavior of MyCanvas is different from that of ClassCanvas in several
ways. The colors used for painting the background and border are set to yellow
and red respectively, and the border width is set to 10. These changes become
apparent when the /PaintCanvas method is called in order to repaint the canvas

sun 35 Revision A, of 25 August 1989

microsystems

36 X11/News 1.0 Server Guide

4.3. x11 Window
Management

S

inside the frame when it is damaged.

r ™)
%

% Create a subclass of ClassCanvas to be customized.

%

/MyCanvas ClassCanvas
dictbegin % Instance variables

/FillColor 1 1 0 rgbcolor def % Make fill color yellow.

/StrokeColor 1 0 0 rgbcolor def % Make stroke color red.

/BorderStroke 10 def % Make border width = 10.
dictend

classbegin % Class variables and methods
% This is the default PaintCanvas...
/PaintCanvas { % - => -
StrokeColor BorderStroke FillColor
/StrokeAndFillCanvas self send
} det
/preferredsize { % - => -
/preferredsize super send
100 max exch
100 max exch
} def
classend

%
% Create a new instance of ClassBaseFrame, which will manage

% an instance of the class defined above, MyCanvas.
%

/win [MyCanvas] [] framebuffer /newdefault ClassBaseFrame send def

(Label) /setlabel win send % Set the frame label.
/place win send % Put up window with preferred size.
/map win send % Make visible.
/activate win send % Start event handlers.
/win null def % Get rid of our frame reference.
_ J

All the window management functions that News provides are implemented by
the frame object. Whenever you move or resize a window, the frame is the part
of the window that actually responds to your mouse-movements. The frame then
sends appropriatc messages to the clicnt canvas and modifies it accordingly.

Window management in X11 is based on allowing one client (that is, the window
manager) to intercept certain operations that other clients are performing. The
operations that are intercepted (or redirected, to use X11 terminology) are those
that the window manager must evaluate and modify, in order to maintain control
over the current windows.

It is possible for X11 window managers to work without using the redirection
facilities: this type of window manager grabs certain combinations of modifier

sun Revision A, of 25 August 1989

microsystems

Chapter 4 — Window Management 37

Using Redirection

Example

Example

keys and mouse buttons, and uses them to manipulate windows. However, not
using redirection severely limits the window manager’s user interface; in particu-
lar, it is impossible for such a window manager to add decorations around the
outside of an application’s window. Since this kind of window manager is
unlikely to be useful, the remainder of this chapter only discusses those window
managers that use redirection.

To use redirection, the window manager selects for SubstructureRedirect on
the window in which it will manage application windows. Typically, this win-
dow will be the root window, since applications will normally create windows as
children of this window. SubstructureRedirect allows the window manager to
intercept X11 requests that would change the appearance of windows on the
screen. The two most important such requests are the MapWindow and
ConfigureWindow X11 protocol requests. Only one client can select for Sub-
structureRedirect at a time; thus, only one window manager can run at a time.
Windows that are created as grandchildren of the root window are not affected by
redirection; thus, an application can create interior windows without inhibition.

An application is free to create windows as it wishes. However, when it tries to
map the window (using the Map Window request) or change its location or size
(using ConfigureWindow), the operation is not performed. Instead, the server
generates a MapRequest or ConfigureRequest event and sends it to the window
manager. The window manager can examine the state of the screen and make
arbitrary changes to the state of this or any other window on the screen. In
response to one of these events, the window manager is free to carry out the
request, modify the request, or do nothing. MapWindow and
ConfigureWindow requests sent by the window manager are not redirected back
to the window manager; they are executed by the server.

Suppose an application attempts to map a window using the MapWindow
request. The server gencrates a MapRequest event and sends it to the window
manager. The window manager may wish to provide decorations around this
window, and therefore it does not map it immediately. Instead, it creates another
window (a decorator window) and places decorations in it. The window
manager then reparents the application’s window into the decorator window and
maps them both. This method allows all applications to have their windows
decorated and managed by one window manager.

Supposc there is a window manager that enforces a policy of not allowing win-
dows to overlap. Supposc further that an application has just issued a
ConfigureWindow request to resize onc of its windows. If this request were
performed, it might causc the window to obscure another window. This window
manager would usc redirection to prevent this from happening. When it receives
the ConfigureRequest cvent that results from the application’s
ConfigureWindow request, the window manager might choose to move or resize
other windows so that the application’s window does not obscure them. Or, the
window manager might choose to refuse this resize request, or alter it so that no
ovcrlapping occurs.

sSun Revision A, of 25 August 1989

microsystems

38 X11/News 1.0 Server Guide

The override-redirect Attribute

4.4. Window Management
in X11/NeWS

4.5. Switching Window
Managers

N
&

It is possible for applications to create windows as children of the root window
and have them not be managed by the window manager. The application does
this by setting the override-redirect attribute on the window. This capability is
useful for pop-up menus, which typically are not decorated in the same way as
more permanent windows.

For more information about how applications should behave in an externally
window-managed environment, see the X11 Inter-Client Communication Con-
ventions Manual (ICCCM)." This manual covers, among other things, how X11
applications can give “hints” about what kind of services they would like from
the window manager.

The X11/News window manager, pswm, manages X11 windows using the News
toolkit Frame objects, as described in section 4.2. pswm relies on the frame and
canvas classes of the News toolkit to do its work, and it inherits the user inter-
faces and graphics capabilities they provide. This allows X11 and NeWs windows
to be managed with the same user interface, providing a seamlessly integrated
environment.

From an X11 application’s point of view, pswm looks just like any other X11 win-
dow manager. pswm has selected for SubstructureRedirect on the root window,
and it acts on redirected requests in the typical X11 fashion, as described above.
However, the implementation of pswm is completely different. Part of pswm is
implemented as News lightweight processes inside the X11/News server, and the
other part is implemented as an ordinary UNIX process.

It is possible to switch window managers simply by stopping the first window
manager and starting the second one. To stop a window manager, you must find
its UNIX process-id, and then send it a signal using the UNIX kil1l command.
You can do this using the ps and grep utilities. For example, suppose you
want to find the id of the currently running pswm process:

When you have found the process id of pswm, you can shut it down by sending it
a TERM signal.

You can now run another window manager. If you follow this procedure, there
will be a short period of time where there is no window manager running. This is
a potentially dangerous situation, because without a window manager, there may
be no way to move the input focus, and there may be no way to start up new
applications. If shutting down the window manager has left you without a shell

7 X11 Inter-Client Communication Conventions Manual (ICCCM), Sun Microsystems, Inc., May 1989.

Sun Revision A, of 25 August 1989

microsystems

Chapter 4 — Window Management 39

X11 Window Managers and
NewsS Windows

NOTE
Restarting pswm

Starting With Other Window

Managers

$

to type commands, you are stuck.

There are several ways of avoiding this. One approach is to kill the old window
manager and start up the new one on a single command line. Suppose you want
to stop pswm and then run a different window manager named xwrm. The follow-
ing command is reasonably safe:

This kills the currently running invocation of pswm, and then immediately runs
swm. This avoids the situation where there is no place to type and no window
manager running.

If you run another X11 window manager, it manages all X11 applications on that
server. News applications running currently or in the future are not managed by
the X11 window manager; they continue to be managed by the Frame objects of
the NeWs toolkit.

News applications manage the input focus in much the same way as they manage
windows. If anX11 window manager is running at the same time as News appli-
cations, they may conflict over the input focus. These situations are not fatal, but
they are inconvenient. A typical problem might be a NeWS application unexpect-
edly grabbing the input focus away from anX11 application.

If you have been running other window managers, and you wish to return to
using pswm, you can simply use the shell to restart pswm in the background:

For pswm to work, both the DISPLAY and the NEWSSERVER environment vari-
ables must be set to point to the same server. This is necessary because pswm
makes both X11 and NeWs connections to the X11/News server. If, for example,
the NEWSSERVER environment variable indicated the X11/NeWs server on the
local host, but the DISPLAY environment variable indicated anX11 server on a
remote host, pswm would make connections to two different servers. If this
occurs, pswm will print an error message and exit. Since pswm requires an X11
and NeWS connection to the same server, it is not possible to run pswm on any X11
server other than X11/News.

The X11/NeWs server starts up pswm automatically. If you wish to run only X11
applications, and you wish also to run another window manager, you can start the
server in X11-only mode. (See Running anX11-Only Server in Chapter 3.) To
start a different window manager in X11-only mode, simply place a suitable com-
mand line in your .openwin-init file. (See the OpenWindows Installation
and Start-Up Guide.)

sun Revision A, of 25 August 1989

microsystems

40 X11/News 1.0 Server Guide

4.6. Problems with There are a number of problems that can occur in an environment with external
External Window window management. Programmers must be careful to avoid these problems.
Management

o Grabbing the server

If your application grabs the server, it cannot manipulate windows unless
they have override-redirect set. Since it has grabbed the server, it prevents
the window manager from processing requests. A program can deadlock the
system if it grabs the server and then executes a request that is redirected to
the window manager.

o Mapping windows

You cannot assume that the window is mapped immediately after you issue
a MapWindow request. For example, if you map a window and then set the
focus to it, the mapping may fail. The reason is that the MapWindow
request is redirected to the window manager instead of mapping the window
immediately. The window manager takes a certain amount of time to
respond and its response is asynchronous. Requests that immediately follow
the MapWindow request are executed before the window manager actually
maps the window. You must wait until you receive a MapNotify event or
an Exposure event before you can issue any requests that assume the win-
dow is mapped.

o Requesting size and position of windows

Do not assume that you will get the window size or position that you
rcquest. The layout policy implemented by the window manager may not
permit this. If you do something that depends on the size of the window,
you should wait until you get a ConfigureNotify event, and use the informa-
tion in it. This feature is meant to empower users by giving them a choice of
window managers; it is not meant to be restrictive.

o Changing window managers

You can kill and start window managers at will. If you kill a window
manager while you have no means to start up another one, you may be left in
a state where you cannot do anything. To avoid this state, use the technique
described in the previous section. Alternatively, you can stop and start the
window managers from a NeWsS psterm window or from a SunView shelltool.
As a last resort, you can login from another machine and start a window
manager.

o Conforming to the ICCCM

You should write your application to work as well as possible with any win-
dow manager that conforms to the ICCCM. Applications or window
managers that violate the ICCCM should be fixed. This will help ensure that
they are inter-operable with other ICCCM-conforming window managers and
applications.

o Dcpending on a particular window manager

Your application should not rely on the behavior of a particular window
-manager. Different window managers may have differing behavior, even

&,
1@ S u n Revision A, of 25 August 1989

2
microsystems

3

Chapter 4 — Window Management 41

though both conform to the ICCCM. You should depend only on behavior
that is guaranteed to be present in ICCCM-conforming window managers.

@::@ SUun Revision A, of 25 August 1989

microsystems

Font Support

5.1. Server-Supplied Fonts
Locating Fonts
The Core Set of Outline Fonts

5.2. Font Families .
5.3. Accessing and Scaling Fonts
5.4. Using Other Fonts

Font Support

Times

Helvetica ...

Helvetica Narrow

Symbol

Courier

New Century Schoolbook

Palatino

ITC Bookman

ITC Avant Garde

ITC Zapf Dingbats

ITC Zapf Chancery

Lucida Family

Bembo

Rockwell

Gill Sans

The Minimum Set of Fonts for the Server

45

45
45
46
46
46
46
46
46
47
47
47
47
48
48
48
48
48
48
49
49
49
50

5.5.

5.6.
5.7.
5.8.

3.9,

Adding Fonts

Adding F3 Fonts
Generating Bitmap Files

Converting NeWs 1.1 Fonts for Use with the X11/News Server
Font Aliases

Fonts in the X11 Window System

Using OpenFonts with the X11 Protocol

X11 Access to News Fonts

Font Limitations

51
51
51
52
52
52
52
53
53

5.1. Server-Supplied Fonts

Locating Fonts

NOTE

4

Font Support

The X11/NeWs server supports a large variety of fonts, such as standard English
text fonts, symbol fonts, and foreign language fonts. A set of fonts is provided
with the server; other fonts can be added. In addition, the server supports two
types of font representation. This chapter describes the representations sup-
ported, the system-supplied fonts, and the use of font conversion tools.

The fonts provided by the X11/NeWws server are contained in the directory
$OPENWINHOME/lib/fonts, There are two types of font representation:
outline fonts (named OpenFonts) and bitmap fonts. Both types of font
representation can be used and shared by X11 and NeWs.

o Qutline fonts

Each outline font is provided as an OpenFonts F3" format scalable outline
file. This means a single outline font can be arbitrarily scaled to a variety of
sizes, thus replacing a whole family of bitmap files. The typical filename
extension for these files is . £3b. These fonts can be used to generate arbi-
trarily transformed and rotated characters from NeWs. X11 programs use
these fonts to get characters that are arbitrarily transformed, but are not
rotated. When you use a character from an F3 font for the first time, the bit-
map must be created; then it can be cached and reused. If initial display-
time for previously undisplayed characters is critical, a bitmap font may be
preferable.

o Bitmap fonts

Each size-specific bitmap font is provided as a file in binary format; this for-
mat is native to the server. The typical filename extension for these files is

. £b. For smaller sizes, some fonts provide a hand-tuned bitmap. The tuned
bitmap provides superior results and should be used, if available.

Since the bitmap font files are binary files, they cannot be shared between
machines of different architectures (for example, Sun4 and Sun 386i).

The X11/News server uses the value of the environment variable FONTPATH to
locate fonts. The fonts provided with the server are located in the default font
directory, SOPENWINHOME/1ib/fonts, which is the default value of
FONTPATH. You may add fonts to the default font directory, and you may
create additional font directories.

sun 45 Revision A, of 25 August 1989

microsystems

46 x11/News 1.0 Server Guide

The Core Set of Outline Fonts

Times

Helvetica

Helvetica Narrow

Symbol

Courier

\

FONTPATH is a colon-separated list of directories, which the server searches in
order when looking for a particular font. You can modify FONTPATH from X11
by using XSetFontPath () or the shell command xset:

From News, use the BuildFontPath operator to modify FONTPATH:

()
(pathl :path2:path3) BuildFontPath

. J

The X11/News server provides a core set of 57 F3 format typefonts. These fonts
contain outline and typographic information that preserves the essential proper-
ties of a typeface when characters are scaled or rotated. The core set includes the
35 fonts commonly found in the Apple LaserWriter® Plus printer.8 They are
compatible in appearance, metrics, character set, and trademarks with the Laser-
Writer fonts.

The descriptions of the F3 format fonts below should assist you in choosing the
proper font for your needs.

Times , the most widely used typeface in the world, was originally designed for
use in newspapers.? It is a good choice for manuals, books, or any application
involving long sections of text.

Helvetica is a clean, modem design that is best for headings, displays, or short
passages of text.10

This is a compressed design that is used when space is at a premium, such as in
captions to illustrations. It is hard to read except for short texts.

Symbol contains characters for the setting of mathematics. The character set for
the Symbol font is listed in the file Symbol .map.

Courier is a digital adaptation of a typewriter face and is a constant-width, or
monospaced, font. It allows for easier alignment of text in applications such as
computer programs, or when the appearance of a letter made by a typewriter is
required.

8 LaserWriter Plus is a registered trademark of the Apple Computer Corporation.
9 Times is a trademark of the Linotype AG and/or its subsidiaries.
10 Helvetica is a trademark of the Linotype AG and/or its subsidiaries.

sun Revision A, of 25 August 1989

microsystems

Chapter 5 — Font Support 47

New Century Schoolbook
Figure 5-1

Palatino

ITC Bookman

ITC Avant Garde

@

Long favored by publishers for use in school textbooks because of its high degree
of legibility, New Century Schoolbook is a good choice for books, manuals, and
newsletters. Because of its design, it is also a good choice for use on computer

screens.

The Core Set of Outline Fonts

AvantGarde-Book
AvantGarde-BookOblique
AvantGarde-Demi
AvantGarde-DemiOblique
Bembo

Bembo-Bold
Bembo-BoldItalic

Bembo-Italic
Bookman-Demi
Bookman-Demiltalic
Bookman-Light
Bookman-Lightltalic
Courier
Courier-Bold
Courier-BoldOblique
Courier-Oblique
GillSans

GillSans-Bold
GillSans-Boldltalic
GillSans-Italic

Helvetica

Helvetica-Bold
Helvetica-BoldOblique
Helvetica-Narrow
Helvetica-Narrow-Bold
Helvetica-Narrow-BoldOblique
Helvetica-Narrow-Oblique
Helvetica-Oblique
Lucida-Bright

Lucida-BrightDemiBold
Lucida-BrightDemiBoldItalic
Lucida-Brightltalic

LucidaSans

LucidaSans-Bold
LucidaSans-Bolditalic
LucidaSans-italic
LucidaSansTypewriter
LucidaSansTypewriter-Bold
NewCenturySchlbk-Bold
NewCenturySchlbk-BoldItalic
NewCenturySchlbk-Italic
NewCenturySchlbk-Roman
Palatino-Bold
Palatino-BoldItalic

Palatino-Italic

Palatino-Roman

Rockwell

Rockwell-Bold
Rockwell-BoldItalic
Rockwell-Italic

ZyupoA (Symbol)

Times-Bold

Times-BoldItalic

Times-Italic

Times-Roman
ZapfChancery-MediumItalic
*&Dﬁ%*l%@GVA (Zapf Dingbats)

One of the most popular of all the fonts available for laser printing, Palatino is
based on an elegant design that is especially good in formal documents, such as
books, presentations, or corporate communications.!! The italic has a calli-
graphic feel and works well on invitations and posters.

ITC Bookman is good for use in less formal applications such as flyers and
advertising.12 It also works well on low-resolution computer screens.

ITC Avant Garde is another face that works well when a distinctive design but
less formality and readability is needed.!3 It is commonly used in advertising for
large display of short amounts of text.

11 Palatino is a trademark of the Linotype AG and/or its subsidiaries.
12 TTC Bookman is a trademark of International Typeface Corporation.
13 ITC Avant Garde is a trademark of Intemational Typeface Corporation.

Su n Revision A, of 25 August 1989

microsystems

48 X11/News 1.0 Server Guide

ITC Zapf Dingbats

ITC Zapf Chancery

Lucida Family

Bembo

Rockwell

Gill Sans

ITC Zapf Dingbatsm are symbols such as bullets, pointing hands, stars, and
decorations.14 They help to draw attention to certain parts of documents where
special emphasis is required. The Dingbats character set is listed in
Dingbats.map.

ITC Zapf Chancerym is a font that imitates handwritten calligraphy.1 It is good
for formal invitations, menus, or large, informal display of short amounts of text.

The core set also includes the Lucida® typefonts, which are used in the OPEN
LOOK graphical interface.16 These faces were designed specifically for good
appearance on low-resolution digital devices. They are a coordinated family of
designs that includes a sans serif, a serif, and a typewriter font (Lucida Sans,
Lucida Bright, and Lucida Sans Typewriter, respectively).

Bembo has long been a favorite for high-quality publications, such as books
and magazines.!” The design is an adaptation of a classical Renaissance typeface.

Rockwell isa square serif font and a good choice for headings.!® In large
display, Rockwell has a strong, emphatic design.

Originally designed (and still used) for the signs in the London Underground,
Gill Sans " is an excellent choice when a sans serif is needed for text or
display.1? Gill Sans is more distinctive than Helvetica and is therefore a favorite
of graphic designers for business cards, product packages, and signs.

14 TTC Zapf Dingbats is a trademark of International Typeface Corporation.
15 TTC Zapf Chancery is a trademark of Interational Typeface Corporation.
16 Lucida is a registered trademark of Bigelow and Holmes.

17 Bembo is a trademark of Monotype Ltd.

18 Rockwell is a trademark of Monotype Ltd.

19 Gill Sans is a trademark of Monotype Ltd.

S un Revision A, of 25 August 1989

Chapter 5 — Font Support 49

The Minimum Set of Fonts for
the Server

Table 5-1

5.2. Font Families

5.3. Accessing and Scaling
Fonts

N

Due to space constraints, users may elect to install a subset of the core set of
fonts in the server. These fonts are the common fonts for POSTSCRIPT preview-
ing, XView programs, and X11 applications.

Minimum Set of Fonts
Outline fonts Bitmap fonts
Courier fixed
Courier-Bold cursor
Courier-BoldOblique olglyph
Courier-Oblique Icon
Helvetica NeWSCursor
Helvetica-Bold OLCursor
Helvetica-BoldOblique Screen
Helvetica-Oblique Screen-Bold
LucidaSans

LucidaSans-Bold
LucidaSans-BoldItalic
LucidaSans-Italic
LucidaSansTypeWriter
LucidaSansTypeWriter-Bold
Times-Bold
Times-Boldltalic
Times-Italic

Times-Roman

A font family can consist of any group of related fonts. For example, a family
might include an F3 format font and a number of bitmap files to be used when
rendering the font at particular sizes. In the case of bitmap fonts, a family might
be a set of files that provide the same typeface in different sizes.

The server needs to know which groups of files constitute a font family. The file
Families.list contains a master list of font families. Each font family is
represented by a file whose name consists of the name of the font and the exten-
sion . £f.

The font family files and the master list of families are generated by the
bldfamily(l) program. (Seethe bldfamily(l)manual page in Appendix
A.) Once created, each file is a key to the fonts in a family and is associated with
a POSTSCRIPT language name (such as Helvetica-Oblique).

When a particular font name is specified in a program, for example Helvetica-
Oblique, the server locates the font family with the same name. Information in
the family is also used to scale a font to obtain a particular point size.

o Bitmap fonts

The system-supplied bitmap fonts include several versions of each named
font; each version is a different point size. When a specific font name and

sun Revision A, of 25 August 1989

microsystems

50 X11/News 1.0 Server Guide

5.4. Using Other Fonts

NOTE

4

N
< Sun Revision A, of 25 August 1989

point size are specified, the associated family is searched for the particular
point size. If no font is found, the server uses the font whose size is closest
to the specification without being larger.

It is possible to scale a bitmap font, using commands such as the
POSTSCRIPT language operator scalefont. The server finds the associated
family, and the font with the closest size is used to generate a new font of the
requested point size. The new font is added to the family.

Thus, for bitmap fonts, requesting a font of a particular point size may result
in a smaller point size being used; requesting that a font be scaled results in
a font of the requested size being generated (if it does not already exist).

o Qutline fonts

The POSTSCRIPT language is scale- and resolution-independent in all
respects, including that of font size specification. Thus, for any outline font,
the specified name is used to find the associated font family; it is then scaled
to the size specified. For outline fonts, a request for a particular point size
and a request that a font be scaled to achieve a particular point size invoke
the same processing. The result is always a font in the size requested.

To use additional fonts with the X11/NeWs server they must be converted to an
appropriate format with the convert font(1) program. This program reads in
a set of named font files and dumps them out in a user-specified format. The pro-
gram can read font files that have the following formats:

o Adobe ASCII bitmap format

o Adobe ASCII metric format

0 NeWs 1.1 binary format

o X11/News binary format

o X11 BDF bitmap format

o vfont(5) binary format

The program can convert the font files to the following formats:
o Adobe ASCII bitmap format

o NeWs 1.1 binary format

o X11/News binary format (the default)
o vfont(5) binary format

o X11 BDF bitmap format

The preferred font format for exchanging bitmap files is Adobe bitmap font for-
mat. By default, the server uses version 2.1 of this; it also recognizes both the
X11 interpretation of this version and the earlier 1.0 and 1.4 versions. See the
manual page convertfont(1) for further information.

The font directory may contain binary fonts that use an older format, favored by
previous versions of NWS. The convertfont program handles these fonts.

microsystems

Chapter 5 — Font Support 51

5.5. Adding Fonts

Adding F3 Fonts

Generating Bitmap Files

You may add fonts to augment the core set of fonts that comes with the X11/News
server. To install a new font, you must run bldfamily(1).

The new font should consist of a font file (for example, newfont . £3b), a map
file (for example, Special . map), and possibly some hand-tuned bitmaps (for
example, NewFont10. fb and NewFont12. £b). If the new font uses one of
three standard encodings (Latin, Dingbats, or Symbol), the map file is unneces-

sary.

You can install a new font anywhere in the file system. If you have no special
need, it is simplest to use the default font directory. You must run bldfam-
i1ly(1) with the pathname of the directory where the new font is located.

Remember that if your new font resides somewhere other than the default font
directory, you must set the value of FONTPATH to include the new directory.
(See the section Locating Fonts.)

To install the map file, use the program map2ps(1) to create entries in two
directories: the EncodingDirectory and the ExternalEncodingDirectory.
map2ps produces a file called fontmaps . ps, which you must load into the
X11/NeWs server before using any of the new fonts.

You may want to build a bitmap version of an outline font. The bitmap version
loads faster, since the server does not need to scale it, and the ASCII format file
can be ported to other servers.

You can use the utility makeafb(1) to produce bitmap fonts from F3 outline
fonts. For example, if you want to produce a 32-point Times-Roman bitmap font
file, execute the following command:

@

You can generate bitmap fonts for specific sizes of an F3 font using the mak-
eafb(1) program. (See the makeafb(l) manual page for more information.)
Once a bitmap file is created, you need to run bldfamily(1) to update the
information on this font family and convert font(1) to convert the map file.

sun Revision A, of 25 August 1989

microsystems

52 X11/News 1.0 Server Guide

5.6. Converting News 1.1
Fonts for Use with the
X11/NeWS Server

5.7. Font Aliases

NOTE

5.8. Fonts in the X11
Window System

Using OpenFonts with the X11
Protocol

NOTE

@

_ J

For example, to generate bitmap files for the font shapefont . £ 3b, which uses
the non-standard map file Shapes .map, you run the following sequence of pro-
grams:

The binary format changed between News 1.1 and X11/News; therefore, you need
to update your private fonts. Use convertfont to convertold . £b files into
the current version.

Fonts can be aliased in your .user . ps file, as follows:
s 2
FontDirectory begin

/myname Isystemname _FontDirectorySYN

/myname2 Isystemname2 _FontDirectorySYN

end

The names in systemname must be existing fonts. They must also be the true
name of the font — the form <name>-<pointsize> does not work.

X11 defines font names to be case insensitive. To solve case problems, the font
names are all converted to lower case by the server when it tries to find them in
the FontDirectory. Since the above example is actually adding new keys (which
are case sensitive) to the FontDirectory dictionary, any name to be used from
X11 must be in lowercase, or the X11 code will be unable to find it.

The following sections describe how fonts are handled in X11 window system.

X11 can access the OpenFonts scaling technology through an enhanced version of
the X Logical Font Description (X LFD) protocol. The X LFD gives numeric
values for pixel size, point size, resolution, and maximum width. Since these
variables have an indefinite range of values for a scalable font, these fonts are
reported (through x1sfonts orthe XListFonts () request) as having 0 in
these fields. To use them, take the reported name and replace the pixel size or
point size field with the desired value. Note that the point size argument is in
decipoints, and it takes precedence if both values are supplied.

For the server to parse these values correctly, the name must be supplied with all
the dashes intact. Using wildcards to leave out sections of the name fails, though
wildcards are safe to use for individual fields in the name.

Alternatively, the fonts can be accessed by their POSTSCRIPT language names,
with the point size appended to the name (for example, Times-Roman-23). This
method works for any News font, though scaling happens only for those fonts that
can be scaled. Note that this is not a portable way of specifying fonts and should

S u n Revision A, of 25 August 1989

microsystems

Chapter 5 — Font Support 53

X11 Access to NeWS Fonts

5.9. Font Limitations

be avoided when writing portable code. This font specification is much easier to
type and remember than an X LFD format and may be preferable as a command
line or . Xdefaults value.

X11 can use any font in the font dictionary. The protocol requests XListFonts
and XListFontWithInfo return the list of currently installed fonts.

The protocol requests attempt to return all available fonts. However, in
OpenWindows, the presence of infinitely scalable NeWs fonts means that the
number of available fonts is itself infinite. Therefore, the X11/NeWs server
responds to the requests by returning a list that contains all bitmap fonts (includ-
ing all X fonts) and all OpenFonts.

X11 specifies that font names are ISO-Latin 1, case independent. NeWws, however,
uses mixed capitals in font names. Therefore, in the font dictionary, font
synonyms are used for NeWs fonts: each NeWs font has a lowercase symbol point-
ing to the real font.

The following fonts are included for compatibility with X11, SunView, and
XView. They cannot be rotated or scaled, and thus should not be used from
NeWs applications.

Screen

Screen-Bold
Charter-Black
Charter-Black-Italic
Charter-Italic
Charter-Roman

fixed

9x15

8x13

8x13bold

?%% sUun Revision A, of 25 August 1989

microsystems

Color Support

Color Support

Color in the News Window System
Color in the X11 Window System

6.1. X11/News Visuals and Colormaps

X11/News Visuals

6.2. Recommendations

X11 Programmers

NeWS Programmers

6.3. News Dynamic Colors

57

57
57
57
58
59
59
60
60

Color in the News Window
System

Color in the X11 Window
System

6.1. X11/News Visuals and
Colormaps

Color Support

This chapter is an introduction to the color support provided by the X11/NeWs
server. It describes the differences between the color-handling techniques of X11
and News window systems; it also makes recommendations on methods of pro-
gramming in color.

This chapter assumes the reader’s familiarity with the principles of color window
systems. For information on color-related types and operators provided by News,
see the News Programmer’s Guide. For information on X11-specific methods of
color support, see the appropriate X11 documentation.

In News, each color can be specified as either a red/green/blue or a
hue/saturation/brightness triplet. (On grayscale terminals, the standard NTSC tri-
plet values of .56/.33/.11 are used for every shade; variation is produced by
increasing or decreasing the brightness.)

When an application requests a particular color, the server attempts to match the
specified color with the colors available on the current hardware. Only two
colors, black and white, arc available on a monochrome server. The server uses
techniques such as dithering and color substitution to make the best possible
approximation of the requested colors. Once a color has been chosen and used,
the application can call the contrastswithcurrent operator to determine the simi-
larity of the used color to the requested color.

The graphics context supports the concept of a current color; each specified
drawing operation is automatically performed in the current color.

The X11 protocol can be used with several different classes of display device; it
allows applications to treat each class of device differently. Thus, if applications
need to use color, they should query the server to discover the methods of color-
display that it supports; otherwise, calls made to routines that use colors may fail.
The queries required of X11 applications that use the X11/NeWs server are
described throughout this chapter.

A hardware colormap is a color lookup table that determines which color is
displayed for a specified pixel value. Colormaps can be of two kinds:

un 57 Revision A, of 25 August 1989

microsystems

58 X11/News 1.0 Server Guide

X11/News Visuals

S
@

o A static colormap
This contains fixed color values that cannot be changed.
o A dynamic colormap

This contains values whose color-correspondence can be modified by an
application.

X11 applications sometimes require access to a dynamic colormap; existing News
applications should never require such access. The X11/NeWs color model is
therefore created to satisfy the requirements of both protocols.

Most color framebuffers supported by X11/News have 8 bits per pixel; thus, each
pixel has 256 possible colors. Each pixel value is associated with a color accord-
ing to the colormap; the colormap contains 256 slots, one for each color.

The correspondence of a canvas to the color mappings contained in a hardware
colormap is controled by a system-defined facility known as a visual. The
X11/NeWs server currently uses two visuals for the 8-bit color framebuffer:

o The StaticColor visual

This visual, which in X11 terminology is the default visual, is automatically
usecd by all News clients. It is associated with a fixed colormap that uses
only 240 colors. All X11 applications using XAllocColor on the default
color map also use this visual and, like NeWs clients, are given the best avail-
able match to the color they request.

o The PseudoColor visual

This visual must be used by X11 clients that perform colormap-modification
operations. It is associated with a colormap that contains all 256 available
colors; the first 16 color values required by the client are automatically asso-
ciated with the 16 slots not used by the StaticColor default visual.

Note, however, that if one or more X11 clients together require more than 16
colors, additional slots arc reclaimed from the 240 slots in the default visual;
in this situation, the colors currently displayed by News and X11 applications
may change unpredictably.

This configuration allows X11 applications that perform colormap modifications
to run simultaneously with NeWs and X11 applications that do not. The
configuration favors applications that are able and willing to use colors that are
very close to the ones desired.

Note that many X11 applications do not anticipate the availability of more than
one visual; thus, they simply use the default visual and call XDisplay-
Cells () to determine its depth (a depth greater than two indicating the availa-
bility of color). However, in the context of the X11/NeWs server, this procedure
should not be relied on. It might lead to an X11 application accidentally attempt-
ing colormap modifications on the default StaticColor visual, which results
in error.

Sun Revision A, of 25 August 1989

microsystems

Chapter 6 — Color Support 59

NOTE

6.2. Recommendations

X11 Programmers

NOTE

N
@

Note also that if an X11 client program ascertains the availability of color and
then attempts to manipulate colors with calls such as XAllocColorCells (),
the program crashes, since the default visual for color X11/News servers is Sta-
ticColor: client programs wishing to manipulate the colormap must access
the dynamic visual, which is PseudoColor.

On monochrome machines (which usually have the bwtwo(4S) framebuffer), an
attempt to return the available visuals by calling XGetVisualInfo () returns
only a two-color StaticGray visual.

This section contains recommendations for programmers who intend to use the
X11/News color support facilities.

If you are programming in X11, proceed as follows:

o Do not attempt to use a visual before you have checked on all supported
visual types, using XGetVisualInfo (), and have checked for the best
match obtainable from these, using XMatchVisualInfo ().

o Examine your application and ascertain whether you really need to manipu-
late your own colormap. If you do not, you should use the default Sta-
ticColor visual.

o If you know exactly which colors you need, use XAllocColor () and
XAllocNamedColor () to obtain the closest possible match from colors
in the server’s fixed colormap. (Note that these routines can also be used in
the context of the PseudoColor visual.)

o If you need to manipulate colors with the PseudoColor visual, try to
manipulate as few colors as possible, thereby avoiding the chance of an
overlap occurring between the StaticColor and PseudoColor visuals.

o Do not access the 1ib/rgb. * files used by some X11 implementations:
these files are superfluous in X11/NeWs, since X11-named colors (such as
“aquamarine” and “cornflowerblue”) are looked up in the same ColorDict
POSTSCRIPT language dictionary used by News, which is located in
SOPENWINHOME/etc/NeWS/colors.ps.

The X11 protocol specifies that color names are case-insensitive; thus, any color-
name specified by anX11 application is converted into lowercase before it is
looked up. Therefore, if you add your own color names to ColorDict, make them
lowercagg. For a more detailed treatment of this subject, see Visualizing X11
Clicnts.

20 David Lemke and David S. H. Rosenthal, Visualizing X11 Clients, pp 125-138, USENIX Conference, San
Dicgo, CA, February 1989.

sun Revision A, of 25 August 1989

microsystems

60 x1iNews 1.0 Server Guide

NeWS Programmers If you are programming in News, proceed as follows:

o Use the named colors in ColorDict in preference to user-defined rgb or hsb
shades; the named colors are likely to be closer to the actual shades pro-
duced on the monitor and will not require dithering.

o Do not rely on XOR (setrasteropcode) to provide complementary colors.
16 slots of the colormap contain values that will be changed by certain X11
applications; thus, the complements of these values will also change
unpredictably.

6.3. NewS Dynamic Colors NeWs supports the same dynamic color operations as X11. For further informa-
tion, sce the NeWsS Programmer’s Guide.

S
@:‘{& sun Revision A, of 25 August 1989

microsystems

Using SunView Windows

Using SunView Windows

Running SunView Applications
Bugs in SunView/X11/News Coexistence

Inconveniences

Screen Damage

Input Mismatches

63
63
64

64

64

Running SunView
Applications

NOTE

Using SunView Windows

You can run unmodified SunView (or SunWindows-based) binaries on the
X11/News server, thus, SunView windows can be displayed on the screen simul-
taneously with News and X11 windows.

Note that when multiple windows are used in this way and are made to overlap,
the SunView windows always obscure the windows and menus generated by X11
or NeWs programs. (This occurs because the root window is managed by
X11/NeWs rather than by the SunView programs; the SunView programs effec-
tively update the display without reference to the X11/News windows.) Each Sun-
View window is surrounded by a white margin; this prevents leftover cursor
images from appearing when the cursor is moved between the SunView window
and the X11/NeWS environment.

Running SunView tools under X11/INeWS when X11/NeWS has been initialized from
within SunView is not supported on color displays.

If you run X11/News, note the following:
o Multiple SunView applications may run at the same time.
o SunView cross-hairs function and appear correctly.

o Cut and paste selections can be exchanged between X11/News and SunView
programs. However, secondary selections between the two environments
should not be attempted.

o Old versions (back to 1.1) of SunWindows-based applications work as well
as they would under SunView.

To start a SunView application, type the application’s full pathname. SunView
applications are stored in /usr/bin. Thus, the following line starts the Sun-
View mailtool:

f{?f S UL T 63 Revision A, of 25 August 1989
mic

rosystems

64 X11/News 1.0 Server Guide

Bugs in SunView/X11/NeWws
Coexistence

Inconveniences

Screen Damage

Input Mismatches

This ability to run SunView programs from X11/NeWs is useful but not flawless.
The following subsections describe the problems that exist.

o A color SunView application needs the cursor over its window in order to
sce the application’s true colors.

o Annoying messages, such as the following, may appear on the console:

Window display lock broken after time limit exceeded \
by pid nnn

To reduce the occurrence of this problem, adjust the display lock timeout by
modifying the kernel with the adb(1) command; see Section 7.5, Kernel
Tuning Options, in the SunView System Programmer’s Guide.

Screen damage sometimes (though rarely) occurs when you open a SunView
application over the cursor that is on X11/News’ part of the screen. To repair the
damage, use the Refresh menu command. '

SunView sets up the kb(4S) keyboard driver in the kernel to deliver encoded
events, while X11/News uses an unencoded keyboard. The X11/NeWs server resets
the keyboard state to SunView encoding when the keyboard focus moves into a
SunView window and when X11/NeWs exits; therefore, you should not notice the
difference. However if X11/News hangs for some reason, you may be left with
the keyboard producing random characters in SunView windows. The program
kbd mode switches the keyboard between the different modes; you can login
remotely to your machine and type kbd_mode -e to reset to SunView mode.

Since the keyboard state is changed when you change the keyboard focus
between X11/News and SunView, do not hold any keys down when you move the
mouse from one environment to the other; the environment you were in to begin
with never sees the key going up, and thus is confused about the keyboard’s state
when you re-enter it. This may leave you in secondary selection mode. You
should be able to clear this by pressing the key twice (usually in
X11/N¢WS or SunView).

If this does not reset the statc of the function keys, you can login remotely to
your machine and type clear_ functions(l)to get SunView’s selection
mechanism out of a constant secondary sclection mode.

If you have SunView and X11/NeWS running on separate displays, you can invoke
these operations more conveniently if you add Reset Selection clear functions
to your SunView rootmenu file. For example:

"Reset Keyboard" kbd mode -e

Another problem can occur if a SunView program enters fullscreen access mode
to prompt the user for keyboard input when the keyboard mode is still set to
unencoded. Anexample of this is an application prompting for a password
before allowing the application to run. A workaround for this is to make sure
that a SunView application has the keyboard focus before invoking an operation
that rcquires a prompt.

S
@:@ sun Revision A, of 25 August 1989

microsystems

NewS Manual Pages

NeWS Manual Pages

24t08.1

bldfamily.1

buildmenu. 1

convertfont.1

cps.1

journalling.1

kbd_mode.1

1df.1

makeafb.1

mkiconfont.1

newshost.1

newsserverstr. 1

objectdiff.1

objectwatcher.1 ..

openwindemos.6
pageview.1

24TO8(1) USER COMMANDS 24TO8 (1)

NAME

24108 — convert a 24 bit rasterfile to an 8 bit one suitable for X11/NeWS.
SYNOPSIS

24to8 [—v1[—q][inraster|—1][outraster]
DESCRIPTION

24108 takes as input a 24 bit Sun rasterfile(5) and reduces the depth of the image, from truecolor to 8 bit
colormapped index color. 24t08 uses Floyd/Stienberg dithering to achieve high quality images while main-
taining the X11/NeWS static colormap.

If both filenames are missing, the source rasterfile is read from stdin and the output rasterfile is written to
stdout. If there is only one filename, then it is interpreted as the input rasterfile. To have a named output
rasterfile and still read the input rasterfile from stdin, use a dash (-) in place of the input filename.

OPTIONS
—v Verbose mode will print information as it processes the image. (The default is to be silent.)

—q Query (prints list of options)
BUGS
Floyd/Stienberg dithering could be bidirectional and use blue noise for better results.
SEE ALSO
Ipr(1), 8t024(1), tga2ras(1), rgb2ras(1), ras2ps(1)
AUTHOR
Patrick Naughton (naughton@wind.sun.com)

COPYRIGHT
Copyright (c) 1989 by Sun Microsystems, Inc.
Permission to use, copy, modify, and distribute this software and its documentation for any purpose and
without fee is hereby granted, provided that the above copyright notice appear in all copies and that both
that copyright notice and this permission notice appear in supporting documentation.

Sun Microsystems Last change: 21 Mar 1989 67

24TO8(1)

68

USER COMMANDS

Last change: 21 Mar 1989

24TO8(1)

Sun Microsystems

BLDFAMILY (1) USER COMMANDS BLDFAMILY (1)

NAME

bldfamily — build font family description
SYNOPSIS

bldfamily [—d dirname 1 [n]
DESCRIPTION

bldfamily scans dirname for News font files (files with extensions .fb and .fm) and constructs a News font
family file for each group of font files with the same family name. bldfamily also creates a file named
Families.list that contains a list of all the font families in the directory. If dirname is not specified, it
defaults to $FONTDIR if defined, to °.’ otherwise. Each family file that is built is given the family name
followed by the suffix .ff.

A font family is a set of font files that are grouped together to provide a single POSTSCRIPT font. In the
POSTSCRIPT language, each font has a name, such as Times-Roman, and can be rendered in many dif-
ferent sizes. A News font file is an instance of a POSTSCRIPT font at a particular size. Font family files con-
tain the information necessary for NeWs to pick the right bitmap font.

OPTIONS
—d dirname Specifies the directory to scan and put the .ff file into.
—fn Sets the maximum length of an output filename (excluding extension) to n . When writing
News format files, NeWs normally constructs the output filename from the name of the
font and its scaling factors. Some systems cannot cope with long file names, so this
option can be used to squeeze the name heuristically. The default value is 8.
EXAMPLE

example% bldfamily -d /usr/newfonts

In this example, bldfamily scans /usr/mewfonts and builds a font family file called
/usr/newfonts/Boston.ff.

SEE ALSO
convertfont(1)

TRADEMARK
POSTSCRIPT is a registered trademark of Adobe Systems Inc.

Sun Microsystems Last change: 14 June 1989 69

BLDFAMILY (1)

70

USER COMMANDS

Last change: 14 June 1989

BLDFAMILY (1)

Sun Microsystems

BUILDMENU (1) USER COMMANDS BUILDMENU (1)

NAME

buildmenu — builds an OpenWindows (tNt) Menu from a SunView style menu file.

SYNOPSIS

buildmenu [—root] [—title title] [—position position] [—pinnable] [menufile]

DESCRIPTION

The

buildmenu converts a SunView menu file into the NeWS toolkit PostScript commands to build the same
menu under OpenWindows.

If the filename is missing, the menufile is read from “/.openwin-menu. If the filename is >.?, the menufile is
read from stdin. In any case, the PostScript language is written to stdout.

The expected usage would be for the user (o insert a submenu into the default root menu rather than simply
copying the default root menu and modifying it.

For example if you have a SunView style menu in "/.mymenu you would put this line in your .openwin-init
to append your menu to the default OpenWindows root menu.

buildmenu /.mymenu -position 99 -title “My Tools” -pinnable | psh

OpenWindows Menu File Format

The file $OPENWINHOME/lib/openwin-menu contains the specification of the default OpenWindows
menu. You can change the OpenWindows menu by creating your own file and storing it in your home
directory with the name .openwin-menu.

Lines in the file have the following format: The left side is a menu item to be displayed, and the right side
is a command to be executed when that menu item is chosen. Lines may be continued to the next line by
putting a backslash at the end of the line to be continued. Blank lines and comment lines beginning with
*# are ignored.

The menu items can be any string as long as strings with embedded blanks are delimited by double quotes.
The SunView notion of having the full pathname of an icon file delimited by angle brackets is unsupported
and the basename(1) of the icon file is used as the item label in place of the icon.

There are five reserved-word commands that can appear on the right side.

EXIT Exit OpenWindows (requires confirmation).
REFRESH Redraw the entire screen.
MENU This menu item is a pull-right item with a submenu. If a filename follows the MENU

command, the submenu contents are taken from that file, (shell varaiables and ~’s are
interpreted correctly). Otherwise, all the lines between a MENU command and a match-
ing END command are added to the submenu.

END Mark the end of a nested submenu. The left side of this line should match the left side
of a line with a MENU command. If the string PIN follows the END command then this
submenu has an OpenLook pin on it.

POSTSCRIPT This rest of the line is to be directly interpreted as PostScript language code when the
item is invoked.

If the command is not one of these five reserved-word commands, it is treated as a command line and exe-
cuted. Full shell interpretation is done on the commands.

Here is a menu file that demonstrates all of these features

"Mail reader” mailtool

"My tools" MENU ~/.rootmenu

"Click to type" POSTSCRIPT /ClickFocus setfocusmode
"Follow mouse" POSTSCRIPT /CursorFocus setfocusmode
"Print selection” news_selection | Ipr

Sun Microsystems Last change: 10 Jul 1989 71

BUILDMENU (1) USER COMMANDS BUILDMENU (1)

"Nested menu" MENU
"Command Tool" cmdtool
"Shell Tool" shelltool
"Nested menu" END PIN
Repaint REFRESH
Quit EXIT
OPTIONS
—root

This replaces the existing rootmenu rather than inserting or changing an item in it. OpenWindows
uses this mode to install your default menu from “/openwin-menu or
$OPENWINHOME;/lib/openwin-menu if “/.openwin-menu does not exist.

—title title
This sets the name of the menu item you wish to insert. If there already exists an item in the root
menu with the label "title" then this menu item is replaced by this menu. If you have also set -root
above then this sets the title of the root menu.

—position position
This sets where you would like this item to be inserted in the root menu. This option has no effect if
you specify -root, since you are replacing the whole root menu. The default is 0, meaning insert at
the beginning of the root menu.

—pinnable
This makes the top level menu you are inserting have an OpenLook pin. The default is to not have
one.
FILES
$SOPENWINHOME;/lib/openwin-menu
SEE ALSO

xnews(1), sunview(1)

72 Last change: 10 Jul 1989 Sun Microsystems

CONVERTFONT (1) USER COMMANDS CONVERTFONT (1)

NAME
convertfont — dump font out in some other format

SYNOPSIS
convertfont [—al—b |—v|—vfl—x] [—c comment] [—d dirname] [n] [—n fontname 1 [-S1[-sn] |
—t] [—-tv][—ta] filenames

DESCRIPTION
convertfont reads in the set of named font files and dumps them out again according to the specified
options, effectively converting the files from one font format to another. convertfont is typically used to
generate fonts for use with the X11/News window system.

There are five types of font file that convertfont can read: Sun standard vfont format, Adobe ASCII bitmap
format, Adobe ASCII metric format, News font format, and CMU (Andrew) format. The format of the input
font is determined automatically by inspecting the file. It can write fonts out in one of three formats:
Adobe ASCII, News, and vfont. The default output format is News.

OPTIONS

—-a Selects Adobe ASCII output format. This is the format that you should use when tran-
sporting fonts from one machine architecture to another. The output file extension will
be .afb or .afm.

-b Selects News output format (the default). The output file extension will be .fb. If the
input file is an Adobe ASCII metrics file, the extension will be .fm.

-V Selects vfont output format. The output file extension will be .vft.

—vf Selects vfont output format. The output file extension will be .vft. Forces the characters

to be fixed width.

—c comment Sets the comment field of the font. The Adobe ASCII and News font formats support an
internal comment that accompanies the font. This is usually used to contain copyright or
history information. It is normally propagated automatically.

—d dirname Specifies the directory into which the font files will be written. If the FONTDIR environ-
ment variable is set, it is used as the default value. Otherwise, if the OPENWINHOME
environment variable is set, SOPENWINHOME/fonts is used as the default value. Other-
wise ‘.’ is used.

—fn Sets the maximum length of an output filename (excluding extension) to n. When writing
News format files, NewS normally constructs the output filename from the name of the
font and its scaling factors. Some systems cannot cope with long file names, so this
option can be used to squeeze the name heuristically. The default value is 8.

—n name Forces the output font name to be name. It is important to not confuse the name of the
font with the name of the file that contains it. Some font formats (Adobe ASCII and
News) contain the name of the font internally. So, given a 10-point Times-Roman font,
its font name will be Times-Roman, but its file name might be TmsR10.fb.

-S Attempts to determine the size information of fonts by inspecting the bitmaps and apply-
ing some heuristics. This is useful when reading vfonts (particularly those intended for
printers like the Versatec) that are missing or have incorrect size information.

Sun Microsystems Last change: 15 June 1989 73

CONVERTFONT (1)

=X

SEE ALSO
bldfamily(1), vfont(5)

USER COMMANDS CONVERTFONT (1)

Sets the point size of the font to n. Overrides any internal size specification.

Prints a short description of the fonts on standard output; a reformatted font file is not
dumped.

Prints a more verbose description of the fonts on standard output; a reformatted font file
is not dumped.

Prints a long description of the fonts on standard output; a reformatted font file is not
dumped.

Selects Adobe/MIT X11 BDF 2.1 output format. This is the format that you should use
when transporting fonts between X11 servers. The output file extension will be .bdf.

DIAGNOSTICS
Bad flag: -C Unknown command line option
Couldn’t write ... Error writing font file
J: not a valid font. Unknown input file format
74 Last change: 15 June 1989 Sun Microsystems

CPS(1)

NAME

USER COMMANDS CPS(1)

cps — construct C to POSTSCRIPT language interface

SYNOPSIS

cps [—¢ 1 [-D symbol 1 [-1 filename 1 [-s [number] 1 [i][file.cps]

DESCRIPTION

cps compiles a specification file containing C procedure names and POSTSCRIPT language code into a
header file (file.h) that can be included in C programs. The header file associates the C procedure names
with macros that transmit a compressed form of the POSTSCRIPT language code to the X11/NeWs server
stream. Only one input file can be specified. If the file.h file already exists, a backup copy of it will be
generated of the form file.h.BAK before the new file is generated.

The convention is for the input specification file to end with the suffix .cps.

OPTIONS
-—=C

—D symbol

—I filename

-

=S [number]

Sun Microsystems

Compiles the file of POSTSCRIPT language code for faster loading by News, but does not gen-
erate a specification file for C programs. For example, the command line

example% cps -¢ < input_file > output_file

converts the input file from the ASCII form of the POSTSCRIPT language to a compressed
binary form. When read by News, the output file will execute exactly the same as input_file,
except that it will be parsed faster.

NOTE: The —c option will not work if the input file uses constructs such as currentfile read-
string, which are often used with the image primitive.

Compiles the file of POSTSCRIPT language code in the same way that the -¢ option does: how-
ever, when -C is used, the file can contain usertoken specifications. The tokens are automati-
cally set up at the start of the output file; they are used throughout the output file to compress
the POSTSCRIPT language even further than occurs with the -¢ option.

Defines symbols to be passed to the C language preprocessor (cpp(1)), which processes the
input file.

Specifies include files or include paths. Passed on to the C preprocessor.

Generates two specification files: the first file contains only the compressed form of the
POSTSCRIPT language code; the second file contains the macro definitions required for the C-
POSTSCRIPT interface. For example, ps_open_PostScript() and ps_close_PostScript() would
be defined in the second file. The second file references compressed POSTSCRIPT language
code as extern char arrays. The first file is of the form file.c; the second file is of the form
file.h. If the files already exist, .BAK backup copies will be generated.

This option is useful for minimizing the size impact of CPs interfaces that contain procedures
called from several places in the C code. The file.c generated would only need to be compiled
once. Each file that needs to use the interface could then include only the file.h and use the
macros in that file multiple times. Each repeated invocation of the macro would refer to the
shared POSTSCRIPT language code in the file.c rather than its own static copy of the
POSTSCRIPT language code.

Specifies the threshold at which compiled POSTSCRIPT language code will be output as decimal
arrays instead of string constants. If number is missing, all POSTSCRIPT language code will be
ouput as string constants in the resulting file.h. This may be useful for debugging purposes,
even though the POSTSCRIPT language code is in compressed form. If number is 0, all
POSTSCRIPT language code will be output as decimal arrays. The default threshold is 400
characters, which is less than the maximum limit of string constants for most compilers. Note
that there must be no space before number, since it is optional.

Last change: 28 June 1989 75

CPS(1) USER COMMANDS

SEE ALSO
cpp(1V)
TRADEMARK
POSTSCRIPT is a registered trademark of Adobe Systems, Inc.

76 Last change: 28 June 1989

CPS(1)

Sun Microsystems

JOURNALLING (1) USER COMMANDS JOURNALLING (1)

NAME .
journalling — News event record and playback package

SYNOPSIS
journalling

DESCRIPTION
The Journalling package allows you to capture News mouse and keyboard events onto a file and play the
file back. This results in News’ faithfully duplicating the original user actions in real time.

This package permits continuous replaying of a given file. Playback can be interrupted at any time by
clicking on the Interrupt button.

USAGE
Invoke the journalling program from the Demo Navigator: a few seconds are required for journalling to
initialize. When initialization is complete, a control panel window appears. The control panel contains the
following items:

RECORD, STOP, and PLAY buttons — Pressing RECORD starts recording onto the current
recording file. Pressing STOP terminates recording. Pressing PLAY starts playback from the
current playback file. The buttons light up to indicate what action is currently taking place.

Record File — This text item allows you to specify the current file onto which action items are
recorded. This can be any valid file on the server machine. Relative pathnames are taken to be
relative to the directory from which News was started. The default for the Record File is
/tmp/NeWS.journal.

Playback File — This text item allows you to specify the current file from which recorded action
items are played back. This can be any valid file on the server machine. Relative pathnames are
taken to be relative to the directory from which News was started. The default for the Playback
File is /tmp/NeWS.journal.

Play Forever toggle switch — If this switch is on, the action items in the Playback File are
played back repeatedly without stopping. The playback can be terminated with the Interrupt but-
ton (see below).

Done button — When the mouse is clicked on this button, all journalling items are removed from
the server, and the control window is unmapped. (This is equivalent to selecting Quit from the
frame menu.)

Interrupt button — When the mouse is clicked on this button, playback is interrupted. The button
flashes when selected.

TIPS FOR USING JOURNALLING
When a journal is created for repeated playback, all windows created after journalling has started should be
removed before journalling ends: otherwise, the server re-creates the windows whenever playback begins
and eventually runs out of memory. Thus, at the end of a journalling session, the state of the screen should
be exactly as it was at the beginning.

Different machines produce a noticeable variation in journalling performance. For example, journalling is
faster on a Sun 4 than on a Sun 3/50. Playback of a script recorded on a fast machine might not work
correctly on a slower machine. Any given machine has a maximum rate at which News events can be han-
dled.

Care must be taken when recording sequences that contain invocations of Unix programs, particularly
when starting new applications. The mouse must not be clicked until the bounding box is up on the screen.

Sun Microsystems Last change: 14 June 1989 77

JOURNALLING (1) USER COMMANDS JOURNALLING (1)

FILES

BUGS

78

If the mouse is clicked early, the wrong window-sizing will be made on playback: this will lead to
unpredictable behavior, due to the window’s not being where it was when recording.

Always proceed slowly while recording a script. Remember there is no synchronization. For example,
when recording a sequence of actions such as typing ‘Is -I’ into a terminal window and then cutting and

pasting the command into another terminal window, allow the command to complete before cutting and
pasting: otherwise indeterminate results may follow on playback.

${OPENWINHOME}/demo/journalling

Do not use the Journalling package for critical functions: the behavior of playback is unpredictable, due to
the non-deterministic nature of the Unix scheduling mechanism and the general operating environment.

Last change: 14 June 1989 Sun Microsystems

KBD_MODE (1)

NAME

USER COMMANDS KBD_MODE(1)

kbd_mode — change the keyboard translation mode

SYNOPSIS

kbd_mode -al-nl-el-u

DESCRIPTION

kbd_mode sets the translation mode of the console’s keyboard (/dev/kbd) to one of the four values defined
for KIOCTRANS in kb(4S). This is useful when a program that resets the translation mode crashes; for
example, NewS (when run from SunView) can sometimes leave SunView reading untranslated events.

Note that SunView desires translated events (kbd_mode -e), while X11/NeWS desires untranslated events
(kbd_mode -u). See below for an explanation of the -e and -u options.

OPTIONS
—a
—n
=

—u

FILES
/dev/kbd

ASCI: the keyboard will generate simple ASCII characters.

None: the keyboard will generate unencoded bytes — a distinct value for up and down
on each switch on the keyboard.

Events: the keyboard will generate SunWindows input events with ASCII characters in
the value field.

Unencoded: the keyboard will generate SunWindows input events with unencoded
bytes in the value field (this is the mode News currently uses).

$OPENWINHOME/bin/kbd_mode

SEE ALSO
kb(4S)

Sun Microsystems

Last change: 15 June 1989 79

KBD_MODE (1) USER COMMANDS KBD_MODE (1)

80 Last change: 15 June 1989 Sun Microsystems

LDF(1) USER COMMANDS LDF(1)

NAME
1df — load POSTSCRIPT-defined News font

SYNOPSIS
1df [fontname]

DESCRIPTION
1df loads a font into the server. When no argument is specified, it prints out all the POSTSCRIPT language
fonts in $FONTPATH. When an argument is specified, 1df searches in $SFONTPATH for a font with that
name and loads the first instance that it finds.

Sun Microsystems Last change: 7 June 1989 81

LDF(1)

82

USER COMMANDS

Last change: 7 June 1989

LDF(1)

Sun Microsystems

MAKEAFB (1) USER COMMANDS MAKEAFB (1)

NAME

makeafb — create bitmap files from scalable Folio format files
SYNOPSIS

makeafb [-m-M] [-p-P] [—-vI-V][-fn][-values]
DESCRIPTION

Makeafb creates Adobe ASCII format bitmap fonts (.afb) and Adobe ASCII format metric files (.afm)
format files from scalable Folio format files. These can then be converted with convertfont(1) for the
X11/NeWS server. This is useful to avoid the calculation overhead of standard sizes of fonts.

OPTIONS

—m Enable generation of .afim files (the default).

-M Disable generation of .afm files.

-P Don‘t preserve existing files (the default).

-p Preserve existing files. If —p is selected, then just before makeafb writes a file it will
check to see if it alredy exists. If it does, the file will be skipped. This is useful in situa-
tions where you have some handbuilt .afb and .afm files, and just want to fill in the miss-
ing ones.

—v Verbose: print messages indicating whats going on (the default).

-V Work silently.

—fn Force the length of the base part of the output filename to be at most n characters. The
default is 8.

—values A comma separated list of pixel sizes for which .afb files should be generated. The
default is 6,8,10,12,14,16,18 .

EXAMPLES
makeafb *.f3b

makeafb -p -4,5,6,7,8,9,10,11,12,14,16,18,20,24 *.£3b

SEE ALSO
convertfont(1), bldfamily(1)

Sun Microsystems Last change: 10 March 1987 83

MAKEAFB (1) USER COMMANDS MAKEAFB (1)

84 Last change: 10 March 1987 Sun Microsystems

MKICONFONT (1) USER COMMANDS MKICONFONT (1)

NAME
mkiconfont — make an ASCII cursor or icon font from a list of ASCII bitmap files

SYNOPSIS
mkiconfont [listfilename 1 [fontname > filename.afb]

DESCRIPTION
mkiconfont makes an ASCII version of the font fontname from the ASCII bitmap files that are listed in
listfilename and puts the output in the file filename.afb. The convention is to use the suffix .afb for the out-
put file. The ASCII bitmap files must conform to a specific format.

mkiconfont is used to create cursor fonts and icon fonts. Each cursor has a cursor image and a mask
image that are superimposed to create the complete cursor. To create a cursor font, first make a bitmap file
for the cursor image and another bitmap file for the mask image. Then make a list of your cursor image
and mask image bitmap files, and save your list as listfilename. Next run mkiconfont, and then run the
output filename.afb through the convertfont(1) and bldfamily(1) utilities. Follow the same procedure to
make an icon font, but omit the mask image files.

EXAMPLE
The font utility mkiconfont cxpects input in the format illustrated by the examples below. Here is an
example of an ASCII bitmap file for a cursor image named pointer. Its image is that of a narrow arrow that
points up and to the left.

/* Format_version=1, Width=16, Height=16, Depth=1

* Valid_bits_per_item=16, XOrigin=0, YOrigin=15

*/
0x0000,0x4000,0x6000,0x7000,0x7800,0x7C00,0x7E00,0x7800,
0x4C00,0x0C00,0x0600,0x0600,0x0300,0x0300,0x0180,0x0000

XOrigin and YOrigin indicate the origin of the character, which is the hot-spot of the cursor. The values
for XOrigin and YOrigin originate in the bitmap’s lower left corner with positive values extending up and
to the right. Note that YOrigin starts from the last non-zero row of pixels rather than from the bottom of
the bitmap.

Here is the ASCI bitmap file for the mask image of the pointer cursor. Itis called pointer_mask.

/* Format_version=1, Width=16, Height=16, Depth=1
* Valid_bits_per_item=16, XOrigin=0, YOrigin=16
*/
0xC000,0xE000,0xF000,0xF800,0xFC00,0xFE00,0xFF00,0xFF80,
0xFE00,0xDF00,0x9F00,0x0F80,0x0F80,0x07C0,0x07C0,0x03C0

Note that the mask image is used to outline the primary image, and therefore its origin is offset by one from
the primary image, so as to superimpose the images correctly. This arrangement is typical of cursor masks.

Here is the process for generating a simple cursor font (the process is the same for generating an icon font,
except that no mask images arc needed):

1) Generate a collection of ASCII bitmap file pairs with the format described above. The convention
is to call each cursor image name.cursor and its mask image name_mask.cursor. Create a file
containing these filenames, with cach name on a separate line. The pair order should be the cursor
image filename on one line followed by the mask image filename on the next line. You can give
your list any filename. In this cxample, the file is called myfont.list.

2) Make an ASCII version of the font from the list of ASCIL bitmap files using the program mKkicon-
font. The first argument to mkiconfont is the name of the file that contains the list of filenames.
The second argument to mkiconfont is the name of the output file prepended by a > and the
intended name of the font family.

Sun Microsystems Last change: 15 June 1989 85

MKICONFONT (1) USER COMMANDS MKICONFONT (1)

86

3)

4)

5)

6)

7

example % mkiconfont myfont.list MyFont>MyFont12.afb

Convert the ASCII version of the font to a binary version using the program convertfont(1). The
first argument should be a -d flag followed by the directory in which you want to put the resulting
binary font file. You will want to put your output font file in your font directory; in this example,
the font directory is SOPENWINHOME/lib/fonts. The next argument is the name of the file that
contains the ASCII version of the font. convertfont names the output file like the ASCII version,
but it uses a .fb suffix instead of a .afb suffix. In this example, the ASCII version is in the file
called MyFont12.afb, and the output file that convertfont produces is called MyFont12.fb.

example% convertfont -dSOPENWINHOME/lib/fonts MyFont12.afb

Build a font family file for the font, using the program bldfamily(1). The only argument to
bldfamily is the name of the directory in which the font files are located. bldfamily looks in the
specified directory for files with extensions .fb and .fm and constructs a News font family file for
each group of fonts with the same family name.

example% bldfamily -dSOPENWINHOME/lib/fonts

Create a .ps file that contains a dictionary of character names for the font. The .afb and .fb files
associate a number with each character in the font; it is more convenient to associate the name of
each bitmap file with the character that it represents. The following example shows one way to
build such a .ps file.

#! /bin/sh

egrep ""(STARTCHAR|ENCODING)" MyFont12.afb>myfont.ps

ed - myfont.ps<<’EOFt’

g/STARTCHAR/j

1,$s’STARTCHAR #\(.*)ENCODING #*\(.*\)’\1 /\2 def®

1i

/myfontdict 300 dict def

myfontdict begin

$a

end

/showmyfont {

currentfont () dup 0 myfontdict 5 index get put
myfontfont setfont show setfont pop } def

/myfont (MyFont) findfont 12 scalefont def

w

q
EOT

Another way to implement the name association is to have mkiconfont build the .ps file; this
method is also a valid implementation.
Copy the .ps file to a well-known place.

example% cp myfont.ps SOPENWINHOME/lib/NeWS

Use the .ps file before you usc the font in your POSTSCRIPT program.
(NewS/myfont.ps) run
myfontdict begin

name name_mask myfont newcursor
end

Last change: 15 Junc 1989 Sun Microsystems

MKICONFONT (1) USER COMMANDS MKICONFONT (1)

Note that your .ps file created the dictionary myfontdict for you. You can then push the diction-
ary on the stack and use it in the normal way.
SEE ALSO
bldfamily(1), convertfont(1)

FUTURE DIRECTIONS
In the future, mkiconfont will be replaced with a more sophisticated font editing tool. The new tool will
be useful for creating any new font, rather than just being useful for fonts with a limited number of charac-
ters such as icons and cursors.

Sun Microsystems Last change: 15 June 1989 87

MKICONFONT (1) USER COMMANDS MKICONFONT (1)

88 Last change: 15 June 1989 Sun Microsystems

NEWSHOST (1) USER COMMANDS NEWSHOST (1)

NAME
newshost — NeWs network security control

SYNOPSIS
newshost add [hosts]
or newshost remove [hosts]
or newshost show

DESCRIPTION
newshost is a shell command that manipulates the registry of hosts that are allowed to connect to the
X11/News server. The identity of the X11/News server whose registry will be manipulated is determined by
the NEWSSERVER environment variable. The variable /NetSecurityWanted (in the NeWs systemdict)
may be set to false to disable the security mechanism.

newshost add Adds the named hosts to the registry.

newshost remove Removes the named hosts from the registery.

newshost show Prints out a list of the hosts in the registry.
SEE ALSO

News Programmer’ s Guide

Sun Microsystems Last change: 26 October 1987 89

NEWSHOST (1) USER COMMANDS NEWSHOST (1)

90 Last change: 26 October 1987 Sun Microsystems

NEWSSERVERSTR (1) USER COMMANDS NEWSSERVERSTR (1)

NAME

newsserverstr — generate a string for the NEWSSERVER environment variable
SYNOPSIS

newsserverstr [hostname] [portnumber]
DESCRIPTION

newsserverstr generates and prints the proper value of the NEWSSERVER environment variable for host-
name and portnumber. 1If NEWSSERVER is then sct to this value, NeWs clients will attempt to connect to
hostname at portnumber. The default value for hostname is the current host, and the default value for port-
number is 2000. The two arguments can be spccified in either order on the command line.

The format of the NEWSSERVER environment variable is as follows:
decimal-address . port# ; hostname

For example, if the host called myhost has address 192.98.34.118, the NEWSSERVER variable could be set

10 3227656822.2000;myhost to enable NcWs clients to connect to the X11/News server on myhost at port
2000.

newsserverstr simply calculates the string and sends it to standard output; you should then set the environ-
ment variable NEWSSERVER to the value returned by newsserverstr.

EXAMPLE
C-shell users can define the following alias:

alias snh >setenv NEWSSERVER ‘newsserverstr \!+¢’
and Bourne Shell users can define the following function:

snh () {
NEWSSERVER=‘newsserverstr $*¢
export NEWSSERVER

}

Both the above forms let you simply type ‘snh hostname’ to set the NEWSSERVER environment variable
automatically.

SEE ALSO
newshost(1)

BUGS
If you use the snh alias or shell function, and the hostname you give is unknown, or you give t0oo many or
too few arguments, the NEWSSERVER variable will be trashed.

Sun Microsystems Last change: 15 June 1989 91

NEWSSERVERSTR (1) USER COMMANDS NEWSSERVERSTR (1)

92 Last change: 15 June 1989 Sun Microsystems

OBJECTDIFF(1) USER COMMANDS OBJECTDIFF(1)

NAME

objectdiff — list differences between two lists of X11/NeWs data objects
SYNOPSIS

objectdiff [filel file2]

DESCRIPTION
objectdiff performs a diff(1) on two files containing output from the X11/NeWS operator objectdump. A
formatted summary of the differences in the number and/or size of the objects of each type is output.

If the files were not produced by using objectdump on the same server during the same run, the output
may be garbage. If the two files were produced by using objectdump on two different releases of the
server, a change in accounting could cause synchronization problems.

Output is in the following format:
nnnnn bytes for mmm object_type objects

The output is sorted from the biggest space alloced at the top to the smallest space alloced or the biggest
space freed at the bottom. At the cnd, there is a total-line of the following form:

nnnnn bytes for mmm TOTAL objects
The object_types are the same as those uscd for the output from objectdump.

EXAMPLES
To find the number of objects allocated by a given operation, use the following:

example% psh

executive

(/tmp/objects1) (w) file objectdump

/mew MyClass send

(/tmp/objects2) (w) file objectdump

quit

example% objectdiff /tmp/objects1 /tmp/objects2

SEE ALSO
objectwatcher(1)

Sun Microsystems Last change: 15 Junc 1989 93

OBJECTDIFF(1) USER COMMANDS OBJECTDIFF (1)

94 Last change: 15 June 1989 Sun Microsystems

OBJECTWATCHER (1) USER COMMANDS OBJECTWATCHER (1)

NAME

objectwatcher — list data objects allocated/dcallocated in X11/NeWs since this command was last run.

SYNOPSIS

objectwatcher

DESCRIPTION

objectwatcher is a Unix Bourne shell script that prints a formatted summary of data objects allocated and
deallocated in X11/News since the command was last run.

This tool uses the X11/NeWs operator objectdump and the objectdiff command. Each time objectwatcher
is run, the current snapshot of the server obtained from objectdump is left in the file /tmp/objects.latest
for future comparisons.

The first time objectwatcher is run, there is usually no objects.latest file in /tmp. This results in no out-
put. If an objects.latest file exists in /tmp from a run of objectwatcher on a previous server, the output
should be ignored as it is comparing diffcrent servers.

The output from objectwatcher is in the following format:
nnnnn bytes for mmm object_type objects

The output is sorted from the largest memory size allocated at the top to the smallest size allocated or the
largest size freed at the bottom. There is a total-line at the end:

nnnnn bytes for mmm TOTAL objects

The object_types are the same as those used for the output from objectdump.

EXAMPLES

To find the number of objects allocated/dcallocated during some operation, set up the environment to test
the operation in question. Execute objectwatcher to flush information about data objects allocated so far.
Execute the operation in question. Execute objectwatcher again. The output indicates what allocations
and deallocations of data objects occurred during processing of the operation:

example% objectwatcher
% empty output or difference from last run
example% psh

executive
/Var 1 def
quit
example% objectwatcher
% report of objects created or destroyed during the operation

SEE ALSO

objectdiff(1)

Sun Microsystems Last change: 15 Junc 1989 95

OBJECTWATCHER (1) USER COMMANDS OBJECTWATCHER (1)

96 Last change: 15 Junc 1989 Sun Microsystems

OPENWINDEMOS (6) GAMES AND DEMOS OPENWINDEMOS (6)

NAME
OpenWindows Demonstrations

SYNOPSIS
Demos menu item in the Programs submenu.

OVERVIEW
The Demos menu item on the root menu runs hyperview, a hypertext browser runnning a stack called
DemoNavigator. This program allows you to browse around a hierarchy of X11 and News demonstration
programs. These programs are intended to demonstrate News and X11 graphics and user interaction capabil-
ities.

DESCRIPTION
The Demos are started by selecting the Demo item on the Programs pull-right menu on the root menu.

The NeWS Toolkit
PostScript Previewer
Color
Peter
Tiger
Parrot
Chip
Black and White
Golfer
Rose
Shuttle
Nozzle
Porsche
Butterfly
Hawaii
Usamap
Worldmap
Multipage
Encapsulated PostScript
Overview
NeWS Rendering
Escher’s Fish
World
SpaceShip
Lines
Spiral
Pie Chart
Wide Lines
X Logo
Rubber-band
Imaging
Text/Fonts
Scaled Text
Images
Magnifier
Animation
Technichron
Round Clock
Mona Eyes
Icosahedron

Sun Microsystems Last change: 23 July 1989 97

OPENWINDEMOS (6) GAMES AND DEMOS

IcoScreenSaver
PolyScreenSaver
Flying Logos
Tetris
Wink
Colors
Color Names
Colormap
Color Wheel
Fader
Journaling
Calculator

X11 demos

xterm
XView PostScript
Ico

Solid Ico
Psycho
Maze
Muncher
Plaid
Puzzle
Worm
Xsol

The menu items are described below.

The News Toolkit: POSTSCRIPT Previewer

98

Color

The following color demos:

Peter Peter Gabriel drawn by David Lavallee using Painter.
Tiger Bengal Tiger from Adobe Illustrator.

Parrot Colorful parrot from Adobe Illustrator.

Chip Custom Asic from a cad package.

Black and White

The following black and white demos:

Golfer The famous golfer from Adobe Illustrator.

Rose A vector drawing of a rose with a poem.

Shuttle AutoCAD cutaway drawing of a space shuttle.
Nozzle AutoCAD machanical drawing of a fire hose nozzle.

Porsche
Adobe Illustrator Porsche 911T.

Butterfly
A vector drawing of a butterfly.

Hawaii Map of Hawaii from SunDraw.

Usamap
Map of USA from Brian Reids netmap.

Worldmap
Map of the world from Brian Reids nctmap.

Last change: 23 July 1989

OPENWINDEMOS (6)

Sun Microsystems

OPENWINDEMOS (6) GAMES AND DEMOS OPENWINDEMOS (6)

Multipage

The following Multipage demos:

Encapsulated PostScript
The EPSF document from Adobe.

Overview
The News Overview document done in Frame.

The News Toolkit: News Rendering
Escher’s Fish

World

Draws the famous Square Limit created by M. C. Escher. The demo is a 260-line recursive NeWs
program that draws a large number of vectors. You can use the menu to vary the complexity of
this drawing.

Displays a geographic projcction of the western hemisphere.

SpaceShip

A demonstration of NeWs’ vector-drawing capabilities. The demo draws four spaceships inside its
window, composed of over 7,000 vectors.

Lines Creates a window with a line pattern inside of it. You can can alter the number of lines drawn
from the pop-up menu inside the window. On color screens, the line pattern is displayed in a rain-
bow of colors.

Spiral Draws a simple spiral pattern.

Pie Chart
Draws a business pie chart with slices of the pie filled with varying colors.

Wide Lines
A simple sketchpad that demonstrates News’ wide line drawing capabilities. Click left to move the
current point and middle to draw a line, curve or arc to any point. The menu allows you to to
change all of the possible options in the POSTSCRIPT language graphics context which affect wide
line drawing.

X Logo Draws an X logo based on that by Danny Chong.

Rubber-band

Demonstrates how responsive News can be when interacting with you. Click and drag the Point
button to drag out a vector, rectangle or cubic spline curve. After a point is placed, you may
adjust it by selecting it with the middle button.

The News Toolkit: Imaging
Text/Fonts

Writes text inside a window in several styles. The right button brings up a pop-up menu from
which you can select the font under the Font pull-right, the point size, the colors, and the text to be
shown. The text shown can be either some sample text or a list of all characters in the chosen
font.

Scaled Text

Images

Demonstrates News’ ability to scalc text to an arbitrary size using the fill smart outline fonts of the
imbedded OpenFonts technology of X11/NcWws.

Combines all of the image demos from News 1.1 into one demo. The Images submenu lets you
choose which image to manipulate while the Modes submenu lets you choose the mode you wish
to view the image in. Scaled Image fits the image into the frame, whatever size you make it. Pan
Image renders the image in its native size and lets you pan it around by pressing and dragging the
left mouse button. If you "losc" the image, pressing the middle button will bring it back. Bounce
Image will "automatically” pan the image around, bouncing off of the window borders. Tiled
Image will render the image as many times as it takes to fill the window frame. Rotated image
will render the image at several rotations around the clock. Spin image will render the image in a

Sun Microsystems Last change: 23 July 1989 99

OPENWINDEMOS (6) GAMES AND DEMOS OPENWINDEMOS (6)

user defined square at an arbitraty oricntation. Press the left mouse button and drag out any square
and the image will repaint inside it. The Triangle, Doughnut and SunLogo Stencils all demon-
strate NewS’ POSTSCRIPT language imaging model, where all operations including imaging can be
clipped to an arbirary "stencil". The brightness and contrast menus can be used to adjust these
viewing parameters using the POSTSCRIPT language transfer function.

Magnifier
The magnifier expands the bits under the cursor location. The zoom level can be controlled by the
menu. You can stop the snapshots of the cursor by pressing the middle button. If you press left
button in the magnifier window when it is stopped it will restart.

The News Toolkit: Animation
Technichron
Technichron displays the time of day by showing how the light is falling on the earth at the current
time. There are several methods of "Time Warp" available from the menu. These were originally
intended for debugging purposes, but have been retained for their educational value.

Round Clock
A clock written entircly in the POSTSCRIPT language. It uses unorthodox methods of getting the

time of day from the system, and overrides almost cvery possible method in the frame and canvas
classes in the News toolkit.

Mona Eyes
Represents half of an all-nighter and the lighter side of News programming. The code is mostly
stolen from News 1.1°s Eyecosahedron, the idcas are stolen from Monty Python’s Flying Circus.

Icosahedron
Displays a bouncing 20 sided regular solid with the hidden lines removed. The menu switches
between rendering directly to the framebuffer and buffering the rendering through an image. On
machines with fast graphics hardware the former will be faster.

IcoScreenSaver
This is the same demo as above, but it is covers the whole screen and goes away with a click of
the mouse button.

PolyScreenSaver

Another screen saver, which is modeled after the Mesa program "Poly”.
Flying Logos

An observation of the one-10-onc-ness of News and the Sun Logo.

Tetris A straightforward port of the popular Game.
Wink Displays a pair of eyes in the middle of the screen, one of which winks at you.

The News Toolkit: Colors
Color Names
Shows you the correspondence between color names in the color dictionary as implemented by
NeWS/colors.ps and their colors on the screen. This program uses scrollbars to access all the
colors.

Colormap
Displays the installed colormap. It also installs its own Hue ramp on Enter and uninstalls it on
Exit.

Color Wheel
Draws a wheel of colors inside a window. You can use the menu to switch between gray and
color, and to vary the number of shades, the saturation, and the intensity of the colors displayed.

Fader Uses colormap animation to fade between two differnt strings with an interesting visual effect.
The menu is used to change the fading rate and to pick a different set of strings to fade.

100 Last change: 23 July 1989 Sun Microsystems

OPENWINDEMOS (6) GAMES AND DEMOS OPENWINDEMOS (6)

Journaling
A demonstration of the Record and Play featurcs of the News event distribution system.

Calculator
The simple four-function calculator in Reverse Polish Notation style.

X11 demos
xterm The standard X11 tcrminal emulator.

XView PostScript
X11 access to PostScript revealed.

Ico The original Icosahcdron.

Solid Ico
The same as Ico, but uses colormap double buffering.

Psycho Another Ico demo, which uses multiple windows.

Maze A non-interactive maze gencrator and solver. The program will generate and draw a maze in the
window. It will then solve the maze using a backtracking algorithm, showing all of its attempts
along the way.

Muncher
Tests graphics performance.

Plaid Another graphics performance test.
Puzzle A simulation of the 15 tiles in a 4x4 grid game. |
Worm Slithering worms and a rotating colormap.
Xsol Solitare simulator.
FILES
$XNEWSHOME/etc/NeWS/hyperdecks/xnewsdemo.hv

the hyperview(1) deck which has the hypertext data for the DemoNaviga-
tor.

$XNEWSHOME/demo/* All of the demo programs run by the DemoNavigator.
SEE ALSO

psh(1), pageview(1), hyperview(1)

News Programmer’ s Guide

PostScript Language Reference Manual , Adobe Systems Inc., Addison-Wesley

TRADEMARK
POSTSCRIPT is a registered trademark of Adobe Systems Inc.

Sun Microsystems Last change: 23 July 1989 101

OPENWINDEMOS (6) GAMES AND DEMOS OPENWINDEMOS (6)

102 Last change: 23 July 1989 Sun Microsystems

PAGEVIEW (1) USER COMMANDS PAGEVIEW (1)

NAME
pageview — POSTSCRIPT language previewer for NeWS

SYNOPSIS
pageview [—displayNEWSSERVER] [—geometryWxH+X+Y] [—mono] [—wpaperwidth 1 [—hpa-
perheight 1 [—dpidotsiinch 1 [—pagepage 1 [—dirdirectory] [—left|right|upsidedown] [—verbose] [
psfile1 -]

DESCRIPTION
pageview is an intcractive POSTSCRIPT previewer. Unlike it’s predecessor psview, pageview does not
attempt to fit the whole page into a given window. pageview renders a document, a page at a time, onto an
offscreen bitmap which may be of arbitrary size, resolution and orientation. The user can then adjust the
viewing window’s size to see as much of the page as desired. The mouse buttons are used to position the
page under the window in two different modes.

The left button moves the page in "relative mode". This allows you to move the page in a physically intui-
tive way. You press the left button on the page and while you drag the mouse around, the spot on the page
that was under the mouse cursor when you pressed the button remains stationary relative to the cursor.

The middle button moves the page in "absolute mode". This allows you to easily get to the edges of the
document, especially when the DPI is large and/or the window is small. When you press the middle button
on a point in the window, the page is adjusted so that the same relative point on the page is under the
mouse. For example, if you press the middle button at the top right corner of the window, you will see the
top right corner of the page. A little experimentation with a page at 300 dpi and you will find this mode
indispensible.

There are several buttons across the top of the pageview window which are described below:

Page:
In multipage documents this allows you to move to the Next, Previous, First and Last pages. In sin-
gle page documents this menu is disabled. To go to an arbitrary page use the slider at the bottom of
the window, or type in the page number at the "Page: " prompt to the left of the slider.

DPI: This lets you change the "resolution" of the retained bitmap which the page is being rendered onto.
36 dpi will make a US Lettcr sized page be 306x396 pixels, where 300 dpi would be 2490x3300 pix-
els. This has the effect of making 36 dpi images appear smaller and 300 dpi pages appear larger due
to the static resolution of the display. pageview starts out at 80 dpi, unless you have the environment
variable $DPI set to some other default, or you use the —dpi command line argument.

Size: This lets you change the size of the retained bitmap which the page is rendered onto. USLetter is
8.5x11, Legal is 8.5x14, and Envelope is 8.5x4.5. These values can be set to custom values by the
—height and —width command linc arguements.

Rotation:
This menu lets you choose which way to rotate the paper in 90 degree increments. This is useful for
viewing slides which arc commonly rendercd in "Landscape left” orientation.

Print:
There are three options to printing pages from pageview. You can print the current page or the whole
document on a ITs lascr printer. This simply sends the ITs for the current page to Ipr(1), so you can
use the SPRINTER environment variable to sct the printer to use. You can also dump the retained
bitmap of the current page to a rasterfile(5) named /tmp/{ documentname }.{ page }.ras, where docu-
mentname and page are replaced by the appropriate values. This rasterfile can be edited by Sun-
Paint, or printed on any other device capable of rendering bitmaps.

Sun Microsystems Last change: 28 June 1989 103

PAGEVIEW (1) USER COMMANDS PAGEVIEW (1)

OPTIONS
—displayNEWSSERVER
sets the NeWS server to connect to, this defaults to the value of the SNEWSSERVER environment
variable. See newsserverstr(1) to find out how to sct this variable.

—geometryWxH+X+Y
sets the location and size of the outer frame of pageview. The Width and Height are in pixels and the
X and Y specify the lower left comer. For example, "pageview -display 200x400+100+100" will
start a pageview, 200 wide and 400 tall with the lower left corner at 100,100.

—mono

is used to force pageview to use a monochrome retained canvas on color systems. This saves
memory and is faster on some framcbuffers.

—wpaperwidth
sets the width of the "paper" to paperwidth inches, the default is 8.5.

—hpaperheight
sets the height of the "paper" to paperheight inches, the default is 11.

—dpidotslinch
sets the "dpi" of the "paper” to dots/inch The environment variable $DPI is used if this option is not
present, and the default is 80 if this variable is not in the environment. Caution must be used in set-
ting this argument as well as the papcr size args above, so you do not exhaust memory resources.
For example a USLetter sized page previewed at 300 dpi, takes up 300+8.5/8+300+11 or a little over
a Megabyte. The same page at 1500 dpi takes over 26 Megabytes.

—dirdirectory
Sets the current working dircctory to directory so that you can type filenames at the "Load File: "
prompt relative to directory

—left|right|upsidedown
Sets the rotation of the page.

—verbose
Prints lots of debugging information (not useful to the user)

If psfile is specified, the POSTSCRIPT code is taken from that file.

If no argument is given, or if a ‘-~ is given as the argument, pageview reads the POSTSCRIPT program from
standard input.

SEE ALSO
psh(1), newsserverstr(1), Ipr(1)

POSTSCRIPT Language Reference Manual , Adobe Systems Inc., Addison-Wesley

TRADEMARK
POSTSCRIPT is a registered trademark of Adobe Systems Inc

104 Last change: 28 June 1989 Sun Microsystems

PAM(1) USER COMMANDS PAM(1)

NAME
pam — remove sticky window from News display

SYNOPSIS
pam

DESCRIPTION
pam is a psh(1) script that causes a specified window to be unmapped from the display. The command
prompts the user to click a mouse button with the mouse positioned over the "stuck” window by drawing a
lightning bolt near the cursor. If the window that is clicked on happens to be a frame for a tNt-based appli-
cation, the window will be destroyed and the memory it occupies may be reclaimed depending on the situa-
tion that caused it to become stuck in the first place. This destruction is in addition to the standard unmap-
ping action.

This tool is useful when an application has exited and left a window displayed that is not usable (due to an
internal error). Using this command does not dcallocate any memory or fix the problem, but it will unmap
the window so it will no longer be visible.

SEE ALSO
psh(1)
NeWws Programmer’ s Guide

BUGS

For users to be able to type in pam to operatc this command, psh(l) must be installed in
/usr/NeWSs/bin/psh. Otherwise, users must type psh pam.

Sun Microsystems Last change: 6 April 1989 105

PAM(1) USER COMMANDS PAM(1)

106 Last change: 6 April 1989 Sun Microsystems

PSH(1) USER COMMANDS PSH(1)

NAME
psh — News POSTSCRIPT shell

SYNOPSIS
psh [files]

DESCRIPTION
If a files argument is specified, psh opens a connection to the server and transmits the specified files to the
server. If no files argument is specified, or if ‘-’ is specified, psh opens a connection to the server and
transmits stdin to the server. Any output from News is copied to stdout. The files should be POSTSCRIPT
programs for the News server to execute.

A common use for psh is in creating applications written entirely in the POSTSCRIPT language. First, type
your POSTSCRIPT program into a file. Then, add this as its first line:

#! /usr/NeWS/bin/psh

If you now make the file executable (with chmod), you can invoke it by name from the shell, and UNIX
will use /usr/NeWS/bin/psh to execute it. psh will in turn send your program to the X11/NEWS server.

SEE ALSO
sh(1)

NeWws Programmer’s Guide

TRADEMARK
POSTSCRIPT is a registered trademark of Adobe Systems Inc.

BUGS
If #! /usr/NeWS/bin/psh is the first line, the script or file is implementation or installation dependent.

Sun Microsystems Last change: 2 December 1987 107

PSH(1) USER COMMANDS PSH(1)

108 Last change: 2 December 1987 Sun Microsystems

PSINDENT (1) USER COMMANDS PSINDENT (1)

NAME
psindent — format POSTSCRIPT language or NeWwS source

SYNOPSIS
psindent [[—bal+ba] [-bbl+bb] [-bsl+bs] [—cbhal+cba]l [—cbbl+cbb] [—ceal+ceal
[—ceb|+ceb] [-dal+da] [—db|+db] [—dbal+dba] [—dbb |+dbb] [—deal +dea] [—deb | +deb]
[—eal+ea] [—ebl+eb] [—gral+gra]l [-grbl+grb] [—gsal+gsa] [—gsbl+gsb] [—ial+ia]
[—ibl+ib] [—ibl+ib] [-Ibal+lba] [-Ibbl+lbb] [-lcal+lca]l [-lcbl+icb] [-rbal+rba]
[—rbb | +rbb] [-rcal+rca] [—rcb | +reb 1] [input-file ...]

DESCRIPTION

psindent is a POSTSCRIPT language formatter that also understands News elements. It reformats the
POSTSCRIPT language program in one or more input-files, according to the switches. The switches that can
be specified are described below. They may appear before or after the filenames. If only the input-file is
specified, the formatting is done in place, that is, the formatted file is written back into input-file, after a
backup copy named input-file.BAK has been written in the current directory. If no input-file is given, psin-
dent acts as a filter: the standard input is formatted and the results written to the standard output. This is
most useful from within editors.

In addition to being specified on the command line, switches may be given in the user’s own profile of
defaults. When psindent is run, it checks for the file .psindent in the user’s login directory. If that file
exists, it is read to set the defaults of psindent. However, switches on the command line always override
profile switches. The switches should be separated by SPACE, TAB, or NEWLINE characters. Finally,
switches may also be indicated by embedding them in the source code itself, at the beginning of a comment
line.

Lines beginning with a # or a % are passed through unmodified. Lines beginning with the keyword cdef
are assumed to be CPS (C to POSTSCRIPT) calls under NewS. This causes the lines until either the next cdef
or the end of the file to be indented once.

OPTIONi‘he options listed below control the formatting style imposed by psindent. A + sets the option, and a -
deselects it.
—ba,+ba If ba is specified, a NEWLINE is forced after every begin. Default: +ba
—bb,+bb If bb is specified, a NEWLINE is forced before every begin. Default: +bb.
—bs,+bs Backslash inner strings, such as (\(\)). Default: +bs.
—cha,+cbha If cba is specified, a NEWLINE is forced after every classbegin. Default: +cba.
—cbb,+cbb If cbb is specified, a NEWLINE is forced before every classbegin. Default: +cbb.
—cea,+cea If cea is specified, a NEWLINE is forced after every classend. Default: +cea.
—ceb,+ceb If ceb is specified, a NEWLINE is forced before every classend. Default: +ceb.
—da,+da If da is specified, a NEWLINE is forced after every def. Default: +da.
—db,+db If db is specified, a NEWLINE is forced before every def. Default: —db.
—dba,+dba If dba is specified, a NEWLINE is forced after every dictbegin. Default: +dba.
—dbb,+dbb If dbb is specified, a NEWLINE is forced before every dictbegin. Default: +dbb.
—dea,+dea If dea is specified, a NEWLINE is forced after every dictend. Default: +dea.
—deb,+deb If deb is specified, a NEWLINE is forced before every dictend. Default: +deb.
—ea,+ea If ea is specified, a NEWLINE is forced after every end. Default: +ea.
—eb,+eb If eb is specified, a NEWLINE is forced before every end. Default: +eb.
—gra,+gra If gra is specified, a NEWLINE is forced after every grestore. Default: -gra.
—grb,+grb If grb is specified, a NEWLINE is forced before every grestore Default: -grb.

Sun Microsystems Last change: 15 June 1989 109

PSINDENT (1) USER COMMANDS PSINDENT (1)

—gsa,+gsa If gsa is specified, a NEWLINE is forced after every gsave. Default: -gsa.
—gsb,+gsb If gsb is specified, a NEWLINE is forced before every gsave. Default: -gsb.
—ia,+ia If ia is specified, a NEWLINE is forced after every if or ifelse. Default: +ia.
—ib,+ib If ib is specified, a NEWLINE is forced before every if or ifelse. Default: —ib.
—Iba,+Iba If Iba is specified, a NEWLINE is forced after every [. Default: -1ba.
—Ibb,+Ibb If Ibb is specified, a NEWLINE is forced before every [. Default: -lbb.
—lca,+lca If lca is specified, a NEWLINE is forced after every {. Default: +Ica.
—Icb,+lcb If Icb is specified, a NEWLINE is forced before every {. Default: -Icb.
-rba,+rba If rba is specified, a NEWLINE is forced after every]. Default: -rba.
—rbb,+rbb If rbb is specified, a NEWLINE is forced before every]. Default: -rbb.
—reca,+rea If rca is specified, a NEWLINE is forced after every }. Default: -rca.
—rcb,+rch If rcb is specified, a NEWLINE is forced before every }. Default: +rcb.
EXAMPLES

The following illustrate the three methods for setting option switches.

On the command line:
psindent -bs +cea -dba file_name.ps

In the file “/.psindent:
-bs +cea -dba

Within a source file file.ps:
<beginning-of-line>% %= -bs +cea -dba

From within vi(1) the editing buffer may be formatted by typing:

: % psindent

FILES

"/.psindent profile file
SEE ALSO

pstags(1)
NOTES

psindent(1) and pstags(1) are the same program.
TRADEMARK

POSTSCRIPT is a registered trademark of Adobe Systems Inc.
BUGS

psindent switches embedded in the source are only recognized at the beginning of a comment line. If a
profile file exists in the current directory, it should be read, and its settings should have precedence over
those in the profile file in the login directory, if one exists.

AUTHOR
Josh Siegel (siegel@hc.dspo.gov)

110 Last change: 15 June 1989 Sun Microsystems

PSIO(3) C LIBRARY FUNCTIONS PSIO(3)

NAME
psio — News buffered input/output package

SYNOPSIS
#include <News/psio.h>

psio_assoc(pinstream, poutstream)
PSFILE *pinstream;
PSFILE *poutstream;

psio_availinputbytes(pstream)
PSFILE *pstream;

psio_availoutputbytes(pstream)
PSFILE *pstream;

psio_bytesoutput(pstream)
PSFILE *pstream

void psio_clearerr(pstream)
PSFILE *pstream;

psio_clearnonblock(pstream)
PSFILE #pstream;

int psio_close(pstream)
PSFILE *pstream;

psio_eof(pstream)
PSFILE *pstream;

psio_error(pstream)
PSFILE *pstream;

PSFILE *psio_fdopen(fd, mode)
int fd;
char *mode;

int psio_flush(pstream)
PSFILE *pstream;

int psio_fileno(pstream)
PSFILE *pstream;

psio_fprintf(pstream, format[,arg]...)
PSFILE *pstream;

char *format;

PSFILE *psio_getassoc(pinstream)
PSFILE *pinstream;

int psio_getc(pstream)
PSFILE *pstream;

Sun Microsystems Last change: 29 June 1989 111

PSIO(3) CLIBRARY FUNCTIONS PSIO(3)

PSFILE *psio_open(fname, mode)
char *fname;
char *mode;

psio_pgetc(pstream, dest, pausecode)
PSFILE #*pstream;

int dest;

int pausecode;

psio_pgetc_nb(pstream, dest, pausecode)
PSFILE *pstream;

int dest;

int pausecode;

psio_pputc(c, pstream, pausecode)
char c;

PSFILE *pstream;

int pausecode;

psio_printf(format [,arg]...)
char *format;

psio_putc(ch, pstream)
char ch;
PSFILE #pstream;

int psio_read(dest, size, num, pstream)
unsigned char *dest;

int size, num;

PSFILE #*pstream;

psio_setnonblock(pstream)
PSFILE *pstream;

PSFILE *psio_sopen(*string, length, *mode)
char *string;

int length;

char *mode;

psio_ungetc(ch, pstream)
char ch;
PSFILE #pstream;

psio_write(source, size, num, pstream)
char *source;

int size, num;

PSFILE *pstream;

112 Last change: 29 June 1989 Sun Microsystems

PSIO(3) CLIBRARY FUNCTIONS PSIO(3)

DESCRIPTION
The functions described here constitute a user-level I/O buffering scheme for use when communicating
with News. This package is based on the standard I/O package that comes with Unix. The functions in this
package are used in the same way as the similarly named functions in Standard I/O.

The macros psio_getc and psio_putc read and write single characters quickly. The higher level routines
psio_read, psio_printf, psio_fprintf, psio_write all use or act as if they use psio_getc and psio_putc;
they can be freely intermixed.

A file with associated buffering is called a stream and is declared to be a pointer to a defined type PSFILE.
psio_open creates certain descriptive data for a stream and returns a pointer to designate the stream in all
further transactions. Normally, there are three open streams with constant pointers declared in the psio.h
include file and associated with the standard open files:

psio_stdin standard input file
psio_stdout standard output file
psio_stderr standard error file

Any module that uses this package must include the header file of pertinent macro definitions, as follows:
#include "psio.h"

The functions and constants mentioned here are declared in that header file and need no further declaration.
The constants and the following ‘functions’ are implemented as macros (redeclaration of these names is
perilous): psio_getc, psio_putc, psio_eof, psio_error, psio_fileno, psio_clearerr, psio_pgetc,
psio_pgetc_nb, psio_pputc, psio_setnonblock, psio_clearnonblock, psio_assoc, psio_getassoc,
psio_availinputbytes, psio_availoutputbytes, and psio_bytesoutput.

The psio package contains enhancements over the stdio package that the X11/NeWS server and CPS clients
need to utilize. These features include:

The ability to open a psio stream on an in-memory string using the psio_sopen function.

Support for non-blocking I/O. If you set the file descriptors of the psio streams for non-blocking
1/0, the actions that do not expect to see non-blocking behavior, such as psio_getc, psio_putc and
the functions that use them, will still behave correctly, blocking on the file descriptor until the I/O
completes. In order to access the streams in a non-blocking mode, there are macros to perform
non-blocking character reads and writes: psio_pgetc, psio_pgetc_nb, and psio_pputc. The psio
package also performs non-blocking I/O operations on the file descriptor for you, without your
having to use system dependent functions to set up the file descriptors for non-blocking I/O, as
specified by the psio_setnonblock macro.

Support for buffer look-aheads. The CPS package sometimes needs to skip over some of the data
in the psio buffer and read data that is not at the front of the buffer. The psio package cooperates
with the CPS package in this respect.

Support for growable buffers. If a stream is set for non-blocking output and overfills its buffer, or
if a buffer look-ahead cannot find the data it needs in the existing buffer, psio automatically makes
the buffer grow in order to allow the writes to continue without blocking, and to allow the look-
ahead to succeed.

Support for linked input/output streams. Using the psio_assoc macro, you can associate an output
stream with an input stream so that the output stream is flushed whenever the psio package needs
to block on the input stream.

Macros to query the number of bytes available for reading, or the number of bytes available for
output.

Sun Microsystems Last change: 29 June 1989 113

PSIO(3) C LIBRARY FUNCTIONS PSIO(3)
LIST OF FUNCTIONS:
Name Description
psio_assoc Associate the specified output stream with the specified input stream. The output stream

114

will be flushed when psio needs to block on the input stream. Implemented as a macro.

psio_availinputbytes

Return the number of bytes currently in the buffer waiting to be read. Implemented as a
macro.

psio_availoutputbytes

psio_bytesoutput

psio_clearerr

Return the number of bytes that can be written to the stream before the buffer is filled.
Implemented as a macro.

Return the number of bytes currently in the buffer that have been written and are waiting
to be flushed. Implemented as a macro.

Clear the error and end-of-file flags for the specified stream. Implemented as a macro.

psio_clearnonblock

psio_close
psio_eof
psio_error
psio_fdopen
psio_flush
psio_fileno
psio_fprintf
psio_getassoc

psio_getc

psio_getc

psio_pgetc_nb

psio_open
psio_printf
psio_putc

psio_pputc

psio_read

psio_setnonblock

Turn off the psio automatic non-blocking I/O feature for the specified stream. Imple-
mented as a macro.

Close the file associated with the stream and free the associated memory.

Check the stream for a previously detected end-of-file status. Implemented as a macro.
Check the stream for a previously detected error. Implemented as a macro.

Open a stream and associate it with the specified file descriptor.

Write any pending output for the specified output stream.

Return the file descriptor associated with the specified stream. Implemented as a macro.
Place output onto the named output stream according to standard printf specifications.

Return the output stream associated with the specified input stream. Implemented as a
macro.

Get a character or EOF from the specified input stream. Implemented as a macro.

Like psio_getc, except that the result of the getc is assigned to dest, and if the operation
needs to block, pausecode is executed first. pausecode is executed every time the buffer
is emptied. An attempt to refill the buffer is made before the pausecode is executed, so
that the pausecode can determine if more input is available. Implemented as a macro.

Like psio_pgetc, except that it tries to fill the buffer before before pausing. This is usu-
ally desirable for the first read on the stream after it has just been created or previously
blocked (for example, in a psio_pgetc call). Implemented as a macro.

Open the named file with the specified mode.
Place output onto the stream psio_stdout according to standard printf specifications.
Write a character to the specified output stream. Implemented as a macro.

Like psio_putc, except that if the operation needs to block, pausecode is executed first.
pausecode is executed every time the buffer is flushed.

Read num blocks of size bytes from the specified input stream into the buffer dest.

Indicate that non-blocking I/O is to be performed on the specified stream. The psio
package will set the corresponding file descriptor for non-blocking I/O during its reads
and writes to prevent blocking. Note that certain functions (such as psio_getc) will

Last change: 29 June 1989 Sun Microsystems

PSIO(3) C LIBRARY FUNCTIONS PSIO(3)

block anyway, and that it is faster (though less elegant and portable) if you yourself set
the file descriptor once for non-blocking I/O, rather than using this feature to have psio
set and reset the file descriptor every time a read or write is performed. Implemented as
a macro.

psio_sopen Open the in-memory string of length length for reading or writing depending on mode.
If string is NULL, then psio will allocate a buffer for the result (for writing only) of the
specified length; this buffer will be grown if writes overrun the specified length.

psio_ungetc Push the character ch back into the specified input stream.
psio_write Write num blocks of size bytes to the specified output stream from the buffer source.
DIAGNOSTICS

The value EOF is returned uniformly to indicate that a PSFILE pointer has not been initialized with
psio_open, that input has been attempted on an output stream, that output has been attempted on an input
stream, or that a PSFILE pointer designates corrupt or otherwise unintelligible PSFILE data. An integer
constant (1) is returned upon end-of-file or error by most integer functions that deal with streams.
psio_open returns a pointer to the psio stream or NULL (0) if there is an error.

SEE ALSO
intro(3S), fclose(3S), ferror(3S), fopen(3S), fread(3S), getc(3S), printf(3S), putc(3S), ungetc(3S).

Sun Microsystems Last change: 29 June 1989 115

PSIO(3) C LIBRARY FUNCTIONS PSIO(3)

116 Last change: 29 June 1989 Sun Microsystems

PSMAN(1) USER COMMANDS PSMAN(1)

NAME

psman — display reference manual pages; find reference pages by keyword

SYNOPSIS

psman [—M path] [section] title
psman [-M path] -k keyword ...

DESCRIPTION

psman displays information from the reference manuals. It can display complete manual pages that you
select by title. It can display one-line summaries selected by -k keyword.

When -k is not specified, psman formats a specified manual page by title. A section, when given, applies
to the title that follows it on the command line. psman looks in the indicated section of the manual for the
title. section should be a digit. If section is omitted, psman searches all reference sections (giving prefer-
ence to commands over functions) and prints the first manual page it finds. If no manual page is located,
psman prints an error message.

The following line instructs psman to look in section 8 of the reference manual for the ypwhich(8) manual
page:

example% psman 8 ypwhich

If the server is not available psman formats for a teletype and pipes its output through more(1). Other-
wise, psman formats for a POSTSCRIPT printer and pipes its output through pageview(l). To see the
manual page for pageview, use:

example% psman pageview

OPTIONS

—M path
Change the search path for manual pages. path is a colon-separated list of directories that contain
manual page directory subtrees. For example, /usr/share/man:/home/openwin/usr/share/man
makes psman search in the standard OpenWindows location. When used with the —k option, the
—M option must appear first. Each directory in the path is assumed to contain subdirectories of
the form man[1-81-p].

-k keyword ...
psman prints out one-line summaries from the whatis database (table of contents) that contain
any of the given keywords.

ENVIRONMENT

MANPATH If set, its value overrides /usr/man:$OPENWINHOME/man as the default search path.

TROFF If set, its value overrides ditroff -t -man as the default command to convert troff to ditroff.
TCAT If set, its value overrides psdit as the default command to convert ditroff to POSTSCRIPT.
SEE ALSO

pageview(1), cat(1V), col(1V), eqn(1), more(1), nroff(1), tbl(1), troff(1), whatis(1), man(7), catman(8)

Sun Microsystems Last change: 15 June 1989 117

PSMAN(1) USER COMMANDS PSMAN(1)

118 Last change: 15 June 1989 Sun Microsystems

PSPS(1)

NAME

USER COMMANDS PSPS(1)

pSps — NeWs process lister

SYNOPSIS
psps
DESCRIPTION

psps is a psh(1) script that prints information for every lightweight process in the X11/News server. The out-
put from this command consists of the following eight columns of information for each process.

>

ID
State

Pri

ESS
0SS
DSS

Name

OPTIONS
None.

SEE ALSO
psh(l)

The symbol > in the first column indicates that the process is the first process in its process
group. If there are other processes in the process group, they will be listed after this first pro-
cess, and they will each have a blank space in the first column.

The second column gives the ID number associated with the NeWs process.

The third column gives the state of the NeWs process. (See the description of the process dic-
tionary keys in the NeWs Programmer’s Guide.)

The fourth column gives the priority of the News process. (See the description of the process
dictionary keys in the News Programmer’s Guide.)

The fifth column gives the size of the NeWs process’ execution stack.
The sixth column gives the size of the NeWs process’ operand stack.
The seventh column gives the size of the NeWs process’ dictionary stack.

The eighth column gives the value of the process’ ProcessName key. (See the description of
the process dictionary keys in the News Programmer’s Guide.)

NeWsS Programmer’ s Guide

TRADEMARK

POSTSCRIPT is a registered trademark of Adobe Systems Inc.

Sun Microsystems

Last change: 16 June 1988 } 119

PSPS(1) USER COMMANDS PSPS(1)

120 Last change: 16 June 1988 Sun Microsystems

PSTAGS (1) USER COMMANDS PSTAGS (1)

NAME

pstags — create a POSTSCRIPT language or NeWs tags file for use with vi
SYNOPSIS

pstags [—f tagsfile] [files]
DESCRIPTION

pstags makes a tags file for ex(1) from a POSTSCRIPT language or News source file. See ctags(1) for more
information. pstags tags lines with the string cdef and lines with the hint pstag=<tagname> embedded
anywhere in a comment.

The default tagfile is tags.ps. Because this is not in the default tag search path, the command
set tags=tags tags.ps

is required in vi(1), or in the user’s .exrc file to initialize that path. Depending on the system, a backslash
may be required to escape the space between tags and tags.ps.

OPTIONS
None.

EXAMPLES
Using pstags on a file containing the function definition

cdef function_name(int arg)
produces the tag function_name.
Inserting the comment:
| name { % object => - pstag=<name>

in the source file yields the tag name for that line. Note that it is the string within the <...> that is used as

the tag.
FILES

tags.ps output tags file
SEE ALSO

ctags(1), ex(1), psindent(1), vgrind(1), vi(1)
BUGS

Should be able to identify the tags without the hint in the comment.

AUTHOR
Josh Siegel (siegel@hc.dspo.gov)

Sun Microsystems Last change: 9 Mar 1989 121

PSTAGS (1) USER COMMANDS PSTAGS (1)

122 Last change: 9 Mar 1989 Sun Microsystems

PSTERM(1) USER COMMANDS PSTERM (1)

NAME

psterm — News terminal emulator

SYNOPSIS

psterm [options] [command]

DESCRIPTION

psterm is a termcap-based terminal emulator program for News. When invoked, it reads the /etc/termcap
entry for the terminal named by the -t option, or by the TERM environment variable, and arranges to emu-
late the behavior of that terminal. It forks an instance of command (or, by default, the program specified by
the SHELL environment variable, or csh if this is undefined), routing keyboard input to the program and
displaying its output.

psterm scales its font to make the number of rows and columns specified in the /etc/termcap entry for the
terminal it is emulating fit the size of its window. It also responds to most of the particular escape
sequences that termcap defines for that terminal.

OPTIONS

-C Route /dev/console messages to this window, if supported by the operating system.

—f Bring up a reasonably-sized terminal in the lower-left comer of the screen (or in the location
specified with the —xy option) instead of having the user define its size and location.

-w Wait around after the command terminates.

—fl framelabel
Use the specified string for the frame label.

—il iconlabel

Use the specified string for the icon label. The icon label normally defaults to the name of the
host on which psterm is running.

—li lines Specifies the height of the window in characters.

—co columns
Specifies the width of the window in characters.

—xyxy Specifies the location of the lower left hand corner of the window (in screen pixel coordinates).

—bg Causes psterm to place itself in the background by disassociating itself from the parent process
and the controlling terminal. If psterm is invoked with rsh(1), this option will cause the rsh com-
mand to complete immediately, rather than hang around until psterm exits.

—Is causes psterm to invoke the shell as a login shell. In addition, any specified command will be
passed to the shell with a —c option, rather than being invoked directly, so that the shell can estab-
lish any environment variables that may be needed by the command. Further, if psterm is
invoked via rsh(1), the host at the other end of the rsh socket will be used as the server, unless a
NEWSSERVER environment variable is present.

—pm Specifies that a psterm should enable page mode. When page mode is enabled and a command
produces more lines of output that can fit on the screen at once, psterm will stop scrolling, hide
the cursor, and wait until the user types a character before resuming output. When psterm is
blocked with a screenful of data, typing a carriage return or space will cause scrolling to proceed
by one line or one screenful, respectively; any other character will cause the next screenful to
appear and be passed through as normal input. This mode can also be enabled or disabled interac-
tively, using the Page Mode menu item.

-t Specifies the terminal type, which can be identified by the name of its termcap entry. For exam-
ple:

example% psterm -t sun
example% psterm -t vt¢100

Sun Microsystems Last change: 15 June 1987 123

PSTERM(1) USER COMMANDS PSTERM (1)

—fontsize size
Specifies the point size of the font to be used when psterm is being brought up in fixed size mode
(see the -f option). The default size is 12 points.

SELECTION

Clicking the left mouse button over a character selects that character. Clicking it beyond the end of the line
selects the newline at the end of that line. Clicking the middle mouse button over a character when a pri-
mary selection does not exist in that window selects that character. Clicking the middle mouse button over
a character when a primary selection does exist in that window extends or shrinks the selection to that char-
acter. Pressing the left button and dragging the pointer over the text selects the text between the original
press location and the current mouse location. Pressing the left button over previously select text and then
dragging invokes the OPEN LOOK-style drag and drop selection mechanism.

The Copy key (L6) copies the primary selection to the shelf. The Paste key (L8) copies the contents of
the shelf to the insertion point .

If you make a selection while holding down the Copy key, the selection will be a secondary selection.
Subsequently letting go of the Copy key copies the secondary selection to the insertion point in the win-
dow that had the keyboard focus when the selection was begun.

Making a selection while holding down the Paste key also makes a secondary sclection. It pastes the pri-
mary selection to the location of the secondary selection and deselects the secondary selection.

Copy and Paste of both primary and secondary selections work across separate invocations of psterm.

MENU ITEMS

FONTS

psterm adds two items to the top of the standard menu associated with the right hand mouse button. These
items permit the page mode and automatic margin modes to be turned on and off. Menu items change
according to the state of each mode. For example, if page mode is enabled, the menu item will indicate
Page Mode Off. The Automatic Margin entry controls the automatic wrapping of text characters when
the text cursor hits the right terminal margin. When it is on, the text cursor and characters are automati-
cally wrapped to the next line. When it is off, the text cursor remains at the terminal’s right margin and
characters overstrike one another in the last column.

The psterm commands uses a NeWs class variable to decide which font to use. To select a font other than
the default (which is Courier), place the following code in your .startup.ps file:

UserProfile begin
/ClassPsTermCanvas {
begin
[TextFamily myfont store
currentdict end
} def
end

Here, myfont can be /Courier, /fixed, or /LucidaSansTypewriter. Any font that the server can access
can be used; however, only fixed-width fonts work correctly.

The size of the font used is based on the size of the window. If the -f fixed option is used, psterm starts out
at an appropriate size to use a 12 point version of the specified font family, unless the -fontsize option is
used to specify a different point size. Even if psterm is started in fixed size mode, resizing it causes it to
select a new font size to fit the new-sized window with the original number of rows and columns.

FILES
/etc/termcap to find the terminal description.
SEE ALSO
NeWS Programmer’s Guide
124 Last change: 15 June 1987 Sun Microsystems

PSTERM(1) USER COMMANDS PSTERM (1)

BUGS .
Emulating some terminal types works better than others, largely because there are incomplete /etc/termcap

entries for them.
A large number of termcap fields have yet to be implemented.
Page Mode gets easily confused.

Resizing psterm to a size smaller than the fixed startup size for bitmap fonts such as fixed causes display-
garbage, since X11/News cannot scale these fonts.

Sun Microsystems Last change: 15 June 1987 125

PSTERM(1) USER COMMANDS PSTERM (1)

126 Last change: 15 June 1987 Sun Microsystems

XNEWS(1) USER COMMANDS XNEWS (1)

NAME

xnews — window system server
SYNOPSIS

xnews [POSTSCRIPT-code]
DESCRIPTION

The xnews command starts the X11/News window system server. The server supports both the X11 proto-
col and the News protocol. Clients connect to the server by opening the socket appropriate to the protocol
they use. The X11 protocol is described in the X Window System Protocol, Version 11, from MIT. The C
language binding to the X11 protocol is described in Xlib - C Language X Interface, Version 11, also from
MIT.

The NeWs protocol is a superset of the POSTSCRIPT page description language, described in the POSTSCRIPT
Language Reference Manual by Adobe Systems, Inc. News extensions to the POSTSCRIPT language are
described in The News Programmer’ s Guide, from Sun. The C client interface is also described there.

OPTIONS
[POSTSCRIPT-code }
The server interprets the POSTSCRIPT language code given as an argument on the command line.
If no code is specified on the command line, xnews executes the following:

(NeWS/init.ps) (r) file cvx exec &main

This code fragment sets up the X11/News server for its normal use. When specifying this argu-
ment, putting single quotes around the POSTSCRIPT-code will protect it from premature interpreta-
tion by the shell.

ENVIRONMENT VARIABLES
The X11/NeWs server recognizes the following environment variables:

FRAMEBUFFER
If unset, the default is /dev/fb. When the server starts up, it opens the display device named by
FRAMEBUFFER .

OPENWINHOME
Should be set to the directory in which the servers’ directory hierarchy is installed. It is used to
initialize the root menu to point to the correct copies of the programs it invokes and to determine
which directories are searched for POSTSCRIPT initialization files, fonts, and other libraries and
programs.

XNEWSHOME
Overrides OPENWINHOME for the server if it is installed in a non-standard place. Ordinarily it
should be unset. In this case, the server will set it automatically from OPENWINHOME .

XVIEWHOME
Overrides OPENWINHOME for XView applications if they are installed in a nonstandard place.
Ordinarily it should be unset. In this case, the server will set it automatically from
OPENWINHOME .

FONTPATH
A list of directories, separated by semicolons, telling the server where to look for fonts. If unset, it
defaults to SOPENWINHOME/lib/fonts.

LD_LIBRARY_PATH
This variable is used by the shared library linker to determine which directories to examine for
shared libraries. It should normally be set to SOPENWINHOME/lib:/usr/lib.

NEWSSOCKET
When starting the server, if NEWSSOCKET is set, the server will listen on the socket named by
NEWSSOCKET for News clients. If NEWSSOCKET is unset, the server will first try to open the

Sun Microsystems Last change: 16 June 1989 127

XNEWS(1) USER COMMANDS XNEWS (1)

restricted socket number 144, If that fails, it will try 2000. If that fails, it will keep incrementing
the socket number by 1 until it finds one on which it succeeds.

The socket on which the server listens for News clients may also be set in your “/.startup.ps file
with a line of the following form:

/NeWS_socket (%socketl2001) def

The NeWS_socket POSTSCRIPT language variable overrides the NEWSSOCKET environment
variable.

NEWSSERVER
Before starting a NeWws application, you can set this environment variable to tell the application
which server to connect to. If unset, the application will default to the local server, socket 144. If
socket 144 fails, it will try socket 2000. (For information on how to set this environment variable,
see the manual page for newsserverstr.)

DISPLAY
Before starting an X11 application, you can set this environment variable to tell the application
which server to connect to. If unset, you must specify the server on the application’s command-
line with the -display option. It is of the following form:

hostname:display.screen

Here, hostname may be the name of a host, unix, or localhost. The display argument is normally
0. The .screen argument is optional.

NOSXSEL
If set, the server does not start up sv_xv_sel_svc, which is used for cut and paste between
SunView and XView programs.

X110NLY
Reduces memory consumption if no News clients will be run. Causes the server to initialize
without starting the POSTSCRIPT window manager, pswm, or loading the News toolkit, which
pswm depends on. Additionally, the NewsS connection listener is not started. The documentation
for the features that X110ONLY turns off does not necessarily describe the effects of X110NLY.

NEWSONLY
Reduces memory consumption if no X11 clients will be run. Causes the server to initialize
without constructing data structures required by the X11 interpreter or making X11 specific News
operators available. It also avoids starting the POSTSCRIPT window manager, pswm, although it
still loads the News toolkit, and avoids starting the X11 connection listener. Additionally, it omits
X11 programs from the rootmenu. The documentation for the features that NEWSONLY turns
off does not necessarily describe the effects of NEWSONLY.

NOPSWM
Causes the server to initialize without starting the POSTSCRIPT window manager, pswm. Unlike
X110ONLY, the objective is not to save memory consumption but rather to make it easier to run a
different X11 window manager.

USAGE
Getting Started
To start the X11/News server, check where the server’s directory hierarchy is installed. The recommended
place is /home/openwin. Assuming it is installed on /home/openwin, set up your environment in the fol-
lowing way:

setenv OPENWINHOME /home/openwin
setenv LD_LIBRARY_PATH "$OPENWINHOME/lib:/usr/lib"

128 Last change: 16 June 1989 Sun Microsystems

XNEWS (1) USER COMMANDS XNEWS (1)

In your .login or .cshrc file, add $OPENWINHOME/bin and $OPENWINHOME/bin/xview to your PATH
ahead of /usr/bin. If you have been running News, you may have already set the FONTPATH variable. If
s0, unset it as follows:

unsetenv FONTPATH

If you have been running News 1.1, you may have already set the FRAMEBUFFER variable. If so, unset it
as follows:

unsetenv FRAMEBUFFER

Multiple Framebuffers
If you have two monitors, or if you have a cg4 that you prefer to use as two framebuffers, you may wish
either to run the X11/News server on both or to run the server on one and SunView on the other.

To run SunView on one monitor and the X11/NeWs server on the other, first start sunview with the -d
option. From SunView, set FRAMEBUFFER to the name of the other framebuffer. Then enter the follow-
ing:

unsetenv WINDOW_PARENT
To start the X11/NeWs server, you can enter the following:
xnews &; sleep 12; adjacentscreens <sunview-dev> -r SFRAMEBUFFER

The sunview-dev argument is the name of the /dev device file that you started SunView on.
Alternately, you can add the following line to your "/.startup.ps file:

(adjacentscreens <sunview-dev> -r SFRAMEBUFFER) runprogram

When you have added the line, you can start the server simply by typing xnews &.

You can then move the mouse back and forth between the two monitors, with SunView on the left and
X11/NeWs on the right. See adjacentscreens for changing the configuration. If you want to start SunView
applications from the terminal emulator in which you unset the WINDOW_PARENT environment variable,
you must reset it to /dev/win0.

To run the X11/News server on both monitors, you must start up two copies of the server, one for each
framebuffer: this is necessary because support for two framebuffers from one server is not available yet.
The following shell script takes two arguments (the framebuffer on the left and the framebuffer on the
right), starts two copies of the server, and allows the mouse to move between them.

#! /bin/sh

export FRAMEBUFFER; FRAMEBUFFER=$1; xnews &
sleep 30

export FRAMEBUFFER; FRAMEBUFFER=$2; xnews &
sleep 12

adjacentscreens $1 -r $2

Alternately, if you always start the first server on dev! and the second server on dev2, add the following to
your .startup.ps file:

(FRAMEBUFFER) () ?getenv

(dev2) eq {
(adjacentscreens dev! -r dev2) runprogram

Sun Microsystems Last change: 16 June 1989 129

XNEWS (1) USER COMMANDS XNEWS (1)

}if

To treat a cg4 as two framebuffers, become superuser and
enter the following:

cd /dev
MAKEDEV /dev/bwtwo0
In -s fb cgfour(_clr

When the X11/News server is started on /dev/fb on a cg4, it displays in the color plane group and displays
the cursor in the monochrome plane. If you switch either to another X11/News server or to SunView run-
ning in the monochrome plane using adjacentscreens, the cursor leaves a little blotch in the other display.
To avoid the little blotch, use cgfour0_clr instead of fb.

So, to run SunView in monochrome and X1i/News in color, start sunview -d /dev/bwtwo0, and start
X11/News with FRAMEBUFFER set to /dev/cgfour0_clr. To run SunView in color and X11/News in mono-
chrome, start SunView on /dev/fb, and start the X11/News server with FRAMEBUFFER set to /dev/bwtwo0.
To run two copes of the X11/News server, use the above script with the arguments /dev/bwtwo0 and
/dev/cgfour(_clr.

After Startup
Immediately after starting the server, the console is set to be the workstation screen. This means that mes-
sages to the console will disrupt the entire window system display. To avoid disruption, a console window
should be started as soon as possible after system initialization.

A console window is available from the root pop-up menu, in the Utilities pull-right menu.

Root Menu
The Root Menu user interface follows the OPEN LOOK Graphical User Interface specification.

To pop up the root menu, position the cursor anywhere in the root background and press the Menu button
on the mouse. By default, the Menu button is the right button. If you click the button (that is, release it
immediately after pressing it), the menu will stay up. You can make selections in the menu by clicking the
Menu button over the items in the menu, or you may dismiss the menu by clicking the Menu button in the
root background.

Menu items with an arrow on the right denote pull-right menus. Clicking the Menu button in these will
pop up another level of menu.

You can also use mouse-drag to operate menus. If you press the Menu button down and hold it down, the
menu will appear. As you move the mouse through the menu, the highlight will track the mouse. If you
move the mouse to the right side of a pull-right item, the next level of menu will appear. To select a menu
item in this mode, simply let go of the Menu button while the cursor is over your selection. To dismiss the
menu, let go of the Menu button while the cursor is not over the menu.

Window Management
The window management user interface follows the OPEN LOOK Graphical User Interface specification.

When you start an application, it may prompt you with a crosshair cursor to drag out a rectangle the size of
the new window. When it appears, its window comes up surrounded by a window frame. In the corners of
the window frame are symbols called resize corners. The Select button, which by default is the left mouse
button, may be used to drag a resize corner to the desired size. The symbol in the upper left hand corner
may be clicked with the Select button to close the window, by default.

Pressing the Menu button anywhere in the window frame pops up the window menu. The window menu is
operated the same way as the root menu.

FILES
If xnews is unable to open a file whose name does not start with /, and which cannot be found the directory
you started from or in your home directory, it inserts $XNEWSHOME/lib at the front of the name and tries

130 Last change: 16 June 1989 Sun Microsystems

XNEWS (1) USER COMMANDS XNEWS (1)

again.
$XNEWSHOME/etc/NeWS/*.ps
Startup POSTSCRIPT language code.

$XNEWSHOME/lib/fonts/*
Font library.

$XNEWSHOME/bin/xnews
The server.

$XNEWSHOME/lib/openwin-init
Shell script for initializing window client applications at server start-up.

$XNEWSHOME!/lib/openwin-menu
Template for default root menu. See buidmenu.

“/openwin-init
User override of $XNEWSHOME/lib/openwin-init

“/openwin-menu
User override of $XNEWSHOME/lib/openwin-menu

"[.user.ps
User-definable server customizations, loaded after other system *.ps files

“/.startup.ps
User-definable server customizations, loaded before other system *.ps files.

SEE ALSO
psh(1), psterm(1), psview(1), say(l), journalling(1l), kbd_mode(1), newshost(1), newsserverstr(1),
psman(1), hyperview(1), buildmenu

News Programmer’s Guide

POSTSCRIPT Language Reference Manual, Adobe Systems Inc., Addison-Wesley
X Window System Protocol, Version 11, MIT

Xlib - C Language X Interface, Version 11, MIT

BUGS
Some parts of the POSTSCRIPT language have yet to be implemented. See the appendix in the News
Programmer’ s Guide entitled Omissions and Implementation Limits.

The server is not yet completely robust when it runs out of memory. This out-of-memory condition occurs
because swap space has been used up. Swap space is a resource that is shared by all the processes running
on your machine.

When running SunView 1 programs, you may see Window display lock broken... messages.
If you do not have a console window, messages to the console disrupt the entire window system display.

Anyone who can gain access (legitmately or otherwise) to the system on which the server is running, or to
any system allowed to access the server, has, through either the X11 or the News protocol, unrestricted
access to the resources of the server. They can monitor the keyboard and the mouse, read information from
the screen, and interfere with the operation of other clients.

TRADEMARK
POSTSCRIPT is a registered trademark of Adobe Systems Inc.

Sun Microsystems Last change: 16 June 1989 131

XNEWS (1) USER COMMANDS XNEWS (1)

132 Last change: 16 June 1989 Sun Microsystems

X11 Manual Pages

X11 Manual Pages

bitmap.n

ico.n

logo.n

maze.n

muncher.n

plaid.n

pswm.n

puzzle.n

worm.n

xcalc.n

xdpr.n

xdpyinfo.n

xfd.n

xhost.n

xIsfonts.n

xIswins.n

Xxmac.n

xmag.n

xmodmap.n

Xpr.n

Xprop.n

133

135
143
145
147
149
151
153
155
157
159
163
165
167
169
171
173
175
177
179
183
185
189

xrefresh.n

xset.n

xsetroot.n

xterm.n

xwd.n

xwininfo.n

xwud.n

193
195
197
199
209
211
213

BITMAP (1) USER COMMANDS BITMAP(1)

NAME

bitmap, bmtoa, atobm — bitmap cditor and converter utilitics for X

SYNOPSIS

bitmap [-options ...] filename WIDTHXHEIGHT
bmtoa [-chars ...] [filename]

atobm [-chars cc] [-name variable] [-xhot number] [-yhot number] [filename]

DESCRIPTION

USAGE

The bitmap program is a rudimentary tool for creating or editing rectangular images made up of 1’s and
0’s. Bitmaps are used in X for defining clipping regions, cursor shapes, icon shapes, and tile and stipple
patterns.

The bmtoa and atobm filters convert bitmap files (FILE FORMAT) to and from ASCII strings. They are
most commonly used to quickly print out bitmaps and to generate versions for including in text.

Bitmap displays grid in which each square represents a single bit in the picture being edited. Squares can
be set, cleared, or inverted directly with the buttons on the pointer and a menu of higher level operations
such as draw line and fill circle is provided to the side of the grid. Actual size versions of the bitmap as it
would appear normally and inverted appear below the menu.

If the bitmap is to be used for defining a cursor, one of the squares in the images may be designated as the
hotspot. This determines where the cursor is actually pointing. For cursors with sharp tips (such as arrows
or fingers), this is usually at the cnd of the tip; for symmetric cursors (such as crosses or bullseyes), this is
usually at the center.

Bitmaps are stored as small C code fragments suitable for including in applications. They provide an array
of bits as well as symbolic constants giving the width, height, and hotspot (if specified) that may be used in
creating cursors, icons, and tiles.

The WIDTHxHEIGHT argument gives the size to use when creating a new bitmap (the default is 16x16).
Existing bitmaps are always cdited at their current size.

If the bitmap window is resized by the window manager, the size of the squares in the grid will shrink or
enlarge to fit.

OPTIONS

Bitmap accepts the following options:

—help
This option will cause a bricf description of the allowable options and parameters to be printed.

—display display
This option specifics the name of the X server to used.

—geometry geometry
This option specifies the placement and size of the bitmap window on the screen. See X for details.

—nodashed
This option indicates that the grid lines in the work arca should not be drawn using dashed lines.
Although dashed lines are prettier than solid lines, on some servers they are significantly slower.

—name variablename
This option specifies the variable name to be used when writing out the bitmap file. The default is to
use the basename of the filename command line argument.

—bw number
This option specifies the border width in pixcls of the main window.

X Version 11 Last change: 28 October 1988 135

BITMAP(1) USER COMMANDS BITMAP(1)

—fn font
This option specifies the font to be used in the buttons.

—fg color
This option specifies the color to be used for the foreground.

—bg color
This option specifies the color to be used for the background.

-hl color
This option specifies the color to be used for highlighting.

—bd color
This option specifies the color to be used for the window border.

—ms color
This option specifies the color to be used for the pointer (mouse).

Bmtoa accepts the following option:

—chars cc
This option specifies the pair of characters to use in the string version of the bitmap. The first charac-
ter is used for O bits and the second character is used for 1 bits. The default is to use dashes (-) for 0’s
and sharp signs (#) for 1’s.

Atobm accepts the following options:

—chars cc
This option specifies the pair of characters to use when converting string bitmaps into arrays of
numbers. The first character represents a 0 bit and the second character represents a 1 bit. The default
is to use dashes (-) for 0’s and sharp signs (#) for 1’s.

—name variable
This option specifies the variable name to be used when writing out the bitmap file. The default is to
use the basename of the filename command line argument or leave it blank if the standard input is
read.

—xhot number
This option specifies the X coordinate of the hotspot. Only positive values are allowed. By default,
no hotspot information is included.

—yhot number
This option specifies the Y coordinate of the hotspot. Only positive values are allowed. By default,
no hotspot information is included.

CHANGING GRID SQUARES
Grid squares may be set, cleared, or inverted by pointing to them and clicking one of the buttons indicated
below. Multiple squares can be changed at once by holding the button down and dragging the cursor
across them, Set squares are filled and represent 1°s in the bitmap; clear squares are empty and represent
0’s.
Button 1
This button (usually leftmost on the pointer) is used to set one or more squares. The
corresponding bit or bits in the bitmap are turned on (sct to 1) and the square or squares are
filled.

Button 2
This button (usually in the middle) is uscd to invert one or more squares. The corresponding
bit or bits in the bitmap are flipped (1’s become 0’s and 0’s become 1°s).

Button 3
This button (usually on the right) is uscd to clear one or more squares. The corresponding bit
or bits in the bitmap are turncd off (sct to 0) and the square or squares are emptied.

136 Last change: 28 October 1988 X Version 11

BITMAP(1) USER COMMANDS BITMAP (1)

MENU COMMANDS
To make defining shapes easicr, bitmap provides 13 commands for drawing whole sections of the grid at
once, 2 commands for manipulating the hotspot, and 2 commands for updating the bitmap file and exiting.
A command buttons for each of these operations is located to the right of the grid.

Several of the commands operate on rectangular portions of the grid. These areas are selected after the
command button is pressed by moving the cursor to the upper left square of the desired area, pressing a
pointer button, dragging the cursor to the lower right hand corner (with the button still pressed) , and then
releasing the button. The command may be aborted by pressing any other button while dragging or by
releasing outside the grid.

To invoke a command, move the pointer over that command and click any button.

Clear All
This command is used to clear all of the bits in the bitmap as if Button 3 had been dragged
through every square in the grid. It cannot be undone.

Set All
This command is used to set all of the bits in the bitmap as if Button 1 had been dragged
through every square in the grid. It cannot be undone.

Invert All
This command is used to invert all of the bits in the bitmap as if Button 2 had been dragged
through every square in the grid.

Clear Area
This command is used to clear a region of the grid as if Button 3 had been dragged through
each of the squares in the region. When this command is invoked, the cursor will change
shape to indicate that the area to be cleared should be selected as outlined above.

Set Area
This command is used to set a region of the grid as if Button 1 had been dragged through
each of the squares in the region. When this command is invoked, the cursor will change
shape to indicate that the area to be set should be selected as outlined above.

Invert Area
This command is used to inverted a region of the grid as if Button 2 had been dragged
through each of the squares in the region. When this command is invoked, the cursor will
change shape to indicate that the area to be inverted should be selected as outlined above.

Copy Area
This command is used to copy a region of the grid from one location to another. When this
command is invoked, the cursor will change shape to indicate that the area to be copied
should be sclected as outlined above. The cursor should then be clicked on the square to
which the upper left hand corner of the region should be copied.

Move Area
This command is used to move a region of the grid from one location to another. When this
command is invoked, the cursor will change shape to indicate that the area to be moved
should be selccted as outlined above. The cursor should then be clicked on the square to
which the upper left hand corner of the region should be moved. Any squares in the region’s
old position that aren’t also in the new position are cleared.

Overlay Area
This command is used to copy all of the set squares in a region of the grid from one location
to another. When this command is invoked, the cursor will change shape to indicate that the
arca to be copiced should be selected as outlined above. The cursor should then be clicked on
the square to which the upper left hand corner of the region should be overlaid. Only the
squares that arc set in the region will be touched in the new location.

Line

X Version 11 Last change: 28 October 1988 137

BITMAP(1)

FILE FORMAT

USER COMMANDS BITMAP(1)

This command will sct the squares in a line between two points. When this command is
invoked, the cursor will change shape to indicate that the pointer should be clicked on the
two end points of the linc.

Circle
This command will set the squarcs on a circle specified by a center and a point on the curve.
When this command is invoked, the cursor will change shape to indicate that the pointer
should be clicked on the center of the circle and then over a point on the curve. Small circles
may not look very round because of the size of the grid and the limits of having to work with
discrete pixcls.

Filled Circle
This command will set all of the squares in a circle specified by a center and a point on the
curve. When this command is invoked, the cursor will change shape to indicate that the
pointer should be clicked on the center of the circle and then over a point on the curve. All
squares side and including the circle are set.

Flood Fill
This command will sct all clear squares in an enclosed shape. When this command is
invoked, the cursor will change shape 1o indicate that the pointer should be clicked on any
empty square inside the shape to be filled. All empty squares that border horizontally or vert-
ically with the indicated square are sct out to the enclosing shape. If the shape is not closed,
the entire grid will be filled.

Set Hot Spot
This command designatcs one square in the grid as the hot spot if this bitmap to be used for
defining a cursor. When the command is invoked, the cursor will change indicating that the
pointer should be clicked on the square to contain the hot spot.

Clear Hot Spot
This command removes any designated hot spot from the bitmap.

Write Output
This command writes a small fragment of C code rcpresenting the bitmap to the filename
specified on the command line. If the filc already exists, the original file will be renamed to
filename~ before the new file is created. If an error occurs in either the renaming or the writ-
ing of the bitmap file, a dialog box will appear asking whether or not bitmap should use
/tmplfilename instead.

Quit
This command causes bitmap to display a dialog box asking whether or not it should save the
bitmap (if it has changed) and then exit. Answering yes is the same as invoking Write Out-

put; no causes bitmap to simply exit; and cancel will abort the Quit command so that more
changes may bc made.

The Write Output command stores bitmaps as simple C program fragments that can be compiled into pro-
grams, referred to by X Toolkit pixmap resources, manipulated by other programs (see xsetroot), or read in
using utility routines in the various programming librarics. The width and height of the bitmap as well as
the hotspot, if specified, arc written as preprocessor symbols at the start of the file. The bitmap image is
then written out as an array of characters:

138

#define name_width 11
#define name_hcight 5
#define name_x_hot 5
#define name_y_hot 2

static char name_bits[] = {

Last change: 28 October 1988 X Version 11

BITMAP(1) USER COMMANDS BITMAP(1)

0x91, 0x04, Oxca, 0x06, 0x84,
0x04, 0x8a, 0x04, 0x91, 0x04
1

The name prefix to the preprocessor symbols and to the bits array is constructed from the filename argu-
ment given on the command line. Any directories are stripped off the front of the name and any suffix
beginning with a period is stripped off the end. Any remaining non-alphabetic characters are replaced with
underscores. The name_x_hot and name_y_hot symbols will only be present if a hotspot has been desig-
nated using the Set Hot Spot command.

Each character in the the array contains 8 bits from one row of the image (rows are padded out at the end to
a multiple of 8 to make this is possiblc). Rows are written out from left to right and top to bottom. The
first character of the array holds the leftmost 8 bits of top linc, and the last characters holds the right most 8
bits (including padding) of the bottom line. Within each character, the leftmost bit in the bitmap is the least
significant bit in the character.

This process can be demonstrated visually by splitting a row into words containing 8 bits each, reversing
the bits each word (since Arabic numbers have the significant digit on the right and images have the least
significant bit on the left), and translating cach word from binary to hexadecimal.

In the following example, the array of 1’s and 0’s on the left represents a bitmap containing 5 rows and 11
columns that spells X11. To its right is is the same array split into 8 bit words with each row padded with
0’s so that it is a multiple of 8 in length (16):

10001001001 10001001 00100000
01010011011 01010011 01100000
00100001001 00100001 00100000
01010001001 01010001 00100000
10001001001 10001001 00100000

Reversing the bits in each word of the padded, split version of the bitmap yields the left hand figure below.
Interpreting each word as hexadecimal number yiclds the array of numbers on the right:

10010001 00000100 0x91 0x04
11001010 00000110 Oxca 0x06
10000100 00000100 0x84 0x04
10001010 00000100 0x8a 0x04
10010001 00000100 0x91 0x04

The character array can then be generated by reading each row from left to right, top to bottom:

static char name_bits[] = {

0x91, 0x04, Oxca, 0x06, 0x84,
0x04, 0x8a, 0x04, 0x91, 0x04
)

The bmtoa program may be uscd to convert bitmap files into arrays of characters for printing or including
in text files. The atobm program can be used to convert strings back to bitmap format.

USING BITMAPS IN PROGRAMS
The format of bitmap files is designed to make bitmaps and cursors easy to use within X programs. The
following code could be used to create a cursor from bitmaps defined in this.cursor and this_mask.cursor:

#include "this.cursor”
#include "this_mask.cursor”

X Version 11 Last change: 28 October 1988 139

BITMAP(1) USER COMMANDS BITMAP(1)

XColor foreground, background;

/* fill in foreground and background color structures */

Pixmap source = XCreateBitmapFromData (display, drawable,
this_bits, this_width, this_height);

Pixmap mask = XCreateBitmapFromData (display, drawable,
this_mask_bits, this_mask_width, this_mask_height);
Cursor cursor = XCreatePixmapCursor (display, source, mask,

foreground, background, this_x_hot, this_y_hot);

Additional routines are available for reading in bitmap files and returning the data in the file, in Bitmap
(single-plane Pixmap for use with routines that require stipples), or full depth Pixmaps (often used for win-
dow backgrounds and borders). Applications writers should be careful to understand the difference
between Bitmaps and Pixmaps so that their programs function correctly on color and monochrome
displays.

For backward compatibility, bitmap will also accept X10 format bitmap files. However, when the file is
written out again it will be in X11 format

X DEFAULTS
Bitmap uses the following resources:

Background
The window’s background color. Bits which are O in the bitmap are displayed in this color. This
option is useful only on color displays. The default value is white.

BorderColor
The border color. This option is useful only on color displays. The default value is black.

BorderWidth
The border width. The default value is 2.

BodyFont
The text font. The default valuc is variable.

Dashed
If ““off’’, then bitmap will draw the grid lines with solid lines. The default is “‘on”".

Foreground
The foreground color. Bits which are 1 in the bitmap are displayed in this color. This option is useful
only on color displays. The default value is black.

Highlight
The highlight color. bitmap uscs this color to show the hot spot and to indicate rectangular areas that
will be affected by the Move Area, Copy Area, Set Area, and Invert Area commands. If a highlight
color is not given, then bitmap will highlight by inverting. This option is useful only on color
displays.

Mouse

The pointer (mouse) cursor’s color. This option is useful only on color displays. The default value is
black.

Geometry
The size and location of the bitmap window.

Dimensions
The WIDTHxHEIGHT 10 usc when crcating a new bitmap.

SEE ALSO

X(1), Xlib - C Language X Interface (particularly the section on Manipulating Bitmaps), XmuReadBitmap-
DataFromFile

140 Last change: 28 October 1988 X Version 11

BITMAP(1) USER COMMANDS BITMAP(1)

BUGS
The old command line arguments arcn’t consistent with other X programs.

If you move the pointer too fast while holding a pointer button down, some squares may be missed. This is
caused by limitations in how frequently the X server can sample the pointer location.

There is no way to write to a file other than the one specified on the command line.
There is no way to change the size of the bitmap once the program has started.
There is no undo command.

COPYRIGHT
Copyright 1988, Massachusetts Institute of Technology.
See X(I) for a full statement of rights and permissions.
AUTHOR

bitmap by Ron Newman, MIT Project Athena; documentation, bmtoa, and atobm by Jim Fulton, MIT X
Consortium.

X Version 11 Last change: 28 October 1988 141

BITMAP(1) USER COMMANDS BITMAP(1)

142 Last change: 28 October 1988 X Version 11

ICO(1) USER COMMANDS ICO(1)

NAME
ico — animate an icosahedron
SYNOPSIS
ico [display list] [=geometry] [-d pattern] [-i]
DESCRIPTION
Ico displays a wire-frame rotating polyhedron, with hidden lines removed, or a solid-fill polyhedron with

hidden faces removed. There are a number of different polyhedra available; adding a new polyhedron to
the program is quite simple.

OPTIONS
-d pattern
Specify a bit pattern for drawing dashed lines for wire frames.
-i Use inverted colors for wire frames.

For each display specified,
Ico creates another window. The total geometry is split vertically amongst these windows, and the
ico bounces between them. The end result is that ico foo0:0 bar:0 would result in ico bouncing
half on display foo:0 and half on bar:0.
SEE ALSO
X(1)
BUGS
Doesn’t deal too well with being resized.

COPYRIGHT
Copyright 1988, Massachusetts Institute of Technology.
See X(1) for a full statement of rights and permissions.

X Version 11 Last change: 1 March 1988 143

ICO(1) USER COMMANDS ICO(1)

144 Last change: 1 March 1988 X Version 11

XNEWSLOGO(1) USER COMMANDS XNEWSLOGO (1)

NAME
XNEWSLOGO - displays the X11 and NeWS logos.

SYNOPSIS
XCOLOR [—display display] [—geometry geometry]

DESCRIPTION
XNEWSLOGO displays the MIT X11 logo and the Sun Microsystems logo in a single X window. The X11
logo is rendered using the X11 code from the Xtk widget set’s "logo widget". The Sun Logo is rendered
using postscript code being sent to the NeWS interpreter in the X11/NeWS merge.

OPTIONS
—display connection
Connect to X server display, connection.

—geometry geomspec
Set window size and placement to the standard X11 geometry specification, geomspec.

SEE ALSO
X(1)

COPYRIGHT
Copyright (c) 1988 by Sun Microsystems, Inc.
David Lemke (lemke@wirchcad.sun.com)

Permission to use, copy, modify, and distribute this software and its documentation for any purpose and
without fee is hereby granted, provided that the above copyright notice appear in all copies and that both
that copyright notice and this permission notice appear in supporting documentation.

Sun Microsystems Last change: 15 Aug 1988 145

XNEWSLOGO(1) USER COMMANDS XNEWSLOGO((1)

146 Last change: 15 Aug 1988 Sun Microsystems

MAZE(1) USER COMMANDS MAZE (1)

NAME
maze - an automated maze program... [demo][X11]

SYNTAX
maze [-S1[—r][—g geometry] [—d display]

DESCRIPTION
The maze program creates a "random" maze and then solves it with graphical feedback.

Command Options

-S Full screen window option...
-T Reverse video option...
—g geometry

Specifies the window geometry to be used...

—d display
Specifies the display to be used...

The following lists the current functionality of various mouse button clicks;

LeftButton
Clears the window and restarts maze...

MiddleButton
Toggles the maze program, first click -> stop, second click -> continue...

RightButton
Kills maze...

LIMATIONS
No color support...
Expose events force a restart of maze...
Currently, mouse actions are based on "raw" values [Button1, Button2 and Button3] from the ButtonPress
event...
[doesn’t use pointer mapping]

COPYRIGHT
Copyright 1988 by Sun Microsystems, Inc. Mountain View, CA.

All Rights Reserved

Permission to use, copy, modify, and distribute this software and its documentation for any purpose and
without fee is hereby granted, provided that the above copyright notice appear in all copies and that both
that copyright notice and this permission notice appear in supporting documentation, and that the names of
Sun or MIT not be used in advertising or publicity pertaining to distribution of the software without
specific prior written permission. Sun and M.LT. make no representations about the suitability of this
software for any purpose. It is provided "as is" without any express or implied warranty.

SUN DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS SOFTWARE, INCLUDING ALL
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PUR-
POSE. IN NO EVENT SHALL SUN BE LIABLE FOR ANY SPECIAL, INDIRECT OR CONSEQUEN-
TIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA
OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS
ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS

SOFTWARE.
AUTHORC(s)
Richard Hess [X11 extensions] {...}!uunct!cimshop!rhess
Consilium, Mountain View, CA
Dave Lemke [X11 version] Iemke@sun.COM

X Version 11 Last change: 5 October 1988 | 147

MAZE (1) USER COMMANDS MAZE (1)

Sun MicroSystems, Mountain View, CA
Martin Weiss [SunView version]
Sun MicroSystems, Mountain View, CA

148 Last change: 5 October 1988 X Version 11

MUNCHER(1) USER COMMANDS MUNCHER (1)

NAME
muncher — draw interesting pattcrns in an X window
SYNOPSIS
muncher [-option ...]
OPTIONS
-r display in the root window
—s seed seed the random number sced
-V run in verbose mode
—-q run in quite mode
—geometry geometry
define the initial window geometry; see X(1).
—display display
specify the display to use; see X(1).
DESCRIPTION
Muncher draws some interesting patterns in a window.
SEE ALSO
X))
BUGS

There are no known bugs. There arc lots of lacking features.

COPYRIGHT
Copyright 1988, Massachusetts Institute of Technology.
Sce X(1) for a full statement of rights and permissions.

X Version 11 Last change: 1 March 1988 149

MUNCHER (1) USER COMMANDS MUNCHER (1)

150 Last change: 1 March 1988 X Version 11

PLAID(1) USER COMMANDS

NAME
plaid — paint some plaid-like patterns in an X window
SYNOPSIS
plaid [-option ...]
OPTIONS
-b enable backing store for the window
—geometry geometry
define the initial window geometry; see X(1).
—display display
specify the display to use; see X(1).
DESCRIPTION

Plaid displays a continually changing plaid-like pattern in a window.

SEE ALSO

X(1)
BUGS

There are no known bugs. There are lots of lacking features.
COPYRIGHT

Copyright 1988, Massachusetts Institute of Technology.
Sce X(1) for a full statement of rights and permissions.

X Version 11 Last change: 1 March 1988

PLAID (1)

151

PLAID (1) USER COMMANDS PLAID (1)

152 Last change: 1 March 1988 X Version 11

PSWM(1) USER COMMANDS PSWM(1)

NAME

pswm — POSTSCRIPT-based X11 window manager
SYNOPSIS

pswm [—display string 1 [—helpkey keycode] [—init]
DESCRIPTION

pswm is an X11 window manager for use with the X11/NeWS server. pswm manages X11 windows using
the NeWS toolkit. This enables X11 and NeWS windows to coexist on the same screen.

STARTUP AND SHUTDOWN
The X11/NeéWS server starts pswm automatically by default. The server provides the —init option so that
pswm will execute a startup script.

You will need to shut down pswm if you want to run a different X11 window manager. To shut down
pswm, simply send it a TERM signal using kill(1). You must have pswm’s process id before you can do
this. You can find it by using the ps(1) command. For example:

example% ps ax | grep pswm
7840 p5 S 0:00 grep pswnm

7710 p6 IW 0:00 pswm -init
example% kill -TERM 7710

To restart pswm, simply run it from a shell, in the background.

example% pswm &

OPTIONS

—display string
Causes pswm to connect to the X11 display identified by string. string has the same format as
the DISPLAY environment variable. If the —display option is present, string will override any
value in the DISPLAY environment variable, if one is present.

—helpkey keycode
Specifies the keycode of the key which is to be used as the Help key.

—init Causes pswm to run a startup script. pswm first tries to execute ‘‘SHOME/.openwin-init”’. If
this fails, pswm will then try to execute a default startup script from
¢“$XNEWSHOME/lib/openwin-init’’.

FILES

$HOME/.openwin-init User-customizable startup script.

$XNEWSHOME/lib/openwin-init Default startup script.
DIAGNOSTICS

can’t open X11 (or NeWS) connection
pswm necds to create an X11 and a NeWS connection to thc same scrver. It failed to make
one of the required server connections.

can’t rendezvous X11 and NeWS connections
pswm’s needs to create an X11 and a NeWS connection to the same server. These connec-
tions ended up at different servers. Check the DISPLAY and NEWSSERVER environment
variables to make sure they indicate the same X11/NeWS server.

another window manager is already running on this screen
You can run only one window manager at a time on a given screen. There’s another window
manager running already, so pswm can’t run.

Sun Microsystems Last change: 19 Jun 1989 153

PSWM(1) USER COMMANDS PSWM(1)

COPYRIGHT
Copyright (c) 1989 by Sun Microsystems, Inc.

Permission to use, copy, modify, and distribute this software and its documentation for any purpose and
without fee is hereby granted, provided that the above copyright notice appear in all copies and that both
that copyright notice and this permission notice appear in supporting documentation.

TRADEMARKS
PostScript is a trademark of Adobe Systems, Inc.

154 Last change: 19 Jun 1989 Sun Microsystems

PUZZLE (1) USER COMMANDS PUZZLE (1)

NAME
puzzle — 15-puzzle game for X

SYNOPSIS
puzzle [-option ...]
OPTIONS
—display display
This option specifies the display to use; see X(1).
—geometry geometry
This option specifics the size and position of the puzzle window; see X(I).

—size WIDTHxHEIGHT
This option specifies the sizc of the puzzle in squares.
—speed num
This option specifies the specd in tiles per second for moving tiles around.
—picture filename
This option specifies an image file containing the picture to use on the tiles. Try ““mandrill.cm.”
This only works on 8-bit pseudo-color screens.
—colormap
This option indicates that the program should create its own colormap for the picture option.
DESCRIPTION
Puzzle with no arguments plays a 4x4 15-puzzle. The control bar has two boxes in it. Clicking in the left
box scrambles the puzzle. Clicking in the right box solves the puzzle. Clicking the middle button any-
where else in the control bar causes puzzle to exit. Clicking in the tiled region moves the empty spot to
that location if the region you click in is in the same row or column as the empty slot.
SEE ALSO
X(1)
BUGS
The picture option should work on a wider variety of screens.
COPYRIGHT
Copyright 1988, Don Bennett.

AUTHOR
Don Bennett, HP Labs

X Version 11 Last change: 1 March 1988 155

PUZZLE(1) USER COMMANDS PUZZLE (1)

156 Last change: 1 March 1988 X Version 11

WORM(1) USER COMMANDS WORM(1)

NAME

worm — draw wiggly worms
SYNOPSIS

worm [—1length] [—s size] [—n number] [—d connection] [—g geometry 1 [-R] [-C1[-S]
DESCRIPTION

worm draws wiggly worms. It is adapted from a concept in the December 1987 issue of Scientific Ameri-
can. Playing with the various parameters can create strange effects. Pressing any key in the worm window
will cause them to freeze; pressing again will thaw.

OPTIONS
—S Screensaver. Takes over entirc screen.

—C Chromocolor. Worms change colors as they crawl.
—R Rotate colormap. The colormap constantly changes.

—n number
Make number worms. Default is 50.

—llength
Worms are if length length. A negative value means infinite length.

—size size
Worms are size pixels wide.

—display connection
Connect to X server display, connection.

—geometry geomspec
Create window using geomspec.

SEE ALSO
X(1)

COPYRIGHT
Copyright (c) 1988 by Sun Microsystems, Inc.
David Lemke (lemke@wirchcad.sun.com)

Permission to use, copy, modify, and distribute this software and its documentation for any purpose and

without fee is hereby granted, provided that the above copyright notice appear in all copies and that both
that copyright notice and this permission notice appear in supporting documentation.

Sun Microsystems Last change: 15 Aug 1988 157

WORM(1) USER COMMANDS WORM(1)

158 Last change: 15 Aug 1988 Sun Microsystems

XCALC(1) USER COMMANDS XCALC(1)

NAME

xcalc — scientific calculator for X
SYNOPSIS

xcalc [-display display] [-bw pixels] [-stip] [-rv] [-rpn] [-analog] [-geometry geometry]
DESCRIPTION

Xcalc is a scientific calculator desktop accessory that can emulate a TI-30, an HP-10C, and a slide rule.
OPTIONS

—display displayname

This option specifies the X server to contact.
—geometry geomelry

This option specifies the size and placement of the top level window. By default, the minimum
size will be used. Note that your window manager may require you to place it explicitly anyway.

—fg color
This option specifies the foreground color to use.

—bg color
This option specifics the background color to use.

—bw pixels
This option specifies the border width in pixels.

—stip This option indicatcs that the background of the calculator should be drawn using a stipple of the
foreground and background colors. On monochrome displays this makes for a nicer display.

-Tv This option indicates that reverse video should be used.

—rpn This option indicates that Reverse Polish Notation should be used. In this mode the calculator
will look and behave like an HP-10C. Without this flag, it will emulate a TI-30.

—analog This option indicates that a slide rule should be used.

OPERATION
Pointer Usage: Most operations are done with the Buttonl (usually leftmost button on the pointer). The
only exception is that pressing the AC key on the TI calculator with Button3 (usually on the right) will exit
the calculator.

Key Usage (Normal mode): The number keys, the +/- key, and the +, -, *, /, and = keys all do exactly what
you would expect them to. It should be noted that the operators obey the standard rules of precedence.
Thus, entering "3+4*5=" results in "23", not "35". The parentheses can be used to override this. For exam-
ple, "(1+2+3)*(4+5+6)=" results in "6*15=90". The non-obvious keys are detailed below.

1/x replaces the number in the display with its reciprocal.
x"2 squares the number in the display.
SQRT takes the square root of the number in the display.

CE/C when pressed once, clears the number in the display without clearing the state of the machine.
Allows you to re-enter a number if you screw it up. Pressing it twice clears the state, also.

AC clears everything, the display, the state, the memory, everything. Pressing it with the right button
*turns off’ the calculator, in that it exits the program. Somewhat more equivalent to throwing the calculator
in the trash, if we were to pursue the analogy.

INV inverts the meaning of the function keys. Sce the individual function keys for details.

sin computes the sine of the number in the display, as interpreted by the current DRG mode (see DRG,
below). If inverted, it computes the arcsine.

X Version 11 Last change: 26 October 1988 159

XCALC(1) USER COMMANDS XCALC(1)

160

cos computes the cosine, or arccosine when inverted.
tan computes the tangent, or arctangent when inverted.

DRG changes the DRG mode, as indicated by "DEG’, 'RAD’, or '"GRAD’ at the bottom of number win-
dow of the calculator. When in 'DEG’ mode, numbers in the display are taken as being degrees. In 'RAD’
mode, numbers are in radians, and in ’"GRAD’ mode, numbers are in gradians. When inverted, the DRG
key has the nifty feature of converting degrees to radians to gradians and vice-versa. Example: put the cal-
culator into "DEG’ mode, and type "45 INV DRG". The display should now show something along the
lines of ".785398", which is 45 degrees converted to radians.

e the constant ’e’. (2.7182818...)
EE used for entering exponential numbers. For example, to enter "-2.3E-4" you’d type "2 . 3 +/- EE 4 +/-"

log calculates the log (base 10) of the number in the display. When inverted, it raises "10.0" to the number
in the display. For example, typing "3 INV log" should result in "1000".

In calcuates the log (base €) of the number in the display. When inverted, it raises "e" to the number in the
display. For example, typing "e In" should result in "1"

y'x raises the number on the left to the power of the number on the right. For example "2 y"x 3 =" results
in "8", which is 2°3. For a further example, "(1+2+3) y"x (1+2) =" equals "6 y"x 3" which equals "216".

PI the constant *pi’. (3.1415927....)

x! computes the factorial of the number in the display. The number in the display must be an integer in the
range 0-500, though, depending on your math library, it might overflow long before that.

STO copies the number in the display to the memory location.

RCL copies the number from the memory location to the display.

SUM adds the number in the display to the number in the memory location.
EXC swaps the number in the display with the number in the memory location.

Key Usage (RPN mode): The number keys, CHS (change sign), +, -, *, /, and ENTR keys all do exactly
what you would expect them to do. Many of the remaining keys are the same as in normal mode. The
differences are detailed below.

<- is a backspace key that can be used while typing a number. It will erase digits from the display.

ON clears everything, the display, the state, the memory, everything. Pressing it with the right button
*turns off’ the calculator, in that it exits the program. Somewhat more equivalent to throwing the calculator
in the trash, if we were to pursue the analogy.

INV inverts the meaning of the function keys. This would be the "f" key on an HP calculator, but xcalc
does not have the resolution to display multiple legends on each key. See the individual function keys for
details.

10"x raises "10.0" to the number in the top of the stack. When inverted, it calculates the log (base 10) of
the number in the display.

e¢’x raises "e" to the number in the top of the stack. When inverted, it calcuates the log (base €) of the
number in the display.

STO copies the number in the top of the stack to a memory location. There are 10 memory locations. The
desired memory is specified by following this key with pressing a digit key.

RCL pushes the number from the spccificd memory location onto the stack.
SUM adds the number on top of the stack to the number in the specified memory location.

x:y exchanges the numbers in the top two stack positions.

Last change: 26 October 1988 X Version 11

XCALC(1) USER COMMANDS XCALC(1)

R v rolls the stack downward. When inverted, it rolls the stack upward.

blank these keys were used for programming functions on the HP11-C. Their functionality has not been
duplicated here.

KEYBOARD EQUIVALENTS
If you have the pointer in the xcalc window, you can use the keyboard to speed entry, as almost all of the
calculator keys have a keyboard equivalent. The number keys, the operator keys, and the parentheses all
have the obvious equivalent. The less-obvious equivalents are as follows:

n: +/- 1: x!

p: PI e: EE

I In T yx

i: INV s: sin

c: cos t: tan

d: DRG BS,DEL: CE/C ("<-" in RPN mode)

CR: ENTR q: quit

COLOR USAGE
Xcalc uses a lot of colors, given the opportunity. In the default case, it will just use two colors (Foreground
and Background) for everything. This works out nicely. However, if you’re a color fanatic you can
specify the colors used for the number keys, the operator (+-*/=) keys, the function keys, the display, and
the icon.

X DEFAULTS
The program uses the routine XGetDefault(3X) to read defaults, so its resource names are all capitalized.

BorderWidth
Specifies the width of the border. The default is 2.

ReverseVideo
Indicates that reverse video should be used.

Stipple Indicates that the background should be stippled. The default is ““on’” for monochrome displays,
and ““off’” for color displays.

Mode Specifies the default mode. Allowable values are rpn, analog.

Foreground
Specifies the default color used for borders and text.

Background
Specifies the default color used for the background.

NKeyFore, NKeyBack
Specifies the colors used for the number keys.

OKeyFore, OKeyBack
Specifies the colors used for the operator keys.

FKeyFore, FKeyBack

Specifies the colors used for the function keys.
DispFore, DispBack

Specifies the colors used for the display.

IconFore, IconBack
Specifics the colors used for the icon.

EXAMPLES
If you’re running on a monochrome display, you shouldn’t need any .Xdefaults entries for xcalc. On a
color display, you might want to try the following in normal mode:

X Version 11 Last change: 26 October 1988 161

XCALC(1) USER COMMANDS XCALC(1)

xcalc . Foreground: Black
xcalc.Background: LightSteelBlue
xcalc.NKeyFore: Black
xcalc.NKeyBack: White
xcalc.OKceyFore: Aquamarine
xcalc.OKeyBack: DarkSlateGray
xcalc.FKeyFore: White
xcalc.FKeyBack: #900
xcalc.DispFore: Yellow
xcalc.DispBack: #7177
xcalc.IconFore: Red
xcalc.IconBack: White

SEE ALSO

X(1), xrdb(1)
BUGS

The calculator doesn’t resize.
The slide rule and HP mode may or may not work correctly.

This application should really be implemented with the X Toolkit. It would make a very good example of
a compound widget.
COPYRIGHT
Copyright 1988, Massachusetts Institute of Technology.
Sce X(1) for a full statement of rights and permissions.
AUTHORS
John Bradley, University of Pennsylvania
Mark Rosenstein, MIT Project Athena

162 Last change: 26 October 1988 X Version 11

XDPR (1) USER COMMANDS XDPR (1)

NAME

xdpr — dump an X window directly to a printer

SYNOPSIS

xdpr [filename] [—display host:display] [—Pprinter] [—device printer_device] [option ...]

DESCRIPTION

Xdpr uses the commands xwd(1), xpr(1), and Ipr(1) to dump an X window, process it for a particular
printer type, and print it out on the printer of your choice. This is the easiest way to get a printout of a win-
dow. Xdpr by default will print the largest possible representation of the window on the output page.

The options for xdpr are the same as those for xpr, xwd, and Ipr. The most commonly-used options are
described below; see the manual pages for these commands for more detailed descriptions of the many
options available.

filename

Specifies a file containing a window dump (created by xwd) to be printed instead of selecting an X
window.

-Pprinter
Specifies a printer to send the output to. If a printer name is not specified here, xdpr (really, Ipr)
will send your output to the printer specified by the PRINTER environment variable. Be sure that
type of the printer matches the type specified with the —device option.

-display host:displayl.screen]
Normally, xdpr gets the host and display number to use from the environment variable
“DISPLAY’’. One can, however, specify them explicitly; see X(1).

-device printer-device
Specifies the device type of the printer. Available printer devices are "In03" for the DEC LNO3,
"pp" for the IBM 3812 PagePrinter, and "ps" for any postscript printer (¢.g. DEC LNO3R or
LPS40). The defaultis "In03".

-help This option displays the list of options known 0 xdpr.

Any other arguments will be passed to the xwd(1), xpr(1), and Ipr(1) commands as appropriate for each.

SEE ALSO

xwd(1), xpr(1), Ipr(1), xwud(1), X(1)

ENVIRONMENT

DISPLAY - for which display to use by default.
PRINTER - for which printer to use by default.

COPYRIGHT

Copyright 1985, 1988, Massachusetts Institute of Technology.
Sce X(1) for a full statement of rights and permissions.

AUTHOR

Paul Boutin, MIT Project Athcna
Michael R. Gretzinger, MIT Project Athcna
Jim Gettys, MIT Project Athcna

X Version 11 Last change: 10 May 1988 163

XDPR(1) USER COMMANDS XDPR (1)

164 Last change: 10 May 1988 X Version 11

XDPYINFO(1) USER COMMANDS XDPYINFO (1)

NAME
xdpyinfo - display information utility for X

SYNOPSIS _
xdpyinfo [-display displayname]
DESCRIPTION
Xdpyinfo is a utility for displaying information about an X server. It is used to examine the capabilities of a

scrver, the predefined values for various parameters used in communicating between clients and the server,
and the different types of screens and visuals that are available.

EXAMPLE

The following shows a sample produced by xdpyinfo when connected to display that supports an 8 plane
Pscudocolor screen as well as a 1 plane (monochrome) screen.

name of display: empire:0.0
version number: 11.0
vendor string: MIT X Consortium
vendor release number: 3
maximum request size: 16384 longwords (65536 bytes)
motion buffer size: 0
bitmap unit, bit order, padding: 32, MSBFirst, 32
image byte order: MSBFirst
number of supported pixmap formats: 2
supported pixmap formats:
depth 1, bits_per_pixel 1, scanline_pad 32
depth 8, bits_per_pixel 8, scanline_pad 32
keycode range: minimum 8, maximum 129
default screen number: 0
number of screens: 2

screen #0:
dimensions: 1152x900 pixels (325x254 millimeters)
resolution: 90x90 dots per inch
root window id: 0x8006d
depth of root window: 1 plane
number of colormaps: minimum 1, maximum 1
default colormap: 0x80065
default number of colormap cells: 2
preallocated pixels: black 1, white 0
options: backing-store YES, save-unders YES
current input event mask: 0x1b8003c
ButtonPressMask ButtonReleaseMask EnterWindowMask
LeaveWindowMask SubstructureNotifyMask SubstructureRedirectMask
FocusChangeMask ColormapChangcMask OwnerGrabButtonMask
number of visuals: 1 '
default visual id: 0x80064
visual:
visual id: 0x80064
class: StaticGray
depth: 1 plane
size of colormap: 2 entrics
red, green, blue masks: 0x0, 0x0, 0x0
significant bits in color spccification: 1 bits

screen #1:

X Version 11 Last change: 1 October 1988 165

XDPYINFO(1) USER COMMANDS

dimensions: 1152x900 pixels (325x254 millimeters)
resolution: 90x90 dots per inch
root window id: 0x80070
depth of root window: 8 plancs
number of colormaps: minimum 1, maximum 1
default colormap: 0x80067
default number of colormap cells: 256
preallocated pixels: black 1, white 0
options: backing-store YES, save-unders YES
current input event mask: 0x0
number of visuals: 1
default visual id: 0x80066
visual:
visual id: 0x80066
class: PseudoColor
depth: 8 planes
size of colormap: 256 entries
red, green, blue masks: 0x0, 0x0, 0x0
significant bits in color specification: 8 bits

ENVIRONMENT
DISPLAY

To get the default host, display number, and screen.

SEE ALSO
X(1), xwininfo(1), xprop(1), xrdb(1)

BUGS

XDPYINFO (1)

Due to a bug in the Xlib interface, there is currently no portable way to determine the depths of pixmap
images that are supported by the server.
COPYRIGHT

Copyright 1988, Massachusetts Institute of Technology.
See X(1) for a full statement of rights and permissions.

AUTHOR

Jim Fulton, MIT X Consortium

166

Last change: 1 October 1988

X Version 11

XFD(1) USER COMMANDS XFD(1)

NAME
x{d - font displayer for X
SYNOPSIS
xfd [-options ...] -fn fontname
OPTIONS
—display display
Specifies the display to use.
—geometry geometry
Specifies an initial window geometry.
—bw number
Allows you to specify the width of the window border in pixels.
-Tv The foreground and background colors will be switched. The default colors are black on white.
—fw Overrides a previous choice of reverse video. The foreground and background colors will not be
switched.
—fg color
On color displays, determines the foreground color (the color of the text).
—bg color
On color displays, determines the background color.
—bd color
On color displays, determines the color of the border.
—bf fontname
Specifies the font to be used for the messages at the bottom of the window.
—tlzitle Specifies that the title of the displayed window should be title.
—in iconname
Specifies that the name of the icon should be iconname.
—icon filename
Specifies that the bitmap in file filename should be used for the icon.
—verbose
Specifies that extra information about the font should be displayed.
—gray Specifies that a gray background should be used.
—start charnum
Specifies that character number charnum should be the first character displayed.
DESCRIPTION

Xfd creates a window in which the characters in the named font are displayed. The characters are shown in
increasing order from left to right, top to bottom. The first character displayed at the top left will be char-
acter number 0 unless the -start option has been supplied in which case the character with the number given
in the -start option will be uscd.

The characters are displayed in a grid of boxes, each large enough to hold any single character in the font.
If the -gray option has been supplied, the characters will be displayed using XDrawImageString using the
foreground and background colors on a gray background. This permits determining exactly how
XDrawlmageString will draw any given character. If -gray has not been supplied, the characters will sim-
ply be drawn using the foreground color on the background color.

All the characters in the font may not it in the window at once. To see additional characters, click the right
mouse button on the window. This will cause the next window full of characters to be displayed. Clicking
the left mouse button on the window will cause the previous window full of characters to be displayed. Xfd
will beep if an attempt is made to go back past the Oth character.

X Version 11 Last change: 25 October 1988 167

XED (1) USER COMMANDS XFD(1)

Note that if the font is a 8 bit font, the characters 256-511 (100-1ff in hexidecimal), 512-767 (200-2ff in
hexidecimal), ... will display exactly the same as the characters 0-255 (00-ff in hexidecimal). Xfd by
default creates a window big enough to display 16 rows of 16 columns (totally 256 characters).

Clicking the middle button on a character will cause that character’s number to be displayed in both
decimal and hexidecimal at the bottom of the window. If verbose mode is selected, additional information
about that particular character will be displayed as well. The displayed information includes the width of
the character, its left bearing, right bearing, ascent, and its descent. If verbose mode is selected, typing <’
or >’ into the window will display the minimum or maximum values respectively taken on by each of
these fields over the entire font.

The font name is interpreted by the X server. To obtain a list of all the fonts available, use xisfonts(1).

The window stays around until the xfd process is killed or one of ’q’, ’Q’, ’ ’°, or ctrl-c is typed into the Xfd
window.

X DEFAULTS

Xfd uses the following X resources:

BorderWidth Set the border width of the window.

BorderColor Set the border color of the window.

ReverseVideo If “‘on”, reverse the definition of foreground and background color.
Foreground Set the foreground color.

Background Set the background color.

BodyFont Set the font to be used in the body of the window. (L.e., for messages, etc.) This is not
the font that Xfd displays, just the font it uses to display information about the font being
displayed.

IconName Set the name of the icon.

IconBitmap Set the file we should look in to get the bitmap for the icon.
Title Set the title to be used.

SEE ALSO

BUGS

X(1), xIsfonts(1), xrdb(1)

It should display the name of the font somewhere.

Character information displayed in verbose mode is sometimes clipped to the window boundary, hiding it
from view.

It should be rewritten to use the X toolkit.

It should skip over pages full of non-existent characters.

COPYRIGHT

Copyright 1988, Massachusetts Institute of Technology.
Sce X(1) for a full statement of rights and pcrmissions.

AUTHOR

168

Mark Lillibridge, MIT Project Athcna

Last change: 25 October 1988 X Version 11

XHOST (1)

NAME

USER COMMANDS XHOST (1)

xhost - server access control program for X

SYNOPSIS

xhost [[+-]hostname ...]

DESCRIPTION

The xhost program is used to add and delete hosts to the list of machines that are allowed to make connec-
tions to the X server. This provides a rudimentary form of privacy control and security. It is only
sufficient for a workstation (single user) environment, although it does limit the worst abuses. Environ-
ments which require more sophisticated measures should use the hooks in the protocol for passing authenti-
cation data to the server.

The server initially allows network connections only from programs running on the same machine or from
machines listed in the file /etc/X*.hosts (where * is the display number of the server). The xhost program is
usually run either from a startup file or interactively to give access to other users.

Hostnames that are followed by two colons (::) are used in checking DECnet connections; all other host-
names are used for TCP/IP connections.

OPTIONS

Xhost accepts the following command line options described below. For security, the options that effect
access control may only be run from the same machine as the server.

[+]hostname

The given hostname (the plus sign is optional) is added to the list of machines that are allowed to
connect to the X server.

—hostname

nothing

FILES

The given hostname is removed from the list of machines that are allowed to connect to the
server. Existing connections are not broken, but new connection attempts will be denied. Note
that the current machine is allowed to be removed; however, further connections (including
attempts to add it back) will not be permitted. Resetting the server (thereby breaking all connec-
tions) is the only way to allow local connections again.

Access is granted to everyone, even if they aren’t on the list of allowed hosts (i.e. access control
is turned off).

Access is restricted to only those machines on the list of allowed hosts (i.e. access control is
turned on).

If no command line arguments are given, the list of hosts that are allowed to connect is printed on
the standard output along with a message indicating whether or not access control is currently
enabled. This is the only option that may be used from machines other than the one on which the
server is running.

Jetc/X*.hosts

SEE ALSO

X(1), Xserver(1)

ENVIRONMENT

DISPLAY

BUGS

to get the default host and display to use.

You can’t specify a display on thc command line because —display is a valid command line argument
(indicating that you want to rcmove the machine named “‘display’’ from the access list).

COPYRIGHT

Copyright 1988, Massachusetts Institute of Technology.
Sce X(I) for a full statement of rights and permissions.

X Version 11

Last change: 1 March 1988 169

XHOST (1) USER COMMANDS XHOST (1)

AUTHORS
Bob Scheifler, MIT Laboratory for Computer Scicnce,
Jim Gettys, MIT Project Athcna (DEC).

170 Last change: 1 March 1988 X Version 11

XLSFONTS (1) USER COMMANDS XLSFONTS (1)

NAME
xlsfonts - server font list displayer for X
SYNOPSIS
xlsfonts [-options ...] [-fn pattern]
DESCRIPTION
Xlsfonts lists the fonts that match the given pattern. The wildcard character "+" may be used to match any

sequence of characters (including none), and "?" to match any single character. If no pattern is given, "*"
is assumed.

The "+" and "?" characters must be quoted to prevent them from being expanded by the shell.
OPTIONS
—display host:dpy
This option specifics the X server to contact.

-1 This option indicates that a long listing should be generated for each font.

-L This option indicatcs that a very long listing showing the individual character metrics should be
printed.

—m This option indicates that long listings should also print the minimum and maximum bounds of
each font.

~C This option indicates that listings should use multiple columns. This is the same as -n 0.

-1 This option indicates that listings should use a single column. This is the same as -n 1.

—w width

This option specifies the width in characters that should be used in figuring out how many
columns to print. The default is 79.
—n columns
This option specifics the number of columns to use in displaying the output. By default, it will
attempt to fit as many columns of font names into the number of character specified by -w width.
SEE ALSO
X(1), Xserver(1), xset(1), xfd(1)
ENVIRONMENT
DISPLAY
to get the default host and display to use.

BUGS
Doing ““xIsfonts -1’ can tie up your server for a very long time. This is really a bug with single-threaded
non-preemptible servers, not with this program.
COPYRIGHT
Copyright 1988, Massachusetts Institute of Technology.
See X(1) for a full statement of rights and permissions.
AUTHOR
Mark Lillibridge, MIT Project Athcna

X Version 11 Last change: 1 March 1988 171

XLSFONTS (1) USER COMMANDS XLSFONTS (1)

172 Last change: 1 March 1988 X Version 11

XLSWINS (1) USER COMMANDS XLSWINS (1)

NAME

xlswins - server window list displayecr for X
SYNOPSIS

xIswins [-options ...] [windowid ...]
DESCRIPTION

Xlswins lists the window tree. By default, the root window is used as the starting point, although a specific
window may be specified using the -id option. If no specific windows are given on the command line, the

root window will be used.
OPTIONS
—display displayname
This option specifies the X server to contact.
-1 This option indicatcs that a long listing should be generated for each window. This includes a
number indicating the depth, the geomeiry relative to the parent as well as the location relative to
the root window.

—format radix
This option specifies the radix to use when printing out window ids. Allowable values are: hex,
octal, and decimal. The default is hex.
—indent number
This option specifies the number of spaces that should be indented for each level in the window
tree. The default is 2.
SEE ALSO
X(1), Xserver(1), xwininfo(1), xprop(1)
ENVIRONMENT
DISPLAY
to get the default host and display to use.
BUGS
This should be integrated with xwininfo somehow.
COPYRIGHT
Copyright 1988, Massachusetts Institute of Technology.
See X(1) for a full statement of rights and permissions.
AUTHOR
Jim Fulton, MIT X Consortium

X Version 11 Last change: 27 August 1988 173

XLSWINS (1) USER COMMANDS XLSWINS (1)

174 Last change: 27 August 1988 X Version 11

XMAC(1) USER COMMANDS XMAC(1)

NAME
xmac — display Apple MacPaint image files under X windows

SYNOPSIS
xmac filename [-ps] [host:display] [=geometry]

DESCRIPTION
xmac displays a MacPaint file in a window, allows resize/move, and has an icon.

xmac will send the Postscript commands to print the image to standard out if you include the command line
option, -ps. xmac accepts two other optional command line arguments. You may specify a display name
in the form host:display (see X(1)). And you may provide a geometry specification. If you don’t give a
geometry specification, xmac will ask you where you want to put the window when it starts up. See X(I)
for a full explanation.

BUGS
There are no known bugs. There are lots of lacking features. I Would like to add editing capability in the
future, along with the ability to clip part of an image to a bitmap format file; as well as replacing the desk-
top pattern with an image. Also there should be a way to kill the process, i.e. a keypress or a mouse click
in a box. Also a title bar would be nice.

ENVIRONMENT
XMAC - the default directory for searching for image files, (after ".").

SEE ALSO
X(1), Xlib Documentation.

AUTHOR
Copyright (c) 1987 by Patrick J. Naughton,
(naughton@sun.soe.clarkson.edu)

Permission to use, copy, modify, and distribute this software and its documentation for any purpese and

without fee is hereby granted, provided that the above copyright notice appear in all copies and that both
that copyright notice and this permission notice appear in supporting documentation.

X Version 11 Last change: 1 Dec 1987 175

XMAC(1) USER COMMANDS XMAC(1)

176 Last change: 1 Dec 1987 X Version 11

XMAG (1) USER COMMANDS XMAG (1)

NAME
xmag - magnify parts of the scrcen

SYNOPSIS
xmag [-option ...]

DESCRIPTION

The xmag program allows you to magnify portions of the screen. If no explicit region is specified, a square
centered around the pointer is displayed indicating the area to be enlarged. Once a region has been
selected, a window is popped up showing a blown up version of the region in which each pixel in the
source image is represented by a small square of the same color. Pressing Buttonl on the pointer in the
enlargement window pops up a small window displaying the position, number, and RGB value of the pixel
under the pointer until the button is relcased. Pressing the space bar or any other pointer button removes
the enlarged image so that another region may be selected. Pressing “q”, “Q’’, or “*C”’ in the enlarge-
ment window exits the program.

OPTIONS
—display display
This option specifies the X server to use for both reading the screen and displaying the enlarged
version of the image.

—geometry geom
This option specifies the size and/or location of the enlargement window. By default, the size is
computed from the size of the source region and the desired magnification. Therefore, only one
of —source size and —mag magfactor options may be specified if a window size is given with this
option.

—source geom
This option specifics the size and/or location of the source region on the screen. By default, a
64x64 square centered about the pointer is provided for the user to select an area of the screen.
The size of the source is used with the desired magnification to compute the default enlargement
window size. Thercfore, only one of —geometry size and —mag magfactor options may be
specified if a source size is given with this option.

—mag magfactor
This option specifics an integral factor by which the source region should be enlarged. The
default magnification is 5. This is used with the size of the source to compute the default
enlargement window size. Therefore, only one of -geometry size and —source geom options
may be specified if a magnification factor is given with this option.

—bw pixels
This option specifies the width in pixcls of the border surrounding the enlargement window.

—bd color
This option specifies the color to use for the border surrounding the enlargement window.

—bg colororpixelvalue
This option specifics the name of the color to be used as the background of the enlargement win-
dow. If the name begins with a percent size (%), it is interpretted to be an absolute pixel value.
This is useful when displaying largc areas since pixels that are the same color as the background
do not need to be painted in the enlargement. The default is to use the BlackPixel of the screen.

—fn fontname
This option specifics the name of a font to use when displaying pixel values (used when Buttonl
is pressed in the enlargement window).

-z This option indicates that the scrver should be grabbed during the dynamics and the call to
XGetIlmage. This is uscful for ensuring that clients don’t change their state as a result of entering
or leaving them with the pointer.

X Version 11 Last change: 22 October 1988 177

XMAG (1) USER COMMANDS XMAG (1)

X DEFAULTS
The xmag program uses the following X resources:

geometry (class Geometry)

Specifies the size and/or location of the enlargement window.
source (class Source)

Specifies the size and/or location of the source region on the screen.

magnification (class Magnification)
Specifies the enlargement factor.

borderWidth (class BorderWidth)
Specifies the border width in pixels.

borderColor (class BorderColor)
Specifies the color of the border.
background (class Background)
Specifies the color or pixel value to be used for the background of the enlargement window.

font (class Font)

Specifies the name of the font to use when displaying pixel values when the user presses Buttonl
in the enlargement window.

SEE ALSO
X(1), xwd(1)
BUGS
This program will behave strangely on displays that support windows of different depths.

Because the window size equals the source size times the magnification, you only need to specify two of
the three parameters. This can be confusing.

Being able to drag the pointer around and see a dynamic display would be very nice.

Another possible interface would be for the user to drag out the desired area to be enlarged.

COPYRIGHT
Copyright 1988, Massachusetts Institute of Technology.

AUTHOR
Jim Fulton, MIT X Consortium

178 Last change: 22 October 1988 X Version 11

XMODMAP(1) USER COMMANDS XMODMAP (1)

NAME

xmodmap - utility for modifying keymaps in X

SYNOPSIS

xmodmap [-options ...] [filename]

DESCRIPTION

The xmodmap program is used to edit and display the keyboard modifier map and keymap table that are
used by client applications to convert event keycodes into keysyms. It is usually run from the user’s ses-
sion startup script to configure the keyboard according to personal tastes.

OPTIONS

The following options may be used with xmodmap:

—display display
This option specifies the host and display to use.

—help This option indicates that a brief description of the command line arguments should be printed on
the standard error. This will be done whenever an unhandled argument is given to xmodmap.

—grammar
This option indicates that a help message describing the expression grammar used in files and
with -¢ expressions should be printed on the standard error.

—verbose
This option indicates that xmodmap should print logging information as it parses its input.

—quiet This option turns off the verbose logging. This is the default.

-n This option indicatcs that xmodmap should not change the mappings, but should display what it
would do, like make(1) does when given this option.

—e expression
This option specifies an expression to be executed. Any number of expressions may be specified
from the command line.

—pm This option indicates that the current modifier map should be printed on the standard output.
—pk This option indicates that the current keymap table should be printed on the standard output.
—pp This option indicates that the current pointer map should be printed on the standard output.
- A lone dash means that the standard input should be used as the input file.

The filename specifies a file containing xmodmap expressions to be executed. This file is usually kept in
the user’s home directory with a name like .xmodmaprc.

EXPRESSION GRAMMAR

The xmodmap program reads a list of expressions and parses them all before attempting execute any of
them. This makes it possible to refer to keysyms that are being redcfined in a natural way without having
to worry as much about name conflicts.

keycode NUMBER = KEYSYMNAME ...
The list of keysyms is assigned to the indicated keycode (which may be specified in decimal, hex
or octal and can be determined by running the xev program in the examples directory). Usually
only one keysym is assigned to a given code.

keysym KEYSYMNAME = KEYSYMNAME ...
The KEYSYMNAME on the left hand side is looked up to find its current keycode and the line is
replaced with the appropriate keycode cxpression. Note that if you have the same keysym bound
to multiple keys, this might not work.

clear MODIFIERNAME
This removes all entries in the modifier map for the given modifier, where valid name are: Shift,
Lock, Control, Modl, Mod2, Mod3, Mod4 and Mod5 (case does not matter in modifier names,

X Version 11 Last change: 25 October 1988 179

XMODMAP(1) USER COMMANDS XMODMAP (1)

although it does matter for all other names). For example, ‘‘clear Lock’” will remove all any
keys that were bound to the shift lock modifier.

add MODIFIERNAME = KEYSYMNAME ...
This adds the given keysyms to the indicated modifier map. The keysym names are evaluated
after all input expressions are read to make it easy to write expressions to swap keys (see the
EXAMPLES section).

remove MODIFIERNAME = KEYSYMNAME ...
This removes the given keysyms from the indicatcd modifier map. Unlike add, the keysym
names are evaluated as the line is read in. This allows you to remove keys from a modifier
without having to worry about whether or not they have been reassigned.

pointer = default
This sets the pointer map back to its default settings (button 1 generates a code of 1, button 2
generates a 2, etc.).

pointer = NUMBER ...
This sets to pointer map to contain the indicated button codes. The list always starts with the first
physical button.

Lines that begin with an exclamation point (!) are taken as comments.

If you want to change the binding of a modifier key, you must also remove it from the appropriate modifier
map.

EXAMPLES

180

Many pointers are designed such the first button is pressed using the index finger of the right hand. People
who are left-handed frequently find that it is more comfortable to reverse the button codes that get gen-
erated so that the primary button is pressed using the index finger of the left hand. This could be done on a
3 button pointer as follows:

% xmodmap - "pointer =32 1"

Many editor applications support the notion of Meta keys (similar to Control keys except that Meta is held
down instead of Control). However, some servers do not have a Meta keysym in the default keymap table,
so. one needs to be added by hand. The following command will attach Meta to the Multi-language key
(sometimes label Compose Character). It also takes advantage of the fact that applications that need a
Meta key simply need to get the keycode and don’t require the keysym to be in the first column of the key-
map table. This means that applications that are looking for a Multi_key (including the default modifier
map) won'’t notice any change.

% keysym Multi_key = Multi_key Meta_L

One of the more simple, yet convenient, uses of xmodmap is to set the keyboard’s "rubout” key to generate
an alternate keysym. This frequently involves exchanging Backspace with Delete to be more comfortable
to the user. If the tryModes resource in xterm is set as well, all terminal emulator windows will use the
same key for erasing characters:

% xmodmap -e "keysym BackSpace = Delete"
% echo "XTerm*ityModcs: crasc “?" | xrdb -merge

Some keyboards do not automatically generate less than and greater than characters when the comma and
period keys are shifted. This can be remedied with xmodmap by resetting the bindings for the comma and
period with the following scripts:

!

! make shift-, be < and shift-. bc >
!

keysym comma = comma lcss

Last change: 25 October 1988 X Version 11

XMODMAP(1) USER COMMANDS XMODMAP (1)

keysym period = period greater

One of the more irritating differences between keyboards is the location of the Control and Shift Lock
keys. A common use of xmodmap is to swap these two keys as follows:

! Swap Caps_Lock and Control_L
1

remove Lock = Caps_Lock
remove Control = Control_L
keysym Control_L = Caps_Lock
keysym Caps_Lock = Control_L
add Lock = Caps_Lock

add Control = Control_L

The keycode command is useful for assigning the same keysym to multiple keycodes. Although unport-
able, it also makes it possible to write scripts that can reset the keyboard to a known state. The following
script sets the backspace key to generate Delete (as shown above), flushes all existing caps lock bindings,
makes the CapsLock key be a control key, make F5 generate Escape, and makes Break/Reset be a shift
lock.

1

! On the HP, the following keycodes have key caps as listed:
1

! 101 Backspace
! 55 Caps

! 14 Cul

! 15 Break/Reset
! 86 Stop

! 89 F5

1

keycode 101 = Delete
keycode 55 = Control_R
clear Lock

add Control = Control_R
keycode 89 = Escape
keycode 15 = Caps_Lock
add Lock = Caps_Lock

ENVIRONMENT
DISPLAY
to get default host and display number.

SEE ALSO
X(1)

BUGS
Every time a keycode expression is evaluated, the server generates a MappingNotify event on every client.
This can cause some thrashing. All of the changes should be batched together and done at once. Clients
that receive keyboard input and ignore MappingNotify events will not notice any changes made to key-
board mappings.

Xmodmap should generate "add" and "remove" expressions automatically whenever a keycode that is
already bound to a modifier is changed.

X Version 11 Last change: 25 October 1988 181

XMODMAP(1) USER COMMANDS XMODMAP (1)

There should be a way to have the remove cxpression accept keycodes as well as keysyms for those times
when you really mess up your mappings.

COPYRIGHT
Copyright 1988, Massachusetts Institute of Technology.
Copyright 1987 Sun Microsystems, Inc.
See X(1) for a full statement of rights and permissions.

AUTHOR
Jim Fulton, MIT X Consortium, rewritten from an original by David Rosenthal of Sun Microsystems.

182 Last change: 25 October 1988 X Version 11

XPR(1) USER COMMANDS XPR (1)

NAME
xpr — print an X window dump
SYNOPSIS
xpr [—scale scale] [—height inches] [—width inches] [—left inches] [—top inches] [—header string] [

—trailer string] [—landscape] [—portrait] [—rv] [—compact] [—output filename] [—append
filename] [—noff] [—split n] [—device dev] [filename]

DESCRIPTION
Xpr takes as input a window dump file produced by xwd(!) and formats it for output on the LN03, LA100,
PostScript printers, or IBM PP3812 page printer. If no file argument is given, the standard input is used.
By default, xpr prints the largest possible representation of the window on the output page. Options allow
the user to add headers and trailers, specify margins, adjust the scale and orientation, and append multiple
window dumps to a single output file. Output is to standard output unless —output is specified.

Command Options

—scale scale
Affects the size of the window on the page. The LNO3 and PostScript printers are able to translate
each bit in a window pixel map into a grid of a specified size. For example each bit might
translate into a 3x3 grid. This would be specified by —scale 3. By default a window is printed
with the largest scale that will fit onto the page for the specified orientation.

—height inches

Specifies the maximum height of the window on the page.
—width inches

Specifies the maximum width of the window.

—left inches
Specifies the left margin in inches. Fractions are allowed. By default the window is centered in
the page.
—top inches
Specifies the top margin for the picturc in inches. Fractions are allowed.
—header header
Specifies a header string to be printed above the window.

—trailer trailer
Specifies a trailer string to be printed below the window.

—landscape
Forces the window 1o printed in landscape mode. By default a window is printed such that its
longest side follows the long side of the paper.

—portrait
Forces the window to be printed in portrait mode. By default a window is printed such that its
longest side follows the long side of the paper.

-Tv Forces the window to be printed in reverse video.

—compact
Uses simple run-length encoding for compact representation of windows with lots of white pixels.

—output filename
Specifics an output file name. If this option is not specified, standard output is used.

—append filename
Specifies a filename previously produced by xpr to which the window is to be appended.

—noff When specified in conjunction with —append, the window will appear on the same page as the

X Version 11 Last change: 24 October 1988 183

XPR(1) USER COMMANDS XPR(1)

previous window.

—split » This option allows the user to split a window onto several pages. This might be necessary for very
large windows that would otherwise cause the printer to overload and print the page in an obscure
manner.

—device device
Specifies the device on which the file will be printed. Currently only the LNO3 (-device In03),
LA100 (-device 1a100), PostScript printers (-device ps) and IBM PP3812 (-device pp) are sup-

ported. -device Iw (LaserWriter) is equivalent to -device ps and is provided only for backwards
compatibility.

SEE ALSO

xwd(1), xwud(1), X(1)

LIMITATIONS

The current version of xpr can generally print out on the LNO3 most X windows that are not larger than
two-thirds of the screen. For example, it will be able to print out a large Emacs window, but it will usually
fail when trying to print out the entire screen. The LN03 has memory limitations that can cause it to
incorrectly print very large or complex windows. The two most common errors encountered are ‘“band too
complex’’ and ‘‘page memory exceeded.”” In the first case, a window may have a particular six pixel row
that contains too many changes (from black to white to black). This will cause the printer to drop part of
the line and possibly parts of the rest of the page. The printer will flash the number ‘1” on its front panel
when this problem occurs. A possible solution to this problem is to increase the scale of the picture, or to
split the picture onto two or more pages. The second problem, *‘page memory exceeded,” will occur if the
picture contains too much black, or if the picture contains complex half-tones such as the background color
of a display. When this problem occurs the printer will automatically split the picture into two or more
pages. It may flash the number ‘5° on its from panel. There is no easy solution to this problem. It will

probably be necessary 1o either cut and paste, or to rework the application to produce a less complex pic-
ture.

Xpr provides some support for the LA100. However, there are several limitations on its use: the picture
will always be printed in portrait mode, there is no scaling, and the aspect ratio will be slightly off.

Support for PostScript output currently cannot handle the -append, -noff or -split options.

The -compact option is only supported for PostScript output. It compresses white space but not black
space, so it is not useful for reverse-video windows.

COPYRIGHT

Copyright 1988, Massachusetts Institute of Technology.
Copyright 1986, Marvin Solomon and the University of Wisconsin.
See X(1) for a full statement of rights and permissions.

AUTHORS

184

Michael R. Gretzinger, MIT Project Athena, Jose Capo, MIT Project Athcna (PP3812 support), Marvin
Solomon (University of Wisconsin).

Last change: 24 October 1988 X Version 11

XPROP(1) USER COMMANDS XPROP(1)

NAME
xprop - property displayer for X

SYNOPSIS
xprop [-help] [-grammar] [-id id] [-root] [-name name] [-font font] [-display display] [-remove property-
name] [-spy] [-len n] [-notype] [-fs file] [-f atom format [dformat]]* [format [dformat] atom]*

SUMMARY .
The prop utility is for displaying window and font properties in an X server. One window or font is
selected using the command line arguments or possibly in the case of a window, by clicking on the desired
window. A list of properties is then given, possibly with formatting information.

OPTIONS
-help Print out a summary of command line options.

-grammar
Print out a detailed grammar for all command line options.

<idid This argument allows the user to select window id on the command line rather than using the
pointer to select the target window. This is very useful in debugging X applications where the
target window is not mapped to the screen or where the use of the pointer might be impossible or
interfere with the application.

-name name
This argument allows the user to specify that the window named name is the target window on
the command line rather than using the pointer to select the target window.

-font font
This argument allows the user to specify that the properties of font font should be displayed.

-root This argument specifies that X’s root window is the target window. This is useful in situations
where the root window is completely obscured.

-display display
This argument allows you to specify the server to connect to; see X(1).

-lenn Specifies that at most »n bytes of any property should be read or displayed.
-notype Specifies that the type of each property should not be displayed.

fs file Specifies that file file should be used as a source of more formats for properties.
-Spy Examine the window properties forever.

-remove property-name
Specifies the name of a property to be removed from the indicated window.

-f name format [dformat]
Specifies that the format for name should be format and that the dformat for name should be dfor-
mat. If dformat is missing, " = $0+\n" is assumed.

DESCRIPTION
For each of these propertics, its value on the selected window or font is printed using the supplied format-
ting information if any. If no formatting information is supplied, internal defaults are used. If a property is
not defined on the sclected window or font, "not defined" is printed as the value for that property. If no
property list is given, all the properties possessed by the selected window or font are printed.

A window may be selected in one of four ways. First, if the desired window is the root window, the -root
argument may be used. If the desired window is not the root window, it may be selected in two ways on
the command line, either by id number such as might be obtained from xwininfo, or by name if the window
possesses a name. The -id argument sclects a window by id number in either decimal or hex (must start
with 0x) while the -name argument sclects a window by name.

X Version 11 Last changc: 24 October 1988 185

XPROP(1) USER COMMANDS XPROP (1)

186

The last way to select a window does not involve the command line at all. If none of -font, -id, -name, and
-root are specified, a crosshairs cursor is displayed and the user is allowed to choose any visible window by
pressing any pointer button in the desired window. If it is desired to display properties of a font as opposed
to a window, the -font argument must be used.

Other than the above four arguments and the -help argument for obtaining help, and the -grammar argu-
ment for listing the full grammar for the command linc, all the other command line arguments are used in
specifing both the format of the properties to be displaycd and how to display them. The -len n argument
specifies that at most n bytes of any given property will be read and displayed. This is useful for example
when displaying the cut buffer on the root window which could run to several pages if displayed in full.

Normally each property name is displayed by printing first the property name then its type (if it has one) in
parentheses followed by its value. The -notypc argument specifies that property types should not be
displayed. The -fs argument is uscd to specify a file containing a list of formats for properties while the -f
argument is used to specify the format for one property.

The formatting information for a property actually consists of two parts, a format and a dformat. The for-
mat specifies the actual formatting of the property (i.c., is it made up of words, bytes, or longs?, etc.) while
the dformat specifies how the property should be displayed.

The following paragraphs describe how to construct formats and dformats. However, for the vast majority
of users and uses, this should not be nccessary as the built in defaults contain the formats and dformats
necessary to display all the standard propertics. It should only be necessary to specify formats and dfor-
mats if a new property is being dealt with or the user dislikes the standard display format. New users espe-
cially are encouraged to skip this part.

A format consists of one of 0, 8, 16, or 32 followed by a sequence of one or more format characters. The
0, 8, 16, or 32 specifies how many bits per ficld there are in the property. Zero is a special case meaning
use the field size information associated with the property itself. (This is only needed for special cases like
type INTEGER which is actually three different types depending on the size of the fields of the property)

A value of 8 means that the property is a sequence of bytes while a value of 16 would mean that the pro-
perty is a sequence of words. The difference between these two lies in the fact that the sequence of words
will be byte swapped while the sequence of bytes will not be when read by a machine of the opposite byte
order of the machine that orginally wrote the property. For more information on how properties are for-
matted and stored, consult the Xlib manual.

Once the size of the fields has been specified, it is necessary to specify the type of each field (i.e., is it an
integer, a string, an atom, or what?) This is done using one format character per field. If there are more
ficlds in the property than format characters supplicd, the last character will be repeated as many times as
necessary for the extra fields. The format characters and their meaning are as follows:

a The field holds an atom number. A ficld of this type should be of size 32.

b The field is an boolean. A O mcans false whilc anything else means true.

c The field is an unsigned number, a cardinal.

i The ficld is a signed integer.

m The field is a set of bit flags, 1 meaning on.

s This field and the next oncs until cither a 0 or the end of the property represent a sequence of

bytes. This format character is only usable with a ficld size of 8 and is most often used to
represent a string.

X The field is a hex number (like *c’ but displayed in hex - most useful for displaying window ids
and the like)

An example format is 32ica which is the format for a property of three ficlds of 32 bits each, the first hold-
ing a signed integer, the sccond an unsigned integer, and the third an atom.

Last change: 24 October 1988 X Version 11

XPROP(1) USER COMMANDS XPROP(1)

The format of a dformat unlike that of a format is not so rigid. The only limitations on a dformat is that one
may not start with a letter or a dash. This is so that it can be distingished from a property name or an argu-
ment. A dformat is a text string containing special characters instructing that various fields be printed at
various points in a manner similar to the formatting string used by printf. For example, the dformat " is (
$0, $1 \\n" would render the POINT 3, -4 which has a format of 32iias "is (3,4 \n".

Any character other thana $, ?,\, or a (in a dformat prints as itself. To print out one of §, 2,\, or (preceed
it by a \. For example, to print out a $, use \$. Secveral special backslash sequences are provided as
shortcuts. \n will cause a newline to be displayed while \t will cause a tab to be displayed. \o where o is an
octal number will display character number o.

A $ followed by a number n causes ficld number n to be displayed. The format of the displayed field
depends on the formatting character used to describe it in the corresponding format. Ie., if a cardinal is
described by ¢’ it will print in decimal while if it is described by a ’x’ it is displayed in hex.

If the field is not present in the property (this is possible with some properties), <field not available> is
displayed instead. $n+ will display field number »n then a comma then field number n+1 then another
comma then ... until the last field defined. If field » is not defined, nothing is displayed. This is useful for a
property that is a list of values.

A 7 is used to start a conditional expression, a kind of if-then statement. Texp(text) will display text if and
only if exp evaluates to non-zero. This is useful for two things. First, it allows fields to be displayed if and
only if a flag is set. And second, it allows a value such as a state number to be displayed as a name rather
than as just a number. The syntax of exp is as follows:

exp 2= term | term=exp | lexp
term u=nl$nlmn

The ! operator is a logical ‘‘not”’, changing 0 to 1 and any non-zero value to 0. = is an equality operator.
Note that internally all expressions are evaluated as 32 bit numbers so -1 is not equal to 65535. = returns 1
if the two values are equal and 0 if not. n represents the constant value n while $n represents the value of
field number n. mn is 1 if flag number 7 in the first field having format character ’m’ in the corrsponding
format is 1, 0 otherwise.

Examples: m3(count: $3\n) displays ficld 3 with a label of count if and only if flag number 3 (count starts
at 0!) ison. 7$2=0(True)?!$2=0(False) displays the inverted value of field 2 as a boolean.

In order to display a property, xprop needs both a format and a dformat. Before xprop uses its default
values of a format of 32x and a dformat of " = { $0+ J\n", it searches several places in an attempt to find
more specific formats. First, a search is made using the name of the property. If this fails, a search is made
using the type of the property. This allows type STRING to be defined with one set of formats while
allowing property WM_NAME which is of type STRING to be defined with a different format. In this
way, the display formats for a given type can be overridden for specific properties.

The locations searched are in order: the format if any specified with the property name (as in 8x
WM_NAME), the formats defined by -f options in last to first order, the contents of the file specified by the
-fs option if any, the contents of the file specified by the environmental variable XPROPFORMATS if any,
and finally xprop’s built in file of formats.

The format of the files refered to by the -fs argument and the XPROPFORMATS variable is one or more
lines of the following form:

name format [dformat]

Where name is either the name of a property or the name of a type, format is the format to be used with
name and dformat is the dformat to be used with name. It dformat is not present, " = $0--\n" is assumed.

EXAMPLES
To display the name of the root window: xprop -root WM_NAME

X Version 11 Last change: 24 October 1988 187

XPROP(1) USER COMMANDS

To display the window manager hints for the clock: xprop -name xclock WM_HINTS
To display‘the start of the cut buffer: xprop -root -len 100 CUT_BUFFERQ
To display the point size of the fixed font: xprop -font fixed POINT_SIZE

To display all the properties of window # 0x200007: xprop -id 0x200007

ENVIRONMENT
DISPLAY
To get default display.

XPROPFORMATS

Specifies the name of a file from which additional formats are to be obtained.

SEE ALSO
X(1), xwininfo(1)
COPYRIGHT

Copyright 1988, Massachusetts Institute of Technology.
See X(1) for a full statement of rights and permissions.

AUTHOR
Mark Lillibridge, MIT Project Athena

188 Last change: 24 October 1988

XPROP(1)

X Version 11

XRDB(1) USER COMMANDS XRDB (1)

NAME
xrdb - X server resource database utility

SYNOPSIS
xrdb [-option ...] [filename]

DESCRIPTION
Xrdb is used to get or set the contents of the RESOURCE_MANAGER property on the root window of
screen 0. You would normally run this program from your X startup file.

The resource manager (used by the Xlib routine XGetDefault(3X) and the X Toolkit) uses the
RESOURCE_MANAGER property to get user preferences about color, fonts, and so on for applications.
Having this information in the server (where it is available to all clients) instead of on disk, solves the prob-
lem in previous versions of X that required you to maintain defaults files on every machine that you might
use. It also allows for dynamic changing of defaults without editting files.

For compatibility, if there is no RESOURCE_MANAGER property defined (either because xrdb was not
run or if the property was removed), the resource manager will look for a file called .Xdefaults in your
home directory.

The filename (or the standard input if - or no input file is given) is optionally passed through the C prepro-
cessor with the following symbols defined, based on the capabilities of the server being used:

HOST=hostname
the hostname portion of the display to which you are connected.

WIDTH=num

the width of the screen in pixels.
HEIGHT=num

the height of the screen in pixels.

X_RESOLUTION=num

the x resolution of the screen in pixels per meter.
Y_RESOLUTION=num

the y resolution of the screen in pixels per melcr.
PLANES=num

the number of bit planes for the default visual.

BITS_PER_RGB=num
the number of significant bits in an RGB color specification. This is the log base 2 of the number
of distinct shades of each primary that the hardware can generate. Note that it is not related to
the number of planes, which the log base 2 of the size of the colormap.

CLASS=visualclass
one of StaticGray, GrayScale, StaticColor, PscudoColor, TrueColor, DirectColor.

COLOR only defined if the default visual’s type is onc of the color options.
Lines that begin with an exclamation mark (1) are ignored and may be used as comments.

OPTIONS
xrdb program accepts the following options:

—help This option (or any unsupported option) will cause a brief description of the allowable options
and parameters to be printed.

—display display
This option specifies the X scrver Lo be used; see X(1).

-n This option indicates that changes to the property (when used with -load) or to the resource file
(when used with -edir) should be shown on the standard output, but should not be performed.

—quiet This option indicatcs that warning about duplicatc entries should not be displayed.

X Version 11 Last change: 29 June 1988 189

XRDB(1) USER COMMANDS XRDB (1)

FILES

-cpp filename

This option specifies the pathname of the C preprocessor program to be used. Although xrdb was
designed to use CPP, any program that acts as a filter and accepts the -D, -I, and -U options may
be used.

-nocpp This option indicates that xrdb should not run the input file through a preprocessor before loading
it into the RESOURCE_MANAGER property.

—symbols
This option indicates that the symbols that are defined for the preprocessor should be printed onto

the standard output. It can be used in conjunction with —query, but not with the options that
change the RESOURCE_MANAGER property.

—query This option indicates that the current contents of the RESOURCE_MANAGER property should
be printed onto the standard output. Note that since preprocessor commands in the input resource
file are part of the input file, not part of the property, they won’t appear in the output from this
option. The —edit option can be used to merge the contents of the property back into the input
resource file without damaging preprocessor commands.

—load This option indicates that the input should be loaded as the new value of the
RESOURCE_MANAGER property, replacing whatever what there (i.e. the old contents are
removed). This is the default action.

—merge This option indicates that the input should be merged with, instead of replacing, the current con-
tents of the RESOURCE_MANAGER property. Since xrdb can read the standard input, this
option can be used to the change the contents of the RESOURCE_MANAGER property directly

from a terminal or from a shell script.
—remove

This option indicates that the RESOURCE_MANAGER property should be removed from its
window.

—edit filename
This option indicates that the contents of the RESOURCE_MANAGER property should be
edited into the given file, replacing any values already listed there. This allows you to put
changes that you have made to your defaults back into your resource file, preserving any com-
ments or preprocessor lines.

—backup string
This option specifies a suffix to be appended to the filename used with —edit to generate a backup
file.

—Dname[=value]

This option is passed through to the preprocessor and is used to define symbols for use with con-
ditionals such as #ifdef.

—Uname This option is passed through to the preprocessor and is used to remove any definitions of this
symbol.

—Idirectory

This option is passed through to the preprocessor and is used to specify a directory to search for
files that are referenced with #include.

Generalizes 7/.Xdefaults files.

SEE ALSO

X(1), XGetDefault(3X), Xlib Resource Manager documentation

ENVIRONMENT

190

DISPLAY
to figure out which display to usc.

Last change: 29 Junc 1988 X Version 11

XRDB(1) USER COMMANDS XRDB (1)

BUGS
The default for no arguments should be to query, not to overwrite, so that it is consistent with other pro-
grams.

COPYRIGHT
Copyright 1988, Digital Equipment Corporation.

AUTHORS
Phil Karlton, rewritten from the original by Jim Gettys

X Version 11 Last change: 29 June 1988 191

XRDB(1) USER COMMANDS XRDB(1)

192 Last change: 29 June 1988 X Version 11

XREFRESH(1) USER COMMANDS XREFRESH(1)

NAME

xrefresh - refresh all or part of an X screen
SYNOPSIS

xrefresh [-option ...]
DESCRIPTION

Xrefresh is a simple X program that causes all or part of your screen to be repainted. This is useful when
system messages have messed up your screen. Xrefresh maps a window on top of the desired area of the
screen and then immediately unmaps it, causing refresh events to be sent to all applications. By default, a
window with no background is used, causing all applications to repaint *‘smoothly.”” However, the various
options can be used to indicate that a solid background (of any color) or the root window background
should be used instead.
ARGUMENTS
—white Use a white background. The screen just appears to flash quickly, and then repaint.
—black Use a black background (in effect, turning off all of the electron guns to the tube). This can be
somewhat disorienting as everything goes black for a moment.

—solid color
Use a solid background of the specified color. Try green.
—root Use the root window background.
—none This is the default. All of the windows simply repaint.
—geometry WxH+X+Y
Specifies the portion of the screen to be repainted; see X(1).
—display display
This argument allows you to specify the server and screen to refresh; see X(1).
X DEFAULTS

The xrefresh program uses the routine XGetDefault(3X) to read defaults, so its resource names are all capi-
talized.

Black, White, Solid, None, Root
Determines what sort of window background to use.
Geometry
Determines the area to refresh. Not very useful.
ENVIRONMENT
DISPLAY - To get default host and display number.
SEE ALSO
X(1)
BUGS
It should have just one default type for the background.

COPYRIGHT
Copyright 1988, Massachusctts Institute of Technology.
Sce X(1) for a full statement of rights and permissions.

AUTHORS
Jim Gettys, Digital Equipment Corp., MIT Projcct Athena

X Version 11 Last change: 22 October 1988 193

XREFRESH(1) USER COMMANDS XREFRESH (1)

194 Last change: 22 October 1988 X Version 11

XSET(1) USER COMMANDS XSET (1)

NAME
xset - user preference utility for X

SYNOPSIS
xset [-display display] [-b] [b on/off] [b [volume [pitch [duration]]] [-c] [c on/off] [c [volume]] [[-+1fp[-+=]
path[.pathl,..]1] [fp default] [fp rehash] [[-]led [integer]] [led on/off] [m[ouse] [acceleration [threshold]]]

[m[ouse] default] [p pixel color] [[-1r] [r on/off] [s [length [period]]] [s blank/noblank] [s expose/noexpose]
[s on/off] [s default] [q]

DESCRIPTION
This program is used to set various user preference options of the display.

OPTIONS
—display display
This option specifies the server to use; see X(1).

b the b option controls bell volume, pitch and duration. This option accepts up to three numerical
parameters, a preceding dash(-), or a "on/off’ flag. If no parameters are given, or the ’on’ flag is
used, the system defaults will be used. If the dash or *off” are given, the bell will be turned off.
If only one numerical parameter is given, the bell volume will be set to that value, as a percen-
tage of its maximum. Likewise, the second numerical parameter specifies the bell pitch, in hertz,
and the third numerical parameter specifies the duration in milliseconds. Note that not all
hardware can vary the bell characteristics. The X server will set the characteristics of the bell as
closely as it can to the user’s specifications.

c The ¢ option controls key click. This option can take an optional value, a preceding dash(-), or
an ’on/off’ flag. If no parameter or the ’on’ flag is given, the system defaults will be used. If the
dash or "off’ flag is used, keyclick will be disabled. If a value from O to 100 is given, it is used to
indicate volume, as a percentage of the maximum. The X server will set the volume to the
nearest value that the hardware can support.

fp=path,...
The fp= sets the font path to the directories given in the path argument. The directories are inter-
preted by the server, not by the client, and are server-dependent. Directories that do not contain
font databases created by mkfontdir will be ignored by the server.

fp default
The default argument causes the font path to be reset to the server’s default.

fp rehash
The rehash argument causes the server to rercad the font databases in the current font path. This
is generally only used when adding new fonts to a font directory (after running mkfontdir to
recreate the font database).

—fp or fp—
The —fp and fp— oplions remove elements from the current font path. They must be followed by
a comma-separated list of dircctories.

+fp or fp+
This +fp and fp+ options prepend and append clements to the current font path, respectively.
They must be followed by a comma-separated list of directories.

led The led option controls the keyboard LEDs. This controls the turning on or off of one or all of
the LEDs. It accepts an optional integer, a preceding dash(-) or an "on/off’ flag. If no parameter
or the *on’ flag is given, all LEDs are turned on. If a preceding dash or the flag *off” is given, all
LEDs arc turned off. If a value between 1 and 32 is given, that LED will be turned on or off
depending on the existance of a preceding dash. A common LED which can be controlled is the
“‘Caps Lock’” LED. “‘xsct led 3”” would turn led #3 on. “‘xset -led 3°” would turn it off. The
particular LED values may refer to diffcrent LEDs on different hardware.

X Version 11 Last change: 25 October 1988 195

XSET(1)

q

USER COMMANDS XSET (1)

The m option controls the mouse parameters. The parameters for the mouse are ‘acceleration’
and ‘threshold’. The mouse, or whatever pointer the machine is connected to, will go ‘accelera-
tion’ times as fast when it travels more than ‘threshold’ pixels in a short time. This way, the
mouse can be used for precise alignment when it is moved slowly, yet it can be set to travel
across the screen in a flick of the wrist when desired. One or both parameters for the m option
can be omitted, but if only one is given, it will be interpreted as the acceleration. If no parame-
ters or the flag *default’ is uscd, the system defaults will be set.

The p option controls pixel color values. The parameters are the color map entry number in
decimal, and a color specification. The root background colors may be changed on some servers
by altering the entries for BlackPixel and WhitePixel. Although these are often 0 and 1, they
need not be. Also, a server may choose to allocate those colors privately, in which case an error
will be generated. The map cntry must not be a read-only color, or an error will result.

The r option controls the autorepeat. If a preceding dash or the "off” flag is used, autorepeat will
be disabled. If no parameters or the *on’ flag is used, autorepeat will be enabled.

The s option lets you set the screen saver parameters. This option accepts up to two numerical
parameters, a ’blank/noblank’ flag, an *expose/noexpose’ flag, an *on/off’ flag, or the *default’
flag. If no parameters or the ’default’ flag is used, the system will be set to its default screen
saver characteristics. The *on/off’ flags simply turn the screen saver functions on or off. The
*blank’ flag sets the preference to blank the video (if the hardware can do so) rather than display
a background pattern, while ‘noblank’ scts the preference to display a pattern rather than blank
the video. The ’expose’ flag scts the preference to allow window exposures (the server can
freely discard window contents), while ‘noexpose’ sets the preference to disable screen saver
unless the server can regenerate the screens without causing exposure events. The length and
period parameters for the screen saver function determines how long the server must be inactive
for screen saving to activate, and the period to change the background pattern to avoid burn in.
The arguments are specified in scconds. If only one numerical parameter is given, it will be used
for the length.

The q option gives you information on the current settings.

These settings will be reset to default values when you log out.

Note that not all X implementations are guaranteed to honor all of these options.

SEE ALSO

X(1), Xserver(1), xmodmap(1), xrdb(1), xsetroot(1)

COPYRIGHT

Copyright 1988, Massachusctts Institute of Technology.
See X(1) for a full statement of rights and permissions.

AUTHOR

Bob Scheifler, MIT Laboratory for Computer Scicnce
David Krikorian, MIT Project Athena (X11 version)

196

Last change: 25 October 1988 X Version 11

XSETROOT(1) USER COMMANDS XSETROOT(1)

NAME
xsetroot — root window parameter setting utility for X

SYNOPSIS
xsetroot [-help] [-def] [-display display] [-cursor cursorfile maskfile] [-bitmap filename] [-mod x y] [-gray]
[-grey] [-fg color] [-bg color] [1v] [-solid color] [-name string]

DESCRIPTION
The setroot program allows you to tailor the appearance of the background ("root") window on a worksta-
tion display running X. Normally, you experiment with xsetroot until you find a personalized look that you
like, then put the xsetroot command that produces it into your X startup file. If no options are specified, or
if -def is specified, the window is reset to its default state. The -def option can be specified along with other
options and only the non-specificd characteristics will be reset to the default state.
Only one of the background color/tiling changing options (-solid, -gray, -grey, -bitmap, and -mod) may be
specified at a time.

OPTIONS
The various options are as follows:

-help Print a usage message and exit.

-def Reset unspecified attributes to the default values. (Restores the background to the familiar gray
mesh and the cursor to the hollow x shape.)

-cursor cursorfile maskfile
This lets you change the pointer cursor to whatever you want when the pointer cursor is outside of
any window. Cursor and mask files are bitmaps (little pictures), and can be made with the bit-
map(1) program. You probably want the mask file to be all black until you get used to the way
masks work.

-bitmap filename
Use the bitmap specificd in the file to set the window pattern. You can make your own bitmap
files (little pictures) using the bitmap(1) program. The entire background will be made up of
repeated "tiles” of the bitmap.

-mod x y
This is used if you want a plaid-like grid pattern on your screen. x and y are integers ranging from
1to0 16. Try the different combinations. Zero and negative numbers are taken as 1.

-.gray Make the entire background gray. (Easier on the eyes.)
-grey Make the entire background grey.

-fg color
Use ““color’’ as the foreground color. Foreground and background colors are meaningful only in
combination with -cursor, -bitmap, or -mod.

-bg color
Use ““color’’ as the background color.

-Tv This exchanges the forcground and background colors. Normally the foreground color is black
and the background color is white.

-solid color
Set the window color to “‘color’’.

-name string
Sct the name of the root window to ‘‘string”’. There is no default value. Usually a name is
assigned to a window so that the window manager can use a text representation when the window
is iconificd. This option is unuscd since you can’t iconify the background.

-display display
Specifies the server to connect to; see X(1).

X Version 11 Last change: 22 October 1988 197

XSETROOT (1) USER COMMANDS XSETROOT (1)

SEE ALSO
X(1), xset(1), xrdb(1)

COPYRIGHT
Copyright 1988, Massachuseltts Institute of Technology.
Sce X(1) for a full statement of rights and permissions.

AUTHOR
Mark Lillibridge, MIT Project Athena

198 Last change: 22 October 1988 X Version 11

XTERM(1) USER COMMANDS XTERM(1)

NAME

xterm — terminal emulator for X

SYNOPSIS

xterm [-toolkitoption ...] [-option ...]

DESCRIPTION

The xterm program is a terminal emulator for the X Window System. It provides DEC VT102 and Tek-
tronix 4014 compatible terminals for programs that can’t use the window system directly. If the underlying
operating system supports terminal resizing capabilitics (for example, the SIGWINCH signal in systems
derived from 4.3bsd), xterm will use the facilitics to notify programs running in the window whenever it is
resized.

The VT102 and Tektronix 4014 terminals each have their own window so that you can edit text in one and
look at graphics in the other at the same time. To maintain the correct aspect ratio (height/width), Tek-
tronix graphics will be restricted to the largest box with a 4014’s aspect ratio that will fit in the window.
This box is located in the upper left area of the window.

Although both windows may be displayed at the same time, one of them is considered the “‘active’ win-
dow for receiving keyboard input and terminal output. This is the window that contains the text cursor and
whose border highlights whenever the pointer is in either window. The active window can be choosen
through escape sequences, the ‘‘Modes’’ menu in the VT102 window, and the ‘‘Tektronix’’ menu in the
4014 window.

OPTIONS

The xterm terminal emulator accepts all of the standard X Toolkit command line options along with the
additional options listed below (if the option begins with a ‘+’ instead of a ‘—’, the option is restored to its
default value):

—help This causes xterm to print out a verbose message describing its options.

-132 Normally, the VT102 DECCOLM escape sequence that switches between 80 and 132 column
mode is ignored. This option causes the DECCOLM escape sequence to be recognized, and the
xterm window will resize appropriately.

—ah This option indicates that xterm should always highlight the text cursor and borders. By default,
xterm will display a hollow text cursor whenever the focus is lost or the pointer leaves the win-
dow.

+ah This option indicates that xterm should do text cursor highlighting.

—b number

This option specifics the size of the inner border (the distance between the outer edge of the char-
acters and the window border) in pixels. The default is 2.

—cc¢ characterclassrange:valuel,...]
This sets classes indicated by the given ranges for using in selecting by words. See the section
specifying character classcs.

—cr color
This option specifies the color to use for text cursor. The default is to use the same foreground
color that is uscd for text.

—cu This option indicates that xterm should work around a bug in the curses(3x) cursor motion pack-
age that causes the more (1) program to display lines that are exactly the width of the window and
are followed by linc beginning with a tab to be displayed incorrectly (the leading tabs are not
displayed).

+cu This option indicates that that xterm should not work around the curses(3x) bug mentioned
above.

—e program [arguments ...]
This option spccifies the program (and its command line arguments) to be run in the xterm

X Version 11 Last change: 1 March 1988 199

XTERM(1)

200

—fb font

& |

+j
-1

+1

USER COMMANDS XTERM(1)

window. It also scts the window title and icon name to be the basename of the program being
executed if neither -T nor -n are given on the command line. This must be the last option on
the command line.

This option specifics a font to be used when displaying bold text. This font must be the same
height and width as the normal font. If only one of the normal or bold fonts is specified, it will be
used as the normal font and the bold font will be produced by overstriking this font. The default
bold font is ‘“vtbold.”

This option indicates that xterm should do jump scrolling. Normally, text is scrolled one line at a
time; this option allows xterm to move multiple lines at a time so that it doesn’t fall as far behind.
Its use is strongly recommended since it make xterm much faster when scanning through large
amounts of text. The VT100 escape sequences for enabling and disabling smooth scroll as well
as the ‘“Modes’’ menu can be used to turn this feature on or off.

This option indicates that xterm should not do jump scrolling.

This option indicates that xterm should send all terminal output to a log file as well as to the
screen. This option can be enabled or disabled using the “‘xterm X11’’ menu.

This option indicates that xterm should not do logging.

—If filename

+mb

This option specifics the name of the file to which the output log described above is written. If
file begins with a pipe symbol (I), the rest of the string is assumed to be a command to be used as
the endpoint of a pipe. The default filename is ‘‘XtermLog. XXXXX >’ (where XXXXX is the pro-
cess id of xterm) and is created in the directory from which xterm was started (or the user’s home
directory in the case of a login window.

This option indicates that shell that is started in the xterm window be a login shell (i.e. the first
character of argv[0] will be a dash, indicating to the shell that it should read the user’s .login or
profile).

This option indicates that the shell that is started should not be a login shell (i.e. it will be normal
“‘subshell’”).

This option indicatcs that xterm should ring a margin bell when the user types near the right end
of a line. This option can be turned on and off from the ‘““Modes’’ menu.

This option indicates that margin bell should not be rung.

—ms color

This option specifics the color to be used for the pointer cursor. The default is to use the fore-
ground color.

—nb number

This option specifics the number of characters from the right end of a line at which the margin
bell, if enabled, will ring. The default is 10.

This option indicates that reverse-wraparound should be allowed. This allows the cursor to back
up from the leftmost column of onc line to the rightmost column of the previous line. This is
very useful for editing long shell command lines and is encouraged. This option can be turned on
and off from the ‘‘Modecs’” menu.

This option indicates that reverse-wraparound should not be allowed.

This option indicates that xterm may scroll asynchronously, meaning that the screen does not
have to be kept complctely up to date while scrolling. This allows xterm to run faster when net-
work latencies are very high and is typically useful when running across a very large internet or
many gateways.

This option indicaics that xterm should scroll synchronously.

“This option indicates that some number of lines that are scrolled off the top of the window should

Last change: 1 March 1988 X Version 11

XTERM(1) USER COMMANDS XTERM(1)

be saved and that a scrollbar should be displayed so that those lines can be viewed. This option
may be turned on and off from the ‘‘Modes’’ menu.

+sb This option indicates that a scrollbar should not be displayed.

—sf This option indicates that Sun Function Key escape codes should be generated for function keys.

+sf This option indicates that the standard escape codes should be generated for function keys.

—si This option indicates that output to a window should not automatically reposition the screen to
the bottom of the scrolling region. This option can be turned on and off from the ‘“Modes”’
menu.

+si This option indicates that output to a window should cause it to scroll to the bottom.

—sk This option indicates that pressing a key while using the scrollbar to review previous lines of text

should cause the window to be repositioned automatically in the normal postion at the bottom of
the scroll region.

+sk This option indicates that pressing a key while using the scrollbar should not cause the window to
be repositioned.

—sl number
This option specifies the number of lines to save that have been scrolled off the top of the screen.
The default is 64.

~t This option indicates that xterm should start in Tekironix mode, rather than in VT102 mode.
Switching between the two windows is done using the ‘“Modes’’ menus.

+t This option indicates that xterm should start in VT102 mode.

-vb This option indicates that a visual bell is prefered over an audible one. Instead of ringing the ter-
minal bell whenever a Control-G is received, the window will be flashed.

+vb This option indicates that a visual bell should not be used.

-C This option indicates that this window should be receive console output. This is not supported on
all systems.

-L This option indicates that xterm was started by init. In this mode, xterm does not try to allocate a

new pseudoterminal as init has already done so. In addition, the system program getty is run
instead of the user’s shell. This option should never be used by users when starting terminal
windows.

—Scen This option specifies the last two letters of the name of a pseudoterminal to use in slave mode.
This allows xterm to be used as an input and output channel for an existing program and is some-
times used in specialized applications.

The following command linc arguments are provided for compatibility with older versions. They may not
be supported in the next release as the X Toolkit provides standard options that accomplish the same task.

% geom This option specifies the prefered size and position of the Tektronix window. It is shorthand for
specifying the "*tekGeometry" resource.

#geom This option specifics the prefered position of the icon window. It is shorthand for specifying the
"*jconGeometry" resource.

=T string
This option specifics the title for xterm’s windows. It is equivalent to -title.

—nstring This option specifics the icon name for xterm’s windows. It is shorthand for specifying the
"*iconName" 1csource.

—-r This option indicates that reverse video should be simulated by swapping the foreground and
background colors. It is equivalent to -reversevideo or -rv.

—W number

X Version 11 Last change: 1 March 1988 201

XTERM(1) USER COMMANDS XTERM(1)

This option specifies the width in pixels of the border surrounding the window. It is equivalent to
-borderwidth or -bw.

The following standard X Toolkit command line arguments are commonly used with xterm:
—bg color

This option specifies the color to use for the background of the window. The default is “‘white.”’
—bd color

This option specifics the color to use for the border of the window. The default is * ‘black.”
—bw number

This option specifies the width in pixels of the border surrounding the window.

—fg color
This option specifies the color to use for displaying text. The default is “‘black’’.

—fn font This option specifies the font to be used for displaying normal text. The default is *‘vtsingle.”’

—name name
This option specifics the application name under which resource are to be obtained, rather than
the default executable file name.

TV This option indicates that reverse video should be simulated by swapping the foreground and
background colors.

—geometry geomeltry
This option specifies the prefered size and position of the VT102 window; see X(1);
—display display
This option specifies the X scrver to contact; sce X(1).
—Xrm resourcestring
This option specifies a resource string to be used. This is especially useful for setting resources
that do not have separate command line options.

—iconic This option indicates that xterm should ask the window manager to start it as an icon rather than
as the normal window.
X DEFAULTS
The program understands all of the core X Toolkit resource names and classes as well as:

name (class Name)
Specifies the name of this instance of the program. The default is “xterm.”’
iconGeometry (class IconGeometry)
Specifies the prefered size and position of the application when iconified. It is not necessarily
obeyed by all window managers.
title (class Title)
Specifies a string that may be used by the window manager when displaying this application.
utmpInhibit (class UtmpInhibit)
Specifies whether or not xterm should try to record the user’s terminal in /etc/utmp.
sunFunctionKeys (class SunFunctionKeys)

Specifies whether or not Sun Function Key escape codes should be generated for function keys
instead of standard escape scquences.

The following resources are specified as part of the “‘vt100” widget (class ““VT100”’):

alwaysHighlight (class AlwaysHighlight)
Specifics whether or not xterm should always display a highlighted text cursor. By default, a hol-
low text cursor is displaycd whenever the pointer moves out of the window or the window loses
the input focus.

202 Last change: 1 March 1988 X Version 11

XTERM(1) USER COMMANDS XTERM (1)

font (class Font)
Specifies the name of the normal font. The default is “‘visingle.”’

boldFont (class Font)
Specifics the name of the bold font. The default is *‘vtbold.”

¢132 (class C132)

Specifies whether or not the VT102 DECCOLM escape sequence should be honored. The
default is ““false.”

charClass (class CharClass)
Specifies comma-scparated lists of character class bindings of the form [low-]high:value. These
are used in determining which sets of characters should be treated the same when doing cut and
paste. See the section on specifying character classes.

curses (class Curses)
Specifies whether or not the last column bug in cursor should be worked around. The default is
““false.”

background (class Background)
Specifies the color to use for the background of the window. The default is *“white.’
foreground (class Foreground)
Specifies the color to use for displaying text in the window. Setting the class name instead of the
instance name is an easy way to have everything that would normally appear in the "text" color
change color. The default is ‘‘black.”
cursorColor (class Foreground)
Specifies the color to use for the text cursor. The default is ‘‘black.”
geometry (class Geometry)
Specifies the prefered size and position of the VT102 window.
tekGeometry (class Geometry)
Specifies the prefered size and position of the Tektronix window.
internalBorder (class BorderWidth)
Specifies the number of pixels between the characters and the window border. The default is 2.
jumpScroll (class JumpScroll)
Specifies whether or not jump scroll should be used. The default is “‘false’”.
logFile (class Logfile)
Specifies the name of the file to which a terminal session is logged. The default is
“XtermLog XXXXX"’ (where XXXXX is the process id of xterm).
logging (class Logging))
Specifies whether or not a terminal session should be logged. The default is *‘false.”
logInhibit (class LogInhibit)
Specifies whether or not terminal session logging should be inhibited. The default is *‘false.’’
loginShell (class LoginShell)
Specifies whether or not the shell to be run in the window should be started as a login shell. The
default is ““‘false.””
marginBell (class MarginBell)
Specifies whether or not the bell should be run when the user types near the right margin. The
default is “‘false.”

multiScroll (class MultiScroll)
Specifies whether or not asynchronous scrolling is allowed. The default is ““false.”

nMarginBell (class Column)

X Version 11 Last change: 1 March 1988 203

XTERM(1) USER COMMANDS XTERM(1)

204

Specifies the number of characters from the right margin at which the margin bell should be run,
when enabled.
pointerColor (class Foreground)
Specifies the color of the pointer. The default is ‘“black.”’
pointerShape (class Cursor)
Specifies the name of the shape of the pointer. The default is *‘xterm.”’
reverseVideo (class ReverseVideo)
Specifies whether or not reverse video should be simulated. The default is ““false.”
reverseWrap (class ReverseWrap)
Specifies whether or not reverse-wraparound should be enabled. The default is ““false.”’
saveLines (class SaveLines)
Specifies the number of lines to save beyond the top of the screen when a scrollbar is turned on.
The default is 64.

scrollBar (class ScrollBar)
Specifies whether or not the scrollbar should be displayed. The default is ““false.”

scrolllnput (class ScrollCond)
Specifies whether or not output to the terminal should automatically cause the scrollbar to go to
the bottom of the scrolling region. The default is *‘true.”

scrollKey (class ScrollCond)
Specifies whether or not pressing a key should automatically cause the scrollbar to go to the bot-
tom of the scrolling region. The default is ‘‘false.”

signallnhibit (class SignalInhibit)
Specifies whether or not the entries in the “‘xterm X11°* menu for sending signals to xterm
should be disallowed. The default is ‘‘false.”

tekInhibit (class TekInhibit)

Specifies whether or not Tektronix mode should be disallowed. The default is *‘false.”
tekStartup (class TekStartup)

Specifies whether or not xterm should start up in Tektronix mode. The default is *‘false.”

titeInhibit (class TiteInhibit)
Specifies whether or not xterm should remove remove ¢ or te termcap entries (used to switch
between alternate screens on startup of many screen-oriented programs) from the TERMCAP
string.

visualBell (class VisualBell)
Specifies whether or not a visible bell (i.e. flashing) should be used instead of an audible bell
when Control-G is rcceived. The default is ““false.””

The following resources are specified as part of the “‘tek4014°” widget (class ““Tek4014’):

width (class Width)
Specifies the width of the Tektronix window in pixels.

height (class Height)
Specifies the height of the Tektronix window in pixels.

The following resources are specified as part of the *‘menu’” widget:

menuBorder (class MenuBorder)
Specifies the size in pixels of the border surrounding menus. The default is 2.

menuFont (class Font)

Last change: 1 March 1988 X Version 11

XTERM(1) USER COMMANDS XTERM(1)

Specifies the name of the font to use for displaying menu items.

menuPad (class MenuPad)
Specifies the number of pixels between menu items and the menu border. The default is 3.

The following resources are useful when specified for the Athena Scrollbar widget:

thickness (class Thickness)
Specifies the width in pixels of the scrollbar.

background (class Background)
Specifies the color to use for the background of the scrollbar.

foreground (class Foreground)
Specifies the color to use for the foreground of the scrollbar. The *‘thumb’” of the scrollbar is a
simple checkerboard pattern alternating pixels for foreground and background color.

EMULATIONS
The VT102 emulation is fairly complcte, but does not support the blinking character attribute nor the
double-wide and double-size character sets. Termcap(5) entries that work with xterm include ‘‘xterm’’,
““vt102°°, ““vt100”’ and “‘ansi’’, and xterm automatically searches the termcap file in this order for these
entries and then sets the ‘““TERM’’ and the *“TERMCAP”’ environment variables.

Many of the special xterm features (like logging) may be modified under program control through a set of
escape sequences different from the standard VT102 escape sequences. (See the ‘“Xterm Control
Sequences’’ document.)

The Tektronix 4014 emulation is also fairly good. Four different font sizes and five different lines types
are supported. The Tektronix text and graphics commands are recorded internally by xterm and may be
written to a file by sending the COPY escape sequence (or through the Tektronix menu; see below). The
name of the file will be ‘“‘COPYyy—-MM—dd.hh:mm:ss’’, where yy, MM, dd, hh, mm and ss are the year,
month, day, hour, minute and second when the COPY was performed (the file is created in the directory
xterm is started in, or the home directory for a login xterm).

POINTER USAGE

Once the VT102 window is created, xterm allows you to select text and copy it within the same or other
windows.

The selection functions are invoked when the pointer buttons are used with no modifiers, and when they are
used with the “‘shift’’ key.

Pointer button one (usually Icft) is used to save text into the cut buffer. Move the cursor to beginning of
the text, and then hold the button down while moving the cursor to the end of the region and releasing the
button. The selected text is highlighted and is saved in the global cut buffer when the button is released.
Double-clicking selects by words. Triple-clicking selects by lines. Quadruple-clicking goes back to char-
acters, etc. Multiple-click is determined by the time from button up to button down, so you can change the
selection unit in the middle of a selcction.

Pointer button two (usually middle) ‘types’ (pastes) the text from the cut buffer, inserting it as keyboard
input.

Pointer button three (usually right) extends the current selection. (Without loss of generality, that is you
can swap “‘right’’ and *‘left”” everywhere in the rest of this paragraph...) If pressed while closer to the
right edge of the selcction than the left, it extends/contracts the right edge of the selection. If you contract
the selection past the left edge of the sclection, xterm assumes you really meant the left edge, restores the
original selection, then extends/contracts the left edge of the selection. Extension starts in the selection unit
mode that the last selection or extension was performed in; you can multiple-click to cycle through them.

By cutting and pasting pieces of tcxt without trailing new lines, you can take text from several places in
different windows and form a command to the shell, for cxample, or take output from a program and insert
it into your favorite editor. Since the cut buffer is globally sharcd among different applications, you should

X Version 11 Last change: 1 March 1988 205

XTERM(1) USER COMMANDS XTERM(1)

MENUS

regard it as a ‘file’ whose contents you know. The terminal emulator and other text programs should be
treating it as if it were a text file, i.e. the text is delimited by new lines.

The scroll region displays the position and amount of text currently showing in the window (highlighted)
relative to the amount of text actually saved. As more text is saved (up to the maximum), the size of the
highlighted area decreases.

Clicking button one with the pointer in the scroll region moves the adjacent line to the top of the display
window.

Clicking button three moves the top linc of the display window down to the pointer position.

Clicking button two moves the display to a position in the saved text that corresponds to the pointer’s posi-
tion in the scrollbar.

Unlike the VT102 window, the Tektronix window dows not allow the copying of text. It does allow Tek-
tronix GIN mode, and in this mode the cursor will change from an arrow to a cross. Pressing any key will
send that key and the current coordinate of the cross cursor. Pressing button one, two, or three will return
the letters ‘1, ‘m’, and ‘r’, respectively. If the ‘shift’ key is pressed when a pointer buton is pressed, the
corresponding upper case letter is sent. To distinquish a pointer button from a key, the high bit of the char-
acter is set (but this is bit is normally stripped unless the terminal mode is RAW; see #ty(4) for details).

Xterm has three different menus, named xterm, Modes, and Tektronix. Each menu pops up under the
correct combinations of key and button presses. Most menus are divided into two section, separated by a
horizontal line. The top portion contains various modes that can be altered. A check mark appears next to
a mode that is currently active. Selecting one of these modes toggles its state. The bottom portion of the
menu are command entries; selecting one of these performs the indicated function.

The xterm menu pops up when the “‘control’” key and pointer button one are pressed in a window. The
modes section contains items that apply to both the VT102 and Tektronix windows. Notable entries in the
command section of the menu are the Continue, Suspend, Interrupt, Hangup, Terminate and Kill which
sends the SIGCONT, SIGTSTP, SIGINT, SIGHUP, SIGTERM and SIGKILL signals, respectively, to the
process group of the process running under xterm (usually the shell). The Continue function is especially
useful if the user has accidentally typed CTRL-Z, suspending the process.

The Modes menu sets various modes in the VT102 emulation, and is popped up when the ““control’” key
and pointer button two are pressed in the VT102 window. In the command section of this menu, the soft
reset entry will reset scroll regions. This can be convenicnt when some program has left the scroll regions
set incorrectly (often a problem when using VMS or TOPS-20). The full reset entry will clear the screen,
reset tabs to every eight columns, and reset the terminal modes (such as wrap and smooth scroll) to there
initial states just after xterm has finish processing the command line options. The Tektronix menu sets
various modes in the Tektronix emulation, and is popped up when the “‘control”” key and pointer button
two are pressed in the Tektronix window. The current font size is checked in the modes section of the
menu. The PAGE entry in the command scction clears the Tektronix window.

CHARACTER CLASSES

206

Clicking the middle mouse button twice in rapid succession will cause all characters of the same class (e.g.
letters, white space, punctuation) to be sclected. Since different people have different preferences for what
should be selected (for example, should filcnames be sclected as a whole or only the separate subnames),
the default mapping can be overridden through the use of the clarClass (class CharClass) resource.

This resource is simply a list of range:value pairs where the range is either a single number or low-high in
the range of 0 to 127, corresponding to the ASCII code for the character or characters to be set. The value
is arbitrary, although the default table uses the character number of the first character occurring in the set.

The default table is:

static int charClass[128] = {
/#* NUL SOH STX ETX EOT ENQ ACK BEL #/

Last change: 1 March 1988 X Version 11

XTERM(1) USER COMMANDS XTERM(1)

32, 1, 1, 1, 1, 1, 1, 1,
/# BS HT NL VT NP CR SO SI%/
1,32, 1, 1, 1, 1, 1, 1,
/* DLE DC1 DC2 DC3 DC4 NAK SYN ETB #/
1, 1, 1, 1, 1, 1, 1, 1,
/#CAN EM SUB ESC FS GS RS US#/
1, 1, 1,1, 1, 1, 1, 1,

[=SP ' " # 8§ % & #/
32, 33, 34, 35, 36, 37, 38, 39,
{3 % & , =, f4

40, 41, 42, 43, 44, 45, 46, 47,
0 1 2 3 4 5 6 7%/
48, 48, 48, 48, 48, 48, 48, 48,
A8 9 3 < = > 7%
48, 48, 58, 59, 60, 61, 62, 63,
F @ A B C D E F G/
64, 48, 48, 48, 48, 48, 48, 48,
H I J KL M N O%*
48, 48, 48, 48, 48, 48, 48, 48,
P QR S T U V W¥
48, 48, 48, 48, 48, 48, 48, 48,
XY Z [N1 " _#
48, 48, 48, 91, 92, 93, 94, 48,
A ¢ a b c de f g%
96, 48, 48, 48, 48, 48, 48, 48,
A h i j k1 m n o#
48, 48, 48, 48, 48, 48, 48, 48,
[p qr s tuv w¥
48, 48, 48, 48, 48, 48, 48, 48,
[x y z { | } ~DEL#%
48, 48, 48,123, 124,125,126, 1};

For example, the string ¢“33:48,37:48,45-47:48,64:48" indicates that the exclamation mark, percent sign,
dash, period, slash, and ampersand characters should be treated the same way as characters and numbers.
This is very useful for cutting and pasting electronic mailing addresses and Unix filenames.

KEY TRANSLATIONS
It is possible to rebind keys (or sequences of keys) to arbitrary strings for input, by changing the transla-
tions for the vt100 or tek4014 widgets. Changing the translations for events other than key presses is not
expected, and will cause unpredictable behavior.

2 ¢ 29 66

The actions available for key translations are “‘insert’”, ““string”’, ‘‘keymap’’, and ‘‘selection’’. The insert
action causes the key to be processed in the normal way. The string action takes a single string argument,
and rebinds the key/sequence to that string value. The keymap action takes a single string argument nam-
ing a resource to be used to dynamically define a ncw translation table; the name of the resource is obtained
by appending the string ‘‘Keymap®’ to the string argument to the action. A string argument of *‘None’’ to
the keymap action restores the original translation table (the very first one; a stack is not maintained). The
sclection action takes a single string argument specifying a selection and causes the contents of that selec-
tion to be used as effective input (the current implementation of this is a crock, and always uses cut buffer
Zero).

For example, helpers for dbx on a Sun:

+*VT100.translations: #override <Key>L7: keymap(dbx)
*VT100.dbxKeymap.translations: \

X Version 11 Last change: 1 March 1988 207

XTERM(1) USER COMMANDS XTERM(1)

<Key>L7: keymap(None) \n\
<Key>L9: string("next") string(0x0d) \n\
<Key>L10: string("step") string(0x0d) \n\
<Key>L8: string("print ") selection(PRIMARY)

OTHER FEATURES

Xterm automatically highlights the window border and text cursor when the pointer enters the window
(selected) and unhighlights them when the pointer leaves the window (unselected). If the window is the
focus window, then the window is highlightcd no matter where the pointer is.

In VT102 mode, there are escape sequences to activate and deactivate an alternate screen buffer, which is
the same size as the display arca of the window. When activated, the current screen is saved and replace
with the alternate screen. Saving of lines scrolled off the top of the window is disabled until the normal
screen is restored. The termcap(5) entry for xterm allows the visual editor vi(1) to switch to the alternate
screen for editing, and restore the screen on exit.

In either VT102 or Tektronix mode, there are escape sequences to change the name of the windows and to
specify a new log file name.

ENVIRONMENT

Xterm sets the environment variables ¢ “TERM’’ and *“TERMCAP’’ properly for the size window you have
created. It also uses and sets the environment variable ‘‘DISPLAY’” to specify which bit map display ter-
minal to use. The environment variable “WINDOWID’ is set to the X window id number of the xterm
window.

SEE ALSO

resize(1), X(1), pty(4), tty(4)
“Xterm Control Sequences’’

BUGS
Xterm will hang forever if you try to paste too much text at one time. Itis both producer and consumer
for the pty and can deadlock.
Variable-width fonts are not handled reasonably.
This program still needs to be rewritten. It should be split into very modular sections, with the various
emulators being completely separate widgets that don’t know about each other. Ideally, you’d like to be
able to pick and choose emulator widgets and stick them into a single control widget.
The focus is considered lost if some other client (e.g., the window manager) grabs the pointer; it is difficult
to do better without an addition to the protocol.
There needs to be a dialog box to allow entry of log file name and the COPY file name.
Many of the options are not resettable alter xterm starts.
This manual page is too long. There should be a scparate uscrs manual defining all of the non-standard
escape sequences.
All programs should be written to use X dircctly; then we could eliminate this program.

COPYRIGHT
Copyright 1988, Massachusetts Institute of Tcchnology.
Sce X(I) for a full statcment of rights and permissions.

AUTHORS
Far too many people, including:
Loretta Guarino Reid (DEC-UEG-WSL), Joel McCormack (DEC-UEG-WSL), Terry Weissman (DEC-
UEG-WSL), Edward Moy (Berkeley), Ralph R. Swick (MIT-Athena), Mark Vandevoorde (MIT-Athena),
Bob McNamara (DEC-MAD), Jim Gettys (MIT-Athcna), Bob Scheifler (MIT X Consortium), Doug Mink
(SAO), Steve Pitschke (Stellar), Ron Newman (MIT-Athena), Jim Fulton (MIT X Consortium)

208 Last change: 1 March 1988 X Version 11

XWD(1) USER COMMANDS XWD(1)

NAME
xwd - dump an image of an X window

SYNOPSIS
xwd [-debug] [-help] [-nobdrs] [-out file] [-xy] [-frame] [-display display]

DESCRIPTION
Xwd is an X Window System window dumping utility. Xwd allows X users to store window images in a
specially formatted dump file. This file can then be read by various other X utilities for redisplay, printing,
editing, formatting, archiving, image proccssing, etc. The target window is selected by clicking the mouse
in the desired window. The keyboard bell is rung once at the beginning of the dump and twice when the
dump is completed.

OPTIONS
-display display
This argument allows you to specify the server to connect to; see X(1).
-help Print out the ‘Usage:’ command syntax summary.

-nobdrs This argument specifies that the window dump should not include the pixels that compose the X
window border. This is useful in situations where you may wish to include the window contents
in a document as an illustration.

-out file This argument allows the user to explicitly specify the output file on the command line. The
default is to output to standard out.

-Xy This option applies to color displays only. It sclects ‘XY’ format dumping instead of the default
‘Z’ format.

-add value
This option specifies an signed value to be added to every pixel.

-frame This option indicates that the window manager frame should be included when manually select-
ing a window.

ENVIRONMENT
DISPLAY
To get default host and display number.
FILES
XWDFile.h
X Window Dump File format definition file.
SEE ALSO
xwud(1), xpr(1), X(1)
COPYRIGHT
Copyright 1988, Massachusetts Institute of Tcchnology.
See X(1) for a full statement of rights and permissions.

AUTHORS
Tony Della Fera, Digital Equipment Corp., MIT Project Athena
William F. Wyatt, Smithsonian Astrophysical Observatory

X Version 11 Last change: 24 October 1988 209

XWD (1) USER COMMANDS XWD (1)

210 Last change: 24 October 1988 X Version 11

XWININFO (1) USER COMMANDS XWININFO (1)

NAME
xwininfo - window information utility for X

SYNOPSIS
xwininfo [-help] [-id id] [-root] [-name name] [-int] [-tree] [-stats] [-bits] [-events] [-size] [-wm] [-all] [-
english] [-metric] [-display display]

DESCRIPTION

Xwininfo is a utility for displaying information about windows. Various information is displayed depend-
ing on which options are selected. If no options are chosen, -stats is assumed.

The user has the option of sclecting the target window with the mouse (by clicking any mouse button in the
desired window) or by specifying its window id on the command line with the -id option. Or instead of
specifying the window by its id number, the -name option may be used to specify which window is desired
by name. There is also a special -root option to quickly obtain information on X’s root window.

OPTIONS
-help Print out the ‘Usage:” command syntax summary.

sidid This option allows the user to specify a target window id on the command line rather than using
the mouse to select the target window. This is very useful in debugging X applications where the
target window is not mapped to the screen or where the use of the mouse might be impossible or
interfere with the application.

-name name
This option allows the user to specify that the window named name is the target window on the
command line rather than using the mouse to sclect the target window.

.root This option specifies that X’s root window is the target window. This is useful in situations
where the root window is completely obscured.

-int This option specifies that all X window ids should be displayed as integer values. The default is
to display them as hexadecimal values.

-tree This option causes the root, parcnt, and children windows’ ids and names of the selected window
to be displayed.

.stats This option causes the display of various attributes pertaining to the location and appearance of
the selected window. Information displayed includes the location of the window, its width and
height, its depth, border width, class, colormap id if any, map state, backing-store hint, and loca-
tion of the corners.

-bits This option causes the display of various attributes pertaining to the selected window’s raw bits
and how the selected window is to be stored. Displayed information includes the selected
window’s bit gravity, window gravity, backing-store hint, backing-planes value, backing pixel,
and whether or not the window has save-under sct.

-events This option causes the selected window’s event masks to be displayed. Both the event mask of
events wanted by some client and the cvent mask of events not to propagate are displayed.

-size This option causes the selected window’s sizing hints to be displayed. Displayed information
includes: for both the normal size hints and the zoom size hints, the user supplied location if any;
the program supplied location if any; the user supplied size if any; the program supplied size if
any; the minimum size if any; the maximum size if any; the resize increments if any; and the
minimum and maximum aspect ratios if any.

-wm This option causcs the selected window’s window manager hints to be displayed. Information
displayed may include whether or not the application accepts input, what the window’s icon win-
dow # and name is, where the window’s icon should go, and what the window’s initial state
should be.

X Version 11 Last change: 24 October 1988 211

XWININFO (1) USER COMMANDS XWININFO (1)

-metric This option causes all individual height, width, and x and y positions to be displayed in millime-
ters as well as numbcer of pixcls, based on what the server thinks the resolution is. Geometry
specifications that are in +x+y form are not changed.

-english This option causes all individual height, width, and x and y positions to be displayed in inches
(and feet, yards, and miles if necessary) as well as number of pixels. -metric and -english may
both be enabled at the same time.

-all This option is a quick way to ask for all information possible.
-display display
This option allows you to specify the server to connect to; see X(1).

EXAMPLE
The following is a sample summary taken with no options specified:

xwininfo ==> Please select the window about which you
==> would like information by clicking the
==>mouse in that window.

xwininfo ==> Window id: 0x60000f (xtcrm)

==> Upper left X: 4

==> Upper left Y: 19

==> Width: 726

==> Height: 966

==> Depth: 4

==> Border width: 3

==> Window class: InputOutput

==> Colormap: 0x80065

==> Window Bit Gravity Statc: NorthWestGravity
==> Window Window Gravity State: NorthWes!Gravity
==>Window Backing Store State: NotUseful

==> Window Save Under State: no

==>Window Map State: IsVicwable

==> Window Override Redircct State: no

==> Corners: +4+19 -640+19 -640-33 +4-33

ENVIRONMENT

DISPLAY

To get the default host and display number.

SEE ALSO

X(1), xprop(1)
BUGS

Using -stats -bits shows some redundant information.
COPYRIGHT

Copyright 1988, Massachusctts Institute of Technology.
Sec X(1) for a full statement of rights and permissions.

AUTHOR
Mark Lillibridge, MIT Projcct Athena

212 Last change: 24 October 1988 X Version 11

XWUD(1) USER COMMANDS XWUD(1)

NAME
xwud - image displayer for X

SYNOPSIS
xwud [-debug] [-help] [-inverse] [-in file] [-display display]

DESCRIPTION
Xwud is an X Window System window image undumping utility. Xwud allows X users to display window
images that were saved by xwd in a specially formatted dump file. The window image will appear at the
coordinates of the original window from which the dump was taken. This is a crude version of a more
advanced utility that has never been written. Monochrome dump files are displayed on a color monitor in
the default foreground and background colors.

OPTIONS
-help Print out a short description of the allowable options.

-in file This option allows the user to explicitly specify the input file on the command line. If no input
file is given, the standard input is assumed.

-inverse Applies to monochrome window dump files only. If selected, the window is undumped in reverse
video. This is mainly needed because the display is ‘write white’, whereas dump files intended
eventually to be written to a printer are generally ‘write black’.

-display display
This option allows you to specify the server to connect (o; see X(1).
ENVIRONMENT
DISPLAY
To get default display.
FILES
XWDFile.h
X Window Dump File format definition file.
BUGS

Does<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>